sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
# Vision Transformer (base-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ViTImageProcessor, ViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224') inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/vit.html#). ## Training data The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py). Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
{"license": "apache-2.0", "tags": ["vision", "image-classification"], "datasets": ["imagenet-1k", "imagenet-21k"], "widget": [{"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg", "example_title": "Tiger"}, {"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg", "example_title": "Teapot"}, {"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg", "example_title": "Palace"}]}
image-classification
google/vit-base-patch16-224
[ "transformers", "pytorch", "tf", "jax", "safetensors", "vit", "image-classification", "vision", "dataset:imagenet-1k", "dataset:imagenet-21k", "arxiv:2010.11929", "arxiv:2006.03677", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929", "2006.03677" ]
[]
TAGS #transformers #pytorch #tf #jax #safetensors #vit #image-classification #vision #dataset-imagenet-1k #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Vision Transformer (base-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the model hub to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: For more code examples, we refer to the documentation. ## Training data The ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found here. Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info
[ "# Vision Transformer (base-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224.\n\nImages are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:\n\n\n\nFor more code examples, we refer to the documentation.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #vit #image-classification #vision #dataset-imagenet-1k #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Vision Transformer (base-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224.\n\nImages are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:\n\n\n\nFor more code examples, we refer to the documentation.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ 94, 187, 299, 41, 45, 54, 3, 70, 71, 64, 11 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #vit #image-classification #vision #dataset-imagenet-1k #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Vision Transformer (base-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team." ]
[ -0.05648408830165863, 0.09450731426477432, -0.0006789390463382006, 0.0800042673945427, 0.1228458359837532, 0.03741384297609329, 0.11509671062231064, 0.09756407141685486, -0.0868440717458725, 0.02918385900557041, 0.07018113881349564, 0.0983554869890213, 0.08008437603712082, 0.13357257843017578, 0.03071092627942562, -0.17773370444774628, 0.029256131500005722, 0.03029985912144184, 0.005498127546161413, 0.10371129959821701, 0.06269999593496323, -0.09829873591661453, 0.11999069899320602, 0.00273722386918962, -0.16849951446056366, 0.017625335603952408, 0.04505721479654312, -0.047932032495737076, 0.08978306502103806, 0.030859816819429398, 0.07931491732597351, 0.07209949195384979, 0.06351011246442795, -0.02692810818552971, 0.020618390291929245, 0.08862694352865219, -0.043918952345848083, 0.07934021949768066, 0.05220161750912666, 0.030182473361492157, 0.13917626440525055, -0.04439191892743111, 0.03386491537094116, 0.02975028194487095, -0.0857422724366188, -0.22861987352371216, -0.10134264081716537, 0.10639402270317078, 0.06728192418813705, 0.052163444459438324, -0.0062065040692687035, 0.1459227055311203, 0.07096434384584427, 0.059775061905384064, 0.21233925223350525, -0.20308353006839752, -0.07214842736721039, 0.19343741238117218, -0.06504680216312408, 0.04989735409617424, -0.05487977713346481, 0.0687091127038002, 0.08661080151796341, 0.027274468913674355, 0.13442763686180115, -0.03281689062714577, 0.08376234024763107, -0.002374683739617467, -0.12831538915634155, -0.06491653621196747, 0.09527476876974106, 0.01400451548397541, -0.075759656727314, -0.13272318243980408, -0.08834599703550339, -0.012124762870371342, 0.03030652552843094, -0.0025753076188266277, -0.0005273384740576148, -0.042921412736177444, -0.07298500835895538, -0.054552920162677765, -0.09897110611200333, -0.044122278690338135, -0.03259134292602539, 0.08005362749099731, -0.006836363114416599, 0.11265893280506134, -0.00972296018153429, 0.10288660228252411, -0.15115214884281158, -0.08049086481332779, -0.017854047939181328, -0.07919620722532272, 0.02330997958779335, 0.009858909994363785, 0.01453537680208683, -0.14936353266239166, -0.03581700101494789, 0.029386764392256737, 0.022591112181544304, -0.008156503550708294, -0.023583684116601944, 0.05128396674990654, 0.01140704657882452, 0.10332675278186798, -0.0710546225309372, -0.024213656783103943, 0.03154456987977028, 0.05923967808485031, 0.0640169084072113, -0.038689665496349335, -0.07391492277383804, -0.010834334418177605, 0.028001494705677032, -0.008335945196449757, 0.0227727759629488, 0.06420009583234787, -0.00516725517809391, -0.06464765220880508, 0.2148694396018982, -0.039866503328084946, -0.04524480924010277, -0.03135618939995766, -0.08227524906396866, 0.08140309154987335, 0.12188482284545898, -0.034071289002895355, -0.019797271117568016, 0.1066773310303688, -0.06659393012523651, -0.030420778319239616, -0.0469391755759716, -0.13294260203838348, 0.034907422959804535, -0.18326225876808167, -0.026445297524333, -0.15969282388687134, -0.16782976686954498, -0.007668020203709602, 0.03662601485848427, 0.02149486355483532, 0.0007803303888067603, 0.012087608687579632, -0.04118383675813675, 0.013714710250496864, 0.03252001479268074, 0.025242729112505913, -0.009006069041788578, 0.08723878860473633, -0.08232023566961288, 0.1176237165927887, -0.03928326442837715, 0.024479907006025314, -0.083585225045681, -0.0044191270135343075, -0.1691930741071701, -0.00038407393731176853, -0.030081085860729218, 0.02840663492679596, -0.07580001652240753, -0.1204274371266365, -0.022808711975812912, -0.014855972491204739, 0.0204252228140831, 0.13607120513916016, -0.19518323242664337, -0.05832790583372116, 0.15477941930294037, -0.1854429841041565, -0.05616142600774765, 0.09509030729532242, -0.013051213696599007, 0.0715067908167839, 0.051761824637651443, 0.06814895570278168, 0.0375366173684597, -0.13093015551567078, -0.0492657832801342, -0.06074696406722069, -0.05553822219371796, -0.045941855758428574, 0.03852178901433945, 0.0501164048910141, -0.0724356472492218, 0.022741500288248062, -0.038987837731838226, -0.02285728044807911, -0.039814285933971405, -0.028866998851299286, -0.016074558719992638, -0.06745745241641998, 0.06687890738248825, 0.015991326421499252, 0.0006557967280969024, -0.02558785118162632, -0.06354065239429474, 0.0038441938813775778, 0.1053665280342102, -0.062031228095293045, -0.00009197043982567266, -0.016477059572935104, 0.11426512151956558, -0.11831188201904297, -0.016876474022865295, -0.07485046237707138, 0.01879560761153698, 0.03229014202952385, -0.08481574058532715, 0.04030029848217964, 0.0999838337302208, 0.05750756338238716, 0.0835900530219078, -0.06950664520263672, -0.03433600813150406, -0.05166648328304291, -0.04003395140171051, 0.005178168416023254, -0.0862077921628952, -0.03611786663532257, -0.05317755416035652, 0.10397269576787949, -0.1546463817358017, 0.01849825121462345, 0.01863214187324047, 0.044769152998924255, 0.042456816881895065, -0.06691084057092667, 0.04485504329204559, -0.040037550032138824, -0.03550120070576668, -0.08064375072717667, 0.05599416792392731, 0.0223257876932621, -0.039310891181230545, 0.07057332992553711, -0.17090915143489838, -0.07699982821941376, 0.18323487043380737, -0.032918255776166916, -0.08021921664476395, 0.014956703409552574, -0.03015276975929737, -0.013220285065472126, -0.08777718991041183, -0.004843717906624079, 0.01650284416973591, -0.03185653313994408, 0.1254652589559555, -0.11406541615724564, 0.012166212312877178, 0.09941966086626053, 0.0005317556788213551, -0.04314209893345833, 0.04134537652134895, 0.060107018798589706, -0.15609940886497498, 0.06851226091384888, 0.11757997423410416, -0.012229982763528824, 0.16202770173549652, 0.04712587967514992, -0.04422813653945923, -0.013029334135353565, -0.017093684524297714, 0.06315482407808304, 0.10834414511919022, 0.005724968854337931, -0.02243109419941902, 0.05835307016968727, -0.03315403684973717, -0.015711205080151558, -0.14754155278205872, -0.01967252977192402, 0.03269179165363312, -0.01866648532450199, -0.00634749187156558, 0.07458405196666718, -0.03390548378229141, 0.10389339178800583, -0.002340502804145217, 0.04801733046770096, 0.00558455241844058, -0.018306463956832886, -0.08615626394748688, 0.13659390807151794, -0.04521055892109871, -0.2835436761379242, -0.1388951539993286, 0.048908673226833344, -0.07434604316949844, 0.0039025135338306427, 0.03965142369270325, -0.07200279086828232, -0.07356519252061844, -0.09843196719884872, 0.018940472975373268, -0.02278047800064087, 0.0038395379669964314, -0.006692653987556696, -0.009032806381583214, 0.005545990075916052, -0.1029810756444931, -0.006267547607421875, -0.0433863140642643, -0.10235648602247238, 0.10464207828044891, -0.03977310657501221, 0.089744932949543, 0.09861498326063156, -0.09212964028120041, 0.028131097555160522, -0.042960651218891144, 0.16229313611984253, -0.03825666755437851, 0.09042847156524658, 0.23782584071159363, 0.07234008610248566, 0.06598849594593048, 0.04501979798078537, -0.01329584326595068, -0.041264887899160385, 0.018546806648373604, 0.012903747148811817, -0.145960733294487, -0.12195007503032684, -0.012906343676149845, -0.018015148118138313, 0.10318061709403992, 0.1587100625038147, 0.03585969656705856, 0.0954756885766983, 0.10141319036483765, -0.04723507910966873, 0.006124039646238089, 0.0609523169696331, 0.12144290655851364, -0.02893727272748947, 0.001957402564585209, 0.09097497910261154, -0.0659717470407486, 0.02960151806473732, 0.14853793382644653, -0.015089660882949829, 0.16790147125720978, -0.06893808394670486, 0.04129773750901222, 0.02676309272646904, 0.10574647039175034, 0.0733441710472107, 0.1331847906112671, -0.04630418121814728, 0.010408718138933182, -0.06630862504243851, -0.0920947790145874, -0.0407586432993412, 0.07877051085233688, -0.026709910482168198, 0.05317458137869835, -0.021603448316454887, 0.004701223224401474, -0.011656680144369602, 0.12454994767904282, 0.0757521465420723, -0.25478366017341614, -0.04252767562866211, -0.01398997101932764, 0.07045463472604752, -0.05543338879942894, 0.012358954176306725, 0.09749162197113037, -0.07375236600637436, 0.13525836169719696, -0.08598413318395615, 0.05674305930733681, -0.055369891226291656, -0.025500383228063583, -0.0066423057578504086, 0.007586945779621601, 0.0005083123687654734, 0.040950238704681396, -0.13709284365177155, 0.1256980150938034, 0.004759139381349087, -0.012298457324504852, -0.07664899528026581, -0.02676405757665634, 0.029517963528633118, 0.04195404797792435, 0.1349433958530426, 0.03135335072875023, 0.0330398753285408, -0.07796915620565414, -0.05462928116321564, -0.04218989610671997, 0.032725851982831955, -0.05077391490340233, 0.04152846708893776, -0.004500069655478001, -0.017690612003207207, -0.011131693609058857, 0.08694963902235031, 0.0016284642042592168, -0.09553176164627075, 0.05827537551522255, -0.02085738815367222, -0.02753334306180477, -0.03958282619714737, -0.10304040461778641, -0.0884443074464798, 0.10909181088209152, 0.04982931911945343, -0.060227785259485245, -0.12289976328611374, 0.04761406406760216, 0.07028841972351074, -0.07292643189430237, 0.08538732677698135, -0.033201687037944794, 0.07845737785100937, -0.08293652534484863, -0.12278441339731216, 0.027543384581804276, -0.05117352679371834, -0.15447072684764862, -0.012798328883945942, 0.06092493236064911, -0.002009368734434247, 0.02827165089547634, -0.004551440943032503, 0.059114810079336166, -0.011824602261185646, -0.0576898492872715, 0.09500665962696075, 0.09662769734859467, 0.01798117905855179, 0.03283904865384102, 0.07605986297130585, -0.09853445738554001, -0.06247192621231079, -0.002739033894613385, 0.0256784800440073, 0.19305863976478577, -0.10528378933668137, 0.036935389041900635, 0.10169164836406708, -0.03788744658231735, -0.24589693546295166, 0.0035046229604631662, 0.003598074661567807, -0.01552137453109026, -0.01728644035756588, -0.0760849118232727, 0.03494345024228096, 0.03179633617401123, -0.02439553663134575, 0.09369071573019028, -0.1672738790512085, -0.11975159496068954, -0.03498360887169838, 0.16614247858524323, 0.24859391152858734, -0.12087932229042053, 0.01408852357417345, 0.005758174229413271, -0.1347779631614685, 0.1601652055978775, -0.09473349153995514, 0.0605866014957428, -0.015748362988233566, 0.07067625969648361, 0.029580600559711456, -0.08061841130256653, 0.0794459730386734, -0.07416347414255142, 0.06940245628356934, -0.0917336642742157, -0.04920704662799835, 0.06897228956222534, -0.06004491448402405, 0.09415829181671143, 0.028439193964004517, 0.06140110641717911, -0.04781532660126686, -0.0186503566801548, -0.09727419167757034, 0.0642404779791832, -0.017097562551498413, -0.09925100207328796, -0.05375581234693527, 0.08881372958421707, 0.05349373444914818, -0.03250376880168915, 0.06122467294335365, -0.012180782854557037, 0.11137770116329193, 0.2236347198486328, 0.017200741916894913, -0.01762625016272068, -0.03548518568277359, -0.034909460693597794, -0.0527665950357914, 0.08972367644309998, -0.21964454650878906, 0.03158121556043625, 0.06308162212371826, 0.06799590587615967, 0.05200065299868584, 0.012037264183163643, -0.09926040470600128, 0.023536907508969307, 0.08016078919172287, -0.1898687183856964, -0.06600967049598694, -0.05187588185071945, -0.00938117504119873, 0.010322890244424343, 0.05055556446313858, 0.13451871275901794, -0.12035524845123291, -0.00829512719064951, 0.0034774511586874723, 0.016418933868408203, 0.0053621758706867695, 0.07699775695800781, 0.05517135187983513, 0.008467361330986023, -0.08293372392654419, 0.10981140285730362, 0.040009506046772, -0.10992013663053513, -0.016537625342607498, 0.06488044559955597, -0.1027199923992157, -0.0506783053278923, -0.021572090685367584, 0.009972251951694489, -0.16205190122127533, -0.020627614110708237, -0.02916153334081173, -0.04176987335085869, 0.00039668986573815346, 0.1496158391237259, 0.051933228969573975, 0.027618825435638428, 0.008318588137626648, -0.009047750383615494, -0.10474905371665955, 0.044942378997802734, 0.029085861518979073, 0.05642499402165413, -0.133988618850708, 0.07437197864055634, 0.06425952911376953, 0.09022290259599686, -0.051108017563819885, -0.006070622242987156, -0.02143278159201145, -0.0397891066968441, -0.01702019013464451, 0.05533631145954132, -0.011487504467368126, -0.0006945135537534952, -0.050897017121315, 0.009946959093213081, -0.004699693992733955, 0.012890449725091457, -0.07744257152080536, 0.01934574730694294, -0.006499590817838907, -0.01765812188386917, -0.0497884601354599, -0.04200254753232002, -0.02170196920633316, -0.02019045688211918, 0.08141737431287766, -0.02315661311149597, -0.038757599890232086, 0.033705562353134155, 0.014521527104079723, -0.024053096771240234, 0.06652037799358368, 0.030411988496780396, 0.011044720187783241, -0.0321403443813324, 0.005986652337014675, -0.01934547908604145, -0.04924469813704491, -0.01985904946923256, 0.01959649659693241, -0.07384709268808365, 0.008885920979082584, -0.0004564720147754997, -0.01814848929643631, -0.06229573115706444, 0.046946581453084946, 0.08141131699085236, 0.06474266946315765, 0.0989159569144249, -0.043349508196115494, 0.06837756186723709, -0.19361141324043274, -0.03154941648244858, -0.00181666505523026, -0.10813997685909271, -0.11004003882408142, 0.0013876683078706264, 0.02226395346224308, -0.020550943911075592, 0.05365836247801781, 0.07647151499986649, -0.03508134186267853, -0.002585524460300803, 0.028961021453142166, -0.04384598135948181, -0.03752594813704491, 0.1285717934370041, -0.018608426675200462, -0.00188979203812778, 0.029494117945432663, 0.05454058572649956, 0.004285960458219051, 0.07490868121385574, 0.10492071509361267, 0.08143475651741028, 0.06938829272985458, 0.03292819857597351, 0.05648496001958847, 0.022987000644207, -0.08327707648277283, -0.020978162065148354, -0.07103386521339417, 0.09779589623212814, -0.03532183915376663, 0.09382091462612152, 0.168242946267128, -0.11468689143657684, 0.03099038638174534, 0.03545410931110382, -0.02056528627872467, -0.08499103784561157, -0.2621007263660431, -0.08517047017812729, -0.07796033471822739, 0.0503697507083416, -0.06541460007429123, 0.04809792339801788, 0.10173550993204117, 0.0464220829308033, -0.01420480478554964, 0.02101459912955761, -0.06534527987241745, -0.08155865222215652, 0.09651913493871689, 0.034077126532793045, -0.04575299844145775, 0.017144182696938515, 0.011278959922492504, 0.07592315971851349, 0.03193272277712822, 0.0290128942579031, 0.009290811605751514, 0.09391063451766968, 0.06742141395807266, 0.00016214721836149693, -0.11097632348537445, -0.020497547462582588, 0.026853322982788086, 0.04274853318929672, 0.0924847200512886, -0.010798463597893715, 0.02675432153046131, -0.014915354549884796, 0.10798583179712296, -0.06468117982149124, -0.057321663945913315, -0.08148112893104553, 0.1577148735523224, -0.1119765043258667, 0.01912510022521019, 0.002369130728766322, -0.06857996433973312, 0.017864292487502098, 0.21824419498443604, 0.2274998426437378, 0.08980336040258408, -0.0051236506551504135, -0.015373975969851017, -0.0032365627121180296, -0.013077509589493275, 0.08938727527856827, 0.04930594190955162, 0.118189737200737, -0.056515537202358246, 0.05476641654968262, -0.08389266580343246, 0.024818897247314453, 0.007793012540787458, 0.07115597277879715, -0.007691282778978348, -0.01882757619023323, -0.07905056327581406, 0.008680736646056175, 0.04707467928528786, -0.16816140711307526, 0.1208832710981369, -0.14633972942829132, -0.031384263187646866, -0.029054172337055206, 0.02901664935052395, 0.014905009418725967, 0.03804139792919159, -0.04381941631436348, 0.057114385068416595, 0.03741785138845444, -0.0027798376977443695, -0.16074013710021973, -0.07490992546081543, 0.036589208990335464, -0.11469540745019913, 0.11472293734550476, -0.04769289866089821, 0.010836780071258545, 0.06563735753297806, -0.003931904677301645, -0.09942749887704849, 0.025245262309908867, -0.004532158374786377, -0.04992545396089554, -0.045141760259866714, 0.15830300748348236, -0.009713666513562202, 0.05620938912034035, -0.010937876999378204, -0.12106336653232574, -0.010119459591805935, 0.02629236876964569, -0.0511656291782856, -0.046340212225914, 0.06593077629804611, -0.06370872259140015, 0.17333409190177917, 0.13061553239822388, -0.0031227434519678354, -0.021135399118065834, -0.0827111005783081, -0.009384405799210072, 0.032572176307439804, -0.035984721034765244, 0.05090229585766792, -0.08456484973430634, -0.02598946914076805, -0.11657543480396271, 0.028530238196253777, -0.2474079579114914, -0.0008716192096471786, -0.08186604827642441, -0.0718117281794548, -0.053478389978408813, 0.08506277203559875, 0.050818294286727905, 0.005522723309695721, -0.026283252984285355, 0.025385718792676926, 0.006710938178002834, 0.1233011856675148, -0.06687457114458084, -0.07815054059028625 ]
null
null
transformers
# Vision Transformer (base-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ViTFeatureExtractor, ViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-384') model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-384') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change. ## Training data The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py). Images are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
{"license": "apache-2.0", "tags": ["vision", "image-classification"], "datasets": ["imagenet", "imagenet-21k"]}
image-classification
google/vit-base-patch16-384
[ "transformers", "pytorch", "tf", "jax", "safetensors", "vit", "image-classification", "vision", "dataset:imagenet", "dataset:imagenet-21k", "arxiv:2010.11929", "arxiv:2006.03677", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929", "2006.03677" ]
[]
TAGS #transformers #pytorch #tf #jax #safetensors #vit #image-classification #vision #dataset-imagenet #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Vision Transformer (base-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the model hub to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change. ## Training data The ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found here. Images are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info
[ "# Vision Transformer (base-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384.\n\nImages are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:\n\n\n\nCurrently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #vit #image-classification #vision #dataset-imagenet #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Vision Transformer (base-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384.\n\nImages are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:\n\n\n\nCurrently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ 92, 188, 302, 41, 76, 54, 3, 85, 73, 64, 11 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #vit #image-classification #vision #dataset-imagenet #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Vision Transformer (base-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team." ]
[ -0.060559969395399094, 0.0847117006778717, -0.0004778093134518713, 0.07754965871572495, 0.12037772685289383, 0.03591557592153549, 0.11051391810178757, 0.09422706067562103, -0.08862034231424332, 0.030433667823672295, 0.06968309730291367, 0.09843205660581589, 0.08038926124572754, 0.12272530049085617, 0.0341460146009922, -0.16809144616127014, 0.025332391262054443, 0.038666777312755585, 0.020234763622283936, 0.10699713230133057, 0.06295771151781082, -0.0974450558423996, 0.11857844144105911, 0.002376803196966648, -0.16588838398456573, 0.0224265456199646, 0.04824081063270569, -0.04419839009642601, 0.09921948611736298, 0.022944098338484764, 0.08495388925075531, 0.0727061852812767, 0.055934060364961624, -0.023518605157732964, 0.02411336451768875, 0.09106484055519104, -0.043429430574178696, 0.07456859201192856, 0.051514577120542526, 0.026455538347363472, 0.14127029478549957, -0.048287928104400635, 0.031148547306656837, 0.030868003144860268, -0.0859057679772377, -0.22561132907867432, -0.10071904212236404, 0.11207347363233566, 0.06728511303663254, 0.05777442827820778, -0.0065548052079975605, 0.15671709179878235, 0.06592672318220139, 0.0626918151974678, 0.22270004451274872, -0.20785696804523468, -0.06825863569974899, 0.1908007264137268, -0.0710451528429985, 0.04564839228987694, -0.05850421264767647, 0.06472767889499664, 0.08312134444713593, 0.029744399711489677, 0.12729142606258392, -0.03399932011961937, 0.07761768251657486, 0.002000504406169057, -0.13274361193180084, -0.061600200831890106, 0.08274193108081818, 0.011708185076713562, -0.07629629224538803, -0.12441327422857285, -0.09186433255672455, -0.012116913683712482, 0.03955583646893501, -0.0045449030585587025, -0.0028322404250502586, -0.04507242143154144, -0.07508696615695953, -0.05517542362213135, -0.10436032712459564, -0.04124369099736214, -0.03964405506849289, 0.07357389479875565, -0.008577492088079453, 0.10823443531990051, -0.011339404620230198, 0.10646294057369232, -0.1502709984779358, -0.07280860096216202, -0.021479981020092964, -0.07916107773780823, 0.02489551343023777, 0.003162173554301262, 0.017796169966459274, -0.1654656082391739, -0.038221120834350586, 0.03753778338432312, 0.029941190034151077, -0.011388391256332397, -0.02503550983965397, 0.05637649819254875, 0.004167777486145496, 0.10637497901916504, -0.06519382447004318, -0.03259667381644249, 0.038572195917367935, 0.05732337012887001, 0.07004364579916, -0.03880995512008667, -0.07535190135240555, -0.01575016975402832, 0.03961575776338577, -0.010307248681783676, 0.026605159044265747, 0.07232876121997833, -0.0038875718601047993, -0.058661218732595444, 0.218655526638031, -0.03900080919265747, -0.044396039098501205, -0.027327103540301323, -0.08638180047273636, 0.07937805354595184, 0.12745881080627441, -0.035983454436063766, -0.022511690855026245, 0.09975016862154007, -0.0645495280623436, -0.027193177491426468, -0.04382699728012085, -0.13942904770374298, 0.04088233411312103, -0.19365262985229492, -0.02700631134212017, -0.16485820710659027, -0.1622052788734436, -0.00510703818872571, 0.025428730994462967, 0.026698751375079155, 0.005201803985983133, 0.010311062447726727, -0.03271488845348358, 0.010792872868478298, 0.03478066623210907, 0.011155988089740276, -0.010352174751460552, 0.09142980724573135, -0.07967692613601685, 0.11900261044502258, -0.042786721140146255, 0.02199248969554901, -0.0940881296992302, -0.014153245836496353, -0.16378971934318542, -0.008497370406985283, -0.02504674904048443, 0.029312891885638237, -0.0743187889456749, -0.1173790693283081, -0.02629016898572445, -0.019234303385019302, 0.022929375991225243, 0.1354047805070877, -0.18800662457942963, -0.059726566076278687, 0.15521042048931122, -0.1874474585056305, -0.06043074280023575, 0.10019829124212265, -0.006005234085023403, 0.06835730373859406, 0.05328040570020676, 0.06351445615291595, 0.04001938924193382, -0.1323775202035904, -0.050927065312862396, -0.05545284226536751, -0.06248589605093002, -0.050481174141168594, 0.0324292816221714, 0.04942310228943825, -0.0628882646560669, 0.018435010686516762, -0.026811063289642334, -0.01932700164616108, -0.03691181167960167, -0.02380291000008583, -0.011326838284730911, -0.06621073186397552, 0.06341703981161118, 0.01711121015250683, -0.001050785998813808, -0.02911374345421791, -0.06848251819610596, -0.0028141518123447895, 0.09856337308883667, -0.05578896775841713, 0.0069442796520888805, -0.011687370017170906, 0.11991336941719055, -0.11717595905065536, -0.02081383392214775, -0.07344088703393936, 0.017648877575993538, 0.025223882868885994, -0.07100813835859299, 0.03956020623445511, 0.09550099074840546, 0.06009623780846596, 0.0816003605723381, -0.06931314617395401, -0.038391031324863434, -0.048559438437223434, -0.039681486785411835, 0.0013348284410312772, -0.08045835793018341, -0.037021417170763016, -0.05159861594438553, 0.10895126312971115, -0.1496562510728836, 0.02078300528228283, 0.03273291513323784, 0.03798094391822815, 0.041257601231336594, -0.06810186058282852, 0.048030730336904526, -0.03422434628009796, -0.04079388827085495, -0.07875549793243408, 0.06572707742452621, 0.026902223005890846, -0.04286813735961914, 0.07010551542043686, -0.17832082509994507, -0.095194511115551, 0.181940957903862, -0.04961005225777626, -0.08147304505109787, 0.00883870106190443, -0.02870478853583336, -0.015307592228055, -0.08979491144418716, -0.009644563309848309, 0.011243476532399654, -0.0333358496427536, 0.1252259612083435, -0.11093217879533768, 0.010189171880483627, 0.09503001719713211, -0.001307648723013699, -0.038726016879081726, 0.0428956001996994, 0.058733973652124405, -0.15449665486812592, 0.06960905343294144, 0.11537893116474152, -0.017720136791467667, 0.15977078676223755, 0.0539039708673954, -0.03899321332573891, -0.0010389904491603374, -0.012461020611226559, 0.06361597776412964, 0.10083547234535217, -0.003649667138233781, -0.0223105326294899, 0.057576414197683334, -0.0272804107517004, -0.018821531906723976, -0.15019993484020233, -0.021563135087490082, 0.0368136391043663, -0.013346314430236816, -0.019750503823161125, 0.07744470238685608, -0.03184950351715088, 0.10319193452596664, 0.0015184233197942376, 0.044943004846572876, 0.005324929021298885, -0.01519694272428751, -0.08825536072254181, 0.14027917385101318, -0.040559958666563034, -0.28229230642318726, -0.13220368325710297, 0.047102827578783035, -0.07206948846578598, 0.004140052013099194, 0.0499451719224453, -0.07072792947292328, -0.06537114083766937, -0.10051790624856949, 0.02214171178638935, -0.01847466453909874, 0.005324387922883034, -0.019226541742682457, -0.013886337168514729, 0.0017861723899841309, -0.1033783107995987, -0.007882199250161648, -0.05038491263985634, -0.10846039652824402, 0.11276467889547348, -0.04020371288061142, 0.09157463908195496, 0.10453202575445175, -0.09189761430025101, 0.022260095924139023, -0.05031243711709976, 0.15576094388961792, -0.03554662689566612, 0.10240665078163147, 0.23911632597446442, 0.07487086951732635, 0.0676029622554779, 0.04177343472838402, -0.01953476294875145, -0.03682510927319527, 0.01810881868004799, 0.016760315746068954, -0.14846760034561157, -0.11658424139022827, -0.005552975926548243, -0.021009130403399467, 0.11663316190242767, 0.15379589796066284, 0.035896431654691696, 0.09475331753492355, 0.09695703536272049, -0.04744614288210869, 0.0009099215967580676, 0.06396103650331497, 0.12536954879760742, -0.03532061353325844, 0.002933453768491745, 0.09137974679470062, -0.06761308759450912, 0.03610263764858246, 0.14921964704990387, -0.010402665473520756, 0.15254077315330505, -0.0717751681804657, 0.03827250748872757, 0.025764672085642815, 0.1078949123620987, 0.06519022583961487, 0.13816633820533752, -0.05500469356775284, 0.006310456898063421, -0.06424164772033691, -0.08870043605566025, -0.04119797796010971, 0.07584484666585922, -0.031091434881091118, 0.05620777606964111, -0.02340914122760296, 0.00025286199524998665, -0.011381451040506363, 0.1262272447347641, 0.08727426826953888, -0.24857470393180847, -0.04900652915239334, -0.024605626240372658, 0.07236634939908981, -0.050682928413152695, 0.011977721937000751, 0.09143992513418198, -0.07099396735429764, 0.13754041492938995, -0.08460257947444916, 0.054860152304172516, -0.05169837921857834, -0.02634323388338089, -0.011273116804659367, 0.0001627778692636639, -0.0007227175519801676, 0.0403103306889534, -0.13779772818088531, 0.12211787700653076, 0.0026555873919278383, -0.019059890881180763, -0.07119076699018478, -0.031031107529997826, 0.02976205386221409, 0.050421349704265594, 0.13046737015247345, 0.03238049894571304, 0.04864315316081047, -0.08341526985168457, -0.04928772523999214, -0.04801804944872856, 0.029594162479043007, -0.0449809655547142, 0.03885921835899353, -0.002100513782352209, -0.017761802300810814, -0.010503066703677177, 0.09912353754043579, 0.0034450036473572254, -0.08835446089506149, 0.05406999960541725, -0.012407688423991203, -0.022243905812501907, -0.03634832054376602, -0.1028672382235527, -0.08791062235832214, 0.10564034432172775, 0.041860632598400116, -0.05623014271259308, -0.11923927068710327, 0.04932378605008125, 0.0474541150033474, -0.07617707550525665, 0.07937796413898468, -0.03887447714805603, 0.07022643089294434, -0.09115839749574661, -0.11543475091457367, 0.03294367715716362, -0.05100736767053604, -0.14410991966724396, -0.010113958269357681, 0.06802641600370407, -0.0005472908960655332, 0.029309887439012527, -0.003910952713340521, 0.053659964352846146, -0.02025783434510231, -0.05012105032801628, 0.10196080803871155, 0.08955208212137222, 0.018386678770184517, 0.035609327256679535, 0.08037108182907104, -0.1018783375620842, -0.06357671320438385, -0.00010270110942656174, 0.04480282589793205, 0.19478487968444824, -0.09933184087276459, 0.04027799516916275, 0.09063318371772766, -0.03835893049836159, -0.2512839436531067, 0.010113587602972984, -0.005213840398937464, -0.019553635269403458, -0.0169665664434433, -0.06490238010883331, 0.03366127982735634, 0.026822252199053764, -0.020221497863531113, 0.08909821510314941, -0.16473925113677979, -0.1169409528374672, -0.03287072852253914, 0.1627630740404129, 0.2615665793418884, -0.11921795457601547, 0.019833484664559364, 0.011617276817560196, -0.14193755388259888, 0.14960962533950806, -0.10643861442804337, 0.061033040285110474, -0.015543299727141857, 0.07126770913600922, 0.02695206180214882, -0.08460749685764313, 0.06754916906356812, -0.07914067059755325, 0.06566613912582397, -0.09385807067155838, -0.05182039737701416, 0.05773984268307686, -0.060741543769836426, 0.08842021971940994, 0.03037087991833687, 0.05156097933650017, -0.04777029901742935, -0.015043051913380623, -0.1009092852473259, 0.07483849674463272, -0.013211329467594624, -0.10020903497934341, -0.05117389187216759, 0.08993848413228989, 0.05340301990509033, -0.03444648161530495, 0.06638369709253311, -0.025823431089520454, 0.1271452009677887, 0.22021494805812836, 0.02587554231286049, -0.024463841691613197, -0.03396306186914444, -0.03437035530805588, -0.053594011813402176, 0.0858100950717926, -0.2142445147037506, 0.030779842287302017, 0.058478448539972305, 0.06947622448205948, 0.04680714011192322, 0.016107328236103058, -0.10113780945539474, 0.0278154443949461, 0.08056805282831192, -0.18744619190692902, -0.04870971664786339, -0.05215810611844063, -0.014578288421034813, 0.012714756652712822, 0.05558444932103157, 0.1328577995300293, -0.1212746649980545, -0.009797434322535992, 0.004842675291001797, 0.013293605297803879, 0.0034679758828133345, 0.06945225596427917, 0.05729883536696434, 0.00904499739408493, -0.07413679361343384, 0.11464458703994751, 0.03838600963354111, -0.12015698850154877, -0.01747785694897175, 0.07039827853441238, -0.10725022852420807, -0.055356621742248535, -0.0163505170494318, 0.0033333313185721636, -0.1640436202287674, -0.018966322764754295, -0.03467551991343498, -0.034593645483255386, 0.0012468206696212292, 0.16634543240070343, 0.052789803594350815, 0.028903091326355934, 0.00811968557536602, -0.0007852126727811992, -0.10619718581438065, 0.042252570390701294, 0.025105968117713928, 0.05806523188948631, -0.12577733397483826, 0.08404244482517242, 0.06539110094308853, 0.09470246732234955, -0.04884878918528557, -0.0061453282833099365, -0.022563127800822258, -0.038997165858745575, -0.013733930885791779, 0.04687276855111122, -0.003917463589459658, 0.001420763204805553, -0.0530582033097744, 0.012173234485089779, -0.00288226711563766, 0.012220456264913082, -0.07709196954965591, 0.02100248448550701, -0.00512279337272048, -0.022947032004594803, -0.05227905511856079, -0.041655704379081726, -0.01903267577290535, -0.01184331625699997, 0.08204967528581619, -0.026550577953457832, -0.043469883501529694, 0.032770786434412, -0.0007895202143117785, -0.026852592825889587, 0.06503840535879135, 0.023010626435279846, 0.011648020707070827, -0.029478395357728004, 0.004185282625257969, -0.016689229756593704, -0.054607316851615906, -0.019144535064697266, 0.02295903116464615, -0.06684081256389618, 0.014428665861487389, -0.0008018747321330011, -0.01832752116024494, -0.06604065746068954, 0.04422841966152191, 0.07185808569192886, 0.06671255081892014, 0.09546765685081482, -0.04919973388314247, 0.07212147116661072, -0.1890173852443695, -0.03306961804628372, -0.0005068730097264051, -0.11184188723564148, -0.11859502643346786, 0.0037342801224440336, 0.024172956123948097, -0.017192235216498375, 0.03675645589828491, 0.0752737894654274, -0.03206569701433182, 0.0008061471162363887, 0.036302484571933746, -0.04521794617176056, -0.04436188191175461, 0.11746033281087875, -0.02721787802875042, -0.007726352196186781, 0.03929347172379494, 0.0608711764216423, 0.0059509724378585815, 0.08945412188768387, 0.1219707578420639, 0.07660652697086334, 0.07370495796203613, 0.03146839141845703, 0.04880927503108978, 0.02909322828054428, -0.09133121371269226, -0.04505150392651558, -0.06652931123971939, 0.09305160492658615, -0.036516718566417694, 0.10653267800807953, 0.17286746203899384, -0.10556670278310776, 0.024552781134843826, 0.034305982291698456, -0.017888976261019707, -0.08776897192001343, -0.2597154974937439, -0.07666241377592087, -0.08061723411083221, 0.05038382485508919, -0.05948316678404808, 0.043162908405065536, 0.09996288269758224, 0.050348225980997086, -0.014610610902309418, 0.03054668940603733, -0.07316312193870544, -0.0849086195230484, 0.09416459500789642, 0.03188860043883324, -0.04550321027636528, 0.020646603778004646, 0.012327680364251137, 0.07492707669734955, 0.02731141448020935, 0.031618013978004456, 0.01002736296504736, 0.09870028495788574, 0.06952498108148575, -0.008002984337508678, -0.11851613223552704, -0.020911136642098427, 0.033239852637052536, 0.04801948741078377, 0.09675697237253189, -0.010115721262991428, 0.030630936846137047, -0.015904754400253296, 0.11594084650278091, -0.06434927135705948, -0.06292476505041122, -0.0713726133108139, 0.15905985236167908, -0.11117984354496002, 0.014830099418759346, -0.007715660147368908, -0.07283533364534378, 0.02509205974638462, 0.21936018764972687, 0.22451674938201904, 0.10010059177875519, -0.001132758567109704, -0.018634382635354996, -0.001389116863720119, -0.0029570679180324078, 0.08357033133506775, 0.05684257671236992, 0.11209544539451599, -0.059645142406225204, 0.05288918688893318, -0.08355475217103958, 0.022605938836932182, 0.0034359972923994064, 0.07074854522943497, -0.003423933405429125, -0.015284707769751549, -0.08266385644674301, 0.009952187538146973, 0.05036727711558342, -0.16882067918777466, 0.12229029089212418, -0.14319457113742828, -0.020694125443696976, -0.027495251968503, 0.03887731209397316, 0.013939615339040756, 0.03946584463119507, -0.03981037810444832, 0.058813922107219696, 0.036503199487924576, 0.0017066121799871325, -0.1638183891773224, -0.07793629169464111, 0.03382629528641701, -0.11586279422044754, 0.1101074367761612, -0.05510025471448898, 0.011294356547296047, 0.06978544592857361, 0.0032155553344637156, -0.09396199882030487, 0.029349414631724358, -0.006333285942673683, -0.04816078767180443, -0.04703792557120323, 0.15363088250160217, -0.007147700060158968, 0.06014038994908333, -0.011551056988537312, -0.1282867193222046, -0.006184510421007872, 0.0252693984657526, -0.052855607122182846, -0.04686153307557106, 0.07369622588157654, -0.05933109298348427, 0.17346803843975067, 0.12447734922170639, -0.005027571227401495, -0.02527805045247078, -0.08877765387296677, -0.02546536922454834, 0.02820040099322796, -0.041748348623514175, 0.04865154251456261, -0.07746843248605728, -0.019724784418940544, -0.12669426202774048, 0.030812297016382217, -0.25516772270202637, -0.0009540514438413084, -0.08528473228216171, -0.07342588156461716, -0.062400560826063156, 0.0845213308930397, 0.04547136276960373, 0.00229338719509542, -0.027681570500135422, 0.02604832872748375, 0.010617854073643684, 0.12645640969276428, -0.06921308487653732, -0.08098357170820236 ]
null
null
transformers
# Vision Transformer (base-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Images are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Note that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification). By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model in PyTorch: ```python from transformers import ViTImageProcessor, ViTModel from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) processor = ViTImageProcessor.from_pretrained('google/vit-base-patch32-224-in21k') model = ViTModel.from_pretrained('google/vit-base-patch32-224-in21k') inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) last_hidden_state = outputs.last_hidden_state ``` Refer to the [docs](https://huggingface.co/docs/transformers/model_doc/vit) for usage in TensorFlow and JAX/FLAX. ## Training data The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py). Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
{"license": "apache-2.0", "tags": ["vision"], "datasets": ["imagenet-21k"], "inference": false}
feature-extraction
google/vit-base-patch32-224-in21k
[ "transformers", "pytorch", "tf", "jax", "safetensors", "vit", "feature-extraction", "vision", "dataset:imagenet-21k", "arxiv:2010.11929", "arxiv:2006.03677", "license:apache-2.0", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929", "2006.03677" ]
[]
TAGS #transformers #pytorch #tf #jax #safetensors #vit #feature-extraction #vision #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #region-us
# Vision Transformer (base-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Images are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Note that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification). By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the model hub to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model in PyTorch: Refer to the docs for usage in TensorFlow and JAX/FLAX. ## Training data The ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found here. Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info
[ "# Vision Transformer (base-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. \n\nImages are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nNote that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification).\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model in PyTorch:\n\n\n\nRefer to the docs for usage in TensorFlow and JAX/FLAX.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #vit #feature-extraction #vision #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #region-us \n", "# Vision Transformer (base-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. \n\nImages are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nNote that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification).\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model in PyTorch:\n\n\n\nRefer to the docs for usage in TensorFlow and JAX/FLAX.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ 67, 164, 313, 41, 36, 31, 3, 70, 73, 64, 11 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #vit #feature-extraction #vision #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #region-us \n# Vision Transformer (base-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team." ]
[ -0.07452120631933212, -0.0016478211618959904, 0.001166895148344338, 0.11748802661895752, 0.15610159933567047, 0.07467328011989594, 0.11072007566690445, 0.05398912727832794, -0.03848174586892128, 0.01195854414254427, 0.1178392842411995, 0.08698924630880356, 0.08460243046283722, 0.172419935464859, 0.029637614265084267, -0.1936066448688507, 0.03917844966053963, 0.08206211030483246, 0.0326247364282608, 0.1046220064163208, 0.04760154336690903, -0.100023552775383, 0.12577742338180542, 0.023340901359915733, -0.2306121438741684, 0.01544955000281334, 0.05183358117938042, -0.040504783391952515, 0.09958900511264801, 0.03797602653503418, 0.08106862008571625, 0.04105584695935249, 0.07470594346523285, 0.042320944368839264, 0.03043830581009388, 0.06847180426120758, -0.062290336936712265, 0.08465901017189026, 0.03322368487715721, 0.027863267809152603, 0.16482873260974884, -0.024603169411420822, 0.0067496527917683125, 0.03013758547604084, -0.0695815160870552, -0.30203893780708313, -0.05968337133526802, 0.12136058509349823, 0.0070654405280947685, 0.03439738228917122, 0.002615997800603509, 0.19562116265296936, 0.0895581915974617, 0.07370749115943909, 0.17432886362075806, -0.14247019588947296, -0.0878680944442749, 0.13100041449069977, -0.08049933612346649, 0.05511025711894035, -0.026147564873099327, 0.07733781635761261, 0.1072789654135704, 0.02696436084806919, 0.14189735054969788, -0.03124803490936756, 0.04715066775679588, -0.02202199213206768, -0.11643978953361511, -0.056179195642471313, 0.1496339738368988, 0.035369325429201126, -0.0774460956454277, -0.08277067542076111, -0.09034299850463867, 0.018226074054837227, 0.02054126188158989, -0.007268738467246294, -0.004434213042259216, -0.07501348108053207, -0.023221395909786224, -0.06517507135868073, -0.10275709629058838, -0.09983813017606735, -0.03337141126394272, 0.04394207522273064, 0.008539173752069473, 0.12171027064323425, -0.022215478122234344, 0.06199251487851143, -0.16353541612625122, -0.0801849216222763, 0.013262825086712837, -0.11149968951940536, 0.05533810704946518, 0.0485863983631134, 0.016276957467198372, -0.16417787969112396, -0.05735134333372116, -0.09569033235311508, 0.05917518958449364, -0.00867491215467453, -0.010466249659657478, 0.058899443596601486, -0.005754711572080851, 0.1281810849905014, -0.062395766377449036, 0.07859282195568085, -0.0023269187659025192, 0.050090890377759933, 0.04653434455394745, -0.05049564689397812, -0.11262133717536926, -0.02388736978173256, -0.012042876332998276, -0.030959289520978928, -0.02424471452832222, 0.08440230041742325, 0.030665138736367226, -0.07041341811418533, 0.2549739181995392, -0.0035248608328402042, -0.045133307576179504, -0.012042159214615822, -0.058048855513334274, 0.11122140288352966, 0.14720243215560913, -0.0850631445646286, -0.03166704252362251, 0.08246738463640213, -0.08019748330116272, -0.016257992014288902, -0.06539157032966614, -0.1557934731245041, 0.01420776266604662, -0.17623011767864227, -0.0031844605691730976, -0.19771823287010193, -0.149443119764328, 0.028436928987503052, 0.026222556829452515, 0.038804877549409866, 0.05052435025572777, 0.01054086908698082, -0.022421402856707573, -0.010205613449215889, 0.053915780037641525, 0.026709208264946938, 0.013296513818204403, 0.1154928132891655, -0.03952036798000336, 0.13361842930316925, -0.10868620127439499, 0.028954867273569107, -0.10428208857774734, -0.005209824535995722, -0.14508001506328583, -0.07054132968187332, 0.006373620592057705, 0.0203502606600523, -0.03830914944410324, -0.13135404884815216, -0.008083498105406761, 0.012151004746556282, 0.0365261510014534, 0.12133940309286118, -0.1959187537431717, -0.05709744989871979, 0.1460288017988205, -0.2351887971162796, -0.11708098649978638, 0.10169664025306702, -0.0032009733840823174, 0.07821216434240341, 0.052623264491558075, 0.13651160895824432, 0.07368979603052139, -0.14026853442192078, -0.015291835181415081, -0.060270898044109344, -0.12301783263683319, -0.12569719552993774, 0.05156079679727554, 0.09247539937496185, -0.1757505089044571, 0.02882460504770279, -0.06841594725847244, -0.0019368851790204644, -0.053266432136297226, -0.0307464562356472, -0.021709462627768517, -0.10123100876808167, 0.10218910872936249, 0.02280651032924652, 0.006635462865233421, -0.03925025835633278, -0.026937313377857208, -0.0013256581733003259, 0.0977359190583229, -0.07921537011861801, -0.03863957151770592, -0.021014250814914703, 0.10434357076883316, -0.14168784022331238, 0.01197114773094654, -0.006784437689930201, 0.04119109362363815, 0.042363572865724564, -0.08636753261089325, 0.04567708075046539, 0.10863287001848221, 0.06926147639751434, 0.09533786028623581, -0.05444865673780441, -0.050296295434236526, -0.010862110182642937, -0.03407690301537514, 0.029526708647608757, -0.07541674375534058, -0.021779857575893402, -0.04315810650587082, 0.027296405285596848, -0.14371486008167267, 0.014741413295269012, -0.057802073657512665, -0.007504213135689497, 0.013751938007771969, -0.03441261872649193, 0.03137294575572014, -0.04366162419319153, 0.013564243912696838, -0.0675826445221901, 0.07305723428726196, 0.014364049769937992, -0.0007603834383189678, 0.10493510961532593, -0.14972630143165588, 0.034175824373960495, 0.18589958548545837, -0.014224723912775517, -0.0784187987446785, 0.0068578957580029964, 0.0008063379791565239, -0.00882115587592125, -0.039887744933366776, -0.010706974193453789, -0.033483389765024185, -0.05520131438970566, 0.1237216591835022, -0.12290039658546448, 0.0467715822160244, 0.1448872834444046, -0.005555071868002415, -0.062038253992795944, 0.05748531222343445, 0.07993616163730621, -0.19230857491493225, 0.060368284583091736, 0.10984306037425995, -0.03356386721134186, 0.17790649831295013, 0.03852882608771324, -0.03453751653432846, -0.012854850850999355, -0.03371421992778778, 0.04576566442847252, 0.17644722759723663, -0.03435790538787842, -0.03935159370303154, 0.058465857058763504, -0.05481822416186333, -0.02935461327433586, -0.11943266540765762, -0.05346786975860596, 0.03539476543664932, 0.0006255720509216189, -0.06609576940536499, 0.074361152946949, -0.06712409853935242, 0.10079967975616455, -0.0031628755386918783, 0.048643991351127625, 0.0068166484124958515, 0.0026917606592178345, -0.10585661232471466, 0.10808148235082626, -0.04168732464313507, -0.2939777672290802, -0.14827176928520203, 0.05360855162143707, -0.04668562114238739, 0.020310387015342712, 0.04859384894371033, -0.0972360149025917, -0.0542917363345623, -0.07308705896139145, 0.030584989115595818, -0.04275253787636757, 0.005518066231161356, -0.019735010340809822, -0.054265983402729034, -0.0005971211940050125, -0.0976950079202652, 0.006525637116283178, -0.07828376442193985, -0.04407831281423569, 0.11828938871622086, -0.09216532111167908, 0.12424179166555405, 0.11179893463850021, -0.11360333114862442, 0.049578357487916946, -0.0586443655192852, 0.10459692031145096, -0.022703086957335472, 0.07761978358030319, 0.26397189497947693, 0.08709710836410522, 0.05629686638712883, 0.021256733685731888, -0.02591419592499733, -0.032342180609703064, 0.02464262582361698, -0.06159025803208351, -0.16500551998615265, -0.0905691459774971, -0.01800479367375374, -0.005449790973216295, 0.11503608524799347, 0.15726836025714874, 0.03328196704387665, 0.09445381909608841, 0.1619040071964264, -0.022483598440885544, 0.007361745461821556, -0.008523715659976006, 0.09899169951677322, -0.0016969122225418687, -0.014464886859059334, 0.06590603291988373, -0.10932289808988571, 0.008424038998782635, 0.1328454464673996, -0.05920640751719475, 0.15775515139102936, -0.06794410198926926, 0.0017359040211886168, 0.019206006079912186, 0.09197500348091125, 0.07835977524518967, 0.17132197320461273, -0.06507135927677155, 0.002722686156630516, -0.08539211004972458, -0.09704744070768356, -0.047015655785799026, 0.05337667092680931, -0.04007666930556297, 0.09325085580348969, -0.06114961579442024, 0.0019146561389788985, -0.018663419410586357, 0.017965655773878098, 0.07505463063716888, -0.2976067364215851, -0.05421636626124382, -0.05493978038430214, 0.12762026488780975, -0.11034476011991501, -0.003735567908734083, 0.11789319664239883, -0.0289278794080019, 0.10333534330129623, -0.07651703804731369, 0.0407387875020504, -0.012011541053652763, -0.0008256229921244085, -0.03762723132967949, 0.035952627658843994, -0.00011051487672375515, 0.053047217428684235, -0.16265620291233063, 0.1335621178150177, -0.006681683007627726, 0.007044564932584763, -0.07446373254060745, -0.05300739035010338, 0.02437446266412735, 0.04697703942656517, 0.1361411213874817, 0.02250584214925766, 0.13859088718891144, -0.08051653951406479, -0.020159542560577393, 0.009310077875852585, 0.008138323202729225, 0.004796385299414396, -0.009593365713953972, -0.000782263814471662, -0.013806410133838654, 0.012041077949106693, 0.10400030016899109, 0.013930020853877068, -0.05535169318318367, 0.029546404257416725, -0.015907851979136467, -0.029893847182393074, -0.007566047366708517, -0.1018034964799881, -0.11169092357158661, 0.020331958308815956, 0.11593258380889893, -0.05623698979616165, -0.1176992729306221, 0.005923595745116472, 0.0486513115465641, -0.07973626255989075, 0.10333871841430664, -0.04744476079940796, 0.06530351936817169, -0.09097862243652344, -0.12564882636070251, 0.03365939483046532, -0.041899897158145905, -0.09921491891145706, -0.010413030162453651, 0.0327577218413353, -0.014985037967562675, 0.017432639375329018, 0.0005118870758451521, 0.026809964329004288, -0.04220518842339516, -0.05909787118434906, 0.13918356597423553, 0.0710795596241951, 0.007496651727706194, -0.009796575643122196, 0.103117935359478, -0.0836026594042778, -0.05645643174648285, 0.014484481886029243, -0.011456811800599098, 0.14130645990371704, -0.10108422487974167, 0.007642033975571394, 0.15402095019817352, -0.00927367340773344, -0.251595139503479, -0.00571181857958436, -0.021915467455983162, -0.0018195114098489285, -0.03107338584959507, -0.03671368211507797, 0.007460776716470718, 0.01645403914153576, -0.019995391368865967, 0.10814250260591507, -0.08857737481594086, -0.09011902660131454, 0.005563750397413969, 0.23066353797912598, 0.2642137408256531, -0.11498255282640457, 0.019125187769532204, 0.0012022936716675758, -0.14008118212223053, 0.17607532441616058, -0.03206869214773178, 0.041548892855644226, -0.04932614043354988, 0.03930135443806648, 0.016993951052427292, -0.07818223536014557, 0.06436088681221008, -0.11395800858736038, 0.0688256174325943, -0.09863796085119247, -0.10159552097320557, 0.05118246003985405, -0.043112270534038544, 0.12367837876081467, 0.026874426752328873, 0.07994359731674194, -0.009287008084356785, -0.03503214195370674, -0.11272741109132767, 0.06608744710683823, 0.005034576170146465, -0.11054085195064545, -0.042719267308712006, 0.05810828506946564, -0.007499809842556715, -0.04391935467720032, -0.011714267544448376, -0.013706600293517113, 0.06176986172795296, 0.15541356801986694, -0.0021782631520181894, -0.022154202684760094, -0.02404181845486164, -0.03814346715807915, -0.0769011452794075, 0.11443447321653366, -0.24150097370147705, -0.00494896387681365, 0.053464315831661224, 0.05384540185332298, 0.03470751270651817, 0.018642347306013107, -0.08691143989562988, 0.010096383281052113, 0.07295072078704834, -0.16667398810386658, -0.07671114802360535, -0.07815985381603241, 0.002329235663637519, 0.03259418159723282, 0.08055439591407776, 0.0775841474533081, -0.14789140224456787, 0.0007474626181647182, -0.01969764567911625, -0.03246152028441429, 0.011002073995769024, 0.05758844316005707, 0.12874974310398102, 0.012234196998178959, -0.09850907325744629, 0.0693870410323143, 0.011015882715582848, -0.10196485370397568, 0.0002729344996623695, 0.058948710560798645, -0.10105636715888977, -0.06944555789232254, 0.007635555695742369, 0.09800053387880325, -0.16135244071483612, -0.04937903955578804, -0.002160237170755863, -0.0715925320982933, -0.005839877296239138, 0.19001367688179016, 0.06840202212333679, 0.01481805369257927, -0.006554370746016502, 0.007629149127751589, -0.13383232057094574, 0.04531097039580345, -0.013656875118613243, 0.07419225573539734, -0.15679088234901428, 0.03440016135573387, 0.0731431245803833, 0.12734384834766388, -0.07146520912647247, -0.005021296441555023, -0.04121624305844307, -0.026539271697402, 0.019998876377940178, 0.0719529464840889, 0.01871461607515812, 0.004020038992166519, -0.029538655653595924, -0.022199880331754684, -0.009882357902824879, 0.029773205518722534, -0.05568407475948334, 0.04102852940559387, 0.045560501515865326, -0.0180645864456892, -0.043715059757232666, -0.04398544877767563, -0.04646311700344086, 0.019467461854219437, 0.055948738008737564, 0.007350664585828781, -0.045171502977609634, 0.07348114997148514, -0.04698743298649788, -0.006956761237233877, 0.08267837762832642, 0.035738661885261536, 0.015989875420928, -0.010429449379444122, 0.026075048372149467, -0.019056253135204315, -0.062157873064279556, -0.017501622438430786, 0.03880498185753822, -0.06668845564126968, 0.05011177808046341, -0.005141223315149546, -0.015735460445284843, -0.045073218643665314, 0.049552761018276215, 0.05005680024623871, 0.06975281238555908, 0.05544130131602287, -0.01925709843635559, 0.05795992538332939, -0.19169797003269196, -0.02951030246913433, -0.013456065207719803, -0.12854082882404327, -0.10453976690769196, 0.004327005241066217, 0.01720338873565197, -0.004684605170041323, 0.017576679587364197, 0.1037045493721962, -0.07673011720180511, -0.03546895459294319, 0.0823199674487114, -0.05392729863524437, -0.05997512489557266, 0.15623649954795837, -0.06442297995090485, 0.010144146159291267, 0.014363341964781284, 0.08424285054206848, 0.019383039325475693, 0.10286324471235275, 0.04821395501494408, 0.029691215604543686, 0.03630346432328224, 0.04757530242204666, 0.08676791936159134, 0.07279598712921143, -0.051417313516139984, -0.07673733681440353, -0.0385587178170681, 0.06775867938995361, -0.025540174916386604, 0.06717757880687714, 0.18122290074825287, -0.03761233761906624, 0.009729606099426746, 0.036342546343803406, -0.022749152034521103, -0.05021099001169205, -0.25474897027015686, -0.09713569283485413, -0.09651923924684525, 0.03449621424078941, -0.026076478883624077, -0.0018260907381772995, 0.10722465068101883, 0.018412526696920395, -0.0439714752137661, 0.089132159948349, 0.022899413481354713, -0.030077094212174416, 0.09185707569122314, 0.014084633439779282, -0.09839572012424469, 0.0033011101186275482, 0.027011293917894363, 0.10472554713487625, 0.01499607227742672, 0.02811356447637081, 0.0009790888288989663, 0.06424583494663239, 0.047760989516973495, 0.018141016364097595, -0.12717340886592865, -0.029205884784460068, 0.050388023257255554, 0.007736735511571169, 0.08284306526184082, -0.02814355492591858, 0.022996069863438606, -0.019611582159996033, 0.04740134999155998, -0.020188312977552414, -0.043197136372327805, -0.04270387068390846, 0.19313666224479675, -0.13673534989356995, 0.018376512452960014, 0.0038333504926413298, -0.04500469192862511, 0.01268584281206131, 0.26123785972595215, 0.24057570099830627, 0.10055804997682571, -0.0005746123497374356, -0.01980208046734333, 0.009606203064322472, -0.03494635596871376, 0.1301894336938858, 0.04603986814618111, 0.10323745012283325, -0.047707997262477875, 0.0972927063703537, -0.1050797626376152, 0.048972100019454956, 0.05990294739603996, 0.026018545031547546, 0.04252598434686661, -0.018195539712905884, -0.06945320963859558, -0.002333961194381118, 0.058100536465644836, -0.06870374828577042, 0.1075366660952568, -0.09876088798046112, 0.014225516468286514, -0.03992842137813568, 0.041615307331085205, 0.015423597767949104, 0.030779607594013214, -0.09136608988046646, 0.061831310391426086, -0.004815745633095503, 0.0018737127538770437, -0.2072332352399826, -0.08952318876981735, 0.01592865213751793, -0.15014401078224182, 0.1331140547990799, -0.040389787405729294, 0.018305348232388496, 0.034534551203250885, 0.0025699641555547714, -0.08140342682600021, 0.07028216123580933, -0.04273049905896187, -0.0206281840801239, -0.03638768941164017, 0.11995717138051987, -0.007369708735495806, 0.0031420656014233828, -0.04829123616218567, -0.13928517699241638, -0.015264040790498257, 0.03207088261842728, -0.039249155670404434, -0.007935193367302418, 0.09984873980283737, -0.08408808708190918, 0.13807541131973267, 0.10045731067657471, 0.020978093147277832, -0.05354224517941475, -0.0816548690199852, -0.00468788156285882, 0.05591266602277756, -0.04808047041296959, 0.07718004286289215, -0.03659336268901825, -0.04941346123814583, -0.09873268753290176, 0.005253697745501995, -0.28039225935935974, 0.01618463546037674, -0.1590343564748764, -0.07379753887653351, -0.029129890725016594, 0.03164778649806976, 0.037066422402858734, 0.025420239195227623, -0.031121475622057915, 0.07324514538049698, 0.001376961125060916, 0.12799862027168274, -0.06352110952138901, -0.10042519122362137 ]
null
null
transformers
# Vision Transformer (base-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384. Images are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ViTFeatureExtractor, ViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch32-384') model = ViTForImageClassification.from_pretrained('google/vit-base-patch32-384') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change. ## Training data The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py). Images are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2010.11929, doi = {10.48550/ARXIV.2010.11929}, url = {https://arxiv.org/abs/2010.11929}, author = {Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil}, keywords = {Computer Vision and Pattern Recognition (cs.CV), Artificial Intelligence (cs.AI), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale}, publisher = {arXiv}, year = {2020}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
{"license": "apache-2.0", "tags": ["vision", "image-classification"], "datasets": ["imagenet-1k", "imagenet-21k"]}
image-classification
google/vit-base-patch32-384
[ "transformers", "pytorch", "tf", "jax", "safetensors", "vit", "image-classification", "vision", "dataset:imagenet-1k", "dataset:imagenet-21k", "arxiv:2010.11929", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929" ]
[]
TAGS #transformers #pytorch #tf #jax #safetensors #vit #image-classification #vision #dataset-imagenet-1k #dataset-imagenet-21k #arxiv-2010.11929 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Vision Transformer (base-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384. Images are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the model hub to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change. ## Training data The ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found here. Images are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info
[ "# Vision Transformer (base-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384.\n\nImages are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:\n\n\n\nCurrently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #vit #image-classification #vision #dataset-imagenet-1k #dataset-imagenet-21k #arxiv-2010.11929 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Vision Transformer (base-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384.\n\nImages are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:\n\n\n\nCurrently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ 85, 188, 302, 41, 76, 54, 3, 85, 73, 64, 11 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #vit #image-classification #vision #dataset-imagenet-1k #dataset-imagenet-21k #arxiv-2010.11929 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Vision Transformer (base-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team." ]
[ -0.0689934492111206, 0.09123536944389343, 0.0008248608792200685, 0.04437948018312454, 0.1297190636396408, 0.032602906227111816, 0.15522821247577667, 0.09144453704357147, -0.04509494826197624, 0.018860487267374992, 0.06737601011991501, 0.0983230248093605, 0.06873374432325363, 0.13079248368740082, 0.0500989630818367, -0.18717095255851746, 0.03471498191356659, 0.05424677953124046, -0.04258214309811592, 0.09947802126407623, 0.05656762421131134, -0.10103131830692291, 0.10123738646507263, -0.011395527981221676, -0.17687922716140747, 0.0346214585006237, 0.02762112207710743, -0.020487448200583458, 0.11296909302473068, 0.016740325838327408, 0.07221389561891556, 0.07622966170310974, 0.04574171453714371, -0.032503657042980194, 0.023730676621198654, 0.09160590916872025, -0.027299722656607628, 0.0729820728302002, 0.012713714502751827, 0.0528438575565815, 0.10665299743413925, -0.0697598084807396, 0.02948865294456482, 0.013425730168819427, -0.07480200380086899, -0.2592540979385376, -0.0878245085477829, 0.07770221680402756, 0.06867659837007523, 0.04756373539566994, 0.0019413032568991184, 0.15131151676177979, 0.10316190123558044, 0.057916026562452316, 0.22616632282733917, -0.21208684146404266, -0.06998876482248306, 0.1658046394586563, -0.08176108449697495, 0.02373688854277134, -0.06388474255800247, 0.05897796154022217, 0.09352033585309982, 0.03578977659344673, 0.10342983901500702, -0.02509814314544201, 0.051300182938575745, -0.011885515414178371, -0.11573005467653275, -0.04415318742394447, 0.08267492800951004, 0.006934715900570154, -0.07307516038417816, -0.12331349402666092, -0.10622907429933548, -0.004948717076331377, 0.044140104204416275, -0.011234493926167488, 0.0007291804649867117, -0.04735320433974266, -0.09858699887990952, -0.04928993806242943, -0.08980144560337067, -0.030019257217645645, -0.04314965382218361, 0.17499873042106628, -0.00010645690781529993, 0.12037189304828644, 0.019368832930922508, 0.11657866090536118, -0.08766300976276398, -0.0909000039100647, -0.017061110585927963, -0.05632450059056282, -0.0030078692361712456, 0.031349871307611465, 0.03861286863684654, -0.1628955602645874, -0.046872273087501526, 0.04100416228175163, -0.00033974432153627276, -0.03861759975552559, -0.012218249961733818, 0.06243859976530075, -0.018926803022623062, 0.14578698575496674, -0.05542882904410362, -0.06112224608659744, 0.057690348476171494, 0.07201636582612991, 0.08780111372470856, -0.04937789589166641, -0.08367163687944412, -0.05028720945119858, 0.06520101428031921, -0.005141397938132286, 0.03752599656581879, 0.08746059238910675, 0.0058570923283696175, -0.05935453996062279, 0.186412051320076, -0.05471952259540558, -0.04148584231734276, -0.047419771552085876, -0.07494907826185226, 0.08813226968050003, 0.14929905533790588, -0.032768186181783676, 0.001295937690883875, 0.09576980769634247, -0.07339191436767578, -0.013129740953445435, -0.04262980818748474, -0.15696117281913757, 0.06330125778913498, -0.16526921093463898, -0.03296477720141411, -0.1594005674123764, -0.13855092227458954, -0.0023522600531578064, 0.007158187218010426, 0.05533570051193237, -0.038851626217365265, -0.017521118745207787, -0.02818368561565876, -0.021954793483018875, 0.031033962965011597, -0.019683366641402245, -0.018405979499220848, 0.0843009501695633, -0.05243762582540512, 0.1444566696882248, -0.04853783920407295, 0.019981931895017624, -0.09683302044868469, -0.0027087396010756493, -0.13491879403591156, 0.009199061430990696, -0.04338672384619713, 0.05668654292821884, -0.049176398664712906, -0.10651593655347824, -0.016124365851283073, -0.026555174961686134, 0.017332803457975388, 0.13743947446346283, -0.19980715215206146, -0.08966541290283203, 0.14076673984527588, -0.2078278362751007, -0.09049463272094727, 0.09256687015295029, -0.002247835276648402, 0.08892999589443207, 0.05892949178814888, 0.023673908784985542, 0.04960993677377701, -0.1601058393716812, -0.045031581073999405, -0.06082870811223984, -0.03935312479734421, -0.06292284280061722, 0.046057816594839096, 0.05759040638804436, -0.06898094713687897, 0.037908896803855896, -0.044235844165086746, 0.03197574242949486, -0.05754133686423302, -0.02962367795407772, 0.013400508090853691, -0.04833356663584709, 0.04084694758057594, 0.023630648851394653, 0.013691687025129795, -0.007139483001083136, -0.045765556395053864, -0.0015311096794903278, 0.07618480920791626, -0.09579584002494812, 0.03389041870832443, 0.022566579282283783, 0.07600200176239014, -0.16222895681858063, -0.003971506841480732, -0.06448868662118912, -0.03236367553472519, 0.04434017091989517, -0.03624385595321655, 0.02738664671778679, 0.1008792594075203, 0.06509473919868469, 0.08380405604839325, -0.05041888728737831, -0.031175309792160988, -0.03147762268781662, -0.048159319907426834, -0.003213376272469759, -0.08405007421970367, -0.06728331744670868, -0.08356700092554092, 0.11680620908737183, -0.08714575320482254, 0.03993760794401169, -0.009263286367058754, 0.02318708226084709, 0.03386733680963516, -0.0670069083571434, 0.04146818816661835, -0.011726761236786842, -0.02693900838494301, -0.08693856000900269, 0.06419283151626587, 0.03633743152022362, -0.06961295753717422, 0.08810179680585861, -0.16463938355445862, -0.05372335761785507, 0.16151508688926697, -0.03512197732925415, -0.04411429539322853, -0.013741533271968365, -0.05647997558116913, -0.04417948052287102, -0.08844040334224701, -0.020520193502306938, 0.020457956939935684, -0.008033541031181812, 0.11898653954267502, -0.09873376786708832, 0.004333633929491043, 0.06639103591442108, 0.007162674330174923, -0.02447972632944584, 0.02940477430820465, 0.007622506935149431, -0.112234927713871, 0.08783680200576782, 0.08178822696208954, -0.042353421449661255, 0.1565491259098053, 0.046942632645368576, -0.03660270944237709, 0.003952520899474621, -0.02712108939886093, 0.056419737637043, 0.10063621401786804, -0.02906053513288498, -0.03260290250182152, 0.05898382514715195, -0.04066384211182594, -0.013017795979976654, -0.14023341238498688, -0.038641639053821564, 0.011343126185238361, -0.030966417863965034, 0.014616635628044605, 0.08595036715269089, -0.021541737020015717, 0.09664443880319595, 0.0017589604249224067, 0.037529852241277695, 0.007528773508965969, -0.026069389656186104, -0.0896848812699318, 0.14247667789459229, -0.022262368351221085, -0.2910606861114502, -0.13810408115386963, 0.06639653444290161, -0.08448619395494461, 0.004997727461159229, 0.04964131489396095, -0.04404076188802719, -0.04761561006307602, -0.0722263753414154, 0.07125414907932281, -0.005176736507564783, 0.022061608731746674, 0.003505974542349577, -0.024804728105664253, 0.00223866431042552, -0.10510960221290588, -0.00788792036473751, -0.06680098176002502, -0.12318917363882065, 0.09960364550352097, -0.019183527678251266, 0.098845936357975, 0.09210718423128128, -0.10553083568811417, 0.02737516537308693, -0.04063683748245239, 0.1280735433101654, -0.01744680106639862, 0.07035095989704132, 0.21096953749656677, 0.07315593212842941, 0.06558317691087723, 0.04647478088736534, -0.018902458250522614, -0.015294947661459446, 0.005775656551122665, -0.005092464853078127, -0.14531630277633667, -0.06358250975608826, -0.009269872680306435, -0.03612663969397545, 0.14130562543869019, 0.16748927533626556, 0.024417826905846596, 0.07403513789176941, 0.07537414133548737, -0.06044607609510422, 0.023145291954278946, 0.0793028399348259, 0.13204801082611084, -0.02907780185341835, -0.005456890445202589, 0.09099940955638885, -0.04968566820025444, 0.0016146106645464897, 0.10471507906913757, 0.009192180819809437, 0.14347678422927856, -0.0804833322763443, -0.0025982388760894537, 0.014386184513568878, 0.09339679032564163, 0.05415904521942139, 0.16576547920703888, -0.03899199143052101, 0.02436555176973343, -0.06845046579837799, -0.08136925846338272, -0.0697043240070343, 0.07741127163171768, -0.007849307730793953, 0.05117679759860039, -0.014215497300028801, 0.010771075263619423, -0.02147994190454483, 0.16905251145362854, 0.06927835196256638, -0.2501709461212158, -0.05865909531712532, -0.026975488290190697, 0.0628250241279602, -0.02661735936999321, -0.0025869403034448624, 0.10264372080564499, -0.07421306520700455, 0.14697137475013733, -0.10885883122682571, 0.04316301643848419, -0.05457668751478195, -0.029903270304203033, 0.0001865285448729992, -0.006198827642947435, 0.0029098696541041136, 0.03929227218031883, -0.12623271346092224, 0.12115595489740372, -0.022380376234650612, -0.02906639501452446, -0.041677139699459076, -0.02739482745528221, 0.030544225126504898, 0.03260456770658493, 0.11495284736156464, 0.031338177621364594, 0.08876920491456985, -0.04278121143579483, -0.0658905878663063, -0.019919509068131447, -0.04394669085741043, -0.055743154138326645, 0.03909749537706375, -0.0003285237471573055, -0.017499277368187904, 0.009389772079885006, 0.15780757367610931, 0.04315565526485443, -0.09272971749305725, 0.05047911778092384, -0.0028144465759396553, -0.022041914984583855, -0.05095501244068146, -0.131949320435524, -0.051383811980485916, 0.11597869545221329, 0.08662494271993637, -0.07869452238082886, -0.1020529717206955, 0.09437176585197449, 0.048105884343385696, -0.08605421334505081, 0.0340065136551857, -0.052628230303525925, 0.08116141706705093, -0.13248534500598907, -0.1237710490822792, 0.010418678633868694, -0.03331693634390831, -0.1287662237882614, 0.0027712585870176554, 0.07644077390432358, -0.03336176648736, 0.02704099379479885, -0.01886068284511566, 0.027843885123729706, -0.02396838553249836, -0.0493820495903492, 0.10066834837198257, 0.120390884578228, -0.020314034074544907, 0.04073948413133621, 0.04668048396706581, -0.11405381560325623, -0.06974326819181442, 0.044821325689554214, 0.0651283860206604, 0.24772809445858002, -0.09743455797433853, 0.03768375515937805, 0.11926095932722092, -0.026205237954854965, -0.24618679285049438, -0.016400856897234917, 0.014231648296117783, -0.01775599829852581, -0.05772453546524048, -0.04872111231088638, 0.04236989840865135, 0.011157614178955555, -0.01623602770268917, 0.08479387313127518, -0.13235759735107422, -0.10785111039876938, -0.03123784251511097, 0.1344921588897705, 0.34634673595428467, -0.09850757569074631, 0.03427625447511673, 0.007614846806973219, -0.17031456530094147, 0.16070492565631866, -0.06154347583651543, 0.07025013864040375, -0.04476546868681908, 0.06896749883890152, 0.038240037858486176, -0.08302433788776398, 0.06390151381492615, -0.06852009892463684, 0.0518316924571991, -0.06998549401760101, -0.10456585139036179, 0.044435277581214905, -0.059402305632829666, 0.10894700139760971, 0.047336578369140625, 0.023620322346687317, -0.000735393725335598, -0.006388635374605656, -0.11801975220441818, 0.0896054282784462, -0.0015133674023672938, -0.08733982592821121, -0.0334525927901268, 0.0863591805100441, 0.07632086426019669, -0.019000085070729256, 0.13345062732696533, -0.00502772256731987, 0.16415096819400787, 0.1963784396648407, -0.010560199618339539, -0.0519014373421669, 0.0022279720287770033, -0.029572321102023125, -0.040511585772037506, 0.08632228523492813, -0.1841380000114441, 0.029089801013469696, 0.07206007093191147, 0.06431055814027786, 0.03812151774764061, 0.03939775004982948, -0.11468043923377991, 0.02123732678592205, 0.07421914488077164, -0.20797120034694672, -0.04286053776741028, -0.05735074356198311, -0.0740051120519638, -0.0021348092705011368, 0.06601317971944809, 0.13405179977416992, -0.12232877314090729, -0.008726240135729313, 0.007017047144472599, 0.0032042681705206633, -0.017461998388171196, 0.06463783979415894, 0.03563106060028076, 0.013218126259744167, -0.07074611634016037, 0.11798019707202911, 0.022409135475754738, -0.092211052775383, -0.05305080488324165, 0.07277283072471619, -0.10195104032754898, -0.02709120325744152, -0.06517212092876434, 0.021891390904784203, -0.16168710589408875, 0.006519201211631298, -0.060821596533060074, -0.018388306722044945, -0.013097289018332958, 0.14244231581687927, 0.051447607576847076, 0.04601307213306427, 0.0036030837800353765, 0.008060789667069912, -0.0999787449836731, 0.04852626472711563, 0.033072084188461304, 0.05906269699335098, -0.10848812758922577, 0.11251457035541534, 0.048623379319906235, 0.1392470747232437, -0.049988433718681335, -0.02155369706451893, -0.0034995346795767546, -0.039597027003765106, 0.017941715195775032, 0.018330225721001625, -0.02618534117937088, -0.01008686888962984, -0.03853835538029671, -0.005995284765958786, 0.0036067769397050142, 0.016218282282352448, -0.07571668177843094, 0.021950388327240944, -0.02526239864528179, -0.04067394509911537, -0.03836163133382797, -0.05895452946424484, -0.016492554917931557, -0.02754567749798298, 0.08720848709344864, -0.011638389900326729, -0.04122445732355118, 0.0019489341648295522, 0.004543301649391651, -0.05289683863520622, 0.10594569891691208, 0.00496312603354454, 0.029253363609313965, -0.03993343934416771, -0.0026715847197920084, -0.006512010004371405, -0.039299044758081436, -0.019153833389282227, 0.06080525368452072, -0.060845956206321716, 0.01751679927110672, 0.002034869510680437, -0.020798679441213608, -0.07899731397628784, 0.028363877907395363, 0.054483216255903244, 0.13553738594055176, 0.08599009364843369, -0.05386458337306976, 0.0907929316163063, -0.19998198747634888, -0.04025731235742569, 0.000660582329146564, -0.12253721803426743, -0.05802755802869797, 0.008004043251276016, 0.027248159050941467, 0.013635247014462948, 0.045077767223119736, 0.08076422661542892, -0.03457484766840935, -0.006684454623609781, 0.027769088745117188, -0.03776562958955765, -0.053619954735040665, 0.08905623853206635, -0.043636806309223175, 0.004902796819806099, 0.07288454473018646, 0.06637316942214966, 0.01426507718861103, 0.08306442201137543, 0.110735684633255, 0.01632947474718094, 0.09992960840463638, 0.05842458829283714, 0.05357733741402626, 0.03459746390581131, -0.07317213714122772, -0.1106250137090683, -0.03774556145071983, 0.06708655506372452, -0.013641789555549622, 0.14068886637687683, 0.16096962988376617, -0.11578396707773209, 0.033965323120355606, 0.0626668930053711, -0.011178763583302498, -0.09175168722867966, -0.20682953298091888, -0.06180872023105621, -0.08964312821626663, 0.06317209452390671, -0.07012613862752914, 0.014315235428512096, 0.058341510593891144, 0.032608259469270706, -0.007928379811346531, 0.036863408982753754, -0.03671441599726677, -0.10304751247167587, 0.08633166551589966, 0.04071178659796715, -0.02845941111445427, 0.026634538546204567, 0.016063423827290535, 0.08163461834192276, 0.043321337550878525, 0.02144717425107956, 0.00471829529851675, 0.11194118112325668, 0.08407200127840042, -0.002228842116892338, -0.1416173279285431, -0.022053353488445282, 0.02381865121424198, 0.0756184384226799, 0.11907072365283966, 0.0036129651125520468, 0.033636290580034256, -0.012561154551804066, 0.09863279014825821, -0.07356167584657669, -0.08257848769426346, -0.09451992064714432, 0.15233252942562103, -0.11118766665458679, -0.0038424571976065636, -0.014603186398744583, -0.06611785292625427, 0.00905785895884037, 0.17699554562568665, 0.23607508838176727, 0.10979510843753815, 0.0030305045656859875, -0.0339265838265419, -0.004806747194379568, 0.006807494908571243, 0.04807848110795021, 0.057352885603904724, 0.12316915392875671, -0.0634474903345108, 0.05354832112789154, -0.0872572660446167, 0.016432685777544975, -0.006548833101987839, 0.039406757801771164, -0.018731970340013504, -0.012326502241194248, -0.08838935941457748, 0.006507665850222111, 0.054688286036252975, -0.22963570058345795, 0.14443601667881012, -0.17039169371128082, -0.00016728484479244798, -0.038287337869405746, 0.03337559476494789, 0.004078027792274952, 0.05168037489056587, -0.04080860689282417, 0.0687500387430191, 0.062438711524009705, -0.005797844845801592, -0.15267609059810638, -0.07995464652776718, 0.03664730489253998, -0.14069046080112457, 0.08788079023361206, -0.07211805880069733, 0.019814379513263702, 0.0520266555249691, 0.017009105533361435, -0.0754929855465889, 0.006511731073260307, -0.027407122775912285, -0.04530813917517662, -0.08475884795188904, 0.14308102428913116, -0.011861009523272514, 0.06760189682245255, -0.024666650220751762, -0.12280723452568054, -0.003915388137102127, 0.03275659680366516, -0.07979286462068558, -0.06097255274653435, 0.050487980246543884, -0.039021529257297516, 0.1572362780570984, 0.11561014503240585, -0.005758238490670919, -0.04215512052178383, -0.0924043282866478, -0.04891366511583328, 0.05694577470421791, -0.014842214062809944, 0.031889189034700394, -0.07849989831447601, -0.03215033933520317, -0.13184848427772522, 0.03396852687001228, -0.23280221223831177, -0.0016789742512628436, -0.07918819785118103, -0.10305358469486237, -0.023365085944533348, 0.09207377582788467, 0.0022338975686579943, 0.005572694819420576, -0.009603380225598812, -0.07868889719247818, 0.03486328572034836, 0.12488006055355072, -0.10823079943656921, -0.0949038565158844 ]
null
null
transformers
# Vision Transformer (huge-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Note that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification). By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python from transformers import ViTFeatureExtractor, ViTModel from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-huge-patch14-224-in21k') model = ViTModel.from_pretrained('google/vit-huge-patch14-224-in21k') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change. ## Training data The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py). Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
{"license": "apache-2.0", "tags": ["vision"], "datasets": ["imagenet-21k"], "inference": false}
feature-extraction
google/vit-huge-patch14-224-in21k
[ "transformers", "pytorch", "tf", "jax", "safetensors", "vit", "feature-extraction", "vision", "dataset:imagenet-21k", "arxiv:2010.11929", "arxiv:2006.03677", "license:apache-2.0", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929", "2006.03677" ]
[]
TAGS #transformers #pytorch #tf #jax #safetensors #vit #feature-extraction #vision #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #region-us
# Vision Transformer (huge-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Note that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification). By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the model hub to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change. ## Training data The ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found here. Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info
[ "# Vision Transformer (huge-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. \n\nImages are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nNote that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification).\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model:\n\n\n\nCurrently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #vit #feature-extraction #vision #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #region-us \n", "# Vision Transformer (huge-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. \n\nImages are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nNote that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification).\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model:\n\n\n\nCurrently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ 67, 165, 313, 41, 56, 31, 3, 70, 73, 64, 11 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #vit #feature-extraction #vision #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #region-us \n# Vision Transformer (huge-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team." ]
[ -0.07719935476779938, 0.009800036437809467, 0.0010872789425775409, 0.1194344237446785, 0.15033097565174103, 0.06987113505601883, 0.10686589777469635, 0.05927160382270813, -0.032630160450935364, 0.016963757574558258, 0.12002277374267578, 0.08166900277137756, 0.0865447148680687, 0.1733008772134781, 0.027726024389266968, -0.19924184679985046, 0.037641093134880066, 0.07785570621490479, 0.03381185978651047, 0.10332409292459488, 0.04990922659635544, -0.09972129762172699, 0.12949128448963165, 0.02713954821228981, -0.22815333306789398, 0.012477932497859001, 0.049060381948947906, -0.03967483714222908, 0.09716254472732544, 0.038039255887269974, 0.07738892734050751, 0.044473107904195786, 0.075104720890522, 0.03979503735899925, 0.029830146580934525, 0.0706370398402214, -0.06405915319919586, 0.08101709932088852, 0.03919154033064842, 0.03698559105396271, 0.16828621923923492, -0.026363501325249672, 0.008875484578311443, 0.0334630012512207, -0.06871394068002701, -0.2971610724925995, -0.060419000685214996, 0.12290088087320328, 0.01148145366460085, 0.031137751415371895, 0.001221740385517478, 0.19540619850158691, 0.08762989193201065, 0.07421691715717316, 0.16493184864521027, -0.1473775953054428, -0.08978857100009918, 0.14409928023815155, -0.07304080575704575, 0.05423092469573021, -0.026774151250720024, 0.07898970693349838, 0.10917922109365463, 0.028395768254995346, 0.14201225340366364, -0.031348880380392075, 0.04658754914999008, -0.02332158572971821, -0.12140894681215286, -0.05174681916832924, 0.14924319088459015, 0.03894101828336716, -0.07612136751413345, -0.09298980981111526, -0.08948901295661926, 0.014705468900501728, 0.019833292812108994, -0.012086275964975357, 0.0003602213109843433, -0.07463592290878296, -0.015574530698359013, -0.06941153109073639, -0.10331772267818451, -0.10055485367774963, -0.03106863982975483, 0.030322836712002754, 0.009071406908333302, 0.12058694660663605, -0.02800874598324299, 0.059812746942043304, -0.1790250688791275, -0.08082827180624008, 0.006411719601601362, -0.1150754988193512, 0.045985765755176544, 0.042170681059360504, 0.013741256669163704, -0.17071233689785004, -0.055673614144325256, -0.09224025905132294, 0.06084740534424782, -0.005868915934115648, -0.010523592121899128, 0.05858185514807701, -0.00830454658716917, 0.13797780871391296, -0.07270708680152893, 0.0788765624165535, 0.00026408114354126155, 0.05008099973201752, 0.04321693256497383, -0.049433205276727676, -0.1126689538359642, -0.01860404759645462, -0.014865427277982235, -0.027234844863414764, -0.021225890144705772, 0.08185730129480362, 0.03180311620235443, -0.07017861306667328, 0.24958625435829163, -0.0061123869381845, -0.048414766788482666, -0.015746483579277992, -0.05345870926976204, 0.10403640568256378, 0.14271613955497742, -0.08262129873037338, -0.0324263870716095, 0.07920631021261215, -0.08573228120803833, -0.01973586343228817, -0.06097080186009407, -0.15123173594474792, 0.015051163733005524, -0.17682862281799316, -0.006327913608402014, -0.1971956193447113, -0.14754006266593933, 0.027673104777932167, 0.02715071104466915, 0.03278028219938278, 0.04406309500336647, 0.016280032694339752, -0.028501765802502632, -0.014379046857357025, 0.05527857691049576, 0.03490149602293968, 0.01448474358767271, 0.11351511627435684, -0.044908732175827026, 0.13459038734436035, -0.10942109674215317, 0.02967633306980133, -0.10123684257268906, -0.00018151712720282376, -0.14816629886627197, -0.06496009230613708, 0.007850519381463528, 0.020668430253863335, -0.044961437582969666, -0.13307411968708038, -0.007458648644387722, 0.013997135683894157, 0.03184172138571739, 0.12254844605922699, -0.20464247465133667, -0.04963580146431923, 0.1511085480451584, -0.22886011004447937, -0.12193573266267776, 0.0998770073056221, -0.001759395468980074, 0.0792388990521431, 0.052905332297086716, 0.14953558146953583, 0.08076060563325882, -0.14015386998653412, -0.011122182011604309, -0.053310565650463104, -0.12014719843864441, -0.12458592653274536, 0.054809000343084335, 0.08362586796283722, -0.1690727025270462, 0.025119611993432045, -0.07346358895301819, -0.010975160636007786, -0.051589373499155045, -0.0339198112487793, -0.022075431421399117, -0.10143478959798813, 0.09676005691289902, 0.021623309701681137, 0.006366914603859186, -0.03825591877102852, -0.029473237693309784, -0.011988423764705658, 0.0976082906126976, -0.07562462240457535, -0.037760403007268906, -0.022102326154708862, 0.10647068172693253, -0.13858987390995026, 0.011486956849694252, -0.012619570828974247, 0.039287202060222626, 0.04530299827456474, -0.09827949106693268, 0.046534258872270584, 0.11682436615228653, 0.06692183762788773, 0.09563484787940979, -0.053428612649440765, -0.04608597606420517, -0.012933972291648388, -0.03175395354628563, 0.025643208995461464, -0.06792370975017548, -0.02108500525355339, -0.04255742207169533, 0.022422051057219505, -0.1513044536113739, 0.013371659442782402, -0.048216644674539566, -0.006772236432880163, 0.018403245136141777, -0.03794580698013306, 0.03248070552945137, -0.047490790486335754, 0.016094081103801727, -0.0723656564950943, 0.06864359974861145, 0.012294674292206764, -0.0021593652199953794, 0.1027720645070076, -0.1457691341638565, 0.03048548847436905, 0.1833607405424118, -0.006370762828737497, -0.08160664886236191, 0.009149481542408466, 0.0006127660744823515, -0.007519489154219627, -0.03809114173054695, -0.015034619718790054, -0.03316324204206467, -0.05244740843772888, 0.12502218782901764, -0.12727011740207672, 0.04222448170185089, 0.1449614316225052, -0.0024503900203853846, -0.059936270117759705, 0.06221243739128113, 0.09287627786397934, -0.1976311206817627, 0.06134284287691116, 0.11634571850299835, -0.026810791343450546, 0.17717011272907257, 0.03793076425790787, -0.03735833615064621, -0.010738351382315159, -0.028765957802534103, 0.0439690537750721, 0.17866922914981842, -0.037141263484954834, -0.03424763306975365, 0.05813085287809372, -0.053444892168045044, -0.029703635722398758, -0.12086904048919678, -0.054055340588092804, 0.03672271594405174, 0.00031215339549817145, -0.06621524691581726, 0.07922754436731339, -0.06642986834049225, 0.10225813090801239, -0.004716996103525162, 0.04554490000009537, 0.007995977066457272, -0.00208659446798265, -0.1034412682056427, 0.113453209400177, -0.037011340260505676, -0.2943410277366638, -0.1432752162218094, 0.05605742707848549, -0.04996717721223831, 0.019871095195412636, 0.045662399381399155, -0.09874460101127625, -0.05609367415308952, -0.07630455493927002, 0.02583160437643528, -0.04761979356408119, 0.004534494131803513, -0.021066883578896523, -0.05250890552997589, 0.004283582326024771, -0.0995396226644516, 0.0038133743219077587, -0.07520172744989395, -0.04886084049940109, 0.11516857892274857, -0.08874941617250443, 0.12349335104227066, 0.11266575008630753, -0.11215953528881073, 0.052233267575502396, -0.058755237609148026, 0.11501596868038177, -0.02537365071475506, 0.07887255400419235, 0.26874488592147827, 0.0880332738161087, 0.05846725404262543, 0.02703026868402958, -0.02349952980875969, -0.03655330464243889, 0.0217019934207201, -0.059232037514448166, -0.16376802325248718, -0.094167061150074, -0.02210674248635769, -0.01123824156820774, 0.11658038198947906, 0.16088654100894928, 0.03296342492103577, 0.09345997124910355, 0.15554414689540863, -0.021678494289517403, 0.014078021980822086, -0.007621376309543848, 0.09682730585336685, 0.004123364575207233, -0.015852103009819984, 0.06535732746124268, -0.10686977207660675, 0.01058143749833107, 0.13379725813865662, -0.05921974405646324, 0.1622999906539917, -0.06197109445929527, 0.0006682089879177511, 0.024350134655833244, 0.08751077950000763, 0.07536445558071136, 0.16978174448013306, -0.06516186147928238, 0.002083243103697896, -0.08391264826059341, -0.1001826673746109, -0.03768766671419144, 0.057793036103248596, -0.030952714383602142, 0.0837477520108223, -0.06317687034606934, 0.0068431878462433815, -0.019854817539453506, 0.02189244143664837, 0.07933730632066727, -0.29660123586654663, -0.04237853363156319, -0.05420080944895744, 0.12182697653770447, -0.1113830953836441, 0.0003101192996837199, 0.12375692278146744, -0.0352996401488781, 0.10403165966272354, -0.07462295889854431, 0.040166597813367844, -0.005064372438937426, -0.0001377210719510913, -0.027941638603806496, 0.03784184902906418, -0.000996846123598516, 0.053828492760658264, -0.15327897667884827, 0.1399071365594864, -0.003819185309112072, 0.0027200509794056416, -0.07704894989728928, -0.051097869873046875, 0.025612255558371544, 0.04987768828868866, 0.1495738923549652, 0.021971959620714188, 0.14044049382209778, -0.07473057508468628, -0.02302192710340023, 0.010058775544166565, 0.01132670696824789, -0.0012575375149026513, -0.012181146070361137, -0.0028963841032236814, -0.012910460121929646, 0.00928950123488903, 0.1078997328877449, 0.015224226750433445, -0.058811482042074203, 0.02845284901559353, -0.019242629408836365, -0.04154893383383751, -0.011391734704375267, -0.09694363176822662, -0.10834521055221558, 0.0186531413346529, 0.11529850214719772, -0.05979299545288086, -0.11855696886777878, 0.009416819550096989, 0.05173574760556221, -0.08091623336076736, 0.10167600214481354, -0.05068507790565491, 0.0683654248714447, -0.08992470800876617, -0.12591280043125153, 0.03579619154334068, -0.042665962129831314, -0.09992285072803497, -0.011425758711993694, 0.03641634061932564, -0.025296539068222046, 0.01659948006272316, 0.0018144729547202587, 0.027490587905049324, -0.03799855336546898, -0.06147703155875206, 0.13102298974990845, 0.06508365273475647, 0.007442301604896784, -0.008070244453847408, 0.10059273988008499, -0.08649728447198868, -0.05146453157067299, 0.013963324949145317, -0.009783972054719925, 0.14597256481647491, -0.10327059030532837, 0.008953956887125969, 0.145144984126091, -0.004286447539925575, -0.2572288513183594, 0.000056524902902310714, -0.022477641701698303, -0.006754795089364052, -0.022998517379164696, -0.03340333700180054, 0.013156607747077942, 0.017615582793951035, -0.018506910651922226, 0.11339714378118515, -0.09921305626630783, -0.09264833480119705, 0.0013114645844325423, 0.22540034353733063, 0.24975727498531342, -0.11362671107053757, 0.015589987859129906, 0.004460551310330629, -0.13292507827281952, 0.17458082735538483, -0.0359349250793457, 0.04201405867934227, -0.04568854346871376, 0.036554623395204544, 0.019334904849529266, -0.07664074003696442, 0.06609290093183517, -0.11130323261022568, 0.06879789382219315, -0.0949355885386467, -0.09908349066972733, 0.049487534910440445, -0.045291054993867874, 0.12763750553131104, 0.01978127285838127, 0.0835876390337944, -0.011027274653315544, -0.036507703363895416, -0.11487423628568649, 0.06336037069559097, -0.0006492362008430064, -0.11237788945436478, -0.0475124754011631, 0.06108769029378891, -0.004831074737012386, -0.04296134412288666, -0.02286180481314659, -0.017800023779273033, 0.05344366282224655, 0.1561591476202011, 0.00044439101475290954, -0.025504129007458687, -0.037708282470703125, -0.0416899174451828, -0.07278596609830856, 0.11532026529312134, -0.24847927689552307, -0.0019405101193115115, 0.05307675898075104, 0.05532873794436455, 0.03509153798222542, 0.019572574645280838, -0.08629532903432846, 0.005668801721185446, 0.07269147783517838, -0.16125735640525818, -0.08989832550287247, -0.07860281318426132, 0.010231307707726955, 0.028386035934090614, 0.07702192664146423, 0.07645437121391296, -0.14876466989517212, 0.002437419258058071, -0.02019535005092621, -0.027007723227143288, 0.011497343890368938, 0.05644325911998749, 0.12784817814826965, 0.012931707315146923, -0.09937874227762222, 0.06696655601263046, 0.014475177973508835, -0.094759501516819, -0.0016850909451022744, 0.057258591055870056, -0.09840533882379532, -0.06782251596450806, 0.007601700723171234, 0.09073562920093536, -0.15839365124702454, -0.04437637701630592, 0.008597239851951599, -0.0726155936717987, -0.007368060294538736, 0.18897293508052826, 0.06913681328296661, 0.011511338874697685, -0.0028803215827792883, -0.00038070243317633867, -0.12931373715400696, 0.04554756358265877, -0.020693833008408546, 0.07318463921546936, -0.16055430471897125, 0.031318582594394684, 0.07130347192287445, 0.12722261250019073, -0.0683019608259201, -0.0026059376541525126, -0.0435640923678875, -0.02992258593440056, 0.015940064564347267, 0.07353617995977402, 0.020277483388781548, 0.005665323697030544, -0.028056196868419647, -0.017386630177497864, -0.014209405519068241, 0.029548725113272667, -0.056609079241752625, 0.03321542963385582, 0.04209011048078537, -0.011076553724706173, -0.0458671934902668, -0.04099655523896217, -0.04464513063430786, 0.015590080991387367, 0.055934447795152664, -0.01056385226547718, -0.047621242702007294, 0.07359680533409119, -0.03957014158368111, -0.009477807208895683, 0.07647876441478729, 0.042098257690668106, 0.01852066069841385, -0.004333628807216883, 0.025203805416822433, -0.02078300528228283, -0.05879824608564377, -0.016008617356419563, 0.029994087293744087, -0.06822305172681808, 0.04616239666938782, -0.007327810395509005, -0.016444332897663116, -0.04042833298444748, 0.048449840396642685, 0.0453886017203331, 0.06858894973993301, 0.05809265375137329, -0.016452495008707047, 0.06031038239598274, -0.1980576366186142, -0.029764709994196892, -0.01334640197455883, -0.11910705268383026, -0.09593547135591507, 0.004678061231970787, 0.019261308014392853, -0.00929916650056839, 0.02370452880859375, 0.11396137624979019, -0.07540886104106903, -0.03164901211857796, 0.08636733144521713, -0.051637426018714905, -0.056626610457897186, 0.15979883074760437, -0.06546668708324432, 0.012838641181588173, 0.012888931669294834, 0.0796583965420723, 0.019113240763545036, 0.1009119376540184, 0.06215750426054001, 0.039083294570446014, 0.021104127168655396, 0.040479954332113266, 0.08513882011175156, 0.06751130521297455, -0.053491201251745224, -0.0715738832950592, -0.03169126436114311, 0.07331584393978119, -0.029154064133763313, 0.06017930805683136, 0.17794352769851685, -0.046818461269140244, 0.0120764821767807, 0.030585894361138344, -0.022540561854839325, -0.051685579121112823, -0.25666114687919617, -0.09853977710008621, -0.08966526389122009, 0.034883659332990646, -0.026814576238393784, 0.004156035836786032, 0.10697041451931, 0.01989489048719406, -0.04672173038125038, 0.0921032652258873, 0.005687611643224955, -0.029598750174045563, 0.09087048470973969, 0.018838709220290184, -0.09394139796495438, 0.0064791422337293625, 0.029510580003261566, 0.10334423929452896, 0.016835281625390053, 0.02566109225153923, -0.0031600790098309517, 0.05721355602145195, 0.045435916632413864, 0.01582961529493332, -0.12096760421991348, -0.02956382930278778, 0.044759634882211685, 0.0053438483737409115, 0.08067166060209274, -0.02443578466773033, 0.019812457263469696, -0.02060130052268505, 0.04818134754896164, -0.02027779631316662, -0.046626221388578415, -0.04948906973004341, 0.20106492936611176, -0.13795079290866852, 0.017425648868083954, 0.005666505079716444, -0.04707009345293045, 0.014539116062223911, 0.2690124213695526, 0.24079568684101105, 0.08482204377651215, -0.002416618401184678, -0.02157972939312458, 0.009520613588392735, -0.03885703161358833, 0.13496538996696472, 0.04232413321733475, 0.10988155752420425, -0.04591093957424164, 0.10575812309980392, -0.10033164918422699, 0.049644339829683304, 0.05652778595685959, 0.03185643255710602, 0.047760259360075, -0.020526189357042313, -0.0678832158446312, 0.003493291325867176, 0.060023561120033264, -0.06576230376958847, 0.11078507453203201, -0.10373551398515701, 0.008374020457267761, -0.04085858538746834, 0.03756685554981232, 0.011219325475394726, 0.03162350505590439, -0.09368321299552917, 0.05699776113033295, -0.009153942577540874, -0.0004947777488268912, -0.20691731572151184, -0.09305573254823685, 0.022397560998797417, -0.14638695120811462, 0.1504697948694229, -0.03689936175942421, 0.017496339976787567, 0.033755265176296234, 0.0011178288841620088, -0.07986771315336227, 0.06945790350437164, -0.037613581866025925, -0.02162931114435196, -0.0387500636279583, 0.11870534718036652, -0.010968985967338085, -0.004289258271455765, -0.046190645545721054, -0.1389511525630951, -0.01739879697561264, 0.04468217119574547, -0.03749352693557739, -0.01211856584995985, 0.10143325477838516, -0.08760872483253479, 0.1388838142156601, 0.10554211586713791, 0.017156487330794334, -0.05001198872923851, -0.08070559054613113, -0.00038247188786044717, 0.054686885327100754, -0.046503905206918716, 0.07509566098451614, -0.03363876789808273, -0.04586014151573181, -0.10801531374454498, 0.00459910836070776, -0.2817623019218445, 0.015017434023320675, -0.15492577850818634, -0.06819004565477371, -0.029810594394803047, 0.038738805800676346, 0.04351242259144783, 0.021891606971621513, -0.028060754761099815, 0.07822030782699585, -0.0021892099175602198, 0.12539221346378326, -0.05838604271411896, -0.09837673604488373 ]
null
null
transformers
# Vision Transformer (large-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Note that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification). By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model to embed images, but it's mostly intended to be fine-tuned on a downstream task. ### How to use Here is how to use this model: ```python from transformers import ViTImageProcessor, ViTModel from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) processor = ViTImageProcessor.from_pretrained('google/vit-large-patch16-224-in21k') model = ViTModel.from_pretrained('google/vit-large-patch16-224-in21k') inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) last_hidden_state = outputs.last_hidden_state ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change. ## Training data The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py). Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
{"license": "apache-2.0", "tags": ["vision"], "datasets": ["imagenet-21k"], "inference": false}
feature-extraction
google/vit-large-patch16-224-in21k
[ "transformers", "pytorch", "tf", "jax", "safetensors", "vit", "feature-extraction", "vision", "dataset:imagenet-21k", "arxiv:2010.11929", "arxiv:2006.03677", "license:apache-2.0", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929", "2006.03677" ]
[]
TAGS #transformers #pytorch #tf #jax #safetensors #vit #feature-extraction #vision #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #has_space #region-us
# Vision Transformer (large-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Note that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification). By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model to embed images, but it's mostly intended to be fine-tuned on a downstream task. ### How to use Here is how to use this model: Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change. ## Training data The ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found here. Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info
[ "# Vision Transformer (large-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. \n\nImages are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nNote that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification).\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model to embed images, but it's mostly intended to be fine-tuned on a downstream task.", "### How to use\n\nHere is how to use this model:\n\n\n\nCurrently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #vit #feature-extraction #vision #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #has_space #region-us \n", "# Vision Transformer (large-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. \n\nImages are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nNote that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification).\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model to embed images, but it's mostly intended to be fine-tuned on a downstream task.", "### How to use\n\nHere is how to use this model:\n\n\n\nCurrently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ 71, 165, 313, 38, 56, 31, 3, 70, 73, 64, 11 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #vit #feature-extraction #vision #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #has_space #region-us \n# Vision Transformer (large-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team." ]
[ -0.06827978044748306, 0.0430249460041523, 0.0008584612514823675, 0.12101324647665024, 0.15315742790699005, 0.07016606628894806, 0.1269584745168686, 0.06838570535182953, -0.03258167579770088, 0.021991677582263947, 0.11610177159309387, 0.0822429209947586, 0.07898764312267303, 0.15919533371925354, 0.0258952584117651, -0.18411371111869812, 0.04508974775671959, 0.07900205999612808, 0.05224720016121864, 0.09961777180433273, 0.0506589412689209, -0.1019977405667305, 0.12807105481624603, 0.038262080401182175, -0.24641427397727966, 0.019060617312788963, 0.056220002472400665, -0.04359546676278114, 0.09205266088247299, 0.030335158109664917, 0.07665899395942688, 0.0522441528737545, 0.07920720428228378, 0.03454883024096489, 0.022476864978671074, 0.06466811895370483, -0.056104179471731186, 0.07721496373414993, 0.030052997171878815, 0.03357749804854393, 0.1178353801369667, -0.031203173100948334, 0.027898168191313744, 0.031032918021082878, -0.07578885555267334, -0.29077666997909546, -0.07818151265382767, 0.1251775473356247, -0.02109520323574543, 0.04259767010807991, -0.0007934533059597015, 0.2061775177717209, 0.09615163505077362, 0.063258595764637, 0.18712766468524933, -0.17013946175575256, -0.09056257456541061, 0.17334356904029846, -0.059194982051849365, 0.04987893998622894, -0.03559114784002304, 0.08013097941875458, 0.09829649329185486, 0.026247521862387657, 0.15057452023029327, -0.01913156919181347, 0.04740532487630844, -0.030041685327887535, -0.11311649531126022, -0.048745207488536835, 0.1513507217168808, 0.03713557496666908, -0.07138828933238983, -0.09664062410593033, -0.08274500072002411, 0.03117058426141739, 0.03289669007062912, -0.018546147271990776, 0.004784372169524431, -0.07381067425012589, -0.03385845944285393, -0.06611551344394684, -0.08603058755397797, -0.10109920799732208, -0.03322054073214531, 0.027182694524526596, 0.010273011401295662, 0.11382865160703659, -0.04075833037495613, 0.05764640122652054, -0.20987941324710846, -0.08133775740861893, -0.004970081150531769, -0.11567627638578415, 0.03600357845425606, 0.03168109431862831, 0.015189794823527336, -0.1864566057920456, -0.06037043035030365, -0.056954167783260345, 0.07947839051485062, -0.007836899720132351, -0.026133881881833076, 0.049892060458660126, -0.018642162904143333, 0.1759006232023239, -0.08435966074466705, 0.0798407569527626, -0.007520025130361319, 0.041025541722774506, 0.03338272497057915, -0.05029573664069176, -0.11827022582292557, -0.043458569794893265, -0.015026799403131008, -0.029882697388529778, -0.016666002571582794, 0.0961756631731987, 0.029657715931534767, -0.0718962699174881, 0.22201062738895416, -0.009395565837621689, -0.038397934287786484, -0.02808588184416294, -0.047699298709630966, 0.11474191397428513, 0.1464652717113495, -0.07538830488920212, -0.03036765195429325, 0.06763026118278503, -0.09257235378026962, -0.02654462493956089, -0.06143917515873909, -0.15883111953735352, 0.013116025365889072, -0.17273037135601044, -0.0026265056803822517, -0.1938147395849228, -0.14372749626636505, 0.025665394961833954, 0.027706170454621315, 0.01640976220369339, 0.04035700857639313, 0.014020915143191814, -0.03183359280228615, 0.0016988083953037858, 0.05624619498848915, 0.005346390884369612, 0.013789826072752476, 0.10288888961076736, -0.04636909067630768, 0.141581192612648, -0.10610076040029526, 0.04238336533308029, -0.10595747828483582, -0.01264257449656725, -0.16451194882392883, -0.043374061584472656, 0.012461056932806969, 0.006818641442805529, -0.05797245353460312, -0.12143727391958237, -0.0004185280413366854, 0.0023419128265231848, 0.0323772206902504, 0.1148659959435463, -0.19889779388904572, -0.051870204508304596, 0.14769649505615234, -0.2119774967432022, -0.11236929893493652, 0.07456087321043015, -0.00934944674372673, 0.09628577530384064, 0.061305880546569824, 0.1485125869512558, 0.06284041702747345, -0.14357627928256989, -0.010619228705763817, -0.08100462704896927, -0.10239017754793167, -0.10245861858129501, 0.04747314378619194, 0.07730545103549957, -0.16690358519554138, 0.031133485957980156, -0.10259310901165009, -0.02567361108958721, -0.05751478672027588, -0.027489032596349716, -0.02995532937347889, -0.0856950581073761, 0.11993910372257233, 0.01458565890789032, 0.021258151158690453, -0.02031710557639599, -0.046876970678567886, 0.01640479266643524, 0.07678423821926117, -0.0802767276763916, -0.02676641196012497, -0.02634565345942974, 0.09196240454912186, -0.1427590250968933, 0.01248116884380579, -0.024829531088471413, 0.02994656004011631, 0.048104383051395416, -0.09820135682821274, 0.06521636247634888, 0.11756760627031326, 0.06608030200004578, 0.0757194235920906, -0.055774979293346405, -0.037313900887966156, -0.03940301388502121, -0.02441222220659256, 0.019294900819659233, -0.08048104494810104, -0.03752700984477997, -0.04732893779873848, 0.01749861240386963, -0.14579136669635773, 0.02147904969751835, -0.05108964443206787, -0.0014884589472785592, 0.011450602672994137, -0.043660249561071396, 0.014267302118241787, -0.04684491083025932, 0.011001378297805786, -0.07407568395137787, 0.059878602623939514, 0.015307440422475338, -0.01598791778087616, 0.09261135756969452, -0.13734334707260132, 0.008014915511012077, 0.18385833501815796, -0.01692519709467888, -0.07519515603780746, 0.033168546855449677, 0.013095508329570293, -0.01548695843666792, -0.03609340265393257, -0.02009991928935051, -0.03635059669613838, -0.05084168165922165, 0.1241125762462616, -0.12545332312583923, 0.05061149597167969, 0.13506300747394562, 0.000326995417708531, -0.0656735822558403, 0.04065442085266113, 0.09535016119480133, -0.15913094580173492, 0.07257647812366486, 0.11265632510185242, -0.025779547169804573, 0.17796190083026886, 0.05774297937750816, -0.027637410908937454, -0.014294458553195, -0.04857126623392105, 0.04468708857893944, 0.1631811410188675, -0.05434413626790047, -0.02913491800427437, 0.06380897760391235, -0.04975287988781929, -0.03161919116973877, -0.1097107008099556, -0.05396857112646103, 0.043970730155706406, 0.0017573984805494547, -0.07746989279985428, 0.08524627983570099, -0.05003754794597626, 0.09441865235567093, 0.008842780254781246, 0.05384908989071846, 0.019954172894358635, -0.006116482429206371, -0.0965905487537384, 0.10315731167793274, -0.03581160306930542, -0.28306934237480164, -0.1450880467891693, 0.03845060244202614, -0.07446539402008057, 0.025831032544374466, 0.053791340440511703, -0.09770841151475906, -0.06372454762458801, -0.06867430359125137, 0.05014258995652199, -0.05270736292004585, 0.00479838065803051, -0.007836162112653255, -0.06371483206748962, 0.004977993201464415, -0.10920136421918869, 0.0037116711027920246, -0.06323593109846115, -0.0752386674284935, 0.09904710203409195, -0.08655358850955963, 0.10952155292034149, 0.11297555267810822, -0.11760320514440536, 0.05597122758626938, -0.05319138616323471, 0.12328419834375381, -0.023965107277035713, 0.06716399639844894, 0.2695158123970032, 0.09161718189716339, 0.05736870691180229, 0.04703454673290253, -0.021168535575270653, -0.03747933357954025, 0.014355285093188286, -0.047805819660425186, -0.16238951683044434, -0.10847127437591553, -0.01714884489774704, -0.008474288508296013, 0.0802292451262474, 0.1665763556957245, 0.026617413386702538, 0.12655800580978394, 0.15703095495700836, -0.02118976227939129, 0.02572852559387684, 0.008216296322643757, 0.10953343659639359, 0.03378193452954292, -0.0033703320659697056, 0.07724443823099136, -0.0897679477930069, 0.024966785684227943, 0.10948988050222397, -0.04454439505934715, 0.16349954903125763, -0.03871924802660942, 0.010634694248437881, 0.021765509620308876, 0.08713562786579132, 0.0746970921754837, 0.15966898202896118, -0.0555257722735405, 0.004335409961640835, -0.07876792550086975, -0.10379060357809067, -0.0276863481849432, 0.05989899858832359, -0.03019881434738636, 0.09158958494663239, -0.06993678957223892, -0.007155606057494879, -0.018764346837997437, 0.038673195987939835, 0.07856708019971848, -0.3073118031024933, -0.04651947319507599, -0.05368170887231827, 0.11191283166408539, -0.11611704528331757, -0.010225326754152775, 0.10637877881526947, -0.04743900150060654, 0.105220265686512, -0.06748581677675247, 0.04318585246801376, 0.004100254271179438, 0.0006171384011395276, -0.016428258270025253, 0.03510080650448799, 0.0005436093779280782, 0.0476333387196064, -0.13725239038467407, 0.13575488328933716, -0.004727342631667852, 0.0063914828933775425, -0.07878104597330093, -0.0440334789454937, 0.012403235770761967, 0.07159379869699478, 0.14232976734638214, 0.02025257982313633, 0.15509942173957825, -0.06497082859277725, -0.012496351264417171, 0.003267473541200161, 0.0033189058303833008, -0.016976114362478256, 0.006249122321605682, -0.01597168669104576, -0.0077011799439787865, 0.020350990816950798, 0.1190747544169426, -0.0022068298421800137, -0.0630747377872467, 0.03722470626235008, -0.011197012849152088, -0.01902277022600174, -0.012990834191441536, -0.10287822037935257, -0.11689519882202148, 0.017268827185034752, 0.11363048106431961, -0.05335982143878937, -0.12253234535455704, 0.01622115820646286, 0.062087759375572205, -0.07614413648843765, 0.11350234597921371, -0.06047150120139122, 0.08313847333192825, -0.08242680877447128, -0.13664714992046356, 0.04254131764173508, -0.02772434614598751, -0.10382554680109024, -0.0063234050758183, 0.02611190639436245, -0.022117840126156807, 0.016721447929739952, 0.009705155156552792, 0.04627973958849907, -0.040197987109422684, -0.05899127945303917, 0.1190708577632904, 0.07765747606754303, -0.005652519408613443, -0.008893086574971676, 0.09826071560382843, -0.09738191962242126, -0.043800659477710724, 0.01896166242659092, -0.004482613876461983, 0.14274950325489044, -0.12545008957386017, 0.019123543053865433, 0.1344934105873108, -0.012582979165017605, -0.252991646528244, 0.022338243201375008, -0.022041479125618935, -0.0008521621348336339, -0.011668351478874683, -0.030791718512773514, 0.02196936123073101, 0.019038327038288116, -0.013056604191660881, 0.0686047226190567, -0.1101103127002716, -0.0949050709605217, -0.0010622779373079538, 0.20208801329135895, 0.2270052582025528, -0.10386164486408234, 0.010063848458230495, -0.0035967605654150248, -0.1475442349910736, 0.16591937839984894, -0.031628143042325974, 0.06093902140855789, -0.050917692482471466, 0.04758857563138008, 0.02202625945210457, -0.06528884917497635, 0.06921642273664474, -0.0844002217054367, 0.06867566704750061, -0.08255317807197571, -0.10303713381290436, 0.0844368040561676, -0.055010806769132614, 0.1296752542257309, 0.03545457124710083, 0.07825987040996552, 0.0026832791045308113, -0.03698869049549103, -0.12523792684078217, 0.07148247212171555, -0.003247959306463599, -0.1048068031668663, -0.04885195940732956, 0.05488347262144089, 0.006795394234359264, -0.05214151367545128, 0.0017676353454589844, -0.0281551294028759, 0.06427541375160217, 0.14895537495613098, -0.0031325567979365587, -0.02974533475935459, -0.04481752589344978, -0.031319987028837204, -0.0665845200419426, 0.12548206746578217, -0.24457891285419464, 0.014486191794276237, 0.05491004139184952, 0.0609818659722805, 0.04100092500448227, 0.027268391102552414, -0.08228542655706406, 0.001653114682994783, 0.05203035846352577, -0.15803588926792145, -0.08988247811794281, -0.06029382720589638, 0.009687173180282116, 0.03356294706463814, 0.08786562830209732, 0.09117267280817032, -0.15635491907596588, -0.004314249847084284, -0.0168183334171772, -0.029269404709339142, 0.0066054463386535645, 0.04432608187198639, 0.11276908963918686, 0.008212572894990444, -0.09567610174417496, 0.06753010302782059, 0.029119323939085007, -0.06312356144189835, 0.0019566018600016832, 0.03215578943490982, -0.09032953530550003, -0.0555139034986496, -0.002998864743858576, 0.08614597469568253, -0.17335863411426544, -0.02522679977118969, 0.014528472907841206, -0.08061613887548447, -0.009258543141186237, 0.19681473076343536, 0.05724288150668144, 0.021627942100167274, -0.0168166346848011, -0.0022338544949889183, -0.13025528192520142, 0.032312359660863876, -0.026948554441332817, 0.07860902696847916, -0.1693527102470398, 0.03357304260134697, 0.06715108454227448, 0.1108185276389122, -0.06549670547246933, -0.00891102384775877, -0.05412139371037483, -0.025413502007722855, -0.0028773334342986345, 0.05885282903909683, 0.022345686331391335, 0.010017262771725655, -0.031356800347566605, -0.029474185779690742, -0.005102912429720163, 0.030149750411510468, -0.051579587161540985, 0.021453965455293655, 0.0384335070848465, 0.003351934254169464, -0.05279611051082611, -0.027716828510165215, -0.054524991661310196, 0.006969800218939781, 0.05746852606534958, -0.004380242433398962, -0.04474880173802376, 0.06417795270681381, -0.05792468786239624, -0.02114739641547203, 0.06480736285448074, 0.034627802670001984, 0.02783145383000374, -0.016224972903728485, 0.012650820426642895, -0.030394457280635834, -0.054978273808956146, -0.010834108106791973, 0.038942039012908936, -0.07523151487112045, 0.026878708973526955, -0.008090098388493061, -0.016017412766814232, -0.032583486288785934, 0.059299446642398834, 0.06352629512548447, 0.07784417271614075, 0.05263235792517662, -0.009352059103548527, 0.06181685999035835, -0.19360429048538208, -0.029264625161886215, -0.022751325741410255, -0.10734552890062332, -0.09219519793987274, -0.0047050947323441505, 0.025409933179616928, -0.003198357531800866, 0.03596041351556778, 0.11345645785331726, -0.0761292353272438, -0.022913118824362755, 0.10136032104492188, -0.06830622255802155, -0.053559012711048126, 0.14219850301742554, -0.06354091316461563, 0.013766991905868053, 0.04316363483667374, 0.07332436740398407, 0.010995185934007168, 0.10576435923576355, 0.07274536788463593, 0.05355693772435188, 0.028788117691874504, 0.04186464846134186, 0.10378547757863998, 0.07355496287345886, -0.07656408101320267, -0.0644267350435257, -0.012388980947434902, 0.0762973353266716, -0.05074368044734001, 0.0529567152261734, 0.16392679512500763, -0.05596837028861046, 0.022284621372818947, 0.018956752493977547, -0.02381756342947483, -0.04562444984912872, -0.25787872076034546, -0.10330088436603546, -0.10146688669919968, 0.027710068970918655, -0.031558532267808914, 0.022816140204668045, 0.10777608305215836, 0.02201862260699272, -0.045365311205387115, 0.0841691717505455, 0.0002645030617713928, -0.04263276979327202, 0.07769168168306351, 0.022795705124735832, -0.0940084308385849, -0.01300783734768629, 0.03555060550570488, 0.1048128679394722, 0.06154025346040726, 0.02125226892530918, 0.00685967318713665, 0.07420729845762253, 0.034682609140872955, 0.008550593629479408, -0.13401387631893158, -0.03160713240504265, 0.04949694871902466, 0.010166767053306103, 0.04666249454021454, -0.03704539313912392, 0.013157401233911514, -0.02834208682179451, 0.05635949224233627, -0.030719151720404625, -0.04876207187771797, -0.05770231410861015, 0.17497368156909943, -0.13368090987205505, 0.020365731790661812, 0.0049512037076056, -0.05181162431836128, 0.012833849526941776, 0.24401210248470306, 0.24531178176403046, 0.08724009245634079, 0.0019701661076396704, -0.020601332187652588, 0.008152560330927372, -0.03618496283888817, 0.1100219115614891, 0.03040606528520584, 0.08680669963359833, -0.042400285601615906, 0.11887417733669281, -0.0871724858880043, 0.050443053245544434, 0.06694457679986954, 0.03839724138379097, 0.03019658662378788, -0.01890873722732067, -0.07970084249973297, -0.0008217633003368974, 0.061996109783649445, -0.07887041568756104, 0.13860593736171722, -0.10536777973175049, -0.0013594625052064657, -0.03822576254606247, 0.026252247393131256, -0.018220016732811928, 0.03500313684344292, -0.08254194259643555, 0.04829097539186478, 0.008078190498054028, 0.007290421985089779, -0.17938971519470215, -0.10584259033203125, 0.04579954221844673, -0.10585308820009232, 0.16869711875915527, -0.039586685597896576, 0.012953359633684158, 0.03561044856905937, 0.015377227216959, -0.08451618999242783, 0.04753800854086876, -0.037721190601587296, -0.013823085464537144, -0.04545000568032265, 0.10240145027637482, -0.011066775768995285, 0.038724400103092194, -0.0453142412006855, -0.16315747797489166, -0.010433400049805641, 0.04045863822102547, -0.05330020934343338, -0.017463689669966698, 0.0790402889251709, -0.08093076199293137, 0.13881586492061615, 0.11900129914283752, 0.006711992435157299, -0.061745740473270416, -0.08057699352502823, -0.0033392931800335646, 0.05597681924700737, -0.0331144854426384, 0.06944135576486588, -0.05425051227211952, -0.032626427710056305, -0.10225605219602585, 0.018740229308605194, -0.2665591835975647, -0.0010593462502583861, -0.14178568124771118, -0.06333701312541962, -0.01668151095509529, 0.04630296304821968, 0.04464820772409439, 0.012360835447907448, -0.030478518456220627, 0.04368649795651436, -0.0038123189006000757, 0.13928323984146118, -0.07009830325841904, -0.09422799944877625 ]
null
null
transformers
# Vision Transformer (large-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at the same resolution, 224x224. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ViTFeatureExtractor, ViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-large-patch16-224') model = ViTForImageClassification.from_pretrained('google/vit-large-patch16-224') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change. ## Training data The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py). Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
{"license": "apache-2.0", "tags": ["image-classification", "vision"], "datasets": ["imagenet-1k", "imagenet-21k"]}
image-classification
google/vit-large-patch16-224
[ "transformers", "pytorch", "tf", "jax", "vit", "image-classification", "vision", "dataset:imagenet-1k", "dataset:imagenet-21k", "arxiv:2010.11929", "arxiv:2006.03677", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929", "2006.03677" ]
[]
TAGS #transformers #pytorch #tf #jax #vit #image-classification #vision #dataset-imagenet-1k #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Vision Transformer (large-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at the same resolution, 224x224. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the model hub to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change. ## Training data The ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found here. Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info
[ "# Vision Transformer (large-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at the same resolution, 224x224.\n\nImages are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:\n\n\n\nCurrently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #jax #vit #image-classification #vision #dataset-imagenet-1k #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Vision Transformer (large-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at the same resolution, 224x224.\n\nImages are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:\n\n\n\nCurrently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ 89, 188, 301, 41, 76, 54, 3, 70, 73, 64, 11 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #vit #image-classification #vision #dataset-imagenet-1k #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Vision Transformer (large-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team." ]
[ -0.04991836100816727, 0.08794919401407242, -0.000013376589777180925, 0.06502675265073776, 0.11591918766498566, 0.03435719385743141, 0.12439518421888351, 0.10397017747163773, -0.07563517242670059, 0.027562340721488, 0.08425012975931168, 0.0731128379702568, 0.07356630265712738, 0.1066150888800621, 0.058842647820711136, -0.18647560477256775, 0.0147287892177701, 0.04830747842788696, 0.004199986811727285, 0.10485073924064636, 0.05251406505703926, -0.09277239441871643, 0.12440098077058792, -0.009191441349685192, -0.18922629952430725, 0.0281248576939106, 0.027132634073495865, -0.02331938035786152, 0.0971483662724495, 0.015176238492131233, 0.06511298567056656, 0.06458957493305206, 0.048722680658102036, -0.030579224228858948, 0.01902884617447853, 0.08327877521514893, -0.04261927306652069, 0.07512062788009644, 0.04220801964402199, 0.04647209495306015, 0.16300880908966064, -0.0524027943611145, 0.025913598015904427, 0.02255677990615368, -0.08653692156076431, -0.19590476155281067, -0.08671017736196518, 0.10156608372926712, 0.07732567936182022, 0.06779789924621582, -0.005356475245207548, 0.13822732865810394, 0.07030410319566727, 0.05768293887376785, 0.2272372990846634, -0.19288112223148346, -0.07613717019557953, 0.1823558807373047, -0.07458292692899704, 0.0309127327054739, -0.07579580694437027, 0.059943366795778275, 0.08650053292512894, 0.03968487307429314, 0.10769318044185638, -0.03903752565383911, 0.07020177692174911, 0.0000780093323555775, -0.12295760214328766, -0.0586044080555439, 0.09982087463140488, 0.0069757020100951195, -0.06763163954019547, -0.10810837149620056, -0.09333004057407379, -0.019689401611685753, 0.047995924949645996, 0.005065338686108589, -0.004602064844220877, -0.05030282214283943, -0.10517468303442001, -0.06569815427064896, -0.10481872409582138, -0.03536350280046463, -0.033354561775922775, 0.09429259598255157, -0.019024448469281197, 0.10672389715909958, -0.0016259660478681326, 0.09960386157035828, -0.13666437566280365, -0.0782768502831459, -0.019325191155076027, -0.06967514008283615, 0.009270752780139446, 0.017578277736902237, 0.015402649529278278, -0.14582498371601105, -0.03873744606971741, 0.021833723410964012, 0.03323811665177345, -0.01301698386669159, -0.020863527432084084, 0.06189105287194252, -0.003690937766805291, 0.12012676149606705, -0.03589586168527603, -0.05712927132844925, 0.0316346250474453, 0.06377062201499939, 0.0736035630106926, -0.04526481777429581, -0.09042856097221375, -0.017918124794960022, 0.03634613752365112, -0.025607604533433914, 0.03375755622982979, 0.07105352729558945, 0.0020258461590856314, -0.05896664783358574, 0.1856924593448639, -0.04140224680304527, -0.028345447033643723, -0.035805609077215195, -0.08247152715921402, 0.05841103196144104, 0.13221582770347595, -0.035963546484708786, -0.023397725075483322, 0.10331325232982635, -0.07489889115095139, -0.0077475314028561115, -0.03808213025331497, -0.1307026892900467, 0.05000877380371094, -0.2021031528711319, -0.028509628027677536, -0.15632854402065277, -0.12558738887310028, -0.015287731774151325, 0.02252727746963501, 0.026870867237448692, -0.022545548155903816, -0.0080174021422863, -0.03017977625131607, 0.007613888941705227, 0.034788601100444794, 0.004293345380574465, -0.006201889365911484, 0.07985047250986099, -0.07773800194263458, 0.13174130022525787, -0.052213411778211594, 0.030187437310814857, -0.0897424966096878, -0.014426588080823421, -0.12073276191949844, 0.0011999696725979447, -0.03474718704819679, 0.04684131592512131, -0.06511463224887848, -0.11228514462709427, -0.04378535598516464, -0.02690911665558815, 0.027221813797950745, 0.15030451118946075, -0.20325134694576263, -0.07615777105093002, 0.14097832143306732, -0.17342251539230347, -0.0577714741230011, 0.10423687845468521, 0.0045664613135159016, 0.07673785835504532, 0.04535312578082085, 0.07586297392845154, 0.018250498920679092, -0.1298985630273819, -0.033184777945280075, -0.044770412147045135, -0.04140216112136841, -0.04337947443127632, 0.03044225461781025, 0.04248638451099396, -0.03798519819974899, 0.022048791870474815, -0.016799109056591988, -0.015089581720530987, -0.03891140967607498, -0.022486241534352303, 0.0022351755760610104, -0.05181890353560448, 0.04210703447461128, 0.02289833500981331, -0.00475587323307991, -0.02134742960333824, -0.060810115188360214, -0.002459384733811021, 0.08749295771121979, -0.06442521512508392, 0.031155239790678024, 0.010795553214848042, 0.0915585532784462, -0.10926647484302521, -0.014350660145282745, -0.07348598539829254, 0.014417417347431183, 0.026676304638385773, -0.02431231178343296, 0.05431128293275833, 0.1155603900551796, 0.056174226105213165, 0.06534839421510696, -0.05771026760339737, -0.02422225847840309, -0.05370352789759636, -0.05179392173886299, -0.004977650474756956, -0.0842951163649559, -0.04802010953426361, -0.06386204063892365, 0.12537461519241333, -0.13737313449382782, 0.015316626988351345, 0.02223617024719715, 0.025365101173520088, 0.03454046696424484, -0.076948381960392, 0.04299517720937729, -0.018890123814344406, -0.04872966185212135, -0.07285631448030472, 0.0713280662894249, 0.0386095829308033, -0.058777935802936554, 0.06994016468524933, -0.15549775958061218, -0.10848453640937805, 0.17290814220905304, -0.07048698514699936, -0.06774598360061646, -0.01441929116845131, -0.040336962789297104, -0.026249807327985764, -0.08639184385538101, -0.022707195952534676, 0.03976476565003395, -0.03180832415819168, 0.1211370974779129, -0.10476455837488174, 0.002485770732164383, 0.0784372016787529, -0.0030126881320029497, -0.03741662949323654, 0.05159532278776169, 0.05288121476769447, -0.1438559591770172, 0.0746370330452919, 0.1014300137758255, -0.03424776718020439, 0.15841348469257355, 0.05829374119639397, -0.04171739146113396, 0.004928697366267443, -0.02394200675189495, 0.05866891145706177, 0.08903510123491287, -0.05801660940051079, -0.04620237648487091, 0.05542938411235809, -0.03217937424778938, -0.020306430757045746, -0.14802183210849762, -0.028612595051527023, 0.022087685763835907, -0.012964199297130108, -0.012880117632448673, 0.06727738678455353, -0.030957365408539772, 0.09999340027570724, 0.007494774647057056, 0.04616466537117958, -0.0019277576357126236, -0.0269024595618248, -0.08973157405853271, 0.13313819468021393, -0.030700238421559334, -0.30621349811553955, -0.13911835849285126, 0.04101799055933952, -0.08915815502405167, 0.010935666039586067, 0.051451295614242554, -0.07361795753240585, -0.04961054399609566, -0.08914963901042938, 0.05288718268275261, -0.04038809984922409, 0.0073899151757359505, -0.00857499334961176, -0.006932361051440239, 0.0015622617211192846, -0.09448327124118805, -0.005711809266358614, -0.06962921470403671, -0.1086631566286087, 0.11109983921051025, -0.04563315957784653, 0.0896446630358696, 0.09308276325464249, -0.08484919369220734, 0.02686021290719509, -0.044578567147254944, 0.16155724227428436, -0.0343601256608963, 0.09647930413484573, 0.21126116812229156, 0.058708515018224716, 0.07129763811826706, 0.04469041898846626, -0.0222365390509367, -0.039254605770111084, 0.01767880655825138, 0.018796933814883232, -0.15052372217178345, -0.0922965556383133, -0.0005839556106366217, -0.04178203269839287, 0.1334325224161148, 0.17816506326198578, 0.03783486410975456, 0.08825358748435974, 0.07754131406545639, -0.0474085696041584, 0.015365445986390114, 0.06139027699828148, 0.13187476992607117, -0.029408099129796028, -0.0069919610396027565, 0.08930568397045135, -0.053950291126966476, 0.021797388792037964, 0.14231131970882416, -0.010253400541841984, 0.158690944314003, -0.06368459016084671, 0.027680421248078346, 0.016799073666334152, 0.09310775250196457, 0.05799693241715431, 0.1401096135377884, -0.05733729526400566, 0.008127262815833092, -0.06683965772390366, -0.08489158004522324, -0.06382305175065994, 0.08981984853744507, 0.00039042060961946845, 0.03176896274089813, -0.00834406167268753, -0.002660802099853754, -0.026756782084703445, 0.1334145963191986, 0.09756267070770264, -0.2251071035861969, -0.04064187407493591, -0.028979342430830002, 0.05823924019932747, -0.04882340133190155, 0.007287173997610807, 0.10069283097982407, -0.07147453725337982, 0.14777477085590363, -0.0772966518998146, 0.061401382088661194, -0.04952172189950943, -0.026161272078752518, -0.006607293151319027, -0.021419834345579147, 0.01073661632835865, 0.04500843212008476, -0.1314014494419098, 0.13991200923919678, -0.006326735485345125, -0.04142175614833832, -0.061271071434020996, -0.030204400420188904, 0.0188471507281065, 0.04279838502407074, 0.12880416214466095, 0.04394092783331871, 0.07478491961956024, -0.046929553151130676, -0.051698729395866394, -0.048122357577085495, 0.021480856463313103, -0.059527840465307236, 0.029460255056619644, 0.004311806987971067, -0.016025086864829063, -0.009307845495641232, 0.14077703654766083, 0.03564589098095894, -0.10409229248762131, 0.05908133089542389, -0.016985679045319557, -0.0307050421833992, -0.02270546555519104, -0.10335185378789902, -0.04657486081123352, 0.12126439064741135, 0.08092724531888962, -0.04989632964134216, -0.1071595773100853, 0.08017036318778992, 0.054960742592811584, -0.07616552710533142, 0.053909678012132645, -0.04260209947824478, 0.06261623650789261, -0.10240828990936279, -0.11496103554964066, 0.024253977462649345, -0.04001574218273163, -0.1251680552959442, -0.0038908333517611027, 0.08663712441921234, -0.009990193881094456, 0.039205681532621384, -0.011425571516156197, 0.05099156126379967, -0.03335565701127052, -0.04891251027584076, 0.12140386551618576, 0.0859566405415535, -0.0030724990647286177, 0.021858442574739456, 0.05862286314368248, -0.07542954385280609, -0.07139965146780014, 0.009290605783462524, 0.06371094286441803, 0.2088763415813446, -0.08966071903705597, 0.05465938150882721, 0.1000651940703392, -0.046888317912817, -0.2556702196598053, -0.0018243590602651238, 0.014354354701936245, -0.019604623317718506, -0.040882408618927, -0.08382830768823624, 0.03704290837049484, 0.013110864907503128, -0.006364745087921619, 0.0918017327785492, -0.14347270131111145, -0.1113993301987648, -0.04798978939652443, 0.12719637155532837, 0.28480660915374756, -0.11041209846735, 0.017441794276237488, 0.006693609990179539, -0.1393219381570816, 0.1523439735174179, -0.06055673584342003, 0.08019173890352249, -0.023980816826224327, 0.08937598764896393, 0.0329836830496788, -0.07138034701347351, 0.07114408910274506, -0.06986255198717117, 0.039706721901893616, -0.09748569875955582, -0.08164402842521667, 0.03656721115112305, -0.058179210871458054, 0.08873043209314346, 0.038106177002191544, 0.025497158989310265, -0.04453238099813461, -0.00998877827078104, -0.11496055871248245, 0.0747552141547203, -0.013027827255427837, -0.08986285328865051, -0.04280319809913635, 0.0935426577925682, 0.05630655214190483, -0.02228442020714283, 0.10038916021585464, -0.035878170281648636, 0.1353798806667328, 0.2086120992898941, 0.028993982821702957, -0.0453932099044323, -0.030591357499361038, -0.02535322681069374, -0.04327203705906868, 0.07804308086633682, -0.21507157385349274, 0.027386346831917763, 0.06324920058250427, 0.07754936069250107, 0.03732868283987045, 0.024232205003499985, -0.10685887932777405, 0.02046038955450058, 0.08232279121875763, -0.18743665516376495, -0.03331522271037102, -0.06007825955748558, -0.04184158146381378, 0.0017331737326458097, 0.046085506677627563, 0.1367562711238861, -0.10982787609100342, -0.011713970452547073, 0.00634048180654645, 0.010246300138533115, -0.01770922727882862, 0.0495048388838768, 0.03897034749388695, 0.003314887173473835, -0.06827190518379211, 0.10729633271694183, 0.044513557106256485, -0.1165141835808754, -0.02068777196109295, 0.10517265647649765, -0.10084380209445953, -0.050983890891075134, -0.05357065424323082, -0.0028706826269626617, -0.1695571094751358, 0.000026666821213439107, -0.022872785106301308, -0.016833648085594177, 0.005996220745146275, 0.14435625076293945, 0.05088556185364723, 0.03303709626197815, 0.0010971130104735494, 0.00615646131336689, -0.1000145822763443, 0.030618049204349518, 0.017307978123426437, 0.05590164288878441, -0.1061880886554718, 0.08379902690649033, 0.06444985419511795, 0.12786194682121277, -0.046907659620046616, -0.021578684449195862, -0.029404619708657265, -0.041073959320783615, 0.014258318580687046, 0.034194864332675934, -0.01208842359483242, -0.005842521321028471, -0.0468733087182045, 0.011845245026051998, -0.01316867582499981, 0.00948408804833889, -0.08237572014331818, 0.012225193902850151, -0.02461834065616131, -0.03541260212659836, -0.035137053579092026, -0.040240220725536346, -0.007260463200509548, -0.01829887367784977, 0.08934830129146576, -0.027105817571282387, -0.0457649789750576, 0.012812524102628231, 0.03659877926111221, -0.03630116954445839, 0.08240339159965515, 0.017967263236641884, 0.02549695409834385, -0.024640250951051712, -0.007131434045732021, -0.015407929196953773, -0.038912639021873474, -0.019214697182178497, 0.052840765565633774, -0.05856534466147423, 0.009325835853815079, 0.0030924922320991755, -0.05794309824705124, -0.06967972964048386, 0.04502946883440018, 0.05932324752211571, 0.09548215568065643, 0.09107916057109833, -0.04561864212155342, 0.0880570113658905, -0.18883836269378662, -0.028465138748288155, 0.00485480111092329, -0.1079896092414856, -0.0765983983874321, -0.01654735766351223, 0.02707746811211109, -0.006805515848100185, 0.03120325319468975, 0.08776985853910446, -0.038568563759326935, 0.003387954318895936, 0.047847576439380646, -0.05591254681348801, -0.04850028082728386, 0.09146831184625626, -0.029936451464891434, -0.017040591686964035, 0.048965536057949066, 0.06245363876223564, 0.010203791782259941, 0.12669605016708374, 0.12456110864877701, 0.03930049017071724, 0.1155962124466896, 0.04109887406229973, 0.05019742622971535, 0.02595278061926365, -0.0914054587483406, -0.056168634444475174, -0.05096423253417015, 0.09782115370035172, -0.03548746183514595, 0.1168132796883583, 0.16286210715770721, -0.10688725113868713, 0.03584327548742294, 0.03821653500199318, -0.023773759603500366, -0.08595582842826843, -0.2521650791168213, -0.07251384109258652, -0.08877304941415787, 0.05199947953224182, -0.06751221418380737, 0.03715861216187477, 0.08400214463472366, 0.04444335028529167, -0.005253675393760204, 0.01871149241924286, -0.07323525846004486, -0.11382754147052765, 0.10953842103481293, 0.03507378697395325, -0.02791227586567402, 0.014620929025113583, 0.02981625497341156, 0.0712558850646019, 0.03821339085698128, 0.03213232010602951, 0.009190431796014309, 0.11517791450023651, 0.07133826613426208, -0.018281135708093643, -0.11732237040996552, -0.023342745378613472, 0.02065446227788925, 0.05984161049127579, 0.12582410871982574, -0.008385080844163895, 0.034056004136800766, -0.014944741502404213, 0.11188197880983353, -0.07882607728242874, -0.06351771950721741, -0.08016360551118851, 0.1371111273765564, -0.11608414351940155, 0.007604662794619799, -0.03055799938738346, -0.06581739336252213, 0.011149082332849503, 0.2272176295518875, 0.2441839575767517, 0.09668759256601334, -0.005479516461491585, 0.00026583776343613863, 0.0020428181160241365, 0.009620307944715023, 0.06630898267030716, 0.06529906392097473, 0.12545499205589294, -0.06646078824996948, 0.03250992298126221, -0.08615035563707352, 0.018710458651185036, -0.007747032679617405, 0.06064997985959053, 0.002886352129280567, -0.0179012231528759, -0.09203819930553436, 0.0021945766638964415, 0.033925797790288925, -0.18530693650245667, 0.1284659504890442, -0.17365290224552155, -0.018897324800491333, -0.02081928588449955, 0.04302680492401123, 0.017922954633831978, 0.05689318850636482, -0.03194000571966171, 0.059974636882543564, 0.04034718498587608, -0.0026931557804346085, -0.16895359754562378, -0.0834532380104065, 0.050755102187395096, -0.1521344929933548, 0.08431538194417953, -0.0737249031662941, 0.009757828898727894, 0.05464162304997444, 0.012025664560496807, -0.08239924162626266, 0.004201669245958328, -0.009341832250356674, -0.03670789673924446, -0.0641942247748375, 0.1674770563840866, -0.011204409413039684, 0.061573613435029984, -0.01223027054220438, -0.10813203454017639, -0.008583641611039639, 0.04783102124929428, -0.04319068044424057, -0.05080975964665413, 0.07087846100330353, -0.07471191883087158, 0.17085745930671692, 0.12429451197385788, -0.0017277104780077934, -0.04694383591413498, -0.09151452779769897, -0.049361664801836014, 0.028820190578699112, -0.03553178906440735, 0.031032714992761612, -0.07495388388633728, -0.03292519599199295, -0.12900687754154205, 0.03458772599697113, -0.25201135873794556, 0.001206149230711162, -0.06952862441539764, -0.07733970880508423, -0.05326879769563675, 0.0878540426492691, 0.017432374879717827, -0.011758364737033844, -0.0200333334505558, -0.03345036879181862, 0.043388038873672485, 0.11460679769515991, -0.07849127054214478, -0.08391798287630081 ]
null
null
transformers
# Vision Transformer (large-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ViTFeatureExtractor, ViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-large-patch16-384') model = ViTForImageClassification.from_pretrained('google/vit-large-patch16-384') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change. ## Training data The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py). Images are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
{"license": "apache-2.0", "tags": ["image-classification", "vision"], "datasets": ["imagenet", "imagenet-21k"]}
image-classification
google/vit-large-patch16-384
[ "transformers", "pytorch", "tf", "jax", "vit", "image-classification", "vision", "dataset:imagenet", "dataset:imagenet-21k", "arxiv:2010.11929", "arxiv:2006.03677", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929", "2006.03677" ]
[]
TAGS #transformers #pytorch #tf #jax #vit #image-classification #vision #dataset-imagenet #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Vision Transformer (large-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the model hub to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change. ## Training data The ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found here. Images are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info
[ "# Vision Transformer (large-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384.\n\nImages are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:\n\n\n\nCurrently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #jax #vit #image-classification #vision #dataset-imagenet #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Vision Transformer (large-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384.\n\nImages are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:\n\n\n\nCurrently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ 83, 189, 302, 41, 76, 54, 3, 85, 73, 64, 11 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #vit #image-classification #vision #dataset-imagenet #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Vision Transformer (large-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team." ]
[ -0.06764297187328339, 0.0960610955953598, 0.0007941186777316034, 0.05570255592465401, 0.14930075407028198, 0.050224754959344864, 0.14824461936950684, 0.09848342090845108, -0.043947506695985794, 0.01323758251965046, 0.07153136283159256, 0.1141144260764122, 0.0655568316578865, 0.11855226010084152, 0.05434766411781311, -0.20630209147930145, 0.02147863619029522, 0.07642526924610138, -0.0454716831445694, 0.10017064213752747, 0.0557989627122879, -0.11025116592645645, 0.10923199355602264, -0.0007018587202765048, -0.2073499709367752, 0.03373870998620987, 0.031149201095104218, -0.016111483797430992, 0.11466372758150101, 0.026262175291776657, 0.0641670748591423, 0.06310264766216278, 0.046320412307977676, -0.013770540244877338, 0.0204881951212883, 0.08195521682500839, -0.02924865297973156, 0.08097919076681137, 0.009482386521995068, 0.05775756016373634, 0.1102786436676979, -0.055921733379364014, 0.029702574014663696, 0.020536692813038826, -0.07339011132717133, -0.25733381509780884, -0.08930458873510361, 0.07396760582923889, 0.05536724999547005, 0.03734980896115303, 0.004415428731590509, 0.1413004845380783, 0.11476058512926102, 0.0505748949944973, 0.22769373655319214, -0.20274284482002258, -0.07123658061027527, 0.1629384458065033, -0.08702914416790009, 0.00986347533762455, -0.05800194665789604, 0.060862161219120026, 0.09774778038263321, 0.03235263749957085, 0.10778612643480301, -0.02325316146016121, 0.03365261107683182, 0.005332725588232279, -0.11484729498624802, -0.040449801832437515, 0.0897456705570221, 0.002924371277913451, -0.06745686382055283, -0.12310969084501266, -0.10363080352544785, -0.027876798063516617, 0.03831234201788902, -0.008018897846341133, 0.003271533641964197, -0.0543171688914299, -0.09375114738941193, -0.04666135460138321, -0.07938342541456223, -0.03691854700446129, -0.04749467968940735, 0.15425081551074982, 0.009062501601874828, 0.11309044808149338, 0.016404561698436737, 0.11397154629230499, -0.1077863797545433, -0.08721766620874405, -0.015905745327472687, -0.059890519827604294, -0.007672159466892481, 0.03971242532134056, 0.037337709218263626, -0.17043480277061462, -0.06029500067234039, 0.014660636894404888, 0.01116322260349989, -0.03862319141626358, -0.01464881282299757, 0.056078340858221054, -0.017303604632616043, 0.1639920175075531, -0.06472055613994598, -0.05393645912408829, 0.04122263565659523, 0.05974607169628143, 0.0654345452785492, -0.04864700511097908, -0.09078367054462433, -0.05511721968650818, 0.044429659843444824, -0.012190211564302444, 0.024443212896585464, 0.09273257851600647, 0.006815607193857431, -0.07875967025756836, 0.18974120914936066, -0.044991906732320786, -0.04327680915594101, -0.05501079186797142, -0.08256193995475769, 0.11331979185342789, 0.14524567127227783, -0.03701789304614067, -0.004604788031429052, 0.10467233508825302, -0.0909583643078804, -0.007212295196950436, -0.05040065199136734, -0.16831979155540466, 0.05370615795254707, -0.20338401198387146, -0.030287262052297592, -0.15586575865745544, -0.12285542488098145, 0.0015283507527783513, 0.005477675702422857, 0.047826725989580154, -0.03716976195573807, -0.015854062512516975, -0.020908599719405174, -0.019216110929846764, 0.0348612479865551, -0.01084401085972786, -0.009365187957882881, 0.08630417287349701, -0.04815565422177315, 0.14345909655094147, -0.04320240393280983, 0.033649615943431854, -0.0817205011844635, -0.008758899755775928, -0.12473271042108536, 0.009503602981567383, -0.0433412529528141, 0.06089062616229057, -0.06424986571073532, -0.11542490869760513, -0.0028681776020675898, -0.02903313934803009, 0.01572306826710701, 0.12574660778045654, -0.21194645762443542, -0.09582922607660294, 0.12318119406700134, -0.1885209083557129, -0.08919478207826614, 0.08163680881261826, -0.011292659677565098, 0.08103614300489426, 0.05374083295464516, 0.0210165586322546, 0.05125753954052925, -0.17232729494571686, -0.03096582181751728, -0.06671658158302307, -0.03944292291998863, -0.07626566290855408, 0.05285215377807617, 0.05894707143306732, -0.08647378534078598, 0.039233069866895676, -0.052088432013988495, 0.02670501545071602, -0.06668523699045181, -0.029630249366164207, 0.012331228703260422, -0.04833657294511795, 0.053070735186338425, 0.030358515679836273, 0.018525540828704834, 0.0032467099372297525, -0.03463805094361305, 0.016342435032129288, 0.07911235839128494, -0.09464043378829956, 0.02896517887711525, 0.007298592012375593, 0.06351524591445923, -0.1755938082933426, -0.005231800489127636, -0.06366702914237976, -0.018811237066984177, 0.055961545556783676, -0.035672545433044434, 0.04272957146167755, 0.12313886731863022, 0.058581117540597916, 0.06471314281225204, -0.044858962297439575, -0.017006393522024155, -0.030573520809412003, -0.05100354552268982, -0.00019756272376980633, -0.08865346014499664, -0.07502297312021255, -0.08284048736095428, 0.08943162113428116, -0.0728265792131424, 0.03366877883672714, -0.017022844403982162, 0.011364822275936604, 0.030506696552038193, -0.06168216094374657, 0.03861293941736221, -0.01064638514071703, -0.02372739650309086, -0.08183840662240982, 0.0666748434305191, 0.029078325256705284, -0.05965942516922951, 0.09182491153478622, -0.13700418174266815, -0.04920169711112976, 0.16222892701625824, -0.03418787196278572, -0.038970425724983215, -0.021096937358379364, -0.05294114351272583, -0.045356784015893936, -0.08030190318822861, -0.012913116253912449, 0.03769183158874512, -0.009118710644543171, 0.12277520447969437, -0.09926306456327438, -0.0022699381224811077, 0.07485289871692657, 0.025146635249257088, -0.025154482573270798, 0.027051715180277824, 0.04708998277783394, -0.12240784615278244, 0.08015681058168411, 0.059395432472229004, -0.03581723943352699, 0.15814431011676788, 0.051928769797086716, -0.03575403615832329, 0.0005706019583158195, -0.04469233751296997, 0.04794677346944809, 0.09846694022417068, -0.05473972111940384, -0.03380312770605087, 0.06982512772083282, -0.04089784622192383, -0.015775339677929878, -0.12930922210216522, -0.04133656993508339, 0.010089963674545288, -0.026870274916291237, -0.006061866879463196, 0.09670517593622208, -0.022932207211852074, 0.09899485111236572, 0.0042083910666406155, 0.05341322347521782, 0.0038455466274172068, -0.021370887756347656, -0.08836865425109863, 0.1371818333864212, -0.026914795860648155, -0.28895947337150574, -0.13357427716255188, 0.030806727707386017, -0.08560962975025177, 0.006997280288487673, 0.0501735545694828, -0.06118146330118179, -0.05147195979952812, -0.04904761537909508, 0.0910959541797638, -0.024027828127145767, 0.025463830679655075, 0.004595090635120869, -0.03774893283843994, -0.0015727566787973046, -0.11617384105920792, 0.0005411739111877978, -0.0664195641875267, -0.1029801294207573, 0.09176373481750488, -0.0195784792304039, 0.10644268244504929, 0.09272514283657074, -0.1086147129535675, 0.03710939735174179, -0.042531825602054596, 0.137760728597641, -0.017364108934998512, 0.059168945997953415, 0.21702927350997925, 0.07383503764867783, 0.060974955558776855, 0.0359836220741272, -0.014032538048923016, -0.012622617185115814, 0.0009807638125494123, -0.0023597516119480133, -0.1428712010383606, -0.07981429249048233, -0.009328026324510574, -0.04257291927933693, 0.12787318229675293, 0.1934974044561386, 0.023254618048667908, 0.07863186299800873, 0.085231252014637, -0.051947154104709625, 0.05863861367106438, 0.058521490544080734, 0.1284906417131424, -0.009295748546719551, -0.005803687032312155, 0.09076260030269623, -0.05128780007362366, 0.00046445149928331375, 0.10592804849147797, 0.00449927756562829, 0.15309599041938782, -0.08257043361663818, -0.0017988424515351653, 0.022542351856827736, 0.09144003689289093, 0.05876147374510765, 0.1665736883878708, -0.0586831197142601, 0.026016343384981155, -0.07768405973911285, -0.07269107550382614, -0.066438227891922, 0.07191966474056244, 0.01351932156831026, 0.04540327936410904, -0.02074497938156128, 0.0031068481039255857, -0.02847841940820217, 0.15219281613826752, 0.05788911506533623, -0.26590266823768616, -0.050257641822099686, -0.03488948568701744, 0.06385389715433121, -0.04186765104532242, -0.005826413631439209, 0.09358902275562286, -0.06740764528512955, 0.1512729674577713, -0.11164581030607224, 0.04872111231088638, -0.050119590014219284, -0.02866441011428833, 0.032133523374795914, -0.004522940143942833, 0.0077861580066382885, 0.04197673872113228, -0.1421574205160141, 0.11993380635976791, -0.022263552993535995, -0.03786022588610649, -0.04457123577594757, -0.029974432662129402, 0.021003635600209236, 0.02669154480099678, 0.11792942881584167, 0.02728106640279293, 0.13035322725772858, -0.0305327158421278, -0.04117241129279137, -0.018247516825795174, -0.04372597113251686, -0.05726753920316696, 0.033518772572278976, -0.009078796952962875, -0.021895593032240868, 0.013993497006595135, 0.15423493087291718, 0.05184483528137207, -0.09603690356016159, 0.06363428384065628, -0.013232748955488205, -0.0181109681725502, -0.03358345478773117, -0.13109827041625977, -0.06556966155767441, 0.10187850147485733, 0.09062696993350983, -0.07972276955842972, -0.11146353930234909, 0.10287750512361526, 0.07431904226541519, -0.08909440040588379, 0.04735788702964783, -0.05409199744462967, 0.07747411727905273, -0.12314456701278687, -0.13477455079555511, 0.01115450356155634, -0.02305053360760212, -0.12491090595722198, 0.0012349762255325913, 0.06456080079078674, -0.04443959519267082, 0.03314740210771561, -0.02612023614346981, 0.027335917577147484, -0.029400404542684555, -0.05185626447200775, 0.10236943513154984, 0.12418001890182495, -0.026852162554860115, 0.02074473164975643, 0.04354671388864517, -0.09673047065734863, -0.07105062156915665, 0.051461804658174515, 0.05771814286708832, 0.21967871487140656, -0.10825631767511368, 0.04605244845151901, 0.11587920039892197, -0.03080027736723423, -0.23417417705059052, -0.015949277207255363, 0.024514876306056976, -0.018367765471339226, -0.06754422932863235, -0.07046430557966232, 0.03833410143852234, -0.0018418815452605486, -0.007361159659922123, 0.06807272136211395, -0.13279780745506287, -0.10624094307422638, -0.04389059543609619, 0.13320785760879517, 0.3546246588230133, -0.08515433222055435, 0.027980748564004898, 0.014312292449176311, -0.1948447972536087, 0.1819736212491989, -0.022398358210921288, 0.07285016030073166, -0.05416713282465935, 0.07817645370960236, 0.036684002727270126, -0.07560195028781891, 0.05833740532398224, -0.0521373525261879, 0.051134027540683746, -0.06551175564527512, -0.12860631942749023, 0.026036670431494713, -0.05085182189941406, 0.1147613599896431, 0.06558490544557571, 0.031704943627119064, -0.015882093459367752, -0.015711553394794464, -0.11838141828775406, 0.08012008666992188, 0.005615508183836937, -0.08704660832881927, -0.036632321774959564, 0.08015195280313492, 0.07610888034105301, -0.02580859139561653, 0.13282173871994019, 0.0013012489071115851, 0.15030890703201294, 0.16025938093662262, -0.0015750060556456447, -0.058557622134685516, -0.006573753897100687, -0.03666969761252403, -0.02897081896662712, 0.09106229990720749, -0.20886610448360443, 0.03298893943428993, 0.08423199504613876, 0.07014867663383484, 0.04058628901839256, 0.042742010205984116, -0.10821063071489334, 0.025961631909012794, 0.06642532348632812, -0.20000122487545013, -0.03321300819516182, -0.06772254407405853, -0.08656860142946243, 0.0008667886722832918, 0.06745406985282898, 0.13410824537277222, -0.12063926458358765, -0.014656892977654934, 0.013907858170568943, -0.009295086376369, -0.012421627528965473, 0.07472611963748932, 0.042833954095840454, 0.010829768143594265, -0.0831548199057579, 0.10457798093557358, 0.020939774811267853, -0.10249415040016174, -0.05725540965795517, 0.06851406395435333, -0.10623590648174286, -0.020275115966796875, -0.07504064589738846, 0.017650797963142395, -0.1880735456943512, 0.020078592002391815, -0.04654276371002197, -0.01663760095834732, 0.001478289719671011, 0.13937212526798248, 0.05293170362710953, 0.05056219547986984, -0.01186642050743103, 0.004062274936586618, -0.10824839770793915, 0.04514915123581886, 0.02673306129872799, 0.0638182982802391, -0.11227710545063019, 0.10592502355575562, 0.0469815768301487, 0.15370921790599823, -0.05084364488720894, -0.017061680555343628, 0.00178377830889076, -0.04061942547559738, 0.040054239332675934, 0.012236038222908974, -0.016978027299046516, -0.006411759648472071, -0.04020588472485542, -0.02093706838786602, -0.00033111244556494057, 0.019296841695904732, -0.07374580949544907, 0.023298373445868492, -0.01704573631286621, -0.032979171723127365, -0.02773827314376831, -0.043401870876550674, -0.02134896069765091, -0.019563918933272362, 0.09462764859199524, -0.018802477046847343, -0.04813253879547119, 0.009769586846232414, 0.02846372500061989, -0.058194417506456375, 0.10770925879478455, 0.011618751101195812, 0.0423031710088253, -0.0416228324174881, 0.013104382902383804, -0.015418474562466145, -0.04050939157605171, -0.02436710149049759, 0.05286329239606857, -0.06757695972919464, 0.01243091095238924, 0.0018653025617823005, -0.019716231152415276, -0.08437274396419525, 0.03202157840132713, 0.05820241943001747, 0.14847727119922638, 0.07990635931491852, -0.0293732900172472, 0.0901620015501976, -0.1944206953048706, -0.04035789892077446, -0.007475728634744883, -0.12212366610765457, -0.06455095112323761, 0.0015128619270399213, 0.02658570371568203, 0.010503658093512058, 0.052018363028764725, 0.09492716938257217, -0.05172175168991089, -0.010157328099012375, 0.054662711918354034, -0.061183735728263855, -0.061770033091306686, 0.09405980259180069, -0.047057636082172394, 0.01244154293090105, 0.06672468036413193, 0.07408346235752106, 0.010404899716377258, 0.10212554782629013, 0.10121888667345047, 0.013019009493291378, 0.10307060182094574, 0.044885873794555664, 0.05483032390475273, 0.025246810168027878, -0.08375416696071625, -0.08120995759963989, -0.03297651559114456, 0.07346627116203308, -0.011501997709274292, 0.15241356194019318, 0.1516457498073578, -0.11513999849557877, 0.04497181251645088, 0.06967830657958984, -0.00747970025986433, -0.0879095271229744, -0.19487698376178741, -0.06622528284788132, -0.09868032485246658, 0.06445004791021347, -0.07925929129123688, 0.028805864974856377, 0.05318136140704155, 0.03435642644762993, -0.0055811479687690735, 0.025010235607624054, -0.02593192830681801, -0.11087673157453537, 0.09055750072002411, 0.04306133836507797, -0.03707555681467056, 0.02006138488650322, 0.029880192130804062, 0.07878810912370682, 0.045690376311540604, 0.01942128874361515, -0.007315975148230791, 0.1100938692688942, 0.07917185872793198, 0.004762270487844944, -0.1371038258075714, -0.028257304802536964, 0.01962514966726303, 0.073935866355896, 0.11680189520120621, -0.007668719626963139, 0.042354367673397064, -0.017400801181793213, 0.09000199288129807, -0.0686822161078453, -0.07308509200811386, -0.10031542927026749, 0.13967110216617584, -0.0935136079788208, -0.0053709037601947784, -0.003711145371198654, -0.0522879995405674, 0.007239972706884146, 0.20403146743774414, 0.23403193056583405, 0.11289063841104507, -0.004355463199317455, -0.01806430146098137, -0.0016414325218647718, 0.013857783749699593, 0.05459115281701088, 0.04930536448955536, 0.1273464858531952, -0.05665156990289688, 0.05503549799323082, -0.09458883106708527, 0.02536909654736519, 0.02681550197303295, 0.047638922929763794, -0.01160278357565403, -0.024584107100963593, -0.07803671807050705, 0.0036939014680683613, 0.04908112809062004, -0.2202746421098709, 0.14415302872657776, -0.16832390427589417, -0.002270157216116786, -0.0450664758682251, 0.03700600937008858, 0.00555588211864233, 0.04726717993617058, -0.042532943189144135, 0.05685887485742569, 0.0905432254076004, 0.001459383056499064, -0.17164433002471924, -0.08509346097707748, 0.05147450789809227, -0.12695680558681488, 0.07265277206897736, -0.07886712998151779, 0.02090238220989704, 0.04210812970995903, 0.021655865013599396, -0.07434694468975067, -0.010275516659021378, -0.034403007477521896, -0.04743179678916931, -0.08246953040361404, 0.13930921256542206, -0.00436564302071929, 0.07354860752820969, -0.03585107624530792, -0.12392731010913849, -0.002444047713652253, 0.02181391231715679, -0.07976207137107849, -0.05539955943822861, 0.0552079901099205, -0.04642407223582268, 0.15384544432163239, 0.1239975243806839, -0.0017956593073904514, -0.0571262463927269, -0.09727229923009872, -0.0486169159412384, 0.05371185764670372, 0.004165849182754755, 0.027688361704349518, -0.07100989669561386, -0.03718911111354828, -0.1382942497730255, 0.028445323929190636, -0.21654623746871948, 0.004564668517559767, -0.06975992023944855, -0.10577710717916489, -0.016646813601255417, 0.09507232159376144, -0.006350525189191103, 0.005091839004307985, -0.011303912848234177, -0.08300789445638657, 0.03476317226886749, 0.1180824339389801, -0.11448720842599869, -0.09155696630477905 ]
null
null
transformers
# Vision Transformer (large-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Images are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Note that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification). By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python from transformers import ViTFeatureExtractor, ViTModel from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) last_hidden_state = outputs.last_hidden_state ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change. ## Training data The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py). Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
{"license": "apache-2.0", "tags": ["vision"], "datasets": ["imagenet-21k"], "inference": false}
feature-extraction
google/vit-large-patch32-224-in21k
[ "transformers", "pytorch", "tf", "jax", "vit", "feature-extraction", "vision", "dataset:imagenet-21k", "arxiv:2010.11929", "arxiv:2006.03677", "license:apache-2.0", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929", "2006.03677" ]
[]
TAGS #transformers #pytorch #tf #jax #vit #feature-extraction #vision #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #has_space #region-us
# Vision Transformer (large-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Images are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Note that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification). By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the model hub to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change. ## Training data The ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found here. Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info
[ "# Vision Transformer (large-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. \n\nImages are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nNote that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification).\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model:\n\n\n\nCurrently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #jax #vit #feature-extraction #vision #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #has_space #region-us \n", "# Vision Transformer (large-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. \n\nImages are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nNote that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification).\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model:\n\n\n\nCurrently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ 66, 165, 313, 41, 56, 31, 3, 70, 73, 64, 11 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #vit #feature-extraction #vision #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #has_space #region-us \n# Vision Transformer (large-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team." ]
[ -0.05858943238854408, -0.00012260091898497194, 0.001107072806917131, 0.1308751404285431, 0.1411915123462677, 0.08290551602840424, 0.0976460874080658, 0.07279902696609497, -0.04306405782699585, 0.00623667798936367, 0.11633158475160599, 0.07459820806980133, 0.08455116301774979, 0.1580253690481186, 0.048585195094347, -0.225875124335289, 0.024041328579187393, 0.09410648792982101, 0.006534389685839415, 0.09617259353399277, 0.04780493676662445, -0.09297319501638412, 0.133111834526062, 0.03316807746887207, -0.2579548954963684, 0.016830069944262505, 0.043138712644577026, -0.03233572840690613, 0.09403340518474579, 0.04672641307115555, 0.06392800807952881, 0.037272192537784576, 0.07094653695821762, 0.055143434554338455, 0.025265812873840332, 0.05891530215740204, -0.06302914023399353, 0.08412791788578033, 0.02936526946723461, 0.053800810128450394, 0.19282329082489014, -0.020901184529066086, 0.00778560247272253, 0.03423264995217323, -0.07415910810232162, -0.2918755114078522, -0.06434333324432373, 0.11950088292360306, -0.013652513734996319, 0.03320402279496193, 0.0070161353796720505, 0.18673311173915863, 0.08612226694822311, 0.06965729594230652, 0.18113203346729279, -0.14315134286880493, -0.09270159900188446, 0.13585583865642548, -0.06455618888139725, 0.049092847853899, -0.017867814749479294, 0.0839640274643898, 0.09948478639125824, 0.027959702536463737, 0.13811366260051727, -0.036812566220760345, 0.04371163249015808, -0.008372838608920574, -0.11471766233444214, -0.06266696006059647, 0.17076170444488525, 0.04117399454116821, -0.06938494741916656, -0.07724142074584961, -0.07959949225187302, 0.01339115109294653, 0.0304047130048275, 0.0023292938712984324, 0.002453818917274475, -0.08196096867322922, -0.03805050998926163, -0.07995932549238205, -0.10429524630308151, -0.09720921516418457, -0.04142705351114273, 0.017276301980018616, -0.0026753011625260115, 0.12844224274158478, -0.034300368279218674, 0.05705929547548294, -0.17493294179439545, -0.07820228487253189, 0.00690376665443182, -0.1108705922961235, 0.04165548458695412, 0.04890181124210358, 0.004025377798825502, -0.15765975415706635, -0.06734016537666321, -0.10464057326316833, 0.09202994406223297, -0.01176073681563139, 0.00474000396206975, 0.06751485168933868, 0.009797865524888039, 0.15142013132572174, -0.06960581988096237, 0.07416699081659317, -0.025213642045855522, 0.026450345292687416, 0.021005872637033463, -0.05521175265312195, -0.12920689582824707, -0.024365806952118874, -0.04349757358431816, -0.05089923366904259, -0.01809171587228775, 0.08040272444486618, 0.03270960971713066, -0.08230773359537125, 0.2457783967256546, 0.004157560411840677, -0.025995668023824692, -0.023966288194060326, -0.06972207129001617, 0.12424242496490479, 0.1444845050573349, -0.09028903394937515, -0.026760904118418694, 0.07195062190294266, -0.09196271747350693, -0.011885583400726318, -0.07370909303426743, -0.15538880228996277, 0.016732219606637955, -0.18791835010051727, -0.003341004950925708, -0.1893261820077896, -0.12669333815574646, 0.03112088330090046, 0.035205595195293427, 0.022985951974987984, 0.032132405787706375, 0.022286510095000267, -0.018072975799441338, -0.0014535938389599323, 0.052229661494493484, 0.05736140161752701, 0.015310218557715416, 0.10564395785331726, -0.054609570652246475, 0.14669057726860046, -0.1242295429110527, 0.04002661630511284, -0.08523467183113098, -0.006650828290730715, -0.13622984290122986, -0.056816719472408295, 0.011387873440980911, 0.016643473878502846, -0.04546622186899185, -0.1383666843175888, -0.004623536951839924, 0.019130833446979523, 0.03252916410565376, 0.10429789870977402, -0.2076735496520996, -0.06295043230056763, 0.11772648245096207, -0.20187225937843323, -0.1114368587732315, 0.09371301531791687, -0.004265431314706802, 0.08423559367656708, 0.041136085987091064, 0.1458074003458023, 0.08227614313364029, -0.13660120964050293, -0.012478808872401714, -0.04269053414463997, -0.12346061319112778, -0.1337563693523407, 0.05333653837442398, 0.09341365844011307, -0.13664913177490234, 0.026342540979385376, -0.06435556709766388, -0.004760536830872297, -0.05228745937347412, -0.030355628579854965, -0.024014469236135483, -0.08937270939350128, 0.08755572885274887, 0.025559039786458015, 0.02135400101542473, -0.025278344750404358, -0.025381920859217644, 0.018004458397626877, 0.09041547775268555, -0.0729367658495903, -0.02348034642636776, -0.01665227860212326, 0.09415498375892639, -0.12743279337882996, 0.011093255132436752, -0.015493898652493954, 0.05841352045536041, 0.04344141110777855, -0.09435800462961197, 0.06785126030445099, 0.15031899511814117, 0.06174826994538307, 0.06876058131456375, -0.04741727560758591, -0.02730439230799675, -0.03218018636107445, -0.03917165845632553, 0.02525229938328266, -0.07554852217435837, -0.04152992367744446, -0.043031688779592514, 0.0006150128901936114, -0.12059595435857773, 0.0035212610382586718, -0.0444902703166008, -0.010247607715427876, 0.00807911902666092, -0.03703313693404198, 0.022258415818214417, -0.044572863727808, 0.010448775254189968, -0.06534736603498459, 0.07083261013031006, 0.014559352770447731, -0.0026607837062329054, 0.10004176944494247, -0.1222756952047348, 0.014409791678190231, 0.1854560375213623, -0.03560623154044151, -0.06855929642915726, 0.016903840005397797, -0.002326940419152379, -0.006490359082818031, -0.029700081795454025, -0.01456306129693985, -0.024780631065368652, -0.06172071024775505, 0.12024861574172974, -0.1200491264462471, 0.04193156585097313, 0.1448080986738205, 0.0051783849485218525, -0.07297830283641815, 0.04669271409511566, 0.11433016508817673, -0.1846744418144226, 0.060993537306785583, 0.10997574776411057, -0.020746074616909027, 0.19237014651298523, 0.047050684690475464, -0.03334415331482887, -0.02551894076168537, -0.06595366448163986, 0.03724604845046997, 0.18510621786117554, -0.06613258272409439, -0.05548098683357239, 0.06613145768642426, -0.05083596706390381, -0.02631399966776371, -0.11000911891460419, -0.05196842551231384, 0.04671374335885048, 0.004448338877409697, -0.07357180863618851, 0.0793856829404831, -0.07242489606142044, 0.09970692545175552, 0.009480800479650497, 0.05190219357609749, 0.0012300800299271941, 0.0003572302812244743, -0.09597845375537872, 0.08692021667957306, -0.037674643099308014, -0.2938727140426636, -0.15430673956871033, 0.043597396463155746, -0.05071306973695755, 0.017070161178708076, 0.04544400796294212, -0.09164127707481384, -0.04636239632964134, -0.06259558349847794, 0.039925865828990936, -0.07968662679195404, 0.009924334473907948, -0.0197150856256485, -0.057945407927036285, -0.0061216820031404495, -0.1049501970410347, 0.0030895282980054617, -0.0787002220749855, -0.038267116993665695, 0.09835100173950195, -0.08871671557426453, 0.13121984899044037, 0.10364596545696259, -0.11282658576965332, 0.062255389988422394, -0.06147254258394241, 0.11512945592403412, -0.029061343520879745, 0.08115067332983017, 0.2645006477832794, 0.0966310203075409, 0.05105369910597801, 0.012289137579500675, -0.021130461245775223, -0.028420835733413696, 0.011736063286662102, -0.061999764293432236, -0.16617999970912933, -0.08308321237564087, -0.014636900275945663, -0.02508566342294216, 0.1215401291847229, 0.16958661377429962, 0.030472200363874435, 0.09836716949939728, 0.1528049260377884, -0.008662760257720947, 0.04219267517328262, -0.031026192009449005, 0.09886164218187332, 0.010399122722446918, -0.01888534240424633, 0.06773487478494644, -0.1078992635011673, 0.01596495509147644, 0.139980748295784, -0.04064374044537544, 0.16808170080184937, -0.048632267862558365, 0.021012647077441216, 0.021778641268610954, 0.08135756105184555, 0.0747256651520729, 0.16136306524276733, -0.0670630931854248, 0.004908412229269743, -0.08951312303543091, -0.0877167135477066, -0.026917114853858948, 0.05996090918779373, 0.001959956018254161, 0.06892864406108856, -0.06254101544618607, -0.02398061566054821, -0.02882666513323784, 0.020215479657053947, 0.07719015330076218, -0.27792224287986755, -0.0425412692129612, -0.05229835957288742, 0.12085384875535965, -0.10720573365688324, -0.011142933741211891, 0.12118174880743027, -0.03483746573328972, 0.1050746962428093, -0.0665617510676384, 0.04890536144375801, -0.006197031587362289, 0.005645724479109049, -0.005661143455654383, 0.02614833600819111, 0.00680703017860651, 0.05109087750315666, -0.1582527756690979, 0.1405305713415146, -0.006270299665629864, -0.015904219821095467, -0.08358821272850037, -0.04413152113556862, 0.020970232784748077, 0.032776929438114166, 0.1261434257030487, 0.02856050804257393, 0.14175890386104584, -0.06533462554216385, -0.0014774231240153313, 0.003984724171459675, 0.0013367189094424248, -0.004307980183511972, -0.012089853174984455, 0.0031371749937534332, -0.009629080072045326, 0.013199952431023121, 0.1462283730506897, 0.03531937301158905, -0.0693061351776123, 0.04424971342086792, -0.03142775967717171, -0.05739080160856247, 0.012218800373375416, -0.09903857111930847, -0.11788086593151093, 0.01753692515194416, 0.12642289698123932, -0.046847153455019, -0.11827737838029861, 0.03312799334526062, 0.052473828196525574, -0.07677768170833588, 0.10059359669685364, -0.04495646804571152, 0.05869903787970543, -0.08588117361068726, -0.13455817103385925, 0.03223389759659767, -0.026351574808359146, -0.08098962157964706, -0.014457565732300282, 0.013966896571218967, -0.028000446036458015, 0.03588326647877693, -0.010006620548665524, 0.0298715028911829, -0.055944595485925674, -0.06185518577694893, 0.14947544038295746, 0.056428540498018265, -0.005755017977207899, -0.01682947389781475, 0.10940386354923248, -0.045004166662693024, -0.044754646718502045, 0.017846884205937386, -0.00845538079738617, 0.11777211725711823, -0.12204685807228088, 0.01786191016435623, 0.11089545488357544, -0.01594424806535244, -0.24488283693790436, 0.0031203788239508867, -0.011116132140159607, 0.005775934085249901, -0.02742849662899971, -0.055854979902505875, 0.0004980300436727703, 0.014631195925176144, -0.008365831337869167, 0.1097109392285347, -0.09580150991678238, -0.09062787145376205, -0.01921045035123825, 0.20438842475414276, 0.24584797024726868, -0.10743412375450134, 0.02631443552672863, 0.007477516308426857, -0.1507880538702011, 0.17948368191719055, -0.005320092663168907, 0.05366983264684677, -0.05194747820496559, 0.06564182043075562, 0.012857028283178806, -0.06254171580076218, 0.07491268217563629, -0.09869223088026047, 0.05730028823018074, -0.09842615574598312, -0.11997701972723007, 0.05251550301909447, -0.04041232913732529, 0.11663633584976196, 0.02530093304812908, 0.06604567915201187, -0.033775173127651215, -0.030528424307703972, -0.12086576223373413, 0.05920327454805374, 0.004789719358086586, -0.10442368686199188, -0.05943607911467552, 0.06394974887371063, -0.009321621619164944, -0.042018335312604904, -0.011498181149363518, -0.016065914183855057, 0.0365956611931324, 0.14935770630836487, -0.002770250430330634, -0.02568613551557064, -0.06322451680898666, -0.03559836000204086, -0.06653183698654175, 0.12412853538990021, -0.2630119323730469, -0.01148991473019123, 0.05818741023540497, 0.05845201015472412, 0.031015602871775627, 0.024663273245096207, -0.08906930685043335, 0.018382849171757698, 0.07200489938259125, -0.14885763823986053, -0.07945794612169266, -0.07731309533119202, -0.0069618974812328815, 0.028926387429237366, 0.05774828419089317, 0.07959369570016861, -0.14981579780578613, 0.00028175191255286336, -0.015280760824680328, -0.041880298405885696, -0.008505159057676792, 0.04637673497200012, 0.12298983335494995, 0.00795892346650362, -0.09613991528749466, 0.0650036558508873, 0.02128041535615921, -0.10714027285575867, 0.0031440218444913626, 0.06511703878641129, -0.08578801900148392, -0.06754186004400253, 0.006843733601272106, 0.08447657525539398, -0.1769847720861435, -0.02818300947546959, 0.004447822459042072, -0.07370749861001968, 0.01671847701072693, 0.18628188967704773, 0.06472833454608917, 0.017447637394070625, -0.023826180025935173, 0.014606582932174206, -0.11921416223049164, 0.0268301572650671, -0.030234890058636665, 0.07087904959917068, -0.15155282616615295, 0.03295688331127167, 0.06399501115083694, 0.143747016787529, -0.06826695054769516, -0.008603007532656193, -0.04676897078752518, -0.03253171965479851, 0.03226204216480255, 0.04938042536377907, 0.028630798682570457, -0.00007439052569679916, -0.029707415029406548, -0.027907006442546844, -0.02042422629892826, 0.03092258982360363, -0.06501511484384537, 0.02496214769780636, 0.04640022665262222, -0.00879873987287283, -0.029650935903191566, -0.031044436618685722, -0.047640129923820496, 0.018901430070400238, 0.053105007857084274, -0.0038673290982842445, -0.04362459480762482, 0.06066662073135376, -0.011922061443328857, -0.018509935587644577, 0.06453438848257065, 0.04789028316736221, 0.03336968645453453, 0.010856005363166332, 0.026914983987808228, -0.02956565096974373, -0.05072445422410965, -0.018230482935905457, 0.02726447768509388, -0.05715981498360634, 0.052776094526052475, -0.005515030585229397, -0.020960215479135513, -0.04815267026424408, 0.057924769818782806, 0.05536448583006859, 0.08762737363576889, 0.042153824120759964, 0.006134883500635624, 0.058787472546100616, -0.20317862927913666, -0.02600100263953209, -0.00890679843723774, -0.12064462155103683, -0.07386019080877304, -0.014664159156382084, 0.02140759862959385, -0.005391373764723539, 0.028491036966443062, 0.13017861545085907, -0.09051569551229477, -0.032821185886859894, 0.10718651115894318, -0.06438661366701126, -0.05688022822141647, 0.13799968361854553, -0.06220349296927452, 0.010667494498193264, 0.02720038779079914, 0.09501835703849792, 0.01715962588787079, 0.14723984897136688, 0.05671690031886101, 0.021413061767816544, 0.050051163882017136, 0.04496673867106438, 0.10579178482294083, 0.06482649594545364, -0.06184318661689758, -0.07239256054162979, -0.016826219856739044, 0.09289867430925369, -0.04490529000759125, 0.04341128468513489, 0.15702371299266815, -0.0561973936855793, 0.033771857619285583, 0.036947205662727356, -0.02505864016711712, -0.034021176397800446, -0.2669616937637329, -0.08966671675443649, -0.10094086080789566, 0.031157681718468666, -0.029381418600678444, 0.017864389345049858, 0.09613192826509476, 0.01843930035829544, -0.03459475189447403, 0.054396748542785645, -0.000642309314571321, -0.04035468026995659, 0.10120301693677902, 0.013801146298646927, -0.09631343930959702, -0.02543405257165432, 0.04470739886164665, 0.09254899621009827, 0.024132659658789635, 0.021213538944721222, -0.0047607216984033585, 0.06717557460069656, 0.031216947361826897, 0.0204097218811512, -0.12197820842266083, -0.03308207541704178, 0.03507261723279953, 0.010921121574938297, 0.07956117391586304, -0.03499690815806389, 0.021563030779361725, -0.028417188674211502, 0.031047293916344643, -0.024841202422976494, -0.03203120455145836, -0.05096990615129471, 0.16688816249370575, -0.14288844168186188, 0.003873623674735427, 0.0022430450189858675, -0.0346432700753212, -0.010092057287693024, 0.2737656831741333, 0.2566150724887848, 0.08522472530603409, -0.004685463849455118, -0.0011556247482076287, 0.007222543936222792, -0.0221063494682312, 0.13762043416500092, 0.04098714515566826, 0.10306878387928009, -0.046085160225629807, 0.09175150096416473, -0.10155177861452103, 0.05050741881132126, 0.07404471188783646, 0.02850949577987194, 0.06105351075530052, -0.021930087357759476, -0.07177256792783737, -0.006819072645157576, 0.054661642760038376, -0.054560452699661255, 0.12752684950828552, -0.12093070149421692, 0.009219607338309288, -0.028430702164769173, 0.04405062645673752, 0.01069057546555996, 0.046488530933856964, -0.0881061777472496, 0.055970653891563416, -0.0017882611136883497, 0.005247085355222225, -0.22332735359668732, -0.09849022328853607, 0.04060076177120209, -0.1707584261894226, 0.1187644898891449, -0.05362873151898384, 0.013193232007324696, 0.03576793894171715, 0.018418602645397186, -0.07551898062229156, 0.03193683177232742, -0.0452323816716671, -0.01972147636115551, -0.0477324053645134, 0.11866583675146103, -0.003109352895990014, -0.000840173102915287, -0.054032113403081894, -0.1350426822900772, -0.01743125729262829, 0.03408130630850792, -0.019460374489426613, -0.005752969067543745, 0.09046564996242523, -0.08748938143253326, 0.14185553789138794, 0.11915961652994156, 0.02140507474541664, -0.06661085039377213, -0.0798489972949028, -0.017591627314686775, 0.0594073124229908, -0.0421447679400444, 0.05023280903697014, -0.015844032168388367, -0.05410375818610191, -0.1237906739115715, -0.0034373304806649685, -0.24135249853134155, 0.004306796472519636, -0.14236603677272797, -0.07536866515874863, -0.011623957194387913, 0.03646043315529823, 0.035606928169727325, 0.01291760616004467, -0.03163355961441994, 0.07078315317630768, 0.009862103499472141, 0.12041569501161575, -0.06669162958860397, -0.09561735391616821 ]
null
null
transformers
# Vision Transformer (large-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384. Images are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ViTFeatureExtractor, ViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-large-patch32-384') model = ViTForImageClassification.from_pretrained('google/vit-large-patch32-384') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change. ## Training data The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py). Images are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
{"license": "apache-2.0", "tags": ["image-classification", "vision"], "datasets": ["imagenet", "imagenet-21k"]}
image-classification
google/vit-large-patch32-384
[ "transformers", "pytorch", "tf", "jax", "vit", "image-classification", "vision", "dataset:imagenet", "dataset:imagenet-21k", "arxiv:2010.11929", "arxiv:2006.03677", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2010.11929", "2006.03677" ]
[]
TAGS #transformers #pytorch #tf #jax #vit #image-classification #vision #dataset-imagenet #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Vision Transformer (large-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384. Images are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the model hub to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change. ## Training data The ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found here. Images are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info
[ "# Vision Transformer (large-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384.\n\nImages are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:\n\n\n\nCurrently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #jax #vit #image-classification #vision #dataset-imagenet #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Vision Transformer (large-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team.", "## Model description\n\nThe Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384.\n\nImages are presented to the model as a sequence of fixed-size patches (resolution 32x32), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.\n\nBy pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.", "## Intended uses & limitations\n\nYou can use the raw model for image classification. See the model hub to look for\nfine-tuned versions on a task that interests you.", "### How to use\n\nHere is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:\n\n\n\nCurrently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change.", "## Training data\n\nThe ViT model was pretrained on ImageNet-21k, a dataset consisting of 14 million images and 21k classes, and fine-tuned on ImageNet, a dataset consisting of 1 million images and 1k classes.", "## Training procedure", "### Preprocessing\n\nThe exact details of preprocessing of images during training/validation can be found here. \n\nImages are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).", "### Pretraining\n\nThe model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224.", "## Evaluation results\n\nFor evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance.", "### BibTeX entry and citation info" ]
[ 87, 189, 302, 41, 76, 54, 3, 85, 73, 64, 11 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #vit #image-classification #vision #dataset-imagenet #dataset-imagenet-21k #arxiv-2010.11929 #arxiv-2006.03677 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Vision Transformer (large-sized model) \n\nVision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. \n\nDisclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team." ]
[ -0.04913502186536789, 0.08409738540649414, 0.00024010225024539977, 0.05731195583939552, 0.11655019968748093, 0.03454451635479927, 0.13395820558071136, 0.09909156709909439, -0.07312667369842529, 0.028623173013329506, 0.08994199335575104, 0.08182409405708313, 0.07313978672027588, 0.11145409196615219, 0.053705357015132904, -0.191242516040802, 0.013657467439770699, 0.0615590438246727, -0.004663457162678242, 0.1022677794098854, 0.05442414805293083, -0.09676393866539001, 0.12167365103960037, -0.003233895869925618, -0.19876961410045624, 0.03342176973819733, 0.02579234354197979, -0.018903128802776337, 0.10448506474494934, 0.020656734704971313, 0.07443221658468246, 0.06577406823635101, 0.04654049500823021, -0.020534301176667213, 0.021343974396586418, 0.08156344294548035, -0.037935830652713776, 0.07400941848754883, 0.032489094883203506, 0.054242365062236786, 0.15173958241939545, -0.05400259047746658, 0.026666129007935524, 0.01598089002072811, -0.07914520055055618, -0.2109098583459854, -0.08640971779823303, 0.08760108798742294, 0.071586973965168, 0.0646580308675766, -0.0011075979564338923, 0.153244748711586, 0.07888901233673096, 0.059430163353681564, 0.22916728258132935, -0.20142877101898193, -0.08255352824926376, 0.18228869140148163, -0.06999711692333221, 0.021891754120588303, -0.06812100857496262, 0.06250020116567612, 0.09375371783971786, 0.038563720881938934, 0.09840613603591919, -0.034261979162693024, 0.0652913898229599, -0.004239441826939583, -0.1275707334280014, -0.05420650914311409, 0.0936712697148323, 0.004179126117378473, -0.06749751418828964, -0.11269529163837433, -0.09614405035972595, -0.010900285094976425, 0.05022205412387848, -0.0013523795641958714, -0.005875003524124622, -0.05241481959819794, -0.10823503136634827, -0.05838773027062416, -0.09996207058429718, -0.03542841970920563, -0.03582475706934929, 0.1125202551484108, -0.010042994283139706, 0.11183098703622818, -0.003460417967289686, 0.10161057114601135, -0.13400012254714966, -0.07918109744787216, -0.019652176648378372, -0.07053196430206299, 0.014295254833996296, 0.0168807040899992, 0.020394856110215187, -0.1661110669374466, -0.04457392171025276, 0.02129897102713585, 0.029172489419579506, -0.017411017790436745, -0.018943054601550102, 0.06159995123744011, -0.0007905879174359143, 0.13421815633773804, -0.04013636335730553, -0.04945414513349533, 0.035900335758924484, 0.06196797266602516, 0.07297594100236893, -0.04325323551893234, -0.0916336327791214, -0.023381559178233147, 0.040784575045108795, -0.026401307433843613, 0.026940088719129562, 0.08191030472517014, 0.011686497367918491, -0.0552353672683239, 0.17675648629665375, -0.04188918694853783, -0.03315699100494385, -0.039707183837890625, -0.08215326815843582, 0.06930140405893326, 0.13382963836193085, -0.04207729548215866, -0.015524675138294697, 0.09786959737539291, -0.07864858955144882, -0.00969916395843029, -0.045322123914957047, -0.14511579275131226, 0.05170096084475517, -0.20248627662658691, -0.02681756019592285, -0.1588454395532608, -0.11343035846948624, -0.015561475418508053, 0.019130339846014977, 0.03263658657670021, -0.022756801918148994, -0.014913994818925858, -0.023218894377350807, -0.00048780269571579993, 0.03559722751379013, 0.0004978228826075792, -0.005949696525931358, 0.07804732769727707, -0.07320233434438705, 0.13820141553878784, -0.05032780393958092, 0.029664577916264534, -0.08703961968421936, -0.011939624324440956, -0.11506784707307816, 0.001238849712535739, -0.03315792605280876, 0.05052195116877556, -0.05933348089456558, -0.11131013184785843, -0.03006419539451599, -0.022655248641967773, 0.026365986093878746, 0.14084118604660034, -0.1973581612110138, -0.08158542960882187, 0.13804613053798676, -0.17746049165725708, -0.06574581563472748, 0.0996689423918724, -0.0006107008084654808, 0.08577100187540054, 0.04905817657709122, 0.05655529722571373, 0.03367699682712555, -0.14714723825454712, -0.028414754197001457, -0.04332241415977478, -0.049427278339862823, -0.050963763147592545, 0.0280679389834404, 0.05625832453370094, -0.04877517744898796, 0.02624598704278469, -0.015848660841584206, -0.007855789735913277, -0.048631660640239716, -0.024767549708485603, 0.009010287933051586, -0.05137431249022484, 0.02988380379974842, 0.026434091851115227, 0.0034804826136678457, -0.020645417273044586, -0.05540071055293083, -0.002705490915104747, 0.08568969368934631, -0.07410892844200134, 0.029413679614663124, 0.01595913991332054, 0.08009935915470123, -0.11783550679683685, -0.01179901510477066, -0.06799697130918503, 0.004943831358104944, 0.03243294358253479, -0.02692677453160286, 0.05152082443237305, 0.12294499576091766, 0.05517178401350975, 0.06733912229537964, -0.051613181829452515, -0.022083252668380737, -0.03826920688152313, -0.054904669523239136, -0.006914523895829916, -0.0808875635266304, -0.05436112359166145, -0.07019070535898209, 0.11363513767719269, -0.12074670940637589, 0.019226713106036186, 0.013041675090789795, 0.017861243337392807, 0.028791336342692375, -0.070633664727211, 0.044497158378362656, -0.012407347559928894, -0.04343842715024948, -0.07543599605560303, 0.07611331343650818, 0.03877931833267212, -0.05576449632644653, 0.0757252648472786, -0.1549573838710785, -0.10582547634840012, 0.16685572266578674, -0.06361807882785797, -0.0649426057934761, -0.014648659154772758, -0.046959854662418365, -0.029060475528240204, -0.08790513128042221, -0.016980286687612534, 0.0374067984521389, -0.03423796221613884, 0.12285569310188293, -0.10324425250291824, -0.001458501210436225, 0.07725770026445389, -0.0008671330288052559, -0.043410785496234894, 0.04541059210896492, 0.04399043694138527, -0.14204883575439453, 0.07659261673688889, 0.08582334220409393, -0.04515911638736725, 0.16917623579502106, 0.0600028932094574, -0.03286563977599144, 0.004878012929111719, -0.02503960207104683, 0.05720426142215729, 0.08451380580663681, -0.05048990994691849, -0.04815506190061569, 0.05404897779226303, -0.03828785941004753, -0.019429104402661324, -0.14445433020591736, -0.03175276517868042, 0.019388532266020775, -0.012106893584132195, -0.009055170230567455, 0.07412585616111755, -0.031542129814624786, 0.10086503624916077, 0.01386973075568676, 0.038902223110198975, -0.002457411726936698, -0.027012696489691734, -0.08527848869562149, 0.13682256639003754, -0.027550311759114265, -0.3037653863430023, -0.1399184763431549, 0.03174646943807602, -0.0863681510090828, 0.011230041272938251, 0.05001899227499962, -0.06899994611740112, -0.04943203553557396, -0.08147739619016647, 0.05832825228571892, -0.04124177619814873, 0.010646884329617023, -0.004957880359143019, -0.017140483483672142, 0.0005177774582989514, -0.10176777839660645, -0.0047375294379889965, -0.08197077363729477, -0.11358755826950073, 0.11230707168579102, -0.04772255942225456, 0.09292230755090714, 0.09299557656049728, -0.09136517345905304, 0.02865641377866268, -0.04985950142145157, 0.15091970562934875, -0.029071947559714317, 0.08665363490581512, 0.21646468341350555, 0.06354139000177383, 0.06685461103916168, 0.04355489835143089, -0.02448146604001522, -0.03968007490038872, 0.016302675008773804, 0.00820680521428585, -0.15272173285484314, -0.0869557112455368, 0.0020626841578632593, -0.04158943518996239, 0.14115378260612488, 0.18460392951965332, 0.03246909752488136, 0.08234968036413193, 0.07807396352291107, -0.04653581231832504, 0.02197294682264328, 0.06634131819009781, 0.1327013522386551, -0.020154858008027077, -0.008585639297962189, 0.09262923151254654, -0.05016038939356804, 0.016853298991918564, 0.12839293479919434, -0.006920841988176107, 0.152156800031662, -0.06640259921550751, 0.01343108993023634, 0.017224159091711044, 0.08982817083597183, 0.06002650409936905, 0.14961250126361847, -0.05955035984516144, 0.011955167166888714, -0.0671568363904953, -0.07932063192129135, -0.06769340485334396, 0.0870063304901123, -0.0012445503380149603, 0.033148348331451416, -0.01069287396967411, 0.0011211354285478592, -0.03499089926481247, 0.14353057742118835, 0.0965106189250946, -0.23082804679870605, -0.04515240341424942, -0.03402278199791908, 0.05909743905067444, -0.04758427292108536, 0.005395549349486828, 0.10170209407806396, -0.06736788898706436, 0.14903053641319275, -0.08521686494350433, 0.05739816278219223, -0.05412309616804123, -0.0246603824198246, -0.003041620831936598, -0.006687622983008623, 0.00882016122341156, 0.04044394940137863, -0.13314995169639587, 0.1373162567615509, -0.00964055024087429, -0.038924042135477066, -0.05301351472735405, -0.027134709060192108, 0.017727231606841087, 0.034349143505096436, 0.11901761591434479, 0.03829863294959068, 0.07884850353002548, -0.03744209185242653, -0.04931318014860153, -0.04103502631187439, 0.007369882892817259, -0.04530056193470955, 0.030336013063788414, 0.004469896666705608, -0.016298824921250343, -0.0017039307858794928, 0.14360766112804413, 0.042152415961027145, -0.09876447916030884, 0.05173344910144806, -0.01329188421368599, -0.027669163420796394, -0.024187473580241203, -0.11325759440660477, -0.054804980754852295, 0.11788298934698105, 0.09212812036275864, -0.05354376137256622, -0.10689761489629745, 0.09670498967170715, 0.04050273448228836, -0.08100005239248276, 0.048549242317676544, -0.05076347663998604, 0.0700317844748497, -0.11357134580612183, -0.11823438853025436, 0.01961786486208439, -0.03587445244193077, -0.11444410681724548, -0.0010234873043373227, 0.0813094824552536, -0.01397062186151743, 0.03783898800611496, -0.011449266225099564, 0.04335690289735794, -0.038269396871328354, -0.04428524896502495, 0.11931025981903076, 0.09893724322319031, -0.007375933229923248, 0.022289132699370384, 0.05543970316648483, -0.0820891484618187, -0.0709361806511879, 0.019579913467168808, 0.07425443083047867, 0.21545644104480743, -0.09500773996114731, 0.05043148249387741, 0.09385832399129868, -0.045044850558042526, -0.2658401429653168, -0.0038049391005188227, 0.025061609223484993, -0.01773802936077118, -0.05610757693648338, -0.07699167728424072, 0.030806705355644226, 0.009570951573550701, -0.0041749123483896255, 0.08280638605356216, -0.13134455680847168, -0.1090419739484787, -0.044477660208940506, 0.1298290640115738, 0.3142075538635254, -0.09529303014278412, 0.02765931375324726, 0.011003218591213226, -0.15302598476409912, 0.1528576910495758, -0.047927599400281906, 0.08134591579437256, -0.0341084860265255, 0.08810307830572128, 0.029860306531190872, -0.07356414943933487, 0.059672776609659195, -0.07344026863574982, 0.047167837619781494, -0.08864084631204605, -0.08732536435127258, 0.025212494656443596, -0.05718754976987839, 0.09388444572687149, 0.044627994298934937, 0.019886255264282227, -0.03554453328251839, -0.010259862057864666, -0.11583869159221649, 0.07992654293775558, -0.009255414828658104, -0.0891098901629448, -0.04614636301994324, 0.09037753194570541, 0.05897751450538635, -0.023181112483143806, 0.11209596693515778, -0.03248097375035286, 0.1516524702310562, 0.20421698689460754, 0.0276265237480402, -0.054365113377571106, -0.015165865421295166, -0.022015416994690895, -0.040489424020051956, 0.0826193168759346, -0.21305252611637115, 0.022616034373641014, 0.06753169745206833, 0.07373717427253723, 0.03557483106851578, 0.030909854918718338, -0.10953358560800552, 0.020347723737359047, 0.07495953887701035, -0.19079698622226715, -0.028214523568749428, -0.06087120622396469, -0.04910968616604805, 0.005644832272082567, 0.04659850150346756, 0.13964994251728058, -0.11354704201221466, -0.011724993586540222, 0.007131483871489763, 0.0006566854426637292, -0.015022799372673035, 0.05174319073557854, 0.03923984616994858, 0.004746211227029562, -0.06730447709560394, 0.10328105837106705, 0.03602428361773491, -0.10859306901693344, -0.02475130930542946, 0.09725689142942429, -0.10068217664957047, -0.04411429166793823, -0.04729953035712242, 0.008960006758570671, -0.16926534473896027, 0.0037614728789776564, -0.02936229668557644, -0.02520495466887951, 0.006582031492143869, 0.15910331904888153, 0.05442166328430176, 0.03735959902405739, -0.0012361988192424178, 0.010455457493662834, -0.10513271391391754, 0.033521343022584915, 0.013947553932666779, 0.05758882313966751, -0.09960904717445374, 0.09274066984653473, 0.058770276606082916, 0.13556690514087677, -0.05011584237217903, -0.025005893781781197, -0.028514735400676727, -0.04206642881035805, 0.021354472264647484, 0.025847071781754494, -0.006697814911603928, -0.0065636299550533295, -0.04757843166589737, 0.009027364663779736, -0.011296854354441166, 0.016689162701368332, -0.08188992738723755, 0.017358174547553062, -0.027232177555561066, -0.03823259472846985, -0.029298236593604088, -0.04367225989699364, -0.012346187606453896, -0.015241898596286774, 0.08351516723632812, -0.025760279968380928, -0.04311123117804527, 0.011690832674503326, 0.032360177487134933, -0.04461124166846275, 0.08421719074249268, 0.01602829061448574, 0.026805276051163673, -0.026339838281273842, -0.0028344218153506517, -0.012665832415223122, -0.04375460743904114, -0.019905734807252884, 0.050666481256484985, -0.05068681761622429, 0.017944052815437317, 0.006331386975944042, -0.0446094386279583, -0.07569725066423416, 0.04260890185832977, 0.05574856325984001, 0.11311357468366623, 0.0878014788031578, -0.05001510679721832, 0.08622477948665619, -0.1911584883928299, -0.03154134750366211, 0.006031051278114319, -0.11984466761350632, -0.07159125804901123, -0.012053442187607288, 0.028195368126034737, 0.002937009558081627, 0.030565248802304268, 0.10042792558670044, -0.048845838755369186, 0.0017146995523944497, 0.04681675508618355, -0.05902827903628349, -0.05300193279981613, 0.07977337390184402, -0.035022515803575516, -0.009122543036937714, 0.060770321637392044, 0.06860578060150146, 0.015320183709263802, 0.12163915485143661, 0.12136884778738022, 0.02376210130751133, 0.12233355641365051, 0.041532907634973526, 0.05874660983681679, 0.036995500326156616, -0.09165699779987335, -0.07679019123315811, -0.04906546697020531, 0.09174031019210815, -0.033190205693244934, 0.11803797632455826, 0.16021068394184113, -0.10131985694169998, 0.034762293100357056, 0.03907416760921478, -0.022263994440436363, -0.09218554943799973, -0.23762282729148865, -0.07184898108243942, -0.09243759512901306, 0.05649854615330696, -0.06850681453943253, 0.030750513076782227, 0.07176815718412399, 0.044252797961235046, -0.003948456607758999, 0.020947951823472977, -0.06460275501012802, -0.11068960279226303, 0.10738421976566315, 0.034854087978601456, -0.03176218643784523, 0.011872452683746815, 0.032301366329193115, 0.06873999536037445, 0.03751920908689499, 0.028385816141963005, 0.0066837128251791, 0.12136445939540863, 0.07000540941953659, -0.012151812203228474, -0.12482012063264847, -0.026423536241054535, 0.02859177254140377, 0.06346528232097626, 0.11599674075841904, -0.00864181388169527, 0.03164837881922722, -0.015534520149230957, 0.09467439353466034, -0.07049285620450974, -0.06594937294721603, -0.08419770747423172, 0.16248725354671478, -0.11890562623739243, 0.006973739247769117, -0.029038915410637856, -0.0529865100979805, 0.010839552618563175, 0.22690615057945251, 0.24889376759529114, 0.10726316273212433, -0.0018411227501928806, -0.008534685708582401, 0.0008760892669670284, 0.01096747163683176, 0.06743039935827255, 0.06958475708961487, 0.1193462610244751, -0.06607673317193985, 0.0393921434879303, -0.08887123316526413, 0.020843662321567535, -0.00652702059596777, 0.04392153024673462, 0.0018928302451968193, -0.01815750077366829, -0.09162669628858566, -0.002308981493115425, 0.04010782390832901, -0.1857765167951584, 0.13694946467876434, -0.17570056021213531, -0.01124090887606144, -0.024217797443270683, 0.042798154056072235, 0.008775373920798302, 0.061451222747564316, -0.03733030706644058, 0.06295046210289001, 0.04991711303591728, -0.004755726084113121, -0.16677206754684448, -0.08822781592607498, 0.052490491420030594, -0.15663477778434753, 0.07508686929941177, -0.07721618562936783, 0.005740192253142595, 0.053520310670137405, 0.011766253039240837, -0.07068122923374176, 0.005307639949023724, -0.014933974482119083, -0.040974412113428116, -0.07235031574964523, 0.1600349396467209, -0.013055147603154182, 0.07362969219684601, -0.02027355320751667, -0.11749778687953949, -0.007277746684849262, 0.03521834313869476, -0.05284644663333893, -0.04873920977115631, 0.07402162253856659, -0.06414531916379929, 0.16974890232086182, 0.12944388389587402, 0.000053720919822808355, -0.04975073039531708, -0.09109903872013092, -0.05377986654639244, 0.031100910156965256, -0.026759222149848938, 0.027936071157455444, -0.0768490880727768, -0.03427278250455856, -0.1376354694366455, 0.029736781492829323, -0.2453475445508957, -0.002546594012528658, -0.07736986130475998, -0.08313556760549545, -0.04744712635874748, 0.08554007112979889, 0.010004171170294285, -0.007853969931602478, -0.017654864117503166, -0.045738816261291504, 0.04076062887907028, 0.11529801040887833, -0.08223343640565872, -0.08665488660335541 ]
null
null
transformers
# Suicidal-ELECTRA This text classification model predicts whether a sequence of words are suicidal (1) or non-suicidal (0). ## Data The model was trained on the [Suicide and Depression Dataset](https://www.kaggle.com/nikhileswarkomati/suicide-watch) obtained from Kaggle. The dataset was scraped from Reddit and consists of 232,074 rows equally distributed between 2 classes - suicide and non-suicide. ## Parameters The model fine-tuning was conducted on 1 epoch, with batch size of 6, and learning rate of 0.00001. Due to limited computing resources and time, we were unable to scale up the number of epochs and batch size. ## Performance The model has achieved the following results after fine-tuning on the aforementioned dataset: - Accuracy: 0.9792 - Recall: 0.9788 - Precision: 0.9677 - F1 Score: 0.9732 ## How to Use Load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("gooohjy/suicidal-electra") model = AutoModel.from_pretrained("gooohjy/suicidal-electra") ``` ## Resources For more resources, including the source code, please refer to the GitHub repository [gohjiayi/suicidal-text-detection](https://github.com/gohjiayi/suicidal-text-detection/).
{}
text-classification
gooohjy/suicidal-electra
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #electra #text-classification #autotrain_compatible #endpoints_compatible #region-us
# Suicidal-ELECTRA This text classification model predicts whether a sequence of words are suicidal (1) or non-suicidal (0). ## Data The model was trained on the Suicide and Depression Dataset obtained from Kaggle. The dataset was scraped from Reddit and consists of 232,074 rows equally distributed between 2 classes - suicide and non-suicide. ## Parameters The model fine-tuning was conducted on 1 epoch, with batch size of 6, and learning rate of 0.00001. Due to limited computing resources and time, we were unable to scale up the number of epochs and batch size. ## Performance The model has achieved the following results after fine-tuning on the aforementioned dataset: - Accuracy: 0.9792 - Recall: 0.9788 - Precision: 0.9677 - F1 Score: 0.9732 ## How to Use Load the model via the transformers library: ## Resources For more resources, including the source code, please refer to the GitHub repository gohjiayi/suicidal-text-detection.
[ "# Suicidal-ELECTRA\nThis text classification model predicts whether a sequence of words are suicidal (1) or non-suicidal (0).", "## Data\nThe model was trained on the Suicide and Depression Dataset obtained from Kaggle. The dataset was scraped from Reddit and consists of 232,074 rows equally distributed between 2 classes - suicide and non-suicide.", "## Parameters\nThe model fine-tuning was conducted on 1 epoch, with batch size of 6, and learning rate of 0.00001. Due to limited computing resources and time, we were unable to scale up the number of epochs and batch size.", "## Performance\nThe model has achieved the following results after fine-tuning on the aforementioned dataset:\n- Accuracy: 0.9792\n- Recall: 0.9788\n- Precision: 0.9677\n- F1 Score: 0.9732", "## How to Use\nLoad the model via the transformers library:", "## Resources\nFor more resources, including the source code, please refer to the GitHub repository gohjiayi/suicidal-text-detection." ]
[ "TAGS\n#transformers #pytorch #electra #text-classification #autotrain_compatible #endpoints_compatible #region-us \n", "# Suicidal-ELECTRA\nThis text classification model predicts whether a sequence of words are suicidal (1) or non-suicidal (0).", "## Data\nThe model was trained on the Suicide and Depression Dataset obtained from Kaggle. The dataset was scraped from Reddit and consists of 232,074 rows equally distributed between 2 classes - suicide and non-suicide.", "## Parameters\nThe model fine-tuning was conducted on 1 epoch, with batch size of 6, and learning rate of 0.00001. Due to limited computing resources and time, we were unable to scale up the number of epochs and batch size.", "## Performance\nThe model has achieved the following results after fine-tuning on the aforementioned dataset:\n- Accuracy: 0.9792\n- Recall: 0.9788\n- Precision: 0.9677\n- F1 Score: 0.9732", "## How to Use\nLoad the model via the transformers library:", "## Resources\nFor more resources, including the source code, please refer to the GitHub repository gohjiayi/suicidal-text-detection." ]
[ 37, 34, 57, 61, 56, 15, 36 ]
[ "passage: TAGS\n#transformers #pytorch #electra #text-classification #autotrain_compatible #endpoints_compatible #region-us \n# Suicidal-ELECTRA\nThis text classification model predicts whether a sequence of words are suicidal (1) or non-suicidal (0).## Data\nThe model was trained on the Suicide and Depression Dataset obtained from Kaggle. The dataset was scraped from Reddit and consists of 232,074 rows equally distributed between 2 classes - suicide and non-suicide.## Parameters\nThe model fine-tuning was conducted on 1 epoch, with batch size of 6, and learning rate of 0.00001. Due to limited computing resources and time, we were unable to scale up the number of epochs and batch size.## Performance\nThe model has achieved the following results after fine-tuning on the aforementioned dataset:\n- Accuracy: 0.9792\n- Recall: 0.9788\n- Precision: 0.9677\n- F1 Score: 0.9732## How to Use\nLoad the model via the transformers library:## Resources\nFor more resources, including the source code, please refer to the GitHub repository gohjiayi/suicidal-text-detection." ]
[ -0.046282585710287094, 0.09265274554491043, -0.004422273952513933, 0.02089623361825943, 0.08204584568738937, -0.004141500219702721, -0.004354828502982855, 0.11024430394172668, -0.03255588561296463, 0.14437364041805267, 0.053405310958623886, 0.13685983419418335, 0.09796374291181564, 0.12884816527366638, -0.12412182241678238, -0.16560617089271545, 0.05699513480067253, -0.055043697357177734, 0.11603768914937973, 0.08919959515333176, 0.06075471267104149, -0.055106546729803085, 0.027434537187218666, -0.042247336357831955, -0.0355055034160614, 0.018233925104141235, -0.029714049771428108, 0.00392421567812562, 0.056877948343753815, 0.004552310798317194, 0.00146462710108608, 0.005484931170940399, 0.05202094465494156, -0.13218334317207336, 0.026211583986878395, 0.05964126065373421, 0.025440627709031105, 0.03719661757349968, -0.003467265982180834, -0.04453803226351738, 0.07654222846031189, -0.13240377604961395, 0.012753613293170929, 0.038312796503305435, -0.07186663150787354, -0.05427807569503784, -0.0870395377278328, 0.019144900143146515, 0.11675571650266647, 0.10881324857473373, -0.06848878413438797, 0.1675821840763092, 0.017024561762809753, 0.038434237241744995, 0.0715474933385849, -0.13089829683303833, -0.05970781669020653, 0.16067764163017273, 0.05671466141939163, 0.08980479091405869, -0.11303631216287613, -0.008271122351288795, 0.09827861189842224, 0.032905545085668564, -0.022481489926576614, -0.02213364653289318, -0.04310917109251022, -0.06510748714208603, -0.08882026374340057, -0.03605111688375473, 0.21127259731292725, 0.04080206900835037, -0.030766921117901802, -0.13105298578739166, -0.08415363729000092, -0.026311317458748817, 0.03425705060362816, -0.035186897963285446, -0.04096699133515358, -0.020777923986315727, 0.023399781435728073, 0.027285892516374588, -0.10241641104221344, -0.08012933284044266, -0.011229315772652626, 0.01732328161597252, 0.03744737431406975, 0.06395722180604935, -0.015496269799768925, 0.09009254723787308, -0.18363745510578156, -0.10466737300157547, -0.07094939053058624, -0.02519121766090393, -0.1540667712688446, -0.005025994963943958, -0.010875864885747433, -0.11569824069738388, 0.13284656405448914, 0.1592578887939453, 0.07411445677280426, 0.003964609932154417, -0.025514477863907814, -0.016833806410431862, 0.131265789270401, 0.06483379006385803, -0.08128437399864197, -0.035577479749917984, 0.031686775386333466, 0.11173923313617706, 0.07698707282543182, 0.011341281235218048, 0.020275726914405823, -0.011236556805670261, 0.11432507634162903, 0.06879155337810516, -0.01973375491797924, 0.017559714615345, -0.01714269071817398, -0.0056195431388914585, 0.07841627299785614, -0.12009662389755249, -0.08194584399461746, 0.015629084780812263, -0.07143137603998184, 0.04077797383069992, -0.05530776455998421, -0.03883250430226326, -0.11454787850379944, 0.01798221282660961, -0.05532434210181236, -0.044212568551301956, -0.09092123806476593, -0.10525324940681458, 0.007987715303897858, -0.0374714732170105, -0.02831919677555561, -0.0644209086894989, -0.2473832219839096, -0.07281908392906189, -0.0035882527008652687, -0.09188945591449738, -0.013662916608154774, -0.015085406601428986, -0.05739235132932663, -0.03228709101676941, -0.028785690665245056, -0.024812059476971626, -0.02349405735731125, 0.037267010658979416, -0.04294354096055031, 0.062081146985292435, 0.06973437964916229, -0.009226465597748756, -0.07653499394655228, 0.0012976599391549826, -0.17993687093257904, 0.10687167197465897, -0.0646527037024498, 0.018674315884709358, -0.09181305021047592, -0.029329875484108925, 0.017122624441981316, -0.10232814401388168, 0.03811744973063469, 0.14493843913078308, -0.18451188504695892, 0.0007014110451564193, 0.06072952225804329, -0.10598666220903397, -0.011715545319020748, 0.15833483636379242, -0.037252046167850494, 0.03445838764309883, 0.062393918633461, 0.14331409335136414, 0.04910900071263313, -0.041785646229982376, -0.1415661722421646, -0.016585657373070717, -0.09059371054172516, 0.09891220927238464, 0.006599987391382456, 0.014633453451097012, 0.05636218935251236, 0.004884472582489252, 0.10432467609643936, -0.07374598830938339, -0.031952518969774246, -0.02405644953250885, -0.030724169686436653, -0.05236748233437538, -0.07932750135660172, -0.0041165659204125404, -0.0002625226916279644, -0.05175051838159561, -0.034704841673374176, -0.10846848785877228, 0.15461231768131256, -0.026690689846873283, -0.0035852042492479086, -0.05387990176677704, 0.05551990494132042, -0.1432029902935028, 0.022104579955339432, -0.15640012919902802, -0.013175823725759983, 0.06275217980146408, -0.03314609080553055, 0.001343988929875195, -0.05626629665493965, 0.0748458132147789, 0.03323153033852577, -0.008731754496693611, 0.012133478187024593, 0.0013366390485316515, -0.032556600868701935, -0.07932648062705994, -0.06576851010322571, 0.0027256181929260492, -0.05688085779547691, 0.11022479087114334, -0.14899006485939026, 0.014156604185700417, 0.027806585654616356, 0.10359624773263931, -0.05816609039902687, -0.08705299347639084, 0.08957550674676895, -0.10715677589178085, -0.048467282205820084, -0.05894560366868973, -0.04835810884833336, 0.007941283285617828, -0.1037442609667778, -0.024139123037457466, -0.06719970703125, -0.05204468220472336, 0.06746984273195267, 0.13964302837848663, -0.04907643795013428, 0.08645600080490112, -0.06291235983371735, -0.000050018166803056374, -0.10320436209440231, -0.07011178135871887, 0.11349713802337646, 0.0880018025636673, 0.05712256580591202, -0.09688504040241241, -0.017436975613236427, 0.036935970187187195, -0.014309676364064217, -0.02869652956724167, 0.12944810092449188, -0.08147912472486496, -0.1367693990468979, 0.02477400191128254, -0.07109655439853668, -0.013060284778475761, 0.07856547087430954, -0.021870451048016548, -0.0761011466383934, -0.07057095319032669, 0.04090166091918945, 0.02140102908015251, 0.1179879829287529, -0.04121756553649902, 0.09025085717439651, 0.04207136854529381, 0.01592428609728813, -0.00740822171792388, -0.10543277859687805, 0.0018310720333829522, -0.04914707690477371, -0.038247548043727875, 0.05626602843403816, 0.05909503251314163, 0.06477983295917511, 0.09770426899194717, -0.029070407152175903, 0.03316117450594902, -0.018784131854772568, -0.0734567791223526, -0.04571906104683876, 0.1958353966474533, -0.0520099475979805, -0.14125725626945496, -0.09240435808897018, 0.1388656049966812, -0.053994111716747284, -0.02194514125585556, -0.0045426697470247746, -0.16548720002174377, -0.07411804795265198, -0.07602518051862717, 0.07943040132522583, -0.014005635865032673, -0.01776927523314953, 0.0638117715716362, 0.03353661671280861, 0.004306733142584562, -0.09251899272203445, -0.00480931531637907, -0.09890293329954147, -0.1631208062171936, 0.05525844171643257, -0.06313571333885193, 0.03126565366983414, 0.09619539976119995, 0.019807972013950348, 0.03355872631072998, -0.0010772624518722296, 0.11509349197149277, -0.05431317910552025, 0.09021076560020447, 0.2418515533208847, 0.021549042314291, 0.05806298181414604, 0.07266417890787125, -0.016681132838129997, -0.07101251929998398, 0.048376914113759995, 0.0899772197008133, -0.03058239072561264, -0.19780384004116058, -0.05655237287282944, -0.0517817884683609, -0.027522331103682518, 0.07458377629518509, 0.03364372253417969, -0.024516524747014046, 0.09672050178050995, -0.059979259967803955, 0.01646445505321026, 0.05274521932005882, 0.07960508018732071, 0.015191241167485714, -0.008426372893154621, 0.06828679889440536, -0.02394125610589981, -0.033451855182647705, 0.11053188890218735, -0.0048628863878548145, 0.2787330150604248, -0.037684328854084015, 0.07151737809181213, 0.05883764103055, 0.05777869373559952, -0.02762119099497795, 0.05504655838012695, -0.009849834255874157, 0.019194211810827255, -0.018821444362401962, -0.07102921605110168, -0.04449307173490524, 0.0587359257042408, -0.07103275507688522, 0.08562888950109482, -0.011493233032524586, 0.04727916792035103, 0.12864795327186584, 0.11112933605909348, 0.15457162261009216, -0.2041206657886505, -0.07497380673885345, 0.0749819427728653, -0.05174865573644638, -0.11045566946268082, 0.08002994954586029, 0.06686919182538986, -0.07902534306049347, 0.061895664781332016, -0.06532587110996246, 0.08324673771858215, -0.15320387482643127, -0.01612929068505764, -0.15690116584300995, 0.029854189604520798, -0.047018781304359436, 0.11864849179983139, -0.09850876778364182, 0.12660261988639832, 0.017181331291794777, 0.1328904628753662, -0.11707993596792221, -0.009412875398993492, 0.08111347258090973, -0.027923034504055977, 0.18469782173633575, -0.0037278011441230774, -0.012812042608857155, -0.026178110390901566, -0.18906687200069427, 0.0388140007853508, 0.015791449695825577, -0.07026771456003189, 0.08786935359239578, -0.023603608831763268, 0.053613729774951935, -0.07922030240297318, -0.04836525768041611, -0.09097862988710403, -0.11458303779363632, 0.03528682142496109, 0.06659891456365585, -0.058587558567523956, -0.06599819660186768, -0.046579908579587936, 0.09293369203805923, 0.18638236820697784, -0.09018830209970474, -0.08918646723031998, -0.12484829872846603, 0.09651309251785278, 0.1636851280927658, -0.050514835864305496, -0.0518563948571682, -0.014512617141008377, 0.12050578743219376, -0.07413975894451141, -0.08312031626701355, -0.03224104270339012, -0.07370676845312119, -0.17808076739311218, -0.048070210963487625, 0.16253544390201569, 0.10328623652458191, -0.005213572643697262, 0.03718128427863121, 0.049907028675079346, -0.024874437600374222, -0.10845308005809784, -0.01267597358673811, 0.047644566744565964, 0.1261245608329773, 0.13589218258857727, -0.02680438943207264, -0.1468024104833603, -0.11078638583421707, -0.053586915135383606, 0.014868611469864845, 0.20523029565811157, -0.021863115951418877, -0.03869418427348137, 0.1413533240556717, -0.05503784492611885, -0.20020723342895508, -0.027965227141976357, 0.03772526606917381, 0.033171147108078, -0.09473631531000137, -0.048502299934625626, 0.055955879390239716, 0.13544726371765137, -0.030865075066685677, -0.050564538687467575, -0.24837596714496613, -0.11074884235858917, 0.13662965595722198, 0.03254257142543793, 0.13294829428195953, -0.09153784811496735, -0.026477007195353508, -0.061807576566934586, -0.04959903657436371, 0.10217875987291336, -0.11107128858566284, 0.09878244251012802, -0.053806111216545105, 0.0894545167684555, 0.05395486578345299, -0.08314928412437439, 0.1217445507645607, 0.07955456525087357, 0.09895345568656921, -0.057711273431777954, -0.10128910839557648, 0.1271257996559143, -0.09947776049375534, 0.13964737951755524, 0.01550708245486021, 0.08495748788118362, -0.11716604977846146, -0.0147880082949996, -0.08901434391736984, 0.015399784781038761, -0.013143029995262623, -0.06409526616334915, -0.17904871702194214, 0.12235721200704575, 0.06171097233891487, 0.003115622792392969, 0.07205875217914581, 0.006563630420714617, 0.052824851125478745, 0.11570616811513901, -0.003441855078563094, 0.09747746586799622, -0.002704084850847721, 0.05022755637764931, 0.009458149783313274, 0.0406516008079052, -0.04604775458574295, 0.02634926699101925, 0.1548733115196228, 0.018801921978592873, 0.17261680960655212, 0.009504985995590687, -0.153023824095726, 0.04120415076613426, 0.03982573375105858, -0.14700062572956085, -0.21144834160804749, 0.007346830330789089, -0.11991658806800842, -0.07609137892723083, 0.032997436821460724, 0.14199775457382202, -0.03685586526989937, 0.03319556638598442, -0.03214940056204796, 0.14289218187332153, 0.028197946026921272, 0.163484126329422, -0.024209680035710335, 0.06591463834047318, -0.08675193041563034, 0.10486216098070145, 0.09921328723430634, 0.0017742944182828069, 0.037006258964538574, 0.04763355106115341, -0.07983560860157013, 0.031621240079402924, -0.04426148161292076, 0.02812095731496811, 0.009725356474518776, -0.027442218735814095, -0.06868723034858704, -0.09080395847558975, 0.008291848003864288, 0.17941375076770782, 0.051200203597545624, 0.01772320829331875, -0.014626344665884972, -0.04174906760454178, -0.17763003706932068, 0.09823562949895859, 0.1000562310218811, -0.02429991401731968, -0.037562496960163116, 0.03180622681975365, -0.02043106220662594, 0.0125502934679389, -0.030241893604397774, -0.054959919303655624, -0.10001848638057709, -0.010907827876508236, -0.03340643644332886, 0.06116582453250885, -0.047763846814632416, -0.025577714666724205, -0.01215272955596447, 0.006653496529906988, -0.07210367172956467, 0.054715029895305634, 0.011613123118877411, -0.018607553094625473, -0.027589313685894012, 0.02951456978917122, -0.1522095948457718, -0.07490230351686478, 0.06395384669303894, -0.09318859130144119, 0.08378473669290543, 0.06618063896894455, 0.007815607823431492, 0.027753157541155815, -0.02166285365819931, -0.015387419611215591, 0.07776280492544174, 0.1032802015542984, 0.07018507272005081, -0.0877176970243454, 0.0204220749437809, -0.015096554532647133, -0.022983668372035027, 0.04758745804429054, 0.08404789119958878, -0.06885869801044464, -0.08409275859594345, -0.015787972137331963, 0.008664299733936787, -0.061587829142808914, 0.021999215707182884, 0.01963123306632042, 0.048191312700510025, 0.09017028659582138, -0.035755790770053864, 0.07258430868387222, -0.2525508403778076, -0.017935574054718018, 0.02919401228427887, -0.07835019379854202, 0.056256067007780075, 0.017385080456733704, 0.09277680516242981, -0.05575660243630409, 0.14849090576171875, -0.05837451294064522, -0.031616125255823135, 0.043712910264730453, 0.0458829402923584, -0.01702832616865635, -0.07482830435037613, -0.025963708758354187, 0.05180946737527847, -0.019893795251846313, -0.04869486764073372, -0.05883663892745972, 0.06337615102529526, -0.1615096479654312, 0.11867982149124146, -0.0013098263880237937, 0.09030435979366302, 0.038526732474565506, 0.01638524793088436, -0.0592770129442215, 0.01736047863960266, -0.0021411986090242863, -0.09486343711614609, 0.0788007378578186, 0.06556058675050735, -0.012885733507573605, 0.21748459339141846, -0.11079148203134537, 0.07980035245418549, -0.035137321799993515, -0.10439430922269821, -0.0954369455575943, -0.1702505648136139, -0.0956478863954544, -0.013072913512587547, 0.04860996827483177, -0.15702618658542633, 0.05002744868397713, 0.092686228454113, 0.07689326256513596, -0.01420524436980486, 0.14887584745883942, -0.009396222420036793, -0.011255547404289246, 0.08830544352531433, -0.012181873433291912, 0.0031748914625495672, 0.0928686112165451, 0.04157223179936409, 0.09500917792320251, -0.0510336197912693, 0.10269291698932648, 0.028003457933664322, 0.1087571531534195, 0.050186049193143845, 0.009452561847865582, -0.08664865791797638, -0.014693034812808037, -0.012544930912554264, 0.038217391818761826, 0.1384626179933548, 0.07897022366523743, 0.0038570817559957504, -0.01116977445781231, 0.12545464932918549, -0.028285915032029152, -0.027157418429851532, -0.10163325071334839, 0.20009000599384308, 0.029509013518691063, -0.03217652812600136, 0.07038316875696182, -0.12499342113733292, -0.02623303234577179, 0.17327332496643066, 0.03867831453680992, -0.02963920310139656, -0.03864457830786705, -0.036258045583963394, -0.015840642154216766, 0.006505448836833239, 0.0208554919809103, 0.03763006255030632, 0.1789994090795517, -0.06179363653063774, 0.10131055861711502, -0.015209170058369637, -0.03540092334151268, -0.03179476782679558, 0.09983401745557785, -0.009025594219565392, 0.04494987055659294, -0.047978371381759644, 0.08524604886770248, -0.0037707556039094925, -0.21026824414730072, 0.03619381785392761, -0.04353410005569458, -0.1480923593044281, -0.011895078234374523, -0.030738212168216705, -0.06334065645933151, 0.06334555149078369, 0.0012130812974646688, 0.017561985179781914, 0.10061192512512207, -0.015119034796953201, -0.04411330446600914, -0.07571490108966827, 0.06536436080932617, -0.0342269167304039, 0.1864209771156311, 0.0237138494849205, 0.059968460351228714, 0.08591404557228088, -0.1303997039794922, -0.11579257249832153, 0.1642693132162094, 0.004906241782009602, 0.01888902485370636, 0.032754186540842056, 0.20902970433235168, 0.017383653670549393, 0.08937684446573257, 0.0812205895781517, -0.05747850611805916, -0.019844135269522667, -0.051348064094781876, -0.055385950952768326, -0.14651614427566528, 0.09766801446676254, -0.06300844252109528, 0.08985359966754913, 0.15498481690883636, -0.05624387040734291, 0.07791396230459213, -0.040599554777145386, 0.03610284999012947, -0.0031788896303623915, 0.07639405131340027, 0.06004660576581955, -0.1348562091588974, -0.008359251543879509, 0.01227802038192749, 0.06481532752513885, -0.22262388467788696, -0.033772051334381104, -0.0322401188313961, -0.08576860278844833, -0.0015673652524128556, 0.1265767365694046, -0.01020805910229683, 0.053135842084884644, -0.032827019691467285, -0.03850923106074333, -0.002508727367967367, 0.05851766839623451, -0.11199068278074265, -0.07683537155389786 ]
null
null
null
https://www.geogebra.org/m/awcxgj4g https://www.geogebra.org/m/tx9tme6s https://www.geogebra.org/m/yx5yyjmx
{}
null
gorave/gorave
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
URL URL URL
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
# Turkish GPT2 Model Finetuned # Türkçe GPT2 Modeli ## Model description This is a GPT2-Small English based model finetuned and additionaly trainied with Wikipedia Articles in Turkish as of 28-10-2020 Live demo based on this work at : https://www.metayazar.com/ Fine tuned writer on this model: https://huggingface.co/gorkemgoknar/gpt2-turkish-writer Work has been done on Pierre Guillou tutorial as on this page. (https://github.com/piegu/fastai-projects/blob/master/finetuning-English-GPT2-any-language-Portuguese-HuggingFace-fastaiv2.ipynb) Code is converted to work with Fastai 2.X . Using Google Colab for training. Additional tutorial and source will be in https://github.com/gorkemgoknar in later stage. Current accuracy 33 % , Perplexity : 51.88 Models are available: * [gpt2-small-tuned-tr] (https://huggingface.co/gorkemgoknar/gpt2-small-turkish) * [gpt2-small-turkish-writer] (https://huggingface.co/gorkemgoknar/gpt2-turkish-writer) ## Intended uses & limitations #### How to use #### Install ```python from transformers import AutoTokenizer, AutoModelWithLMHead import torch tokenizer = AutoTokenizer.from_pretrained("gorkemgoknar/gpt2-small-turkish") model = AutoModelWithLMHead.from_pretrained("gorkemgoknar/gpt2-small-turkish") # Get sequence length max of 1024 tokenizer.model_max_length=1024 model.eval() # disable dropout (or leave in train mode to finetune) ``` #### Generate 1 word ```python # input sequence text = "Bu yazıyı bilgisayar yazdı." inputs = tokenizer(text, return_tensors="pt") # model output outputs = model(**inputs, labels=inputs["input_ids"]) loss, logits = outputs[:2] predicted_index = torch.argmax(logits[0, -1, :]).item() predicted_text = tokenizer.decode([predicted_index]) # results print('input text:', text) print('predicted text:', predicted_text) # input text: # predicted text: ``` #### Generate Full Sequence ```python # input sequence text = "Bu yazıyı bilgisayar yazdı." inputs = tokenizer(text, return_tensors="pt") # model output using Top-k sampling text generation method sample_outputs = model.generate(inputs.input_ids, pad_token_id=50256, do_sample=True, max_length=50, # put the token number you want top_k=40, num_return_sequences=1) # generated sequence for i, sample_output in enumerate(sample_outputs): print(">> Generated text {}\\\\ \\\\ {}".format(i+1, tokenizer.decode(sample_output.tolist()))) # >> Generated text # ``` #### Limitations and bias The training data used for this model come from Turkish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral. ## Training data Wikipedia Turkish article dump as of 28-10-2020 ## Training procedure ## Eval results | epoch\\\\t|train_loss\\\\t|valid_loss\\\\t|accuracy\\\\t|perplexity\\\\t|time | | ----- | -------- |--------- | ---------- | --------- | ----- | |0\\\\t|4.777015\\\\t|4.621834\\\\t|0.292547\\\\t|101.680367\\\\t|2:42:05| |1\\\\t|4.509412\\\\t|4.403999\\\\t|0.305574\\\\t|81.777267\\\\t|1:09:38| |2\\\\t|4.169529\\\\t|4.120755\\\\t|0.324908\\\\t|61.605747\\\\t|1:07:45| |3\\\\t|4.293973\\\\t|4.177899\\\\t|0.317211\\\\t|65.228653\\\\t|1:07:02| |4\\\\t|4.049848\\\\t|3.949103\\\\t|0.338347\\\\t|51.888783\\\\t|1:05:53| #Epoch 0 on Tesla T4, others on V100 ```
{"language": ["tr"], "license": "apache-2.0", "tags": ["gpt2", "turkish"], "datasets": ["wikipedia-turkish"], "metrics": ["perplexity", "accuracy"], "widget": [{"text": "Bu yaz\u0131y\u0131 bir bilgisayar yazd\u0131. Yazarken", "context": ""}, {"text": "\u0130nternete kolay eri\u015fim sayesinde d\u00fcnya daha da k\u00fc\u00e7\u00fcld\u00fc. Bunun sonucunda", "context": ""}]}
text-generation
gorkemgoknar/gpt2-small-turkish
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "turkish", "tr", "dataset:wikipedia-turkish", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #turkish #tr #dataset-wikipedia-turkish #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Turkish GPT2 Model Finetuned ============================ Türkçe GPT2 Modeli ================== Model description ----------------- This is a GPT2-Small English based model finetuned and additionaly trainied with Wikipedia Articles in Turkish as of 28-10-2020 Live demo based on this work at : URL Fine tuned writer on this model: URL Work has been done on Pierre Guillou tutorial as on this page. (URL Code is converted to work with Fastai 2.X . Using Google Colab for training. Additional tutorial and source will be in URL in later stage. Current accuracy 33 % , Perplexity : 51.88 Models are available: * [gpt2-small-tuned-tr] (URL * [gpt2-small-turkish-writer] (URL Intended uses & limitations --------------------------- #### How to use #### Install #### Generate 1 word #### Generate Full Sequence #### Limitations and bias The training data used for this model come from Turkish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral. Training data ------------- Wikipedia Turkish article dump as of 28-10-2020 Training procedure ------------------ Eval results ------------ #Epoch 0 on Tesla T4, others on V100 '''
[ "#### How to use", "#### Install", "#### Generate 1 word", "#### Generate Full Sequence", "#### Limitations and bias\n\n\nThe training data used for this model come from Turkish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral.\n\n\nTraining data\n-------------\n\n\nWikipedia Turkish article dump as of 28-10-2020\n\n\nTraining procedure\n------------------\n\n\nEval results\n------------" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #turkish #tr #dataset-wikipedia-turkish #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "#### How to use", "#### Install", "#### Generate 1 word", "#### Generate Full Sequence", "#### Limitations and bias\n\n\nThe training data used for this model come from Turkish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral.\n\n\nTraining data\n-------------\n\n\nWikipedia Turkish article dump as of 28-10-2020\n\n\nTraining procedure\n------------------\n\n\nEval results\n------------" ]
[ 71, 5, 3, 6, 8, 66 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #turkish #tr #dataset-wikipedia-turkish #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n#### How to use#### Install#### Generate 1 word#### Generate Full Sequence#### Limitations and bias\n\n\nThe training data used for this model come from Turkish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral.\n\n\nTraining data\n-------------\n\n\nWikipedia Turkish article dump as of 28-10-2020\n\n\nTraining procedure\n------------------\n\n\nEval results\n------------" ]
[ -0.019609156996011734, 0.0661228820681572, 0.0009668460115790367, 0.037560686469078064, 0.13167227804660797, 0.04631170257925987, 0.17023073136806488, 0.10449312627315521, -0.04070676118135452, -0.10168866813182831, 0.1505083441734314, 0.16204291582107544, 0.09871155023574829, 0.11040224134922028, -0.01811935566365719, -0.21052242815494537, 0.033927880227565765, -0.008001580834388733, -0.029350541532039642, 0.15943267941474915, 0.15024353563785553, -0.02508891001343727, 0.03841479495167732, 0.024051040410995483, -0.1735762357711792, 0.025223804637789726, -0.014559661038219929, -0.1472388207912445, 0.10505983978509903, 0.003599991789087653, 0.09437097609043121, -0.008692526258528233, -0.002275780774652958, -0.16913895308971405, 0.019357100129127502, -0.0025857987347990274, -0.01727578602731228, 0.0630137026309967, 0.07817748934030533, -0.11836622655391693, 0.17343832552433014, -0.05211448669433594, -0.022621281445026398, 0.003937097266316414, -0.09170220792293549, -0.12624645233154297, -0.10816176235675812, 0.09527553617954254, 0.15037067234516144, 0.16720689833164215, -0.024174945428967476, 0.0728711187839508, -0.10746470093727112, 0.07358023524284363, 0.1601063311100006, -0.2874084413051605, -0.04226640611886978, -0.09233894944190979, -0.11073756217956543, 0.02137385495007038, -0.008709942921996117, 0.06384678930044174, 0.030411144718527794, 0.018501510843634605, 0.049813106656074524, -0.026848116889595985, -0.11298555135726929, -0.05844411253929138, -0.06645869463682175, -0.05891132354736328, 0.30492085218429565, -0.011354143731296062, 0.019073622301220894, -0.06424536556005478, 0.036661580204963684, -0.0321345329284668, 0.0017733369022607803, 0.02604898437857628, -0.09249116480350494, 0.019390510395169258, 0.022478971630334854, -0.06216761842370033, -0.12627410888671875, -0.047442447394132614, -0.12731677293777466, 0.15641507506370544, 0.0714399442076683, 0.02569158747792244, -0.02210618183016777, 0.1849774569272995, 0.05367625877261162, -0.10004281252622604, 0.08867435157299042, -0.020088622346520424, 0.013763521797955036, -0.009649263694882393, -0.018631447106599808, -0.07479391247034073, 0.02481217123568058, 0.02219943329691887, -0.0014805838000029325, 0.006910081487149, 0.019186895340681076, 0.1018800362944603, -0.04730217903852463, 0.007917823269963264, -0.08925797045230865, -0.0610906146466732, 0.013795017264783382, -0.02498268149793148, -0.01513306051492691, 0.01396101526916027, -0.08154618740081787, -0.047023095190525055, 0.08051519095897675, 0.08484825491905212, -0.005556392017751932, 0.08462705463171005, -0.02222420647740364, -0.009473070502281189, -0.01024624053388834, -0.08491241186857224, -0.03146672248840332, -0.03968551754951477, -0.1308840811252594, 0.035247575491666794, 0.056281112134456635, 0.018178166821599007, -0.12328110635280609, 0.06732513755559921, 0.011104936711490154, 0.06297407299280167, -0.06710416078567505, -0.07622309029102325, -0.00639017578214407, -0.0607750378549099, 0.017154471948742867, -0.1365431398153305, -0.21512608230113983, 0.021009795367717743, 0.0944928452372551, -0.059798721224069595, -0.0006518380250781775, -0.060322362929582596, -0.04673423245549202, 0.03355385735630989, -0.06074182316660881, 0.07000581175088882, -0.09490390866994858, 0.09011896699666977, -0.08463708311319351, 0.06144288554787636, -0.05144822970032692, 0.07114469259977341, -0.1037464365363121, -0.014608852565288544, -0.005466322414577007, 0.09208711236715317, -0.035937726497650146, 0.09432636201381683, -0.1487414389848709, -0.07725069671869278, -0.055109281092882156, -0.033151354640722275, 0.06100504845380783, 0.1296328604221344, -0.10382242500782013, -0.027035800740122795, 0.1213412806391716, -0.07123373448848724, -0.15215976536273956, 0.14316970109939575, -0.04625637084245682, 0.17097647488117218, 0.1209692433476448, 0.1438703089952469, -0.02034338377416134, 0.0011651278473436832, -0.023860422894358635, 0.03623633459210396, -0.0792018473148346, 0.037040628492832184, 0.04499395191669464, 0.000990342814475298, -0.031905051320791245, 0.03831013664603233, -0.03403347730636597, 0.16315054893493652, -0.03514838218688965, -0.09994851797819138, 0.02398298680782318, -0.08854856342077255, 0.08479835838079453, -0.024380704388022423, 0.12516555190086365, -0.07106328010559082, -0.09713664650917053, 0.028414558619260788, 0.06363239884376526, -0.03345218673348427, -0.006570752244442701, -0.045910757035017014, 0.09959776699542999, -0.06286277621984482, 0.023663122206926346, -0.1364995539188385, 0.028130320832133293, -0.054319269955158234, 0.10950670391321182, 0.05600755661725998, -0.004305523354560137, 0.02967127412557602, -0.03978767246007919, -0.052886124700307846, -0.012666850350797176, 0.04046767204999924, 0.03182169422507286, -0.04522179439663887, -0.13297446072101593, 0.08737315982580185, 0.05446140840649605, 0.1746441125869751, -0.09908203035593033, 0.0305991992354393, -0.027774322777986526, 0.14088495075702667, -0.07240593433380127, 0.06716275215148926, -0.030810726806521416, 0.014497185125946999, -0.05678334832191467, -0.048462748527526855, 0.05555732548236847, 0.00011561344581423327, -0.10614478588104248, 0.08191706985235214, -0.06977938860654831, 0.05741603672504425, 0.1880333125591278, -0.22451071441173553, -0.12131662666797638, 0.048975225538015366, -0.0361081026494503, -0.0558297224342823, -0.001004334189929068, 0.009430967271327972, 0.17696785926818848, -0.00046186140389181674, 0.14340436458587646, -0.04628092423081398, -0.056166116148233414, -0.008700345642864704, -0.0788407027721405, -0.013633470982313156, 0.060786399990320206, 0.02745054103434086, -0.211247518658638, 0.15073204040527344, 0.1050066128373146, -0.0679052472114563, 0.17094740271568298, 0.03021344169974327, -0.06259428709745407, -0.005116463638842106, 0.029504042118787766, -0.02648293599486351, 0.07095035910606384, -0.17771956324577332, -0.029747843742370605, 0.0768631175160408, 0.0374591238796711, 0.06263097375631332, -0.1526336520910263, -0.026175007224082947, -0.0077389501966536045, -0.06302300095558167, -0.0075277662836015224, 0.014540485106408596, -0.024096032604575157, 0.1303531378507614, 0.003436723258346319, 0.010069680400192738, 0.09369464218616486, -0.005372632760554552, -0.09941309690475464, 0.14351911842823029, -0.1130114272236824, -0.24926602840423584, -0.09829912334680557, -0.05622171610593796, -0.037411969155073166, -0.022364672273397446, 0.0475984625518322, -0.0953650176525116, -0.02065686509013176, -0.004687000066041946, -0.016761519014835358, -0.05629334598779678, 0.004439220298081636, -0.0959765836596489, 0.046489082276821136, 0.007883445359766483, -0.06705212593078613, -0.04103684797883034, 0.013947135768830776, 0.004064707551151514, 0.04016730934381485, -0.07560285180807114, 0.034866124391555786, 0.05818391591310501, -0.07516475021839142, 0.06455496698617935, -0.045020658522844315, 0.1397739201784134, -0.16043922305107117, 0.000981056597083807, 0.09051012992858887, -0.038458313792943954, -0.006325176917016506, 0.11745822429656982, 0.018118375912308693, -0.043017175048589706, 0.02651020884513855, 0.006479582283645868, -0.015652885660529137, -0.2813855707645416, -0.07074502110481262, -0.07353852689266205, -0.07662816345691681, 0.043025922030210495, 0.05070703476667404, 0.1019960269331932, 0.1274861842393875, -0.08091723918914795, 0.0527091808617115, 0.05173329636454582, 0.0332721509039402, 0.1565227061510086, 0.03865176811814308, 0.08905599266290665, -0.11113536357879639, -0.05638127401471138, 0.06117349863052368, -0.03153244033455849, 0.286785751581192, -0.03582306578755379, 0.10138019919395447, 0.10094937682151794, 0.1651529222726822, -0.01231880858540535, 0.07494613528251648, 0.021546561270952225, -0.008609205484390259, 0.02659062296152115, -0.03372067213058472, -0.003769112518057227, 0.048577647656202316, -0.07323877513408661, -0.029224591329693794, -0.015816204249858856, -0.031046651303768158, 0.15381407737731934, 0.16633494198322296, 0.009781335480511189, -0.2542366683483124, -0.09109961986541748, -0.028995545580983162, -0.05928303301334381, -0.07299800962209702, -0.0033338512293994427, -0.00455248448997736, -0.1541626751422882, 0.07318517565727234, -0.0636305958032608, 0.12690822780132294, -0.12699675559997559, -0.014652860350906849, 0.0371539331972599, -0.04681198671460152, -0.004519141744822264, 0.19049522280693054, -0.2549441158771515, 0.2884324789047241, 0.008059757761657238, 0.12536925077438354, -0.1436898112297058, -0.030430028215050697, 0.09550636261701584, 0.04303969442844391, 0.09047888964414597, 0.015841031447052956, -0.029084481298923492, -0.05300528183579445, -0.12160920351743698, -0.006621128413826227, 0.0013061235658824444, -0.021561656147241592, 0.029615454375743866, -0.042598310858011246, 0.05328831449151039, 0.019637634977698326, -0.07537698745727539, -0.17249545454978943, -0.16929879784584045, 0.03808007389307022, 0.05720845237374306, 0.03663363307714462, -0.002115293638780713, -0.09770991653203964, -0.0398971363902092, 0.2680593729019165, -0.08067284524440765, -0.13981826603412628, -0.09078456461429596, 0.11398416012525558, 0.03911200165748596, -0.05615939572453499, 0.00023819789930712432, 0.010975242592394352, -0.0012897897977381945, 0.014051216654479504, -0.05375995486974716, 0.03984682261943817, -0.07775814831256866, -0.06156541779637337, -0.010170736350119114, 0.07659818232059479, 0.09084751456975937, 0.06023835390806198, 0.03234826400876045, -0.04042455554008484, -0.057981595396995544, -0.1206834688782692, -0.0437193438410759, -0.016419216990470886, 0.07407086342573166, 0.0668981522321701, -0.01592439040541649, -0.04911557957530022, -0.16295728087425232, -0.10829933732748032, 0.23032790422439575, 0.18173657357692719, -0.06751921027898788, 0.06128448620438576, 0.03170379251241684, -0.07187888026237488, -0.18816258013248444, -0.03452298045158386, 0.030482303351163864, 0.034559525549411774, -0.017377890646457672, -0.13889548182487488, 0.04586202651262283, 0.06765863299369812, -0.012183902785182, 0.021915171295404434, -0.28147414326667786, -0.10720115900039673, 0.1993778645992279, 0.06755875796079636, 0.20278726518154144, -0.06018802896142006, -0.007354110479354858, -0.07458808273077011, -0.008286464028060436, 0.09770576655864716, -0.13957643508911133, 0.07479842007160187, -0.0037718929816037416, 0.12580077350139618, -0.015124962665140629, -0.040819693356752396, 0.1675768494606018, -0.036773934960365295, 0.07295546680688858, -0.13686779141426086, -0.0039702472276985645, 0.10866064578294754, 0.019889848306775093, 0.1320393681526184, -0.06800196319818497, 0.010848209261894226, -0.07023417949676514, -0.06538820266723633, -0.055569712072610855, 0.09709525108337402, -0.008706815540790558, -0.058342233300209045, -0.06717608869075775, 0.00974340084940195, 0.0601789616048336, 0.015235495753586292, 0.013423178344964981, 0.01957915537059307, 0.01038178987801075, -0.00008427621651208028, 0.1191859096288681, 0.035186439752578735, 0.004156427923589945, -0.017787622287869453, 0.006319189444184303, 0.03904912248253822, -0.11406949162483215, -0.040289901196956635, 0.12226090580224991, -0.04910414665937424, 0.1416155993938446, 0.028520599007606506, -0.07985100895166397, 0.05359048768877983, 0.1124342679977417, -0.14567632973194122, -0.03688063845038414, -0.043813545256853104, -0.006247959099709988, -0.0013682169374078512, -0.0933162122964859, 0.08677855134010315, -0.12302320450544357, 0.013576223514974117, 0.012029924429953098, -0.021330758929252625, -0.11922401189804077, 0.16396746039390564, 0.02711433358490467, -0.0253396388143301, -0.0971875861287117, 0.0994323194026947, 0.06608691811561584, -0.00290274596773088, 0.07640112191438675, 0.030989602208137512, -0.14863663911819458, -0.0695762112736702, 0.011005277745425701, 0.11703996360301971, -0.0021145669743418694, -0.1462504267692566, -0.11451694369316101, -0.09328250586986542, -0.023384245112538338, -0.08905891329050064, 0.0909212976694107, 0.04922178015112877, -0.03565974906086922, -0.0611884742975235, -0.08115295320749283, 0.10641376674175262, 0.12019599974155426, -0.05266544595360756, -0.09617875516414642, 0.08556321263313293, 0.05639820918440819, 0.05550201237201691, -0.057547152042388916, -0.007131260819733143, -0.0066580502316355705, 0.04780445620417595, -0.1708882600069046, -0.036660440266132355, -0.14523155987262726, -0.022597433999180794, 0.02331475540995598, -0.0689791738986969, -0.06673195213079453, -0.012506256811320782, -0.07235641777515411, -0.0074578942731022835, 0.014081547036767006, 0.051480527967214584, -0.09212632477283478, -0.04035042226314545, 0.04126977175474167, -0.008328258991241455, 0.0821545347571373, 0.18832068145275116, -0.012173010967671871, 0.062226150184869766, -0.14164866507053375, 0.007926749996840954, 0.01929682306945324, 0.031190544366836548, 0.03164727985858917, -0.10307955741882324, 0.027763601392507553, 0.0708330050110817, -0.003983559086918831, 0.07924884557723999, 0.048095762729644775, -0.10782992094755173, -0.07535072416067123, -0.031089358031749725, 0.008488286286592484, -0.05236781761050224, 0.10766785591840744, 0.1258288323879242, 0.023115163668990135, 0.1697198450565338, -0.08390065282583237, 0.03558681905269623, -0.05971379205584526, 0.05133030191063881, -0.043429311364889145, -0.10111090540885925, -0.00002485532058926765, -0.08684840798377991, 0.04497810825705528, -0.03718571737408638, 0.2406146228313446, 0.061848342418670654, -0.03904872387647629, 0.03223494812846184, -0.01918094791471958, 0.036473385989665985, -0.019575774669647217, 0.1595882624387741, 0.0021704828832298517, -0.017856227234005928, -0.13224643468856812, 0.009073400869965553, 0.04292507469654083, -0.03443469852209091, 0.1010114848613739, 0.09937956929206848, 0.037193041294813156, 0.0250659491866827, -0.03125205263495445, -0.07037291675806046, -0.08139188587665558, 0.011703254655003548, -0.021226651966571808, 0.07865426689386368, -0.008621704764664173, 0.07513637840747833, 0.24168749153614044, -0.1257808655500412, -0.018480198457837105, 0.0062262616120278835, -0.11552955955266953, -0.06392484158277512, -0.19860412180423737, -0.008438539691269398, -0.11435496807098389, 0.01639598421752453, -0.07907336950302124, -0.025582555681467056, 0.11038774251937866, 0.05762813985347748, -0.10104861855506897, 0.21955443918704987, 0.03055894933640957, -0.10620519518852234, 0.07660805433988571, -0.053700435906648636, -0.008135844953358173, -0.17753784358501434, -0.05774596706032753, -0.05928763747215271, -0.022809287533164024, 0.04426077753305435, 0.028960339725017548, -0.06104588508605957, 0.008706011809408665, -0.0378437414765358, -0.08461498469114304, -0.014480664394795895, 0.046553876250982285, 0.08471335470676422, 0.16748324036598206, 0.057828351855278015, -0.019651897251605988, -0.02910161390900612, 0.1835346221923828, 0.006702969316393137, -0.09429921209812164, -0.12743832170963287, 0.039017900824546814, 0.049012381583452225, -0.06542447209358215, 0.028584778308868408, -0.05542873963713646, 0.00292995129711926, 0.29096776247024536, 0.27755001187324524, -0.011613938957452774, -0.00038459329516626894, -0.043204355984926224, 0.005803324747830629, -0.00013415190915111452, 0.04612094536423683, 0.05375614017248154, 0.051754675805568695, -0.08645735681056976, 0.016966503113508224, -0.11744675040245056, -0.01253807358443737, -0.0718047097325325, 0.05701877176761627, 0.06058216840028763, -0.06840666383504868, -0.018027467653155327, 0.1845427304506302, -0.11129540950059891, -0.10856802761554718, -0.027074187994003296, -0.04901909455657005, -0.15585128962993622, 0.03676099702715874, 0.03438420966267586, 0.05011335015296936, 0.04242319613695145, -0.015684088692069054, 0.0388631634414196, 0.08149324357509613, 0.030230147764086723, -0.08757778257131577, -0.042331039905548096, 0.0872860923409462, 0.04489678144454956, 0.13720005750656128, -0.014794494025409222, 0.10710769146680832, 0.09796199947595596, 0.029685666784644127, -0.06392025947570801, 0.07577476650476456, 0.046554677188396454, 0.115993432700634, 0.08419770002365112, 0.04307916387915611, -0.010852948762476444, -0.09377238154411316, 0.08900249004364014, -0.021849364042282104, 0.04858597368001938, -0.15388542413711548, -0.03474058955907822, -0.07132508605718613, 0.04826387017965317, -0.019823363050818443, 0.10436797887086868, 0.21639186143875122, -0.0765271782875061, 0.031137902289628983, -0.05266831815242767, -0.01871824637055397, 0.03598703816533089, -0.06779514253139496, -0.029785752296447754, -0.2090648114681244, -0.04942650720477104, 0.09316876530647278, 0.01895485632121563, -0.10662445425987244, -0.014047904871404171, -0.040726497769355774, -0.09598425030708313, -0.06494604051113129, 0.05539681762456894, 0.047361742705106735, 0.003696727566421032, -0.03276006132364273, 0.03582269698381424, -0.03925463929772377, 0.04686110094189644, -0.1032467931509018, -0.07731541991233826 ]
null
null
transformers
# Turkish AI Writer based on GPT2-Small # Türkçe Yapay Zeka Yazarı ## Model description This model is enhanced version of gpt2-small-turkish finetuned version. In addition to 28-10-2020 Wikipedia Turkish article dump this model is trained with more than 400 classic novels and plays in Turkish (Including Dostoyevski, Shaekspeare, Dumas) Base work has been done on Pierre Guillou tutorial as on this page. (https://github.com/piegu/fastai-projects/blob/master/finetuning-English-GPT2-any-language-Portuguese-HuggingFace-fastaiv2.ipynb) Note that Since Turkish language is not close to English as in Porteguese instead of training last 2 layers, last 3 layers are trained. Code is converted to work with Fastai 2.X . Using Google Colab for training. Current accuracy 36.3 % , Perplexity : 44.75 Demo (using CPU inference) is available on: http://www.metayazar.com Models are available: * [gpt2-small-tuned-tr] (https://huggingface.co/gorkemgoknar/gpt2-small-turkish) * [gpt2-small-turkish-writer] (https://huggingface.co/gorkemgoknar/gpt2-turkish-writer) ## Intended uses & limitations #### How to use #### Install ```python from transformers import AutoTokenizer, AutoModelWithLMHead import torch tokenizer = AutoTokenizer.from_pretrained("gorkemgoknar/gpt2-turkish-writer") model = AutoModelWithLMHead.from_pretrained("gorkemgoknar/gpt2-turkish-writer") # Get sequence length max of 1024 tokenizer.model_max_length=1024 model.eval() # disable dropout (or leave in train mode to finetune) ``` #### Generate 1 word ```python # input sequence text = "Bu yazıyı bilgisayar yazdı." inputs = tokenizer(text, return_tensors="pt") # model output outputs = model(**inputs, labels=inputs["input_ids"]) loss, logits = outputs[:2] predicted_index = torch.argmax(logits[0, -1, :]).item() predicted_text = tokenizer.decode([predicted_index]) # results print('input text:', text) print('predicted text:', predicted_text) # input text: # predicted text: ``` #### Generate Full Sequence ```python # input sequence text = "Bu yazıyı bilgisayar yazdı." inputs = tokenizer(text, return_tensors="pt") # model output using Top-k sampling text generation method sample_outputs = model.generate(inputs.input_ids, pad_token_id=50256, do_sample=True, max_length=50, # put the token number you want top_k=40, num_return_sequences=1) # generated sequence for i, sample_output in enumerate(sample_outputs): print(">> Generated text {}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist()))) # >> Generated text # ``` #### Limitations and bias The training data used for this model come from Turkish Wikipedia and books. We know it contains a lot of unfiltered content from the internet, which is far from neutral. Also not much pre-processing was done on books hence chapter names and page numbers can be seen on some cases. This is a work in progress. ## Training data Wikipedia Turkish article dump as of 28-10-2020 Turkish book dataset of >400 classic novels ## Training procedure ## Eval results | epoch |train_loss |valid_loss |accuracy |perplexity |time | | ----- | -------- |--------- | ---------- | --------- | ----- | |0 |4.497828 |4.549605 |0.277328 |94.595070 |2:09:58| |1 |4.503929 |4.519456 |0.275071 |91.785645 |2:04:30| |2 |3.612716 |3.921146 |0.344802 |50.458256 |2:03:22| |3 |3.777645 |4.072006 |0.326130 |58.674530 |1:56:14| |4 |2.934462 |3.801303 |0.363719 |44.759476 |1:58:55| Note: 1cycle rule training is used and epochs are at different times ```
{"language": ["tr"], "license": "apache-2.0", "tags": ["gpt2", "turkish", "aiwriter", "finetuned"], "datasets": ["wikipedia-turkish", "custom-book-corpus"], "metrics": ["perplexity", "accuracy"], "widget": [{"text": "Bir zaman topu olan ama k\u00f6pe\u011fi olmayan bir \u00e7ocuk vard\u0131. Parkta", "context": ""}, {"text": "Uzun uzun sahile do\u011fru bakt\u0131. D\u00fc\u015f\u00fcnd\u00fcklerinden ", "context": ""}, {"text": "\u00c7ok uzun zaman \u00f6nce galaksinin uzak bir k\u00f6\u015fesinde...", "context": ""}, {"text": "'Bug\u00fcn kendimi \u00e7ok hasta hissediyorum' dedi. Kar\u015f\u0131s\u0131nda ", "context": ""}]}
text-generation
gorkemgoknar/gpt2-turkish-writer
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "turkish", "aiwriter", "finetuned", "tr", "dataset:wikipedia-turkish", "dataset:custom-book-corpus", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #turkish #aiwriter #finetuned #tr #dataset-wikipedia-turkish #dataset-custom-book-corpus #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
Turkish AI Writer based on GPT2-Small ===================================== Türkçe Yapay Zeka Yazarı ======================== Model description ----------------- This model is enhanced version of gpt2-small-turkish finetuned version. In addition to 28-10-2020 Wikipedia Turkish article dump this model is trained with more than 400 classic novels and plays in Turkish (Including Dostoyevski, Shaekspeare, Dumas) Base work has been done on Pierre Guillou tutorial as on this page. (URL Note that Since Turkish language is not close to English as in Porteguese instead of training last 2 layers, last 3 layers are trained. Code is converted to work with Fastai 2.X . Using Google Colab for training. Current accuracy 36.3 % , Perplexity : 44.75 Demo (using CPU inference) is available on: URL Models are available: * [gpt2-small-tuned-tr] (URL * [gpt2-small-turkish-writer] (URL Intended uses & limitations --------------------------- #### How to use #### Install #### Generate 1 word #### Generate Full Sequence #### Limitations and bias The training data used for this model come from Turkish Wikipedia and books. We know it contains a lot of unfiltered content from the internet, which is far from neutral. Also not much pre-processing was done on books hence chapter names and page numbers can be seen on some cases. This is a work in progress. Training data ------------- Wikipedia Turkish article dump as of 28-10-2020 Turkish book dataset of >400 classic novels Training procedure ------------------ Eval results ------------ Note: 1cycle rule training is used and epochs are at different times '''
[ "#### How to use", "#### Install", "#### Generate 1 word", "#### Generate Full Sequence", "#### Limitations and bias\n\n\nThe training data used for this model come from Turkish Wikipedia and books. We know it contains a lot of unfiltered content from the internet, which is far from neutral. Also not much pre-processing was done on books hence chapter names and page numbers can be seen on some cases. This is a work in progress.\n\n\nTraining data\n-------------\n\n\nWikipedia Turkish article dump as of 28-10-2020\nTurkish book dataset of >400 classic novels\n\n\nTraining procedure\n------------------\n\n\nEval results\n------------\n\n\n\nNote: 1cycle rule training is used and epochs are at different times\n'''" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #turkish #aiwriter #finetuned #tr #dataset-wikipedia-turkish #dataset-custom-book-corpus #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "#### How to use", "#### Install", "#### Generate 1 word", "#### Generate Full Sequence", "#### Limitations and bias\n\n\nThe training data used for this model come from Turkish Wikipedia and books. We know it contains a lot of unfiltered content from the internet, which is far from neutral. Also not much pre-processing was done on books hence chapter names and page numbers can be seen on some cases. This is a work in progress.\n\n\nTraining data\n-------------\n\n\nWikipedia Turkish article dump as of 28-10-2020\nTurkish book dataset of >400 classic novels\n\n\nTraining procedure\n------------------\n\n\nEval results\n------------\n\n\n\nNote: 1cycle rule training is used and epochs are at different times\n'''" ]
[ 93, 5, 3, 6, 8, 130 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #turkish #aiwriter #finetuned #tr #dataset-wikipedia-turkish #dataset-custom-book-corpus #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n#### How to use#### Install#### Generate 1 word#### Generate Full Sequence#### Limitations and bias\n\n\nThe training data used for this model come from Turkish Wikipedia and books. We know it contains a lot of unfiltered content from the internet, which is far from neutral. Also not much pre-processing was done on books hence chapter names and page numbers can be seen on some cases. This is a work in progress.\n\n\nTraining data\n-------------\n\n\nWikipedia Turkish article dump as of 28-10-2020\nTurkish book dataset of >400 classic novels\n\n\nTraining procedure\n------------------\n\n\nEval results\n------------\n\n\n\nNote: 1cycle rule training is used and epochs are at different times\n'''" ]
[ -0.01349720824509859, 0.058428261429071426, 0.0005800239741802216, 0.04521111398935318, 0.05648498237133026, 0.0667378157377243, 0.14351940155029297, 0.126853808760643, -0.07583450525999069, -0.03873853012919426, 0.09555277228355408, 0.050503745675086975, 0.1107669472694397, 0.13172562420368195, 0.016120482236146927, -0.17860402166843414, 0.026775024831295013, -0.002199445152655244, -0.014475653879344463, 0.12443361431360245, 0.1204434335231781, -0.026394257321953773, 0.03119359165430069, -0.02402740716934204, -0.06990467756986618, 0.0010805545607581735, -0.04391602426767349, -0.14947178959846497, 0.12013519555330276, 0.0009078619186766446, 0.1020418256521225, -0.019562575966119766, 0.04546796903014183, -0.1682348996400833, 0.01567140594124794, 0.024583185091614723, -0.03221247345209122, 0.041713543236255646, 0.08949550241231918, -0.03678416460752487, 0.2969672679901123, -0.07662724703550339, 0.015568084083497524, -0.047400735318660736, -0.10933790355920792, -0.11232183873653412, -0.12698721885681152, 0.10749269276857376, 0.11642060428857803, 0.1257493644952774, -0.02723010629415512, 0.010319345630705357, -0.04387432709336281, 0.07828579843044281, 0.16413091123104095, -0.2520137131214142, -0.07926758378744125, -0.056415244936943054, -0.04059857875108719, 0.09239291399717331, -0.04272177442908287, 0.05627606436610222, 0.02548874169588089, 0.01424242090433836, 0.05432513728737831, -0.02104240097105503, -0.06767968833446503, -0.01959964819252491, -0.0896587073802948, -0.09017504751682281, 0.30053091049194336, -0.07110413908958435, -0.018032053485512733, -0.05437389761209488, 0.005215095821768045, -0.03811248764395714, -0.005435867700725794, -0.0068271467462182045, -0.08041315525770187, -0.02393108792603016, 0.06011192500591278, -0.08177273720502853, -0.111366868019104, -0.08025651425123215, -0.03205445408821106, 0.06999339163303375, 0.07146825641393661, 0.0030156353022903204, 0.03027530200779438, 0.18727783858776093, -0.01149834506213665, -0.05159352719783783, 0.0464121550321579, 0.003250525100156665, -0.003599504940211773, -0.015218580141663551, -0.004608526825904846, -0.015452898107469082, -0.031558942049741745, -0.024636173620820045, 0.03055899776518345, -0.0010976149933412671, 0.04816921800374985, 0.06481535732746124, -0.07638907432556152, 0.03152432292699814, 0.015476481057703495, -0.1070663332939148, 0.006962253712117672, 0.0684434175491333, 0.006718674208968878, -0.023700693622231483, -0.0264450591057539, -0.04446662962436676, 0.10928962379693985, 0.06772196292877197, -0.013534805737435818, -0.00451954361051321, 0.03194332867860794, 0.01646639034152031, 0.00006280809611780569, -0.11743374913930893, -0.045342668890953064, -0.029221102595329285, -0.1309993863105774, -0.0429440401494503, 0.0043099867179989815, -0.04801701754331589, -0.13750094175338745, 0.07948450744152069, 0.0065370723605155945, 0.005557382944971323, -0.046768058091402054, -0.08420691639184952, 0.006367023102939129, -0.0799826979637146, -0.06053746119141579, -0.0890616625547409, -0.23753750324249268, -0.023466389626264572, 0.08556034415960312, -0.04550572484731674, 0.020615557208657265, -0.05236708000302315, -0.026479214429855347, 0.0462360754609108, -0.003734307363629341, 0.07705125957727432, -0.09295547753572464, 0.10966909676790237, -0.048968084156513214, 0.07261475175619125, 0.0788348913192749, 0.05594711750745773, -0.10423237085342407, -0.010016570799052715, -0.01690211147069931, 0.05257859081029892, -0.00881363544613123, 0.01730009727180004, -0.10751821845769882, -0.055825985968112946, -0.014958353713154793, -0.013758671469986439, 0.021425645798444748, 0.1304406076669693, -0.16187472641468048, -0.040648266673088074, 0.10227092355489731, -0.10782326012849808, -0.12679390609264374, 0.1444990485906601, -0.028909046202898026, 0.14787694811820984, 0.12234959751367569, 0.19166019558906555, -0.03266860917210579, 0.0678492859005928, -0.07397845387458801, -0.029026780277490616, 0.06858774274587631, 0.11542098224163055, 0.08310592919588089, -0.026987483724951744, 0.013222926296293736, 0.021226737648248672, -0.1217406839132309, -0.015902584418654442, -0.009323072619736195, -0.1019936129450798, 0.005609892308712006, 0.001061902497895062, 0.06527625769376755, -0.02560264617204666, 0.10016098618507385, -0.08537237346172333, -0.0945722684264183, -0.08457569777965546, 0.05915755778551102, -0.034200429916381836, 0.03006885014474392, 0.02076631225645542, 0.13930881023406982, -0.03334552422165871, 0.048477139323949814, -0.09668808430433273, 0.060922831296920776, -0.020871251821517944, 0.037095583975315094, 0.05632545053958893, 0.019723674282431602, 0.0007287722546607256, 0.043989963829517365, -0.07173257321119308, -0.0008522807620465755, -0.06829044967889786, -0.02535421773791313, -0.06767275929450989, -0.13814306259155273, 0.032655369490385056, 0.022336259484291077, 0.14178413152694702, -0.16076144576072693, 0.04776895046234131, -0.03158039227128029, 0.0925559550523758, -0.04600479081273079, -0.014674624428153038, -0.02833080291748047, 0.036705076694488525, -0.07238360494375229, -0.057944562286138535, 0.03889752924442291, -0.04289751872420311, -0.09674332290887833, 0.02655656822025776, -0.15340200066566467, 0.02322947047650814, 0.12199694663286209, -0.0555952824652195, -0.13331614434719086, 0.01615355908870697, -0.029696280136704445, -0.04049917310476303, -0.02120366133749485, 0.005905325058847666, 0.16988708078861237, 0.0066721877083182335, 0.15181441605091095, -0.08273842930793762, -0.04937219247221947, -0.0323038287460804, -0.04900943860411644, -0.006520300172269344, 0.09970903396606445, -0.016145113855600357, -0.15104573965072632, 0.0809500440955162, 0.12295962870121002, -0.02927047200500965, 0.17505747079849243, 0.046870648860931396, -0.09463294595479965, 0.0052184248343110085, 0.05981086194515228, 0.02696293406188488, 0.10954901576042175, -0.18827591836452484, -0.0540950708091259, 0.04535054787993431, 0.03372101113200188, 0.04438489302992821, -0.1728731393814087, -0.017641453072428703, 0.020761923864483833, -0.09516733139753342, -0.02605810947716236, 0.0124663095921278, -0.05679073557257652, 0.12212899327278137, 0.00717873964458704, 0.029197020456194878, 0.028770124539732933, -0.03921333700418472, -0.08162077516317368, 0.16215522587299347, -0.09739414602518082, -0.1827983260154724, -0.0934961810708046, 0.0552944578230381, -0.009874416515231133, 0.015493602491915226, 0.05495310202240944, -0.09195910394191742, -0.010174895636737347, -0.08989255875349045, 0.07019646465778351, -0.0895601287484169, -0.04849595949053764, -0.11363855004310608, 0.029449298977851868, -0.06445494294166565, -0.09310448169708252, 0.020383888855576515, 0.02988906390964985, -0.10565893352031708, 0.04601943492889404, -0.032934822142124176, 0.051337044686079025, 0.05941448733210564, -0.07514670491218567, -0.007142757996916771, -0.03260928764939308, 0.09835880249738693, -0.1744818240404129, 0.02936677075922489, -0.008249284699559212, 0.032985933125019073, 0.009752900339663029, 0.08922775834798813, 0.003917119465768337, -0.04059795290231705, 0.024752819910645485, 0.01809088885784149, -0.05087378993630409, -0.30676305294036865, -0.024160852655768394, -0.07303948700428009, 0.004092263523489237, 0.055853839963674545, 0.06527682393789291, 0.04804522916674614, 0.06185851991176605, -0.12407366931438446, 0.06752866506576538, 0.07079672068357468, 0.048457346856594086, 0.16741631925106049, 0.049180518835783005, 0.034773267805576324, -0.08960147947072983, -0.007140903268009424, 0.07780969142913818, -0.005107793491333723, 0.26691481471061707, -0.08025550097227097, 0.13726511597633362, 0.030908411368727684, 0.14016194641590118, -0.023566529154777527, 0.07906626164913177, 0.023627636954188347, 0.025973718613386154, -0.016857830807566643, -0.04160416126251221, -0.018277738243341446, 0.07428071647882462, -0.10666491091251373, -0.04144614189863205, -0.07725761085748672, -0.005208900198340416, 0.10820983350276947, 0.08087141811847687, 0.016249625012278557, -0.16460387408733368, -0.0831121951341629, 0.031941283494234085, -0.05951971188187599, -0.06488800793886185, 0.0013598710065707564, 0.03437400236725807, -0.18762099742889404, 0.031888533383607864, -0.04928705468773842, 0.11090173572301865, -0.12618564069271088, -0.030141081660985947, -0.04714056849479675, -0.04905980825424194, -0.03291758894920349, 0.16580431163311005, -0.15979771316051483, 0.26957643032073975, 0.024213215336203575, 0.15575681626796722, -0.09123555570840836, -0.021915476769208908, 0.1171867623925209, 0.0578874833881855, 0.09388984739780426, 0.01886965148150921, -0.03516324609518051, -0.05803113803267479, -0.09502045810222626, 0.027618540450930595, 0.01582193188369274, -0.10832460224628448, 0.05973508581519127, -0.03944456949830055, 0.07394853234291077, -0.04815150424838066, 0.026359429582953453, -0.10857481509447098, -0.1961888074874878, 0.05066885054111481, -0.04206286743283272, 0.03375926986336708, -0.026765327900648117, -0.09381160885095596, -0.03417785093188286, 0.17699702084064484, -0.08041813969612122, -0.11652156710624695, -0.041908130049705505, -0.014593148604035378, 0.09473070502281189, -0.0202262531965971, -0.03748936206102371, 0.003189558396115899, 0.0008626485941931605, -0.031754426658153534, -0.0011741822818294168, -0.030303645879030228, -0.053527578711509705, -0.13593223690986633, -0.017317667603492737, 0.10289627313613892, 0.049771156162023544, 0.09724175184965134, 0.01799863949418068, 0.01911134086549282, -0.08065406233072281, -0.07720982283353806, -0.00499061681330204, 0.011082627810537815, 0.018406324088573456, 0.06519338488578796, -0.05875397101044655, 0.00886261835694313, -0.14873044192790985, -0.1360883265733719, 0.12905026972293854, 0.2061481773853302, -0.018696917220950127, 0.10040316730737686, 0.07151824980974197, -0.12412364780902863, -0.16434261202812195, -0.02561281993985176, -0.003018774325028062, 0.039030931890010834, -0.04649505391716957, -0.17199867963790894, 0.0006701279780827463, 0.08889451622962952, 0.008627870120108128, 0.10190091282129288, -0.3400941491127014, -0.10409615188837051, 0.08455391228199005, 0.044019218534231186, 0.03703852742910385, -0.11720979958772659, -0.003407055512070656, -0.031312599778175354, -0.002726009115576744, -0.016800817102193832, -0.1600407510995865, 0.1238635778427124, -0.02926957979798317, 0.07369047403335571, -0.020841090008616447, -0.02167419157922268, 0.19896377623081207, -0.03725685179233551, 0.07424556463956833, -0.12702065706253052, -0.0029915887862443924, 0.1550332009792328, -0.03145495802164078, 0.0955352634191513, -0.08115221560001373, 0.004764867015182972, -0.14542053639888763, -0.04864995554089546, -0.035256050527095795, 0.09363611042499542, -0.07514913380146027, -0.04724930599331856, -0.09364451467990875, 0.0325787290930748, 0.056083451956510544, -0.018965575844049454, 0.047090936452150345, 0.0312383733689785, 0.1465967744588852, -0.004087639506906271, 0.06780318915843964, 0.06419071555137634, 0.008004707284271717, 0.018574697896838188, 0.03433990105986595, 0.05732528865337372, -0.11392778158187866, -0.07117650657892227, 0.1456150859594345, 0.006167146842926741, 0.15810853242874146, 0.01130892988294363, -0.0773155614733696, 0.05933191999793053, 0.0953826829791069, -0.12804922461509705, -0.11489252001047134, -0.02846449799835682, -0.032198671251535416, -0.024090692400932312, -0.068807452917099, 0.07342599332332611, -0.14576485753059387, 0.001871786778792739, -0.0008627878269180655, -0.00734087685123086, -0.04175804555416107, 0.2144480049610138, -0.026905512437224388, 0.015629960224032402, -0.05525609850883484, 0.14956024289131165, 0.10755758732557297, -0.09277728199958801, 0.07761093229055405, 0.10291475057601929, -0.10965414345264435, -0.040040697902441025, 0.045895691961050034, 0.13263514637947083, 0.006002102047204971, -0.053217027336359024, -0.10107787698507309, -0.060788750648498535, -0.0018012425862252712, -0.026696067303419113, 0.043701887130737305, 0.05077250674366951, -0.03820072114467621, 0.001774439588189125, -0.05963844805955887, 0.09434781968593597, 0.1321188062429428, -0.04350396990776062, -0.038713183254003525, 0.19771166145801544, 0.021508365869522095, -0.0181761234998703, -0.014740326441824436, -0.025798089802265167, 0.042654234915971756, 0.014631952159106731, -0.14220857620239258, -0.015556578524410725, -0.1338208019733429, -0.0011038127122446895, -0.009125816635787487, 0.03949114680290222, -0.034075673669576645, -0.04337478056550026, -0.061006344854831696, -0.037837766110897064, -0.06264892965555191, 0.03653294965624809, -0.10432984679937363, 0.003661514027044177, 0.01733238995075226, -0.037395771592855453, 0.058682359755039215, 0.10628774762153625, -0.012063716538250446, 0.04262019321322441, -0.10402058064937592, 0.05807823687791824, -0.05071098729968071, 0.02156171388924122, -0.019076671451330185, -0.09091442078351974, -0.010807165876030922, 0.01222988311201334, -0.01803290657699108, 0.07531387358903885, 0.01700669340789318, -0.09670597314834595, -0.061294976621866226, -0.07038658857345581, -0.0071662371046841145, -0.01195628009736538, 0.1504150927066803, 0.10593102127313614, 0.020764170214533806, 0.12592846155166626, -0.08000773936510086, 0.050548359751701355, -0.060476016253232956, 0.02384624443948269, -0.02013738825917244, -0.07657574117183685, -0.03876671940088272, -0.07418791204690933, 0.04725243151187897, -0.04312608391046524, 0.1805243343114853, 0.06269318610429764, -0.026042895391583443, 0.039754558354616165, -0.08023634552955627, 0.025097746402025223, -0.05212495103478432, 0.17004482448101044, 0.04364762827754021, -0.05336743965744972, -0.08504394441843033, -0.01814882457256317, 0.012338461354374886, 0.004708665423095226, 0.16515842080116272, 0.09534227102994919, 0.0859033614397049, 0.06717970222234726, -0.06203829124569893, -0.12857964634895325, -0.055849745869636536, -0.010802144184708595, 0.07215479761362076, 0.12712068855762482, -0.02264425717294216, 0.06884623318910599, 0.252243310213089, -0.16832540929317474, 0.023782378062605858, -0.027855247259140015, -0.12714365124702454, -0.039949338883161545, -0.11331278085708618, -0.020304115489125252, -0.05870683118700981, -0.0011138913687318563, -0.10401666909456253, 0.06795674562454224, 0.037449561059474945, 0.061976730823516846, -0.07152146100997925, 0.2310180515050888, 0.033019717782735825, -0.11295881867408752, 0.1552864909172058, -0.006401849910616875, -0.009675780311226845, -0.1049274280667305, -0.07067036628723145, -0.0712069720029831, -0.10115984082221985, 0.03362211585044861, 0.05661444365978241, -0.043448641896247864, 0.007769238203763962, -0.033037636429071426, -0.04925379529595375, 0.006906143855303526, 0.023709310218691826, 0.14534303545951843, 0.19583626091480255, 0.048815809190273285, -0.07125905156135559, -0.010548231191933155, 0.26690688729286194, -0.022952251136302948, -0.04518617317080498, -0.07513982802629471, -0.006293581333011389, 0.07303455471992493, -0.09081912040710449, 0.060496602207422256, -0.09104752540588379, 0.04138597846031189, 0.195855051279068, 0.25475403666496277, 0.032198142260313034, -0.027531789615750313, -0.054552119225263596, 0.015792544931173325, -0.010786225087940693, 0.06148922070860863, 0.023334983736276627, 0.13262741267681122, -0.0946241095662117, 0.035420000553131104, -0.11099477112293243, 0.0025923713110387325, -0.0796731561422348, 0.10236936807632446, 0.06425143033266068, -0.058427438139915466, -0.031047549098730087, 0.1352260410785675, -0.07556633651256561, -0.24949929118156433, -0.042484767735004425, -0.10249535739421844, -0.13382488489151, 0.003444513538852334, 0.04856829717755318, 0.020683974027633667, 0.04863591119647026, 0.020203502848744392, 0.05165165662765503, 0.0416291318833828, 0.024874618276953697, -0.09342504292726517, -0.1201421245932579, 0.11640753597021103, 0.03803528845310211, 0.17863181233406067, 0.0003368619945831597, 0.06360284239053726, 0.055620498955249786, 0.011389097198843956, -0.017376521602272987, 0.09871046245098114, 0.088267482817173, 0.10814807564020157, 0.041751373559236526, 0.10787195712327957, -0.0010628585005179048, -0.046078626066446304, 0.1198057159781456, 0.09426580369472504, 0.06154552847146988, -0.02417362481355667, -0.009526115842163563, -0.09955096989870071, 0.044810522347688675, -0.06353677064180374, 0.1184464693069458, 0.2708145081996918, -0.04832577332854271, 0.0437384769320488, -0.06497403234243393, -0.027637187391519547, 0.04803420975804329, 0.0419030524790287, 0.020639091730117798, -0.19806846976280212, -0.01920851320028305, -0.03276176378130913, 0.01715383306145668, -0.23247520625591278, -0.06888357549905777, 0.0016306929755955935, -0.06794711947441101, -0.04609289392828941, 0.07661476731300354, 0.06157192215323448, -0.0008596380357630551, -0.035869304090738297, 0.005728126037865877, -0.04550276696681976, 0.09772871434688568, -0.09947115182876587, -0.05187205225229263 ]
null
null
transformers
# GPT2 Persona Chatbot based on Movie Characters Model used for https://www.metayazar.com/chatbot GPT2 Small Trained on movie scripts (especially Sci-fi) Usual HF api will not work see HF Spaces for demo usage https://huggingface.co/spaces/gorkemgoknar/moviechatbot This work is based on Persona Chatbot originally done by Hugging Face team (https://medium.com/huggingface/how-to-build-a-state-of-the-art-conversational-ai-with-transfer-learning-2d818ac26313) For cleaning movie scripts I also provide cleaner code https://github.com/gorkemgoknar/moviescriptcleaner Example persona how to: https://gist.github.com/gorkemgoknar/ae29bf9d14fa814e6a64d0e57a4a4ed7 Tried a AI job interview over some characters here, details on this post https://www.linkedin.com/pulse/ai-goes-job-interview-g%C3%B6rkem-g%C3%B6knar/ For obvious reasons I cannot share raw personafile but you can check above gist for example how to create it. A working "full" demo can be seen in https://www.metayazar.com/chatbot For Turkish version (with limited training) https://www.metayazar.com/chatbot_tr Due to double LM head standart hugging face interface will not work. But if you follow huggingface tutorial should be same. Except each persona is encoded as "My name is XXXX" Use model, tokenizer and parameters within a class and call in below functions to trigger model. Some of the available personas: | Macleod | Moran | Brenda | Ramirez | Peter Parker | Quentin Beck | Andy | Red | Norton | Willard | Chief | Chef | Kilgore | Kurtz | Westley | Buttercup | Vizzini | Fezzik | Inigo | Man In Black | Taylor | Zira | Zaius | Cornelius | Bud | Lindsey | Hippy | Erin | Ed | George | Donna | Trinity | Agent Smith | Morpheus | Neo | Tank | Meryl | Truman | Marlon | Christof | Stromboli | Bumstead | Schreber | Walker | Korben | Cornelius | Loc Rhod | Anakin | Obi-Wan | Palpatine | Padme | Superman | Luthor | Dude | Walter | Donny | Maude | General | Starkiller | Indiana | Willie | Short Round | John | Sarah | Terminator | Miller | Sarge | Reiben | Jackson | Upham | Chuckie | Will | Lambeau | Sean | Skylar | Saavik | Spock | Kirk | Bones | Khan | Kirk | Spock | Sybok | Scotty | Bourne | Pamela | Abbott ```python def get_answer(self, input_text, personality, history, params=None): ##Check length of history (to save 1 computation!) if len(history)>0: #mostly it will be empty list so need a length check for performance #would do string check also but just assume it is list of list of strings, as not public new_hist = [] for ele in history: new_hist.append( self.tokenizer.encode(ele) ) history = new_hist.copy() history.append(self.tokenizer.encode(input_text)) with torch.no_grad(): out_ids = self.sample_sequence(personality, history, self.tokenizer, self.model, params=params) history.append(out_ids) history = history[-(2*self.parameters['max_history']+1):] out_text = self.tokenizer.decode(out_ids, skip_special_tokens=True) #print(out_text) history_decoded = [] for ele in history: history_decoded.append(self.tokenizer.decode(ele)) return out_text, history_decoded, self.parameters ```
{"language": ["en"], "license": "cc-by-4.0", "tags": ["gpt2", "conversational"], "widget": [{"text": "Hello there", "context": "Gandalf"}]}
text-generation
gorkemgoknar/gpt2chatbotenglish
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "en", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #en #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# GPT2 Persona Chatbot based on Movie Characters Model used for URL GPT2 Small Trained on movie scripts (especially Sci-fi) Usual HF api will not work see HF Spaces for demo usage URL This work is based on Persona Chatbot originally done by Hugging Face team (URL For cleaning movie scripts I also provide cleaner code URL Example persona how to: URL Tried a AI job interview over some characters here, details on this post URL For obvious reasons I cannot share raw personafile but you can check above gist for example how to create it. A working "full" demo can be seen in URL For Turkish version (with limited training) URL Due to double LM head standart hugging face interface will not work. But if you follow huggingface tutorial should be same. Except each persona is encoded as "My name is XXXX" Use model, tokenizer and parameters within a class and call in below functions to trigger model. Some of the available personas: | Macleod | Moran | Brenda | Ramirez | Peter Parker | Quentin Beck | Andy | Red | Norton | Willard | Chief | Chef | Kilgore | Kurtz | Westley | Buttercup | Vizzini | Fezzik | Inigo | Man In Black | Taylor | Zira | Zaius | Cornelius | Bud | Lindsey | Hippy | Erin | Ed | George | Donna | Trinity | Agent Smith | Morpheus | Neo | Tank | Meryl | Truman | Marlon | Christof | Stromboli | Bumstead | Schreber | Walker | Korben | Cornelius | Loc Rhod | Anakin | Obi-Wan | Palpatine | Padme | Superman | Luthor | Dude | Walter | Donny | Maude | General | Starkiller | Indiana | Willie | Short Round | John | Sarah | Terminator | Miller | Sarge | Reiben | Jackson | Upham | Chuckie | Will | Lambeau | Sean | Skylar | Saavik | Spock | Kirk | Bones | Khan | Kirk | Spock | Sybok | Scotty | Bourne | Pamela | Abbott
[ "# GPT2 Persona Chatbot based on Movie Characters\nModel used for URL\n\nGPT2 Small Trained on movie scripts (especially Sci-fi) \n\nUsual HF api will not work see HF Spaces for demo usage URL\n\n\nThis work is based on Persona Chatbot originally done by Hugging Face team (URL\n\nFor cleaning movie scripts I also provide cleaner code\nURL\n\nExample persona how to:\nURL\n\nTried a AI job interview over some characters here, details on this post\nURL\n\nFor obvious reasons I cannot share raw personafile but you can check above gist for example how to create it.\n\nA working \"full\" demo can be seen in URL\n\nFor Turkish version (with limited training) URL\n\nDue to double LM head standart hugging face interface will not work. But if you follow huggingface tutorial should be same.\nExcept each persona is encoded as \"My name is XXXX\"\n\nUse model, tokenizer and parameters within a class and call in below functions to trigger model.\nSome of the available personas:\n\n| Macleod | Moran | Brenda | Ramirez | Peter Parker | Quentin Beck | Andy \n| Red | Norton | Willard | Chief | Chef | Kilgore | Kurtz | Westley | Buttercup \n| Vizzini | Fezzik | Inigo | Man In Black | Taylor | Zira | Zaius | Cornelius \n| Bud | Lindsey | Hippy | Erin | Ed | George | Donna | Trinity | Agent Smith \n| Morpheus | Neo | Tank | Meryl | Truman | Marlon | Christof | Stromboli | Bumstead \n| Schreber | Walker | Korben | Cornelius | Loc Rhod | Anakin | Obi-Wan | Palpatine \n| Padme | Superman | Luthor | Dude | Walter | Donny | Maude | General | Starkiller \n| Indiana | Willie | Short Round | John | Sarah | Terminator | Miller | Sarge | Reiben \n| Jackson | Upham | Chuckie | Will | Lambeau | Sean | Skylar | Saavik | Spock \n| Kirk | Bones | Khan | Kirk | Spock | Sybok | Scotty | Bourne | Pamela | Abbott" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #en #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# GPT2 Persona Chatbot based on Movie Characters\nModel used for URL\n\nGPT2 Small Trained on movie scripts (especially Sci-fi) \n\nUsual HF api will not work see HF Spaces for demo usage URL\n\n\nThis work is based on Persona Chatbot originally done by Hugging Face team (URL\n\nFor cleaning movie scripts I also provide cleaner code\nURL\n\nExample persona how to:\nURL\n\nTried a AI job interview over some characters here, details on this post\nURL\n\nFor obvious reasons I cannot share raw personafile but you can check above gist for example how to create it.\n\nA working \"full\" demo can be seen in URL\n\nFor Turkish version (with limited training) URL\n\nDue to double LM head standart hugging face interface will not work. But if you follow huggingface tutorial should be same.\nExcept each persona is encoded as \"My name is XXXX\"\n\nUse model, tokenizer and parameters within a class and call in below functions to trigger model.\nSome of the available personas:\n\n| Macleod | Moran | Brenda | Ramirez | Peter Parker | Quentin Beck | Andy \n| Red | Norton | Willard | Chief | Chef | Kilgore | Kurtz | Westley | Buttercup \n| Vizzini | Fezzik | Inigo | Man In Black | Taylor | Zira | Zaius | Cornelius \n| Bud | Lindsey | Hippy | Erin | Ed | George | Donna | Trinity | Agent Smith \n| Morpheus | Neo | Tank | Meryl | Truman | Marlon | Christof | Stromboli | Bumstead \n| Schreber | Walker | Korben | Cornelius | Loc Rhod | Anakin | Obi-Wan | Palpatine \n| Padme | Superman | Luthor | Dude | Walter | Donny | Maude | General | Starkiller \n| Indiana | Willie | Short Round | John | Sarah | Terminator | Miller | Sarge | Reiben \n| Jackson | Upham | Chuckie | Will | Lambeau | Sean | Skylar | Saavik | Spock \n| Kirk | Bones | Khan | Kirk | Spock | Sybok | Scotty | Bourne | Pamela | Abbott" ]
[ 66, 556 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #en #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
[ -0.0008429961744695902, 0.05638094246387482, -0.004844688344746828, 0.037630897015333176, 0.11069779843091965, 0.004381026607006788, 0.13482323288917542, 0.13052010536193848, -0.02200062945485115, -0.007334359921514988, 0.16265924274921417, 0.190149188041687, -0.015340532176196575, 0.06128554418683052, -0.07121900469064713, -0.24575269222259521, 0.050540436059236526, 0.049916014075279236, 0.013446097262203693, 0.11416538059711456, 0.1150897741317749, -0.06109423562884331, 0.07760242372751236, -0.002408162923529744, -0.15342958271503448, -0.00333808409050107, 0.039022792130708694, -0.1204228550195694, 0.12191841751337051, 0.05288906395435333, 0.055755145847797394, 0.07795695215463638, -0.054910462349653244, -0.12622757256031036, 0.025011112913489342, 0.0045819999650120735, -0.09854569286108017, 0.07217448949813843, 0.03978363424539566, -0.03286287188529968, 0.1286969929933548, 0.04787609726190567, -0.022921094670891762, 0.05533841997385025, -0.146803617477417, -0.0866081714630127, -0.062463004142045975, 0.06177575886249542, 0.030952515080571175, 0.09102784097194672, -0.016655541956424713, 0.11591692268848419, -0.10012771934270859, 0.07076753675937653, 0.1277865618467331, -0.396529883146286, 0.0018400396220386028, 0.16556648910045624, 0.09341040998697281, 0.06983228772878647, -0.052542489022016525, 0.08066247403621674, 0.03184741735458374, 0.012404024600982666, 0.04169756919145584, -0.06336498260498047, -0.08406125754117966, 0.06563351303339005, -0.08730901032686234, -0.06625570356845856, 0.26463791728019714, -0.04109057039022446, 0.05271713435649872, -0.076348215341568, -0.07301401346921921, -0.04530572146177292, -0.007365099154412746, 0.02942349575459957, -0.03150973841547966, 0.08941780775785446, -0.009920861572027206, -0.07765422761440277, -0.1634674370288849, -0.013503002934157848, -0.18011215329170227, 0.0873442143201828, 0.0019752830266952515, 0.04696112871170044, -0.12962684035301208, 0.09669507294893265, -0.021507199853658676, -0.09234359115362167, -0.001625560806132853, -0.08537495136260986, 0.08632232248783112, 0.014244332909584045, -0.07928404957056046, 0.03651511296629906, 0.08030722290277481, 0.13483907282352448, -0.0392259806394577, -0.014903196133673191, -0.02529274858534336, 0.11684159934520721, 0.005007678177207708, 0.04941466078162193, -0.02138424851000309, 0.008615170605480671, 0.051795702427625656, -0.10100240260362625, 0.038707613945007324, -0.07173040509223938, -0.20695745944976807, -0.03951415792107582, -0.0049433717504143715, 0.06531987339258194, 0.03701026737689972, 0.1119927391409874, -0.022145114839076996, 0.016385991126298904, 0.11902148276567459, -0.033062923699617386, 0.023350410163402557, 0.01061996165663004, 0.03828960657119751, 0.046447645872831345, 0.031072698533535004, 0.0401577353477478, -0.07725804299116135, 0.04086759313941002, -0.07382671535015106, -0.00849558599293232, -0.03588758409023285, -0.06907987594604492, 0.05045109987258911, -0.05938174948096275, 0.003607330145314336, -0.16473394632339478, -0.0876113697886467, 0.01946423202753067, 0.005235573742538691, -0.03433934971690178, -0.1164998859167099, 0.007857977412641048, -0.043272871524095535, 0.06043679267168045, -0.08534198254346848, 0.007093325722962618, -0.071875661611557, 0.10332035273313522, -0.07003550231456757, 0.0787321999669075, -0.18256258964538574, 0.07123926281929016, -0.08865382522344589, -0.014462664723396301, -0.044745221734046936, 0.03554772958159447, -0.02449154108762741, 0.06845928728580475, -0.021897193044424057, -0.04603534936904907, -0.0480356402695179, 0.046573277562856674, -0.03933662176132202, 0.16027136147022247, -0.08650830388069153, -0.06955541670322418, 0.22016321122646332, -0.06438352167606354, -0.16290435194969177, 0.10391519218683243, 0.0068176379427313805, 0.03519117087125778, 0.05604966729879379, 0.1936744749546051, -0.013036027550697327, -0.06134369596838951, 0.040807999670505524, 0.13808736205101013, -0.07376901805400848, -0.0780021995306015, 0.05106617510318756, -0.04773525148630142, -0.05254494026303291, 0.029956545680761337, 0.02129225991666317, 0.0463273711502552, -0.01995084248483181, -0.04923023656010628, -0.04867766425013542, 0.005900729447603226, 0.06085251271724701, -0.022432411089539528, 0.0850667804479599, -0.06758340448141098, -0.0623873770236969, 0.01592242158949375, -0.003071249695494771, -0.001298257033340633, 0.058535363525152206, -0.04248136281967163, 0.13553564250469208, -0.0018084162147715688, 0.03523458540439606, -0.12514089047908783, -0.028004897758364677, -0.026861831545829773, 0.12746870517730713, 0.05051086097955704, 0.14911313354969025, 0.029575109481811523, -0.031158899888396263, -0.010910581797361374, 0.030300889164209366, 0.10484109818935394, 0.015437757596373558, -0.06792342662811279, -0.09299885481595993, 0.04401430860161781, -0.03808698430657387, 0.06316053122282028, -0.06315028667449951, 0.026035642251372337, 0.11716333031654358, 0.08458870649337769, -0.04550308361649513, 0.057350099086761475, -0.0221028383821249, 0.014298607595264912, -0.08264195919036865, 0.01753055304288864, 0.11082449555397034, 0.033496081829071045, -0.08399728685617447, 0.27242395281791687, -0.1881849616765976, 0.20459266006946564, 0.22539882361888885, -0.2577657103538513, 0.021099455654621124, -0.08865075558423996, -0.03916216641664505, 0.01775212027132511, 0.028324032202363014, -0.05095776543021202, 0.11087314039468765, -0.039961714297533035, 0.1763019859790802, -0.06506656110286713, -0.03134169429540634, -0.013731911778450012, -0.05371243134140968, -0.017344504594802856, 0.05914442986249924, 0.12622129917144775, -0.10542900115251541, 0.20782257616519928, 0.2576584219932556, 0.017399795353412628, 0.16632862389087677, 0.006368713453412056, 0.007322721648961306, 0.02590986154973507, -0.013457722030580044, -0.04303557798266411, -0.014052840881049633, -0.21664249897003174, -0.029391268268227577, 0.09967747330665588, 0.026187827810645103, 0.08104163408279419, -0.14853310585021973, -0.05168317258358002, -0.003723903326317668, -0.021771222352981567, -0.031094864010810852, 0.1023002490401268, 0.03147624805569649, 0.1274317055940628, 0.004001617431640625, -0.043790992349386215, 0.11638815701007843, 0.021658336743712425, -0.09466677904129028, 0.15024258196353912, -0.1429682821035385, -0.29831749200820923, -0.13911588490009308, -0.14695803821086884, -0.04771522432565689, 0.04532899707555771, 0.147298201918602, -0.046015266329050064, -0.02396881766617298, -0.03803399205207825, 0.007979891262948513, -0.09377964586019516, 0.0010135505581274629, -0.07736991345882416, 0.02708415873348713, -0.0745796412229538, -0.11928337812423706, -0.05819505453109741, 0.0016659608809277415, -0.1008605808019638, 0.13853783905506134, -0.04428497329354286, 0.06275839358568192, 0.1813257783651352, 0.018734624609351158, 0.04178060591220856, -0.06111334264278412, 0.1913277804851532, -0.07389938831329346, 0.003084943862631917, 0.20936967432498932, 0.0007791570387780666, 0.07787817716598511, 0.14699678122997284, 0.028011048212647438, -0.0473807267844677, 0.0092976288869977, -0.05197620391845703, -0.09257230162620544, -0.18880169093608856, -0.13019566237926483, -0.13928720355033875, 0.06438025087118149, 0.03878000006079674, 0.06704969704151154, 0.15795627236366272, 0.06882938742637634, -0.03913665562868118, 0.02121807634830475, 0.028341999277472496, 0.09822020679712296, 0.2893393933773041, -0.06339498609304428, 0.15631619095802307, -0.0638422966003418, -0.08687061071395874, 0.10684459656476974, 0.09464552253484726, 0.1000320315361023, 0.07047490775585175, 0.08355312049388885, 0.06838005036115646, 0.13899073004722595, 0.14058607816696167, 0.04564015939831734, 0.02679692767560482, -0.00987562071532011, -0.04059712961316109, -0.057813405990600586, -0.0021758757065981627, 0.06428314000368118, 0.051357824355363846, -0.18852832913398743, -0.017097575590014458, -0.13968542218208313, 0.08129409700632095, 0.09524926543235779, 0.07637373358011246, -0.17649199068546295, 0.004024030175060034, 0.07628487795591354, 0.005716762505471706, -0.0954986959695816, 0.07762439548969269, 0.03652634844183922, -0.11618521809577942, 0.03996577486395836, -0.023724230006337166, 0.10672571510076523, -0.01506537664681673, 0.07992143929004669, -0.05233500897884369, -0.11310876905918121, 0.02874191477894783, 0.1155385673046112, -0.3088691234588623, 0.20730704069137573, -0.004342799540609121, -0.07578518241643906, -0.10545846074819565, -0.003239965997636318, 0.01248187106102705, 0.13900621235370636, 0.09487419575452805, 0.0021567554213106632, -0.05584556981921196, -0.04844311624765396, -0.019536396488547325, 0.017048649489879608, 0.08845444023609161, -0.03414556756615639, -0.028115790337324142, -0.045871660113334656, 0.017480939626693726, 0.005030917935073376, 0.05606215074658394, -0.0004989068256691098, -0.20177888870239258, 0.10473870486021042, 0.09676452726125717, 0.06107695400714874, -0.007658197078853846, -0.021153200417757034, -0.166017547249794, 0.21917042136192322, -0.11339835077524185, -0.08673100918531418, -0.10370076447725296, -0.08400946855545044, 0.0296577550470829, -0.03904501348733902, 0.06511727720499039, -0.07968494296073914, 0.02055628038942814, -0.09232388436794281, -0.16589641571044922, 0.12615053355693817, -0.08407405763864517, -0.06389819085597992, -0.01579100266098976, 0.17040234804153442, -0.11316625028848648, 0.03909230977296829, 0.03772078827023506, 0.0486934669315815, -0.14729219675064087, -0.12801502645015717, 0.02096685953438282, -0.03811138868331909, 0.0847274512052536, -0.021065354347229004, -0.07392098009586334, -0.02823667973279953, 0.01908658631145954, -0.04264102876186371, 0.29176634550094604, 0.21482187509536743, -0.1081780195236206, 0.19929808378219604, 0.10903982073068619, -0.07661017775535583, -0.32982295751571655, -0.11760596185922623, -0.14276286959648132, -0.04858331382274628, -0.010728839784860611, -0.1503719538450241, 0.025020208209753036, 0.021227769553661346, -0.06357351690530777, 0.1105729341506958, -0.24138393998146057, -0.10105476528406143, 0.12012399733066559, -0.05100315809249878, 0.3156048357486725, -0.14052683115005493, -0.08744633197784424, -0.035184167325496674, -0.16543373465538025, 0.16955699026584625, -0.08074037730693817, 0.11852004379034042, -0.015175556764006615, 0.11437933892011642, 0.022862138226628304, -0.04582676663994789, 0.12164515256881714, -0.023386051878333092, 0.0017068334855139256, -0.12841489911079407, -0.06843577325344086, 0.09005749970674515, -0.0013741814764216542, 0.021408192813396454, -0.13824903964996338, 0.011819113977253437, -0.1194690689444542, -0.018011540174484253, -0.08324631303548813, 0.07417584955692291, -0.012959247455000877, -0.0763743445277214, -0.06253024935722351, -0.04676486924290657, -0.0010547569254413247, -0.006181476172059774, 0.20592986047267914, -0.07570830732584, 0.16119854152202606, 0.17514148354530334, 0.09182258695363998, -0.15146352350711823, -0.023170165717601776, -0.03910432383418083, -0.07803214341402054, 0.0754198282957077, -0.1504913717508316, 0.03204284980893135, 0.09704228490591049, -0.041416268795728683, 0.08425252139568329, 0.09677236527204514, 0.006734292022883892, 0.016316460445523262, 0.13212518393993378, -0.23394443094730377, -0.039000432938337326, -0.05131563916802406, 0.05127870291471481, 0.07686468213796616, 0.05013151839375496, 0.1749177873134613, -0.009446521289646626, -0.02860390394926071, 0.01935649663209915, 0.02575267106294632, -0.061225347220897675, 0.0098109757527709, 0.017598452046513557, 0.019639473408460617, -0.12661024928092957, 0.03923235461115837, 0.04390827938914299, -0.13038858771324158, 0.00828233826905489, 0.11443792283535004, -0.11823489516973495, -0.1519651561975479, -0.08583804965019226, -0.012770578265190125, -0.15020515024662018, -0.03051481954753399, -0.010063241235911846, -0.14403854310512543, 0.06083621829748154, 0.09688223898410797, 0.0669543445110321, 0.08880730718374252, -0.01597476564347744, -0.04102558642625809, -0.009125332348048687, -0.00016566684644203633, -0.08095825463533401, 0.020051103085279465, -0.06449800729751587, 0.09514851123094559, -0.008787401020526886, 0.10457680374383926, -0.07796940207481384, -0.04111253842711449, -0.1407792866230011, 0.00033824017737060785, -0.08954282850027084, -0.06581172347068787, -0.09244440495967865, -0.04906141385436058, 0.008378562517464161, -0.03015907108783722, -0.04846930503845215, -0.023628398776054382, -0.1159423291683197, 0.008033170364797115, -0.04652189463376999, 0.06559689342975616, -0.09442124515771866, -0.009778488427400589, 0.06775544583797455, -0.021084707230329514, 0.14867627620697021, 0.0701933205127716, -0.09174643456935883, 0.04511677846312523, -0.13311892747879028, -0.06671618670225143, 0.0910472571849823, 0.03138921037316322, 0.03015424869954586, 0.05378876253962517, 0.005803719162940979, 0.07835816591978073, 0.02137366496026516, 0.0581597276031971, 0.022866178303956985, -0.11874997615814209, 0.030783751979470253, -0.04458065703511238, -0.11186850070953369, -0.03186533972620964, -0.03580798581242561, 0.06623703241348267, 0.02172860875725746, 0.12321802228689194, -0.04432058334350586, 0.0575956329703331, -0.06592410057783127, 0.029986882582306862, -0.013813997618854046, -0.15742850303649902, -0.08844459801912308, -0.09033864736557007, 0.015101548284292221, 0.001218343386426568, 0.3010941445827484, 0.06446488201618195, -0.08490366488695145, 0.06329817324876785, 0.10198520869016647, 0.040469102561473846, -0.0028633803594857454, 0.2137465626001358, 0.0759677141904831, -0.0316568985581398, -0.10802581906318665, 0.0637592226266861, 0.00513040367513895, -0.02989083342254162, 0.10227596759796143, 0.046914637088775635, 0.0332661047577858, 0.062302861362695694, 0.050709739327430725, -0.026507820934057236, -0.1215396597981453, -0.08955948799848557, -0.0023053560871630907, 0.09320608526468277, -0.09703731536865234, 0.07428562641143799, 0.15916037559509277, -0.04691125825047493, 0.03246832266449928, -0.04228280484676361, -0.03074021078646183, -0.1591365486383438, -0.14992669224739075, -0.07043515890836716, -0.14761507511138916, -0.004757200833410025, -0.08475589007139206, 0.07983748614788055, 0.08480390906333923, 0.04322390630841255, -0.058509111404418945, 0.02368514984846115, -0.016035277396440506, -0.0853327289223671, 0.04427769035100937, -0.029556522145867348, 0.08100137114524841, -0.07735051214694977, -0.027473632246255875, -0.06382619589567184, -0.01985449530184269, 0.005242158658802509, 0.06510375440120697, 0.0033275203313678503, 0.0015579279279336333, -0.13412657380104065, -0.07226669043302536, -0.05875624343752861, 0.062301214784383774, 0.0033187137451022863, 0.1974896639585495, -0.004011854995042086, -0.01145623717457056, 0.04047071188688278, 0.20007206499576569, -0.0808342695236206, -0.0818747952580452, -0.029981296509504318, 0.17053957283496857, 0.021004261448979378, 0.08200835436582565, -0.016320567578077316, -0.009010812267661095, -0.0633847564458847, 0.32231616973876953, 0.3336562514305115, -0.08808042854070663, 0.03730545565485954, 0.014236477203667164, 0.03270110860466957, 0.1112636849284172, 0.11411474645137787, 0.10001428425312042, 0.2679368257522583, -0.08023189753293991, -0.04217158630490303, -0.04128082096576691, 0.01812637783586979, -0.11457812786102295, 0.08280641585588455, 0.0024515704717487097, -0.09599537402391434, -0.013324832543730736, 0.064356729388237, -0.1687571257352829, 0.09608432650566101, -0.051774658262729645, -0.1727898120880127, -0.031108004972338676, 0.03872515633702278, 0.13827955722808838, -0.007483222521841526, 0.07321383059024811, -0.023621603846549988, -0.06397664546966553, 0.06520245224237442, 0.0029870548751205206, -0.1984862983226776, 0.0390021987259388, 0.09188459813594818, -0.05152692273259163, 0.03565186634659767, -0.02997787669301033, 0.08857356011867523, 0.0924406424164772, 0.06801068782806396, -0.048781923949718475, 0.07676301896572113, 0.023497028276324272, -0.0884820967912674, 0.005541631020605564, -0.041398726403713226, 0.004073023796081543, -0.06385980546474457, 0.06621134281158447, -0.12722843885421753, 0.06923724710941315, 0.0013776668347418308, -0.04639123007655144, -0.031232479959726334, -0.003632519394159317, -0.06339579075574875, 0.0785713717341423, 0.04319886863231659, -0.028153685852885246, -0.055023789405822754, -0.04587304964661598, -0.05424364656209946, -0.00956757739186287, -0.1255273073911667, -0.07679283618927002, -0.1031482145190239, -0.06157693266868591, 0.07306381314992905, 0.01600019633769989, -0.16892777383327484, -0.010225698351860046, -0.05079127475619316, 0.06961876153945923, -0.1568393111228943, 0.06240412965416908, 0.1076531931757927, -0.017463454976677895, -0.013016377575695515, -0.029821449890732765, 0.03394227847456932, 0.05201848968863487, -0.09718184173107147, -0.06496885418891907 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Turkish Note: This model is trained with 5 Turkish movies additional to common voice dataset. Although WER is high (50%) per common voice test dataset, performance from "other sources " seems pretty good. Disclaimer: Please use another wav2vec2-tr model in hub for "clean environment" dialogues as they tend to do better in clean sounds with less background noise. Dataset building from csv and merging code can be found on below of this Readme. Please try speech yourself on the right side to see its performance. Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Turkish using the [Common Voice](https://huggingface.co/datasets/common_voice) and 5 Turkish movies that include background noise/talkers . When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio import pydub from pydub.utils import mediainfo import array from pydub import AudioSegment from pydub.utils import get_array_type import numpy as np from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gorkemgoknar/wav2vec2-large-xlsr-53-turkish") model = Wav2Vec2ForCTC.from_pretrained("gorkemgoknar/wav2vec2-large-xlsr-53-turkish") new_sample_rate = 16000 def audio_resampler(batch, new_sample_rate = 16000): #not working without complex library compilation in windows for mp3 #speech_array, sampling_rate = torchaudio.load(batch["path"]) #speech_array, sampling_rate = librosa.load(batch["path"]) #sampling_rate = pydub.utils.info['sample_rate'] ##gets current samplerate sound = pydub.AudioSegment.from_file(file=batch["path"]) sampling_rate = new_sample_rate sound = sound.set_frame_rate(new_sample_rate) left = sound.split_to_mono()[0] bit_depth = left.sample_width * 8 array_type = pydub.utils.get_array_type(bit_depth) numeric_array = np.array(array.array(array_type, left._data) ) speech_array = torch.FloatTensor(numeric_array) batch["speech"] = numeric_array batch["sampling_rate"] = sampling_rate #batch["target_text"] = batch["sentence"] return batch # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch = audio_resampler(batch, new_sample_rate = new_sample_rate) return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import pydub import array import numpy as np test_dataset = load_dataset("common_voice", "tr", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gorkemgoknar/wav2vec2-large-xlsr-53-turkish") model = Wav2Vec2ForCTC.from_pretrained("gorkemgoknar/wav2vec2-large-xlsr-53-turkish") model.to("cuda") #Note: Not ignoring "'" on this one #Note: Not ignoring "'" on this one chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�\\#\\>\\<\\_\\’\\[\\]\\{\\}]' #resampler = torchaudio.transforms.Resample(48_000, 16_000) #using custom load and transformer for audio -> see audio_resampler new_sample_rate = 16000 def audio_resampler(batch, new_sample_rate = 16000): #not working without complex library compilation in windows for mp3 #speech_array, sampling_rate = torchaudio.load(batch["path"]) #speech_array, sampling_rate = librosa.load(batch["path"]) #sampling_rate = pydub.utils.info['sample_rate'] ##gets current samplerate sound = pydub.AudioSegment.from_file(file=batch["path"]) sound = sound.set_frame_rate(new_sample_rate) left = sound.split_to_mono()[0] bit_depth = left.sample_width * 8 array_type = pydub.utils.get_array_type(bit_depth) numeric_array = np.array(array.array(array_type, left._data) ) speech_array = torch.FloatTensor(numeric_array) return speech_array, new_sample_rate def remove_special_characters(batch): ##this one comes from subtitles if additional timestamps not processed -> 00:01:01 00:01:01,33 batch["sentence"] = re.sub('\\b\\d{2}:\\d{2}:\\d{2}(,+\\d{2})?\\b', ' ', batch["sentence"]) ##remove all caps in text [AÇIKLAMA] etc, do it before.. batch["sentence"] = re.sub('\\[(\\b[A-Z]+\\])', '', batch["sentence"]) ##replace three dots (that are inside string with single) batch["sentence"] = re.sub("([a-zA-Z]+)\\.\\.\\.", r"\\1.", batch["sentence"]) #standart ignore list batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " return batch # Preprocessing the datasets. # We need to read the aduio files as arrays new_sample_rate = 16000 def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() ##speech_array, sampling_rate = torchaudio.load(batch["path"]) ##load and conversion done in resampler , takes and returns batch speech_array, sampling_rate = audio_resampler(batch, new_sample_rate = new_sample_rate) batch["speech"] = speech_array batch["sampling_rate"] = sampling_rate batch["target_text"] = batch["sentence"] return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch print("EVALUATING:") ##for 8GB RAM on GPU best is batch_size 2 for windows, 4 may fit in linux only result = test_dataset.map(evaluate, batched=True, batch_size=2) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 50.41 % ## Training The Common Voice `train` and `validation` datasets were used for training. Additional 5 Turkish movies with subtitles also used for training. Similar training model used as base fine-tuning, additional audio resampler is on above code. Putting model building and merging code below for reference ```python import pandas as pd from datasets import load_dataset, load_metric import os from pathlib import Path from datasets import Dataset import csv #Walk all subdirectories of base_set_path and find csv files base_set_path = r'C:\\dataset_extracts' csv_files = [] for path, subdirs, files in os.walk(base_set_path): for name in files: if name.endswith(".csv"): deckfile= os.path.join(path, name) csv_files.append(deckfile) def get_dataset_from_csv_file(csvfilename,names=['sentence', 'path']): path = Path(csvfilename) csv_delimiter="\\t" ##tab seperated, change if something else ##Pandas has bug reading non-ascii file names, make sure use open with encoding df=pd.read_csv(open(path, 'r', encoding='utf-8'), delimiter=csv_delimiter,header=None , names=names, encoding='utf8') return Dataset.from_pandas(df) custom_datasets= [] for csv_file in csv_files: this_dataset=get_dataset_from_csv_file(csv_file) custom_datasets.append(this_dataset) from datasets import concatenate_datasets, load_dataset from datasets import load_from_disk # Merge datasets together (from csv files) dataset_file_path = ".\\dataset_file" custom_datasets_concat = concatenate_datasets( [dset for dset in custom_datasets] ) #save this one to disk custom_datasets_concat.save_to_disk( dataset_file_path ) #load back from disk custom_datasets_from_disk = load_from_disk(dataset_file_path) ```
{"language": ["tr"], "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice", "movies"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Large Turkish with extended dataset by Gorkem Goknar", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice tr", "type": "common_voice", "args": "tr"}, "metrics": [{"type": "wer", "value": 50.41, "name": "Test WER"}]}]}]}
automatic-speech-recognition
gorkemgoknar/wav2vec2-large-xlsr-53-turkish
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "tr", "dataset:common_voice", "dataset:movies", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #dataset-movies #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Turkish Note: This model is trained with 5 Turkish movies additional to common voice dataset. Although WER is high (50%) per common voice test dataset, performance from "other sources " seems pretty good. Disclaimer: Please use another wav2vec2-tr model in hub for "clean environment" dialogues as they tend to do better in clean sounds with less background noise. Dataset building from csv and merging code can be found on below of this Readme. Please try speech yourself on the right side to see its performance. Fine-tuned facebook/wav2vec2-large-xlsr-53 on Turkish using the Common Voice and 5 Turkish movies that include background noise/talkers . When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. Test Result: 50.41 % ## Training The Common Voice 'train' and 'validation' datasets were used for training. Additional 5 Turkish movies with subtitles also used for training. Similar training model used as base fine-tuning, additional audio resampler is on above code. Putting model building and merging code below for reference
[ "# Wav2Vec2-Large-XLSR-53-Turkish\n\nNote: This model is trained with 5 Turkish movies additional to common voice dataset.\nAlthough WER is high (50%) per common voice test dataset, performance from \"other sources \" seems pretty good.\n\nDisclaimer: Please use another wav2vec2-tr model in hub for \"clean environment\" dialogues as they tend to do better in clean sounds with less background noise.\n\nDataset building from csv and merging code can be found on below of this Readme.\n\nPlease try speech yourself on the right side to see its performance.\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Turkish using the Common Voice and 5 Turkish movies that include background noise/talkers .\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Turkish test data of Common Voice. \n\n\nTest Result: 50.41 %", "## Training\n\n\nThe Common Voice 'train' and 'validation' datasets were used for training. Additional 5 Turkish movies with subtitles also used for training.\nSimilar training model used as base fine-tuning, additional audio resampler is on above code.\n\nPutting model building and merging code below for reference" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #dataset-movies #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Turkish\n\nNote: This model is trained with 5 Turkish movies additional to common voice dataset.\nAlthough WER is high (50%) per common voice test dataset, performance from \"other sources \" seems pretty good.\n\nDisclaimer: Please use another wav2vec2-tr model in hub for \"clean environment\" dialogues as they tend to do better in clean sounds with less background noise.\n\nDataset building from csv and merging code can be found on below of this Readme.\n\nPlease try speech yourself on the right side to see its performance.\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Turkish using the Common Voice and 5 Turkish movies that include background noise/talkers .\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Turkish test data of Common Voice. \n\n\nTest Result: 50.41 %", "## Training\n\n\nThe Common Voice 'train' and 'validation' datasets were used for training. Additional 5 Turkish movies with subtitles also used for training.\nSimilar training model used as base fine-tuning, additional audio resampler is on above code.\n\nPutting model building and merging code below for reference" ]
[ 86, 192, 20, 29, 71 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #dataset-movies #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Turkish\n\nNote: This model is trained with 5 Turkish movies additional to common voice dataset.\nAlthough WER is high (50%) per common voice test dataset, performance from \"other sources \" seems pretty good.\n\nDisclaimer: Please use another wav2vec2-tr model in hub for \"clean environment\" dialogues as they tend to do better in clean sounds with less background noise.\n\nDataset building from csv and merging code can be found on below of this Readme.\n\nPlease try speech yourself on the right side to see its performance.\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Turkish using the Common Voice and 5 Turkish movies that include background noise/talkers .\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\nThe model can be evaluated as follows on the Turkish test data of Common Voice. \n\n\nTest Result: 50.41 %## Training\n\n\nThe Common Voice 'train' and 'validation' datasets were used for training. Additional 5 Turkish movies with subtitles also used for training.\nSimilar training model used as base fine-tuning, additional audio resampler is on above code.\n\nPutting model building and merging code below for reference" ]
[ -0.11490766704082489, 0.03835111856460571, -0.003898605704307556, -0.012888586148619652, 0.08183462917804718, -0.006635739933699369, 0.15648208558559418, 0.06540090590715408, -0.022472184151411057, 0.026323143392801285, -0.04227340966463089, -0.09466002881526947, 0.10977533459663391, 0.17382249236106873, 0.09066979587078094, -0.17499598860740662, 0.0018139126477763057, -0.1254001408815384, 0.13737112283706665, 0.06992226094007492, 0.08130919933319092, -0.04773771017789841, 0.02047189325094223, 0.060685984790325165, -0.09782906621694565, 0.052667319774627686, 0.04749683290719986, -0.07338006049394608, 0.09618328511714935, 0.056334540247917175, 0.04431769251823425, -0.04994047060608864, 0.016355065628886223, -0.11719618737697601, 0.042981963604688644, 0.05798069387674332, -0.001729995128698647, 0.0056489757262170315, 0.19961434602737427, -0.04370751976966858, 0.23777183890342712, 0.008391318842768669, -0.052353013306856155, 0.05484066531062126, -0.0554717555642128, -0.13384130597114563, -0.10457603633403778, 0.12896890938282013, 0.06480436772108078, 0.0741078108549118, -0.07801241427659988, -0.03068188577890396, -0.03124869056046009, 0.08722642809152603, 0.04515708610415459, -0.15656135976314545, -0.0463336743414402, -0.09779486060142517, 0.008742635138332844, 0.030383894219994545, -0.04920024052262306, 0.059056129306554794, -0.01462177187204361, -0.00941810104995966, -0.0631985291838646, -0.038702309131622314, -0.11891192942857742, -0.11143919080495834, -0.06289632618427277, -0.03140499070286751, 0.12568005919456482, 0.024442583322525024, -0.0848097875714302, -0.17685794830322266, -0.018244296312332153, 0.008154360577464104, -0.013273438438773155, -0.01639890857040882, -0.032857488840818405, 0.03165054693818092, 0.05138656124472618, -0.045196156948804855, -0.10664571076631546, -0.0449853390455246, -0.028117313981056213, 0.07506798952817917, 0.025363093242049217, 0.019964059814810753, -0.052878204733133316, 0.11587463319301605, -0.08711652457714081, -0.07532357424497604, 0.010152866132557392, -0.003007301362231374, -0.10043291747570038, 0.012577534653246403, -0.018428990617394447, -0.19447176158428192, -0.021472785621881485, -0.013232994824647903, 0.045240096747875214, 0.09097350388765335, -0.06491214781999588, 0.03453580290079117, -0.005410885903984308, 0.10930616408586502, -0.04757765680551529, -0.09226017445325851, 0.012203688733279705, -0.04285639151930809, 0.024473831057548523, -0.021892651915550232, -0.018459107726812363, -0.007955553941428661, 0.05053930729627609, 0.07033535838127136, 0.0033565154299139977, -0.03341815620660782, -0.04035060852766037, 0.00863939244300127, 0.1359674036502838, -0.12165026366710663, 0.01866438426077366, 0.036931440234184265, -0.01789562590420246, 0.08104599267244339, 0.024085918441414833, -0.01114138588309288, -0.09450583159923553, 0.03747862949967384, 0.03336034715175629, 0.05625535920262337, -0.029551111161708832, -0.03898171707987785, 0.02744930237531662, 0.016303986310958862, -0.02681780606508255, -0.14824111759662628, -0.08578059822320938, -0.04638879746198654, 0.006681173108518124, -0.049624454230070114, 0.08205673843622208, -0.00483402656391263, -0.009315213188529015, 0.047122739255428314, -0.006692444905638695, 0.07450570166110992, -0.03158170357346535, 0.017588267102837563, 0.014429688453674316, 0.028634855523705482, 0.09484997391700745, 0.0276370570063591, -0.059799741953611374, -0.02158241532742977, -0.06937853991985321, 0.14514651894569397, -0.005234343931078911, -0.06689649820327759, -0.08398676663637161, 0.016914160922169685, -0.06889171898365021, 0.016978653147816658, 0.0351363904774189, 0.09752581268548965, -0.2815895080566406, -0.0642799660563469, 0.18563711643218994, -0.12388235330581665, 0.0235424917191267, 0.15311893820762634, 0.02367803268134594, 0.034573569893836975, 0.13149085640907288, 0.2392185479402542, 0.16652345657348633, -0.19421829283237457, -0.0667680948972702, -0.000024691187718417495, -0.07010149955749512, 0.08117719739675522, 0.05549614503979683, -0.05442412197589874, 0.10065053403377533, 0.03592400252819061, -0.06178579479455948, 0.08547763526439667, 0.013169333338737488, -0.028924183920025826, 0.009089949540793896, -0.055202238261699677, 0.03812147676944733, -0.021000992506742477, 0.010026372969150543, -0.07418861985206604, -0.1144462525844574, -0.05427635461091995, 0.11126934736967087, -0.03576073795557022, 0.02899208851158619, -0.10144086182117462, 0.17338554561138153, -0.06248897686600685, 0.00503163505345583, -0.15022686123847961, 0.08328448981046677, -0.015774887055158615, -0.025323670357465744, 0.09632810205221176, 0.0242203027009964, 0.025675775483250618, 0.06440981477499008, -0.03962632641196251, -0.033171042799949646, -0.015259191393852234, -0.009706600569188595, -0.021605027839541435, -0.11058590561151505, 0.0008947372552938759, -0.025798656046390533, 0.11776170134544373, -0.07452695816755295, -0.03430430218577385, 0.09540244191884995, 0.14365126192569733, 0.014810035936534405, -0.08975508064031601, 0.04377347230911255, 0.02453332580626011, 0.04824729636311531, -0.04213714972138405, -0.003381553338840604, 0.01863095723092556, 0.0490058958530426, 0.10532903671264648, -0.18205061554908752, -0.07453647255897522, 0.08305986225605011, 0.06695811450481415, -0.10309647768735886, 0.109872967004776, 0.011075582355260849, -0.02144850417971611, -0.046711888164281845, -0.04742569103837013, 0.28842779994010925, 0.04245408624410629, 0.10013885796070099, -0.04163787141442299, -0.010390040464699268, 0.03818719834089279, -0.058209218084812164, -0.04408174753189087, 0.05906175076961517, -0.0412251353263855, -0.06966403871774673, -0.00046881730668246746, 0.0200909823179245, 0.05299359932541847, 0.2874600291252136, 0.0033452778588980436, -0.105439193546772, -0.04539516940712929, 0.006121916696429253, -0.002929951762780547, 0.09493529051542282, -0.06848965585231781, -0.03146827593445778, 0.02320699952542782, 0.03962428867816925, 0.05691713094711304, -0.0739445835351944, 0.04045472666621208, 0.029600020498037338, -0.0860074833035469, -0.05564851686358452, 0.07564359158277512, -0.04268806427717209, 0.06754644215106964, -0.06544843316078186, 0.058920230716466904, -0.04125096648931503, -0.05174605920910835, -0.1450849324464798, 0.05855032056570053, -0.11879369616508484, -0.24639779329299927, -0.1700887233018875, 0.02537422813475132, -0.008163245394825935, -0.013415614143013954, 0.05031803250312805, -0.10456349700689316, -0.006547372788190842, -0.037794582545757294, 0.08581119030714035, -0.009335941635072231, -0.027382707223296165, -0.09426382929086685, -0.0005145203322172165, 0.05202944576740265, -0.09301343560218811, 0.001323101227171719, 0.015468671917915344, -0.049290645867586136, -0.00783189944922924, 0.07345958054065704, 0.0377604216337204, 0.08857251703739166, -0.03751538321375847, 0.008028602227568626, -0.017578771337866783, 0.14658376574516296, -0.15204912424087524, 0.09857331216335297, 0.1913449913263321, 0.0012881560251116753, 0.011153845116496086, 0.08750627934932709, 0.008360975421965122, -0.011459305882453918, -0.008672515861690044, -0.012701951898634434, -0.05415083467960358, -0.16483964025974274, -0.07074788212776184, -0.06820832937955856, -0.07890449464321136, -0.03287190571427345, 0.007902625016868114, -0.011714753694832325, -0.0036421511322259903, -0.05073299631476402, -0.05263570323586464, 0.04773854836821556, -0.010943934321403503, 0.10273588448762894, 0.02288549207150936, 0.037180591374635696, -0.09907497465610504, 0.042319416999816895, 0.1103462278842926, -0.005222958512604237, 0.12473367154598236, 0.006437317933887243, 0.05087219551205635, 0.07493206113576889, 0.07430440932512283, 0.06890009343624115, 0.03742942959070206, -0.023886848241090775, 0.017485959455370903, 0.018850315362215042, -0.08353988081216812, -0.02912094257771969, 0.018314843997359276, 0.07029618322849274, -0.08359621465206146, -0.05477825552225113, 0.022769248113036156, 0.06911960989236832, 0.0695515125989914, 0.01464612316340208, -0.10688100010156631, -0.10102654993534088, -0.01454505231231451, -0.09807045757770538, -0.00956755131483078, -0.051162101328372955, 0.1802264004945755, -0.16911685466766357, 0.09502529352903366, 0.014943970367312431, 0.058236733078956604, -0.06392835080623627, -0.030459420755505562, -0.029171157628297806, 0.03838815912604332, 0.02386319637298584, 0.08434724062681198, -0.04927551746368408, 0.07563157379627228, 0.01853272132575512, 0.17516113817691803, -0.046050574630498886, 0.016636129468679428, 0.08538588881492615, -0.03088846616446972, 0.0924421176314354, 0.027878254652023315, -0.11223423480987549, -0.05209263786673546, -0.11085651814937592, 0.016394684091210365, 0.045853663235902786, -0.013100873678922653, 0.013131246902048588, -0.015048041939735413, -0.01291391346603632, -0.07298705726861954, -0.05038462579250336, -0.1826307624578476, -0.14724093675613403, 0.027188897132873535, 0.03852628171443939, 0.08140190690755844, -0.05700662359595299, -0.041576724499464035, -0.061055995523929596, 0.10078573226928711, -0.16731609404087067, -0.056433435529470444, -0.059869345277547836, -0.05120234191417694, 0.09304668009281158, -0.08495227247476578, 0.000704226375091821, 0.013230415992438793, 0.113277368247509, -0.05996282771229744, -0.09326183795928955, -0.01737334206700325, -0.08877377212047577, -0.12121953070163727, -0.015806376934051514, 0.19134314358234406, 0.09311173856258392, 0.07707210630178452, 0.0469643771648407, 0.008255970664322376, 0.02105504460632801, -0.07417760789394379, -0.022704649716615677, 0.11414431035518646, -0.10620904713869095, 0.002384491730481386, 0.08408602327108383, -0.20887058973312378, -0.09072868525981903, -0.06150586158037186, 0.08144721388816833, 0.055925630033016205, -0.0695296972990036, 0.15811164677143097, 0.10700447857379913, -0.09141886979341507, -0.1381603330373764, -0.03384055942296982, 0.09153600037097931, 0.08814331889152527, 0.0034204006660729647, -0.13403603434562683, 0.07183706760406494, 0.010981079190969467, -0.007429748307913542, 0.04974348843097687, -0.286979079246521, -0.1617170125246048, 0.08838144689798355, 0.00043363217264413834, -0.029491659253835678, -0.02165246568620205, -0.046223148703575134, 0.008164195343852043, 0.03102775849401951, -0.05035626143217087, -0.18582868576049805, 0.06326023489236832, 0.05704988166689873, 0.08109304308891296, 0.008861183188855648, -0.0060082776471972466, 0.1200978010892868, 0.0014577530091628432, 0.016507383435964584, -0.06428897380828857, 0.07933341711759567, 0.051475148648023605, 0.001759682665579021, 0.11976723372936249, -0.05853791534900665, 0.032606396824121475, -0.10439193248748779, -0.042540062218904495, -0.05606793239712715, 0.08845556527376175, -0.007291403133422136, 0.026715120300650597, -0.006778030656278133, 0.027094116434454918, -0.004525251220911741, -0.007040248718112707, -0.19231654703617096, -0.11175280809402466, -0.09219031035900116, 0.11292452365159988, 0.11814834922552109, -0.00022443459602072835, -0.12642867863178253, -0.04003220424056053, -0.02221790887415409, 0.059842899441719055, 0.009858914650976658, -0.0014393194578588009, 0.060429852455854416, -0.010104407556355, 0.10637621581554413, -0.06624479591846466, -0.14977926015853882, 0.11529438942670822, 0.12958118319511414, -0.06864199042320251, -0.16892428696155548, -0.045568641275167465, 0.014415227808058262, -0.013501817360520363, -0.07948892563581467, 0.14678022265434265, -0.080406554043293, 0.004897582810372114, -0.039554059505462646, 0.035051506012678146, -0.08035866916179657, 0.17244699597358704, 0.005361328367143869, 0.021229499951004982, -0.0754292756319046, 0.09255857020616531, 0.01577736809849739, -0.05129922553896904, 0.05727218836545944, 0.06844912469387054, -0.08177416026592255, -0.047828108072280884, -0.056997742503881454, 0.13879573345184326, 0.11477755010128021, -0.14889118075370789, 0.0027937712147831917, -0.059623368084430695, -0.026453426107764244, -0.012338373810052872, -0.0033693858422338963, 0.017500149086117744, -0.11737217754125595, -0.04291588068008423, -0.042986270040273666, 0.07385563850402832, 0.14745217561721802, -0.04216659814119339, -0.12268222868442535, 0.1918938010931015, 0.05113690346479416, -0.021257326006889343, -0.026559796184301376, -0.05883244797587395, 0.07042864710092545, 0.006689117755740881, -0.09013281017541885, -0.005201463121920824, -0.08452648669481277, 0.011636869050562382, -0.004024282563477755, -0.009611953049898148, -0.012292246334254742, 0.04851912334561348, -0.02666081115603447, -0.014098282903432846, -0.07922127842903137, 0.045269642025232315, -0.1552942842245102, 0.06822284311056137, 0.03271427005529404, -0.04662535712122917, 0.06359343230724335, 0.12313241511583328, -0.03694256767630577, 0.10635491460561752, -0.13923121988773346, -0.05155283957719803, -0.0018903410527855158, 0.01887410506606102, -0.02428554557263851, -0.10914386063814163, 0.03888915106654167, 0.061661019921302795, 0.01963258720934391, -0.0018330321181565523, 0.09662635624408722, -0.07260266691446304, -0.007247577421367168, -0.01605960913002491, 0.02825455367565155, -0.0677219033241272, 0.12467199563980103, 0.07984716445207596, 0.06648069620132446, 0.11801867932081223, -0.11959094554185867, 0.05227605625987053, -0.09575913846492767, 0.002554234117269516, -0.03074580803513527, -0.021368902176618576, -0.023581042885780334, -0.06883393973112106, 0.07576487213373184, -0.01847260259091854, 0.07068628817796707, 0.07578649371862411, 0.03941936418414116, 0.004963902290910482, -0.06951911002397537, -0.04876110330224037, 0.0017512422055006027, 0.06901585310697556, 0.004213066305965185, 0.013736552558839321, -0.0973639190196991, -0.053748734295368195, -0.0058236196637153625, -0.029495205730199814, 0.06230224668979645, 0.17509528994560242, -0.03823135048151016, 0.06483854353427887, 0.027840906754136086, -0.0778944119811058, -0.12133393436670303, -0.051844317466020584, -0.20193816721439362, 0.04625697061419487, -0.08028252422809601, 0.05922674387693405, 0.1471521407365799, -0.14445310831069946, 0.07599229365587234, 0.033459462225437164, -0.07439059019088745, -0.013281912542879581, -0.17946088314056396, -0.0026760431937873363, -0.07402434945106506, 0.004315604455769062, -0.05865444615483284, 0.08106967061758041, -0.01721937768161297, 0.03866147994995117, -0.06918592005968094, 0.2736162841320038, -0.10523577779531479, -0.1459490954875946, 0.13335126638412476, -0.02058952860534191, 0.008376426063477993, 0.01455176342278719, 0.040729232132434845, 0.04605094715952873, 0.010713839903473854, 0.0855049341917038, 0.08935922384262085, -0.030177041888237, 0.004789479076862335, -0.06641750782728195, -0.05875154584646225, 0.021509943529963493, -0.023645853623747826, 0.05051343888044357, 0.14629694819450378, 0.10711079090833664, -0.057172976434230804, -0.030529210343956947, 0.13040222227573395, -0.036192119121551514, -0.11490149050951004, -0.11217541992664337, 0.04188787564635277, -0.020254595205187798, -0.007178534287959337, -0.012350769713521004, -0.09187238663434982, 0.006950104609131813, 0.1921488493680954, 0.20820562541484833, 0.03958537429571152, 0.027639931067824364, -0.05633268877863884, 0.008385024964809418, -0.03218504786491394, 0.0971575677394867, -0.01488025113940239, 0.24187974631786346, 0.006707015912979841, 0.15382444858551025, -0.05441150441765785, -0.07225849479436874, 0.0019186603603884578, 0.09809600561857224, -0.08935297280550003, -0.05552366375923157, -0.022282298654317856, 0.16438448429107666, -0.012561035342514515, -0.23835785686969757, -0.04682818800210953, -0.008006460033357143, -0.08762341737747192, 0.04070531204342842, 0.04616076499223709, 0.11073125898838043, 0.037068966776132584, 0.013568440452218056, 0.02633790299296379, 0.1529923677444458, 0.04439973086118698, -0.050969816744327545, -0.10326752811670303, 0.019648704677820206, -0.12929198145866394, 0.10279190540313721, -0.00003665461190394126, 0.0786169096827507, 0.033014632761478424, 0.0739579126238823, -0.06209839880466461, 0.08630203455686569, 0.02354421466588974, -0.013546749018132687, 0.038301389664411545, 0.18330387771129608, 0.003960472997277975, 0.03891187161207199, 0.0658520981669426, 0.007301501464098692, 0.06254799664020538, -0.14416609704494476, 0.06422275304794312, -0.07286417484283447, 0.10432115942239761, -0.06427522748708725, 0.12255512923002243, 0.1496696025133133, -0.03750499337911606, 0.01197140198200941, -0.037669919431209564, 0.020494244992733, 0.06537766009569168, 0.043309226632118225, 0.02744048275053501, -0.15879930555820465, -0.03225502371788025, -0.01606348715722561, 0.044479962438344955, -0.15530166029930115, -0.05511663109064102, -0.0151344770565629, -0.02587652951478958, 0.03199654072523117, 0.11061088740825653, 0.02618701383471489, 0.007629031781107187, -0.007699253503233194, 0.0138396630063653, 0.04903251677751541, 0.07712358981370926, -0.08219285309314728, -0.028271235525608063 ]
null
null
null
test
{}
null
gottaegbert/nolibox
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
test
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
# Introduction This model checkpoint is obtained by first fine-tuning the sshleifer/distilbart-cnn-6-6 summarization checkpoint on the SQuAD dataset. After this, the 6-6 fine-tuned model is distilled down to a 3-3 model which gives us the final checkpoint. [GitHub Link for training scripts.](https://github.com/darth-c0d3r/bart-question-generation) # Usage The input format is as follows: `[answer] <s> [passage]`. The model will predict the question that corresponds to the answer from the passage. # Plot ![Distillation Run](distill_run_21.png) # Dataset The goal of Question Generation is to generate a valid and fluent question according to a given passage and the target answer. Hence, the input to the model will be a passage context and an answer, and the output / target will be the question for the given answer. Question Generation can be used in many scenarios, such as automatic tutoring systems, improving the performance of Question Answering models and enabling chat-bots to lead a conversation. The final dataset is created by taking the union of the following Question Answering Datasets. The dataset must have the following three columns: context, question, answer. ## [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowd-workers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. We use the SQuAD 1.1 variant which does not have unanswerable questions. So, every question will have a corresponding answer and vice-versa. ### Preprocessing The first step is to remove questions which don't have answers. After that, we split the train set into Train and Eval sets and treat the dev set as the test set. ### Stats **Original Dataset** | Split | Num Docs | Num Contexts | Ques w/ Ans | Ques w/o Ans | Num Unique Ans | | ----- | -------- | ------------ | ----------- | ------------ | -------------- | | Train | 442 | 19035 | 86821 | 43498 | 86821 | | Dev | 35 | 1204 | 5928 | 5945 | 10279 | **After Preprocessing** | Split | Num Rows | Context | Answer | Question | | ----- | -------- | ---------- | ------ | -------- | | Train | 80995 | 653,120,20 | 43,3,1 | 40,10,1 | | Eval | 5826 | 445,123,67 | 28,3,1 | 29,10,3 | | Test | 10297 | 629,129,25 | 29,4,1 | 31,10,3 | The numbers in the columns indicate max, avg, min number of words.
{"language": "en", "license": "apache-2.0", "tags": ["question-generation", "summarization"], "datasets": ["squad"]}
summarization
gpssohi/distilbart-qgen-3-3
[ "transformers", "pytorch", "bart", "text2text-generation", "question-generation", "summarization", "en", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bart #text2text-generation #question-generation #summarization #en #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
Introduction ============ This model checkpoint is obtained by first fine-tuning the sshleifer/distilbart-cnn-6-6 summarization checkpoint on the SQuAD dataset. After this, the 6-6 fine-tuned model is distilled down to a 3-3 model which gives us the final checkpoint. GitHub Link for training scripts. Usage ===== The input format is as follows: '[answer] ~~[passage]'. The model will predict the question that corresponds to the answer from the passage.~~ Plot ==== !Distillation Run Dataset ======= The goal of Question Generation is to generate a valid and fluent question according to a given passage and the target answer. Hence, the input to the model will be a passage context and an answer, and the output / target will be the question for the given answer. Question Generation can be used in many scenarios, such as automatic tutoring systems, improving the performance of Question Answering models and enabling chat-bots to lead a conversation. The final dataset is created by taking the union of the following Question Answering Datasets. The dataset must have the following three columns: context, question, answer. SQuAD ----- Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowd-workers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. We use the SQuAD 1.1 variant which does not have unanswerable questions. So, every question will have a corresponding answer and vice-versa. ### Preprocessing The first step is to remove questions which don't have answers. After that, we split the train set into Train and Eval sets and treat the dev set as the test set. ### Stats Original Dataset After Preprocessing The numbers in the columns indicate max, avg, min number of words.
[ "### Preprocessing\n\n\nThe first step is to remove questions which don't have answers. After that, we split the train set into Train and Eval sets and treat the dev set as the test set.", "### Stats\n\n\nOriginal Dataset\n\n\n\nAfter Preprocessing\n\n\n\nThe numbers in the columns indicate max, avg, min number of words." ]
[ "TAGS\n#transformers #pytorch #bart #text2text-generation #question-generation #summarization #en #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Preprocessing\n\n\nThe first step is to remove questions which don't have answers. After that, we split the train set into Train and Eval sets and treat the dev set as the test set.", "### Stats\n\n\nOriginal Dataset\n\n\n\nAfter Preprocessing\n\n\n\nThe numbers in the columns indicate max, avg, min number of words." ]
[ 64, 45, 29 ]
[ "passage: TAGS\n#transformers #pytorch #bart #text2text-generation #question-generation #summarization #en #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Preprocessing\n\n\nThe first step is to remove questions which don't have answers. After that, we split the train set into Train and Eval sets and treat the dev set as the test set.### Stats\n\n\nOriginal Dataset\n\n\n\nAfter Preprocessing\n\n\n\nThe numbers in the columns indicate max, avg, min number of words." ]
[ -0.11445995420217514, 0.08505301922559738, -0.0006389160989783704, 0.0742335319519043, 0.17240376770496368, 0.05827725678682327, 0.03113524429500103, 0.09162937104701996, -0.10650445520877838, 0.028015904128551483, 0.19935685396194458, 0.09413395076990128, 0.01203190814703703, 0.17754992842674255, -0.103619284927845, -0.11725834012031555, 0.03255007043480873, 0.04671743884682655, -0.054173074662685394, 0.11639419198036194, 0.1089375838637352, -0.09818462282419205, 0.033020418137311935, -0.01520061306655407, -0.14503277838230133, 0.014871696941554546, -0.006980340462177992, -0.049648966640233994, 0.12197575718164444, 0.05393080413341522, -0.017337951809167862, 0.03888605535030365, 0.0229180958122015, -0.16281913220882416, 0.022390151396393776, 0.007568422704935074, -0.022215139120817184, 0.046182140707969666, 0.04367450997233391, 0.013664533384144306, 0.013821171596646309, 0.050697311758995056, 0.02569868043065071, 0.0692288801074028, -0.10003986209630966, -0.2530262768268585, -0.10864889621734619, -0.07462025433778763, 0.1680195927619934, 0.16795334219932556, -0.04015161842107773, 0.11750571429729462, -0.08576812595129013, 0.08631078153848648, 0.0893634483218193, -0.33838728070259094, -0.03744521737098694, 0.07896213978528976, -0.0059003946371376514, 0.004171932116150856, -0.06291880458593369, 0.030384698882699013, 0.11606405675411224, 0.028072770684957504, -0.030440347269177437, -0.03943095728754997, -0.04993245378136635, 0.034535523504018784, -0.11323383450508118, -0.04014788195490837, 0.36025530099868774, -0.058442238718271255, 0.025832906365394592, -0.05168743059039116, -0.046975888311862946, -0.17415881156921387, 0.03135586902499199, -0.04379856958985329, -0.01889588125050068, 0.02739460952579975, -0.0448303148150444, 0.02293868362903595, -0.12481394410133362, -0.061310552060604095, -0.08903005719184875, -0.0017302759224548936, 0.030073247849941254, 0.04141807183623314, -0.10225918143987656, 0.040901049971580505, -0.01826775074005127, -0.09566705673933029, 0.0049253166653215885, -0.05185411497950554, -0.0845695212483406, -0.021910959854722023, -0.11547108739614487, -0.16177350282669067, 0.05638836696743965, 0.3002300262451172, -0.07798631489276886, 0.014802447520196438, -0.025616679340600967, 0.029874557629227638, 0.08861056715250015, 0.08659107983112335, 0.01069983746856451, -0.10039586573839188, 0.008552968502044678, -0.06619655340909958, -0.006703631952404976, -0.04608019441366196, -0.10037335753440857, -0.01965518295764923, 0.04986259713768959, 0.1255425363779068, 0.001767907990142703, 0.009325265884399414, -0.03473363071680069, -0.016350388526916504, 0.00741942971944809, -0.11134196072816849, 0.021522924304008484, -0.011974779888987541, 0.04889217019081116, -0.010476738214492798, -0.10178349167108536, 0.002397728618234396, -0.03891594335436821, 0.14129650592803955, -0.06603672355413437, -0.07025207579135895, -0.02759050764143467, -0.036139726638793945, -0.007979115471243858, -0.11639557033777237, -0.03626251965761185, -0.09847307950258255, -0.17226578295230865, -0.07828288525342941, 0.07246153056621552, -0.07044282555580139, -0.05856241285800934, -0.037651922553777695, 0.0015803943388164043, 0.012299351394176483, -0.03314955532550812, 0.12070359289646149, -0.06661983579397202, 0.06508509814739227, 0.06426942348480225, 0.04773440212011337, -0.09813583642244339, 0.0773668885231018, -0.12508663535118103, 0.002123744459822774, -0.01646602526307106, -0.003972188103944063, -0.043748386204242706, 0.07400007545948029, -0.06990440934896469, -0.04089757055044174, -0.02998577617108822, 0.008296572603285313, 0.03599748760461807, 0.06740850955247879, -0.17582498490810394, -0.03977000713348389, 0.12435128539800644, -0.1510130763053894, -0.1378503441810608, 0.11617184430360794, -0.010927397757768631, 0.0032055124174803495, 0.04896216467022896, 0.15780560672283173, -0.013143522664904594, 0.057391807436943054, 0.034565266221761703, 0.013269903138279915, -0.04438133165240288, -0.12171033769845963, 0.08338063210248947, -0.00883262325078249, -0.14232759177684784, 0.05053484067320824, -0.021317536011338234, 0.056742195039987564, -0.02894524671137333, -0.08687851577997208, 0.010312555357813835, -0.025243079289793968, 0.012883299961686134, 0.04619193449616432, 0.036138150840997696, -0.05958827584981918, -0.02044309861958027, -0.1445794701576233, 0.04002925381064415, -0.0034312799107283354, 0.02620413526892662, -0.050080496817827225, 0.09646962583065033, -0.10172060132026672, 0.04246809333562851, -0.18066999316215515, 0.02619045227766037, 0.010625945404171944, 0.2272883802652359, -0.0852811262011528, 0.20732425153255463, 0.0029503421392291784, -0.052947212010622025, -0.03882315382361412, 0.01319893728941679, 0.16146455705165863, -0.03054678998887539, -0.14582078158855438, -0.1534135490655899, 0.03511268272995949, -0.07136423140764236, 0.05416087061166763, -0.12542542815208435, 0.012583580799400806, 0.005559385288506746, 0.03053881600499153, -0.030521372333168983, 0.021947912871837616, -0.04215706139802933, 0.05015125498175621, -0.09356772154569626, -0.013971532694995403, 0.06849424540996552, 0.04366714134812355, -0.019056154415011406, 0.0825822576880455, -0.06617598980665207, -0.008603212423622608, 0.11949877440929413, -0.0637875348329544, -0.06774495542049408, -0.01133826095610857, -0.07656783610582352, -0.006355973891913891, -0.07364561408758163, 0.0022138552740216255, 0.034873057156801224, 0.03947482258081436, 0.1541214883327484, -0.050154536962509155, -0.11682616174221039, 0.008968250826001167, 0.028000924736261368, -0.02854095585644245, 0.05745045840740204, 0.10187601298093796, -0.09983687102794647, 0.15767283737659454, 0.07340124249458313, -0.03614284098148346, 0.09246350079774857, -0.036676809191703796, -0.0508793368935585, 0.01310533843934536, 0.016390357166528702, -0.028206374496221542, 0.09557346254587173, -0.19948261976242065, -0.023890363052487373, 0.10914456844329834, 0.017825208604335785, 0.020095882937312126, -0.11520326137542725, -0.030405936762690544, 0.014740703627467155, 0.0022810432128608227, 0.08868337422609329, 0.07826671004295349, -0.047162290662527084, 0.07303895801305771, -0.0013841437175869942, -0.06904132664203644, 0.06603609770536423, 0.021776271983981133, -0.07865707576274872, 0.16851331293582916, -0.07858669757843018, -0.27316784858703613, -0.08605476468801498, -0.08596958220005035, -0.08084642142057419, 0.04766302555799484, 0.1701938360929489, -0.14664919674396515, -0.1001916378736496, -0.016400543972849846, -0.06810241937637329, -0.1514984518289566, 0.021973833441734314, 0.08434939384460449, -0.02359098382294178, -0.02861800417304039, -0.1061592623591423, 0.0008574362727813423, -0.006036452483385801, 0.019974874332547188, 0.15413516759872437, -0.015111302956938744, 0.085627481341362, 0.11534783989191055, -0.029197776690125465, 0.09186745434999466, -0.04445125162601471, 0.184869185090065, -0.040825068950653076, -0.07748199999332428, 0.13428811728954315, 0.012776526622474194, 0.005562790669500828, 0.14605066180229187, -0.0333232507109642, -0.09614650160074234, 0.06491183489561081, 0.05050152540206909, -0.06836902350187302, -0.318382203578949, -0.041396744549274445, -0.07923869043588638, 0.027133436873555183, 0.08818943798542023, 0.12715354561805725, 0.045451290905475616, 0.11852829903364182, -0.04635310918092728, 0.06191740557551384, -0.055978745222091675, 0.08481308072805405, 0.1996680349111557, -0.013872766867280006, 0.14564643800258636, -0.01232266053557396, -0.06758502870798111, 0.10942286998033524, -0.06645076721906662, 0.18523038923740387, 0.029765650629997253, 0.05940575152635574, 0.053738996386528015, 0.05228327959775925, 0.00317171448841691, 0.12533220648765564, -0.032058972865343094, 0.004158207681030035, -0.022253520786762238, 0.0010219932300969958, -0.0044279987923800945, 0.020940963178873062, -0.00991117674857378, -0.041638102382421494, -0.07125689834356308, 0.11519382148981094, 0.07704243808984756, 0.24460972845554352, 0.03905053436756134, -0.21422818303108215, -0.006281145848333836, -0.03258804604411125, -0.034033603966236115, -0.11393316835165024, 0.09369248151779175, 0.020176827907562256, -0.061864834278821945, 0.028644533827900887, -0.04211683198809624, 0.11393867433071136, 0.030876243487000465, 0.06496763229370117, 0.07760908454656601, -0.0846666768193245, 0.007218250073492527, 0.14480040967464447, -0.3246244192123413, 0.09168758243322372, -0.016303950920701027, -0.031867243349552155, -0.06680605560541153, 0.033718135207891464, -0.07379519194364548, 0.03532397001981735, 0.1310657411813736, -0.009466908872127533, -0.14725659787654877, -0.023514950647950172, -0.01583249680697918, 0.05143306776881218, 0.03560015931725502, -0.06589298695325851, 0.0316442996263504, -0.07615668326616287, 0.011965383775532246, 0.007562754210084677, 0.06885839998722076, -0.047749485820531845, -0.1756727397441864, 0.06228483468294144, 0.1232784241437912, 0.044367704540491104, 0.005181498825550079, -0.055809956043958664, -0.05844378098845482, 0.28197500109672546, -0.020547999069094658, -0.06140919402241707, -0.1358305960893631, 0.11706319451332092, 0.09553712606430054, -0.016932038590312004, 0.04453825205564499, -0.029818667098879814, 0.06523158401250839, -0.06673514097929001, -0.04543406516313553, 0.08573451638221741, -0.08630960434675217, -0.1553100049495697, -0.07022200524806976, 0.12203281372785568, -0.061746109277009964, 0.026979070156812668, 0.042437393218278885, 0.03377386927604675, -0.09846091270446777, -0.08510276675224304, -0.003414654638618231, -0.05132006108760834, 0.1301162987947464, -0.04073648899793625, -0.023098452016711235, -0.00987920816987753, -0.003993401303887367, -0.10830476135015488, 0.2652711272239685, 0.2545139491558075, -0.1061672568321228, 0.12484797835350037, 0.1278361827135086, -0.015585843473672867, -0.21324701607227325, -0.05139923468232155, -0.03379654139280319, -0.008917273953557014, -0.036820188164711, -0.11135784536600113, 0.11193294078111649, 0.08288288861513138, -0.03935215622186661, 0.059119679033756256, -0.18187421560287476, -0.08378032594919205, 0.1364881545305252, -0.03221210464835167, 0.3855595588684082, -0.15566518902778625, -0.056983642280101776, -0.14660607278347015, -0.08540747314691544, 0.05819278582930565, -0.062473662197589874, 0.11059677600860596, -0.08571980893611908, -0.06348809599876404, 0.0033363248221576214, -0.0692836120724678, 0.11106207221746445, 0.06889855861663818, 0.06924337148666382, -0.025450192391872406, 0.008952988311648369, 0.13042515516281128, -0.0204408410936594, 0.09157967567443848, -0.1100669875741005, 0.057307444512844086, -0.13719172775745392, -0.08602769672870636, -0.005503051448613405, 0.04026579484343529, -0.02166610024869442, -0.05147123709321022, -0.030882956460118294, -0.03222804516553879, 0.05506071448326111, -0.03559855744242668, 0.1453617960214615, 0.025471825152635574, 0.0692962184548378, 0.11095822602510452, 0.06069466099143028, -0.09550533443689346, 0.0025161600206047297, -0.012339345179498196, -0.04901104047894478, 0.10159855335950851, -0.08078280836343765, 0.09158314764499664, 0.12236404418945312, 0.01078884769231081, 0.09642331302165985, 0.09719385951757431, 0.038939572870731354, -0.05822128430008888, 0.08731265366077423, -0.14075088500976562, -0.1080014556646347, -0.0005419626832008362, -0.007533895317465067, -0.09563601762056351, 0.0691518634557724, 0.0884975790977478, 0.04038793221116066, -0.033454809337854385, 0.04720394313335419, 0.015818361192941666, -0.0025063008069992065, 0.1785728931427002, -0.024151284247636795, 0.05603092163801193, -0.1682867407798767, 0.031005192548036575, 0.0689021423459053, -0.06923993676900864, 0.04437444731593132, 0.05950076878070831, -0.12188573181629181, -0.1255415380001068, 0.03372674807906151, 0.11733988672494888, -0.07664051651954651, -0.040818389505147934, -0.04355328902602196, -0.10673801600933075, 0.07871970534324646, -0.047628775238990784, 0.0581483356654644, 0.07174848765134811, 0.011531657539308071, -0.05193384364247322, -0.09320681542158127, 0.09827771782875061, 0.05845464766025543, 0.09978687018156052, -0.08677970618009567, -0.032233331352472305, -0.078580841422081, 0.05549854785203934, -0.05444532260298729, -0.007493552751839161, -0.0927215963602066, 0.04999406263232231, -0.12548081576824188, -0.0004864443908445537, -0.10176102817058563, -0.036828719079494476, 0.0540020726621151, -0.0033220171462744474, -0.021986017003655434, -0.006207941100001335, -0.08206392824649811, -0.012193354777991772, -0.05035931244492531, -0.004110371693968773, -0.09092993289232254, 0.005627043545246124, -0.03657292574644089, -0.03253355249762535, 0.1221400573849678, 0.0559784434735775, -0.043625518679618835, 0.0009703602408990264, -0.08645406365394592, -0.08278834074735641, 0.053552377969026566, 0.03283374011516571, 0.05935574322938919, -0.036922093480825424, 0.023186063393950462, 0.09247886389493942, -0.01144551020115614, 0.07673236727714539, 0.016735389828681946, -0.18136252462863922, 0.02098200097680092, -0.07537080347537994, -0.12081998586654663, -0.0032712246757000685, -0.06146843731403351, 0.056955479085445404, 0.11188998073339462, 0.22672094404697418, -0.037678007036447525, 0.023772897198796272, -0.08705881983041763, 0.03850162401795387, -0.009625105187296867, -0.029509250074625015, -0.08691398799419403, -0.051001276820898056, 0.007660431321710348, -0.034674208611249924, 0.21695062518119812, 0.07632316648960114, 0.07299428433179855, 0.019490361213684082, 0.018587011843919754, 0.09831606596708298, -0.03804652392864227, 0.22991791367530823, 0.08213017880916595, -0.025641947984695435, -0.039718855172395706, 0.07008050382137299, 0.09038178622722626, 0.07027525454759598, 0.13217371702194214, 0.0597485676407814, 0.0863301083445549, 0.08257503807544708, -0.09434786438941956, -0.11800898611545563, -0.04295849800109863, 0.04145754501223564, -0.06687245517969131, 0.051558855921030045, 0.0440264455974102, 0.09859121590852737, 0.18946053087711334, -0.10235905647277832, 0.009018674492835999, -0.0753861591219902, -0.033569470047950745, -0.15767726302146912, -0.11532098799943924, -0.08096333593130112, -0.15018963813781738, 0.0279719028621912, -0.09913115948438644, -0.04583439230918884, 0.04359329491853714, 0.09351124614477158, -0.04573267325758934, 0.002746140817180276, 0.07339683175086975, -0.033868610858917236, 0.0139340003952384, -0.02079540491104126, 0.016259217634797096, -0.04170892387628555, 0.05006817728281021, 0.03263246268033981, -0.06628250330686569, 0.04785439372062683, 0.026508117094635963, 0.0036355608608573675, 0.06898131966590881, -0.03290684521198273, -0.05904650688171387, -0.04321610927581787, 0.054389797151088715, 0.02114136330783367, 0.19617030024528503, 0.012743276543915272, 0.043427664786577225, 0.044234149158000946, 0.11725400388240814, -0.0639650747179985, -0.09051752835512161, -0.13232500851154327, 0.13184770941734314, 0.11541099101305008, 0.037159256637096405, -0.008487973362207413, -0.09896589815616608, 0.010885627940297127, 0.20060810446739197, 0.1981917768716812, 0.021977674216032028, -0.026455936953425407, 0.05437083542346954, 0.003048991085961461, -0.01842520385980606, -0.011120874434709549, 0.11659172922372818, 0.14280882477760315, -0.04808969795703888, -0.00628765020519495, -0.07794657349586487, -0.020111411809921265, -0.047438427805900574, 0.015365837141871452, 0.06079158931970596, -0.03947724774479866, 0.010021788068115711, 0.07544410228729248, -0.04188215360045433, 0.004115907941013575, 0.01820295676589012, -0.024016622453927994, -0.09248834103345871, -0.004912253003567457, 0.05483168363571167, -0.02594910003244877, 0.027916422113776207, -0.017804637551307678, -0.00169626425486058, 0.08671849966049194, -0.04715530946850777, -0.1419672667980194, -0.06599103659391403, 0.1147502213716507, -0.03480696305632591, 0.0696270614862442, -0.025771459564566612, 0.06680525839328766, 0.07253073155879974, 0.04479312151670456, -0.09824632108211517, 0.05295346677303314, 0.002296867547556758, -0.017511708661913872, 0.10344875603914261, 0.012542074546217918, 0.006504673045128584, 0.05056742951273918, 0.03152703493833542, -0.031535953283309937, 0.013245170935988426, 0.04257749766111374, 0.024950802326202393, -0.12046796083450317, 0.06338468939065933, -0.02227194793522358, 0.10445735603570938, 0.10990278422832489, -0.03034943714737892, -0.0036904439330101013, -0.0720137283205986, 0.028141489252448082, -0.025839300826191902, 0.000261192413745448, -0.053481340408325195, -0.2262822836637497, 0.051053181290626526, 0.17657440900802612, 0.019014930352568626, -0.20830172300338745, 0.003633837215602398, -0.07298891991376877, -0.035637546330690384, -0.08263880759477615, 0.04461858421564102, 0.03433499112725258, 0.028198428452014923, -0.0477096363902092, -0.0943799689412117, 0.021519841626286507, 0.0670873373746872, -0.123338982462883, -0.07485593110322952 ]
null
null
transformers
# Introduction This model checkpoint is obtained by fine-tuning the `sshleifer/distilbart-cnn-6-6` summarization checkpoint on the SQuAD dataset. [GitHub Link for training scripts.](https://github.com/darth-c0d3r/bart-question-generation) # Usage The input format is as follows: `[answer] <s> [passage]`. The model will predict the question that corresponds to the answer from the passage. # Plot ![Training Run](train_run_6.png) # Dataset The goal of Question Generation is to generate a valid and fluent question according to a given passage and the target answer. Hence, the input to the model will be a passage context and an answer, and the output / target will be the question for the given answer. Question Generation can be used in many scenarios, such as automatic tutoring systems, improving the performance of Question Answering models and enabling chat-bots to lead a conversation. The final dataset is created by taking the union of the following Question Answering Datasets. The dataset must have the following three columns: context, question, answer. ## [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowd-workers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. We use the SQuAD 1.1 variant which does not have unanswerable questions. So, every question will have a corresponding answer and vice-versa. ### Preprocessing The first step is to remove questions that don't have answers. After that, we split the train set into Train and Eval sets and treat the dev set as the test set. ### Stats **Original Dataset** | Split | Num Docs | Num Contexts | Ques w/ Ans | Ques w/o Ans | Num Unique Ans | | ----- | -------- | ------------ | ----------- | ------------ | -------------- | | Train | 442 | 19035 | 86821 | 43498 | 86821 | | Dev | 35 | 1204 | 5928 | 5945 | 10279 | **After Preprocessing** | Split | Num Rows | Context | Answer | Question | | ----- | -------- | ---------- | ------ | -------- | | Train | 80995 | 653,120,20 | 43,3,1 | 40,10,1 | | Eval | 5826 | 445,123,67 | 28,3,1 | 29,10,3 | | Test | 10297 | 629,129,25 | 29,4,1 | 31,10,3 | The numbers in the columns indicate max, avg, min number of words.
{"language": "en", "license": "apache-2.0", "tags": ["summarization", "question-generation"], "datasets": ["squad"]}
summarization
gpssohi/distilbart-qgen-6-6
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "summarization", "question-generation", "en", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #safetensors #bart #text2text-generation #summarization #question-generation #en #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
Introduction ============ This model checkpoint is obtained by fine-tuning the 'sshleifer/distilbart-cnn-6-6' summarization checkpoint on the SQuAD dataset. GitHub Link for training scripts. Usage ===== The input format is as follows: '[answer] ~~[passage]'. The model will predict the question that corresponds to the answer from the passage.~~ Plot ==== !Training Run Dataset ======= The goal of Question Generation is to generate a valid and fluent question according to a given passage and the target answer. Hence, the input to the model will be a passage context and an answer, and the output / target will be the question for the given answer. Question Generation can be used in many scenarios, such as automatic tutoring systems, improving the performance of Question Answering models and enabling chat-bots to lead a conversation. The final dataset is created by taking the union of the following Question Answering Datasets. The dataset must have the following three columns: context, question, answer. SQuAD ----- Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowd-workers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. We use the SQuAD 1.1 variant which does not have unanswerable questions. So, every question will have a corresponding answer and vice-versa. ### Preprocessing The first step is to remove questions that don't have answers. After that, we split the train set into Train and Eval sets and treat the dev set as the test set. ### Stats Original Dataset After Preprocessing The numbers in the columns indicate max, avg, min number of words.
[ "### Preprocessing\n\n\nThe first step is to remove questions that don't have answers. After that, we split the train set into Train and Eval sets and treat the dev set as the test set.", "### Stats\n\n\nOriginal Dataset\n\n\n\nAfter Preprocessing\n\n\n\nThe numbers in the columns indicate max, avg, min number of words." ]
[ "TAGS\n#transformers #pytorch #safetensors #bart #text2text-generation #summarization #question-generation #en #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Preprocessing\n\n\nThe first step is to remove questions that don't have answers. After that, we split the train set into Train and Eval sets and treat the dev set as the test set.", "### Stats\n\n\nOriginal Dataset\n\n\n\nAfter Preprocessing\n\n\n\nThe numbers in the columns indicate max, avg, min number of words." ]
[ 69, 45, 29 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #bart #text2text-generation #summarization #question-generation #en #dataset-squad #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Preprocessing\n\n\nThe first step is to remove questions that don't have answers. After that, we split the train set into Train and Eval sets and treat the dev set as the test set.### Stats\n\n\nOriginal Dataset\n\n\n\nAfter Preprocessing\n\n\n\nThe numbers in the columns indicate max, avg, min number of words." ]
[ -0.12688080966472626, 0.06781250983476639, -0.0012267619604244828, 0.07761676609516144, 0.1558738350868225, 0.05176423490047455, 0.05855318531394005, 0.08324967324733734, -0.10120736807584763, 0.041656747460365295, 0.19094876945018768, 0.08289456367492676, 0.01143709197640419, 0.19377639889717102, -0.11023427546024323, -0.11054603010416031, 0.036783020943403244, 0.029848754405975342, -0.03228543698787689, 0.11463257670402527, 0.10890956968069077, -0.1047549694776535, 0.024603519588708878, -0.018012158572673798, -0.11661111563444138, 0.003414157312363386, 0.0004296888073440641, -0.054544687271118164, 0.13084086775779724, 0.04204436019062996, -0.009406679309904575, 0.05232423543930054, 0.028277631849050522, -0.17188775539398193, 0.025695232674479485, 0.013377240858972073, -0.014934331178665161, 0.0432744175195694, 0.050504036247730255, 0.00946792308241129, 0.0032403534278273582, 0.04080446437001228, 0.037163734436035156, 0.0598360039293766, -0.09343155473470688, -0.2698165476322174, -0.11640774458646774, -0.06565717607736588, 0.17116679251194, 0.16330203413963318, -0.041398096829652786, 0.15332461893558502, -0.08571851998567581, 0.08656787127256393, 0.09452600032091141, -0.3472287952899933, -0.038155339658260345, 0.05252768099308014, 0.0028310585767030716, -0.000631162547506392, -0.06440369784832001, 0.014843191020190716, 0.12282756716012955, 0.030404042452573776, -0.021929139271378517, -0.029673265293240547, -0.04351654648780823, 0.010422131046652794, -0.12670859694480896, -0.040077272802591324, 0.354124516248703, -0.05958979204297066, 0.010501129552721977, -0.06879639625549316, -0.06032591685652733, -0.15133175253868103, 0.045465726405382156, -0.04359380155801773, -0.01749742403626442, 0.017557842656970024, -0.022976890206336975, 0.04271901398897171, -0.13375554978847504, -0.05463898554444313, -0.08776353299617767, 0.010207747109234333, 0.04165920615196228, 0.036877840757369995, -0.08013742417097092, 0.04080614820122719, 0.00003165665111737326, -0.10594132542610168, 0.010450164787471294, -0.0627371072769165, -0.0743899792432785, -0.028082244098186493, -0.10105583816766739, -0.14244501292705536, 0.06528528779745102, 0.31040456891059875, -0.09337319433689117, 0.0055431462824344635, -0.025999031960964203, 0.028434380888938904, 0.08886265754699707, 0.06782276183366776, 0.028723709285259247, -0.07378635555505753, 0.02708275057375431, -0.03838638216257095, 0.02033057250082493, -0.04148038849234581, -0.08181675523519516, 0.001421779510565102, 0.07361431419849396, 0.13715031743049622, -0.0025889906100928783, 0.0038311195094138384, -0.037019506096839905, 0.0008265694486908615, 0.0362883023917675, -0.11969642341136932, 0.015982255339622498, -0.003410451114177704, 0.06312865763902664, -0.023259611800312996, -0.09497183561325073, 0.0068308818154037, -0.03243015706539154, 0.14866961538791656, -0.05509942024946213, -0.06857897341251373, -0.014035791158676147, -0.033253636211156845, 0.002500600181519985, -0.1079510971903801, -0.042158763855695724, -0.11625154316425323, -0.1750776767730713, -0.06711681932210922, 0.06738877296447754, -0.05509427562355995, -0.05707448720932007, -0.020493987947702408, 0.008371363393962383, 0.009752942249178886, -0.03954790532588959, 0.10315137356519699, -0.07415863126516342, 0.07758492976427078, 0.064060740172863, 0.04016741365194321, -0.080104760825634, 0.06097419187426567, -0.148895725607872, 0.0005934801883995533, -0.01281857118010521, -0.03298275172710419, -0.04391506686806679, 0.07672435790300369, -0.06428039073944092, -0.03904150426387787, -0.02623400278389454, 0.0114815728738904, 0.027310088276863098, 0.07947473973035812, -0.17743493616580963, -0.032478030771017075, 0.1273956000804901, -0.18042536079883575, -0.14943957328796387, 0.13193729519844055, -0.00751312542706728, -0.006860973779112101, 0.05119169503450394, 0.16238710284233093, -0.020278068259358406, 0.03911943361163139, 0.03126264736056328, 0.008626521565020084, -0.028939269483089447, -0.10675276815891266, 0.08559409528970718, -0.013934568502008915, -0.13715633749961853, 0.04396054148674011, -0.016135338693857193, 0.04687251150608063, -0.028345497325062752, -0.08822581171989441, -0.0001469134003855288, -0.025919336825609207, 0.023462142795324326, 0.058511827141046524, 0.01994163542985916, -0.08405571430921555, -0.039270348846912384, -0.167091965675354, 0.04198237136006355, 0.0006873609963804483, 0.024418506771326065, -0.04865872114896774, 0.09056347608566284, -0.08663871884346008, 0.032284870743751526, -0.16259558498859406, 0.006076892837882042, 0.018213292583823204, 0.2158401757478714, -0.10114363580942154, 0.2034325748682022, 0.006014352198690176, -0.025468643754720688, -0.032576847821474075, -0.0001391312835039571, 0.17196619510650635, -0.029186729341745377, -0.14050152897834778, -0.17189159989356995, 0.037486787885427475, -0.07694900780916214, 0.06264903396368027, -0.1415848284959793, 0.01771221123635769, -0.006221522111445665, 0.04262520745396614, -0.02909080870449543, 0.02265970967710018, -0.04005763307213783, 0.043855052441358566, -0.1022307351231575, -0.01843084953725338, 0.06401406973600388, 0.0436413399875164, -0.009842010214924812, 0.07644375413656235, -0.0961720421910286, 0.02365845814347267, 0.1239001527428627, -0.023740310221910477, -0.06797924637794495, -0.015009896829724312, -0.08491339534521103, -0.006324064917862415, -0.08383944630622864, 0.01135450042784214, 0.0072341798804700375, 0.03879725560545921, 0.15594710409641266, -0.05871276184916496, -0.11954805254936218, 0.020204974338412285, 0.014761276543140411, -0.03086753375828266, 0.05999412387609482, 0.08651365339756012, -0.09959981590509415, 0.15413381159305573, 0.09107476472854614, -0.03293013200163841, 0.08544421195983887, -0.046240851283073425, -0.04781727492809296, 0.02379334159195423, 0.04092130437493324, -0.023027487099170685, 0.1130625456571579, -0.18633469939231873, -0.011331509798765182, 0.10526274144649506, 0.022660747170448303, 0.004970848560333252, -0.12417101114988327, -0.03365091606974602, 0.010821578092873096, 0.002198091009631753, 0.08074191212654114, 0.07031968981027603, -0.0493120476603508, 0.07855670154094696, -0.018850531429052353, -0.07705485075712204, 0.06074785813689232, 0.024289017543196678, -0.08546300232410431, 0.17043453454971313, -0.0794147402048111, -0.2763127386569977, -0.06920187920331955, -0.056807663291692734, -0.07889727503061295, 0.046408336609601974, 0.17908133566379547, -0.14055855572223663, -0.10467468947172165, -0.042944569140672684, -0.08068280667066574, -0.11895937472581863, 0.01903528720140457, 0.07713760435581207, -0.019615160301327705, -0.01584346778690815, -0.10629156231880188, 0.00020143986330367625, -0.014120069332420826, -0.0001305620389757678, 0.15075728297233582, 0.003178998362272978, 0.08318057656288147, 0.12096840143203735, -0.019818609580397606, 0.08025451004505157, -0.05504613369703293, 0.17453496158123016, -0.03511461988091469, -0.07590924948453903, 0.1621977537870407, 0.008163939230144024, 0.01207156851887703, 0.1569930762052536, -0.03622946888208389, -0.09029334038496017, 0.07354333996772766, 0.0419539213180542, -0.05928767845034599, -0.3167060613632202, -0.035392876714468, -0.06790035218000412, 0.029071282595396042, 0.07824334502220154, 0.1333995908498764, 0.0423128604888916, 0.11543598026037216, -0.07031453400850296, 0.035509947687387466, -0.04092954099178314, 0.08434253185987473, 0.18957436084747314, -0.006280377972871065, 0.14848051965236664, -0.01972007192671299, -0.06795011460781097, 0.11005960404872894, -0.07787536084651947, 0.18132273852825165, 0.016726596280932426, 0.030584586784243584, 0.0663200244307518, 0.07649891078472137, -0.0023250437807291746, 0.1258108913898468, -0.03153034299612045, 0.0014207040658220649, -0.023502089083194733, -0.010486586019396782, -0.013116621412336826, 0.01653715781867504, -0.03891109675168991, -0.016559869050979614, -0.09209658950567245, 0.1314229816198349, 0.08138623833656311, 0.24295973777770996, 0.048079635947942734, -0.21716351807117462, -0.008503084070980549, -0.022339170798659325, -0.0372961089015007, -0.11122684925794601, 0.09798255562782288, 0.022845342755317688, -0.061928246170282364, 0.03982153534889221, -0.03831610456109047, 0.09272021800279617, 0.03388898819684982, 0.06156347692012787, 0.06630410254001617, -0.07505530118942261, -0.0020421522203832865, 0.14153657853603363, -0.32678020000457764, 0.09692152589559555, -0.01746860332787037, -0.010792144574224949, -0.0687132328748703, 0.03493666648864746, -0.0681518092751503, 0.04449448734521866, 0.1351834386587143, -0.01763310469686985, -0.14262869954109192, -0.027499891817569733, -0.025914011523127556, 0.0591900497674942, 0.04082874581217766, -0.05444624274969101, 0.028149409219622612, -0.08133361488580704, 0.01221330277621746, 0.014536192640662193, 0.06516183912754059, -0.07626359909772873, -0.15509553253650665, 0.06178691238164902, 0.11304151266813278, 0.0288071408867836, -0.01668962836265564, -0.06574604660272598, -0.07721546292304993, 0.2679913640022278, -0.03898564726114273, -0.06751749664545059, -0.12839938700199127, 0.0834023728966713, 0.08770452439785004, -0.01548749953508377, 0.04588723182678223, -0.03875761479139328, 0.07367949932813644, -0.0775560736656189, -0.04083019122481346, 0.08088866621255875, -0.10340558737516403, -0.19520501792430878, -0.07966992259025574, 0.13860440254211426, -0.07789282500743866, 0.016414180397987366, 0.04549724608659744, 0.03235955536365509, -0.0951169952750206, -0.08031157404184341, -0.00030082586454227567, -0.05307074263691902, 0.12753643095493317, -0.05081707239151001, -0.028406068682670593, -0.02880866266787052, -0.00038355670403689146, -0.11791208386421204, 0.23924696445465088, 0.29407063126564026, -0.10135690122842789, 0.12126948684453964, 0.14127987623214722, -0.006713788490742445, -0.2114497274160385, -0.06435990333557129, -0.04063451290130615, -0.019373396411538124, -0.026665734127163887, -0.07520341128110886, 0.11627065390348434, 0.0968264788389206, -0.04877452179789543, 0.06266871839761734, -0.18289415538311005, -0.08590952306985855, 0.13716694712638855, -0.012098152190446854, 0.3848809003829956, -0.17433257400989532, -0.05377260968089104, -0.1415860652923584, -0.061610862612724304, 0.04068291187286377, -0.08517225831747055, 0.0996769517660141, -0.07798666507005692, -0.09441155940294266, -0.0016839897725731134, -0.07147030532360077, 0.11171723902225494, 0.046387411653995514, 0.08295563608407974, -0.03255985677242279, 0.03224014863371849, 0.13387179374694824, -0.02379871904850006, 0.09326096624135971, -0.12088106572628021, 0.05823695287108421, -0.10731485486030579, -0.08771337568759918, -0.006563286297023296, 0.05546632409095764, -0.039641525596380234, -0.055570587515830994, -0.015057885088026524, -0.032318104058504105, 0.048699021339416504, -0.046379804611206055, 0.14263521134853363, 0.029842320829629898, 0.08841188251972198, 0.11903103440999985, 0.07329711318016052, -0.09617987275123596, 0.009447638876736164, -0.004822955001145601, -0.06029919907450676, 0.09107749164104462, -0.0722103863954544, 0.09172206372022629, 0.11112836003303528, 0.014972413890063763, 0.08672693371772766, 0.09016021341085434, 0.0345054566860199, -0.05863388255238533, 0.09257584065198898, -0.1499091386795044, -0.12124060094356537, 0.0041226488538086414, 0.0213260930031538, -0.09978833794593811, 0.09297160059213638, 0.08556396514177322, 0.026774197816848755, -0.03004227951169014, 0.03481072187423706, 0.023503189906477928, 0.014416180551052094, 0.17481723427772522, -0.02156335860490799, 0.06462619453668594, -0.16101130843162537, 0.0485064797103405, 0.07470908015966415, -0.06222447380423546, 0.04598752409219742, 0.05640646442770958, -0.1254686713218689, -0.12488923966884613, 0.037663839757442474, 0.10269930958747864, -0.03771653398871422, -0.05072832852602005, -0.05673344433307648, -0.11861560493707657, 0.05764089897274971, -0.026266861706972122, 0.06300608068704605, 0.06673111021518707, 0.027054373174905777, -0.04563513025641441, -0.10223034769296646, 0.11549942940473557, 0.06301448494195938, 0.10553037375211716, -0.0985276848077774, -0.016182785853743553, -0.06648262590169907, 0.04377124458551407, -0.05477774888277054, 0.0012830761261284351, -0.08358709514141083, 0.04558214545249939, -0.11258549988269806, 0.007579435128718615, -0.10763192176818848, -0.03749964013695717, 0.05102762579917908, -0.0111827552318573, -0.016654858365654945, -0.0031940496992319822, -0.06959032267332077, -0.002266558585688472, -0.04222302511334419, -0.0005282372003421187, -0.10568437725305557, -0.0036226650699973106, -0.046308863908052444, -0.04423683509230614, 0.12564143538475037, 0.03753650560975075, -0.03965846076607704, 0.0013749831123277545, -0.11537064611911774, -0.06329834461212158, 0.05385982617735863, 0.027262164279818535, 0.04179691523313522, -0.03873838484287262, 0.022275371477007866, 0.10275950282812119, -0.015104006044566631, 0.0768417939543724, 0.01437398511916399, -0.1817690134048462, 0.027483215555548668, -0.06133737415075302, -0.12630468606948853, 0.0062270802445709705, -0.0699584111571312, 0.04771750792860985, 0.09124107658863068, 0.23897749185562134, -0.049993474036455154, 0.01998479664325714, -0.09655631333589554, 0.02998759038746357, -0.010270897299051285, -0.0315108448266983, -0.1243007630109787, -0.033536147326231, 0.007253055926412344, -0.025868406519293785, 0.21415500342845917, 0.07771924138069153, 0.08074010908603668, 0.024513013660907745, -0.0001747913338476792, 0.10451097041368484, -0.031157193705439568, 0.22463327646255493, 0.0677734836935997, -0.017443327233195305, -0.04427448660135269, 0.050411373376846313, 0.0903882160782814, 0.02636435441672802, 0.140917107462883, 0.08243782818317413, 0.08245767652988434, 0.08047999441623688, -0.08741206675767899, -0.13014358282089233, -0.040053583681583405, 0.018329231068491936, -0.054814115166664124, 0.05316438525915146, 0.04184780269861221, 0.0820399820804596, 0.20315778255462646, -0.09083347767591476, -0.017970815300941467, -0.0816301479935646, -0.026444755494594574, -0.169844850897789, -0.1053018644452095, -0.08007827401161194, -0.1418927013874054, 0.030533764511346817, -0.0950058251619339, -0.0582711286842823, 0.04913543909788132, 0.08857696503400803, -0.041750986129045486, -0.00004420776531333104, 0.0935254618525505, -0.020085716620087624, 0.00940205343067646, -0.00977140013128519, 0.015427089296281338, -0.034119028598070145, 0.03416518494486809, 0.027449699118733406, -0.07577574998140335, 0.043604131788015366, 0.022686028853058815, -0.007631425280123949, 0.07332983613014221, -0.031209377571940422, -0.06516346335411072, -0.03724854439496994, 0.05414574593305588, 0.02099759131669998, 0.1927318572998047, 0.0202123261988163, 0.04751884937286377, 0.048358798027038574, 0.1284496933221817, -0.05691883713006973, -0.11394736915826797, -0.12371643632650375, 0.16232743859291077, 0.10209561139345169, 0.033196840435266495, -0.00017620314611122012, -0.09922463446855545, 0.02548629604279995, 0.187197744846344, 0.18676650524139404, 0.03024432808160782, -0.018671981990337372, 0.043909523636102676, 0.0022810366936028004, -0.02862556092441082, 0.0028257369995117188, 0.12290259450674057, 0.16182297468185425, -0.05196012929081917, 0.0022585298866033554, -0.07104721665382385, -0.00805324874818325, -0.06821246445178986, 0.014799189753830433, 0.050707414746284485, -0.02882843092083931, 0.003045617137104273, 0.06930851936340332, -0.017100950703024864, 0.008048536255955696, 0.011634969152510166, -0.01049900334328413, -0.0897659957408905, 0.00048492042697034776, 0.087821364402771, -0.03422948718070984, 0.02295435220003128, -0.0166188795119524, -0.005804560147225857, 0.08264987915754318, -0.05191798508167267, -0.12170496582984924, -0.05915609002113342, 0.10769418627023697, -0.03230752423405647, 0.10385116934776306, -0.017468683421611786, 0.09058557450771332, 0.07025893777608871, 0.045584242790937424, -0.10180138796567917, 0.07135576009750366, 0.018541187047958374, -0.028408970683813095, 0.10586608201265335, -0.0054839239455759525, 0.015532827004790306, 0.0540183000266552, 0.04142659902572632, -0.04449676722288132, 0.018373526632785797, 0.06146259978413582, 0.00861567072570324, -0.12116336822509766, 0.08387241512537003, -0.016654159873723984, 0.09975368529558182, 0.09549161791801453, -0.03765743225812912, -0.002479477785527706, -0.07540222257375717, 0.03664182871580124, -0.024287156760692596, 0.00970896054059267, -0.03371135890483856, -0.2393515557050705, 0.06847430020570755, 0.17291496694087982, 0.01754249446094036, -0.2225956916809082, -0.012015820480883121, -0.08092552423477173, -0.04508022964000702, -0.10350516438484192, 0.03651047870516777, 0.034185994416475296, 0.033206507563591, -0.04688695818185806, -0.07572220265865326, 0.013178092427551746, 0.07088230550289154, -0.11508727073669434, -0.06797412782907486 ]
null
null
transformers
#waifu bot
{"tags": ["conversational"]}
text-generation
grayson124/chatbotwaifu
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#waifu bot
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
asteroid
## Asteroid model `groadabike/ConvTasNet_DAMP-VSEP_enhboth` Imported from [Zenodo](https://zenodo.org/record/3994193) ### Description: This model was trained by Gerardo Roa Dabike using Asteroid. It was trained on the enh_both task of the DAMP-VSEP dataset. ### Training config: ```yaml data: channels: 1 n_src: 2 root_path: data sample_rate: 16000 samples_per_track: 10 segment: 3.0 task: enh_both filterbank: kernel_size: 20 n_filters: 256 stride: 10 main_args: exp_dir: exp/train_convtasnet help: None masknet: bn_chan: 256 conv_kernel_size: 3 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 4 n_src: 2 norm_type: gLN skip_chan: 256 optim: lr: 0.0003 optimizer: adam weight_decay: 0.0 positional arguments: training: batch_size: 12 early_stop: True epochs: 50 half_lr: True num_workers: 12 ``` ### Results: ```yaml si_sdr: 14.018196157142519 si_sdr_imp: 14.017103133809577 sdr: 14.498517291333885 sdr_imp: 14.463389151567865 sir: 24.149634529133372 sir_imp: 24.11450638936735 sar: 15.338597389045935 sar_imp: -137.30634122401517 stoi: 0.7639416744417206 stoi_imp: 0.1843383526963759 ``` ### License notice: This work "ConvTasNet_DAMP-VSEP_enhboth" is a derivative of DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation (Version 1.0.1) by Smule, Inc, used under Smule's Research Data License Agreement (Research only). "ConvTasNet_DAMP-VSEP_enhboth" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa Dabike.
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["DAMP-VSEP"]}
audio-to-audio
groadabike/ConvTasNet_DAMP-VSEP_enhboth
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:DAMP-VSEP", "license:cc-by-sa-4.0", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-DAMP-VSEP #license-cc-by-sa-4.0 #has_space #region-us
## Asteroid model 'groadabike/ConvTasNet_DAMP-VSEP_enhboth' Imported from Zenodo ### Description: This model was trained by Gerardo Roa Dabike using Asteroid. It was trained on the enh_both task of the DAMP-VSEP dataset. ### Training config: ### Results: ### License notice: This work "ConvTasNet_DAMP-VSEP_enhboth" is a derivative of DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation (Version 1.0.1) by Smule, Inc, used under Smule's Research Data License Agreement (Research only). "ConvTasNet_DAMP-VSEP_enhboth" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa Dabike.
[ "## Asteroid model 'groadabike/ConvTasNet_DAMP-VSEP_enhboth'\nImported from Zenodo", "### Description:\nThis model was trained by Gerardo Roa Dabike using Asteroid. It was trained on the enh_both task of the DAMP-VSEP dataset.", "### Training config:", "### Results:", "### License notice:\nThis work \"ConvTasNet_DAMP-VSEP_enhboth\" is a derivative of DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation (Version 1.0.1) by Smule, Inc, used under Smule's Research Data License Agreement (Research only). \"ConvTasNet_DAMP-VSEP_enhboth\" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa Dabike." ]
[ "TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-DAMP-VSEP #license-cc-by-sa-4.0 #has_space #region-us \n", "## Asteroid model 'groadabike/ConvTasNet_DAMP-VSEP_enhboth'\nImported from Zenodo", "### Description:\nThis model was trained by Gerardo Roa Dabike using Asteroid. It was trained on the enh_both task of the DAMP-VSEP dataset.", "### Training config:", "### Results:", "### License notice:\nThis work \"ConvTasNet_DAMP-VSEP_enhboth\" is a derivative of DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation (Version 1.0.1) by Smule, Inc, used under Smule's Research Data License Agreement (Research only). \"ConvTasNet_DAMP-VSEP_enhboth\" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa Dabike." ]
[ 54, 30, 42, 6, 4, 109 ]
[ "passage: TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #dataset-DAMP-VSEP #license-cc-by-sa-4.0 #has_space #region-us \n## Asteroid model 'groadabike/ConvTasNet_DAMP-VSEP_enhboth'\nImported from Zenodo### Description:\nThis model was trained by Gerardo Roa Dabike using Asteroid. It was trained on the enh_both task of the DAMP-VSEP dataset.### Training config:### Results:### License notice:\nThis work \"ConvTasNet_DAMP-VSEP_enhboth\" is a derivative of DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation (Version 1.0.1) by Smule, Inc, used under Smule's Research Data License Agreement (Research only). \"ConvTasNet_DAMP-VSEP_enhboth\" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa Dabike." ]
[ -0.008717848919332027, -0.06466620415449142, -0.003693904960528016, 0.06953821331262589, 0.042286038398742676, -0.022703351452946663, 0.11924184858798981, -0.011214311234652996, -0.009643109515309334, -0.0010556172346696258, 0.05669071152806282, 0.0646546334028244, 0.0050110286101698875, 0.05741290748119354, -0.006761847995221615, -0.13709424436092377, 0.0022693180944770575, -0.07048603892326355, -0.04166565462946892, 0.00901500228792429, 0.08759782463312149, -0.08646377921104431, 0.1033221110701561, -0.012561501935124397, -0.08688078820705414, 0.052790410816669464, 0.03773567080497742, -0.10123986005783081, 0.07297424226999283, -0.0260448157787323, 0.09822076559066772, 0.06266140937805176, 0.0768832340836525, -0.09759974479675293, 0.02345379814505577, -0.03423340618610382, -0.061896514147520065, 0.06780704855918884, 0.01785302720963955, 0.044247377663850784, 0.11556175351142883, 0.08111292123794556, 0.009276799857616425, 0.008057947270572186, -0.07351875305175781, -0.1533171832561493, -0.12119769304990768, 0.015137802809476852, 0.07142827659845352, 0.05411268025636673, 0.016472389921545982, 0.08328299969434738, -0.10661116987466812, 0.005406076088547707, 0.12174844741821289, -0.2320707142353058, 0.006244147662073374, 0.16169877350330353, 0.02942430041730404, 0.027680160477757454, -0.021876778453588486, 0.03814427927136421, 0.06758547574281693, 0.06389179825782776, 0.15196937322616577, -0.11024674028158188, -0.012522289529442787, 0.017979849129915237, -0.0970977395772934, -0.026331331580877304, 0.33022409677505493, 0.006821246352046728, -0.0841493234038353, 0.024475403130054474, -0.02014736458659172, -0.002352491021156311, 0.04136108607053757, -0.02909955382347107, 0.02455276995897293, -0.00320432148873806, -0.07146155834197998, -0.06317071616649628, -0.1309024840593338, -0.08366727828979492, -0.06021088734269142, -0.00835447572171688, 0.020474396646022797, 0.016915490850806236, -0.0841965302824974, 0.0776689350605011, -0.03355900198221207, -0.0678066536784172, 0.016447359696030617, -0.1388535350561142, 0.14253050088882446, 0.04792889952659607, -0.06309805810451508, -0.23874510824680328, 0.06733334064483643, 0.1343173235654831, -0.03139551356434822, -0.030835147947072983, 0.0039949011988937855, 0.11218951642513275, 0.07491608709096909, -0.01836087740957737, 0.041557956486940384, -0.045770347118377686, 0.10333593934774399, -0.03018587827682495, 0.0578940249979496, -0.008078368380665779, -0.16642193496227264, 0.06456250697374344, -0.035207781940698624, -0.029144389554858208, 0.052460577338933945, -0.036643486469984055, -0.010633721016347408, -0.0029822930227965117, 0.2377295047044754, 0.010608644224703312, 0.002084813080728054, -0.05001073703169823, -0.032720305025577545, -0.09521743655204773, 0.08371895551681519, 0.048435233533382416, 0.0477328859269619, 0.10135708004236221, -0.06781104952096939, -0.02226564846932888, -0.05194566771388054, -0.09174642711877823, 0.08583863824605942, 0.06371039897203445, 0.03346491977572441, -0.2258608043193817, -0.07708422094583511, -0.02417653426527977, 0.04926863685250282, 0.003591181244701147, -0.018614208325743675, 0.011707560159265995, 0.03879576176404953, 0.03713304549455643, -0.05954959616065025, -0.0930994376540184, -0.022695418447256088, 0.055538106709718704, -0.07257648557424545, 0.07436146587133408, -0.1588478982448578, 0.0537862628698349, -0.0957406535744667, 0.0451330691576004, -0.12309819459915161, -0.042315080761909485, -0.06775803864002228, 0.01989801414310932, -0.04780616983771324, -0.07321316748857498, -0.1452961564064026, 0.029079873114824295, 0.060645587742328644, 0.10121367126703262, -0.11580466479063034, -0.05135580897331238, 0.11747149378061295, -0.09046393632888794, -0.10071761161088943, 0.06998804211616516, -0.025585614144802094, 0.05573743209242821, 0.01648450642824173, 0.1773461103439331, -0.02973702736198902, -0.16827499866485596, -0.10214118659496307, -0.03790031373500824, -0.021992573514580727, -0.11579160392284393, 0.10328363627195358, -0.025948045775294304, 0.02682117186486721, -0.02822992391884327, 0.03934415429830551, 0.053456325083971024, 0.04420586675405502, -0.05772286280989647, 0.003470440162345767, -0.0187555942684412, 0.047018446028232574, -0.05643243342638016, 0.05991174280643463, 0.005870707333087921, -0.008815489709377289, 0.01017458364367485, 0.06233113259077072, -0.00535951741039753, 0.05760527029633522, 0.0028355249669402838, 0.11900220066308975, -0.09456723183393478, -0.037715911865234375, -0.09195790439844131, 0.0440746434032917, 0.026478981599211693, -0.08721821755170822, 0.14565825462341309, -0.026855899021029472, -0.017547830939292908, 0.03703450411558151, -0.030499832704663277, -0.03354058042168617, -0.11887761950492859, 0.011094839312136173, 0.025442680343985558, -0.14659415185451508, -0.0018624125514179468, -0.04540099576115608, 0.04770365357398987, -0.12824615836143494, -0.011021347716450691, 0.06798800826072693, -0.04423176124691963, 0.0585223026573658, 0.04120330885052681, 0.012395420111715794, 0.06981942802667618, -0.08508177101612091, 0.03395664691925049, -0.01914697140455246, 0.029641270637512207, -0.006425139494240284, 0.036381155252456665, -0.030774161219596863, -0.01664646528661251, 0.11652810126543045, -0.157827228307724, -0.05441787466406822, -0.02369222417473793, 0.027257751673460007, -0.03573219105601311, -0.03730563819408417, -0.00578790670260787, 0.04393408074975014, -0.023166848346590996, 0.11646881699562073, -0.09569811075925827, 0.03972350060939789, 0.015415847301483154, -0.15534938871860504, -0.06994184106588364, 0.018448004499077797, 0.1731766164302826, -0.07004046440124512, 0.11743175983428955, 0.210129976272583, -0.09388009458780289, 0.21235021948814392, 0.04244597628712654, -0.04177950695157051, -0.10348892211914062, -0.06605149805545807, 0.011927320621907711, 0.0989873856306076, 0.014518729411065578, -0.006401290651410818, 0.04071331024169922, 0.025286274030804634, 0.04881158098578453, -0.10115674138069153, -0.06492678076028824, 0.01714533194899559, 0.07026834040880203, -0.10296490043401718, 0.02836437150835991, -0.09130051732063293, 0.004727244842797518, -0.031215328723192215, -0.03810776770114899, 0.0384201854467392, -0.0013547244016081095, -0.05072949081659317, 0.045364201068878174, -0.1648901253938675, -0.16739623248577118, -0.2632875442504883, -0.1003674864768982, -0.08117308467626572, 0.031588975340127945, 0.09688244014978409, -0.051413364708423615, -0.01673034019768238, -0.030836237594485283, -0.023164046928286552, -0.04697274789214134, -0.06072770804166794, -0.07693612575531006, 0.08087625354528427, -0.014402583241462708, -0.08868049085140228, -0.05459916219115257, -0.04486764222383499, 0.009885630570352077, 0.1298760175704956, 0.024223394691944122, 0.13090123236179352, 0.08213306963443756, 0.07134293764829636, -0.03905846178531647, -0.03069528192281723, 0.12352218478918076, -0.05245382338762283, 0.03823278099298477, 0.19025613367557526, 0.04452374577522278, 0.028132518753409386, 0.10424291342496872, 0.07631805539131165, -0.013588541187345982, 0.03000533953309059, -0.10262808948755264, -0.12683047354221344, -0.24192078411579132, -0.09329080581665039, -0.07049140334129333, -0.029579410329461098, -0.028585923835635185, 0.019185256212949753, 0.23142443597316742, 0.06436210125684738, 0.02816617302596569, 0.09711043536663055, -0.009592289105057716, 0.0759972557425499, 0.1382254809141159, 0.007658781949430704, 0.054613322019577026, -0.05318285524845123, 0.028289226815104485, 0.13060039281845093, 0.06823445111513138, 0.2516474425792694, 0.1153266653418541, 0.007555920630693436, 0.10840938985347748, 0.1474914848804474, 0.019065696746110916, 0.049192506819963455, -0.010038585402071476, 0.05403226986527443, -0.049051959067583084, -0.09611048549413681, 0.008314968086779118, 0.13018901646137238, -0.00030515703838318586, -0.09459242969751358, 0.030626732856035233, 0.026859644800424576, -0.04027615487575531, 0.07495152205228806, 0.052202969789505005, -0.12912791967391968, -0.003908648621290922, 0.028044069185853004, 0.09829462319612503, 0.018740341067314148, 0.036155179142951965, 0.11822875589132309, -0.05598033592104912, 0.06045794114470482, 0.03960226848721504, 0.010638921521604061, 0.030580366030335426, -0.0075883083045482635, -0.02871818281710148, 0.0035178083926439285, 0.010987566784024239, 0.011210757307708263, -0.22005079686641693, 0.17005085945129395, 0.01839258335530758, 0.006093277595937252, 0.06767668575048447, 0.06417656689882278, 0.011314687319099903, 0.08832653611898422, 0.06788431853055954, 0.033769890666007996, -0.0973404198884964, -0.03489159420132637, -0.05586585775017738, -0.038843441754579544, 0.007080558687448502, -0.0002514871011953801, 0.00769620668143034, 0.010929221287369728, -0.0028521670028567314, 0.031487103551626205, 0.1646261364221573, -0.10660751909017563, -0.02123934030532837, -0.021900149062275887, 0.09822512418031693, 0.03712472319602966, -0.0661003589630127, 0.003926592878997326, 0.024122096598148346, -0.08627098798751831, -0.1837599277496338, -0.01990482397377491, -0.04130696877837181, -0.08490899205207825, 0.001042769174091518, -0.06171998754143715, 0.10758101940155029, 0.02329757623374462, -0.032321684062480927, -0.05248206853866577, -0.0993170365691185, 0.09423249959945679, -0.0950457751750946, -0.08103358000516891, -0.039840519428253174, 0.040496475994586945, 0.03346523270010948, 0.09151457250118256, -0.002499674679711461, 0.048551443964242935, -0.09542825073003769, -0.07481169700622559, 0.05628079175949097, 0.07241326570510864, 0.08160560578107834, -0.000008038598934945185, -0.05531048774719238, -0.16687537729740143, 0.0052794539369642735, -0.07826464623212814, 0.1284511536359787, 0.22355103492736816, -0.042793747037649155, 0.11421162635087967, 0.24746209383010864, -0.11027667671442032, -0.19739462435245514, -0.1101575568318367, 0.004617286380380392, -0.03555915877223015, 0.0474923737347126, -0.2353149652481079, 0.04818560183048248, 0.1081630140542984, -0.037226591259241104, -0.039714593440294266, -0.1878540813922882, -0.08151393383741379, 0.061717692762613297, -0.07480499148368835, 0.1417589634656906, -0.048055052757263184, -0.045427463948726654, -0.09465882927179337, -0.151022806763649, 0.057377640157938004, -0.05191412195563316, 0.08337149769067764, -0.002345629036426544, 0.07393158227205276, -0.027556968852877617, -0.017163489013910294, 0.08925846964120865, -0.022985972464084625, 0.11526870727539062, -0.042409416288137436, -0.0908457413315773, 0.14075030386447906, -0.026879053562879562, 0.08800169825553894, 0.018515486270189285, -0.01980658806860447, -0.08485083281993866, -0.013986977748572826, -0.056988682597875595, 0.09996001422405243, -0.009171201847493649, -0.12832333147525787, -0.06861531734466553, 0.011975633911788464, 0.012368842959403992, 0.012510856613516808, 0.21938960254192352, 0.02352335676550865, -0.03481031581759453, 0.23208753764629364, 0.03331100195646286, -0.020437754690647125, -0.08717692643404007, -0.0121736666187644, -0.08346173167228699, 0.08334902673959732, -0.1615716516971588, -0.015140654519200325, 0.03152722492814064, 0.008594134822487831, 0.06508130580186844, 0.0517081692814827, -0.08931227028369904, 0.13970637321472168, 0.1216237023472786, -0.10780998319387436, -0.0077479537576437, -0.020963327959179878, 0.08825806528329849, 0.0966433733701706, 0.05601444095373154, 0.16516521573066711, -0.1103789284825325, -0.008537527173757553, -0.013983150012791157, 0.021646587178111076, -0.10616213083267212, 0.07093123346567154, 0.12960468232631683, -0.04009924456477165, -0.0720270499587059, 0.14529076218605042, 0.12967853248119354, 0.10261263698339462, 0.06681766360998154, -0.05926209315657616, 0.0009800130501389503, -0.07828331738710403, -0.1722407042980194, -0.005850581452250481, -0.09069497138261795, -0.1197647675871849, -0.009693566709756851, -0.02232188731431961, -0.011322501115500927, -0.004500558599829674, 0.0220617838203907, -0.021786004304885864, -0.03495066985487938, 0.045941904187202454, -0.04043915122747421, 0.037884671241045, -0.06618878245353699, 0.10052727907896042, -0.15385396778583527, 0.009839274920523167, -0.01967340148985386, 0.01915420964360237, -0.05259872227907181, -0.02868838794529438, -0.021191395819187164, 0.0065820165909826756, -0.10263410955667496, -0.021603811532258987, -0.05257149785757065, -0.05480894446372986, -0.0016670649638399482, 0.02345092035830021, -0.06241481006145477, 0.07480845600366592, -0.0779198557138443, 0.01889875717461109, -0.005348994862288237, 0.1051696315407753, -0.13749007880687714, -0.05106426402926445, -0.010569761507213116, 0.0016116731567308307, 0.008631733246147633, 0.05706705525517464, 0.01653032749891281, 0.0008561810827814043, -0.04859158769249916, 0.01468623522669077, 0.11160960793495178, 0.08471372723579407, 0.015011431649327278, -0.019610945135354996, -0.04201383516192436, -0.023692866787314415, -0.08457674831151962, -0.02111778035759926, 0.05142854154109955, -0.10375380516052246, 0.0113436970859766, -0.01890948787331581, -0.08901406824588776, -0.04303713142871857, 0.003644817043095827, 0.09679647535085678, 0.07292000949382782, 0.1668567806482315, -0.013131123967468739, -0.03587108850479126, -0.11284597963094711, -0.020437683910131454, 0.009579404257237911, -0.06059964373707771, -0.10188543051481247, -0.05507560446858406, -0.013554024510085583, -0.025715621188282967, 0.1335628628730774, 0.1270158290863037, -0.1989627480506897, -0.04048972576856613, 0.09164544939994812, -0.03309173509478569, 0.014645490795373917, 0.0005624393234029412, 0.0027308245189487934, -0.02610798180103302, -0.1179286539554596, 0.06574869155883789, 0.10880983620882034, 0.11859351396560669, 0.02989155985414982, 0.06480178982019424, 0.0737915113568306, -0.011368186213076115, 0.11799687147140503, 0.019475428387522697, -0.1295747458934784, -0.052809953689575195, -0.007095412816852331, 0.1095159724354744, -0.04190552234649658, 0.09455603361129761, 0.0634482279419899, -0.09563785791397095, 0.04356764256954193, 0.004061815794557333, -0.0031356550753116608, -0.08199591189622879, -0.16051717102527618, -0.050452057272195816, -0.1330796331167221, 0.007971744984388351, -0.0957852452993393, 0.001088496414013207, 0.10895675420761108, -0.03739431872963905, -0.03591591492295265, 0.07768809050321579, -0.08531925082206726, -0.06822817027568817, 0.028019284829497337, -0.021125972270965576, -0.08525253087282181, -0.06350817531347275, -0.003667216282337904, 0.026416221633553505, -0.024589845910668373, 0.013497929088771343, 0.0412449948489666, 0.036767203360795975, -0.012109806761145592, -0.015565426088869572, -0.0649852529168129, -0.044919613748788834, 0.0291665717959404, -0.02935533970594406, 0.09650561958551407, 0.060215260833501816, -0.028533529490232468, 0.05770687013864517, 0.1675051897764206, -0.023533614352345467, -0.0037128219846636057, -0.05250009149312973, 0.01265793014317751, 0.03162476047873497, 0.08266551047563553, -0.01658484898507595, -0.0739021748304367, -0.039977941662073135, 0.05475572496652603, 0.2635199725627899, 0.04746684804558754, -0.00026304315542802215, 0.010343585163354874, 0.013588108122348785, -0.06440988928079605, 0.14653487503528595, 0.05831499397754669, 0.2404698133468628, 0.005637813359498978, 0.05425411835312843, -0.100716233253479, 0.029203901067376137, -0.06930653750896454, 0.029833782464265823, -0.004991157911717892, -0.14191600680351257, -0.011130781844258308, 0.03893923759460449, -0.05278771370649338, -0.04509301483631134, 0.0013182119000703096, -0.09270254522562027, -0.02736397087574005, 0.0015966369537636638, 0.09121759980916977, 0.031248649582266808, 0.049239370971918106, -0.06664758175611496, -0.02912541851401329, 0.12554927170276642, 0.011141946539282799, -0.08960791677236557, 0.019585981965065002, 0.12691406905651093, -0.09459594637155533, 0.19907012581825256, -0.005981469992548227, 0.11269579082727432, 0.015064395032823086, 0.04717378318309784, 0.01213639322668314, 0.11800596863031387, 0.024041397497057915, -0.03435100242495537, -0.017184028401970863, -0.02850937284529209, -0.0161888487637043, 0.160274475812912, 0.04776686802506447, 0.05329252779483795, 0.017904160544276237, 0.1122724637389183, -0.012731906957924366, -0.046692706644535065, 0.028485557064414024, -0.11252228170633316, 0.09016776084899902, -0.0005656363791786134, -0.05278429016470909, -0.03837176039814949, -0.06914978474378586, 0.020342299714684486, 0.11409468948841095, 0.01644381694495678, 0.005201003048568964, -0.04903067648410797, 0.020800016820430756, 0.007538541220128536, 0.04968292638659477, -0.14160260558128357, -0.05224557965993881, -0.0932418555021286, -0.02472000941634178, -0.049426402896642685, 0.013773041777312756, 0.0743020623922348, -0.017849186435341835, -0.03807704895734787, 0.19772405922412872, -0.054557111114263535, 0.03066197969019413, -0.07791973650455475, -0.06439609080553055 ]
null
null
asteroid
## Description: This model was trained by Gerardo Roa using the dampvsep recipe in Asteroid. It was trained on the `singing/accompaniment` task of the `DAMP-VSEP` dataset. ## Training config: ```yaml data: channels: 1 emb_model: 'no' metadata_path: metadata mixture: remix root_path: /fastdata/acp13gr/DAMP/DAMP-VSEP sample_rate: 16000 train_set: english_nonenglish filterbank: kernel_size: 20 n_filters: 256 stride: 10 main_args: exp_dir: exp/train_convtasnet_remix-no-0.0-english_nonenglish-0.0005-jade help: null masknet: bn_chan: 256 conv_kernel_size: 3 hid_chan: 512 mask_act: relu n_blocks: 10 n_repeats: 4 n_src: 2 norm_type: gLN skip_chan: 256 optim: lr: 0.0005 optimizer: adam weight_decay: 0.0 positional arguments: {} training: batch_size: 7 early_stop: true epochs: 50 half_lr: true loss_alpha: 0.0 num_workers: 10 ``` ## Results: ```yaml "si_sdr": 15.111802516750586, "si_sdr_imp": 15.178209807687663, "si_sdr_s0": 12.160261214703553, "si_sdr_s0_imp": 17.434593619085675, "si_sdr_s1": 18.063343818797623, "si_sdr_s1_imp": 12.92182599628965, "sdr": 15.959722569460281, "sdr_imp": 14.927002467087567, "sdr_s0": 13.270412028426595, "sdr_s0_imp": 16.45867572657551, "sdr_s1": 18.64903311049397, "sdr_s1_imp": 13.39532920759962, "sir": 23.935932341084754, "sir_imp": 22.903212238712012, "sir_s0": 22.30777879911744, "sir_s0_imp": 25.49604249726635, "sir_s1": 25.56408588305207, "sir_s1_imp": 20.310381980157665, "sar": 17.174899162445882, "sar_imp": -134.47377304178818, "sar_s0": 14.268071153965913, "sar_s0_imp": -137.38060105026818, "sar_s1": 20.081727170925856, "sar_s1_imp": -131.56694503330817, "stoi": 0.7746496376326059, "stoi_imp": 0.19613735629114643, "stoi_s0": 0.6611376621212413, "stoi_s0_imp": 0.21162695175464794, "stoi_s1": 0.8881616131439705, "stoi_s1_imp": 0.1806477608276449 ``` ## License notice: ** This is important, please fill it, if you need help, you can ask on Asteroid's slack.** This work "ConvTasNet_DAMPVSEP_EnglishNonEnglish_baseline" is a derivative of [DAMP-VSEP corpus](https://zenodo.org/record/3553059) by [Smule, Inc](https://www.smule.com/), used under [Restricted License](https://zenodo.org/record/3553059)(Research only). "ConvTasNet_DAMPVSEP_EnglishNonEnglish_baseline" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Gerardo Roa.
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["DAMP-VSEP", "Singing/Accompaniment Separation"]}
audio-to-audio
groadabike/ConvTasNet_DAMPVSEP_EnglishNonEnglish_baseline
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "license:cc-by-sa-4.0", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #asteroid #pytorch #audio #ConvTasNet #audio-to-audio #license-cc-by-sa-4.0 #region-us
## Description: This model was trained by Gerardo Roa using the dampvsep recipe in Asteroid. It was trained on the 'singing/accompaniment' task of the 'DAMP-VSEP' dataset. ## Training config: ## Results: ## License notice: This is important, please fill it, if you need help, you can ask on Asteroid's slack. This work "ConvTasNet_DAMPVSEP_EnglishNonEnglish_baseline" is a derivative of DAMP-VSEP corpus by Smule, Inc, used under Restricted License(Research only). "ConvTasNet_DAMPVSEP_EnglishNonEnglish_baseline" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa.
[ "## Description:\nThis model was trained by Gerardo Roa using the dampvsep recipe in Asteroid.\nIt was trained on the 'singing/accompaniment' task of the 'DAMP-VSEP' dataset.", "## Training config:", "## Results:", "## License notice:\n\n This is important, please fill it, if you need help, you can ask on Asteroid's slack.\n\nThis work \"ConvTasNet_DAMPVSEP_EnglishNonEnglish_baseline\"\nis a derivative of DAMP-VSEP corpus by\nSmule, Inc,\nused under Restricted License(Research only).\n\"ConvTasNet_DAMPVSEP_EnglishNonEnglish_baseline\"\nis licensed under Attribution-ShareAlike 3.0 Unported\nby Gerardo Roa." ]
[ "TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #license-cc-by-sa-4.0 #region-us \n", "## Description:\nThis model was trained by Gerardo Roa using the dampvsep recipe in Asteroid.\nIt was trained on the 'singing/accompaniment' task of the 'DAMP-VSEP' dataset.", "## Training config:", "## Results:", "## License notice:\n\n This is important, please fill it, if you need help, you can ask on Asteroid's slack.\n\nThis work \"ConvTasNet_DAMPVSEP_EnglishNonEnglish_baseline\"\nis a derivative of DAMP-VSEP corpus by\nSmule, Inc,\nused under Restricted License(Research only).\n\"ConvTasNet_DAMPVSEP_EnglishNonEnglish_baseline\"\nis licensed under Attribution-ShareAlike 3.0 Unported\nby Gerardo Roa." ]
[ 41, 52, 5, 3, 111 ]
[ "passage: TAGS\n#asteroid #pytorch #audio #ConvTasNet #audio-to-audio #license-cc-by-sa-4.0 #region-us \n## Description:\nThis model was trained by Gerardo Roa using the dampvsep recipe in Asteroid.\nIt was trained on the 'singing/accompaniment' task of the 'DAMP-VSEP' dataset.## Training config:## Results:## License notice:\n\n This is important, please fill it, if you need help, you can ask on Asteroid's slack.\n\nThis work \"ConvTasNet_DAMPVSEP_EnglishNonEnglish_baseline\"\nis a derivative of DAMP-VSEP corpus by\nSmule, Inc,\nused under Restricted License(Research only).\n\"ConvTasNet_DAMPVSEP_EnglishNonEnglish_baseline\"\nis licensed under Attribution-ShareAlike 3.0 Unported\nby Gerardo Roa." ]
[ -0.061873678117990494, -0.012882335111498833, -0.005642184987664223, 0.05789265036582947, 0.07920053601264954, -0.04730778932571411, 0.06711962819099426, 0.004207811783999205, -0.10703690350055695, 0.022147784009575844, 0.06396892666816711, 0.07402542978525162, -0.014264840632677078, 0.055919673293828964, 0.019247621297836304, -0.1951720118522644, 0.0073316702619194984, -0.05197210609912872, 0.03334438055753708, 0.052134204655885696, 0.08166050165891647, -0.06844519078731537, 0.06451453268527985, -0.008833970874547958, -0.14155469834804535, 0.04906712844967842, 0.04410533979535103, -0.09154130518436432, 0.06984791159629822, -0.015779294073581696, 0.13235782086849213, 0.0889168307185173, 0.0731690526008606, -0.04093128815293312, 0.03468091040849686, -0.025282755494117737, -0.013842851854860783, 0.1027357205748558, 0.08882740139961243, 0.029327603057026863, 0.04330901429057121, 0.05089762434363365, -0.017102722078561783, 0.033263497054576874, -0.10780719667673111, -0.07291261106729507, -0.08883800357580185, -0.03786541149020195, 0.07140776515007019, 0.08848835527896881, 0.01031302846968174, 0.08662138134241104, -0.09549491107463837, 0.020537523552775383, 0.14681416749954224, -0.24336950480937958, -0.04566320776939392, 0.19966845214366913, 0.05572853237390518, 0.028710555285215378, 0.017729459330439568, 0.04790535569190979, 0.03981873393058777, 0.019688373431563377, 0.059218309819698334, -0.12125114351511002, -0.12131567299365997, -0.02809467725455761, -0.08882531523704529, -0.04983682185411453, 0.32011792063713074, -0.03430592641234398, -0.09238705039024353, 0.06360240280628204, 0.004239552188664675, -0.041738443076610565, 0.006545916199684143, -0.05624125152826309, -0.00059169449377805, 0.005856384988874197, -0.11159683763980865, -0.07398387789726257, -0.11977613717317581, -0.0969962403178215, -0.06253407895565033, -0.00638992665335536, -0.005376813467592001, -0.019900821149349213, -0.04934314265847206, 0.055300332605838776, -0.12329366058111191, -0.06589112430810928, 0.05240035429596901, -0.08812238276004791, 0.0732034295797348, 0.019907746464014053, -0.054515935480594635, -0.2507776618003845, 0.09904459118843079, 0.08672153949737549, -0.06676598638296127, -0.010610283352434635, 0.0013115984620526433, 0.10570470243692398, 0.07149365544319153, -0.018143974244594574, 0.041981104761362076, -0.07031117379665375, 0.13294577598571777, -0.05186593532562256, 0.013137864880263805, -0.03879956156015396, -0.1513204723596573, -0.006554031278938055, -0.01235485915094614, -0.02421700954437256, 0.10082440078258514, -0.014677618630230427, -0.03988706320524216, -0.005628760438412428, 0.16179832816123962, -0.028617992997169495, -0.012299801222980022, -0.023959120735526085, -0.006611038465052843, -0.0011469378368929029, 0.059719763696193695, 0.08224806934595108, -0.006419978570193052, 0.03180375695228577, -0.03257610648870468, -0.0228709876537323, -0.06952474266290665, -0.07540286332368851, 0.06692727655172348, 0.052349213510751724, 0.009391894564032555, -0.22343887388706207, -0.06613340228796005, -0.043510209769010544, 0.05431042239069939, 0.0012923653703182936, -0.09385769814252853, -0.030101696029305458, 0.025903047993779182, 0.011866969987750053, -0.04961692541837692, -0.06789528578519821, 0.0018993564881384373, 0.05781390890479088, -0.00921175442636013, 0.06366539001464844, -0.1492943912744522, 0.07433345168828964, -0.10257674753665924, -0.0012537522707134485, -0.1786888986825943, 0.014415590092539787, -0.06124094873666763, -0.005924504715949297, -0.107054702937603, -0.05629190430045128, -0.14584481716156006, 0.02972637675702572, 0.04665219038724899, 0.13360588252544403, -0.17218521237373352, -0.03698888048529625, 0.04409864917397499, -0.11824989318847656, 0.01176318060606718, 0.12065371870994568, -0.002159175695851445, 0.06843359023332596, 0.010253936052322388, 0.17954617738723755, 0.03958375006914139, -0.11523108184337616, 0.04973723366856575, -0.02125418372452259, -0.034738942980766296, -0.05379577353596687, 0.08343228697776794, -0.047841571271419525, -0.0419372133910656, -0.02248980663716793, -0.004019184969365597, 0.02483305148780346, -0.0036154023837298155, -0.06272300332784653, 0.014132162556052208, -0.0016233444912359118, 0.02357414737343788, 0.015608446672558784, 0.050661854445934296, 0.031069494783878326, -0.018388602882623672, -0.03601758927106857, 0.054089490324258804, -0.008351403288543224, 0.06057341396808624, -0.013125920668244362, 0.1621537059545517, -0.09806141257286072, -0.04413493722677231, -0.1804489940404892, 0.06532135605812073, -0.0020289160311222076, 0.0599750392138958, 0.15606123208999634, -0.015565743669867516, -0.02152547799050808, 0.010800238698720932, 0.00861202273517847, 0.0018369911704212427, -0.03443068638443947, -0.0014411614974960685, 0.05441936478018761, -0.14012356102466583, 0.0020325900986790657, -0.06713021546602249, 0.018530255183577538, -0.13746410608291626, -0.03727630153298378, 0.057761937379837036, -0.0754127949476242, 0.03245141729712486, -0.015055919997394085, 0.04827851429581642, 0.13021576404571533, -0.062696672976017, 0.051056794822216034, 0.04523264616727829, 0.04951158165931702, 0.050003960728645325, 0.019544903188943863, -0.022176159545779228, -0.013466677628457546, 0.10763689875602722, -0.19197691977024078, -0.1084001287817955, -0.030202994123101234, 0.029753565788269043, -0.016765305772423744, -0.022857336327433586, 0.003102104412391782, 0.19249983131885529, -0.021957913413643837, 0.11292144656181335, -0.054331570863723755, 0.10615210980176926, 0.04614073038101196, -0.14152607321739197, -0.030358074232935905, 0.06723529100418091, 0.0950322225689888, 0.00946836918592453, 0.10104304552078247, 0.08682630956172943, -0.12833672761917114, 0.1653553992509842, -0.003879200667142868, -0.04848106577992439, -0.058257248252630234, -0.007055179215967655, 0.04306008666753769, 0.03932061418890953, -0.036129530519247055, -0.017509477213025093, 0.058012157678604126, 0.010362968780100346, 0.0332380048930645, -0.10256994515657425, -0.07228267192840576, 0.04860346019268036, 0.033747874200344086, -0.13473501801490784, 0.015989311039447784, -0.08747045695781708, 0.009245387278497219, -0.04970395192503929, -0.0835021585226059, 0.036899782717227936, 0.0003130373079329729, -0.07142678648233414, 0.06410074979066849, -0.11713439226150513, -0.16747798025608063, -0.23516587913036346, -0.05475588142871857, -0.032820068299770355, 0.05996503308415413, 0.061908964067697525, -0.05573118478059769, 0.004766611382365227, 0.00969745870679617, 0.021832909435033798, -0.06944327056407928, -0.058332089334726334, -0.07836221903562546, 0.06894589960575104, 0.006659111473709345, -0.05798378959298134, 0.014594586566090584, -0.025462187826633453, -0.07363741099834442, 0.1423618346452713, -0.03923475369811058, 0.15035668015480042, 0.12005171924829483, 0.03638169541954994, -0.027337249368429184, -0.008804590441286564, 0.10173330456018448, -0.06871379166841507, 0.0006953611155040562, 0.19657650589942932, 0.013500776141881943, 0.004044267348945141, 0.09810461103916168, 0.059179410338401794, 0.02308104746043682, -0.0007781818858347833, -0.11172866821289062, -0.15922795236110687, -0.24397686123847961, -0.10617264360189438, -0.08349522948265076, -0.010116396471858025, -0.03722139447927475, 0.00587050337344408, 0.1691371500492096, 0.07400797307491302, 0.08043129742145538, 0.03390501067042351, 0.007097882684320211, 0.04257998242974281, 0.13253456354141235, -0.006336676422506571, 0.06657709181308746, -0.030899900943040848, 0.012665952555835247, 0.1000688374042511, 0.025331858545541763, 0.16874073445796967, 0.10945550352334976, 0.022559037432074547, 0.06832220405340195, 0.14996254444122314, 0.050686318427324295, 0.07729434221982956, -0.004787784535437822, 0.01774628460407257, -0.043125249445438385, -0.10308605432510376, -0.05873242765665054, 0.07276809960603714, 0.0020404113456606865, -0.07122734189033508, -0.01145419105887413, 0.054666727781295776, -0.08319158852100372, 0.06705974042415619, 0.01431926991790533, -0.18910373747348785, -0.01503707654774189, -0.02975267544388771, 0.12097103148698807, 0.014325421303510666, 0.05217982083559036, 0.11274712532758713, -0.044899262487888336, -0.00737142376601696, 0.00395449111238122, 0.041571006178855896, -0.017153890803456306, 0.012815570458769798, -0.07379757612943649, 0.0505959689617157, 0.021190527826547623, 0.024011241272091866, -0.21281206607818604, 0.20489446818828583, 0.018815917894244194, 0.03427853807806969, 0.08587902784347534, 0.04775587096810341, -0.04141879454255104, 0.11557897180318832, 0.1695597916841507, 0.003500919323414564, -0.09536933898925781, -0.06960780173540115, -0.127582848072052, -0.009437263011932373, 0.03193981200456619, 0.018415169790387154, -0.021693773567676544, 0.0239722803235054, -0.0022188760340213776, 0.028896216303110123, 0.17275646328926086, -0.18207599222660065, -0.035133641213178635, 0.022232750430703163, 0.10171983391046524, 0.0139926141127944, 0.0020702206529676914, -0.04481630027294159, -0.0074615683406591415, 0.05789466202259064, -0.12075468897819519, 0.00594295421615243, -0.06425701081752777, -0.0772002637386322, 0.05355159938335419, -0.05367634817957878, 0.11192656308412552, 0.0013271634234115481, -0.019523998722434044, -0.05106698349118233, -0.0724765881896019, 0.10751648247241974, -0.09709755331277847, -0.0264380294829607, -0.043034184724092484, 0.08337970077991486, 0.07445646822452545, 0.0998205840587616, 0.03235376998782158, 0.07420555502176285, -0.037441328167915344, -0.0497082881629467, 0.02629597671329975, 0.02559543214738369, 0.037583377212285995, -0.030545920133590698, -0.061900388449430466, -0.22007343173027039, -0.006329006049782038, -0.03963352367281914, 0.2074970155954361, 0.14623165130615234, -0.04717624932527542, 0.1285400688648224, 0.1900525540113449, -0.08897857367992401, -0.23478032648563385, -0.042957644909620285, 0.06018972769379616, -0.010490434244275093, 0.04000008478760719, -0.2622913718223572, 0.04762323200702667, 0.057696014642715454, -0.022905811667442322, -0.09793346375226974, -0.2362866997718811, -0.06203705072402954, 0.11062071472406387, -0.06665323674678802, 0.16756556928157806, -0.08240810036659241, -0.07365518808364868, -0.0454387404024601, -0.14944666624069214, 0.07061228156089783, -0.0686592310667038, 0.09162868559360504, 0.03620408847928047, 0.11379840970039368, 0.022358806803822517, -0.020996784791350365, 0.040013208985328674, 0.02979266829788685, 0.028861165046691895, -0.04138312488794327, -0.12362274527549744, 0.061873726546764374, 0.017646191641688347, 0.05109655112028122, 0.09891778230667114, -0.009951593354344368, -0.1391693651676178, -0.01257877703756094, -0.062230829149484634, 0.10386542230844498, 0.013450398109853268, -0.07842440158128738, 0.009276355616748333, 0.016016148030757904, -0.0036944944877177477, 0.028363429009914398, 0.2311643660068512, -0.053195878863334656, 0.01935809664428234, 0.2648065388202667, 0.07896169275045395, 0.023985842242836952, -0.073598213493824, 0.034956593066453934, -0.1018279641866684, 0.08827388286590576, -0.14128661155700684, -0.00638938881456852, 0.030276957899332047, 0.029264049604535103, -0.008263355121016502, 0.05309382453560829, -0.08734343200922012, 0.10170631110668182, 0.09041052311658859, -0.14341306686401367, 0.04612622782588005, -0.008963676169514656, 0.09929531067609787, 0.11347624659538269, 0.0187243465334177, 0.14291171729564667, -0.1012164056301117, -0.012678197585046291, 0.007507035508751869, -0.016441311687231064, -0.09908612817525864, 0.13148470222949982, 0.10864158719778061, -0.025920573621988297, -0.07562611252069473, 0.1004885584115982, 0.13592249155044556, 0.007137855049222708, 0.03165290504693985, -0.01794717274606228, -0.0015726170968264341, -0.10579968988895416, -0.08733181655406952, -0.04111457243561745, -0.09059412777423859, -0.0863344743847847, -0.0057215201668441296, -0.021458430215716362, -0.006487031001597643, -0.01185122225433588, 0.04167196527123451, -0.06213054060935974, -0.06044512242078781, 0.016078433021903038, -0.04570693522691727, 0.0016822281759232283, 0.019614433869719505, 0.09253446012735367, -0.10691099613904953, 0.0909302607178688, -0.01590256206691265, 0.013388533145189285, -0.0686991810798645, -0.04319362714886665, -0.05824332311749458, 0.03399002179503441, 0.03661912679672241, 0.0075538791716098785, -0.037697937339544296, -0.051094748079776764, -0.011402297765016556, 0.006130392197519541, -0.051110655069351196, 0.0798296108841896, -0.05172652006149292, 0.021709058433771133, -0.03440709412097931, 0.07204897701740265, -0.055054232478141785, -0.02013721503317356, 0.01241315994411707, 0.0037713937927037477, 0.015366781502962112, 0.055552784353494644, -0.017381766811013222, -0.03315538540482521, -0.26646921038627625, -0.018664604052901268, 0.1099802553653717, 0.04840737581253052, 0.011675119400024414, -0.06276164948940277, -0.008757241070270538, -0.008713526651263237, -0.039908330887556076, -0.034995757043361664, 0.17556636035442352, -0.09407136589288712, 0.03768216446042061, -0.03287150710821152, -0.09624503552913666, -0.028631266206502914, 0.022277511656284332, 0.1367311030626297, 0.09393342584371567, 0.13853822648525238, -0.036687567830085754, 0.04617517441511154, -0.0658126175403595, -0.0054284450598061085, -0.010401017963886261, -0.07611698657274246, -0.10934943705797195, -0.043275173753499985, 0.010581661947071552, -0.03257029503583908, 0.033434316515922546, 0.13331206142902374, -0.05704032629728317, -0.04315628483891487, 0.09024249762296677, 0.09655915945768356, 0.006898685358464718, 0.021466629579663277, 0.07237615436315536, -0.02229149080812931, -0.08092193305492401, 0.08919747918844223, 0.08283403515815735, 0.15070155262947083, 0.014344219118356705, 0.04243740811944008, -0.015635661780834198, 0.006901205517351627, 0.09211187809705734, 0.014988365583121777, -0.028939591720700264, -0.01971924863755703, -0.00828483421355486, 0.07342551648616791, -0.06775914877653122, 0.07200460880994797, 0.10156568139791489, -0.05406487360596657, 0.053514353930950165, -0.014952167868614197, -0.019571663811802864, -0.1192607581615448, -0.1943630427122116, -0.05229673162102699, -0.10651783645153046, 0.00492576090618968, -0.09082089364528656, 0.00139711145311594, 0.10283609479665756, -0.06369515508413315, 0.020544230937957764, 0.10193781554698944, -0.05553867295384407, -0.07715623080730438, 0.04907802864909172, -0.027465462684631348, -0.04667021334171295, -0.057737454771995544, -0.013113707304000854, 0.06808537244796753, 0.009918086230754852, 0.03814408928155899, 0.04111449420452118, 0.07997415214776993, 0.025542203336954117, -0.04490546137094498, -0.08489550650119781, -0.06741170585155487, 0.0246503334492445, 0.004099034704267979, 0.12698237597942352, 0.057530421763658524, -0.06672368943691254, 0.07008683681488037, 0.17543837428092957, 0.02024518884718418, 0.00014891035971231759, -0.04878155514597893, 0.05685751885175705, -0.002023043343797326, 0.09268959611654282, -0.06044652312994003, -0.05013938248157501, -0.002197190886363387, 0.14256551861763, 0.2835521697998047, 0.045167647302150726, 0.0022972174920141697, 0.013876132667064667, 0.02648336999118328, -0.048813190311193466, 0.13062290847301483, 0.054754726588726044, 0.211918905377388, -0.02445458061993122, -0.02021743915975094, -0.14035436511039734, 0.01595987193286419, -0.1002693697810173, -0.009832465089857578, 0.01976616494357586, -0.12815599143505096, -0.0022758604027330875, 0.11263401061296463, -0.13774895668029785, 0.0037939560133963823, -0.06409439444541931, -0.11932481080293655, -0.05743838846683502, -0.04353531077504158, 0.07911848276853561, 0.06900773197412491, 0.05182696506381035, -0.08908971399068832, -0.008602658286690712, 0.014603640884160995, 0.023649051785469055, -0.07277993857860565, 0.03463713079690933, 0.07776624709367752, -0.08026746660470963, 0.1760600209236145, -0.0025917987804859877, 0.15366613864898682, -0.016811201348900795, 0.07896215468645096, -0.004329679533839226, 0.09436453133821487, 0.026395441964268684, -0.03319576382637024, 0.01376309059560299, 0.039668016135692596, -0.042343221604824066, 0.1541377156972885, 0.05021706596016884, 0.07668037712574005, 0.0643605887889862, 0.042275331914424896, 0.0231926329433918, -0.034222815185785294, 0.037896595895290375, -0.13288047909736633, 0.07898031920194626, 0.0008105064043775201, -0.0284475926309824, -0.04603489860892296, -0.09509461373090744, 0.006382527761161327, 0.09076839685440063, 0.02056289277970791, -0.04705539345741272, -0.07677558809518814, -0.0073267146944999695, -0.08132368326187134, 0.00630473205819726, -0.14484450221061707, -0.033717770129442215, -0.10784795135259628, -0.036024730652570724, -0.052887655794620514, 0.003399000968784094, 0.048706602305173874, -0.04821331799030304, 0.00265349424444139, 0.14872871339321136, 0.008154569193720818, 0.04276478290557861, -0.0783626139163971, -0.06738341599702835 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-escape This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilgpt2-finetuned-escape", "results": []}]}
text-generation
groar/distilgpt2-finetuned-escape
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# distilgpt2-finetuned-escape This model is a fine-tuned version of distilgpt2 on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "# distilgpt2-finetuned-escape\n\nThis model is a fine-tuned version of distilgpt2 on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 100", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# distilgpt2-finetuned-escape\n\nThis model is a fine-tuned version of distilgpt2 on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 100", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ 66, 34, 6, 12, 8, 3, 90, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# distilgpt2-finetuned-escape\n\nThis model is a fine-tuned version of distilgpt2 on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 100### Training results### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ -0.08576449006795883, 0.061113134026527405, -0.001585690421052277, 0.0850519984960556, 0.18279536068439484, 0.02536940574645996, 0.11377774924039841, 0.10764719545841217, -0.12952108681201935, 0.05696645751595497, 0.061436962336301804, 0.12798772752285004, 0.03198089823126793, 0.13017773628234863, -0.04290023446083069, -0.24831941723823547, 0.0006169644766487181, 0.014900688081979752, -0.06950732320547104, 0.10789692401885986, 0.09612946957349777, -0.11312554031610489, 0.06187622621655464, 0.0033681215718388557, -0.22636832296848297, 0.023225391283631325, -0.010198545642197132, -0.04593914747238159, 0.10899655520915985, 0.0037790590431541204, 0.11497078090906143, -0.013427972793579102, 0.12872254848480225, -0.19869469106197357, -0.00035846338141709566, 0.10031715035438538, 0.034169722348451614, 0.0764465481042862, 0.03652724251151085, 0.00734094250947237, 0.1440713107585907, -0.11730737239122391, 0.07967481017112732, 0.02011372707784176, -0.07881475985050201, -0.13924755156040192, -0.08906739205121994, 0.039469413459300995, 0.09681905806064606, 0.11811111122369766, -0.004368560388684273, 0.1361696720123291, -0.08999114483594894, 0.08070820569992065, 0.19099442660808563, -0.26118960976600647, -0.07953421026468277, 0.0885162428021431, 0.03617357090115547, 0.06573209166526794, -0.09441272914409637, -0.012067126110196114, 0.05613577365875244, 0.05273634195327759, 0.10018240660429001, -0.017145605757832527, -0.12112453579902649, -0.015938404947519302, -0.13943299651145935, 0.009350803680717945, 0.1334156095981598, 0.03760712966322899, -0.033098552376031876, -0.06116368994116783, -0.07005872577428818, -0.10388510674238205, -0.030176129192113876, -0.05829962342977524, 0.05824261158704758, -0.020778929814696312, -0.05686991289258003, -0.04663897678256035, -0.08153463900089264, -0.05969063565135002, -0.04254451021552086, 0.09711138904094696, 0.045826155692338943, 0.007458579260855913, -0.047857701778411865, 0.09922430664300919, -0.01755792461335659, -0.10889824479818344, 0.008383688516914845, 0.009537356905639172, -0.04301099106669426, -0.06757751107215881, -0.07001236826181412, -0.05539630725979805, 0.005168144591152668, 0.13623586297035217, -0.09459606558084488, 0.06853271275758743, 0.022938033565878868, 0.01979742757976055, -0.048297081142663956, 0.13887351751327515, -0.038503170013427734, -0.04841892048716545, 0.009769185446202755, 0.06049387529492378, 0.01669003814458847, -0.004626946523785591, -0.0957256555557251, 0.00037172166048549116, 0.08833680301904678, 0.02536207251250744, -0.07022035121917725, 0.04564455896615982, -0.033167678862810135, -0.018915241584181786, -0.032510071992874146, -0.11643093079328537, 0.044161804020404816, -0.03178540617227554, -0.08139729499816895, 0.017828883603215218, 0.008417707867920399, 0.013837495818734169, -0.04244116321206093, 0.12027633935213089, -0.09353163838386536, 0.036242514848709106, -0.1228584349155426, -0.0882120132446289, 0.01062200777232647, -0.09142276644706726, -0.013751151971518993, -0.07408149540424347, -0.20502600073814392, -0.05169669911265373, 0.05349075421690941, -0.04158740118145943, -0.03621421754360199, -0.06518661975860596, -0.08512135595083237, 0.00042990950169041753, -0.007905093021690845, 0.1482090950012207, -0.049703702330589294, 0.06494331359863281, 0.008918925188481808, 0.04064973071217537, -0.02750946208834648, 0.040970247238874435, -0.08573687821626663, 0.00469265365973115, -0.1458284705877304, 0.07979431003332138, -0.06006024032831192, 0.05602101609110832, -0.08771809935569763, -0.1055060625076294, -0.033148787915706635, -0.002156226197257638, 0.0739188864827156, 0.09335990995168686, -0.2238016128540039, -0.04541793093085289, 0.16525878012180328, -0.07321241497993469, -0.07283955812454224, 0.0813688114285469, -0.04997524991631508, 0.06159254536032677, 0.08756458014249802, 0.1641520857810974, 0.04534652829170227, -0.1038564071059227, -0.02597363479435444, -0.006575863342732191, 0.04058896377682686, -0.008558956906199455, 0.013971413485705853, -0.0008069861796684563, 0.06734255701303482, 0.02144433557987213, -0.026437904685735703, 0.0017113605281338096, -0.09413854032754898, -0.07816066592931747, -0.0610065683722496, -0.09398758411407471, -0.0026383555959910154, 0.04866053909063339, 0.07687849551439285, -0.08158375322818756, -0.09211228042840958, 0.15602414309978485, 0.10945414006710052, -0.06347934901714325, 0.0337168350815773, -0.07292301952838898, 0.051165662705898285, -0.01462621334940195, -0.013686009682714939, -0.224801704287529, -0.08495141565799713, 0.012948323972523212, -0.012288084253668785, 0.04624435678124428, 0.02840360812842846, 0.058997247368097305, 0.05993345007300377, -0.0408623144030571, 0.010014977306127548, -0.0693080946803093, -0.002955025527626276, -0.12951038777828217, -0.19617296755313873, -0.020170804113149643, -0.014891834929585457, 0.14675763249397278, -0.22853823006153107, 0.031224384903907776, -0.04439922049641609, 0.11662040650844574, 0.0035011989530175924, -0.05117003619670868, -0.05214540660381317, 0.07787126302719116, -0.023764625191688538, -0.08650141954421997, 0.058247536420822144, 0.002324229571968317, -0.05736841633915901, -0.09985898435115814, -0.13373661041259766, 0.055222149938344955, 0.11604835838079453, -0.06370854377746582, -0.1020229309797287, 0.012929760850965977, -0.06565218418836594, -0.030041806399822235, -0.0815449059009552, 0.019030699506402016, 0.18729454278945923, -0.004934726748615503, 0.137478306889534, -0.05366060882806778, -0.06260188668966293, -0.0011195362312719226, -0.007597539108246565, 0.030741872265934944, 0.0680871456861496, 0.12778830528259277, -0.06163256987929344, 0.11132297664880753, 0.08875478804111481, -0.09491705149412155, 0.12467314302921295, -0.03681701421737671, -0.07309918850660324, -0.00380819384008646, -0.015775159001350403, -0.01923757791519165, 0.08858565241098404, -0.11880023032426834, -0.000605046923737973, 0.007650271058082581, 0.03698233515024185, 0.057028308510780334, -0.21065299212932587, -0.003901211079210043, 0.00826981570571661, -0.033009886741638184, -0.009535213932394981, -0.016753580421209335, 0.013262810185551643, 0.09868323057889938, 0.006243731360882521, -0.021063771098852158, 0.010196622461080551, -0.0005618234281428158, -0.07844129204750061, 0.18922024965286255, -0.12247767299413681, -0.12311580032110214, -0.07738689333200455, 0.01847103238105774, -0.04499850794672966, -0.009912344627082348, 0.029683809727430344, -0.11312239617109299, -0.047672953456640244, -0.07592929899692535, -0.010897415690124035, -0.0205030869692564, -0.004930946975946426, 0.07234030961990356, 0.006179165095090866, 0.07148919999599457, -0.1344657689332962, -0.007545000407844782, -0.05451805517077446, -0.11596895754337311, 0.011785976588726044, 0.05563170090317726, 0.09249232709407806, 0.15221774578094482, -0.01757422648370266, 0.01821649633347988, -0.02799474634230137, 0.24550729990005493, -0.0687822699546814, -0.006515433546155691, 0.13104183971881866, 0.030521763488650322, 0.04921558126807213, 0.09260943531990051, 0.046233706176280975, -0.12389332056045532, 0.033524803817272186, 0.08680785447359085, -0.026725996285676956, -0.22612261772155762, -0.045991647988557816, -0.04856592044234276, -0.09791594743728638, 0.07065974175930023, 0.03735072910785675, 0.037274960428476334, 0.0580737479031086, 0.022274203598499298, 0.09390353411436081, -0.02244960144162178, 0.0743236318230629, 0.11813541501760483, 0.04390991851687431, 0.12039527297019958, -0.033654287457466125, -0.036440618336200714, 0.05955929681658745, -0.029441284015774727, 0.2875707447528839, -0.008534519001841545, 0.04158399626612663, 0.06601083278656006, 0.11626115441322327, -0.029084358364343643, 0.041328854858875275, -0.0019232137128710747, -0.02393331192433834, 0.0007964649121277034, -0.04817628860473633, -0.026110364124178886, 0.013989653438329697, -0.07439694553613663, 0.03508174419403076, -0.08852364867925644, 0.03717704489827156, 0.05957658588886261, 0.2347836196422577, 0.01557972189038992, -0.2955469489097595, -0.08029019087553024, 0.0053022271022200584, -0.03971916437149048, -0.04072976112365723, 0.007896538823843002, 0.10230668634176254, -0.11259618401527405, 0.054206039756536484, -0.052870362997055054, 0.10698847472667694, -0.013276000507175922, 0.028025325387716293, 0.06555010378360748, 0.16257108747959137, 0.005163825582712889, 0.06621351093053818, -0.27174198627471924, 0.20083530247211456, 0.00970481801778078, 0.1443328708410263, -0.056511811912059784, 0.0295402929186821, 0.028532985597848892, 0.07687707990407944, 0.052758630365133286, 0.0005432880134321749, -0.040343500673770905, -0.14613723754882812, -0.025947241112589836, 0.04290615767240524, 0.11911554634571075, -0.0020375645253807306, 0.07818381488323212, -0.042403727769851685, 0.0206148624420166, 0.06501311808824539, -0.06328710168600082, -0.1564476042985916, -0.11310254037380219, -0.006909840740263462, 0.022479282692074776, -0.041233450174331665, -0.060509320348501205, -0.1024712398648262, -0.07041580229997635, 0.17031371593475342, 0.005232156254351139, -0.033305272459983826, -0.12062361091375351, 0.12115531414747238, 0.09501900523900986, -0.05829140543937683, 0.025399915874004364, 0.02648310735821724, 0.089753657579422, 0.04292534291744232, -0.08918606489896774, 0.06102881208062172, -0.07581304013729095, -0.14923754334449768, -0.049261678010225296, 0.090067058801651, 0.05928458645939827, 0.042545389384031296, -0.0014875753549858928, 0.021326029673218727, -0.008629847317934036, -0.1044975221157074, -0.0038778060115873814, 0.08391232043504715, 0.109664186835289, 0.046165481209754944, -0.10667695105075836, -0.0014822864904999733, -0.04073216766119003, -0.026851173490285873, 0.1295088231563568, 0.18267223238945007, -0.07836683839559555, 0.036571159958839417, 0.043125223368406296, -0.10314974933862686, -0.16789481043815613, 0.11135610938072205, 0.11389000713825226, 0.00041274577961303294, 0.029455682262778282, -0.19875356554985046, 0.16118359565734863, 0.14469340443611145, -0.0052896230481565, 0.09912844747304916, -0.3384299874305725, -0.13886041939258575, 0.056816328316926956, 0.12527231872081757, 0.09158068895339966, -0.14107710123062134, -0.0174932349473238, -0.050815992057323456, -0.13140900433063507, 0.1324525624513626, -0.11533033847808838, 0.11188101768493652, 0.004824647679924965, 0.10023036599159241, 0.007078852504491806, -0.03724217787384987, 0.11602939665317535, 0.053149737417697906, 0.09999056905508041, -0.06348072737455368, 0.03782925009727478, 0.07356669008731842, -0.043953873217105865, 0.019992943853139877, -0.03307018801569939, 0.05014368146657944, -0.0861230120062828, -0.018055392429232597, -0.07200554758310318, 0.052641239017248154, -0.04471322149038315, -0.06750320643186569, -0.04851973429322243, 0.03655785322189331, 0.06549052149057388, -0.02875925973057747, 0.056389059871435165, 0.018060732632875443, 0.14843662083148956, 0.0210237056016922, 0.08813157677650452, -0.0845331996679306, -0.0704030692577362, 0.004853627644479275, -0.0028323230799287558, 0.05407470092177391, -0.12246022373437881, 0.013797319494187832, 0.14029251039028168, 0.030303211882710457, 0.1365804672241211, 0.07860232144594193, -0.028416482731699944, 0.01138767134398222, 0.0590236634016037, -0.11246628314256668, -0.11825361102819443, 0.02306327223777771, -0.08196990936994553, -0.08591004461050034, 0.05721895024180412, 0.09373871982097626, -0.06169437989592552, -0.007418833673000336, -0.012700012885034084, 0.01828671805560589, -0.050869252532720566, 0.2005569487810135, 0.023770570755004883, 0.03818213567137718, -0.09601239114999771, 0.09949494153261185, 0.0442458800971508, -0.06571221351623535, 0.04024564102292061, 0.0847163125872612, -0.10052388906478882, -0.016244923695921898, 0.08287594467401505, 0.17213422060012817, -0.0692206472158432, -0.04107711464166641, -0.09640523791313171, -0.09305598586797714, 0.050582755357027054, 0.13224706053733826, 0.07373327016830444, -0.015545975416898727, -0.06013324856758118, 0.05336413159966469, -0.15598036348819733, 0.05160766839981079, 0.04408742114901543, 0.07615046948194504, -0.13808926939964294, 0.17029204964637756, 0.02960214763879776, 0.017291001975536346, -0.02138453535735607, 0.03175612539052963, -0.09927494078874588, -0.009463777765631676, -0.12349963188171387, -0.039179813116788864, -0.03543694317340851, -0.011233320459723473, -0.00303695909678936, -0.031116481870412827, -0.061351485550403595, 0.04456683248281479, -0.08167412132024765, -0.05291730538010597, 0.013811372220516205, 0.03159208223223686, -0.13357537984848022, 0.015298021957278252, 0.0022790187504142523, -0.07371968030929565, 0.0588226318359375, 0.06517203152179718, 0.018836969509720802, 0.06694015115499496, -0.16604271531105042, -0.014084468595683575, 0.062162451446056366, 0.030078763142228127, 0.07525128126144409, -0.046840373426675797, 0.0017399544594809413, 0.0001766600034898147, 0.0951802209019661, 0.020907869562506676, 0.06382238119840622, -0.11711817979812622, -0.002919398248195648, -0.06864611804485321, -0.06518635153770447, -0.06366793811321259, 0.03169555217027664, 0.1092369481921196, 0.04525262862443924, 0.19056224822998047, -0.08636468648910522, 0.02270633913576603, -0.2017316073179245, -0.02754925936460495, 0.005796121433377266, -0.04499880224466324, -0.05371975526213646, -0.05490465834736824, 0.08257254213094711, -0.06348848342895508, 0.1299363076686859, 0.022121025249361992, 0.0748385488986969, 0.03871376812458038, -0.03938658535480499, -0.045074477791786194, 0.0035071938764303923, 0.19423866271972656, 0.06749586015939713, -0.015073662623763084, 0.05971163883805275, 0.03186037391424179, 0.08723296225070953, 0.04334896430373192, 0.2287144660949707, 0.13082852959632874, -0.06990192085504532, 0.07517776638269424, 0.037381138652563095, -0.09166854619979858, -0.154581218957901, 0.10942936688661575, -0.07121995091438293, 0.10249345004558563, -0.06199229881167412, 0.1807706654071808, 0.08268984407186508, -0.15682163834571838, 0.051674894988536835, -0.06893745809793472, -0.10732388496398926, -0.1277887225151062, -0.025426696985960007, -0.07774504274129868, -0.14168845117092133, 0.02481585554778576, -0.13213101029396057, 0.046953313052654266, 0.10940354317426682, 0.016645552590489388, -0.00480493763461709, 0.1526428759098053, -0.04070696234703064, 0.010139981284737587, 0.04587624967098236, -0.0005225888453423977, -0.01659633405506611, -0.08173029124736786, -0.07136865705251694, 0.00029655429534614086, 0.006904469337314367, 0.08605919033288956, -0.04678172245621681, -0.03938084840774536, 0.025864144787192345, -0.02091529592871666, -0.04320869222283363, 0.02682800032198429, 0.027881819754838943, 0.031471215188503265, 0.04027969017624855, 0.03675427660346031, -0.0183861181139946, -0.029667789116501808, 0.2805172801017761, -0.0821552649140358, -0.1252228021621704, -0.13364920020103455, 0.23041829466819763, 0.0607265941798687, -0.020525963976979256, 0.045789945870637894, -0.10111413151025772, -0.014307165518403053, 0.2040942907333374, 0.17476113140583038, -0.09123755246400833, -0.02910231240093708, -0.008985275402665138, -0.020522285252809525, -0.06137729063630104, 0.14575622975826263, 0.1367335170507431, 0.07813598215579987, -0.05482013523578644, -0.01550119835883379, -0.02875068411231041, -0.022925598546862602, -0.08974338322877884, 0.056222327053546906, 0.02202378772199154, 0.001712637022137642, -0.01725856214761734, 0.076615110039711, -0.02572418935596943, -0.15804795920848846, 0.05039669945836067, -0.16362033784389496, -0.17154978215694427, -0.004033071454614401, 0.09131399542093277, -0.03809083625674248, 0.058306049555540085, -0.015238328836858273, -0.005005466286092997, 0.10998712480068207, -0.031084183603525162, -0.048247434198856354, -0.09647181630134583, 0.0815163180232048, -0.1051025316119194, 0.19173772633075714, -0.027418648824095726, 0.0669819563627243, 0.1161428764462471, 0.04733501002192497, -0.08279215544462204, 0.07772484421730042, 0.03182202950119972, -0.07938162237405777, 0.03356701508164406, 0.11932723224163055, -0.05071219429373741, 0.03456169366836548, 0.048077087849378586, -0.13413628935813904, 0.0008412035531364381, -0.041153501719236374, -0.040018197149038315, -0.07400244474411011, -0.02148960530757904, -0.08966463804244995, 0.1408834010362625, 0.2179935872554779, -0.013531687669456005, 0.0358101986348629, -0.09520204365253448, 0.02306441403925419, 0.03264826163649559, 0.09089735150337219, -0.0683671236038208, -0.24955832958221436, 0.02220003306865692, 0.04606069624423981, -0.011935380287468433, -0.2057449072599411, -0.07791856676340103, 0.02632388472557068, -0.06478846818208694, -0.08082829415798187, 0.09679962694644928, 0.08538372814655304, 0.04280901700258255, -0.04334605485200882, -0.12069635093212128, -0.05536990985274315, 0.17240770161151886, -0.14774496853351593, -0.06461683660745621 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7852 | 1.0 | 2334 | 3.6895 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilgpt2-finetuned-wikitext2", "results": []}]}
text-generation
groar/distilgpt2-finetuned-wikitext2
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
distilgpt2-finetuned-wikitext2 ============================== This model is a fine-tuned version of distilgpt2 on the None dataset. It achieves the following results on the evaluation set: * Loss: 3.6895 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 66, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.08987565338611603, 0.06281834095716476, -0.0026462210807949305, 0.11023200303316116, 0.1474255621433258, 0.021185938268899918, 0.13198596239089966, 0.13885486125946045, -0.11416594684123993, 0.035359952598810196, 0.13690422475337982, 0.16233472526073456, 0.020766830071806908, 0.11006388813257217, -0.043375931680202484, -0.2587572932243347, -0.0034840123262256384, 0.03967279568314552, -0.052573226392269135, 0.13850539922714233, 0.0871773436665535, -0.11378629505634308, 0.0857308954000473, 0.0030822264961898327, -0.19072656333446503, 0.009009157307446003, -0.003952469676733017, -0.05502710118889809, 0.14695918560028076, 0.02962833270430565, 0.09676846861839294, 0.0064852614887058735, 0.06587503850460052, -0.18837159872055054, 0.010658805258572102, 0.06050027906894684, -0.0018033155938610435, 0.08664577454328537, 0.05112782120704651, 0.011878113262355328, 0.1910809725522995, -0.07121403515338898, 0.03429017588496208, 0.020957062020897865, -0.11957644671201706, -0.19933313131332397, -0.08779231458902359, 0.029472846537828445, 0.07512079924345016, 0.1190556138753891, -0.014062223955988884, 0.1288033425807953, -0.07458649575710297, 0.09863919764757156, 0.23774442076683044, -0.30007439851760864, -0.06481140106916428, 0.01332844514399767, 0.027257610112428665, 0.07339755445718765, -0.08620931953191757, -0.011464125476777554, 0.05049264430999756, 0.048013605177402496, 0.11136163026094437, -0.031128451228141785, -0.10715382546186447, 0.015119758434593678, -0.14402233064174652, -0.05668051540851593, 0.1720256507396698, 0.028573868796229362, -0.02971932291984558, -0.06222160533070564, -0.07333443313837051, -0.1595924198627472, -0.023311061784625053, -0.009205471724271774, 0.03595668449997902, -0.016169851645827293, -0.05547473207116127, -0.03675401210784912, -0.11431919038295746, -0.071740061044693, -0.0725480169057846, 0.12731628119945526, 0.04082046076655388, 0.012659881263971329, -0.03677966073155403, 0.11524248868227005, 0.0015178392641246319, -0.12815752625465393, 0.011019197292625904, 0.03801244497299194, 0.029892276972532272, -0.022338202223181725, -0.061197392642498016, -0.0786033421754837, 0.025694996118545532, 0.11694926023483276, -0.06114138662815094, 0.045735158026218414, 0.024456333369016647, 0.049523260444402695, -0.09324907511472702, 0.16932359337806702, -0.02828609012067318, 0.0011467444710433483, 0.012736293487250805, 0.04142743721604347, 0.042932335287332535, -0.023776041343808174, -0.12707653641700745, 0.011654520407319069, 0.09421530365943909, 0.02246447093784809, -0.05246921628713608, 0.07332812994718552, -0.04008723422884941, -0.017703114077448845, 0.007708196062594652, -0.09591793268918991, 0.02320011891424656, -0.0012236495967954397, -0.07379186153411865, -0.016087597236037254, 0.026896769180893898, 0.01317701954394579, -0.046098075807094574, 0.09242868423461914, -0.07650161534547806, 0.0227813683450222, -0.09579163789749146, -0.10407324880361557, 0.021734610199928284, -0.09434971958398819, 0.016757842153310776, -0.08818217366933823, -0.19844146072864532, -0.008873283863067627, 0.054294269531965256, -0.02741220034658909, -0.06404954195022583, -0.06566007435321808, -0.07802955061197281, 0.019336823374032974, -0.022806353867053986, 0.14427949488162994, -0.0674847885966301, 0.10053416341543198, 0.03375976160168648, 0.059620387852191925, -0.04845133423805237, 0.054510340094566345, -0.09488637745380402, 0.007220488041639328, -0.14647126197814941, 0.04346325993537903, -0.03856142237782478, 0.057171788066625595, -0.08266081660985947, -0.09761067479848862, -0.0026362703647464514, 0.009860068559646606, 0.06897354871034622, 0.09404934197664261, -0.16082938015460968, -0.09131230413913727, 0.17791372537612915, -0.07757563889026642, -0.12658080458641052, 0.12723074853420258, -0.04832439124584198, 0.04624992609024048, 0.06352558732032776, 0.18039721250534058, 0.057486314326524734, -0.07368170469999313, 0.006803508382290602, 0.012849371880292892, 0.044905588030815125, -0.06130184605717659, 0.06595756858587265, -0.009944189339876175, 0.02990483120083809, 0.03240683302283287, -0.01762544736266136, 0.05224866047501564, -0.08483216166496277, -0.0892905741930008, -0.05224861577153206, -0.0749475359916687, 0.012944621965289116, 0.06610307097434998, 0.0771275982260704, -0.11032801121473312, -0.09793277829885483, 0.02752702124416828, 0.08289940655231476, -0.07932022958993912, 0.040450356900691986, -0.053946688771247864, 0.07929229736328125, -0.03159788250923157, -0.0039658211171627045, -0.17171649634838104, -0.013797957450151443, 0.01310800388455391, -0.005687800236046314, 0.023652760311961174, 0.022530505433678627, 0.06489070504903793, 0.06257041543722153, -0.04337984696030617, -0.013062185607850552, -0.031048299744725227, -0.022660981863737106, -0.12234392762184143, -0.19291672110557556, -0.018671732395887375, -0.022535163909196854, 0.13333091139793396, -0.2001759558916092, 0.0456731952726841, 0.009858598932623863, 0.05601445585489273, 0.002386713633313775, -0.012244613841176033, -0.04039859399199486, 0.07292333245277405, -0.05698028951883316, -0.050361234694719315, 0.07622765004634857, 0.012349119409918785, -0.09624799340963364, -0.03263241797685623, -0.1234736442565918, 0.14307357370853424, 0.14221172034740448, -0.11851542443037033, -0.061905231326818466, -0.004664704669266939, -0.06375271081924438, -0.0316612534224987, -0.03982401639223099, 0.01924740895628929, 0.20127779245376587, -0.01175442710518837, 0.15356852114200592, -0.07794826477766037, -0.04944794997572899, 0.02571830525994301, -0.033051833510398865, 0.029909387230873108, 0.1315646916627884, 0.1297682374715805, -0.05671323835849762, 0.14947587251663208, 0.14091987907886505, -0.08686376363039017, 0.14838053286075592, -0.04782910272479057, -0.0773521438241005, -0.004283820744603872, -0.0007385131902992725, -0.001555790426209569, 0.0795595645904541, -0.1794363260269165, -0.007299140095710754, 0.026114491745829582, 0.02791883796453476, 0.042740724980831146, -0.2324046641588211, -0.03168412297964096, 0.029827836900949478, -0.06375189125537872, -0.004748560022562742, -0.009484365582466125, -0.00822622049599886, 0.10737704485654831, -0.0047269235365092754, -0.07168979942798615, 0.037991587072610855, 0.0037261357065290213, -0.08511416614055634, 0.21313244104385376, -0.07544233649969101, -0.16896432638168335, -0.1276775300502777, -0.06500024348497391, -0.06264016777276993, 0.011003649793565273, 0.0828428789973259, -0.09254077076911926, -0.02916548401117325, -0.0899682268500328, 0.032897401601076126, -0.006484387442469597, 0.02595558390021324, 0.009947246871888638, -0.001204953994601965, 0.04927721619606018, -0.11855610460042953, -0.013829231262207031, -0.05667804926633835, -0.07951043546199799, 0.0503975972533226, 0.03285529837012291, 0.11380156874656677, 0.15610316395759583, -0.0023539368994534016, 0.01908193901181221, -0.03136516362428665, 0.20726396143436432, -0.07476001977920532, -0.027189912274479866, 0.14863216876983643, 0.007607827894389629, 0.05456209555268288, 0.08560996502637863, 0.05691872909665108, -0.08775079250335693, 0.009727423079311848, 0.029172662645578384, -0.043863989412784576, -0.23265032470226288, -0.04367074370384216, -0.06245964765548706, 0.014305428601801395, 0.08720137178897858, 0.04249618947505951, 0.04866573214530945, 0.0667661800980568, 0.02676413021981716, 0.07883092015981674, -0.02653716318309307, 0.05708801746368408, 0.12474602460861206, 0.03745696693658829, 0.12787674367427826, -0.05674336105585098, -0.05947962403297424, 0.05329598858952522, -0.010892841033637524, 0.23403988778591156, 0.0006378578254953027, 0.16894637048244476, 0.060112833976745605, 0.15232621133327484, -0.007992816157639027, 0.07887043803930283, -0.018065595999360085, -0.03609217703342438, -0.021371904760599136, -0.0476982444524765, -0.03532671183347702, 0.024520285427570343, -0.08914213627576828, 0.04486328363418579, -0.11054417490959167, 0.009558435529470444, 0.06412174552679062, 0.25356414914131165, 0.037489037960767746, -0.31012630462646484, -0.08627035468816757, 0.010960240848362446, -0.037566911429166794, -0.017796970903873444, 0.035920400172472, 0.10165137052536011, -0.08175484091043472, 0.03435218706727028, -0.06922746449708939, 0.10122695565223694, -0.04971157759428024, 0.0542173832654953, 0.05849672481417656, 0.09003908932209015, 0.01062568835914135, 0.09697883576154709, -0.3091334402561188, 0.2720803916454315, 0.0019805089104920626, 0.07310875505208969, -0.09002503007650375, 0.020003149285912514, 0.0284082293510437, 0.046844251453876495, 0.07265087962150574, -0.017968513071537018, -0.04603801667690277, -0.14642654359340668, -0.06992491334676743, 0.04073081910610199, 0.09012285619974136, -0.033096794039011, 0.09203242510557175, -0.029110906645655632, 0.015897687524557114, 0.06673789769411087, -0.006270270328968763, -0.043227773159742355, -0.1118229404091835, 0.004112703260034323, 0.022531656548380852, -0.054489921778440475, -0.061938028782606125, -0.10430087894201279, -0.12447675317525864, 0.17150916159152985, -0.026256250217556953, -0.04104072228074074, -0.10209647566080093, 0.07564031332731247, 0.058323975652456284, -0.08853062242269516, 0.034614671021699905, 0.00877297855913639, 0.057525038719177246, 0.028238456696271896, -0.07493340224027634, 0.10920442640781403, -0.06295416504144669, -0.17101263999938965, -0.04953213036060333, 0.11446820944547653, 0.019662009552121162, 0.05588636174798012, -0.017035337164998055, 0.01285022683441639, -0.059709448367357254, -0.10117916017770767, 0.03043372929096222, -0.01102517917752266, 0.07125410437583923, 0.01255403459072113, -0.05050913244485855, 0.030631305649876595, -0.05917687714099884, -0.054208528250455856, 0.205113485455513, 0.2397686094045639, -0.08081203699111938, 0.03433782979846001, 0.029732339084148407, -0.07866993546485901, -0.20320512354373932, 0.01325915940105915, 0.04086780175566673, 0.0021853637881577015, 0.0185341015458107, -0.20076440274715424, 0.10734894871711731, 0.1178668811917305, -0.014777646400034428, 0.1354941874742508, -0.36145827174186707, -0.1279490441083908, 0.11584241688251495, 0.1307109296321869, 0.12112708389759064, -0.15735489130020142, -0.028386104851961136, -0.02757297083735466, -0.11211037635803223, 0.10720637440681458, -0.11659404635429382, 0.13060972094535828, -0.03354451432824135, 0.09437152743339539, -0.0008855079067870975, -0.0625682845711708, 0.11534188687801361, 0.009155024774372578, 0.08593776822090149, -0.06893117725849152, 0.002426665974780917, 0.042033080011606216, -0.032384973019361496, 0.032546479254961014, -0.12494634091854095, 0.02816522866487503, -0.10254814475774765, -0.025374580174684525, -0.06433817744255066, 0.04783870279788971, -0.034062460064888, -0.06152153015136719, -0.04182082787156105, -0.01076036412268877, 0.042014628648757935, -0.004625472705811262, 0.14979219436645508, 0.015340398997068405, 0.14032891392707825, 0.11327608674764633, 0.07127201557159424, -0.08086938410997391, -0.051019102334976196, -0.020091228187084198, -0.009013565257191658, 0.052946094423532486, -0.16283994913101196, 0.019385680556297302, 0.13670097291469574, 0.018826883286237717, 0.139922097325325, 0.0855334922671318, -0.03214798867702484, 0.026550693437457085, 0.05973684415221214, -0.17759253084659576, -0.10054805129766464, -0.016976704820990562, -0.05844293534755707, -0.08952794969081879, 0.06653784215450287, 0.10010217130184174, -0.06386729329824448, -0.003241759492084384, -0.009047185070812702, 0.0170862078666687, -0.05326158553361893, 0.1813969612121582, 0.03750871494412422, 0.040625013411045074, -0.10130594670772552, 0.07945045828819275, 0.040062256157398224, -0.08283931761980057, 0.02714724838733673, 0.09928371012210846, -0.07516099512577057, -0.05729207396507263, 0.07078084349632263, 0.1795470118522644, -0.04522603377699852, -0.05255291610956192, -0.13882799446582794, -0.12182189524173737, 0.08914514631032944, 0.13792835175991058, 0.10346121340990067, 0.015985354781150818, -0.06623058766126633, 0.019166700541973114, -0.1215895488858223, 0.08398830145597458, 0.0340404286980629, 0.06083851307630539, -0.12324410676956177, 0.14396589994430542, 0.019435983151197433, 0.038505930453538895, -0.021991390734910965, 0.020213529467582703, -0.09424322098493576, 0.013634798116981983, -0.10718247294425964, -0.02572587877511978, -0.030000170692801476, -0.003574372734874487, -0.0036930672358721495, -0.04118354246020317, -0.05993959680199623, 0.015039517544209957, -0.11258857697248459, -0.026677684858441353, 0.015145186334848404, 0.05272109806537628, -0.11781975626945496, -0.021634861826896667, 0.023439638316631317, -0.06823286414146423, 0.08451028168201447, 0.05617249011993408, 0.013144510798156261, 0.06456011533737183, -0.14984723925590515, 0.024156952276825905, 0.0734144002199173, 0.025851771235466003, 0.04565717279911041, -0.07079510390758514, -0.009422585368156433, 0.010603087954223156, 0.0529123954474926, 0.01953386701643467, 0.06778346747159958, -0.13872423768043518, 0.012867973186075687, -0.024141186848282814, -0.08825458586215973, -0.06832924485206604, 0.04159405082464218, 0.07215527445077896, 0.015023340471088886, 0.19434072077274323, -0.08318138867616653, 0.039193302392959595, -0.20948581397533417, 0.013359480537474155, 0.0064219883643090725, -0.11676789075136185, -0.11223148554563522, -0.06673740595579147, 0.06347806751728058, -0.060337383300065994, 0.14914724230766296, 0.030100703239440918, 0.01883687637746334, 0.024049147963523865, -0.01728774979710579, 0.022012511268258095, 0.009585059247910976, 0.22442635893821716, 0.04280262812972069, -0.032198481261730194, 0.043091900646686554, 0.03825083747506142, 0.10861396789550781, 0.10777419805526733, 0.20225554704666138, 0.12942689657211304, -0.004493782762438059, 0.10822881013154984, 0.03179037570953369, -0.06457394361495972, -0.15738478302955627, 0.04525037109851837, -0.04087148234248161, 0.124786876142025, -0.023181911557912827, 0.21092373132705688, 0.0872463807463646, -0.14996519684791565, 0.037228748202323914, -0.04462931677699089, -0.08039040863513947, -0.11958835273981094, -0.0687093660235405, -0.08300060778856277, -0.14636234939098358, 0.005197657737880945, -0.12027542293071747, 0.03218082711100578, 0.10891453921794891, 0.013240411877632141, -0.028351858258247375, 0.15464799106121063, 0.03467922285199165, 0.012182885780930519, 0.05486185476183891, -0.0017237995052710176, -0.028855690732598305, -0.10813674330711365, -0.06635896861553192, -0.012330345809459686, -0.016228968277573586, 0.048565059900283813, -0.03871693089604378, -0.04812921583652496, 0.039442844688892365, -0.038668543100357056, -0.09014679491519928, 0.004786400124430656, 0.022011900320649147, 0.06131432577967644, 0.05170145630836487, 0.009370960295200348, 0.0004742057644762099, -0.0031112642027437687, 0.21574504673480988, -0.07856226712465286, -0.07809478789567947, -0.0811396911740303, 0.2419852316379547, 0.036369070410728455, -0.01272322703152895, 0.02497023530304432, -0.061754271388053894, -0.006969437934458256, 0.2590826451778412, 0.2184189409017563, -0.07237261533737183, -0.01354896929115057, 0.008734462782740593, -0.0027531932573765516, -0.016265016049146652, 0.11212380230426788, 0.1484876275062561, 0.07327954471111298, -0.08811032027006149, -0.04350430518388748, -0.04673638194799423, -0.006899036001414061, -0.058088771998882294, 0.07946712523698807, 0.043390776962041855, -0.0034187049604952335, -0.027778109535574913, 0.052277375012636185, -0.06689158082008362, -0.07581218332052231, 0.02743634022772312, -0.20324921607971191, -0.15312233567237854, 0.004842081107199192, 0.12978306412696838, -0.0003946320211980492, 0.06596648693084717, -0.024447085335850716, -0.00011861266102641821, 0.06816784292459488, -0.019069388508796692, -0.11066563427448273, -0.05519538000226021, 0.08378856629133224, -0.14398513734340668, 0.20038612186908722, -0.04449352249503136, 0.05966271087527275, 0.1248915046453476, 0.05483068898320198, -0.07289472222328186, 0.08009135723114014, 0.034991372376680374, -0.058720506727695465, 0.02931334264576435, 0.07569503784179688, -0.029612628743052483, 0.03500216826796532, 0.053409066051244736, -0.11178219318389893, 0.016846057027578354, -0.048205193132162094, -0.04960809275507927, -0.032279420644044876, -0.04591336473822594, -0.0671897754073143, 0.12565866112709045, 0.2034541815519333, -0.02541421540081501, 0.005285206716507673, -0.0813903734087944, 0.010001929476857185, 0.04223833605647087, 0.03796672448515892, -0.05355791747570038, -0.22550508379936218, -0.001376178814098239, 0.07241319119930267, -0.019664615392684937, -0.2672293186187744, -0.08184436708688736, -0.00004142878970014863, -0.06417239457368851, -0.11063975095748901, 0.06720585376024246, 0.09926354140043259, 0.046861834824085236, -0.05645594373345375, -0.04773552715778351, -0.07021501660346985, 0.15209603309631348, -0.13765904307365417, -0.08945885300636292 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-1.3B-finetuned-escape This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "gpt-neo-1.3B-finetuned-escape", "results": []}]}
text-generation
groar/gpt-neo-1.3B-finetuned-escape
[ "transformers", "pytorch", "tensorboard", "gpt_neo", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #gpt_neo #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# gpt-neo-1.3B-finetuned-escape This model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "# gpt-neo-1.3B-finetuned-escape\n\nThis model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 40", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #gpt_neo #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# gpt-neo-1.3B-finetuned-escape\n\nThis model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 40", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ 58, 44, 6, 12, 8, 3, 90, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #gpt_neo #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# gpt-neo-1.3B-finetuned-escape\n\nThis model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 40### Training results### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ -0.0692611038684845, 0.08528326451778412, -0.0016803318867459893, 0.09138032048940659, 0.17053304612636566, 0.036094460636377335, 0.10831484943628311, 0.11902788281440735, -0.12397775053977966, 0.04426013305783272, 0.061960458755493164, 0.10853160917758942, 0.03408835828304291, 0.12043287605047226, -0.023332469165325165, -0.25687476992607117, -0.003454473800957203, 0.021194592118263245, -0.049222540110349655, 0.09435537457466125, 0.09738511592149734, -0.11399057507514954, 0.06689970195293427, 0.015040073543787003, -0.19412779808044434, 0.030202127993106842, -0.034039177000522614, -0.051757898181676865, 0.11358391493558884, 0.019749287515878677, 0.10760855674743652, -0.014154943637549877, 0.12773491442203522, -0.209573432803154, -0.0037352731451392174, 0.07891695946455002, 0.0268959142267704, 0.06674900650978088, 0.04672567918896675, 0.007000262383371592, 0.14378318190574646, -0.12484372407197952, 0.09147951006889343, 0.013839256018400192, -0.07245234400033951, -0.1394149214029312, -0.07299061119556427, 0.04118795692920685, 0.0974421426653862, 0.12120669335126877, -0.004741341341286898, 0.1650860607624054, -0.09871254116296768, 0.0749438926577568, 0.16539978981018066, -0.2686639428138733, -0.07232151925563812, 0.06727063655853271, 0.05006219446659088, 0.07920920848846436, -0.10364623367786407, -0.009691684506833553, 0.05683954432606697, 0.05090687796473503, 0.09768843650817871, -0.009004572406411171, -0.09923774749040604, 0.002810475416481495, -0.14542710781097412, 0.006147915963083506, 0.13405372202396393, 0.03592383489012718, -0.029892081394791603, -0.0732509195804596, -0.04963943362236023, -0.09831544756889343, -0.01790591888129711, -0.05628379434347153, 0.05653325095772743, -0.035508930683135986, -0.05334216728806496, -0.06261347979307175, -0.08484823256731033, -0.052898336201906204, -0.037624653428792953, 0.10065241158008575, 0.05932144820690155, 0.002425240818411112, -0.034207820892333984, 0.10197209566831589, -0.026273876428604126, -0.09696614742279053, 0.0013655186630785465, 0.016227765008807182, -0.042714279145002365, -0.06868342310190201, -0.07009300589561462, -0.043348461389541626, -0.005284403450787067, 0.1320401281118393, -0.05451834946870804, 0.05250096693634987, 0.034856729209423065, 0.02098480425775051, -0.03735439479351044, 0.14476384222507477, -0.028247518464922905, -0.04830949008464813, 0.0025101504288613796, 0.06777949631214142, 0.00824666302651167, -0.004773980937898159, -0.11246197670698166, -0.0005984459421597421, 0.0821932703256607, 0.031433288007974625, -0.058064259588718414, 0.037957675755023956, -0.02691933512687683, -0.027457043528556824, -0.012737976387143135, -0.10846496373414993, 0.047294747084379196, -0.03574710711836815, -0.10016750544309616, -0.014465323649346828, 0.01824776455760002, 0.030863631516695023, -0.034177329391241074, 0.1037687286734581, -0.09542476385831833, 0.023815805092453957, -0.11336973309516907, -0.07735057175159454, 0.005642526317387819, -0.08124826848506927, 0.007756506558507681, -0.09005013853311539, -0.21635611355304718, -0.041692037135362625, 0.04874114319682121, -0.03985396772623062, -0.048631004989147186, -0.06406142562627792, -0.0617094449698925, -0.0018755631754174829, -0.010290110483765602, 0.1358039826154709, -0.05251533165574074, 0.06692112982273102, 0.01780492626130581, 0.026799824088811874, 0.009628955274820328, 0.04253191500902176, -0.08993728458881378, -0.013074175454676151, -0.13105258345603943, 0.06545353680849075, -0.060282088816165924, 0.039245765656232834, -0.09189929068088531, -0.10759063810110092, 0.0027409272734075785, 0.0062833139672875404, 0.05237112194299698, 0.08795830607414246, -0.17241495847702026, -0.04946688562631607, 0.13786177337169647, -0.06605225801467896, -0.06975377351045609, 0.10160479694604874, -0.044843368232250214, 0.027653802186250687, 0.08122525364160538, 0.16411955654621124, 0.060283172875642776, -0.11095552891492844, -0.024122189730405807, -0.012574950233101845, 0.05320415273308754, -0.020679328590631485, 0.04900197312235832, 0.005276303738355637, 0.04180803894996643, 0.006325698923319578, -0.05280439928174019, 0.0121605908498168, -0.09685153514146805, -0.08440092951059341, -0.048483092337846756, -0.10457058995962143, 0.028106752783060074, 0.04173802584409714, 0.0706813633441925, -0.08117841929197311, -0.12273844331502914, 0.13236582279205322, 0.1280824989080429, -0.05837495997548103, 0.024303816258907318, -0.08342848718166351, 0.028726082295179367, -0.04302767664194107, -0.03043152019381523, -0.18750622868537903, -0.10613538324832916, 0.023868251591920853, -0.04923135042190552, 0.06394907832145691, 0.03809281438589096, 0.05664290860295296, 0.08259940147399902, -0.0500883050262928, -0.013874761760234833, -0.08549407869577408, -0.007419084198772907, -0.12288951873779297, -0.20035558938980103, -0.026799645274877548, -0.018780410289764404, 0.13283219933509827, -0.24235281348228455, 0.026634691283106804, -0.06390682607889175, 0.11457283794879913, 0.00022931210696697235, -0.03502996265888214, -0.04238886013627052, 0.07245952636003494, -0.02834690362215042, -0.0881551057100296, 0.0499601885676384, -0.002930888906121254, -0.08283191919326782, -0.08430419117212296, -0.13975633680820465, 0.07405290752649307, 0.11456950753927231, -0.022060133516788483, -0.0855271965265274, 0.03043709509074688, -0.07038185000419617, -0.05008874833583832, -0.06659092754125595, 0.023725824430584908, 0.2277088612318039, -0.017056461423635483, 0.13429556787014008, -0.051313240081071854, -0.074793741106987, -0.0038283378817141056, -0.01015406847000122, 0.0015676378970965743, 0.06538739055395126, 0.11878326535224915, -0.0652068704366684, 0.11813351511955261, 0.06944876164197922, -0.10358425229787827, 0.1394389271736145, -0.018280193209648132, -0.07871108502149582, -0.007725329603999853, -0.020956292748451233, -0.014943736605346203, 0.10294870287179947, -0.11279898881912231, -0.006258970592170954, 0.014930419623851776, 0.027142109349370003, 0.06915049999952316, -0.1991991400718689, -0.013607589527964592, 0.02194232866168022, -0.028688928112387657, 0.010767991654574871, -0.031019268557429314, 0.005987581331282854, 0.09462135285139084, 0.012304955162107944, -0.030932936817407608, 0.018972087651491165, 0.009897795505821705, -0.07984109222888947, 0.18489669263362885, -0.12084491550922394, -0.1375882476568222, -0.0997660756111145, 0.012193543836474419, -0.05627625063061714, -0.002612174255773425, 0.040346115827560425, -0.1228351816534996, -0.05093539133667946, -0.06753899157047272, 0.014009589329361916, -0.044136401265859604, -0.0018023500451818109, 0.058700211346149445, -0.0020670806989073753, 0.06391803920269012, -0.1342793107032776, -0.004004048183560371, -0.04370846971869469, -0.11614473164081573, 0.007918440736830235, 0.06152791529893875, 0.11108551919460297, 0.15243196487426758, -0.02430812269449234, 0.005578011739999056, -0.03533124923706055, 0.21969619393348694, -0.0745859295129776, -0.01593404822051525, 0.13645364344120026, 0.01707525923848152, 0.04817979410290718, 0.08257763087749481, 0.040235742926597595, -0.11098042875528336, 0.03527532145380974, 0.08244550228118896, -0.012078654021024704, -0.24385027587413788, -0.054856009781360626, -0.02886863984167576, -0.09644105285406113, 0.07327455282211304, 0.04618532583117485, 0.0616363100707531, 0.05274280533194542, 0.011647924780845642, 0.09331265091896057, -0.03625371307134628, 0.08678332716226578, 0.10183469206094742, 0.04498864710330963, 0.1159910261631012, -0.026698429137468338, -0.050510335713624954, 0.06319496780633926, 0.00186547648627311, 0.27073249220848083, 0.002609824761748314, 0.070854552090168, 0.05638384819030762, 0.11039706319570541, -0.028193462640047073, 0.010434413328766823, 0.0077676051296293736, -0.023897163569927216, 0.0017423367826268077, -0.04302506893873215, -0.016975339502096176, 0.033157721161842346, -0.02969307452440262, 0.04447786882519722, -0.0951583981513977, 0.03948911651968956, 0.05300961807370186, 0.20394259691238403, -0.004284418188035488, -0.3168763816356659, -0.08474281430244446, 0.012150479480624199, -0.037266384810209274, -0.042507633566856384, 0.005426373798400164, 0.09150086343288422, -0.11186826974153519, 0.04278920590877533, -0.051517970860004425, 0.09357741475105286, -0.03749702870845795, 0.018195604905486107, 0.06804782152175903, 0.15758927166461945, 0.008260575123131275, 0.08691073209047318, -0.25563159584999084, 0.20077113807201385, 0.008330926299095154, 0.14620310068130493, -0.05995902419090271, 0.036514490842819214, 0.02169138379395008, 0.08374878764152527, 0.0812099352478981, -0.00916220061480999, -0.03816621005535126, -0.14990507066249847, -0.045648809522390366, 0.043635234236717224, 0.10749093443155289, -0.0366724394261837, 0.08428171277046204, -0.039366357028484344, 0.019703667610883713, 0.06446783244609833, -0.06915677338838577, -0.1601817011833191, -0.11898456513881683, 0.0047112382017076015, 0.009563452564179897, -0.054440103471279144, -0.06452196836471558, -0.11103823781013489, -0.08812989294528961, 0.19856415688991547, 0.002641503233462572, -0.039232514798641205, -0.12484100461006165, 0.10710997879505157, 0.09035646915435791, -0.0662238672375679, 0.019644415006041527, 0.04321535304188728, 0.10669061541557312, 0.029925312846899033, -0.07978340983390808, 0.05837973207235336, -0.08860089629888535, -0.1355777531862259, -0.05655531957745552, 0.08441632986068726, 0.0678490400314331, 0.05562606826424599, -0.00855057779699564, 0.009777028113603592, -0.01424235850572586, -0.09048326313495636, 0.00872261356562376, 0.08682062476873398, 0.12131492793560028, 0.030166450887918472, -0.09240912646055222, 0.012921850197017193, -0.05441490560770035, -0.04750768467783928, 0.13747668266296387, 0.19785359501838684, -0.07214824110269547, 0.028279706835746765, 0.0613594613969326, -0.10603225976228714, -0.14770406484603882, 0.09057660400867462, 0.1068250760436058, 0.005548889748752117, 0.028929617255926132, -0.20519670844078064, 0.14119942486286163, 0.1367291659116745, -0.007559234742075205, 0.08066873997449875, -0.3460002541542053, -0.13181929290294647, 0.07466255873441696, 0.1291074901819229, 0.0667334720492363, -0.1411510407924652, -0.014902074821293354, -0.02619360201060772, -0.1207687258720398, 0.11512970924377441, -0.07272490113973618, 0.11208958178758621, -0.0015639065532013774, 0.10754943639039993, 0.00975137110799551, -0.036104146391153336, 0.13232751190662384, 0.04179627075791359, 0.08908530324697495, -0.05856345221400261, 0.018131965771317482, 0.0611567460000515, -0.05045650154352188, 0.03177226707339287, -0.029282040894031525, 0.03829650953412056, -0.12059977650642395, -0.03599533438682556, -0.06044333800673485, 0.0628962367773056, -0.037705834954977036, -0.08034966886043549, -0.041305914521217346, 0.05237993970513344, 0.06006215140223503, -0.027402061969041824, 0.06845147162675858, 0.027010567486286163, 0.1310320645570755, 0.006459830794483423, 0.08321511000394821, -0.038838837295770645, -0.10470393300056458, -0.009337562136352062, -0.0060360729694366455, 0.06305491179227829, -0.12065241485834122, 0.009181982837617397, 0.14330367743968964, 0.014922409318387508, 0.14184947311878204, 0.06384208053350449, -0.04266082122921944, 0.01088376808911562, 0.048372264951467514, -0.10782944411039352, -0.11632271856069565, -0.003617675043642521, -0.06343816220760345, -0.07811503112316132, 0.037460342049598694, 0.08969609439373016, -0.07291891425848007, -0.01832454465329647, -0.015011494047939777, 0.009913814254105091, -0.03847881779074669, 0.18346922099590302, 0.02915354073047638, 0.042712509632110596, -0.08031817525625229, 0.11080680042505264, 0.06741110980510712, -0.085063636302948, 0.049818255007267, 0.07623036205768585, -0.0788591057062149, -0.02860783226788044, 0.09086764603853226, 0.19827082753181458, -0.08107419312000275, -0.05202615633606911, -0.10175792872905731, -0.07882360368967056, 0.05829500034451485, 0.10819212347269058, 0.06632741540670395, -0.03191520646214485, -0.05275869369506836, 0.0680880919098854, -0.1635567545890808, 0.06391379237174988, 0.031317610293626785, 0.07920791953802109, -0.1591442972421646, 0.15370184183120728, 0.0314980149269104, 0.03240654245018959, -0.01596655696630478, 0.03849267214536667, -0.0885600671172142, -0.010301517322659492, -0.09246668219566345, -0.023530032485723495, -0.02284308336675167, 0.0013980959774926305, -0.004395609255880117, -0.0473378524184227, -0.0579780712723732, 0.05234569311141968, -0.07987818866968155, -0.0529969185590744, 0.02791309542953968, 0.04784119874238968, -0.12264087796211243, -0.001164990826509893, -0.0012318746885284781, -0.07341377437114716, 0.06026165559887886, 0.056562189012765884, 0.03983503580093384, 0.054860807955265045, -0.11339614540338516, 0.006176620256155729, 0.05536595359444618, 0.03301530331373215, 0.07301247119903564, -0.06060564145445824, -0.0020744549110531807, -0.018513401970267296, 0.07098589837551117, 0.011277287267148495, 0.061872128397226334, -0.12330513447523117, -0.017643122002482414, -0.05515902489423752, -0.06740175932645798, -0.061788156628608704, 0.029499463737010956, 0.10067965090274811, 0.030522476881742477, 0.1769963949918747, -0.07962621748447418, 0.0353061705827713, -0.19325977563858032, -0.022148646414279938, 0.0034564919769763947, -0.036951225250959396, -0.0499720498919487, -0.04667827859520912, 0.07142046838998795, -0.06994251906871796, 0.12915073335170746, 0.02550564333796501, 0.09891904145479202, 0.034642696380615234, -0.02669951319694519, -0.03840821608901024, 0.001721078297123313, 0.1885630041360855, 0.053182415664196014, -0.008953544311225414, 0.07482782751321793, 0.018371867015957832, 0.09410461783409119, 0.01453380472958088, 0.2054050713777542, 0.1215253546833992, -0.01872868835926056, 0.08423728495836258, 0.04974999651312828, -0.11197668313980103, -0.21210801601409912, 0.09202217310667038, -0.04139350727200508, 0.0976816862821579, -0.04042669013142586, 0.17364612221717834, 0.11309409141540527, -0.1660633087158203, 0.0457419715821743, -0.054388489574193954, -0.10140522569417953, -0.1155574768781662, -0.04324667155742645, -0.0821208581328392, -0.13047142326831818, 0.03135918453335762, -0.12901294231414795, 0.030837472528219223, 0.09277036786079407, 0.019818836823105812, -0.009436633437871933, 0.15757983922958374, -0.03377122804522514, 0.014641127549111843, 0.025435009971261024, 0.0031824386678636074, -0.01347507443279028, -0.0936603918671608, -0.06403391063213348, 0.013385466299951077, 0.0031360567081719637, 0.0785163938999176, -0.06747881323099136, -0.025716090574860573, 0.045840270817279816, -0.012835060246288776, -0.04952758178114891, 0.02230457402765751, 0.019480498507618904, 0.03933224827051163, 0.02667488157749176, 0.02919854037463665, -0.01285863108932972, -0.029623696580529213, 0.27945148944854736, -0.07190308719873428, -0.10172594338655472, -0.1158653274178505, 0.23227693140506744, 0.060910653322935104, -0.011932026594877243, 0.0543721579015255, -0.10629364848136902, -0.017335889860987663, 0.20492196083068848, 0.1670956164598465, -0.07269216328859329, -0.036003246903419495, 0.010996297933161259, -0.02041633240878582, -0.058113325387239456, 0.12320563942193985, 0.13463008403778076, 0.054031431674957275, -0.06455440074205399, -0.025480659678578377, -0.032227396965026855, -0.006891914643347263, -0.0708552673459053, 0.0701955035328865, 0.034251727163791656, 0.009553042240440845, -0.012974480167031288, 0.05863582715392113, -0.020709378644824028, -0.14586296677589417, 0.04573367163538933, -0.17567145824432373, -0.1755126714706421, 0.001131495926529169, 0.12621073424816132, -0.044543761759996414, 0.06553755700588226, -0.009853456169366837, -0.026109885424375534, 0.09864027798175812, -0.02003881335258484, -0.06753823161125183, -0.09612484276294708, 0.06972094625234604, -0.06455421447753906, 0.23422840237617493, -0.024580959230661392, 0.07912326604127884, 0.10964266210794449, 0.039378948509693146, -0.09681454300880432, 0.07101516425609589, 0.03832908719778061, -0.0660843774676323, 0.049579162150621414, 0.13440796732902527, -0.05242811515927315, 0.06841541826725006, 0.04471701383590698, -0.1352662593126297, -0.0047862958163022995, -0.046983104199171066, -0.039174702018499374, -0.0509653314948082, -0.004092810209840536, -0.08946537226438522, 0.15131904184818268, 0.19476193189620972, -0.013765303418040276, 0.01515340805053711, -0.08030757308006287, 0.038276247680187225, 0.05055385082960129, 0.12689734995365143, -0.0507977120578289, -0.2280728816986084, 0.014991416595876217, 0.01625407673418522, 0.014274637214839458, -0.22026483714580536, -0.0964818000793457, 0.03673601895570755, -0.06612241268157959, -0.09443537890911102, 0.09006629139184952, 0.0983525961637497, 0.035635024309158325, -0.055694933980703354, -0.1310379058122635, -0.060244131833314896, 0.14253851771354675, -0.1618797332048416, -0.06876043230295181 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-1.3B-finetuned-escape2 This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "gpt-neo-1.3B-finetuned-escape2", "results": []}]}
text-generation
groar/gpt-neo-1.3B-finetuned-escape2
[ "transformers", "pytorch", "tensorboard", "gpt_neo", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #gpt_neo #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# gpt-neo-1.3B-finetuned-escape2 This model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "# gpt-neo-1.3B-finetuned-escape2\n\nThis model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #gpt_neo #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# gpt-neo-1.3B-finetuned-escape2\n\nThis model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ 58, 45, 6, 12, 8, 3, 90, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #gpt_neo #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# gpt-neo-1.3B-finetuned-escape2\n\nThis model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10### Training results### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ -0.06599225848913193, 0.0948048010468483, -0.0016030424740165472, 0.0884871557354927, 0.16876819729804993, 0.028747042641043663, 0.10896241664886475, 0.12023460865020752, -0.12425646185874939, 0.04900851100683212, 0.06629061698913574, 0.10433976352214813, 0.03971809521317482, 0.11856496334075928, -0.02381039410829544, -0.2578398883342743, -0.002180054783821106, 0.02296379581093788, -0.04530530795454979, 0.09728657454252243, 0.09903684258460999, -0.10974101722240448, 0.06375856697559357, 0.01334148459136486, -0.19526134431362152, 0.03385329991579056, -0.03570037707686424, -0.05121784657239914, 0.10622057318687439, 0.01196215022355318, 0.10421302914619446, -0.00894817616790533, 0.13104644417762756, -0.21445654332637787, -0.004919091705232859, 0.08051290363073349, 0.02905173972249031, 0.06450244039297104, 0.05650932714343071, 0.011185912415385246, 0.1425684690475464, -0.13438551127910614, 0.09309755265712738, 0.016612883657217026, -0.07214005291461945, -0.13850459456443787, -0.07548515498638153, 0.056187719106674194, 0.09931701421737671, 0.11805880814790726, -0.005523305851966143, 0.15645436942577362, -0.10289577394723892, 0.07500649243593216, 0.17324714362621307, -0.26140841841697693, -0.07268539816141129, 0.075528584420681, 0.06241879612207413, 0.08326224237680435, -0.10490134358406067, -0.013284684158861637, 0.05626069754362106, 0.0439949706196785, 0.10425041615962982, -0.011161643080413342, -0.09764344990253448, 0.0022568143904209137, -0.14822329580783844, -0.0018414531368762255, 0.1359187811613083, 0.03988085314631462, -0.028928490355610847, -0.07836271822452545, -0.049697473645210266, -0.10203180462121964, -0.018202831968665123, -0.05848979204893112, 0.055220041424036026, -0.03813895210623741, -0.053330279886722565, -0.06920204311609268, -0.0827702134847641, -0.054232366383075714, -0.02558043785393238, 0.09929762780666351, 0.05765802785754204, 0.003603957360610366, -0.034581106156110764, 0.10491462796926498, -0.02321324311196804, -0.09848194569349289, -0.002705344697460532, 0.015560483559966087, -0.05403275042772293, -0.06785012036561966, -0.061240002512931824, -0.04299889877438545, -0.00796209741383791, 0.13964945077896118, -0.042846567928791046, 0.054685261100530624, 0.03404851630330086, 0.01681501232087612, -0.03802543133497238, 0.14666937291622162, -0.030106045305728912, -0.0493229441344738, 0.0027843171264976263, 0.07008308917284012, 0.012948176823556423, -0.0041893296875059605, -0.11350535601377487, -0.0016434058779850602, 0.0902511477470398, 0.038090672343969345, -0.04791029915213585, 0.03382434695959091, -0.026425505056977272, -0.030281249433755875, -0.010662108659744263, -0.1129898950457573, 0.04996619373559952, -0.03120749071240425, -0.09868502616882324, -0.01861618459224701, 0.015388386324048042, 0.027516884729266167, -0.03717126324772835, 0.11078193783760071, -0.09362664073705673, 0.025961322709918022, -0.11075674742460251, -0.07506726682186127, 0.012785671278834343, -0.10017543286085129, 0.0035045926924794912, -0.08341355621814728, -0.22531718015670776, -0.043206144124269485, 0.04499523714184761, -0.039370980113744736, -0.05287453904747963, -0.06211482360959053, -0.06998804956674576, -0.0024004345759749413, -0.01248436514288187, 0.1418103277683258, -0.05113717168569565, 0.06813054531812668, 0.014703461900353432, 0.025192968547344208, 0.006264329422265291, 0.04326343163847923, -0.08850816637277603, -0.008159755729138851, -0.11718365550041199, 0.06774746626615524, -0.06881345808506012, 0.03699458763003349, -0.09667376428842545, -0.1078757494688034, -0.004688241519033909, -0.004797494038939476, 0.05042563006281853, 0.0928225964307785, -0.1723875254392624, -0.04740609973669052, 0.14713861048221588, -0.06333871185779572, -0.06305763870477676, 0.10387474298477173, -0.04529789462685585, 0.024155203253030777, 0.07951191812753677, 0.16945919394493103, 0.0645148828625679, -0.11678537726402283, -0.024865692481398582, -0.013715323060750961, 0.05099886283278465, -0.021411042660474777, 0.05417712777853012, 0.00036714947782456875, 0.051051925867795944, 0.0062090265564620495, -0.054495882242918015, 0.0078033702448010445, -0.09228722006082535, -0.08447732031345367, -0.054180797189474106, -0.09729818999767303, 0.0304055567830801, 0.045424360781908035, 0.06452743709087372, -0.08107094466686249, -0.12596186995506287, 0.14063002169132233, 0.12384889274835587, -0.060964442789554596, 0.022827792912721634, -0.07698885351419449, 0.03286468982696533, -0.05047961324453354, -0.032710831612348557, -0.18636272847652435, -0.10492333769798279, 0.027321478351950645, -0.053007494658231735, 0.06566956639289856, 0.03573831543326378, 0.057752206921577454, 0.07732221484184265, -0.05073394253849983, -0.015887439250946045, -0.09004667401313782, -0.0050696153193712234, -0.11681564897298813, -0.19326941668987274, -0.03379243239760399, -0.01809382624924183, 0.14456376433372498, -0.24643738567829132, 0.028411155566573143, -0.05968721956014633, 0.11759718507528305, 0.0005271326517686248, -0.046849172562360764, -0.03713759034872055, 0.06783934682607651, -0.027076473459601402, -0.09199743717908859, 0.05001716688275337, -0.0035497681237757206, -0.0792832002043724, -0.0871019959449768, -0.1445603221654892, 0.06508812308311462, 0.1115104928612709, -0.009347900748252869, -0.08070157468318939, 0.034102775156497955, -0.07337208837270737, -0.048984345048666, -0.07122543454170227, 0.018752723932266235, 0.2156618982553482, -0.015666387975215912, 0.13080105185508728, -0.059032291173934937, -0.07829789817333221, -0.0014409840805456042, -0.008725205436348915, -0.0016481260536238551, 0.06639786064624786, 0.127419114112854, -0.07001212984323502, 0.12036630511283875, 0.07158782333135605, -0.0981152355670929, 0.1390698403120041, -0.020744968205690384, -0.08391900360584259, -0.008189181797206402, -0.014061740599572659, -0.01459738053381443, 0.10634493827819824, -0.11999931931495667, -0.00460139149799943, 0.014672031626105309, 0.023676341399550438, 0.06605705618858337, -0.20084132254123688, -0.011340375989675522, 0.019962679594755173, -0.0343669168651104, 0.015257034450769424, -0.032033324241638184, 0.009960995987057686, 0.09133252501487732, 0.015129058621823788, -0.029369069263339043, 0.02042151801288128, 0.009931156411767006, -0.08489177376031876, 0.18209098279476166, -0.11355315893888474, -0.14123332500457764, -0.10274612903594971, 0.015753410756587982, -0.05744969844818115, -0.006730280350893736, 0.04007459431886673, -0.11496925354003906, -0.048799872398376465, -0.07296806573867798, 0.00879689771682024, -0.053161848336458206, -0.00770303001627326, 0.058151379227638245, -0.00007167637522798032, 0.060914721339941025, -0.13349245488643646, -0.0032928017899394035, -0.042360223829746246, -0.11788591742515564, 0.0013827630318701267, 0.05903115123510361, 0.11371475458145142, 0.15441539883613586, -0.02611199952661991, 0.008838333189487457, -0.03787217289209366, 0.2137748748064041, -0.07402976602315903, -0.00973152369260788, 0.13347677886486053, 0.018157025799155235, 0.05193840712308884, 0.09333136677742004, 0.03830648213624954, -0.10339830815792084, 0.028284726664423943, 0.08296404778957367, -0.014862032607197762, -0.248530775308609, -0.056913066655397415, -0.029112067073583603, -0.09201599657535553, 0.07680486142635345, 0.04818941280245781, 0.06100816652178764, 0.053081948310136795, 0.004317655693739653, 0.08130178600549698, -0.03286762163043022, 0.09107845276594162, 0.09980811178684235, 0.04397779330611229, 0.11746419221162796, -0.029468143358826637, -0.04747554287314415, 0.06301049888134003, 0.005272837355732918, 0.271325021982193, 0.006536188069730997, 0.07332023978233337, 0.05458179861307144, 0.11498158425092697, -0.03146669641137123, 0.00818351935595274, 0.017942333593964577, -0.021908652037382126, 0.00650807935744524, -0.04603206738829613, -0.01261358242481947, 0.031904205679893494, -0.0199891347438097, 0.04422900453209877, -0.08930037170648575, 0.02856231853365898, 0.04621540382504463, 0.20557065308094025, 0.00786195881664753, -0.3159067630767822, -0.08007363975048065, 0.013664850033819675, -0.04023848846554756, -0.042726561427116394, 0.002665141364559531, 0.09053277224302292, -0.1174698993563652, 0.05099289491772652, -0.05390419811010361, 0.09380851686000824, -0.03222905471920967, 0.011782431043684483, 0.06121258810162544, 0.1474781185388565, 0.009906241670250893, 0.09199213236570358, -0.25090205669403076, 0.20069658756256104, 0.007964326068758965, 0.14751015603542328, -0.06471139937639236, 0.03812195733189583, 0.01870717853307724, 0.07503358274698257, 0.08976360410451889, -0.008285924792289734, -0.027156280353665352, -0.15182021260261536, -0.055720292031764984, 0.03764868900179863, 0.11452920734882355, -0.028035707771778107, 0.08499037474393845, -0.03782420977950096, 0.018822696059942245, 0.06213507801294327, -0.06601902097463608, -0.16758117079734802, -0.12099390476942062, 0.008801870979368687, 0.010368715040385723, -0.05515658110380173, -0.06521700322628021, -0.11044404655694962, -0.09068916738033295, 0.20411422848701477, -0.0009430602076463401, -0.04162537306547165, -0.1264270842075348, 0.10783276706933975, 0.09302262216806412, -0.06512794643640518, 0.020996686071157455, 0.036155179142951965, 0.10812120884656906, 0.029871057718992233, -0.08242776989936829, 0.05276470631361008, -0.08564123511314392, -0.13556881248950958, -0.05652822554111481, 0.09874065965414047, 0.06626013666391373, 0.055012233555316925, -0.005778141785413027, 0.012549878098070621, -0.010611162520945072, -0.09408541023731232, 0.009967409074306488, 0.08919844776391983, 0.11097005754709244, 0.039672162383794785, -0.08864559978246689, 0.00159907853230834, -0.05315307527780533, -0.04101676493883133, 0.13948559761047363, 0.19342158734798431, -0.07596366107463837, 0.03748728334903717, 0.05600642412900925, -0.10736268758773804, -0.15601825714111328, 0.09157759696245193, 0.11101458221673965, 0.0034630848094820976, 0.02941545471549034, -0.19641029834747314, 0.13975507020950317, 0.14059017598628998, -0.011385539546608925, 0.07885507494211197, -0.3562014400959015, -0.13241271674633026, 0.07087847590446472, 0.1294228732585907, 0.04821313917636871, -0.14807726442813873, -0.02139502763748169, -0.023383600637316704, -0.12721703946590424, 0.12605898082256317, -0.06785733997821808, 0.11368748545646667, -0.007485156413167715, 0.09724931418895721, 0.010483868420124054, -0.041587378829717636, 0.13133057951927185, 0.042712047696113586, 0.08032539486885071, -0.05827099829912186, 0.017121948301792145, 0.07907593995332718, -0.053814344108104706, 0.04048975929617882, -0.02495752088725567, 0.03984763100743294, -0.12926872074604034, -0.034654539078474045, -0.06443692743778229, 0.06599470973014832, -0.04161500185728073, -0.07723909616470337, -0.048612285405397415, 0.04872266203165054, 0.06460566073656082, -0.024768125265836716, 0.0668017640709877, 0.025614343583583832, 0.12915238738059998, 0.01802854984998703, 0.08237959444522858, -0.04130095988512039, -0.11226097494363785, -0.015137781389057636, -0.008018799126148224, 0.057283464819192886, -0.12090358883142471, 0.005469345487654209, 0.14142955839633942, 0.024448754265904427, 0.1411934345960617, 0.06045190244913101, -0.04723222926259041, 0.010530713014304638, 0.043765269219875336, -0.10652085393667221, -0.1284560114145279, -0.004521842114627361, -0.06859026849269867, -0.08829382061958313, 0.03700146824121475, 0.08286038786172867, -0.07420237362384796, -0.018323427066206932, -0.01584312692284584, 0.013054659590125084, -0.03604330122470856, 0.1820690929889679, 0.0315532386302948, 0.04503302648663521, -0.07957788556814194, 0.11381823569536209, 0.07373907417058945, -0.09168806672096252, 0.04996510222554207, 0.08147802203893661, -0.07586558908224106, -0.024086546152830124, 0.09306084364652634, 0.1868688017129898, -0.07186820358037949, -0.05273839086294174, -0.09493570029735565, -0.07965941727161407, 0.061889391392469406, 0.11474847793579102, 0.06413678824901581, -0.033184878528118134, -0.05140530318021774, 0.06362617760896683, -0.1669871211051941, 0.068695567548275, 0.03245324268937111, 0.08291654288768768, -0.15994936227798462, 0.146870419383049, 0.030411401763558388, 0.03369373083114624, -0.015170157887041569, 0.03583918511867523, -0.0869913175702095, -0.013035950250923634, -0.09199265390634537, -0.02340429648756981, -0.02669481746852398, 0.0018826911691576242, -0.0073890723288059235, -0.046605419367551804, -0.05619356036186218, 0.052883364260196686, -0.07580813020467758, -0.05947623774409294, 0.026410575956106186, 0.04761166125535965, -0.12675468623638153, -0.0013390614185482264, 0.0006084440974518657, -0.07360779494047165, 0.06000033766031265, 0.05598435550928116, 0.035925596952438354, 0.04819384589791298, -0.11555902659893036, 0.0007795946439728141, 0.05722672492265701, 0.03216385841369629, 0.06764821708202362, -0.06628637760877609, -0.0017311193514615297, -0.011829828843474388, 0.07254519313573837, 0.014338544569909573, 0.05972766876220703, -0.1230735182762146, -0.02000914141535759, -0.06214231625199318, -0.0665467381477356, -0.06173961982131004, 0.03821408003568649, 0.09617988765239716, 0.026927055791020393, 0.17736297845840454, -0.07783062011003494, 0.03749794885516167, -0.1997457891702652, -0.024322526529431343, -0.0014843178214505315, -0.03417806699872017, -0.05593184009194374, -0.039739206433296204, 0.07032494246959686, -0.06474711745977402, 0.1315624713897705, 0.023310279473662376, 0.09605586528778076, 0.03448422998189926, -0.01848997361958027, -0.032957058399915695, -0.0003035598201677203, 0.1951964795589447, 0.05525139346718788, -0.01616331748664379, 0.08486880362033844, 0.011782015673816204, 0.09092586487531662, 0.0182099137455225, 0.20819182693958282, 0.12944988906383514, -0.0334974005818367, 0.08461819589138031, 0.0495404377579689, -0.10967317223548889, -0.20784933865070343, 0.0986437201499939, -0.036465100944042206, 0.10220573842525482, -0.04009067267179489, 0.1820531189441681, 0.11298840492963791, -0.16996408998966217, 0.044765811413526535, -0.04451100528240204, -0.10510849952697754, -0.11703307181596756, -0.05309201776981354, -0.08375121653079987, -0.1261310577392578, 0.03407725691795349, -0.1282438337802887, 0.03493485227227211, 0.09418150037527084, 0.019120166078209877, -0.009537547826766968, 0.15815284848213196, -0.0332748182117939, 0.01293746568262577, 0.029484575614333153, 0.0019587099086493254, -0.010124786756932735, -0.09568174183368683, -0.05863108113408089, 0.017454706132411957, 0.005212465301156044, 0.08518708497285843, -0.06360619515180588, -0.02331857569515705, 0.043685439974069595, -0.017541617155075073, -0.04996030405163765, 0.026972461491823196, 0.024344801902770996, 0.04548085853457451, 0.03490558639168739, 0.02933322638273239, -0.01459883525967598, -0.032292090356349945, 0.2752706706523895, -0.07036356627941132, -0.10565676540136337, -0.10587363690137863, 0.23011943697929382, 0.05773076415061951, -0.01608709990978241, 0.058780282735824585, -0.11228308826684952, -0.013707996346056461, 0.20177684724330902, 0.161319762468338, -0.058292049914598465, -0.03476802259683609, 0.009441077709197998, -0.021098453551530838, -0.05458748713135719, 0.12133891135454178, 0.12618708610534668, 0.0601673349738121, -0.06627506017684937, -0.02583736553788185, -0.022013898938894272, -0.0128057561814785, -0.08113265782594681, 0.06553322076797485, 0.03138042241334915, 0.003718325402587652, -0.013853794895112514, 0.0646912008523941, -0.020495912060141563, -0.13831204175949097, 0.04598227143287659, -0.1744164079427719, -0.17806868255138397, 0.001564324600622058, 0.12856099009513855, -0.048451948910951614, 0.05773599073290825, -0.007156882900744677, -0.0233758557587862, 0.09311898797750473, -0.019376607611775398, -0.07266926020383835, -0.09146255999803543, 0.06702501326799393, -0.06988094747066498, 0.23848000168800354, -0.021367808803915977, 0.08457479625940323, 0.11233055591583252, 0.03700578212738037, -0.10599946975708008, 0.06869027763605118, 0.042390529066324234, -0.06119197607040405, 0.052594657987356186, 0.14252911508083344, -0.04952792078256607, 0.06529086083173752, 0.04145805910229683, -0.13070981204509735, -0.005076085217297077, -0.04262305423617363, -0.0336838960647583, -0.05791081115603447, -0.0012918722350150347, -0.08913690596818924, 0.148941308259964, 0.18907250463962555, -0.01670895330607891, 0.014979923143982887, -0.0873320996761322, 0.03128313273191452, 0.05094867944717407, 0.12991149723529816, -0.04413095489144325, -0.22732584178447723, 0.014636139385402203, 0.004949259106069803, 0.0190252885222435, -0.22421446442604065, -0.09482677280902863, 0.03776317089796066, -0.06528721749782562, -0.0914926528930664, 0.09257735311985016, 0.0946178212761879, 0.033702779561281204, -0.052862558513879776, -0.1386229246854782, -0.060693804174661636, 0.14734509587287903, -0.16802136600017548, -0.061260953545570374 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-1.3B-finetuned-escape3 This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "gpt-neo-1.3B-finetuned-escape3", "results": []}]}
text-generation
groar/gpt-neo-1.3B-finetuned-escape3
[ "transformers", "pytorch", "tensorboard", "gpt_neo", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #gpt_neo #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# gpt-neo-1.3B-finetuned-escape3 This model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "# gpt-neo-1.3B-finetuned-escape3\n\nThis model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 30", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #gpt_neo #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# gpt-neo-1.3B-finetuned-escape3\n\nThis model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 30", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ 58, 45, 6, 12, 8, 3, 90, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #gpt_neo #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# gpt-neo-1.3B-finetuned-escape3\n\nThis model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 30### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ -0.06343745440244675, 0.08140174299478531, -0.0015272083692252636, 0.08346101641654968, 0.16918593645095825, 0.030962171033024788, 0.11667477339506149, 0.1019568219780922, -0.11527964472770691, 0.040825843811035156, 0.06691435724496841, 0.09522266685962677, 0.032864540815353394, 0.1124824658036232, -0.03221621364355087, -0.25330206751823425, -0.0025470794644206762, 0.029098020866513252, -0.06334102898836136, 0.10002025961875916, 0.09817545115947723, -0.10631806403398514, 0.0707772895693779, 0.017751088365912437, -0.19896389544010162, 0.04120830446481705, -0.03148248419165611, -0.049498144537210464, 0.11243399232625961, 0.019074218347668648, 0.11070798337459564, -0.015118752606213093, 0.13142289221286774, -0.2051873356103897, -0.0029549419414252043, 0.08548480272293091, 0.03045700304210186, 0.06364305317401886, 0.04740091413259506, 0.017737219110131264, 0.15577998757362366, -0.13235628604888916, 0.08627507835626602, 0.02047664299607277, -0.06358443200588226, -0.13975775241851807, -0.06895184516906738, 0.04936999827623367, 0.09638434648513794, 0.1176954060792923, 0.004418313968926668, 0.16105595231056213, -0.08236709237098694, 0.07604369521141052, 0.18562835454940796, -0.2673967480659485, -0.07449640333652496, 0.07146696001291275, 0.05538471043109894, 0.085515096783638, -0.09029343724250793, -0.007844208739697933, 0.05431864783167839, 0.04878464341163635, 0.11256405711174011, -0.02320934645831585, -0.0965065285563469, -0.009017961099743843, -0.14819063246250153, 0.01231402438133955, 0.14956603944301605, 0.03455958887934685, -0.02642316371202469, -0.06761514395475388, -0.07028332352638245, -0.07703495025634766, -0.017797432839870453, -0.06678350269794464, 0.052749719470739365, -0.035895366221666336, -0.04317135363817215, -0.08417306840419769, -0.07833656668663025, -0.053474340587854385, -0.03590479493141174, 0.13041336834430695, 0.05163225904107094, 0.01241147331893444, -0.03594352304935455, 0.09293771535158157, -0.027292843908071518, -0.09723519533872604, 0.005208893679082394, 0.008901681751012802, -0.03964535519480705, -0.05961795523762703, -0.06450622528791428, -0.03812897950410843, -0.003863254329189658, 0.13195782899856567, -0.061696600168943405, 0.05228641629219055, 0.04636647179722786, 0.010914858430624008, -0.03486509621143341, 0.13954322040081024, -0.026832440868020058, -0.06247011199593544, 0.01078444067388773, 0.06329537183046341, 0.026980943977832794, -0.009506073780357838, -0.11571380496025085, -0.007839766331017017, 0.0850396379828453, 0.03420964255928993, -0.04840784892439842, 0.031158041208982468, -0.01232612319290638, -0.03705298900604248, -0.013214407488703728, -0.11365678906440735, 0.04626036062836647, -0.03907215967774391, -0.08332166075706482, 0.0007010014960542321, 0.012711405754089355, 0.024304980412125587, -0.04181206226348877, 0.09822813421487808, -0.0967128649353981, 0.02090497314929962, -0.11369945108890533, -0.08033959567546844, 0.004143952392041683, -0.09467919915914536, 0.008342594839632511, -0.09040147066116333, -0.21941548585891724, -0.033752549439668655, 0.05394434556365013, -0.035565126687288284, -0.051792796701192856, -0.040801458060741425, -0.06806629151105881, -0.0017965107690542936, -0.012832913547754288, 0.12955237925052643, -0.04979506507515907, 0.05966927111148834, 0.02197437733411789, 0.020160585641860962, -0.014351489953696728, 0.040798719972372055, -0.08707652240991592, -0.0036487411707639694, -0.11474626511335373, 0.05933873727917671, -0.06365057080984116, 0.028055010363459587, -0.09376730024814606, -0.10901132225990295, -0.0012752420734614134, 0.0012112632393836975, 0.04842711612582207, 0.07885850220918655, -0.1585957407951355, -0.050182368606328964, 0.12629052996635437, -0.06910119950771332, -0.07232276350259781, 0.10036639869213104, -0.03705065697431564, 0.018188919872045517, 0.07332074642181396, 0.1529776155948639, 0.07124755531549454, -0.11863578855991364, -0.020356211811304092, -0.0006683386163786054, 0.057562995702028275, -0.03883926570415497, 0.05715414509177208, 0.007686328608542681, 0.04073309525847435, 0.004278005566447973, -0.06355154514312744, 0.008762044832110405, -0.08537063747644424, -0.08087169378995895, -0.0601889044046402, -0.10059146583080292, 0.02147599868476391, 0.044585514813661575, 0.05787382274866104, -0.08045215159654617, -0.12138485908508301, 0.14404349029064178, 0.12445413321256638, -0.06570785492658615, 0.022858811542391777, -0.07028601318597794, 0.02866748534142971, -0.048418670892715454, -0.02830040268599987, -0.1920686513185501, -0.11816824972629547, 0.020626528188586235, -0.053860779851675034, 0.0666719451546669, 0.041255246847867966, 0.05149358883500099, 0.08178755640983582, -0.05019034817814827, -0.004989780951291323, -0.0869177058339119, -0.004235532600432634, -0.11295709758996964, -0.18831713497638702, -0.04113030806183815, -0.015480190515518188, 0.12792721390724182, -0.22901561856269836, 0.025811031460762024, -0.06548769026994705, 0.11350023746490479, -0.003219403326511383, -0.03549462929368019, -0.04896237328648567, 0.07498957961797714, -0.03392341732978821, -0.0932902842760086, 0.05017447471618652, 0.0030227701645344496, -0.0701390951871872, -0.09042872488498688, -0.1542934626340866, 0.08414871990680695, 0.1099763810634613, -0.012498034164309502, -0.0663287490606308, 0.03034302219748497, -0.0659862831234932, -0.04619689658284187, -0.06607824563980103, 0.022819334641098976, 0.20956820249557495, -0.018606293946504593, 0.13294513523578644, -0.05811125785112381, -0.06755812466144562, -0.001748138340190053, -0.011529084295034409, -0.008447238244116306, 0.054572105407714844, 0.13425980508327484, -0.08514775335788727, 0.12309695780277252, 0.09026480466127396, -0.11258169263601303, 0.1389332264661789, -0.0152644207701087, -0.07409711182117462, -0.008003165945410728, -0.032525356858968735, -0.02098877914249897, 0.10909402370452881, -0.11351077258586884, -0.004899559076875448, 0.016249118372797966, 0.018081385642290115, 0.06913522630929947, -0.19237244129180908, -0.0012798846000805497, 0.02254447154700756, -0.024689286947250366, 0.032801996916532516, -0.03197520971298218, 0.00783704686909914, 0.09075514227151871, 0.012964962981641293, -0.03131518140435219, 0.019439466297626495, 0.013279246166348457, -0.08225949853658676, 0.18452012538909912, -0.11569598317146301, -0.1472436785697937, -0.1084238737821579, 0.00627526780590415, -0.07733089476823807, -0.007544160354882479, 0.03559307008981705, -0.1086009219288826, -0.058306723833084106, -0.06772547960281372, 0.015385011211037636, -0.04580202326178551, -0.0070757572539150715, 0.0706338882446289, 0.00045182183384895325, 0.06011379137635231, -0.13170185685157776, -0.00735122337937355, -0.03701522573828697, -0.11075620353221893, -0.008138186298310757, 0.06210518628358841, 0.11811072379350662, 0.15737022459506989, -0.03251556679606438, 0.00743943452835083, -0.027304530143737793, 0.21575264632701874, -0.0664561316370964, -0.0068270922638475895, 0.15727369487285614, 0.02453663758933544, 0.04815319553017616, 0.08076968789100647, 0.04351391643285751, -0.09957817941904068, 0.03000696748495102, 0.08218983560800552, -0.023249143734574318, -0.23699119687080383, -0.06844928860664368, -0.0323435477912426, -0.10226881504058838, 0.07920189946889877, 0.04657915607094765, 0.054924480617046356, 0.057450518012046814, 0.0022998920176178217, 0.08959264308214188, -0.03415190055966377, 0.09222210943698883, 0.12489059567451477, 0.04688451439142227, 0.11981208622455597, -0.03284107893705368, -0.048467714339494705, 0.06760930269956589, 0.008305191993713379, 0.2574777901172638, 0.0024293449241667986, 0.06323880702257156, 0.046393316239118576, 0.1026918813586235, -0.028780225664377213, 0.014316325075924397, 0.014294079504907131, -0.018938714638352394, 0.004466017242521048, -0.04726848378777504, -0.02275742217898369, 0.032029204070568085, -0.03702776879072189, 0.044515907764434814, -0.07806642353534698, 0.05503179877996445, 0.04358946159482002, 0.21814103424549103, -0.0020661039743572474, -0.3140084743499756, -0.08314461261034012, 0.01358532439917326, -0.030065439641475677, -0.04825078696012497, 0.013138086535036564, 0.09455226361751556, -0.10455907881259918, 0.054465875029563904, -0.05353635177016258, 0.09434421360492706, -0.02406737394630909, 0.019452501088380814, 0.07185927033424377, 0.172119140625, 0.014607253484427929, 0.08589594811201096, -0.23864497244358063, 0.1957388073205948, 0.014289957471191883, 0.13900300860404968, -0.06683261692523956, 0.039727773517370224, 0.019588574767112732, 0.08419825881719589, 0.0789346769452095, -0.007340671494603157, -0.02207242138683796, -0.13041329383850098, -0.04927017167210579, 0.045035406947135925, 0.11403926461935043, -0.01584450714290142, 0.0832497701048851, -0.052116759121418, 0.017826857045292854, 0.06668400764465332, -0.06622644513845444, -0.16905026137828827, -0.1299014687538147, 0.006837980821728706, 0.022625574842095375, -0.08278553932905197, -0.0621592216193676, -0.10870037972927094, -0.077837273478508, 0.21948878467082977, 0.0055942111648619175, -0.04488633573055267, -0.12781868875026703, 0.1000610813498497, 0.08914396911859512, -0.06685135513544083, 0.02084299735724926, 0.028124364092946053, 0.11642882972955704, 0.019053610041737556, -0.10330217331647873, 0.055758487433195114, -0.09395436942577362, -0.12140749394893646, -0.0464368611574173, 0.08621823787689209, 0.05558428913354874, 0.04846707358956337, -0.007305934559553862, 0.01286771334707737, -0.011709294281899929, -0.09970487654209137, -0.00468920823186636, 0.07551917433738708, 0.09957975149154663, 0.043676383793354034, -0.08790688216686249, -0.0018038339912891388, -0.043408095836639404, -0.03323176130652428, 0.13773101568222046, 0.1808457374572754, -0.07367951422929764, 0.02382098138332367, 0.07434120029211044, -0.1031825840473175, -0.1658955216407776, 0.08019082993268967, 0.095875583589077, -0.0003888311912305653, 0.02506243623793125, -0.19952285289764404, 0.15446121990680695, 0.1428060233592987, -0.012817625887691975, 0.0739760473370552, -0.3422650694847107, -0.13255254924297333, 0.08425077050924301, 0.13670118153095245, 0.06697261333465576, -0.15094539523124695, -0.017755059525370598, -0.041164785623550415, -0.13585655391216278, 0.13345851004123688, -0.07755669206380844, 0.10784268379211426, -0.010632780380547047, 0.09273509681224823, 0.006231552455574274, -0.03785251826047897, 0.13452047109603882, 0.028781136497855186, 0.0838155746459961, -0.056233808398246765, 0.026891324669122696, 0.08489764481782913, -0.0550939179956913, 0.03817471116781235, -0.03462927043437958, 0.0456920824944973, -0.1033320501446724, -0.039608344435691833, -0.05745093524456024, 0.07238904386758804, -0.03505383059382439, -0.0824924111366272, -0.047128111124038696, 0.04410051926970482, 0.0529915913939476, -0.031838033348321915, 0.08681914955377579, 0.031189344823360443, 0.13471810519695282, 0.033655695617198944, 0.08704391866922379, -0.06611301004886627, -0.10203449428081512, -0.012168561108410358, -0.008945392444729805, 0.0654180571436882, -0.11285929381847382, 0.0076356930658221245, 0.1373223513364792, 0.02769794501364231, 0.12657363712787628, 0.06236688420176506, -0.036060791462659836, 0.004300751723349094, 0.039558280259370804, -0.1160757914185524, -0.13633042573928833, -0.015946367755532265, -0.0564439482986927, -0.08423876017332077, 0.04958734288811684, 0.09585461765527725, -0.07202364504337311, -0.01472187228500843, -0.016736892983317375, 0.008132345043122768, -0.0345340371131897, 0.1719018816947937, 0.031154625117778778, 0.042304422706365585, -0.08100258558988571, 0.10862226784229279, 0.06895814836025238, -0.07675879448652267, 0.05007980763912201, 0.09006685763597488, -0.07659304887056351, -0.02601887844502926, 0.09396268427371979, 0.1697208434343338, -0.10049515962600708, -0.056548066437244415, -0.09404948353767395, -0.09239885956048965, 0.05493820458650589, 0.1252075731754303, 0.06819978356361389, -0.039268575608730316, -0.057507891207933426, 0.056958530098199844, -0.16548721492290497, 0.06642911583185196, 0.013841629028320312, 0.0863654837012291, -0.17233559489250183, 0.12419065833091736, 0.03463907912373543, 0.04027746617794037, -0.02132016234099865, 0.036143336445093155, -0.08754579722881317, -0.018044667318463326, -0.11313610523939133, -0.029664672911167145, -0.032876044511795044, 0.006192265078425407, -0.007053244858980179, -0.04428022727370262, -0.0704226940870285, 0.06176741048693657, -0.0664873942732811, -0.05580386519432068, 0.025055062025785446, 0.041753921657800674, -0.12825801968574524, 0.007896319031715393, -0.00038065010448917747, -0.07476221770048141, 0.05331099405884743, 0.05158567428588867, 0.03478942811489105, 0.05263273045420647, -0.10731815546751022, -0.006413906347006559, 0.05833197385072708, 0.04716778174042702, 0.07570552825927734, -0.06257545948028564, -0.002365075284615159, 0.0007554434123449028, 0.08014941960573196, 0.01067830715328455, 0.07657953351736069, -0.11623068898916245, -0.010895422659814358, -0.06803952157497406, -0.07007786631584167, -0.06069188565015793, 0.035223133862018585, 0.11665808409452438, 0.03135243058204651, 0.17539335787296295, -0.07620932161808014, 0.030212173238396645, -0.19379644095897675, -0.02049003168940544, -0.0017709742533043027, -0.039338499307632446, -0.04823162406682968, -0.03927769884467125, 0.06457740813493729, -0.05606252700090408, 0.13989302515983582, 0.024226270616054535, 0.10444287955760956, 0.037512898445129395, -0.015391374938189983, -0.03633025661110878, -0.0036776026245206594, 0.1922471821308136, 0.05525008589029312, -0.010411045514047146, 0.09047183394432068, 0.018303828313946724, 0.09939852356910706, 0.02667488344013691, 0.2187880128622055, 0.11809171736240387, -0.03439442068338394, 0.08679936081171036, 0.05317755043506622, -0.11152168363332748, -0.20288874208927155, 0.08357655256986618, -0.03387339040637016, 0.10347700864076614, -0.03368856757879257, 0.17319761216640472, 0.1209346204996109, -0.16304419934749603, 0.03873705118894577, -0.04877178370952606, -0.10094530135393143, -0.1266929805278778, -0.04145294427871704, -0.08404149860143661, -0.12627097964286804, 0.02385389618575573, -0.13360096514225006, 0.02480749599635601, 0.09762729704380035, 0.015951821580529213, -0.006455589085817337, 0.1578531563282013, -0.0357070192694664, 0.007783137261867523, 0.017263615503907204, 0.005815730895847082, -0.012421546503901482, -0.08843179792165756, -0.060096848756074905, 0.0165310800075531, 0.005292873363941908, 0.08124135434627533, -0.0629226490855217, -0.0271577388048172, 0.04836936295032501, -0.01483949925750494, -0.04583188518881798, 0.020713897421956062, 0.02326381765305996, 0.03863987326622009, 0.041613589972257614, 0.0219708401709795, -0.01858050748705864, -0.031861938536167145, 0.267154335975647, -0.07246403396129608, -0.11070439219474792, -0.10232439637184143, 0.24176985025405884, 0.050318047404289246, -0.013858743943274021, 0.060162127017974854, -0.09880509972572327, -0.024355711415410042, 0.19040870666503906, 0.16661758720874786, -0.07215750962495804, -0.03309877589344978, 0.0056319767609238625, -0.019223935902118683, -0.06484195590019226, 0.1257752627134323, 0.1357681155204773, 0.07601799070835114, -0.06100846827030182, -0.028863631188869476, -0.027147874236106873, -0.006202267482876778, -0.0891287624835968, 0.058112114667892456, 0.03616322576999664, 0.0016400055028498173, -0.006388629321008921, 0.05639592558145523, -0.012725637294352055, -0.13348141312599182, 0.0453273244202137, -0.16980403661727905, -0.17417946457862854, 0.0010154079645872116, 0.12359900772571564, -0.06014695391058922, 0.057622481137514114, -0.01189154852181673, -0.022876016795635223, 0.08968409895896912, -0.01916866935789585, -0.07671865820884705, -0.09130728244781494, 0.07728361338376999, -0.07959060370922089, 0.2339562028646469, -0.02199891209602356, 0.07933565974235535, 0.11233823001384735, 0.03365357592701912, -0.10899188369512558, 0.06852814555168152, 0.039286162704229355, -0.06836647540330887, 0.04624089226126671, 0.12257049977779388, -0.054443635046482086, 0.07361315935850143, 0.04190098121762276, -0.1321500986814499, -0.017568117007613182, -0.023385515436530113, -0.03323807939887047, -0.04599635303020477, -0.008571653626859188, -0.09679724276065826, 0.14979898929595947, 0.1808028370141983, -0.011916839517652988, 0.009211886674165726, -0.08187710493803024, 0.041842713952064514, 0.055317990481853485, 0.13942959904670715, -0.04186161607503891, -0.22603945434093475, 0.01580864191055298, -0.0038993919733911753, 0.012344897724688053, -0.22754806280136108, -0.09171294420957565, 0.03216823190450668, -0.058179471641778946, -0.09010782837867737, 0.0863962173461914, 0.09506277740001678, 0.03355564922094345, -0.054009296000003815, -0.14218758046627045, -0.06656793504953384, 0.14117185771465302, -0.1711788922548294, -0.06435553729534149 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-1.3B-finetuned-escape5 This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "gpt-neo-1.3B-finetuned-escape5", "results": []}]}
text-generation
groar/gpt-neo-1.3B-finetuned-escape5
[ "transformers", "pytorch", "tensorboard", "gpt_neo", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #gpt_neo #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# gpt-neo-1.3B-finetuned-escape5 This model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "# gpt-neo-1.3B-finetuned-escape5\n\nThis model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 30", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #gpt_neo #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# gpt-neo-1.3B-finetuned-escape5\n\nThis model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 30", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ 58, 45, 6, 12, 8, 3, 90, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #gpt_neo #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# gpt-neo-1.3B-finetuned-escape5\n\nThis model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 30### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ -0.06441649794578552, 0.08062270283699036, -0.0015197545289993286, 0.0836125984787941, 0.16928690671920776, 0.03133169561624527, 0.1165505051612854, 0.1016041487455368, -0.11507102102041245, 0.04071642830967903, 0.0667978823184967, 0.09593719244003296, 0.03231143578886986, 0.11290164291858673, -0.032687753438949585, -0.25274819135665894, -0.0026723877526819706, 0.030141262337565422, -0.06329753249883652, 0.09999781847000122, 0.0979856550693512, -0.10683699697256088, 0.07140611112117767, 0.018234068527817726, -0.20011143386363983, 0.04122946411371231, -0.029963480308651924, -0.04940906912088394, 0.1126859188079834, 0.019368862733244896, 0.11124984920024872, -0.015781382098793983, 0.13074715435504913, -0.2037966549396515, -0.0028005638159811497, 0.08584848791360855, 0.030543925240635872, 0.06411866098642349, 0.04728836566209793, 0.017855806276202202, 0.15556955337524414, -0.13217832148075104, 0.08553015440702438, 0.020300690084695816, -0.06385640054941177, -0.13974343240261078, -0.06799572706222534, 0.04861282929778099, 0.09637368470430374, 0.1172511875629425, 0.004074269440025091, 0.16060887277126312, -0.08250492811203003, 0.07640931010246277, 0.18449732661247253, -0.2681182026863098, -0.07428882271051407, 0.07155963778495789, 0.054132308810949326, 0.08567110449075699, -0.09027276933193207, -0.008390775881707668, 0.054810311645269394, 0.04823365807533264, 0.11268353462219238, -0.023748410865664482, -0.09763257205486298, -0.009142805822193623, -0.1475975066423416, 0.012793885543942451, 0.14974817633628845, 0.03441384434700012, -0.02641225792467594, -0.06647605448961258, -0.0711975246667862, -0.0766737163066864, -0.017905699089169502, -0.06669624894857407, 0.05317448824644089, -0.03534189984202385, -0.04312530905008316, -0.08413717895746231, -0.07837852090597153, -0.0537203885614872, -0.0371222123503685, 0.13056308031082153, 0.05165565013885498, 0.012675405479967594, -0.03655428811907768, 0.09238681197166443, -0.028599699959158897, -0.09726164489984512, 0.005628956947475672, 0.00912487506866455, -0.03958849608898163, -0.059464406222105026, -0.0654735118150711, -0.03877813369035721, -0.003974701277911663, 0.13149160146713257, -0.061531443148851395, 0.052365295588970184, 0.046671804040670395, 0.011110175400972366, -0.03537392243742943, 0.139861062169075, -0.026618756353855133, -0.06228070706129074, 0.01138839777559042, 0.06298121809959412, 0.027220671996474266, -0.009206796064972878, -0.11527082324028015, -0.008878735825419426, 0.08485999703407288, 0.032530900090932846, -0.04945448040962219, 0.031666532158851624, -0.012472474947571754, -0.03673204779624939, -0.014207573607563972, -0.11328291147947311, 0.04659448191523552, -0.03886088356375694, -0.08366294950246811, 0.0007849365356378257, 0.0123861413449049, 0.02421160601079464, -0.041854146867990494, 0.09905818104743958, -0.09761632233858109, 0.021309342235326767, -0.11474346369504929, -0.0811389610171318, 0.00318997073918581, -0.09538333117961884, 0.008422797545790672, -0.09054866433143616, -0.21939413249492645, -0.03381224721670151, 0.054227471351623535, -0.03434429317712784, -0.051238395273685455, -0.041537731885910034, -0.06784587353467941, -0.0018416241509839892, -0.012541457079350948, 0.12983709573745728, -0.04977309703826904, 0.05960177630186081, 0.021840624511241913, 0.020459994673728943, -0.014992821961641312, 0.040778614580631256, -0.08781542629003525, -0.003860173048451543, -0.11530254036188126, 0.059548866003751755, -0.06269526481628418, 0.028215039521455765, -0.09350970387458801, -0.10888475924730301, -0.001821091747842729, 0.0020681647583842278, 0.048588141798973083, 0.07815191149711609, -0.1588902622461319, -0.05037038400769234, 0.12704578042030334, -0.0694301649928093, -0.07165316492319107, 0.10026083141565323, -0.03758980333805084, 0.01841978169977665, 0.07407782971858978, 0.15399572253227234, 0.07117117941379547, -0.11794985085725784, -0.02049936354160309, -0.00014734506839886308, 0.0569930300116539, -0.039726320654153824, 0.05652192234992981, 0.007891114801168442, 0.0394897423684597, 0.004433174151927233, -0.06355619430541992, 0.009222163818776608, -0.08507061004638672, -0.08028662204742432, -0.060723576694726944, -0.10091240704059601, 0.02160322666168213, 0.044444598257541656, 0.05867922678589821, -0.08033298701047897, -0.12087249755859375, 0.14485619962215424, 0.12443343549966812, -0.06557346135377884, 0.02236579917371273, -0.07055468112230301, 0.028157638385891914, -0.04889017343521118, -0.02788866125047207, -0.19251003861427307, -0.11701390892267227, 0.020351337268948555, -0.054280731827020645, 0.06662198901176453, 0.041342366486787796, 0.05132181942462921, 0.08144822716712952, -0.04978208243846893, -0.004614015109837055, -0.08639124035835266, -0.004671616479754448, -0.11372549831867218, -0.1881672441959381, -0.040526848286390305, -0.015044315718114376, 0.1281515508890152, -0.2289993166923523, 0.0260294359177351, -0.06583265960216522, 0.11296437680721283, -0.002476201858371496, -0.035394713282585144, -0.04898877441883087, 0.07547005265951157, -0.03374901041388512, -0.09276518225669861, 0.05047381669282913, 0.00349582452327013, -0.06954177469015121, -0.09103067219257355, -0.15438959002494812, 0.08512011915445328, 0.11041545867919922, -0.013883469626307487, -0.06600219756364822, 0.03066961094737053, -0.06527301669120789, -0.046369343996047974, -0.06629671901464462, 0.02342171221971512, 0.20979681611061096, -0.019265025854110718, 0.1335235834121704, -0.05824559926986694, -0.06671630591154099, -0.0017316219164058566, -0.01211540773510933, -0.0072999997064471245, 0.05469903722405434, 0.13452619314193726, -0.0850638821721077, 0.1230132132768631, 0.09023334085941315, -0.11424300074577332, 0.13958153128623962, -0.015528631396591663, -0.07399620860815048, -0.007944471202790737, -0.03282326087355614, -0.021356848999857903, 0.10900583118200302, -0.1144791767001152, -0.005359678063541651, 0.01639348268508911, 0.018047019839286804, 0.06922002136707306, -0.1931026428937912, -0.000589631381444633, 0.022341644391417503, -0.024342451244592667, 0.031908366829156876, -0.03152645751833916, 0.008029544726014137, 0.09099344164133072, 0.012084484100341797, -0.03154117241501808, 0.0193428173661232, 0.013721083290874958, -0.08182281255722046, 0.1849469244480133, -0.11615411937236786, -0.14657625555992126, -0.10828988254070282, 0.00685690576210618, -0.07765239477157593, -0.0074891215190291405, 0.03538494557142258, -0.10846167802810669, -0.05805020034313202, -0.06719227880239487, 0.015356797724962234, -0.045127782970666885, -0.007035004440695047, 0.06959079951047897, 0.0005391419399529696, 0.06034679338335991, -0.1320679634809494, -0.007354828529059887, -0.03730760142207146, -0.11117000877857208, -0.00779971806332469, 0.06207234784960747, 0.11737553030252457, 0.15745848417282104, -0.03319400176405907, 0.007232592906802893, -0.026836274191737175, 0.21597231924533844, -0.06642496585845947, -0.007013607770204544, 0.15769948065280914, 0.024761497974395752, 0.04778552055358887, 0.08037997782230377, 0.043519437313079834, -0.0997333750128746, 0.029862595722079277, 0.08229447156190872, -0.023071805015206337, -0.23650583624839783, -0.06807512789964676, -0.03242304176092148, -0.10242778062820435, 0.07939621061086655, 0.04610549286007881, 0.0550394281744957, 0.05816609039902687, 0.0033950856886804104, 0.09075435996055603, -0.03469988703727722, 0.0917196124792099, 0.12536215782165527, 0.04699642211198807, 0.12014151364564896, -0.03335025534033775, -0.0484631285071373, 0.0669785588979721, 0.007347763050347567, 0.25762939453125, 0.0025260834954679012, 0.06303923577070236, 0.04617592319846153, 0.10316195338964462, -0.028157666325569153, 0.014849369414150715, 0.01337664294987917, -0.01914156973361969, 0.004578506574034691, -0.04672643169760704, -0.023257406428456306, 0.03200755640864372, -0.03819309547543526, 0.04475350305438042, -0.07756912708282471, 0.05524567887187004, 0.043693725019693375, 0.21789121627807617, -0.0021314634941518307, -0.31449633836746216, -0.08365173637866974, 0.013063538819551468, -0.029876526445150375, -0.048825111240148544, 0.013362220488488674, 0.09535740315914154, -0.10376962274312973, 0.05402253568172455, -0.0537148080766201, 0.09473446011543274, -0.02439202554523945, 0.020219087600708008, 0.07168887555599213, 0.17356404662132263, 0.014319374226033688, 0.08542734384536743, -0.24017415940761566, 0.19579467177391052, 0.014733443967998028, 0.1391455978155136, -0.06643451750278473, 0.039227500557899475, 0.019692493602633476, 0.08488576859235764, 0.07777008414268494, -0.006931050214916468, -0.0223209448158741, -0.1303720772266388, -0.04874146729707718, 0.045509468764066696, 0.11401691287755966, -0.015321733430027962, 0.08255287259817123, -0.05183332413434982, 0.01787346415221691, 0.06675272434949875, -0.0668056458234787, -0.16938164830207825, -0.12924619019031525, 0.005899109411984682, 0.024043917655944824, -0.08247876912355423, -0.062005430459976196, -0.10815919190645218, -0.07741383463144302, 0.21841028332710266, 0.004854128696024418, -0.04451432824134827, -0.1273730993270874, 0.10031398385763168, 0.08842447400093079, -0.06704817712306976, 0.021128835156559944, 0.028194906190037727, 0.11599560081958771, 0.01912010833621025, -0.1034829393029213, 0.056668657809495926, -0.09367645531892776, -0.1208370178937912, -0.046228326857089996, 0.08481919020414352, 0.055316321551799774, 0.04811832681298256, -0.007290875073522329, 0.01262136921286583, -0.012421967461705208, -0.09942137449979782, -0.005104840733110905, 0.07564129680395126, 0.09905724972486496, 0.04380838945508003, -0.08765707910060883, -0.0040603880770504475, -0.04278814047574997, -0.033083438873291016, 0.1370268613100052, 0.17980870604515076, -0.07366951555013657, 0.022455528378486633, 0.07487516105175018, -0.1034802719950676, -0.16562414169311523, 0.08121571689844131, 0.0960249975323677, 0.00033582793548703194, 0.024045472964644432, -0.200059175491333, 0.1551675647497177, 0.14335991442203522, -0.012543494813144207, 0.07432559877634048, -0.3423939347267151, -0.13260573148727417, 0.08454674482345581, 0.13688647747039795, 0.06968691945075989, -0.15040019154548645, -0.01752546988427639, -0.041668619960546494, -0.13568685948848724, 0.1332056075334549, -0.07834324985742569, 0.10784725099802017, -0.01071230974048376, 0.09281517565250397, 0.00620217015966773, -0.03746223822236061, 0.1343475878238678, 0.029445424675941467, 0.08504541218280792, -0.0557699054479599, 0.026296548545360565, 0.08475939929485321, -0.054517101496458054, 0.03787378966808319, -0.03490018844604492, 0.045523501932621, -0.10284214466810226, -0.03890857473015785, -0.05695871263742447, 0.07234292477369308, -0.03452696651220322, -0.08234650641679764, -0.04714881256222725, 0.04339273273944855, 0.0521230474114418, -0.031552378088235855, 0.08665831387042999, 0.03129372373223305, 0.13451339304447174, 0.033329159021377563, 0.08662138879299164, -0.06678097695112228, -0.10214899480342865, -0.011335629969835281, -0.008594303391873837, 0.06642603129148483, -0.11353694647550583, 0.007835743017494678, 0.13723982870578766, 0.027676692232489586, 0.12666916847229004, 0.0624825581908226, -0.035217635333538055, 0.004713390488177538, 0.03966980800032616, -0.11606872081756592, -0.13650080561637878, -0.015564024448394775, -0.057112183421850204, -0.08298201113939285, 0.0500897616147995, 0.09617724269628525, -0.07228556275367737, -0.01447518914937973, -0.016963617876172066, 0.007315145339816809, -0.03485588729381561, 0.1720007061958313, 0.030990542843937874, 0.04183905944228172, -0.08131114393472672, 0.10867518931627274, 0.06909877806901932, -0.07740245759487152, 0.04958755895495415, 0.08852481096982956, -0.07725858688354492, -0.026232661679387093, 0.09368432313203812, 0.1712007075548172, -0.10004366934299469, -0.05698821321129799, -0.09423233568668365, -0.09225427359342575, 0.055205099284648895, 0.12536609172821045, 0.0687410980463028, -0.03904443979263306, -0.05805731192231178, 0.056945621967315674, -0.16505488753318787, 0.06597881019115448, 0.014298878610134125, 0.0869036391377449, -0.1721448302268982, 0.12526018917560577, 0.034510254859924316, 0.03918363153934479, -0.021160732954740524, 0.03607679903507233, -0.08777300268411636, -0.01818828098475933, -0.11211608350276947, -0.02907240390777588, -0.032688431441783905, 0.006086340174078941, -0.006716868840157986, -0.04385870695114136, -0.0705556645989418, 0.06144621595740318, -0.06700333207845688, -0.055246490985155106, 0.025561988353729248, 0.04185095056891441, -0.12807102501392365, 0.008131170645356178, -0.0005205207853578031, -0.07427175343036652, 0.05294764041900635, 0.05200765281915665, 0.034795381128787994, 0.05286594480276108, -0.1083308756351471, -0.0061117419973015785, 0.058797113597393036, 0.04739950969815254, 0.0755389854311943, -0.06136636063456535, -0.0018423069268465042, 0.0007128056022338569, 0.08028344810009003, 0.010215271264314651, 0.07711886614561081, -0.11644922196865082, -0.010274884290993214, -0.06799602508544922, -0.06981917470693588, -0.06142036244273186, 0.03488869220018387, 0.1165887713432312, 0.03165803104639053, 0.17607536911964417, -0.0761217400431633, 0.028786202892661095, -0.1935470998287201, -0.020358966663479805, -0.0014280116884037852, -0.040545038878917694, -0.048546284437179565, -0.04000193998217583, 0.0647674947977066, -0.05629236251115799, 0.13948793709278107, 0.025551673024892807, 0.10316728055477142, 0.03717416152358055, -0.015660816803574562, -0.03734106570482254, -0.003507419489324093, 0.19272366166114807, 0.054969608783721924, -0.010324062779545784, 0.0901983305811882, 0.0190436914563179, 0.09999746829271317, 0.02811809442937374, 0.2184196263551712, 0.1182360053062439, -0.03533460572361946, 0.08745244890451431, 0.052536558359861374, -0.11108604073524475, -0.2029125690460205, 0.08469320833683014, -0.034861158579587936, 0.1040133386850357, -0.03391424939036369, 0.17378732562065125, 0.12099103629589081, -0.16270652413368225, 0.039009761065244675, -0.04807327315211296, -0.10109282284975052, -0.1268230527639389, -0.04140204191207886, -0.08446764945983887, -0.12668408453464508, 0.023676497861742973, -0.13367672264575958, 0.02501438744366169, 0.09815055131912231, 0.015481531620025635, -0.006635640747845173, 0.15842194855213165, -0.03599447384476662, 0.007398624438792467, 0.017794964835047722, 0.005556420423090458, -0.01305271964520216, -0.08906159549951553, -0.0604509562253952, 0.016549110412597656, 0.004525946918874979, 0.08108974248170853, -0.06308133155107498, -0.027008894830942154, 0.048111893236637115, -0.01463337428867817, -0.04493448883295059, 0.020679330453276634, 0.02287287823855877, 0.03832520917057991, 0.04042055085301399, 0.022249622270464897, -0.01904718577861786, -0.03179941698908806, 0.26762619614601135, -0.07265368103981018, -0.11027885228395462, -0.10202533006668091, 0.24168698489665985, 0.05063508078455925, -0.01330177579075098, 0.060386672616004944, -0.09833403676748276, -0.023816945031285286, 0.19048674404621124, 0.16635453701019287, -0.07206793874502182, -0.03315458819270134, 0.004953367169946432, -0.01943068578839302, -0.06491649895906448, 0.1266743242740631, 0.13546641170978546, 0.0755593329668045, -0.06039349362254143, -0.028519107028841972, -0.027457475662231445, -0.005681521724909544, -0.08924484252929688, 0.057952962815761566, 0.03593788668513298, 0.0009819477563723922, -0.006402264814823866, 0.055978599935770035, -0.012217758223414421, -0.13299968838691711, 0.04580460861325264, -0.16961216926574707, -0.1737305223941803, 0.0006996462470851839, 0.12346792966127396, -0.05993213877081871, 0.05804469808936119, -0.012607450596988201, -0.02274785190820694, 0.0889865830540657, -0.01957024820148945, -0.07686503231525421, -0.09205181151628494, 0.07648647576570511, -0.08064637333154678, 0.23301103711128235, -0.021736251190304756, 0.07931588590145111, 0.11220549792051315, 0.033880144357681274, -0.108116015791893, 0.06886772066354752, 0.03803432360291481, -0.06819916516542435, 0.0460297055542469, 0.12165383249521255, -0.05434330180287361, 0.07363595813512802, 0.04162151739001274, -0.13200624287128448, -0.01724301651120186, -0.023660486564040184, -0.0334569588303566, -0.046313658356666565, -0.009059607051312923, -0.09692969918251038, 0.1492154598236084, 0.18101023137569427, -0.01123388484120369, 0.009493890218436718, -0.08191534876823425, 0.04187873750925064, 0.055787499994039536, 0.13926707208156586, -0.04230101779103279, -0.22557444870471954, 0.016208119690418243, -0.003316998016089201, 0.011970705352723598, -0.2263309806585312, -0.09124772995710373, 0.030927106738090515, -0.05852571129798889, -0.08969462662935257, 0.08579996228218079, 0.0956781655550003, 0.033714182674884796, -0.05427008122205734, -0.14305685460567474, -0.06622672080993652, 0.1411970853805542, -0.17041237652301788, -0.06519168615341187 ]
null
null
transformers
#Rick DialoGPT Model
{"tags": ["conversational"]}
text-generation
grounddominator/DialoGPT-lar-Rick
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Rick DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
# BioBERT-NLI This is the model [BioBERT](https://github.com/dmis-lab/biobert) [1] fine-tuned on the [SNLI](https://nlp.stanford.edu/projects/snli/) and the [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/) datasets using the [`sentence-transformers` library](https://github.com/UKPLab/sentence-transformers/) to produce universal sentence embeddings [2]. The model uses the original BERT wordpiece vocabulary and was trained using the **average pooling strategy** and a **softmax loss**. **Base model**: `monologg/biobert_v1.1_pubmed` from HuggingFace's `AutoModel`. **Training time**: ~6 hours on the NVIDIA Tesla P100 GPU provided in Kaggle Notebooks. **Parameters**: | Parameter | Value | |------------------|-------| | Batch size | 64 | | Training steps | 30000 | | Warmup steps | 1450 | | Lowercasing | False | | Max. Seq. Length | 128 | **Performances**: The performance was evaluated on the test portion of the [STS dataset](http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark) using Spearman rank correlation and compared to the performances of a general BERT base model obtained with the same procedure to verify their similarity. | Model | Score | |-------------------------------|-------------| | `biobert-nli` (this) | 73.40 | | `gsarti/scibert-nli` | 74.50 | | `bert-base-nli-mean-tokens`[3]| 77.12 | An example usage for similarity-based scientific paper retrieval is provided in the [Covid Papers Browser](https://github.com/gsarti/covid-papers-browser) repository. **References:** [1] J. Lee et al, [BioBERT: a pre-trained biomedical language representation model for biomedical text mining](https://academic.oup.com/bioinformatics/article/36/4/1234/5566506) [2] A. Conneau et al., [Supervised Learning of Universal Sentence Representations from Natural Language Inference Data](https://www.aclweb.org/anthology/D17-1070/) [3] N. Reimers et I. Gurevych, [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://www.aclweb.org/anthology/D19-1410/)
{}
feature-extraction
gsarti/biobert-nli
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us
BioBERT-NLI =========== This is the model BioBERT [1] fine-tuned on the SNLI and the MultiNLI datasets using the 'sentence-transformers' library to produce universal sentence embeddings [2]. The model uses the original BERT wordpiece vocabulary and was trained using the average pooling strategy and a softmax loss. Base model: 'monologg/biobert\_v1.1\_pubmed' from HuggingFace's 'AutoModel'. Training time: ~6 hours on the NVIDIA Tesla P100 GPU provided in Kaggle Notebooks. Parameters: Performances: The performance was evaluated on the test portion of the STS dataset using Spearman rank correlation and compared to the performances of a general BERT base model obtained with the same procedure to verify their similarity. An example usage for similarity-based scientific paper retrieval is provided in the Covid Papers Browser repository. References: [1] J. Lee et al, BioBERT: a pre-trained biomedical language representation model for biomedical text mining [2] A. Conneau et al., Supervised Learning of Universal Sentence Representations from Natural Language Inference Data [3] N. Reimers et I. Gurevych, Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
[]
[ "TAGS\n#transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us \n" ]
[ 32 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us \n" ]
[ -0.052963756024837494, -0.0036861018743366003, -0.009317236952483654, 0.014060239307582378, 0.1265685260295868, 0.04055891931056976, 0.012158291414380074, 0.09425005316734314, 0.07149101793766022, -0.016153931617736816, 0.11511608213186264, 0.23898901045322418, -0.028362810611724854, 0.026604674756526947, -0.05170471966266632, -0.2719436585903168, 0.06598348915576935, 0.09840699285268784, -0.038225941359996796, 0.0970769077539444, 0.0554196834564209, -0.10502330213785172, 0.06711741536855698, -0.013328155502676964, -0.15120553970336914, 0.05215353146195412, 0.03010397218167782, -0.07699708640575409, 0.10851556807756424, 0.015515191480517387, 0.15853559970855713, 0.011645578779280186, -0.09041590243577957, -0.160604789853096, 0.03134223073720932, -0.017968304455280304, -0.06257034838199615, 0.03479667380452156, 0.0707094818353653, -0.09866075217723846, 0.031214237213134766, 0.10099188983440399, 0.020305143669247627, 0.0224761925637722, -0.16484229266643524, -0.19813960790634155, -0.04946230351924896, 0.05015429109334946, 0.02250281721353531, 0.08229392021894455, 0.018286142498254776, 0.13435232639312744, -0.15313594043254852, 0.08182822167873383, 0.21016328036785126, -0.2993359863758087, -0.009734644554555416, 0.0593695230782032, 0.1350070834159851, 0.019440416246652603, -0.032571692019701004, 0.03773166611790657, -0.006441458128392696, 0.022168122231960297, 0.023778874427080154, -0.10345342755317688, -0.04922936111688614, 0.06903901696205139, -0.09044501185417175, -0.07425874471664429, 0.21812093257904053, -0.018261190503835678, 0.05052957311272621, 0.024539193138480186, -0.08425062149763107, -0.06177361682057381, -0.040308937430381775, -0.02324654348194599, -0.014144795015454292, 0.05733082816004753, 0.006142587400972843, -0.02140374295413494, -0.10499297082424164, 0.01677618734538555, -0.17896869778633118, 0.19923429191112518, 0.013208188116550446, 0.08352150768041611, -0.21237951517105103, 0.0449824184179306, -0.06849394738674164, -0.09766314178705215, 0.030032433569431305, -0.0852053165435791, 0.04761315509676933, 0.004622476641088724, -0.06118087098002434, 0.012963674031198025, 0.04501301050186157, 0.1278681606054306, 0.014213649556040764, 0.029509782791137695, 0.0212479867041111, 0.10761474072933197, 0.027579398825764656, 0.12123031169176102, 0.02797030657529831, -0.03111332282423973, 0.025293005630373955, -0.10117059201002121, -0.03267378360033035, -0.05524241179227829, -0.12406694889068604, -0.029093708842992783, 0.05186808109283447, 0.07624085992574692, 0.03110049106180668, 0.0058425357565283775, -0.09648735821247101, -0.022560784593224525, 0.048836782574653625, -0.0633535087108612, 0.01324373297393322, -0.01158793643116951, 0.048493556678295135, 0.16013619303703308, -0.03490329533815384, -0.01864147186279297, -0.022512229159474373, 0.08027350902557373, -0.08937931060791016, 0.012826178222894669, -0.052831489592790604, -0.05256495252251625, 0.036838091909885406, -0.13647215068340302, 0.06195525452494621, -0.1411474496126175, -0.09831726551055908, 0.03724878653883934, 0.06510140001773834, 0.0028400777373462915, 0.011090216226875782, -0.0028051785193383694, -0.02199988067150116, 0.008028601296246052, -0.06167469918727875, -0.0816744863986969, -0.059597406536340714, 0.1003911942243576, -0.005042034666985273, 0.06295882910490036, -0.09823295474052429, 0.08133041858673096, -0.09697461873292923, 0.030901752412319183, -0.15964384377002716, -0.01432819850742817, -0.01723836548626423, 0.17763751745224, -0.00034126266837120056, -0.0548611618578434, -0.1117730438709259, 0.05009101331233978, -0.04932554066181183, 0.1541672796010971, -0.08066514879465103, -0.13397589325904846, 0.21098418533802032, -0.10251977294683456, -0.1840919852256775, 0.061645857989788055, -0.00545533886179328, 0.0011149892816320062, 0.07106424123048782, 0.203650563955307, 0.07746961712837219, -0.060603056102991104, 0.08728695660829544, 0.13636207580566406, -0.10702621191740036, -0.12712803483009338, 0.03748749569058418, -0.02914872020483017, -0.07186932861804962, 0.04315415397286415, 0.021652160212397575, 0.09422970563173294, -0.07124552875757217, -0.038790617138147354, -0.012978962622582912, -0.010238992050290108, 0.06346900761127472, 0.06290382891893387, 0.10297422111034393, -0.046184465289115906, -0.0026994396466761827, 0.008307021111249924, -0.009622191078960896, 0.01653190515935421, 0.03997422009706497, -0.060205742716789246, 0.17742055654525757, -0.07573379576206207, 0.0052375528030097485, -0.23334336280822754, -0.07036417722702026, 0.010943070985376835, 0.06390442699193954, -0.04700079187750816, 0.1549825817346573, 0.09247895330190659, -0.07577121257781982, 0.012680678628385067, -0.03353114426136017, 0.08304725587368011, 0.02012883499264717, -0.03484402596950531, -0.0750569999217987, -0.009526349604129791, -0.07900413125753403, -0.08899429440498352, -0.026323657482862473, -0.01098543033003807, 0.07709052413702011, 0.09981118887662888, 0.020864687860012054, 0.017583217471837997, -0.06752119958400726, 0.05020664259791374, -0.02576756849884987, 0.0177655890583992, 0.0949443057179451, -0.01739528775215149, -0.04540245607495308, 0.15520338714122772, -0.09017010033130646, 0.36493057012557983, 0.19001640379428864, -0.3118160367012024, 0.0143634844571352, -0.017740126699209213, -0.00546584976837039, 0.03116120956838131, 0.09335438162088394, -0.022324539721012115, 0.0862930566072464, 0.014072950929403305, 0.13336621224880219, -0.03602796047925949, -0.04512658715248108, 0.00488016102463007, -0.030854322016239166, -0.057892415672540665, 0.06719741225242615, 0.07318726181983948, -0.15898650884628296, 0.1664324402809143, 0.2892304062843323, 0.024658242240548134, 0.13439251482486725, -0.050064556300640106, -0.028527043759822845, 0.01088089868426323, -0.004020090214908123, -0.04241277277469635, 0.05857431888580322, -0.2635689377784729, -0.06348064541816711, 0.05880957841873169, 0.011391952633857727, 0.07413619756698608, -0.12690965831279755, -0.0547051876783371, 0.03168385848402977, 0.03254729136824608, -0.08504929393529892, 0.06544449925422668, 0.044477373361587524, 0.06054355204105377, 0.014742519706487656, -0.07364493608474731, 0.09875046461820602, 0.0067468550987541676, -0.04165760800242424, 0.16546687483787537, -0.1195327416062355, -0.26084214448928833, -0.10503862798213959, -0.15248729288578033, 0.024808121845126152, 0.007801828905940056, 0.08723878115415573, -0.0696033239364624, -0.018955839797854424, 0.07113382965326309, 0.0272858627140522, -0.15711280703544617, 0.0252254419028759, -0.07713302969932556, 0.03579463064670563, -0.07968100905418396, -0.0684952661395073, -0.07613936811685562, -0.06434401124715805, -0.009333625435829163, 0.08535612374544144, -0.11190655827522278, 0.09602662175893784, 0.11701052635908127, 0.03214438632130623, 0.08658012002706528, -0.006250035483390093, 0.18954986333847046, -0.05687757954001427, -0.07587884366512299, 0.19472064077854156, -0.03688417375087738, 0.08600619435310364, 0.09849857538938522, 0.05287953093647957, -0.06082279980182648, -0.04936293885111809, -0.06025570631027222, -0.09542788565158844, -0.16916604340076447, -0.06522456556558609, -0.1508832424879074, 0.020152684301137924, 0.029854416847229004, 0.037862420082092285, 0.10091149806976318, 0.06081030145287514, 0.05603417381644249, -0.03332297131419182, -0.02884560078382492, 0.03904317319393158, 0.18016357719898224, -0.02138795331120491, 0.09862849861383438, -0.02871086820960045, -0.10660931468009949, 0.058421771973371506, 0.032121144235134125, 0.20918923616409302, 0.11231514811515808, 0.037705160677433014, 0.05080387368798256, 0.19513967633247375, 0.14172111451625824, 0.14885953068733215, -0.027547087520360947, -0.0424746498465538, -0.020660579204559326, -0.006827371194958687, -0.056708768010139465, 0.022592194378376007, 0.17596647143363953, -0.09328009188175201, -0.07799528539180756, -0.21095149219036102, 0.0602993369102478, 0.0701967179775238, 0.030279070138931274, -0.19828727841377258, 0.019662387669086456, 0.07570156455039978, -0.0017542234854772687, -0.05226362124085426, 0.0724397599697113, -0.02223113924264908, -0.12630979716777802, 0.0342094711959362, -0.06242687255144119, 0.11481078714132309, -0.007219333667308092, 0.07287821173667908, -0.023485491052269936, -0.1197328194975853, 0.06598693877458572, 0.06315088272094727, -0.2035032957792282, 0.265704482793808, -0.006578056141734123, -0.05729619786143303, -0.03779337555170059, 0.004988834261894226, 0.016682634130120277, 0.15234172344207764, 0.13822756707668304, 0.02424781396985054, -0.0657852366566658, -0.14051759243011475, 0.046606600284576416, 0.03090650588274002, 0.12475515902042389, -0.070212721824646, -0.015670286491513252, -0.023392077535390854, -0.01504120696336031, -0.021317463368177414, 0.0625319704413414, 0.06776363402605057, -0.15063032507896423, 0.05838163197040558, -0.056513711810112, 0.03976921737194061, -0.010568802244961262, -0.016193414106965065, -0.04077047109603882, 0.15405818819999695, -0.03783063217997551, -0.03903694450855255, -0.098985455930233, -0.11961425840854645, 0.11263576149940491, -0.08763912320137024, 0.08025027066469193, -0.06742454320192337, -0.025876687839627266, -0.06425515562295914, -0.19912926852703094, 0.137502059340477, -0.10783692449331284, 0.054419536143541336, -0.06186164915561676, 0.17661862075328827, -0.061372656375169754, 0.01232277974486351, 0.022339118644595146, 0.026846999302506447, -0.12461834400892258, -0.07176445424556732, -0.00021531556558329612, -0.020146500319242477, 0.03834713250398636, 0.03682788088917732, -0.05799354612827301, 0.04448740556836128, -0.004165316000580788, 0.05304564908146858, 0.23484887182712555, 0.16569161415100098, -0.054744821041822433, 0.12290453910827637, 0.13697096705436707, -0.0373862199485302, -0.26884889602661133, -0.07450263947248459, -0.12268921732902527, -0.037436116486787796, 0.015440378338098526, -0.12973135709762573, 0.12852080166339874, 0.026052117347717285, -0.017302265390753746, 0.12126334756612778, -0.24278470873832703, -0.054412320256233215, 0.1429450511932373, 0.019859960302710533, 0.4446322023868561, -0.12276434898376465, -0.08678081631660461, 0.016029899939894676, -0.24718843400478363, 0.1013478934764862, 0.03782957047224045, 0.05960741266608238, -0.022589823231101036, 0.031811367720365524, 0.03418872132897377, -0.06166786700487137, 0.11188843846321106, 0.016796844080090523, 0.043888166546821594, -0.054036349058151245, -0.13559308648109436, 0.06865550577640533, -0.01695988141000271, -0.02015555649995804, 0.030521400272846222, 0.006575232371687889, -0.16412822902202606, -0.020895149558782578, -0.12829890847206116, 0.06838260591030121, 0.024225331842899323, -0.0330156646668911, 0.014284659177064896, -0.025629930198192596, -0.0020842088852077723, 0.019318141043186188, 0.28556373715400696, -0.023091532289981842, 0.15915152430534363, 0.0036703497171401978, 0.05212036892771721, -0.20219330489635468, -0.17958396673202515, -0.0687621608376503, -0.04871116578578949, 0.09693709760904312, -0.051237091422080994, 0.049753233790397644, 0.13456004858016968, -0.008942127227783203, 0.030212610960006714, 0.1281672716140747, 0.006242772564291954, -0.019622227177023888, 0.12672145664691925, -0.19614574313163757, -0.02772924117743969, -0.05233310908079147, -0.049490299075841904, 0.08346356451511383, 0.05978552997112274, 0.07819730043411255, 0.050845369696617126, -0.031043145805597305, -0.02332441322505474, -0.02988717332482338, -0.07948853820562363, 0.026934944093227386, 0.03525209054350853, 0.040102314203977585, -0.1379339098930359, 0.02906956896185875, -0.010940386913716793, -0.27159202098846436, -0.05059085786342621, 0.10220116376876831, -0.10801422595977783, -0.10470584034919739, -0.0646820217370987, 0.13403543829917908, -0.13819628953933716, -0.011767823249101639, -0.0421360582113266, -0.12104002386331558, 0.05875451862812042, 0.20137184858322144, 0.10027112066745758, 0.10308783501386642, -0.03936046361923218, -0.0006528248195536435, 0.01760394312441349, -0.03376733511686325, 0.009661308489739895, 0.01645725406706333, -0.11603355407714844, -0.03374771401286125, -0.006667631212621927, 0.15351681411266327, -0.07948599010705948, -0.06356992572546005, -0.15109962224960327, 0.06373295187950134, -0.03385986015200615, -0.09342114627361298, -0.1244155541062355, -0.05954677611589432, 0.020039744675159454, -0.05939866974949837, -0.04189888387918472, -0.028911501169204712, -0.14287447929382324, 0.03040890209376812, 0.015848716720938683, 0.0038695666007697582, -0.05576401948928833, -0.03524982929229736, 0.11663132160902023, -0.06516677141189575, 0.07124289870262146, 0.1888193041086197, -0.05122585594654083, 0.13516193628311157, -0.11158259958028793, -0.15316110849380493, 0.09748540073633194, 0.02599414438009262, 0.07872241735458374, 0.07292717695236206, 0.02696787379682064, 0.05939493700861931, 0.001954560400918126, 0.03438263386487961, -0.03973422944545746, -0.13351686298847198, -0.023773811757564545, 0.02769111841917038, -0.18662898242473602, -0.029900524765253067, -0.0607491061091423, 0.14990295469760895, 0.014299839735031128, 0.11870045214891434, 0.012899700552225113, 0.10260415077209473, -0.05637417361140251, 0.001854541595093906, -0.004377702716737986, -0.19066840410232544, 0.001040599774569273, -0.07924193888902664, 0.0054010325111448765, -0.01029987633228302, 0.23242269456386566, 0.001893453299999237, 0.04246624931693077, 0.021678172051906586, 0.02238643169403076, 0.06013426557183266, 0.03037826158106327, 0.24299314618110657, 0.11352360248565674, -0.05275481194257736, -0.07847755402326584, 0.10017896443605423, 0.0099342605099082, 0.013257299549877644, 0.10118678957223892, 0.12967033684253693, 0.04960792139172554, 0.102946437895298, 0.047170236706733704, 0.05124982073903084, -0.10055673867464066, -0.2252604216337204, 0.020131826400756836, 0.0763651505112648, 0.02886216901242733, 0.09756013751029968, 0.14686918258666992, -0.027980821207165718, 0.08679910749197006, -0.024855410680174828, -0.025126246735453606, -0.13922882080078125, -0.050710372626781464, -0.05487101525068283, -0.12127167731523514, 0.0038119384553283453, -0.07388770580291748, 0.00872061774134636, 0.13778604567050934, 0.019346702843904495, -0.02416999451816082, 0.10666673630475998, 0.06476649641990662, -0.06081261858344078, 0.06429800391197205, -0.016318149864673615, -0.0035494028124958277, 0.030923180282115936, 0.0068810684606432915, -0.11447969079017639, -0.09393544495105743, -0.05622541904449463, 0.014824923127889633, -0.0998360812664032, 0.00777388783171773, -0.1129651591181755, -0.1317947506904602, -0.037622228264808655, 0.03216177970170975, -0.07305324822664261, 0.09837225079536438, -0.007971052080392838, 0.0029706419445574284, 0.0089488560333848, 0.17413225769996643, -0.0752522423863411, 0.010291093029081821, -0.014209666289389133, 0.20998892188072205, 0.08818451315164566, 0.10622511804103851, -0.00010614687198540196, 0.027271725237369537, -0.04751461744308472, 0.2810079753398895, 0.25682657957077026, -0.03268571197986603, 0.04118233174085617, 0.08400323987007141, 0.0352952741086483, 0.07457773387432098, 0.08635538071393967, 0.09502308815717697, 0.3094768822193146, -0.08893507719039917, -0.01832873374223709, -0.045276056975126266, -0.007693660911172628, -0.08922053873538971, 0.022008083760738373, 0.090583436191082, -0.051739878952503204, -0.059487778693437576, 0.09710941463708878, -0.1514272689819336, 0.12403640151023865, 0.10022277384996414, -0.2248581200838089, -0.05263209715485573, -0.0753798633813858, 0.17728450894355774, 0.005827738903462887, 0.11856024712324142, -0.04088432341814041, -0.1279212087392807, 0.05804216116666794, 0.041939619928598404, -0.2674042284488678, -0.10722674429416656, 0.11922934651374817, 0.007283462211489677, 0.011069725267589092, -0.03636489063501358, -0.007730226498097181, 0.06680086255073547, 0.08091744780540466, -0.004777153488248587, 0.003635617671534419, 0.034582268446683884, -0.08894816040992737, -0.09114518761634827, 0.02295706979930401, 0.01569727063179016, -0.06678148359060287, 0.03557940572500229, -0.15736618638038635, 0.038901135325431824, -0.06494641304016113, -0.04504818096756935, 0.00997934676706791, -0.0023578645195811987, -0.04645739495754242, 0.03953973203897476, 0.0798637866973877, 0.02510100044310093, -0.04636509716510773, -0.0499950535595417, -0.005103605799376965, 0.09507005661725998, -0.04521242901682854, -0.1744234263896942, -0.0458562895655632, -0.0892651304602623, 0.0930018275976181, -0.050208285450935364, -0.08868695795536041, -0.049340106546878815, -0.034710593521595, 0.05042168125510216, -0.12623053789138794, 0.04210792854428291, 0.05483612045645714, 0.04378687962889671, 0.013884893618524075, -0.05358581990003586, 0.05241890624165535, 0.07315762341022491, -0.1212339773774147, -0.07481653988361359 ]
null
null
transformers
# CovidBERT-NLI This is the model **CovidBERT** trained by DeepSet on AllenAI's [CORD19 Dataset](https://pages.semanticscholar.org/coronavirus-research) of scientific articles about coronaviruses. The model uses the original BERT wordpiece vocabulary and was subsequently fine-tuned on the [SNLI](https://nlp.stanford.edu/projects/snli/) and the [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/) datasets using the [`sentence-transformers` library](https://github.com/UKPLab/sentence-transformers/) to produce universal sentence embeddings [1] using the **average pooling strategy** and a **softmax loss**. Parameter details for the original training on CORD-19 are available on [DeepSet's MLFlow](https://public-mlflow.deepset.ai/#/experiments/2/runs/ba27d00c30044ef6a33b1d307b4a6cba) **Base model**: `deepset/covid_bert_base` from HuggingFace's `AutoModel`. **Training time**: ~6 hours on the NVIDIA Tesla P100 GPU provided in Kaggle Notebooks. **Parameters**: | Parameter | Value | |------------------|-------| | Batch size | 64 | | Training steps | 23000 | | Warmup steps | 1450 | | Lowercasing | True | | Max. Seq. Length | 128 | **Performances**: The performance was evaluated on the test portion of the [STS dataset](http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark) using Spearman rank correlation and compared to the performances of similar models obtained with the same procedure to verify its performances. | Model | Score | |-------------------------------|-------------| | `covidbert-nli` (this) | 67.52 | | `gsarti/biobert-nli` | 73.40 | | `gsarti/scibert-nli` | 74.50 | | `bert-base-nli-mean-tokens`[2]| 77.12 | An example usage for similarity-based scientific paper retrieval is provided in the [Covid-19 Semantic Browser](https://github.com/gsarti/covid-papers-browser) repository. **References:** [1] A. Conneau et al., [Supervised Learning of Universal Sentence Representations from Natural Language Inference Data](https://www.aclweb.org/anthology/D17-1070/) [2] N. Reimers et I. Gurevych, [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://www.aclweb.org/anthology/D19-1410/)
{}
feature-extraction
gsarti/covidbert-nli
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us
CovidBERT-NLI ============= This is the model CovidBERT trained by DeepSet on AllenAI's CORD19 Dataset of scientific articles about coronaviruses. The model uses the original BERT wordpiece vocabulary and was subsequently fine-tuned on the SNLI and the MultiNLI datasets using the 'sentence-transformers' library to produce universal sentence embeddings [1] using the average pooling strategy and a softmax loss. Parameter details for the original training on CORD-19 are available on DeepSet's MLFlow Base model: 'deepset/covid\_bert\_base' from HuggingFace's 'AutoModel'. Training time: ~6 hours on the NVIDIA Tesla P100 GPU provided in Kaggle Notebooks. Parameters: Performances: The performance was evaluated on the test portion of the STS dataset using Spearman rank correlation and compared to the performances of similar models obtained with the same procedure to verify its performances. An example usage for similarity-based scientific paper retrieval is provided in the Covid-19 Semantic Browser repository. References: [1] A. Conneau et al., Supervised Learning of Universal Sentence Representations from Natural Language Inference Data [2] N. Reimers et I. Gurevych, Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
[]
[ "TAGS\n#transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us \n" ]
[ 32 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us \n" ]
[ -0.052963756024837494, -0.0036861018743366003, -0.009317236952483654, 0.014060239307582378, 0.1265685260295868, 0.04055891931056976, 0.012158291414380074, 0.09425005316734314, 0.07149101793766022, -0.016153931617736816, 0.11511608213186264, 0.23898901045322418, -0.028362810611724854, 0.026604674756526947, -0.05170471966266632, -0.2719436585903168, 0.06598348915576935, 0.09840699285268784, -0.038225941359996796, 0.0970769077539444, 0.0554196834564209, -0.10502330213785172, 0.06711741536855698, -0.013328155502676964, -0.15120553970336914, 0.05215353146195412, 0.03010397218167782, -0.07699708640575409, 0.10851556807756424, 0.015515191480517387, 0.15853559970855713, 0.011645578779280186, -0.09041590243577957, -0.160604789853096, 0.03134223073720932, -0.017968304455280304, -0.06257034838199615, 0.03479667380452156, 0.0707094818353653, -0.09866075217723846, 0.031214237213134766, 0.10099188983440399, 0.020305143669247627, 0.0224761925637722, -0.16484229266643524, -0.19813960790634155, -0.04946230351924896, 0.05015429109334946, 0.02250281721353531, 0.08229392021894455, 0.018286142498254776, 0.13435232639312744, -0.15313594043254852, 0.08182822167873383, 0.21016328036785126, -0.2993359863758087, -0.009734644554555416, 0.0593695230782032, 0.1350070834159851, 0.019440416246652603, -0.032571692019701004, 0.03773166611790657, -0.006441458128392696, 0.022168122231960297, 0.023778874427080154, -0.10345342755317688, -0.04922936111688614, 0.06903901696205139, -0.09044501185417175, -0.07425874471664429, 0.21812093257904053, -0.018261190503835678, 0.05052957311272621, 0.024539193138480186, -0.08425062149763107, -0.06177361682057381, -0.040308937430381775, -0.02324654348194599, -0.014144795015454292, 0.05733082816004753, 0.006142587400972843, -0.02140374295413494, -0.10499297082424164, 0.01677618734538555, -0.17896869778633118, 0.19923429191112518, 0.013208188116550446, 0.08352150768041611, -0.21237951517105103, 0.0449824184179306, -0.06849394738674164, -0.09766314178705215, 0.030032433569431305, -0.0852053165435791, 0.04761315509676933, 0.004622476641088724, -0.06118087098002434, 0.012963674031198025, 0.04501301050186157, 0.1278681606054306, 0.014213649556040764, 0.029509782791137695, 0.0212479867041111, 0.10761474072933197, 0.027579398825764656, 0.12123031169176102, 0.02797030657529831, -0.03111332282423973, 0.025293005630373955, -0.10117059201002121, -0.03267378360033035, -0.05524241179227829, -0.12406694889068604, -0.029093708842992783, 0.05186808109283447, 0.07624085992574692, 0.03110049106180668, 0.0058425357565283775, -0.09648735821247101, -0.022560784593224525, 0.048836782574653625, -0.0633535087108612, 0.01324373297393322, -0.01158793643116951, 0.048493556678295135, 0.16013619303703308, -0.03490329533815384, -0.01864147186279297, -0.022512229159474373, 0.08027350902557373, -0.08937931060791016, 0.012826178222894669, -0.052831489592790604, -0.05256495252251625, 0.036838091909885406, -0.13647215068340302, 0.06195525452494621, -0.1411474496126175, -0.09831726551055908, 0.03724878653883934, 0.06510140001773834, 0.0028400777373462915, 0.011090216226875782, -0.0028051785193383694, -0.02199988067150116, 0.008028601296246052, -0.06167469918727875, -0.0816744863986969, -0.059597406536340714, 0.1003911942243576, -0.005042034666985273, 0.06295882910490036, -0.09823295474052429, 0.08133041858673096, -0.09697461873292923, 0.030901752412319183, -0.15964384377002716, -0.01432819850742817, -0.01723836548626423, 0.17763751745224, -0.00034126266837120056, -0.0548611618578434, -0.1117730438709259, 0.05009101331233978, -0.04932554066181183, 0.1541672796010971, -0.08066514879465103, -0.13397589325904846, 0.21098418533802032, -0.10251977294683456, -0.1840919852256775, 0.061645857989788055, -0.00545533886179328, 0.0011149892816320062, 0.07106424123048782, 0.203650563955307, 0.07746961712837219, -0.060603056102991104, 0.08728695660829544, 0.13636207580566406, -0.10702621191740036, -0.12712803483009338, 0.03748749569058418, -0.02914872020483017, -0.07186932861804962, 0.04315415397286415, 0.021652160212397575, 0.09422970563173294, -0.07124552875757217, -0.038790617138147354, -0.012978962622582912, -0.010238992050290108, 0.06346900761127472, 0.06290382891893387, 0.10297422111034393, -0.046184465289115906, -0.0026994396466761827, 0.008307021111249924, -0.009622191078960896, 0.01653190515935421, 0.03997422009706497, -0.060205742716789246, 0.17742055654525757, -0.07573379576206207, 0.0052375528030097485, -0.23334336280822754, -0.07036417722702026, 0.010943070985376835, 0.06390442699193954, -0.04700079187750816, 0.1549825817346573, 0.09247895330190659, -0.07577121257781982, 0.012680678628385067, -0.03353114426136017, 0.08304725587368011, 0.02012883499264717, -0.03484402596950531, -0.0750569999217987, -0.009526349604129791, -0.07900413125753403, -0.08899429440498352, -0.026323657482862473, -0.01098543033003807, 0.07709052413702011, 0.09981118887662888, 0.020864687860012054, 0.017583217471837997, -0.06752119958400726, 0.05020664259791374, -0.02576756849884987, 0.0177655890583992, 0.0949443057179451, -0.01739528775215149, -0.04540245607495308, 0.15520338714122772, -0.09017010033130646, 0.36493057012557983, 0.19001640379428864, -0.3118160367012024, 0.0143634844571352, -0.017740126699209213, -0.00546584976837039, 0.03116120956838131, 0.09335438162088394, -0.022324539721012115, 0.0862930566072464, 0.014072950929403305, 0.13336621224880219, -0.03602796047925949, -0.04512658715248108, 0.00488016102463007, -0.030854322016239166, -0.057892415672540665, 0.06719741225242615, 0.07318726181983948, -0.15898650884628296, 0.1664324402809143, 0.2892304062843323, 0.024658242240548134, 0.13439251482486725, -0.050064556300640106, -0.028527043759822845, 0.01088089868426323, -0.004020090214908123, -0.04241277277469635, 0.05857431888580322, -0.2635689377784729, -0.06348064541816711, 0.05880957841873169, 0.011391952633857727, 0.07413619756698608, -0.12690965831279755, -0.0547051876783371, 0.03168385848402977, 0.03254729136824608, -0.08504929393529892, 0.06544449925422668, 0.044477373361587524, 0.06054355204105377, 0.014742519706487656, -0.07364493608474731, 0.09875046461820602, 0.0067468550987541676, -0.04165760800242424, 0.16546687483787537, -0.1195327416062355, -0.26084214448928833, -0.10503862798213959, -0.15248729288578033, 0.024808121845126152, 0.007801828905940056, 0.08723878115415573, -0.0696033239364624, -0.018955839797854424, 0.07113382965326309, 0.0272858627140522, -0.15711280703544617, 0.0252254419028759, -0.07713302969932556, 0.03579463064670563, -0.07968100905418396, -0.0684952661395073, -0.07613936811685562, -0.06434401124715805, -0.009333625435829163, 0.08535612374544144, -0.11190655827522278, 0.09602662175893784, 0.11701052635908127, 0.03214438632130623, 0.08658012002706528, -0.006250035483390093, 0.18954986333847046, -0.05687757954001427, -0.07587884366512299, 0.19472064077854156, -0.03688417375087738, 0.08600619435310364, 0.09849857538938522, 0.05287953093647957, -0.06082279980182648, -0.04936293885111809, -0.06025570631027222, -0.09542788565158844, -0.16916604340076447, -0.06522456556558609, -0.1508832424879074, 0.020152684301137924, 0.029854416847229004, 0.037862420082092285, 0.10091149806976318, 0.06081030145287514, 0.05603417381644249, -0.03332297131419182, -0.02884560078382492, 0.03904317319393158, 0.18016357719898224, -0.02138795331120491, 0.09862849861383438, -0.02871086820960045, -0.10660931468009949, 0.058421771973371506, 0.032121144235134125, 0.20918923616409302, 0.11231514811515808, 0.037705160677433014, 0.05080387368798256, 0.19513967633247375, 0.14172111451625824, 0.14885953068733215, -0.027547087520360947, -0.0424746498465538, -0.020660579204559326, -0.006827371194958687, -0.056708768010139465, 0.022592194378376007, 0.17596647143363953, -0.09328009188175201, -0.07799528539180756, -0.21095149219036102, 0.0602993369102478, 0.0701967179775238, 0.030279070138931274, -0.19828727841377258, 0.019662387669086456, 0.07570156455039978, -0.0017542234854772687, -0.05226362124085426, 0.0724397599697113, -0.02223113924264908, -0.12630979716777802, 0.0342094711959362, -0.06242687255144119, 0.11481078714132309, -0.007219333667308092, 0.07287821173667908, -0.023485491052269936, -0.1197328194975853, 0.06598693877458572, 0.06315088272094727, -0.2035032957792282, 0.265704482793808, -0.006578056141734123, -0.05729619786143303, -0.03779337555170059, 0.004988834261894226, 0.016682634130120277, 0.15234172344207764, 0.13822756707668304, 0.02424781396985054, -0.0657852366566658, -0.14051759243011475, 0.046606600284576416, 0.03090650588274002, 0.12475515902042389, -0.070212721824646, -0.015670286491513252, -0.023392077535390854, -0.01504120696336031, -0.021317463368177414, 0.0625319704413414, 0.06776363402605057, -0.15063032507896423, 0.05838163197040558, -0.056513711810112, 0.03976921737194061, -0.010568802244961262, -0.016193414106965065, -0.04077047109603882, 0.15405818819999695, -0.03783063217997551, -0.03903694450855255, -0.098985455930233, -0.11961425840854645, 0.11263576149940491, -0.08763912320137024, 0.08025027066469193, -0.06742454320192337, -0.025876687839627266, -0.06425515562295914, -0.19912926852703094, 0.137502059340477, -0.10783692449331284, 0.054419536143541336, -0.06186164915561676, 0.17661862075328827, -0.061372656375169754, 0.01232277974486351, 0.022339118644595146, 0.026846999302506447, -0.12461834400892258, -0.07176445424556732, -0.00021531556558329612, -0.020146500319242477, 0.03834713250398636, 0.03682788088917732, -0.05799354612827301, 0.04448740556836128, -0.004165316000580788, 0.05304564908146858, 0.23484887182712555, 0.16569161415100098, -0.054744821041822433, 0.12290453910827637, 0.13697096705436707, -0.0373862199485302, -0.26884889602661133, -0.07450263947248459, -0.12268921732902527, -0.037436116486787796, 0.015440378338098526, -0.12973135709762573, 0.12852080166339874, 0.026052117347717285, -0.017302265390753746, 0.12126334756612778, -0.24278470873832703, -0.054412320256233215, 0.1429450511932373, 0.019859960302710533, 0.4446322023868561, -0.12276434898376465, -0.08678081631660461, 0.016029899939894676, -0.24718843400478363, 0.1013478934764862, 0.03782957047224045, 0.05960741266608238, -0.022589823231101036, 0.031811367720365524, 0.03418872132897377, -0.06166786700487137, 0.11188843846321106, 0.016796844080090523, 0.043888166546821594, -0.054036349058151245, -0.13559308648109436, 0.06865550577640533, -0.01695988141000271, -0.02015555649995804, 0.030521400272846222, 0.006575232371687889, -0.16412822902202606, -0.020895149558782578, -0.12829890847206116, 0.06838260591030121, 0.024225331842899323, -0.0330156646668911, 0.014284659177064896, -0.025629930198192596, -0.0020842088852077723, 0.019318141043186188, 0.28556373715400696, -0.023091532289981842, 0.15915152430534363, 0.0036703497171401978, 0.05212036892771721, -0.20219330489635468, -0.17958396673202515, -0.0687621608376503, -0.04871116578578949, 0.09693709760904312, -0.051237091422080994, 0.049753233790397644, 0.13456004858016968, -0.008942127227783203, 0.030212610960006714, 0.1281672716140747, 0.006242772564291954, -0.019622227177023888, 0.12672145664691925, -0.19614574313163757, -0.02772924117743969, -0.05233310908079147, -0.049490299075841904, 0.08346356451511383, 0.05978552997112274, 0.07819730043411255, 0.050845369696617126, -0.031043145805597305, -0.02332441322505474, -0.02988717332482338, -0.07948853820562363, 0.026934944093227386, 0.03525209054350853, 0.040102314203977585, -0.1379339098930359, 0.02906956896185875, -0.010940386913716793, -0.27159202098846436, -0.05059085786342621, 0.10220116376876831, -0.10801422595977783, -0.10470584034919739, -0.0646820217370987, 0.13403543829917908, -0.13819628953933716, -0.011767823249101639, -0.0421360582113266, -0.12104002386331558, 0.05875451862812042, 0.20137184858322144, 0.10027112066745758, 0.10308783501386642, -0.03936046361923218, -0.0006528248195536435, 0.01760394312441349, -0.03376733511686325, 0.009661308489739895, 0.01645725406706333, -0.11603355407714844, -0.03374771401286125, -0.006667631212621927, 0.15351681411266327, -0.07948599010705948, -0.06356992572546005, -0.15109962224960327, 0.06373295187950134, -0.03385986015200615, -0.09342114627361298, -0.1244155541062355, -0.05954677611589432, 0.020039744675159454, -0.05939866974949837, -0.04189888387918472, -0.028911501169204712, -0.14287447929382324, 0.03040890209376812, 0.015848716720938683, 0.0038695666007697582, -0.05576401948928833, -0.03524982929229736, 0.11663132160902023, -0.06516677141189575, 0.07124289870262146, 0.1888193041086197, -0.05122585594654083, 0.13516193628311157, -0.11158259958028793, -0.15316110849380493, 0.09748540073633194, 0.02599414438009262, 0.07872241735458374, 0.07292717695236206, 0.02696787379682064, 0.05939493700861931, 0.001954560400918126, 0.03438263386487961, -0.03973422944545746, -0.13351686298847198, -0.023773811757564545, 0.02769111841917038, -0.18662898242473602, -0.029900524765253067, -0.0607491061091423, 0.14990295469760895, 0.014299839735031128, 0.11870045214891434, 0.012899700552225113, 0.10260415077209473, -0.05637417361140251, 0.001854541595093906, -0.004377702716737986, -0.19066840410232544, 0.001040599774569273, -0.07924193888902664, 0.0054010325111448765, -0.01029987633228302, 0.23242269456386566, 0.001893453299999237, 0.04246624931693077, 0.021678172051906586, 0.02238643169403076, 0.06013426557183266, 0.03037826158106327, 0.24299314618110657, 0.11352360248565674, -0.05275481194257736, -0.07847755402326584, 0.10017896443605423, 0.0099342605099082, 0.013257299549877644, 0.10118678957223892, 0.12967033684253693, 0.04960792139172554, 0.102946437895298, 0.047170236706733704, 0.05124982073903084, -0.10055673867464066, -0.2252604216337204, 0.020131826400756836, 0.0763651505112648, 0.02886216901242733, 0.09756013751029968, 0.14686918258666992, -0.027980821207165718, 0.08679910749197006, -0.024855410680174828, -0.025126246735453606, -0.13922882080078125, -0.050710372626781464, -0.05487101525068283, -0.12127167731523514, 0.0038119384553283453, -0.07388770580291748, 0.00872061774134636, 0.13778604567050934, 0.019346702843904495, -0.02416999451816082, 0.10666673630475998, 0.06476649641990662, -0.06081261858344078, 0.06429800391197205, -0.016318149864673615, -0.0035494028124958277, 0.030923180282115936, 0.0068810684606432915, -0.11447969079017639, -0.09393544495105743, -0.05622541904449463, 0.014824923127889633, -0.0998360812664032, 0.00777388783171773, -0.1129651591181755, -0.1317947506904602, -0.037622228264808655, 0.03216177970170975, -0.07305324822664261, 0.09837225079536438, -0.007971052080392838, 0.0029706419445574284, 0.0089488560333848, 0.17413225769996643, -0.0752522423863411, 0.010291093029081821, -0.014209666289389133, 0.20998892188072205, 0.08818451315164566, 0.10622511804103851, -0.00010614687198540196, 0.027271725237369537, -0.04751461744308472, 0.2810079753398895, 0.25682657957077026, -0.03268571197986603, 0.04118233174085617, 0.08400323987007141, 0.0352952741086483, 0.07457773387432098, 0.08635538071393967, 0.09502308815717697, 0.3094768822193146, -0.08893507719039917, -0.01832873374223709, -0.045276056975126266, -0.007693660911172628, -0.08922053873538971, 0.022008083760738373, 0.090583436191082, -0.051739878952503204, -0.059487778693437576, 0.09710941463708878, -0.1514272689819336, 0.12403640151023865, 0.10022277384996414, -0.2248581200838089, -0.05263209715485573, -0.0753798633813858, 0.17728450894355774, 0.005827738903462887, 0.11856024712324142, -0.04088432341814041, -0.1279212087392807, 0.05804216116666794, 0.041939619928598404, -0.2674042284488678, -0.10722674429416656, 0.11922934651374817, 0.007283462211489677, 0.011069725267589092, -0.03636489063501358, -0.007730226498097181, 0.06680086255073547, 0.08091744780540466, -0.004777153488248587, 0.003635617671534419, 0.034582268446683884, -0.08894816040992737, -0.09114518761634827, 0.02295706979930401, 0.01569727063179016, -0.06678148359060287, 0.03557940572500229, -0.15736618638038635, 0.038901135325431824, -0.06494641304016113, -0.04504818096756935, 0.00997934676706791, -0.0023578645195811987, -0.04645739495754242, 0.03953973203897476, 0.0798637866973877, 0.02510100044310093, -0.04636509716510773, -0.0499950535595417, -0.005103605799376965, 0.09507005661725998, -0.04521242901682854, -0.1744234263896942, -0.0458562895655632, -0.0892651304602623, 0.0930018275976181, -0.050208285450935364, -0.08868695795536041, -0.049340106546878815, -0.034710593521595, 0.05042168125510216, -0.12623053789138794, 0.04210792854428291, 0.05483612045645714, 0.04378687962889671, 0.013884893618524075, -0.05358581990003586, 0.05241890624165535, 0.07315762341022491, -0.1212339773774147, -0.07481653988361359 ]
null
null
transformers
# Italian T5 Base (Oscar) 🇮🇹 *This repository contains the model formerly known as `gsarti/t5-base-it`* The [IT5](https://huggingface.co/models?search=it5) model family represents the first effort in pretraining large-scale sequence-to-sequence transformer models for the Italian language, following the approach adopted by the original [T5 model](https://github.com/google-research/text-to-text-transfer-transformer). This model is released as part of the project ["IT5: Large-Scale Text-to-Text Pretraining for Italian Language Understanding and Generation"](https://gsarti.com) (to be released), by [Gabriele Sarti](https://gsarti.com/) with the support of [Huggingface](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) and with TPU usage sponsored by Google's [TPU Research Cloud](https://sites.research.google/trc/). All the training was conducted on a single TPU3v8-VM machine on Google Cloud. Refer to the Tensorboard tab of the repository for an overview of the training process. *The inference widget is deactivated because the model needs a task-specific seq2seq fine-tuning on a downstream task to be useful in practice. The model [`gsarti/it5-base-nli`](https://huggingface.co/gsarti/it5-base-nli) provides an example of this model fine-tuned on a downstream NLI task.* ## Model variants This repository contains the checkpoints for a `base` version of the model trained on the [OSCAR corpus](https://oscar-corpus.com/) using 🤗 Datasets. The original configuration for the model `t5-base` was adopted, with the exception of the parameter `dropout_rate` that was set at `0` instead of `0.1` during pre-training, following the implementation of [`t5-v1.1`](https://huggingface.co/google/t5-v1_1-base). The tokenizer is a `SentencePieceUnigramTokenizer` trained on the first 2M sentences of the Italian portion of the [`mC4`](https://huggingface.co/datasets/mc4) corpus. An improved version of the model trained on the [Thoroughly Cleaned Italian mC4 Corpus](https://huggingface.co/datasets/gsarti/clean_mc4_it) (~41B words, ~275GB) is also available under the name [`gsarti/it5-base`](https://huggingface.co/gsarti/it5-base). The training procedure is made available [on Github](https://github.com/gsarti/t5-flax-gcp). The following table summarizes the parameters for all available models | |`it5-small` |`it5-base` |`it5-large` |`it5-base-oscar` (this one) | |-----------------------|-----------------------|----------------------|-----------------------|----------------------------------| |`dataset` |`gsarti/clean_mc4_it` |`gsarti/clean_mc4_it` |`gsarti/clean_mc4_it` |`oscar/unshuffled_deduplicated_it`| |`architecture` |`google/t5-v1_1-small` |`google/t5-v1_1-base` |`google/t5-v1_1-large` |`t5-base` | |`learning rate` | 5e-3 | 5e-3 | 5e-3 | 1e-2 | |`steps` | 1'050'000 | 1'050'000 | 2'100'000 | 258'000 | |`training time` | 36 hours | 101 hours | 370 hours | 98 hours | |`ff projection` |`gated-gelu` |`gated-gelu` |`gated-gelu` |`relu` | |`tie embeds` |`false` |`false` |`false` |`true` | |`optimizer` | adafactor | adafactor | adafactor | adafactor | |`max seq. length` | 512 | 512 | 512 | 512 | |`per-device batch size`| 16 | 16 | 8 | 16 | |`tot. batch size` | 128 | 128 | 64 | 128 | |`weigth decay` | 1e-3 | 1e-3 | 1e-2 | 1e-3 | |`validation split size`| 15K examples | 15K examples | 15K examples | 15K examples | The high training time of `it5-base-oscar` was due to [a bug](https://github.com/huggingface/transformers/pull/13012) in the training script. For a list of individual model parameters, refer to the `config.json` file in the respective repositories. ## Using the models ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("gsarti/it5-base-oscar") model = T5ForConditionalGeneration.from_pretrained("gsarti/it5-base-oscar") ``` *Note: You will need to fine-tune the model on your downstream seq2seq task to use it. See an example [here](https://huggingface.co/gsarti/it5-base-nli).* Flax and Tensorflow versions of the model are also available: ```python from transformers import FlaxT5ForConditionalGeneration, TFT5ForConditionalGeneration model_flax = FlaxT5ForConditionalGeneration.from_pretrained("gsarti/it5-base-oscar") model_tf = TFT5ForConditionalGeneration.from_pretrained("gsarti/it5-base-oscar") ``` ## Limitations Due to the nature of the web-scraped corpus on which IT5 models were trained, it is likely that their usage could reproduce and amplify pre-existing biases in the data, resulting in potentially harmful content such as racial or gender stereotypes and conspiracist views. For this reason, the study of such biases is explicitly encouraged, and model usage should ideally be restricted to research-oriented and non-user-facing endeavors. ## Model curators For problems or updates on this model, please contact [[email protected]](mailto:[email protected]). ## Citation Information ```bibtex @article{sarti-nissim-2022-it5, title={IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
{"language": ["it"], "license": "apache-2.0", "tags": ["seq2seq", "lm-head"], "datasets": ["oscar"], "inference": false}
text2text-generation
gsarti/it5-base-oscar
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "seq2seq", "lm-head", "it", "dataset:oscar", "arxiv:2203.03759", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2203.03759" ]
[ "it" ]
TAGS #transformers #pytorch #tf #jax #tensorboard #t5 #text2text-generation #seq2seq #lm-head #it #dataset-oscar #arxiv-2203.03759 #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us
Italian T5 Base (Oscar) 🇮🇹 ========================== *This repository contains the model formerly known as 'gsarti/t5-base-it'* The IT5 model family represents the first effort in pretraining large-scale sequence-to-sequence transformer models for the Italian language, following the approach adopted by the original T5 model. This model is released as part of the project "IT5: Large-Scale Text-to-Text Pretraining for Italian Language Understanding and Generation" (to be released), by Gabriele Sarti with the support of Huggingface and with TPU usage sponsored by Google's TPU Research Cloud. All the training was conducted on a single TPU3v8-VM machine on Google Cloud. Refer to the Tensorboard tab of the repository for an overview of the training process. *The inference widget is deactivated because the model needs a task-specific seq2seq fine-tuning on a downstream task to be useful in practice. The model 'gsarti/it5-base-nli' provides an example of this model fine-tuned on a downstream NLI task.* Model variants -------------- This repository contains the checkpoints for a 'base' version of the model trained on the OSCAR corpus using Datasets. The original configuration for the model 't5-base' was adopted, with the exception of the parameter 'dropout\_rate' that was set at '0' instead of '0.1' during pre-training, following the implementation of 't5-v1.1'. The tokenizer is a 'SentencePieceUnigramTokenizer' trained on the first 2M sentences of the Italian portion of the 'mC4' corpus. An improved version of the model trained on the Thoroughly Cleaned Italian mC4 Corpus (~41B words, ~275GB) is also available under the name 'gsarti/it5-base'. The training procedure is made available on Github. The following table summarizes the parameters for all available models The high training time of 'it5-base-oscar' was due to a bug in the training script. For a list of individual model parameters, refer to the 'URL' file in the respective repositories. Using the models ---------------- *Note: You will need to fine-tune the model on your downstream seq2seq task to use it. See an example here.* Flax and Tensorflow versions of the model are also available: Limitations ----------- Due to the nature of the web-scraped corpus on which IT5 models were trained, it is likely that their usage could reproduce and amplify pre-existing biases in the data, resulting in potentially harmful content such as racial or gender stereotypes and conspiracist views. For this reason, the study of such biases is explicitly encouraged, and model usage should ideally be restricted to research-oriented and non-user-facing endeavors. Model curators -------------- For problems or updates on this model, please contact gabriele.sarti996@URL.
[]
[ "TAGS\n#transformers #pytorch #tf #jax #tensorboard #t5 #text2text-generation #seq2seq #lm-head #it #dataset-oscar #arxiv-2203.03759 #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us \n" ]
[ 85 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #tensorboard #t5 #text2text-generation #seq2seq #lm-head #it #dataset-oscar #arxiv-2203.03759 #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us \n" ]
[ -0.0619538389146328, 0.14904659986495972, -0.005565656814724207, 0.10071896016597748, 0.09331505000591278, 0.013123291544616222, 0.1637101173400879, 0.15275022387504578, 0.004448476247489452, -0.06479296833276749, 0.1515938639640808, 0.2001020312309265, 0.024291807785630226, 0.05817221477627754, -0.03904933109879494, -0.1745520383119583, 0.030058860778808594, 0.014795728959143162, -0.08998823910951614, 0.08062916994094849, 0.07801905274391174, -0.04597253352403641, 0.08872392028570175, -0.05258376896381378, -0.12412898242473602, 0.061012595891952515, 0.06652616709470749, -0.10743887722492218, 0.10849377512931824, 0.09456680715084076, 0.012609008699655533, 0.09043493866920471, 0.027579165995121002, -0.11211749166250229, 0.029990043491125107, 0.012125766836106777, -0.0950917899608612, 0.0928998664021492, 0.09520615637302399, -0.04858674854040146, 0.0856831818819046, 0.05101092532277107, -0.02459079958498478, 0.05915999785065651, -0.09233801811933517, -0.0932612344622612, -0.06295667588710785, 0.06421291828155518, -0.017264610156416893, 0.08307234942913055, 0.02852679044008255, 0.09785313904285431, -0.04162374138832092, 0.09717032313346863, 0.16476070880889893, -0.32493525743484497, -0.007655047345906496, 0.005300780292600393, 0.04437822848558426, 0.06352776288986206, -0.008522371761500835, 0.061271604150533676, 0.08228977769613266, -0.009076799266040325, 0.10172789543867111, -0.06801237910985947, -0.21283355355262756, 0.054335132241249084, -0.08067572861909866, -0.0333535335958004, 0.3191746771335602, 0.04682572931051254, 0.02360723167657852, 0.054427534341812134, -0.08046166598796844, -0.07901892811059952, 0.026334170252084732, 0.022529443725943565, 0.026581525802612305, 0.03711380437016487, 0.013700179755687714, -0.08041804283857346, -0.13757115602493286, -0.04820733517408371, -0.18146909773349762, 0.040944818407297134, 0.007398008834570646, 0.08285023272037506, -0.17169323563575745, 0.06348246335983276, 0.07256297022104263, -0.11446681618690491, 0.05684094876050949, -0.027974922209978104, 0.013778533786535263, 0.0746362954378128, 0.015732087194919586, -0.11084010452032089, 0.09974196553230286, 0.11349863559007645, 0.04449092969298363, 0.008059446699917316, -0.0506041944026947, 0.11958318203687668, -0.016240984201431274, 0.043401818722486496, -0.07434815913438797, -0.03622591495513916, 0.08228257298469543, -0.02347179502248764, 0.05613645166158676, -0.0647369995713234, -0.16315163671970367, -0.033743903040885925, 0.03222309425473213, 0.06941360980272293, 0.10372655093669891, 0.06947655975818634, -0.08317145705223083, -0.01760687120258808, 0.0332525409758091, -0.10562817752361298, -0.015353652648627758, -0.0007319807191379368, -0.0454619824886322, 0.03449919819831848, 0.07367724925279617, 0.012780931778252125, -0.05336172506213188, -0.001130389398895204, -0.09165675193071365, -0.016965657472610474, -0.024025242775678635, -0.06821189075708389, 0.08629965037107468, -0.11072566360235214, 0.016763076186180115, -0.14932221174240112, -0.14681550860404968, 0.02054726891219616, 0.0382746085524559, -0.017845654860138893, -0.0683470070362091, -0.013380493968725204, -0.03514667972922325, 0.05062790587544441, -0.06573696434497833, 0.022239387035369873, -0.08340884000062943, 0.075764961540699, -0.0678580105304718, 0.07055516541004181, -0.1896325945854187, 0.03249569609761238, -0.0768364816904068, -0.0037970843259245157, -0.011415568180382252, 0.030667588114738464, -0.06150852143764496, 0.14487676322460175, -0.04964423552155495, 0.01146297249943018, -0.03066875785589218, 0.02771005965769291, -0.012086131609976292, 0.17346066236495972, -0.2535839378833771, -0.0755978673696518, 0.15152327716350555, -0.09432465583086014, -0.18504001200199127, 0.10089553892612457, 0.02075662463903427, 0.028362290933728218, 0.05206815153360367, 0.22091932594776154, -0.008200028911232948, -0.06123887374997139, 0.03575322777032852, 0.10465630888938904, -0.07183866947889328, -0.1702083796262741, 0.09891711175441742, 0.0005453104968182743, -0.09011824429035187, 0.02759239450097084, 0.026249799877405167, 0.0781739130616188, -0.021840905770659447, -0.06998439878225327, -0.02488120272755623, -0.0374118946492672, 0.007126347627490759, -0.008174316957592964, 0.07102102786302567, -0.04651465639472008, -0.03106273151934147, 0.02390226535499096, 0.05151759833097458, 0.008513214997947216, 0.05629420652985573, -0.07897471636533737, 0.06552938371896744, 0.017171986401081085, 0.042898327112197876, -0.12059272080659866, 0.0057512749917805195, -0.01781022921204567, 0.08000218123197556, 0.06311783194541931, 0.08795043081045151, 0.031156694516539574, -0.028826134279370308, -0.006350774317979813, -0.003495576325803995, 0.08123572170734406, 0.020843584090471268, -0.028710538521409035, -0.19818399846553802, 0.051698219031095505, -0.050468746572732925, 0.06416255235671997, -0.08321432769298553, 0.03595021739602089, 0.03858668729662895, 0.06049221381545067, 0.029142111539840698, 0.04060390591621399, 0.001914511900395155, -0.02000422775745392, -0.079532191157341, -0.005877066403627396, 0.09066319465637207, 0.023740284144878387, -0.13241331279277802, 0.19003602862358093, -0.11153152585029602, 0.23563453555107117, 0.1686878353357315, -0.1209537535905838, 0.029825955629348755, 0.020915966480970383, -0.022657418623566628, -0.00964526366442442, 0.056800294667482376, -0.025219794362783432, 0.007943660020828247, -0.0014560158597305417, 0.16005994379520416, -0.06504371017217636, -0.027805237099528313, -0.009295917116105556, -0.05905330926179886, -0.04119693860411644, 0.10700920969247818, 0.16394372284412384, -0.1236327514052391, 0.15907582640647888, 0.22475320100784302, -0.043071191757917404, 0.19790643453598022, -0.05701182037591934, -0.02695513516664505, 0.020389240235090256, -0.03744081035256386, 0.000899852137081325, 0.06033395230770111, -0.09835673123598099, 0.013842573389410973, 0.05902515724301338, -0.02119169943034649, 0.048060208559036255, -0.15980492532253265, -0.0918288379907608, -0.00935361348092556, -0.04717956855893135, -0.01390862837433815, 0.03157775476574898, -0.02715407684445381, 0.14673320949077606, -0.03954317420721054, -0.10019499808549881, 0.08244002610445023, -0.015441728755831718, -0.12470635771751404, 0.16259579360485077, -0.16474047303199768, -0.25635266304016113, -0.1356181502342224, -0.02461082674562931, -0.052305396646261215, -0.00020103408314753324, 0.09778666496276855, -0.06200060248374939, -0.014142760075628757, -0.06540685147047043, -0.03408364951610565, -0.046044863760471344, 0.023623595014214516, 0.02277708612382412, 0.039564475417137146, 0.001157990307547152, -0.10551983118057251, -0.024442385882139206, -0.010258716531097889, -0.04507378116250038, 0.11193190515041351, -0.06881430745124817, 0.10994260758161545, 0.14882035553455353, 0.033950384706258774, 0.023906536400318146, -0.046401847153902054, 0.10427232831716537, -0.022867893800139427, 0.0040781544521451, 0.18219023942947388, -0.018524322658777237, 0.052311480045318604, 0.14584027230739594, 0.03051489032804966, -0.04554470628499985, 0.009385274723172188, -0.024936681613326073, -0.07200810313224792, -0.31481102108955383, -0.04836142063140869, -0.07257527112960815, 0.16458947956562042, 0.02886936441063881, 0.09903382509946823, 0.08679594844579697, 0.06507431715726852, 0.007894710637629032, 0.0153560945764184, 0.01771417073905468, 0.02778281457722187, 0.1541517972946167, -0.008044624701142311, 0.10821721702814102, -0.11338603496551514, -0.028667999431490898, 0.1485389620065689, 0.09280911087989807, 0.0961284190416336, 0.074034184217453, 0.11656411737203598, 0.06429991871118546, 0.10525883734226227, 0.04993325099349022, 0.07298074662685394, 0.0461023785173893, -0.0023211329244077206, -0.05727986991405487, -0.06206440180540085, -0.011961895041167736, 0.05942041799426079, -0.05200762301683426, -0.08057969063520432, -0.031553931534290314, 0.04586097598075867, 0.057405296713113785, 0.16023455560207367, 0.036212846636772156, -0.2273513227701187, 0.0479610376060009, 0.06894839555025101, 0.01736440882086754, -0.003982673864811659, 0.06306015700101852, 0.07106085866689682, -0.06360097229480743, 0.09525376558303833, -0.006473188288509846, 0.09349279850721359, -0.028514688834547997, 0.036199383437633514, -0.010056168772280216, -0.041951023042201996, 0.0323636494576931, 0.08187707513570786, -0.34284794330596924, 0.19259598851203918, 0.007633945904672146, -0.05856742709875107, -0.04171157255768776, -0.008704560808837414, 0.007251062896102667, 0.13532297313213348, 0.16092745959758759, 0.005104585085064173, -0.005985540803521872, -0.009142395108938217, -0.0867508128285408, 0.056203246116638184, 0.0037549384869635105, -0.03291907161474228, -0.04129551723599434, -0.03830403462052345, -0.009064468555152416, 0.02632981538772583, 0.07356909662485123, -0.07363377511501312, -0.12354770302772522, 0.04729954153299332, 0.06483432650566101, -0.0123971588909626, -0.04220539703965187, -0.08373183012008667, -0.0769972950220108, 0.17260248959064484, -0.09152563661336899, -0.037778180092573166, -0.1056896299123764, -0.06838055700063705, 0.008966866880655289, -0.07642970234155655, 0.02417956106364727, -0.04960939288139343, -0.029750969260931015, -0.05477729067206383, -0.21886321902275085, 0.15529027581214905, -0.09047606587409973, -0.046999529004096985, -0.0628952831029892, 0.08433271199464798, -0.0806339904665947, 0.07513661682605743, -0.015324770472943783, -0.008770585991442204, -0.03146810829639435, -0.08214997500181198, 0.006998209282755852, 0.06591691821813583, 0.018438123166561127, -0.036191150546073914, -0.11373257637023926, -0.10495621711015701, -0.0020336464513093233, -0.08058224618434906, 0.2592455744743347, 0.25028887391090393, -0.10979413241147995, 0.1471598744392395, 0.1395430713891983, -0.108824722468853, -0.3252907991409302, -0.09350401908159256, -0.07359941303730011, -0.05312209576368332, 0.05788503214716911, -0.20828385651111603, 0.024141445755958557, 0.09360989928245544, -0.06483732163906097, 0.09725089371204376, -0.304008811712265, -0.1098717600107193, 0.12873941659927368, 0.07096684724092484, 0.24299085140228271, -0.17738083004951477, -0.08508877456188202, -0.06716690957546234, -0.12385478615760803, 0.23034001886844635, -0.1306476891040802, 0.07572140544652939, -0.013834432698786259, -0.056464072316884995, 0.0004464967059902847, -0.030413692817091942, 0.0886446088552475, 0.004184769932180643, 0.03901403024792671, -0.0830148383975029, -0.0010762207675725222, 0.056504394859075546, -0.01804180257022381, 0.061401404440402985, -0.1713755577802658, 0.017714617773890495, -0.10156924277544022, 0.014533070847392082, -0.04999915510416031, 0.06534034013748169, 0.019740227609872818, -0.05427081510424614, -0.03354977071285248, -0.017857611179351807, -0.004197599366307259, -0.033080097287893295, 0.22240927815437317, 0.00764106772840023, 0.05407646670937538, 0.19364376366138458, 0.10622511059045792, -0.10797526687383652, 0.031003929674625397, -0.09009066224098206, -0.06240112707018852, 0.0670822486281395, -0.17728209495544434, 0.031137660145759583, 0.11525999754667282, -0.020266307517886162, 0.12496481090784073, 0.04766571521759033, -0.04215771332383156, -0.01511073112487793, 0.17394772171974182, -0.2057216465473175, -0.04292626306414604, -0.05904417484998703, -0.01113987248390913, 0.04379764944314957, 0.04032366722822189, 0.12503454089164734, -0.018739983439445496, -0.003552537877112627, 0.03338240087032318, 0.03582237660884857, -0.033274438232183456, 0.09288586676120758, 0.08358300477266312, 0.001908796257339418, -0.11121883988380432, 0.1754385232925415, 0.02116481214761734, -0.10250499844551086, 0.03731027990579605, 0.16710065305233002, -0.08301636576652527, -0.09949742257595062, -0.013138912618160248, 0.1259729564189911, -0.14262104034423828, -0.0795474722981453, -0.10582977533340454, -0.09385070204734802, 0.05258014053106308, 0.1348024159669876, 0.03432173654437065, 0.07369492202997208, 0.000437107402831316, -0.06507804989814758, 0.058844104409217834, 0.061275873333215714, -0.011053821071982384, 0.009839757345616817, -0.15153768658638, -0.005205621477216482, 0.01636357232928276, 0.13710929453372955, -0.060612753033638, 0.003388496581465006, -0.10872212797403336, 0.017085978761315346, -0.11382564902305603, 0.011935505084693432, -0.043812498450279236, -0.021122930571436882, -0.019273988902568817, -0.05691530555486679, -0.05975179001688957, -0.021148502826690674, -0.1112915650010109, -0.024301987141370773, -0.019238827750086784, 0.06457983702421188, -0.11180434376001358, -0.03134763613343239, 0.051459889858961105, -0.014504242688417435, 0.11319223791360855, 0.0433637872338295, -0.05024677515029907, 0.10617287456989288, -0.1266777664422989, -0.05713927373290062, 0.11432107537984848, 0.041824787855148315, 0.029955117031931877, 0.09472556412220001, -0.0181894488632679, 0.06313560158014297, 0.0071786921471357346, 0.016538947820663452, 0.006043317727744579, -0.12402275949716568, -0.04031728208065033, -0.040960896760225296, -0.08918920159339905, -0.060912925750017166, -0.00710016954690218, 0.08666945993900299, 0.04910125210881233, 0.12573502957820892, -0.04983226954936981, 0.026473257690668106, -0.1321985423564911, 0.037720054388046265, 0.016311494633555412, -0.1184474527835846, -0.11972788721323013, -0.03166726976633072, 0.007977457717061043, -0.05701420456171036, 0.12821005284786224, 0.050242532044649124, -0.14308631420135498, 0.041558559983968735, 0.059944454580545425, 0.021531570702791214, -0.007079054601490498, 0.1875905692577362, 0.04329167678952217, 0.0038867529947310686, -0.08798506110906601, 0.03646761551499367, 0.05510617792606354, 0.058236729353666306, 0.13324137032032013, 0.054331641644239426, -0.006212727632373571, 0.09798264503479004, 0.09244928508996964, -0.007903013378381729, -0.014247952029109001, -0.013898381032049656, -0.03180215135216713, 0.10972648859024048, -0.005524622276425362, 0.12229138612747192, 0.19785739481449127, 0.0012715007178485394, 0.01610809937119484, -0.007562443148344755, -0.035874105989933014, -0.17466560006141663, -0.19907139241695404, -0.07352901250123978, -0.1026936024427414, -0.007524875923991203, -0.07174704968929291, 0.046863384544849396, 0.0669078528881073, 0.08242210000753403, -0.06131928041577339, -0.001390358665958047, 0.04854845255613327, -0.08853480219841003, 0.05270959436893463, 0.012421011924743652, -0.024413274601101875, -0.07200591266155243, -0.015141976065933704, 0.016637159511446953, 0.06782606989145279, -0.03741065040230751, 0.05504309758543968, 0.023093273863196373, 0.08247540146112442, -0.09456887096166611, -0.0900290384888649, -0.04128003865480423, 0.020517446100711823, 0.01714319735765457, 0.11548693478107452, 0.03445985168218613, -0.00014393249875865877, 0.08822537958621979, 0.21260122954845428, -0.05994614213705063, -0.056398648768663406, -0.05099506676197052, 0.11698053032159805, -0.03592541813850403, 0.056382641196250916, -0.007520720362663269, -0.023490313440561295, -0.07475602626800537, 0.2392057180404663, 0.3254086673259735, -0.1158108115196228, 0.014391889795660973, -0.04222226142883301, 0.029324963688850403, 0.019333917647600174, 0.1267896592617035, 0.07437723875045776, 0.1721350997686386, -0.05848736688494682, -0.002101886086165905, -0.06506510823965073, 0.04282524064183235, -0.07516313344240189, 0.09727810323238373, 0.026030540466308594, -0.04820329323410988, -0.017366964370012283, 0.06739956140518188, -0.14177511632442474, 0.008176865056157112, -0.10936858505010605, -0.1097487360239029, -0.08293422311544418, -0.03247600048780441, 0.14922834932804108, 0.042250655591487885, 0.019836390390992165, -0.03027566708624363, -0.013604582287371159, 0.01584160327911377, 0.005778207443654537, -0.25997394323349, -0.013051227666437626, 0.0580398365855217, -0.11243930459022522, 0.11976819485425949, -0.023338960483670235, 0.060120806097984314, 0.05655936524271965, 0.0590306781232357, -0.10052844882011414, 0.09344396740198135, -0.014501874335110188, 0.010293212719261646, -0.0032770666293799877, -0.06971589475870132, 0.006226545665413141, -0.022136498242616653, 0.06801255792379379, 0.06674052029848099, 0.00029973970958963037, -0.07298428565263748, -0.05548897758126259, -0.036201369017362595, 0.017468135803937912, -0.07465659081935883, 0.0620352067053318, 0.05030962452292442, -0.026563676074147224, -0.007777894381433725, -0.0984405130147934, -0.059651508927345276, 0.030351130291819572, -0.16515614092350006, -0.01893041841685772, -0.04545692354440689, -0.04380275309085846, 0.001457207021303475, 0.042838577181100845, -0.16869086027145386, -0.0009500002488493919, -0.1502750962972641, -0.004844776354730129, -0.1313321888446808, 0.02654571831226349, 0.14431771636009216, 0.014896722510457039, -0.02201501652598381, -0.04827301204204559, 0.047655053436756134, 0.03689108416438103, -0.12056935578584671, -0.09238439053297043 ]
null
null
transformers
# Italian T5 Base 🇮🇹 The [IT5](https://huggingface.co/models?search=it5) model family represents the first effort in pretraining large-scale sequence-to-sequence transformer models for the Italian language, following the approach adopted by the original [T5 model](https://github.com/google-research/text-to-text-transfer-transformer). This model is released as part of the project ["IT5: Large-Scale Text-to-Text Pretraining for Italian Language Understanding and Generation"](https://arxiv.org/abs/2203.03759), by [Gabriele Sarti](https://gsarti.com/) and [Malvina Nissim](https://malvinanissim.github.io/) with the support of [Huggingface](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) and with TPU usage sponsored by Google's [TPU Research Cloud](https://sites.research.google/trc/). All the training was conducted on a single TPU3v8-VM machine on Google Cloud. Refer to the Tensorboard tab of the repository for an overview of the training process. *TThe inference widget is deactivated because the model needs a task-specific seq2seq fine-tuning on a downstream task to be useful in practice. The models in the [`it5`](https://huggingface.co/it5) organization provide some examples of this model fine-tuned on various downstream task.* ## Model variants This repository contains the checkpoints for the `base` version of the model. The model was trained for one epoch (1.05M steps) on the [Thoroughly Cleaned Italian mC4 Corpus](https://huggingface.co/datasets/gsarti/clean_mc4_it) (~41B words, ~275GB) using 🤗 Datasets and the `google/t5-v1_1-base` improved configuration. Another version of this model trained on the [OSCAR corpus](https://oscar-corpus.com/) is also available under the name [`gsarti/it5-base-oscar`](https://huggingface.co/gsartiit5-base-oscar). The training procedure is made available [on Github](https://github.com/gsarti/t5-flax-gcp). The following table summarizes the parameters for all available models | |`it5-small` |`it5-base` (this one) |`it5-large` |`it5-base-oscar` | |-----------------------|-----------------------|----------------------|-----------------------|----------------------------------| |`dataset` |`gsarti/clean_mc4_it` |`gsarti/clean_mc4_it` |`gsarti/clean_mc4_it` |`oscar/unshuffled_deduplicated_it`| |`architecture` |`google/t5-v1_1-small` |`google/t5-v1_1-base` |`google/t5-v1_1-large` |`t5-base` | |`learning rate` | 5e-3 | 5e-3 | 5e-3 | 1e-2 | |`steps` | 1'050'000 | 1'050'000 | 2'100'000 | 258'000 | |`training time` | 36 hours | 101 hours | 370 hours | 98 hours | |`ff projection` |`gated-gelu` |`gated-gelu` |`gated-gelu` |`relu` | |`tie embeds` |`false` |`false` |`false` |`true` | |`optimizer` | adafactor | adafactor | adafactor | adafactor | |`max seq. length` | 512 | 512 | 512 | 512 | |`per-device batch size`| 16 | 16 | 8 | 16 | |`tot. batch size` | 128 | 128 | 64 | 128 | |`weigth decay` | 1e-3 | 1e-3 | 1e-2 | 1e-3 | |`validation split size`| 15K examples | 15K examples | 15K examples | 15K examples | The high training time of `it5-base-oscar` was due to [a bug](https://github.com/huggingface/transformers/pull/13012) in the training script. For a list of individual model parameters, refer to the `config.json` file in the respective repositories. ## Using the models ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("gsarti/it5-base") model = AutoModelForSeq2SeqLM.from_pretrained("gsarti/it5-base") ``` *Note: You will need to fine-tune the model on your downstream seq2seq task to use it. See an example [here](https://huggingface.co/it5/it5-base-news-summarization).* Flax and Tensorflow versions of the model are also available: ```python from transformers import FlaxT5ForConditionalGeneration, TFT5ForConditionalGeneration model_flax = FlaxT5ForConditionalGeneration.from_pretrained("gsarti/it5-base") model_tf = TFT5ForConditionalGeneration.from_pretrained("gsarti/it5-base") ``` ## Limitations Due to the nature of the web-scraped corpus on which IT5 models were trained, it is likely that their usage could reproduce and amplify pre-existing biases in the data, resulting in potentially harmful content such as racial or gender stereotypes and conspiracist views. For this reason, the study of such biases is explicitly encouraged, and model usage should ideally be restricted to research-oriented and non-user-facing endeavors. ## Model curators For problems or updates on this model, please contact [[email protected]](mailto:[email protected]). ## Citation Information ```bibtex @article{sarti-nissim-2022-it5, title={IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
{"language": ["it"], "license": "apache-2.0", "tags": ["seq2seq", "lm-head"], "datasets": ["gsarti/clean_mc4_it"], "inference": false, "thumbnail": "https://gsarti.com/publication/it5/featured.png"}
text2text-generation
gsarti/it5-base
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "seq2seq", "lm-head", "it", "dataset:gsarti/clean_mc4_it", "arxiv:2203.03759", "license:apache-2.0", "autotrain_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2203.03759" ]
[ "it" ]
TAGS #transformers #pytorch #tf #jax #tensorboard #t5 #text2text-generation #seq2seq #lm-head #it #dataset-gsarti/clean_mc4_it #arxiv-2203.03759 #license-apache-2.0 #autotrain_compatible #has_space #text-generation-inference #region-us
Italian T5 Base 🇮🇹 ================== The IT5 model family represents the first effort in pretraining large-scale sequence-to-sequence transformer models for the Italian language, following the approach adopted by the original T5 model. This model is released as part of the project "IT5: Large-Scale Text-to-Text Pretraining for Italian Language Understanding and Generation", by Gabriele Sarti and Malvina Nissim with the support of Huggingface and with TPU usage sponsored by Google's TPU Research Cloud. All the training was conducted on a single TPU3v8-VM machine on Google Cloud. Refer to the Tensorboard tab of the repository for an overview of the training process. *TThe inference widget is deactivated because the model needs a task-specific seq2seq fine-tuning on a downstream task to be useful in practice. The models in the 'it5' organization provide some examples of this model fine-tuned on various downstream task.* Model variants -------------- This repository contains the checkpoints for the 'base' version of the model. The model was trained for one epoch (1.05M steps) on the Thoroughly Cleaned Italian mC4 Corpus (~41B words, ~275GB) using Datasets and the 'google/t5-v1\_1-base' improved configuration. Another version of this model trained on the OSCAR corpus is also available under the name 'gsarti/it5-base-oscar'. The training procedure is made available on Github. The following table summarizes the parameters for all available models The high training time of 'it5-base-oscar' was due to a bug in the training script. For a list of individual model parameters, refer to the 'URL' file in the respective repositories. Using the models ---------------- *Note: You will need to fine-tune the model on your downstream seq2seq task to use it. See an example here.* Flax and Tensorflow versions of the model are also available: Limitations ----------- Due to the nature of the web-scraped corpus on which IT5 models were trained, it is likely that their usage could reproduce and amplify pre-existing biases in the data, resulting in potentially harmful content such as racial or gender stereotypes and conspiracist views. For this reason, the study of such biases is explicitly encouraged, and model usage should ideally be restricted to research-oriented and non-user-facing endeavors. Model curators -------------- For problems or updates on this model, please contact gabriele.sarti996@URL.
[]
[ "TAGS\n#transformers #pytorch #tf #jax #tensorboard #t5 #text2text-generation #seq2seq #lm-head #it #dataset-gsarti/clean_mc4_it #arxiv-2203.03759 #license-apache-2.0 #autotrain_compatible #has_space #text-generation-inference #region-us \n" ]
[ 98 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #tensorboard #t5 #text2text-generation #seq2seq #lm-head #it #dataset-gsarti/clean_mc4_it #arxiv-2203.03759 #license-apache-2.0 #autotrain_compatible #has_space #text-generation-inference #region-us \n" ]
[ -0.06301718950271606, 0.12420415133237839, -0.004289997275918722, 0.08643200993537903, 0.05493916571140289, 0.01894264854490757, 0.11255458742380142, 0.16731394827365875, -0.0227609034627676, -0.00012142634659539908, 0.1530373990535736, 0.17066699266433716, 0.010106257162988186, 0.08637894690036774, -0.030578738078475, -0.14545691013336182, 0.06710594892501831, 0.015449161641299725, -0.08848430961370468, 0.09591014683246613, 0.0897805243730545, -0.043727267533540726, 0.08516696095466614, -0.061204176396131516, -0.10102353245019913, 0.020799221470952034, 0.045656077563762665, -0.08603991568088531, 0.11528900265693665, 0.0671304240822792, 0.033247821033000946, 0.09517141431570053, -0.005716758780181408, -0.061812397092580795, 0.04108118638396263, 0.06140854209661484, -0.09908027201890945, 0.10438486933708191, 0.04210532829165459, 0.005386230535805225, 0.08276648819446564, 0.0030650380067527294, -0.038411594927310944, 0.03820548579096794, -0.08992689102888107, -0.1087762713432312, -0.08414056152105331, 0.07900498062372208, -0.016110803931951523, 0.0853298157453537, 0.018986528739333153, 0.13759973645210266, -0.0815320611000061, 0.10374337434768677, 0.20959360897541046, -0.31817305088043213, -0.011735589243471622, 0.088761106133461, 0.017860308289527893, 0.06293391436338425, -0.017001155763864517, 0.04752836376428604, 0.03296821191906929, 0.010189983993768692, 0.08041324466466904, -0.05147264897823334, -0.14693035185337067, 0.10204171389341354, -0.09995812922716141, -0.05429735407233238, 0.2981199026107788, 0.023342950269579887, 0.04832509905099869, 0.017629100009799004, -0.12817677855491638, -0.05949090048670769, 0.023517146706581116, 0.013017868623137474, 0.0004348713846411556, 0.05960744991898537, -0.01920008286833763, -0.11971662193536758, -0.1353645771741867, -0.07179208844900131, -0.20151664316654205, 0.0664600357413292, -0.001697584637440741, 0.054000124335289, -0.10632425546646118, 0.08618923276662827, 0.031703490763902664, -0.1192060336470604, 0.02748277597129345, -0.01623453199863434, 0.019695308059453964, 0.0626809149980545, -0.01563313603401184, -0.1494210809469223, 0.12127426266670227, 0.12706412374973297, 0.03485233336687088, -0.000010082389053422958, -0.0167390163987875, 0.09415719658136368, -0.030943386256694794, 0.040892552584409714, -0.11159725487232208, -0.024952299892902374, 0.08533424139022827, -0.014421484433114529, 0.0808248296380043, -0.07310229539871216, -0.15198534727096558, -0.02692648209631443, 0.04229142516851425, 0.08168051391839981, 0.10804282873868942, 0.08454558998346329, -0.04254012927412987, -0.016691919416189194, 0.07450882345438004, -0.11086530983448029, 0.0076016709208488464, 0.0183318629860878, -0.014582112431526184, -0.025296662002801895, 0.0798005610704422, 0.002888319781050086, -0.05249510705471039, -0.023785674944519997, -0.09832440316677094, -0.044229887425899506, -0.03176501765847206, -0.09865877777338028, 0.07066674530506134, -0.06810986995697021, -0.017210030928254128, -0.16000987589359283, -0.1794620156288147, 0.029966004192829132, 0.043320201337337494, -0.0111229931935668, -0.06955276429653168, 0.04080396518111229, -0.07252302765846252, 0.08026207238435745, -0.054952993988990784, 0.06530994176864624, -0.07517543435096741, 0.07648021727800369, -0.09410465508699417, 0.07274539023637772, -0.18537668883800507, 0.039429280906915665, -0.09562715142965317, 0.007478585932403803, -0.03844263404607773, -0.015173784457147121, -0.07110998779535294, 0.10630373656749725, -0.07882998883724213, 0.029558980837464333, -0.07623060792684555, 0.013526270166039467, 0.024011826142668724, 0.12927484512329102, -0.22264426946640015, -0.06288719177246094, 0.13614444434642792, -0.09823189675807953, -0.1593715399503708, 0.10967596620321274, 0.04733596742153168, 0.044668685644865036, 0.03722885251045227, 0.21292760968208313, 0.010366656817495823, -0.07065357267856598, -0.004030369222164154, 0.11701362580060959, -0.06808256357908249, -0.13314132392406464, 0.0831516832113266, -0.05344743654131889, -0.035080716013908386, 0.03520515561103821, 0.013631102629005909, 0.09529436379671097, 0.0007535949698649347, -0.08382179588079453, -0.08157429844141006, -0.05039504915475845, 0.047308530658483505, -0.005884016398340464, 0.05589345842599869, -0.04199041426181793, -0.06504405289888382, 0.011798305436968803, 0.09541545063257217, -0.013511964119970798, 0.05614800378680229, -0.0662975087761879, 0.12070593237876892, -0.027695244178175926, 0.05530206859111786, -0.12487601488828659, -0.06473160535097122, -0.026404792442917824, 0.0165859442204237, 0.03610559552907944, 0.067831851541996, 0.05938393995165825, -0.028466299176216125, -0.009519738145172596, -0.024542298167943954, 0.050682179629802704, 0.041801054030656815, -0.052989594638347626, -0.17439331114292145, 0.038866929709911346, -0.039017029106616974, 0.04755719378590584, -0.07753948867321014, 0.0514255054295063, 0.07937739044427872, 0.08102456480264664, 0.023454241454601288, 0.04690733179450035, 0.014890611171722412, -0.02828693576157093, -0.07829595357179642, -0.025946490466594696, 0.07325819134712219, 0.022770432755351067, -0.10489325225353241, 0.1696704924106598, -0.1354522854089737, 0.2718140184879303, 0.1905185878276825, -0.0623655691742897, 0.043556373566389084, 0.07112113386392593, -0.03497510030865669, -0.027721578255295753, 0.02674512378871441, -0.06623953580856323, -0.06127815693616867, 0.004314406309276819, 0.11275268346071243, -0.0646681860089302, -0.01847226172685623, -0.007260809186846018, -0.02901834063231945, -0.049908045679330826, 0.09495086222887039, 0.16017159819602966, -0.14789235591888428, 0.17067943513393402, 0.31300732493400574, -0.06641483306884766, 0.182651087641716, -0.04378148168325424, -0.047215502709150314, -0.013361090794205666, -0.017454849556088448, -0.025807345286011696, 0.07540483772754669, -0.10933539271354675, 0.00641083437949419, 0.07319217920303345, 0.01584339700639248, 0.06355958431959152, -0.13077329099178314, -0.06015784665942192, -0.005739456508308649, -0.05593782663345337, 0.0059632412157952785, 0.0786934345960617, -0.0367826409637928, 0.125912606716156, -0.042471762746572495, -0.09092693030834198, 0.09077408909797668, 0.023084044456481934, -0.08259456604719162, 0.14985798299312592, -0.15848694741725922, -0.2461271435022354, -0.08736780285835266, -0.010417594574391842, -0.08333874493837357, -0.025507893413305283, 0.09976479411125183, -0.06014595925807953, -0.03557945415377617, -0.09693578630685806, -0.015812121331691742, 0.0013430118560791016, 0.03512047976255417, -0.034772422164678574, 0.020769909024238586, 0.011734004132449627, -0.139532208442688, -0.021566057577729225, 0.022857990115880966, -0.043749649077653885, 0.09245181828737259, -0.04384879395365715, 0.13350050151348114, 0.1642313152551651, 0.04059098660945892, 0.025976061820983887, -0.02239498868584633, 0.13740621507167816, -0.031218821182847023, 0.06220686808228493, 0.17327390611171722, 0.019014792516827583, 0.0485931895673275, 0.13814139366149902, 0.016451846808195114, -0.008636548183858395, 0.00969546940177679, 0.006599783897399902, -0.07212561368942261, -0.23192822933197021, -0.0771196186542511, -0.09541288763284683, 0.11272171139717102, 0.02048712596297264, 0.12302837520837784, 0.09567341208457947, 0.03449755534529686, -0.001692637917585671, -0.015448259189724922, 0.003199582686647773, 0.021499600261449814, 0.12429200857877731, -0.045496195554733276, 0.12316536158323288, -0.10568036884069443, -0.017598770558834076, 0.15289777517318726, 0.10973280668258667, 0.09009187668561935, 0.03399788960814476, 0.1780819594860077, 0.06126787140965462, 0.16397403180599213, 0.05835598707199097, 0.07990462332963943, 0.00017748656682670116, -0.021225247532129288, -0.037129852920770645, -0.06339621543884277, 0.007819022983312607, 0.03494400903582573, -0.00033232482383027673, -0.07785064727067947, -0.004892692901194096, -0.016940174624323845, 0.10307217389345169, 0.1301429569721222, 0.06683820486068726, -0.19500850141048431, 0.002320357132703066, 0.05096094310283661, 0.024486558511853218, -0.006243807263672352, 0.03777135908603668, 0.08113009482622147, -0.026294603943824768, 0.002853075973689556, 0.0015370615292340517, 0.08037098497152328, 0.015489359386265278, 0.02880585379898548, -0.03427482768893242, -0.02813449129462242, 0.007004415150731802, 0.07940317690372467, -0.3069099187850952, 0.19643935561180115, 0.023448046296834946, -0.04096042737364769, -0.05526582524180412, -0.010956965386867523, 0.048972759395837784, 0.13674098253250122, 0.10143911838531494, 0.017987431958317757, -0.10727452486753464, -0.03388100117444992, -0.1132005825638771, 0.046754200011491776, 0.0031790679786354303, -0.013193404302001, -0.028243204578757286, -0.049106575548648834, -0.0029266434721648693, 0.05890175327658653, 0.17822913825511932, -0.08941260725259781, -0.1171807274222374, 0.08595961332321167, 0.09594068676233292, -0.045634567737579346, -0.0515877865254879, -0.07692132145166397, -0.0881727933883667, 0.20276840031147003, -0.0660003051161766, -0.04963919147849083, -0.1174229234457016, -0.06224469095468521, 0.06228969618678093, -0.09014526009559631, 0.02262740023434162, -0.046293456107378006, -0.0030581229366362095, -0.03545347973704338, -0.19936221837997437, 0.1463354229927063, -0.07270719856023788, -0.06163063645362854, -0.034644462168216705, 0.07327282428741455, -0.08740902692079544, 0.06686925888061523, -0.002938190009444952, 0.013307771645486355, -0.0736725926399231, -0.10401332378387451, 0.03350868076086044, 0.026660632342100143, 0.013605435378849506, -0.02605433017015457, -0.09531410783529282, -0.047774430364370346, 0.054826769977808, -0.06693945080041885, 0.2587908208370209, 0.20660695433616638, -0.09668470174074173, 0.14269709587097168, 0.14790253341197968, -0.06885536760091782, -0.3334655463695526, -0.12001246213912964, -0.13633880019187927, -0.02542593888938427, 0.017325682565569878, -0.17454491555690765, 0.04016488045454025, 0.10598600655794144, -0.07709375023841858, 0.08765857666730881, -0.30045878887176514, -0.1072753295302391, 0.17703686654567719, 0.03160537779331207, 0.223568856716156, -0.1910545527935028, -0.07186254858970642, -0.04889165982604027, -0.1175432801246643, 0.19568921625614166, -0.25188249349594116, 0.08593004196882248, -0.015381614677608013, -0.0024265204556286335, 0.00025402914616279304, -0.0585176907479763, 0.10924085974693298, -0.021637117490172386, 0.04115216061472893, -0.11324577033519745, -0.015175878070294857, 0.15290524065494537, -0.030716517940163612, 0.08989942073822021, -0.16833417117595673, 0.04402874410152435, -0.07903575152158737, 0.026513267308473587, -0.08003604412078857, 0.07339543104171753, -0.007704411167651415, -0.06307398527860641, -0.049707189202308655, 0.00011828599963337183, 0.0009097050642594695, -0.026036737486720085, 0.2341139018535614, 0.02484743669629097, 0.06097069010138512, 0.19911789894104004, 0.00311345630325377, -0.16644281148910522, -0.0073484135791659355, -0.038657303899526596, -0.0696018636226654, 0.07075344771146774, -0.17617036402225494, 0.06385979801416397, 0.06991399824619293, -0.01024504005908966, 0.0924699530005455, 0.059617165476083755, -0.04328080639243126, -0.018612293526530266, 0.13289044797420502, -0.2155088186264038, -0.03746091574430466, -0.03599349036812782, -0.02788805402815342, 0.00008383845852222294, 0.05884113162755966, 0.16497933864593506, 0.009559132158756256, 0.004972816910594702, 0.03574090451002121, 0.04601059854030609, -0.04804288223385811, 0.1128174364566803, 0.0997939333319664, -0.0011596365366131067, -0.09832242131233215, 0.11286130547523499, 0.03514821082353592, -0.09832334518432617, 0.029651030898094177, 0.12220676243305206, -0.10211044549942017, -0.14474070072174072, -0.010152260772883892, 0.06656624376773834, -0.07808848470449448, -0.06727969646453857, -0.10994294285774231, -0.05584392696619034, 0.05614330247044563, 0.10591571778059006, 0.0638553723692894, 0.08232743293046951, 0.001663544331677258, -0.05722241848707199, 0.03956730291247368, 0.07442718744277954, -0.045201465487480164, 0.027684388682246208, -0.12487418949604034, 0.03070063702762127, -0.0024375668726861477, 0.10694675147533417, -0.04967093467712402, 0.013939340598881245, -0.13288255035877228, -0.01220338698476553, -0.10139966756105423, -0.03182056546211243, -0.05007227137684822, -0.034783512353897095, -0.006749006919562817, -0.05315582454204559, -0.05340322479605675, 0.008276907727122307, -0.09812354296445847, -0.05671072378754616, -0.005068234167993069, 0.06963708251714706, -0.123728908598423, -0.02693038061261177, 0.04683201387524605, -0.007430159021168947, 0.11845848709344864, 0.05276429280638695, -0.024121901020407677, 0.09193523973226547, -0.11656182259321213, -0.07184406369924545, 0.057948097586631775, 0.03239274397492409, 0.03848741576075554, 0.002486404264345765, -0.03367752954363823, 0.05933349207043648, -0.004187650512903929, 0.031805187463760376, 0.05298702418804169, -0.09341638535261154, 0.011043181642889977, -0.06822442263364792, -0.07531812787055969, -0.04957510530948639, -0.009481505490839481, 0.07027408480644226, 0.05223320052027702, 0.14185959100723267, -0.02721114084124565, -0.005273289978504181, -0.14662975072860718, 0.041250355541706085, -0.0007198902894742787, -0.1238168478012085, -0.08436565846204758, -0.007706623524427414, 0.004301135893911123, -0.07094909250736237, 0.13561852276325226, 0.04155249521136284, -0.14380605518817902, 0.04339374601840973, 0.07255403697490692, 0.030683590099215508, -0.0019734192173928022, 0.22291168570518494, 0.03660184144973755, 0.0006249590660445392, -0.03526908904314041, 0.03358149901032448, 0.03437427431344986, 0.06431364268064499, 0.12281776964664459, 0.061568815261125565, 0.07041772454977036, 0.08901460468769073, 0.05429791286587715, -0.0761297270655632, -0.08489427715539932, 0.002387448213994503, -0.04135487601161003, 0.11715435236692429, -0.025176508352160454, 0.0903242826461792, 0.21763385832309723, -0.02619977481663227, 0.008064004592597485, -0.023188725113868713, -0.03885290026664734, -0.1524999439716339, -0.23109649121761322, -0.08210135251283646, -0.10839106142520905, -0.030830441042780876, -0.06874804198741913, 0.00672210892662406, 0.06596653908491135, 0.044992394745349884, -0.01758541166782379, 0.034304291009902954, 0.04468081146478653, -0.07223934680223465, 0.0012188825057819486, -0.014879828318953514, -0.04743223637342453, -0.0715046375989914, -0.018575869500637054, -0.014301272109150887, 0.04506675899028778, -0.020427633076906204, 0.03440912067890167, 0.01624464802443981, 0.059167440980672836, -0.1105714961886406, -0.07320819050073624, -0.0643484964966774, 0.03189988434314728, -0.006212867796421051, 0.10095910727977753, 0.042199622839689255, -0.019266128540039062, 0.07978741079568863, 0.21930031478405, -0.05527065694332123, -0.09530942887067795, -0.0581209622323513, 0.056631285697221756, -0.00322463340125978, 0.030905088409781456, -0.009687640704214573, -0.045423030853271484, -0.054655950516462326, 0.22631587088108063, 0.3378046154975891, -0.11576700955629349, 0.045917388051748276, 0.0076938713900744915, 0.019794737920165062, 0.00607225252315402, 0.09436091035604477, 0.10817167162895203, 0.1784798502922058, -0.05134287476539612, -0.01715697906911373, -0.06091908738017082, 0.0007189532625488937, -0.12380783259868622, 0.10984200239181519, 0.008319390006363392, -0.057063084095716476, -0.0223989300429821, 0.043715719133615494, -0.09366252273321152, 0.012933583930134773, -0.12600481510162354, -0.14855453372001648, -0.08044411242008209, 0.001587162958458066, 0.14521361887454987, 0.0037532716523855925, 0.014093334786593914, -0.053350597620010376, 0.013229957781732082, 0.019998524338006973, -0.009088763035833836, -0.22469674050807953, -0.017472047358751297, 0.08354660123586655, -0.06520266830921173, 0.14855247735977173, -0.011202807538211346, 0.020828954875469208, 0.1095336303114891, 0.021625252440571785, -0.1332865208387375, 0.12112154811620712, 0.008812014013528824, -0.03726392984390259, -0.008257672190666199, -0.06839180737733841, -0.007270114030689001, 0.011098820716142654, 0.06880900263786316, 0.006819650065153837, 0.01665653847157955, 0.017127180472016335, -0.03529367595911026, -0.032565370202064514, 0.0017877230420708656, -0.0646304041147232, 0.08664502948522568, 0.050340887159109116, -0.029680028557777405, -0.01624343916773796, -0.09309801459312439, -0.026326153427362442, 0.006367783527821302, -0.13193173706531525, -0.05187958478927612, -0.0402558259665966, -0.00826981756836176, -0.014378057792782784, 0.020733175799250603, -0.16602574288845062, -0.05125396326184273, -0.07510118186473846, -0.0004550669982563704, -0.13706524670124054, 0.040055979043245316, 0.1559101790189743, -0.0069542801938951015, -0.010056141763925552, -0.005302474368363619, 0.017578819766640663, 0.02683067135512829, -0.13008356094360352, -0.09246785938739777 ]
null
null
transformers
# Italian T5 Large 🇮🇹 The [IT5](https://huggingface.co/models?search=it5) model family represents the first effort in pretraining large-scale sequence-to-sequence transformer models for the Italian language, following the approach adopted by the original [T5 model](https://github.com/google-research/text-to-text-transfer-transformer). This model is released as part of the project ["IT5: Large-Scale Text-to-Text Pretraining for Italian Language Understanding and Generation"](https://arxiv.org/abs/2203.03759) (to be released), by [Gabriele Sarti](https://gsarti.com/) and [Malvina Nissim](https://malvinanissim.github.io/) with the support of [Huggingface](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) and with TPU usage sponsored by Google's [TPU Research Cloud](https://sites.research.google/trc/). All the training was conducted on a single TPU3v8-VM machine on Google Cloud. Refer to the Tensorboard tab of the repository for an overview of the training process. *The inference widget is deactivated because the model needs a task-specific seq2seq fine-tuning on a downstream task to be useful in practice. The models in the [`it5`](https://huggingface.co/it5) organization provide some examples of this model fine-tuned on various downstream task.* ## Model variants This repository contains the checkpoints for the `base` version of the model. The model was trained for one epoch (1.05M steps) on the [Thoroughly Cleaned Italian mC4 Corpus](https://huggingface.co/datasets/gsarti/clean_mc4_it) (~41B words, ~275GB) using 🤗 Datasets and the `google/t5-v1_1-large` improved configuration. The training procedure is made available [on Github](https://github.com/gsarti/t5-flax-gcp). The following table summarizes the parameters for all available models | |`it5-small` |`it5-base` |`it5-large` (this one) |`it5-base-oscar` | |-----------------------|-----------------------|----------------------|-----------------------|----------------------------------| |`dataset` |`gsarti/clean_mc4_it` |`gsarti/clean_mc4_it` |`gsarti/clean_mc4_it` |`oscar/unshuffled_deduplicated_it`| |`architecture` |`google/t5-v1_1-small` |`google/t5-v1_1-base` |`google/t5-v1_1-large` |`t5-base` | |`learning rate` | 5e-3 | 5e-3 | 5e-3 | 1e-2 | |`steps` | 1'050'000 | 1'050'000 | 2'100'000 | 258'000 | |`training time` | 36 hours | 101 hours | 370 hours | 98 hours | |`ff projection` |`gated-gelu` |`gated-gelu` |`gated-gelu` |`relu` | |`tie embeds` |`false` |`false` |`false` |`true` | |`optimizer` | adafactor | adafactor | adafactor | adafactor | |`max seq. length` | 512 | 512 | 512 | 512 | |`per-device batch size`| 16 | 16 | 8 | 16 | |`tot. batch size` | 128 | 128 | 64 | 128 | |`weigth decay` | 1e-3 | 1e-3 | 1e-2 | 1e-3 | |`validation split size`| 15K examples | 15K examples | 15K examples | 15K examples | The high training time of `it5-base-oscar` was due to [a bug](https://github.com/huggingface/transformers/pull/13012) in the training script. For a list of individual model parameters, refer to the `config.json` file in the respective repositories. ## Using the models ```python from transformers import AutoTokenzier, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("gsarti/it5-large") model = AutoModelForSeq2SeqLM.from_pretrained("gsarti/it5-large") ``` *Note: You will need to fine-tune the model on your downstream seq2seq task to use it. See an example [here](https://huggingface.co/gsarti/it5-base-nli).* Flax and Tensorflow versions of the model are also available: ```python from transformers import FlaxT5ForConditionalGeneration, TFT5ForConditionalGeneration model_flax = FlaxT5ForConditionalGeneration.from_pretrained("gsarti/it5-large") model_tf = TFT5ForConditionalGeneration.from_pretrained("gsarti/it5-large") ``` ## Limitations Due to the nature of the web-scraped corpus on which IT5 models were trained, it is likely that their usage could reproduce and amplify pre-existing biases in the data, resulting in potentially harmful content such as racial or gender stereotypes and conspiracist views. For this reason, the study of such biases is explicitly encouraged, and model usage should ideally be restricted to research-oriented and non-user-facing endeavors. ## Model curators For problems or updates on this model, please contact [[email protected]](mailto:[email protected]). ## Citation Information ```bibtex @article{sarti-nissim-2022-it5, title={IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
{"language": ["it"], "license": "apache-2.0", "tags": ["seq2seq", "lm-head"], "datasets": ["gsarti/clean_mc4_it"], "inference": false, "thumbnail": "https://gsarti.com/publication/it5/featured.png"}
text2text-generation
gsarti/it5-large
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "seq2seq", "lm-head", "it", "dataset:gsarti/clean_mc4_it", "arxiv:2203.03759", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2203.03759" ]
[ "it" ]
TAGS #transformers #pytorch #tf #jax #tensorboard #t5 #text2text-generation #seq2seq #lm-head #it #dataset-gsarti/clean_mc4_it #arxiv-2203.03759 #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us
Italian T5 Large 🇮🇹 =================== The IT5 model family represents the first effort in pretraining large-scale sequence-to-sequence transformer models for the Italian language, following the approach adopted by the original T5 model. This model is released as part of the project "IT5: Large-Scale Text-to-Text Pretraining for Italian Language Understanding and Generation" (to be released), by Gabriele Sarti and Malvina Nissim with the support of Huggingface and with TPU usage sponsored by Google's TPU Research Cloud. All the training was conducted on a single TPU3v8-VM machine on Google Cloud. Refer to the Tensorboard tab of the repository for an overview of the training process. *The inference widget is deactivated because the model needs a task-specific seq2seq fine-tuning on a downstream task to be useful in practice. The models in the 'it5' organization provide some examples of this model fine-tuned on various downstream task.* Model variants -------------- This repository contains the checkpoints for the 'base' version of the model. The model was trained for one epoch (1.05M steps) on the Thoroughly Cleaned Italian mC4 Corpus (~41B words, ~275GB) using Datasets and the 'google/t5-v1\_1-large' improved configuration. The training procedure is made available on Github. The following table summarizes the parameters for all available models The high training time of 'it5-base-oscar' was due to a bug in the training script. For a list of individual model parameters, refer to the 'URL' file in the respective repositories. Using the models ---------------- *Note: You will need to fine-tune the model on your downstream seq2seq task to use it. See an example here.* Flax and Tensorflow versions of the model are also available: Limitations ----------- Due to the nature of the web-scraped corpus on which IT5 models were trained, it is likely that their usage could reproduce and amplify pre-existing biases in the data, resulting in potentially harmful content such as racial or gender stereotypes and conspiracist views. For this reason, the study of such biases is explicitly encouraged, and model usage should ideally be restricted to research-oriented and non-user-facing endeavors. Model curators -------------- For problems or updates on this model, please contact gabriele.sarti996@URL.
[]
[ "TAGS\n#transformers #pytorch #tf #jax #tensorboard #t5 #text2text-generation #seq2seq #lm-head #it #dataset-gsarti/clean_mc4_it #arxiv-2203.03759 #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us \n" ]
[ 94 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #tensorboard #t5 #text2text-generation #seq2seq #lm-head #it #dataset-gsarti/clean_mc4_it #arxiv-2203.03759 #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us \n" ]
[ -0.07237652689218521, 0.12842071056365967, -0.00552093330770731, 0.0780070573091507, 0.0703951045870781, 0.020510798320174217, 0.13420768082141876, 0.1658637970685959, -0.009327007457613945, -0.016598360612988472, 0.15057317912578583, 0.1940157413482666, 0.019687434658408165, 0.0773974135518074, -0.0439438670873642, -0.139942467212677, 0.05533412843942642, 0.021026190370321274, -0.09410201013088226, 0.09868735820055008, 0.0819699838757515, -0.029938729479908943, 0.09040676802396774, -0.06772714853286743, -0.0988946184515953, 0.018319230526685715, 0.04857662692666054, -0.08598687499761581, 0.11226718127727509, 0.07594423741102219, 0.022133156657218933, 0.09582145512104034, -0.008859528228640556, -0.08122005313634872, 0.0415019616484642, 0.04898503050208092, -0.09612450003623962, 0.09981408715248108, 0.05036037787795067, -0.004269633442163467, 0.08717505633831024, 0.01806429587304592, -0.049835335463285446, 0.05297311022877693, -0.0875745490193367, -0.0733969658613205, -0.08917973190546036, 0.07793459296226501, 0.0093599334359169, 0.08230791240930557, 0.02312087081372738, 0.12047255784273148, -0.055761005729436874, 0.11185450106859207, 0.1995207518339157, -0.31269294023513794, -0.007201722823083401, 0.061985455453395844, -0.005547954700887203, 0.068442203104496, -0.006106455810368061, 0.056726377457380295, 0.035525429993867874, 0.009813607670366764, 0.06987251341342926, -0.06214693933725357, -0.12981495261192322, 0.08287986367940903, -0.09524853527545929, -0.052630551159381866, 0.2927633821964264, 0.01914401352405548, 0.03581445664167404, 0.03352782875299454, -0.12692110240459442, -0.04866618663072586, 0.012719660066068172, 0.010252021253108978, -0.0017565902089700103, 0.05982544645667076, -0.014982867054641247, -0.12725192308425903, -0.12228883802890778, -0.07824857532978058, -0.18760325014591217, 0.06264657527208328, 0.008615395054221153, 0.05187387764453888, -0.12734758853912354, 0.08180387318134308, 0.05044072866439819, -0.10863930732011795, 0.019423028454184532, -0.013845166191458702, 0.02501024305820465, 0.05929224193096161, 0.0015247520059347153, -0.1583670675754547, 0.13343545794487, 0.1348738968372345, 0.0330117829144001, 0.011360290460288525, -0.03277866542339325, 0.08907358348369598, -0.044784579426050186, 0.016714494675397873, -0.07666525989770889, -0.024842645972967148, 0.10644056648015976, -0.027068965137004852, 0.07765902578830719, -0.06397973001003265, -0.14243903756141663, -0.02067006379365921, 0.041897568851709366, 0.10428491234779358, 0.09453273564577103, 0.08586803823709488, -0.03407515212893486, -0.027833474799990654, 0.06557583063840866, -0.11412881314754486, -0.017041685059666634, 0.01549455989152193, -0.01226311270147562, -0.002192240674048662, 0.07311514765024185, 0.005914946086704731, -0.08686703443527222, -0.017073871567845345, -0.08720530569553375, -0.04601316899061203, -0.015387240797281265, -0.0712200254201889, 0.06700029224157333, -0.07544156163930893, -0.013947367668151855, -0.1468578577041626, -0.22673678398132324, 0.029360080137848854, 0.038211509585380554, -0.004235956352204084, -0.07133179903030396, 0.015567729249596596, -0.06708775460720062, 0.05857349932193756, -0.06065278500318527, 0.042067334055900574, -0.07361063361167908, 0.08345765620470047, -0.08638603985309601, 0.04888494685292244, -0.18410030007362366, 0.043422434478998184, -0.09819214046001434, 0.001864059828221798, -0.037652648985385895, -0.003063051961362362, -0.06575894355773926, 0.11848732084035873, -0.09302493184804916, 0.029951492324471474, -0.05969288945198059, 0.010262155905365944, 0.019575156271457672, 0.14689958095550537, -0.21778789162635803, -0.07744204998016357, 0.1587280035018921, -0.10972560197114944, -0.17758317291736603, 0.1179233193397522, 0.05151322856545448, 0.04491207376122475, 0.06659670174121857, 0.19053690135478973, 0.004261370748281479, -0.04662377014756203, 0.011818788945674896, 0.10169776529073715, -0.06630191206932068, -0.14919596910476685, 0.07558120787143707, -0.05894661322236061, -0.05288532376289368, 0.03967577964067459, -0.0013295372482389212, 0.08779773116111755, -0.006484431680291891, -0.0798555314540863, -0.07066148519515991, -0.047354020178318024, 0.02908034436404705, -0.016290845349431038, 0.05566677823662758, -0.035104457288980484, -0.04955900087952614, -0.006423036567866802, 0.08736447244882584, -0.023216618224978447, 0.05736316367983818, -0.08093275129795074, 0.11070168018341064, -0.01949375681579113, 0.06808872520923615, -0.11914880573749542, -0.06183772534132004, -0.02109590917825699, 0.011075031943619251, 0.042582184076309204, 0.020636651664972305, 0.05021829530596733, -0.02191471867263317, -0.013462817296385765, -0.02218058332800865, 0.06437832117080688, 0.020961536094546318, -0.04157371073961258, -0.17652611434459686, 0.04839210957288742, -0.026035184040665627, 0.0499194897711277, -0.08324170857667923, 0.05845436453819275, 0.0667690560221672, 0.07037410140037537, 0.021110432222485542, 0.04192409664392471, 0.01174867246299982, -0.033813003450632095, -0.06925095617771149, -0.024400241672992706, 0.08473806083202362, 0.028941359370946884, -0.12267281860113144, 0.1539582759141922, -0.11562855541706085, 0.24925696849822998, 0.17774856090545654, -0.0757484957575798, 0.052980247884988785, 0.04703449830412865, -0.03376653417944908, -0.030556200072169304, 0.03773733228445053, -0.0481296181678772, -0.03192267194390297, 0.021233240142464638, 0.12487770617008209, -0.07083331048488617, -0.028120271861553192, -0.006134110502898693, -0.02570299245417118, -0.03008841909468174, 0.09712166339159012, 0.18798482418060303, -0.16826415061950684, 0.15329194068908691, 0.2846617102622986, -0.05777203291654587, 0.16941553354263306, -0.05745018273591995, -0.05014824867248535, 0.005455987062305212, 0.0016070615965873003, -0.012897408567368984, 0.05239555612206459, -0.11324279010295868, 0.015678483992815018, 0.06621938943862915, 0.01160345133394003, 0.07093368470668793, -0.12231823056936264, -0.05515650659799576, -0.023569056764245033, -0.07149399071931839, -0.00025643224944360554, 0.06524401158094406, -0.04161616787314415, 0.13257542252540588, -0.05965029075741768, -0.0801052525639534, 0.10260794311761856, 0.020111365243792534, -0.10326235741376877, 0.167445570230484, -0.14913488924503326, -0.24895013868808746, -0.10435403883457184, -0.024601472541689873, -0.09822220355272293, -0.028783518821001053, 0.10169538855552673, -0.06794750690460205, -0.033599868416786194, -0.08365999162197113, 0.009277183562517166, 0.007329588755965233, 0.03331196680665016, -0.013331569731235504, 0.023877684026956558, 0.0022016644943505526, -0.13516415655612946, -0.021854497492313385, 0.012905547395348549, -0.055481404066085815, 0.09729305654764175, -0.07161921262741089, 0.12838080525398254, 0.16113021969795227, 0.045158080756664276, 0.028334973379969597, -0.031082913279533386, 0.12925051152706146, -0.02654406800866127, 0.05098913609981537, 0.1807699352502823, -0.005037765949964523, 0.047971077263355255, 0.11226825416088104, 0.014508415013551712, -0.03588814660906792, 0.011516528204083443, 0.014367703348398209, -0.06794372200965881, -0.26893624663352966, -0.06893891841173172, -0.08120819926261902, 0.13154076039791107, 0.018411574885249138, 0.12010279297828674, 0.10117632895708084, 0.037422508001327515, -0.022302713245153427, -0.005520374048501253, 0.022170638665556908, 0.03256682679057121, 0.13126203417778015, -0.03096138872206211, 0.10963938385248184, -0.10295183956623077, -0.01226157695055008, 0.1530773639678955, 0.10745638608932495, 0.10471624881029129, 0.04177669435739517, 0.2012617290019989, 0.06656002253293991, 0.13369180262088776, 0.05456772446632385, 0.08801200240850449, -0.0008095010998658836, -0.007885284721851349, -0.037266671657562256, -0.06742935627698898, -0.010852483101189137, 0.01749664545059204, -0.04028751701116562, -0.07543256133794785, -0.01796431839466095, 0.019755207002162933, 0.09930984675884247, 0.1571546345949173, 0.04148796200752258, -0.2079406976699829, -0.0028338509146124125, 0.04684395715594292, 0.021443016827106476, -0.011109624989330769, 0.048054881393909454, 0.047533851116895676, -0.03441791236400604, 0.02738163247704506, -0.021340126171708107, 0.09490608423948288, -0.005745087284594774, 0.030486995354294777, -0.023518521338701248, -0.01514431182295084, 0.006360745057463646, 0.07961234450340271, -0.3256111741065979, 0.18986356258392334, 0.02373402751982212, -0.015761222690343857, -0.05304686352610588, -0.006061569321900606, 0.044069524854421616, 0.14232255518436432, 0.12667427957057953, 0.010318765416741371, -0.08109626919031143, -0.014555014669895172, -0.11546647548675537, 0.0639745444059372, 0.015595123171806335, -0.02050677314400673, -0.026191137731075287, -0.04848445579409599, -0.0016851098043844104, 0.04340825229883194, 0.11516167223453522, -0.0990077406167984, -0.10923703759908676, 0.0838763490319252, 0.07987838238477707, -0.02825132943689823, -0.04688200354576111, -0.0617372989654541, -0.06365443766117096, 0.21603742241859436, -0.09706757962703705, -0.06857230514287949, -0.11919716745615005, -0.06029361113905907, 0.05080185458064079, -0.094709113240242, 0.015821510925889015, -0.04056735709309578, -0.005865172948688269, -0.036499299108982086, -0.21066629886627197, 0.13387566804885864, -0.08101368695497513, -0.07210401445627213, -0.02936122938990593, 0.09900633245706558, -0.07093354314565659, 0.05358875170350075, 0.0018340449314564466, -0.007533080875873566, -0.04256489500403404, -0.10571257025003433, 0.03478382155299187, 0.03980197384953499, -0.0014020552625879645, -0.02412199229001999, -0.10582590103149414, -0.040751196444034576, 0.0221618190407753, -0.06805996596813202, 0.26306280493736267, 0.21943268179893494, -0.06135860085487366, 0.14536185562610626, 0.17254483699798584, -0.0940132811665535, -0.31631237268447876, -0.12612348794937134, -0.1334252953529358, -0.039976123720407486, -0.007329694461077452, -0.20122860372066498, 0.05197899043560028, 0.1137968897819519, -0.06385669112205505, 0.09885863214731216, -0.3153931498527527, -0.10811345279216766, 0.17573292553424835, 0.06321345269680023, 0.24297989904880524, -0.19734007120132446, -0.08911972492933273, -0.06188609078526497, -0.11992619186639786, 0.20674169063568115, -0.22952541708946228, 0.08089181780815125, -0.01860036887228489, -0.003230050439015031, -0.005953099578619003, -0.04630117118358612, 0.08727730810642242, 0.006189713720232248, 0.03862534835934639, -0.09914904087781906, 0.009761638008058071, 0.1399819403886795, -0.01787852682173252, 0.08857837319374084, -0.1682620793581009, 0.04525076225399971, -0.07501646131277084, 0.012899138033390045, -0.06400341540575027, 0.07519421726465225, -0.002884098095819354, -0.06366271525621414, -0.02825888618826866, -0.011726138181984425, 0.0045496574603021145, -0.019483953714370728, 0.23433348536491394, 0.025114523246884346, 0.055934783071279526, 0.17083938419818878, 0.03774776682257652, -0.1648881882429123, 0.011067981831729412, -0.05786503106355667, -0.06724140793085098, 0.06199031323194504, -0.15725106000900269, 0.06658259779214859, 0.0834483802318573, -0.002600804204121232, 0.09495504200458527, 0.062101081013679504, -0.03800828382372856, -0.020001690834760666, 0.11596928536891937, -0.2208460420370102, -0.044235631823539734, -0.04507662355899811, -0.03189987316727638, 0.007171859033405781, 0.09188254922628403, 0.1694551557302475, 0.014968003146350384, -0.0007825983338989317, 0.0328468456864357, 0.04971593618392944, -0.03761082887649536, 0.11860828846693039, 0.08001566678285599, -0.010910927318036556, -0.11295114457607269, 0.13284555077552795, 0.022204382345080376, -0.09811782836914062, 0.03038240224123001, 0.1409127116203308, -0.1146584078669548, -0.1340024471282959, -0.008898255415260792, 0.091732919216156, -0.09594164043664932, -0.07253888994455338, -0.1272255927324295, -0.063905268907547, 0.06657528877258301, 0.1308457851409912, 0.05442997068166733, 0.07996399700641632, -0.0069296942092478275, -0.05709170177578926, 0.027864500880241394, 0.0667036771774292, -0.04074478894472122, 0.023808997124433517, -0.11838226765394211, 0.018178900703787804, -0.004272580612450838, 0.10364701598882675, -0.04555077478289604, 0.009499169886112213, -0.11908075958490372, -0.00006133348506409675, -0.11127090454101562, -0.015248346142470837, -0.05399719998240471, -0.02958834357559681, -0.01369926892220974, -0.04002079740166664, -0.05168735235929489, 0.007306994404643774, -0.09462875872850418, -0.04961613565683365, -0.0028864589985460043, 0.06594449281692505, -0.12369444221258163, -0.010952882468700409, 0.0412176139652729, -0.011095250956714153, 0.1346656084060669, 0.06391575187444687, -0.0356743223965168, 0.1155938133597374, -0.13705338537693024, -0.05899931490421295, 0.06463082134723663, 0.030142828822135925, 0.02449910342693329, 0.015667978674173355, -0.031163403764367104, 0.0687151700258255, -0.013781138695776463, 0.03211020678281784, 0.04813268408179283, -0.09605099260807037, 0.0012199371121823788, -0.06454203277826309, -0.06593156605958939, -0.05700312927365303, -0.007413176819682121, 0.06194939836859703, 0.058472540229558945, 0.14369580149650574, -0.03623228147625923, 0.001981954788789153, -0.14396102726459503, 0.04430356249213219, 0.02237127721309662, -0.12291181087493896, -0.10977166146039963, -0.012695503421127796, 0.006023601163178682, -0.06874275952577591, 0.11802650988101959, 0.008423670195043087, -0.12475710362195969, 0.04157589003443718, 0.06755544990301132, 0.016911031678318977, -0.0075402818620204926, 0.23890961706638336, 0.041676267981529236, -0.00013973016757518053, -0.04148778319358826, 0.023097608238458633, 0.03296385332942009, 0.04156546667218208, 0.15014585852622986, 0.05380650609731674, 0.05035651475191116, 0.09463188797235489, 0.05883694067597389, -0.05432349443435669, -0.06596831977367401, 0.00800339039415121, -0.021280258893966675, 0.11440742015838623, 0.004681616555899382, 0.12026755511760712, 0.2172391712665558, -0.02033078670501709, -0.000650618749205023, -0.0040110754780471325, -0.04788796231150627, -0.1634640395641327, -0.23742175102233887, -0.08410701900720596, -0.09389322996139526, -0.016115887090563774, -0.08317995816469193, -0.0022120652720332146, 0.048006847500801086, 0.0558663010597229, -0.03819332644343376, 0.02680022083222866, 0.05553480610251427, -0.08550108969211578, 0.01545605156570673, -0.023759253323078156, -0.04731212928891182, -0.06393171101808548, -0.020797422155737877, -0.0007967851706780493, 0.046513304114341736, -0.016053980216383934, 0.04204055666923523, 0.021709172055125237, 0.07352319359779358, -0.11598427593708038, -0.07417982071638107, -0.053316131234169006, 0.0388394296169281, -0.006689450703561306, 0.09253723919391632, 0.04579906538128853, -0.03014763444662094, 0.09255506843328476, 0.20260274410247803, -0.03820451721549034, -0.0925375297665596, -0.05144457519054413, 0.07416338473558426, 0.006186393555253744, 0.033117085695266724, 0.00509553961455822, -0.028305266052484512, -0.03842741623520851, 0.22927577793598175, 0.3153102695941925, -0.10959558933973312, 0.03391571342945099, 0.0021735215559601784, 0.025111565366387367, 0.014123412780463696, 0.10690026730298996, 0.10544684529304504, 0.1749742031097412, -0.04345731809735298, -0.017293820157647133, -0.053784895688295364, 0.002163458149880171, -0.12006998807191849, 0.11708829551935196, 0.01394425518810749, -0.05289863422513008, -0.004573398269712925, 0.061983343213796616, -0.12481574714183807, 0.0068849059753119946, -0.15065155923366547, -0.11588076502084732, -0.08147323876619339, -0.011007490567862988, 0.11319045722484589, 0.016794398427009583, 0.00775155471637845, -0.0505797415971756, 0.0023499480448663235, 0.040066301822662354, -0.005599081516265869, -0.23476780951023102, -0.016477378085255623, 0.07803076505661011, -0.07739800959825516, 0.13576382398605347, -0.0025712407659739256, 0.03239177539944649, 0.09596014767885208, 0.016807368025183678, -0.12479544430971146, 0.11411488801240921, 0.0003254361799918115, -0.008330054581165314, 0.008705672807991505, -0.05689391493797302, -0.0032423886004835367, 0.014580843038856983, 0.0706704705953598, 0.027320800349116325, 0.011931458488106728, 0.021553833037614822, -0.057929009199142456, -0.02521081268787384, 0.01300232857465744, -0.07637917250394821, 0.0715857520699501, 0.04961179196834564, -0.02725130505859852, -0.0005866483552381396, -0.10330390185117722, -0.015840310603380203, 0.013179571367800236, -0.13747116923332214, -0.03888669237494469, -0.05398206785321236, -0.01773986965417862, -0.0030071327928453684, 0.02381654642522335, -0.1844853162765503, -0.03717903047800064, -0.0960259810090065, 0.005341543350368738, -0.15994994342327118, 0.042093679308891296, 0.15248163044452667, -0.005618224386125803, -0.0073233721777796745, -0.006001354660838842, 0.0240311436355114, 0.030351312831044197, -0.12732866406440735, -0.0934428945183754 ]
null
null
transformers
# Italian T5 Small 🇮🇹 The [IT5](https://huggingface.co/models?search=it5) model family represents the first effort in pretraining large-scale sequence-to-sequence transformer models for the Italian language, following the approach adopted by the original [T5 model](https://github.com/google-research/text-to-text-transfer-transformer). This model is released as part of the project ["IT5: Large-Scale Text-to-Text Pretraining for Italian Language Understanding and Generation"](https://arxiv.org/abs/2203.03759), by [Gabriele Sarti](https://gsarti.com/) and [Malvina Nissim](https://malvinanissim.github.io/) with the support of [Huggingface](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) and with TPU usage sponsored by Google's [TPU Research Cloud](https://sites.research.google/trc/). All the training was conducted on a single TPU3v8-VM machine on Google Cloud. Refer to the Tensorboard tab of the repository for an overview of the training process. *The inference widget is deactivated because the model needs a task-specific seq2seq fine-tuning on a downstream task to be useful in practice. The models in the [`it5`](https://huggingface.co/it5) organization provide some examples of this model fine-tuned on various downstream task.* ## Model variants This repository contains the checkpoints for the `base` version of the model. The model was trained for one epoch (1.05M steps) on the [Thoroughly Cleaned Italian mC4 Corpus](https://huggingface.co/datasets/gsarti/clean_mc4_it) (~41B words, ~275GB) using 🤗 Datasets and the `google/t5-v1_1-small` improved configuration. The training procedure is made available [on Github](https://github.com/gsarti/t5-flax-gcp). The following table summarizes the parameters for all available models | |`it5-small` (this one) |`it5-base` |`it5-large` |`it5-base-oscar` | |-----------------------|-----------------------|----------------------|-----------------------|----------------------------------| |`dataset` |`gsarti/clean_mc4_it` |`gsarti/clean_mc4_it` |`gsarti/clean_mc4_it` |`oscar/unshuffled_deduplicated_it`| |`architecture` |`google/t5-v1_1-small` |`google/t5-v1_1-base` |`google/t5-v1_1-large` |`t5-base` | |`learning rate` | 5e-3 | 5e-3 | 5e-3 | 1e-2 | |`steps` | 1'050'000 | 1'050'000 | 2'100'000 | 258'000 | |`training time` | 36 hours | 101 hours | 370 hours | 98 hours | |`ff projection` |`gated-gelu` |`gated-gelu` |`gated-gelu` |`relu` | |`tie embeds` |`false` |`false` |`false` |`true` | |`optimizer` | adafactor | adafactor | adafactor | adafactor | |`max seq. length` | 512 | 512 | 512 | 512 | |`per-device batch size`| 16 | 16 | 8 | 16 | |`tot. batch size` | 128 | 128 | 64 | 128 | |`weigth decay` | 1e-3 | 1e-3 | 1e-2 | 1e-3 | |`validation split size`| 15K examples | 15K examples | 15K examples | 15K examples | The high training time of `it5-base-oscar` was due to [a bug](https://github.com/huggingface/transformers/pull/13012) in the training script. For a list of individual model parameters, refer to the `config.json` file in the respective repositories. ## Using the models ```python from transformers import AutoTokenzier, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("gsarti/it5-small") model = AutoModelForSeq2SeqLM.from_pretrained("gsarti/it5-small") ``` *Note: You will need to fine-tune the model on your downstream seq2seq task to use it. See an example [here](https://huggingface.co/it5/it5-base-question-answering).* Flax and Tensorflow versions of the model are also available: ```python from transformers import FlaxT5ForConditionalGeneration, TFT5ForConditionalGeneration model_flax = FlaxT5ForConditionalGeneration.from_pretrained("gsarti/it5-small") model_tf = TFT5ForConditionalGeneration.from_pretrained("gsarti/it5-small") ``` ## Limitations Due to the nature of the web-scraped corpus on which IT5 models were trained, it is likely that their usage could reproduce and amplify pre-existing biases in the data, resulting in potentially harmful content such as racial or gender stereotypes and conspiracist views. For this reason, the study of such biases is explicitly encouraged, and model usage should ideally be restricted to research-oriented and non-user-facing endeavors. ## Model curators For problems or updates on this model, please contact [[email protected]](mailto:[email protected]). ## Citation Information ```bibtex @article{sarti-nissim-2022-it5, title={IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
{"language": ["it"], "license": "apache-2.0", "tags": ["seq2seq", "lm-head"], "datasets": ["gsarti/clean_mc4_it"], "inference": false, "thumbnail": "https://gsarti.com/publication/it5/featured.png"}
text2text-generation
gsarti/it5-small
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "seq2seq", "lm-head", "it", "dataset:gsarti/clean_mc4_it", "arxiv:2203.03759", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2203.03759" ]
[ "it" ]
TAGS #transformers #pytorch #tf #jax #tensorboard #t5 #text2text-generation #seq2seq #lm-head #it #dataset-gsarti/clean_mc4_it #arxiv-2203.03759 #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us
Italian T5 Small 🇮🇹 =================== The IT5 model family represents the first effort in pretraining large-scale sequence-to-sequence transformer models for the Italian language, following the approach adopted by the original T5 model. This model is released as part of the project "IT5: Large-Scale Text-to-Text Pretraining for Italian Language Understanding and Generation", by Gabriele Sarti and Malvina Nissim with the support of Huggingface and with TPU usage sponsored by Google's TPU Research Cloud. All the training was conducted on a single TPU3v8-VM machine on Google Cloud. Refer to the Tensorboard tab of the repository for an overview of the training process. *The inference widget is deactivated because the model needs a task-specific seq2seq fine-tuning on a downstream task to be useful in practice. The models in the 'it5' organization provide some examples of this model fine-tuned on various downstream task.* Model variants -------------- This repository contains the checkpoints for the 'base' version of the model. The model was trained for one epoch (1.05M steps) on the Thoroughly Cleaned Italian mC4 Corpus (~41B words, ~275GB) using Datasets and the 'google/t5-v1\_1-small' improved configuration. The training procedure is made available on Github. The following table summarizes the parameters for all available models The high training time of 'it5-base-oscar' was due to a bug in the training script. For a list of individual model parameters, refer to the 'URL' file in the respective repositories. Using the models ---------------- *Note: You will need to fine-tune the model on your downstream seq2seq task to use it. See an example here.* Flax and Tensorflow versions of the model are also available: Limitations ----------- Due to the nature of the web-scraped corpus on which IT5 models were trained, it is likely that their usage could reproduce and amplify pre-existing biases in the data, resulting in potentially harmful content such as racial or gender stereotypes and conspiracist views. For this reason, the study of such biases is explicitly encouraged, and model usage should ideally be restricted to research-oriented and non-user-facing endeavors. Model curators -------------- For problems or updates on this model, please contact gabriele.sarti996@URL.
[]
[ "TAGS\n#transformers #pytorch #tf #jax #tensorboard #t5 #text2text-generation #seq2seq #lm-head #it #dataset-gsarti/clean_mc4_it #arxiv-2203.03759 #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us \n" ]
[ 94 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #tensorboard #t5 #text2text-generation #seq2seq #lm-head #it #dataset-gsarti/clean_mc4_it #arxiv-2203.03759 #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us \n" ]
[ -0.07237652689218521, 0.12842071056365967, -0.00552093330770731, 0.0780070573091507, 0.0703951045870781, 0.020510798320174217, 0.13420768082141876, 0.1658637970685959, -0.009327007457613945, -0.016598360612988472, 0.15057317912578583, 0.1940157413482666, 0.019687434658408165, 0.0773974135518074, -0.0439438670873642, -0.139942467212677, 0.05533412843942642, 0.021026190370321274, -0.09410201013088226, 0.09868735820055008, 0.0819699838757515, -0.029938729479908943, 0.09040676802396774, -0.06772714853286743, -0.0988946184515953, 0.018319230526685715, 0.04857662692666054, -0.08598687499761581, 0.11226718127727509, 0.07594423741102219, 0.022133156657218933, 0.09582145512104034, -0.008859528228640556, -0.08122005313634872, 0.0415019616484642, 0.04898503050208092, -0.09612450003623962, 0.09981408715248108, 0.05036037787795067, -0.004269633442163467, 0.08717505633831024, 0.01806429587304592, -0.049835335463285446, 0.05297311022877693, -0.0875745490193367, -0.0733969658613205, -0.08917973190546036, 0.07793459296226501, 0.0093599334359169, 0.08230791240930557, 0.02312087081372738, 0.12047255784273148, -0.055761005729436874, 0.11185450106859207, 0.1995207518339157, -0.31269294023513794, -0.007201722823083401, 0.061985455453395844, -0.005547954700887203, 0.068442203104496, -0.006106455810368061, 0.056726377457380295, 0.035525429993867874, 0.009813607670366764, 0.06987251341342926, -0.06214693933725357, -0.12981495261192322, 0.08287986367940903, -0.09524853527545929, -0.052630551159381866, 0.2927633821964264, 0.01914401352405548, 0.03581445664167404, 0.03352782875299454, -0.12692110240459442, -0.04866618663072586, 0.012719660066068172, 0.010252021253108978, -0.0017565902089700103, 0.05982544645667076, -0.014982867054641247, -0.12725192308425903, -0.12228883802890778, -0.07824857532978058, -0.18760325014591217, 0.06264657527208328, 0.008615395054221153, 0.05187387764453888, -0.12734758853912354, 0.08180387318134308, 0.05044072866439819, -0.10863930732011795, 0.019423028454184532, -0.013845166191458702, 0.02501024305820465, 0.05929224193096161, 0.0015247520059347153, -0.1583670675754547, 0.13343545794487, 0.1348738968372345, 0.0330117829144001, 0.011360290460288525, -0.03277866542339325, 0.08907358348369598, -0.044784579426050186, 0.016714494675397873, -0.07666525989770889, -0.024842645972967148, 0.10644056648015976, -0.027068965137004852, 0.07765902578830719, -0.06397973001003265, -0.14243903756141663, -0.02067006379365921, 0.041897568851709366, 0.10428491234779358, 0.09453273564577103, 0.08586803823709488, -0.03407515212893486, -0.027833474799990654, 0.06557583063840866, -0.11412881314754486, -0.017041685059666634, 0.01549455989152193, -0.01226311270147562, -0.002192240674048662, 0.07311514765024185, 0.005914946086704731, -0.08686703443527222, -0.017073871567845345, -0.08720530569553375, -0.04601316899061203, -0.015387240797281265, -0.0712200254201889, 0.06700029224157333, -0.07544156163930893, -0.013947367668151855, -0.1468578577041626, -0.22673678398132324, 0.029360080137848854, 0.038211509585380554, -0.004235956352204084, -0.07133179903030396, 0.015567729249596596, -0.06708775460720062, 0.05857349932193756, -0.06065278500318527, 0.042067334055900574, -0.07361063361167908, 0.08345765620470047, -0.08638603985309601, 0.04888494685292244, -0.18410030007362366, 0.043422434478998184, -0.09819214046001434, 0.001864059828221798, -0.037652648985385895, -0.003063051961362362, -0.06575894355773926, 0.11848732084035873, -0.09302493184804916, 0.029951492324471474, -0.05969288945198059, 0.010262155905365944, 0.019575156271457672, 0.14689958095550537, -0.21778789162635803, -0.07744204998016357, 0.1587280035018921, -0.10972560197114944, -0.17758317291736603, 0.1179233193397522, 0.05151322856545448, 0.04491207376122475, 0.06659670174121857, 0.19053690135478973, 0.004261370748281479, -0.04662377014756203, 0.011818788945674896, 0.10169776529073715, -0.06630191206932068, -0.14919596910476685, 0.07558120787143707, -0.05894661322236061, -0.05288532376289368, 0.03967577964067459, -0.0013295372482389212, 0.08779773116111755, -0.006484431680291891, -0.0798555314540863, -0.07066148519515991, -0.047354020178318024, 0.02908034436404705, -0.016290845349431038, 0.05566677823662758, -0.035104457288980484, -0.04955900087952614, -0.006423036567866802, 0.08736447244882584, -0.023216618224978447, 0.05736316367983818, -0.08093275129795074, 0.11070168018341064, -0.01949375681579113, 0.06808872520923615, -0.11914880573749542, -0.06183772534132004, -0.02109590917825699, 0.011075031943619251, 0.042582184076309204, 0.020636651664972305, 0.05021829530596733, -0.02191471867263317, -0.013462817296385765, -0.02218058332800865, 0.06437832117080688, 0.020961536094546318, -0.04157371073961258, -0.17652611434459686, 0.04839210957288742, -0.026035184040665627, 0.0499194897711277, -0.08324170857667923, 0.05845436453819275, 0.0667690560221672, 0.07037410140037537, 0.021110432222485542, 0.04192409664392471, 0.01174867246299982, -0.033813003450632095, -0.06925095617771149, -0.024400241672992706, 0.08473806083202362, 0.028941359370946884, -0.12267281860113144, 0.1539582759141922, -0.11562855541706085, 0.24925696849822998, 0.17774856090545654, -0.0757484957575798, 0.052980247884988785, 0.04703449830412865, -0.03376653417944908, -0.030556200072169304, 0.03773733228445053, -0.0481296181678772, -0.03192267194390297, 0.021233240142464638, 0.12487770617008209, -0.07083331048488617, -0.028120271861553192, -0.006134110502898693, -0.02570299245417118, -0.03008841909468174, 0.09712166339159012, 0.18798482418060303, -0.16826415061950684, 0.15329194068908691, 0.2846617102622986, -0.05777203291654587, 0.16941553354263306, -0.05745018273591995, -0.05014824867248535, 0.005455987062305212, 0.0016070615965873003, -0.012897408567368984, 0.05239555612206459, -0.11324279010295868, 0.015678483992815018, 0.06621938943862915, 0.01160345133394003, 0.07093368470668793, -0.12231823056936264, -0.05515650659799576, -0.023569056764245033, -0.07149399071931839, -0.00025643224944360554, 0.06524401158094406, -0.04161616787314415, 0.13257542252540588, -0.05965029075741768, -0.0801052525639534, 0.10260794311761856, 0.020111365243792534, -0.10326235741376877, 0.167445570230484, -0.14913488924503326, -0.24895013868808746, -0.10435403883457184, -0.024601472541689873, -0.09822220355272293, -0.028783518821001053, 0.10169538855552673, -0.06794750690460205, -0.033599868416786194, -0.08365999162197113, 0.009277183562517166, 0.007329588755965233, 0.03331196680665016, -0.013331569731235504, 0.023877684026956558, 0.0022016644943505526, -0.13516415655612946, -0.021854497492313385, 0.012905547395348549, -0.055481404066085815, 0.09729305654764175, -0.07161921262741089, 0.12838080525398254, 0.16113021969795227, 0.045158080756664276, 0.028334973379969597, -0.031082913279533386, 0.12925051152706146, -0.02654406800866127, 0.05098913609981537, 0.1807699352502823, -0.005037765949964523, 0.047971077263355255, 0.11226825416088104, 0.014508415013551712, -0.03588814660906792, 0.011516528204083443, 0.014367703348398209, -0.06794372200965881, -0.26893624663352966, -0.06893891841173172, -0.08120819926261902, 0.13154076039791107, 0.018411574885249138, 0.12010279297828674, 0.10117632895708084, 0.037422508001327515, -0.022302713245153427, -0.005520374048501253, 0.022170638665556908, 0.03256682679057121, 0.13126203417778015, -0.03096138872206211, 0.10963938385248184, -0.10295183956623077, -0.01226157695055008, 0.1530773639678955, 0.10745638608932495, 0.10471624881029129, 0.04177669435739517, 0.2012617290019989, 0.06656002253293991, 0.13369180262088776, 0.05456772446632385, 0.08801200240850449, -0.0008095010998658836, -0.007885284721851349, -0.037266671657562256, -0.06742935627698898, -0.010852483101189137, 0.01749664545059204, -0.04028751701116562, -0.07543256133794785, -0.01796431839466095, 0.019755207002162933, 0.09930984675884247, 0.1571546345949173, 0.04148796200752258, -0.2079406976699829, -0.0028338509146124125, 0.04684395715594292, 0.021443016827106476, -0.011109624989330769, 0.048054881393909454, 0.047533851116895676, -0.03441791236400604, 0.02738163247704506, -0.021340126171708107, 0.09490608423948288, -0.005745087284594774, 0.030486995354294777, -0.023518521338701248, -0.01514431182295084, 0.006360745057463646, 0.07961234450340271, -0.3256111741065979, 0.18986356258392334, 0.02373402751982212, -0.015761222690343857, -0.05304686352610588, -0.006061569321900606, 0.044069524854421616, 0.14232255518436432, 0.12667427957057953, 0.010318765416741371, -0.08109626919031143, -0.014555014669895172, -0.11546647548675537, 0.0639745444059372, 0.015595123171806335, -0.02050677314400673, -0.026191137731075287, -0.04848445579409599, -0.0016851098043844104, 0.04340825229883194, 0.11516167223453522, -0.0990077406167984, -0.10923703759908676, 0.0838763490319252, 0.07987838238477707, -0.02825132943689823, -0.04688200354576111, -0.0617372989654541, -0.06365443766117096, 0.21603742241859436, -0.09706757962703705, -0.06857230514287949, -0.11919716745615005, -0.06029361113905907, 0.05080185458064079, -0.094709113240242, 0.015821510925889015, -0.04056735709309578, -0.005865172948688269, -0.036499299108982086, -0.21066629886627197, 0.13387566804885864, -0.08101368695497513, -0.07210401445627213, -0.02936122938990593, 0.09900633245706558, -0.07093354314565659, 0.05358875170350075, 0.0018340449314564466, -0.007533080875873566, -0.04256489500403404, -0.10571257025003433, 0.03478382155299187, 0.03980197384953499, -0.0014020552625879645, -0.02412199229001999, -0.10582590103149414, -0.040751196444034576, 0.0221618190407753, -0.06805996596813202, 0.26306280493736267, 0.21943268179893494, -0.06135860085487366, 0.14536185562610626, 0.17254483699798584, -0.0940132811665535, -0.31631237268447876, -0.12612348794937134, -0.1334252953529358, -0.039976123720407486, -0.007329694461077452, -0.20122860372066498, 0.05197899043560028, 0.1137968897819519, -0.06385669112205505, 0.09885863214731216, -0.3153931498527527, -0.10811345279216766, 0.17573292553424835, 0.06321345269680023, 0.24297989904880524, -0.19734007120132446, -0.08911972492933273, -0.06188609078526497, -0.11992619186639786, 0.20674169063568115, -0.22952541708946228, 0.08089181780815125, -0.01860036887228489, -0.003230050439015031, -0.005953099578619003, -0.04630117118358612, 0.08727730810642242, 0.006189713720232248, 0.03862534835934639, -0.09914904087781906, 0.009761638008058071, 0.1399819403886795, -0.01787852682173252, 0.08857837319374084, -0.1682620793581009, 0.04525076225399971, -0.07501646131277084, 0.012899138033390045, -0.06400341540575027, 0.07519421726465225, -0.002884098095819354, -0.06366271525621414, -0.02825888618826866, -0.011726138181984425, 0.0045496574603021145, -0.019483953714370728, 0.23433348536491394, 0.025114523246884346, 0.055934783071279526, 0.17083938419818878, 0.03774776682257652, -0.1648881882429123, 0.011067981831729412, -0.05786503106355667, -0.06724140793085098, 0.06199031323194504, -0.15725106000900269, 0.06658259779214859, 0.0834483802318573, -0.002600804204121232, 0.09495504200458527, 0.062101081013679504, -0.03800828382372856, -0.020001690834760666, 0.11596928536891937, -0.2208460420370102, -0.044235631823539734, -0.04507662355899811, -0.03189987316727638, 0.007171859033405781, 0.09188254922628403, 0.1694551557302475, 0.014968003146350384, -0.0007825983338989317, 0.0328468456864357, 0.04971593618392944, -0.03761082887649536, 0.11860828846693039, 0.08001566678285599, -0.010910927318036556, -0.11295114457607269, 0.13284555077552795, 0.022204382345080376, -0.09811782836914062, 0.03038240224123001, 0.1409127116203308, -0.1146584078669548, -0.1340024471282959, -0.008898255415260792, 0.091732919216156, -0.09594164043664932, -0.07253888994455338, -0.1272255927324295, -0.063905268907547, 0.06657528877258301, 0.1308457851409912, 0.05442997068166733, 0.07996399700641632, -0.0069296942092478275, -0.05709170177578926, 0.027864500880241394, 0.0667036771774292, -0.04074478894472122, 0.023808997124433517, -0.11838226765394211, 0.018178900703787804, -0.004272580612450838, 0.10364701598882675, -0.04555077478289604, 0.009499169886112213, -0.11908075958490372, -0.00006133348506409675, -0.11127090454101562, -0.015248346142470837, -0.05399719998240471, -0.02958834357559681, -0.01369926892220974, -0.04002079740166664, -0.05168735235929489, 0.007306994404643774, -0.09462875872850418, -0.04961613565683365, -0.0028864589985460043, 0.06594449281692505, -0.12369444221258163, -0.010952882468700409, 0.0412176139652729, -0.011095250956714153, 0.1346656084060669, 0.06391575187444687, -0.0356743223965168, 0.1155938133597374, -0.13705338537693024, -0.05899931490421295, 0.06463082134723663, 0.030142828822135925, 0.02449910342693329, 0.015667978674173355, -0.031163403764367104, 0.0687151700258255, -0.013781138695776463, 0.03211020678281784, 0.04813268408179283, -0.09605099260807037, 0.0012199371121823788, -0.06454203277826309, -0.06593156605958939, -0.05700312927365303, -0.007413176819682121, 0.06194939836859703, 0.058472540229558945, 0.14369580149650574, -0.03623228147625923, 0.001981954788789153, -0.14396102726459503, 0.04430356249213219, 0.02237127721309662, -0.12291181087493896, -0.10977166146039963, -0.012695503421127796, 0.006023601163178682, -0.06874275952577591, 0.11802650988101959, 0.008423670195043087, -0.12475710362195969, 0.04157589003443718, 0.06755544990301132, 0.016911031678318977, -0.0075402818620204926, 0.23890961706638336, 0.041676267981529236, -0.00013973016757518053, -0.04148778319358826, 0.023097608238458633, 0.03296385332942009, 0.04156546667218208, 0.15014585852622986, 0.05380650609731674, 0.05035651475191116, 0.09463188797235489, 0.05883694067597389, -0.05432349443435669, -0.06596831977367401, 0.00800339039415121, -0.021280258893966675, 0.11440742015838623, 0.004681616555899382, 0.12026755511760712, 0.2172391712665558, -0.02033078670501709, -0.000650618749205023, -0.0040110754780471325, -0.04788796231150627, -0.1634640395641327, -0.23742175102233887, -0.08410701900720596, -0.09389322996139526, -0.016115887090563774, -0.08317995816469193, -0.0022120652720332146, 0.048006847500801086, 0.0558663010597229, -0.03819332644343376, 0.02680022083222866, 0.05553480610251427, -0.08550108969211578, 0.01545605156570673, -0.023759253323078156, -0.04731212928891182, -0.06393171101808548, -0.020797422155737877, -0.0007967851706780493, 0.046513304114341736, -0.016053980216383934, 0.04204055666923523, 0.021709172055125237, 0.07352319359779358, -0.11598427593708038, -0.07417982071638107, -0.053316131234169006, 0.0388394296169281, -0.006689450703561306, 0.09253723919391632, 0.04579906538128853, -0.03014763444662094, 0.09255506843328476, 0.20260274410247803, -0.03820451721549034, -0.0925375297665596, -0.05144457519054413, 0.07416338473558426, 0.006186393555253744, 0.033117085695266724, 0.00509553961455822, -0.028305266052484512, -0.03842741623520851, 0.22927577793598175, 0.3153102695941925, -0.10959558933973312, 0.03391571342945099, 0.0021735215559601784, 0.025111565366387367, 0.014123412780463696, 0.10690026730298996, 0.10544684529304504, 0.1749742031097412, -0.04345731809735298, -0.017293820157647133, -0.053784895688295364, 0.002163458149880171, -0.12006998807191849, 0.11708829551935196, 0.01394425518810749, -0.05289863422513008, -0.004573398269712925, 0.061983343213796616, -0.12481574714183807, 0.0068849059753119946, -0.15065155923366547, -0.11588076502084732, -0.08147323876619339, -0.011007490567862988, 0.11319045722484589, 0.016794398427009583, 0.00775155471637845, -0.0505797415971756, 0.0023499480448663235, 0.040066301822662354, -0.005599081516265869, -0.23476780951023102, -0.016477378085255623, 0.07803076505661011, -0.07739800959825516, 0.13576382398605347, -0.0025712407659739256, 0.03239177539944649, 0.09596014767885208, 0.016807368025183678, -0.12479544430971146, 0.11411488801240921, 0.0003254361799918115, -0.008330054581165314, 0.008705672807991505, -0.05689391493797302, -0.0032423886004835367, 0.014580843038856983, 0.0706704705953598, 0.027320800349116325, 0.011931458488106728, 0.021553833037614822, -0.057929009199142456, -0.02521081268787384, 0.01300232857465744, -0.07637917250394821, 0.0715857520699501, 0.04961179196834564, -0.02725130505859852, -0.0005866483552381396, -0.10330390185117722, -0.015840310603380203, 0.013179571367800236, -0.13747116923332214, -0.03888669237494469, -0.05398206785321236, -0.01773986965417862, -0.0030071327928453684, 0.02381654642522335, -0.1844853162765503, -0.03717903047800064, -0.0960259810090065, 0.005341543350368738, -0.15994994342327118, 0.042093679308891296, 0.15248163044452667, -0.005618224386125803, -0.0073233721777796745, -0.006001354660838842, 0.0240311436355114, 0.030351312831044197, -0.12732866406440735, -0.0934428945183754 ]
null
null
transformers
# SciBERT-NLI This is the model [SciBERT](https://github.com/allenai/scibert) [1] fine-tuned on the [SNLI](https://nlp.stanford.edu/projects/snli/) and the [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/) datasets using the [`sentence-transformers` library](https://github.com/UKPLab/sentence-transformers/) to produce universal sentence embeddings [2]. The model uses the original `scivocab` wordpiece vocabulary and was trained using the **average pooling strategy** and a **softmax loss**. **Base model**: `allenai/scibert-scivocab-cased` from HuggingFace's `AutoModel`. **Training time**: ~4 hours on the NVIDIA Tesla P100 GPU provided in Kaggle Notebooks. **Parameters**: | Parameter | Value | |------------------|-------| | Batch size | 64 | | Training steps | 20000 | | Warmup steps | 1450 | | Lowercasing | True | | Max. Seq. Length | 128 | **Performances**: The performance was evaluated on the test portion of the [STS dataset](http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark) using Spearman rank correlation and compared to the performances of a general BERT base model obtained with the same procedure to verify their similarity. | Model | Score | |-------------------------------|-------------| | `scibert-nli` (this) | 74.50 | | `bert-base-nli-mean-tokens`[3]| 77.12 | An example usage for similarity-based scientific paper retrieval is provided in the [Covid Papers Browser](https://github.com/gsarti/covid-papers-browser) repository. **References:** [1] I. Beltagy et al, [SciBERT: A Pretrained Language Model for Scientific Text](https://www.aclweb.org/anthology/D19-1371/) [2] A. Conneau et al., [Supervised Learning of Universal Sentence Representations from Natural Language Inference Data](https://www.aclweb.org/anthology/D17-1070/) [3] N. Reimers et I. Gurevych, [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://www.aclweb.org/anthology/D19-1410/)
{}
feature-extraction
gsarti/scibert-nli
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "doi:10.57967/hf/0038", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #bert #feature-extraction #doi-10.57967/hf/0038 #endpoints_compatible #region-us
SciBERT-NLI =========== This is the model SciBERT [1] fine-tuned on the SNLI and the MultiNLI datasets using the 'sentence-transformers' library to produce universal sentence embeddings [2]. The model uses the original 'scivocab' wordpiece vocabulary and was trained using the average pooling strategy and a softmax loss. Base model: 'allenai/scibert-scivocab-cased' from HuggingFace's 'AutoModel'. Training time: ~4 hours on the NVIDIA Tesla P100 GPU provided in Kaggle Notebooks. Parameters: Performances: The performance was evaluated on the test portion of the STS dataset using Spearman rank correlation and compared to the performances of a general BERT base model obtained with the same procedure to verify their similarity. An example usage for similarity-based scientific paper retrieval is provided in the Covid Papers Browser repository. References: [1] I. Beltagy et al, SciBERT: A Pretrained Language Model for Scientific Text [2] A. Conneau et al., Supervised Learning of Universal Sentence Representations from Natural Language Inference Data [3] N. Reimers et I. Gurevych, Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
[]
[ "TAGS\n#transformers #pytorch #jax #bert #feature-extraction #doi-10.57967/hf/0038 #endpoints_compatible #region-us \n" ]
[ 45 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #feature-extraction #doi-10.57967/hf/0038 #endpoints_compatible #region-us \n" ]
[ -0.10265952348709106, 0.018836969509720802, -0.007815060205757618, 0.02063741907477379, 0.08225297927856445, 0.04702857881784439, 0.028017543256282806, 0.10963134467601776, 0.081966333091259, 0.013849101960659027, 0.12910392880439758, 0.2367173433303833, 0.005012865178287029, -0.014211238361895084, -0.06375807523727417, -0.23532649874687195, 0.0561319999396801, 0.12406676262617111, -0.03938606008887291, 0.09844773262739182, 0.04715224727988243, -0.10376004129648209, 0.08069000393152237, -0.01600886881351471, -0.1348068118095398, 0.06557437777519226, 0.0364697203040123, -0.05322670564055443, 0.12009640038013458, 0.02834237366914749, 0.14057870209217072, 0.04099788889288902, -0.06784580647945404, -0.13587279617786407, 0.029141293838620186, -0.029767703264951706, -0.07172902673482895, 0.05407524108886719, 0.049680497497320175, -0.051685430109500885, 0.0426139198243618, 0.07914745807647705, -0.021057793870568275, 0.04387640580534935, -0.16876260936260223, -0.2029951959848404, -0.09069351106882095, 0.09350157529115677, 0.041450273245573044, 0.09649022668600082, 0.018755117431282997, 0.15356163680553436, -0.11965474486351013, 0.08335462957620621, 0.2677513659000397, -0.2893427610397339, 0.0046722544357180595, 0.06352991610765457, 0.11435296386480331, 0.00994920451194048, -0.01956075429916382, 0.032434601336717606, 0.02768748439848423, 0.015848668292164803, -0.03777611628174782, -0.09603862464427948, -0.016705472022294998, 0.05686453357338905, -0.08672841638326645, -0.05949624627828598, 0.25613996386528015, 0.023049216717481613, 0.03592721372842789, 0.06852465122938156, -0.09360221773386002, -0.07859920710325241, -0.0287316907197237, -0.03314454108476639, -0.0074882106855511665, 0.03202846646308899, 0.04712030291557312, -0.01950765773653984, -0.12085968255996704, -0.013858206570148468, -0.1897215098142624, 0.2179313600063324, 0.004581399727612734, 0.07587551325559616, -0.21212519705295563, 0.05498393252491951, -0.08612266182899475, -0.11967160552740097, 0.02999687008559704, -0.05089185759425163, 0.06585539877414703, 0.020057274028658867, -0.05874957889318466, -0.006972689181566238, 0.02965640276670456, 0.12098202109336853, -0.006153969094157219, 0.04792219400405884, 0.009495295584201813, 0.10890930891036987, 0.0007231731433421373, 0.10404253005981445, -0.027171077206730843, -0.027045710012316704, 0.02357383631169796, -0.059869587421417236, 0.01598692126572132, -0.03851732611656189, -0.11997092515230179, -0.06812100857496262, 0.03373051434755325, 0.06333016604185104, 0.03545161336660385, 0.005438535008579493, -0.08849228918552399, -0.007433024700731039, 0.10224710404872894, -0.05897065997123718, -0.004268678370863199, -0.01591586321592331, 0.038540229201316833, 0.13936832547187805, -0.021501589566469193, -0.01419304683804512, -0.020644504576921463, 0.08126842230558395, -0.10849398374557495, 0.018595246598124504, -0.025933656841516495, -0.04593171551823616, 0.0505945160984993, -0.1245754212141037, 0.06642063707113266, -0.147194504737854, -0.07673521339893341, 0.0536196269094944, 0.025310397148132324, -0.003501972183585167, 0.01795174553990364, 0.0027961861342191696, -0.030770564451813698, 0.015020973980426788, -0.0422172024846077, -0.0651516318321228, -0.05607139319181442, 0.10225280374288559, 0.04112497717142105, 0.07120849937200546, -0.13147695362567902, 0.05336052551865578, -0.06783883273601532, 0.0485074557363987, -0.14066579937934875, -0.046347979456186295, -0.0287362951785326, 0.14323510229587555, -0.013344613835215569, -0.053441837430000305, -0.10450718551874161, 0.022009389474987984, 0.007840972393751144, 0.18886256217956543, -0.09071341156959534, -0.10843715071678162, 0.18689537048339844, -0.10198447108268738, -0.1726302057504654, 0.05728599429130554, 0.02220352366566658, -0.03815225139260292, 0.04540764540433884, 0.20301121473312378, 0.05202312022447586, -0.09586964547634125, 0.029769571498036385, 0.14187216758728027, -0.11081631481647491, -0.13851003348827362, 0.040276408195495605, -0.034767452627420425, -0.05497507005929947, 0.030679399147629738, 0.03215380012989044, 0.07701677083969116, -0.06700035184621811, -0.03578190878033638, -0.01767905242741108, -0.03039599396288395, 0.055243175476789474, 0.06633411347866058, 0.08818510919809341, -0.04588504135608673, 0.007748438511043787, -0.013850267045199871, 0.03500987961888313, 0.048823803663253784, 0.04814198985695839, -0.06215301901102066, 0.17545847594738007, -0.1133657693862915, -0.008306343108415604, -0.21150995790958405, -0.0238170325756073, -0.004136552102863789, 0.041243214160203934, -0.03375236317515373, 0.13010145723819733, 0.10013195872306824, -0.0788409486413002, -0.010154977440834045, -0.04339969903230667, 0.061202824115753174, 0.03457923233509064, -0.043003443628549576, -0.0836704894900322, -0.012915034778416157, -0.06002546846866608, -0.059834644198417664, -0.02961033396422863, -0.004326601512730122, 0.08488457649946213, 0.12454185634851456, -0.00016867590602487326, 0.024933479726314545, -0.03948478773236275, 0.037499215453863144, -0.018859054893255234, 0.01885259710252285, 0.08219803869724274, -0.01644446887075901, -0.06384731829166412, 0.1318441927433014, -0.0855514407157898, 0.3487188518047333, 0.18892249464988708, -0.27618739008903503, 0.006902303081005812, 0.029389532282948494, -0.0026109996251761913, 0.014575359411537647, 0.11949039250612259, -0.03922911733388901, 0.062396954745054245, 0.0025369450449943542, 0.12902171909809113, -0.0508602038025856, -0.033415090292692184, 0.0249867495149374, -0.03515411540865898, -0.07290062308311462, 0.10202096402645111, 0.08711656183004379, -0.180761456489563, 0.1511293202638626, 0.30242636799812317, 0.03314601257443428, 0.11410599946975708, -0.03690657392144203, -0.05235358700156212, -0.03082047961652279, -0.01201324351131916, -0.043858740478754044, 0.1080435961484909, -0.2538885176181793, -0.03936713933944702, 0.05124905705451965, 0.012423398904502392, 0.08001735061407089, -0.1460610181093216, -0.053445763885974884, 0.026083463802933693, 0.026100842282176018, -0.10830634087324142, 0.07954221963882446, 0.021504677832126617, 0.08687282353639603, 0.025744056329131126, -0.059884410351514816, 0.08196493983268738, 0.015397211536765099, -0.04915406182408333, 0.16686247289180756, -0.12409795075654984, -0.2257877141237259, -0.11664390563964844, -0.12491423636674881, 0.008454973809421062, -0.0023233324754983187, 0.07112006098031998, -0.08809921890497208, -0.012993231415748596, 0.06108762323856354, 0.0018656010506674647, -0.1744661182165146, 0.015786241739988327, -0.03318445384502411, 0.01124581415206194, -0.05434492602944374, -0.07876390963792801, -0.07911309599876404, -0.06438148021697998, 0.007182405795902014, 0.0677129402756691, -0.09851407259702682, 0.0925113633275032, 0.08802729099988937, 0.042357511818408966, 0.09230674803256989, 0.016582395881414413, 0.17127063870429993, -0.0583144873380661, -0.05300109088420868, 0.20761331915855408, -0.025634869933128357, 0.08477910608053207, 0.09679362177848816, 0.053289465606212616, -0.06741905212402344, -0.07448815554380417, -0.04930181801319122, -0.06593531370162964, -0.179812952876091, -0.05405620113015175, -0.14092078804969788, 0.038798511028289795, 0.005079487804323435, 0.028489721938967705, 0.085450679063797, 0.05773653835058212, 0.03857756778597832, -0.03305792436003685, -0.09110341966152191, 0.03834441676735878, 0.1840040683746338, -0.04391997680068016, 0.07047665119171143, -0.04736318811774254, -0.06421921402215958, 0.05257343128323555, 0.01653277315199375, 0.13118630647659302, 0.11425095051527023, 0.014209060929715633, 0.029467696323990822, 0.23947075009346008, 0.11235342174768448, 0.13907180726528168, -0.010832889936864376, -0.07383964210748672, -0.009215357713401318, -0.018297746777534485, -0.04301859810948372, 0.033220548182725906, 0.1485837996006012, -0.06454538553953171, -0.07301715761423111, -0.20890292525291443, 0.02285357192158699, 0.051147330552339554, 0.08562883734703064, -0.20926430821418762, 0.0016009550308808684, 0.043332166969776154, 0.017098819836974144, -0.06377578526735306, 0.06606162339448929, -0.04056777432560921, -0.09335853904485703, 0.053249627351760864, -0.04273981973528862, 0.08419478684663773, 0.004190561827272177, 0.056072309613227844, -0.04894533380866051, -0.10751816630363464, 0.029980553314089775, 0.050822943449020386, -0.207864448428154, 0.2918338477611542, 0.0173163041472435, -0.06392565369606018, -0.025285402312874794, -0.01208737213164568, 0.01938406191766262, 0.15210925042629242, 0.14114448428153992, 0.03778821974992752, -0.016729185357689857, -0.1348063200712204, 0.015916889533400536, 0.024637171998620033, 0.12386592477560043, -0.038766227662563324, -0.012828505598008633, 0.0009567789384163916, -0.01512591727077961, -0.019938958808779716, 0.10841544717550278, 0.05402733385562897, -0.10552655160427094, 0.08804382383823395, -0.017080333083868027, 0.025977037847042084, -0.019179826602339745, -0.025044649839401245, -0.02949359454214573, 0.1441551297903061, -0.06704747676849365, -0.04306119680404663, -0.08745540678501129, -0.1097072884440422, 0.1230001151561737, -0.09775622934103012, 0.04232506826519966, -0.05407983437180519, -0.04539550468325615, -0.06501245498657227, -0.16073577105998993, 0.14333052933216095, -0.10830579698085785, 0.01444137841463089, -0.05606876686215401, 0.2120080292224884, -0.056805893778800964, 0.02027951180934906, -0.013739514164626598, 0.010362411849200726, -0.10224050283432007, -0.05266823619604111, 0.03724734112620354, -0.03850552439689636, 0.07533317059278488, 0.03432679921388626, -0.016752785071730614, 0.03353896364569664, -0.029414648190140724, 0.030001893639564514, 0.18574464321136475, 0.2316141575574875, -0.0357239693403244, 0.08649225533008575, 0.17487342655658722, -0.010921957902610302, -0.2283831238746643, -0.0699789822101593, -0.1302732229232788, -0.03624501824378967, -0.010879440233111382, -0.09885629266500473, 0.10273081064224243, 0.04715852439403534, -0.022894294932484627, 0.168115496635437, -0.24003607034683228, -0.05963614955544472, 0.14104697108268738, 0.02288833260536194, 0.46342021226882935, -0.11979185044765472, -0.0819467157125473, 0.0196115430444479, -0.3142683804035187, 0.06473752111196518, 0.05405024066567421, 0.06388456374406815, -0.05948697775602341, 0.03940458595752716, 0.03879542276263237, -0.0757783055305481, 0.1226213201880455, -0.004297354258596897, 0.05241956189274788, -0.08072523027658463, -0.20331327617168427, 0.0717335119843483, -0.018951717764139175, -0.016783446073532104, 0.020966697484254837, 0.019377971068024635, -0.15896949172019958, -0.002016960410401225, -0.14208710193634033, 0.04544227570295334, 0.006398792378604412, -0.025723813101649284, -0.011647216975688934, -0.027964241802692413, -0.017609110102057457, -0.0069755748845636845, 0.26040080189704895, -0.025027897208929062, 0.13802772760391235, 0.029972586780786514, 0.05239119753241539, -0.21530357003211975, -0.15472231805324554, -0.05335398018360138, -0.06265203654766083, 0.09587468206882477, -0.061742719262838364, 0.032694343477487564, 0.14459474384784698, 0.026699231937527657, 0.03517558053135872, 0.10640503466129303, -0.012832029722630978, -0.018315479159355164, 0.11667366325855255, -0.20231564342975616, -0.015774251893162727, -0.051150016486644745, -0.03699042275547981, 0.08262424916028976, 0.08252967149019241, 0.08971253037452698, 0.04608093574643135, -0.019441023468971252, -0.024626923725008965, -0.027507493272423744, -0.09484768658876419, 0.03559431433677673, 0.044429998844861984, 0.037557389587163925, -0.12861326336860657, 0.06147812306880951, -0.037607330828905106, -0.26366621255874634, -0.04103293642401695, 0.09570204466581345, -0.11451990902423859, -0.08726030588150024, -0.1182594820857048, 0.09500916302204132, -0.14083819091320038, -0.038362205028533936, -0.07914939522743225, -0.09546496719121933, 0.06230749562382698, 0.23389580845832825, 0.07735003530979156, 0.0710088461637497, -0.029100118204951286, -0.012407861649990082, -0.01144261285662651, -0.05275310203433037, -0.01759655587375164, 0.023921698331832886, -0.12560778856277466, -0.013559806160628796, -0.013486742973327637, 0.15631785988807678, -0.055667150765657425, -0.0365595743060112, -0.12673941254615784, 0.05022534728050232, -0.049756068736314774, -0.08731546252965927, -0.12428657710552216, -0.0672968178987503, 0.007318590302020311, -0.07937844097614288, -0.06056585535407066, -0.015529913827776909, -0.13069379329681396, 0.020760050043463707, 0.03659662976861, -0.007142716087400913, -0.046244364231824875, -0.029971029609441757, 0.10680016875267029, -0.047302499413490295, 0.07208574563264847, 0.20777828991413116, -0.028721116483211517, 0.11721441894769669, -0.06194958835840225, -0.1370587795972824, 0.0791185200214386, 0.026169242337346077, 0.05945710092782974, 0.046415362507104874, 0.002418288728222251, 0.041694387793540955, -0.002869764808565378, 0.019882885739207268, -0.016951939091086388, -0.11306088417768478, -0.014924708753824234, 0.027374330908060074, -0.1645534634590149, -0.04427645727992058, -0.058188293129205704, 0.14586800336837769, 0.01167827844619751, 0.07974617928266525, 0.017768386751413345, 0.06431800872087479, -0.06838924437761307, 0.007290108595043421, -0.00831597950309515, -0.17296163737773895, 0.01126493327319622, -0.07580786943435669, 0.022379295900464058, -0.022625070065259933, 0.17479996383190155, -0.08440089970827103, 0.004486354999244213, 0.019596362486481667, 0.016740456223487854, 0.02866867370903492, -0.0038762232288718224, 0.23681113123893738, 0.07684721797704697, -0.06258927285671234, -0.08628975600004196, 0.12226621806621552, 0.0001629665493965149, 0.039667826145887375, 0.1165534034371376, 0.1170000433921814, 0.05032447353005409, 0.10348781198263168, 0.04549572244286537, 0.0018613578286021948, -0.09500051289796829, -0.2227313369512558, -0.020385025069117546, 0.06044135242700577, 0.04531753808259964, 0.12002400308847427, 0.17963695526123047, -0.012376872822642326, 0.06637980788946152, -0.037959929555654526, -0.01946997083723545, -0.11267480999231339, -0.030351413413882256, -0.05091249570250511, -0.1088307797908783, 0.017245611175894737, -0.05798685923218727, 0.04666363447904587, 0.12466920167207718, 0.02089482732117176, -0.0257126335054636, 0.12925298511981964, 0.08047952502965927, -0.07481860369443893, 0.0555376335978508, -0.00014855811605229974, -0.020161455497145653, 0.014587054029107094, 0.004160505253821611, -0.07065138220787048, -0.1418607383966446, -0.05545559152960777, 0.00020442910317797214, -0.08986081182956696, -0.016142096370458603, -0.067357137799263, -0.12008479982614517, -0.03386626020073891, 0.03613641485571861, -0.010786362923681736, 0.09687032550573349, -0.009751899167895317, 0.03597332537174225, 0.0020796728786081076, 0.14262983202934265, -0.07565227150917053, 0.021453410387039185, 0.006869638338685036, 0.22027218341827393, 0.0729207843542099, 0.0838594064116478, -0.0027615411672741175, 0.010281682014465332, -0.018659299239516258, 0.2642938792705536, 0.20999711751937866, -0.028855949640274048, 0.041933994740247726, 0.08860702067613602, 0.03631008788943291, 0.047913722693920135, 0.038745854049921036, 0.1007908508181572, 0.27238327264785767, -0.08540467172861099, -0.036447372287511826, -0.056356463581323624, -0.0012302889954298735, -0.041406791657209396, 0.037896692752838135, 0.08417123556137085, -0.05977547913789749, -0.05704303830862045, 0.06710465997457504, -0.09053710103034973, 0.07061377167701721, 0.12758329510688782, -0.22792211174964905, -0.05176427960395813, -0.04886292293667793, 0.1434927135705948, 0.016881901770830154, 0.11930220574140549, -0.0475737527012825, -0.11599941551685333, 0.06925852596759796, 0.030015310272574425, -0.2499723881483078, -0.11898386478424072, 0.10404583066701889, -0.032194603234529495, 0.030308498069643974, -0.03730452060699463, 0.023605037480592728, 0.09466655552387238, 0.07263300567865372, -0.018623366951942444, 0.032119713723659515, 0.04120820388197899, -0.10121724754571915, -0.1060381829738617, 0.018017487600445747, 0.032882269471883774, -0.07986870408058167, 0.027621354907751083, -0.17488804459571838, 0.041778646409511566, -0.02065517194569111, -0.05111772194504738, -0.009344843216240406, 0.014476836659014225, -0.04105009511113167, 0.06711329519748688, 0.08106669783592224, 0.007125701289623976, -0.05910898372530937, -0.04801320657134056, -0.016710275784134865, 0.1112569123506546, -0.02839989773929119, -0.14883117377758026, -0.05548941716551781, -0.05055833235383034, 0.08547096699476242, -0.03579825907945633, -0.08951181918382645, -0.05560171231627464, -0.019530367106199265, 0.010325874201953411, -0.0847683846950531, 0.015125541016459465, 0.03448504954576492, 0.04278584569692612, 0.023083005100488663, -0.07075971364974976, 0.05154150351881981, 0.09526065737009048, -0.13674476742744446, -0.09147614240646362 ]
null
null
generic
ERROR: type should be string, got "\nhttps://github.com/borisdayma/dalle-mini"
{"language": ["en"], "library_name": "generic", "pipeline_tag": "text-to-image"}
text-to-image
gsurma/ai_dreamer
[ "generic", "jax", "bart", "text-to-image", "en", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #generic #jax #bart #text-to-image #en #region-us
URL
[]
[ "TAGS\n#generic #jax #bart #text-to-image #en #region-us \n" ]
[ 22 ]
[ "passage: TAGS\n#generic #jax #bart #text-to-image #en #region-us \n" ]
[ 0.04801877960562706, -0.019155161455273628, -0.010028664022684097, -0.010135279968380928, 0.0834232047200203, 0.0847756564617157, 0.11658096313476562, 0.10454274713993073, 0.12467126548290253, -0.011149024590849876, 0.17957456409931183, 0.03909957781434059, 0.019736377522349358, 0.03497234359383583, 0.0633699893951416, -0.2697145640850067, 0.0279313325881958, 0.0020346534438431263, 0.07809093594551086, 0.06465808302164078, -0.008751461282372475, -0.06766188889741898, 0.0851474478840828, -0.06847529113292694, -0.1611340194940567, 0.07078199833631516, 0.03140794113278389, -0.004883377812802792, 0.06447737663984299, -0.01897921971976757, 0.10342410206794739, 0.01836390793323517, 0.0031408267095685005, -0.20107115805149078, 0.04239562898874283, -0.020686594769358635, -0.09490878880023956, 0.04460204392671585, 0.1362156718969345, -0.12300462275743484, 0.07937018573284149, 0.09339598566293716, -0.03912791982293129, 0.046460606157779694, -0.201346293091774, -0.12820032238960266, 0.051624078303575516, 0.04892764240503311, 0.05699862912297249, -0.029311247169971466, 0.03414037451148033, -0.022718112915754318, -0.12334778904914856, 0.04771487042307854, 0.17118403315544128, -0.1951715052127838, -0.05100003257393837, 0.12713806331157684, 0.0778764933347702, 0.14359904825687408, -0.11124146729707718, 0.10104579478502274, 0.002582399407401681, -0.010381564497947693, -0.05445414409041405, -0.08870075643062592, -0.12732824683189392, 0.10962262749671936, -0.026816871017217636, -0.03876123204827309, 0.2765183448791504, 0.031016429886221886, 0.03316406160593033, 0.06595440208911896, -0.016971813514828682, 0.0032837092876434326, -0.05600623041391373, 0.039284054189920425, -0.0022365658078342676, 0.10469779372215271, -0.04212678223848343, -0.0711226612329483, -0.13257285952568054, -0.046920355409383774, -0.1476818472146988, 0.07345451414585114, -0.05613945052027702, 0.1148144081234932, -0.18748129904270172, -0.010700641199946404, -0.09724339097738266, -0.06287053972482681, 0.09921845048666, -0.09589553624391556, 0.1171901598572731, 0.07230096310377121, 0.034763727337121964, -0.08252386003732681, 0.130829855799675, 0.052311308681964874, 0.08329804986715317, 0.05461352318525314, -0.0695180743932724, 0.17506882548332214, 0.036287035793066025, -0.00822087936103344, 0.10569418221712112, -0.011511753313243389, -0.03704816848039627, -0.06775335222482681, 0.01181900966912508, -0.07426539063453674, -0.16527388989925385, 0.04679768905043602, -0.056712113320827484, 0.02786220796406269, -0.00519357156008482, -0.0546545647084713, -0.11143447458744049, 0.010492437519133091, 0.06211245805025101, 0.011460179463028908, -0.007959658280014992, -0.028996825218200684, 0.02543894201517105, 0.032768167555332184, -0.07378470152616501, -0.00023737034644000232, 0.08146632462739944, 0.03974374756217003, -0.12116336077451706, 0.009524272754788399, -0.053011830896139145, 0.02121133916079998, -0.008658208884298801, 0.0069610546343028545, 0.007822634652256966, -0.12094127386808395, -0.08606410771608353, 0.03744777292013168, 0.04367721825838089, -0.0338345430791378, 0.09328687936067581, -0.02694856747984886, 0.0578828901052475, 0.020334871485829353, -0.021471340209245682, -0.028460552915930748, -0.10125787556171417, 0.10701301693916321, -0.06183477118611336, 0.1535542905330658, -0.07472763955593109, -0.012272078543901443, -0.10284081846475601, -0.003788145026192069, -0.15583395957946777, -0.015523686073720455, -0.04463239014148712, 0.19645871222019196, 0.039949335157871246, 0.03716490417718887, -0.2279864102602005, 0.09437359124422073, -0.09135022759437561, 0.24393749237060547, -0.14942236244678497, -0.09483066201210022, 0.26847338676452637, -0.05934640020132065, -0.1021558865904808, 0.04896833002567291, 0.005821082275360823, 0.06632296741008759, 0.06428061425685883, 0.37383031845092773, -0.16263291239738464, -0.0812111422419548, 0.1161680743098259, 0.15968774259090424, -0.08900973200798035, 0.00507704121991992, 0.04251745715737343, -0.050925977528095245, -0.10745697468519211, 0.009993846528232098, 0.04375217482447624, 0.09995413571596146, -0.06411898136138916, -0.018983693793416023, 0.06675824522972107, 0.016289062798023224, 0.04357355087995529, 0.04164070636034012, 0.07188671082258224, -0.11862655729055405, -0.03819238767027855, -0.08485341817140579, 0.001895697321742773, 0.09082666039466858, -0.025823308154940605, 0.00028109492268413305, 0.08752492815256119, -0.004005163908004761, -0.002456823829561472, -0.04792319983243942, -0.04076370969414711, -0.025517504662275314, 0.10726170241832733, 0.08399046957492828, 0.04614255204796791, 0.0722944438457489, -0.0714312344789505, -0.017127923667430878, -0.015460639260709286, 0.06878261268138885, -0.031236082315444946, 0.05870696157217026, -0.1306631863117218, 0.09931223094463348, -0.03526339307427406, -0.07182484120130539, -0.11382946372032166, -0.03738025203347206, 0.16656449437141418, 0.04405821114778519, 0.037648726254701614, -0.013026918284595013, -0.00615287572145462, -0.033172059804201126, -0.025515146553516388, -0.022894157096743584, 0.09718649089336395, -0.03428909182548523, -0.047910407185554504, 0.1641445904970169, -0.09218795597553253, 0.15169404447078705, 0.16983769834041595, -0.3391423225402832, -0.04749469459056854, -0.04393988102674484, 0.006769870407879353, 0.009520978666841984, 0.004318090155720711, -0.10408126562833786, -0.0050027151592075825, -0.05102958157658577, 0.028897762298583984, -0.03889891877770424, 0.008888227865099907, -0.024274615570902824, -0.04248340427875519, -0.07383330166339874, -0.00018043759337160736, 0.09126578271389008, -0.18341904878616333, 0.16149023175239563, 0.3032133877277374, 0.05831964686512947, 0.3063763380050659, 0.03766310214996338, 0.03269043192267418, 0.051965244114398956, -0.01727646216750145, -0.041919413954019547, 0.21827024221420288, -0.1888347566127777, -0.07347147166728973, 0.0037704419810324907, -0.06355787813663483, 0.055887505412101746, -0.12746597826480865, -0.10109635442495346, -0.05088627710938454, -0.0018692990997806191, -0.0080862483009696, -0.007383930031210184, -0.0207865908741951, 0.08920466154813766, 0.030627306550741196, -0.0655209869146347, 0.06226145476102829, -0.026038896292448044, -0.0427616648375988, 0.09198278933763504, -0.13440603017807007, -0.284518301486969, -0.09685403853654861, -0.02471371553838253, -0.005337988026440144, 0.04699987173080444, 0.037340398877859116, -0.1616775095462799, 0.0013056534808129072, 0.022021647542715073, 0.05716251581907272, -0.11053019016981125, -0.04201707988977432, -0.13674813508987427, 0.042838308960199356, -0.0699642226099968, -0.049415383487939835, -0.05673530325293541, -0.0666567012667656, -0.0236981138586998, 0.1400907039642334, -0.16804029047489166, 0.10772375017404556, 0.09045683592557907, 0.0535074882209301, 0.09720849245786667, -0.010885431431233883, 0.06636636704206467, -0.08143358677625656, -0.023145917803049088, 0.03790923207998276, 0.010913372971117496, 0.054288752377033234, 0.12246043980121613, 0.10370120406150818, -0.10388951003551483, -0.038464680314064026, 0.0011741889175027609, -0.11825390160083771, -0.044581059366464615, -0.019401971250772476, -0.0738888755440712, 0.14405733346939087, 0.11185618489980698, 0.05636639893054962, 0.12335196137428284, 0.04765466973185539, 0.020971281453967094, -0.04670458659529686, 0.04622722417116165, 0.06990115344524384, -0.02746649645268917, -0.059414785355329514, 0.057079117745161057, -0.03066653199493885, -0.09918146580457687, 0.13827446103096008, 0.08282782137393951, 0.01863943412899971, 0.1713290512561798, 0.052875321358442307, 0.03700081259012222, 0.06535082310438156, 0.13956131041049957, 0.04957269877195358, -0.023688506335020065, -0.06494000554084778, -0.06104760989546776, -0.04998479038476944, 0.01253804937005043, 0.0548185296356678, 0.02409585565328598, -0.13007314503192902, 0.0770014151930809, -0.25697630643844604, 0.0842340737581253, -0.08732014149427414, 0.03859299048781395, -0.15585511922836304, 0.09642656147480011, 0.12516643106937408, 0.05796336382627487, -0.09491094946861267, 0.12413237988948822, 0.10105901211500168, -0.09756095707416534, 0.08230321109294891, 0.025015346705913544, 0.11167459934949875, 0.009965790435671806, 0.06959028542041779, -0.05661303550004959, -0.14624907076358795, 0.006137806456536055, 0.05460699647665024, -0.11087687313556671, 0.19724717736244202, 0.03774819150567055, -0.11161328107118607, -0.0120700066909194, -0.06909053772687912, 0.06168821081519127, 0.06851305067539215, 0.13663941621780396, 0.05899876728653908, -0.14196358621120453, -0.055571939796209335, 0.03213822469115257, 0.02659332938492298, 0.17474839091300964, -0.11437607556581497, -0.12228798121213913, 0.02974766120314598, -0.004810344893485308, -0.047334954142570496, 0.05116581171751022, -0.025458822026848793, -0.083467997610569, 0.026378341019153595, -0.05210401862859726, 0.026028268039226532, 0.02877151593565941, 0.05241599306464195, 0.05752923712134361, 0.06192182004451752, -0.004499843344092369, 0.02651118114590645, -0.04570258408784866, -0.06920497119426727, -0.021073291078209877, 0.0003770062467083335, -0.017512725666165352, -0.06899269670248032, -0.004338618367910385, -0.09979218989610672, -0.14990422129631042, 0.14511480927467346, -0.04495648294687271, 0.07026802748441696, -0.14896418154239655, 0.08293994516134262, -0.05844680964946747, 0.033381637185811996, -0.009692049585282803, 0.038971204310655594, -0.07795107364654541, -0.06961596757173538, 0.15337303280830383, -0.17293573915958405, -0.031854066997766495, 0.05067173019051552, -0.08422613143920898, -0.032594118267297745, -0.0169423446059227, -0.01959906704723835, 0.11197470128536224, 0.24610210955142975, -0.0146176153793931, 0.12340617924928665, 0.1347494274377823, -0.06586199253797531, -0.2931784391403198, -0.05894088000059128, -0.20592913031578064, -0.03145167976617813, 0.12636201083660126, -0.18580125272274017, 0.10415560752153397, 0.058331526815891266, -0.04813836142420769, 0.29175156354904175, -0.19948671758174896, -0.035595640540122986, 0.07289861142635345, 0.037574008107185364, 0.4481622278690338, -0.2175368219614029, -0.09124258160591125, -0.07504904270172119, -0.07849892228841782, 0.13746999204158783, 0.017871173098683357, 0.04752970114350319, -0.003186155343428254, 0.03926381096243858, 0.03696180507540703, 0.012654717080295086, 0.1657935231924057, -0.043308522552251816, 0.07280300557613373, -0.09663070738315582, -0.16668501496315002, 0.1059340238571167, 0.020925603806972504, -0.12286675721406937, -0.11081050336360931, -0.0733046904206276, -0.17006778717041016, 0.06674852967262268, -0.07617707550525665, 0.04468115419149399, 0.021602604538202286, -0.05235167220234871, -0.017835434526205063, 0.006420599762350321, -0.11424677073955536, 0.05324411764740944, 0.3171515464782715, -0.11023276299238205, 0.24589872360229492, -0.01930364966392517, -0.031182490289211273, -0.07921811938285828, -0.03872159495949745, -0.07332495599985123, -0.04722044616937637, 0.10409777611494064, -0.14718171954154968, 0.04747908562421799, 0.05333792418241501, 0.02728736586868763, 0.05515964329242706, 0.06809429824352264, -0.005220958963036537, 0.04188281297683716, 0.20963247120380402, -0.19126015901565552, -0.03338336572051048, -0.0634448379278183, 0.08791203796863556, 0.18805167078971863, -0.046269599348306656, 0.04111160710453987, 0.10817214101552963, -0.053704243153333664, 0.025366749614477158, 0.013283314183354378, -0.0767260491847992, -0.11921921372413635, 0.06827253848314285, 0.006818756926804781, -0.035853032022714615, 0.09334428608417511, 0.032707925885915756, -0.13060398399829865, -0.10691888630390167, 0.21130803227424622, -0.03254879638552666, -0.06734688580036163, -0.03267568349838257, 0.21095235645771027, -0.09559608995914459, 0.032259587198495865, -0.037234265357255936, -0.03846689686179161, -0.041996393352746964, 0.14632675051689148, 0.018897520378232002, 0.03575202077627182, 0.08652560412883759, 0.030409744009375572, 0.13063694536685944, -0.04068303108215332, -0.0755455493927002, 0.03603387251496315, -0.01363876648247242, -0.15004274249076843, 0.028076328337192535, 0.06941387057304382, -0.09658336639404297, -0.08837379515171051, -0.21294385194778442, 0.02946930006146431, -0.05004451051354408, -0.010580424219369888, -0.06349071860313416, -0.06933893263339996, 0.020959386602044106, 0.005781944375485182, -0.05292971804738045, -0.0757085531949997, -0.11819032579660416, 0.021103225648403168, 0.05657731741666794, 0.05810219794511795, -0.006649713031947613, -0.02045968547463417, 0.1360166072845459, -0.03509688004851341, 0.07577966153621674, 0.125294029712677, 0.02352212555706501, 0.12173508107662201, -0.23024119436740875, -0.08092781156301498, 0.0595594085752964, -0.004616517573595047, -0.041348930448293686, 0.2625012993812561, -0.029195349663496017, -0.023690734058618546, -0.0026877957861870527, 0.033484455198049545, -0.0345560759305954, -0.08756007254123688, 0.054382599890232086, 0.006867656949907541, -0.17659518122673035, -0.030979670584201813, 0.003992792684584856, 0.15958517789840698, -0.018581705167889595, -0.031369999051094055, -0.013088151812553406, 0.05204349383711815, -0.0344117134809494, 0.06017804518342018, -0.004664658103138208, -0.16262394189834595, -0.08585488051176071, -0.04703614488244057, -0.04938064143061638, -0.07064329832792282, 0.23529881238937378, 0.03933032602071762, -0.04999140277504921, 0.02512754313647747, 0.1794443428516388, 0.05387556180357933, 0.02471078746020794, 0.15886251628398895, 0.030577732250094414, -0.04648617282509804, -0.1408044695854187, 0.05479228496551514, 0.01840289682149887, 0.027876006439328194, 0.0024010944180190563, 0.0975344330072403, -0.01186025608330965, 0.060070984065532684, 0.04457474499940872, 0.028943846002221107, 0.07545530050992966, -0.006925258319824934, 0.14354687929153442, 0.029036249965429306, 0.004055696539580822, 0.03909238427877426, 0.24653778970241547, -0.013175394386053085, 0.0481838583946228, -0.04857790842652321, 0.009947194717824459, -0.06206662952899933, -0.16154919564723969, -0.003868203843012452, -0.17745144665241241, 0.053602639585733414, -0.040335774421691895, 0.04116157069802284, 0.17087367177009583, 0.037709932774305344, -0.013589675538241863, 0.037781085819005966, -0.030022066086530685, -0.1409156769514084, 0.09190559387207031, -0.014309658668935299, 0.004684075713157654, -0.04827792942523956, -0.027836758643388748, -0.02392273023724556, -0.046000901609659195, -0.05638020858168602, 0.019214468076825142, 0.04806136339902878, -0.07705683261156082, -0.15579470992088318, -0.11796627938747406, -0.036337919533252716, -0.04721079021692276, -0.1267484873533249, 0.1308847963809967, 0.017541736364364624, 0.04453263431787491, 0.022195886820554733, 0.19674274325370789, -0.022478850558400154, 0.10395150631666183, 0.051258884370326996, 0.003224015235900879, -0.09269828349351883, 0.13383625447750092, -0.11933163553476334, 0.00016830489039421082, -0.011526315473020077, 0.20135261118412018, 0.25368833541870117, -0.1265263855457306, -0.0278277900069952, 0.003813587361946702, 0.03465381637215614, 0.11516272276639938, 0.06585469841957092, -0.013885759748518467, 0.22840771079063416, -0.08350494503974915, -0.007934760302305222, 0.003954561427235603, -0.010024397633969784, -0.04645074903964996, -0.08418604731559753, 0.13110725581645966, -0.0008461028337478638, -0.10657420754432678, 0.1383098065853119, -0.18573834002017975, 0.1621674746274948, 0.08944757282733917, -0.220947727560997, -0.014501960016787052, -0.04212792590260506, 0.14298060536384583, -0.0026193088851869106, 0.0926356315612793, -0.09357166290283203, -0.1372741311788559, -0.16759389638900757, 0.060100238770246506, -0.31818005442619324, -0.21083012223243713, -0.016851894557476044, -0.14559081196784973, 0.16134054958820343, -0.0695316344499588, -0.05033338814973831, 0.015204507857561111, -0.02624637261033058, 0.04747755080461502, -0.017437878996133804, 0.020769478753209114, 0.04698522388935089, -0.1788043975830078, 0.09850834310054779, 0.012300243601202965, -0.021131910383701324, 0.09924691170454025, 0.00010818472219398245, -0.0029360023327171803, 0.05642128735780716, -0.11373559385538101, 0.03257002308964729, 0.05787249654531479, -0.14736241102218628, 0.06526868790388107, 0.007737188600003719, 0.05579175427556038, -0.09942102432250977, -0.03914434462785721, -0.026530670002102852, 0.11192484200000763, -0.04851088672876358, -0.07919816672801971, 0.07331762462854385, -0.11976640671491623, 0.0572969913482666, -0.03942714259028435, -0.16721969842910767, 0.016412487253546715, -0.07478876411914825, 0.12277032434940338, -0.09491598606109619, 0.08324701339006424, 0.1828184723854065, 0.027379680424928665, -0.013753397390246391, -0.23893843591213226, 0.1487179696559906, 0.04328298196196556, 0.00588185852393508, -0.06753507256507874 ]
null
null
transformers
# dummy model This is a dummy model
{}
fill-mask
gulabpatel/new-dummy-model
[ "transformers", "pytorch", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #camembert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
# dummy model This is a dummy model
[ "# dummy model\n\nThis is a dummy model" ]
[ "TAGS\n#transformers #pytorch #camembert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n", "# dummy model\n\nThis is a dummy model" ]
[ 38, 10 ]
[ "passage: TAGS\n#transformers #pytorch #camembert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n# dummy model\n\nThis is a dummy model" ]
[ -0.014209356158971786, -0.037415288388729095, -0.00685728108510375, 0.05309347063302994, 0.1059279814362526, 0.04140019416809082, 0.19708487391471863, 0.04393591359257698, 0.1193893775343895, 0.005202698055654764, 0.16310223937034607, 0.17596441507339478, 0.0007122801034711301, 0.1540554165840149, 0.006688110064715147, -0.32703301310539246, 0.09819912165403366, -0.00611902866512537, -0.023742783814668655, 0.08219955861568451, 0.05125019699335098, -0.07842792570590973, 0.06982117146253586, 0.02507665939629078, -0.11071137338876724, 0.02534458227455616, 0.03235630318522453, -0.06939219683408737, 0.09796794503927231, 0.022460805252194405, 0.1718045175075531, 0.005573968403041363, -0.016352089121937752, -0.06398411095142365, 0.04203621670603752, -0.017813388258218765, -0.033549465239048004, 0.0440828762948513, -0.04671806842088699, -0.006306247785687447, 0.1294514238834381, 0.08436225354671478, 0.023554019629955292, 0.06823510676622391, -0.13124699890613556, -0.047685183584690094, -0.004373439121991396, 0.07967723160982132, 0.03686671704053879, 0.09327639639377594, -0.025480719283223152, 0.29156064987182617, -0.11530566960573196, 0.07085113227367401, 0.15780343115329742, -0.21069802343845367, -0.01601068116724491, 0.1695462167263031, 0.08039383590221405, -0.10187391191720963, -0.028103239834308624, 0.058956924825906754, 0.05115175619721413, 0.0644945576786995, -0.0007913184235803783, -0.05287780985236168, 0.014144600369036198, -0.023186951875686646, -0.10825084149837494, -0.03886314108967781, 0.10047006607055664, -0.008701452054083347, 0.0070908996276557446, -0.01880834810435772, -0.10444667935371399, 0.0009346100268885493, -0.03416399657726288, -0.00635195430368185, -0.02148636244237423, 0.0198967345058918, -0.004257185850292444, 0.007043792866170406, -0.0662229135632515, 0.0026232788804918528, -0.21266259253025055, 0.19508157670497894, 0.008570360019803047, 0.07631834596395493, -0.1904851794242859, 0.06312578171491623, -0.11748988181352615, -0.1182430163025856, 0.05747910588979721, -0.1223430335521698, -0.003001168370246887, 0.015525531023740768, -0.07295850664377213, -0.04064566269516945, 0.06797808408737183, 0.09454764425754547, 0.01877431571483612, 0.032964643090963364, 0.06631205976009369, 0.10038571804761887, 0.07047606259584427, 0.07420046627521515, -0.08687639236450195, 0.08242271840572357, 0.012213824316859245, -0.007802226580679417, 0.07012586295604706, -0.03837202489376068, -0.10191735625267029, -0.013142360374331474, -0.03467470407485962, 0.03823859989643097, 0.0540582537651062, 0.03875907510519028, -0.10503795742988586, -0.026468025520443916, 0.0886145830154419, -0.00660686707124114, -0.027213983237743378, -0.0231720432639122, -0.02089879661798477, 0.15778973698616028, 0.07596981525421143, 0.03424413502216339, -0.007982300594449043, 0.07278311252593994, -0.08000360429286957, -0.026542412117123604, -0.08799577504396439, -0.08098641782999039, 0.0257575623691082, -0.07931661605834961, 0.06368362158536911, -0.1298733800649643, -0.17961221933364868, 0.05550018697977066, 0.06852409243583679, -0.03803304210305214, -0.042273975908756256, -0.02963167242705822, -0.040173448622226715, -0.007556017022579908, 0.012392028234899044, 0.008688559755682945, -0.018746009096503258, 0.049168068915605545, -0.05514661967754364, 0.14450833201408386, -0.07857533544301987, 0.022881971672177315, -0.07724077999591827, 0.04457985609769821, -0.20247305929660797, -0.007363615091890097, -0.018128320574760437, 0.11134571582078934, -0.03357327729463577, -0.05831293389201164, -0.11839856207370758, 0.038849618285894394, 0.025169475004076958, 0.24112994968891144, -0.12647351622581482, -0.10802590847015381, 0.16677458584308624, -0.10007070004940033, -0.13854913413524628, 0.06327473372220993, -0.049643177539110184, 0.08347829431295395, 0.03150825947523117, 0.007654821500182152, -0.07333903759717941, -0.12901408970355988, 0.0749601200222969, 0.0722503811120987, -0.11065982282161713, 0.0018847790779545903, -0.00977066159248352, 0.0005702617345377803, -0.19406992197036743, 0.031429730355739594, 0.03043464943766594, 0.09494645148515701, -0.09853129088878632, -0.06477559357881546, -0.0097903311252594, -0.08807568997144699, 0.18273799121379852, 0.042785659432411194, 0.1088896244764328, -0.03884463012218475, -0.0897955372929573, -0.06950820982456207, 0.04621667414903641, 0.08192797005176544, -0.020992260426282883, -0.059782978147268295, 0.05749265477061272, -0.07446388155221939, 0.003203470027074218, -0.16363225877285004, -0.1335652470588684, -0.015838604420423508, 0.04326782748103142, 0.016121357679367065, 0.1328755021095276, 0.13498373329639435, -0.027418609708547592, 0.014072769321501255, -0.004033787176012993, 0.03473928943276405, 0.046086713671684265, -0.03058694675564766, -0.15234102308750153, -0.021343912929296494, -0.07459097355604172, 0.06747324764728546, 0.026967644691467285, 0.005267954897135496, -0.18297311663627625, 0.1456315666437149, -0.03684449940919876, 0.01902739703655243, 0.0019970883149653673, -0.014563133008778095, -0.02476176619529724, -0.005564588122069836, 0.06159323453903198, -0.016888052225112915, -0.06544303148984909, 0.10643065720796585, -0.11516714841127396, 0.14519751071929932, 0.18506155908107758, -0.25633928179740906, -0.06487469375133514, 0.0959794819355011, -0.004267793148756027, -0.010095907375216484, 0.03760186582803726, 0.0029316444415599108, 0.1150791198015213, 0.001026172423735261, 0.08523397892713547, -0.008824135176837444, 0.013269276358187199, 0.07282242178916931, -0.0633285790681839, -0.06871980428695679, 0.054170869290828705, 0.1637645661830902, -0.01719645969569683, 0.11526310443878174, 0.15704567730426788, -0.009373685345053673, 0.08550630509853363, 0.032764289528131485, 0.0007816971628926694, -0.04094458371400833, -0.07739036530256271, -0.02134467475116253, 0.08116360753774643, -0.23780567944049835, -0.0057015870697796345, 0.06818877905607224, -0.0915498286485672, 0.026335014030337334, -0.10921157896518707, -0.035658933222293854, 0.005871077999472618, 0.05080774798989296, -0.08332959562540054, 0.13745734095573425, -0.0016112254234030843, 0.06641797721385956, -0.00746122794225812, -0.09396110475063324, 0.07504050433635712, 0.015920979902148247, -0.05310392752289772, 0.1639125943183899, -0.097926065325737, -0.2266731858253479, -0.09660109132528305, -0.10915759205818176, -0.006654747296124697, 0.047316551208496094, 0.00726198498159647, -0.08404528349637985, -0.09599418193101883, 0.04296599328517914, 0.0725962370634079, -0.024459965527057648, 0.0672234445810318, 0.01386153046041727, -0.04123278334736824, -0.013323799706995487, -0.07312507182359695, -0.061646897345781326, -0.05390043556690216, -0.010723664425313473, 0.09083402901887894, -0.17183025181293488, 0.028691519051790237, 0.18779203295707703, 0.029445551335811615, 0.06092824786901474, 0.025957299396395683, 0.2850797772407532, -0.03890432417392731, 0.04660443216562271, 0.1704217493534088, -0.009355265647172928, 0.0681893527507782, 0.141943097114563, 0.04013042151927948, -0.021810518577694893, 0.028481367975473404, -0.04098627343773842, -0.11175910383462906, -0.12410252541303635, -0.08977077901363373, -0.04872901737689972, -0.08392475545406342, 0.061284784227609634, 0.017567776143550873, 0.14632131159305573, 0.14081940054893494, 0.02377750538289547, 0.025702206417918205, -0.08941113203763962, 0.02478514425456524, 0.06409139931201935, -0.04454213008284569, 0.1166011169552803, -0.01792450249195099, -0.14620907604694366, 0.024226076900959015, -0.072629913687706, 0.14225107431411743, 0.10111317038536072, -0.06605815887451172, 0.07458483427762985, 0.03591666370630264, 0.11347643285989761, 0.17337080836296082, 0.02459656447172165, -0.07543773204088211, -0.019748853519558907, -0.05100381374359131, -0.03985226899385452, 0.07219917327165604, 0.1312239021062851, 0.005007925909012556, -0.11522781848907471, -0.014009787701070309, 0.021625958383083344, 0.0871368795633316, 0.09978179633617401, -0.275793194770813, -0.0302895437926054, 0.04598694294691086, 0.04478327929973602, -0.06488136202096939, 0.019128987565636635, -0.08800320327281952, -0.14612850546836853, 0.04092870652675629, -0.027626024559140205, 0.07674048095941544, 0.07772405445575714, 0.08238469809293747, -0.05180051550269127, 0.004798294045031071, 0.005589162465184927, 0.03954093158245087, -0.16850051283836365, 0.2808983027935028, -0.015217327512800694, -0.0053920201025903225, -0.11860881745815277, -0.015592960640788078, 0.1039886325597763, 0.09077486395835876, 0.16905894875526428, 0.020083405077457428, -0.009646319784224033, -0.039199914783239365, -0.03679138422012329, 0.020420216023921967, 0.029714664444327354, 0.00853012315928936, 0.037383053451776505, 0.010963798500597477, -0.055208321660757065, 0.02711222693324089, 0.08419831842184067, -0.05593838170170784, -0.04725583642721176, 0.07214698195457458, 0.0657806396484375, -0.10286784172058105, -0.038802746683359146, -0.11180415749549866, -0.10358335077762604, 0.15437844395637512, 0.007987376302480698, -0.08051999658346176, -0.08790559321641922, -0.025732755661010742, 0.1723124235868454, -0.07692407071590424, 0.09210527688264847, -0.1046205461025238, 0.05424613505601883, -0.1003076508641243, -0.17752374708652496, 0.15219250321388245, -0.1354849487543106, -0.03607737272977829, -0.06249105557799339, 0.06426907330751419, 0.00560801150277257, 0.0689368024468422, -0.004061726853251457, 0.04137766733765602, -0.10754480957984924, -0.07691743224859238, 0.0016368260839954019, 0.0103236623108387, -0.06076323986053467, 0.11526111513376236, -0.04949585720896721, -0.05719146877527237, 0.00040504164644517004, 0.07321628928184509, 0.16994524002075195, 0.25472986698150635, -0.08173633366823196, 0.09316758811473846, 0.1402987688779831, -0.03973736986517906, -0.3045370876789093, -0.040237728506326675, -0.08275286853313446, 0.03692309558391571, 0.023284154012799263, -0.07921157777309418, 0.1133333146572113, -0.05927872285246849, -0.0354304201900959, 0.06498211622238159, -0.27241823077201843, -0.09861470013856888, 0.28208398818969727, 0.04046525061130524, 0.46219509840011597, -0.072283074259758, -0.05447561293840408, -0.021747730672359467, -0.10473862290382385, -0.016317173838615417, -0.008898845873773098, 0.08858629316091537, -0.01954050548374653, 0.12535828351974487, 0.04771425575017929, -0.08467752486467361, 0.1278229057788849, -0.0029689285438507795, -0.005380735732614994, -0.06885328143835068, -0.1906159520149231, 0.10444516688585281, -0.01599436067044735, 0.050926268100738525, 0.024674179032444954, 0.028775857761502266, 0.007923385128378868, -0.03593957796692848, -0.10654556006193161, 0.08115388453006744, -0.016947317868471146, -0.054890479892492294, -0.004347063135355711, 0.0246351957321167, 0.0296353567391634, 0.024900738149881363, 0.04084126651287079, -0.016974683851003647, 0.12814824283123016, 0.16529537737369537, 0.02813228778541088, -0.08068524301052094, -0.08072219789028168, 0.013566989451646805, -0.06406410038471222, 0.0700220912694931, -0.02097395248711109, -0.0054295179434120655, 0.1163165271282196, 0.00616605905815959, 0.043419305235147476, 0.12885966897010803, -0.04999550059437752, -0.02939797379076481, 0.0879211500287056, -0.17480267584323883, -0.04116978868842125, -0.035195641219615936, 0.08361204713582993, -0.02401357889175415, 0.015264663845300674, 0.07705195248126984, -0.04665839672088623, -0.004114032257348299, -0.01032970380038023, 0.020082155242562294, -0.05570654198527336, 0.02775142341852188, 0.03806120157241821, 0.056322891265153885, -0.12193190306425095, -0.01323135569691658, -0.031014252454042435, -0.07368607819080353, -0.00034372307709418237, 0.03321533650159836, -0.06071539595723152, -0.10131482034921646, -0.009533870033919811, 0.11695177108049393, -0.14954164624214172, -0.0028408318758010864, -0.08874265849590302, -0.18231844902038574, 0.012853330932557583, 0.13771137595176697, 0.12027888745069504, 0.03402959927916527, -0.047715868800878525, -0.04549602419137955, -0.059336718171834946, 0.004883992951363325, 0.08968406170606613, 0.029488669708371162, -0.05617997422814369, 0.0014022261602804065, -0.006784403696656227, 0.14530815184116364, -0.12310857325792313, -0.0682038962841034, -0.15212343633174896, 0.04225263372063637, -0.1782626211643219, -0.06832870095968246, -0.11633043736219406, -0.10327423363924026, 0.03937825188040733, -0.041980624198913574, -0.0458100363612175, -0.012359187938272953, -0.10156219452619553, 0.016631055623292923, 0.032363612204790115, -0.025357745587825775, -0.040223680436611176, -0.03201458603143692, 0.10523540526628494, -0.0659429132938385, 0.030048737302422523, 0.1385219246149063, -0.07646242529153824, 0.07481822371482849, -0.13382762670516968, -0.07517226785421371, 0.06142426282167435, -0.0035900440998375416, 0.10235964506864548, -0.05215621367096901, -0.0003191891883034259, -0.006321384571492672, 0.035061758011579514, 0.03805406391620636, 0.05207221955060959, -0.07765303552150726, 0.0370020791888237, 0.05870842561125755, -0.11873296648263931, -0.021608712151646614, -0.05497672036290169, 0.0465787835419178, -0.018357200548052788, 0.1256839483976364, -0.05196591094136238, 0.11483300477266312, -0.06079461798071861, 0.019849879667162895, -0.05358070880174637, -0.0668150931596756, 0.06827735900878906, -0.046856820583343506, 0.013933657668530941, -0.028184184804558754, 0.2276320457458496, -0.006661572493612766, 0.06375453621149063, 0.023661155253648758, 0.04412558302283287, 0.033772341907024384, 0.016408534720540047, 0.16058887541294098, 0.03495139628648758, -0.023931149393320084, -0.11671275645494461, 0.09026285260915756, 0.03880032151937485, -0.06163662672042847, 0.22096699476242065, -0.0008498888928443193, 0.024056484922766685, 0.136315256357193, 0.06942293047904968, 0.07190293818712234, -0.021869033575057983, -0.11129792034626007, -0.039029840379953384, 0.05887338146567345, 0.03559782728552818, -0.05189874395728111, 0.12309754639863968, -0.03713688626885414, 0.028609229251742363, -0.032657649368047714, -0.03989556059241295, -0.17117922008037567, -0.08300825953483582, -0.06316311657428741, -0.08693886548280716, 0.03817847743630409, -0.020141365006566048, -0.08724936097860336, 0.10220102965831757, 0.028782499954104424, -0.058512132614851, 0.16927988827228546, -0.02854776382446289, 0.049012698233127594, 0.046094972640275955, 0.006347556598484516, -0.01384179387241602, -0.03406056389212608, -0.005023559555411339, -0.13361893594264984, 0.01696179062128067, -0.0958852767944336, -0.019069654867053032, -0.11397698521614075, 0.00762487668544054, -0.013694079592823982, -0.1074051707983017, -0.0528494156897068, -0.009149020537734032, -0.04326000064611435, 0.0709255039691925, 0.02765253558754921, 0.023667000234127045, -0.04319223016500473, -0.015234658494591713, -0.06404756754636765, -0.1377294808626175, -0.10508816689252853, 0.28627389669418335, -0.06908094137907028, 0.05629090219736099, 0.014023948460817337, 0.03398187458515167, -0.13857440650463104, 0.2802732288837433, 0.3573981523513794, -0.13814006745815277, 0.044410113245248795, 0.024582840502262115, 0.01571641117334366, -0.0052649835124611855, 0.10558854043483734, 0.0600614957511425, 0.24589648842811584, -0.12053525447845459, 0.027895251289010048, -0.055778197944164276, -0.06239112839102745, -0.060944002121686935, -0.06636131554841995, 0.08463346213102341, -0.038344066590070724, -0.046190448105335236, 0.10129901766777039, -0.24394413828849792, 0.10642421245574951, 0.07121147215366364, -0.14570334553718567, -0.06230546906590462, -0.02070181630551815, 0.008761152625083923, 0.07377558201551437, 0.15278539061546326, -0.10656921565532684, -0.05709952488541603, 0.11046847701072693, -0.0036036560777574778, -0.16880106925964355, -0.07061292231082916, 0.1161733940243721, 0.012241704389452934, 0.158782958984375, 0.010940808802843094, 0.027894319966435432, 0.09243012964725494, 0.045390043407678604, -0.037947170436382294, 0.03524206578731537, 0.051885731518268585, -0.07274147123098373, -0.06001945585012436, 0.011064724996685982, -0.0012749817688018084, -0.0865427777171135, 0.004653911106288433, -0.1675737053155899, 0.07127349823713303, -0.04346965253353119, -0.046395011246204376, -0.004676315002143383, 0.08731459081172943, -0.048561666160821915, 0.08283041417598724, 0.12592178583145142, 0.004001333378255367, -0.029428262263536453, 0.01572306826710701, 0.04409308731555939, 0.0570220872759819, -0.05187513306736946, -0.1411725878715515, -0.09069880098104477, -0.027861561626195908, 0.041391484439373016, -0.007698816247284412, -0.2653633952140808, -0.07157241553068161, -0.14977675676345825, 0.012597487308084965, -0.05434789881110191, 0.02450617216527462, 0.07584977895021439, 0.04069642722606659, 0.008141404017806053, 0.1358187049627304, -0.006181609351187944, 0.08640973269939423, -0.12125391513109207, -0.1276242882013321 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4872 - Wer: 0.3417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4857 | 4.0 | 500 | 1.4555 | 1.0040 | | 0.5994 | 8.0 | 1000 | 0.5011 | 0.4370 | | 0.2273 | 12.0 | 1500 | 0.4293 | 0.3903 | | 0.1235 | 16.0 | 2000 | 0.4602 | 0.3772 | | 0.084 | 20.0 | 2500 | 0.5055 | 0.3673 | | 0.0615 | 24.0 | 3000 | 0.4915 | 0.3486 | | 0.0468 | 28.0 | 3500 | 0.4872 | 0.3417 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
automatic-speech-recognition
gullenasatish/wav2vec2-base-timit-demo-colab
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-base-timit-demo-colab ============================== This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4872 * Wer: 0.3417 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.13.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ 56, 130, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ -0.10822959244251251, 0.099675752222538, -0.003300065640360117, 0.06340761482715607, 0.10860926657915115, -0.020167825743556023, 0.1288769543170929, 0.15049001574516296, -0.09271349757909775, 0.07457399368286133, 0.12636904418468475, 0.1505885273218155, 0.04232662543654442, 0.1459311991930008, -0.05005314201116562, -0.2829117476940155, 0.046162717044353485, 0.0348406657576561, -0.0121766971424222, 0.12717968225479126, 0.08421128243207932, -0.12457819283008575, 0.057947319000959396, 0.034365277737379074, -0.1584104299545288, -0.003970644436776638, -0.005117249675095081, -0.10462873429059982, 0.12317385524511337, 0.006251727696508169, 0.07064329087734222, 0.04838201776146889, 0.06631770730018616, -0.2193475365638733, 0.006690362934023142, 0.043937861919403076, 0.028387419879436493, 0.07415802031755447, 0.0581994503736496, -0.02945130504667759, 0.10399823635816574, -0.07501231133937836, 0.08020306378602982, 0.03743743896484375, -0.10571174323558807, -0.29113149642944336, -0.08603336662054062, 0.04763360694050789, 0.06857916712760925, 0.08891522884368896, -0.012067495845258236, 0.144022136926651, -0.05461663380265236, 0.11053165048360825, 0.28164494037628174, -0.31383398175239563, -0.04501998424530029, -0.03997642174363136, 0.05645865947008133, 0.060465965420007706, -0.09994802623987198, -0.017910847440361977, 0.015012132935225964, 0.044832006096839905, 0.13800188899040222, -0.016268642619252205, -0.05933629348874092, -0.006875182036310434, -0.149040088057518, -0.060275666415691376, 0.11524058878421783, 0.022648070007562637, -0.039792802184820175, -0.09874942153692245, -0.055090054869651794, -0.21280622482299805, -0.06727685779333115, -0.01608140580356121, 0.04322221875190735, -0.0424761027097702, -0.10445226728916168, -0.011462483555078506, -0.067214734852314, -0.07468024641275406, -0.04020216315984726, 0.19049659371376038, 0.0569683313369751, -0.0015599278267472982, -0.03913375735282898, 0.07671435922384262, -0.02081478387117386, -0.13849472999572754, -0.024057583883404732, 0.036882609128952026, -0.020599735900759697, -0.01540920790284872, -0.041751619428396225, -0.059525419026613235, 0.02147202007472515, 0.16159066557884216, -0.10229084640741348, 0.09610845148563385, -0.02040909230709076, 0.03964505344629288, -0.1023506298661232, 0.20751461386680603, -0.04149479418992996, 0.017300888895988464, -0.01036039274185896, 0.055753905326128006, 0.029493195936083794, -0.026112813502550125, -0.0944448858499527, 0.03134589642286301, 0.1209908202290535, 0.04713206738233566, -0.04747193679213524, 0.06453514844179153, -0.034078627824783325, -0.00976975541561842, 0.0015425614546984434, -0.1116979643702507, 0.036166802048683167, 0.019734438508749008, -0.06563939899206161, 0.004243024159222841, 0.014517679810523987, 0.007364774588495493, -0.054604124277830124, 0.08333495259284973, -0.06161367520689964, 0.03338611125946045, -0.05673642084002495, -0.1255759745836258, 0.0254832673817873, -0.11468040943145752, -0.003398764180019498, -0.09991598129272461, -0.10067108273506165, -0.011766123585402966, 0.03731279447674751, -0.03822978585958481, -0.02582731656730175, -0.07831884920597076, -0.0903376117348671, 0.045774877071380615, -0.03446253389120102, 0.07107189297676086, -0.07455966621637344, 0.09409195184707642, 0.03365432471036911, 0.08763306587934494, -0.01564944162964821, 0.06029713898897171, -0.07134567946195602, 0.026744363829493523, -0.19970214366912842, 0.07492507249116898, -0.08829209953546524, 0.05765917897224426, -0.12506166100502014, -0.11516561359167099, 0.02212962694466114, -0.007345497142523527, 0.09889665991067886, 0.0976170003414154, -0.17107638716697693, -0.08861831575632095, 0.20791228115558624, -0.08212082087993622, -0.08377639949321747, 0.12448340654373169, -0.02486608363687992, -0.00034487590892240405, 0.05570755526423454, 0.25771892070770264, 0.04567098990082741, -0.12561871111392975, 0.007944315671920776, -0.040438469499349594, 0.0426238514482975, -0.035683345049619675, 0.058901671320199966, -0.028174052014946938, 0.06841765344142914, 0.01783875562250614, -0.004300459288060665, 0.0377449095249176, -0.08730132132768631, -0.0771728903055191, -0.043716900050640106, -0.07817266881465912, 0.029336441308259964, 0.032532043755054474, 0.06398753076791763, -0.11690137535333633, -0.10784720629453659, 0.03895878419280052, 0.0814940482378006, -0.10364940762519836, 0.07184524834156036, -0.1202312484383583, 0.08338981866836548, -0.01493844948709011, -0.005216938443481922, -0.19063900411128998, 0.03534865006804466, 0.03775133937597275, -0.028579330071806908, 0.04033041372895241, -0.06452071666717529, 0.07755736261606216, 0.045356228947639465, -0.026059629395604134, -0.04673822969198227, -0.009306485764682293, 0.010259725153446198, -0.08931370079517365, -0.20704664289951324, -0.03785887360572815, -0.038044244050979614, 0.07835710793733597, -0.13819026947021484, 0.034040216356515884, 0.07705976814031601, 0.0922568067908287, 0.032501887530088425, -0.03155825659632683, -0.0013533032033592463, 0.08992743492126465, -0.020763428881764412, -0.06439613550901413, 0.05805477127432823, 0.020028982311487198, -0.08660950511693954, 0.03891601413488388, -0.14935077726840973, 0.12675049901008606, 0.14704614877700806, -0.015051227062940598, -0.06689473241567612, 0.00010667734750313684, -0.04766694828867912, -0.03477296233177185, -0.0042805140838027, 0.03377611190080643, 0.2151905596256256, 0.013937880285084248, 0.14332830905914307, -0.0892372876405716, -0.04220341518521309, 0.04966939240694046, -0.02212832309305668, -0.0064864978194236755, 0.11720538139343262, 0.0451214499771595, -0.05501340702176094, 0.11844924837350845, 0.0907815545797348, -0.0788188949227333, 0.12142251431941986, -0.06029483675956726, -0.07461198419332504, -0.020842645317316055, 0.005617763847112656, 0.023748908191919327, 0.09859650582075119, -0.16244098544120789, -0.039806708693504333, 0.025940977036952972, 0.025764435529708862, 0.020472196862101555, -0.20870044827461243, 0.014138329774141312, 0.02901417203247547, -0.08571688830852509, -0.04336029291152954, 0.0030441186390817165, 0.012708943337202072, 0.09419949352741241, 0.01257222518324852, -0.0939040407538414, 0.01075243204832077, 0.003870375920087099, -0.07392288744449615, 0.1760009527206421, -0.11667042225599289, -0.17668895423412323, -0.10546509921550751, -0.09277024120092392, -0.03984987363219261, -0.002946222200989723, 0.08907544612884521, -0.09253612160682678, -0.03951948508620262, -0.08322479575872421, -0.015800848603248596, -0.02584817260503769, 0.041999366134405136, 0.0313355028629303, -0.011593472212553024, 0.06448721885681152, -0.11675503849983215, -0.021844986826181412, -0.0398770235478878, -0.0008108904585242271, 0.05417420715093613, 0.03741366043686867, 0.10862545669078827, 0.15839046239852905, -0.01037275604903698, 0.050479814410209656, -0.0457041934132576, 0.18834930658340454, -0.07471095770597458, -0.03741134703159332, 0.11121487617492676, -0.0058354721404612064, 0.06876740604639053, 0.11724447458982468, 0.048488009721040726, -0.09788484871387482, -0.012771572917699814, 0.004045606590807438, -0.04586487263441086, -0.21520774066448212, -0.03567230701446533, -0.04488169774413109, -0.0015765558928251266, 0.10597339272499084, 0.04105941206216812, 0.03757038712501526, 0.021633010357618332, 0.03250035271048546, 0.0055378032848238945, 0.0024906140752136707, 0.09663364291191101, 0.1290869563817978, 0.040204159915447235, 0.13291816413402557, -0.03813957795500755, -0.03726104274392128, 0.030234666541218758, 0.00462446128949523, 0.23055092990398407, 0.019664591178297997, 0.19055898487567902, 0.056628961116075516, 0.17497165501117706, 0.04161965847015381, 0.06674608588218689, -0.001665950519964099, -0.011428255587816238, 0.011377641931176186, -0.05277388170361519, -0.039488013833761215, 0.024215510115027428, 0.024078506976366043, 0.010328367352485657, -0.11433999240398407, -0.011104782111942768, 0.046694785356521606, 0.35245031118392944, 0.028211859986186028, -0.33761468529701233, -0.09064370393753052, -0.012201257050037384, -0.08551396429538727, -0.030578618869185448, 0.04586395248770714, 0.08793317526578903, -0.08076810091733932, 0.06415379047393799, -0.062390632927417755, 0.08992937952280045, -0.0642600953578949, 0.03401235491037369, 0.03723759949207306, 0.07146970927715302, 0.004128440748900175, 0.03326454013586044, -0.29203230142593384, 0.28165560960769653, 0.005191357806324959, 0.07652265578508377, -0.06112175062298775, 0.008107251487672329, 0.025618722662329674, 0.01830456405878067, 0.08772759884595871, -0.025723259896039963, -0.11981545388698578, -0.17462708055973053, -0.09302173554897308, 0.011321182362735271, 0.12884265184402466, 0.01404081005603075, 0.11067666113376617, -0.011263678781688213, -0.016661478206515312, 0.049431778490543365, -0.09618551284074783, -0.06534599512815475, -0.09206702560186386, 0.011860211379826069, 0.08234149217605591, 0.03347118943929672, -0.07286433130502701, -0.10325606167316437, -0.08850222080945969, 0.14942961931228638, -0.05208592489361763, -0.042645301669836044, -0.11885630339384079, 0.008311794139444828, 0.109124094247818, -0.07936578243970871, 0.06090658903121948, 0.009680752642452717, 0.10459772497415543, 0.011390188708901405, -0.06779034435749054, 0.11945819109678268, -0.06419113278388977, -0.16671337187290192, -0.028847509995102882, 0.14494214951992035, 0.03056386671960354, 0.060433026403188705, -0.008058210834860802, 0.038120876997709274, -0.021853651851415634, -0.0774228423833847, 0.0406605489552021, 0.026499440893530846, 0.0439123660326004, -0.013164152391254902, -0.018967239186167717, -0.006070209201425314, -0.09074874222278595, -0.01814614050090313, 0.2064867615699768, 0.24344108998775482, -0.09640686959028244, 0.09291441738605499, 0.06943506747484207, -0.042097147554159164, -0.17234089970588684, -0.0038790483959019184, 0.06509050726890564, 0.000005351470463210717, -0.0248651634901762, -0.1938454508781433, 0.023908907547593117, 0.06926876306533813, -0.020998604595661163, 0.08171622455120087, -0.3183232247829437, -0.1406307816505432, 0.1374066323041916, 0.11396436393260956, 0.059524938464164734, -0.14593273401260376, -0.05537234991788864, -0.010357857681810856, -0.1036871075630188, 0.09447412192821503, -0.07449747622013092, 0.1356905996799469, -0.02407083474099636, 0.09048546850681305, 0.011327960528433323, -0.05825302377343178, 0.10642484575510025, 0.012443309649825096, 0.059944190084934235, -0.045728690922260284, 0.017388567328453064, 0.04785845801234245, -0.06322921067476273, 0.055156588554382324, -0.08024109899997711, 0.02839946746826172, -0.08033619076013565, -0.03248301148414612, -0.08508959412574768, 0.01420549862086773, -0.009605566039681435, -0.0333847776055336, -0.037120092660188675, 0.0018844814039766788, 0.06282699108123779, -0.010366815142333508, 0.15573710203170776, -0.027310438454151154, 0.12642912566661835, 0.16214096546173096, 0.10141889750957489, -0.10404428839683533, -0.07683391124010086, 0.005353863351047039, -0.03425366058945656, 0.05507161468267441, -0.11772949248552322, 0.0374416708946228, 0.1360854059457779, 0.031792279332876205, 0.1228531077504158, 0.06948218494653702, -0.06524974852800369, 0.03323432430624962, 0.04207287356257439, -0.13784939050674438, -0.12749193608760834, 0.013279353268444538, 0.02333078719675541, -0.07195265591144562, 0.07305441796779633, 0.11555314809083939, -0.055095698684453964, -0.013801833614706993, -0.0019095407333225012, 0.013798229396343231, -0.04101138189435005, 0.19526535272598267, 0.03678850829601288, 0.06154259294271469, -0.1245705634355545, 0.08053390681743622, 0.038583576679229736, -0.1331944614648819, 0.060929812490940094, 0.10616770386695862, -0.09484384208917618, -0.02851886674761772, 0.028711074963212013, 0.11185205727815628, -0.028263479471206665, -0.07390765845775604, -0.14269445836544037, -0.1429070234298706, 0.10887688398361206, 0.20547187328338623, 0.056251514703035355, 0.016643211245536804, -0.05918126553297043, 0.016913002356886864, -0.11840061843395233, 0.06926038861274719, 0.04077918455004692, 0.06004178896546364, -0.1290147453546524, 0.14634470641613007, 0.01732582412660122, 0.03992059826850891, -0.014602077193558216, -0.011380162090063095, -0.11204449087381363, 0.03977004438638687, -0.12899863719940186, 0.004968761000782251, -0.06649181246757507, 0.0010107652051374316, 0.003637960646301508, -0.04961981624364853, -0.06380630284547806, 0.034933269023895264, -0.11994827538728714, -0.023454628884792328, 0.0013668711762875319, 0.03702240437269211, -0.12869490683078766, -0.00937681831419468, 0.01491378154605627, -0.09351558983325958, 0.09738873690366745, 0.08695000410079956, -0.03262457251548767, 0.05093376338481903, -0.060065679252147675, -0.026180030778050423, 0.07850224524736404, -0.006546197924762964, 0.05116262659430504, -0.13098447024822235, -0.019763074815273285, 0.011079980991780758, 0.034322094172239304, 0.024183884263038635, 0.11216950416564941, -0.11596840620040894, 0.0009172951686196029, -0.027726253494620323, -0.05208310857415199, -0.06831369549036026, 0.05034910887479782, 0.10944218933582306, 0.027158264070749283, 0.16378004848957062, -0.09329521656036377, 0.02864367887377739, -0.1659409999847412, 0.006244651973247528, -0.015402473509311676, -0.12141422927379608, -0.05091831088066101, -0.031923726201057434, 0.07782353460788727, -0.06372612714767456, 0.12926429510116577, -0.0302314143627882, 0.02521517500281334, 0.03747618943452835, -0.07651915401220322, -0.05347057059407234, 0.039878156036138535, 0.20521073043346405, 0.038992080837488174, -0.04332895576953888, 0.0748397707939148, 0.020881792530417442, 0.08104509860277176, 0.12795478105545044, 0.17392674088478088, 0.16054309904575348, 0.06415445357561111, 0.11675389856100082, 0.0548175610601902, -0.05325957387685776, -0.17404964566230774, 0.09129635989665985, -0.05973295867443085, 0.1303301602602005, -0.013782957568764687, 0.2406129240989685, 0.12073571979999542, -0.15380768477916718, 0.06590574234724045, -0.019002273678779602, -0.08930869400501251, -0.11625064164400101, -0.0640975832939148, -0.08643919974565506, -0.17592790722846985, 0.009026954881846905, -0.10206138342618942, 0.06300023943185806, 0.046582844108343124, 0.037413351237773895, 0.016993701457977295, 0.1380058079957962, 0.015221303328871727, 0.0026881019584834576, 0.09175070375204086, -0.003382439725100994, -0.055894702672958374, -0.07345172762870789, -0.0844438374042511, 0.03444278612732887, -0.013464136980473995, 0.0579255074262619, -0.0041413637809455395, -0.06932219862937927, 0.04745379090309143, -0.038733821362257004, -0.09639431536197662, 0.023092305287718773, 0.02144113928079605, 0.06993499398231506, 0.050396792590618134, 0.03458376228809357, -0.041390322148799896, -0.0023561420384794474, 0.19505612552165985, -0.09454663842916489, -0.09351488947868347, -0.10949129611253738, 0.25379374623298645, 0.039379071444272995, -0.015554843470454216, 0.02151809260249138, -0.060560062527656555, -0.03180092200636864, 0.2114194929599762, 0.1723226010799408, -0.01116170920431614, 0.004614291246980429, -0.01414461899548769, -0.006181462202221155, -0.03659471869468689, 0.07935505360364914, 0.14721040427684784, 0.0624801442027092, -0.06336896121501923, -0.051964882761240005, -0.05117638781666756, -0.03481784462928772, -0.06592334061861038, 0.07547760754823685, 0.006828696001321077, -0.025172237306833267, -0.044893521815538406, 0.06380100548267365, -0.09479472041130066, -0.08201537281274796, 0.024797851219773293, -0.19570329785346985, -0.14996619522571564, 0.006833694875240326, 0.07076682895421982, 0.011772987432777882, 0.034874558448791504, 0.003135041566565633, -0.009663884527981281, 0.08166079223155975, -0.0014469854068011045, -0.08074266463518143, -0.06594680994749069, 0.08451119065284729, -0.1334533542394638, 0.1663215011358261, -0.04209939017891884, 0.04780808091163635, 0.12325333803892136, 0.08858786523342133, -0.08054462820291519, 0.08672730624675751, 0.04238315671682358, -0.10697498172521591, 0.021263642236590385, 0.1536252200603485, -0.033488329499959946, 0.09508569538593292, 0.030688641592860222, -0.11497800052165985, 0.014703071676194668, -0.08972270041704178, -0.03808770328760147, -0.04114031791687012, -0.050166599452495575, -0.044312071055173874, 0.10966888070106506, 0.1632404923439026, -0.04387403652071953, 0.003933595027774572, -0.05213035270571709, 0.011972117237746716, 0.04762331768870354, -0.0004025105736218393, -0.061575230211019516, -0.27876561880111694, 0.011589550413191319, 0.036713045090436935, 0.0030818863306194544, -0.2576640844345093, -0.09719633311033249, 0.013703498058021069, -0.04294035583734512, -0.08798902481794357, 0.08574584126472473, 0.07478064298629761, 0.04632873460650444, -0.0524776466190815, -0.057823486626148224, -0.03551657870411873, 0.18890078365802765, -0.1751941740512848, -0.05986809358000755 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gunghio/distilbert-base-multilingual-cased-finetuned-conll2003-ner This model was trained from scratch on an conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0388 - Precision: 0.9360 - Recall: 0.9458 - F1: 0.9409 - Accuracy: 0.9902 ## Model description It is based on distilbert-base-multilingual-cased ## Intended uses & limitations More information needed ## Training and evaluation data Training dataset: [conll2003](https://huggingface.co/datasets/conll2003) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1653 | 1.0 | 878 | 0.0465 | 0.9267 | 0.9300 | 0.9283 | 0.9883 | | 0.0322 | 2.0 | 1756 | 0.0404 | 0.9360 | 0.9431 | 0.9396 | 0.9897 | | 0.0185 | 3.0 | 2634 | 0.0388 | 0.9360 | 0.9458 | 0.9409 | 0.9902 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.6.2 - Tokenizers 0.10.2
{"language": ["en", "de", "nl", "es", "multilingual"], "datasets": ["conll2003"], "metrics": [{"precision": 0.936}, {"recall": 0.9458}, {"f1": 0.9409}, {"accuracy": 0.9902}], "model-index": [{"name": "gunghio/distilbert-base-multilingual-cased-finetuned-conll2003-ner", "results": [{"task": {"type": "ner", "name": "Named Entity Recognition"}, "dataset": {"name": "ConLL 2003", "type": "conll2003"}, "metrics": [{"type": "f1-score", "value": 0.9409}]}]}]}
token-classification
gunghio/distilbert-base-multilingual-cased-finetuned-conll2003-ner
[ "transformers", "pytorch", "distilbert", "token-classification", "en", "de", "nl", "es", "multilingual", "dataset:conll2003", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en", "de", "nl", "es", "multilingual" ]
TAGS #transformers #pytorch #distilbert #token-classification #en #de #nl #es #multilingual #dataset-conll2003 #model-index #autotrain_compatible #endpoints_compatible #region-us
gunghio/distilbert-base-multilingual-cased-finetuned-conll2003-ner ================================================================== This model was trained from scratch on an conll2003 dataset. It achieves the following results on the evaluation set: * Loss: 0.0388 * Precision: 0.9360 * Recall: 0.9458 * F1: 0.9409 * Accuracy: 0.9902 Model description ----------------- It is based on distilbert-base-multilingual-cased Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- Training dataset: conll2003 Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.6.1 * Pytorch 1.8.1+cu101 * Datasets 1.6.2 * Tokenizers 0.10.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.8.1+cu101\n* Datasets 1.6.2\n* Tokenizers 0.10.2" ]
[ "TAGS\n#transformers #pytorch #distilbert #token-classification #en #de #nl #es #multilingual #dataset-conll2003 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.8.1+cu101\n* Datasets 1.6.2\n* Tokenizers 0.10.2" ]
[ 62, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #token-classification #en #de #nl #es #multilingual #dataset-conll2003 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.6.1\n* Pytorch 1.8.1+cu101\n* Datasets 1.6.2\n* Tokenizers 0.10.2" ]
[ -0.10587825626134872, 0.05618194118142128, -0.0027289362624287605, 0.11752474308013916, 0.18123219907283783, 0.045389365404844284, 0.1090952455997467, 0.09106297045946121, -0.08849813044071198, 0.01641963981091976, 0.12315472215414047, 0.16739852726459503, -0.001432508695870638, 0.11800548434257507, -0.05149852856993675, -0.30516448616981506, 0.00941962655633688, 0.03244968503713608, -0.06886108219623566, 0.12735556066036224, 0.09825944900512695, -0.13670477271080017, 0.08089165389537811, -0.014194886200129986, -0.19461186230182648, 0.004283673129975796, 0.005410643294453621, -0.057220909744501114, 0.15037250518798828, 0.0366072878241539, 0.13480441272258759, 0.005814571399241686, 0.09188687801361084, -0.19326762855052948, 0.0033065234310925007, 0.025264950469136238, 0.012591545470058918, 0.0673573836684227, 0.04469165951013565, -0.02451774664223194, 0.11740296334028244, -0.10221631079912186, 0.042688533663749695, 0.007862046360969543, -0.12703609466552734, -0.19980072975158691, -0.056089043617248535, 0.02983066253364086, 0.058584921061992645, 0.08585038781166077, -0.002637149067595601, 0.13053163886070251, -0.12575261294841766, 0.1113261878490448, 0.17760516703128815, -0.2758614122867584, -0.06679835170507431, 0.050335243344306946, 0.005999713204801083, 0.05090390518307686, -0.10560159385204315, -0.01219253521412611, 0.0659710168838501, 0.050683073699474335, 0.07142174243927002, -0.05121227726340294, -0.1013052687048912, 0.014718788675963879, -0.147471085190773, -0.020665151998400688, 0.16541965305805206, 0.03325135260820389, -0.02982988767325878, -0.01574643701314926, -0.05083809047937393, -0.11801689863204956, -0.04068202152848244, -0.009604969061911106, 0.0389297716319561, -0.04665626212954521, -0.06732092797756195, 0.004988681059330702, -0.09035957604646683, -0.040816809982061386, -0.09768583625555038, 0.2246144562959671, 0.04586200788617134, -0.0014105873415246606, -0.01947810873389244, 0.09593752026557922, 0.004957112949341536, -0.11719054728746414, 0.020116982981562614, 0.014045442454516888, -0.015288838185369968, -0.051485009491443634, -0.05242442712187767, -0.010402081534266472, 0.012240396812558174, 0.10026998072862625, -0.06917131692171097, 0.04790946841239929, 0.042038872838020325, 0.031571511179208755, -0.05075765773653984, 0.19994589686393738, -0.04932628199458122, -0.0388898067176342, -0.017103897407650948, 0.025337060913443565, -0.003663555718958378, -0.0076926653273403645, -0.12305618822574615, -0.01131848618388176, 0.10732991993427277, 0.03345067799091339, -0.07802025973796844, 0.07975010573863983, -0.06528972834348679, -0.030506068840622902, -0.014149134047329426, -0.09808265417814255, 0.04207763075828552, -0.004451455548405647, -0.06491497904062271, 0.039519164711236954, -0.01448910217732191, 0.010114097967743874, -0.02355007454752922, 0.09962395578622818, -0.08727538585662842, 0.038056787103414536, -0.08609341084957123, -0.13006922602653503, -0.0019961693324148655, -0.05993640422821045, 0.032695356756448746, -0.10350511968135834, -0.14963552355766296, -0.012582000344991684, 0.031899649649858475, -0.04039488732814789, -0.04574880003929138, -0.08057410269975662, -0.07117696851491928, 0.012872598133981228, -0.005467245355248451, 0.09784267097711563, -0.07161504030227661, 0.09917696565389633, 0.05238502472639084, 0.07044388353824615, -0.04150858521461487, 0.05143998935818672, -0.09034421294927597, 0.01337481290102005, -0.1617019921541214, 0.07894086837768555, -0.058566614985466, 0.05310788005590439, -0.06506110727787018, -0.13538654148578644, 0.02854435332119465, 0.014230217784643173, 0.05920528993010521, 0.11179943382740021, -0.17080844938755035, -0.08594556152820587, 0.16996650397777557, -0.06742798537015915, -0.08076979219913483, 0.12575086951255798, -0.06385929882526398, 0.02977011352777481, 0.074203260242939, 0.15481598675251007, 0.07733329385519028, -0.05932234227657318, 0.02356160432100296, 0.03555944189429283, 0.052498482167720795, -0.02316754125058651, 0.05933341383934021, 0.027254018932580948, -0.030614249408245087, 0.040787145495414734, -0.0272466279566288, 0.0798957347869873, -0.11810124665498734, -0.0800764411687851, -0.01890370436012745, -0.08649728447198868, 0.09302092343568802, 0.0714859589934349, 0.06944014132022858, -0.11182423681020737, -0.04826438054442406, 0.08357982337474823, 0.09982601553201675, -0.04821779206395149, 0.020200569182634354, -0.06750542670488358, 0.050505418330430984, -0.02808529883623123, -0.03539105877280235, -0.18689271807670593, -0.053914979100227356, 0.006876475643366575, 0.07102875411510468, 0.01463750097900629, 0.06966008245944977, 0.059573426842689514, 0.0723881646990776, -0.06011806055903435, -0.02266605570912361, -0.015314017422497272, 0.0068665677681565285, -0.11460484564304352, -0.19572682678699493, -0.017123352736234665, -0.030144568532705307, 0.13366101682186127, -0.2085176557302475, 0.01630980148911476, -0.016971904784440994, 0.09003953635692596, -0.00042504791053943336, 0.011994884349405766, -0.044894952327013016, 0.0950152650475502, -0.04888586699962616, -0.03895837441086769, 0.06890195608139038, -0.008410906419157982, -0.08653052151203156, -0.04410918802022934, -0.07641202956438065, 0.1910102665424347, 0.11932012438774109, -0.15273207426071167, -0.09021096676588058, -0.0007779969600960612, -0.053108517080545425, -0.025158416479825974, -0.028854437172412872, 0.029801571741700172, 0.17976146936416626, -0.01372368261218071, 0.1485605686903, -0.06107242777943611, -0.02433031238615513, 0.014448490925133228, -0.04350869730114937, -0.0036478491965681314, 0.14810630679130554, 0.08823979645967484, -0.1148037388920784, 0.13940304517745972, 0.12504084408283234, -0.0731019526720047, 0.14865642786026, -0.02741430513560772, -0.053475864231586456, -0.028011782094836235, -0.022592563182115555, -0.01947917602956295, 0.09786725789308548, -0.15931276977062225, -0.012991650961339474, 0.022174403071403503, 0.03948293253779411, 0.019752316176891327, -0.21000389754772186, -0.04564046487212181, 0.029431527480483055, -0.03158801794052124, -0.005207891575992107, -0.005104451440274715, 0.023074043914675713, 0.11945529282093048, -0.00027629267424345016, -0.11727414280176163, 0.03300594538450241, 0.002442249795421958, -0.06989605724811554, 0.23833008110523224, -0.10942496359348297, -0.19064268469810486, -0.10198361426591873, -0.11234809458255768, -0.07952599227428436, 0.009103957563638687, 0.04373247176408768, -0.10745924711227417, -0.03430473059415817, -0.033326249569654465, 0.05507372319698334, -0.04930541291832924, 0.027532728388905525, -0.004638914484530687, 0.004650174640119076, 0.03822975233197212, -0.10822397470474243, -0.020345162600278854, -0.0550600066781044, -0.06208339333534241, 0.06031347066164017, -0.00034431993844918907, 0.10334785282611847, 0.17096424102783203, -0.016353417187929153, 0.016159167513251305, -0.02616059221327305, 0.2412077933549881, -0.06475138664245605, -0.04314330220222473, 0.0924924910068512, 0.00023572439386043698, 0.03819853439927101, 0.11947853863239288, 0.07239793986082077, -0.09830903261899948, 0.0063475510105490685, 0.030541714280843735, -0.03268104046583176, -0.20945507287979126, -0.08729532361030579, -0.06536584347486496, -0.010190194472670555, 0.06731057167053223, 0.015474100597202778, 0.015816479921340942, 0.0604550763964653, 0.03846500441431999, 0.07540461421012878, -0.04746229201555252, 0.0405241921544075, 0.16324590146541595, 0.013689004816114902, 0.12302267551422119, -0.037887092679739, -0.10004925727844238, 0.0477767288684845, -0.01825074665248394, 0.20219914615154266, 0.015357410535216331, 0.07267005741596222, 0.051803626120090485, 0.14150002598762512, -0.0011653020046651363, 0.0893712267279625, 0.012337303720414639, -0.047262247651815414, -0.013125031255185604, -0.02402220293879509, -0.039367370307445526, 0.005441267974674702, 0.007247811183333397, 0.04774867743253708, -0.1482485979795456, 0.0022226041182875633, 0.0674210712313652, 0.1837947964668274, 0.06436360627412796, -0.30738911032676697, -0.08887364715337753, 0.013417679816484451, -0.0373789444565773, -0.032968711107969284, 0.03803481534123421, 0.10330819338560104, -0.11967860162258148, 0.044388867914676666, -0.035747673362493515, 0.08656398952007294, -0.08781614154577255, 0.05684574320912361, 0.04495260491967201, 0.09314323961734772, 0.01019244734197855, 0.10083979368209839, -0.305568665266037, 0.2835673689842224, -0.0002556788385845721, 0.03506090119481087, -0.06467690318822861, -0.016225550323724747, 0.0229593887925148, 0.1219610795378685, 0.05812055990099907, 0.013291004113852978, -0.020183974876999855, -0.22549879550933838, -0.031009649857878685, 0.025777002796530724, 0.10859917849302292, -0.014394635334610939, 0.09343636780977249, -0.022633014246821404, 0.005968424957245588, 0.06448070704936981, -0.039199791848659515, -0.07442151010036469, -0.0937909260392189, -0.0009479504078626633, 0.007419881876558065, -0.033770736306905746, -0.048306263983249664, -0.130022332072258, -0.12953372299671173, 0.17789901793003082, -0.009066176600754261, -0.038290608674287796, -0.11129199713468552, 0.09376514703035355, 0.09084262698888779, -0.09253303706645966, 0.026360809803009033, 0.0018209752161055803, 0.046738401055336, 0.03150896728038788, -0.052917685359716415, 0.10742541402578354, -0.07507754862308502, -0.15067264437675476, -0.047515902668237686, 0.1081237867474556, 0.037157148122787476, 0.07271838933229446, -0.008125511929392815, -0.000010607212061586324, -0.02144083008170128, -0.10924650728702545, 0.005245729815214872, 0.003950273152440786, 0.06865610927343369, 0.07612880319356918, -0.07265806943178177, 0.02264668047428131, -0.06002996116876602, -0.013002417981624603, 0.23296812176704407, 0.24946284294128418, -0.09103108942508698, 0.0013770967489108443, 0.029087433591485023, -0.07210703939199448, -0.21162480115890503, 0.037569560110569, 0.050743453204631805, 0.03119410201907158, 0.011748448014259338, -0.1804119050502777, 0.11258326470851898, 0.08793520927429199, 0.012440355494618416, 0.07306541502475739, -0.32633087038993835, -0.11521636694669724, 0.1374836415052414, 0.11787276715040207, 0.15883082151412964, -0.11772020906209946, -0.014888154342770576, -0.02778218686580658, -0.10981576144695282, 0.09939698129892349, -0.0407700277864933, 0.1306435465812683, -0.02221032977104187, 0.08731090277433395, 0.015486703254282475, -0.04011666029691696, 0.13914760947227478, 0.05801629647612572, 0.08876446634531021, -0.05543458089232445, -0.06833818554878235, 0.03345031291246414, -0.019175896421074867, 0.008219705894589424, -0.03505660220980644, 0.03343268111348152, -0.11718215048313141, -0.028038475662469864, -0.08793823421001434, 0.04635777696967125, -0.0410127267241478, -0.0702342540025711, -0.0316472202539444, 0.0401848740875721, 0.049365729093551636, -0.008226519450545311, 0.12436052411794662, 0.01886841468513012, 0.1146366149187088, 0.0741606131196022, 0.10945792496204376, -0.07000971585512161, -0.035752177238464355, -0.02542472444474697, -0.007366132456809282, 0.034389808773994446, -0.09822620451450348, 0.02699323184788227, 0.15150900185108185, 0.018819276243448257, 0.14287109673023224, 0.09737281501293182, -0.008230815641582012, -0.0008538533584214747, 0.07373464852571487, -0.14904040098190308, -0.10229843854904175, -0.01613529399037361, -0.10364638268947601, -0.08287657052278519, 0.06400032341480255, 0.10829578340053558, -0.06486855447292328, -0.010156678967177868, -0.025566672906279564, -0.003654069034382701, -0.06869678199291229, 0.19612577557563782, 0.07737775892019272, 0.04859531670808792, -0.10902576148509979, 0.050090499222278595, 0.040565185248851776, -0.0627758651971817, -0.0059008304961025715, 0.07586225122213364, -0.08586376160383224, -0.05791804566979408, 0.05833640322089195, 0.1688864380121231, -0.08363503217697144, -0.04020365700125694, -0.12619391083717346, -0.13785244524478912, 0.07180605828762054, 0.13632532954216003, 0.12693533301353455, 0.02807035483419895, -0.07104894518852234, 0.001449619303457439, -0.1092120110988617, 0.08167044818401337, 0.06127261742949486, 0.06076030805706978, -0.15190131962299347, 0.18946316838264465, -0.0016420112224295735, 0.08777501434087753, -0.0343460887670517, -0.004786961246281862, -0.1295768916606903, 0.024408463388681412, -0.13501964509487152, -0.033659372478723526, -0.03800990432500839, 0.02194923907518387, 0.0019436890725046396, -0.0881056860089302, -0.05097731575369835, -0.003319963114336133, -0.11710246652364731, -0.009570354595780373, 0.036662835627794266, 0.06581705808639526, -0.08908448368310928, -0.046514857560396194, 0.030788617208600044, -0.06563739478588104, 0.08008690178394318, 0.05455171316862106, 0.011182702146470547, 0.0779125764966011, -0.1180800348520279, 0.001984379952773452, 0.07938925921916962, 0.029526855796575546, 0.0925242230296135, -0.07620350271463394, 0.00368510908447206, 0.006895481143146753, 0.08660393953323364, 0.04427022859454155, 0.07376433908939362, -0.11511274427175522, 0.01261082012206316, -0.04347117990255356, -0.11064208298921585, -0.0611552819609642, 0.042395029217004776, 0.06839463114738464, 0.012784118764102459, 0.1717173010110855, -0.083680160343647, 0.04458879306912422, -0.18187479674816132, -0.006393747869879007, -0.02710048109292984, -0.12191539257764816, -0.08448929339647293, -0.07321911305189133, 0.07867355644702911, -0.03996552526950836, 0.15848587453365326, 0.0255137849599123, 0.07432281225919724, 0.008404978550970554, -0.025030337274074554, 0.022012658417224884, 0.03730316087603569, 0.17790843546390533, 0.048576805740594864, -0.03280253708362579, 0.0374617800116539, 0.055371299386024475, 0.11149714142084122, 0.12415158748626709, 0.20166240632534027, 0.13623248040676117, -0.008489302359521389, 0.09238103032112122, 0.020627353340387344, -0.06586674600839615, -0.1512848138809204, 0.0017925212159752846, -0.030400052666664124, 0.07994227856397629, -0.02441365271806717, 0.1830454170703888, 0.040994949638843536, -0.1657801866531372, 0.04763415828347206, -0.0479811429977417, -0.10279646515846252, -0.11501961201429367, -0.017900660634040833, -0.08422298729419708, -0.14200133085250854, -0.0046452912501990795, -0.1405125856399536, 0.0010641849366948009, 0.11479855328798294, 0.03324594348669052, -0.027937185019254684, 0.13797001540660858, 0.009938145987689495, 0.021967150270938873, 0.07172263413667679, 0.008322807028889656, 0.0019211972830817103, -0.10274357348680496, -0.058095160871744156, -0.053274475038051605, -0.007988863624632359, 0.028218384832143784, -0.05301910266280174, -0.0693390741944313, 0.02602371945977211, -0.04046602174639702, -0.09572789818048477, 0.003298630937933922, 0.019021574407815933, 0.055795107036828995, 0.041267748922109604, 0.021275464445352554, -0.010699252597987652, -0.012574880383908749, 0.20512709021568298, -0.07113289833068848, -0.10148575901985168, -0.10296376049518585, 0.27633631229400635, 0.043851904571056366, 0.030989995226264, 0.03369150683283806, -0.058486927300691605, -0.02107342705130577, 0.2434365600347519, 0.22244565188884735, -0.11276144534349442, 0.0013411362888291478, 0.014329037629067898, -0.0015522559406235814, 0.005967406090348959, 0.11124256253242493, 0.1259554624557495, 0.08669926226139069, -0.09261991083621979, -0.06359624117612839, -0.0700305923819542, -0.007966099306941032, -0.04268816486001015, 0.05656025931239128, 0.05903647467494011, 0.0014806869439780712, -0.058104727417230606, 0.06952523440122604, -0.10256274789571762, -0.048839546740055084, 0.05491131544113159, -0.2051907777786255, -0.1700960248708725, -0.019543850794434547, 0.0696021169424057, 0.026187838986516, 0.07559806853532791, -0.038536187261343, -0.02010352909564972, 0.07692450284957886, -0.008236625231802464, -0.10101406276226044, -0.07218050211668015, 0.09682387858629227, -0.05439453199505806, 0.16338273882865906, -0.037818945944309235, 0.0913165807723999, 0.1276807188987732, 0.06212299317121506, -0.05246483534574509, 0.05280299484729767, 0.048836931586265564, -0.03681590408086777, 0.03888861835002899, 0.07557033002376556, -0.03429577127099037, 0.056120365858078, 0.05642911419272423, -0.14985258877277374, 0.033813104033470154, -0.03339370712637901, -0.0489547960460186, -0.04076927527785301, -0.02871641330420971, -0.06398167461156845, 0.12051620334386826, 0.2389764040708542, -0.01863287016749382, -0.0040600476786494255, -0.059418197721242905, 0.015436301939189434, 0.03255179524421692, 0.05382777377963066, -0.08316916227340698, -0.23952321708202362, -0.00785125233232975, 0.0358063206076622, -0.005161666311323643, -0.20613926649093628, -0.09009579569101334, 0.0036739290226250887, -0.053239304572343826, -0.08884487301111221, 0.10463295131921768, 0.05170522630214691, 0.031383682042360306, -0.05657020956277847, -0.07799219340085983, -0.07217530161142349, 0.15584556758403778, -0.1365097016096115, -0.093995101749897 ]
null
null
transformers
This model is a fine-tuned version of [Helsinki-NLP/opus-tatoeba-es-zh](https://huggingface.co/Helsinki-NLP/opus-tatoeba-es-zh) on a dataset of legal domain constructed by the author himself. # Intended uses & limitations This model is the result of the master graduation thesis for the Tradumatics: Translation Technologies program at the Autonomous University of Barcelona. Please refer to the GitHub repo created for this thesis for the full-text and relative open-sourced materials: https://github.com/guocheng98/MUTTT2020_TFM_ZGC The thesis intends to explain various theories and certain algorithm details about neural machine translation, thus this fine-tuned model only serves as a hands-on practice example for that objective, without any intention of productive usage. # Training and evaluation data The dataset is constructed from the Chinese translation of Spanish Civil Code, Spanish Constitution, and many other laws & regulations found in the database China Law Info (北大法宝 Beida Fabao), along with their source text found on Boletín Oficial del Estado and EUR-Lex. There are 9972 sentence pairs constructed. 1000 are used for evaluation and the rest for training. # Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10 - mixed_precision_training: Native AMP - weight_decay: 0.01 - early_stopping_patience: 8 # Training results Best validation loss achieved at step 5600. | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9584 | 0.36 | 400 | 2.6800 | | 2.6402 | 0.71 | 800 | 2.5017 | | 2.5038 | 1.07 | 1200 | 2.3907 | | 2.3279 | 1.43 | 1600 | 2.2999 | | 2.2258 | 1.78 | 2000 | 2.2343 | | 2.1061 | 2.14 | 2400 | 2.1961 | | 1.9279 | 2.5 | 2800 | 2.1569 | | 1.9059 | 2.85 | 3200 | 2.1245 | | 1.7491 | 3.21 | 3600 | 2.1227 | | 1.6301 | 3.57 | 4000 | 2.1169 | | 1.6871 | 3.92 | 4400 | 2.0979 | | 1.5203 | 4.28 | 4800 | 2.1074 | | 1.4646 | 4.63 | 5200 | 2.1024 | | 1.4739 | 4.99 | 5600 | 2.0905 | | 1.338 | 5.35 | 6000 | 2.0946 | | 1.3152 | 5.7 | 6400 | 2.0974 | | 1.306 | 6.06 | 6800 | 2.0985 | | 1.1991 | 6.42 | 7200 | 2.0962 | | 1.2113 | 6.77 | 7600 | 2.1092 | | 1.1983 | 7.13 | 8000 | 2.1060 | | 1.1238 | 7.49 | 8400 | 2.1102 | | 1.1417 | 7.84 | 8800 | 2.1078 | # Framework versions - Transformers 4.7.0 - Pytorch 1.8.1+cu101 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["es", "zh"], "license": "apache-2.0", "tags": ["translation"]}
translation
guocheng98/HelsinkiNLP-FineTuned-Legal-es-zh
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "es", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "es", "zh" ]
TAGS #transformers #pytorch #marian #text2text-generation #translation #es #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
This model is a fine-tuned version of Helsinki-NLP/opus-tatoeba-es-zh on a dataset of legal domain constructed by the author himself. Intended uses & limitations =========================== This model is the result of the master graduation thesis for the Tradumatics: Translation Technologies program at the Autonomous University of Barcelona. Please refer to the GitHub repo created for this thesis for the full-text and relative open-sourced materials: URL The thesis intends to explain various theories and certain algorithm details about neural machine translation, thus this fine-tuned model only serves as a hands-on practice example for that objective, without any intention of productive usage. Training and evaluation data ============================ The dataset is constructed from the Chinese translation of Spanish Civil Code, Spanish Constitution, and many other laws & regulations found in the database China Law Info (北大法宝 Beida Fabao), along with their source text found on Boletín Oficial del Estado and EUR-Lex. There are 9972 sentence pairs constructed. 1000 are used for evaluation and the rest for training. Training hyperparameters ======================== The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 2000 * num\_epochs: 10 * mixed\_precision\_training: Native AMP * weight\_decay: 0.01 * early\_stopping\_patience: 8 Training results ================ Best validation loss achieved at step 5600. Framework versions ================== * Transformers 4.7.0 * Pytorch 1.8.1+cu101 * Datasets 1.8.0 * Tokenizers 0.10.3
[]
[ "TAGS\n#transformers #pytorch #marian #text2text-generation #translation #es #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #marian #text2text-generation #translation #es #zh #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.05990023538470268, 0.002905509900301695, -0.006685670465230942, 0.0025734377559274435, 0.09255734831094742, 0.015299566090106964, 0.09718698263168335, 0.11113569140434265, -0.002814242150634527, -0.057710837572813034, 0.14240460097789764, 0.16841095685958862, 0.010313929989933968, 0.03756360337138176, -0.0450911670923233, -0.23625485599040985, 0.08667373657226562, 0.052671171724796295, -0.07195253670215607, 0.0792018324136734, 0.12196023762226105, -0.026520712301135063, 0.08337176591157913, 0.022864732891321182, -0.014530220068991184, 0.033534612506628036, 0.006829727441072464, -0.0944492369890213, 0.08559741079807281, 0.07325673848390579, 0.035777244716882706, 0.07742177695035934, -0.011202258989214897, -0.2113402932882309, 0.01716703176498413, -0.02817835845053196, -0.08668902516365051, 0.023091938346624374, 0.05196430906653404, -0.07916267961263657, 0.1238175556063652, -0.012115895748138428, -0.08958680182695389, 0.07620914280414581, -0.06721164286136627, -0.14382600784301758, -0.09908344596624374, 0.05892559513449669, 0.03304256126284599, 0.073243647813797, 0.024701904505491257, 0.11864494532346725, -0.08012019842863083, 0.05191517621278763, 0.19436998665332794, -0.37549906969070435, 0.00769640551880002, 0.021968312561511993, 0.07985470443964005, 0.05284970626235008, 0.03402619808912277, 0.09673517942428589, 0.05599810928106308, -0.012419103644788265, -0.05537338927388191, -0.08494362235069275, -0.002528045792132616, 0.03476233035326004, -0.07476066052913666, -0.05036406219005585, 0.2639382481575012, -0.0266365185379982, 0.031806670129299164, -0.0021135162096470594, -0.06742336601018906, 0.041099343448877335, -0.022374220192432404, 0.04034779220819473, -0.008503221906721592, 0.09130017459392548, 0.08900901675224304, -0.08538198471069336, -0.1595957726240158, 0.015222547575831413, -0.19951222836971283, 0.11572243273258209, 0.049301907420158386, 0.06935945898294449, -0.1554764062166214, 0.051881711930036545, 0.048283446580171585, -0.13874287903308868, -0.017530087381601334, -0.09824072569608688, 0.12285905331373215, 0.07191801071166992, -0.042425673454999924, -0.015390802174806595, 0.15769675374031067, 0.1655426025390625, 0.022379973903298378, 0.054064422845840454, -0.030518122017383575, 0.11764073371887207, -0.00713230948895216, 0.07264106720685959, 0.013818303123116493, -0.08673551678657532, 0.10106486827135086, -0.1430356204509735, 0.06212150678038597, -0.03410337120294571, -0.19543756544589996, -0.08025553822517395, -0.01715601608157158, 0.13067024946212769, 0.033258482813835144, 0.04697544127702713, -0.008163927122950554, 0.009120900183916092, 0.06427966058254242, -0.03750649839639664, -0.012111199088394642, 0.010699869133532047, 0.0023866628762334585, 0.16038118302822113, 0.044772811233997345, 0.03596216067671776, -0.08842108398675919, 0.04387437179684639, -0.03604116663336754, -0.01618187315762043, -0.014049628749489784, 0.004449992440640926, 0.06345631927251816, -0.06571511924266815, 0.07471805810928345, -0.1613924652338028, -0.14401116967201233, 0.012549805454909801, 0.035498589277267456, 0.0004232176288496703, -0.04477155581116676, -0.004902780055999756, 0.005402761977165937, 0.054228078573942184, -0.0899762436747551, 0.023896483704447746, -0.08551575243473053, 0.06802262365818024, -0.052180420607328415, 0.0268765427172184, -0.17573951184749603, 0.050467655062675476, -0.09284739196300507, -0.0020302787888795137, 0.019942570477724075, 0.00892654713243246, -0.07229795306921005, 0.15073178708553314, -0.04282137379050255, -0.0513976588845253, -0.026333587244153023, 0.04335188493132591, -0.03644116595387459, 0.1545712649822235, -0.10863731801509857, -0.05184733495116234, 0.23424318432807922, -0.10072246193885803, -0.17498871684074402, 0.0690324530005455, 0.023120706900954247, 0.0322854109108448, 0.0563490130007267, 0.17606797814369202, 0.028449157252907753, -0.03294835984706879, 0.12147882580757141, 0.10811439156532288, -0.03948627784848213, -0.13223698735237122, 0.05076727643609047, -0.04376443475484848, -0.0621744841337204, 0.0495440848171711, -0.030820373445749283, 0.11102873831987381, -0.013856831006705761, -0.057965364307165146, -0.0364682637155056, -0.05950025096535683, 0.026119856163859367, -0.003848853288218379, 0.09471742063760757, -0.07497277855873108, -0.004503100179135799, -0.053807757794857025, 0.0403858907520771, 0.021284986287355423, 0.06691541522741318, -0.058483075350522995, 0.0964231789112091, 0.07680393755435944, 0.05401003733277321, -0.09378819912672043, 0.04559384286403656, -0.041890185326337814, 0.05013228952884674, 0.04148351401090622, 0.09542303532361984, 0.021693620830774307, -0.053587816655635834, -0.01022244617342949, -0.00899959821254015, 0.1267109364271164, 0.04052799567580223, -0.006419588811695576, -0.11431552469730377, 0.056128185242414474, -0.007851831614971161, 0.02735883556306362, -0.03928101435303688, 0.015689171850681305, 0.07317885011434555, 0.10759984701871872, -0.0659710019826889, 0.12755246460437775, -0.05069131404161453, 0.001845793449319899, -0.07284894585609436, 0.014879771508276463, 0.10386257618665695, 0.023312387987971306, -0.11549554020166397, 0.24530218541622162, -0.09258072823286057, 0.2143295556306839, 0.20637650787830353, -0.19886447489261627, 0.10583469271659851, -0.019303273409605026, 0.0006664018728770316, -0.004044726025313139, 0.08223821967840195, 0.00961151160299778, 0.03819319233298302, 0.002171324100345373, 0.17474542558193207, -0.07239054888486862, -0.023085538297891617, -0.0024969633668661118, -0.09626850485801697, -0.022135034203529358, 0.07100042700767517, 0.10426979511976242, -0.23258242011070251, 0.1695624589920044, 0.2921661138534546, 0.023529307916760445, 0.19187073409557343, -0.07419994473457336, 0.020778916776180267, 0.05347338318824768, -0.020552949979901314, -0.039710406213998795, 0.010964064858853817, -0.16180574893951416, -0.037760041654109955, 0.08337162435054779, 0.06680430471897125, 0.09408900886774063, -0.12206202745437622, -0.0453185997903347, 0.007300890516489744, -0.012791763059794903, 0.010710624977946281, 0.09437031298875809, -0.01996980421245098, 0.08823429048061371, -0.046553850173950195, -0.02883654087781906, 0.09041570872068405, -0.0009048061911016703, -0.09789879620075226, 0.1434318572282791, -0.17674663662910461, -0.23838923871517181, -0.16593679785728455, -0.13138289749622345, -0.0564814917743206, 0.00244928989559412, 0.1538723260164261, -0.03111613169312477, -0.035615723580121994, 0.03143249452114105, 0.016449490562081337, -0.07271771878004074, -0.03127921000123024, -0.03773888945579529, 0.04505424574017525, -0.0650106742978096, -0.1146751269698143, -0.05855978652834892, 0.007826394401490688, -0.051254548132419586, 0.09162919223308563, -0.14633481204509735, 0.08563008904457092, 0.08568556606769562, 0.028824536129832268, 0.049041494727134705, -0.029068589210510254, 0.11542186141014099, -0.060978345572948456, 0.015188517980277538, 0.2575647234916687, 0.00021479150746017694, 0.07403352856636047, 0.09941678494215012, -0.007224349305033684, -0.04316793382167816, -0.0073697553016245365, -0.0704341009259224, -0.09386783838272095, -0.2661445438861847, -0.14332951605319977, -0.1257859766483307, 0.028561575338244438, -0.011755883693695068, 0.05261106789112091, 0.14495287835597992, 0.07906851172447205, -0.04356676712632179, -0.0006198143237270415, 0.004090052098035812, 0.06610243767499924, 0.24262036383152008, -0.014405247755348682, 0.10371048748493195, -0.1089664027094841, -0.051269400864839554, 0.12497264891862869, 0.07800993323326111, 0.11716312915086746, 0.09029938280582428, 0.07879066467285156, 0.08679905533790588, 0.18003740906715393, 0.09468358755111694, 0.11000927537679672, 0.04653206467628479, -0.00986994057893753, -0.062082044780254364, -0.031145716086030006, -0.050287771970033646, 0.04807666316628456, -0.006362278014421463, -0.15155017375946045, -0.05969678983092308, -0.0680847242474556, 0.08063589781522751, 0.10456519573926926, -0.003783842548727989, -0.04093993827700615, 0.039092451333999634, 0.10325294733047485, 0.01403022464364767, -0.08376435935497284, 0.1140616238117218, -0.04526231437921524, -0.14920790493488312, 0.14856722950935364, 0.010450942441821098, 0.1294337809085846, -0.0030424939468503, 0.062247198075056076, -0.1081756129860878, -0.12661367654800415, 0.0837770402431488, 0.15446166694164276, -0.33448082208633423, 0.20528756082057953, -0.009949632920324802, -0.03259511664509773, -0.11671587824821472, -0.02517189271748066, 0.05791961029171944, 0.20055320858955383, 0.10718709975481033, 0.028324846178293228, -0.14328508079051971, 0.020992988720536232, 0.006791968829929829, 0.038163162767887115, 0.07074765861034393, 0.016917139291763306, -0.054823849350214005, -0.06400864571332932, -0.0067418040707707405, -0.049788691103458405, 0.14554809033870697, -0.03835510089993477, -0.17799252271652222, 0.06616375595331192, 0.05637069046497345, 0.024224869906902313, -0.05288124457001686, -0.009138183668255806, -0.097939632833004, 0.13641898334026337, -0.08832591772079468, -0.09405244141817093, -0.1033153310418129, -0.11921356618404388, 0.0666326954960823, -0.08383453637361526, 0.06731954216957092, -0.06267248094081879, -0.018152957782149315, -0.09397511929273605, -0.1925007700920105, 0.08901682496070862, -0.11713006347417831, -0.05184627324342728, -0.021886546164751053, 0.1569615602493286, -0.0800638496875763, 0.023910323157906532, 0.047665975987911224, -0.03657912835478783, -0.11137495934963226, -0.1191592887043953, -0.03618893027305603, 0.0032491814345121384, 0.027584565803408623, -0.039739418774843216, -0.08732537925243378, -0.07999183237552643, -0.014111331664025784, -0.11920774728059769, 0.24238447844982147, 0.17674659192562103, -0.05660185217857361, 0.16032911837100983, 0.18052197992801666, -0.08599993586540222, -0.3138691782951355, -0.19709503650665283, -0.1468658447265625, -0.022521333768963814, -0.029230400919914246, -0.140187069773674, 0.04768499359488487, 0.019772574305534363, -0.06896568834781647, 0.11369824409484863, -0.22613701224327087, -0.08593279123306274, 0.17244423925876617, -0.0212241280823946, 0.38478755950927734, -0.13826176524162292, -0.10451456904411316, -0.10001157224178314, -0.1907615065574646, 0.12768372893333435, -0.11043946444988251, 0.06389443576335907, 0.00691285589709878, 0.060314375907182693, -0.004475215915590525, -0.019135894253849983, 0.1332300454378128, -0.02995908074080944, -0.030108490958809853, -0.11889633536338806, -0.002406464656814933, 0.05718672648072243, 0.000009720438356453087, 0.009389974176883698, -0.16712652146816254, 0.022188683971762657, -0.10025296360254288, -0.015574194490909576, -0.08215101808309555, 0.07208108901977539, -0.00561736524105072, -0.05130256339907646, -0.04974054917693138, -0.038071248680353165, 0.0448061004281044, 0.02195485681295395, 0.2575736343860626, -0.014065224677324295, 0.003470390336588025, 0.09191510081291199, 0.10615649819374084, -0.1941796839237213, 0.0977405235171318, -0.14226385951042175, -0.05869636684656143, 0.043081630021333694, -0.13107018172740936, 0.05226520076394081, 0.10515933483839035, -0.054940517991781235, 0.029822275042533875, 0.0510944165289402, -0.049194224178791046, -0.0219416506588459, 0.1374741941690445, -0.1464143991470337, -0.01640709862112999, -0.067091204226017, 0.1329791396856308, 0.17057214677333832, 0.07179228216409683, 0.1597994863986969, 0.04823389649391174, -0.05474814027547836, -0.010440945625305176, 0.002971567679196596, -0.09372757375240326, 0.057347968220710754, 0.0478798933327198, 0.0015764927957206964, -0.12242787331342697, 0.07939047366380692, -0.021621666848659515, -0.07950015366077423, -0.003148311283439398, 0.16168811917304993, -0.15173743665218353, -0.13846027851104736, 0.0028329500928521156, 0.08163502812385559, -0.20600348711013794, -0.12341274321079254, -0.04371896758675575, -0.1533464938402176, 0.02526535652577877, 0.15197573602199554, 0.09317623823881149, 0.033127836883068085, -0.011915149167180061, -0.08880536258220673, 0.08191876858472824, -0.04652772098779678, -0.015651369467377663, 0.011851768009364605, -0.07843837141990662, -0.04435649514198303, 0.009157863445580006, 0.15514172613620758, -0.05450292304158211, -0.010519925504922867, -0.0903431698679924, 0.042643189430236816, -0.20790183544158936, -0.01587792858481407, -0.10195748507976532, -0.057146165519952774, -0.000027642166969599202, -0.10055088996887207, -0.04059503227472305, 0.01029076986014843, -0.12494531273841858, -0.002510329009965062, -0.06342776119709015, 0.0714535042643547, -0.049713149666786194, -0.034401144832372665, 0.0962744653224945, -0.0267789289355278, 0.0910283625125885, 0.11081203073263168, -0.05455880984663963, 0.137198343873024, -0.14158838987350464, -0.09007949382066727, 0.06593494117259979, 0.0668945237994194, 0.047351252287626266, 0.04841696098446846, -0.00004272368460078724, 0.11652243882417679, 0.004368684254586697, 0.01572567969560623, -0.024677608162164688, -0.11628223210573196, -0.028768371790647507, -0.04489022120833397, -0.10848890244960785, 0.0009427391923964024, -0.06298701465129852, 0.092647023499012, 0.015023965388536453, 0.1234753280878067, -0.030285794287919998, 0.06708675622940063, 0.006019499618560076, 0.04280799999833107, -0.010697249323129654, -0.16488291323184967, -0.06807888299226761, -0.11695396155118942, -0.037956468760967255, 0.011804474517703056, 0.23864513635635376, -0.008609991520643234, -0.007029254920780659, 0.03929494321346283, 0.10929595679044724, 0.02525170147418976, 0.013331622816622257, 0.25777122378349304, 0.04315979778766632, 0.015724951401352882, -0.1383519321680069, 0.03589799255132675, -0.0014238638104870915, -0.027102604508399963, 0.08340399712324142, 0.06813687086105347, 0.09647228568792343, 0.10271118581295013, 0.007556164171546698, 0.04264373704791069, -0.09159673750400543, -0.18727442622184753, 0.055158112198114395, 0.013812808319926262, -0.010314783081412315, 0.09369318187236786, 0.1752849668264389, -0.06504587084054947, 0.012611470185220242, -0.03112097457051277, -0.006888612639158964, -0.16650374233722687, -0.18647095561027527, -0.06394686549901962, -0.10640700161457062, -0.0079728988930583, -0.04011612758040428, 0.030525824055075645, 0.02843078412115574, 0.0700063705444336, -0.08450248837471008, 0.008615476079285145, -0.019565900787711143, -0.12402031570672989, 0.035628605633974075, -0.016313860192894936, 0.02616419829428196, 0.013797025196254253, -0.027765445411205292, -0.10166430473327637, -0.04667611047625542, -0.03342301771044731, 0.05898598954081535, -0.047804996371269226, 0.030006559565663338, -0.09886696189641953, -0.050722502171993256, -0.06195630878210068, 0.028665916994214058, 0.017685653641819954, 0.20057789981365204, 0.0023117398377507925, -0.0018310017185285687, 0.06344591081142426, 0.14805017411708832, -0.01787356473505497, -0.1750355064868927, -0.0077714635990560055, 0.10945296287536621, 0.07804430276155472, 0.09104117751121521, 0.0016628092853352427, 0.029448386281728745, -0.051572490483522415, 0.3865346610546112, 0.27409788966178894, -0.06940282881259918, 0.02348625846207142, 0.022642016410827637, 0.03793970122933388, 0.07833702862262726, 0.08170555531978607, 0.10373394191265106, 0.2378242164850235, -0.06933625787496567, -0.013546791858971119, -0.07044675201177597, -0.00029564110445789993, -0.16964007914066315, 0.1348942667245865, -0.02051093801856041, -0.1059323251247406, 0.015126828104257584, 0.10064085572957993, -0.15675747394561768, 0.09170278161764145, -0.03289434686303139, -0.11454512923955917, -0.023242749273777008, 0.00447998009622097, 0.19465281069278717, 0.0637577697634697, 0.03648017719388008, -0.0217497069388628, -0.06304432451725006, 0.06677087396383286, 0.024536171928048134, -0.21363192796707153, -0.004213276319205761, 0.07204164564609528, -0.09208622574806213, 0.08609074354171753, -0.012847376056015491, 0.026196066290140152, 0.08498761802911758, 0.09492158889770508, -0.03916473314166069, 0.08557897061109543, 0.027213342487812042, -0.019644875079393387, 0.005902971141040325, -0.07367061823606491, -0.013684136793017387, -0.11974882334470749, 0.04513358697295189, -0.10237154364585876, 0.08034293353557587, 0.11678796261548996, -0.04817366227507591, 0.01914812996983528, 0.08742617815732956, -0.10710056126117706, 0.053041163831949234, -0.022697456181049347, -0.019720764830708504, -0.054381728172302246, -0.0665476992726326, -0.011959372088313103, 0.029863743111491203, -0.1081395149230957, -0.0633007362484932, -0.029087049886584282, -0.08575579524040222, 0.045358188450336456, 0.04016266018152237, -0.07951100915670395, 0.009788492694497108, -0.10978285223245621, 0.027485383674502373, -0.1661493331193924, 0.06590180099010468, 0.08284853398799896, -0.015338756144046783, 0.0210063848644495, -0.11286237835884094, 0.03534599393606186, 0.014491653069853783, -0.09326482564210892, -0.08275707811117172 ]
null
null
null
# WudaoSailing WudaoSailing is a package for pretraining chinese Language Model and finetune tasks. Now it supports GLM, Bert, T5, Cogview and Roberta models. ## Get Started ### Docker Image We prepare two docker images based on CUDA 10.2 and CUDA 11.2. You can build images from the docker file [docs/docker/cuda102.dockerfile](docs/docker/cuda102.dcokerfile) or pull the pre-built images from Docker Hub and run with docker v19.03+ ```shell nvidia-docker run -id --hostname=V100 --network=host\ --ipc=host --shm-size=16gb --name=deepspeed-cuda \ -e NVIDIA_VISIBLE_DEVICES=0,1,2,3 \ -v /DATA/disk1/docker/containers/:/data deepspeed/cuda102:lastest ``` or replace `cuda102` with `cuda112`. ```shell docker build -f cuda102.dockerfile -t deepspeed/cuda102 . ``` ### Clone this repo ```shell git clone https://github.com/wangguojim/WudaoSailing.git cd WudaoSailing pip install -r requirements.txt ``` ## GLM We show some examples based on GLM model. ### finetuene We provide scripts for finetuning GLM on some downstream tasks. #### SuperGLUE - Download the [SuperGlue](https://super.gluebenchmark.com/tasks) data and check the experiment setup in [examples/glm/scripts/ds_finetune_superglue.sh](xamples/glm/scripts/ds_finetune_superglue.sh). Note that `DATA_ROOT, CHECKPOINT_PATH, SAVE_PATH` need to be changed to your local path. You may also change the `batch-size` and `nproc_per_node` according to your available hardware. - Run the following script for text similarity finetune task (use the afqmc dataset as an example) ``` cd examples/glm/ bash scripts/ds_finetune_superglue.sh\ config/model_blocklm_large_chinese.sh\ config_tasks/task_afqmc.sh ``` - Run the following script for text classification finetune task (use the thunews and thunews dataset as an example) ``` cd examples/glm/ bash scripts/ds_finetune_superglue.sh\ config/model_blocklm_large_chinese.sh\ config_tasks/task_tnews.sh ``` - Run the following script for causal inference finetune task (use the COPA dataset as an example) ``` cd examples/glm/ bash scripts/ds_finetune_superglue.sh\ config/model_blocklm_large_chinese.sh\ config_tasks/task_copa.sh ``` - To apply GLM to a new NLU dataset with cloze-filling finetuning, implement a `DataProcessor` in [examples/glm/tasks/superglue/dataset.py](examples/glm/tasks/superglue/dataset.py) for data loading and add a `PVP` in [examples/glm/tasks/superglue/pvp.py](examples/glm/tasks/superglue/pvp.py) for the cloze question. More details can be found [here](examples/glm/tasks/superglue/README.md). #### Blank Filling (Interactive) * Change `CHECKPOINT_PATH` to your local path. Run the following script ``` bash config/generate_block.sh\ config/model_blocklm_large_chinese.sh ``` ##### Example1 (Entity Prediction): Context: 凯旋门位于意大利米兰市古城堡旁。1807年为纪念[MASK]而建,门高25米,顶上矗立两武士青铜古兵车铸像。 GLM:拿破仑军队攻克米兰城 ##### Example2 (Sentence Prediction) Context: 工业互联网(Industrial Internet)是新一代信息通信技术与工业经济深度融合的新型基础设施、应用模式和工业生态,通过对人、机、物、系统等的全面连接,构建起覆盖全产业链、全价值链的全新制造和服务体系,为工业乃至产业数字化、网络化、智能化发展提供了实现途径,是第四次工业革命的重要基石。[sMASK]它以网络为基础、平台为中枢、数据为要素、安全为保障,既是工业数字化、网络化、智能化转型的基础设施,也是互联网、大数据、人工智能与实体经济深度融合的应用模式,同时也是一种新业态、新产业,将重塑企业形态、供应链和产业链。当前,工业互联网融合应用向国民经济重点行业广泛拓展,形成平台化设计、智能化制造、网络化协同、个性化定制、服务化延伸、数字化管理六大新模式,赋能、赋智、赋值作用不断显现,有力的促进了实体经济提质、增效、降本、绿色、安全发展。 GLM: 工业互联网是制造业技术、管理、模式的重大变革,是推动互联网、大数据、人工智能和实体经济深度融合的重要载体,是建设制造强国和网络强国的重要基础。 ##### Example3 (Long Text Generation) Context: 问题:高斯所在的国家有什么汽车品牌?答案:[gMASK] GLM:答案:[gMASK]<|startofpiece|>德国奔驰、德国大众、别克、沃尔沃、斯柯达、本田、雪铁龙. ### Ptuning Run the following script to integrate p-tuning with GLM: ```shell cd algutils/ptuning/ bash finetune_zy.sh ``` ### Pretrain Run the following script to pre-train the GLM-Large model ```shell cd examples/glm/ bash scripts/ds_pretrain_nvidia.sh config/ds_block_large.sh ``` The script [examples/glm/config/ds_pretrain_nvidia.sh](examples/glm/config/ds_pretrain_nvidia.sh) launches the training program with DeepSpeed. You should change `NUM_WORKERS` and `NUM_GPUS_PER_WORKER` to the number of workers and the number of gpus per worker. Also change `HOST_FILE_PATH` to the path to an OpenMPI-style hostfile. More details about DeepSpeed launcher can be found [here](https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node). The file [examples/glm/config/ds_block_large.sh](examples/glm/config/ds_block_large.sh) defines the hyperparameters for pretraining. Most of the arguments are fairly self-explanatory. Specifically, `--train-data` can be multiple keywords defined in `NAMED_CORPORA` in [data_utils/corpora.py](data_utils/corpora.py). The hyperparameters of the optimizer are defined in the corresponding json file under `config`. The semantics of the json file can be found [here](https://www.deepspeed.ai/docs/config-json). ## Bert We show some examples based on GLM model. ### Pretrain Run the following script to pre-train the Bert model ```shell cd examples/bert/ python quick_start.py ``` ## CogView ### Pretrain Run the following script to pre-train the cogview model ```shell cd examples/cogview/ bash config/pretrain_multiple_nodes.sh ``` ### inference Run the following script to test the ability of text2image ```shell cd examples/cogview/ bash config/text2image_cogview.sh ```
{}
null
guoqiang/WuDaoSailing
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
# WudaoSailing WudaoSailing is a package for pretraining chinese Language Model and finetune tasks. Now it supports GLM, Bert, T5, Cogview and Roberta models. ## Get Started ### Docker Image We prepare two docker images based on CUDA 10.2 and CUDA 11.2. You can build images from the docker file docs/docker/cuda102.dockerfile or pull the pre-built images from Docker Hub and run with docker v19.03+ or replace 'cuda102' with 'cuda112'. ### Clone this repo ## GLM We show some examples based on GLM model. ### finetuene We provide scripts for finetuning GLM on some downstream tasks. #### SuperGLUE - Download the SuperGlue data and check the experiment setup in examples/glm/scripts/ds_finetune_superglue.sh. Note that 'DATA_ROOT, CHECKPOINT_PATH, SAVE_PATH' need to be changed to your local path. You may also change the 'batch-size' and 'nproc_per_node' according to your available hardware. - Run the following script for text similarity finetune task (use the afqmc dataset as an example) - Run the following script for text classification finetune task (use the thunews and thunews dataset as an example) - Run the following script for causal inference finetune task (use the COPA dataset as an example) - To apply GLM to a new NLU dataset with cloze-filling finetuning, implement a 'DataProcessor' in examples/glm/tasks/superglue/URL for data loading and add a 'PVP' in examples/glm/tasks/superglue/URL for the cloze question. More details can be found here. #### Blank Filling (Interactive) * Change 'CHECKPOINT_PATH' to your local path. Run the following script ##### Example1 (Entity Prediction): Context: 凯旋门位于意大利米兰市古城堡旁。1807年为纪念[MASK]而建,门高25米,顶上矗立两武士青铜古兵车铸像。 GLM:拿破仑军队攻克米兰城 ##### Example2 (Sentence Prediction) Context: 工业互联网(Industrial Internet)是新一代信息通信技术与工业经济深度融合的新型基础设施、应用模式和工业生态,通过对人、机、物、系统等的全面连接,构建起覆盖全产业链、全价值链的全新制造和服务体系,为工业乃至产业数字化、网络化、智能化发展提供了实现途径,是第四次工业革命的重要基石。[sMASK]它以网络为基础、平台为中枢、数据为要素、安全为保障,既是工业数字化、网络化、智能化转型的基础设施,也是互联网、大数据、人工智能与实体经济深度融合的应用模式,同时也是一种新业态、新产业,将重塑企业形态、供应链和产业链。当前,工业互联网融合应用向国民经济重点行业广泛拓展,形成平台化设计、智能化制造、网络化协同、个性化定制、服务化延伸、数字化管理六大新模式,赋能、赋智、赋值作用不断显现,有力的促进了实体经济提质、增效、降本、绿色、安全发展。 GLM: 工业互联网是制造业技术、管理、模式的重大变革,是推动互联网、大数据、人工智能和实体经济深度融合的重要载体,是建设制造强国和网络强国的重要基础。 ##### Example3 (Long Text Generation) Context: 问题:高斯所在的国家有什么汽车品牌?答案:[gMASK] GLM:答案:[gMASK]<|startofpiece|>德国奔驰、德国大众、别克、沃尔沃、斯柯达、本田、雪铁龙. ### Ptuning Run the following script to integrate p-tuning with GLM: ### Pretrain Run the following script to pre-train the GLM-Large model The script examples/glm/config/ds_pretrain_nvidia.sh launches the training program with DeepSpeed. You should change 'NUM_WORKERS' and 'NUM_GPUS_PER_WORKER' to the number of workers and the number of gpus per worker. Also change 'HOST_FILE_PATH' to the path to an OpenMPI-style hostfile. More details about DeepSpeed launcher can be found here. The file examples/glm/config/ds_block_large.sh defines the hyperparameters for pretraining. Most of the arguments are fairly self-explanatory. Specifically, '--train-data' can be multiple keywords defined in 'NAMED_CORPORA' in data_utils/URL. The hyperparameters of the optimizer are defined in the corresponding json file under 'config'. The semantics of the json file can be found here. ## Bert We show some examples based on GLM model. ### Pretrain Run the following script to pre-train the Bert model ## CogView ### Pretrain Run the following script to pre-train the cogview model ### inference Run the following script to test the ability of text2image
[ "# WudaoSailing\n\nWudaoSailing is a package for pretraining chinese Language Model and finetune tasks. Now it supports GLM, Bert, T5, Cogview and Roberta models.", "## Get Started", "### Docker Image\nWe prepare two docker images based on CUDA 10.2 and CUDA 11.2. You can build images from the docker file docs/docker/cuda102.dockerfile or pull the pre-built images from Docker Hub and run with docker v19.03+\n \n or replace 'cuda102' with 'cuda112'.", "### Clone this repo", "## GLM\n\nWe show some examples based on GLM model.", "### finetuene\nWe provide scripts for finetuning GLM on some downstream tasks.", "#### SuperGLUE\n\n- Download the SuperGlue data and check the experiment setup in \n examples/glm/scripts/ds_finetune_superglue.sh. Note that 'DATA_ROOT, CHECKPOINT_PATH, SAVE_PATH' \n need to be changed to your local path. You may also change the 'batch-size' and 'nproc_per_node' according to your \n available hardware.\n\n- Run the following script for text similarity finetune task (use the afqmc dataset as an example)\n\n\n\n\n- Run the following script for text classification finetune task (use the thunews and thunews dataset as an example)\n\n\n\n- Run the following script for causal inference finetune task (use the COPA dataset as an example)\n\n\n \n- To apply GLM to a new NLU dataset with cloze-filling finetuning, implement a 'DataProcessor' in\n examples/glm/tasks/superglue/URL for data loading and add a 'PVP' in \n examples/glm/tasks/superglue/URL for the cloze question. More details can be found \n here.", "#### Blank Filling (Interactive)\n* Change 'CHECKPOINT_PATH' to your local path. Run the following script", "##### Example1 (Entity Prediction):\n\nContext: 凯旋门位于意大利米兰市古城堡旁。1807年为纪念[MASK]而建,门高25米,顶上矗立两武士青铜古兵车铸像。\n\nGLM:拿破仑军队攻克米兰城", "##### Example2 (Sentence Prediction)\nContext: 工业互联网(Industrial Internet)是新一代信息通信技术与工业经济深度融合的新型基础设施、应用模式和工业生态,通过对人、机、物、系统等的全面连接,构建起覆盖全产业链、全价值链的全新制造和服务体系,为工业乃至产业数字化、网络化、智能化发展提供了实现途径,是第四次工业革命的重要基石。[sMASK]它以网络为基础、平台为中枢、数据为要素、安全为保障,既是工业数字化、网络化、智能化转型的基础设施,也是互联网、大数据、人工智能与实体经济深度融合的应用模式,同时也是一种新业态、新产业,将重塑企业形态、供应链和产业链。当前,工业互联网融合应用向国民经济重点行业广泛拓展,形成平台化设计、智能化制造、网络化协同、个性化定制、服务化延伸、数字化管理六大新模式,赋能、赋智、赋值作用不断显现,有力的促进了实体经济提质、增效、降本、绿色、安全发展。\n\nGLM: 工业互联网是制造业技术、管理、模式的重大变革,是推动互联网、大数据、人工智能和实体经济深度融合的重要载体,是建设制造强国和网络强国的重要基础。", "##### Example3 (Long Text Generation)\nContext: 问题:高斯所在的国家有什么汽车品牌?答案:[gMASK]\n\nGLM:答案:[gMASK]<|startofpiece|>德国奔驰、德国大众、别克、沃尔沃、斯柯达、本田、雪铁龙.", "### Ptuning\nRun the following script to integrate p-tuning with GLM:", "### Pretrain\nRun the following script to pre-train the GLM-Large model\n\n\nThe script examples/glm/config/ds_pretrain_nvidia.sh launches the training program with DeepSpeed. You should change 'NUM_WORKERS' and 'NUM_GPUS_PER_WORKER' to the number of workers and the number of gpus per worker. Also change 'HOST_FILE_PATH' to the path to an OpenMPI-style hostfile. More details about DeepSpeed launcher can be found here.\n\nThe file examples/glm/config/ds_block_large.sh defines the hyperparameters for pretraining. Most of the arguments are fairly self-explanatory. Specifically, '--train-data' can be multiple keywords defined in 'NAMED_CORPORA' in data_utils/URL. The hyperparameters of the optimizer are defined in the corresponding json file under 'config'. The semantics of the json file can be found here.", "## Bert\n\nWe show some examples based on GLM model.", "### Pretrain\nRun the following script to pre-train the Bert model", "## CogView", "### Pretrain\nRun the following script to pre-train the cogview model", "### inference\nRun the following script to test the ability of text2image" ]
[ "TAGS\n#region-us \n", "# WudaoSailing\n\nWudaoSailing is a package for pretraining chinese Language Model and finetune tasks. Now it supports GLM, Bert, T5, Cogview and Roberta models.", "## Get Started", "### Docker Image\nWe prepare two docker images based on CUDA 10.2 and CUDA 11.2. You can build images from the docker file docs/docker/cuda102.dockerfile or pull the pre-built images from Docker Hub and run with docker v19.03+\n \n or replace 'cuda102' with 'cuda112'.", "### Clone this repo", "## GLM\n\nWe show some examples based on GLM model.", "### finetuene\nWe provide scripts for finetuning GLM on some downstream tasks.", "#### SuperGLUE\n\n- Download the SuperGlue data and check the experiment setup in \n examples/glm/scripts/ds_finetune_superglue.sh. Note that 'DATA_ROOT, CHECKPOINT_PATH, SAVE_PATH' \n need to be changed to your local path. You may also change the 'batch-size' and 'nproc_per_node' according to your \n available hardware.\n\n- Run the following script for text similarity finetune task (use the afqmc dataset as an example)\n\n\n\n\n- Run the following script for text classification finetune task (use the thunews and thunews dataset as an example)\n\n\n\n- Run the following script for causal inference finetune task (use the COPA dataset as an example)\n\n\n \n- To apply GLM to a new NLU dataset with cloze-filling finetuning, implement a 'DataProcessor' in\n examples/glm/tasks/superglue/URL for data loading and add a 'PVP' in \n examples/glm/tasks/superglue/URL for the cloze question. More details can be found \n here.", "#### Blank Filling (Interactive)\n* Change 'CHECKPOINT_PATH' to your local path. Run the following script", "##### Example1 (Entity Prediction):\n\nContext: 凯旋门位于意大利米兰市古城堡旁。1807年为纪念[MASK]而建,门高25米,顶上矗立两武士青铜古兵车铸像。\n\nGLM:拿破仑军队攻克米兰城", "##### Example2 (Sentence Prediction)\nContext: 工业互联网(Industrial Internet)是新一代信息通信技术与工业经济深度融合的新型基础设施、应用模式和工业生态,通过对人、机、物、系统等的全面连接,构建起覆盖全产业链、全价值链的全新制造和服务体系,为工业乃至产业数字化、网络化、智能化发展提供了实现途径,是第四次工业革命的重要基石。[sMASK]它以网络为基础、平台为中枢、数据为要素、安全为保障,既是工业数字化、网络化、智能化转型的基础设施,也是互联网、大数据、人工智能与实体经济深度融合的应用模式,同时也是一种新业态、新产业,将重塑企业形态、供应链和产业链。当前,工业互联网融合应用向国民经济重点行业广泛拓展,形成平台化设计、智能化制造、网络化协同、个性化定制、服务化延伸、数字化管理六大新模式,赋能、赋智、赋值作用不断显现,有力的促进了实体经济提质、增效、降本、绿色、安全发展。\n\nGLM: 工业互联网是制造业技术、管理、模式的重大变革,是推动互联网、大数据、人工智能和实体经济深度融合的重要载体,是建设制造强国和网络强国的重要基础。", "##### Example3 (Long Text Generation)\nContext: 问题:高斯所在的国家有什么汽车品牌?答案:[gMASK]\n\nGLM:答案:[gMASK]<|startofpiece|>德国奔驰、德国大众、别克、沃尔沃、斯柯达、本田、雪铁龙.", "### Ptuning\nRun the following script to integrate p-tuning with GLM:", "### Pretrain\nRun the following script to pre-train the GLM-Large model\n\n\nThe script examples/glm/config/ds_pretrain_nvidia.sh launches the training program with DeepSpeed. You should change 'NUM_WORKERS' and 'NUM_GPUS_PER_WORKER' to the number of workers and the number of gpus per worker. Also change 'HOST_FILE_PATH' to the path to an OpenMPI-style hostfile. More details about DeepSpeed launcher can be found here.\n\nThe file examples/glm/config/ds_block_large.sh defines the hyperparameters for pretraining. Most of the arguments are fairly self-explanatory. Specifically, '--train-data' can be multiple keywords defined in 'NAMED_CORPORA' in data_utils/URL. The hyperparameters of the optimizer are defined in the corresponding json file under 'config'. The semantics of the json file can be found here.", "## Bert\n\nWe show some examples based on GLM model.", "### Pretrain\nRun the following script to pre-train the Bert model", "## CogView", "### Pretrain\nRun the following script to pre-train the cogview model", "### inference\nRun the following script to test the ability of text2image" ]
[ 6, 47, 4, 80, 6, 14, 22, 257, 29, 71, 285, 72, 20, 237, 13, 16, 4, 18, 16 ]
[ "passage: TAGS\n#region-us \n# WudaoSailing\n\nWudaoSailing is a package for pretraining chinese Language Model and finetune tasks. Now it supports GLM, Bert, T5, Cogview and Roberta models.## Get Started### Docker Image\nWe prepare two docker images based on CUDA 10.2 and CUDA 11.2. You can build images from the docker file docs/docker/cuda102.dockerfile or pull the pre-built images from Docker Hub and run with docker v19.03+\n \n or replace 'cuda102' with 'cuda112'.### Clone this repo## GLM\n\nWe show some examples based on GLM model.### finetuene\nWe provide scripts for finetuning GLM on some downstream tasks.#### SuperGLUE\n\n- Download the SuperGlue data and check the experiment setup in \n examples/glm/scripts/ds_finetune_superglue.sh. Note that 'DATA_ROOT, CHECKPOINT_PATH, SAVE_PATH' \n need to be changed to your local path. You may also change the 'batch-size' and 'nproc_per_node' according to your \n available hardware.\n\n- Run the following script for text similarity finetune task (use the afqmc dataset as an example)\n\n\n\n\n- Run the following script for text classification finetune task (use the thunews and thunews dataset as an example)\n\n\n\n- Run the following script for causal inference finetune task (use the COPA dataset as an example)\n\n\n \n- To apply GLM to a new NLU dataset with cloze-filling finetuning, implement a 'DataProcessor' in\n examples/glm/tasks/superglue/URL for data loading and add a 'PVP' in \n examples/glm/tasks/superglue/URL for the cloze question. More details can be found \n here.#### Blank Filling (Interactive)\n* Change 'CHECKPOINT_PATH' to your local path. Run the following script", "passage: ##### Example1 (Entity Prediction):\n\nContext: 凯旋门位于意大利米兰市古城堡旁。1807年为纪念[MASK]而建,门高25米,顶上矗立两武士青铜古兵车铸像。\n\nGLM:拿破仑军队攻克米兰城##### Example2 (Sentence Prediction)\nContext: 工业互联网(Industrial Internet)是新一代信息通信技术与工业经济深度融合的新型基础设施、应用模式和工业生态,通过对人、机、物、系统等的全面连接,构建起覆盖全产业链、全价值链的全新制造和服务体系,为工业乃至产业数字化、网络化、智能化发展提供了实现途径,是第四次工业革命的重要基石。[sMASK]它以网络为基础、平台为中枢、数据为要素、安全为保障,既是工业数字化、网络化、智能化转型的基础设施,也是互联网、大数据、人工智能与实体经济深度融合的应用模式,同时也是一种新业态、新产业,将重塑企业形态、供应链和产业链。当前,工业互联网融合应用向国民经济重点行业广泛拓展,形成平台化设计、智能化制造、网络化协同、个性化定制、服务化延伸、数字化管理六大新模式,赋能、赋智、赋值作用不断显现,有力的促进了实体经济提质、增效、降本、绿色、安全发展。\n\nGLM: 工业互联网是制造业技术、管理、模式的重大变革,是推动互联网、大数据、人工智能和实体经济深度融合的重要载体,是建设制造强国和网络强国的重要基础。##### Example3 (Long Text Generation)\nContext: 问题:高斯所在的国家有什么汽车品牌?答案:[gMASK]\n\nGLM:答案:[gMASK]<|startofpiece|>德国奔驰、德国大众、别克、沃尔沃、斯柯达、本田、雪铁龙.### Ptuning\nRun the following script to integrate p-tuning with GLM:" ]
[ -0.07000462710857391, 0.05870753526687622, -0.010569901205599308, 0.0036202543415129185, 0.04226570576429367, 0.008763478137552738, 0.06657715886831284, 0.05139379948377609, 0.06862743198871613, 0.047246892005205154, 0.015231149271130562, -0.006566012278199196, 0.07506643235683441, 0.10225285589694977, 0.08154445886611938, -0.18256685137748718, 0.03978138789534569, -0.051696039736270905, -0.04775737226009369, 0.0429314486682415, 0.06582005321979523, -0.04681091383099556, 0.08492032438516617, -0.011340398341417313, -0.016854645684361458, -0.019559960812330246, 0.0004418371245265007, -0.0025349436327815056, 0.07070780545473099, 0.052435800433158875, 0.06313278526067734, -0.023979730904102325, 0.03653205558657646, -0.10978098213672638, 0.025247052311897278, 0.04356572777032852, 0.0024497252888977528, 0.022495584562420845, 0.07405577600002289, 0.02120247110724449, 0.10069054365158081, -0.01606423407793045, -0.007639455143362284, 0.0362129732966423, -0.05946468934416771, 0.004589040298014879, -0.07808682322502136, 0.03895045071840286, 0.04855695366859436, 0.05498959496617317, 0.0008893217891454697, 0.030252842232584953, -0.08403484523296356, 0.029465913772583008, -0.019157886505126953, -0.12743158638477325, -0.029649391770362854, 0.05273960530757904, 0.06507112085819244, 0.04561592638492584, -0.031626567244529724, 0.013724765740334988, -0.02374168112874031, 0.027342794463038445, -0.04206887632608414, -0.04802589863538742, 0.04585856571793556, -0.0009486291091889143, -0.09488990902900696, -0.00532617187127471, 0.16133080422878265, -0.05977196991443634, -0.06830856949090958, -0.0518135204911232, -0.027511680498719215, -0.0068306829780340195, -0.00842710118740797, -0.03575853258371353, -0.0039307838305830956, 0.03447476029396057, 0.09151449799537659, -0.06546534597873688, -0.046905823051929474, -0.020957568660378456, -0.028628794476389885, 0.12844134867191315, 0.03915410861372948, 0.021754596382379532, -0.020238962024450302, 0.06569205224514008, -0.047750331461429596, -0.018324119970202446, -0.019199976697564125, -0.04323768615722656, -0.07343312352895737, 0.012336526066064835, -0.014570310711860657, -0.04706890881061554, 0.04221838340163231, 0.151683509349823, 0.012536823749542236, 0.05368144437670708, 0.022447284311056137, 0.04571284353733063, 0.022706229239702225, 0.12924878299236298, -0.05719080567359924, -0.05267065390944481, 0.013344879262149334, -0.01948588341474533, 0.03812536969780922, -0.03215062618255615, -0.02642158605158329, -0.00843193382024765, -0.06673811376094818, 0.05275639519095421, 0.05875556170940399, 0.062130849808454514, -0.03460131213068962, -0.02411419339478016, 0.12698741257190704, -0.07807207852602005, 0.013009333983063698, -0.0193919837474823, -0.03807446360588074, 0.03310758247971535, -0.016864091157913208, 0.024181444197893143, -0.07626105844974518, 0.08468037843704224, -0.027979476377367973, -0.016168035566806793, -0.07004954665899277, -0.03144612908363342, 0.03697548061609268, -0.03413219749927521, -0.02024998888373375, -0.07000948488712311, -0.12768235802650452, -0.03300374001264572, 0.037832699716091156, -0.021182160824537277, -0.007765019312500954, 0.028885971754789352, -0.026393478736281395, -0.02729528769850731, 0.014649059623479843, -0.01694517582654953, -0.015000473707914352, -0.001174380537122488, -0.06419834494590759, -0.007417779415845871, -0.05474482849240303, -0.012016139924526215, -0.07173243165016174, 0.015233089216053486, -0.12557025253772736, 0.03001987934112549, -0.07202910631895065, -0.015813102945685387, -0.03513086214661598, 0.018764754757285118, -0.06475851684808731, 0.022967789322137833, -0.010604980401694775, 0.06612533330917358, -0.16336248815059662, -0.004125780425965786, 0.037962350994348526, -0.11232910305261612, -0.00554313138127327, 0.08952915668487549, 0.03671228513121605, 0.020006541162729263, 0.05183291807770729, 0.12636104226112366, 0.14504605531692505, -0.10098643600940704, -0.05471412092447281, 0.011197376996278763, -0.0977122038602829, 0.04740960896015167, 0.07795613259077072, -0.012619659304618835, 0.012791218236088753, 0.04173840582370758, -0.08884512633085251, 0.015356550924479961, -0.0011832835152745247, -0.020580340176820755, 0.012628037482500076, -0.030364608392119408, -0.00012454017996788025, -0.029168257489800453, -0.021051423624157906, 0.028003545477986336, -0.04192442446947098, -0.12506958842277527, 0.0654020756483078, 0.006084077060222626, 0.031975798308849335, -0.10270529985427856, 0.05842019245028496, 0.06165694445371628, 0.03262736275792122, -0.0667978897690773, -0.08253099769353867, 0.0826125517487526, -0.06740843504667282, 0.0706813856959343, 0.0010652020573616028, -0.005274111405014992, 0.05089181289076805, -0.002894375938922167, 0.015028064139187336, 0.007528286427259445, -0.03771093115210533, -0.013881084509193897, -0.07263234257698059, -0.016109837219119072, -0.022721199318766594, 0.05069994181394577, -0.017711833119392395, 0.022146353498101234, 0.07748907804489136, 0.042571231722831726, -0.01713821291923523, -0.037691693753004074, -0.009275749325752258, 0.030370822176337242, -0.017506692558526993, 0.0017574504017829895, 0.005330066662281752, 0.016516895964741707, -0.023515796288847923, 0.09934976696968079, -0.02198720909655094, 0.026847712695598602, 0.029962189495563507, 0.03284700959920883, -0.019944749772548676, -0.014927341602742672, -0.0028923482168465853, -0.024524999782443047, -0.023044420406222343, -0.0300174318253994, 0.2072959691286087, 0.040504392236471176, 0.029054809361696243, -0.034077197313308716, 0.013102097436785698, -0.011633723974227905, -0.012784631922841072, 0.01158892922103405, 0.004878484643995762, 0.07855169475078583, -0.006766106933355331, 0.023108482360839844, -0.0010417401790618896, 0.0003851349465548992, 0.1289130598306656, 0.00002489006146788597, -0.006494593806564808, -0.0490410141646862, 0.04104607179760933, 0.0002550724893808365, 0.0988316461443901, 0.002673152834177017, 0.01372483465820551, 0.017529375851154327, 0.010429060086607933, 0.05708002299070358, -0.07310593128204346, 0.006142212077975273, -0.01703142747282982, -0.019466830417513847, 0.002459469251334667, 0.015374438837170601, -0.0388936847448349, 0.04249177128076553, -0.015791960060596466, 0.054478563368320465, -0.021751636639237404, -0.018627645447850227, -0.08061062544584274, 0.08994193375110626, -0.09155675768852234, -0.16871345043182373, -0.10538588464260101, 0.0218664538115263, -0.0462958887219429, 0.005895639769732952, -0.011686813086271286, -0.04529638588428497, -0.048489488661289215, -0.03529878705739975, 0.04038494452834129, 0.003370583988726139, -0.052866190671920776, -0.09448131173849106, -0.007215115241706371, -0.03611430898308754, -0.07338613271713257, -0.014913119375705719, 0.005543205887079239, -0.04470175504684448, 0.02907632663846016, 0.045482784509658813, 0.08066576719284058, 0.059792570769786835, 0.026606108993291855, -0.01871722750365734, -0.008321025408804417, 0.10338644683361053, -0.08623875677585602, 0.12178994715213776, 0.11098228394985199, -0.02506466582417488, 0.054173655807971954, 0.10802329331636429, 0.020959120243787766, -0.015825673937797546, -0.011134976521134377, -0.006045315880328417, -0.03720312938094139, -0.14314809441566467, -0.1069868728518486, -0.04818647354841232, 0.04076656699180603, -0.011729942634701729, 0.050511740148067474, 0.011741267517209053, 0.02846633456647396, -0.029487282037734985, -0.00566478818655014, 0.013777399435639381, 0.0376548208296299, 0.06218988448381424, -0.02888837270438671, 0.028477322310209274, -0.03449651226401329, 0.012611400336027145, 0.0790214091539383, 0.08144234120845795, 0.14822442829608917, -0.010254986584186554, 0.07220941036939621, 0.045551665127277374, 0.08167076110839844, 0.05698738992214203, 0.029225585982203484, 0.0015220288187265396, 0.005666159093379974, -0.016226114705204964, -0.04223982244729996, -0.023077530786395073, 0.07124842703342438, 0.03015846200287342, -0.09021054953336716, 0.03793137148022652, 0.063260018825531, 0.04840298742055893, 0.06561392545700073, -0.053334638476371765, -0.055886294692754745, -0.02180282585322857, -0.005446557886898518, -0.006066136062145233, -0.026046667248010635, 0.03795760124921799, 0.12226594984531403, -0.09649575501680374, 0.036161504685878754, -0.003350328654050827, 0.044851094484329224, -0.0535484179854393, 0.010875184088945389, 0.037153974175453186, 0.05568993464112282, 0.025510825216770172, 0.05636011064052582, -0.11880061030387878, 0.06819505989551544, 0.007567099295556545, 0.02805272862315178, -0.043036267161369324, 0.030938787385821342, 0.021368395537137985, 0.08180107176303864, 0.08655615895986557, 0.03653472661972046, -0.16381332278251648, -0.0635838657617569, -0.06592351943254471, 0.045944102108478546, 0.09452249109745026, -0.008148003369569778, 0.029249876737594604, -0.01693454384803772, -0.006890223361551762, -0.03668314218521118, -0.06910938024520874, -0.11601061373949051, -0.11831716448068619, 0.07100606709718704, -0.012922273017466068, -0.0023808814585208893, -0.05017656460404396, 0.017032481729984283, 0.023177489638328552, 0.08187602460384369, -0.1309167593717575, -0.01897575333714485, -0.06612683087587357, -0.03496714308857918, 0.08252649009227753, -0.05895737186074257, 0.02983347326517105, -0.022592289373278618, 0.048234958201646805, -0.04019900783896446, -0.02975316531956196, 0.013819110579788685, -0.07351571321487427, -0.07850043475627899, -0.0507509708404541, 0.06600572168827057, 0.03566707298159599, 0.025813542306423187, -0.012458432465791702, 0.013707544654607773, 0.0201428085565567, -0.11423645913600922, -0.02602236345410347, 0.09320852160453796, -0.049761831760406494, 0.06313258409500122, -0.10123856365680695, -0.02163637802004814, -0.04784221202135086, -0.04807936027646065, 0.06417371332645416, 0.07842053472995758, -0.03434101864695549, 0.07348845899105072, 0.11466296017169952, -0.07514206320047379, -0.244689479470253, -0.060341089963912964, 0.011799957603216171, -0.0011558695696294308, -0.022979674860835075, -0.17910796403884888, 0.08401180058717728, 0.0559866800904274, -0.012744644656777382, 0.02569766342639923, -0.16581839323043823, -0.0901871919631958, -0.003957805223762989, -0.02654598094522953, -0.0049855709075927734, -0.0676630362868309, -0.0291711688041687, 0.01214763056486845, 0.040774524211883545, 0.02981529012322426, -0.0004059714265167713, 0.025774575769901276, 0.00697219418361783, -0.024290146306157112, 0.014981746673583984, -0.04118270426988602, 0.08756314218044281, -0.0003226976841688156, 0.01066008023917675, -0.026467647403478622, -0.04927268996834755, 0.030837472528219223, 0.013901423662900925, 0.077252097427845, -0.013977356255054474, 0.023381978273391724, -0.016895204782485962, -0.01092540193349123, -0.04363127052783966, 0.0755128487944603, -0.013460319489240646, -0.015079141594469547, -0.09981212764978409, 0.06656768918037415, 0.004218453541398048, 0.0166108850389719, -0.0570414699614048, -0.017149582505226135, -0.05985288321971893, 0.06073186546564102, 0.06079540401697159, -0.030893515795469284, -0.04113853722810745, -0.00951460748910904, -0.008253290317952633, 0.03620032221078873, -0.027888251468539238, -0.006992947310209274, 0.08406510949134827, -0.0018378142267465591, 0.0401909165084362, 0.0037947772070765495, -0.08338141441345215, -0.008182842284440994, 0.06551353633403778, -0.0789186954498291, -0.1268448382616043, -0.03505793213844299, 0.04921990633010864, 0.030980445444583893, -0.018418125808238983, 0.08031842112541199, -0.01650337129831314, -0.0035801343619823456, -0.0022303424775600433, 0.05648644268512726, -0.013541121035814285, 0.09134512394666672, 0.0014391527511179447, -0.00017928564921021461, -0.05067408084869385, 0.09578016400337219, 0.0491795688867569, -0.09870955348014832, 0.009256800636649132, 0.08917726576328278, -0.07491936534643173, -0.07148788869380951, -0.07786067575216293, 0.08091942965984344, 0.014803056605160236, -0.06333982944488525, 0.0009001800790429115, -0.05214712768793106, 0.0035263048484921455, 0.03249111771583557, 0.010870651341974735, 0.021883612498641014, -0.0328967347741127, 0.0058405110612511635, -0.024237025529146194, 0.04943496733903885, 0.0199840497225523, 0.018456151708960533, -0.0664314478635788, 0.0240092184394598, 0.053488463163375854, 0.017292557284235954, -0.011662914417684078, -0.020106732845306396, -0.058054499328136444, -0.0031011071987450123, 0.009630756452679634, -0.006036462262272835, -0.017531216144561768, -0.024060403928160667, 0.005982155445963144, -0.03802242875099182, -0.02248349040746689, 0.004471252206712961, -0.02742917835712433, -0.028870537877082825, -0.04476518929004669, 0.05169198662042618, -0.05505504831671715, 0.02483297884464264, 0.08227171003818512, -0.012328073382377625, 0.06280981004238129, 0.027656668797135353, -0.010093399323523045, 0.047565679997205734, -0.03911259025335312, 0.023178912699222565, 0.00502685084939003, 0.057836852967739105, -0.022193793207406998, -0.031992584466934204, 0.005822343286126852, 0.006582068279385567, -0.008690682239830494, -0.0006459318101406097, 0.10216682404279709, -0.05556553602218628, 0.08996528387069702, 0.02137097530066967, -0.06927014142274857, -0.06476323306560516, 0.02453138679265976, 0.068988136947155, 0.05578027665615082, 0.05893857777118683, -0.03382236883044243, 0.04249061271548271, -0.04732175171375275, 0.01247154176235199, 0.026161877438426018, -0.02206220105290413, 0.010644400492310524, -0.041278235614299774, 0.019534293562173843, 0.009975189343094826, 0.15981073677539825, 0.0067809633910655975, -0.04623418301343918, 0.003694478888064623, 0.04579485207796097, -0.0884847491979599, 0.04301559180021286, -0.013869596645236015, 0.027998505160212517, 0.01119375228881836, -0.05881119146943092, -0.021316872909665108, -0.05810227245092392, -0.07141919434070587, 0.0650341585278511, 0.07011424750089645, 0.08985923230648041, 0.03918776661157608, 0.02930775284767151, -0.08941981196403503, -0.03833092749118805, 0.011391310021281242, -0.10277067869901657, 0.03744456171989441, -0.0641666054725647, 0.10415125638246536, 0.0780685544013977, -0.07682985067367554, 0.07868798077106476, 0.021322108805179596, -0.06065928563475609, -0.05124516040086746, -0.1424502432346344, -0.0008650326635688543, -0.020143914967775345, -0.01194053329527378, -0.06619074940681458, 0.014662407338619232, 0.03442946821451187, -0.0036342612002044916, -0.03585450351238251, 0.14418163895606995, -0.11342780292034149, -0.06233936548233032, 0.001448879949748516, 0.015406155958771706, 0.0007409718818962574, 0.049273427575826645, -0.026065576821565628, -0.05734226107597351, 0.05334155261516571, 0.05056317523121834, 0.05529547482728958, 0.0058644674718379974, 0.02259528823196888, -0.03465015068650246, 0.00510431407019496, -0.010408725589513779, -0.04930820316076279, -0.021426193416118622, 0.04649375379085541, 0.007677992805838585, -0.024940526112914085, 0.022386617958545685, 0.13697975873947144, 0.008833590894937515, -0.09282251447439194, -0.07194212824106216, 0.10611890256404877, -0.0022646314464509487, 0.013925205916166306, -0.00944407656788826, -0.02690305933356285, -0.04118844121694565, 0.1821729838848114, 0.1852272003889084, -0.06142611801624298, -0.007328844629228115, 0.03865507245063782, 0.017140256240963936, -0.006570551544427872, 0.11463145911693573, 0.017163913697004318, 0.23565539717674255, -0.007842127233743668, 0.06756886094808578, -0.027569785714149475, -0.011534066870808601, -0.07898401468992233, 0.07820001244544983, -0.017128273844718933, -0.010457787662744522, -0.07823577523231506, 0.06257490068674088, -0.03331638127565384, -0.11204151809215546, -0.048720329999923706, -0.049452655017375946, -0.04230209439992905, 0.016252337023615837, 0.03408437967300415, -0.004430266562849283, 0.05889854580163956, -0.0011918048840016127, -0.01466038916260004, 0.07918038219213486, 0.012937940657138824, -0.07956694811582565, 0.009418763220310211, 0.053170088678598404, -0.04758215323090553, 0.16797155141830444, -0.010038750246167183, 0.08344855904579163, 0.05872625857591629, 0.008509315550327301, -0.07956115901470184, 0.04229051619768143, 0.016500672325491905, -0.0635942816734314, -0.031175920739769936, 0.04315496236085892, 0.0007832073606550694, 0.05913849174976349, 0.052991971373558044, -0.001739785075187683, 0.07518644630908966, 0.011449435725808144, 0.013133697211742401, -0.04386713728308678, 0.06655149161815643, -0.11140383034944534, 0.12651453912258148, 0.08070990443229675, 0.025778628885746002, 0.016703398898243904, -0.03854886442422867, 0.03142973408102989, 0.005981295369565487, 0.09133468568325043, -0.00799825880676508, -0.07164809107780457, 0.025617185980081558, -0.06264906376600266, 0.03717537224292755, -0.04528866335749626, -0.0336613804101944, -0.014282820746302605, 0.025497762486338615, 0.007062304764986038, 0.0624467171728611, 0.03158543258905411, -0.0021047117188572884, 0.0005562177393585443, -0.12331956624984741, 0.02705344557762146, 0.006284347735345364, -0.0617973655462265, -0.06150302663445473 ]
null
null
null
# WudaoSailing WudaoSailing is a package for pretraining chinese Language Model and finetune tasks. Now it supports GLM, Bert, T5, Cogview and Roberta models. ## Get Started ### Docker Image We prepare two docker images based on CUDA 10.2 and CUDA 11.2. You can build images from the docker file [docs/docker/cuda102.dockerfile](docs/docker/cuda102.dcokerfile) or pull the pre-built images from Docker Hub and run with docker v19.03+ ```shell nvidia-docker run -id --hostname=V100 --network=host\ --ipc=host --shm-size=16gb --name=deepspeed-cuda \ -e NVIDIA_VISIBLE_DEVICES=0,1,2,3 \ -v /DATA/disk1/docker/containers/:/data deepspeed/cuda102:lastest ``` or replace `cuda102` with `cuda112`. ```shell docker build -f cuda102.dockerfile -t deepspeed/cuda102 . ``` ### Clone this repo ```shell git clone https://github.com/wangguojim/WudaoSailing.git cd WudaoSailing pip install -r requirements.txt ``` ## GLM We show some examples based on GLM model. ### finetuene We provide scripts for finetuning GLM on some downstream tasks. #### SuperGLUE - Download the [SuperGlue](https://super.gluebenchmark.com/tasks) data and check the experiment setup in [examples/glm/scripts/ds_finetune_superglue.sh](xamples/glm/scripts/ds_finetune_superglue.sh). Note that `DATA_ROOT, CHECKPOINT_PATH, SAVE_PATH` need to be changed to your local path. You may also change the `batch-size` and `nproc_per_node` according to your available hardware. - Run the following script for text similarity finetune task (use the afqmc dataset as an example) ``` cd examples/glm/ bash scripts/ds_finetune_superglue.sh\ config/model_blocklm_large_chinese.sh\ config_tasks/task_afqmc.sh ``` - Run the following script for text classification finetune task (use the thunews and thunews dataset as an example) ``` cd examples/glm/ bash scripts/ds_finetune_superglue.sh\ config/model_blocklm_large_chinese.sh\ config_tasks/task_tnews.sh ``` - Run the following script for causal inference finetune task (use the COPA dataset as an example) ``` cd examples/glm/ bash scripts/ds_finetune_superglue.sh\ config/model_blocklm_large_chinese.sh\ config_tasks/task_copa.sh ``` - To apply GLM to a new NLU dataset with cloze-filling finetuning, implement a `DataProcessor` in [examples/glm/tasks/superglue/dataset.py](examples/glm/tasks/superglue/dataset.py) for data loading and add a `PVP` in [examples/glm/tasks/superglue/pvp.py](examples/glm/tasks/superglue/pvp.py) for the cloze question. More details can be found [here](examples/glm/tasks/superglue/README.md). #### Blank Filling (Interactive) * Change `CHECKPOINT_PATH` to your local path. Run the following script ``` bash config/generate_block.sh\ config/model_blocklm_large_chinese.sh ``` ##### Example1 (Entity Prediction): Context: 凯旋门位于意大利米兰市古城堡旁。1807年为纪念[MASK]而建,门高25米,顶上矗立两武士青铜古兵车铸像。 GLM:拿破仑军队攻克米兰城 ##### Example2 (Sentence Prediction) Context: 工业互联网(Industrial Internet)是新一代信息通信技术与工业经济深度融合的新型基础设施、应用模式和工业生态,通过对人、机、物、系统等的全面连接,构建起覆盖全产业链、全价值链的全新制造和服务体系,为工业乃至产业数字化、网络化、智能化发展提供了实现途径,是第四次工业革命的重要基石。[sMASK]它以网络为基础、平台为中枢、数据为要素、安全为保障,既是工业数字化、网络化、智能化转型的基础设施,也是互联网、大数据、人工智能与实体经济深度融合的应用模式,同时也是一种新业态、新产业,将重塑企业形态、供应链和产业链。当前,工业互联网融合应用向国民经济重点行业广泛拓展,形成平台化设计、智能化制造、网络化协同、个性化定制、服务化延伸、数字化管理六大新模式,赋能、赋智、赋值作用不断显现,有力的促进了实体经济提质、增效、降本、绿色、安全发展。 GLM: 工业互联网是制造业技术、管理、模式的重大变革,是推动互联网、大数据、人工智能和实体经济深度融合的重要载体,是建设制造强国和网络强国的重要基础。 ##### Example3 (Long Text Generation) Context: 问题:高斯所在的国家有什么汽车品牌?答案:[gMASK] GLM:答案:[gMASK]<|startofpiece|>德国奔驰、德国大众、别克、沃尔沃、斯柯达、本田、雪铁龙. ### Ptuning Run the following script to integrate p-tuning with GLM: ```shell cd algutils/ptuning/ bash finetune_zy.sh ``` ### Pretrain Run the following script to pre-train the GLM-Large model ```shell cd examples/glm/ bash scripts/ds_pretrain_nvidia.sh config/ds_block_large.sh ``` The script [examples/glm/config/ds_pretrain_nvidia.sh](examples/glm/config/ds_pretrain_nvidia.sh) launches the training program with DeepSpeed. You should change `NUM_WORKERS` and `NUM_GPUS_PER_WORKER` to the number of workers and the number of gpus per worker. Also change `HOST_FILE_PATH` to the path to an OpenMPI-style hostfile. More details about DeepSpeed launcher can be found [here](https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node). The file [examples/glm/config/ds_block_large.sh](examples/glm/config/ds_block_large.sh) defines the hyperparameters for pretraining. Most of the arguments are fairly self-explanatory. Specifically, `--train-data` can be multiple keywords defined in `NAMED_CORPORA` in [data_utils/corpora.py](data_utils/corpora.py). The hyperparameters of the optimizer are defined in the corresponding json file under `config`. The semantics of the json file can be found [here](https://www.deepspeed.ai/docs/config-json). ## Bert We show some examples based on GLM model. ### Pretrain Run the following script to pre-train the Bert model ```shell cd examples/bert/ python quick_start.py ``` ## CogView ### Pretrain Run the following script to pre-train the cogview model ```shell cd examples/cogview/ bash config/pretrain_multiple_nodes.sh ``` ### inference Run the following script to test the ability of text2image ```shell cd examples/cogview/ bash config/text2image_cogview.sh ```
{}
null
guoqiang/glm
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
# WudaoSailing WudaoSailing is a package for pretraining chinese Language Model and finetune tasks. Now it supports GLM, Bert, T5, Cogview and Roberta models. ## Get Started ### Docker Image We prepare two docker images based on CUDA 10.2 and CUDA 11.2. You can build images from the docker file docs/docker/cuda102.dockerfile or pull the pre-built images from Docker Hub and run with docker v19.03+ or replace 'cuda102' with 'cuda112'. ### Clone this repo ## GLM We show some examples based on GLM model. ### finetuene We provide scripts for finetuning GLM on some downstream tasks. #### SuperGLUE - Download the SuperGlue data and check the experiment setup in examples/glm/scripts/ds_finetune_superglue.sh. Note that 'DATA_ROOT, CHECKPOINT_PATH, SAVE_PATH' need to be changed to your local path. You may also change the 'batch-size' and 'nproc_per_node' according to your available hardware. - Run the following script for text similarity finetune task (use the afqmc dataset as an example) - Run the following script for text classification finetune task (use the thunews and thunews dataset as an example) - Run the following script for causal inference finetune task (use the COPA dataset as an example) - To apply GLM to a new NLU dataset with cloze-filling finetuning, implement a 'DataProcessor' in examples/glm/tasks/superglue/URL for data loading and add a 'PVP' in examples/glm/tasks/superglue/URL for the cloze question. More details can be found here. #### Blank Filling (Interactive) * Change 'CHECKPOINT_PATH' to your local path. Run the following script ##### Example1 (Entity Prediction): Context: 凯旋门位于意大利米兰市古城堡旁。1807年为纪念[MASK]而建,门高25米,顶上矗立两武士青铜古兵车铸像。 GLM:拿破仑军队攻克米兰城 ##### Example2 (Sentence Prediction) Context: 工业互联网(Industrial Internet)是新一代信息通信技术与工业经济深度融合的新型基础设施、应用模式和工业生态,通过对人、机、物、系统等的全面连接,构建起覆盖全产业链、全价值链的全新制造和服务体系,为工业乃至产业数字化、网络化、智能化发展提供了实现途径,是第四次工业革命的重要基石。[sMASK]它以网络为基础、平台为中枢、数据为要素、安全为保障,既是工业数字化、网络化、智能化转型的基础设施,也是互联网、大数据、人工智能与实体经济深度融合的应用模式,同时也是一种新业态、新产业,将重塑企业形态、供应链和产业链。当前,工业互联网融合应用向国民经济重点行业广泛拓展,形成平台化设计、智能化制造、网络化协同、个性化定制、服务化延伸、数字化管理六大新模式,赋能、赋智、赋值作用不断显现,有力的促进了实体经济提质、增效、降本、绿色、安全发展。 GLM: 工业互联网是制造业技术、管理、模式的重大变革,是推动互联网、大数据、人工智能和实体经济深度融合的重要载体,是建设制造强国和网络强国的重要基础。 ##### Example3 (Long Text Generation) Context: 问题:高斯所在的国家有什么汽车品牌?答案:[gMASK] GLM:答案:[gMASK]<|startofpiece|>德国奔驰、德国大众、别克、沃尔沃、斯柯达、本田、雪铁龙. ### Ptuning Run the following script to integrate p-tuning with GLM: ### Pretrain Run the following script to pre-train the GLM-Large model The script examples/glm/config/ds_pretrain_nvidia.sh launches the training program with DeepSpeed. You should change 'NUM_WORKERS' and 'NUM_GPUS_PER_WORKER' to the number of workers and the number of gpus per worker. Also change 'HOST_FILE_PATH' to the path to an OpenMPI-style hostfile. More details about DeepSpeed launcher can be found here. The file examples/glm/config/ds_block_large.sh defines the hyperparameters for pretraining. Most of the arguments are fairly self-explanatory. Specifically, '--train-data' can be multiple keywords defined in 'NAMED_CORPORA' in data_utils/URL. The hyperparameters of the optimizer are defined in the corresponding json file under 'config'. The semantics of the json file can be found here. ## Bert We show some examples based on GLM model. ### Pretrain Run the following script to pre-train the Bert model ## CogView ### Pretrain Run the following script to pre-train the cogview model ### inference Run the following script to test the ability of text2image
[ "# WudaoSailing\n\nWudaoSailing is a package for pretraining chinese Language Model and finetune tasks. Now it supports GLM, Bert, T5, Cogview and Roberta models.", "## Get Started", "### Docker Image\nWe prepare two docker images based on CUDA 10.2 and CUDA 11.2. You can build images from the docker file docs/docker/cuda102.dockerfile or pull the pre-built images from Docker Hub and run with docker v19.03+\n \n or replace 'cuda102' with 'cuda112'.", "### Clone this repo", "## GLM\n\nWe show some examples based on GLM model.", "### finetuene\nWe provide scripts for finetuning GLM on some downstream tasks.", "#### SuperGLUE\n\n- Download the SuperGlue data and check the experiment setup in \n examples/glm/scripts/ds_finetune_superglue.sh. Note that 'DATA_ROOT, CHECKPOINT_PATH, SAVE_PATH' \n need to be changed to your local path. You may also change the 'batch-size' and 'nproc_per_node' according to your \n available hardware.\n\n- Run the following script for text similarity finetune task (use the afqmc dataset as an example)\n\n\n\n\n- Run the following script for text classification finetune task (use the thunews and thunews dataset as an example)\n\n\n\n- Run the following script for causal inference finetune task (use the COPA dataset as an example)\n\n\n \n- To apply GLM to a new NLU dataset with cloze-filling finetuning, implement a 'DataProcessor' in\n examples/glm/tasks/superglue/URL for data loading and add a 'PVP' in \n examples/glm/tasks/superglue/URL for the cloze question. More details can be found \n here.", "#### Blank Filling (Interactive)\n* Change 'CHECKPOINT_PATH' to your local path. Run the following script", "##### Example1 (Entity Prediction):\n\nContext: 凯旋门位于意大利米兰市古城堡旁。1807年为纪念[MASK]而建,门高25米,顶上矗立两武士青铜古兵车铸像。\n\nGLM:拿破仑军队攻克米兰城", "##### Example2 (Sentence Prediction)\nContext: 工业互联网(Industrial Internet)是新一代信息通信技术与工业经济深度融合的新型基础设施、应用模式和工业生态,通过对人、机、物、系统等的全面连接,构建起覆盖全产业链、全价值链的全新制造和服务体系,为工业乃至产业数字化、网络化、智能化发展提供了实现途径,是第四次工业革命的重要基石。[sMASK]它以网络为基础、平台为中枢、数据为要素、安全为保障,既是工业数字化、网络化、智能化转型的基础设施,也是互联网、大数据、人工智能与实体经济深度融合的应用模式,同时也是一种新业态、新产业,将重塑企业形态、供应链和产业链。当前,工业互联网融合应用向国民经济重点行业广泛拓展,形成平台化设计、智能化制造、网络化协同、个性化定制、服务化延伸、数字化管理六大新模式,赋能、赋智、赋值作用不断显现,有力的促进了实体经济提质、增效、降本、绿色、安全发展。\n\nGLM: 工业互联网是制造业技术、管理、模式的重大变革,是推动互联网、大数据、人工智能和实体经济深度融合的重要载体,是建设制造强国和网络强国的重要基础。", "##### Example3 (Long Text Generation)\nContext: 问题:高斯所在的国家有什么汽车品牌?答案:[gMASK]\n\nGLM:答案:[gMASK]<|startofpiece|>德国奔驰、德国大众、别克、沃尔沃、斯柯达、本田、雪铁龙.", "### Ptuning\nRun the following script to integrate p-tuning with GLM:", "### Pretrain\nRun the following script to pre-train the GLM-Large model\n\n\nThe script examples/glm/config/ds_pretrain_nvidia.sh launches the training program with DeepSpeed. You should change 'NUM_WORKERS' and 'NUM_GPUS_PER_WORKER' to the number of workers and the number of gpus per worker. Also change 'HOST_FILE_PATH' to the path to an OpenMPI-style hostfile. More details about DeepSpeed launcher can be found here.\n\nThe file examples/glm/config/ds_block_large.sh defines the hyperparameters for pretraining. Most of the arguments are fairly self-explanatory. Specifically, '--train-data' can be multiple keywords defined in 'NAMED_CORPORA' in data_utils/URL. The hyperparameters of the optimizer are defined in the corresponding json file under 'config'. The semantics of the json file can be found here.", "## Bert\n\nWe show some examples based on GLM model.", "### Pretrain\nRun the following script to pre-train the Bert model", "## CogView", "### Pretrain\nRun the following script to pre-train the cogview model", "### inference\nRun the following script to test the ability of text2image" ]
[ "TAGS\n#region-us \n", "# WudaoSailing\n\nWudaoSailing is a package for pretraining chinese Language Model and finetune tasks. Now it supports GLM, Bert, T5, Cogview and Roberta models.", "## Get Started", "### Docker Image\nWe prepare two docker images based on CUDA 10.2 and CUDA 11.2. You can build images from the docker file docs/docker/cuda102.dockerfile or pull the pre-built images from Docker Hub and run with docker v19.03+\n \n or replace 'cuda102' with 'cuda112'.", "### Clone this repo", "## GLM\n\nWe show some examples based on GLM model.", "### finetuene\nWe provide scripts for finetuning GLM on some downstream tasks.", "#### SuperGLUE\n\n- Download the SuperGlue data and check the experiment setup in \n examples/glm/scripts/ds_finetune_superglue.sh. Note that 'DATA_ROOT, CHECKPOINT_PATH, SAVE_PATH' \n need to be changed to your local path. You may also change the 'batch-size' and 'nproc_per_node' according to your \n available hardware.\n\n- Run the following script for text similarity finetune task (use the afqmc dataset as an example)\n\n\n\n\n- Run the following script for text classification finetune task (use the thunews and thunews dataset as an example)\n\n\n\n- Run the following script for causal inference finetune task (use the COPA dataset as an example)\n\n\n \n- To apply GLM to a new NLU dataset with cloze-filling finetuning, implement a 'DataProcessor' in\n examples/glm/tasks/superglue/URL for data loading and add a 'PVP' in \n examples/glm/tasks/superglue/URL for the cloze question. More details can be found \n here.", "#### Blank Filling (Interactive)\n* Change 'CHECKPOINT_PATH' to your local path. Run the following script", "##### Example1 (Entity Prediction):\n\nContext: 凯旋门位于意大利米兰市古城堡旁。1807年为纪念[MASK]而建,门高25米,顶上矗立两武士青铜古兵车铸像。\n\nGLM:拿破仑军队攻克米兰城", "##### Example2 (Sentence Prediction)\nContext: 工业互联网(Industrial Internet)是新一代信息通信技术与工业经济深度融合的新型基础设施、应用模式和工业生态,通过对人、机、物、系统等的全面连接,构建起覆盖全产业链、全价值链的全新制造和服务体系,为工业乃至产业数字化、网络化、智能化发展提供了实现途径,是第四次工业革命的重要基石。[sMASK]它以网络为基础、平台为中枢、数据为要素、安全为保障,既是工业数字化、网络化、智能化转型的基础设施,也是互联网、大数据、人工智能与实体经济深度融合的应用模式,同时也是一种新业态、新产业,将重塑企业形态、供应链和产业链。当前,工业互联网融合应用向国民经济重点行业广泛拓展,形成平台化设计、智能化制造、网络化协同、个性化定制、服务化延伸、数字化管理六大新模式,赋能、赋智、赋值作用不断显现,有力的促进了实体经济提质、增效、降本、绿色、安全发展。\n\nGLM: 工业互联网是制造业技术、管理、模式的重大变革,是推动互联网、大数据、人工智能和实体经济深度融合的重要载体,是建设制造强国和网络强国的重要基础。", "##### Example3 (Long Text Generation)\nContext: 问题:高斯所在的国家有什么汽车品牌?答案:[gMASK]\n\nGLM:答案:[gMASK]<|startofpiece|>德国奔驰、德国大众、别克、沃尔沃、斯柯达、本田、雪铁龙.", "### Ptuning\nRun the following script to integrate p-tuning with GLM:", "### Pretrain\nRun the following script to pre-train the GLM-Large model\n\n\nThe script examples/glm/config/ds_pretrain_nvidia.sh launches the training program with DeepSpeed. You should change 'NUM_WORKERS' and 'NUM_GPUS_PER_WORKER' to the number of workers and the number of gpus per worker. Also change 'HOST_FILE_PATH' to the path to an OpenMPI-style hostfile. More details about DeepSpeed launcher can be found here.\n\nThe file examples/glm/config/ds_block_large.sh defines the hyperparameters for pretraining. Most of the arguments are fairly self-explanatory. Specifically, '--train-data' can be multiple keywords defined in 'NAMED_CORPORA' in data_utils/URL. The hyperparameters of the optimizer are defined in the corresponding json file under 'config'. The semantics of the json file can be found here.", "## Bert\n\nWe show some examples based on GLM model.", "### Pretrain\nRun the following script to pre-train the Bert model", "## CogView", "### Pretrain\nRun the following script to pre-train the cogview model", "### inference\nRun the following script to test the ability of text2image" ]
[ 6, 47, 4, 80, 6, 14, 22, 257, 29, 71, 285, 72, 20, 237, 13, 16, 4, 18, 16 ]
[ "passage: TAGS\n#region-us \n# WudaoSailing\n\nWudaoSailing is a package for pretraining chinese Language Model and finetune tasks. Now it supports GLM, Bert, T5, Cogview and Roberta models.## Get Started### Docker Image\nWe prepare two docker images based on CUDA 10.2 and CUDA 11.2. You can build images from the docker file docs/docker/cuda102.dockerfile or pull the pre-built images from Docker Hub and run with docker v19.03+\n \n or replace 'cuda102' with 'cuda112'.### Clone this repo## GLM\n\nWe show some examples based on GLM model.### finetuene\nWe provide scripts for finetuning GLM on some downstream tasks.#### SuperGLUE\n\n- Download the SuperGlue data and check the experiment setup in \n examples/glm/scripts/ds_finetune_superglue.sh. Note that 'DATA_ROOT, CHECKPOINT_PATH, SAVE_PATH' \n need to be changed to your local path. You may also change the 'batch-size' and 'nproc_per_node' according to your \n available hardware.\n\n- Run the following script for text similarity finetune task (use the afqmc dataset as an example)\n\n\n\n\n- Run the following script for text classification finetune task (use the thunews and thunews dataset as an example)\n\n\n\n- Run the following script for causal inference finetune task (use the COPA dataset as an example)\n\n\n \n- To apply GLM to a new NLU dataset with cloze-filling finetuning, implement a 'DataProcessor' in\n examples/glm/tasks/superglue/URL for data loading and add a 'PVP' in \n examples/glm/tasks/superglue/URL for the cloze question. More details can be found \n here.#### Blank Filling (Interactive)\n* Change 'CHECKPOINT_PATH' to your local path. Run the following script", "passage: ##### Example1 (Entity Prediction):\n\nContext: 凯旋门位于意大利米兰市古城堡旁。1807年为纪念[MASK]而建,门高25米,顶上矗立两武士青铜古兵车铸像。\n\nGLM:拿破仑军队攻克米兰城##### Example2 (Sentence Prediction)\nContext: 工业互联网(Industrial Internet)是新一代信息通信技术与工业经济深度融合的新型基础设施、应用模式和工业生态,通过对人、机、物、系统等的全面连接,构建起覆盖全产业链、全价值链的全新制造和服务体系,为工业乃至产业数字化、网络化、智能化发展提供了实现途径,是第四次工业革命的重要基石。[sMASK]它以网络为基础、平台为中枢、数据为要素、安全为保障,既是工业数字化、网络化、智能化转型的基础设施,也是互联网、大数据、人工智能与实体经济深度融合的应用模式,同时也是一种新业态、新产业,将重塑企业形态、供应链和产业链。当前,工业互联网融合应用向国民经济重点行业广泛拓展,形成平台化设计、智能化制造、网络化协同、个性化定制、服务化延伸、数字化管理六大新模式,赋能、赋智、赋值作用不断显现,有力的促进了实体经济提质、增效、降本、绿色、安全发展。\n\nGLM: 工业互联网是制造业技术、管理、模式的重大变革,是推动互联网、大数据、人工智能和实体经济深度融合的重要载体,是建设制造强国和网络强国的重要基础。##### Example3 (Long Text Generation)\nContext: 问题:高斯所在的国家有什么汽车品牌?答案:[gMASK]\n\nGLM:答案:[gMASK]<|startofpiece|>德国奔驰、德国大众、别克、沃尔沃、斯柯达、本田、雪铁龙.### Ptuning\nRun the following script to integrate p-tuning with GLM:" ]
[ -0.07000462710857391, 0.05870753526687622, -0.010569901205599308, 0.0036202543415129185, 0.04226570576429367, 0.008763478137552738, 0.06657715886831284, 0.05139379948377609, 0.06862743198871613, 0.047246892005205154, 0.015231149271130562, -0.006566012278199196, 0.07506643235683441, 0.10225285589694977, 0.08154445886611938, -0.18256685137748718, 0.03978138789534569, -0.051696039736270905, -0.04775737226009369, 0.0429314486682415, 0.06582005321979523, -0.04681091383099556, 0.08492032438516617, -0.011340398341417313, -0.016854645684361458, -0.019559960812330246, 0.0004418371245265007, -0.0025349436327815056, 0.07070780545473099, 0.052435800433158875, 0.06313278526067734, -0.023979730904102325, 0.03653205558657646, -0.10978098213672638, 0.025247052311897278, 0.04356572777032852, 0.0024497252888977528, 0.022495584562420845, 0.07405577600002289, 0.02120247110724449, 0.10069054365158081, -0.01606423407793045, -0.007639455143362284, 0.0362129732966423, -0.05946468934416771, 0.004589040298014879, -0.07808682322502136, 0.03895045071840286, 0.04855695366859436, 0.05498959496617317, 0.0008893217891454697, 0.030252842232584953, -0.08403484523296356, 0.029465913772583008, -0.019157886505126953, -0.12743158638477325, -0.029649391770362854, 0.05273960530757904, 0.06507112085819244, 0.04561592638492584, -0.031626567244529724, 0.013724765740334988, -0.02374168112874031, 0.027342794463038445, -0.04206887632608414, -0.04802589863538742, 0.04585856571793556, -0.0009486291091889143, -0.09488990902900696, -0.00532617187127471, 0.16133080422878265, -0.05977196991443634, -0.06830856949090958, -0.0518135204911232, -0.027511680498719215, -0.0068306829780340195, -0.00842710118740797, -0.03575853258371353, -0.0039307838305830956, 0.03447476029396057, 0.09151449799537659, -0.06546534597873688, -0.046905823051929474, -0.020957568660378456, -0.028628794476389885, 0.12844134867191315, 0.03915410861372948, 0.021754596382379532, -0.020238962024450302, 0.06569205224514008, -0.047750331461429596, -0.018324119970202446, -0.019199976697564125, -0.04323768615722656, -0.07343312352895737, 0.012336526066064835, -0.014570310711860657, -0.04706890881061554, 0.04221838340163231, 0.151683509349823, 0.012536823749542236, 0.05368144437670708, 0.022447284311056137, 0.04571284353733063, 0.022706229239702225, 0.12924878299236298, -0.05719080567359924, -0.05267065390944481, 0.013344879262149334, -0.01948588341474533, 0.03812536969780922, -0.03215062618255615, -0.02642158605158329, -0.00843193382024765, -0.06673811376094818, 0.05275639519095421, 0.05875556170940399, 0.062130849808454514, -0.03460131213068962, -0.02411419339478016, 0.12698741257190704, -0.07807207852602005, 0.013009333983063698, -0.0193919837474823, -0.03807446360588074, 0.03310758247971535, -0.016864091157913208, 0.024181444197893143, -0.07626105844974518, 0.08468037843704224, -0.027979476377367973, -0.016168035566806793, -0.07004954665899277, -0.03144612908363342, 0.03697548061609268, -0.03413219749927521, -0.02024998888373375, -0.07000948488712311, -0.12768235802650452, -0.03300374001264572, 0.037832699716091156, -0.021182160824537277, -0.007765019312500954, 0.028885971754789352, -0.026393478736281395, -0.02729528769850731, 0.014649059623479843, -0.01694517582654953, -0.015000473707914352, -0.001174380537122488, -0.06419834494590759, -0.007417779415845871, -0.05474482849240303, -0.012016139924526215, -0.07173243165016174, 0.015233089216053486, -0.12557025253772736, 0.03001987934112549, -0.07202910631895065, -0.015813102945685387, -0.03513086214661598, 0.018764754757285118, -0.06475851684808731, 0.022967789322137833, -0.010604980401694775, 0.06612533330917358, -0.16336248815059662, -0.004125780425965786, 0.037962350994348526, -0.11232910305261612, -0.00554313138127327, 0.08952915668487549, 0.03671228513121605, 0.020006541162729263, 0.05183291807770729, 0.12636104226112366, 0.14504605531692505, -0.10098643600940704, -0.05471412092447281, 0.011197376996278763, -0.0977122038602829, 0.04740960896015167, 0.07795613259077072, -0.012619659304618835, 0.012791218236088753, 0.04173840582370758, -0.08884512633085251, 0.015356550924479961, -0.0011832835152745247, -0.020580340176820755, 0.012628037482500076, -0.030364608392119408, -0.00012454017996788025, -0.029168257489800453, -0.021051423624157906, 0.028003545477986336, -0.04192442446947098, -0.12506958842277527, 0.0654020756483078, 0.006084077060222626, 0.031975798308849335, -0.10270529985427856, 0.05842019245028496, 0.06165694445371628, 0.03262736275792122, -0.0667978897690773, -0.08253099769353867, 0.0826125517487526, -0.06740843504667282, 0.0706813856959343, 0.0010652020573616028, -0.005274111405014992, 0.05089181289076805, -0.002894375938922167, 0.015028064139187336, 0.007528286427259445, -0.03771093115210533, -0.013881084509193897, -0.07263234257698059, -0.016109837219119072, -0.022721199318766594, 0.05069994181394577, -0.017711833119392395, 0.022146353498101234, 0.07748907804489136, 0.042571231722831726, -0.01713821291923523, -0.037691693753004074, -0.009275749325752258, 0.030370822176337242, -0.017506692558526993, 0.0017574504017829895, 0.005330066662281752, 0.016516895964741707, -0.023515796288847923, 0.09934976696968079, -0.02198720909655094, 0.026847712695598602, 0.029962189495563507, 0.03284700959920883, -0.019944749772548676, -0.014927341602742672, -0.0028923482168465853, -0.024524999782443047, -0.023044420406222343, -0.0300174318253994, 0.2072959691286087, 0.040504392236471176, 0.029054809361696243, -0.034077197313308716, 0.013102097436785698, -0.011633723974227905, -0.012784631922841072, 0.01158892922103405, 0.004878484643995762, 0.07855169475078583, -0.006766106933355331, 0.023108482360839844, -0.0010417401790618896, 0.0003851349465548992, 0.1289130598306656, 0.00002489006146788597, -0.006494593806564808, -0.0490410141646862, 0.04104607179760933, 0.0002550724893808365, 0.0988316461443901, 0.002673152834177017, 0.01372483465820551, 0.017529375851154327, 0.010429060086607933, 0.05708002299070358, -0.07310593128204346, 0.006142212077975273, -0.01703142747282982, -0.019466830417513847, 0.002459469251334667, 0.015374438837170601, -0.0388936847448349, 0.04249177128076553, -0.015791960060596466, 0.054478563368320465, -0.021751636639237404, -0.018627645447850227, -0.08061062544584274, 0.08994193375110626, -0.09155675768852234, -0.16871345043182373, -0.10538588464260101, 0.0218664538115263, -0.0462958887219429, 0.005895639769732952, -0.011686813086271286, -0.04529638588428497, -0.048489488661289215, -0.03529878705739975, 0.04038494452834129, 0.003370583988726139, -0.052866190671920776, -0.09448131173849106, -0.007215115241706371, -0.03611430898308754, -0.07338613271713257, -0.014913119375705719, 0.005543205887079239, -0.04470175504684448, 0.02907632663846016, 0.045482784509658813, 0.08066576719284058, 0.059792570769786835, 0.026606108993291855, -0.01871722750365734, -0.008321025408804417, 0.10338644683361053, -0.08623875677585602, 0.12178994715213776, 0.11098228394985199, -0.02506466582417488, 0.054173655807971954, 0.10802329331636429, 0.020959120243787766, -0.015825673937797546, -0.011134976521134377, -0.006045315880328417, -0.03720312938094139, -0.14314809441566467, -0.1069868728518486, -0.04818647354841232, 0.04076656699180603, -0.011729942634701729, 0.050511740148067474, 0.011741267517209053, 0.02846633456647396, -0.029487282037734985, -0.00566478818655014, 0.013777399435639381, 0.0376548208296299, 0.06218988448381424, -0.02888837270438671, 0.028477322310209274, -0.03449651226401329, 0.012611400336027145, 0.0790214091539383, 0.08144234120845795, 0.14822442829608917, -0.010254986584186554, 0.07220941036939621, 0.045551665127277374, 0.08167076110839844, 0.05698738992214203, 0.029225585982203484, 0.0015220288187265396, 0.005666159093379974, -0.016226114705204964, -0.04223982244729996, -0.023077530786395073, 0.07124842703342438, 0.03015846200287342, -0.09021054953336716, 0.03793137148022652, 0.063260018825531, 0.04840298742055893, 0.06561392545700073, -0.053334638476371765, -0.055886294692754745, -0.02180282585322857, -0.005446557886898518, -0.006066136062145233, -0.026046667248010635, 0.03795760124921799, 0.12226594984531403, -0.09649575501680374, 0.036161504685878754, -0.003350328654050827, 0.044851094484329224, -0.0535484179854393, 0.010875184088945389, 0.037153974175453186, 0.05568993464112282, 0.025510825216770172, 0.05636011064052582, -0.11880061030387878, 0.06819505989551544, 0.007567099295556545, 0.02805272862315178, -0.043036267161369324, 0.030938787385821342, 0.021368395537137985, 0.08180107176303864, 0.08655615895986557, 0.03653472661972046, -0.16381332278251648, -0.0635838657617569, -0.06592351943254471, 0.045944102108478546, 0.09452249109745026, -0.008148003369569778, 0.029249876737594604, -0.01693454384803772, -0.006890223361551762, -0.03668314218521118, -0.06910938024520874, -0.11601061373949051, -0.11831716448068619, 0.07100606709718704, -0.012922273017466068, -0.0023808814585208893, -0.05017656460404396, 0.017032481729984283, 0.023177489638328552, 0.08187602460384369, -0.1309167593717575, -0.01897575333714485, -0.06612683087587357, -0.03496714308857918, 0.08252649009227753, -0.05895737186074257, 0.02983347326517105, -0.022592289373278618, 0.048234958201646805, -0.04019900783896446, -0.02975316531956196, 0.013819110579788685, -0.07351571321487427, -0.07850043475627899, -0.0507509708404541, 0.06600572168827057, 0.03566707298159599, 0.025813542306423187, -0.012458432465791702, 0.013707544654607773, 0.0201428085565567, -0.11423645913600922, -0.02602236345410347, 0.09320852160453796, -0.049761831760406494, 0.06313258409500122, -0.10123856365680695, -0.02163637802004814, -0.04784221202135086, -0.04807936027646065, 0.06417371332645416, 0.07842053472995758, -0.03434101864695549, 0.07348845899105072, 0.11466296017169952, -0.07514206320047379, -0.244689479470253, -0.060341089963912964, 0.011799957603216171, -0.0011558695696294308, -0.022979674860835075, -0.17910796403884888, 0.08401180058717728, 0.0559866800904274, -0.012744644656777382, 0.02569766342639923, -0.16581839323043823, -0.0901871919631958, -0.003957805223762989, -0.02654598094522953, -0.0049855709075927734, -0.0676630362868309, -0.0291711688041687, 0.01214763056486845, 0.040774524211883545, 0.02981529012322426, -0.0004059714265167713, 0.025774575769901276, 0.00697219418361783, -0.024290146306157112, 0.014981746673583984, -0.04118270426988602, 0.08756314218044281, -0.0003226976841688156, 0.01066008023917675, -0.026467647403478622, -0.04927268996834755, 0.030837472528219223, 0.013901423662900925, 0.077252097427845, -0.013977356255054474, 0.023381978273391724, -0.016895204782485962, -0.01092540193349123, -0.04363127052783966, 0.0755128487944603, -0.013460319489240646, -0.015079141594469547, -0.09981212764978409, 0.06656768918037415, 0.004218453541398048, 0.0166108850389719, -0.0570414699614048, -0.017149582505226135, -0.05985288321971893, 0.06073186546564102, 0.06079540401697159, -0.030893515795469284, -0.04113853722810745, -0.00951460748910904, -0.008253290317952633, 0.03620032221078873, -0.027888251468539238, -0.006992947310209274, 0.08406510949134827, -0.0018378142267465591, 0.0401909165084362, 0.0037947772070765495, -0.08338141441345215, -0.008182842284440994, 0.06551353633403778, -0.0789186954498291, -0.1268448382616043, -0.03505793213844299, 0.04921990633010864, 0.030980445444583893, -0.018418125808238983, 0.08031842112541199, -0.01650337129831314, -0.0035801343619823456, -0.0022303424775600433, 0.05648644268512726, -0.013541121035814285, 0.09134512394666672, 0.0014391527511179447, -0.00017928564921021461, -0.05067408084869385, 0.09578016400337219, 0.0491795688867569, -0.09870955348014832, 0.009256800636649132, 0.08917726576328278, -0.07491936534643173, -0.07148788869380951, -0.07786067575216293, 0.08091942965984344, 0.014803056605160236, -0.06333982944488525, 0.0009001800790429115, -0.05214712768793106, 0.0035263048484921455, 0.03249111771583557, 0.010870651341974735, 0.021883612498641014, -0.0328967347741127, 0.0058405110612511635, -0.024237025529146194, 0.04943496733903885, 0.0199840497225523, 0.018456151708960533, -0.0664314478635788, 0.0240092184394598, 0.053488463163375854, 0.017292557284235954, -0.011662914417684078, -0.020106732845306396, -0.058054499328136444, -0.0031011071987450123, 0.009630756452679634, -0.006036462262272835, -0.017531216144561768, -0.024060403928160667, 0.005982155445963144, -0.03802242875099182, -0.02248349040746689, 0.004471252206712961, -0.02742917835712433, -0.028870537877082825, -0.04476518929004669, 0.05169198662042618, -0.05505504831671715, 0.02483297884464264, 0.08227171003818512, -0.012328073382377625, 0.06280981004238129, 0.027656668797135353, -0.010093399323523045, 0.047565679997205734, -0.03911259025335312, 0.023178912699222565, 0.00502685084939003, 0.057836852967739105, -0.022193793207406998, -0.031992584466934204, 0.005822343286126852, 0.006582068279385567, -0.008690682239830494, -0.0006459318101406097, 0.10216682404279709, -0.05556553602218628, 0.08996528387069702, 0.02137097530066967, -0.06927014142274857, -0.06476323306560516, 0.02453138679265976, 0.068988136947155, 0.05578027665615082, 0.05893857777118683, -0.03382236883044243, 0.04249061271548271, -0.04732175171375275, 0.01247154176235199, 0.026161877438426018, -0.02206220105290413, 0.010644400492310524, -0.041278235614299774, 0.019534293562173843, 0.009975189343094826, 0.15981073677539825, 0.0067809633910655975, -0.04623418301343918, 0.003694478888064623, 0.04579485207796097, -0.0884847491979599, 0.04301559180021286, -0.013869596645236015, 0.027998505160212517, 0.01119375228881836, -0.05881119146943092, -0.021316872909665108, -0.05810227245092392, -0.07141919434070587, 0.0650341585278511, 0.07011424750089645, 0.08985923230648041, 0.03918776661157608, 0.02930775284767151, -0.08941981196403503, -0.03833092749118805, 0.011391310021281242, -0.10277067869901657, 0.03744456171989441, -0.0641666054725647, 0.10415125638246536, 0.0780685544013977, -0.07682985067367554, 0.07868798077106476, 0.021322108805179596, -0.06065928563475609, -0.05124516040086746, -0.1424502432346344, -0.0008650326635688543, -0.020143914967775345, -0.01194053329527378, -0.06619074940681458, 0.014662407338619232, 0.03442946821451187, -0.0036342612002044916, -0.03585450351238251, 0.14418163895606995, -0.11342780292034149, -0.06233936548233032, 0.001448879949748516, 0.015406155958771706, 0.0007409718818962574, 0.049273427575826645, -0.026065576821565628, -0.05734226107597351, 0.05334155261516571, 0.05056317523121834, 0.05529547482728958, 0.0058644674718379974, 0.02259528823196888, -0.03465015068650246, 0.00510431407019496, -0.010408725589513779, -0.04930820316076279, -0.021426193416118622, 0.04649375379085541, 0.007677992805838585, -0.024940526112914085, 0.022386617958545685, 0.13697975873947144, 0.008833590894937515, -0.09282251447439194, -0.07194212824106216, 0.10611890256404877, -0.0022646314464509487, 0.013925205916166306, -0.00944407656788826, -0.02690305933356285, -0.04118844121694565, 0.1821729838848114, 0.1852272003889084, -0.06142611801624298, -0.007328844629228115, 0.03865507245063782, 0.017140256240963936, -0.006570551544427872, 0.11463145911693573, 0.017163913697004318, 0.23565539717674255, -0.007842127233743668, 0.06756886094808578, -0.027569785714149475, -0.011534066870808601, -0.07898401468992233, 0.07820001244544983, -0.017128273844718933, -0.010457787662744522, -0.07823577523231506, 0.06257490068674088, -0.03331638127565384, -0.11204151809215546, -0.048720329999923706, -0.049452655017375946, -0.04230209439992905, 0.016252337023615837, 0.03408437967300415, -0.004430266562849283, 0.05889854580163956, -0.0011918048840016127, -0.01466038916260004, 0.07918038219213486, 0.012937940657138824, -0.07956694811582565, 0.009418763220310211, 0.053170088678598404, -0.04758215323090553, 0.16797155141830444, -0.010038750246167183, 0.08344855904579163, 0.05872625857591629, 0.008509315550327301, -0.07956115901470184, 0.04229051619768143, 0.016500672325491905, -0.0635942816734314, -0.031175920739769936, 0.04315496236085892, 0.0007832073606550694, 0.05913849174976349, 0.052991971373558044, -0.001739785075187683, 0.07518644630908966, 0.011449435725808144, 0.013133697211742401, -0.04386713728308678, 0.06655149161815643, -0.11140383034944534, 0.12651453912258148, 0.08070990443229675, 0.025778628885746002, 0.016703398898243904, -0.03854886442422867, 0.03142973408102989, 0.005981295369565487, 0.09133468568325043, -0.00799825880676508, -0.07164809107780457, 0.025617185980081558, -0.06264906376600266, 0.03717537224292755, -0.04528866335749626, -0.0336613804101944, -0.014282820746302605, 0.025497762486338615, 0.007062304764986038, 0.0624467171728611, 0.03158543258905411, -0.0021047117188572884, 0.0005562177393585443, -0.12331956624984741, 0.02705344557762146, 0.006284347735345364, -0.0617973655462265, -0.06150302663445473 ]
null
null
transformers
# Turkish News Text Classification Turkish text classification model obtained by fine-tuning the Turkish bert model (dbmdz/bert-base-turkish-cased) # Dataset Dataset consists of 11 classes were obtained from https://www.trthaber.com/. The model was created using the most distinctive 6 classes. Dataset can be accessed at https://github.com/gurkan08/datasets/tree/master/trt_11_category. label_dict = { 'LABEL_0': 'ekonomi', 'LABEL_1': 'spor', 'LABEL_2': 'saglik', 'LABEL_3': 'kultur_sanat', 'LABEL_4': 'bilim_teknoloji', 'LABEL_5': 'egitim' } 70% of the data were used for training and 30% for testing. train f1-weighted score = %97 test f1-weighted score = %94 # Usage from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("gurkan08/bert-turkish-text-classification") model = AutoModelForSequenceClassification.from_pretrained("gurkan08/bert-turkish-text-classification") nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) text = ["Süper Lig'in 6. haftasında Sivasspor ile Çaykur Rizespor karşı karşıya geldi...", "Son 24 saatte 69 kişi Kovid-19 nedeniyle yaşamını yitirdi, 1573 kişi iyileşti"] out = nlp(text) label_dict = { 'LABEL_0': 'ekonomi', 'LABEL_1': 'spor', 'LABEL_2': 'saglik', 'LABEL_3': 'kultur_sanat', 'LABEL_4': 'bilim_teknoloji', 'LABEL_5': 'egitim' } results = [] for result in out: result['label'] = label_dict[result['label']] results.append(result) print(results) # > [{'label': 'spor', 'score': 0.9992026090621948}, {'label': 'saglik', 'score': 0.9972177147865295}]
{"language": "tr"}
text-classification
gurkan08/bert-turkish-text-classification
[ "transformers", "pytorch", "jax", "bert", "text-classification", "tr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #jax #bert #text-classification #tr #autotrain_compatible #endpoints_compatible #region-us
# Turkish News Text Classification Turkish text classification model obtained by fine-tuning the Turkish bert model (dbmdz/bert-base-turkish-cased) # Dataset Dataset consists of 11 classes were obtained from URL The model was created using the most distinctive 6 classes. Dataset can be accessed at URL label_dict = { 'LABEL_0': 'ekonomi', 'LABEL_1': 'spor', 'LABEL_2': 'saglik', 'LABEL_3': 'kultur_sanat', 'LABEL_4': 'bilim_teknoloji', 'LABEL_5': 'egitim' } 70% of the data were used for training and 30% for testing. train f1-weighted score = %97 test f1-weighted score = %94 # Usage from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("gurkan08/bert-turkish-text-classification") model = AutoModelForSequenceClassification.from_pretrained("gurkan08/bert-turkish-text-classification") nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) text = ["Süper Lig'in 6. haftasında Sivasspor ile Çaykur Rizespor karşı karşıya geldi...", "Son 24 saatte 69 kişi Kovid-19 nedeniyle yaşamını yitirdi, 1573 kişi iyileşti"] out = nlp(text) label_dict = { 'LABEL_0': 'ekonomi', 'LABEL_1': 'spor', 'LABEL_2': 'saglik', 'LABEL_3': 'kultur_sanat', 'LABEL_4': 'bilim_teknoloji', 'LABEL_5': 'egitim' } results = [] for result in out: result['label'] = label_dict[result['label']] URL(result) print(results) # > [{'label': 'spor', 'score': 0.9992026090621948}, {'label': 'saglik', 'score': 0.9972177147865295}]
[ "# Turkish News Text Classification\n\n Turkish text classification model obtained by fine-tuning the Turkish bert model (dbmdz/bert-base-turkish-cased)", "# Dataset\n\nDataset consists of 11 classes were obtained from URL The model was created using the most distinctive 6 classes.\n\nDataset can be accessed at URL\n\n label_dict = {\n 'LABEL_0': 'ekonomi',\n 'LABEL_1': 'spor',\n 'LABEL_2': 'saglik',\n 'LABEL_3': 'kultur_sanat',\n 'LABEL_4': 'bilim_teknoloji',\n 'LABEL_5': 'egitim'\n }\n\n70% of the data were used for training and 30% for testing.\n\ntrain f1-weighted score = %97\n\ntest f1-weighted score = %94", "# Usage\n\n from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification\n\n tokenizer = AutoTokenizer.from_pretrained(\"gurkan08/bert-turkish-text-classification\")\n model = AutoModelForSequenceClassification.from_pretrained(\"gurkan08/bert-turkish-text-classification\")\n\n nlp = pipeline(\"sentiment-analysis\", model=model, tokenizer=tokenizer)\n\n text = [\"Süper Lig'in 6. haftasında Sivasspor ile Çaykur Rizespor karşı karşıya geldi...\",\n \"Son 24 saatte 69 kişi Kovid-19 nedeniyle yaşamını yitirdi, 1573 kişi iyileşti\"]\n\n out = nlp(text)\n \n label_dict = {\n 'LABEL_0': 'ekonomi',\n 'LABEL_1': 'spor',\n 'LABEL_2': 'saglik',\n 'LABEL_3': 'kultur_sanat',\n 'LABEL_4': 'bilim_teknoloji',\n 'LABEL_5': 'egitim'\n }\n\n results = []\n for result in out:\n result['label'] = label_dict[result['label']]\n URL(result)\n print(results)\n\n # > [{'label': 'spor', 'score': 0.9992026090621948}, {'label': 'saglik', 'score': 0.9972177147865295}]" ]
[ "TAGS\n#transformers #pytorch #jax #bert #text-classification #tr #autotrain_compatible #endpoints_compatible #region-us \n", "# Turkish News Text Classification\n\n Turkish text classification model obtained by fine-tuning the Turkish bert model (dbmdz/bert-base-turkish-cased)", "# Dataset\n\nDataset consists of 11 classes were obtained from URL The model was created using the most distinctive 6 classes.\n\nDataset can be accessed at URL\n\n label_dict = {\n 'LABEL_0': 'ekonomi',\n 'LABEL_1': 'spor',\n 'LABEL_2': 'saglik',\n 'LABEL_3': 'kultur_sanat',\n 'LABEL_4': 'bilim_teknoloji',\n 'LABEL_5': 'egitim'\n }\n\n70% of the data were used for training and 30% for testing.\n\ntrain f1-weighted score = %97\n\ntest f1-weighted score = %94", "# Usage\n\n from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification\n\n tokenizer = AutoTokenizer.from_pretrained(\"gurkan08/bert-turkish-text-classification\")\n model = AutoModelForSequenceClassification.from_pretrained(\"gurkan08/bert-turkish-text-classification\")\n\n nlp = pipeline(\"sentiment-analysis\", model=model, tokenizer=tokenizer)\n\n text = [\"Süper Lig'in 6. haftasında Sivasspor ile Çaykur Rizespor karşı karşıya geldi...\",\n \"Son 24 saatte 69 kişi Kovid-19 nedeniyle yaşamını yitirdi, 1573 kişi iyileşti\"]\n\n out = nlp(text)\n \n label_dict = {\n 'LABEL_0': 'ekonomi',\n 'LABEL_1': 'spor',\n 'LABEL_2': 'saglik',\n 'LABEL_3': 'kultur_sanat',\n 'LABEL_4': 'bilim_teknoloji',\n 'LABEL_5': 'egitim'\n }\n\n results = []\n for result in out:\n result['label'] = label_dict[result['label']]\n URL(result)\n print(results)\n\n # > [{'label': 'spor', 'score': 0.9992026090621948}, {'label': 'saglik', 'score': 0.9972177147865295}]" ]
[ 41, 41, 146, 337 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #text-classification #tr #autotrain_compatible #endpoints_compatible #region-us \n# Turkish News Text Classification\n\n Turkish text classification model obtained by fine-tuning the Turkish bert model (dbmdz/bert-base-turkish-cased)# Dataset\n\nDataset consists of 11 classes were obtained from URL The model was created using the most distinctive 6 classes.\n\nDataset can be accessed at URL\n\n label_dict = {\n 'LABEL_0': 'ekonomi',\n 'LABEL_1': 'spor',\n 'LABEL_2': 'saglik',\n 'LABEL_3': 'kultur_sanat',\n 'LABEL_4': 'bilim_teknoloji',\n 'LABEL_5': 'egitim'\n }\n\n70% of the data were used for training and 30% for testing.\n\ntrain f1-weighted score = %97\n\ntest f1-weighted score = %94" ]
[ -0.10684405267238617, -0.039433401077985764, -0.0036334895994514227, 0.08715838938951492, 0.09291300922632217, 0.07713370025157928, 0.17782549560070038, 0.08510427922010422, 0.0853673592209816, 0.005388680845499039, 0.0858720913529396, 0.09135913103818893, 0.02925623022019863, 0.13252350687980652, -0.09948806464672089, -0.11741448938846588, -0.002646888140588999, 0.026894791051745415, -0.05563773959875107, 0.1600515991449356, 0.10767333954572678, -0.020343368873000145, 0.06814470887184143, -0.05061699450016022, -0.11896483600139618, 0.07381264865398407, 0.08891666680574417, -0.08077502250671387, 0.06842714548110962, 0.03006567247211933, 0.11526050418615341, 0.0291721411049366, -0.05545715242624283, -0.09991323202848434, 0.016417862847447395, -0.01814892143011093, -0.003730167169123888, 0.02634545788168907, 0.03472045809030533, -0.10961021482944489, 0.16294510662555695, -0.035547398030757904, 0.020826004445552826, -0.01114504411816597, -0.09927394241094589, -0.1070842444896698, -0.1249607652425766, 0.062283702194690704, 0.06088805943727493, 0.0594203844666481, -0.0345040000975132, 0.1289975494146347, -0.13190773129463196, 0.11688032746315002, 0.1253911703824997, -0.24932552874088287, -0.06507454812526703, 0.11618510633707047, -0.11233863979578018, 0.05161683261394501, -0.020587164908647537, 0.04595636948943138, 0.09164690226316452, 0.015120101161301136, -0.06321217864751816, -0.07594878226518631, -0.0757579579949379, -0.04917428642511368, -0.09139367938041687, -0.05705515667796135, 0.26342859864234924, -0.0007145448471419513, -0.05267740786075592, -0.05666976794600487, 0.012298607267439365, -0.06069106236100197, 0.01673066057264805, -0.0021996840368956327, -0.09295659512281418, -0.059933267533779144, 0.025935396552085876, 0.12419522553682327, -0.08102115988731384, -0.11571517586708069, -0.1467970609664917, 0.21942828595638275, 0.040072474628686905, 0.025326566770672798, -0.0010717379627749324, 0.1370944380760193, -0.10187581181526184, -0.14511841535568237, -0.0154126500710845, -0.029425404965877533, -0.045858804136514664, -0.05241968482732773, -0.033452149480581284, -0.1367461234331131, 0.03235902637243271, 0.08089011907577515, 0.025627238675951958, 0.05974607169628143, -0.013197521679103374, 0.0011152491206303239, -0.029029812663793564, 0.09469866007566452, 0.0705517828464508, -0.047758061438798904, -0.042585745453834534, 0.025990920141339302, 0.009646216407418251, -0.007367773447185755, 0.00862407498061657, -0.06625930964946747, 0.09653080254793167, 0.0676204264163971, -0.09619054198265076, 0.09601349383592606, -0.0171449426561594, -0.029288455843925476, -0.049329474568367004, -0.13383938372135162, -0.010099600069224834, 0.020495783537626266, -0.07332099974155426, 0.04024771600961685, -0.002336729085072875, -0.07470589876174927, -0.04429485648870468, 0.09179895371198654, 0.011316820047795773, 0.04107650741934776, -0.008223495446145535, -0.12774880230426788, 0.025210825726389885, -0.13848508894443512, -0.01909261755645275, -0.10580024123191833, -0.1264663189649582, -0.0725388377904892, -0.001966220559552312, -0.023206396028399467, 0.04241859167814255, -0.01862327754497528, -0.05851979926228523, 0.04933910444378853, -0.009283280000090599, 0.06484493613243103, -0.0611177422106266, 0.1371149718761444, 0.049506258219480515, 0.03289473429322243, 0.017909299582242966, 0.03162936121225357, -0.10262112319469452, -0.00919424183666706, -0.20537376403808594, 0.12320124357938766, -0.10015872120857239, 0.03760701045393944, -0.06987382471561432, -0.043275054544210434, -0.002845663344487548, -0.007877625524997711, 0.053613994270563126, 0.17230691015720367, -0.1685626208782196, -0.05430071800947189, 0.07420732080936432, -0.1526099443435669, -0.10840415954589844, 0.11977169662714005, -0.06874359399080276, 0.08761153370141983, 0.18376241624355316, 0.1891959011554718, 0.1584179848432541, -0.03396134823560715, -0.09931483864784241, -0.005971343722194433, 0.08184777200222015, 0.06545136123895645, 0.09113432466983795, 0.019215907901525497, -0.16539743542671204, 0.052064698189496994, -0.07475804537534714, 0.054141297936439514, -0.03190262243151665, -0.018448345363140106, -0.011618253774940968, -0.012600789777934551, 0.1151525229215622, 0.05549577996134758, 0.0852903351187706, -0.12722903490066528, -0.028118610382080078, 0.049397341907024384, 0.08233962953090668, -0.06904896348714828, -0.03211764246225357, -0.024015063419938087, 0.16248220205307007, -0.12557600438594818, 0.004361703060567379, -0.15359283983707428, 0.04501817375421524, 0.019487883895635605, 0.0994819700717926, 0.05097396299242973, 0.0056779831647872925, 0.07173377275466919, -0.042489953339099884, -0.060689736157655716, 0.031190719455480576, 0.01704423688352108, -0.007451099343597889, -0.10672291368246078, -0.15545783936977386, 0.0507526695728302, -0.01072814129292965, 0.14550893008708954, -0.18959225714206696, 0.01927441544830799, 0.08690904080867767, 0.09448392689228058, -0.009309262968599796, -0.0006685647531412542, 0.0015477902488783002, 0.03025585226714611, -0.015111448243260384, -0.012177182361483574, -0.019724732264876366, -0.016399698331952095, -0.0903160348534584, -0.004548060707747936, -0.12364359200000763, 0.11749225109815598, 0.11949405819177628, 0.006933704484254122, -0.1439594179391861, 0.028679484501481056, -0.03396166115999222, 0.01857072487473488, -0.07346808165311813, -0.019012711942195892, 0.09190480411052704, 0.013707338832318783, 0.10523345321416855, -0.09195932000875473, -0.0796111449599266, 0.014355943538248539, -0.03634244576096535, 0.040075358003377914, 0.22965136170387268, -0.06475703418254852, -0.21781660616397858, 0.1216060072183609, 0.12497325241565704, -0.058366116136312485, 0.182464599609375, -0.06104794889688492, -0.06275682896375656, -0.026181619614362717, 0.04447578638792038, -0.01740284077823162, 0.07772562652826309, -0.16271087527275085, -0.018728069961071014, 0.038835447281599045, 0.06094854697585106, -0.01689164526760578, -0.06829267740249634, -0.018798828125, 0.024661274626851082, -0.06529274582862854, -0.09059801697731018, 0.08838441967964172, 0.03806356340646744, 0.153213232755661, -0.08562836050987244, -0.03765077143907547, 0.0180599894374609, -0.008987242355942726, -0.13519668579101562, 0.18568819761276245, -0.01832069642841816, -0.13569962978363037, -0.07081205397844315, -0.010489560663700104, -0.0990852564573288, -0.022239625453948975, 0.03357788175344467, -0.10339575260877609, 0.013875405304133892, -0.07130442559719086, 0.07417774945497513, 0.008946267887949944, 0.05472329631447792, -0.10872898995876312, -0.02661753073334694, 0.010145468637347221, -0.07730137556791306, -0.0462215356528759, -0.0697130635380745, -0.021998746320605278, 0.08604984730482101, -0.11356654018163681, 0.012643682770431042, 0.09328555315732956, -0.07927350699901581, 0.05687488615512848, -0.056427355855703354, 0.19700250029563904, -0.10457227379083633, -0.000823575013782829, 0.08021625876426697, -0.03897152096033096, -0.02707715891301632, 0.15839391946792603, 0.008916424587368965, -0.049825962632894516, 0.015070146881043911, 0.02233032137155533, -0.03401763737201691, -0.31511619687080383, -0.030583428218960762, -0.0710563063621521, 0.0050061834044754505, 0.04402652755379677, 0.014744956977665424, -0.05806349217891693, 0.09456619620323181, -0.04349980503320694, 0.03212178498506546, 0.04082540422677994, -0.004972525406628847, 0.21031653881072998, 0.04203661531209946, 0.09139369428157806, -0.1231784075498581, -0.07651828974485397, 0.08223449438810349, -0.04455447196960449, 0.16130149364471436, -0.03407389298081398, 0.004953270778059959, 0.05777595937252045, 0.06922931969165802, 0.02929467149078846, 0.06243208050727844, -0.021102819591760635, 0.0021222925279289484, 0.018738863989710808, -0.0668652206659317, -0.03327742591500282, -0.020376775413751602, -0.07971810549497604, 0.02997455932199955, -0.12808731198310852, -0.06443243473768234, 0.12366369366645813, -0.03864040970802307, 0.12693625688552856, -0.2219252586364746, -0.10927629470825195, 0.00727198738604784, -0.04858517274260521, -0.052980270236730576, -0.03241001069545746, 0.049253083765506744, -0.10038081556558609, 0.17990192770957947, -0.0089532770216465, 0.09083832055330276, -0.018078191205859184, -0.007964223623275757, -0.058147918432950974, -0.11686745285987854, -0.045986343175172806, 0.13773180544376373, -0.34891828894615173, 0.23112428188323975, 0.025103222578763962, 0.06462171673774719, -0.07536082714796066, -0.04099138081073761, 0.11068721115589142, 0.07863949984312057, 0.07428314536809921, 0.00778256356716156, 0.03265443816781044, -0.17222899198532104, -0.09936791658401489, 0.05349285528063774, 0.010219228453934193, -0.0787506103515625, 0.07369742542505264, -0.003650813829153776, 0.06659753620624542, -0.011011002585291862, -0.06671290844678879, -0.11658925563097, -0.03154636174440384, 0.007700657472014427, -0.008647899143397808, -0.10527481138706207, 0.02463146485388279, -0.12995874881744385, -0.1432032436132431, 0.1301594227552414, -0.05856156349182129, -0.12109015882015228, -0.09062277525663376, 0.11938802152872086, 0.06828220188617706, -0.10631969571113586, -0.10548795014619827, -0.009982265532016754, -0.01523599587380886, 0.018414940685033798, -0.10612250119447708, 0.019997039809823036, 0.0013530110009014606, -0.12086506187915802, -0.027143798768520355, 0.16302312910556793, 0.05111999064683914, 0.10491286218166351, 0.0604732520878315, 0.017955143004655838, 0.038898371160030365, -0.10770633816719055, -0.056088171899318695, -0.03375886008143425, -0.018511418253183365, 0.14749760925769806, 0.039997491985559464, -0.09005866199731827, -0.12354334443807602, 0.018057024106383324, 0.12152303010225296, 0.1113118827342987, -0.05035371705889702, 0.019584372639656067, -0.012006082572042942, -0.07939092814922333, -0.18291328847408295, 0.04842120781540871, 0.07227438688278198, 0.06860432773828506, -0.03354186564683914, -0.04821262136101723, 0.14803799986839294, 0.06291846930980682, -0.008534343913197517, 0.048314377665519714, -0.23038676381111145, -0.10979697108268738, 0.16482166945934296, 0.04878392815589905, 0.24512657523155212, -0.12485954910516739, -0.055290624499320984, -0.029701121151447296, -0.051315680146217346, 0.08989362418651581, -0.16678698360919952, 0.09235543012619019, -0.05203874409198761, 0.03410889208316803, 0.046758223325014114, -0.014853833243250847, 0.15779352188110352, 0.08321405947208405, 0.08788632601499557, -0.08383366465568542, -0.035894837230443954, 0.020778466016054153, -0.05059985816478729, 0.13987162709236145, -0.14323824644088745, 0.06234034523367882, -0.2396264225244522, -0.041681692004203796, -0.032798249274492264, 0.10502181202173233, -0.048614103347063065, 0.001629146165214479, -0.07580584287643433, -0.006186136044561863, -0.014096635393798351, -0.01336403377354145, 0.05612689629197121, -0.052049171179533005, 0.12704527378082275, -0.03290320932865143, 0.11631227284669876, -0.017046276479959488, -0.012082923203706741, 0.04400508478283882, 0.0027154365088790655, 0.051600128412246704, -0.1506045162677765, 0.0030031867790967226, 0.20078659057617188, 0.027884602546691895, 0.12023039162158966, 0.03023366443812847, -0.0512942336499691, 0.024497170001268387, 0.0849870815873146, -0.15134862065315247, 0.009223434142768383, -0.03811071813106537, -0.19402579963207245, -0.09636030346155167, 0.02019454911351204, 0.13537810742855072, -0.05680956691503525, 0.021761851385235786, 0.0037942349445074797, -0.047885019332170486, -0.05639726668596268, 0.25679439306259155, 0.022784795612096786, 0.01978149265050888, -0.11105355620384216, 0.04740411415696144, 0.031637586653232574, -0.02995177172124386, 0.038399968296289444, 0.019874976947903633, -0.13577033579349518, -0.019029932096600533, 0.02865288034081459, 0.24826136231422424, -0.009312043897807598, -0.05796094983816147, -0.1312151998281479, -0.16294166445732117, 0.03550073876976967, 0.19596636295318604, 0.16546329855918884, 0.07231131941080093, -0.052865657955408096, -0.1066812202334404, -0.02020127698779106, 0.11601238697767258, 0.17002703249454498, 0.025752417743206024, -0.11987890303134918, 0.10802671313285828, 0.011045657098293304, 0.03409846872091293, -0.04394735395908356, -0.033101554960012436, -0.06231924891471863, 0.03879043459892273, -0.02351975440979004, 0.05044758692383766, -0.016907328739762306, 0.04214351996779442, 0.026099151000380516, -0.07993045449256897, -0.03856539726257324, -0.020939568057656288, -0.08330830931663513, 0.06216985359787941, 0.00712417159229517, 0.09395003318786621, -0.12224335223436356, -0.04279916360974312, 0.038961123675107956, -0.07100339233875275, 0.06699243187904358, 0.12786641716957092, -0.03767666965723038, 0.09267964959144592, -0.15417960286140442, 0.0321236215531826, 0.03833294287323952, 0.06229937821626663, 0.005800645332783461, -0.13028596341609955, 0.07889988273382187, 0.08859007805585861, 0.08169640600681305, 0.14262904226779938, 0.05947784706950188, -0.06585831940174103, -0.04398972913622856, -0.08397454023361206, -0.034564465284347534, -0.024137167260050774, 0.09032395482063293, 0.08557994663715363, 0.12328176200389862, 0.16583986580371857, -0.06735124439001083, 0.0068725901655852795, -0.1987418681383133, 0.005721540655940771, -0.022032007575035095, -0.15266790986061096, -0.20302586257457733, 0.010492328554391861, 0.0782085433602333, -0.014736908487975597, 0.1279955953359604, 0.06515370309352875, -0.027494020760059357, -0.010602078400552273, 0.015139734372496605, 0.1118864193558693, -0.037870343774557114, 0.2108209729194641, 0.04195117950439453, -0.032900407910346985, -0.048210255801677704, -0.030071960762143135, 0.04338587820529938, 0.055285051465034485, 0.14477045834064484, 0.12490163743495941, -0.06805885583162308, 0.05501406639814377, 0.005776827689260244, 0.034875717014074326, 0.0421256497502327, -0.054902706295251846, -0.06845178455114365, 0.06962795555591583, 0.048229798674583435, 0.12408823519945145, 0.11685150861740112, -0.1446274071931839, 0.01047594752162695, -0.05094334855675697, -0.11116914451122284, -0.11224982887506485, -0.16546037793159485, -0.08873965591192245, -0.09511219710111618, 0.022126661613583565, -0.09922334551811218, -0.028878791257739067, 0.12628433108329773, 0.09688201546669006, -0.01840202324092388, 0.14855824410915375, -0.09764819592237473, -0.01960582658648491, 0.14040131866931915, -0.06681330502033234, -0.033490076661109924, -0.021162044256925583, 0.0023784826043993235, 0.050946835428476334, -0.006296379957348108, 0.025835135951638222, 0.02923658862709999, 0.02996554598212242, -0.02475106343626976, -0.05374922975897789, -0.08509141206741333, -0.007999537512660027, 0.037140943109989166, 0.11518626660108566, 0.1875237226486206, 0.06488758325576782, 0.013834884390234947, -0.0330750048160553, 0.11484702676534653, 0.019894544035196304, -0.07792815566062927, -0.1411578357219696, 0.16490334272384644, 0.03648858889937401, -0.004759544041007757, 0.05488746985793114, -0.08176048845052719, 0.047212373465299606, 0.15939229726791382, 0.18780215084552765, 0.07789602875709534, 0.030417723581194878, -0.02858792059123516, 0.01840079203248024, 0.0951683521270752, 0.05646764487028122, -0.03671996295452118, 0.09865174442529678, -0.03490228205919266, -0.0017298840684816241, -0.05261734500527382, -0.038845691829919815, 0.07541091740131378, 0.04800035059452057, 0.03415216878056526, -0.09457676112651825, -0.03172452002763748, 0.16684392094612122, -0.031067632138729095, -0.0942360907793045, 0.023055393248796463, -0.09521975368261337, -0.13930979371070862, -0.021850841119885445, -0.013544600456953049, 0.026134252548217773, -0.027563996613025665, -0.045176710933446884, 0.029436195269227028, -0.04021011292934418, -0.009060163050889969, -0.08721938729286194, -0.16196903586387634, 0.1190672218799591, 0.07522408664226532, 0.06343290954828262, 0.03387005999684334, 0.21600057184696198, 0.08091042935848236, 0.014155508950352669, -0.013575492426753044, 0.06800772994756699, 0.05730629712343216, 0.09298170357942581, 0.05628145858645439, 0.04728102684020996, 0.026889272034168243, -0.011797905899584293, 0.09214803576469421, -0.039577655494213104, 0.017126495018601418, -0.09787594527006149, -0.05964789539575577, -0.18038202822208405, 0.05664728581905365, -0.05403180047869682, 0.11087106913328171, 0.2815100848674774, -0.0071153100579977036, 0.019139423966407776, -0.07491490244865417, -0.026393042877316475, 0.043403469026088715, -0.09665371477603912, 0.029097458347678185, -0.19980451464653015, -0.00614585354924202, 0.042320720851421356, -0.01209633331745863, -0.1913376748561859, -0.02374456450343132, -0.07388121634721756, -0.049211978912353516, -0.012295694090425968, 0.09173926711082458, -0.0008407452260144055, 0.06970571726560593, -0.046321433037519455, -0.1325419694185257, -0.007097227498888969, 0.1184295266866684, -0.11455979943275452, -0.09024246782064438 ]
null
null
transformers
# Rick bot
{"tags": ["conversational"]}
text-generation
gusintheshell/DialoGPT-small-rickbot
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Rick bot
[ "# Rick bot" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Rick bot" ]
[ 51, 3 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Rick bot" ]
[ -0.00522220553830266, 0.024606717750430107, -0.0061806440353393555, -0.000022771029762225226, 0.158244788646698, -0.004315300844609737, 0.13694940507411957, 0.14089588820934296, 0.042822934687137604, -0.016936874017119408, 0.15064890682697296, 0.24907727539539337, -0.00494876503944397, 0.0912991538643837, -0.07031795382499695, -0.24876344203948975, 0.08312281221151352, 0.03753925859928131, -0.04919489100575447, 0.11345682293176651, 0.0879783183336258, -0.04574340954422951, 0.09454852342605591, -0.022305283695459366, -0.17554566264152527, 0.03039322979748249, 0.047587621957063675, -0.11430773884057999, 0.10748790949583054, 0.06487494707107544, 0.06030213087797165, 0.021154558286070824, -0.05712762475013733, -0.07829110324382782, 0.05030084401369095, 0.026937201619148254, -0.05887240543961525, 0.07389563322067261, 0.014562033116817474, -0.10752752423286438, 0.1031111404299736, 0.09642742574214935, -0.013678842224180698, 0.07984723150730133, -0.14502371847629547, 0.013330602087080479, -0.03621510788798332, 0.026629094034433365, 0.060515522956848145, 0.11208891868591309, -0.03264125436544418, 0.17455044388771057, -0.09401683509349823, 0.11827803403139114, 0.16488946974277496, -0.300146222114563, -0.023615118116140366, 0.12673452496528625, 0.044522397220134735, 0.04553810879588127, -0.052418652921915054, 0.07340731471776962, 0.013730017468333244, 0.012136938981711864, -0.07329723984003067, -0.07571064680814743, -0.12434809654951096, 0.01835283450782299, -0.06022810563445091, -0.03886871039867401, 0.25992491841316223, -0.04077618196606636, 0.06650740653276443, -0.03331958130002022, -0.08592415601015091, -0.007985216565430164, -0.028010932728648186, 0.02429887466132641, -0.10877644270658493, 0.06548747420310974, -0.05370934680104256, -0.08883344382047653, -0.1160455048084259, -0.04138677194714546, -0.15391257405281067, 0.21354447305202484, 0.026279281824827194, 0.05273217335343361, -0.24000877141952515, 0.07885823398828506, 0.05894923210144043, -0.08510969579219818, 0.018203439190983772, -0.07404232770204544, 0.00889635644853115, 0.01279966440051794, -0.04046367108821869, -0.07971329241991043, 0.1081819236278534, 0.18127913773059845, -0.007791895419359207, 0.0396563895046711, -0.03185313194990158, 0.0735773965716362, 0.0225693229585886, 0.04870156571269035, -0.0036049685440957546, 0.04457451403141022, 0.06428815424442291, -0.1060437560081482, 0.00831291452050209, -0.07971271127462387, -0.19119802117347717, 0.023938840255141258, 0.029845183715224266, 0.0804506465792656, 0.056787796318531036, 0.13264918327331543, -0.017446232959628105, -0.025736860930919647, 0.033683277666568756, -0.04803970083594322, -0.003621222684159875, 0.0318850576877594, -0.0074888067319989204, 0.08689515292644501, 0.0014707990922033787, 0.018984125927090645, -0.1269819289445877, 0.015271330252289772, -0.06227576360106468, -0.003234070958569646, -0.03940180316567421, -0.053692735731601715, 0.02201366052031517, -0.025402886793017387, -0.004802939016371965, -0.1620030403137207, -0.11607135832309723, -0.00695937592536211, -0.015196862630546093, -0.036237433552742004, -0.09218395501375198, -0.06828668713569641, -0.04036674648523331, 0.05675418674945831, -0.04980192333459854, 0.02205660380423069, -0.04163462668657303, 0.105022132396698, -0.05098768323659897, 0.09082263708114624, -0.10160451382398605, 0.07278735190629959, -0.0956760048866272, -0.06203839182853699, -0.1044836938381195, 0.1051979511976242, -0.019968489184975624, 0.14667990803718567, -0.037223562598228455, 0.009707191027700901, -0.10511445999145508, 0.06631187349557877, -0.0448596328496933, 0.23378591239452362, -0.08690734207630157, -0.11769130080938339, 0.2820071578025818, -0.056764326989650726, -0.14099982380867004, 0.10196731984615326, -0.0007102427771314979, 0.06568852066993713, 0.11839070916175842, 0.15325050055980682, -0.017036497592926025, 0.01346698310226202, 0.042891234159469604, 0.10100457072257996, -0.11359778046607971, -0.027492934837937355, -0.001777472672984004, -0.025523297488689423, -0.08515596389770508, 0.006430258974432945, 0.12093139439821243, 0.07952588051557541, -0.04068155214190483, -0.019692473113536835, 0.003461843589320779, 0.001889330567792058, 0.04982297122478485, -0.004655429162085056, 0.11241129040718079, -0.0688227042555809, -0.07960195094347, -0.10732915252447128, 0.010488198138773441, -0.021466540172696114, 0.026543235406279564, -0.09440656006336212, 0.04803459346294403, 0.02465052902698517, 0.09070157259702682, -0.1934606432914734, -0.13362815976142883, -0.028369523584842682, 0.13045693933963776, 0.09761661291122437, 0.07668625563383102, 0.054613322019577026, -0.06755349785089493, 0.02912699431180954, -0.00123430578969419, 0.18087783455848694, -0.028695043176412582, -0.06856931746006012, -0.10380594432353973, 0.0803598091006279, -0.07034625858068466, 0.034139979630708694, -0.021928461268544197, 0.034578464925289154, 0.09901735931634903, 0.1299877017736435, -0.008604045957326889, 0.03329808637499809, 0.01947571150958538, -0.025984710082411766, -0.06517612189054489, -0.019383879378437996, 0.08464818447828293, -0.007401979994028807, -0.1166563332080841, 0.21988815069198608, -0.1549474000930786, 0.08552765846252441, 0.19136448204517365, -0.20852147042751312, -0.0026052205357700586, 0.002552663441747427, -0.02680872194468975, 0.01702534407377243, 0.03482992574572563, -0.06908014416694641, 0.20704104006290436, 0.009425994008779526, 0.16217833757400513, -0.028081368654966354, -0.04023892432451248, -0.03223166614770889, -0.041388239711523056, -0.00939029548317194, 0.10736162215471268, 0.12455132603645325, -0.1827794760465622, 0.1884123980998993, 0.08836407214403152, 0.037151336669921875, 0.1772996336221695, 0.01553831622004509, 0.0339713916182518, 0.08047738671302795, 0.0026656261179596186, -0.022271113470196724, -0.06643904745578766, -0.1925041824579239, -0.0343061126768589, 0.0634162500500679, 0.02416643314063549, 0.09879716485738754, -0.10387248545885086, -0.03524545207619667, -0.05562875047326088, -0.011834039352834225, 0.0475916862487793, 0.12420404702425003, 0.047305360436439514, 0.15072907507419586, -0.007241230458021164, -0.05476629361510277, 0.09016378968954086, 0.01072914432734251, -0.0936073362827301, 0.1783251315355301, -0.12596791982650757, -0.37607860565185547, -0.12260637432336807, -0.1327417492866516, -0.06296905875205994, 0.04752118140459061, 0.12984055280685425, -0.18073736131191254, -0.02665948122739792, 0.0308813638985157, 0.08474760502576828, -0.054710157215595245, 0.005920541472733021, -0.026838351041078568, 0.00785832665860653, -0.09410446882247925, -0.10882894694805145, -0.06459145247936249, -0.0438266284763813, -0.09132703393697739, 0.15496186912059784, -0.11519116908311844, 0.04658057540655136, 0.17458170652389526, 0.056913863867521286, 0.06895394623279572, -0.03140486404299736, 0.16043001413345337, -0.10421186685562134, 0.007458099164068699, 0.20781506597995758, -0.018979791551828384, 0.052245885133743286, 0.10297585278749466, -0.0037265196442604065, -0.09802056103944778, 0.037807073444128036, -0.0014122503343969584, -0.08430283516645432, -0.23181027173995972, -0.11575622856616974, -0.11390417814254761, 0.05951152741909027, 0.07512015104293823, 0.07329808175563812, 0.1313948631286621, 0.04408447444438934, -0.06678979843854904, 0.029374150559306145, 0.061707332730293274, 0.08493052423000336, 0.16402731835842133, -0.04793398454785347, 0.14277541637420654, -0.05279199033975601, -0.1406681388616562, 0.07282261550426483, 0.024566184729337692, 0.09398358315229416, 0.07255332916975021, 0.13605527579784393, -0.006209151353687048, 0.03028414025902748, 0.1259251832962036, 0.09119181334972382, 0.023188553750514984, -0.034450873732566833, -0.015354901552200317, -0.021942637860774994, -0.07461569458246231, 0.023577921092510223, 0.039186231791973114, -0.16604943573474884, -0.014288252219557762, -0.016775423660874367, 0.09507766366004944, 0.08056557923555374, 0.06199595332145691, -0.19829164445400238, -0.04899358004331589, 0.06905291974544525, -0.015539008192718029, -0.10776437819004059, 0.09415124356746674, 0.033693112432956696, -0.13231752812862396, 0.04592064395546913, -0.05637028440833092, 0.13923266530036926, -0.067554771900177, 0.08722452819347382, -0.11763325333595276, -0.02559589594602585, 0.005905964877456427, 0.12016773223876953, -0.32516342401504517, 0.14781852066516876, -0.007470011245459318, -0.04233431816101074, -0.12696434557437897, -0.006003356073051691, 0.03915812075138092, 0.06400325894355774, 0.08918146789073944, -0.0009261328377760947, -0.11610371619462967, -0.03469765558838844, -0.06873546540737152, 0.04492366686463356, 0.096364825963974, -0.07550321519374847, -0.02195158042013645, -0.04964181408286095, -0.014271058142185211, -0.020137175917625427, -0.10193753987550735, 0.020339032635092735, -0.17669156193733215, 0.09833091497421265, 0.08982010185718536, 0.09859927743673325, 0.011366864666342735, -0.010003069415688515, 0.0025795497931540012, 0.24583500623703003, -0.04525303468108177, -0.08597443997859955, -0.1112409383058548, 0.0486048087477684, 0.002624016720801592, -0.0919751226902008, -0.04245362430810928, -0.08426044136285782, 0.055543847382068634, -0.07635460793972015, -0.20117239654064178, 0.13509321212768555, -0.10236205160617828, -0.041649434715509415, -0.02729145437479019, 0.19295242428779602, -0.017337743192911148, 0.018898379057645798, 0.03142257779836655, -0.006314888130873442, -0.1047753393650055, -0.09687882661819458, 0.040235452353954315, -0.024909241124987602, 0.028747471049427986, 0.06331101059913635, -0.057589150965213776, -0.049014512449502945, -0.08172161877155304, 0.0006023187888786197, 0.3447313904762268, 0.10475831478834152, -0.037367310374975204, 0.16201364994049072, 0.09068337827920914, -0.0397045724093914, -0.3326548933982849, -0.10511939227581024, -0.09995832294225693, -0.05689910426735878, -0.10966946929693222, -0.21661466360092163, 0.08572249114513397, -0.0431303046643734, -0.011955688707530499, 0.11359728127717972, -0.21992160379886627, -0.08887238055467606, 0.18277578055858612, -0.037261780351400375, 0.39970862865448, -0.12178119271993637, -0.08258777111768723, -0.044615842401981354, -0.10297949612140656, 0.21130000054836273, -0.01472990307956934, 0.09706418961286545, 0.0035845725797116756, 0.20713673532009125, 0.05015390366315842, -0.004694159608334303, 0.06228122487664223, 0.014782470650970936, -0.04553920775651932, -0.10695664584636688, -0.09297236055135727, 0.005815679673105478, 0.016026344150304794, 0.02780923806130886, -0.10151152312755585, 0.014445153065025806, -0.11794470995664597, -0.0113066416233778, -0.10351656377315521, 0.06783118844032288, 0.02743147499859333, -0.02952466532588005, -0.0036556951235979795, -0.049186889082193375, -0.02872520498931408, 0.03963318467140198, 0.27806341648101807, -0.06956592947244644, 0.21422159671783447, 0.038796182721853256, 0.12619024515151978, -0.17766697704792023, 0.0006639357306994498, -0.04560846835374832, -0.04463988170027733, 0.09857398271560669, -0.1204344630241394, 0.06786227226257324, 0.08721379935741425, -0.0347086563706398, 0.09639612585306168, 0.1007145345211029, -0.04165370389819145, 0.0015504260081797838, 0.11358033865690231, -0.25907155871391296, -0.048910386860370636, -0.062273699790239334, 0.09269661456346512, 0.08125562220811844, 0.08452311158180237, 0.21186192333698273, 0.03369336575269699, -0.06048441678285599, 0.011227237991988659, 0.03912024945020676, -0.013250292278826237, 0.048177823424339294, -0.004602696280926466, 0.042422398924827576, -0.16253532469272614, 0.04917455464601517, 0.015318924561142921, -0.13279756903648376, 0.04040161520242691, 0.19302572309970856, -0.12406189739704132, -0.14026759564876556, -0.044298816472291946, 0.12445852160453796, -0.10219661891460419, -0.0009135408909060061, -0.06835569441318512, -0.12098021805286407, 0.0807248055934906, 0.10287275910377502, 0.0376611202955246, 0.05608540028333664, -0.04817623272538185, -0.037558313459157944, -0.034681595861911774, -0.0242299884557724, -0.020218003541231155, -0.016377700492739677, -0.03101334162056446, 0.051565274596214294, -0.01124157477170229, 0.1330871880054474, -0.07571582496166229, -0.09238793700933456, -0.1885877549648285, 0.021148204803466797, -0.05943138152360916, -0.09447059035301208, -0.0725400522351265, -0.0314624197781086, 0.012756206095218658, -0.043738044798374176, -0.039051350206136703, -0.03858184814453125, -0.12663133442401886, -0.0008694343268871307, -0.052795715630054474, 0.023273464292287827, -0.096873439848423, 0.02711239829659462, 0.07733391970396042, -0.04280262440443039, 0.1569889336824417, 0.17683452367782593, -0.10500863194465637, 0.11296640336513519, -0.1400299370288849, -0.10148293524980545, 0.09488460421562195, 0.020462041720747948, 0.05899094045162201, 0.07978963106870651, 0.011649028398096561, 0.04805301874876022, 0.06309357285499573, 0.051321372389793396, 0.038789208978414536, -0.08835802227258682, 0.095140241086483, -0.027565570548176765, -0.11265113949775696, -0.06830095499753952, -0.0034244218841195107, 0.028166543692350388, 0.05426689237356186, 0.1244044154882431, -0.05904054269194603, 0.09545553475618362, -0.03659627586603165, 0.03980863839387894, 0.018885457888245583, -0.1872059404850006, 0.0008831085870042443, -0.07354407757520676, 0.05015002563595772, -0.008617845363914967, 0.11594117432832718, 0.029900358989834785, -0.015480040572583675, 0.052072830498218536, 0.12454230338335037, -0.008759471587836742, -0.0014242915203794837, 0.05136620253324509, 0.09547331929206848, -0.05054914206266403, -0.07628808915615082, 0.05479220673441887, 0.053928859531879425, 0.006221515126526356, 0.1968909353017807, -0.043628182262182236, 0.024250712245702744, 0.07049499452114105, 0.01175160612910986, -0.006405306980013847, -0.09365902096033096, -0.09045170247554779, -0.0675652027130127, 0.0368683747947216, -0.024542715400457382, 0.08977306634187698, 0.16781379282474518, 0.002172904321923852, 0.0001886088721221313, -0.05227549001574516, -0.03511596471071243, -0.17712858319282532, -0.1876177340745926, -0.07658233493566513, -0.1260092854499817, 0.010671718046069145, -0.09746664017438889, 0.039212096482515335, 0.020675165578722954, 0.0682910904288292, -0.037193894386291504, 0.08824462443590164, 0.017592843621969223, -0.10065104812383652, 0.03242787346243858, -0.04491592198610306, 0.04187669977545738, 0.004790069535374641, -0.005221251863986254, -0.06777363270521164, 0.012813689187169075, 0.02427317388355732, 0.07089760154485703, -0.02669551409780979, 0.05508960783481598, -0.15457506477832794, -0.11097899824380875, -0.05447321757674217, 0.057355791330337524, -0.0454491451382637, 0.1447630077600479, 0.038052622228860855, -0.002138345967978239, 0.04366482049226761, 0.2430265247821808, -0.056134629994630814, -0.027433549985289574, -0.0743098258972168, 0.16942231357097626, -0.007847914472222328, 0.07195229083299637, -0.048753853887319565, 0.005550217814743519, -0.10538475960493088, 0.3273039162158966, 0.29688742756843567, -0.08137612789869308, 0.022281421348452568, -0.037118639796972275, 0.044389717280864716, 0.11614721268415451, 0.11406956613063812, 0.12227662652730942, 0.2568628191947937, -0.0609392449259758, -0.0166933536529541, -0.0032136852387338877, -0.024220800027251244, -0.1020352840423584, 0.03600408881902695, 0.025228329002857208, -0.04914850741624832, -0.018960224464535713, 0.09430878609418869, -0.2255013883113861, 0.021572496742010117, -0.09439732134342194, -0.19499777257442474, -0.05385348200798035, 0.004784364718943834, 0.10686726123094559, 0.020132016390562057, 0.12708710134029388, -0.0056952605955302715, -0.08927427977323532, 0.02022247016429901, 0.016115233302116394, -0.22392114996910095, -0.04316871613264084, 0.07573308050632477, -0.13480623066425323, -0.003063295967876911, -0.030378621071577072, 0.049268677830696106, 0.09492422640323639, 0.024628227576613426, -0.04889208823442459, 0.03878309577703476, -0.01239364966750145, -0.06642694771289825, 0.014528729021549225, 0.0690125823020935, -0.004657624289393425, -0.01284535601735115, 0.08126873522996902, -0.17582236230373383, 0.010776828043162823, -0.028474684804677963, -0.013940002769231796, 0.00899710413068533, 0.04891034588217735, -0.06269900500774384, 0.0678943321108818, 0.10202993452548981, -0.023746179416775703, -0.010983756743371487, -0.03433706611394882, -0.031742874532938004, -0.018326522782444954, -0.12684929370880127, -0.14933794736862183, -0.17823439836502075, -0.10792140662670135, 0.029078705236315727, 0.006972259841859341, -0.19573749601840973, 0.029318299144506454, -0.12039674818515778, 0.057342831045389175, -0.15266576409339905, 0.1012837290763855, 0.07266119122505188, 0.005293210037052631, -0.01157522201538086, -0.019382858648896217, 0.04886858910322189, 0.08915775269269943, -0.11272034049034119, -0.08662184327840805 ]
null
null
transformers
### Quantized BigScience's T0 3B with 8-bit weights This is a version of [BigScience's T0](https://huggingface.co/bigscience/T0_3B) with 3 billion parameters that is modified so you can generate **and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti)**. Inspired by [GPT-J 8bit](https://huggingface.co/hivemind/gpt-j-6B-8bit). Here's how to run it: [![colab](https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/drive/1lMja-CPc0vm5_-gXNXAWU-9c0nom7vZ9) This model can be easily loaded using the `T5ForConditionalGeneration` functionality: ```python from transformers import T5ForConditionalGeneration model = T5ForConditionalGeneration.from_pretrained("gustavecortal/T0_3B-8bit") ``` Before loading, you have to Monkey-Patch T5: ```python class T5ForConditionalGeneration(transformers.models.t5.modeling_t5.T5ForConditionalGeneration): def __init__(self, config): super().__init__(config) convert_to_int8(self) transformers.models.t5.modeling_t5.T5ForConditionalGeneration = T5ForConditionalGeneration ``` ## Model Description T0* shows zero-shot task generalization on English natural language prompts, outperforming GPT-3 on many tasks, while being 16x smaller. It is a series of encoder-decoder models trained on a large set of different tasks specified in natural language prompts. We convert numerous English supervised datasets into prompts, each with multiple templates using varying formulations. These prompted datasets allow for benchmarking the ability of a model to perform completely unseen tasks specified in natural language. To obtain T0*, we fine-tune a pretrained language model on this multitask mixture covering many different NLP tasks. ## Links * [BigScience](https://bigscience.huggingface.co/) * [Hivemind](https://training-transformers-together.github.io/) * [Gustave Cortal](https://twitter.com/gustavecortal) ```bibtex @misc{sanh2021multitask, title={Multitask Prompted Training Enables Zero-Shot Task Generalization}, author={Victor Sanh and Albert Webson and Colin Raffel and Stephen H. Bach and Lintang Sutawika and Zaid Alyafeai and Antoine Chaffin and Arnaud Stiegler and Teven Le Scao and Arun Raja and Manan Dey and M Saiful Bari and Canwen Xu and Urmish Thakker and Shanya Sharma Sharma and Eliza Szczechla and Taewoon Kim and Gunjan Chhablani and Nihal Nayak and Debajyoti Datta and Jonathan Chang and Mike Tian-Jian Jiang and Han Wang and Matteo Manica and Sheng Shen and Zheng Xin Yong and Harshit Pandey and Rachel Bawden and Thomas Wang and Trishala Neeraj and Jos Rozen and Abheesht Sharma and Andrea Santilli and Thibault Fevry and Jason Alan Fries and Ryan Teehan and Stella Biderman and Leo Gao and Tali Bers and Thomas Wolf and Alexander M. Rush}, year={2021}, eprint={2110.08207}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
{"language": "fr", "license": "mit", "tags": ["en"], "datasets": ["bigscience/P3"]}
text2text-generation
gustavecortal/T0_3B-8bit
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "fr", "dataset:bigscience/P3", "arxiv:2110.08207", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2110.08207" ]
[ "fr" ]
TAGS #transformers #pytorch #t5 #text2text-generation #en #fr #dataset-bigscience/P3 #arxiv-2110.08207 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
### Quantized BigScience's T0 3B with 8-bit weights This is a version of BigScience's T0 with 3 billion parameters that is modified so you can generate and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti). Inspired by GPT-J 8bit. Here's how to run it: ![colab](URL This model can be easily loaded using the 'T5ForConditionalGeneration' functionality: Before loading, you have to Monkey-Patch T5: ## Model Description T0* shows zero-shot task generalization on English natural language prompts, outperforming GPT-3 on many tasks, while being 16x smaller. It is a series of encoder-decoder models trained on a large set of different tasks specified in natural language prompts. We convert numerous English supervised datasets into prompts, each with multiple templates using varying formulations. These prompted datasets allow for benchmarking the ability of a model to perform completely unseen tasks specified in natural language. To obtain T0*, we fine-tune a pretrained language model on this multitask mixture covering many different NLP tasks. ## Links * BigScience * Hivemind * Gustave Cortal
[ "### Quantized BigScience's T0 3B with 8-bit weights\n\n\nThis is a version of BigScience's T0 with 3 billion parameters that is modified so you can generate and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti). Inspired by GPT-J 8bit. \n\nHere's how to run it: ![colab](URL\n\nThis model can be easily loaded using the 'T5ForConditionalGeneration' functionality:\n\n\nBefore loading, you have to Monkey-Patch T5:", "## Model Description\n\nT0* shows zero-shot task generalization on English natural language prompts, outperforming GPT-3 on many tasks, while being 16x smaller. It is a series of encoder-decoder models trained on a large set of different tasks specified in natural language prompts. We convert numerous English supervised datasets into prompts, each with multiple templates using varying formulations. These prompted datasets allow for benchmarking the ability of a model to perform completely unseen tasks specified in natural language. To obtain T0*, we fine-tune a pretrained language model on this multitask mixture covering many different NLP tasks.", "## Links\n\n* BigScience\n* Hivemind\n* Gustave Cortal" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #en #fr #dataset-bigscience/P3 #arxiv-2110.08207 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Quantized BigScience's T0 3B with 8-bit weights\n\n\nThis is a version of BigScience's T0 with 3 billion parameters that is modified so you can generate and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti). Inspired by GPT-J 8bit. \n\nHere's how to run it: ![colab](URL\n\nThis model can be easily loaded using the 'T5ForConditionalGeneration' functionality:\n\n\nBefore loading, you have to Monkey-Patch T5:", "## Model Description\n\nT0* shows zero-shot task generalization on English natural language prompts, outperforming GPT-3 on many tasks, while being 16x smaller. It is a series of encoder-decoder models trained on a large set of different tasks specified in natural language prompts. We convert numerous English supervised datasets into prompts, each with multiple templates using varying formulations. These prompted datasets allow for benchmarking the ability of a model to perform completely unseen tasks specified in natural language. To obtain T0*, we fine-tune a pretrained language model on this multitask mixture covering many different NLP tasks.", "## Links\n\n* BigScience\n* Hivemind\n* Gustave Cortal" ]
[ 76, 125, 153, 14 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #en #fr #dataset-bigscience/P3 #arxiv-2110.08207 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Quantized BigScience's T0 3B with 8-bit weights\n\n\nThis is a version of BigScience's T0 with 3 billion parameters that is modified so you can generate and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti). Inspired by GPT-J 8bit. \n\nHere's how to run it: ![colab](URL\n\nThis model can be easily loaded using the 'T5ForConditionalGeneration' functionality:\n\n\nBefore loading, you have to Monkey-Patch T5:## Model Description\n\nT0* shows zero-shot task generalization on English natural language prompts, outperforming GPT-3 on many tasks, while being 16x smaller. It is a series of encoder-decoder models trained on a large set of different tasks specified in natural language prompts. We convert numerous English supervised datasets into prompts, each with multiple templates using varying formulations. These prompted datasets allow for benchmarking the ability of a model to perform completely unseen tasks specified in natural language. To obtain T0*, we fine-tune a pretrained language model on this multitask mixture covering many different NLP tasks.## Links\n\n* BigScience\n* Hivemind\n* Gustave Cortal" ]
[ -0.10746311396360397, -0.007447078824043274, -0.0034632631577551365, 0.08956263214349747, 0.09929653257131577, 0.045718152076005936, 0.07432105392217636, 0.143280491232872, -0.013419684022665024, 0.0700153335928917, -0.033464256674051285, 0.08053362369537354, 0.05518609657883644, 0.11808831244707108, 0.0372895747423172, -0.26066431403160095, 0.05882737413048744, -0.06087000295519829, 0.019249001517891884, 0.06780575215816498, 0.1027945876121521, -0.036432087421417236, 0.034719787538051605, -0.01703517697751522, -0.044608183205127716, -0.0029911301098763943, 0.0011839886428788304, -0.022227562963962555, 0.10358215123414993, 0.1115003302693367, -0.012434123083949089, 0.015137224458158016, 0.053049296140670776, -0.11218538135290146, 0.0040994309820234776, 0.03166092559695244, 0.029695315286517143, 0.03196239471435547, 0.05674382671713829, 0.024806926026940346, 0.10198147594928741, -0.113951675593853, 0.04731891676783562, 0.10090266168117523, -0.07480700314044952, -0.05082463473081589, -0.12088018655776978, 0.010648847557604313, 0.09304101765155792, 0.08077117800712585, -0.027862176299095154, 0.10124443471431732, -0.0546908862888813, 0.06487081199884415, 0.0926809161901474, -0.11637848615646362, -0.03421781584620476, 0.06256991624832153, 0.08523602783679962, 0.09263068437576294, -0.01488999743014574, -0.06278625875711441, 0.0002266923984279856, 0.03910171240568161, -0.023848334327340126, -0.04019917920231819, -0.02616605907678604, -0.05949186533689499, -0.1805887669324875, -0.0032736160792410374, 0.09691722691059113, -0.02930591255426407, -0.09090547263622284, -0.21300992369651794, -0.07983006536960602, 0.05766798555850983, -0.03691965341567993, -0.011454768478870392, -0.027119804173707962, 0.015234388411045074, 0.10108588635921478, -0.14778652787208557, -0.0889025628566742, -0.049913156777620316, -0.09009707719087601, 0.06821983307600021, 0.08367127180099487, 0.005770374089479446, -0.04433497413992882, 0.07952530682086945, -0.0912167951464653, -0.017990048974752426, -0.057733193039894104, -0.0853191465139389, -0.1236489862203598, -0.026244357228279114, -0.06427013128995895, -0.06970413029193878, 0.04860129952430725, 0.266836941242218, 0.04907836392521858, 0.04394734650850296, -0.05538482964038849, 0.007354549132287502, 0.07741504162549973, 0.1351144015789032, -0.08279875665903091, -0.0021669508423656225, 0.07315023988485336, 0.04860825836658478, -0.007353299297392368, -0.011522915214300156, -0.04990442469716072, -0.10169517993927002, -0.04533420503139496, 0.07519304007291794, 0.05296968296170235, 0.07045820355415344, -0.012201923877000809, -0.08110535889863968, 0.17521895468235016, -0.16584697365760803, -0.006574515253305435, -0.021030226722359657, 0.008776411414146423, 0.05572745203971863, -0.004609279800206423, -0.05032658204436302, -0.1256587654352188, -0.10215435177087784, -0.07384779304265976, -0.012637459672987461, -0.06165562570095062, -0.08784764260053635, -0.014054945670068264, -0.04014281928539276, -0.054325997829437256, -0.01653071492910385, -0.12074414640665054, -0.009106142446398735, 0.009914133697748184, -0.059174735099077225, -0.05960443243384361, -0.09651907533407211, 0.004844306502491236, 0.012641822919249535, -0.004314805381000042, 0.051734331995248795, -0.022660670801997185, -0.005075284279882908, 0.049857646226882935, 0.047576408833265305, -0.07363675534725189, -0.02329903095960617, -0.06198780983686447, -0.034264545887708664, -0.14697742462158203, 0.1834370642900467, -0.08730617165565491, -0.05836014449596405, -0.0670008659362793, -0.028994517400860786, 0.09482970088720322, 0.048888444900512695, -0.006783941760659218, 0.09816534072160721, -0.18746888637542725, -0.02008899860084057, 0.2969209849834442, -0.10868705064058304, -0.006499634589999914, 0.14621149003505707, -0.0307371374219656, 0.10395287722349167, 0.10710401087999344, 0.021366603672504425, 0.16535957157611847, -0.06398081034421921, 0.008051810786128044, 0.03542119264602661, -0.05845985934138298, 0.044339071959257126, 0.04642491042613983, -0.06916684657335281, 0.024838311597704887, 0.03668850287795067, -0.03464759886264801, 0.02392658218741417, -0.0013999741058796644, -0.034425199031829834, -0.016169413924217224, 0.0023801473435014486, 0.004628273658454418, -0.06971713900566101, 0.006453723646700382, -0.03025331348180771, -0.10630084574222565, -0.043092992156744, 0.09985534846782684, -0.09422959387302399, 0.06472598016262054, -0.0964571163058281, -0.06288503855466843, 0.004427678883075714, 0.026607830077409744, -0.13628725707530975, -0.08534729480743408, 0.05124584212899208, -0.026420123875141144, 0.12364800274372101, -0.01927555352449417, 0.032992731779813766, 0.05696248635649681, -0.026430608704686165, 0.051267266273498535, 0.0003475553239695728, -0.05613361671566963, -0.010637431405484676, -0.0534462034702301, -0.03482488542795181, -0.052340760827064514, 0.03706732019782066, 0.023944728076457977, 0.06964846700429916, 0.03368508815765381, -0.04656127840280533, -0.005818414967507124, -0.04037269949913025, 0.02643999271094799, 0.0024595067370682955, -0.01731572486460209, -0.0576542429625988, 0.01296252477914095, -0.012777453288435936, -0.08834219723939896, 0.06229819729924202, -0.14168709516525269, -0.22013646364212036, 0.053042326122522354, 0.11465857923030853, -0.032441455870866776, -0.05878828838467598, -0.04043324664235115, -0.03054695390164852, -0.035246483981609344, -0.1041431650519371, 0.15198329091072083, 0.05447353422641754, 0.047111958265304565, -0.08424821496009827, -0.04236268252134323, -0.007997616194188595, 0.019827989861369133, 0.030937759205698967, 0.03814475238323212, 0.06848655641078949, -0.08423782885074615, 0.02473292127251625, -0.08224855363368988, 0.04399186745285988, 0.08886364102363586, -0.030847886577248573, -0.10332886129617691, -0.013634435832500458, 0.05277342349290848, 0.02171778865158558, 0.0030446378514170647, -0.06726187467575073, 0.049508314579725266, 0.06103837490081787, 0.08449991792440414, 0.09674157202243805, -0.08034737408161163, 0.05259336531162262, -0.010863794945180416, -0.08239902555942535, -0.023858141154050827, 0.029688477516174316, 0.04523439332842827, 0.045435018837451935, -0.011033724062144756, 0.07839290797710419, 0.053328126668930054, -0.03445819765329361, -0.08392524719238281, 0.1226843073964119, -0.13884402811527252, -0.16419833898544312, -0.1936563104391098, -0.027666529640555382, -0.07988770306110382, 0.01732810214161873, 0.028365427628159523, -0.028426257893443108, -0.07224391400814056, -0.0912797674536705, 0.16505613923072815, -0.005037496332079172, -0.0342215895652771, -0.07611437886953354, 0.017371557652950287, -0.009572211652994156, -0.16518287360668182, 0.007228398229926825, 0.036260586231946945, -0.2244490385055542, 0.042318616062402725, -0.000007939171155157965, 0.030185669660568237, 0.05288662016391754, 0.05582069978117943, -0.01815718039870262, -0.05457577109336853, 0.23160819709300995, -0.03659643605351448, 0.05441621318459511, 0.15286706387996674, -0.012936306186020374, 0.05731182172894478, 0.07920264452695847, 0.012180683203041553, -0.11271749436855316, 0.030659828335046768, 0.03575428947806358, -0.03284360095858574, -0.21460993587970734, -0.04935760423541069, -0.08901046216487885, 0.015966571867465973, 0.04295862838625908, 0.012353392317891121, -0.0315263606607914, 0.050605759024620056, -0.07404407113790512, 0.026195859536528587, 0.05602129176259041, 0.034368228167295456, 0.1359427273273468, -0.011303682811558247, 0.062211234122514725, -0.04581919685006142, -0.02895304746925831, 0.11829863488674164, 0.05903714895248413, 0.22244137525558472, -0.02070634812116623, 0.23526881635189056, 0.04970244690775871, 0.02566656842827797, -0.008900546468794346, 0.13309092819690704, -0.04762135073542595, 0.02001223713159561, -0.03179715573787689, -0.03044833242893219, -0.045699216425418854, 0.02579042874276638, 0.030279479920864105, -0.07740562409162521, -0.03478291630744934, 0.0013851127587258816, 0.036430519074201584, 0.16022047400474548, -0.031860895454883575, -0.09928916394710541, -0.03750649094581604, 0.021984146907925606, -0.09472227841615677, -0.06347355246543884, 0.04468480125069618, 0.1273195445537567, -0.07876614481210709, 0.027187444269657135, -0.04410726949572563, 0.07360775768756866, -0.11673668026924133, -0.014827120117843151, -0.06419409066438675, 0.10992012172937393, 0.03272387385368347, 0.08926448971033096, -0.15103481709957123, 0.02951660193502903, 0.018390405923128128, 0.06942921131849289, -0.1036425232887268, 0.09992829710245132, 0.0061826761811971664, -0.07772944867610931, 0.10569369792938232, -0.0034156630281358957, -0.1047280877828598, -0.04031342640519142, -0.15558259189128876, 0.059822678565979004, 0.09342826157808304, -0.053492188453674316, 0.10252437740564346, -0.04372021555900574, 0.0034253729972988367, -0.018877940252423286, 0.023080723360180855, -0.13245263695716858, -0.2675820291042328, 0.05994178727269173, -0.09158433973789215, -0.07603227347135544, -0.04488423466682434, -0.026504507288336754, -0.03631113842129707, 0.16171231865882874, -0.11142358183860779, -0.12196816504001617, -0.12430517375469208, -0.004095081239938736, 0.1825159788131714, -0.07109644263982773, 0.044997699558734894, 0.049816716462373734, 0.04412063583731651, -0.018261481076478958, -0.11873113363981247, 0.0708414614200592, -0.05002855136990547, -0.1051148921251297, 0.01488418411463499, 0.12366264313459396, 0.08600743860006332, 0.040705934166908264, -0.03081170842051506, -0.012119297869503498, 0.0275371465831995, -0.13195785880088806, -0.06021605804562569, 0.19107586145401, 0.006385056301951408, 0.09166795015335083, -0.10590268671512604, -0.1667272448539734, -0.06563261896371841, 0.02631814405322075, 0.14884977042675018, 0.24470873177051544, -0.00496352044865489, 0.10049329698085785, 0.06099274009466171, -0.061708398163318634, -0.13838517665863037, -0.019612664356827736, 0.040328867733478546, 0.03121616691350937, -0.02297130599617958, -0.21316136419773102, 0.05190232768654823, 0.12571470439434052, 0.022839000448584557, 0.11210288852453232, -0.338614284992218, -0.11563023924827576, -0.013081743381917477, 0.04359655827283859, 0.07043597847223282, -0.05253500118851662, -0.017577845603227615, 0.04063886031508446, -0.004578125197440386, 0.1985701322555542, 0.043364446610212326, 0.12442938983440399, -0.012883410789072514, 0.05469920486211777, 0.04508515074849129, -0.03450605645775795, 0.04836074262857437, 0.0036875386722385883, 0.03438125550746918, -0.03249414637684822, 0.036502379924058914, 0.16720929741859436, -0.006717092357575893, 0.11958978325128555, -0.02460441179573536, 0.026525650173425674, 0.003927249927073717, -0.07430356740951538, -0.10182181745767593, -0.008322558365762234, -0.03809433802962303, -0.06114186719059944, -0.0605352483689785, 0.051680054515600204, 0.04314395412802696, -0.023595139384269714, -0.0003559586184564978, -0.054960764944553375, -0.03496277704834938, 0.032573048025369644, 0.15517838299274445, -0.050189848989248276, -0.05932615324854851, -0.022717393934726715, 0.017987646162509918, 0.02141875959932804, -0.037498995661735535, 0.060187384486198425, 0.05016571283340454, -0.015767665579915047, 0.08499611914157867, 0.05890772119164467, -0.07579933851957321, 0.01623273827135563, 0.05904722958803177, -0.06723722070455551, -0.2315683215856552, -0.001871443004347384, -0.057663626968860626, -0.12830033898353577, -0.006082756444811821, 0.152560755610466, 0.062063053250312805, -0.07829055190086365, -0.018840286880731583, 0.07385292649269104, 0.006510518025606871, 0.1219991147518158, 0.005850611720234156, 0.003657301887869835, -0.08691168576478958, 0.03196731582283974, 0.060733795166015625, -0.13744759559631348, 0.011495403945446014, 0.18938541412353516, -0.08013921976089478, -0.0656331405043602, 0.014711497351527214, -0.03034028224647045, -0.05981869995594025, 0.056739915162324905, -0.007947994396090508, 0.0019938277546316385, 0.03937660902738571, 0.022296147421002388, 0.019289430230855942, 0.04915055260062218, -0.05878197029232979, 0.07471685111522675, -0.02880122885107994, 0.042548853904008865, -0.04514032602310181, 0.0622011236846447, -0.018078720197081566, 0.06108548119664192, -0.024348337203264236, -0.014024890959262848, -0.014286120422184467, -0.01923227310180664, -0.04773568734526634, -0.03242260217666626, -0.09292412549257278, 0.04518349468708038, -0.0832018330693245, 0.00745105417445302, 0.013538800179958344, 0.044034626334905624, 0.02703181654214859, 0.0162083450704813, -0.05705258622765541, -0.08707193285226822, -0.07738110423088074, 0.09037213772535324, -0.058011993765830994, 0.0584004744887352, 0.051347702741622925, -0.10379838943481445, 0.1444554179906845, 0.01186678372323513, -0.07889457792043686, 0.04308677092194557, -0.02810509130358696, -0.05143282935023308, -0.013319015502929688, 0.0685635581612587, 0.019762808457016945, -0.07030996680259705, 0.01228021178394556, 0.04091699793934822, 0.05700387805700302, -0.008698906749486923, 0.030733942985534668, -0.10465376824140549, 0.09984292834997177, 0.04956280067563057, -0.049634698778390884, -0.07274260371923447, -0.018348611891269684, 0.07538319379091263, 0.053130317479372025, 0.11633051931858063, -0.043398432433605194, 0.034478288143873215, -0.12253338098526001, -0.020387114956974983, 0.025344233959913254, 0.009442925453186035, 0.03126256540417671, -0.07637273520231247, 0.053502604365348816, 0.00700239185243845, 0.14217624068260193, -0.10574359446763992, 0.016345907002687454, -0.020861748605966568, 0.007507075555622578, 0.06903821974992752, 0.01782999187707901, 0.19051691889762878, 0.006786244455724955, -0.0317644439637661, 0.04842967167496681, 0.007507770322263241, -0.021686648949980736, -0.06267061084508896, 0.18828587234020233, -0.0371321476995945, 0.051375020295381546, 0.05984332785010338, 0.041519880294799805, -0.03276379406452179, -0.0902789831161499, -0.015195043757557869, 0.035655729472637177, 0.008559941314160824, -0.0652029812335968, 0.11071965843439102, 0.07642870396375656, -0.09490612149238586, 0.14972659945487976, 0.05849748104810715, -0.08905958384275436, -0.08068443089723587, -0.1815342754125595, -0.03424728289246559, -0.0451909638941288, -0.01461046002805233, -0.14984534680843353, 0.03218412026762962, 0.018403686583042145, 0.044725414365530014, -0.016888003796339035, 0.11695090681314468, 0.004559106659144163, -0.08471258729696274, -0.010949213989078999, 0.008242744952440262, 0.01236642710864544, 0.055707160383462906, -0.036098796874284744, 0.012095935642719269, 0.09003730118274689, 0.10589338839054108, 0.04947696998715401, 0.02713337540626526, -0.012734870426356792, -0.1367219090461731, -0.011444410309195518, -0.023273829370737076, 0.015228727832436562, 0.005184584762901068, 0.14501424133777618, 0.06580046564340591, -0.11888273805379868, 0.009529110975563526, 0.1388140171766281, -0.04072617366909981, -0.20302116870880127, -0.13006021082401276, 0.18840157985687256, 0.033491551876068115, 0.03334612771868706, 0.023391099646687508, -0.08090459555387497, -0.04740186780691147, 0.15462245047092438, 0.17413555085659027, -0.003321434836834669, -0.022195754572749138, 0.03624163940548897, -0.0077606611885130405, -0.032484788447618484, 0.17423705756664276, 0.027511877939105034, 0.2198190987110138, 0.011310235597193241, 0.05241355299949646, 0.05813935399055481, -0.006787458434700966, -0.08250562846660614, 0.07527738809585571, -0.060228388756513596, 0.05023413524031639, -0.01285895798355341, 0.06107577309012413, -0.03626389056444168, -0.012941551394760609, -0.09400472044944763, 0.015449775382876396, -0.12812237441539764, 0.005999701097607613, 0.030558988451957703, -0.03770953789353371, 0.08099333941936493, 0.03507346287369728, 0.0261885654181242, 0.08576777577400208, -0.017615733668208122, -0.1174667477607727, -0.03722661733627319, 0.08778029680252075, -0.11352550238370895, 0.17766173183918, 0.04708635434508324, 0.0687187910079956, 0.09357605129480362, 0.015098411589860916, -0.1348453313112259, 0.03212328627705574, -0.030473528429865837, 0.026172708719968796, 0.051874883472919464, 0.15383470058441162, -0.014541415497660637, -0.0005796054610982537, 0.026882434263825417, -0.07713203877210617, 0.024928797036409378, 0.00643174210563302, 0.012404877692461014, -0.10994938760995865, 0.04185957461595535, -0.13296601176261902, 0.1244385838508606, 0.13478057086467743, -0.001216316595673561, 0.041160717606544495, -0.06904348731040955, 0.015227611176669598, -0.007887526415288448, 0.1753074675798416, -0.11768808215856552, -0.204774871468544, -0.050723765045404434, 0.06947960704565048, 0.030801156535744667, -0.13857442140579224, -0.06447616219520569, -0.0041327085345983505, 0.019661162048578262, -0.06577443331480026, 0.1423388123512268, 0.029968086630105972, 0.013848899863660336, 0.016777433454990387, -0.15702317655086517, -0.02760159596800804, 0.06798961758613586, -0.1469811201095581, -0.04132840037345886 ]
null
null
transformers
### Quantized Cedille/fr-boris with 8-bit weights This is a version of Cedille's GPT-J (fr-boris) with 6 billion parameters that is modified so you can generate **and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti)**. Inspired by [GPT-J 8bit](https://huggingface.co/hivemind/gpt-j-6B-8bit). Here's how to run it: [![colab](https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/drive/1lMja-CPc0vm5_-gXNXAWU-9c0nom7vZ9) This model can be easily loaded using the `GPTJForCausalLM` functionality: ```python from transformers import GPTJForCausalLM model = GPTJForCausalLM.from_pretrained("gustavecortal/fr-boris-8bit") ``` ## fr-boris Boris is a 6B parameter autoregressive language model based on the GPT-J architecture and trained using the [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) codebase. Boris was trained on around 78B tokens of French text from the [C4](https://huggingface.co/datasets/c4) dataset. ## Links * [Cedille](https://en.cedille.ai/) * [Hivemind](https://training-transformers-together.github.io/) * [Gustave Cortal](https://twitter.com/gustavecortal)
{"language": "fr", "license": "mit", "tags": ["causal-lm", "fr"], "datasets": ["c4", "The Pile"]}
text-generation
gustavecortal/fr-boris-8bit
[ "transformers", "pytorch", "gptj", "text-generation", "causal-lm", "fr", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "fr" ]
TAGS #transformers #pytorch #gptj #text-generation #causal-lm #fr #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
### Quantized Cedille/fr-boris with 8-bit weights This is a version of Cedille's GPT-J (fr-boris) with 6 billion parameters that is modified so you can generate and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti). Inspired by GPT-J 8bit. Here's how to run it: ![colab](URL This model can be easily loaded using the 'GPTJForCausalLM' functionality: ## fr-boris Boris is a 6B parameter autoregressive language model based on the GPT-J architecture and trained using the mesh-transformer-jax codebase. Boris was trained on around 78B tokens of French text from the C4 dataset. ## Links * Cedille * Hivemind * Gustave Cortal
[ "### Quantized Cedille/fr-boris with 8-bit weights\n\n\nThis is a version of Cedille's GPT-J (fr-boris) with 6 billion parameters that is modified so you can generate and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti). Inspired by GPT-J 8bit. \n\nHere's how to run it: ![colab](URL\n\nThis model can be easily loaded using the 'GPTJForCausalLM' functionality:", "## fr-boris\n\nBoris is a 6B parameter autoregressive language model based on the GPT-J architecture and trained using the mesh-transformer-jax codebase.\n\nBoris was trained on around 78B tokens of French text from the C4 dataset.", "## Links\n\n* Cedille\n* Hivemind\n* Gustave Cortal" ]
[ "TAGS\n#transformers #pytorch #gptj #text-generation #causal-lm #fr #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Quantized Cedille/fr-boris with 8-bit weights\n\n\nThis is a version of Cedille's GPT-J (fr-boris) with 6 billion parameters that is modified so you can generate and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti). Inspired by GPT-J 8bit. \n\nHere's how to run it: ![colab](URL\n\nThis model can be easily loaded using the 'GPTJForCausalLM' functionality:", "## fr-boris\n\nBoris is a 6B parameter autoregressive language model based on the GPT-J architecture and trained using the mesh-transformer-jax codebase.\n\nBoris was trained on around 78B tokens of French text from the C4 dataset.", "## Links\n\n* Cedille\n* Hivemind\n* Gustave Cortal" ]
[ 55, 119, 61, 15 ]
[ "passage: TAGS\n#transformers #pytorch #gptj #text-generation #causal-lm #fr #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Quantized Cedille/fr-boris with 8-bit weights\n\n\nThis is a version of Cedille's GPT-J (fr-boris) with 6 billion parameters that is modified so you can generate and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti). Inspired by GPT-J 8bit. \n\nHere's how to run it: ![colab](URL\n\nThis model can be easily loaded using the 'GPTJForCausalLM' functionality:## fr-boris\n\nBoris is a 6B parameter autoregressive language model based on the GPT-J architecture and trained using the mesh-transformer-jax codebase.\n\nBoris was trained on around 78B tokens of French text from the C4 dataset.## Links\n\n* Cedille\n* Hivemind\n* Gustave Cortal" ]
[ -0.11314566433429718, 0.13327431678771973, -0.0016162575921043754, 0.11977716535329819, 0.07355701923370361, -0.03190119192004204, 0.1404334008693695, 0.13691359758377075, 0.1045955941081047, 0.03655720502138138, 0.10247637331485748, 0.045456379652023315, -0.011464841663837433, 0.18772850930690765, 0.05877373367547989, -0.12804028391838074, 0.0410284586250782, 0.0535665899515152, -0.04636571928858757, 0.08981643617153168, 0.08972201496362686, -0.04433930292725563, 0.08819210529327393, -0.005166028626263142, -0.1757843941450119, 0.077922023832798, 0.003607327351346612, -0.037038274109363556, 0.11530033499002457, 0.028065674006938934, 0.042537178844213486, 0.060634683817625046, 0.04384724050760269, -0.0990532785654068, 0.010313780978322029, 0.032973337918519974, -0.05312340706586838, 0.08413439989089966, 0.027439218014478683, -0.034292712807655334, 0.12133508920669556, -0.06174555420875549, -0.03057871200144291, 0.025285977870225906, -0.08076167851686478, -0.1200527548789978, -0.08922871947288513, 0.02744460292160511, 0.024921337142586708, 0.06657136976718903, 0.020000096410512924, 0.07006147503852844, -0.024690715596079826, 0.09491650015115738, 0.28220170736312866, -0.24248674511909485, -0.03269996866583824, 0.17674116790294647, 0.10290434211492538, 0.09909296035766602, -0.06130409240722656, 0.0024513413663953543, 0.02126959338784218, 0.01596664823591709, 0.13701246678829193, -0.11255277693271637, -0.09761323034763336, 0.020326940342783928, -0.1265508532524109, -0.029223790392279625, 0.14229924976825714, 0.00009206688264384866, -0.05136170983314514, -0.013228514231741428, -0.09528596699237823, -0.18450485169887543, -0.05641127750277519, -0.06357886642217636, 0.005624562967568636, 0.03705993667244911, -0.024031249806284904, -0.11150259524583817, -0.05061344802379608, -0.13410000503063202, 0.009311124682426453, 0.103731669485569, -0.002433819929137826, 0.011757690459489822, -0.03414522483944893, 0.13637202978134155, -0.13499076664447784, -0.026766225695610046, -0.033225979655981064, -0.026052454486489296, 0.005407034885138273, 0.024100441485643387, 0.0023868894204497337, -0.038995515555143356, 0.06362468749284744, 0.13902319967746735, -0.041544001549482346, 0.0623370036482811, 0.08831047266721725, 0.04260478913784027, -0.0408058762550354, 0.15609104931354523, -0.060960326343774796, -0.07665956020355225, 0.07036767899990082, -0.01402425579726696, -0.05199357494711876, 0.00024284026585519314, -0.13888250291347504, -0.11396748572587967, 0.09622462838888168, 0.02325054444372654, -0.09108394384384155, 0.0396718867123127, 0.02706628292798996, 0.002708406187593937, 0.185207337141037, -0.08030525594949722, 0.06744595617055893, 0.004832625854760408, -0.03921697661280632, -0.012597344815731049, 0.05452878400683403, -0.0691300630569458, -0.06305530667304993, -0.07171007245779037, -0.05740152299404144, -0.017027579247951508, -0.12170968949794769, -0.17327618598937988, -0.013422866351902485, -0.10217571258544922, -0.01989934965968132, -0.12326779216527939, -0.07913544774055481, -0.020099949091672897, 0.0634012296795845, -0.01076530385762453, 0.05392652377486229, -0.11156733334064484, -0.09556148201227188, 0.015434274449944496, 0.009030379354953766, -0.04181096702814102, -0.04260049760341644, 0.008724559098482132, -0.025987837463617325, 0.11445302516222, -0.15312880277633667, 0.014759891666471958, -0.024788614362478256, 0.04102756828069687, -0.09152452647686005, 0.09443726390600204, -0.10804831236600876, -0.09509294480085373, -0.09656130522489548, -0.0512305311858654, 0.05391719937324524, -0.01299319975078106, 0.11917883157730103, 0.13841216266155243, -0.1668700873851776, -0.03783885017037392, 0.2887907922267914, -0.04928955063223839, -0.04036008566617966, 0.1271546483039856, -0.029649339616298676, 0.08230828493833542, 0.0809849351644516, 0.13196717202663422, 0.12831538915634155, -0.09841987490653992, 0.0016765841282904148, 0.10445480048656464, 0.037042416632175446, -0.13174451887607574, 0.047362372279167175, 0.05121559277176857, 0.01955491676926613, 0.022863222286105156, -0.03820384666323662, 0.05954810976982117, -0.03245391324162483, -0.004079103469848633, 0.007231053896248341, -0.018893027678132057, 0.0208913404494524, -0.028481582179665565, 0.04670361429452896, -0.02879698947072029, -0.07627592980861664, -0.03344022482633591, 0.09314153343439102, -0.1412714272737503, 0.03313605859875679, -0.04465392976999283, 0.0678979828953743, -0.07918588817119598, -0.004452998284250498, -0.09742874652147293, 0.002025467110797763, 0.05293602496385574, 0.013735942542552948, 0.02192533202469349, 0.10476353019475937, 0.08878026157617569, 0.06758720427751541, -0.0005000827368348837, 0.045724526047706604, -0.03160116821527481, -0.019283587113022804, -0.05259832739830017, -0.07212632149457932, -0.06272329390048981, -0.09435771405696869, 0.09040851145982742, -0.04880286380648613, 0.03888391703367233, 0.16143275797367096, -0.059670671820640564, 0.03117559850215912, -0.02636731043457985, -0.012233758345246315, 0.006998961791396141, -0.02588234841823578, -0.07991014420986176, 0.035817258059978485, 0.03254384547472, 0.014656861312687397, 0.008148442953824997, -0.10271815210580826, -0.039137862622737885, 0.10348861664533615, 0.11239904165267944, -0.07706664502620697, -0.03098284639418125, -0.025716116651892662, 0.017032552510499954, 0.0832233726978302, -0.016517316922545433, 0.1412159949541092, 0.008947034366428852, 0.13376279175281525, -0.06770501285791397, -0.043321963399648666, 0.03894398361444473, -0.012267316691577435, 0.03810945525765419, 0.10167990624904633, 0.10958804190158844, -0.031153615564107895, 0.0824275091290474, 0.015192065387964249, -0.09993669390678406, 0.11529091000556946, 0.024226244539022446, -0.009714900515973568, -0.0296010784804821, 0.054497264325618744, 0.02946055680513382, 0.0743071511387825, -0.13539670407772064, -0.07617227733135223, -0.006830818951129913, -0.008640239015221596, 0.0517243891954422, -0.12775789201259613, 0.054047323763370514, -0.02672959305346012, -0.10318543016910553, 0.09055045247077942, 0.02951134741306305, -0.10605806112289429, 0.044303666800260544, 0.04536811262369156, -0.14022426307201385, 0.005827236920595169, -0.0011899261735379696, -0.0773000493645668, 0.1814495176076889, -0.09773842245340347, -0.039231013506650925, -0.09188655763864517, -0.11497870087623596, -0.07359997928142548, 0.06164572015404701, 0.06116282194852829, -0.03492759168148041, -0.0025370593648403883, -0.05882387235760689, -0.005926388781517744, -0.013539028353989124, 0.015659738332033157, -0.03615487366914749, -0.020579664036631584, -0.05794745683670044, -0.16435641050338745, -0.047687139362096786, -0.0027122364845126867, -0.08655621111392975, 0.053899962455034256, -0.11110999435186386, 0.06911449134349823, 0.13293834030628204, -0.057526297867298126, 0.059592537581920624, -0.026360034942626953, 0.24661417305469513, -0.029530713334679604, 0.07713562250137329, 0.03888481482863426, 0.06888693571090698, 0.03962113335728645, 0.019549131393432617, 0.01968642696738243, -0.0657079890370369, -0.005418000742793083, -0.04692754149436951, -0.08739126473665237, -0.1141647920012474, -0.06285429745912552, -0.06692405045032501, 0.028472742065787315, 0.08804692327976227, 0.05782852694392204, 0.01524001732468605, 0.10188883543014526, 0.011102790012955666, 0.10349181294441223, 0.01819976046681404, 0.09464770555496216, -0.011386878788471222, 0.031398121267557144, 0.02909994311630726, -0.037874191999435425, -0.05135819688439369, 0.08134186267852783, 0.13063327968120575, 0.10074758529663086, -0.01309769507497549, 0.28128111362457275, 0.04244739189743996, 0.08285148441791534, 0.022863803431391716, 0.13899827003479004, -0.029617084190249443, 0.04325750097632408, -0.04847623035311699, -0.04645605385303497, -0.05316181853413582, 0.024417191743850708, -0.11508826911449432, -0.055976588279008865, -0.023185208439826965, -0.027493104338645935, 0.017173999920487404, 0.139404758810997, 0.038706954568624496, -0.2798077464103699, -0.06344953924417496, -0.008744493126869202, 0.03494119644165039, -0.07452847063541412, 0.029958494007587433, 0.12540137767791748, -0.08082243800163269, -0.07329680025577545, -0.04162853956222534, 0.08734352141618729, -0.09010704606771469, -0.009263914078474045, 0.029314380139112473, 0.07428300380706787, 0.00469093956053257, 0.07740120589733124, -0.22095297276973724, 0.1264147013425827, 0.015742545947432518, 0.029321813955903053, -0.061930906027555466, 0.030066879466176033, 0.004143920727074146, 0.05877900868654251, 0.1281706988811493, 0.013279990293085575, 0.023709148168563843, -0.05792912095785141, -0.08819209784269333, 0.023719653487205505, 0.02552909031510353, -0.07928188145160675, 0.0639382153749466, 0.011368884705007076, -0.0563746839761734, -0.013898052275180817, 0.00015120184980332851, -0.047080110758543015, -0.13521534204483032, 0.03608795255422592, 0.13143323361873627, 0.0030409335158765316, -0.01412837766110897, -0.026520568877458572, -0.04216150566935539, 0.22898811101913452, -0.07446780055761337, -0.04414708912372589, -0.09858763217926025, 0.00652838870882988, 0.03734752535820007, -0.10305739939212799, 0.05124860629439354, -0.0247761569917202, 0.07922177016735077, -0.06735735386610031, -0.10850578546524048, 0.11766800284385681, -0.09384586662054062, 0.0063433400355279446, -0.001337628811597824, 0.0662899985909462, 0.08781329542398453, 0.004685602150857449, 0.0365631990134716, 0.003000411204993725, -0.05759221315383911, -0.13851386308670044, -0.06057990342378616, 0.02216775342822075, -0.034247495234012604, -0.07801469415426254, -0.065428227186203, 0.004573575686663389, -0.028333287686109543, 0.09484946727752686, 0.1602342575788498, 0.16444352269172668, -0.11138207465410233, 0.05525335296988487, 0.12981025874614716, -0.04472553730010986, -0.23307569324970245, -0.009319786913692951, 0.04969106987118721, 0.033259812742471695, -0.1530575007200241, -0.19587485492229462, 0.0006242688396014273, -0.011978150345385075, -0.01636618562042713, 0.08413014560937881, -0.20632383227348328, -0.052646759897470474, 0.05037596821784973, 0.09007666260004044, 0.18577900528907776, -0.07565249502658844, -0.017518481239676476, -0.0033908765763044357, -0.14463980495929718, 0.1351097971200943, -0.09857388585805893, 0.10419705510139465, -0.03397829458117485, 0.023522857576608658, -0.01989741250872612, -0.05109779164195061, 0.06608342379331589, 0.09054360538721085, 0.06351559609174728, 0.009043864905834198, -0.06461790204048157, 0.14473658800125122, -0.06323514133691788, 0.12600700557231903, -0.038926295936107635, 0.03935443237423897, -0.08926394581794739, -0.04514595493674278, -0.0762948989868164, 0.047511085867881775, 0.009325988590717316, -0.07465475052595139, -0.05892028659582138, -0.009127371944487095, 0.01590634509921074, 0.0031653225887566805, 0.03915681689977646, 0.019263090565800667, 0.022043650969862938, 0.23751433193683624, 0.0031729384791105986, -0.10530896484851837, 0.002664026338607073, 0.10726016759872437, 0.010392257012426853, 0.0782514289021492, -0.10498328506946564, 0.023141533136367798, 0.08611959218978882, 0.014665016904473305, 0.09021653234958649, 0.06538861244916916, -0.12080557644367218, 0.0021837372332811356, 0.039362501353025436, -0.20691527426242828, 0.03210732713341713, -0.028419511392712593, -0.05484667792916298, 0.0063245864585042, 0.0700744166970253, 0.141201913356781, -0.09060825407505035, -0.046489469707012177, -0.03467757999897003, -0.03134072571992874, -0.07255826145410538, 0.08704965561628342, 0.08102861791849136, 0.03398582339286804, -0.08136191219091415, -0.038057297468185425, 0.015947207808494568, -0.05564947798848152, 0.017759719863533974, 0.13486339151859283, -0.172667995095253, -0.06850975751876831, 0.05236579850316048, 0.16737107932567596, -0.08264250308275223, -0.02502407133579254, -0.07428745925426483, 0.011642901226878166, 0.017663223668932915, 0.09439581632614136, 0.08073452115058899, 0.02895302139222622, -0.023731235414743423, -0.00903757382184267, -0.12711170315742493, 0.06370359659194946, -0.010388663969933987, 0.05654001608490944, -0.017032109200954437, 0.0063164616003632545, -0.030043764039874077, 0.07129169255495071, -0.03216995671391487, -0.014575205743312836, -0.09640916436910629, -0.01550128124654293, -0.0710463672876358, 0.019555358216166496, -0.0405334047973156, 0.0037137691397219896, -0.03932391107082367, 0.005310714710503817, -0.01063499040901661, 0.051611240953207016, -0.08638929575681686, -0.015243597328662872, -0.05630474537611008, -0.0048123509623110294, -0.07703172415494919, 0.00008640030864626169, -0.0039912862703204155, -0.07195200771093369, 0.09808821231126785, 0.05553283542394638, -0.009503593668341637, 0.016513951122760773, -0.11804086714982986, -0.009533948265016079, 0.034778814762830734, 0.015826527029275894, 0.061223603785037994, -0.03557661175727844, 0.0285039022564888, -0.01431974582374096, 0.05282768979668617, -0.03617943078279495, 0.07547450065612793, -0.023494118824601173, 0.016784999519586563, -0.08744008094072342, 0.00863856915384531, -0.051885172724723816, 0.14819695055484772, 0.13180960714817047, 0.10728706419467926, 0.007291601039469242, -0.04531613737344742, 0.023919859901070595, -0.06577865034341812, -0.029509123414754868, 0.01853390969336033, -0.08761103451251984, -0.1276330202817917, -0.08011703193187714, 0.05964638292789459, 0.006780433934181929, 0.12548492848873138, 0.04618391394615173, -0.013768893666565418, -0.06662188470363617, -0.18152658641338348, 0.036471251398324966, -0.03254450112581253, 0.1237538680434227, 0.0016561310039833188, -0.01532035507261753, 0.004282625392079353, 0.11696246266365051, 0.05921196937561035, 0.12707699835300446, 0.06517569720745087, -0.006814977154135704, -0.002791309729218483, 0.12773683667182922, -0.06027791649103165, -0.02113308571279049, -0.004783404525369406, 0.022417927160859108, -0.02634151093661785, 0.05082373693585396, -0.10039236396551132, 0.07929772138595581, 0.10492299497127533, -0.08386977016925812, 0.06558941304683685, 0.08713539689779282, -0.09689430892467499, -0.1122564971446991, -0.0751151517033577, -0.08035971969366074, -0.14182499051094055, -0.026691455394029617, -0.09548173099756241, -0.013976719230413437, 0.010538337752223015, 0.06198728829622269, 0.029337873682379723, 0.15170754492282867, 0.00010566122364252806, -0.0625508651137352, 0.06282450258731842, -0.021064143627882004, -0.03267999738454819, -0.03526688739657402, 0.02630850300192833, 0.02200145460665226, -0.015280818566679955, 0.07338610291481018, 0.07207098603248596, 0.07391186058521271, 0.020073963329195976, -0.042285989969968796, -0.039312899112701416, -0.04555803909897804, 0.04503905773162842, 0.02305624447762966, 0.13810677826404572, -0.004221223294734955, -0.1185452938079834, 0.037689343094825745, 0.123240627348423, -0.04250733554363251, -0.032238539308309555, -0.07154447585344315, 0.1689842939376831, 0.039507485926151276, 0.09399610012769699, -0.04107114300131798, -0.02278691716492176, -0.01914476789534092, 0.15625004470348358, 0.2035142481327057, 0.020775437355041504, 0.0128589803352952, 0.04583717882633209, 0.0014711575349792838, 0.03253737837076187, 0.10307604819536209, 0.04125726595520973, 0.13441897928714752, -0.07998114079236984, -0.03636500984430313, -0.03189747408032417, -0.01613493449985981, -0.044787585735321045, 0.03021944873034954, -0.009023748338222504, -0.031335752457380295, -0.04825017973780632, 0.03227445110678673, 0.017456412315368652, -0.10987763106822968, 0.019191838800907135, -0.09212718904018402, -0.05312532186508179, 0.04464138671755791, -0.11056525260210037, 0.03805778920650482, 0.07326579838991165, -0.03993229195475578, 0.03219907730817795, 0.10330982506275177, -0.001337750698439777, -0.13223113119602203, -0.020510666072368622, 0.021310195326805115, -0.1134919598698616, 0.1620294153690338, -0.03851903975009918, 0.08843842148780823, 0.10555719584226608, -0.04179241135716438, -0.11774639040231705, 0.05929003283381462, 0.028129007667303085, 0.014054563827812672, -0.012853394262492657, -0.007178502157330513, -0.0647580623626709, 0.005799728445708752, -0.05102498456835747, -0.03376217931509018, 0.01800345815718174, -0.03610329329967499, -0.026581237092614174, -0.12538327276706696, 0.0006451644003391266, -0.07686325162649155, 0.12347549200057983, 0.09111353754997253, -0.025942131876945496, 0.019390270113945007, -0.06514978408813477, 0.050188902765512466, 0.032066185027360916, -0.015870235860347748, -0.03841615468263626, -0.13293728232383728, -0.03337675705552101, 0.03850019723176956, 0.02167670615017414, -0.21169885993003845, 0.01746363379061222, -0.09431399405002594, 0.010754026472568512, -0.06018590182065964, 0.06593586504459381, -0.012247830629348755, 0.028313782066106796, -0.04160252958536148, -0.05516871064901352, -0.053837504237890244, 0.09510378539562225, -0.1591479480266571, -0.12016616761684418 ]
null
null
transformers
### Quantized EleutherAI/gpt-neo-2.7B with 8-bit weights This is a version of [EleutherAI's GPT-Neo](https://huggingface.co/EleutherAI/gpt-neo-2.7B) with 2.7 billion parameters that is modified so you can generate **and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti)**. Inspired by [GPT-J 8bit](https://huggingface.co/hivemind/gpt-j-6B-8bit). Here's how to run it: [![colab](https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/drive/1lMja-CPc0vm5_-gXNXAWU-9c0nom7vZ9) ## Model Description GPT-Neo 2.7B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model. ## Links * [EleutherAI](https://www.eleuther.ai) * [Hivemind](https://training-transformers-together.github.io/) * [Gustave Cortal](https://twitter.com/gustavecortal)
{"language": "en", "license": "mit", "tags": ["causal-lm"], "datasets": ["The_Pile"]}
text-generation
gustavecortal/gpt-neo-2.7B-8bit
[ "transformers", "pytorch", "gpt_neo", "text-generation", "causal-lm", "en", "dataset:The_Pile", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt_neo #text-generation #causal-lm #en #dataset-The_Pile #license-mit #autotrain_compatible #endpoints_compatible #region-us
### Quantized EleutherAI/gpt-neo-2.7B with 8-bit weights This is a version of EleutherAI's GPT-Neo with 2.7 billion parameters that is modified so you can generate and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti). Inspired by GPT-J 8bit. Here's how to run it: ![colab](URL ## Model Description GPT-Neo 2.7B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model. ## Links * EleutherAI * Hivemind * Gustave Cortal
[ "### Quantized EleutherAI/gpt-neo-2.7B with 8-bit weights\n\n\nThis is a version of EleutherAI's GPT-Neo with 2.7 billion parameters that is modified so you can generate and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti). Inspired by GPT-J 8bit. \n\nHere's how to run it: ![colab](URL", "## Model Description\n\nGPT-Neo 2.7B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model.", "## Links\n\n* EleutherAI\n* Hivemind\n* Gustave Cortal" ]
[ "TAGS\n#transformers #pytorch #gpt_neo #text-generation #causal-lm #en #dataset-The_Pile #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Quantized EleutherAI/gpt-neo-2.7B with 8-bit weights\n\n\nThis is a version of EleutherAI's GPT-Neo with 2.7 billion parameters that is modified so you can generate and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti). Inspired by GPT-J 8bit. \n\nHere's how to run it: ![colab](URL", "## Model Description\n\nGPT-Neo 2.7B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model.", "## Links\n\n* EleutherAI\n* Hivemind\n* Gustave Cortal" ]
[ 60, 99, 67, 16 ]
[ "passage: TAGS\n#transformers #pytorch #gpt_neo #text-generation #causal-lm #en #dataset-The_Pile #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Quantized EleutherAI/gpt-neo-2.7B with 8-bit weights\n\n\nThis is a version of EleutherAI's GPT-Neo with 2.7 billion parameters that is modified so you can generate and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti). Inspired by GPT-J 8bit. \n\nHere's how to run it: ![colab](URL## Model Description\n\nGPT-Neo 2.7B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model.## Links\n\n* EleutherAI\n* Hivemind\n* Gustave Cortal" ]
[ -0.05052078142762184, 0.06429728120565414, -0.001588241895660758, 0.1328802853822708, 0.07749547809362411, 0.05358591675758362, 0.12322478741407394, 0.09020420908927917, 0.030129147693514824, 0.06883813440799713, 0.060207150876522064, 0.10691776871681213, 0.033878426998853683, 0.08740247040987015, 0.06954739987850189, -0.25835925340652466, 0.051936183124780655, 0.04043704643845558, 0.035835567861795425, 0.05282271280884743, 0.07765999436378479, -0.0910121500492096, 0.12433432787656784, 0.04052296653389931, -0.0912419781088829, 0.019056430086493492, 0.003994069527834654, -0.05707660689949989, 0.1081659272313118, 0.04591122269630432, 0.03172216936945915, 0.004178660921752453, 0.0949627086520195, -0.10222596675157547, -0.013081307522952557, 0.034857816994190216, 0.001129315234720707, 0.051287755370140076, 0.023810645565390587, 0.005587785039097071, 0.19271813333034515, 0.037538081407547, 0.07908985763788223, -0.000629376620054245, -0.1151420846581459, -0.14947187900543213, -0.05692041665315628, 0.06980898231267929, 0.059281837195158005, 0.09642546623945236, 0.016459261998534203, 0.15400491654872894, -0.05303186550736427, 0.06429079174995422, 0.16901375353336334, -0.2643777132034302, -0.02944280207157135, 0.10632138699293137, 0.047419216483831406, 0.09526346623897552, -0.02556360326707363, 0.0010431023547425866, 0.048674412071704865, 0.0470479317009449, 0.0635855421423912, -0.06939010322093964, -0.08377473801374435, -0.01899741217494011, -0.1572253257036209, -0.023114405572414398, 0.1265348643064499, -0.01655716635286808, -0.03784593939781189, 0.00429338775575161, -0.09126424789428711, -0.05313124880194664, 0.013077357783913612, -0.05991297587752342, 0.02639528177678585, 0.0009257674682885408, 0.03350767865777016, -0.03173375502228737, -0.07597344368696213, -0.09280911087989807, -0.0688910186290741, 0.12457811087369919, 0.06307527422904968, 0.08361521363258362, -0.0005963774165138602, 0.08816888183355331, -0.17888076603412628, -0.05817960575222969, -0.07575659453868866, -0.028834950178861618, 0.02329052798449993, -0.00562072591856122, -0.03449956700205803, 0.01607811264693737, 0.011145735159516335, 0.2062009572982788, -0.011950450018048286, 0.04068239778280258, 0.1007951870560646, 0.008405614644289017, 0.027497990056872368, 0.1741706132888794, -0.005728412885218859, -0.030078424140810966, 0.0264058206230402, -0.025205012410879135, 0.031987205147743225, -0.06477364897727966, -0.1288788616657257, -0.040432944893836975, 0.001601598341949284, -0.03849956393241882, -0.034007295966148376, 0.05659188702702522, -0.028378775343298912, -0.07168679684400558, 0.13013853132724762, -0.0816873088479042, 0.054471272975206375, -0.026890745386481285, -0.06384512037038803, -0.0030628563836216927, 0.08208707720041275, 0.012595398351550102, -0.07275434583425522, -0.04591532051563263, -0.1069607064127922, -0.05972091853618622, -0.12804807722568512, -0.1130182072520256, -0.016133274883031845, -0.125576451420784, 0.02191804349422455, -0.1451931893825531, -0.18165430426597595, -0.025779854506254196, 0.0667848140001297, -0.02515316940844059, -0.023300079628825188, -0.021433545276522636, 0.03206413611769676, 0.005111947190016508, -0.022394569590687752, -0.05773000419139862, -0.036473993211984634, 0.0035245660692453384, 0.06360720098018646, 0.08767024427652359, -0.0736938938498497, 0.044997066259384155, -0.0764634981751442, 0.032629117369651794, -0.13490645587444305, 0.0719924345612526, -0.0313582569360733, -0.02286018431186676, -0.07384537905454636, -0.05489618331193924, 0.04927118122577667, -0.003788844682276249, 0.04693262279033661, 0.048339515924453735, -0.013698587194085121, -0.04916408285498619, 0.0630110427737236, -0.13612022995948792, -0.08581815659999847, 0.0927484855055809, -0.0006962096667848527, 0.027053680270910263, 0.10234570503234863, 0.09707168489694595, 0.1511773020029068, -0.07189860939979553, -0.032660629600286484, 0.04828519746661186, 0.01990511454641819, -0.0919252336025238, 0.09671127051115036, 0.02756444364786148, -0.07922045141458511, 0.013084891252219677, -0.08501186966896057, -0.005267845932394266, -0.05538276955485344, -0.016601119190454483, 0.0006008516647852957, -0.0496632345020771, 0.004849324468523264, -0.02751646749675274, 0.035541899502277374, -0.024690765887498856, -0.06561391055583954, 0.014935184270143509, 0.11987348645925522, -0.08826559036970139, 0.017493221908807755, -0.09806493669748306, 0.03656193986535072, -0.10094545036554337, -0.030410900712013245, -0.10321184247732162, -0.08416686207056046, 0.08415985852479935, 0.0029596854001283646, 0.0886227935552597, 0.07707097381353378, 0.052329711616039276, 0.09024882316589355, 0.030688459053635597, 0.014900436624884605, -0.048843033611774445, -0.028897779062390327, -0.07541365176439285, -0.10927349328994751, -0.06990452855825424, -0.04054759070277214, 0.01363147608935833, -0.06559603661298752, 0.021770773455500603, -0.04609570652246475, 0.016177937388420105, -0.03363307937979698, -0.013226608745753765, -0.07492542266845703, 0.002171481028199196, -0.041904717683792114, -0.060019850730895996, 0.003174858633428812, 0.021988652646541595, -0.033153023570775986, 0.006895784754306078, -0.16287896037101746, -0.020549843087792397, 0.10091938078403473, 0.006801500450819731, -0.0048406836576759815, 0.05576305463910103, -0.023508325219154358, -0.022242769598960876, 0.04153846576809883, -0.003563760546967387, 0.22552606463432312, -0.03863348066806793, 0.05783810466527939, -0.07478389143943787, -0.019453156739473343, 0.0182881411164999, -0.04419486224651337, -0.035796064883470535, 0.03706955537199974, 0.20023687183856964, 0.004198603797703981, 0.07383258640766144, 0.03910033032298088, -0.07463875412940979, 0.06558327376842499, 0.043757569044828415, -0.05203522741794586, -0.008685987442731857, -0.05147548019886017, 0.006691720802336931, 0.0363725908100605, -0.09401433169841766, -0.013114326633512974, 0.03639660403132439, 0.007444361690431833, 0.061754483729600906, -0.15785326063632965, 0.03213435038924217, 0.061781689524650574, -0.023303937166929245, 0.00751107232645154, -0.02603287063539028, -0.09726227074861526, 0.04588138684630394, 0.03834947571158409, -0.05133755877614021, 0.003432258265092969, 0.0303932074457407, -0.10062746703624725, 0.1872050017118454, -0.10543890297412872, -0.1318977326154709, -0.16110782325267792, -0.13812364637851715, -0.05850578472018242, 0.07331976294517517, 0.03150875121355057, -0.03177317976951599, -0.08512882143259048, -0.0403197780251503, 0.191287100315094, -0.07674606144428253, 0.04737282171845436, 0.06911414861679077, -0.07851813733577728, -0.03946111351251602, -0.15804199874401093, -0.026710888370871544, -0.050231195986270905, -0.16805513203144073, 0.05869008228182793, -0.06668642163276672, 0.0571986548602581, 0.17907370626926422, -0.008486887440085411, -0.0021820461843162775, -0.010185458697378635, 0.2895309627056122, -0.0400819256901741, 0.038130491971969604, 0.20169326663017273, 0.015983857214450836, 0.06476001441478729, 0.0971275344491005, 0.021653002128005028, -0.07695749402046204, 0.028038116171956062, 0.013761709444224834, -0.0680278092622757, -0.20232263207435608, -0.04188008978962898, -0.019908342510461807, -0.012021523900330067, 0.11482173949480057, 0.06296495348215103, 0.10320284217596054, 0.1348234862089157, 0.006742636673152447, 0.1555456966161728, -0.03890332952141762, 0.06425366550683975, 0.09006302058696747, 0.014070030301809311, 0.066717728972435, -0.0252081211656332, -0.015178365632891655, 0.10370061546564102, 0.06688819825649261, 0.16657230257987976, 0.006363656371831894, 0.132645383477211, 0.050340406596660614, 0.07071436196565628, 0.023951545357704163, 0.09477334469556808, -0.06846863031387329, 0.02064184658229351, -0.02211274951696396, -0.04063332453370094, -0.06644806265830994, 0.07753921300172806, -0.03939937427639961, 0.009001236408948898, -0.02856803871691227, 0.0717085674405098, -0.006252323742955923, 0.14775340259075165, 0.035826392471790314, -0.36825302243232727, -0.0778900533914566, 0.02229306660592556, 0.025486761704087257, -0.0656428188085556, 0.011666237376630306, 0.03184666112065315, -0.0679878368973732, 0.051319584250450134, 0.03488951176404953, 0.07388263195753098, -0.11584087461233139, -0.013585844077169895, 0.0480811707675457, 0.12891873717308044, 0.022710243239998817, 0.07929787784814835, -0.19696079194545746, 0.06772076338529587, 0.000965518003795296, 0.05180741101503372, -0.07467252761125565, 0.0672617256641388, -0.043329447507858276, 0.12937180697917938, 0.06089133769273758, 0.005055326968431473, -0.024957532063126564, -0.10516029596328735, -0.09440305083990097, 0.03519560024142265, 0.025950778275728226, -0.10881010442972183, 0.07156792283058167, -0.009263473562896252, 0.031338997185230255, 0.018448319286108017, -0.010388152673840523, -0.07626143097877502, -0.093882255256176, 0.0396156944334507, 0.027564380317926407, -0.029619695618748665, -0.025815298780798912, -0.05468981713056564, -0.07387291640043259, 0.15595780313014984, -0.06261685490608215, -0.07105793058872223, -0.11266333609819412, 0.017339779064059258, 0.09209383279085159, -0.12723685801029205, 0.056189097464084625, -0.03232109546661377, 0.07530797272920609, -0.01786392740905285, -0.15811531245708466, 0.08610928803682327, -0.08084180951118469, -0.07997981458902359, -0.01586638018488884, 0.05760331079363823, 0.07249268144369125, 0.032354388386011124, 0.017843564972281456, 0.029186122119426727, -0.055495891720056534, -0.13313134014606476, -0.011885669082403183, 0.14726004004478455, 0.014095548540353775, -0.0207817442715168, -0.04273541271686554, 0.06850837916135788, -0.027417456731200218, 0.03746034577488899, 0.0665384829044342, 0.10260432958602905, -0.06609410047531128, 0.011548335663974285, 0.16713286936283112, -0.09046037495136261, -0.1706210970878601, -0.026869939640164375, 0.07400579750537872, 0.02480843849480152, -0.07535787671804428, -0.20797203481197357, 0.1280166059732437, 0.07948815077543259, -0.008930127136409283, 0.05224931985139847, -0.28810063004493713, -0.09254972636699677, 0.08945498615503311, 0.1093551442027092, 0.13324415683746338, -0.09911960363388062, -0.026873573660850525, -0.014146133325994015, -0.18051807582378387, 0.11349033564329147, -0.00004781235838891007, 0.08440934866666794, -0.045654963701963425, 0.028815332800149918, 0.004285363480448723, -0.007804925553500652, 0.11279483139514923, 0.08347988873720169, 0.03872354328632355, -0.06788066029548645, -0.01556127704679966, 0.03945332393050194, -0.053290851414203644, 0.13684538006782532, 0.06109669432044029, 0.02429617941379547, -0.07421941310167313, -0.09031959623098373, -0.04043768346309662, 0.02238045260310173, -0.004754896275699139, -0.09596826881170273, -0.07169297337532043, -0.0024076190311461687, 0.0055297487415373325, -0.023114828392863274, 0.04615940526127815, 0.02848805859684944, 0.008291746489703655, 0.0879659578204155, 0.022572875022888184, -0.08307488262653351, -0.07553240656852722, -0.0024333964101970196, 0.00962761603295803, 0.10271202027797699, -0.08337979763746262, 0.02030504122376442, 0.1157660186290741, -0.01913420297205448, 0.07706698030233383, 0.0650596171617508, -0.12512263655662537, -0.016187522560358047, 0.06026095896959305, -0.12130647152662277, -0.09198541194200516, -0.011205937713384628, -0.0647849291563034, -0.03835514932870865, 0.08851543068885803, 0.12544316053390503, -0.0505080409348011, -0.03189410641789436, -0.030643319711089134, -0.006503280717879534, -0.06856315582990646, 0.09542305022478104, 0.044892292469739914, 0.004375647287815809, -0.08688750863075256, 0.06321936100721359, 0.10677483677864075, -0.01879384182393551, -0.005247083026915789, 0.10391272604465485, -0.07235392183065414, -0.046719908714294434, 0.04953419044613838, 0.09924746304750443, -0.16054731607437134, -0.0676359087228775, -0.04934071749448776, -0.07908698916435242, 0.06995081156492233, 0.07271896302700043, 0.06892919540405273, 0.05679266154766083, -0.04588029161095619, 0.0645364373922348, -0.11254174262285233, 0.005542554892599583, -0.05917532369494438, 0.08655273169279099, -0.14847031235694885, 0.06467174738645554, 0.048295725136995316, 0.0816819816827774, -0.0296570286154747, -0.04196438938379288, -0.08819586783647537, 0.00035994790960103273, 0.04051617160439491, 0.03465941920876503, -0.07253028452396393, 0.027973266318440437, 0.002847540657967329, -0.05961160361766815, -0.06351767480373383, 0.0705844908952713, -0.06466832011938095, -0.027672408148646355, -0.03386711701750755, 0.01194929238408804, -0.09722062945365906, -0.020306115970015526, 0.018530284985899925, -0.04327830672264099, 0.10023590177297592, 0.005234698299318552, 0.02433140203356743, 0.022617194801568985, -0.0072775292210280895, 0.04164283350110054, 0.05563778057694435, 0.06823556125164032, 0.029990900307893753, -0.03184552118182182, 0.02082633413374424, -0.01485781092196703, -0.023350998759269714, -0.05188537761569023, 0.026599925011396408, -0.11325923353433609, 0.027823735028505325, -0.01256876066327095, -0.10271105915307999, -0.04658696427941322, 0.04512834548950195, 0.07752784341573715, 0.043818943202495575, 0.06732674688100815, -0.014242972247302532, 0.013409809209406376, -0.1289592832326889, -0.006161610595881939, 0.042065590620040894, -0.004841526970267296, -0.0886790081858635, -0.07903838157653809, 0.038361307233572006, 0.009957044385373592, 0.15013468265533447, 0.06879778951406479, 0.0036558264400810003, -0.06770390272140503, 0.08643647283315659, 0.06220414116978645, -0.02945953793823719, 0.15914006531238556, 0.012713496573269367, -0.0037632975727319717, 0.03082459233701229, 0.07367797195911407, 0.0650564581155777, 0.026728151366114616, 0.11906775832176208, -0.049340251833200455, 0.15451905131340027, 0.07685066759586334, 0.07714521139860153, -0.02352486550807953, -0.17847372591495514, -0.06755844503641129, -0.04083128646016121, -0.0031441180035471916, 0.0061282506212592125, 0.00849245022982359, 0.10925107449293137, -0.10515110939741135, 0.04258555918931961, 0.06211277097463608, -0.07318954914808273, -0.14264316856861115, -0.17685504257678986, -0.08529314398765564, -0.16036894917488098, -0.0070040407590568066, -0.13349293172359467, -0.026533009484410286, 0.09271884709596634, 0.05308695510029793, -0.0038912335876375437, 0.12087937444448471, -0.09989068657159805, -0.02543937787413597, -0.07943760603666306, -0.0022156848572194576, 0.04157719388604164, -0.005769423209130764, -0.015230978839099407, -0.004551948048174381, 0.042955417186021805, 0.05721648782491684, -0.014812850393354893, 0.049779150635004044, 0.08078187704086304, 0.009931343607604504, -0.019407423213124275, -0.03172791749238968, -0.009308088570833206, -0.005182575900107622, 0.06248697265982628, -0.007704009301960468, -0.05579948052763939, 0.020324507728219032, 0.11208491027355194, -0.03889288753271103, -0.07832815498113632, -0.10489437729120255, 0.23931601643562317, 0.00668036425486207, 0.042715515941381454, 0.018221555277705193, -0.06420538574457169, -0.10035714507102966, 0.20853875577449799, 0.14848311245441437, -0.013395171612501144, -0.02771514467895031, 0.019457245245575905, 0.0004877643659710884, 0.01098218560218811, 0.12344517558813095, 0.04727308452129364, 0.20275527238845825, -0.04784577339887619, -0.05153413489460945, -0.050886303186416626, 0.05705992877483368, -0.05638568848371506, 0.007603156380355358, 0.010760861448943615, -0.00246702809818089, -0.0642797201871872, 0.011117267422378063, -0.010922037065029144, -0.0006443344755098224, 0.046520035713911057, -0.06232774257659912, -0.07146358489990234, 0.020790372043848038, 0.018781768158078194, -0.018157891929149628, 0.0778423473238945, -0.024624986574053764, -0.04138421639800072, 0.09289675951004028, 0.027415471151471138, -0.20061704516410828, -0.06769240647554398, 0.10583403706550598, 0.0745067298412323, 0.24002008140087128, -0.01212097518146038, 0.10467924922704697, 0.07269088178873062, 0.02699839323759079, -0.11592545360326767, 0.08244362473487854, 0.008293039165437222, -0.02424726076424122, 0.018320782110095024, -0.018161023035645485, -0.03221923112869263, 0.06140778586268425, -0.0006654689204879105, -0.0977688580751419, -0.0033564686309546232, 0.019908417016267776, 0.0001933901512529701, -0.08693435043096542, -0.03308606147766113, -0.13646091520786285, 0.14436547458171844, 0.10229773074388504, 0.0009019985445775092, -0.053263816982507706, -0.031240424141287804, 0.058208320289850235, 0.009621177799999714, 0.09082744270563126, -0.024302160367369652, -0.12776775658130646, -0.007314825430512428, -0.06099861487746239, 0.03013847954571247, -0.10550340265035629, -0.06410164386034012, -0.0403081551194191, -0.04564859718084335, -0.07415208965539932, 0.043983448296785355, 0.05014382675290108, 0.018994133919477463, -0.060167230665683746, -0.11005806177854538, -0.05101633816957474, 0.08239486068487167, -0.16399206221103668, -0.14107726514339447 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-ml Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on ml (Malayalam) using the [Indic TTS Malayalam Speech Corpus (via Kaggle)](https://www.kaggle.com/kavyamanohar/indic-tts-malayalam-speech-corpus), [Openslr Malayalam Speech Corpus](http://openslr.org/63/), [SMC Malayalam Speech Corpus](https://blog.smc.org.in/malayalam-speech-corpus/) and [IIIT-H Indic Speech Databases](http://speech.iiit.ac.in/index.php/research-svl/69.html). The notebooks used to train model are available [here](https://github.com/gauthamsuresh09/wav2vec2-large-xlsr-53-malayalam/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = <load-test-split-of-combined-dataset> # Details on loading this dataset in the evaluation section processor = Wav2Vec2Processor.from_pretrained("gvs/wav2vec2-large-xlsr-malayalam") model = Wav2Vec2ForCTC.from_pretrained("gvs/wav2vec2-large-xlsr-malayalam") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the test data of combined custom dataset. For more details on dataset preparation, check the notebooks mentioned at the end of this file. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re from datasets import load_dataset, load_metric from pathlib import Path # The custom dataset needs to be created using notebook mentioned at the end of this file data_dir = Path('<path-to-custom-dataset>') dataset_folders = { 'iiit': 'iiit_mal_abi', 'openslr': 'openslr', 'indic-tts': 'indic-tts-ml', 'msc-reviewed': 'msc-reviewed-speech-v1.0+20200825', } # Set directories for datasets openslr_male_dir = data_dir / dataset_folders['openslr'] / 'male' openslr_female_dir = data_dir / dataset_folders['openslr'] / 'female' iiit_dir = data_dir / dataset_folders['iiit'] indic_tts_male_dir = data_dir / dataset_folders['indic-tts'] / 'male' indic_tts_female_dir = data_dir / dataset_folders['indic-tts'] / 'female' msc_reviewed_dir = data_dir / dataset_folders['msc-reviewed'] # Load the datasets openslr_male = load_dataset("json", data_files=[f"{str(openslr_male_dir.absolute())}/sample_{i}.json" for i in range(2023)], split="train") openslr_female = load_dataset("json", data_files=[f"{str(openslr_female_dir.absolute())}/sample_{i}.json" for i in range(2103)], split="train") iiit = load_dataset("json", data_files=[f"{str(iiit_dir.absolute())}/sample_{i}.json" for i in range(1000)], split="train") indic_tts_male = load_dataset("json", data_files=[f"{str(indic_tts_male_dir.absolute())}/sample_{i}.json" for i in range(5649)], split="train") indic_tts_female = load_dataset("json", data_files=[f"{str(indic_tts_female_dir.absolute())}/sample_{i}.json" for i in range(2950)], split="train") msc_reviewed = load_dataset("json", data_files=[f"{str(msc_reviewed_dir.absolute())}/sample_{i}.json" for i in range(1541)], split="train") # Create test split as 20%, set random seed as well. test_size = 0.2 random_seed=1 openslr_male_splits = openslr_male.train_test_split(test_size=test_size, seed=random_seed) openslr_female_splits = openslr_female.train_test_split(test_size=test_size, seed=random_seed) iiit_splits = iiit.train_test_split(test_size=test_size, seed=random_seed) indic_tts_male_splits = indic_tts_male.train_test_split(test_size=test_size, seed=random_seed) indic_tts_female_splits = indic_tts_female.train_test_split(test_size=test_size, seed=random_seed) msc_reviewed_splits = msc_reviewed.train_test_split(test_size=test_size, seed=random_seed) # Get combined test dataset split_list = [openslr_male_splits, openslr_female_splits, indic_tts_male_splits, indic_tts_female_splits, msc_reviewed_splits, iiit_splits] test_dataset = datasets.concatenate_datasets([split['test'] for split in split_list) wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gvs/wav2vec2-large-xlsr-malayalam") model = Wav2Vec2ForCTC.from_pretrained("gvs/wav2vec2-large-xlsr-malayalam") model.to("cuda") resamplers = { 48000: torchaudio.transforms.Resample(48_000, 16_000), } chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\‘\\\\”\\\\�Utrnle\\\\_]' unicode_ignore_regex = r'[\\\\u200e]' # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]) batch["sentence"] = re.sub(unicode_ignore_regex, '', batch["sentence"]) speech_array, sampling_rate = torchaudio.load(batch["path"]) # Resample if its not in 16kHz if sampling_rate != 16000: batch["speech"] = resamplers[sampling_rate](speech_array).squeeze().numpy() else: batch["speech"] = speech_array.squeeze().numpy() # If more than one dimension is present, pick first one if batch["speech"].ndim > 1: batch["speech"] = batch["speech"][0] return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result (WER)**: 28.43 % ## Training A combined dataset was created using [Indic TTS Malayalam Speech Corpus (via Kaggle)](https://www.kaggle.com/kavyamanohar/indic-tts-malayalam-speech-corpus), [Openslr Malayalam Speech Corpus](http://openslr.org/63/), [SMC Malayalam Speech Corpus](https://blog.smc.org.in/malayalam-speech-corpus/) and [IIIT-H Indic Speech Databases](http://speech.iiit.ac.in/index.php/research-svl/69.html). The datasets were downloaded and was converted to HF Dataset format using [this notebook](https://github.com/gauthamsuresh09/wav2vec2-large-xlsr-53-malayalam/blob/main/make_hf_dataset.ipynb) The notebook used for training and evaluation can be found [here](https://github.com/gauthamsuresh09/wav2vec2-large-xlsr-53-malayalam/blob/main/fine-tune-xlsr-wav2vec2-on-malayalam-asr-with-transformers_v2.ipynb)
{"language": "ml", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["Indic TTS Malayalam Speech Corpus", "Openslr Malayalam Speech Corpus", "SMC Malayalam Speech Corpus", "IIIT-H Indic Speech Databases"], "metrics": ["wer"], "model-index": [{"name": "Malayalam XLSR Wav2Vec2 Large 53", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Test split of combined dataset using all datasets mentioned above", "type": "custom", "args": "ml"}, "metrics": [{"type": "wer", "value": 28.43, "name": "Test WER"}]}]}]}
automatic-speech-recognition
gvs/wav2vec2-large-xlsr-malayalam
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ml", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ml" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ml #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
# Wav2Vec2-Large-XLSR-53-ml Fine-tuned facebook/wav2vec2-large-xlsr-53 on ml (Malayalam) using the Indic TTS Malayalam Speech Corpus (via Kaggle), Openslr Malayalam Speech Corpus, SMC Malayalam Speech Corpus and IIIT-H Indic Speech Databases. The notebooks used to train model are available here. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the test data of combined custom dataset. For more details on dataset preparation, check the notebooks mentioned at the end of this file. Test Result (WER): 28.43 % ## Training A combined dataset was created using Indic TTS Malayalam Speech Corpus (via Kaggle), Openslr Malayalam Speech Corpus, SMC Malayalam Speech Corpus and IIIT-H Indic Speech Databases. The datasets were downloaded and was converted to HF Dataset format using this notebook The notebook used for training and evaluation can be found here
[ "# Wav2Vec2-Large-XLSR-53-ml\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on ml (Malayalam) using the Indic TTS Malayalam Speech Corpus (via Kaggle), Openslr Malayalam Speech Corpus, SMC Malayalam Speech Corpus and IIIT-H Indic Speech Databases. The notebooks used to train model are available here. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the test data of combined custom dataset. For more details on dataset preparation, check the notebooks mentioned at the end of this file.\n\n\n\n\nTest Result (WER): 28.43 %", "## Training\n\nA combined dataset was created using Indic TTS Malayalam Speech Corpus (via Kaggle), Openslr Malayalam Speech Corpus, SMC Malayalam Speech Corpus and IIIT-H Indic Speech Databases. The datasets were downloaded and was converted to HF Dataset format using this notebook\n\nThe notebook used for training and evaluation can be found here" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ml #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "# Wav2Vec2-Large-XLSR-53-ml\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on ml (Malayalam) using the Indic TTS Malayalam Speech Corpus (via Kaggle), Openslr Malayalam Speech Corpus, SMC Malayalam Speech Corpus and IIIT-H Indic Speech Databases. The notebooks used to train model are available here. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the test data of combined custom dataset. For more details on dataset preparation, check the notebooks mentioned at the end of this file.\n\n\n\n\nTest Result (WER): 28.43 %", "## Training\n\nA combined dataset was created using Indic TTS Malayalam Speech Corpus (via Kaggle), Openslr Malayalam Speech Corpus, SMC Malayalam Speech Corpus and IIIT-H Indic Speech Databases. The datasets were downloaded and was converted to HF Dataset format using this notebook\n\nThe notebook used for training and evaluation can be found here" ]
[ 75, 109, 20, 51, 76 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ml #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n# Wav2Vec2-Large-XLSR-53-ml\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on ml (Malayalam) using the Indic TTS Malayalam Speech Corpus (via Kaggle), Openslr Malayalam Speech Corpus, SMC Malayalam Speech Corpus and IIIT-H Indic Speech Databases. The notebooks used to train model are available here. When using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the test data of combined custom dataset. For more details on dataset preparation, check the notebooks mentioned at the end of this file.\n\n\n\n\nTest Result (WER): 28.43 %## Training\n\nA combined dataset was created using Indic TTS Malayalam Speech Corpus (via Kaggle), Openslr Malayalam Speech Corpus, SMC Malayalam Speech Corpus and IIIT-H Indic Speech Databases. The datasets were downloaded and was converted to HF Dataset format using this notebook\n\nThe notebook used for training and evaluation can be found here" ]
[ -0.08700348436832428, 0.02982300892472267, -0.002625488443300128, -0.0037136028986424208, 0.032788120210170746, -0.04209225997328758, 0.07532636821269989, 0.11910738795995712, -0.06756202131509781, -0.00544002978131175, -0.06354127824306488, 0.00902879610657692, 0.09390896558761597, 0.04275614768266678, 0.02740916982293129, -0.19213469326496124, -0.012441476806998253, -0.07992328703403473, -0.08965148776769638, 0.08819931000471115, 0.10857617110013962, -0.03766850009560585, 0.03878602012991905, 0.054186150431632996, 0.011672050692141056, 0.032956887036561966, -0.030982017517089844, -0.09897726029157639, 0.053948041051626205, 0.004599550273269415, 0.026436343789100647, 0.028395455330610275, 0.07391048967838287, -0.17734631896018982, 0.031864043325185776, 0.010960964486002922, 0.08504799753427505, -0.018147600814700127, 0.08761197328567505, 0.04875178635120392, 0.15982593595981598, 0.011251748539507389, 0.02802610956132412, 0.05050598829984665, -0.06262264400720596, -0.1459839642047882, -0.1275438517332077, -0.055413901805877686, 0.08221075683832169, 0.14199118316173553, -0.06835100054740906, 0.07093604654073715, 0.004272262565791607, 0.09183776378631592, 0.04998556524515152, -0.12779894471168518, 0.006836378946900368, -0.018864676356315613, 0.09878639131784439, 0.03579992800951004, -0.025906646624207497, 0.03359196335077286, -0.034564293920993805, 0.0261186882853508, 0.038985300809144974, -0.07545342296361923, -0.2270829975605011, -0.035830214619636536, -0.08366210013628006, 0.0279970932751894, 0.26715087890625, -0.07409600168466568, -0.06748456507921219, -0.12868785858154297, 0.03319106996059418, 0.035936493426561356, 0.01897277869284153, -0.015675654634833336, -0.0054877870716154575, 0.01610417850315571, 0.07473689317703247, -0.06273743510246277, -0.13636484742164612, 0.006205672398209572, 0.008435224182903767, 0.029893958941102028, 0.05187716335058212, 0.0037664538249373436, -0.10067181289196014, -0.00021783699048683047, -0.014552346430718899, -0.07921943813562393, -0.05413118749856949, -0.0028342443984001875, -0.08103964477777481, -0.005171472672373056, -0.060834478586912155, -0.3048993945121765, 0.0093474006280303, -0.017551599070429802, -0.031210478395223618, 0.0376015231013298, -0.024258360266685486, -0.042855508625507355, 0.10108011215925217, 0.12661126255989075, -0.09049507975578308, 0.05647611245512962, 0.06805118918418884, -0.028604310005903244, 0.05448851361870766, 0.0042404416017234325, 0.054299246519804, 0.04889582470059395, -0.03718438744544983, 0.08739136904478073, -0.020029494538903236, 0.05707672983407974, 0.001488441601395607, -0.01972869224846363, 0.09464423358440399, -0.1563793569803238, -0.04303531348705292, 0.001211519818753004, -0.03953177481889725, -0.09190436452627182, 0.08709157258272171, 0.053031615912914276, -0.09022502601146698, -0.024815736338496208, 0.020890504121780396, 0.021366069093346596, -0.02336302399635315, -0.106276735663414, 0.01334631908684969, -0.025091221556067467, -0.039261508733034134, -0.09146638959646225, -0.1562897264957428, -0.06244857981801033, -0.036553382873535156, -0.05016447603702545, 0.013759268447756767, 0.022047551348805428, 0.038410648703575134, -0.013574494048953056, -0.02959766611456871, -0.006598883308470249, -0.020194102078676224, 0.02342098206281662, 0.02138112485408783, 0.02605564147233963, 0.09370996803045273, 0.0725707858800888, -0.07399839162826538, -0.003288538195192814, 0.0387004129588604, 0.13770729303359985, -0.10126205533742905, -0.02117013931274414, -0.08917048573493958, -0.0019303899025544524, -0.09278598427772522, 0.021048760041594505, 0.05078917369246483, 0.12124241143465042, -0.20198634266853333, -0.03945838287472725, 0.08989628404378891, -0.08104562759399414, -0.11745549738407135, 0.10579780489206314, 0.02349555492401123, 0.1002989187836647, 0.006556146778166294, 0.1430985927581787, 0.08993445336818695, -0.16721147298812866, -0.09398042410612106, 0.011368741281330585, 0.05316312238574028, 0.06089675426483154, 0.10901359468698502, -0.08726735413074493, 0.13236193358898163, 0.021608158946037292, 0.05539030209183693, 0.03350840508937836, 0.006306102499365807, -0.0421428456902504, 0.01906205154955387, -0.04003763943910599, -0.07326377928256989, -0.0255281962454319, 0.05757796764373779, 0.011931766755878925, -0.011810272932052612, 0.026286570355296135, 0.1250741332769394, -0.04735532030463219, 0.06304097920656204, -0.13815848529338837, 0.04940151423215866, -0.08014682680368423, 0.008162819780409336, -0.18609501421451569, 0.037382133305072784, 0.070365309715271, -0.10523092746734619, 0.13228869438171387, -0.06282626837491989, 0.00009033912647282705, -0.0016316123073920608, -0.005593067035079002, 0.0377199687063694, 0.06406664103269577, 0.03004286251962185, -0.058683767914772034, -0.08470579236745834, 0.017195671796798706, -0.03707383573055267, 0.20717470347881317, -0.05452825501561165, 0.017048059031367302, 0.13612604141235352, 0.07630607485771179, 0.04345531761646271, -0.0694398581981659, 0.16607291996479034, 0.07884760200977325, 0.049981795251369476, -0.02108345925807953, -0.014522256329655647, 0.05581453815102577, 0.02551180310547352, 0.1544155329465866, -0.13445621728897095, -0.16865555942058563, 0.022977681830525398, 0.03539116680622101, -0.01775757037103176, 0.08597298711538315, 0.0010262721916660666, -0.06312628090381622, -0.08293475210666656, 0.00969728548079729, 0.2228279858827591, 0.03522595390677452, 0.1461288332939148, -0.046762458980083466, -0.09003965556621552, -0.014436782337725163, -0.09941629320383072, -0.03684885799884796, 0.027023660019040108, 0.06708824634552002, -0.07535815238952637, 0.01196789275854826, -0.07543908059597015, 0.0292372927069664, 0.13124211132526398, -0.023471474647521973, -0.0717189759016037, -0.0379084013402462, -0.07578904181718826, -0.014658719301223755, 0.033551640808582306, -0.11559559404850006, -0.014277150854468346, 0.033751215785741806, 0.023250699043273926, 0.104181207716465, -0.031774237751960754, 0.06308338046073914, 0.06033613532781601, -0.021929901093244553, -0.065217025578022, 0.15337985754013062, -0.0227280892431736, 0.028382815420627594, -0.08092132210731506, 0.16353820264339447, -0.09893288463354111, -0.06514118611812592, -0.17863841354846954, 0.12369537353515625, -0.1555715948343277, -0.3046509325504303, -0.1742197722196579, -0.0558873675763607, 0.001132840639911592, -0.03421839699149132, 0.07270576059818268, -0.11255484074354172, -0.07727308571338654, -0.11652161926031113, 0.09007800370454788, 0.017245378345251083, -0.031978506594896317, -0.07553768903017044, -0.02403407357633114, 0.040264908224344254, -0.14947809278964996, 0.028703486546874046, 0.023982645943760872, -0.01868472620844841, 0.030562056228518486, 0.02320501022040844, 0.01797502487897873, 0.09129535406827927, 0.0019056296441704035, -0.020745201036334038, -0.005967370234429836, 0.15872779488563538, -0.06991259008646011, 0.07706344127655029, 0.1595117449760437, -0.014885546639561653, -0.026931915432214737, 0.09455973654985428, -0.00504211476072669, -0.039054498076438904, 0.043122731149196625, 0.004735853057354689, 0.0021808738820254803, -0.3098911941051483, -0.10572444647550583, -0.08368774503469467, -0.051391132175922394, -0.07883984595537186, 0.007474271580576897, 0.004454439971596003, -0.011751385405659676, -0.006407495588064194, 0.03146596625447273, 0.055062152445316315, -0.014204369857907295, 0.20776419341564178, -0.01165776140987873, 0.021945316344499588, -0.08841343969106674, 0.0590207464993, 0.0726192519068718, -0.027298083528876305, 0.09498239308595657, -0.052834752947092056, 0.14234428107738495, 0.10427934676408768, 0.06792067736387253, 0.04345090687274933, -0.0010373989352956414, -0.09629648178815842, 0.05256595090031624, 0.04715004935860634, -0.0643063485622406, -0.04197525978088379, 0.04530525952577591, 0.10543263703584671, -0.13713175058364868, 0.029520368203520775, 0.006880277767777443, 0.005754814948886633, 0.20352640748023987, 0.07841084152460098, -0.06365304440259933, -0.0633944422006607, 0.019196420907974243, -0.04624250903725624, -0.04187832027673721, -0.02806287631392479, 0.05886081978678703, -0.09547488391399384, 0.08186265081167221, -0.022538207471370697, 0.06100274249911308, -0.045134011656045914, -0.05145144462585449, 0.03520891070365906, -0.021357765421271324, -0.017491528764367104, 0.04333289712667465, -0.07150085270404816, 0.14205431938171387, 0.04998104274272919, 0.05521838739514351, 0.001362086390145123, 0.05035693943500519, 0.05351030454039574, 0.0033874050714075565, 0.058359552174806595, 0.018269499763846397, -0.0629139319062233, -0.12737800180912018, -0.11976634711027145, 0.04019039496779442, 0.04100409150123596, 0.016051433980464935, 0.10156755894422531, -0.021786915138363838, -0.010677103884518147, -0.03659113496541977, -0.018166586756706238, -0.17491374909877777, -0.11641399562358856, 0.10397490113973618, 0.0072535015642642975, -0.020618731155991554, -0.0836762860417366, -0.06251825392246246, -0.10197761654853821, 0.11943071335554123, -0.12972714006900787, -0.08271339535713196, -0.07463528215885162, 0.004665200132876635, 0.10945140570402145, -0.07564648240804672, -0.008328523486852646, 0.020681889727711678, 0.07885974645614624, 0.012417351827025414, -0.020391277968883514, -0.004433296155184507, -0.05280033126473427, -0.05177420377731323, -0.04027854651212692, 0.10411418229341507, 0.03185729309916496, 0.033529460430145264, -0.001458476297557354, 0.07239805907011032, 0.08630305528640747, -0.006717806216329336, -0.0429370291531086, 0.14167767763137817, -0.04445425048470497, 0.13151200115680695, -0.11005081236362457, -0.15720629692077637, -0.10885581374168396, -0.170156329870224, 0.07944061607122421, 0.056335482746362686, -0.0016502623911947012, 0.1762998104095459, 0.1564197838306427, -0.1591041088104248, -0.18550466001033783, -0.050312601029872894, 0.02787216380238533, 0.07900601625442505, 0.05799853801727295, -0.20169326663017273, 0.040054142475128174, 0.013370884582400322, -0.02659696713089943, -0.18287596106529236, -0.18713968992233276, -0.18857522308826447, 0.12733782827854156, -0.015618069097399712, -0.10884340107440948, -0.07527720183134079, -0.07933095097541809, -0.008796120062470436, 0.013329273089766502, -0.059884533286094666, -0.05077960342168808, 0.06904558837413788, -0.002172368811443448, -0.03508023917675018, 0.01579146273434162, 0.003388342447578907, 0.08615320920944214, -0.013964321464300156, -0.021662717685103416, -0.03918948397040367, 0.07366461306810379, 0.026172934100031853, 0.012939286418259144, 0.20580145716667175, 0.06578637659549713, 0.041217170655727386, -0.18289600312709808, -0.04538904130458832, -0.029490578919649124, 0.02698490396142006, 0.013928874395787716, -0.014471040107309818, -0.0430963858962059, 0.04673553258180618, 0.02558761276304722, -0.060044609010219574, -0.09707659482955933, -0.0972626581788063, -0.01741337962448597, 0.13277751207351685, 0.20639650523662567, 0.10882239043712616, 0.02114805206656456, -0.026556776836514473, -0.01158243790268898, -0.03199119120836258, 0.019772885367274284, -0.04067261889576912, 0.02784045599400997, 0.037068046629428864, 0.15700234472751617, -0.08948934078216553, -0.12736551463603973, 0.08824925869703293, 0.07565705478191376, 0.036317840218544006, -0.06741228699684143, -0.03275540471076965, 0.021850280463695526, -0.06121791899204254, -0.05266148969531059, 0.15227966010570526, -0.051937758922576904, -0.025022994726896286, -0.033010076731443405, 0.08435995131731033, -0.024573687463998795, 0.19799256324768066, -0.006374882534146309, 0.03149674832820892, -0.04946534335613251, 0.12274932861328125, 0.13158993422985077, -0.06175083667039871, 0.026671260595321655, 0.1281265765428543, -0.07861717790365219, -0.05549946799874306, -0.059499721974134445, -0.03126171603798866, 0.10429783910512924, -0.043628618121147156, -0.04172874614596367, -0.07416435331106186, -0.014970899559557438, 0.16542911529541016, 0.003326453035697341, 0.06339219957590103, -0.09237362444400787, -0.03689960762858391, -0.07237561047077179, 0.12034593522548676, 0.10231146961450577, -0.024407019838690758, -0.04562690109014511, 0.04303590953350067, 0.04901377484202385, 0.034691326320171356, -0.03316962718963623, -0.08368764072656631, 0.054495275020599365, -0.00016305925964843482, -0.10717093199491501, 0.013157092966139317, -0.08126208931207657, -0.03149452432990074, -0.004655496682971716, -0.03646698221564293, -0.027719540521502495, 0.041343893855810165, -0.006846731994301081, 0.008741036057472229, -0.09453801065683365, 0.13276639580726624, -0.12456993013620377, -0.03558061644434929, 0.05852816626429558, -0.06358171254396439, 0.06549019366502762, 0.0801514983177185, -0.0699390172958374, 0.06310758739709854, 0.02237221784889698, -0.03413194790482521, 0.0071598561480641365, 0.11553847789764404, 0.0001023405566229485, -0.24970118701457977, -0.0015817907406017184, 0.03701260685920715, -0.000571770709939301, 0.017404967918992043, 0.1615772545337677, -0.03837546333670616, -0.021283581852912903, -0.09553950279951096, 0.05465787276625633, -0.06597553193569183, 0.04170186445116997, 0.013894667848944664, 0.11138834804296494, 0.12218046188354492, -0.09739009290933609, 0.05588836222887039, -0.11208731681108475, 0.0113527812063694, -0.043523456901311874, -0.01812361180782318, -0.09004851430654526, -0.015564589761197567, 0.09528868645429611, -0.008658633567392826, 0.17342552542686462, 0.07099111378192902, -0.06296804547309875, 0.06741946935653687, -0.06819874793291092, 0.029686467722058296, 0.00581359351053834, 0.037377096712589264, 0.04232127591967583, 0.015316162258386612, -0.019847607240080833, -0.04530271142721176, -0.06304316222667694, 0.02122526429593563, 0.019529379904270172, 0.10687749832868576, 0.15023210644721985, 0.03715053200721741, 0.08266705274581909, -0.10362471640110016, 0.019306346774101257, -0.08154149353504181, -0.17348933219909668, 0.0713992565870285, -0.018978333100676537, 0.024067362770438194, 0.14775998890399933, -0.17630106210708618, 0.09729843586683273, -0.05516725033521652, -0.0994592010974884, -0.0966542512178421, -0.07087984681129456, -0.04660726338624954, 0.03191150724887848, -0.01948990486562252, -0.11320403218269348, 0.024694668129086494, -0.019256556406617165, 0.0647713840007782, 0.013665154576301575, 0.2161807417869568, -0.14520832896232605, -0.10367399454116821, 0.028785213828086853, -0.04454297199845314, -0.0035939044319093227, -0.017999326810240746, 0.06725871562957764, 0.05875244364142418, 0.051835257560014725, 0.05672876909375191, 0.05000532418489456, -0.04628969356417656, 0.035661667585372925, -0.042303066700696945, -0.07150649279356003, -0.0019724334124475718, -0.028590286150574684, 0.02909572795033455, 0.15376576781272888, 0.13306298851966858, -0.01147859450429678, 0.03319532796740532, 0.10915487259626389, -0.013567094691097736, -0.08457986265420914, -0.15937846899032593, 0.06506223231554031, 0.039886076003313065, -0.05150289833545685, 0.08102015405893326, -0.0603233203291893, -0.03149819001555443, 0.18785950541496277, 0.22075989842414856, 0.02340056002140045, 0.03141140937805176, 0.020114146173000336, 0.015623068436980247, -0.0993410050868988, 0.09505605697631836, 0.04929349571466446, 0.21760059893131256, -0.01670313999056816, 0.02318849414587021, -0.06804441660642624, -0.07483602315187454, -0.03043542616069317, 0.05175338312983513, -0.024490371346473694, -0.04187567159533501, 0.05148300901055336, 0.1549033671617508, -0.0189229603856802, -0.2528330683708191, -0.15053313970565796, -0.015543927438557148, -0.1097327247262001, -0.007486497983336449, -0.09602274745702744, 0.07971472293138504, -0.0012615154264494777, 0.026842614635825157, 0.01732882857322693, 0.18576452136039734, 0.05916730314493179, -0.003835865994915366, -0.019780050963163376, 0.15502405166625977, -0.11691159009933472, 0.02023974061012268, 0.009712392464280128, 0.16439445316791534, 0.008466125465929508, 0.04079193249344826, -0.04591810703277588, 0.13347390294075012, 0.02064603380858898, 0.03621380776166916, 0.01731036603450775, 0.186796635389328, -0.0018643747316673398, 0.15517666935920715, 0.04717985913157463, 0.025994228199124336, 0.12462574988603592, -0.0747942253947258, 0.007202465087175369, -0.050112172961235046, 0.07445883750915527, -0.05976799502968788, 0.10996617376804352, 0.13628408312797546, -0.048515647649765015, -0.009827716276049614, -0.006562778726220131, -0.03299679607152939, -0.000235532337683253, 0.012470266781747341, -0.014870459213852882, -0.2058073878288269, 0.0200781412422657, -0.19883465766906738, 0.06378478556871414, -0.2428779900074005, -0.06956972181797028, 0.03809627145528793, -0.07554884254932404, 0.0010684676235541701, 0.14863508939743042, -0.000353664334397763, 0.01932438462972641, -0.020217278972268105, 0.041132401674985886, 0.06068640947341919, 0.0509205088019371, -0.19017459452152252, -0.07538259774446487 ]
null
null
transformers
"5050_base_test"
{}
null
gwkim22/5050_b_disc
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #electra #pretraining #endpoints_compatible #region-us
"5050_base_test"
[]
[ "TAGS\n#transformers #pytorch #electra #pretraining #endpoints_compatible #region-us \n" ]
[ 27 ]
[ "passage: TAGS\n#transformers #pytorch #electra #pretraining #endpoints_compatible #region-us \n" ]
[ -0.0756971538066864, 0.036188457161188126, -0.009415136650204659, -0.037658292800188065, 0.16592887043952942, 0.026989849284291267, 0.0005112319486215711, 0.04949172958731651, 0.06173074617981911, 0.007027134299278259, 0.15597198903560638, 0.2036423534154892, -0.03772604465484619, 0.04128161817789078, -0.05990905314683914, -0.2700495421886444, 0.08478225767612457, 0.09229439496994019, -0.08212776482105255, 0.11126063019037247, 0.0659293383359909, -0.11804993450641632, 0.048492807894945145, -0.01743023656308651, -0.11184567958116531, 0.03024609200656414, -0.025596311315894127, -0.09465152770280838, 0.13739638030529022, 0.028396213427186012, 0.19871650636196136, 0.01611001044511795, -0.08827465027570724, -0.18486835062503815, 0.03562929108738899, -0.0016426877118647099, -0.0702807828783989, 0.023731989786028862, 0.01123916357755661, -0.08364912867546082, 0.09210389852523804, 0.08747247606515884, 0.021376805379986763, 0.02932315692305565, -0.2099020928144455, -0.13468767702579498, -0.039248500019311905, 0.01525816973298788, 0.06765861064195633, 0.09177635610103607, 0.005332896485924721, 0.17689242959022522, -0.15360596776008606, 0.06535953283309937, 0.1188480332493782, -0.26857590675354004, 0.0021048865746706724, 0.03585214912891388, 0.1114022508263588, 0.04639068990945816, 0.01161353848874569, 0.02428305335342884, 0.031266141682863235, 0.02244303934276104, -0.056230735033750534, -0.06022847816348076, -0.03299247846007347, 0.07772453874349594, -0.13350637257099152, -0.10972550511360168, 0.2655334770679474, -0.027669498696923256, 0.05720799043774605, 0.043133530765771866, -0.09040695428848267, -0.09562412649393082, 0.02024168148636818, -0.004240364767611027, -0.033286161720752716, 0.06455978006124496, 0.06604234874248505, -0.004308104515075684, -0.12907330691814423, 0.03592544049024582, -0.19463478028774261, 0.3052941560745239, 0.03892635554075241, 0.06966620683670044, -0.1999710500240326, 0.06955006718635559, 0.01889742724597454, -0.0698351338505745, 0.011341177858412266, -0.0961623340845108, 0.010919119231402874, -0.016033027321100235, -0.08807231485843658, 0.02853204682469368, 0.06206042319536209, 0.19004260003566742, 0.036395587027072906, 0.030527135357260704, 0.06724114716053009, 0.11739540100097656, 0.056359536945819855, 0.07213728129863739, -0.007952061481773853, 0.05149845406413078, 0.006435554474592209, -0.11710356175899506, 0.013328306376934052, -0.03376786783337593, -0.09470032900571823, -0.06236766278743744, 0.01434097159653902, 0.12428028881549835, 0.009008275344967842, 0.0005504412110894918, -0.10316439718008041, -0.005405919160693884, 0.017403488978743553, -0.04461348429322243, -0.044085390865802765, -0.015382049605250359, -0.0031161552760750055, 0.15159063041210175, -0.013689191080629826, 0.01564869098365307, -0.048104431480169296, 0.09228809922933578, -0.08293066918849945, -0.022958116605877876, -0.05138938128948212, -0.02429366111755371, 0.05184052139520645, -0.16321037709712982, 0.1008109301328659, -0.15374122560024261, -0.09526503831148148, 0.008289664052426815, 0.06384812295436859, 0.029649510979652405, -0.014904729090631008, -0.009294605813920498, 0.0003518476733006537, -0.04622277989983559, -0.06142871454358101, -0.0850178524851799, -0.06799085438251495, 0.10634548217058182, 0.02235661819577217, 0.0408979170024395, -0.0838146060705185, 0.06476494669914246, -0.09400399774312973, 0.021791664883494377, -0.10231096297502518, -0.016176149249076843, -0.009186405688524246, 0.18150292336940765, -0.001088918186724186, -0.06731697171926498, -0.11602970957756042, 0.06578758358955383, -0.032009515911340714, 0.1739562451839447, -0.02662174589931965, -0.10742105543613434, 0.22346611320972443, -0.14008232951164246, -0.16819781064987183, 0.04958919435739517, -0.0029770040418952703, 0.005376794841140509, 0.06417956948280334, 0.12192060798406601, 0.023475611582398415, -0.10588141530752182, 0.07336920499801636, 0.06817415356636047, -0.1589258909225464, -0.15867944061756134, 0.03135969489812851, -0.020896214991807938, -0.08641835302114487, 0.018182609230279922, 0.017622308805584908, 0.09888523072004318, -0.09688249975442886, -0.020380118861794472, -0.007825249806046486, -0.017896555364131927, 0.06301192939281464, 0.07683245092630386, 0.04862435534596443, -0.07004353404045105, -0.02688227966427803, 0.02235882170498371, 0.029675068333745003, 0.023235086351633072, 0.03497021645307541, -0.0967378318309784, 0.0837063193321228, -0.05343646928668022, -0.01674649678170681, -0.22222042083740234, -0.10010827332735062, -0.03666314110159874, 0.06390219926834106, -0.025937577709555626, 0.2182159572839737, 0.06955723464488983, -0.07156158238649368, 0.024125874042510986, -0.05104024335741997, 0.06662891805171967, 0.0014548590406775475, -0.011962002143263817, -0.037856586277484894, 0.007546532899141312, -0.08246418833732605, -0.017504433169960976, -0.08097764104604721, 0.019701046869158745, 0.07482516020536423, 0.11983374506235123, -0.0007900566561147571, 0.04068903625011444, -0.012368736788630486, 0.06597230583429337, -0.034265365451574326, 0.014228359796106815, 0.09415315836668015, 0.01284877397119999, -0.06274543702602386, 0.06442776322364807, -0.13525815308094025, 0.32106640934944153, 0.17269548773765564, -0.28709879517555237, 0.010613495483994484, -0.009087181650102139, -0.041513703763484955, 0.016853556036949158, 0.0764055922627449, 0.015129716135561466, 0.11040361225605011, 0.03547031059861183, 0.11444143950939178, -0.02137548290193081, -0.026674607768654823, 0.003667747601866722, -0.05092567950487137, -0.03895152732729912, 0.0906050056219101, 0.1282183676958084, -0.1456066370010376, 0.15240059792995453, 0.19121237099170685, 0.010538025759160519, 0.11430074274539948, -0.058953601866960526, -0.014561807736754417, 0.04266371205449104, 0.019436439499258995, -0.03975715860724449, 0.02377229742705822, -0.25008708238601685, -0.028014522045850754, 0.061497606337070465, 0.005723595153540373, 0.09221754968166351, -0.15758000314235687, -0.07912229746580124, 0.03445560485124588, 0.03246993198990822, -0.04604678973555565, 0.09388037770986557, 0.017711903899908066, 0.06453678756952286, 0.013622337952256203, -0.05464360490441322, 0.10824865102767944, 0.0074797761626541615, -0.05102653056383133, 0.18016605079174042, -0.1150578185915947, -0.271793931722641, -0.10967765748500824, -0.04825923219323158, 0.06604378670454025, 0.019087273627519608, 0.07990498840808868, -0.0808032676577568, -0.0432458333671093, 0.09602087736129761, 0.061661988496780396, -0.16193823516368866, 0.010757634416222572, -0.006539980880916119, 0.06494733691215515, -0.10912805050611496, -0.0786307081580162, -0.04736020416021347, -0.06531484425067902, -0.03092031553387642, 0.11423152685165405, -0.09888184815645218, 0.07640188187360764, 0.13673429191112518, 0.04753933474421501, 0.06949514150619507, 0.0013784163165837526, 0.17524175345897675, -0.10115545988082886, -0.05972803384065628, 0.2049238085746765, -0.04518980532884598, 0.08214316517114639, 0.12418494373559952, 0.014020196162164211, -0.0878622978925705, 0.0032231316436082125, -0.07654650509357452, -0.10705605149269104, -0.23312532901763916, -0.11995543539524078, -0.13074687123298645, -0.018622469156980515, 0.02303459495306015, 0.05288185551762581, 0.07611245661973953, 0.09667252749204636, 0.023434516042470932, -0.1252344399690628, -0.04741457477211952, 0.04306744039058685, 0.2214028537273407, -0.012363872490823269, 0.07154741138219833, -0.08374137431383133, -0.09404508769512177, 0.056985776871442795, 0.039763204753398895, 0.2282608151435852, 0.12049819529056549, 0.027918696403503418, 0.07955649495124817, 0.13374394178390503, 0.15770773589611053, 0.12970823049545288, 0.019044430926442146, -0.046607282012701035, -0.015995441004633904, 0.034498997032642365, -0.09550739079713821, 0.02452228032052517, 0.11229217797517776, -0.12750400602817535, -0.077623151242733, -0.18612907826900482, 0.03149789944291115, 0.10223551839590073, 0.034785304218530655, -0.2103472650051117, -0.017381230369210243, 0.05634630471467972, -0.023988092318177223, -0.07721945643424988, 0.08704003691673279, -0.03771854564547539, -0.1258421540260315, 0.07177536934614182, -0.046510249376297, 0.09233162552118301, -0.04765688255429268, 0.06964170187711716, -0.05333482101559639, -0.09864311665296555, 0.05728254094719887, 0.08104672282934189, -0.2397114634513855, 0.2905753552913666, -0.01859200932085514, -0.040343593806028366, -0.055404093116521835, -0.028321675956249237, -0.01912134699523449, 0.16959726810455322, 0.10056858509778976, 0.016174672171473503, -0.1252007931470871, -0.1028304472565651, 0.0760577842593193, 0.04050489515066147, 0.10577133297920227, -0.05015445873141289, -0.022375648841261864, -0.0067756264470517635, 0.022014738991856575, -0.02700287662446499, -0.040073901414871216, 0.02861475571990013, -0.1410909742116928, 0.0409371517598629, 0.003155985614284873, 0.11101032048463821, -0.006117458455264568, -0.012503466568887234, -0.029729031026363373, 0.0983576774597168, -0.13571307063102722, -0.07317584753036499, -0.08494191616773605, -0.1183008998632431, 0.12166173756122589, -0.099920853972435, 0.10231272131204605, -0.0794784277677536, -0.03440702706575394, -0.08046305924654007, -0.130115807056427, 0.13587160408496857, -0.12541091442108154, 0.011890735477209091, -0.026201345026493073, 0.1698901504278183, 0.009158252738416195, -0.004318047780543566, -0.013212090358138084, 0.03558473661541939, -0.11779137700796127, -0.07495435327291489, 0.021309401839971542, -0.02231709286570549, 0.08620452880859375, 0.06740370392799377, -0.016238674521446228, 0.06712200492620468, 0.03289594128727913, -0.020050106570124626, 0.22343555092811584, 0.22011502087116241, -0.019101478159427643, 0.09279607981443405, 0.1806296855211258, -0.03300826624035835, -0.25283148884773254, -0.07059445232152939, -0.1305062472820282, -0.024195661768317223, -0.014072945341467857, -0.21452103555202484, 0.08213289827108383, 0.08126692473888397, -0.021842190995812416, 0.13971559703350067, -0.2648833990097046, -0.024427637457847595, 0.16540801525115967, -0.0027161419857293367, 0.4706745147705078, -0.12458478659391403, -0.05730745196342468, 0.025525521486997604, -0.20954492688179016, 0.10183122754096985, 0.062004204839468, 0.05383741855621338, -0.008521439507603645, 0.04422667622566223, 0.0246762465685606, -0.08058620244264603, 0.15657329559326172, 0.02817770279943943, 0.02563435211777687, -0.0961780995130539, -0.10026950389146805, 0.01725863851606846, -0.007735588122159243, -0.012727128341794014, 0.06994222104549408, 0.016107331961393356, -0.20630186796188354, -0.03130153566598892, -0.10572965443134308, 0.07918786257505417, 0.04753580316901207, -0.034337401390075684, -0.01384770218282938, -0.01825999841094017, -0.02678072080016136, 0.03486849367618561, 0.2824019193649292, -0.03131531551480293, 0.15590380132198334, 0.01465247105807066, 0.13802167773246765, -0.16354699432849884, -0.05957735702395439, -0.07483116537332535, -0.024123549461364746, 0.08845099806785583, -0.03023248352110386, 0.02761121280491352, 0.1609024554491043, -0.0233097355812788, 0.010213285684585571, 0.10653211176395416, 0.0033591582905501127, 0.008985853753983974, 0.12964291870594025, -0.19808430969715118, -0.04954221472144127, -0.02730712667107582, 0.05809199810028076, 0.09266384690999985, 0.12577274441719055, 0.09778114408254623, 0.058137062937021255, -0.029848599806427956, -0.029446985572576523, -0.030232803896069527, -0.05581061169505119, 0.020947134122252464, 0.08045008778572083, 0.04850328341126442, -0.10584069788455963, 0.057395149022340775, 0.00015370355686172843, -0.28082141280174255, -0.015278516337275505, 0.10573777556419373, -0.13181495666503906, -0.11628200113773346, -0.0865611657500267, 0.08121321350336075, -0.2130194902420044, -0.077885702252388, -0.04592939466238022, -0.10568059235811234, 0.09312018752098083, 0.26971736550331116, 0.10158795863389969, 0.07701178640127182, 0.0004125468258280307, 0.011747902259230614, -0.008425997570157051, -0.0877641811966896, 0.019449811428785324, -0.006162303499877453, -0.10682818293571472, -0.00003637229383457452, 0.011383664794266224, 0.14966310560703278, -0.07404141128063202, -0.11263212561607361, -0.1395740807056427, 0.1089731827378273, -0.07208147644996643, -0.09098554402589798, -0.12048707157373428, -0.06100872904062271, 0.014278542250394821, -0.09148665517568588, -0.036732666194438934, -0.033693525940179825, -0.13939543068408966, 0.08881844580173492, 0.024379605427384377, -0.013332867063581944, -0.03537499159574509, -0.033035241067409515, 0.13341675698757172, -0.04851583391427994, 0.10798247903585434, 0.1368611603975296, -0.0692794993519783, 0.1002373993396759, -0.0658748671412468, -0.10293056070804596, 0.11348698288202286, 0.005013204179704189, 0.04042736813426018, 0.03799609839916229, 0.021094253286719322, 0.05381801724433899, 0.0011939237592741847, 0.032132185995578766, -0.06032562628388405, -0.12729063630104065, 0.040287818759679794, 0.041167933493852615, -0.16028890013694763, -0.057740967720746994, -0.09129408746957779, 0.12719054520130157, 0.01684929057955742, 0.12032079696655273, 0.0301116481423378, 0.08398924767971039, -0.012819519266486168, 0.016407806426286697, 0.0018586699152365327, -0.1383214145898819, 0.040502384305000305, -0.06652599573135376, -0.00013012532144784927, 0.005226368084549904, 0.25173673033714294, -0.07361061125993729, 0.024225885048508644, 0.04549568518996239, 0.05058286711573601, -0.02208552323281765, 0.03764395788311958, 0.2210026979446411, 0.10788359493017197, -0.03189864754676819, -0.09650204330682755, 0.0713561400771141, -0.005394506733864546, -0.11640723794698715, 0.14631710946559906, 0.11238464713096619, 0.03583003580570221, 0.10191832482814789, -0.04195635765790939, 0.03969261422753334, -0.07160023599863052, -0.17671772837638855, 0.02718380279839039, 0.010272235609591007, 0.049173448234796524, 0.10213155299425125, 0.1745409518480301, -0.015740038827061653, 0.030947288498282433, -0.02055155672132969, -0.004682833794504404, -0.14942355453968048, -0.11155889928340912, -0.040574122220277786, -0.09796879440546036, 0.0310922060161829, -0.061252932995557785, -0.007253988180309534, 0.2137940376996994, 0.04206644743680954, -0.037155523896217346, 0.08265867829322815, 0.11361649632453918, -0.05763515830039978, 0.008456067182123661, -0.01735234446823597, 0.047590356320142746, 0.013606737367808819, -0.04009507596492767, -0.12362807989120483, -0.05948122963309288, -0.05465562269091606, 0.022980552166700363, -0.12512487173080444, 0.0036922625731676817, -0.11609320342540741, -0.09535720199346542, -0.05275915563106537, 0.08529535681009293, -0.030510632321238518, 0.0811443105340004, -0.026278546079993248, 0.009919289499521255, 0.029944179579615593, 0.1835021674633026, -0.04192280024290085, -0.0590406134724617, -0.02542738802731037, 0.11160653829574585, 0.07349275797605515, 0.10939710587263107, 0.0011280501494184136, 0.020082328468561172, -0.06677515059709549, 0.28173384070396423, 0.17086274921894073, -0.030526410788297653, 0.03928123787045479, 0.036595381796360016, 0.04182777553796768, 0.10009481012821198, 0.08197150379419327, 0.10826930403709412, 0.27503615617752075, -0.13192179799079895, -0.06088581308722496, -0.06387332081794739, 0.025619816035032272, -0.1106836199760437, 0.005346698220819235, 0.023316459730267525, -0.05370739474892616, -0.05101607367396355, 0.124101921916008, -0.19061405956745148, 0.07384772598743439, 0.06298954784870148, -0.17634496092796326, -0.05943777784705162, -0.058336321264505386, 0.17602799832820892, 0.006839016918092966, 0.12007787823677063, -0.04769788309931755, -0.17997215688228607, 0.05190492048859596, 0.06494639813899994, -0.24755607545375824, -0.11760002374649048, 0.12967142462730408, 0.08530385047197342, -0.03757373243570328, -0.03779815509915352, 0.03514096140861511, 0.07324910908937454, 0.04822636768221855, -0.030313007533550262, 0.02903261035680771, 0.049090005457401276, -0.03741750866174698, -0.07850556820631027, -0.014528964646160603, 0.0115601671859622, -0.05517236888408661, 0.031778231263160706, -0.21098943054676056, 0.05196802690625191, -0.028904061764478683, -0.019288720563054085, -0.002307704882696271, 0.05447551608085632, -0.044121693819761276, 0.05675230175256729, 0.02386048622429371, -0.0021316318307071924, -0.038491390645504, -0.049021460115909576, -0.0022475598379969597, 0.06854350864887238, -0.022804049775004387, -0.12309081852436066, -0.057091958820819855, -0.07592685520648956, 0.06300830096006393, -0.01322084292769432, -0.06604528427124023, -0.010065888054668903, -0.06672178208827972, 0.04245912283658981, -0.10482724010944366, 0.03343906253576279, 0.02676355093717575, 0.04185395687818527, -0.009577959775924683, 0.04577081277966499, 0.03680959716439247, 0.07003176957368851, -0.12981559336185455, -0.07886998355388641 ]
null
null
transformers
"test_5050"
{}
null
gwkim22/5050_s_disc
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #electra #pretraining #endpoints_compatible #region-us
"test_5050"
[]
[ "TAGS\n#transformers #pytorch #electra #pretraining #endpoints_compatible #region-us \n" ]
[ 27 ]
[ "passage: TAGS\n#transformers #pytorch #electra #pretraining #endpoints_compatible #region-us \n" ]
[ -0.0756971538066864, 0.036188457161188126, -0.009415136650204659, -0.037658292800188065, 0.16592887043952942, 0.026989849284291267, 0.0005112319486215711, 0.04949172958731651, 0.06173074617981911, 0.007027134299278259, 0.15597198903560638, 0.2036423534154892, -0.03772604465484619, 0.04128161817789078, -0.05990905314683914, -0.2700495421886444, 0.08478225767612457, 0.09229439496994019, -0.08212776482105255, 0.11126063019037247, 0.0659293383359909, -0.11804993450641632, 0.048492807894945145, -0.01743023656308651, -0.11184567958116531, 0.03024609200656414, -0.025596311315894127, -0.09465152770280838, 0.13739638030529022, 0.028396213427186012, 0.19871650636196136, 0.01611001044511795, -0.08827465027570724, -0.18486835062503815, 0.03562929108738899, -0.0016426877118647099, -0.0702807828783989, 0.023731989786028862, 0.01123916357755661, -0.08364912867546082, 0.09210389852523804, 0.08747247606515884, 0.021376805379986763, 0.02932315692305565, -0.2099020928144455, -0.13468767702579498, -0.039248500019311905, 0.01525816973298788, 0.06765861064195633, 0.09177635610103607, 0.005332896485924721, 0.17689242959022522, -0.15360596776008606, 0.06535953283309937, 0.1188480332493782, -0.26857590675354004, 0.0021048865746706724, 0.03585214912891388, 0.1114022508263588, 0.04639068990945816, 0.01161353848874569, 0.02428305335342884, 0.031266141682863235, 0.02244303934276104, -0.056230735033750534, -0.06022847816348076, -0.03299247846007347, 0.07772453874349594, -0.13350637257099152, -0.10972550511360168, 0.2655334770679474, -0.027669498696923256, 0.05720799043774605, 0.043133530765771866, -0.09040695428848267, -0.09562412649393082, 0.02024168148636818, -0.004240364767611027, -0.033286161720752716, 0.06455978006124496, 0.06604234874248505, -0.004308104515075684, -0.12907330691814423, 0.03592544049024582, -0.19463478028774261, 0.3052941560745239, 0.03892635554075241, 0.06966620683670044, -0.1999710500240326, 0.06955006718635559, 0.01889742724597454, -0.0698351338505745, 0.011341177858412266, -0.0961623340845108, 0.010919119231402874, -0.016033027321100235, -0.08807231485843658, 0.02853204682469368, 0.06206042319536209, 0.19004260003566742, 0.036395587027072906, 0.030527135357260704, 0.06724114716053009, 0.11739540100097656, 0.056359536945819855, 0.07213728129863739, -0.007952061481773853, 0.05149845406413078, 0.006435554474592209, -0.11710356175899506, 0.013328306376934052, -0.03376786783337593, -0.09470032900571823, -0.06236766278743744, 0.01434097159653902, 0.12428028881549835, 0.009008275344967842, 0.0005504412110894918, -0.10316439718008041, -0.005405919160693884, 0.017403488978743553, -0.04461348429322243, -0.044085390865802765, -0.015382049605250359, -0.0031161552760750055, 0.15159063041210175, -0.013689191080629826, 0.01564869098365307, -0.048104431480169296, 0.09228809922933578, -0.08293066918849945, -0.022958116605877876, -0.05138938128948212, -0.02429366111755371, 0.05184052139520645, -0.16321037709712982, 0.1008109301328659, -0.15374122560024261, -0.09526503831148148, 0.008289664052426815, 0.06384812295436859, 0.029649510979652405, -0.014904729090631008, -0.009294605813920498, 0.0003518476733006537, -0.04622277989983559, -0.06142871454358101, -0.0850178524851799, -0.06799085438251495, 0.10634548217058182, 0.02235661819577217, 0.0408979170024395, -0.0838146060705185, 0.06476494669914246, -0.09400399774312973, 0.021791664883494377, -0.10231096297502518, -0.016176149249076843, -0.009186405688524246, 0.18150292336940765, -0.001088918186724186, -0.06731697171926498, -0.11602970957756042, 0.06578758358955383, -0.032009515911340714, 0.1739562451839447, -0.02662174589931965, -0.10742105543613434, 0.22346611320972443, -0.14008232951164246, -0.16819781064987183, 0.04958919435739517, -0.0029770040418952703, 0.005376794841140509, 0.06417956948280334, 0.12192060798406601, 0.023475611582398415, -0.10588141530752182, 0.07336920499801636, 0.06817415356636047, -0.1589258909225464, -0.15867944061756134, 0.03135969489812851, -0.020896214991807938, -0.08641835302114487, 0.018182609230279922, 0.017622308805584908, 0.09888523072004318, -0.09688249975442886, -0.020380118861794472, -0.007825249806046486, -0.017896555364131927, 0.06301192939281464, 0.07683245092630386, 0.04862435534596443, -0.07004353404045105, -0.02688227966427803, 0.02235882170498371, 0.029675068333745003, 0.023235086351633072, 0.03497021645307541, -0.0967378318309784, 0.0837063193321228, -0.05343646928668022, -0.01674649678170681, -0.22222042083740234, -0.10010827332735062, -0.03666314110159874, 0.06390219926834106, -0.025937577709555626, 0.2182159572839737, 0.06955723464488983, -0.07156158238649368, 0.024125874042510986, -0.05104024335741997, 0.06662891805171967, 0.0014548590406775475, -0.011962002143263817, -0.037856586277484894, 0.007546532899141312, -0.08246418833732605, -0.017504433169960976, -0.08097764104604721, 0.019701046869158745, 0.07482516020536423, 0.11983374506235123, -0.0007900566561147571, 0.04068903625011444, -0.012368736788630486, 0.06597230583429337, -0.034265365451574326, 0.014228359796106815, 0.09415315836668015, 0.01284877397119999, -0.06274543702602386, 0.06442776322364807, -0.13525815308094025, 0.32106640934944153, 0.17269548773765564, -0.28709879517555237, 0.010613495483994484, -0.009087181650102139, -0.041513703763484955, 0.016853556036949158, 0.0764055922627449, 0.015129716135561466, 0.11040361225605011, 0.03547031059861183, 0.11444143950939178, -0.02137548290193081, -0.026674607768654823, 0.003667747601866722, -0.05092567950487137, -0.03895152732729912, 0.0906050056219101, 0.1282183676958084, -0.1456066370010376, 0.15240059792995453, 0.19121237099170685, 0.010538025759160519, 0.11430074274539948, -0.058953601866960526, -0.014561807736754417, 0.04266371205449104, 0.019436439499258995, -0.03975715860724449, 0.02377229742705822, -0.25008708238601685, -0.028014522045850754, 0.061497606337070465, 0.005723595153540373, 0.09221754968166351, -0.15758000314235687, -0.07912229746580124, 0.03445560485124588, 0.03246993198990822, -0.04604678973555565, 0.09388037770986557, 0.017711903899908066, 0.06453678756952286, 0.013622337952256203, -0.05464360490441322, 0.10824865102767944, 0.0074797761626541615, -0.05102653056383133, 0.18016605079174042, -0.1150578185915947, -0.271793931722641, -0.10967765748500824, -0.04825923219323158, 0.06604378670454025, 0.019087273627519608, 0.07990498840808868, -0.0808032676577568, -0.0432458333671093, 0.09602087736129761, 0.061661988496780396, -0.16193823516368866, 0.010757634416222572, -0.006539980880916119, 0.06494733691215515, -0.10912805050611496, -0.0786307081580162, -0.04736020416021347, -0.06531484425067902, -0.03092031553387642, 0.11423152685165405, -0.09888184815645218, 0.07640188187360764, 0.13673429191112518, 0.04753933474421501, 0.06949514150619507, 0.0013784163165837526, 0.17524175345897675, -0.10115545988082886, -0.05972803384065628, 0.2049238085746765, -0.04518980532884598, 0.08214316517114639, 0.12418494373559952, 0.014020196162164211, -0.0878622978925705, 0.0032231316436082125, -0.07654650509357452, -0.10705605149269104, -0.23312532901763916, -0.11995543539524078, -0.13074687123298645, -0.018622469156980515, 0.02303459495306015, 0.05288185551762581, 0.07611245661973953, 0.09667252749204636, 0.023434516042470932, -0.1252344399690628, -0.04741457477211952, 0.04306744039058685, 0.2214028537273407, -0.012363872490823269, 0.07154741138219833, -0.08374137431383133, -0.09404508769512177, 0.056985776871442795, 0.039763204753398895, 0.2282608151435852, 0.12049819529056549, 0.027918696403503418, 0.07955649495124817, 0.13374394178390503, 0.15770773589611053, 0.12970823049545288, 0.019044430926442146, -0.046607282012701035, -0.015995441004633904, 0.034498997032642365, -0.09550739079713821, 0.02452228032052517, 0.11229217797517776, -0.12750400602817535, -0.077623151242733, -0.18612907826900482, 0.03149789944291115, 0.10223551839590073, 0.034785304218530655, -0.2103472650051117, -0.017381230369210243, 0.05634630471467972, -0.023988092318177223, -0.07721945643424988, 0.08704003691673279, -0.03771854564547539, -0.1258421540260315, 0.07177536934614182, -0.046510249376297, 0.09233162552118301, -0.04765688255429268, 0.06964170187711716, -0.05333482101559639, -0.09864311665296555, 0.05728254094719887, 0.08104672282934189, -0.2397114634513855, 0.2905753552913666, -0.01859200932085514, -0.040343593806028366, -0.055404093116521835, -0.028321675956249237, -0.01912134699523449, 0.16959726810455322, 0.10056858509778976, 0.016174672171473503, -0.1252007931470871, -0.1028304472565651, 0.0760577842593193, 0.04050489515066147, 0.10577133297920227, -0.05015445873141289, -0.022375648841261864, -0.0067756264470517635, 0.022014738991856575, -0.02700287662446499, -0.040073901414871216, 0.02861475571990013, -0.1410909742116928, 0.0409371517598629, 0.003155985614284873, 0.11101032048463821, -0.006117458455264568, -0.012503466568887234, -0.029729031026363373, 0.0983576774597168, -0.13571307063102722, -0.07317584753036499, -0.08494191616773605, -0.1183008998632431, 0.12166173756122589, -0.099920853972435, 0.10231272131204605, -0.0794784277677536, -0.03440702706575394, -0.08046305924654007, -0.130115807056427, 0.13587160408496857, -0.12541091442108154, 0.011890735477209091, -0.026201345026493073, 0.1698901504278183, 0.009158252738416195, -0.004318047780543566, -0.013212090358138084, 0.03558473661541939, -0.11779137700796127, -0.07495435327291489, 0.021309401839971542, -0.02231709286570549, 0.08620452880859375, 0.06740370392799377, -0.016238674521446228, 0.06712200492620468, 0.03289594128727913, -0.020050106570124626, 0.22343555092811584, 0.22011502087116241, -0.019101478159427643, 0.09279607981443405, 0.1806296855211258, -0.03300826624035835, -0.25283148884773254, -0.07059445232152939, -0.1305062472820282, -0.024195661768317223, -0.014072945341467857, -0.21452103555202484, 0.08213289827108383, 0.08126692473888397, -0.021842190995812416, 0.13971559703350067, -0.2648833990097046, -0.024427637457847595, 0.16540801525115967, -0.0027161419857293367, 0.4706745147705078, -0.12458478659391403, -0.05730745196342468, 0.025525521486997604, -0.20954492688179016, 0.10183122754096985, 0.062004204839468, 0.05383741855621338, -0.008521439507603645, 0.04422667622566223, 0.0246762465685606, -0.08058620244264603, 0.15657329559326172, 0.02817770279943943, 0.02563435211777687, -0.0961780995130539, -0.10026950389146805, 0.01725863851606846, -0.007735588122159243, -0.012727128341794014, 0.06994222104549408, 0.016107331961393356, -0.20630186796188354, -0.03130153566598892, -0.10572965443134308, 0.07918786257505417, 0.04753580316901207, -0.034337401390075684, -0.01384770218282938, -0.01825999841094017, -0.02678072080016136, 0.03486849367618561, 0.2824019193649292, -0.03131531551480293, 0.15590380132198334, 0.01465247105807066, 0.13802167773246765, -0.16354699432849884, -0.05957735702395439, -0.07483116537332535, -0.024123549461364746, 0.08845099806785583, -0.03023248352110386, 0.02761121280491352, 0.1609024554491043, -0.0233097355812788, 0.010213285684585571, 0.10653211176395416, 0.0033591582905501127, 0.008985853753983974, 0.12964291870594025, -0.19808430969715118, -0.04954221472144127, -0.02730712667107582, 0.05809199810028076, 0.09266384690999985, 0.12577274441719055, 0.09778114408254623, 0.058137062937021255, -0.029848599806427956, -0.029446985572576523, -0.030232803896069527, -0.05581061169505119, 0.020947134122252464, 0.08045008778572083, 0.04850328341126442, -0.10584069788455963, 0.057395149022340775, 0.00015370355686172843, -0.28082141280174255, -0.015278516337275505, 0.10573777556419373, -0.13181495666503906, -0.11628200113773346, -0.0865611657500267, 0.08121321350336075, -0.2130194902420044, -0.077885702252388, -0.04592939466238022, -0.10568059235811234, 0.09312018752098083, 0.26971736550331116, 0.10158795863389969, 0.07701178640127182, 0.0004125468258280307, 0.011747902259230614, -0.008425997570157051, -0.0877641811966896, 0.019449811428785324, -0.006162303499877453, -0.10682818293571472, -0.00003637229383457452, 0.011383664794266224, 0.14966310560703278, -0.07404141128063202, -0.11263212561607361, -0.1395740807056427, 0.1089731827378273, -0.07208147644996643, -0.09098554402589798, -0.12048707157373428, -0.06100872904062271, 0.014278542250394821, -0.09148665517568588, -0.036732666194438934, -0.033693525940179825, -0.13939543068408966, 0.08881844580173492, 0.024379605427384377, -0.013332867063581944, -0.03537499159574509, -0.033035241067409515, 0.13341675698757172, -0.04851583391427994, 0.10798247903585434, 0.1368611603975296, -0.0692794993519783, 0.1002373993396759, -0.0658748671412468, -0.10293056070804596, 0.11348698288202286, 0.005013204179704189, 0.04042736813426018, 0.03799609839916229, 0.021094253286719322, 0.05381801724433899, 0.0011939237592741847, 0.032132185995578766, -0.06032562628388405, -0.12729063630104065, 0.040287818759679794, 0.041167933493852615, -0.16028890013694763, -0.057740967720746994, -0.09129408746957779, 0.12719054520130157, 0.01684929057955742, 0.12032079696655273, 0.0301116481423378, 0.08398924767971039, -0.012819519266486168, 0.016407806426286697, 0.0018586699152365327, -0.1383214145898819, 0.040502384305000305, -0.06652599573135376, -0.00013012532144784927, 0.005226368084549904, 0.25173673033714294, -0.07361061125993729, 0.024225885048508644, 0.04549568518996239, 0.05058286711573601, -0.02208552323281765, 0.03764395788311958, 0.2210026979446411, 0.10788359493017197, -0.03189864754676819, -0.09650204330682755, 0.0713561400771141, -0.005394506733864546, -0.11640723794698715, 0.14631710946559906, 0.11238464713096619, 0.03583003580570221, 0.10191832482814789, -0.04195635765790939, 0.03969261422753334, -0.07160023599863052, -0.17671772837638855, 0.02718380279839039, 0.010272235609591007, 0.049173448234796524, 0.10213155299425125, 0.1745409518480301, -0.015740038827061653, 0.030947288498282433, -0.02055155672132969, -0.004682833794504404, -0.14942355453968048, -0.11155889928340912, -0.040574122220277786, -0.09796879440546036, 0.0310922060161829, -0.061252932995557785, -0.007253988180309534, 0.2137940376996994, 0.04206644743680954, -0.037155523896217346, 0.08265867829322815, 0.11361649632453918, -0.05763515830039978, 0.008456067182123661, -0.01735234446823597, 0.047590356320142746, 0.013606737367808819, -0.04009507596492767, -0.12362807989120483, -0.05948122963309288, -0.05465562269091606, 0.022980552166700363, -0.12512487173080444, 0.0036922625731676817, -0.11609320342540741, -0.09535720199346542, -0.05275915563106537, 0.08529535681009293, -0.030510632321238518, 0.0811443105340004, -0.026278546079993248, 0.009919289499521255, 0.029944179579615593, 0.1835021674633026, -0.04192280024290085, -0.0590406134724617, -0.02542738802731037, 0.11160653829574585, 0.07349275797605515, 0.10939710587263107, 0.0011280501494184136, 0.020082328468561172, -0.06677515059709549, 0.28173384070396423, 0.17086274921894073, -0.030526410788297653, 0.03928123787045479, 0.036595381796360016, 0.04182777553796768, 0.10009481012821198, 0.08197150379419327, 0.10826930403709412, 0.27503615617752075, -0.13192179799079895, -0.06088581308722496, -0.06387332081794739, 0.025619816035032272, -0.1106836199760437, 0.005346698220819235, 0.023316459730267525, -0.05370739474892616, -0.05101607367396355, 0.124101921916008, -0.19061405956745148, 0.07384772598743439, 0.06298954784870148, -0.17634496092796326, -0.05943777784705162, -0.058336321264505386, 0.17602799832820892, 0.006839016918092966, 0.12007787823677063, -0.04769788309931755, -0.17997215688228607, 0.05190492048859596, 0.06494639813899994, -0.24755607545375824, -0.11760002374649048, 0.12967142462730408, 0.08530385047197342, -0.03757373243570328, -0.03779815509915352, 0.03514096140861511, 0.07324910908937454, 0.04822636768221855, -0.030313007533550262, 0.02903261035680771, 0.049090005457401276, -0.03741750866174698, -0.07850556820631027, -0.014528964646160603, 0.0115601671859622, -0.05517236888408661, 0.031778231263160706, -0.21098943054676056, 0.05196802690625191, -0.028904061764478683, -0.019288720563054085, -0.002307704882696271, 0.05447551608085632, -0.044121693819761276, 0.05675230175256729, 0.02386048622429371, -0.0021316318307071924, -0.038491390645504, -0.049021460115909576, -0.0022475598379969597, 0.06854350864887238, -0.022804049775004387, -0.12309081852436066, -0.057091958820819855, -0.07592685520648956, 0.06300830096006393, -0.01322084292769432, -0.06604528427124023, -0.010065888054668903, -0.06672178208827972, 0.04245912283658981, -0.10482724010944366, 0.03343906253576279, 0.02676355093717575, 0.04185395687818527, -0.009577959775924683, 0.04577081277966499, 0.03680959716439247, 0.07003176957368851, -0.12981559336185455, -0.07886998355388641 ]
null
null
transformers
"domain_base_test"
{}
null
gwkim22/domain_b_disc
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #electra #pretraining #endpoints_compatible #region-us
"domain_base_test"
[]
[ "TAGS\n#transformers #pytorch #electra #pretraining #endpoints_compatible #region-us \n" ]
[ 27 ]
[ "passage: TAGS\n#transformers #pytorch #electra #pretraining #endpoints_compatible #region-us \n" ]
[ -0.0756971538066864, 0.036188457161188126, -0.009415136650204659, -0.037658292800188065, 0.16592887043952942, 0.026989849284291267, 0.0005112319486215711, 0.04949172958731651, 0.06173074617981911, 0.007027134299278259, 0.15597198903560638, 0.2036423534154892, -0.03772604465484619, 0.04128161817789078, -0.05990905314683914, -0.2700495421886444, 0.08478225767612457, 0.09229439496994019, -0.08212776482105255, 0.11126063019037247, 0.0659293383359909, -0.11804993450641632, 0.048492807894945145, -0.01743023656308651, -0.11184567958116531, 0.03024609200656414, -0.025596311315894127, -0.09465152770280838, 0.13739638030529022, 0.028396213427186012, 0.19871650636196136, 0.01611001044511795, -0.08827465027570724, -0.18486835062503815, 0.03562929108738899, -0.0016426877118647099, -0.0702807828783989, 0.023731989786028862, 0.01123916357755661, -0.08364912867546082, 0.09210389852523804, 0.08747247606515884, 0.021376805379986763, 0.02932315692305565, -0.2099020928144455, -0.13468767702579498, -0.039248500019311905, 0.01525816973298788, 0.06765861064195633, 0.09177635610103607, 0.005332896485924721, 0.17689242959022522, -0.15360596776008606, 0.06535953283309937, 0.1188480332493782, -0.26857590675354004, 0.0021048865746706724, 0.03585214912891388, 0.1114022508263588, 0.04639068990945816, 0.01161353848874569, 0.02428305335342884, 0.031266141682863235, 0.02244303934276104, -0.056230735033750534, -0.06022847816348076, -0.03299247846007347, 0.07772453874349594, -0.13350637257099152, -0.10972550511360168, 0.2655334770679474, -0.027669498696923256, 0.05720799043774605, 0.043133530765771866, -0.09040695428848267, -0.09562412649393082, 0.02024168148636818, -0.004240364767611027, -0.033286161720752716, 0.06455978006124496, 0.06604234874248505, -0.004308104515075684, -0.12907330691814423, 0.03592544049024582, -0.19463478028774261, 0.3052941560745239, 0.03892635554075241, 0.06966620683670044, -0.1999710500240326, 0.06955006718635559, 0.01889742724597454, -0.0698351338505745, 0.011341177858412266, -0.0961623340845108, 0.010919119231402874, -0.016033027321100235, -0.08807231485843658, 0.02853204682469368, 0.06206042319536209, 0.19004260003566742, 0.036395587027072906, 0.030527135357260704, 0.06724114716053009, 0.11739540100097656, 0.056359536945819855, 0.07213728129863739, -0.007952061481773853, 0.05149845406413078, 0.006435554474592209, -0.11710356175899506, 0.013328306376934052, -0.03376786783337593, -0.09470032900571823, -0.06236766278743744, 0.01434097159653902, 0.12428028881549835, 0.009008275344967842, 0.0005504412110894918, -0.10316439718008041, -0.005405919160693884, 0.017403488978743553, -0.04461348429322243, -0.044085390865802765, -0.015382049605250359, -0.0031161552760750055, 0.15159063041210175, -0.013689191080629826, 0.01564869098365307, -0.048104431480169296, 0.09228809922933578, -0.08293066918849945, -0.022958116605877876, -0.05138938128948212, -0.02429366111755371, 0.05184052139520645, -0.16321037709712982, 0.1008109301328659, -0.15374122560024261, -0.09526503831148148, 0.008289664052426815, 0.06384812295436859, 0.029649510979652405, -0.014904729090631008, -0.009294605813920498, 0.0003518476733006537, -0.04622277989983559, -0.06142871454358101, -0.0850178524851799, -0.06799085438251495, 0.10634548217058182, 0.02235661819577217, 0.0408979170024395, -0.0838146060705185, 0.06476494669914246, -0.09400399774312973, 0.021791664883494377, -0.10231096297502518, -0.016176149249076843, -0.009186405688524246, 0.18150292336940765, -0.001088918186724186, -0.06731697171926498, -0.11602970957756042, 0.06578758358955383, -0.032009515911340714, 0.1739562451839447, -0.02662174589931965, -0.10742105543613434, 0.22346611320972443, -0.14008232951164246, -0.16819781064987183, 0.04958919435739517, -0.0029770040418952703, 0.005376794841140509, 0.06417956948280334, 0.12192060798406601, 0.023475611582398415, -0.10588141530752182, 0.07336920499801636, 0.06817415356636047, -0.1589258909225464, -0.15867944061756134, 0.03135969489812851, -0.020896214991807938, -0.08641835302114487, 0.018182609230279922, 0.017622308805584908, 0.09888523072004318, -0.09688249975442886, -0.020380118861794472, -0.007825249806046486, -0.017896555364131927, 0.06301192939281464, 0.07683245092630386, 0.04862435534596443, -0.07004353404045105, -0.02688227966427803, 0.02235882170498371, 0.029675068333745003, 0.023235086351633072, 0.03497021645307541, -0.0967378318309784, 0.0837063193321228, -0.05343646928668022, -0.01674649678170681, -0.22222042083740234, -0.10010827332735062, -0.03666314110159874, 0.06390219926834106, -0.025937577709555626, 0.2182159572839737, 0.06955723464488983, -0.07156158238649368, 0.024125874042510986, -0.05104024335741997, 0.06662891805171967, 0.0014548590406775475, -0.011962002143263817, -0.037856586277484894, 0.007546532899141312, -0.08246418833732605, -0.017504433169960976, -0.08097764104604721, 0.019701046869158745, 0.07482516020536423, 0.11983374506235123, -0.0007900566561147571, 0.04068903625011444, -0.012368736788630486, 0.06597230583429337, -0.034265365451574326, 0.014228359796106815, 0.09415315836668015, 0.01284877397119999, -0.06274543702602386, 0.06442776322364807, -0.13525815308094025, 0.32106640934944153, 0.17269548773765564, -0.28709879517555237, 0.010613495483994484, -0.009087181650102139, -0.041513703763484955, 0.016853556036949158, 0.0764055922627449, 0.015129716135561466, 0.11040361225605011, 0.03547031059861183, 0.11444143950939178, -0.02137548290193081, -0.026674607768654823, 0.003667747601866722, -0.05092567950487137, -0.03895152732729912, 0.0906050056219101, 0.1282183676958084, -0.1456066370010376, 0.15240059792995453, 0.19121237099170685, 0.010538025759160519, 0.11430074274539948, -0.058953601866960526, -0.014561807736754417, 0.04266371205449104, 0.019436439499258995, -0.03975715860724449, 0.02377229742705822, -0.25008708238601685, -0.028014522045850754, 0.061497606337070465, 0.005723595153540373, 0.09221754968166351, -0.15758000314235687, -0.07912229746580124, 0.03445560485124588, 0.03246993198990822, -0.04604678973555565, 0.09388037770986557, 0.017711903899908066, 0.06453678756952286, 0.013622337952256203, -0.05464360490441322, 0.10824865102767944, 0.0074797761626541615, -0.05102653056383133, 0.18016605079174042, -0.1150578185915947, -0.271793931722641, -0.10967765748500824, -0.04825923219323158, 0.06604378670454025, 0.019087273627519608, 0.07990498840808868, -0.0808032676577568, -0.0432458333671093, 0.09602087736129761, 0.061661988496780396, -0.16193823516368866, 0.010757634416222572, -0.006539980880916119, 0.06494733691215515, -0.10912805050611496, -0.0786307081580162, -0.04736020416021347, -0.06531484425067902, -0.03092031553387642, 0.11423152685165405, -0.09888184815645218, 0.07640188187360764, 0.13673429191112518, 0.04753933474421501, 0.06949514150619507, 0.0013784163165837526, 0.17524175345897675, -0.10115545988082886, -0.05972803384065628, 0.2049238085746765, -0.04518980532884598, 0.08214316517114639, 0.12418494373559952, 0.014020196162164211, -0.0878622978925705, 0.0032231316436082125, -0.07654650509357452, -0.10705605149269104, -0.23312532901763916, -0.11995543539524078, -0.13074687123298645, -0.018622469156980515, 0.02303459495306015, 0.05288185551762581, 0.07611245661973953, 0.09667252749204636, 0.023434516042470932, -0.1252344399690628, -0.04741457477211952, 0.04306744039058685, 0.2214028537273407, -0.012363872490823269, 0.07154741138219833, -0.08374137431383133, -0.09404508769512177, 0.056985776871442795, 0.039763204753398895, 0.2282608151435852, 0.12049819529056549, 0.027918696403503418, 0.07955649495124817, 0.13374394178390503, 0.15770773589611053, 0.12970823049545288, 0.019044430926442146, -0.046607282012701035, -0.015995441004633904, 0.034498997032642365, -0.09550739079713821, 0.02452228032052517, 0.11229217797517776, -0.12750400602817535, -0.077623151242733, -0.18612907826900482, 0.03149789944291115, 0.10223551839590073, 0.034785304218530655, -0.2103472650051117, -0.017381230369210243, 0.05634630471467972, -0.023988092318177223, -0.07721945643424988, 0.08704003691673279, -0.03771854564547539, -0.1258421540260315, 0.07177536934614182, -0.046510249376297, 0.09233162552118301, -0.04765688255429268, 0.06964170187711716, -0.05333482101559639, -0.09864311665296555, 0.05728254094719887, 0.08104672282934189, -0.2397114634513855, 0.2905753552913666, -0.01859200932085514, -0.040343593806028366, -0.055404093116521835, -0.028321675956249237, -0.01912134699523449, 0.16959726810455322, 0.10056858509778976, 0.016174672171473503, -0.1252007931470871, -0.1028304472565651, 0.0760577842593193, 0.04050489515066147, 0.10577133297920227, -0.05015445873141289, -0.022375648841261864, -0.0067756264470517635, 0.022014738991856575, -0.02700287662446499, -0.040073901414871216, 0.02861475571990013, -0.1410909742116928, 0.0409371517598629, 0.003155985614284873, 0.11101032048463821, -0.006117458455264568, -0.012503466568887234, -0.029729031026363373, 0.0983576774597168, -0.13571307063102722, -0.07317584753036499, -0.08494191616773605, -0.1183008998632431, 0.12166173756122589, -0.099920853972435, 0.10231272131204605, -0.0794784277677536, -0.03440702706575394, -0.08046305924654007, -0.130115807056427, 0.13587160408496857, -0.12541091442108154, 0.011890735477209091, -0.026201345026493073, 0.1698901504278183, 0.009158252738416195, -0.004318047780543566, -0.013212090358138084, 0.03558473661541939, -0.11779137700796127, -0.07495435327291489, 0.021309401839971542, -0.02231709286570549, 0.08620452880859375, 0.06740370392799377, -0.016238674521446228, 0.06712200492620468, 0.03289594128727913, -0.020050106570124626, 0.22343555092811584, 0.22011502087116241, -0.019101478159427643, 0.09279607981443405, 0.1806296855211258, -0.03300826624035835, -0.25283148884773254, -0.07059445232152939, -0.1305062472820282, -0.024195661768317223, -0.014072945341467857, -0.21452103555202484, 0.08213289827108383, 0.08126692473888397, -0.021842190995812416, 0.13971559703350067, -0.2648833990097046, -0.024427637457847595, 0.16540801525115967, -0.0027161419857293367, 0.4706745147705078, -0.12458478659391403, -0.05730745196342468, 0.025525521486997604, -0.20954492688179016, 0.10183122754096985, 0.062004204839468, 0.05383741855621338, -0.008521439507603645, 0.04422667622566223, 0.0246762465685606, -0.08058620244264603, 0.15657329559326172, 0.02817770279943943, 0.02563435211777687, -0.0961780995130539, -0.10026950389146805, 0.01725863851606846, -0.007735588122159243, -0.012727128341794014, 0.06994222104549408, 0.016107331961393356, -0.20630186796188354, -0.03130153566598892, -0.10572965443134308, 0.07918786257505417, 0.04753580316901207, -0.034337401390075684, -0.01384770218282938, -0.01825999841094017, -0.02678072080016136, 0.03486849367618561, 0.2824019193649292, -0.03131531551480293, 0.15590380132198334, 0.01465247105807066, 0.13802167773246765, -0.16354699432849884, -0.05957735702395439, -0.07483116537332535, -0.024123549461364746, 0.08845099806785583, -0.03023248352110386, 0.02761121280491352, 0.1609024554491043, -0.0233097355812788, 0.010213285684585571, 0.10653211176395416, 0.0033591582905501127, 0.008985853753983974, 0.12964291870594025, -0.19808430969715118, -0.04954221472144127, -0.02730712667107582, 0.05809199810028076, 0.09266384690999985, 0.12577274441719055, 0.09778114408254623, 0.058137062937021255, -0.029848599806427956, -0.029446985572576523, -0.030232803896069527, -0.05581061169505119, 0.020947134122252464, 0.08045008778572083, 0.04850328341126442, -0.10584069788455963, 0.057395149022340775, 0.00015370355686172843, -0.28082141280174255, -0.015278516337275505, 0.10573777556419373, -0.13181495666503906, -0.11628200113773346, -0.0865611657500267, 0.08121321350336075, -0.2130194902420044, -0.077885702252388, -0.04592939466238022, -0.10568059235811234, 0.09312018752098083, 0.26971736550331116, 0.10158795863389969, 0.07701178640127182, 0.0004125468258280307, 0.011747902259230614, -0.008425997570157051, -0.0877641811966896, 0.019449811428785324, -0.006162303499877453, -0.10682818293571472, -0.00003637229383457452, 0.011383664794266224, 0.14966310560703278, -0.07404141128063202, -0.11263212561607361, -0.1395740807056427, 0.1089731827378273, -0.07208147644996643, -0.09098554402589798, -0.12048707157373428, -0.06100872904062271, 0.014278542250394821, -0.09148665517568588, -0.036732666194438934, -0.033693525940179825, -0.13939543068408966, 0.08881844580173492, 0.024379605427384377, -0.013332867063581944, -0.03537499159574509, -0.033035241067409515, 0.13341675698757172, -0.04851583391427994, 0.10798247903585434, 0.1368611603975296, -0.0692794993519783, 0.1002373993396759, -0.0658748671412468, -0.10293056070804596, 0.11348698288202286, 0.005013204179704189, 0.04042736813426018, 0.03799609839916229, 0.021094253286719322, 0.05381801724433899, 0.0011939237592741847, 0.032132185995578766, -0.06032562628388405, -0.12729063630104065, 0.040287818759679794, 0.041167933493852615, -0.16028890013694763, -0.057740967720746994, -0.09129408746957779, 0.12719054520130157, 0.01684929057955742, 0.12032079696655273, 0.0301116481423378, 0.08398924767971039, -0.012819519266486168, 0.016407806426286697, 0.0018586699152365327, -0.1383214145898819, 0.040502384305000305, -0.06652599573135376, -0.00013012532144784927, 0.005226368084549904, 0.25173673033714294, -0.07361061125993729, 0.024225885048508644, 0.04549568518996239, 0.05058286711573601, -0.02208552323281765, 0.03764395788311958, 0.2210026979446411, 0.10788359493017197, -0.03189864754676819, -0.09650204330682755, 0.0713561400771141, -0.005394506733864546, -0.11640723794698715, 0.14631710946559906, 0.11238464713096619, 0.03583003580570221, 0.10191832482814789, -0.04195635765790939, 0.03969261422753334, -0.07160023599863052, -0.17671772837638855, 0.02718380279839039, 0.010272235609591007, 0.049173448234796524, 0.10213155299425125, 0.1745409518480301, -0.015740038827061653, 0.030947288498282433, -0.02055155672132969, -0.004682833794504404, -0.14942355453968048, -0.11155889928340912, -0.040574122220277786, -0.09796879440546036, 0.0310922060161829, -0.061252932995557785, -0.007253988180309534, 0.2137940376996994, 0.04206644743680954, -0.037155523896217346, 0.08265867829322815, 0.11361649632453918, -0.05763515830039978, 0.008456067182123661, -0.01735234446823597, 0.047590356320142746, 0.013606737367808819, -0.04009507596492767, -0.12362807989120483, -0.05948122963309288, -0.05465562269091606, 0.022980552166700363, -0.12512487173080444, 0.0036922625731676817, -0.11609320342540741, -0.09535720199346542, -0.05275915563106537, 0.08529535681009293, -0.030510632321238518, 0.0811443105340004, -0.026278546079993248, 0.009919289499521255, 0.029944179579615593, 0.1835021674633026, -0.04192280024290085, -0.0590406134724617, -0.02542738802731037, 0.11160653829574585, 0.07349275797605515, 0.10939710587263107, 0.0011280501494184136, 0.020082328468561172, -0.06677515059709549, 0.28173384070396423, 0.17086274921894073, -0.030526410788297653, 0.03928123787045479, 0.036595381796360016, 0.04182777553796768, 0.10009481012821198, 0.08197150379419327, 0.10826930403709412, 0.27503615617752075, -0.13192179799079895, -0.06088581308722496, -0.06387332081794739, 0.025619816035032272, -0.1106836199760437, 0.005346698220819235, 0.023316459730267525, -0.05370739474892616, -0.05101607367396355, 0.124101921916008, -0.19061405956745148, 0.07384772598743439, 0.06298954784870148, -0.17634496092796326, -0.05943777784705162, -0.058336321264505386, 0.17602799832820892, 0.006839016918092966, 0.12007787823677063, -0.04769788309931755, -0.17997215688228607, 0.05190492048859596, 0.06494639813899994, -0.24755607545375824, -0.11760002374649048, 0.12967142462730408, 0.08530385047197342, -0.03757373243570328, -0.03779815509915352, 0.03514096140861511, 0.07324910908937454, 0.04822636768221855, -0.030313007533550262, 0.02903261035680771, 0.049090005457401276, -0.03741750866174698, -0.07850556820631027, -0.014528964646160603, 0.0115601671859622, -0.05517236888408661, 0.031778231263160706, -0.21098943054676056, 0.05196802690625191, -0.028904061764478683, -0.019288720563054085, -0.002307704882696271, 0.05447551608085632, -0.044121693819761276, 0.05675230175256729, 0.02386048622429371, -0.0021316318307071924, -0.038491390645504, -0.049021460115909576, -0.0022475598379969597, 0.06854350864887238, -0.022804049775004387, -0.12309081852436066, -0.057091958820819855, -0.07592685520648956, 0.06300830096006393, -0.01322084292769432, -0.06604528427124023, -0.010065888054668903, -0.06672178208827972, 0.04245912283658981, -0.10482724010944366, 0.03343906253576279, 0.02676355093717575, 0.04185395687818527, -0.009577959775924683, 0.04577081277966499, 0.03680959716439247, 0.07003176957368851, -0.12981559336185455, -0.07886998355388641 ]
null
null
transformers
"domain_base2_disc_0719"
{}
null
gwkim22/domain_base2_disc
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #electra #pretraining #endpoints_compatible #region-us
"domain_base2_disc_0719"
[]
[ "TAGS\n#transformers #pytorch #electra #pretraining #endpoints_compatible #region-us \n" ]
[ 27 ]
[ "passage: TAGS\n#transformers #pytorch #electra #pretraining #endpoints_compatible #region-us \n" ]
[ -0.0756971538066864, 0.036188457161188126, -0.009415136650204659, -0.037658292800188065, 0.16592887043952942, 0.026989849284291267, 0.0005112319486215711, 0.04949172958731651, 0.06173074617981911, 0.007027134299278259, 0.15597198903560638, 0.2036423534154892, -0.03772604465484619, 0.04128161817789078, -0.05990905314683914, -0.2700495421886444, 0.08478225767612457, 0.09229439496994019, -0.08212776482105255, 0.11126063019037247, 0.0659293383359909, -0.11804993450641632, 0.048492807894945145, -0.01743023656308651, -0.11184567958116531, 0.03024609200656414, -0.025596311315894127, -0.09465152770280838, 0.13739638030529022, 0.028396213427186012, 0.19871650636196136, 0.01611001044511795, -0.08827465027570724, -0.18486835062503815, 0.03562929108738899, -0.0016426877118647099, -0.0702807828783989, 0.023731989786028862, 0.01123916357755661, -0.08364912867546082, 0.09210389852523804, 0.08747247606515884, 0.021376805379986763, 0.02932315692305565, -0.2099020928144455, -0.13468767702579498, -0.039248500019311905, 0.01525816973298788, 0.06765861064195633, 0.09177635610103607, 0.005332896485924721, 0.17689242959022522, -0.15360596776008606, 0.06535953283309937, 0.1188480332493782, -0.26857590675354004, 0.0021048865746706724, 0.03585214912891388, 0.1114022508263588, 0.04639068990945816, 0.01161353848874569, 0.02428305335342884, 0.031266141682863235, 0.02244303934276104, -0.056230735033750534, -0.06022847816348076, -0.03299247846007347, 0.07772453874349594, -0.13350637257099152, -0.10972550511360168, 0.2655334770679474, -0.027669498696923256, 0.05720799043774605, 0.043133530765771866, -0.09040695428848267, -0.09562412649393082, 0.02024168148636818, -0.004240364767611027, -0.033286161720752716, 0.06455978006124496, 0.06604234874248505, -0.004308104515075684, -0.12907330691814423, 0.03592544049024582, -0.19463478028774261, 0.3052941560745239, 0.03892635554075241, 0.06966620683670044, -0.1999710500240326, 0.06955006718635559, 0.01889742724597454, -0.0698351338505745, 0.011341177858412266, -0.0961623340845108, 0.010919119231402874, -0.016033027321100235, -0.08807231485843658, 0.02853204682469368, 0.06206042319536209, 0.19004260003566742, 0.036395587027072906, 0.030527135357260704, 0.06724114716053009, 0.11739540100097656, 0.056359536945819855, 0.07213728129863739, -0.007952061481773853, 0.05149845406413078, 0.006435554474592209, -0.11710356175899506, 0.013328306376934052, -0.03376786783337593, -0.09470032900571823, -0.06236766278743744, 0.01434097159653902, 0.12428028881549835, 0.009008275344967842, 0.0005504412110894918, -0.10316439718008041, -0.005405919160693884, 0.017403488978743553, -0.04461348429322243, -0.044085390865802765, -0.015382049605250359, -0.0031161552760750055, 0.15159063041210175, -0.013689191080629826, 0.01564869098365307, -0.048104431480169296, 0.09228809922933578, -0.08293066918849945, -0.022958116605877876, -0.05138938128948212, -0.02429366111755371, 0.05184052139520645, -0.16321037709712982, 0.1008109301328659, -0.15374122560024261, -0.09526503831148148, 0.008289664052426815, 0.06384812295436859, 0.029649510979652405, -0.014904729090631008, -0.009294605813920498, 0.0003518476733006537, -0.04622277989983559, -0.06142871454358101, -0.0850178524851799, -0.06799085438251495, 0.10634548217058182, 0.02235661819577217, 0.0408979170024395, -0.0838146060705185, 0.06476494669914246, -0.09400399774312973, 0.021791664883494377, -0.10231096297502518, -0.016176149249076843, -0.009186405688524246, 0.18150292336940765, -0.001088918186724186, -0.06731697171926498, -0.11602970957756042, 0.06578758358955383, -0.032009515911340714, 0.1739562451839447, -0.02662174589931965, -0.10742105543613434, 0.22346611320972443, -0.14008232951164246, -0.16819781064987183, 0.04958919435739517, -0.0029770040418952703, 0.005376794841140509, 0.06417956948280334, 0.12192060798406601, 0.023475611582398415, -0.10588141530752182, 0.07336920499801636, 0.06817415356636047, -0.1589258909225464, -0.15867944061756134, 0.03135969489812851, -0.020896214991807938, -0.08641835302114487, 0.018182609230279922, 0.017622308805584908, 0.09888523072004318, -0.09688249975442886, -0.020380118861794472, -0.007825249806046486, -0.017896555364131927, 0.06301192939281464, 0.07683245092630386, 0.04862435534596443, -0.07004353404045105, -0.02688227966427803, 0.02235882170498371, 0.029675068333745003, 0.023235086351633072, 0.03497021645307541, -0.0967378318309784, 0.0837063193321228, -0.05343646928668022, -0.01674649678170681, -0.22222042083740234, -0.10010827332735062, -0.03666314110159874, 0.06390219926834106, -0.025937577709555626, 0.2182159572839737, 0.06955723464488983, -0.07156158238649368, 0.024125874042510986, -0.05104024335741997, 0.06662891805171967, 0.0014548590406775475, -0.011962002143263817, -0.037856586277484894, 0.007546532899141312, -0.08246418833732605, -0.017504433169960976, -0.08097764104604721, 0.019701046869158745, 0.07482516020536423, 0.11983374506235123, -0.0007900566561147571, 0.04068903625011444, -0.012368736788630486, 0.06597230583429337, -0.034265365451574326, 0.014228359796106815, 0.09415315836668015, 0.01284877397119999, -0.06274543702602386, 0.06442776322364807, -0.13525815308094025, 0.32106640934944153, 0.17269548773765564, -0.28709879517555237, 0.010613495483994484, -0.009087181650102139, -0.041513703763484955, 0.016853556036949158, 0.0764055922627449, 0.015129716135561466, 0.11040361225605011, 0.03547031059861183, 0.11444143950939178, -0.02137548290193081, -0.026674607768654823, 0.003667747601866722, -0.05092567950487137, -0.03895152732729912, 0.0906050056219101, 0.1282183676958084, -0.1456066370010376, 0.15240059792995453, 0.19121237099170685, 0.010538025759160519, 0.11430074274539948, -0.058953601866960526, -0.014561807736754417, 0.04266371205449104, 0.019436439499258995, -0.03975715860724449, 0.02377229742705822, -0.25008708238601685, -0.028014522045850754, 0.061497606337070465, 0.005723595153540373, 0.09221754968166351, -0.15758000314235687, -0.07912229746580124, 0.03445560485124588, 0.03246993198990822, -0.04604678973555565, 0.09388037770986557, 0.017711903899908066, 0.06453678756952286, 0.013622337952256203, -0.05464360490441322, 0.10824865102767944, 0.0074797761626541615, -0.05102653056383133, 0.18016605079174042, -0.1150578185915947, -0.271793931722641, -0.10967765748500824, -0.04825923219323158, 0.06604378670454025, 0.019087273627519608, 0.07990498840808868, -0.0808032676577568, -0.0432458333671093, 0.09602087736129761, 0.061661988496780396, -0.16193823516368866, 0.010757634416222572, -0.006539980880916119, 0.06494733691215515, -0.10912805050611496, -0.0786307081580162, -0.04736020416021347, -0.06531484425067902, -0.03092031553387642, 0.11423152685165405, -0.09888184815645218, 0.07640188187360764, 0.13673429191112518, 0.04753933474421501, 0.06949514150619507, 0.0013784163165837526, 0.17524175345897675, -0.10115545988082886, -0.05972803384065628, 0.2049238085746765, -0.04518980532884598, 0.08214316517114639, 0.12418494373559952, 0.014020196162164211, -0.0878622978925705, 0.0032231316436082125, -0.07654650509357452, -0.10705605149269104, -0.23312532901763916, -0.11995543539524078, -0.13074687123298645, -0.018622469156980515, 0.02303459495306015, 0.05288185551762581, 0.07611245661973953, 0.09667252749204636, 0.023434516042470932, -0.1252344399690628, -0.04741457477211952, 0.04306744039058685, 0.2214028537273407, -0.012363872490823269, 0.07154741138219833, -0.08374137431383133, -0.09404508769512177, 0.056985776871442795, 0.039763204753398895, 0.2282608151435852, 0.12049819529056549, 0.027918696403503418, 0.07955649495124817, 0.13374394178390503, 0.15770773589611053, 0.12970823049545288, 0.019044430926442146, -0.046607282012701035, -0.015995441004633904, 0.034498997032642365, -0.09550739079713821, 0.02452228032052517, 0.11229217797517776, -0.12750400602817535, -0.077623151242733, -0.18612907826900482, 0.03149789944291115, 0.10223551839590073, 0.034785304218530655, -0.2103472650051117, -0.017381230369210243, 0.05634630471467972, -0.023988092318177223, -0.07721945643424988, 0.08704003691673279, -0.03771854564547539, -0.1258421540260315, 0.07177536934614182, -0.046510249376297, 0.09233162552118301, -0.04765688255429268, 0.06964170187711716, -0.05333482101559639, -0.09864311665296555, 0.05728254094719887, 0.08104672282934189, -0.2397114634513855, 0.2905753552913666, -0.01859200932085514, -0.040343593806028366, -0.055404093116521835, -0.028321675956249237, -0.01912134699523449, 0.16959726810455322, 0.10056858509778976, 0.016174672171473503, -0.1252007931470871, -0.1028304472565651, 0.0760577842593193, 0.04050489515066147, 0.10577133297920227, -0.05015445873141289, -0.022375648841261864, -0.0067756264470517635, 0.022014738991856575, -0.02700287662446499, -0.040073901414871216, 0.02861475571990013, -0.1410909742116928, 0.0409371517598629, 0.003155985614284873, 0.11101032048463821, -0.006117458455264568, -0.012503466568887234, -0.029729031026363373, 0.0983576774597168, -0.13571307063102722, -0.07317584753036499, -0.08494191616773605, -0.1183008998632431, 0.12166173756122589, -0.099920853972435, 0.10231272131204605, -0.0794784277677536, -0.03440702706575394, -0.08046305924654007, -0.130115807056427, 0.13587160408496857, -0.12541091442108154, 0.011890735477209091, -0.026201345026493073, 0.1698901504278183, 0.009158252738416195, -0.004318047780543566, -0.013212090358138084, 0.03558473661541939, -0.11779137700796127, -0.07495435327291489, 0.021309401839971542, -0.02231709286570549, 0.08620452880859375, 0.06740370392799377, -0.016238674521446228, 0.06712200492620468, 0.03289594128727913, -0.020050106570124626, 0.22343555092811584, 0.22011502087116241, -0.019101478159427643, 0.09279607981443405, 0.1806296855211258, -0.03300826624035835, -0.25283148884773254, -0.07059445232152939, -0.1305062472820282, -0.024195661768317223, -0.014072945341467857, -0.21452103555202484, 0.08213289827108383, 0.08126692473888397, -0.021842190995812416, 0.13971559703350067, -0.2648833990097046, -0.024427637457847595, 0.16540801525115967, -0.0027161419857293367, 0.4706745147705078, -0.12458478659391403, -0.05730745196342468, 0.025525521486997604, -0.20954492688179016, 0.10183122754096985, 0.062004204839468, 0.05383741855621338, -0.008521439507603645, 0.04422667622566223, 0.0246762465685606, -0.08058620244264603, 0.15657329559326172, 0.02817770279943943, 0.02563435211777687, -0.0961780995130539, -0.10026950389146805, 0.01725863851606846, -0.007735588122159243, -0.012727128341794014, 0.06994222104549408, 0.016107331961393356, -0.20630186796188354, -0.03130153566598892, -0.10572965443134308, 0.07918786257505417, 0.04753580316901207, -0.034337401390075684, -0.01384770218282938, -0.01825999841094017, -0.02678072080016136, 0.03486849367618561, 0.2824019193649292, -0.03131531551480293, 0.15590380132198334, 0.01465247105807066, 0.13802167773246765, -0.16354699432849884, -0.05957735702395439, -0.07483116537332535, -0.024123549461364746, 0.08845099806785583, -0.03023248352110386, 0.02761121280491352, 0.1609024554491043, -0.0233097355812788, 0.010213285684585571, 0.10653211176395416, 0.0033591582905501127, 0.008985853753983974, 0.12964291870594025, -0.19808430969715118, -0.04954221472144127, -0.02730712667107582, 0.05809199810028076, 0.09266384690999985, 0.12577274441719055, 0.09778114408254623, 0.058137062937021255, -0.029848599806427956, -0.029446985572576523, -0.030232803896069527, -0.05581061169505119, 0.020947134122252464, 0.08045008778572083, 0.04850328341126442, -0.10584069788455963, 0.057395149022340775, 0.00015370355686172843, -0.28082141280174255, -0.015278516337275505, 0.10573777556419373, -0.13181495666503906, -0.11628200113773346, -0.0865611657500267, 0.08121321350336075, -0.2130194902420044, -0.077885702252388, -0.04592939466238022, -0.10568059235811234, 0.09312018752098083, 0.26971736550331116, 0.10158795863389969, 0.07701178640127182, 0.0004125468258280307, 0.011747902259230614, -0.008425997570157051, -0.0877641811966896, 0.019449811428785324, -0.006162303499877453, -0.10682818293571472, -0.00003637229383457452, 0.011383664794266224, 0.14966310560703278, -0.07404141128063202, -0.11263212561607361, -0.1395740807056427, 0.1089731827378273, -0.07208147644996643, -0.09098554402589798, -0.12048707157373428, -0.06100872904062271, 0.014278542250394821, -0.09148665517568588, -0.036732666194438934, -0.033693525940179825, -0.13939543068408966, 0.08881844580173492, 0.024379605427384377, -0.013332867063581944, -0.03537499159574509, -0.033035241067409515, 0.13341675698757172, -0.04851583391427994, 0.10798247903585434, 0.1368611603975296, -0.0692794993519783, 0.1002373993396759, -0.0658748671412468, -0.10293056070804596, 0.11348698288202286, 0.005013204179704189, 0.04042736813426018, 0.03799609839916229, 0.021094253286719322, 0.05381801724433899, 0.0011939237592741847, 0.032132185995578766, -0.06032562628388405, -0.12729063630104065, 0.040287818759679794, 0.041167933493852615, -0.16028890013694763, -0.057740967720746994, -0.09129408746957779, 0.12719054520130157, 0.01684929057955742, 0.12032079696655273, 0.0301116481423378, 0.08398924767971039, -0.012819519266486168, 0.016407806426286697, 0.0018586699152365327, -0.1383214145898819, 0.040502384305000305, -0.06652599573135376, -0.00013012532144784927, 0.005226368084549904, 0.25173673033714294, -0.07361061125993729, 0.024225885048508644, 0.04549568518996239, 0.05058286711573601, -0.02208552323281765, 0.03764395788311958, 0.2210026979446411, 0.10788359493017197, -0.03189864754676819, -0.09650204330682755, 0.0713561400771141, -0.005394506733864546, -0.11640723794698715, 0.14631710946559906, 0.11238464713096619, 0.03583003580570221, 0.10191832482814789, -0.04195635765790939, 0.03969261422753334, -0.07160023599863052, -0.17671772837638855, 0.02718380279839039, 0.010272235609591007, 0.049173448234796524, 0.10213155299425125, 0.1745409518480301, -0.015740038827061653, 0.030947288498282433, -0.02055155672132969, -0.004682833794504404, -0.14942355453968048, -0.11155889928340912, -0.040574122220277786, -0.09796879440546036, 0.0310922060161829, -0.061252932995557785, -0.007253988180309534, 0.2137940376996994, 0.04206644743680954, -0.037155523896217346, 0.08265867829322815, 0.11361649632453918, -0.05763515830039978, 0.008456067182123661, -0.01735234446823597, 0.047590356320142746, 0.013606737367808819, -0.04009507596492767, -0.12362807989120483, -0.05948122963309288, -0.05465562269091606, 0.022980552166700363, -0.12512487173080444, 0.0036922625731676817, -0.11609320342540741, -0.09535720199346542, -0.05275915563106537, 0.08529535681009293, -0.030510632321238518, 0.0811443105340004, -0.026278546079993248, 0.009919289499521255, 0.029944179579615593, 0.1835021674633026, -0.04192280024290085, -0.0590406134724617, -0.02542738802731037, 0.11160653829574585, 0.07349275797605515, 0.10939710587263107, 0.0011280501494184136, 0.020082328468561172, -0.06677515059709549, 0.28173384070396423, 0.17086274921894073, -0.030526410788297653, 0.03928123787045479, 0.036595381796360016, 0.04182777553796768, 0.10009481012821198, 0.08197150379419327, 0.10826930403709412, 0.27503615617752075, -0.13192179799079895, -0.06088581308722496, -0.06387332081794739, 0.025619816035032272, -0.1106836199760437, 0.005346698220819235, 0.023316459730267525, -0.05370739474892616, -0.05101607367396355, 0.124101921916008, -0.19061405956745148, 0.07384772598743439, 0.06298954784870148, -0.17634496092796326, -0.05943777784705162, -0.058336321264505386, 0.17602799832820892, 0.006839016918092966, 0.12007787823677063, -0.04769788309931755, -0.17997215688228607, 0.05190492048859596, 0.06494639813899994, -0.24755607545375824, -0.11760002374649048, 0.12967142462730408, 0.08530385047197342, -0.03757373243570328, -0.03779815509915352, 0.03514096140861511, 0.07324910908937454, 0.04822636768221855, -0.030313007533550262, 0.02903261035680771, 0.049090005457401276, -0.03741750866174698, -0.07850556820631027, -0.014528964646160603, 0.0115601671859622, -0.05517236888408661, 0.031778231263160706, -0.21098943054676056, 0.05196802690625191, -0.028904061764478683, -0.019288720563054085, -0.002307704882696271, 0.05447551608085632, -0.044121693819761276, 0.05675230175256729, 0.02386048622429371, -0.0021316318307071924, -0.038491390645504, -0.049021460115909576, -0.0022475598379969597, 0.06854350864887238, -0.022804049775004387, -0.12309081852436066, -0.057091958820819855, -0.07592685520648956, 0.06300830096006393, -0.01322084292769432, -0.06604528427124023, -0.010065888054668903, -0.06672178208827972, 0.04245912283658981, -0.10482724010944366, 0.03343906253576279, 0.02676355093717575, 0.04185395687818527, -0.009577959775924683, 0.04577081277966499, 0.03680959716439247, 0.07003176957368851, -0.12981559336185455, -0.07886998355388641 ]
null
null
transformers
"test_domain_only"
{}
null
gwkim22/domain_s_disc
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #electra #pretraining #endpoints_compatible #region-us
"test_domain_only"
[]
[ "TAGS\n#transformers #pytorch #electra #pretraining #endpoints_compatible #region-us \n" ]
[ 27 ]
[ "passage: TAGS\n#transformers #pytorch #electra #pretraining #endpoints_compatible #region-us \n" ]
[ -0.0756971538066864, 0.036188457161188126, -0.009415136650204659, -0.037658292800188065, 0.16592887043952942, 0.026989849284291267, 0.0005112319486215711, 0.04949172958731651, 0.06173074617981911, 0.007027134299278259, 0.15597198903560638, 0.2036423534154892, -0.03772604465484619, 0.04128161817789078, -0.05990905314683914, -0.2700495421886444, 0.08478225767612457, 0.09229439496994019, -0.08212776482105255, 0.11126063019037247, 0.0659293383359909, -0.11804993450641632, 0.048492807894945145, -0.01743023656308651, -0.11184567958116531, 0.03024609200656414, -0.025596311315894127, -0.09465152770280838, 0.13739638030529022, 0.028396213427186012, 0.19871650636196136, 0.01611001044511795, -0.08827465027570724, -0.18486835062503815, 0.03562929108738899, -0.0016426877118647099, -0.0702807828783989, 0.023731989786028862, 0.01123916357755661, -0.08364912867546082, 0.09210389852523804, 0.08747247606515884, 0.021376805379986763, 0.02932315692305565, -0.2099020928144455, -0.13468767702579498, -0.039248500019311905, 0.01525816973298788, 0.06765861064195633, 0.09177635610103607, 0.005332896485924721, 0.17689242959022522, -0.15360596776008606, 0.06535953283309937, 0.1188480332493782, -0.26857590675354004, 0.0021048865746706724, 0.03585214912891388, 0.1114022508263588, 0.04639068990945816, 0.01161353848874569, 0.02428305335342884, 0.031266141682863235, 0.02244303934276104, -0.056230735033750534, -0.06022847816348076, -0.03299247846007347, 0.07772453874349594, -0.13350637257099152, -0.10972550511360168, 0.2655334770679474, -0.027669498696923256, 0.05720799043774605, 0.043133530765771866, -0.09040695428848267, -0.09562412649393082, 0.02024168148636818, -0.004240364767611027, -0.033286161720752716, 0.06455978006124496, 0.06604234874248505, -0.004308104515075684, -0.12907330691814423, 0.03592544049024582, -0.19463478028774261, 0.3052941560745239, 0.03892635554075241, 0.06966620683670044, -0.1999710500240326, 0.06955006718635559, 0.01889742724597454, -0.0698351338505745, 0.011341177858412266, -0.0961623340845108, 0.010919119231402874, -0.016033027321100235, -0.08807231485843658, 0.02853204682469368, 0.06206042319536209, 0.19004260003566742, 0.036395587027072906, 0.030527135357260704, 0.06724114716053009, 0.11739540100097656, 0.056359536945819855, 0.07213728129863739, -0.007952061481773853, 0.05149845406413078, 0.006435554474592209, -0.11710356175899506, 0.013328306376934052, -0.03376786783337593, -0.09470032900571823, -0.06236766278743744, 0.01434097159653902, 0.12428028881549835, 0.009008275344967842, 0.0005504412110894918, -0.10316439718008041, -0.005405919160693884, 0.017403488978743553, -0.04461348429322243, -0.044085390865802765, -0.015382049605250359, -0.0031161552760750055, 0.15159063041210175, -0.013689191080629826, 0.01564869098365307, -0.048104431480169296, 0.09228809922933578, -0.08293066918849945, -0.022958116605877876, -0.05138938128948212, -0.02429366111755371, 0.05184052139520645, -0.16321037709712982, 0.1008109301328659, -0.15374122560024261, -0.09526503831148148, 0.008289664052426815, 0.06384812295436859, 0.029649510979652405, -0.014904729090631008, -0.009294605813920498, 0.0003518476733006537, -0.04622277989983559, -0.06142871454358101, -0.0850178524851799, -0.06799085438251495, 0.10634548217058182, 0.02235661819577217, 0.0408979170024395, -0.0838146060705185, 0.06476494669914246, -0.09400399774312973, 0.021791664883494377, -0.10231096297502518, -0.016176149249076843, -0.009186405688524246, 0.18150292336940765, -0.001088918186724186, -0.06731697171926498, -0.11602970957756042, 0.06578758358955383, -0.032009515911340714, 0.1739562451839447, -0.02662174589931965, -0.10742105543613434, 0.22346611320972443, -0.14008232951164246, -0.16819781064987183, 0.04958919435739517, -0.0029770040418952703, 0.005376794841140509, 0.06417956948280334, 0.12192060798406601, 0.023475611582398415, -0.10588141530752182, 0.07336920499801636, 0.06817415356636047, -0.1589258909225464, -0.15867944061756134, 0.03135969489812851, -0.020896214991807938, -0.08641835302114487, 0.018182609230279922, 0.017622308805584908, 0.09888523072004318, -0.09688249975442886, -0.020380118861794472, -0.007825249806046486, -0.017896555364131927, 0.06301192939281464, 0.07683245092630386, 0.04862435534596443, -0.07004353404045105, -0.02688227966427803, 0.02235882170498371, 0.029675068333745003, 0.023235086351633072, 0.03497021645307541, -0.0967378318309784, 0.0837063193321228, -0.05343646928668022, -0.01674649678170681, -0.22222042083740234, -0.10010827332735062, -0.03666314110159874, 0.06390219926834106, -0.025937577709555626, 0.2182159572839737, 0.06955723464488983, -0.07156158238649368, 0.024125874042510986, -0.05104024335741997, 0.06662891805171967, 0.0014548590406775475, -0.011962002143263817, -0.037856586277484894, 0.007546532899141312, -0.08246418833732605, -0.017504433169960976, -0.08097764104604721, 0.019701046869158745, 0.07482516020536423, 0.11983374506235123, -0.0007900566561147571, 0.04068903625011444, -0.012368736788630486, 0.06597230583429337, -0.034265365451574326, 0.014228359796106815, 0.09415315836668015, 0.01284877397119999, -0.06274543702602386, 0.06442776322364807, -0.13525815308094025, 0.32106640934944153, 0.17269548773765564, -0.28709879517555237, 0.010613495483994484, -0.009087181650102139, -0.041513703763484955, 0.016853556036949158, 0.0764055922627449, 0.015129716135561466, 0.11040361225605011, 0.03547031059861183, 0.11444143950939178, -0.02137548290193081, -0.026674607768654823, 0.003667747601866722, -0.05092567950487137, -0.03895152732729912, 0.0906050056219101, 0.1282183676958084, -0.1456066370010376, 0.15240059792995453, 0.19121237099170685, 0.010538025759160519, 0.11430074274539948, -0.058953601866960526, -0.014561807736754417, 0.04266371205449104, 0.019436439499258995, -0.03975715860724449, 0.02377229742705822, -0.25008708238601685, -0.028014522045850754, 0.061497606337070465, 0.005723595153540373, 0.09221754968166351, -0.15758000314235687, -0.07912229746580124, 0.03445560485124588, 0.03246993198990822, -0.04604678973555565, 0.09388037770986557, 0.017711903899908066, 0.06453678756952286, 0.013622337952256203, -0.05464360490441322, 0.10824865102767944, 0.0074797761626541615, -0.05102653056383133, 0.18016605079174042, -0.1150578185915947, -0.271793931722641, -0.10967765748500824, -0.04825923219323158, 0.06604378670454025, 0.019087273627519608, 0.07990498840808868, -0.0808032676577568, -0.0432458333671093, 0.09602087736129761, 0.061661988496780396, -0.16193823516368866, 0.010757634416222572, -0.006539980880916119, 0.06494733691215515, -0.10912805050611496, -0.0786307081580162, -0.04736020416021347, -0.06531484425067902, -0.03092031553387642, 0.11423152685165405, -0.09888184815645218, 0.07640188187360764, 0.13673429191112518, 0.04753933474421501, 0.06949514150619507, 0.0013784163165837526, 0.17524175345897675, -0.10115545988082886, -0.05972803384065628, 0.2049238085746765, -0.04518980532884598, 0.08214316517114639, 0.12418494373559952, 0.014020196162164211, -0.0878622978925705, 0.0032231316436082125, -0.07654650509357452, -0.10705605149269104, -0.23312532901763916, -0.11995543539524078, -0.13074687123298645, -0.018622469156980515, 0.02303459495306015, 0.05288185551762581, 0.07611245661973953, 0.09667252749204636, 0.023434516042470932, -0.1252344399690628, -0.04741457477211952, 0.04306744039058685, 0.2214028537273407, -0.012363872490823269, 0.07154741138219833, -0.08374137431383133, -0.09404508769512177, 0.056985776871442795, 0.039763204753398895, 0.2282608151435852, 0.12049819529056549, 0.027918696403503418, 0.07955649495124817, 0.13374394178390503, 0.15770773589611053, 0.12970823049545288, 0.019044430926442146, -0.046607282012701035, -0.015995441004633904, 0.034498997032642365, -0.09550739079713821, 0.02452228032052517, 0.11229217797517776, -0.12750400602817535, -0.077623151242733, -0.18612907826900482, 0.03149789944291115, 0.10223551839590073, 0.034785304218530655, -0.2103472650051117, -0.017381230369210243, 0.05634630471467972, -0.023988092318177223, -0.07721945643424988, 0.08704003691673279, -0.03771854564547539, -0.1258421540260315, 0.07177536934614182, -0.046510249376297, 0.09233162552118301, -0.04765688255429268, 0.06964170187711716, -0.05333482101559639, -0.09864311665296555, 0.05728254094719887, 0.08104672282934189, -0.2397114634513855, 0.2905753552913666, -0.01859200932085514, -0.040343593806028366, -0.055404093116521835, -0.028321675956249237, -0.01912134699523449, 0.16959726810455322, 0.10056858509778976, 0.016174672171473503, -0.1252007931470871, -0.1028304472565651, 0.0760577842593193, 0.04050489515066147, 0.10577133297920227, -0.05015445873141289, -0.022375648841261864, -0.0067756264470517635, 0.022014738991856575, -0.02700287662446499, -0.040073901414871216, 0.02861475571990013, -0.1410909742116928, 0.0409371517598629, 0.003155985614284873, 0.11101032048463821, -0.006117458455264568, -0.012503466568887234, -0.029729031026363373, 0.0983576774597168, -0.13571307063102722, -0.07317584753036499, -0.08494191616773605, -0.1183008998632431, 0.12166173756122589, -0.099920853972435, 0.10231272131204605, -0.0794784277677536, -0.03440702706575394, -0.08046305924654007, -0.130115807056427, 0.13587160408496857, -0.12541091442108154, 0.011890735477209091, -0.026201345026493073, 0.1698901504278183, 0.009158252738416195, -0.004318047780543566, -0.013212090358138084, 0.03558473661541939, -0.11779137700796127, -0.07495435327291489, 0.021309401839971542, -0.02231709286570549, 0.08620452880859375, 0.06740370392799377, -0.016238674521446228, 0.06712200492620468, 0.03289594128727913, -0.020050106570124626, 0.22343555092811584, 0.22011502087116241, -0.019101478159427643, 0.09279607981443405, 0.1806296855211258, -0.03300826624035835, -0.25283148884773254, -0.07059445232152939, -0.1305062472820282, -0.024195661768317223, -0.014072945341467857, -0.21452103555202484, 0.08213289827108383, 0.08126692473888397, -0.021842190995812416, 0.13971559703350067, -0.2648833990097046, -0.024427637457847595, 0.16540801525115967, -0.0027161419857293367, 0.4706745147705078, -0.12458478659391403, -0.05730745196342468, 0.025525521486997604, -0.20954492688179016, 0.10183122754096985, 0.062004204839468, 0.05383741855621338, -0.008521439507603645, 0.04422667622566223, 0.0246762465685606, -0.08058620244264603, 0.15657329559326172, 0.02817770279943943, 0.02563435211777687, -0.0961780995130539, -0.10026950389146805, 0.01725863851606846, -0.007735588122159243, -0.012727128341794014, 0.06994222104549408, 0.016107331961393356, -0.20630186796188354, -0.03130153566598892, -0.10572965443134308, 0.07918786257505417, 0.04753580316901207, -0.034337401390075684, -0.01384770218282938, -0.01825999841094017, -0.02678072080016136, 0.03486849367618561, 0.2824019193649292, -0.03131531551480293, 0.15590380132198334, 0.01465247105807066, 0.13802167773246765, -0.16354699432849884, -0.05957735702395439, -0.07483116537332535, -0.024123549461364746, 0.08845099806785583, -0.03023248352110386, 0.02761121280491352, 0.1609024554491043, -0.0233097355812788, 0.010213285684585571, 0.10653211176395416, 0.0033591582905501127, 0.008985853753983974, 0.12964291870594025, -0.19808430969715118, -0.04954221472144127, -0.02730712667107582, 0.05809199810028076, 0.09266384690999985, 0.12577274441719055, 0.09778114408254623, 0.058137062937021255, -0.029848599806427956, -0.029446985572576523, -0.030232803896069527, -0.05581061169505119, 0.020947134122252464, 0.08045008778572083, 0.04850328341126442, -0.10584069788455963, 0.057395149022340775, 0.00015370355686172843, -0.28082141280174255, -0.015278516337275505, 0.10573777556419373, -0.13181495666503906, -0.11628200113773346, -0.0865611657500267, 0.08121321350336075, -0.2130194902420044, -0.077885702252388, -0.04592939466238022, -0.10568059235811234, 0.09312018752098083, 0.26971736550331116, 0.10158795863389969, 0.07701178640127182, 0.0004125468258280307, 0.011747902259230614, -0.008425997570157051, -0.0877641811966896, 0.019449811428785324, -0.006162303499877453, -0.10682818293571472, -0.00003637229383457452, 0.011383664794266224, 0.14966310560703278, -0.07404141128063202, -0.11263212561607361, -0.1395740807056427, 0.1089731827378273, -0.07208147644996643, -0.09098554402589798, -0.12048707157373428, -0.06100872904062271, 0.014278542250394821, -0.09148665517568588, -0.036732666194438934, -0.033693525940179825, -0.13939543068408966, 0.08881844580173492, 0.024379605427384377, -0.013332867063581944, -0.03537499159574509, -0.033035241067409515, 0.13341675698757172, -0.04851583391427994, 0.10798247903585434, 0.1368611603975296, -0.0692794993519783, 0.1002373993396759, -0.0658748671412468, -0.10293056070804596, 0.11348698288202286, 0.005013204179704189, 0.04042736813426018, 0.03799609839916229, 0.021094253286719322, 0.05381801724433899, 0.0011939237592741847, 0.032132185995578766, -0.06032562628388405, -0.12729063630104065, 0.040287818759679794, 0.041167933493852615, -0.16028890013694763, -0.057740967720746994, -0.09129408746957779, 0.12719054520130157, 0.01684929057955742, 0.12032079696655273, 0.0301116481423378, 0.08398924767971039, -0.012819519266486168, 0.016407806426286697, 0.0018586699152365327, -0.1383214145898819, 0.040502384305000305, -0.06652599573135376, -0.00013012532144784927, 0.005226368084549904, 0.25173673033714294, -0.07361061125993729, 0.024225885048508644, 0.04549568518996239, 0.05058286711573601, -0.02208552323281765, 0.03764395788311958, 0.2210026979446411, 0.10788359493017197, -0.03189864754676819, -0.09650204330682755, 0.0713561400771141, -0.005394506733864546, -0.11640723794698715, 0.14631710946559906, 0.11238464713096619, 0.03583003580570221, 0.10191832482814789, -0.04195635765790939, 0.03969261422753334, -0.07160023599863052, -0.17671772837638855, 0.02718380279839039, 0.010272235609591007, 0.049173448234796524, 0.10213155299425125, 0.1745409518480301, -0.015740038827061653, 0.030947288498282433, -0.02055155672132969, -0.004682833794504404, -0.14942355453968048, -0.11155889928340912, -0.040574122220277786, -0.09796879440546036, 0.0310922060161829, -0.061252932995557785, -0.007253988180309534, 0.2137940376996994, 0.04206644743680954, -0.037155523896217346, 0.08265867829322815, 0.11361649632453918, -0.05763515830039978, 0.008456067182123661, -0.01735234446823597, 0.047590356320142746, 0.013606737367808819, -0.04009507596492767, -0.12362807989120483, -0.05948122963309288, -0.05465562269091606, 0.022980552166700363, -0.12512487173080444, 0.0036922625731676817, -0.11609320342540741, -0.09535720199346542, -0.05275915563106537, 0.08529535681009293, -0.030510632321238518, 0.0811443105340004, -0.026278546079993248, 0.009919289499521255, 0.029944179579615593, 0.1835021674633026, -0.04192280024290085, -0.0590406134724617, -0.02542738802731037, 0.11160653829574585, 0.07349275797605515, 0.10939710587263107, 0.0011280501494184136, 0.020082328468561172, -0.06677515059709549, 0.28173384070396423, 0.17086274921894073, -0.030526410788297653, 0.03928123787045479, 0.036595381796360016, 0.04182777553796768, 0.10009481012821198, 0.08197150379419327, 0.10826930403709412, 0.27503615617752075, -0.13192179799079895, -0.06088581308722496, -0.06387332081794739, 0.025619816035032272, -0.1106836199760437, 0.005346698220819235, 0.023316459730267525, -0.05370739474892616, -0.05101607367396355, 0.124101921916008, -0.19061405956745148, 0.07384772598743439, 0.06298954784870148, -0.17634496092796326, -0.05943777784705162, -0.058336321264505386, 0.17602799832820892, 0.006839016918092966, 0.12007787823677063, -0.04769788309931755, -0.17997215688228607, 0.05190492048859596, 0.06494639813899994, -0.24755607545375824, -0.11760002374649048, 0.12967142462730408, 0.08530385047197342, -0.03757373243570328, -0.03779815509915352, 0.03514096140861511, 0.07324910908937454, 0.04822636768221855, -0.030313007533550262, 0.02903261035680771, 0.049090005457401276, -0.03741750866174698, -0.07850556820631027, -0.014528964646160603, 0.0115601671859622, -0.05517236888408661, 0.031778231263160706, -0.21098943054676056, 0.05196802690625191, -0.028904061764478683, -0.019288720563054085, -0.002307704882696271, 0.05447551608085632, -0.044121693819761276, 0.05675230175256729, 0.02386048622429371, -0.0021316318307071924, -0.038491390645504, -0.049021460115909576, -0.0022475598379969597, 0.06854350864887238, -0.022804049775004387, -0.12309081852436066, -0.057091958820819855, -0.07592685520648956, 0.06300830096006393, -0.01322084292769432, -0.06604528427124023, -0.010065888054668903, -0.06672178208827972, 0.04245912283658981, -0.10482724010944366, 0.03343906253576279, 0.02676355093717575, 0.04185395687818527, -0.009577959775924683, 0.04577081277966499, 0.03680959716439247, 0.07003176957368851, -0.12981559336185455, -0.07886998355388641 ]
null
null
transformers
"general_base_test"
{}
null
gwkim22/general_b_disc
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #electra #pretraining #endpoints_compatible #region-us
"general_base_test"
[]
[ "TAGS\n#transformers #pytorch #electra #pretraining #endpoints_compatible #region-us \n" ]
[ 27 ]
[ "passage: TAGS\n#transformers #pytorch #electra #pretraining #endpoints_compatible #region-us \n" ]
[ -0.0756971538066864, 0.036188457161188126, -0.009415136650204659, -0.037658292800188065, 0.16592887043952942, 0.026989849284291267, 0.0005112319486215711, 0.04949172958731651, 0.06173074617981911, 0.007027134299278259, 0.15597198903560638, 0.2036423534154892, -0.03772604465484619, 0.04128161817789078, -0.05990905314683914, -0.2700495421886444, 0.08478225767612457, 0.09229439496994019, -0.08212776482105255, 0.11126063019037247, 0.0659293383359909, -0.11804993450641632, 0.048492807894945145, -0.01743023656308651, -0.11184567958116531, 0.03024609200656414, -0.025596311315894127, -0.09465152770280838, 0.13739638030529022, 0.028396213427186012, 0.19871650636196136, 0.01611001044511795, -0.08827465027570724, -0.18486835062503815, 0.03562929108738899, -0.0016426877118647099, -0.0702807828783989, 0.023731989786028862, 0.01123916357755661, -0.08364912867546082, 0.09210389852523804, 0.08747247606515884, 0.021376805379986763, 0.02932315692305565, -0.2099020928144455, -0.13468767702579498, -0.039248500019311905, 0.01525816973298788, 0.06765861064195633, 0.09177635610103607, 0.005332896485924721, 0.17689242959022522, -0.15360596776008606, 0.06535953283309937, 0.1188480332493782, -0.26857590675354004, 0.0021048865746706724, 0.03585214912891388, 0.1114022508263588, 0.04639068990945816, 0.01161353848874569, 0.02428305335342884, 0.031266141682863235, 0.02244303934276104, -0.056230735033750534, -0.06022847816348076, -0.03299247846007347, 0.07772453874349594, -0.13350637257099152, -0.10972550511360168, 0.2655334770679474, -0.027669498696923256, 0.05720799043774605, 0.043133530765771866, -0.09040695428848267, -0.09562412649393082, 0.02024168148636818, -0.004240364767611027, -0.033286161720752716, 0.06455978006124496, 0.06604234874248505, -0.004308104515075684, -0.12907330691814423, 0.03592544049024582, -0.19463478028774261, 0.3052941560745239, 0.03892635554075241, 0.06966620683670044, -0.1999710500240326, 0.06955006718635559, 0.01889742724597454, -0.0698351338505745, 0.011341177858412266, -0.0961623340845108, 0.010919119231402874, -0.016033027321100235, -0.08807231485843658, 0.02853204682469368, 0.06206042319536209, 0.19004260003566742, 0.036395587027072906, 0.030527135357260704, 0.06724114716053009, 0.11739540100097656, 0.056359536945819855, 0.07213728129863739, -0.007952061481773853, 0.05149845406413078, 0.006435554474592209, -0.11710356175899506, 0.013328306376934052, -0.03376786783337593, -0.09470032900571823, -0.06236766278743744, 0.01434097159653902, 0.12428028881549835, 0.009008275344967842, 0.0005504412110894918, -0.10316439718008041, -0.005405919160693884, 0.017403488978743553, -0.04461348429322243, -0.044085390865802765, -0.015382049605250359, -0.0031161552760750055, 0.15159063041210175, -0.013689191080629826, 0.01564869098365307, -0.048104431480169296, 0.09228809922933578, -0.08293066918849945, -0.022958116605877876, -0.05138938128948212, -0.02429366111755371, 0.05184052139520645, -0.16321037709712982, 0.1008109301328659, -0.15374122560024261, -0.09526503831148148, 0.008289664052426815, 0.06384812295436859, 0.029649510979652405, -0.014904729090631008, -0.009294605813920498, 0.0003518476733006537, -0.04622277989983559, -0.06142871454358101, -0.0850178524851799, -0.06799085438251495, 0.10634548217058182, 0.02235661819577217, 0.0408979170024395, -0.0838146060705185, 0.06476494669914246, -0.09400399774312973, 0.021791664883494377, -0.10231096297502518, -0.016176149249076843, -0.009186405688524246, 0.18150292336940765, -0.001088918186724186, -0.06731697171926498, -0.11602970957756042, 0.06578758358955383, -0.032009515911340714, 0.1739562451839447, -0.02662174589931965, -0.10742105543613434, 0.22346611320972443, -0.14008232951164246, -0.16819781064987183, 0.04958919435739517, -0.0029770040418952703, 0.005376794841140509, 0.06417956948280334, 0.12192060798406601, 0.023475611582398415, -0.10588141530752182, 0.07336920499801636, 0.06817415356636047, -0.1589258909225464, -0.15867944061756134, 0.03135969489812851, -0.020896214991807938, -0.08641835302114487, 0.018182609230279922, 0.017622308805584908, 0.09888523072004318, -0.09688249975442886, -0.020380118861794472, -0.007825249806046486, -0.017896555364131927, 0.06301192939281464, 0.07683245092630386, 0.04862435534596443, -0.07004353404045105, -0.02688227966427803, 0.02235882170498371, 0.029675068333745003, 0.023235086351633072, 0.03497021645307541, -0.0967378318309784, 0.0837063193321228, -0.05343646928668022, -0.01674649678170681, -0.22222042083740234, -0.10010827332735062, -0.03666314110159874, 0.06390219926834106, -0.025937577709555626, 0.2182159572839737, 0.06955723464488983, -0.07156158238649368, 0.024125874042510986, -0.05104024335741997, 0.06662891805171967, 0.0014548590406775475, -0.011962002143263817, -0.037856586277484894, 0.007546532899141312, -0.08246418833732605, -0.017504433169960976, -0.08097764104604721, 0.019701046869158745, 0.07482516020536423, 0.11983374506235123, -0.0007900566561147571, 0.04068903625011444, -0.012368736788630486, 0.06597230583429337, -0.034265365451574326, 0.014228359796106815, 0.09415315836668015, 0.01284877397119999, -0.06274543702602386, 0.06442776322364807, -0.13525815308094025, 0.32106640934944153, 0.17269548773765564, -0.28709879517555237, 0.010613495483994484, -0.009087181650102139, -0.041513703763484955, 0.016853556036949158, 0.0764055922627449, 0.015129716135561466, 0.11040361225605011, 0.03547031059861183, 0.11444143950939178, -0.02137548290193081, -0.026674607768654823, 0.003667747601866722, -0.05092567950487137, -0.03895152732729912, 0.0906050056219101, 0.1282183676958084, -0.1456066370010376, 0.15240059792995453, 0.19121237099170685, 0.010538025759160519, 0.11430074274539948, -0.058953601866960526, -0.014561807736754417, 0.04266371205449104, 0.019436439499258995, -0.03975715860724449, 0.02377229742705822, -0.25008708238601685, -0.028014522045850754, 0.061497606337070465, 0.005723595153540373, 0.09221754968166351, -0.15758000314235687, -0.07912229746580124, 0.03445560485124588, 0.03246993198990822, -0.04604678973555565, 0.09388037770986557, 0.017711903899908066, 0.06453678756952286, 0.013622337952256203, -0.05464360490441322, 0.10824865102767944, 0.0074797761626541615, -0.05102653056383133, 0.18016605079174042, -0.1150578185915947, -0.271793931722641, -0.10967765748500824, -0.04825923219323158, 0.06604378670454025, 0.019087273627519608, 0.07990498840808868, -0.0808032676577568, -0.0432458333671093, 0.09602087736129761, 0.061661988496780396, -0.16193823516368866, 0.010757634416222572, -0.006539980880916119, 0.06494733691215515, -0.10912805050611496, -0.0786307081580162, -0.04736020416021347, -0.06531484425067902, -0.03092031553387642, 0.11423152685165405, -0.09888184815645218, 0.07640188187360764, 0.13673429191112518, 0.04753933474421501, 0.06949514150619507, 0.0013784163165837526, 0.17524175345897675, -0.10115545988082886, -0.05972803384065628, 0.2049238085746765, -0.04518980532884598, 0.08214316517114639, 0.12418494373559952, 0.014020196162164211, -0.0878622978925705, 0.0032231316436082125, -0.07654650509357452, -0.10705605149269104, -0.23312532901763916, -0.11995543539524078, -0.13074687123298645, -0.018622469156980515, 0.02303459495306015, 0.05288185551762581, 0.07611245661973953, 0.09667252749204636, 0.023434516042470932, -0.1252344399690628, -0.04741457477211952, 0.04306744039058685, 0.2214028537273407, -0.012363872490823269, 0.07154741138219833, -0.08374137431383133, -0.09404508769512177, 0.056985776871442795, 0.039763204753398895, 0.2282608151435852, 0.12049819529056549, 0.027918696403503418, 0.07955649495124817, 0.13374394178390503, 0.15770773589611053, 0.12970823049545288, 0.019044430926442146, -0.046607282012701035, -0.015995441004633904, 0.034498997032642365, -0.09550739079713821, 0.02452228032052517, 0.11229217797517776, -0.12750400602817535, -0.077623151242733, -0.18612907826900482, 0.03149789944291115, 0.10223551839590073, 0.034785304218530655, -0.2103472650051117, -0.017381230369210243, 0.05634630471467972, -0.023988092318177223, -0.07721945643424988, 0.08704003691673279, -0.03771854564547539, -0.1258421540260315, 0.07177536934614182, -0.046510249376297, 0.09233162552118301, -0.04765688255429268, 0.06964170187711716, -0.05333482101559639, -0.09864311665296555, 0.05728254094719887, 0.08104672282934189, -0.2397114634513855, 0.2905753552913666, -0.01859200932085514, -0.040343593806028366, -0.055404093116521835, -0.028321675956249237, -0.01912134699523449, 0.16959726810455322, 0.10056858509778976, 0.016174672171473503, -0.1252007931470871, -0.1028304472565651, 0.0760577842593193, 0.04050489515066147, 0.10577133297920227, -0.05015445873141289, -0.022375648841261864, -0.0067756264470517635, 0.022014738991856575, -0.02700287662446499, -0.040073901414871216, 0.02861475571990013, -0.1410909742116928, 0.0409371517598629, 0.003155985614284873, 0.11101032048463821, -0.006117458455264568, -0.012503466568887234, -0.029729031026363373, 0.0983576774597168, -0.13571307063102722, -0.07317584753036499, -0.08494191616773605, -0.1183008998632431, 0.12166173756122589, -0.099920853972435, 0.10231272131204605, -0.0794784277677536, -0.03440702706575394, -0.08046305924654007, -0.130115807056427, 0.13587160408496857, -0.12541091442108154, 0.011890735477209091, -0.026201345026493073, 0.1698901504278183, 0.009158252738416195, -0.004318047780543566, -0.013212090358138084, 0.03558473661541939, -0.11779137700796127, -0.07495435327291489, 0.021309401839971542, -0.02231709286570549, 0.08620452880859375, 0.06740370392799377, -0.016238674521446228, 0.06712200492620468, 0.03289594128727913, -0.020050106570124626, 0.22343555092811584, 0.22011502087116241, -0.019101478159427643, 0.09279607981443405, 0.1806296855211258, -0.03300826624035835, -0.25283148884773254, -0.07059445232152939, -0.1305062472820282, -0.024195661768317223, -0.014072945341467857, -0.21452103555202484, 0.08213289827108383, 0.08126692473888397, -0.021842190995812416, 0.13971559703350067, -0.2648833990097046, -0.024427637457847595, 0.16540801525115967, -0.0027161419857293367, 0.4706745147705078, -0.12458478659391403, -0.05730745196342468, 0.025525521486997604, -0.20954492688179016, 0.10183122754096985, 0.062004204839468, 0.05383741855621338, -0.008521439507603645, 0.04422667622566223, 0.0246762465685606, -0.08058620244264603, 0.15657329559326172, 0.02817770279943943, 0.02563435211777687, -0.0961780995130539, -0.10026950389146805, 0.01725863851606846, -0.007735588122159243, -0.012727128341794014, 0.06994222104549408, 0.016107331961393356, -0.20630186796188354, -0.03130153566598892, -0.10572965443134308, 0.07918786257505417, 0.04753580316901207, -0.034337401390075684, -0.01384770218282938, -0.01825999841094017, -0.02678072080016136, 0.03486849367618561, 0.2824019193649292, -0.03131531551480293, 0.15590380132198334, 0.01465247105807066, 0.13802167773246765, -0.16354699432849884, -0.05957735702395439, -0.07483116537332535, -0.024123549461364746, 0.08845099806785583, -0.03023248352110386, 0.02761121280491352, 0.1609024554491043, -0.0233097355812788, 0.010213285684585571, 0.10653211176395416, 0.0033591582905501127, 0.008985853753983974, 0.12964291870594025, -0.19808430969715118, -0.04954221472144127, -0.02730712667107582, 0.05809199810028076, 0.09266384690999985, 0.12577274441719055, 0.09778114408254623, 0.058137062937021255, -0.029848599806427956, -0.029446985572576523, -0.030232803896069527, -0.05581061169505119, 0.020947134122252464, 0.08045008778572083, 0.04850328341126442, -0.10584069788455963, 0.057395149022340775, 0.00015370355686172843, -0.28082141280174255, -0.015278516337275505, 0.10573777556419373, -0.13181495666503906, -0.11628200113773346, -0.0865611657500267, 0.08121321350336075, -0.2130194902420044, -0.077885702252388, -0.04592939466238022, -0.10568059235811234, 0.09312018752098083, 0.26971736550331116, 0.10158795863389969, 0.07701178640127182, 0.0004125468258280307, 0.011747902259230614, -0.008425997570157051, -0.0877641811966896, 0.019449811428785324, -0.006162303499877453, -0.10682818293571472, -0.00003637229383457452, 0.011383664794266224, 0.14966310560703278, -0.07404141128063202, -0.11263212561607361, -0.1395740807056427, 0.1089731827378273, -0.07208147644996643, -0.09098554402589798, -0.12048707157373428, -0.06100872904062271, 0.014278542250394821, -0.09148665517568588, -0.036732666194438934, -0.033693525940179825, -0.13939543068408966, 0.08881844580173492, 0.024379605427384377, -0.013332867063581944, -0.03537499159574509, -0.033035241067409515, 0.13341675698757172, -0.04851583391427994, 0.10798247903585434, 0.1368611603975296, -0.0692794993519783, 0.1002373993396759, -0.0658748671412468, -0.10293056070804596, 0.11348698288202286, 0.005013204179704189, 0.04042736813426018, 0.03799609839916229, 0.021094253286719322, 0.05381801724433899, 0.0011939237592741847, 0.032132185995578766, -0.06032562628388405, -0.12729063630104065, 0.040287818759679794, 0.041167933493852615, -0.16028890013694763, -0.057740967720746994, -0.09129408746957779, 0.12719054520130157, 0.01684929057955742, 0.12032079696655273, 0.0301116481423378, 0.08398924767971039, -0.012819519266486168, 0.016407806426286697, 0.0018586699152365327, -0.1383214145898819, 0.040502384305000305, -0.06652599573135376, -0.00013012532144784927, 0.005226368084549904, 0.25173673033714294, -0.07361061125993729, 0.024225885048508644, 0.04549568518996239, 0.05058286711573601, -0.02208552323281765, 0.03764395788311958, 0.2210026979446411, 0.10788359493017197, -0.03189864754676819, -0.09650204330682755, 0.0713561400771141, -0.005394506733864546, -0.11640723794698715, 0.14631710946559906, 0.11238464713096619, 0.03583003580570221, 0.10191832482814789, -0.04195635765790939, 0.03969261422753334, -0.07160023599863052, -0.17671772837638855, 0.02718380279839039, 0.010272235609591007, 0.049173448234796524, 0.10213155299425125, 0.1745409518480301, -0.015740038827061653, 0.030947288498282433, -0.02055155672132969, -0.004682833794504404, -0.14942355453968048, -0.11155889928340912, -0.040574122220277786, -0.09796879440546036, 0.0310922060161829, -0.061252932995557785, -0.007253988180309534, 0.2137940376996994, 0.04206644743680954, -0.037155523896217346, 0.08265867829322815, 0.11361649632453918, -0.05763515830039978, 0.008456067182123661, -0.01735234446823597, 0.047590356320142746, 0.013606737367808819, -0.04009507596492767, -0.12362807989120483, -0.05948122963309288, -0.05465562269091606, 0.022980552166700363, -0.12512487173080444, 0.0036922625731676817, -0.11609320342540741, -0.09535720199346542, -0.05275915563106537, 0.08529535681009293, -0.030510632321238518, 0.0811443105340004, -0.026278546079993248, 0.009919289499521255, 0.029944179579615593, 0.1835021674633026, -0.04192280024290085, -0.0590406134724617, -0.02542738802731037, 0.11160653829574585, 0.07349275797605515, 0.10939710587263107, 0.0011280501494184136, 0.020082328468561172, -0.06677515059709549, 0.28173384070396423, 0.17086274921894073, -0.030526410788297653, 0.03928123787045479, 0.036595381796360016, 0.04182777553796768, 0.10009481012821198, 0.08197150379419327, 0.10826930403709412, 0.27503615617752075, -0.13192179799079895, -0.06088581308722496, -0.06387332081794739, 0.025619816035032272, -0.1106836199760437, 0.005346698220819235, 0.023316459730267525, -0.05370739474892616, -0.05101607367396355, 0.124101921916008, -0.19061405956745148, 0.07384772598743439, 0.06298954784870148, -0.17634496092796326, -0.05943777784705162, -0.058336321264505386, 0.17602799832820892, 0.006839016918092966, 0.12007787823677063, -0.04769788309931755, -0.17997215688228607, 0.05190492048859596, 0.06494639813899994, -0.24755607545375824, -0.11760002374649048, 0.12967142462730408, 0.08530385047197342, -0.03757373243570328, -0.03779815509915352, 0.03514096140861511, 0.07324910908937454, 0.04822636768221855, -0.030313007533550262, 0.02903261035680771, 0.049090005457401276, -0.03741750866174698, -0.07850556820631027, -0.014528964646160603, 0.0115601671859622, -0.05517236888408661, 0.031778231263160706, -0.21098943054676056, 0.05196802690625191, -0.028904061764478683, -0.019288720563054085, -0.002307704882696271, 0.05447551608085632, -0.044121693819761276, 0.05675230175256729, 0.02386048622429371, -0.0021316318307071924, -0.038491390645504, -0.049021460115909576, -0.0022475598379969597, 0.06854350864887238, -0.022804049775004387, -0.12309081852436066, -0.057091958820819855, -0.07592685520648956, 0.06300830096006393, -0.01322084292769432, -0.06604528427124023, -0.010065888054668903, -0.06672178208827972, 0.04245912283658981, -0.10482724010944366, 0.03343906253576279, 0.02676355093717575, 0.04185395687818527, -0.009577959775924683, 0.04577081277966499, 0.03680959716439247, 0.07003176957368851, -0.12981559336185455, -0.07886998355388641 ]
null
null
transformers
"general_test"
{}
null
gwkim22/general_s_disc
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #electra #pretraining #endpoints_compatible #region-us
"general_test"
[]
[ "TAGS\n#transformers #pytorch #electra #pretraining #endpoints_compatible #region-us \n" ]
[ 27 ]
[ "passage: TAGS\n#transformers #pytorch #electra #pretraining #endpoints_compatible #region-us \n" ]
[ -0.0756971538066864, 0.036188457161188126, -0.009415136650204659, -0.037658292800188065, 0.16592887043952942, 0.026989849284291267, 0.0005112319486215711, 0.04949172958731651, 0.06173074617981911, 0.007027134299278259, 0.15597198903560638, 0.2036423534154892, -0.03772604465484619, 0.04128161817789078, -0.05990905314683914, -0.2700495421886444, 0.08478225767612457, 0.09229439496994019, -0.08212776482105255, 0.11126063019037247, 0.0659293383359909, -0.11804993450641632, 0.048492807894945145, -0.01743023656308651, -0.11184567958116531, 0.03024609200656414, -0.025596311315894127, -0.09465152770280838, 0.13739638030529022, 0.028396213427186012, 0.19871650636196136, 0.01611001044511795, -0.08827465027570724, -0.18486835062503815, 0.03562929108738899, -0.0016426877118647099, -0.0702807828783989, 0.023731989786028862, 0.01123916357755661, -0.08364912867546082, 0.09210389852523804, 0.08747247606515884, 0.021376805379986763, 0.02932315692305565, -0.2099020928144455, -0.13468767702579498, -0.039248500019311905, 0.01525816973298788, 0.06765861064195633, 0.09177635610103607, 0.005332896485924721, 0.17689242959022522, -0.15360596776008606, 0.06535953283309937, 0.1188480332493782, -0.26857590675354004, 0.0021048865746706724, 0.03585214912891388, 0.1114022508263588, 0.04639068990945816, 0.01161353848874569, 0.02428305335342884, 0.031266141682863235, 0.02244303934276104, -0.056230735033750534, -0.06022847816348076, -0.03299247846007347, 0.07772453874349594, -0.13350637257099152, -0.10972550511360168, 0.2655334770679474, -0.027669498696923256, 0.05720799043774605, 0.043133530765771866, -0.09040695428848267, -0.09562412649393082, 0.02024168148636818, -0.004240364767611027, -0.033286161720752716, 0.06455978006124496, 0.06604234874248505, -0.004308104515075684, -0.12907330691814423, 0.03592544049024582, -0.19463478028774261, 0.3052941560745239, 0.03892635554075241, 0.06966620683670044, -0.1999710500240326, 0.06955006718635559, 0.01889742724597454, -0.0698351338505745, 0.011341177858412266, -0.0961623340845108, 0.010919119231402874, -0.016033027321100235, -0.08807231485843658, 0.02853204682469368, 0.06206042319536209, 0.19004260003566742, 0.036395587027072906, 0.030527135357260704, 0.06724114716053009, 0.11739540100097656, 0.056359536945819855, 0.07213728129863739, -0.007952061481773853, 0.05149845406413078, 0.006435554474592209, -0.11710356175899506, 0.013328306376934052, -0.03376786783337593, -0.09470032900571823, -0.06236766278743744, 0.01434097159653902, 0.12428028881549835, 0.009008275344967842, 0.0005504412110894918, -0.10316439718008041, -0.005405919160693884, 0.017403488978743553, -0.04461348429322243, -0.044085390865802765, -0.015382049605250359, -0.0031161552760750055, 0.15159063041210175, -0.013689191080629826, 0.01564869098365307, -0.048104431480169296, 0.09228809922933578, -0.08293066918849945, -0.022958116605877876, -0.05138938128948212, -0.02429366111755371, 0.05184052139520645, -0.16321037709712982, 0.1008109301328659, -0.15374122560024261, -0.09526503831148148, 0.008289664052426815, 0.06384812295436859, 0.029649510979652405, -0.014904729090631008, -0.009294605813920498, 0.0003518476733006537, -0.04622277989983559, -0.06142871454358101, -0.0850178524851799, -0.06799085438251495, 0.10634548217058182, 0.02235661819577217, 0.0408979170024395, -0.0838146060705185, 0.06476494669914246, -0.09400399774312973, 0.021791664883494377, -0.10231096297502518, -0.016176149249076843, -0.009186405688524246, 0.18150292336940765, -0.001088918186724186, -0.06731697171926498, -0.11602970957756042, 0.06578758358955383, -0.032009515911340714, 0.1739562451839447, -0.02662174589931965, -0.10742105543613434, 0.22346611320972443, -0.14008232951164246, -0.16819781064987183, 0.04958919435739517, -0.0029770040418952703, 0.005376794841140509, 0.06417956948280334, 0.12192060798406601, 0.023475611582398415, -0.10588141530752182, 0.07336920499801636, 0.06817415356636047, -0.1589258909225464, -0.15867944061756134, 0.03135969489812851, -0.020896214991807938, -0.08641835302114487, 0.018182609230279922, 0.017622308805584908, 0.09888523072004318, -0.09688249975442886, -0.020380118861794472, -0.007825249806046486, -0.017896555364131927, 0.06301192939281464, 0.07683245092630386, 0.04862435534596443, -0.07004353404045105, -0.02688227966427803, 0.02235882170498371, 0.029675068333745003, 0.023235086351633072, 0.03497021645307541, -0.0967378318309784, 0.0837063193321228, -0.05343646928668022, -0.01674649678170681, -0.22222042083740234, -0.10010827332735062, -0.03666314110159874, 0.06390219926834106, -0.025937577709555626, 0.2182159572839737, 0.06955723464488983, -0.07156158238649368, 0.024125874042510986, -0.05104024335741997, 0.06662891805171967, 0.0014548590406775475, -0.011962002143263817, -0.037856586277484894, 0.007546532899141312, -0.08246418833732605, -0.017504433169960976, -0.08097764104604721, 0.019701046869158745, 0.07482516020536423, 0.11983374506235123, -0.0007900566561147571, 0.04068903625011444, -0.012368736788630486, 0.06597230583429337, -0.034265365451574326, 0.014228359796106815, 0.09415315836668015, 0.01284877397119999, -0.06274543702602386, 0.06442776322364807, -0.13525815308094025, 0.32106640934944153, 0.17269548773765564, -0.28709879517555237, 0.010613495483994484, -0.009087181650102139, -0.041513703763484955, 0.016853556036949158, 0.0764055922627449, 0.015129716135561466, 0.11040361225605011, 0.03547031059861183, 0.11444143950939178, -0.02137548290193081, -0.026674607768654823, 0.003667747601866722, -0.05092567950487137, -0.03895152732729912, 0.0906050056219101, 0.1282183676958084, -0.1456066370010376, 0.15240059792995453, 0.19121237099170685, 0.010538025759160519, 0.11430074274539948, -0.058953601866960526, -0.014561807736754417, 0.04266371205449104, 0.019436439499258995, -0.03975715860724449, 0.02377229742705822, -0.25008708238601685, -0.028014522045850754, 0.061497606337070465, 0.005723595153540373, 0.09221754968166351, -0.15758000314235687, -0.07912229746580124, 0.03445560485124588, 0.03246993198990822, -0.04604678973555565, 0.09388037770986557, 0.017711903899908066, 0.06453678756952286, 0.013622337952256203, -0.05464360490441322, 0.10824865102767944, 0.0074797761626541615, -0.05102653056383133, 0.18016605079174042, -0.1150578185915947, -0.271793931722641, -0.10967765748500824, -0.04825923219323158, 0.06604378670454025, 0.019087273627519608, 0.07990498840808868, -0.0808032676577568, -0.0432458333671093, 0.09602087736129761, 0.061661988496780396, -0.16193823516368866, 0.010757634416222572, -0.006539980880916119, 0.06494733691215515, -0.10912805050611496, -0.0786307081580162, -0.04736020416021347, -0.06531484425067902, -0.03092031553387642, 0.11423152685165405, -0.09888184815645218, 0.07640188187360764, 0.13673429191112518, 0.04753933474421501, 0.06949514150619507, 0.0013784163165837526, 0.17524175345897675, -0.10115545988082886, -0.05972803384065628, 0.2049238085746765, -0.04518980532884598, 0.08214316517114639, 0.12418494373559952, 0.014020196162164211, -0.0878622978925705, 0.0032231316436082125, -0.07654650509357452, -0.10705605149269104, -0.23312532901763916, -0.11995543539524078, -0.13074687123298645, -0.018622469156980515, 0.02303459495306015, 0.05288185551762581, 0.07611245661973953, 0.09667252749204636, 0.023434516042470932, -0.1252344399690628, -0.04741457477211952, 0.04306744039058685, 0.2214028537273407, -0.012363872490823269, 0.07154741138219833, -0.08374137431383133, -0.09404508769512177, 0.056985776871442795, 0.039763204753398895, 0.2282608151435852, 0.12049819529056549, 0.027918696403503418, 0.07955649495124817, 0.13374394178390503, 0.15770773589611053, 0.12970823049545288, 0.019044430926442146, -0.046607282012701035, -0.015995441004633904, 0.034498997032642365, -0.09550739079713821, 0.02452228032052517, 0.11229217797517776, -0.12750400602817535, -0.077623151242733, -0.18612907826900482, 0.03149789944291115, 0.10223551839590073, 0.034785304218530655, -0.2103472650051117, -0.017381230369210243, 0.05634630471467972, -0.023988092318177223, -0.07721945643424988, 0.08704003691673279, -0.03771854564547539, -0.1258421540260315, 0.07177536934614182, -0.046510249376297, 0.09233162552118301, -0.04765688255429268, 0.06964170187711716, -0.05333482101559639, -0.09864311665296555, 0.05728254094719887, 0.08104672282934189, -0.2397114634513855, 0.2905753552913666, -0.01859200932085514, -0.040343593806028366, -0.055404093116521835, -0.028321675956249237, -0.01912134699523449, 0.16959726810455322, 0.10056858509778976, 0.016174672171473503, -0.1252007931470871, -0.1028304472565651, 0.0760577842593193, 0.04050489515066147, 0.10577133297920227, -0.05015445873141289, -0.022375648841261864, -0.0067756264470517635, 0.022014738991856575, -0.02700287662446499, -0.040073901414871216, 0.02861475571990013, -0.1410909742116928, 0.0409371517598629, 0.003155985614284873, 0.11101032048463821, -0.006117458455264568, -0.012503466568887234, -0.029729031026363373, 0.0983576774597168, -0.13571307063102722, -0.07317584753036499, -0.08494191616773605, -0.1183008998632431, 0.12166173756122589, -0.099920853972435, 0.10231272131204605, -0.0794784277677536, -0.03440702706575394, -0.08046305924654007, -0.130115807056427, 0.13587160408496857, -0.12541091442108154, 0.011890735477209091, -0.026201345026493073, 0.1698901504278183, 0.009158252738416195, -0.004318047780543566, -0.013212090358138084, 0.03558473661541939, -0.11779137700796127, -0.07495435327291489, 0.021309401839971542, -0.02231709286570549, 0.08620452880859375, 0.06740370392799377, -0.016238674521446228, 0.06712200492620468, 0.03289594128727913, -0.020050106570124626, 0.22343555092811584, 0.22011502087116241, -0.019101478159427643, 0.09279607981443405, 0.1806296855211258, -0.03300826624035835, -0.25283148884773254, -0.07059445232152939, -0.1305062472820282, -0.024195661768317223, -0.014072945341467857, -0.21452103555202484, 0.08213289827108383, 0.08126692473888397, -0.021842190995812416, 0.13971559703350067, -0.2648833990097046, -0.024427637457847595, 0.16540801525115967, -0.0027161419857293367, 0.4706745147705078, -0.12458478659391403, -0.05730745196342468, 0.025525521486997604, -0.20954492688179016, 0.10183122754096985, 0.062004204839468, 0.05383741855621338, -0.008521439507603645, 0.04422667622566223, 0.0246762465685606, -0.08058620244264603, 0.15657329559326172, 0.02817770279943943, 0.02563435211777687, -0.0961780995130539, -0.10026950389146805, 0.01725863851606846, -0.007735588122159243, -0.012727128341794014, 0.06994222104549408, 0.016107331961393356, -0.20630186796188354, -0.03130153566598892, -0.10572965443134308, 0.07918786257505417, 0.04753580316901207, -0.034337401390075684, -0.01384770218282938, -0.01825999841094017, -0.02678072080016136, 0.03486849367618561, 0.2824019193649292, -0.03131531551480293, 0.15590380132198334, 0.01465247105807066, 0.13802167773246765, -0.16354699432849884, -0.05957735702395439, -0.07483116537332535, -0.024123549461364746, 0.08845099806785583, -0.03023248352110386, 0.02761121280491352, 0.1609024554491043, -0.0233097355812788, 0.010213285684585571, 0.10653211176395416, 0.0033591582905501127, 0.008985853753983974, 0.12964291870594025, -0.19808430969715118, -0.04954221472144127, -0.02730712667107582, 0.05809199810028076, 0.09266384690999985, 0.12577274441719055, 0.09778114408254623, 0.058137062937021255, -0.029848599806427956, -0.029446985572576523, -0.030232803896069527, -0.05581061169505119, 0.020947134122252464, 0.08045008778572083, 0.04850328341126442, -0.10584069788455963, 0.057395149022340775, 0.00015370355686172843, -0.28082141280174255, -0.015278516337275505, 0.10573777556419373, -0.13181495666503906, -0.11628200113773346, -0.0865611657500267, 0.08121321350336075, -0.2130194902420044, -0.077885702252388, -0.04592939466238022, -0.10568059235811234, 0.09312018752098083, 0.26971736550331116, 0.10158795863389969, 0.07701178640127182, 0.0004125468258280307, 0.011747902259230614, -0.008425997570157051, -0.0877641811966896, 0.019449811428785324, -0.006162303499877453, -0.10682818293571472, -0.00003637229383457452, 0.011383664794266224, 0.14966310560703278, -0.07404141128063202, -0.11263212561607361, -0.1395740807056427, 0.1089731827378273, -0.07208147644996643, -0.09098554402589798, -0.12048707157373428, -0.06100872904062271, 0.014278542250394821, -0.09148665517568588, -0.036732666194438934, -0.033693525940179825, -0.13939543068408966, 0.08881844580173492, 0.024379605427384377, -0.013332867063581944, -0.03537499159574509, -0.033035241067409515, 0.13341675698757172, -0.04851583391427994, 0.10798247903585434, 0.1368611603975296, -0.0692794993519783, 0.1002373993396759, -0.0658748671412468, -0.10293056070804596, 0.11348698288202286, 0.005013204179704189, 0.04042736813426018, 0.03799609839916229, 0.021094253286719322, 0.05381801724433899, 0.0011939237592741847, 0.032132185995578766, -0.06032562628388405, -0.12729063630104065, 0.040287818759679794, 0.041167933493852615, -0.16028890013694763, -0.057740967720746994, -0.09129408746957779, 0.12719054520130157, 0.01684929057955742, 0.12032079696655273, 0.0301116481423378, 0.08398924767971039, -0.012819519266486168, 0.016407806426286697, 0.0018586699152365327, -0.1383214145898819, 0.040502384305000305, -0.06652599573135376, -0.00013012532144784927, 0.005226368084549904, 0.25173673033714294, -0.07361061125993729, 0.024225885048508644, 0.04549568518996239, 0.05058286711573601, -0.02208552323281765, 0.03764395788311958, 0.2210026979446411, 0.10788359493017197, -0.03189864754676819, -0.09650204330682755, 0.0713561400771141, -0.005394506733864546, -0.11640723794698715, 0.14631710946559906, 0.11238464713096619, 0.03583003580570221, 0.10191832482814789, -0.04195635765790939, 0.03969261422753334, -0.07160023599863052, -0.17671772837638855, 0.02718380279839039, 0.010272235609591007, 0.049173448234796524, 0.10213155299425125, 0.1745409518480301, -0.015740038827061653, 0.030947288498282433, -0.02055155672132969, -0.004682833794504404, -0.14942355453968048, -0.11155889928340912, -0.040574122220277786, -0.09796879440546036, 0.0310922060161829, -0.061252932995557785, -0.007253988180309534, 0.2137940376996994, 0.04206644743680954, -0.037155523896217346, 0.08265867829322815, 0.11361649632453918, -0.05763515830039978, 0.008456067182123661, -0.01735234446823597, 0.047590356320142746, 0.013606737367808819, -0.04009507596492767, -0.12362807989120483, -0.05948122963309288, -0.05465562269091606, 0.022980552166700363, -0.12512487173080444, 0.0036922625731676817, -0.11609320342540741, -0.09535720199346542, -0.05275915563106537, 0.08529535681009293, -0.030510632321238518, 0.0811443105340004, -0.026278546079993248, 0.009919289499521255, 0.029944179579615593, 0.1835021674633026, -0.04192280024290085, -0.0590406134724617, -0.02542738802731037, 0.11160653829574585, 0.07349275797605515, 0.10939710587263107, 0.0011280501494184136, 0.020082328468561172, -0.06677515059709549, 0.28173384070396423, 0.17086274921894073, -0.030526410788297653, 0.03928123787045479, 0.036595381796360016, 0.04182777553796768, 0.10009481012821198, 0.08197150379419327, 0.10826930403709412, 0.27503615617752075, -0.13192179799079895, -0.06088581308722496, -0.06387332081794739, 0.025619816035032272, -0.1106836199760437, 0.005346698220819235, 0.023316459730267525, -0.05370739474892616, -0.05101607367396355, 0.124101921916008, -0.19061405956745148, 0.07384772598743439, 0.06298954784870148, -0.17634496092796326, -0.05943777784705162, -0.058336321264505386, 0.17602799832820892, 0.006839016918092966, 0.12007787823677063, -0.04769788309931755, -0.17997215688228607, 0.05190492048859596, 0.06494639813899994, -0.24755607545375824, -0.11760002374649048, 0.12967142462730408, 0.08530385047197342, -0.03757373243570328, -0.03779815509915352, 0.03514096140861511, 0.07324910908937454, 0.04822636768221855, -0.030313007533550262, 0.02903261035680771, 0.049090005457401276, -0.03741750866174698, -0.07850556820631027, -0.014528964646160603, 0.0115601671859622, -0.05517236888408661, 0.031778231263160706, -0.21098943054676056, 0.05196802690625191, -0.028904061764478683, -0.019288720563054085, -0.002307704882696271, 0.05447551608085632, -0.044121693819761276, 0.05675230175256729, 0.02386048622429371, -0.0021316318307071924, -0.038491390645504, -0.049021460115909576, -0.0022475598379969597, 0.06854350864887238, -0.022804049775004387, -0.12309081852436066, -0.057091958820819855, -0.07592685520648956, 0.06300830096006393, -0.01322084292769432, -0.06604528427124023, -0.010065888054668903, -0.06672178208827972, 0.04245912283658981, -0.10482724010944366, 0.03343906253576279, 0.02676355093717575, 0.04185395687818527, -0.009577959775924683, 0.04577081277966499, 0.03680959716439247, 0.07003176957368851, -0.12981559336185455, -0.07886998355388641 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 13 | 3.6429 | 15.3135 | 1.0725 | 12.0447 | 12.445 | 18.97 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": [], "model_index": [{"name": "t5-small-finetuned-xsum", "results": [{"task": {"name": "Sequence-to-sequence Language Modeling", "type": "text2text-generation"}}]}]}
text2text-generation
gwynethfae/t5-small-finetuned-xsum
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-xsum ======================= This model is a fine-tuned version of t5-small on the None dataset. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.9.0 * Pytorch 1.9.0+cu102 * Datasets 1.10.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ -0.08283249288797379, 0.05920879915356636, -0.002843111287802458, 0.11237236857414246, 0.15036314725875854, 0.018679006025195122, 0.13573141396045685, 0.13408248126506805, -0.11354569345712662, 0.029939066618680954, 0.12577372789382935, 0.16291524469852448, 0.022072603926062584, 0.1273190975189209, -0.05221661925315857, -0.2629818022251129, -0.011668317951261997, 0.048211779445409775, -0.025858700275421143, 0.144624724984169, 0.09053394198417664, -0.1187538281083107, 0.07946170121431351, -0.004102709703147411, -0.19441674649715424, 0.0068229385651648045, -0.0009709019213914871, -0.061423469334840775, 0.1519700586795807, 0.02531588263809681, 0.11178175359964371, 0.010467425920069218, 0.06686136871576309, -0.1872088462114334, 0.011163517832756042, 0.05766616761684418, -0.001088242745026946, 0.09092745929956436, 0.05151451751589775, 0.01297738403081894, 0.16774876415729523, -0.06607705354690552, 0.04287528619170189, 0.014396587386727333, -0.11124569177627563, -0.18150725960731506, -0.07974075525999069, 0.0421004556119442, 0.07506392896175385, 0.11398015171289444, -0.014867065474390984, 0.1370408684015274, -0.07117896527051926, 0.11070816218852997, 0.2393655627965927, -0.3013233542442322, -0.06077969819307327, 0.015237818472087383, 0.03571249544620514, 0.08673722296953201, -0.08290055394172668, -0.02802719734609127, 0.043833792209625244, 0.05614246800541878, 0.13002251088619232, -0.030464207753539085, -0.12838438153266907, 0.0028923877980560064, -0.14715531468391418, -0.050186675041913986, 0.16677217185497284, 0.02892003394663334, -0.023052461445331573, -0.05751524493098259, -0.08227375149726868, -0.1726832538843155, -0.029099982231855392, -0.020471738651394844, 0.03751017898321152, -0.023609230294823647, -0.05201363191008568, -0.03045593574643135, -0.1159401461482048, -0.05845212563872337, -0.08060450851917267, 0.10148701071739197, 0.0457647442817688, 0.002897480968385935, -0.04361087456345558, 0.10795387625694275, -0.0014832473825663328, -0.12804342806339264, 0.029694989323616028, 0.034703198820352554, 0.030965706333518028, -0.029645444825291634, -0.062176767736673355, -0.10695900768041611, 0.01410800963640213, 0.10423029959201813, -0.05334381014108658, 0.04084606468677521, 0.008603325113654137, 0.054824430495500565, -0.09743066132068634, 0.16885912418365479, -0.03285305202007294, -0.016746459528803825, 0.017292028293013573, 0.047807469964027405, 0.036716531962156296, -0.021318504586815834, -0.13144443929195404, 0.012163720093667507, 0.11383739858865738, 0.01811259798705578, -0.05681496858596802, 0.07907981425523758, -0.0394989438354969, -0.021177155897021294, -0.007255646865814924, -0.09924954921007156, 0.017235513776540756, -0.004225678741931915, -0.07129446417093277, -0.009925298392772675, 0.03889205679297447, 0.0070116869173944, -0.06103982403874397, 0.0975356325507164, -0.07813073694705963, 0.026203857734799385, -0.09574553370475769, -0.11765007674694061, 0.022100593894720078, -0.0898195207118988, 0.008665909059345722, -0.10287024825811386, -0.18278691172599792, -0.010644459165632725, 0.053755104541778564, -0.022826489061117172, -0.06043186038732529, -0.06452277302742004, -0.08361217379570007, 0.012663102708756924, -0.027431290596723557, 0.1366027593612671, -0.06339503079652786, 0.1080562099814415, 0.021913565695285797, 0.06290189176797867, -0.051989082247018814, 0.0601268969476223, -0.09755844622850418, -0.00037837759009562433, -0.15786941349506378, 0.04420710355043411, -0.03149307891726494, 0.05753293260931969, -0.08371885865926743, -0.10422378033399582, -0.004048885777592659, 0.004120070952922106, 0.07595770806074142, 0.09071861207485199, -0.1741643249988556, -0.07925739884376526, 0.184933140873909, -0.07323163002729416, -0.12649813294410706, 0.13063126802444458, -0.05418965965509415, 0.05999665707349777, 0.06670885533094406, 0.19163727760314941, 0.05123743414878845, -0.08014900982379913, 0.016846761107444763, 0.008939229883253574, 0.04740498214960098, -0.06337501108646393, 0.055423539131879807, 0.003215715056285262, 0.03683844208717346, 0.029364336282014847, -0.0074999588541686535, 0.05628469958901405, -0.08567505329847336, -0.08416363596916199, -0.04608463495969772, -0.07738181948661804, 0.025729477405548096, 0.06410472095012665, 0.08185289800167084, -0.10509141534566879, -0.08957446366548538, 0.047157131135463715, 0.07228092849254608, -0.08038155734539032, 0.041878245770931244, -0.05672440305352211, 0.07887224853038788, -0.01958560012280941, -0.005776435602456331, -0.1834375262260437, -0.020113609731197357, 0.01531708613038063, 0.0068717035464942455, 0.027386542409658432, 0.022671034559607506, 0.058865949511528015, 0.061026059091091156, -0.044367969036102295, -0.00940254982560873, -0.03021140955388546, -0.012001145631074905, -0.130731999874115, -0.18225114047527313, -0.017771843820810318, -0.01901886984705925, 0.12181767076253891, -0.2007572203874588, 0.04674103111028671, -0.002893191995099187, 0.06545744091272354, 0.011720763519406319, -0.005531346891075373, -0.03969884291291237, 0.08188021183013916, -0.05767175182700157, -0.043741077184677124, 0.0815090537071228, 0.014901377260684967, -0.0858096182346344, -0.02564110793173313, -0.13445523381233215, 0.15168830752372742, 0.1415553092956543, -0.12501536309719086, -0.07267700880765915, -0.0033681311178952456, -0.06355345994234085, -0.03545344993472099, -0.03578673675656319, 0.00979423988610506, 0.18886366486549377, -0.005706884898245335, 0.16367186605930328, -0.07925643026828766, -0.048100221902132034, 0.022924747318029404, -0.03368566185235977, 0.034102510660886765, 0.12793588638305664, 0.12400063127279282, -0.06790625303983688, 0.14665038883686066, 0.14202980697155, -0.09269458800554276, 0.1523594707250595, -0.04209407791495323, -0.07735542207956314, -0.0035037933848798275, -0.0038376094307750463, -0.00516607565805316, 0.07125174254179001, -0.1721489578485489, -0.005689613986760378, 0.029635479673743248, 0.020220575854182243, 0.03857096657156944, -0.22810956835746765, -0.027549412101507187, 0.02923082932829857, -0.05534578859806061, -0.002140390919521451, -0.00789033342152834, 0.0034307618625462055, 0.11413806676864624, -0.00839376263320446, -0.08676358312368393, 0.03614071011543274, 0.0013138382928445935, -0.08856579661369324, 0.20814788341522217, -0.07942896336317062, -0.18426451086997986, -0.11961571127176285, -0.07194282114505768, -0.047727763652801514, 0.0030666599050164223, 0.0808425098657608, -0.0725862979888916, -0.026551201939582825, -0.09273087233304977, 0.026504242792725563, 0.007781155873090029, 0.021035250276327133, 0.0035319135058671236, 0.00033107263152487576, 0.04887448996305466, -0.11452509462833405, -0.016178466379642487, -0.058563943952322006, -0.06052423268556595, 0.054989561438560486, 0.020936807617545128, 0.11339463293552399, 0.16840659081935883, -0.019118547439575195, 0.015539874322712421, -0.037409547716379166, 0.2093460112810135, -0.06464951485395432, -0.012928671203553677, 0.15048952400684357, -0.007436738349497318, 0.059213828295469284, 0.10497728735208511, 0.0553823858499527, -0.08141955733299255, 0.016167104244232178, 0.023972375318408012, -0.041051171720027924, -0.23582786321640015, -0.04654257372021675, -0.06470736116170883, 0.01741727627813816, 0.08632713556289673, 0.03150564059615135, 0.05046818032860756, 0.060503896325826645, 0.03967371582984924, 0.0849989652633667, -0.017939003184437752, 0.06047691032290459, 0.13897307217121124, 0.033812593668699265, 0.13181595504283905, -0.050590597093105316, -0.064982108771801, 0.048338696360588074, -0.0072318436577916145, 0.22163407504558563, -0.006980676669627428, 0.15809035301208496, 0.059121210128068924, 0.1586594432592392, -0.004209983628243208, 0.08419713377952576, -0.01835450902581215, -0.027359679341316223, -0.02242661453783512, -0.04755773767828941, -0.03995991498231888, 0.01929418556392193, -0.08324562758207321, 0.04103467985987663, -0.11100853234529495, 0.00621482590213418, 0.058059100061655045, 0.2554401755332947, 0.03228457644581795, -0.3225533962249756, -0.08750758320093155, -0.0021105995401740074, -0.051405634731054306, -0.017109109088778496, 0.03798450157046318, 0.11388476192951202, -0.08641151338815689, 0.028188377618789673, -0.07170171290636063, 0.09960814565420151, -0.04473097249865532, 0.058649737387895584, 0.057431910187006, 0.08488701283931732, 0.013659794814884663, 0.08926926553249359, -0.31869491934776306, 0.2694118916988373, -0.004616261925548315, 0.059980351477861404, -0.08768821507692337, 0.007970409467816353, 0.025256935507059097, 0.047789566218853, 0.06909497082233429, -0.019927699118852615, -0.022738484665751457, -0.1487521231174469, -0.06701308488845825, 0.031459908932447433, 0.08901702612638474, -0.022963782772421837, 0.09218859672546387, -0.03329326957464218, 0.009294748306274414, 0.06711287796497345, 0.0007359397131949663, -0.039438165724277496, -0.10203029960393906, 0.0037349422927945852, 0.02529315836727619, -0.04701756685972214, -0.05363859608769417, -0.11373363435268402, -0.11602195352315903, 0.16199761629104614, -0.01875154674053192, -0.04417318105697632, -0.09753365814685822, 0.07671023160219193, 0.054219577461481094, -0.0882062166929245, 0.03948643058538437, 0.009169058874249458, 0.06535813212394714, 0.02352582849562168, -0.07775378972291946, 0.11177024990320206, -0.06285376101732254, -0.16617169976234436, -0.055096354335546494, 0.11896016448736191, 0.01590763032436371, 0.05868881940841675, -0.010326522402465343, 0.004879240412265062, -0.052749983966350555, -0.08794615417718887, 0.009705375880002975, -0.011761840432882309, 0.0775706097483635, 0.01027513574808836, -0.06694064289331436, -0.00019489155965857208, -0.06706710904836655, -0.04497295618057251, 0.21732474863529205, 0.21996214985847473, -0.08434346318244934, 0.03527739271521568, 0.03716808930039406, -0.07652788609266281, -0.20285315811634064, 0.007329033222049475, 0.0555926114320755, 0.002433312125504017, 0.03530333191156387, -0.17868919670581818, 0.09902135282754898, 0.10451409220695496, -0.009397678077220917, 0.11870083957910538, -0.36114561557769775, -0.13123728334903717, 0.11909213662147522, 0.1454957276582718, 0.10782070457935333, -0.1542862504720688, -0.021237190812826157, -0.02520957589149475, -0.11632618308067322, 0.12785787880420685, -0.09999366849660873, 0.12976984679698944, -0.026145951822400093, 0.10492561012506485, 0.005483496468514204, -0.06089632585644722, 0.09292028844356537, 0.011089530773460865, 0.08105365186929703, -0.07571859657764435, -0.008983874693512917, 0.045116011053323746, -0.03644157201051712, 0.036157574504613876, -0.10560256987810135, 0.02975832298398018, -0.09346351027488708, -0.024254700168967247, -0.06951320916414261, 0.036745745688676834, -0.03572644665837288, -0.06481871753931046, -0.03567073121666908, -0.004562058951705694, 0.05688602477312088, -0.007172572426497936, 0.13361239433288574, 0.014511293731629848, 0.1484956443309784, 0.13269537687301636, 0.07270451635122299, -0.07836176455020905, -0.055913712829351425, -0.02316814661026001, -0.014668864198029041, 0.049743570387363434, -0.14475750923156738, 0.021690141409635544, 0.14682205021381378, 0.01564251258969307, 0.14587609469890594, 0.08202556520700455, -0.03302314877510071, 0.014605175703763962, 0.06046886742115021, -0.17992304265499115, -0.09604687988758087, -0.01589927449822426, -0.05632499232888222, -0.09086333960294724, 0.05515000596642494, 0.10654918849468231, -0.07430528104305267, -0.002999089192599058, -0.005963588133454323, 0.01665685512125492, -0.04673938453197479, 0.18465296924114227, 0.04364725202322006, 0.04276072978973389, -0.0945228561758995, 0.07258221507072449, 0.051532961428165436, -0.08513092994689941, 0.024936039000749588, 0.1085624173283577, -0.08659972250461578, -0.05544702336192131, 0.07183558493852615, 0.1690213978290558, -0.04623638466000557, -0.046418096870183945, -0.13903076946735382, -0.11748569458723068, 0.08724530786275864, 0.16662301123142242, 0.0992385596036911, 0.013307572342455387, -0.0700780600309372, 0.00762852281332016, -0.11892891675233841, 0.0995437502861023, 0.042636703699827194, 0.060125578194856644, -0.12108708173036575, 0.16498155891895294, 0.019324956461787224, 0.04342615231871605, -0.026672350242733955, 0.025394994765520096, -0.09458126872777939, 0.0143854059278965, -0.11030837148427963, -0.015221532434225082, -0.02039756439626217, -0.003086452605202794, -0.008853812702000141, -0.03789772838354111, -0.05753385275602341, 0.012195294722914696, -0.11375371366739273, -0.02232723869383335, 0.01750694215297699, 0.05199466645717621, -0.11431897431612015, -0.025912245735526085, 0.01977040432393551, -0.06545380502939224, 0.08746402710676193, 0.047698523849248886, -0.0024698874913156033, 0.06516154110431671, -0.14426228404045105, 0.01876569166779518, 0.07513290643692017, 0.03358128294348717, 0.051274336874485016, -0.06541356444358826, -0.007415322586894035, 0.010239173658192158, 0.04794684052467346, 0.020463688299059868, 0.0770418792963028, -0.1416005939245224, 0.008219437673687935, -0.02656840905547142, -0.08222870528697968, -0.07026691734790802, 0.03653809055685997, 0.056692540645599365, 0.017468752339482307, 0.189754456281662, -0.0846613422036171, 0.044963251799345016, -0.20803393423557281, 0.0074019404128193855, 0.006005166098475456, -0.11697692424058914, -0.10447704792022705, -0.07082860171794891, 0.06286726891994476, -0.06365914642810822, 0.13722433149814606, 0.04051961749792099, 0.022849781438708305, 0.024614384397864342, -0.019397350028157234, 0.0022219866514205933, 0.009532405994832516, 0.20781506597995758, 0.02612175978720188, -0.03702828288078308, 0.03275724872946739, 0.03561892732977867, 0.10657425969839096, 0.1124744564294815, 0.2138403058052063, 0.13939817249774933, -0.010139444842934608, 0.09855466336011887, 0.03463045880198479, -0.05020724609494209, -0.16696441173553467, 0.03537450730800629, -0.03674367070198059, 0.1323556900024414, -0.030365565791726112, 0.2203505039215088, 0.07915278524160385, -0.14762882888317108, 0.0417974516749382, -0.049137040972709656, -0.0835077166557312, -0.11154170334339142, -0.07046351581811905, -0.08228931576013565, -0.13637667894363403, -0.006410093978047371, -0.12129306048154831, 0.028568077832460403, 0.11509052664041519, 0.019197745248675346, -0.034490764141082764, 0.15241335332393646, 0.018757015466690063, 0.000016126094124047086, 0.06599362939596176, 0.004258086439222097, -0.025510380044579506, -0.12238667905330658, -0.06375354528427124, -0.015321976505219936, -0.0002670307003427297, 0.042395852506160736, -0.037454135715961456, -0.039678189903497696, 0.03006950207054615, -0.04107734188437462, -0.08853285759687424, 0.009002693928778172, 0.02151322364807129, 0.0650334358215332, 0.05475753918290138, 0.009636737406253815, -0.0011172234080731869, -0.004647266119718552, 0.2202562838792801, -0.07626184076070786, -0.09229262173175812, -0.08584944158792496, 0.23600751161575317, 0.04156463220715523, -0.017004821449518204, 0.029088862240314484, -0.060748141258955, -0.012180093675851822, 0.26481372117996216, 0.2120516151189804, -0.0811837911605835, -0.01242730300873518, 0.015307622030377388, -0.002499643247574568, -0.01804106868803501, 0.12215843051671982, 0.15594355762004852, 0.08393561094999313, -0.08273369073867798, -0.03384341672062874, -0.0511135496199131, -0.003867772873491049, -0.05582832172513008, 0.07631022483110428, 0.043574582785367966, -0.0008666145149618387, -0.03153329715132713, 0.05380704626441002, -0.07547658681869507, -0.09663550555706024, 0.012067912146449089, -0.21846666932106018, -0.1582704335451126, -0.00023043698456604034, 0.12893635034561157, -0.004501264076679945, 0.058125853538513184, -0.023601723834872246, 0.007431108970195055, 0.07707838714122772, -0.020411072298884392, -0.09518180787563324, -0.0443420447409153, 0.0823744535446167, -0.14859528839588165, 0.1927880048751831, -0.04381454363465309, 0.06289387494325638, 0.1222936362028122, 0.06246757134795189, -0.06135091930627823, 0.08760014921426773, 0.04008081182837486, -0.041931748390197754, 0.03367794305086136, 0.08028613030910492, -0.02959555573761463, 0.04140106216073036, 0.052759453654289246, -0.1277891993522644, 0.012416510842740536, -0.06175563856959343, -0.051240138709545135, -0.03158359229564667, -0.04316374287009239, -0.06255009770393372, 0.12409102916717529, 0.21078822016716003, -0.029682649299502373, 0.0074254292994737625, -0.08354683220386505, -0.0016482406063005328, 0.04249878600239754, 0.026002414524555206, -0.05007607117295265, -0.22421464323997498, -0.0022056042216718197, 0.05793328583240509, -0.015709375962615013, -0.26148921251296997, -0.0815066397190094, -0.0037525203078985214, -0.06367938220500946, -0.12604136765003204, 0.07520366460084915, 0.09900526702404022, 0.04282047227025032, -0.05583696812391281, -0.04050716012716293, -0.07371973991394043, 0.1537974774837494, -0.1452220380306244, -0.08741209656000137 ]
null
null
null
# MultiLingual CLIP Multilingual CLIP is a pre-trained model which can be used for multilingual semantic search and zero-shot image classification in 100 languages. # Model Architecture Multilingual CLIP was built using [OpenAI CLIP](https://github.com/openai/CLIP) model. I have used the same Vision encoder (ResNet 50x4), but instead I replaced their text encoder (Transformer) with a Mulilingual Text Encoder ([XLM-Roberta](https://huggingface.co/xlm-roberta-large)) and a configurable number of projection heads, as seen below: ![Model Architecture](https://challengepost-s3-challengepost.netdna-ssl.com/photos/production/software_photos/001/858/046/datas/gallery.jpg) The model was trained in a distributed fashion on 16 Habana Gaudi Accelerators and with mixed Precision in two phases (using COCO Dataset for phase 1 and Google Conceptual Captions for phase 2). The training pipeline was built using PyTorch, PyTorch Lightning, and Distributed Data Parallel. # Datasets Three datasets have been used for building the model. COCO captions was used for training phase 1 and Google Conceptual Captions was used for training phase 2. Unsplash dataset was used for testing and inference. ## COCO Captions COCO (Common Objects in Context) is a large-scale object detection, segmentation, and captioning dataset. The COCO captions dataset has around ~85000 images and captions pairs. Run the following to download the dataset: ```bash ./download_coco.sh ``` This dataset was used for the first pre-training phase. ## Google Conceptual Captions Conceptual Captions is a dataset consisting of ~3.3 million images annotated with captions. In contrast with the curated style of other image caption annotations, Conceptual Caption images and their raw descriptions are harvested from the web, and therefore represent a wider variety of styles. Download the datasets urls/captions from [here](https://storage.cloud.google.com/gcc-data/Train/GCC-training.tsv?_ga=2.191230122.-1896153081.1529438250) as save it to `datasets/googlecc/googlecc.tsv`. The full dataset has over 3 million images, but you can select a subset by loading the `googlecc.tsv` file and saving only the number of rows you want (I have used 1 million images for training). Then run the following commands to download each image on the `googlecc.tsv` file: ```bash npm install node download_build_googlecc.js ``` This dataset was used for the second pre-training phase. ## Unplash This dataset was used as the test set during inference. Run `python3.8 download_unsplash.py` to download the dataset. # Training ![Training phase 1](https://challengepost-s3-challengepost.netdna-ssl.com/photos/production/software_photos/001/858/047/datas/gallery.jpg) ![Training phase 2](https://challengepost-s3-challengepost.netdna-ssl.com/photos/production/software_photos/001/858/048/datas/gallery.jpg) ## Setup Create two Habana instances ([AWS EC2 DL1](https://aws.amazon.com/ec2/instance-types/dl1/)) using [Habana® Deep Learning Base AMI (Ubuntu 20.04)](https://aws.amazon.com/marketplace/pp/prodview-fw46rwuxrtfse) Create the PyTorch docker container running: ```bash docker run --name pytorch -td --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host --ipc=host vault.habana.ai/gaudi-docker/1.2.0/ubuntu20.04/habanalabs/pytorch-installer-1.10.0:1.2.0-585 ``` Enter the docker image by running: ``` docker exec -it pytorch /bin/bash ``` #### Setup password-less ssh between all connected servers 1. Configure password-less ssh between all nodes: Do the following in all the nodes' docker sessions: ```bash mkdir ~/.ssh cd ~/.ssh ssh-keygen -t rsa -b 4096 ``` Copy id_rsa.pub contents from every node's docker to every other node's docker's ~/.ssh/authorized_keys (all public keys need to be in all hosts' authorized_keys): ```bash cat id_rsa.pub > authorized_keys vi authorized_keys ``` Copy the contents from inside to other systems. Paste all hosts' public keys in all hosts' “authorized_keys” file. 2. On each system: Add all hosts (including itself) to known_hosts. The IP addresses used below are just for illustration: ```bash ssh-keyscan -p 3022 -H $IP1 >> ~/.ssh/known_hosts ssh-keyscan -p 3022 -H $IP2 >> ~/.ssh/known_hosts ``` 3. Change Docker SSH port to 3022 ```bash sed -i 's/#Port 22/Port 3022/g' /etc/ssh/sshd_config sed -i 's/#PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_config service ssh restart ``` [Allow all TCP](https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html) traffic between the nodes on AWS Clone the git repo: ```bash git clone https://github.com/gzomer/clip-multilingual ``` Create environment: ```bash python3.8 -m venv .env ``` Install requirements: ```bash python3.8 -r requirements.txt ``` Activate environment ```bash source .env/bin/activate ``` ## Training params Learning rate: 1e-3 Batch size: 64 Phase 1 - Epochs: 100 Phase 2 - Epochs: 15 ## Train script arguments ``` --dataset-num-workers Number of workers (default: 8) --dataset-type Dataset type (coco or googlecc) (default: coco) --dataset-dir Dataset dir (default: ./datasets/coco/) --dataset-subset-size Load only a subset of the dataset (useful for debugging) --dataset-train-split Dataset train split (default: 0.8) --train-device Type of device to use (default: hpu) --distributed-num-nodes Number of nodes (machines) (default: 2) --distributed-parallel-devices Number of parallel devices per node (default: 8) --distributed-master-address Master node IP address --distributed-master-port Master node port (default: 12345) --distributed-bucket-cap-mb DDP bucket cap MB (default: 200) --checkpoint-dir Model checkpoint dir (default: ./models) --checkpoint-save-every-n Save every n epochs (default: 1) --checkpoint-load-vision-path Load vision encoder checkpoint --checkpoint-load-text-path Load text encoder checkpoint --model-visual-name Which visual model to use (default: RN50x4) --model-textual-name Which textual model to use (default: xlm-roberta-base) --hyperparam-num-layers Number of layers (default: 3) --hyperparam-lr Model learning rate (default: 0.001) --hyperparam-epochs Max epochs (default: 100) --hyperparam-precision Precision (default: 16) --hyperparam-batch-size Batch size (default: 64) --wandb-project W&B project name (default: clip) --wandb-enabled W&B is enabled? (default: True) ``` ## Habana Gaudi - 8 accelerators ### Phase 1 training ```bash python3.8 train.py --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 1 ``` ### Phase 2 training ```bash python3.8 train.py --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 1 --hyperparam-epochs 15 --checkpoint-load-text-path /home/models/text-last.ckpt --checkpoint-load-vision-path /home/models/vision-last.ckpt --checkpoint-dir ./models_phase2 ``` ## Habana Gaudi - 16 accelerators (multi-server training) Change the master IP address based on your instances (use local IP, not public IP). ### Phase 1 training ```bash NODE_RANK=0 python3.8 train.py --distributed-master-address 172.31.86.231 --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 2 ``` ```bash NODE_RANK=1 python3.8 train.py --distributed-master-address 172.31.86.231 --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 2 ``` ### Phase 2 training ```bash NODE_RANK=0 python3.8 train.py --distributed-master-address 172.31.86.231 --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 2 --hyperparam-epochs 10 --checkpoint-load-text-path /home/models/text-last.ckpt --checkpoint-load-vision-path /home/models/vision-last.ckpt --checkpoint-dir ./models_phase2 ``` ```bash NODE_RANK=1 python3.8 train.py --distributed-master-address 172.31.86.231 --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 2 --hyperparam-epochs 15 --checkpoint-load-text-path /home/models/text-last.ckpt --checkpoint-load-vision-path /home/models/vision-last.ckpt --checkpoint-dir ./models_phase2 ``` ## Other devices If you don't have access to a Habana Gaudi accelerator yet, you can also train on CPU/GPU, although it will be way slower. To train on CPU, just pass `--train-device=cpu` and on GPU `--train-device=cuda` to the `train.py` script. # Inference ## Loading pre-trained model from Hugging Face HUB ```python from models import create_and_load_from_hub model = create_and_load_from_hub() ``` ## Loading model from local checkpoint ```python from models import MultiLingualCLIP, load_model text_checkpoint_path = '/path/to/text model checkpoint' vision_checkpoint_path = '/path/to/vision model checkpoint' model = MultiLingualCLIP(num_layers=3) load_model(model, vision_checkpoint_path, text_checkpoint_path) ``` ## Generate embeddings Run the following (after downloading Unplash dataset): `python3.8 ./generate_embeddings.py` ## Searching images ```python import numpy as np from search import MultiLingualSearch images_embeddings = np.load('/path/to/images_embeddings') images_data = [...] # List of image info for each row of the embeddings. For instance, it could be a list of urls, filepaths, ids. They will be returned when calling the search function semantic_search = MultiLingualSearch(model, images_embeddings, images_data) results = semantic_search.search('विद्यालय में') # Means at school print(results) ``` ```json [{"image": "https://images.unsplash.com/photo-1557804506-669a67965ba0?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwyNDg3OTV8MHwxfHNlYXJjaHwxM3x8bWVldGluZ3N8ZW58MHx8fHwxNjQ1NjA2MjQz&ixlib=rb-1.2.1&q=80&w=400", "prob": 0.2461608648300171}, {"image": "https://images.unsplash.com/photo-1558403194-611308249627?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwyNDg3OTV8MHwxfHNlYXJjaHwyMXx8cGVvcGxlJTIwd29ya2luZ3xlbnwwfHx8fDE2NDU2MDMyMjE&ixlib=rb-1.2.1&q=80&w=400", "prob": 0.16881239414215088}, {"image": "https://images.unsplash.com/photo-1531497865144-0464ef8fb9a9?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwyNDg3OTV8MHwxfHNlYXJjaHw4Nnx8cGVvcGxlJTIwd29ya2luZ3xlbnwwfHx8fDE2NDU2MDY5ODc&ixlib=rb-1.2.1&q=80&w=400", "prob": 0.14744874835014343}, {"image": "https://images.unsplash.com/photo-1561089489-f13d5e730d72?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwyNDg3OTV8MHwxfHNlYXJjaHw5MHx8ZWR1Y2F0aW9ufGVufDB8fHx8MTY0NTYwNjk1Nw&ixlib=rb-1.2.1&q=80&w=400", "prob": 0.095176100730896}, {"image": "https://images.unsplash.com/photo-1580582932707-520aed937b7b?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwyNDg3OTV8MHwxfHNlYXJjaHwxMnx8ZWR1Y2F0aW9ufGVufDB8fHx8MTY0NTYwMzIwMA&ixlib=rb-1.2.1&q=80&w=400", "prob": 0.05218643322587013}] ```
{"language": "multilingual", "license": "mit", "tags": ["clip", "vision", "text"]}
null
gzomer/clip-multilingual
[ "clip", "vision", "text", "multilingual", "license:mit", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "multilingual" ]
TAGS #clip #vision #text #multilingual #license-mit #has_space #region-us
# MultiLingual CLIP Multilingual CLIP is a pre-trained model which can be used for multilingual semantic search and zero-shot image classification in 100 languages. # Model Architecture Multilingual CLIP was built using OpenAI CLIP model. I have used the same Vision encoder (ResNet 50x4), but instead I replaced their text encoder (Transformer) with a Mulilingual Text Encoder (XLM-Roberta) and a configurable number of projection heads, as seen below: !Model Architecture The model was trained in a distributed fashion on 16 Habana Gaudi Accelerators and with mixed Precision in two phases (using COCO Dataset for phase 1 and Google Conceptual Captions for phase 2). The training pipeline was built using PyTorch, PyTorch Lightning, and Distributed Data Parallel. # Datasets Three datasets have been used for building the model. COCO captions was used for training phase 1 and Google Conceptual Captions was used for training phase 2. Unsplash dataset was used for testing and inference. ## COCO Captions COCO (Common Objects in Context) is a large-scale object detection, segmentation, and captioning dataset. The COCO captions dataset has around ~85000 images and captions pairs. Run the following to download the dataset: This dataset was used for the first pre-training phase. ## Google Conceptual Captions Conceptual Captions is a dataset consisting of ~3.3 million images annotated with captions. In contrast with the curated style of other image caption annotations, Conceptual Caption images and their raw descriptions are harvested from the web, and therefore represent a wider variety of styles. Download the datasets urls/captions from here as save it to 'datasets/googlecc/URL'. The full dataset has over 3 million images, but you can select a subset by loading the 'URL' file and saving only the number of rows you want (I have used 1 million images for training). Then run the following commands to download each image on the 'URL' file: This dataset was used for the second pre-training phase. ## Unplash This dataset was used as the test set during inference. Run 'python3.8 download_unsplash.py' to download the dataset. # Training !Training phase 1 !Training phase 2 ## Setup Create two Habana instances (AWS EC2 DL1) using Habana® Deep Learning Base AMI (Ubuntu 20.04) Create the PyTorch docker container running: Enter the docker image by running: #### Setup password-less ssh between all connected servers 1. Configure password-less ssh between all nodes: Do the following in all the nodes' docker sessions: Copy id_rsa.pub contents from every node's docker to every other node's docker's ~/.ssh/authorized_keys (all public keys need to be in all hosts' authorized_keys): Copy the contents from inside to other systems. Paste all hosts' public keys in all hosts' “authorized_keys” file. 2. On each system: Add all hosts (including itself) to known_hosts. The IP addresses used below are just for illustration: 3. Change Docker SSH port to 3022 Allow all TCP traffic between the nodes on AWS Clone the git repo: Create environment: Install requirements: Activate environment ## Training params Learning rate: 1e-3 Batch size: 64 Phase 1 - Epochs: 100 Phase 2 - Epochs: 15 ## Train script arguments ## Habana Gaudi - 8 accelerators ### Phase 1 training ### Phase 2 training ## Habana Gaudi - 16 accelerators (multi-server training) Change the master IP address based on your instances (use local IP, not public IP). ### Phase 1 training ### Phase 2 training ## Other devices If you don't have access to a Habana Gaudi accelerator yet, you can also train on CPU/GPU, although it will be way slower. To train on CPU, just pass '--train-device=cpu' and on GPU '--train-device=cuda' to the 'URL' script. # Inference ## Loading pre-trained model from Hugging Face HUB ## Loading model from local checkpoint ## Generate embeddings Run the following (after downloading Unplash dataset): 'python3.8 ./generate_embeddings.py' ## Searching images
[ "# MultiLingual CLIP\n\nMultilingual CLIP is a pre-trained model which can be used for multilingual semantic search and zero-shot image classification in 100 languages.", "# Model Architecture\nMultilingual CLIP was built using OpenAI CLIP model. I have used the same Vision encoder (ResNet 50x4), but instead I replaced their text encoder (Transformer) with a Mulilingual Text Encoder (XLM-Roberta) and a configurable number of projection heads, as seen below:\n\n!Model Architecture\n\nThe model was trained in a distributed fashion on 16 Habana Gaudi Accelerators and with mixed Precision in two phases (using COCO Dataset for phase 1 and Google Conceptual Captions for phase 2). The training pipeline was built using PyTorch, PyTorch Lightning, and Distributed Data Parallel.", "# Datasets\n\nThree datasets have been used for building the model. COCO captions was used for training phase 1 and Google Conceptual Captions was used for training phase 2. Unsplash dataset was used for testing and inference.", "## COCO Captions\n\nCOCO (Common Objects in Context) is a large-scale object detection, segmentation, and captioning dataset. The COCO captions dataset has around ~85000 images and captions pairs.\n\nRun the following to download the dataset:\n\n\n\nThis dataset was used for the first pre-training phase.", "## Google Conceptual Captions\n\nConceptual Captions is a dataset consisting of ~3.3 million images annotated with captions. In contrast with the curated style of other image caption annotations, Conceptual Caption images and their raw descriptions are harvested from the web, and therefore represent a wider variety of styles.\n\nDownload the datasets urls/captions from here as save it to 'datasets/googlecc/URL'. The full dataset has over 3 million images, but you can select a subset by loading the 'URL' file and saving only the number of rows you want (I have used 1 million images for training).\n\nThen run the following commands to download each image on the 'URL' file:\n\n\n\nThis dataset was used for the second pre-training phase.", "## Unplash\n\nThis dataset was used as the test set during inference.\n\nRun 'python3.8 download_unsplash.py' to download the dataset.", "# Training\n\n!Training phase 1\n\n!Training phase 2", "## Setup\n\nCreate two Habana instances (AWS EC2 DL1) using Habana® Deep Learning Base AMI (Ubuntu 20.04)\n\n\nCreate the PyTorch docker container running:\n\n\n\nEnter the docker image by running:", "#### Setup password-less ssh between all connected servers\n\n1. Configure password-less ssh between all nodes:\n\n Do the following in all the nodes' docker sessions:\n \n Copy id_rsa.pub contents from every node's docker to every other node's docker's ~/.ssh/authorized_keys (all public keys need to be in all hosts' authorized_keys):\n \n Copy the contents from inside to other systems.\n Paste all hosts' public keys in all hosts' “authorized_keys” file.\n\n2. On each system:\n Add all hosts (including itself) to known_hosts. The IP addresses used below are just for illustration:\n \n\n3. Change Docker SSH port to 3022\n \n\nAllow all TCP traffic between the nodes on AWS\n\nClone the git repo:\n\n\n\nCreate environment:\n\n\n\nInstall requirements:\n\n\n\nActivate environment", "## Training params\n\nLearning rate: 1e-3\n\nBatch size: 64\n\nPhase 1 - Epochs: 100\n\nPhase 2 - Epochs: 15", "## Train script arguments", "## Habana Gaudi - 8 accelerators", "### Phase 1 training", "### Phase 2 training", "## Habana Gaudi - 16 accelerators (multi-server training)\n\nChange the master IP address based on your instances (use local IP, not public IP).", "### Phase 1 training", "### Phase 2 training", "## Other devices\nIf you don't have access to a Habana Gaudi accelerator yet, you can also train on CPU/GPU, although it will be way slower.\n\nTo train on CPU, just pass '--train-device=cpu' and on GPU '--train-device=cuda' to the 'URL' script.", "# Inference", "## Loading pre-trained model from Hugging Face HUB", "## Loading model from local checkpoint", "## Generate embeddings\n\nRun the following (after downloading Unplash dataset):\n\n'python3.8 ./generate_embeddings.py'", "## Searching images" ]
[ "TAGS\n#clip #vision #text #multilingual #license-mit #has_space #region-us \n", "# MultiLingual CLIP\n\nMultilingual CLIP is a pre-trained model which can be used for multilingual semantic search and zero-shot image classification in 100 languages.", "# Model Architecture\nMultilingual CLIP was built using OpenAI CLIP model. I have used the same Vision encoder (ResNet 50x4), but instead I replaced their text encoder (Transformer) with a Mulilingual Text Encoder (XLM-Roberta) and a configurable number of projection heads, as seen below:\n\n!Model Architecture\n\nThe model was trained in a distributed fashion on 16 Habana Gaudi Accelerators and with mixed Precision in two phases (using COCO Dataset for phase 1 and Google Conceptual Captions for phase 2). The training pipeline was built using PyTorch, PyTorch Lightning, and Distributed Data Parallel.", "# Datasets\n\nThree datasets have been used for building the model. COCO captions was used for training phase 1 and Google Conceptual Captions was used for training phase 2. Unsplash dataset was used for testing and inference.", "## COCO Captions\n\nCOCO (Common Objects in Context) is a large-scale object detection, segmentation, and captioning dataset. The COCO captions dataset has around ~85000 images and captions pairs.\n\nRun the following to download the dataset:\n\n\n\nThis dataset was used for the first pre-training phase.", "## Google Conceptual Captions\n\nConceptual Captions is a dataset consisting of ~3.3 million images annotated with captions. In contrast with the curated style of other image caption annotations, Conceptual Caption images and their raw descriptions are harvested from the web, and therefore represent a wider variety of styles.\n\nDownload the datasets urls/captions from here as save it to 'datasets/googlecc/URL'. The full dataset has over 3 million images, but you can select a subset by loading the 'URL' file and saving only the number of rows you want (I have used 1 million images for training).\n\nThen run the following commands to download each image on the 'URL' file:\n\n\n\nThis dataset was used for the second pre-training phase.", "## Unplash\n\nThis dataset was used as the test set during inference.\n\nRun 'python3.8 download_unsplash.py' to download the dataset.", "# Training\n\n!Training phase 1\n\n!Training phase 2", "## Setup\n\nCreate two Habana instances (AWS EC2 DL1) using Habana® Deep Learning Base AMI (Ubuntu 20.04)\n\n\nCreate the PyTorch docker container running:\n\n\n\nEnter the docker image by running:", "#### Setup password-less ssh between all connected servers\n\n1. Configure password-less ssh between all nodes:\n\n Do the following in all the nodes' docker sessions:\n \n Copy id_rsa.pub contents from every node's docker to every other node's docker's ~/.ssh/authorized_keys (all public keys need to be in all hosts' authorized_keys):\n \n Copy the contents from inside to other systems.\n Paste all hosts' public keys in all hosts' “authorized_keys” file.\n\n2. On each system:\n Add all hosts (including itself) to known_hosts. The IP addresses used below are just for illustration:\n \n\n3. Change Docker SSH port to 3022\n \n\nAllow all TCP traffic between the nodes on AWS\n\nClone the git repo:\n\n\n\nCreate environment:\n\n\n\nInstall requirements:\n\n\n\nActivate environment", "## Training params\n\nLearning rate: 1e-3\n\nBatch size: 64\n\nPhase 1 - Epochs: 100\n\nPhase 2 - Epochs: 15", "## Train script arguments", "## Habana Gaudi - 8 accelerators", "### Phase 1 training", "### Phase 2 training", "## Habana Gaudi - 16 accelerators (multi-server training)\n\nChange the master IP address based on your instances (use local IP, not public IP).", "### Phase 1 training", "### Phase 2 training", "## Other devices\nIf you don't have access to a Habana Gaudi accelerator yet, you can also train on CPU/GPU, although it will be way slower.\n\nTo train on CPU, just pass '--train-device=cpu' and on GPU '--train-device=cuda' to the 'URL' script.", "# Inference", "## Loading pre-trained model from Hugging Face HUB", "## Loading model from local checkpoint", "## Generate embeddings\n\nRun the following (after downloading Unplash dataset):\n\n'python3.8 ./generate_embeddings.py'", "## Searching images" ]
[ 25, 42, 157, 51, 76, 176, 35, 12, 50, 203, 31, 5, 9, 5, 5, 34, 5, 5, 79, 4, 13, 7, 36, 4 ]
[ "passage: TAGS\n#clip #vision #text #multilingual #license-mit #has_space #region-us \n# MultiLingual CLIP\n\nMultilingual CLIP is a pre-trained model which can be used for multilingual semantic search and zero-shot image classification in 100 languages.# Model Architecture\nMultilingual CLIP was built using OpenAI CLIP model. I have used the same Vision encoder (ResNet 50x4), but instead I replaced their text encoder (Transformer) with a Mulilingual Text Encoder (XLM-Roberta) and a configurable number of projection heads, as seen below:\n\n!Model Architecture\n\nThe model was trained in a distributed fashion on 16 Habana Gaudi Accelerators and with mixed Precision in two phases (using COCO Dataset for phase 1 and Google Conceptual Captions for phase 2). The training pipeline was built using PyTorch, PyTorch Lightning, and Distributed Data Parallel.# Datasets\n\nThree datasets have been used for building the model. COCO captions was used for training phase 1 and Google Conceptual Captions was used for training phase 2. Unsplash dataset was used for testing and inference.## COCO Captions\n\nCOCO (Common Objects in Context) is a large-scale object detection, segmentation, and captioning dataset. The COCO captions dataset has around ~85000 images and captions pairs.\n\nRun the following to download the dataset:\n\n\n\nThis dataset was used for the first pre-training phase.", "passage: ## Google Conceptual Captions\n\nConceptual Captions is a dataset consisting of ~3.3 million images annotated with captions. In contrast with the curated style of other image caption annotations, Conceptual Caption images and their raw descriptions are harvested from the web, and therefore represent a wider variety of styles.\n\nDownload the datasets urls/captions from here as save it to 'datasets/googlecc/URL'. The full dataset has over 3 million images, but you can select a subset by loading the 'URL' file and saving only the number of rows you want (I have used 1 million images for training).\n\nThen run the following commands to download each image on the 'URL' file:\n\n\n\nThis dataset was used for the second pre-training phase.## Unplash\n\nThis dataset was used as the test set during inference.\n\nRun 'python3.8 download_unsplash.py' to download the dataset.# Training\n\n!Training phase 1\n\n!Training phase 2## Setup\n\nCreate two Habana instances (AWS EC2 DL1) using Habana® Deep Learning Base AMI (Ubuntu 20.04)\n\n\nCreate the PyTorch docker container running:\n\n\n\nEnter the docker image by running:#### Setup password-less ssh between all connected servers\n\n1. Configure password-less ssh between all nodes:\n\n Do the following in all the nodes' docker sessions:\n \n Copy id_rsa.pub contents from every node's docker to every other node's docker's ~/.ssh/authorized_keys (all public keys need to be in all hosts' authorized_keys):\n \n Copy the contents from inside to other systems.\n Paste all hosts' public keys in all hosts' “authorized_keys” file.\n\n2. On each system:\n Add all hosts (including itself) to known_hosts. The IP addresses used below are just for illustration:\n \n\n3. Change Docker SSH port to 3022\n \n\nAllow all TCP traffic between the nodes on AWS\n\nClone the git repo:\n\n\n\nCreate environment:\n\n\n\nInstall requirements:\n\n\n\nActivate environment## Training params\n\nLearning rate: 1e-3\n\nBatch size: 64\n\nPhase 1 - Epochs: 100\n\nPhase 2 - Epochs: 15## Train script arguments## Habana Gaudi - 8 accelerators### Phase 1 training### Phase 2 training## Habana Gaudi - 16 accelerators (multi-server training)\n\nChange the master IP address based on your instances (use local IP, not public IP).### Phase 1 training### Phase 2 training## Other devices\nIf you don't have access to a Habana Gaudi accelerator yet, you can also train on CPU/GPU, although it will be way slower.\n\nTo train on CPU, just pass '--train-device=cpu' and on GPU '--train-device=cuda' to the 'URL' script.# Inference## Loading pre-trained model from Hugging Face HUB## Loading model from local checkpoint" ]
[ -0.04610302671790123, 0.08608286827802658, -0.005424880422651768, 0.021075759083032608, 0.03604758158326149, -0.010153088718652725, 0.15018296241760254, 0.07634200155735016, -0.09010183811187744, 0.0821792483329773, 0.025343507528305054, -0.023164628073573112, 0.09161494672298431, 0.12859667837619781, 0.02259354665875435, -0.18380588293075562, 0.021512947976589203, -0.07712393254041672, -0.05680282041430473, 0.05641356110572815, 0.08568223565816879, -0.06267273426055908, 0.05185721814632416, -0.024517346173524857, -0.10095888376235962, -0.004227510653436184, -0.0379377081990242, -0.06846097856760025, 0.06704480946063995, 0.025776071473956108, 0.09458307921886444, 0.04332074522972107, 0.0548446960747242, -0.13493302464485168, 0.011705471202731133, 0.09182002395391464, 0.025494005531072617, 0.05210031941533089, 0.0759553462266922, 0.03137274086475372, 0.025934886187314987, -0.020809486508369446, 0.08594115078449249, 0.03596896305680275, -0.06359279155731201, -0.05824599415063858, -0.10753506422042847, 0.06368474662303925, 0.05785510689020157, 0.03872828930616379, 0.008260779082775116, 0.015043503604829311, -0.0659962072968483, 0.02680518478155136, 0.03870324045419693, -0.14558088779449463, -0.04698284715414047, 0.14379090070724487, 0.01180645078420639, 0.05535808578133583, -0.014321031048893929, -0.01095367968082428, 0.008832547813653946, 0.048314012587070465, 0.0496358722448349, -0.005556030198931694, -0.07947472482919693, -0.0743798315525055, -0.10074547678232193, -0.07736236602067947, 0.19791385531425476, -0.054674360901117325, -0.07804752886295319, -0.11904973536729813, -0.07322333008050919, 0.020374948158860207, 0.028929011896252632, 0.006131249479949474, 0.02166934497654438, 0.033421095460653305, -0.03208772465586662, -0.10460463166236877, -0.12713724374771118, -0.03235219419002533, -0.020945943892002106, 0.013300543650984764, 0.06774494796991348, 0.058766525238752365, -0.0269869863986969, 0.15131032466888428, 0.007011795416474342, -0.08100436627864838, -0.030208714306354523, -0.04229152202606201, -0.07678768783807755, -0.018240824341773987, -0.02060113474726677, -0.1201280951499939, 0.021229920908808708, 0.17683184146881104, 0.008392922580242157, 0.06067555025219917, -0.047147609293460846, 0.06893087923526764, 0.056058190762996674, 0.10237878561019897, 0.022083690389990807, 0.06786274909973145, 0.05045384168624878, 0.016904126852750778, 0.05011935532093048, -0.010614398866891861, -0.018516341224312782, 0.03206256777048111, -0.007322095334529877, 0.047600917518138885, 0.023008722811937332, 0.009201208129525185, -0.00998783390969038, -0.016268381848931313, 0.11280415952205658, -0.10329869389533997, 0.02456432208418846, 0.0052917650900781155, -0.020637713372707367, 0.048404525965452194, 0.08246544003486633, 0.01602615788578987, -0.07239185273647308, 0.0246476661413908, -0.017919838428497314, -0.010506284423172474, -0.09223073720932007, -0.035970285534858704, 0.044263020157814026, 0.015954293310642242, -0.07594892382621765, -0.11940689384937286, -0.15947096049785614, -0.05876943841576576, 0.05578968673944473, -0.023465996608138084, -0.020946461707353592, -0.027102384716272354, -0.026806045323610306, -0.0196961872279644, 0.003743540495634079, 0.07617772370576859, -0.007790603209286928, 0.026197565719485283, -0.05151951313018799, 0.057323187589645386, 0.008314020931720734, -0.005589938256889582, -0.0729883462190628, 0.04373534768819809, -0.19380053877830505, 0.1419944167137146, -0.05672135949134827, -0.03436226397752762, -0.09107081592082977, -0.009677227586507797, -0.001193049130961299, 0.005423148162662983, 0.014018254354596138, 0.12650462985038757, -0.20427392423152924, -0.007318221963942051, 0.2112453579902649, -0.16890814900398254, -0.0023636724799871445, 0.10118432343006134, -0.02583914063870907, 0.10405813157558441, 0.06965388357639313, 0.061940278857946396, 0.06182463467121124, -0.11837123334407806, -0.062169186770915985, -0.049881551414728165, 0.004839978646486998, 0.06328624486923218, 0.04534996300935745, -0.03163125365972519, 0.022434670478105545, 0.017157457768917084, -0.04288731515407562, -0.0353323332965374, -0.0052698031067848206, -0.05324136093258858, -0.006911278702318668, -0.014982806518673897, -0.10437198728322983, -0.03003740683197975, 0.004689375404268503, -0.020565105602145195, -0.07928495109081268, -0.10417181253433228, 0.10323440283536911, -0.0874066948890686, 0.052760347723960876, -0.027736596763134003, 0.005614599213004112, -0.020496658980846405, -0.010343652218580246, -0.07223620265722275, -0.10637709498405457, 0.09407839179039001, -0.0317075178027153, 0.06440819799900055, -0.0005221618339419365, 0.020000839605927467, 0.09928836673498154, -0.028883730992674828, -0.020374208688735962, -0.026572544127702713, -0.046602096408605576, -0.033995021134614944, -0.11050327867269516, -0.05446619912981987, -0.03749885782599449, 0.15581417083740234, -0.0626748651266098, 0.045216165482997894, 0.022664755582809448, 0.1171334981918335, 0.01574273593723774, -0.06664607673883438, 0.014869919046759605, -0.01752072013914585, -0.018732476979494095, -0.08225001394748688, -0.008495649322867393, 0.0634932816028595, 0.013522008433938026, 0.06455116719007492, -0.07564055919647217, -0.17326176166534424, 0.04897363483905792, 0.04059189558029175, -0.08927948027849197, -0.0725850984454155, -0.045007601380348206, -0.03810163959860802, -0.12347635626792908, -0.03004244714975357, 0.18789026141166687, 0.003312370739877224, 0.07883705198764801, -0.07903023064136505, -0.028404708951711655, -0.013204570859670639, -0.04183739423751831, -0.017478790134191513, 0.0001920340582728386, 0.08546534180641174, -0.060539085417985916, 0.05943501740694046, -0.029293866828083992, -0.03337663784623146, 0.07314231246709824, -0.014184411615133286, -0.06050077825784683, -0.030377982184290886, 0.057047486305236816, 0.027252744883298874, 0.08526178449392319, 0.047834333032369614, 0.01324927806854248, 0.015258828178048134, 0.010411858558654785, 0.06069159507751465, -0.1404065489768982, 0.0663643330335617, -0.002917681820690632, -0.008732778951525688, 0.05781519412994385, -0.029330436140298843, -0.01768917217850685, 0.046422235667705536, 0.0007322300225496292, 0.009756003506481647, 0.016445931047201157, -0.03433956950902939, -0.10274361073970795, 0.1348903477191925, -0.11565512418746948, -0.17078286409378052, -0.10969823598861694, 0.07713191956281662, 0.006413483526557684, 0.004626817535609007, 0.02226097509264946, -0.03693058341741562, -0.04836524277925491, -0.09757941961288452, 0.030062235891819, -0.04887290298938751, -0.043813079595565796, -0.050534624606370926, 0.04832075536251068, -0.01673801988363266, -0.09608891606330872, -0.0042944783344864845, 0.008351295255124569, -0.11830447614192963, 0.07856960594654083, 0.020213443785905838, 0.02411254122853279, 0.11801567673683167, 0.030061760917305946, -0.006750764325261116, -0.011334364302456379, 0.10875387489795685, -0.053138617426157, 0.11216099560260773, 0.10355310142040253, -0.0019047372043132782, 0.08102381229400635, 0.0771561712026596, 0.007805284112691879, -0.05888383463025093, 0.023762203752994537, 0.0024622995406389236, -0.074203260242939, -0.20751658082008362, -0.039612945169210434, -0.023903578519821167, -0.005129119381308556, 0.08016378432512283, 0.027653854340314865, 0.025329358875751495, 0.0735664814710617, -0.06668848544359207, 0.02715550735592842, 0.04843512177467346, 0.08621871471405029, 0.023688429966568947, -0.021575314924120903, 0.05524711310863495, -0.04758647829294205, -0.0007459050975739956, 0.06313309073448181, 0.08416230231523514, 0.1868874728679657, -0.0825638473033905, 0.04298797994852066, 0.0756576657295227, 0.05100339278578758, 0.04095447063446045, 0.06472299247980118, 0.0029302556067705154, 0.07087188959121704, -0.01940537616610527, -0.06949716806411743, -0.04413725063204765, 0.08336327970027924, 0.024177607148885727, -0.08602038770914078, -0.008370596915483475, 0.024086633697152138, 0.037386249750852585, 0.25935670733451843, 0.06920725852251053, -0.17164990305900574, -0.05941956862807274, 0.03498886525630951, -0.06353127211332321, -0.06305760145187378, 0.031565114855766296, 0.1881602555513382, -0.11731594800949097, 0.043672457337379456, -0.032325807958841324, 0.05233125388622284, -0.1816188246011734, -0.051095396280288696, -0.008446521125733852, 0.07747499644756317, 0.006956953555345535, 0.03532453626394272, -0.1827264130115509, 0.0065109264105558395, 0.0022392645478248596, 0.058181945234537125, -0.07280047237873077, 0.07228442281484604, -0.0076536256819963455, -0.055034201592206955, 0.046398840844631195, 0.02881311997771263, -0.22419312596321106, -0.02869211882352829, -0.15468311309814453, 0.04673964902758598, 0.06330470740795135, -0.06312327086925507, 0.09259332716464996, 0.018770718947052956, 0.009076552465558052, -0.03075275383889675, -0.01597089320421219, -0.12678183615207672, -0.15964828431606293, 0.0545981228351593, -0.024078525602817535, 0.008195878937840462, -0.08472663164138794, -0.02150188386440277, 0.00017612427473068237, 0.1520509123802185, -0.11652720719575882, -0.10318996757268906, -0.07061160355806351, -0.00955975241959095, 0.086191326379776, -0.02113526314496994, 0.059823889285326004, -0.01997004635632038, 0.08803699165582657, -0.07308995723724365, -0.07660841941833496, 0.004873636178672314, -0.09625115990638733, -0.1510491967201233, -0.0691741406917572, 0.1346314549446106, 0.07929468154907227, 0.023820094764232635, 0.004433516412973404, 0.021319139748811722, 0.005771137773990631, -0.053120095282793045, 0.04505254328250885, 0.14953947067260742, 0.06291231513023376, 0.0725453644990921, -0.04226526990532875, -0.025779835879802704, -0.026608560234308243, -0.03090912289917469, 0.08879314363002777, 0.13650697469711304, -0.023690486326813698, 0.0980420708656311, 0.0949426144361496, -0.08445453643798828, -0.18506819009780884, -0.03189829736948013, 0.029999010264873505, 0.0024470556527376175, -0.08742252737283707, -0.22862641513347626, 0.040634579956531525, 0.06707362830638885, -0.03298553079366684, 0.10103164613246918, -0.2781936526298523, -0.08677035570144653, -0.0028579747304320335, -0.007909432984888554, 0.06345919519662857, -0.08426626771688461, -0.029723381623625755, 0.024854794144630432, -0.001550178974866867, 0.11895570904016495, -0.003897196613252163, 0.09009091556072235, 0.010576821863651276, 0.03521565720438957, 0.037165530025959015, -0.07060174643993378, 0.09204345941543579, -0.015808572992682457, 0.012904185801744461, -0.028949616476893425, 0.027765531092882156, 0.08664169907569885, -0.06747661530971527, 0.100755974650383, 0.035655684769153595, 0.06071380525827408, 0.033268675208091736, -0.016364295035600662, -0.056800439953804016, 0.03192463889718056, -0.05444883555173874, -0.04116521775722504, -0.11253337562084198, 0.046491336077451706, 0.06709489226341248, 0.01623200997710228, -0.0016183853149414062, 0.013934199698269367, 0.03203371912240982, 0.18452253937721252, 0.021276239305734634, 0.09984401613473892, -0.08989617228507996, -0.023027215152978897, -0.037929244339466095, 0.08302205801010132, -0.1392229050397873, 0.028509125113487244, 0.06812672317028046, 0.0005308440304361284, 0.06584412604570389, 0.032388754189014435, -0.18384993076324463, -0.002734741196036339, 0.04978518933057785, -0.10191439092159271, -0.07019896805286407, 0.020602375268936157, 0.07450120151042938, -0.013630026951432228, 0.013639790005981922, 0.13901548087596893, -0.06493625044822693, -0.032155755907297134, -0.014984583482146263, 0.08514811098575592, 0.001050467137247324, 0.12062213569879532, -0.02368314377963543, 0.011606408283114433, -0.07903187721967697, 0.1704040765762329, 0.09596504271030426, -0.05670083314180374, 0.023029983043670654, 0.10486765950918198, -0.07010942697525024, -0.03318874165415764, -0.025871701538562775, -0.028551461175084114, 0.010060934349894524, -0.05106828361749649, -0.018576255068182945, -0.07698739320039749, 0.033539991825819016, 0.02926195040345192, -0.0039270296692848206, 0.05761120468378067, 0.005862748250365257, 0.03256087005138397, -0.08173525333404541, 0.0491316057741642, -0.001673530787229538, 0.06413722783327103, -0.0512213371694088, 0.1320137232542038, 0.04833493009209633, 0.02347044087946415, 0.0028174174949526787, -0.042017027735710144, -0.061980366706848145, 0.009638713672757149, -0.05624701455235481, 0.004923825152218342, -0.029619868844747543, -0.025300607085227966, 0.027026284486055374, 0.04348624870181084, 0.028865106403827667, 0.04860734939575195, -0.038197338581085205, -0.025071434676647186, -0.09439925104379654, 0.060268234461545944, -0.08967003971338272, -0.019856419414281845, 0.046670254319906235, -0.11170186847448349, 0.1060955822467804, 0.04206639900803566, -0.03380723297595978, -0.03215163201093674, -0.03406832739710808, -0.02630586549639702, 0.038723140954971313, 0.038705743849277496, -0.0339176207780838, -0.10617481172084808, -0.01073648501187563, -0.007395908236503601, -0.031163088977336884, -0.014897869899868965, 0.1277799904346466, -0.05251767858862877, 0.05544694513082504, 0.021238842979073524, -0.03058527410030365, -0.053193721920251846, 0.04108765721321106, 0.04135304316878319, 0.05857184901833534, 0.05041010305285454, -0.07122175395488739, 0.06136440113186836, -0.11223948746919632, -0.026340648531913757, 0.035445425659418106, -0.02615896798670292, 0.03268390893936157, -0.00462444219738245, 0.042941972613334656, -0.01745077222585678, 0.15088185667991638, -0.01927996054291725, -0.010635312646627426, -0.01560347992926836, 0.00023732706904411316, -0.05251165106892586, 0.0648476779460907, 0.0037346985191106796, -0.0021463348530232906, -0.012166469357907772, 0.0025539863854646683, -0.028712572529911995, 0.03913643956184387, -0.04068774729967117, 0.1219770610332489, 0.027892693877220154, 0.10389091074466705, 0.05529797449707985, 0.00972935650497675, -0.09472707659006119, -0.07251950353384018, 0.07722010463476181, -0.04277393966913223, 0.05485140532255173, -0.08894625306129456, 0.006100751459598541, 0.08212587237358093, -0.11248847842216492, 0.07918329536914825, 0.01734643056988716, -0.04247770085930824, -0.07803674042224884, -0.17493870854377747, -0.030345508828759193, -0.02894786186516285, -0.00196155346930027, -0.06830918043851852, 0.013034679926931858, 0.11690601706504822, 0.009654886089265347, 0.000027988571673631668, 0.08084981888532639, -0.006551295518875122, -0.07529051601886749, 0.02934153378009796, 0.02130848541855812, 0.01672344282269478, 0.031097738072276115, -0.04705708473920822, 0.022721946239471436, 0.09332336485385895, 0.06970439851284027, 0.06397570669651031, 0.0977661982178688, 0.03838897868990898, 0.003560583107173443, -0.029083814471960068, -0.013212637044489384, -0.033951520919799805, 0.018022093921899796, 0.0766228660941124, 0.062188539654016495, -0.03218197077512741, 0.029136333614587784, 0.12269338220357895, -0.06273432075977325, -0.05396416783332825, -0.15518566966056824, 0.15785779058933258, -0.08023294806480408, -0.0015701580559834838, 0.04256298020482063, -0.07908514142036438, -0.07181395590305328, 0.16278721392154694, 0.1674686223268509, -0.011528193019330502, -0.021789874881505966, 0.03132232651114464, -0.024029934778809547, -0.04521050304174423, 0.1102193146944046, 0.017652224749326706, 0.21266154944896698, -0.05155491083860397, 0.057025447487831116, 0.023223383352160454, -0.03975755721330643, -0.08259525895118713, 0.062420736998319626, -0.10531607270240784, 0.013183599337935448, -0.03186877816915512, 0.04233333840966225, -0.03543952852487564, -0.22264912724494934, 0.08421521633863449, -0.04807264357805252, -0.08100498467683792, 0.058623407036066055, 0.0005479780957102776, -0.05160621926188469, 0.06845450401306152, -0.01163457427173853, 0.02747497335076332, 0.149632066488266, -0.008149758912622929, -0.0340830534696579, -0.029960554093122482, 0.052808620035648346, -0.13268086314201355, 0.20869171619415283, 0.015773802995681763, 0.1029939353466034, 0.050852954387664795, 0.004108309745788574, -0.10777149349451065, 0.0022019073367118835, 0.04195410758256912, -0.07569944858551025, -0.029233243316411972, 0.13735532760620117, -0.0550050362944603, 0.14607113599777222, 0.0810379907488823, -0.040623608976602554, 0.025166241452097893, 0.07676971703767776, 0.007554557174444199, -0.09970077872276306, 0.025563549250364304, -0.09029847383499146, 0.10868507623672485, 0.09612999856472015, -0.01449558511376381, 0.02044670656323433, -0.0595625638961792, 0.027537640184164047, 0.01386113278567791, 0.07035191357135773, -0.006540216505527496, -0.13771939277648926, -0.0008438520599156618, -0.08030623197555542, 0.07438293099403381, -0.15463858842849731, -0.05004642531275749, 0.02419976331293583, -0.04335767775774002, -0.07682707905769348, 0.08758237957954407, 0.05931174010038376, -0.0034304517321288586, -0.02814537286758423, -0.023255009204149246, -0.021750828251242638, 0.04918888211250305, -0.08678553998470306, -0.029150797054171562 ]
null
null
transformers
hello
{}
text-generation
ha-mulan/moby-dick
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
hello
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 50 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.02061169408261776, 0.03669698163866997, -0.007248206064105034, 0.012762377969920635, 0.1690322607755661, 0.03350625932216644, 0.09912695735692978, 0.1378507763147354, 0.006931114010512829, -0.02730877511203289, 0.16016589105129242, 0.210490420460701, -0.0018047182820737362, 0.07203522324562073, -0.0626848116517067, -0.27152273058891296, 0.051494795829057693, 0.06287337839603424, -0.006572056096047163, 0.12476035207509995, 0.07706263661384583, -0.058810923248529434, 0.09187597781419754, -0.01914438046514988, -0.17445695400238037, 0.023767365142703056, 0.05130406841635704, -0.12089582532644272, 0.11222874373197556, 0.04935329034924507, 0.09586816281080246, 0.014551094733178616, -0.061403561383485794, -0.14227746427059174, 0.027511093765497208, 0.02571028470993042, -0.06026925519108772, 0.06976787000894547, 0.10209541767835617, -0.09534682333469391, 0.09160638600587845, 0.08213244378566742, -0.02483462356030941, 0.054132550954818726, -0.1637229174375534, -0.08184890449047089, -0.030146123841404915, 0.009252084419131279, 0.06836725026369095, 0.09418372809886932, -0.014005177654325962, 0.11512795090675354, -0.08648983389139175, 0.10137014836072922, 0.15515094995498657, -0.3112814128398895, -0.0025897729210555553, 0.08596665412187576, 0.056812409311532974, 0.05083649232983589, -0.028057346120476723, 0.059737250208854675, 0.02277030050754547, 0.023691991344094276, 0.024889623746275902, -0.08345351368188858, -0.12221888452768326, 0.04607483372092247, -0.08558143675327301, -0.07045682519674301, 0.24011977016925812, -0.06557567417621613, 0.05927315354347229, -0.026034124195575714, -0.09983419626951218, -0.04822950065135956, -0.025522518903017044, 0.0027340995147824287, -0.05865494906902313, 0.08325810730457306, 0.03113705664873123, -0.07104028761386871, -0.12954817712306976, -0.03331276401877403, -0.1671232432126999, 0.16637788712978363, 0.017353568226099014, 0.059134289622306824, -0.19971254467964172, 0.10599949955940247, 0.009768630377948284, -0.09360894560813904, 0.031420230865478516, -0.0966353788971901, 0.04421459138393402, -0.002475510584190488, -0.05345337465405464, -0.07802210748195648, 0.07758434861898422, 0.1328297108411789, 0.005376500077545643, 0.0312935933470726, -0.022861171513795853, 0.09267520904541016, 0.03198305144906044, 0.09125647693872452, 0.003466499038040638, -0.02334674261510372, 0.05431690812110901, -0.128060445189476, -0.007325596176087856, -0.07051635533571243, -0.15026308596134186, -0.0425361804664135, 0.059593502432107925, 0.08932037651538849, 0.019110143184661865, 0.08286140859127045, -0.052690550684928894, -0.031684745103120804, 0.05481104552745819, -0.06541909277439117, -0.0023946587461978197, -0.0066881631501019, 0.028208354488015175, 0.13478249311447144, -0.008862287737429142, 0.024262670427560806, -0.12114688754081726, 0.05839782580733299, -0.08044246584177017, -0.0018729495350271463, -0.04188903048634529, -0.04908997192978859, 0.01962810568511486, -0.08889313787221909, 0.023544808849692345, -0.14767387509346008, -0.17289353907108307, 0.014023632742464542, 0.015207161195576191, -0.02661287784576416, -0.055295780301094055, -0.03635844588279724, -0.02752472460269928, 0.05103516951203346, -0.06349530816078186, 0.0072977435775101185, -0.05553026497364044, 0.10184666514396667, -0.03134933114051819, 0.06921332329511642, -0.10158300399780273, 0.07680372148752213, -0.12065500766038895, -0.010678648948669434, -0.09030061960220337, 0.0667608305811882, -0.005207765847444534, 0.12495583295822144, -0.02772742323577404, -0.023418201133608818, -0.06870874017477036, 0.052683956921100616, -0.03466503322124481, 0.198461651802063, -0.0751492977142334, -0.12632763385772705, 0.2507952153682709, -0.0663582980632782, -0.14219015836715698, 0.09786481410264969, 0.011805753223598003, 0.04386255890130997, 0.09383031725883484, 0.1752246767282486, 0.02929861843585968, -0.002063382649794221, 0.08640838414430618, 0.10012904554605484, -0.10108412057161331, -0.08980478346347809, 0.023798564448952675, -0.02894214354455471, -0.14016631245613098, 0.056434664875268936, 0.06615027785301208, 0.08355093747377396, -0.04800274223089218, -0.031239774078130722, -0.0360761322081089, 0.00971299409866333, 0.055595025420188904, 0.014840207993984222, 0.12724317610263824, -0.054204441606998444, -0.03147004917263985, -0.029795076698064804, -0.010151172988116741, -0.01988917589187622, 0.03365359082818031, -0.021863849833607674, 0.13083113729953766, -0.05663840472698212, 0.058342233300209045, -0.18144778907299042, -0.08069596439599991, 0.0038181261625140905, 0.12040943652391434, -0.007066712249070406, 0.07556058466434479, 0.05802106857299805, -0.03010028414428234, -0.005254245363175869, -0.011689078994095325, 0.1494489461183548, -0.025504015386104584, -0.0695682018995285, -0.06697690486907959, 0.05832945927977562, -0.059016112238168716, -0.011436658911406994, -0.06229717284440994, 0.014011423103511333, 0.032067783176898956, 0.10360895842313766, 0.004289672710001469, 0.028894901275634766, -0.020906507968902588, 0.010454483330249786, -0.08038664609193802, 0.004400757607072592, 0.09865622967481613, -0.010968429036438465, -0.052063871175050735, 0.2027982473373413, -0.15390464663505554, 0.233114555478096, 0.19188177585601807, -0.28178542852401733, 0.013452456332743168, -0.057999882847070694, -0.02458072640001774, 0.014820392243564129, 0.04814935103058815, -0.02250209078192711, 0.11650584638118744, -0.0003065110940951854, 0.18351061642169952, -0.054600246250629425, -0.05317075923085213, 0.003565638791769743, -0.05164698138833046, -0.0039711822755634785, 0.07296860963106155, 0.12584854662418365, -0.14359883964061737, 0.19494381546974182, 0.20664817094802856, 0.03114785999059677, 0.16297315061092377, 0.006141228135675192, -0.025006834417581558, 0.0717167779803276, -0.020189831033349037, -0.03723941743373871, -0.06850926578044891, -0.18136908113956451, -0.028368933126330376, 0.08009158074855804, 0.04700847342610359, 0.0970572903752327, -0.12121459096670151, -0.04919075593352318, -0.017726639285683632, -0.0037948081735521555, -0.001169883762486279, 0.09482266008853912, 0.04720060154795647, 0.11524532735347748, -0.013394813053309917, 0.00007184622518252581, 0.10807308554649353, 0.017171379178762436, -0.09143665432929993, 0.1945890337228775, -0.12493730336427689, -0.3475200831890106, -0.15314428508281708, -0.1694491058588028, -0.03699450567364693, 0.05181937664747238, 0.1012069508433342, -0.11282069236040115, -0.028340332210063934, 0.017789945006370544, 0.09569206833839417, -0.09760142862796783, 0.021629052236676216, -0.08391507714986801, 0.04361793026328087, -0.08041521906852722, -0.07167459279298782, -0.056972403079271317, -0.021237103268504143, -0.05630851536989212, 0.14537808299064636, -0.10566911846399307, 0.04946158453822136, 0.1748725324869156, 0.041469868272542953, 0.052667371928691864, -0.026084311306476593, 0.20342226326465607, -0.10122719407081604, -0.008247622288763523, 0.1996638923883438, -0.03767416626214981, 0.07793038338422775, 0.1047254279255867, 0.008436969481408596, -0.08692540973424911, 0.014031565748155117, -0.03050277940928936, -0.08918496966362, -0.23751021921634674, -0.10732308030128479, -0.1305837780237198, 0.06702837347984314, 0.06369546800851822, 0.06166477128863335, 0.1605178564786911, 0.08636368811130524, -0.02265070751309395, 0.051190104335546494, 0.005209398455917835, 0.08386892825365067, 0.19134031236171722, -0.018688667565584183, 0.13220134377479553, -0.047730229794979095, -0.1284172236919403, 0.08534674346446991, 0.06895700097084045, 0.13253210484981537, 0.07302940636873245, 0.06437722593545914, 0.006450139917433262, 0.09158173203468323, 0.14580334722995758, 0.11763523519039154, 0.013675099238753319, -0.02294873259961605, -0.035648882389068604, -0.014953047037124634, -0.053832754492759705, 0.041831664741039276, 0.03041837364435196, -0.14036796987056732, -0.0522465854883194, -0.11898676306009293, 0.07560022920370102, 0.10437406599521637, 0.06208758428692818, -0.23143552243709564, 0.012645904906094074, 0.0920325219631195, -0.033739786595106125, -0.12553022801876068, 0.08267304301261902, -0.02773478254675865, -0.148908331990242, 0.04800388216972351, -0.0624145083129406, 0.13054151833057404, -0.06850045919418335, 0.08056096732616425, -0.04174954071640968, -0.057825472205877304, 0.02301604673266411, 0.11933999508619308, -0.29898545145988464, 0.19811242818832397, 0.00232495809905231, -0.055925529450178146, -0.1032438725233078, 0.013398502953350544, 0.01214119978249073, 0.1131071001291275, 0.11060462892055511, 0.004075071774423122, -0.054734937846660614, -0.09965869784355164, -0.025381751358509064, 0.032791636884212494, 0.11453904956579208, -0.0661320760846138, -0.008024964481592178, -0.04672384262084961, -0.005813688039779663, -0.03299189358949661, -0.04443271830677986, 0.006998900789767504, -0.17404834926128387, 0.08311133086681366, 0.021644821390509605, 0.09458605200052261, 0.01686358079314232, -0.020177142694592476, -0.0930124819278717, 0.22706744074821472, -0.07374903559684753, -0.10036850720643997, -0.11869792640209198, -0.05789005383849144, 0.06681498885154724, -0.07128075510263443, 0.04802818223834038, -0.08300348371267319, 0.024066224694252014, -0.051810044795274734, -0.2141922116279602, 0.12876592576503754, -0.09854454547166824, -0.0426534079015255, -0.04808230325579643, 0.18427522480487823, -0.07560548186302185, 0.007441832683980465, 0.014283985830843449, 0.03377733752131462, -0.12088590115308762, -0.09571054577827454, 0.03321368247270584, -0.0054462980479002, 0.050365518778562546, 0.02398831397294998, -0.06449484080076218, 0.013354619033634663, -0.027336502447724342, -0.007998697459697723, 0.31066620349884033, 0.16510078310966492, -0.04284334182739258, 0.17947670817375183, 0.11826936155557632, -0.09111739695072174, -0.3014727234840393, -0.09573464840650558, -0.10117041319608688, -0.03300357609987259, -0.04562511295080185, -0.21774791181087494, 0.0805845707654953, 0.02981768362224102, -0.016042208299040794, 0.15843164920806885, -0.24728429317474365, -0.07573903352022171, 0.14059032499790192, -0.0033480850979685783, 0.36902642250061035, -0.1301729530096054, -0.10661002993583679, -0.049214623868465424, -0.14853917062282562, 0.16302582621574402, -0.006122821941971779, 0.09923173487186432, -0.03277380019426346, 0.0951908603310585, 0.04296580329537392, -0.04584183171391487, 0.09171538800001144, 0.006283751223236322, -0.00015285445260815322, -0.09827379137277603, -0.026431895792484283, 0.04596385359764099, 0.006172254215925932, 0.015664206817746162, -0.05151783674955368, 0.024717671796679497, -0.13768158853054047, -0.04218921437859535, -0.08312345296144485, 0.05613607540726662, 0.0378592424094677, -0.06245051324367523, 0.012870991602540016, -0.06329932808876038, -0.015552804805338383, 0.006438991520553827, 0.22675301134586334, -0.033524125814437866, 0.16034509241580963, 0.06924859434366226, 0.0977221205830574, -0.13415151834487915, -0.0030943630263209343, -0.07359358668327332, -0.0585312657058239, 0.0910639688372612, -0.12273677438497543, 0.05962078645825386, 0.11274706572294235, -0.04377524182200432, 0.06500444561243057, 0.11012120544910431, 0.004117070697247982, -0.003137144260108471, 0.12473985552787781, -0.25908008217811584, 0.015647539868950844, -0.07494742423295975, -0.024182267487049103, 0.08232303708791733, 0.07148353010416031, 0.16246774792671204, 0.024140827357769012, -0.05674751475453377, -0.0011056308867409825, 0.012844313867390156, -0.04069126397371292, 0.0659845769405365, 0.010237254202365875, 0.020188752561807632, -0.14966484904289246, 0.07341181486845016, 0.020635386928915977, -0.1390792727470398, 0.00947505235671997, 0.16722126305103302, -0.13189104199409485, -0.11809033155441284, -0.024501128122210503, 0.10207509994506836, -0.12840311229228973, -0.01538072805851698, -0.0530657097697258, -0.12485695630311966, 0.08780299127101898, 0.11384674161672592, 0.07223537564277649, 0.08963492512702942, -0.046553220599889755, -0.03367399424314499, -0.03635541722178459, -0.012573964893817902, -0.005112584214657545, 0.023647962138056755, -0.08710068464279175, 0.020647486671805382, -0.014909865334630013, 0.1446734219789505, -0.08746474981307983, -0.07236666977405548, -0.15646818280220032, 0.03405974432826042, -0.10871405899524689, -0.07473097741603851, -0.08840084820985794, -0.051927600055933, -0.011308991350233555, -0.0237440038472414, -0.04571209102869034, -0.04849827662110329, -0.12665939331054688, 0.012751449830830097, -0.04703500121831894, 0.02897617593407631, -0.06266307830810547, -0.003384709358215332, 0.09275015443563461, -0.04187775403261185, 0.13208845257759094, 0.13593345880508423, -0.07172486186027527, 0.12254272401332855, -0.1241949051618576, -0.08505946397781372, 0.10708841681480408, 0.018022065982222557, 0.039706673473119736, 0.06602154672145844, 0.027937114238739014, 0.06251784414052963, 0.023262426257133484, 0.0474555529654026, -0.0034392299130558968, -0.1278984397649765, 0.026975933462381363, -0.026938216760754585, -0.15527313947677612, -0.05361103639006615, -0.045469336211681366, 0.04235553741455078, 0.01838851533830166, 0.1166498214006424, -0.03758706524968147, 0.11192993074655533, -0.06871756166219711, 0.02620946429669857, -0.0016389728989452124, -0.19030974805355072, -0.06729240715503693, -0.08063044399023056, 0.027664629742503166, 0.01087124552577734, 0.2522471249103546, 0.03634938970208168, 0.018269522115588188, 0.022480595856904984, 0.08995942771434784, 0.03782389685511589, 0.01657526195049286, 0.20189790427684784, 0.1176978051662445, -0.05808348208665848, -0.09545315057039261, 0.08679695427417755, 0.024981701746582985, 0.011926673352718353, 0.12499669194221497, 0.02542710304260254, 0.015265305526554585, 0.09474188834428787, -0.027163418009877205, 0.011014972813427448, -0.09048577398061752, -0.12104497104883194, -0.012157267890870571, 0.06607268750667572, -0.0005205549532547593, 0.09510093182325363, 0.15160807967185974, -0.01614399254322052, 0.03269355744123459, -0.01990874856710434, -0.044518157839775085, -0.17706270515918732, -0.15518343448638916, -0.07865231484174728, -0.12877032160758972, 0.006389371585100889, -0.10272641479969025, 0.0437617301940918, 0.06735121458768845, 0.055535778403282166, -0.061280637979507446, 0.08018633723258972, 0.0908743217587471, -0.10815306007862091, 0.06396238505840302, -0.03378984332084656, 0.05308237299323082, -0.010930529795587063, -0.012166712433099747, -0.0929059311747551, -0.004868659656494856, -0.008535288274288177, 0.04750073328614235, -0.05832274630665779, 0.02753910794854164, -0.15148714184761047, -0.11618328839540482, -0.04823146015405655, 0.06859103590250015, -0.0567200593650341, 0.10416112095117569, 0.0015089651569724083, -0.014318077825009823, 0.03907795622944832, 0.214002326130867, -0.0627247542142868, -0.030963636934757233, -0.03922291100025177, 0.22120635211467743, 0.040702469646930695, 0.10107730329036713, -0.013604391366243362, 0.008694403804838657, -0.07015835493803024, 0.35390228033065796, 0.29603973031044006, -0.070329949259758, 0.010815161280333996, 0.030772194266319275, 0.030525315552949905, 0.12354307621717453, 0.13173502683639526, 0.08878594636917114, 0.26048561930656433, -0.08683076500892639, -0.033120445907115936, -0.024800274521112442, -0.015878379344940186, -0.0880107581615448, 0.10199514776468277, 0.0479244664311409, -0.06818252801895142, -0.0319574736058712, 0.09539607912302017, -0.23561538755893707, 0.1563696265220642, -0.08077402412891388, -0.1598164439201355, -0.06550628691911697, 0.0020895323250442743, 0.11123234033584595, 0.011316700838506222, 0.08370231091976166, -0.011379145085811615, -0.09968001395463943, 0.06325476616621017, 0.023829400539398193, -0.23007269203662872, -0.023487107828259468, 0.06765052676200867, -0.0536172091960907, 0.012333041988313198, -0.020697347819805145, 0.046463679522275925, 0.06474317610263824, 0.044528279453516006, -0.04973433166742325, 0.014270495623350143, -0.008215518668293953, -0.03517768532037735, 0.018696090206503868, 0.04877908155322075, 0.02597798965871334, -0.10980300605297089, 0.06050827354192734, -0.11806613951921463, 0.040548477321863174, -0.06373075395822525, -0.03647841513156891, 0.00396439665928483, 0.0009551440016366541, -0.055222492665052414, 0.0567188560962677, 0.08332794904708862, 0.00017091783229261637, -0.01667456328868866, -0.07881699502468109, -0.009257469326257706, 0.0017395061440765858, -0.06986054033041, -0.10769271850585938, -0.13010230660438538, -0.10757219046354294, 0.11583194881677628, -0.011943322606384754, -0.19320523738861084, 0.014474074356257915, -0.09977549314498901, 0.04724235460162163, -0.17902211844921112, 0.08024095743894577, 0.0743112713098526, 0.016707729548215866, -0.003201504237949848, -0.03637106716632843, 0.050247397273778915, 0.08070636540651321, -0.1089664176106453, -0.08408985286951065 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # egy-slang-model This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9273 - Wer: 1.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.64 | 200 | 2.9735 | 1.0 | | 3.8098 | 3.28 | 400 | 2.9765 | 1.0 | | 3.8098 | 4.91 | 600 | 2.9662 | 1.0 | | 2.9531 | 6.56 | 800 | 2.9708 | 1.0 | | 2.9531 | 8.2 | 1000 | 2.9673 | 1.0 | | 2.9259 | 9.83 | 1200 | 2.9989 | 1.0 | | 2.9259 | 11.47 | 1400 | 2.9889 | 1.0 | | 2.9023 | 13.11 | 1600 | 2.9739 | 1.0 | | 2.9023 | 14.75 | 1800 | 3.0040 | 1.0000 | | 2.8832 | 16.39 | 2000 | 3.0170 | 1.0 | | 2.8832 | 18.03 | 2200 | 2.9963 | 0.9999 | | 2.8691 | 19.67 | 2400 | 2.9273 | 1.0000 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "egy-slang-model", "results": []}]}
automatic-speech-recognition
habiba/egy-slang-model
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #has_space #region-us
egy-slang-model =============== This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set: * Loss: 2.9273 * Wer: 1.0000 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.001 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 20 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.1 * Datasets 1.13.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 20\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.1\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 20\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.1\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ 60, 158, 4, 30 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 20\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.1\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ -0.11783640086650848, 0.0666733980178833, -0.0020981449633836746, 0.048535414040088654, 0.12325424700975418, -0.0016930358251556754, 0.1129794791340828, 0.1366402953863144, -0.08825235813856125, 0.08504415303468704, 0.10726909339427948, 0.09254293143749237, 0.054097145795822144, 0.11551773548126221, -0.02437489852309227, -0.32744649052619934, 0.01912524364888668, 0.028156273066997528, -0.16138702630996704, 0.11615873128175735, 0.11437541246414185, -0.11037883162498474, 0.03821336850523949, 0.05040062963962555, -0.1432446837425232, 0.02083684504032135, -0.015342525206506252, -0.08119366317987442, 0.11741440743207932, 0.03991435095667839, 0.10702697187662125, 0.02075435407459736, 0.08556921035051346, -0.23691996932029724, 0.010477462783455849, 0.06487981230020523, 0.04297500103712082, 0.07726408541202545, 0.09819754958152771, -0.011237307451665401, 0.16340425610542297, -0.06555835157632828, 0.07821778208017349, 0.05575932189822197, -0.11329105496406555, -0.33914509415626526, -0.08439794182777405, 0.04815855622291565, 0.09823976457118988, 0.08620800077915192, -0.021771764382719994, 0.09988842159509659, -0.05974534526467323, 0.07956133782863617, 0.2480800449848175, -0.2618481516838074, -0.09003018587827682, -0.02263316884636879, 0.06828577071428299, 0.027113161981105804, -0.12465962767601013, -0.02361992374062538, 0.04703127592802048, 0.033227358013391495, 0.10738160461187363, 0.015532022342085838, -0.007741072680801153, 0.01794375106692314, -0.15025906264781952, -0.0602332167327404, 0.14505062997341156, 0.07912905514240265, -0.03710494935512543, -0.08916395157575607, -0.02180667780339718, -0.199069082736969, -0.04557817801833153, 0.005418986547738314, 0.024552909657359123, -0.04950619861483574, -0.12986983358860016, 0.01382363960146904, -0.09464827179908752, -0.0974266454577446, 0.01708252727985382, 0.19170986115932465, 0.04902864620089531, -0.015360798686742783, -0.011080805212259293, 0.10343928635120392, 0.04752645641565323, -0.14812424778938293, -0.016404444351792336, 0.02888890728354454, -0.08175339549779892, -0.02274014987051487, -0.05519724637269974, -0.010604520328342915, 0.00037642550887539983, 0.1446426510810852, -0.04322845861315727, 0.07412634789943695, 0.03281951695680618, 0.03335294499993324, -0.10223253071308136, 0.19762343168258667, -0.06578035652637482, 0.013522029854357243, -0.057659316807985306, 0.08854693174362183, -0.02207094058394432, -0.011086813174188137, -0.056183427572250366, 0.03250809758901596, 0.09650076180696487, 0.03876379877328873, -0.03657443821430206, 0.02896503359079361, -0.04643169045448303, -0.017248937860131264, -0.02339256927371025, -0.10007237643003464, 0.028347069397568703, 0.015585755929350853, -0.09428180754184723, 0.006609383504837751, 0.004202255047857761, 0.019737333059310913, 0.003640304319560528, 0.09691646695137024, -0.08110950142145157, 0.0003959924797527492, -0.09580289572477341, -0.11281678080558777, 0.02930072508752346, -0.026956232264637947, 0.009135083295404911, -0.08805320411920547, -0.09805335104465485, -0.037173084914684296, 0.062099602073431015, -0.03886104375123978, -0.06424595415592194, -0.04090869054198265, -0.07555136829614639, 0.05477946251630783, -0.021820610389113426, 0.15551139414310455, -0.05332544073462486, 0.11014164984226227, 0.04900914058089256, 0.0637420266866684, 0.02963651902973652, 0.056693609803915024, -0.06502591073513031, 0.042399223893880844, -0.13295702636241913, 0.06068245321512222, -0.09796889126300812, 0.07764502614736557, -0.13744664192199707, -0.13122570514678955, -0.01918584480881691, 0.0023488877341151237, 0.0969432145357132, 0.08521617949008942, -0.16697478294372559, -0.10071372985839844, 0.16772052645683289, -0.08325579017400742, -0.12342523783445358, 0.11817334592342377, -0.01984621211886406, 0.0221845842897892, 0.03327867016196251, 0.1643032282590866, 0.09365846961736679, -0.09725863486528397, -0.0018257678020745516, -0.05122114345431328, 0.11321010440587997, 0.007871446199715137, 0.10516563057899475, -0.030022360384464264, 0.002547553274780512, 0.003971283324062824, -0.029832780361175537, 0.05888289958238602, -0.1096724346280098, -0.09536527097225189, -0.03984614461660385, -0.09367717802524567, 0.016828086227178574, 0.06126076355576515, 0.067644402384758, -0.10625065118074417, -0.12942010164260864, 0.04538971558213234, 0.10657840222120285, -0.09921371191740036, 0.02633797377347946, -0.08380750566720963, 0.035092342644929886, -0.025043977424502373, -0.008447875268757343, -0.16919340193271637, -0.031211866065859795, 0.023891566321253777, -0.07229995727539062, 0.026014108210802078, -0.019143221899867058, 0.0926089808344841, 0.04436350613832474, -0.0444483757019043, -0.06231728568673134, -0.08782561868429184, -0.010901488363742828, -0.07294059544801712, -0.20247426629066467, -0.09771061688661575, -0.02671266719698906, 0.1285775750875473, -0.2241656333208084, 0.02238338068127632, 0.018103372305631638, 0.12593509256839752, 0.03075067326426506, -0.04289602115750313, -0.02353188768029213, 0.07476824522018433, -0.02950885519385338, -0.06745503097772598, 0.02524171769618988, 0.0034433824475854635, -0.11720754951238632, 0.021114688366651535, -0.1107335016131401, 0.13322053849697113, 0.10870203375816345, -0.023368991911411285, -0.07920924574136734, -0.03364095091819763, -0.08317738026380539, -0.0517762117087841, -0.02139320783317089, -0.00572225172072649, 0.15233081579208374, 0.015706751495599747, 0.11913983523845673, -0.08271743357181549, -0.06068456172943115, 0.037970948964357376, -0.0065672569908201694, -0.027127165347337723, 0.1301584094762802, 0.06595063954591751, -0.05728894844651222, 0.10440610349178314, 0.10364526510238647, -0.09406305849552155, 0.14968642592430115, -0.07426328957080841, -0.11995760351419449, -0.020347662270069122, 0.020530331879854202, 0.043135110288858414, 0.12003222852945328, -0.13101547956466675, -0.008388940244913101, 0.0239852461963892, 0.01746314950287342, 0.03579701855778694, -0.21405699849128723, -0.016185887157917023, 0.04511065408587456, -0.057491932064294815, -0.05474776774644852, 0.002852605190128088, 0.00009533915726933628, 0.08976315706968307, 0.0025612085592001677, -0.04802500084042549, -0.009131914004683495, -0.010194321162998676, -0.07242363691329956, 0.1951950043439865, -0.079567089676857, -0.13735787570476532, -0.15370343625545502, -0.02143010124564171, -0.020774219185113907, -0.004973908420652151, 0.05040402337908745, -0.11508902162313461, -0.03608729690313339, -0.060008514672517776, 0.049535851925611496, -0.06990567594766617, 0.039461005479097366, 0.023596445098519325, 0.02085995487868786, 0.10106291621923447, -0.11912589520215988, 0.02365519478917122, -0.018871836364269257, -0.04597288742661476, 0.02809658832848072, 0.029960855841636658, 0.10743286460638046, 0.15848959982395172, 0.013725543394684792, 0.029137255623936653, -0.03360835090279579, 0.1757325828075409, -0.09581049531698227, -0.047505639493465424, 0.11965882778167725, 0.02297813445329666, 0.04571988433599472, 0.09867454320192337, 0.06715606153011322, -0.091215118765831, 0.03555978462100029, 0.052072931081056595, -0.02877604402601719, -0.231285959482193, -0.019846133887767792, -0.06330686062574387, -0.024793047457933426, 0.13633094727993011, 0.03614212945103645, 0.013772005215287209, 0.04041903093457222, -0.010212966240942478, 0.009102856740355492, -0.016326704993844032, 0.08224505186080933, 0.0831819474697113, 0.05089207738637924, 0.12484876811504364, -0.03283260390162468, -0.053038761019706726, 0.02180907502770424, -0.004118884913623333, 0.25843167304992676, 0.01204872690141201, 0.15156510472297668, 0.05862957239151001, 0.157631516456604, 0.020475061610341072, 0.09557121992111206, 0.020488496869802475, -0.03640648350119591, 0.022801749408245087, -0.05880685895681381, -0.013442251831293106, 0.05558137223124504, 0.06935381889343262, 0.040715884417295456, -0.13568821549415588, -0.03631662577390671, 0.01717258244752884, 0.3484874367713928, 0.06333451718091965, -0.3231288492679596, -0.10874901711940765, 0.003196846228092909, -0.08809620887041092, -0.045651886612176895, 0.03131777420639992, 0.10675152391195297, -0.08708509057760239, 0.0540984608232975, -0.0732714831829071, 0.10357451438903809, -0.023937877267599106, -0.0027866873424500227, 0.08407872170209885, 0.07569625973701477, -0.0028328236658126116, 0.0662289410829544, -0.2622646987438202, 0.30913132429122925, -0.022003045305609703, 0.07870107889175415, -0.03954477235674858, 0.030120646581053734, 0.03599412366747856, -0.045861974358558655, 0.044286876916885376, -0.019117532297968864, -0.12587735056877136, -0.20834697782993317, -0.059776727110147476, 0.03111230954527855, 0.1391167789697647, -0.06198161840438843, 0.13076463341712952, -0.026937177404761314, -0.0026281974278390408, 0.07222995162010193, -0.06546670943498611, -0.12005412578582764, -0.10687651485204697, 0.020429842174053192, 0.02922528237104416, 0.07233589887619019, -0.12058211117982864, -0.1191951185464859, -0.073496513068676, 0.14921286702156067, -0.05462885648012161, -0.007401535287499428, -0.13237833976745605, 0.08271408081054688, 0.17899681627750397, -0.06258268654346466, 0.05749306455254555, 0.01775250770151615, 0.13781370222568512, 0.027973007410764694, -0.025282328948378563, 0.10441690683364868, -0.08421438932418823, -0.1916911005973816, -0.038989488035440445, 0.1516759693622589, 0.032067056745290756, 0.05944568291306496, -0.02023915760219097, 0.02824043110013008, -0.03689289093017578, -0.0898648127913475, 0.05736987665295601, -0.015307818539440632, -0.0038196176756173372, 0.029185976833105087, -0.03394223749637604, 0.041956108063459396, -0.06954566389322281, -0.055832017213106155, 0.1499367654323578, 0.2806719243526459, -0.08574283868074417, -0.008696653880178928, 0.029879098758101463, -0.03499602526426315, -0.13387657701969147, 0.02992108277976513, 0.13159875571727753, 0.02872086875140667, -0.00327467592433095, -0.22206415235996246, 0.05817413702607155, 0.09048773348331451, -0.026617083698511124, 0.09903424233198166, -0.30601435899734497, -0.13870574533939362, 0.11825381219387054, 0.10290016978979111, -0.01997266337275505, -0.15788237750530243, -0.060107190161943436, -0.017278697341680527, -0.12215588986873627, 0.09545009583234787, -0.018376236781477928, 0.1253046840429306, -0.01149635948240757, 0.07324450463056564, 0.015334207564592361, -0.0560496523976326, 0.1598271131515503, -0.01857188157737255, 0.06819318234920502, -0.00015401007840409875, 0.05873548611998558, 0.04604852572083473, -0.05786927416920662, 0.014387303963303566, -0.07293689250946045, 0.02307920530438423, -0.12597499787807465, -0.03591180965304375, -0.09351933002471924, 0.04476471245288849, -0.031740400940179825, -0.03950260207056999, -0.02643372304737568, 0.037664491683244705, 0.039947304874658585, -0.0019754760432988405, 0.14662721753120422, -0.03765246272087097, 0.1855318397283554, 0.08767244219779968, 0.0818687155842781, -0.018519440665841103, -0.08440028131008148, 0.001112911500968039, -0.011604144237935543, 0.07222764194011688, -0.13813306391239166, 0.02506478875875473, 0.1449977606534958, 0.05398598685860634, 0.13657204806804657, 0.07417528331279755, -0.07100748270750046, 0.023205969482660294, 0.08193785697221756, -0.07338643074035645, -0.12437190115451813, -0.023313239216804504, 0.07804153859615326, -0.1512099951505661, 0.04170209541916847, 0.09157077968120575, -0.06737853586673737, -0.006820392329245806, 0.0036625454667955637, -0.0017837362829595804, -0.06123729422688484, 0.2239386886358261, 0.043298300355672836, 0.0878654420375824, -0.08847691863775253, 0.0738329067826271, 0.04426443204283714, -0.15699489414691925, 0.01379543449729681, 0.06928635388612747, -0.028928324580192566, -0.009807576425373554, 0.008410383015871048, 0.05791402608156204, -0.037500109523534775, -0.05867898091673851, -0.13222068548202515, -0.15102265775203705, 0.08805333822965622, 0.12488820403814316, 0.042487457394599915, 0.03187958151102066, -0.04157787188887596, 0.055773425847291946, -0.1174759492278099, 0.07876714318990707, 0.09079980105161667, 0.08835513889789581, -0.14827559888362885, 0.15431101620197296, 0.009666062891483307, 0.014218674041330814, 0.004092236515134573, -0.008121627382934093, -0.10515146702528, 0.025500616058707237, -0.11296287178993225, -0.046785078942775726, -0.05702521279454231, -0.004593495279550552, 0.014630110934376717, -0.06226914003491402, -0.08494725078344345, 0.026228593662381172, -0.13132604956626892, -0.04977846145629883, -0.0014716056175529957, 0.06813951581716537, -0.11218157410621643, -0.008922604843974113, 0.05978827923536301, -0.12051105499267578, 0.07486604154109955, 0.06178523227572441, 0.025221850723028183, 0.048257015645504, -0.09112104028463364, 0.015104063786566257, 0.0464925616979599, -0.004583434667438269, 0.03164355084300041, -0.1497773677110672, -0.0019541571382433176, -0.018295926973223686, 0.05740541219711304, -0.005158101208508015, 0.011204038746654987, -0.13491694629192352, -0.05056285858154297, -0.020632261410355568, -0.0648375153541565, -0.05370074138045311, 0.035726603120565414, 0.06604252010583878, 0.04748585820198059, 0.16776879131793976, -0.08005761355161667, 0.02623840607702732, -0.22255030274391174, 0.014151675626635551, -0.03414023667573929, -0.08178050816059113, -0.041889987885951996, -0.026553699746727943, 0.07490477710962296, -0.066725954413414, 0.11363647133111954, -0.05747503042221069, 0.041033923625946045, 0.04418421909213066, -0.09592990577220917, 0.029858483001589775, 0.0440000481903553, 0.2692018151283264, 0.05801459029316902, -0.011927702464163303, 0.07402274012565613, 0.009541187435388565, 0.06258652359247208, 0.13509078323841095, 0.16886650025844574, 0.16873139142990112, 0.0016772159142419696, 0.1026119515299797, 0.06566225737333298, -0.09811801463365555, -0.13381287455558777, 0.0961790606379509, -0.018085313960909843, 0.1263064444065094, -0.012243405915796757, 0.21875306963920593, 0.1329442411661148, -0.18702051043510437, 0.04407455399632454, -0.03497327119112015, -0.07769610732793808, -0.09635984152555466, -0.038908813148736954, -0.0711045041680336, -0.19740012288093567, 0.02013900689780712, -0.1080358698964119, 0.061324890702962875, 0.05579918622970581, 0.0317687951028347, 0.025743067264556885, 0.14609163999557495, 0.05163063108921051, 0.008562549017369747, 0.10100403428077698, 0.0007849864778108895, -0.024957941845059395, -0.058933570981025696, -0.09992153197526932, 0.029651742428541183, -0.033368490636348724, 0.04193815216422081, -0.05822143703699112, -0.11744353175163269, 0.05769485980272293, 0.011502108536660671, -0.1001063734292984, 0.016309231519699097, -0.002829143311828375, 0.0694408118724823, 0.04375161603093147, 0.021932849660515785, -0.0059189326129853725, -0.027624519541859627, 0.25095334649086, -0.11600670218467712, -0.06380628049373627, -0.13883525133132935, 0.26164641976356506, 0.018448729068040848, -0.02026483789086342, 0.016463838517665863, -0.07045640796422958, -0.022540239617228508, 0.16214175522327423, 0.12858276069164276, 0.003111661411821842, -0.019248243421316147, -0.0025504727382212877, -0.017319221049547195, -0.06344903260469437, 0.08688665926456451, 0.13011540472507477, 0.06137872487306595, -0.07179679721593857, -0.05151516944169998, -0.052647970616817474, -0.04514867439866066, -0.027267340570688248, 0.0918668657541275, 0.02665707655251026, -0.02526603452861309, -0.03634221479296684, 0.10257945954799652, -0.06472945213317871, -0.0799928680062294, 0.033092230558395386, -0.163002610206604, -0.17401038110256195, -0.033888500183820724, 0.05702114850282669, 0.006513150874525309, 0.05970003083348274, -0.010893159545958042, -0.028589913621544838, 0.08205296844244003, 0.007549250964075327, -0.05124857649207115, -0.13094186782836914, 0.10590291023254395, -0.07628443092107773, 0.1954372376203537, -0.052593689411878586, 0.025944268330931664, 0.12498878687620163, 0.06700988858938217, -0.08149674534797668, 0.04450974985957146, 0.07347532361745834, -0.14148753881454468, 0.033360883593559265, 0.18460296094417572, -0.031825222074985504, 0.13898606598377228, 0.026986660435795784, -0.14758102595806122, 0.016886400058865547, -0.09075237065553665, -0.028198381885886192, -0.06997817009687424, -0.026926986873149872, -0.04335865378379822, 0.12471622228622437, 0.22273050248622894, -0.07217035442590714, -0.01765354722738266, -0.057385288178920746, 0.02823801152408123, 0.059405721724033356, 0.10455434769392014, -0.05037957429885864, -0.2945466935634613, 0.011599455028772354, 0.011508513242006302, -0.007246728986501694, -0.25658655166625977, -0.095238596200943, 0.04323960468173027, -0.06288276612758636, -0.02862602099776268, 0.1070077046751976, 0.09237468987703323, 0.05019240081310272, -0.051997050642967224, -0.1043994203209877, -0.049243927001953125, 0.19138696789741516, -0.17492476105690002, -0.056338608264923096 ]
null
null
transformers
This is a test!
{}
fill-mask
hackertec/dummy2
[ "transformers", "pytorch", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #camembert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
This is a test!
[]
[ "TAGS\n#transformers #pytorch #camembert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 38 ]
[ "passage: TAGS\n#transformers #pytorch #camembert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.06158731132745743, 0.0016126490663737059, -0.008972774259746075, 0.02695777639746666, 0.12247089296579361, 0.030265476554632187, 0.09849058836698532, 0.07293268293142319, 0.08388703316450119, -0.004707821644842625, 0.15668439865112305, 0.2038017064332962, -0.028222231194376945, 0.1851503700017929, -0.054528601467609406, -0.27548983693122864, 0.061418481171131134, 0.05437101051211357, -0.07281788438558578, 0.11348804831504822, 0.06573686003684998, -0.08252972364425659, 0.07382617145776749, -0.01543908566236496, -0.12396792322397232, 0.03657841682434082, 0.04270133748650551, -0.1064063236117363, 0.12324605882167816, 0.018753215670585632, 0.2093650996685028, 0.01734611950814724, -0.06502563506364822, -0.08489968627691269, 0.04933016747236252, -0.004128557629883289, -0.07240458577871323, 0.034330815076828, 0.012170922011137009, -0.08094143867492676, 0.004935348406434059, 0.028675923123955727, 0.03136675804853439, 0.041779808700084686, -0.14188168942928314, -0.0998678207397461, -0.012231853790581226, 0.01551935076713562, 0.039448902010917664, 0.06548110395669937, 0.022884948179125786, 0.1894351691007614, -0.1260698288679123, 0.11071645468473434, 0.13053502142429352, -0.301264226436615, -0.010448853485286236, 0.06850913912057877, 0.06861604750156403, -0.056116506457328796, -0.02695484459400177, 0.054982248693704605, 0.010422375984489918, 0.02976030670106411, 0.037626661360263824, -0.07097566872835159, -0.04228909686207771, -0.005129317287355661, -0.0796288400888443, -0.05198567733168602, 0.1519157588481903, -0.05272088572382927, 0.04513583704829216, -0.004211897030472755, -0.13026927411556244, -0.043009571731090546, -0.024083483964204788, 0.003781864419579506, -0.031474512070417404, 0.03850003704428673, -0.01940734125673771, -0.023279326036572456, -0.1107737198472023, 0.023909129202365875, -0.24038287997245789, 0.255195677280426, 0.026855701580643654, 0.067608542740345, -0.18799245357513428, 0.038454536348581314, -0.03962045535445213, -0.12664958834648132, 0.045559875667095184, -0.09418107569217682, 0.012690423056483269, -0.006970682181417942, -0.06036798283457756, -0.03987698256969452, 0.08645408600568771, 0.18390066921710968, 0.055982016026973724, 0.04725358635187149, 0.02931692823767662, 0.1029418557882309, 0.01703564263880253, 0.07732580602169037, 0.03762977570295334, -0.038703564554452896, 0.05385761708021164, -0.1188124492764473, 0.03929514437913895, -0.05475714057683945, -0.12750490009784698, -0.04286592826247215, 0.0031836400739848614, 0.07618868350982666, 0.04108050465583801, 0.0490809865295887, -0.0916672796010971, 0.0029738496523350477, 0.10263050347566605, -0.07786768674850464, 0.00508734118193388, -0.026516463607549667, 0.04671883583068848, 0.10760251432657242, 0.018136490136384964, -0.008222365751862526, -0.021965540945529938, 0.1194257140159607, -0.06970205157995224, -0.02177124097943306, -0.05328034237027168, -0.05561405047774315, 0.03927541524171829, -0.14729435741901398, 0.03254007175564766, -0.1772855818271637, -0.1422000229358673, 0.05542432516813278, 0.0633353665471077, 0.010434380732476711, -0.0328306145966053, 0.02361414022743702, 0.0001779562298906967, 0.01739448681473732, -0.03598635643720627, -0.05106199532747269, -0.041432444006204605, 0.09428557753562927, 0.005618556402623653, 0.13312891125679016, -0.11993900686502457, 0.045240674167871475, -0.09509128332138062, 0.016660382971167564, -0.17756244540214539, -0.03354494273662567, -0.016573671251535416, 0.15405598282814026, 0.0024215977173298597, -0.0485975556075573, -0.11963728815317154, 0.027273058891296387, -0.010771737433969975, 0.17117108404636383, -0.07872585207223892, -0.12902478873729706, 0.23723070323467255, -0.11692541837692261, -0.1405477225780487, 0.08895210176706314, 0.005264857783913612, -0.012313468381762505, 0.05130787193775177, 0.08922454714775085, 0.03956884518265724, -0.1364387422800064, 0.08729947358369827, 0.09490327537059784, -0.15083806216716766, -0.11944527924060822, 0.022735048085451126, -0.009058218449354172, -0.11387476325035095, 0.045460838824510574, 0.09356536716222763, 0.11044564843177795, -0.0698903277516365, -0.048824742436409, -0.021377554163336754, -0.039805762469768524, 0.15200668573379517, 0.04211549088358879, 0.09946061670780182, -0.08173955976963043, -0.020575810223817825, -0.060932476073503494, -0.0015613725408911705, 0.06917814910411835, 0.033453475683927536, -0.0778624415397644, 0.12869149446487427, -0.040080372244119644, 0.0072219413705170155, -0.17779727280139923, -0.1217304989695549, -0.007751823868602514, 0.050128381699323654, -0.0171987172216177, 0.1071084588766098, 0.1128942146897316, -0.019142374396324158, -0.012391282245516777, -0.02062266692519188, 0.08891909569501877, 0.01649911142885685, -0.030443239957094193, -0.102409228682518, 0.021336592733860016, -0.08772459626197815, 0.021694626659154892, 0.017140623182058334, 0.005220205523073673, -0.003567630657926202, 0.1486925184726715, -0.001396980369463563, 0.036956049501895905, -0.051063887774944305, 0.03570793941617012, -0.03822952136397362, 0.014003818854689598, 0.08437780290842056, 0.0038810819387435913, -0.06650658696889877, 0.1490975171327591, -0.13708822429180145, 0.32305461168289185, 0.1881091445684433, -0.30915340781211853, -0.03062492609024048, 0.006979112047702074, -0.01893283613026142, -0.002631183248013258, 0.047246053814888, 0.008461353369057178, 0.04714247211813927, 0.013801507651805878, 0.14505818486213684, -0.012431485578417778, -0.015834128484129906, 0.03390508145093918, -0.06998991966247559, -0.054580483585596085, 0.02513756975531578, 0.1052863821387291, -0.11312272399663925, 0.16936756670475006, 0.26966363191604614, -0.0024862911086529493, 0.14637702703475952, 0.018515735864639282, 0.00974932499229908, 0.012321881018579006, -0.034031908959150314, -0.023141058161854744, 0.036888934671878815, -0.19204048812389374, -0.040890298783779144, 0.06419071555137634, -0.03506094589829445, 0.05149867385625839, -0.1176677867770195, -0.0316212959587574, 0.02664317935705185, 0.05724262446165085, -0.0674736499786377, 0.13230736553668976, 0.03737674281001091, 0.0672554299235344, -0.0016877310117706656, -0.09104897081851959, 0.1073446050286293, 0.012782790698111057, -0.030050748959183693, 0.14958234131336212, -0.13377559185028076, -0.34738555550575256, -0.11872278153896332, -0.1577533483505249, 0.000550596509128809, 0.044226355850696564, 0.06826049834489822, -0.08733624219894409, -0.05141955241560936, 0.09069322794675827, -0.0026964512653648853, -0.02151433378458023, 0.07105807214975357, -0.06052820384502411, 0.022917281836271286, -0.040657371282577515, -0.05235671252012253, -0.0774679034948349, -0.03395025059580803, -0.023998329415917397, 0.14840810000896454, -0.08880190551280975, 0.08620700240135193, 0.1262664496898651, 0.006395436357706785, 0.06716497987508774, -0.003658286528661847, 0.18305765092372894, -0.08217400312423706, 0.00347324856556952, 0.18847091495990753, -0.028504082933068275, 0.09992386400699615, 0.164881631731987, 0.023147305473685265, -0.048852648586034775, 0.015108795836567879, -0.055863577872514725, -0.12379002571105957, -0.13688988983631134, -0.1219264343380928, -0.13863030076026917, -0.01159907877445221, 0.05689254775643349, 0.0470007099211216, 0.142121821641922, 0.09389176964759827, 0.034763842821121216, -0.008819105103611946, -0.05573790520429611, 0.05070103332400322, 0.158452570438385, -0.0214811060577631, 0.13411402702331543, -0.03822272643446922, -0.1508307009935379, 0.058481283485889435, 0.02629796601831913, 0.12004707008600235, 0.10790608078241348, -0.0005641601164825261, 0.05106410011649132, 0.15559296309947968, 0.15713141858577728, 0.15178854763507843, 0.04037384316325188, -0.056205250322818756, 0.00036362363607622683, -0.017361942678689957, -0.054880380630493164, 0.021267011761665344, 0.15583133697509766, -0.09923771768808365, -0.053879328072071075, -0.10599075257778168, 0.05813652649521828, 0.11592622101306915, 0.06361232697963715, -0.22908566892147064, 0.013363342732191086, 0.06035531312227249, 0.01198392640799284, -0.06300009042024612, 0.031878527253866196, -0.03382917121052742, -0.1377788633108139, 0.08510885387659073, -0.05109615623950958, 0.08925510942935944, 0.039689771831035614, 0.07466288655996323, -0.036579933017492294, -0.062371015548706055, 0.03875281661748886, 0.05359068512916565, -0.24865548312664032, 0.28249430656433105, -0.01101172249764204, -0.04442061111330986, -0.08725729584693909, -0.0012877003755420446, 0.05646749213337898, 0.13117334246635437, 0.11478638648986816, 0.024754783138632774, -0.05646688491106033, -0.13303348422050476, -0.007785162888467312, 0.02378048375248909, 0.10535255819559097, -0.01850459724664688, -0.019542092457413673, -0.014137585647404194, -0.0602579191327095, -0.01693926751613617, 0.0706399530172348, -0.01977146603167057, -0.1346355378627777, 0.08332612365484238, 0.06380586326122284, -0.015300645492970943, -0.005876003764569759, -0.05997837707400322, -0.10976825654506683, 0.19309088587760925, -0.03179279714822769, -0.05509141460061073, -0.1107729971408844, -0.1136385127902031, 0.09252366423606873, -0.10514237731695175, 0.12544743716716766, -0.10501118749380112, 0.015747560188174248, -0.10322662442922592, -0.17053811252117157, 0.1443183273077011, -0.1272827833890915, -0.006525355391204357, -0.07580643892288208, 0.14717064797878265, -0.06790824979543686, 0.03186191990971565, 0.008570247329771519, 0.04056062921881676, -0.10430780053138733, -0.051595449447631836, 0.026462987065315247, -0.06351133435964584, 0.046233005821704865, 0.06171068176627159, -0.04840506985783577, -0.042681507766246796, 0.02699415385723114, 0.038064587861299515, 0.2296362817287445, 0.22509922087192535, -0.058255404233932495, 0.14212431013584137, 0.16246764361858368, -0.023977311328053474, -0.3289750814437866, -0.09642142057418823, -0.12997600436210632, 0.0036115096881985664, -0.009484011679887772, -0.13767418265342712, 0.09896505624055862, -0.023782677948474884, -0.04914873465895653, 0.12509970366954803, -0.1695723682641983, -0.0931161567568779, 0.21716585755348206, 0.008078772574663162, 0.46874260902404785, -0.08051116019487381, -0.059817928820848465, -0.050414279103279114, -0.1324806660413742, 0.039874739944934845, 0.01718040183186531, 0.08684331178665161, -0.021846015006303787, 0.07283575087785721, 0.03810828551650047, -0.09130991995334625, 0.09887732565402985, -0.02788296528160572, 0.018632015213370323, -0.10660767555236816, -0.07425765693187714, 0.06456593424081802, -0.013723316602408886, -0.0013860304607078433, 0.010448385030031204, 0.002578943269327283, -0.023202626034617424, -0.017034323886036873, -0.10565227270126343, 0.11792851984500885, 0.03114483505487442, -0.056010954082012177, 0.03665632754564285, -0.011055724695324898, -0.010865872725844383, 0.006813494022935629, 0.19617682695388794, -0.00029821170028299093, 0.16561062633991241, 0.07021687924861908, 0.03145751729607582, -0.15276379883289337, -0.05608517304062843, -0.0482589416205883, -0.07599455118179321, 0.07393202185630798, -0.0009071230888366699, 0.052115149796009064, 0.11539361625909805, -0.016015490517020226, 0.03938184678554535, 0.11569088697433472, 0.022018378600478172, -0.03220955282449722, 0.15766285359859467, -0.22203227877616882, 0.038791220635175705, -0.023196160793304443, 0.0025760966818779707, 0.07100743800401688, 0.0635589137673378, 0.08785184472799301, 0.040629755705595016, -0.035614755004644394, -0.015883617103099823, -0.005862252786755562, -0.05833769962191582, 0.04125542938709259, 0.05146942660212517, 0.04729921370744705, -0.12819764018058777, 0.009289848618209362, -0.009150090627372265, -0.222141832113266, -0.026576871052384377, 0.09792999178171158, -0.118741475045681, -0.1167413741350174, 0.00919879600405693, 0.07692686468362808, -0.08708647638559341, -0.03324064612388611, -0.06943046301603317, -0.12141694128513336, 0.051863279193639755, 0.2225281447172165, 0.11475309729576111, 0.06996823847293854, -0.010807163082063198, -0.009339927695691586, -0.01613525301218033, -0.012416303157806396, 0.024548444896936417, 0.042264893651008606, -0.07777285575866699, 0.020766058936715126, -0.006083232816308737, 0.16591906547546387, -0.10662809759378433, -0.05918271839618683, -0.14546982944011688, 0.04046909511089325, -0.053844235837459564, -0.09058672189712524, -0.10302157700061798, -0.08071020245552063, 0.012721413746476173, -0.060097675770521164, -0.039164651185274124, -0.034780822694301605, -0.11662047356367111, 0.025299886241555214, 0.03178393468260765, -0.01237925048917532, -0.06574665009975433, -0.04773179814219475, 0.1362246572971344, -0.050984784960746765, 0.07318022847175598, 0.1332843154668808, -0.07100841403007507, 0.07637085765600204, -0.10786725580692291, -0.13426096737384796, 0.09863901138305664, 0.01847267523407936, 0.08485566824674606, 0.055308517068624496, 0.023773208260536194, 0.05110209435224533, 0.03914410620927811, 0.04199117049574852, 0.064384326338768, -0.11033962666988373, 0.06367069482803345, 0.023913701996207237, -0.1929958015680313, -0.02590026520192623, -0.08760430663824081, 0.08016777038574219, -0.012087225914001465, 0.12409566342830658, -0.03684500232338905, 0.10930436104536057, -0.03160300478339195, 0.015308676287531853, -0.026655923575162888, -0.16172803938388824, -0.0006256806082092226, -0.04287398234009743, 0.014566915109753609, -0.010318158194422722, 0.21881768107414246, -0.009199714288115501, 0.039597731083631516, 0.040419675409793854, 0.09606488794088364, -0.008402411825954914, 0.012069959193468094, 0.13228242099285126, 0.08614172041416168, -0.04995515197515488, -0.058502811938524246, 0.09386367350816727, 0.0248415470123291, -0.04528190940618515, 0.13796241581439972, 0.06361189484596252, 0.06314226984977722, 0.09730996191501617, 0.0047801462933421135, 0.051883943378925323, -0.12444259971380234, -0.23008446395397186, -0.04210411384701729, 0.06533505767583847, 0.024209721013903618, 0.002011100761592388, 0.12187381833791733, -0.013833067379891872, 0.05632226914167404, -0.026013901457190514, -0.023519830778241158, -0.18409273028373718, -0.12598998844623566, -0.07992803305387497, -0.05238180607557297, 0.025457317009568214, -0.017539028078317642, -0.021983548998832703, 0.09010515362024307, 0.03540725260972977, -0.031053857877850533, 0.15084512531757355, -0.012226630002260208, -0.009152530692517757, 0.02756800875067711, -0.004804058466106653, 0.022839218378067017, 0.034645773470401764, -0.02898389659821987, -0.1801033467054367, -0.006326153874397278, -0.05494832992553711, 0.001101517234928906, -0.09017308801412582, 0.02046949602663517, -0.0889166072010994, -0.1251983642578125, -0.0635145753622055, 0.02059732936322689, -0.043067485094070435, 0.07938896864652634, -0.007920405827462673, 0.05361693724989891, -0.0008000028901733458, 0.11311490088701248, -0.0630611926317215, -0.10111574828624725, -0.05420949310064316, 0.15793479979038239, 0.04601169750094414, 0.0846676453948021, -0.01734248176217079, 0.027572588995099068, -0.10564888268709183, 0.3175775110721588, 0.3141787052154541, -0.046260081231594086, 0.07518817484378815, 0.05359688401222229, 0.030314192175865173, 0.07756374776363373, 0.10844884812831879, 0.07108511030673981, 0.2803695797920227, -0.0910043939948082, -0.04350372776389122, -0.05698654055595398, -0.038350921124219894, -0.13058258593082428, -0.005525823216885328, 0.03415488451719284, -0.03244436904788017, -0.047359928488731384, 0.0807877704501152, -0.1764533668756485, 0.15757997334003448, 0.07363909482955933, -0.21162757277488708, -0.05121755599975586, -0.023470744490623474, 0.16199250519275665, 0.034454476088285446, 0.10631050169467926, -0.0402059368789196, -0.09286044538021088, 0.06769854575395584, 0.02159256674349308, -0.20066148042678833, -0.07835125178098679, 0.09469987452030182, -0.02148502878844738, 0.07997435331344604, -0.024058494716882706, 0.033186186105012894, 0.08116604387760162, 0.06840714812278748, -0.013912114314734936, 0.015751725062727928, 0.02416662871837616, -0.08430441468954086, -0.05579417198896408, 0.03231343254446983, -0.003599741728976369, -0.12329380959272385, 0.02618568204343319, -0.15314701199531555, 0.04542193189263344, -0.0906769186258316, -0.01958874613046646, 0.0018903488526120782, 0.07978403568267822, -0.04145817831158638, 0.042604319751262665, 0.07232380658388138, 0.02388128824532032, -0.03680938854813576, -0.043890755623579025, -0.01902845874428749, 0.061676036566495895, -0.10777707397937775, -0.1794593632221222, -0.08720940351486206, -0.06152317672967911, 0.03949816897511482, -0.008817724883556366, -0.13473360240459442, -0.0636775866150856, -0.10986584424972534, 0.0278884656727314, -0.15412481129169464, 0.038215022534132004, 0.05904606357216835, 0.03594795987010002, 0.018802734091877937, -0.03155335783958435, 0.04366500303149223, 0.04468917101621628, -0.15124480426311493, -0.09817884117364883 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi-taller This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2463 - Accuracy: 0.9113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2474 | 1.0 | 125 | 0.2463 | 0.9113 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "metrics": ["accuracy"], "model_index": [{"name": "roberta-base-bne-finetuned-amazon_reviews_multi-taller", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "amazon_reviews_multi", "type": "amazon_reviews_multi", "args": "es"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.91125}}]}]}
text-classification
hackertec/roberta-base-bne-finetuned-amazon_reviews_multi-taller
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us
roberta-base-bne-finetuned-amazon\_reviews\_multi-taller ======================================================== This model is a fine-tuned version of BSC-TeMU/roberta-base-bne on the amazon\_reviews\_multi dataset. It achieves the following results on the evaluation set: * Loss: 0.2463 * Accuracy: 0.9113 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.9.2 * Pytorch 1.9.0+cu102 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 68, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.08853159844875336, 0.07053319364786148, -0.00225604185834527, 0.12330955266952515, 0.17511644959449768, 0.046529483050107956, 0.15000616014003754, 0.11250007152557373, -0.09077142179012299, 0.0032591072376817465, 0.11444752663373947, 0.1630317121744156, 0.006624894216656685, 0.11406390368938446, -0.059765007346868515, -0.25505611300468445, -0.013927049934864044, 0.04561955854296684, -0.038539059460163116, 0.14661888778209686, 0.10776501148939133, -0.13526873290538788, 0.09485367685556412, 0.007094878703355789, -0.19938889145851135, -0.010487942956387997, 0.02591698430478573, -0.07332131266593933, 0.1365790069103241, 0.02946334518492222, 0.14305078983306885, 0.005750031676143408, 0.07722973823547363, -0.1805696338415146, 0.01944388449192047, 0.03609876334667206, 0.0022922554053366184, 0.09008289128541946, 0.02916513755917549, -0.014952773228287697, 0.13500714302062988, -0.05298175662755966, 0.07860811799764633, 0.01711145043373108, -0.11859938502311707, -0.22265449166297913, -0.08332260698080063, 0.04069286584854126, 0.054211705923080444, 0.09938826411962509, -0.00839985255151987, 0.14674891531467438, -0.09484762698411942, 0.08792205154895782, 0.23242510855197906, -0.28085264563560486, -0.07350129634141922, 0.03151926025748253, 0.02852853573858738, 0.06937883049249649, -0.10928211361169815, -0.03410423919558525, 0.0527581050992012, 0.05363163724541664, 0.12115449458360672, -0.03968692198395729, -0.1056935042142868, 0.011531024239957333, -0.14228685200214386, -0.023890502750873566, 0.1988980621099472, 0.038324467837810516, -0.051001764833927155, -0.043478235602378845, -0.030359333381056786, -0.1474720537662506, -0.042647168040275574, 0.00844199862331152, 0.05077700316905975, -0.06132771819829941, -0.09581673890352249, -0.0001993718178709969, -0.11576095223426819, -0.05284847691655159, -0.07261456549167633, 0.14701871573925018, 0.03892524167895317, 0.019980259239673615, -0.027798006311058998, 0.10522504150867462, 0.014822867698967457, -0.10669174790382385, 0.006161055993288755, 0.006899788044393063, -0.00851366762071848, -0.05362159013748169, -0.06095976009964943, -0.06682616472244263, 0.00015980431635398418, 0.13921529054641724, -0.02811390720307827, 0.027370836585760117, 0.04629336670041084, 0.05628344789147377, -0.07974939793348312, 0.18844933807849884, -0.027114251628518105, -0.0011177434353157878, -0.0006727105937898159, 0.05112329497933388, 0.025408869609236717, -0.007956349290907383, -0.13161863386631012, 0.007028747349977493, 0.07353713363409042, 0.006327168550342321, -0.07986846566200256, 0.05755933001637459, -0.07234426587820053, -0.0455377958714962, 0.0052324081771075726, -0.07245636731386185, 0.029345985502004623, -0.007588661275804043, -0.06800661236047745, -0.017591604962944984, 0.020911037921905518, 0.02088487707078457, -0.0010588043369352818, 0.15461376309394836, -0.09203857183456421, 0.032368533313274384, -0.08805999904870987, -0.09277000278234482, 0.027398088946938515, -0.08219374716281891, 0.04503047466278076, -0.11429397761821747, -0.17030608654022217, -0.0214344784617424, 0.04789896309375763, -0.024028323590755463, -0.0666733980178833, -0.03280748799443245, -0.0657324269413948, 0.010166252963244915, -0.013778433203697205, 0.14752821624279022, -0.07374561578035355, 0.10747276991605759, 0.03448954224586487, 0.05534335598349571, -0.04658075049519539, 0.04469185322523117, -0.09751607477664948, -0.013318313285708427, -0.16357827186584473, 0.02865162491798401, -0.04345424100756645, 0.05821376293897629, -0.07707005739212036, -0.11714538931846619, 0.011441318318247795, 0.008638260886073112, 0.04240628704428673, 0.08066955953836441, -0.163316011428833, -0.075210340321064, 0.13831841945648193, -0.06857796758413315, -0.12339887022972107, 0.12314233183860779, -0.08139380812644958, 0.0583961084485054, 0.07236264646053314, 0.13957181572914124, 0.06294260174036026, -0.07115738838911057, 0.014110293239355087, -0.014699025079607964, 0.035785652697086334, -0.0645015761256218, 0.08047248423099518, 0.01614464819431305, -0.007486224174499512, 0.0283894632011652, -0.03288976475596428, 0.0368543341755867, -0.09173931926488876, -0.08837354183197021, -0.03886064887046814, -0.09494922310113907, 0.06121091917157173, 0.06908416002988815, 0.06846476346254349, -0.1133183017373085, -0.07668955624103546, 0.06879256665706635, 0.08416958898305893, -0.04617872089147568, 0.017518170177936554, -0.052045535296201706, 0.07722222059965134, -0.03398128226399422, -0.025891344994306564, -0.17509794235229492, -0.03182351216673851, 0.01682509295642376, 0.0013387261424213648, 0.03642410412430763, 0.017221730202436447, 0.052498381584882736, 0.0430804044008255, -0.07253608852624893, 0.0006273508188314736, -0.06153923645615578, -0.008688051253557205, -0.11356070637702942, -0.2013021856546402, -0.025301018729805946, -0.016605254262685776, 0.12690913677215576, -0.20996713638305664, 0.029083004221320152, -0.02616415172815323, 0.07653354108333588, 0.03392357379198074, -0.014325989410281181, -0.024948719888925552, 0.08334404975175858, -0.034886348992586136, -0.03171466290950775, 0.06885022670030594, 0.009906467981636524, -0.10520469397306442, -0.011875608935952187, -0.07141830027103424, 0.17673955857753754, 0.1341211199760437, -0.10249490290880203, -0.09031445533037186, 0.014665971510112286, -0.05420658364892006, -0.03188944235444069, -0.0898013710975647, 0.037675824016332626, 0.18966569006443024, -0.0011309139663353562, 0.1370416283607483, -0.08899090439081192, -0.04899626970291138, 0.03233616054058075, -0.036044489592313766, 0.033039920032024384, 0.133785218000412, 0.1364963799715042, -0.08021838963031769, 0.13284660875797272, 0.1590776890516281, -0.08865909278392792, 0.14376595616340637, -0.039979156106710434, -0.06516580283641815, -0.022657359018921852, -0.04300866648554802, -0.009132030420005322, 0.11547096073627472, -0.13326485455036163, 0.0003576264134608209, 0.03276940435171127, 0.005242128856480122, 0.0069935377687215805, -0.2271609604358673, -0.04474307969212532, 0.03270236402750015, -0.03542386740446091, -0.014603743329644203, 0.00626902561634779, 0.01763205975294113, 0.10843850672245026, 0.0040246122516691685, -0.07482095807790756, 0.04549447447061539, 0.009803522378206253, -0.08223835378885269, 0.21887025237083435, -0.06584557145833969, -0.1578437238931656, -0.13543659448623657, -0.05921323597431183, -0.043574824929237366, -0.00033884719596244395, 0.06285127252340317, -0.06613155454397202, -0.03381854295730591, -0.06729517132043839, 0.007478311192244291, -0.008311291225254536, 0.023661447688937187, -0.024178864434361458, 0.023870328441262245, 0.03551990166306496, -0.10188797861337662, -0.007711105979979038, -0.059818387031555176, -0.0404663123190403, 0.051614150404930115, 0.04905259981751442, 0.1081717312335968, 0.14951948821544647, -0.024029651656746864, -0.009003514423966408, -0.03277738764882088, 0.2131061553955078, -0.08715297281742096, -0.04855262488126755, 0.13264961540699005, -0.014806908555328846, 0.03318043053150177, 0.1264411211013794, 0.08116958290338516, -0.08821170777082443, 0.015325946733355522, 0.025287305936217308, -0.040848903357982635, -0.26151761412620544, -0.03707350417971611, -0.05487298592925072, -0.005629665218293667, 0.08089733123779297, 0.024409199133515358, 0.0027336885686963797, 0.07163748145103455, 0.04198642075061798, 0.0743333175778389, -0.025857416912913322, 0.07391370832920074, 0.12508150935173035, 0.049727991223335266, 0.13298356533050537, -0.04888824746012688, -0.06289494782686234, 0.057848431169986725, -0.018598778173327446, 0.2500891387462616, 0.008897718973457813, 0.13684532046318054, 0.07093792408704758, 0.12866027653217316, 0.02221454307436943, 0.0546439103782177, 0.02419450506567955, -0.03044953942298889, -0.0210700873285532, -0.025666339322924614, -0.027149442583322525, 0.02666867896914482, -0.050509262830019, 0.05115032568573952, -0.13002806901931763, -0.017323773354291916, 0.06015324965119362, 0.24335333704948425, 0.022135892882943153, -0.3149777054786682, -0.1060619056224823, 0.005023478530347347, -0.050473425537347794, -0.004969104193150997, 0.029897578060626984, 0.076705202460289, -0.12095395475625992, 0.038782112300395966, -0.07636286318302155, 0.09091117978096008, -0.09112522006034851, 0.03424350544810295, 0.07710195332765579, 0.07373996078968048, -0.001990966033190489, 0.07610686123371124, -0.29424601793289185, 0.2780604958534241, -0.00730433315038681, 0.05892780423164368, -0.06615694612264633, -0.02884545363485813, 0.024035608395934105, 0.04744825139641762, 0.061544012278318405, -0.00573889072984457, -0.04919860512018204, -0.16912071406841278, -0.038679253309965134, 0.020905181765556335, 0.0790756493806839, -0.018100544810295105, 0.08510902523994446, -0.026899784803390503, 0.0017555367667227983, 0.05668344721198082, -0.02335742861032486, -0.04980572313070297, -0.09339280426502228, -0.0028851639945060015, 0.0233074389398098, -0.05568721890449524, -0.061944518238306046, -0.13307997584342957, -0.0718584656715393, 0.12445876747369766, -0.023914795368909836, -0.04485330358147621, -0.09649601578712463, 0.07246113568544388, 0.08420430123806, -0.0756978690624237, 0.051689472049474716, 0.008784650824964046, 0.08784686774015427, 0.024126386269927025, -0.042049653828144073, 0.09218288958072662, -0.053449179977178574, -0.1951615959405899, -0.06944239139556885, 0.11463505029678345, 0.024351513013243675, 0.06705204397439957, -0.02362900599837303, 0.010196160525083542, -0.05535748973488808, -0.09149174392223358, 0.01860404945909977, -0.004802651237696409, 0.08347819745540619, 0.049456097185611725, -0.04928683489561081, 0.0073621938936412334, -0.07143857330083847, -0.05715438351035118, 0.18747977912425995, 0.2140510529279709, -0.09348896890878677, 0.028659040108323097, 0.018096182495355606, -0.06939267367124557, -0.1594613939523697, 0.025974644348025322, 0.07153674215078354, 0.007265295833349228, 0.047727592289447784, -0.14567930996418, 0.1274079978466034, 0.10604611784219742, -0.011272560805082321, 0.13159780204296112, -0.3178037703037262, -0.1360238939523697, 0.09285737574100494, 0.1458645462989807, 0.1354800909757614, -0.1287289559841156, -0.016096265986561775, -0.03258981928229332, -0.1436549574136734, 0.13320840895175934, -0.08446329832077026, 0.137525737285614, -0.03645668923854828, 0.11078356206417084, 0.001469578593969345, -0.05314234271645546, 0.1132408082485199, 0.02698814682662487, 0.10030843317508698, -0.050729136914014816, -0.04509708285331726, 0.026222340762615204, -0.027259904891252518, 0.01176948007196188, -0.06828741729259491, 0.018565300852060318, -0.08674000203609467, -0.03622142970561981, -0.07208202034235, 0.03908504545688629, -0.04084163159132004, -0.05091362074017525, -0.04428861290216446, 0.03058016486465931, 0.017950356006622314, -0.021090205758810043, 0.14998489618301392, 0.01713499240577221, 0.13498598337173462, 0.05954327806830406, 0.09077586233615875, -0.056631579995155334, -0.10320345312356949, -0.03361082449555397, -0.027727410197257996, 0.04687623679637909, -0.1568344235420227, 0.02011525072157383, 0.1355825662612915, 0.02235681563615799, 0.14955773949623108, 0.07876192778348923, -0.02808246947824955, 0.016367966309189796, 0.06896468251943588, -0.15075430274009705, -0.07426364719867706, -0.008273927494883537, -0.07879725098609924, -0.11882064491510391, 0.03875760734081268, 0.11215662956237793, -0.07467631250619888, -0.025991166010499, -0.007039703894406557, 0.004153531044721603, -0.04854810982942581, 0.1823316216468811, 0.06968981772661209, 0.048465192317962646, -0.10183489322662354, 0.09369751811027527, 0.062392085790634155, -0.06961951404809952, -0.003179794643074274, 0.06244121864438057, -0.09424334019422531, -0.05414561554789543, 0.04862828552722931, 0.16939230263233185, -0.08622565865516663, -0.04355485364794731, -0.14450611174106598, -0.12637513875961304, 0.08254645764827728, 0.15685997903347015, 0.11895552277565002, 0.014821905642747879, -0.04343156889081001, -0.00919504463672638, -0.10322712361812592, 0.10017868131399155, 0.060673657804727554, 0.07416500896215439, -0.14749521017074585, 0.10143722593784332, 0.027641931548714638, 0.043687280267477036, -0.019189661368727684, 0.041951414197683334, -0.10568085312843323, 0.013727470301091671, -0.11000709235668182, -0.001110745477490127, -0.02350827120244503, 0.018324831500649452, -0.0010574598563835025, -0.057043205946683884, -0.06679864227771759, 0.01072385348379612, -0.11552467942237854, -0.015904923900961876, 0.0421370305120945, 0.07558101415634155, -0.09429161995649338, -0.03708597645163536, 0.03328032046556473, -0.052052512764930725, 0.07385478168725967, 0.05014443024992943, 0.016910966485738754, 0.06098426133394241, -0.12199748307466507, 0.031028330326080322, 0.053875718265771866, 0.016903292387723923, 0.050655167549848557, -0.12409060448408127, 0.00662357360124588, -0.000690238259267062, 0.07117711752653122, 0.02522740140557289, 0.06396523118019104, -0.16046617925167084, -0.009492170065641403, -0.003134228056296706, -0.08248761296272278, -0.055382922291755676, 0.01327594369649887, 0.07194404304027557, 0.02710554003715515, 0.21698340773582458, -0.07649138569831848, 0.04246809333562851, -0.19260726869106293, 0.006767683662474155, -0.02321033738553524, -0.12076758593320847, -0.14495190978050232, -0.0712263435125351, 0.0524764321744442, -0.06818469613790512, 0.17484231293201447, 0.035340264439582825, 0.06568587571382523, 0.029344169422984123, -0.0023168467450886965, -0.006094377487897873, 0.017831282690167427, 0.1753777265548706, 0.020160162821412086, -0.044218990951776505, 0.05864100158214569, 0.03933603689074516, 0.10542014241218567, 0.09073089063167572, 0.19133040308952332, 0.1683761477470398, 0.01743064820766449, 0.08532717823982239, 0.043703626841306686, -0.03167998045682907, -0.12479816377162933, 0.03872605785727501, -0.014518637210130692, 0.1086101159453392, -0.02174404263496399, 0.20358194410800934, 0.06571568548679352, -0.16056254506111145, 0.040614984929561615, -0.056509628891944885, -0.08450611680746078, -0.10476258397102356, -0.04351842775940895, -0.09657224267721176, -0.14826810359954834, 0.01278573926538229, -0.1261449158191681, -0.002515690168365836, 0.09407997876405716, 0.007943016476929188, -0.03600899502635002, 0.11446759104728699, 0.013282617554068565, 0.014125673100352287, 0.09330680221319199, 0.015260132029652596, -0.0370442233979702, -0.09968217462301254, -0.0569307766854763, -0.036090999841690063, -0.02979188971221447, 0.01831287518143654, -0.05747104808688164, -0.06494590640068054, 0.021123243495821953, -0.018365589901804924, -0.10224438458681107, 0.02159705199301243, 0.018419193103909492, 0.0793195366859436, 0.03641160950064659, 0.00716294115409255, 0.021764980629086494, -0.0005490442854352295, 0.246916726231575, -0.06012633070349693, -0.06047019362449646, -0.11556500196456909, 0.22824785113334656, 0.040205806493759155, -0.0321725569665432, 0.0389694944024086, -0.06861906498670578, 0.00861749891191721, 0.24717240035533905, 0.2150682955980301, -0.07382337749004364, -0.013509930111467838, 0.02480497397482395, -0.009358561597764492, -0.007123262155801058, 0.11172618716955185, 0.10885590314865112, 0.032068219035863876, -0.07577285170555115, -0.04065921530127525, -0.05284053087234497, 0.004467058926820755, -0.01595744490623474, 0.06567002087831497, 0.04739995673298836, -0.005088276229798794, -0.0495244637131691, 0.07418248057365417, -0.08920277655124664, -0.12127823382616043, 0.06485787034034729, -0.21216623485088348, -0.17319077253341675, -0.015091514214873314, 0.08423320204019547, 0.008601752109825611, 0.06690911203622818, -0.02495957724750042, -0.021194327622652054, 0.07416777312755585, -0.012941795401275158, -0.11354844272136688, -0.08838437497615814, 0.09447799623012543, -0.08643294125795364, 0.19428396224975586, -0.051235392689704895, 0.07010546326637268, 0.12045395374298096, 0.06942300498485565, -0.07273977994918823, 0.06643287092447281, 0.04318838566541672, -0.04660528525710106, 0.0461202971637249, 0.10334532707929611, -0.030500514432787895, 0.07127542048692703, 0.05036497861146927, -0.12501634657382965, 0.017561040818691254, -0.07435432821512222, -0.04546499624848366, -0.06303345412015915, -0.013899445533752441, -0.07319958508014679, 0.12848930060863495, 0.2347881942987442, -0.040244728326797485, -0.01754789985716343, -0.05637902021408081, 0.027136344462633133, 0.07196375727653503, 0.031070716679096222, -0.05060131475329399, -0.21982644498348236, 0.009320087730884552, 0.08102329075336456, -0.014147356152534485, -0.2568693161010742, -0.07356929779052734, 0.008603516966104507, -0.07192739844322205, -0.07316084951162338, 0.08006908744573593, 0.07400187849998474, 0.04601547122001648, -0.06309545040130615, -0.0494551882147789, -0.06859690696001053, 0.1482003629207611, -0.15962807834148407, -0.0975819081068039 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2557 - Accuracy: 0.9085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2296 | 1.0 | 125 | 0.2557 | 0.9085 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "metrics": ["accuracy"], "model_index": [{"name": "roberta-base-bne-finetuned-amazon_reviews_multi", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "amazon_reviews_multi", "type": "amazon_reviews_multi", "args": "es"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9085}}]}]}
text-classification
hackertec/roberta-base-bne-finetuned-amazon_reviews_multi
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us
roberta-base-bne-finetuned-amazon\_reviews\_multi ================================================= This model is a fine-tuned version of BSC-TeMU/roberta-base-bne on the amazon\_reviews\_multi dataset. It achieves the following results on the evaluation set: * Loss: 0.2557 * Accuracy: 0.9085 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.9.2 * Pytorch 1.9.0+cu102 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 68, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.9.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.08853159844875336, 0.07053319364786148, -0.00225604185834527, 0.12330955266952515, 0.17511644959449768, 0.046529483050107956, 0.15000616014003754, 0.11250007152557373, -0.09077142179012299, 0.0032591072376817465, 0.11444752663373947, 0.1630317121744156, 0.006624894216656685, 0.11406390368938446, -0.059765007346868515, -0.25505611300468445, -0.013927049934864044, 0.04561955854296684, -0.038539059460163116, 0.14661888778209686, 0.10776501148939133, -0.13526873290538788, 0.09485367685556412, 0.007094878703355789, -0.19938889145851135, -0.010487942956387997, 0.02591698430478573, -0.07332131266593933, 0.1365790069103241, 0.02946334518492222, 0.14305078983306885, 0.005750031676143408, 0.07722973823547363, -0.1805696338415146, 0.01944388449192047, 0.03609876334667206, 0.0022922554053366184, 0.09008289128541946, 0.02916513755917549, -0.014952773228287697, 0.13500714302062988, -0.05298175662755966, 0.07860811799764633, 0.01711145043373108, -0.11859938502311707, -0.22265449166297913, -0.08332260698080063, 0.04069286584854126, 0.054211705923080444, 0.09938826411962509, -0.00839985255151987, 0.14674891531467438, -0.09484762698411942, 0.08792205154895782, 0.23242510855197906, -0.28085264563560486, -0.07350129634141922, 0.03151926025748253, 0.02852853573858738, 0.06937883049249649, -0.10928211361169815, -0.03410423919558525, 0.0527581050992012, 0.05363163724541664, 0.12115449458360672, -0.03968692198395729, -0.1056935042142868, 0.011531024239957333, -0.14228685200214386, -0.023890502750873566, 0.1988980621099472, 0.038324467837810516, -0.051001764833927155, -0.043478235602378845, -0.030359333381056786, -0.1474720537662506, -0.042647168040275574, 0.00844199862331152, 0.05077700316905975, -0.06132771819829941, -0.09581673890352249, -0.0001993718178709969, -0.11576095223426819, -0.05284847691655159, -0.07261456549167633, 0.14701871573925018, 0.03892524167895317, 0.019980259239673615, -0.027798006311058998, 0.10522504150867462, 0.014822867698967457, -0.10669174790382385, 0.006161055993288755, 0.006899788044393063, -0.00851366762071848, -0.05362159013748169, -0.06095976009964943, -0.06682616472244263, 0.00015980431635398418, 0.13921529054641724, -0.02811390720307827, 0.027370836585760117, 0.04629336670041084, 0.05628344789147377, -0.07974939793348312, 0.18844933807849884, -0.027114251628518105, -0.0011177434353157878, -0.0006727105937898159, 0.05112329497933388, 0.025408869609236717, -0.007956349290907383, -0.13161863386631012, 0.007028747349977493, 0.07353713363409042, 0.006327168550342321, -0.07986846566200256, 0.05755933001637459, -0.07234426587820053, -0.0455377958714962, 0.0052324081771075726, -0.07245636731386185, 0.029345985502004623, -0.007588661275804043, -0.06800661236047745, -0.017591604962944984, 0.020911037921905518, 0.02088487707078457, -0.0010588043369352818, 0.15461376309394836, -0.09203857183456421, 0.032368533313274384, -0.08805999904870987, -0.09277000278234482, 0.027398088946938515, -0.08219374716281891, 0.04503047466278076, -0.11429397761821747, -0.17030608654022217, -0.0214344784617424, 0.04789896309375763, -0.024028323590755463, -0.0666733980178833, -0.03280748799443245, -0.0657324269413948, 0.010166252963244915, -0.013778433203697205, 0.14752821624279022, -0.07374561578035355, 0.10747276991605759, 0.03448954224586487, 0.05534335598349571, -0.04658075049519539, 0.04469185322523117, -0.09751607477664948, -0.013318313285708427, -0.16357827186584473, 0.02865162491798401, -0.04345424100756645, 0.05821376293897629, -0.07707005739212036, -0.11714538931846619, 0.011441318318247795, 0.008638260886073112, 0.04240628704428673, 0.08066955953836441, -0.163316011428833, -0.075210340321064, 0.13831841945648193, -0.06857796758413315, -0.12339887022972107, 0.12314233183860779, -0.08139380812644958, 0.0583961084485054, 0.07236264646053314, 0.13957181572914124, 0.06294260174036026, -0.07115738838911057, 0.014110293239355087, -0.014699025079607964, 0.035785652697086334, -0.0645015761256218, 0.08047248423099518, 0.01614464819431305, -0.007486224174499512, 0.0283894632011652, -0.03288976475596428, 0.0368543341755867, -0.09173931926488876, -0.08837354183197021, -0.03886064887046814, -0.09494922310113907, 0.06121091917157173, 0.06908416002988815, 0.06846476346254349, -0.1133183017373085, -0.07668955624103546, 0.06879256665706635, 0.08416958898305893, -0.04617872089147568, 0.017518170177936554, -0.052045535296201706, 0.07722222059965134, -0.03398128226399422, -0.025891344994306564, -0.17509794235229492, -0.03182351216673851, 0.01682509295642376, 0.0013387261424213648, 0.03642410412430763, 0.017221730202436447, 0.052498381584882736, 0.0430804044008255, -0.07253608852624893, 0.0006273508188314736, -0.06153923645615578, -0.008688051253557205, -0.11356070637702942, -0.2013021856546402, -0.025301018729805946, -0.016605254262685776, 0.12690913677215576, -0.20996713638305664, 0.029083004221320152, -0.02616415172815323, 0.07653354108333588, 0.03392357379198074, -0.014325989410281181, -0.024948719888925552, 0.08334404975175858, -0.034886348992586136, -0.03171466290950775, 0.06885022670030594, 0.009906467981636524, -0.10520469397306442, -0.011875608935952187, -0.07141830027103424, 0.17673955857753754, 0.1341211199760437, -0.10249490290880203, -0.09031445533037186, 0.014665971510112286, -0.05420658364892006, -0.03188944235444069, -0.0898013710975647, 0.037675824016332626, 0.18966569006443024, -0.0011309139663353562, 0.1370416283607483, -0.08899090439081192, -0.04899626970291138, 0.03233616054058075, -0.036044489592313766, 0.033039920032024384, 0.133785218000412, 0.1364963799715042, -0.08021838963031769, 0.13284660875797272, 0.1590776890516281, -0.08865909278392792, 0.14376595616340637, -0.039979156106710434, -0.06516580283641815, -0.022657359018921852, -0.04300866648554802, -0.009132030420005322, 0.11547096073627472, -0.13326485455036163, 0.0003576264134608209, 0.03276940435171127, 0.005242128856480122, 0.0069935377687215805, -0.2271609604358673, -0.04474307969212532, 0.03270236402750015, -0.03542386740446091, -0.014603743329644203, 0.00626902561634779, 0.01763205975294113, 0.10843850672245026, 0.0040246122516691685, -0.07482095807790756, 0.04549447447061539, 0.009803522378206253, -0.08223835378885269, 0.21887025237083435, -0.06584557145833969, -0.1578437238931656, -0.13543659448623657, -0.05921323597431183, -0.043574824929237366, -0.00033884719596244395, 0.06285127252340317, -0.06613155454397202, -0.03381854295730591, -0.06729517132043839, 0.007478311192244291, -0.008311291225254536, 0.023661447688937187, -0.024178864434361458, 0.023870328441262245, 0.03551990166306496, -0.10188797861337662, -0.007711105979979038, -0.059818387031555176, -0.0404663123190403, 0.051614150404930115, 0.04905259981751442, 0.1081717312335968, 0.14951948821544647, -0.024029651656746864, -0.009003514423966408, -0.03277738764882088, 0.2131061553955078, -0.08715297281742096, -0.04855262488126755, 0.13264961540699005, -0.014806908555328846, 0.03318043053150177, 0.1264411211013794, 0.08116958290338516, -0.08821170777082443, 0.015325946733355522, 0.025287305936217308, -0.040848903357982635, -0.26151761412620544, -0.03707350417971611, -0.05487298592925072, -0.005629665218293667, 0.08089733123779297, 0.024409199133515358, 0.0027336885686963797, 0.07163748145103455, 0.04198642075061798, 0.0743333175778389, -0.025857416912913322, 0.07391370832920074, 0.12508150935173035, 0.049727991223335266, 0.13298356533050537, -0.04888824746012688, -0.06289494782686234, 0.057848431169986725, -0.018598778173327446, 0.2500891387462616, 0.008897718973457813, 0.13684532046318054, 0.07093792408704758, 0.12866027653217316, 0.02221454307436943, 0.0546439103782177, 0.02419450506567955, -0.03044953942298889, -0.0210700873285532, -0.025666339322924614, -0.027149442583322525, 0.02666867896914482, -0.050509262830019, 0.05115032568573952, -0.13002806901931763, -0.017323773354291916, 0.06015324965119362, 0.24335333704948425, 0.022135892882943153, -0.3149777054786682, -0.1060619056224823, 0.005023478530347347, -0.050473425537347794, -0.004969104193150997, 0.029897578060626984, 0.076705202460289, -0.12095395475625992, 0.038782112300395966, -0.07636286318302155, 0.09091117978096008, -0.09112522006034851, 0.03424350544810295, 0.07710195332765579, 0.07373996078968048, -0.001990966033190489, 0.07610686123371124, -0.29424601793289185, 0.2780604958534241, -0.00730433315038681, 0.05892780423164368, -0.06615694612264633, -0.02884545363485813, 0.024035608395934105, 0.04744825139641762, 0.061544012278318405, -0.00573889072984457, -0.04919860512018204, -0.16912071406841278, -0.038679253309965134, 0.020905181765556335, 0.0790756493806839, -0.018100544810295105, 0.08510902523994446, -0.026899784803390503, 0.0017555367667227983, 0.05668344721198082, -0.02335742861032486, -0.04980572313070297, -0.09339280426502228, -0.0028851639945060015, 0.0233074389398098, -0.05568721890449524, -0.061944518238306046, -0.13307997584342957, -0.0718584656715393, 0.12445876747369766, -0.023914795368909836, -0.04485330358147621, -0.09649601578712463, 0.07246113568544388, 0.08420430123806, -0.0756978690624237, 0.051689472049474716, 0.008784650824964046, 0.08784686774015427, 0.024126386269927025, -0.042049653828144073, 0.09218288958072662, -0.053449179977178574, -0.1951615959405899, -0.06944239139556885, 0.11463505029678345, 0.024351513013243675, 0.06705204397439957, -0.02362900599837303, 0.010196160525083542, -0.05535748973488808, -0.09149174392223358, 0.01860404945909977, -0.004802651237696409, 0.08347819745540619, 0.049456097185611725, -0.04928683489561081, 0.0073621938936412334, -0.07143857330083847, -0.05715438351035118, 0.18747977912425995, 0.2140510529279709, -0.09348896890878677, 0.028659040108323097, 0.018096182495355606, -0.06939267367124557, -0.1594613939523697, 0.025974644348025322, 0.07153674215078354, 0.007265295833349228, 0.047727592289447784, -0.14567930996418, 0.1274079978466034, 0.10604611784219742, -0.011272560805082321, 0.13159780204296112, -0.3178037703037262, -0.1360238939523697, 0.09285737574100494, 0.1458645462989807, 0.1354800909757614, -0.1287289559841156, -0.016096265986561775, -0.03258981928229332, -0.1436549574136734, 0.13320840895175934, -0.08446329832077026, 0.137525737285614, -0.03645668923854828, 0.11078356206417084, 0.001469578593969345, -0.05314234271645546, 0.1132408082485199, 0.02698814682662487, 0.10030843317508698, -0.050729136914014816, -0.04509708285331726, 0.026222340762615204, -0.027259904891252518, 0.01176948007196188, -0.06828741729259491, 0.018565300852060318, -0.08674000203609467, -0.03622142970561981, -0.07208202034235, 0.03908504545688629, -0.04084163159132004, -0.05091362074017525, -0.04428861290216446, 0.03058016486465931, 0.017950356006622314, -0.021090205758810043, 0.14998489618301392, 0.01713499240577221, 0.13498598337173462, 0.05954327806830406, 0.09077586233615875, -0.056631579995155334, -0.10320345312356949, -0.03361082449555397, -0.027727410197257996, 0.04687623679637909, -0.1568344235420227, 0.02011525072157383, 0.1355825662612915, 0.02235681563615799, 0.14955773949623108, 0.07876192778348923, -0.02808246947824955, 0.016367966309189796, 0.06896468251943588, -0.15075430274009705, -0.07426364719867706, -0.008273927494883537, -0.07879725098609924, -0.11882064491510391, 0.03875760734081268, 0.11215662956237793, -0.07467631250619888, -0.025991166010499, -0.007039703894406557, 0.004153531044721603, -0.04854810982942581, 0.1823316216468811, 0.06968981772661209, 0.048465192317962646, -0.10183489322662354, 0.09369751811027527, 0.062392085790634155, -0.06961951404809952, -0.003179794643074274, 0.06244121864438057, -0.09424334019422531, -0.05414561554789543, 0.04862828552722931, 0.16939230263233185, -0.08622565865516663, -0.04355485364794731, -0.14450611174106598, -0.12637513875961304, 0.08254645764827728, 0.15685997903347015, 0.11895552277565002, 0.014821905642747879, -0.04343156889081001, -0.00919504463672638, -0.10322712361812592, 0.10017868131399155, 0.060673657804727554, 0.07416500896215439, -0.14749521017074585, 0.10143722593784332, 0.027641931548714638, 0.043687280267477036, -0.019189661368727684, 0.041951414197683334, -0.10568085312843323, 0.013727470301091671, -0.11000709235668182, -0.001110745477490127, -0.02350827120244503, 0.018324831500649452, -0.0010574598563835025, -0.057043205946683884, -0.06679864227771759, 0.01072385348379612, -0.11552467942237854, -0.015904923900961876, 0.0421370305120945, 0.07558101415634155, -0.09429161995649338, -0.03708597645163536, 0.03328032046556473, -0.052052512764930725, 0.07385478168725967, 0.05014443024992943, 0.016910966485738754, 0.06098426133394241, -0.12199748307466507, 0.031028330326080322, 0.053875718265771866, 0.016903292387723923, 0.050655167549848557, -0.12409060448408127, 0.00662357360124588, -0.000690238259267062, 0.07117711752653122, 0.02522740140557289, 0.06396523118019104, -0.16046617925167084, -0.009492170065641403, -0.003134228056296706, -0.08248761296272278, -0.055382922291755676, 0.01327594369649887, 0.07194404304027557, 0.02710554003715515, 0.21698340773582458, -0.07649138569831848, 0.04246809333562851, -0.19260726869106293, 0.006767683662474155, -0.02321033738553524, -0.12076758593320847, -0.14495190978050232, -0.0712263435125351, 0.0524764321744442, -0.06818469613790512, 0.17484231293201447, 0.035340264439582825, 0.06568587571382523, 0.029344169422984123, -0.0023168467450886965, -0.006094377487897873, 0.017831282690167427, 0.1753777265548706, 0.020160162821412086, -0.044218990951776505, 0.05864100158214569, 0.03933603689074516, 0.10542014241218567, 0.09073089063167572, 0.19133040308952332, 0.1683761477470398, 0.01743064820766449, 0.08532717823982239, 0.043703626841306686, -0.03167998045682907, -0.12479816377162933, 0.03872605785727501, -0.014518637210130692, 0.1086101159453392, -0.02174404263496399, 0.20358194410800934, 0.06571568548679352, -0.16056254506111145, 0.040614984929561615, -0.056509628891944885, -0.08450611680746078, -0.10476258397102356, -0.04351842775940895, -0.09657224267721176, -0.14826810359954834, 0.01278573926538229, -0.1261449158191681, -0.002515690168365836, 0.09407997876405716, 0.007943016476929188, -0.03600899502635002, 0.11446759104728699, 0.013282617554068565, 0.014125673100352287, 0.09330680221319199, 0.015260132029652596, -0.0370442233979702, -0.09968217462301254, -0.0569307766854763, -0.036090999841690063, -0.02979188971221447, 0.01831287518143654, -0.05747104808688164, -0.06494590640068054, 0.021123243495821953, -0.018365589901804924, -0.10224438458681107, 0.02159705199301243, 0.018419193103909492, 0.0793195366859436, 0.03641160950064659, 0.00716294115409255, 0.021764980629086494, -0.0005490442854352295, 0.246916726231575, -0.06012633070349693, -0.06047019362449646, -0.11556500196456909, 0.22824785113334656, 0.040205806493759155, -0.0321725569665432, 0.0389694944024086, -0.06861906498670578, 0.00861749891191721, 0.24717240035533905, 0.2150682955980301, -0.07382337749004364, -0.013509930111467838, 0.02480497397482395, -0.009358561597764492, -0.007123262155801058, 0.11172618716955185, 0.10885590314865112, 0.032068219035863876, -0.07577285170555115, -0.04065921530127525, -0.05284053087234497, 0.004467058926820755, -0.01595744490623474, 0.06567002087831497, 0.04739995673298836, -0.005088276229798794, -0.0495244637131691, 0.07418248057365417, -0.08920277655124664, -0.12127823382616043, 0.06485787034034729, -0.21216623485088348, -0.17319077253341675, -0.015091514214873314, 0.08423320204019547, 0.008601752109825611, 0.06690911203622818, -0.02495957724750042, -0.021194327622652054, 0.07416777312755585, -0.012941795401275158, -0.11354844272136688, -0.08838437497615814, 0.09447799623012543, -0.08643294125795364, 0.19428396224975586, -0.051235392689704895, 0.07010546326637268, 0.12045395374298096, 0.06942300498485565, -0.07273977994918823, 0.06643287092447281, 0.04318838566541672, -0.04660528525710106, 0.0461202971637249, 0.10334532707929611, -0.030500514432787895, 0.07127542048692703, 0.05036497861146927, -0.12501634657382965, 0.017561040818691254, -0.07435432821512222, -0.04546499624848366, -0.06303345412015915, -0.013899445533752441, -0.07319958508014679, 0.12848930060863495, 0.2347881942987442, -0.040244728326797485, -0.01754789985716343, -0.05637902021408081, 0.027136344462633133, 0.07196375727653503, 0.031070716679096222, -0.05060131475329399, -0.21982644498348236, 0.009320087730884552, 0.08102329075336456, -0.014147356152534485, -0.2568693161010742, -0.07356929779052734, 0.008603516966104507, -0.07192739844322205, -0.07316084951162338, 0.08006908744573593, 0.07400187849998474, 0.04601547122001648, -0.06309545040130615, -0.0494551882147789, -0.06859690696001053, 0.1482003629207611, -0.15962807834148407, -0.0975819081068039 ]
null
null
null
# Test
{"license": "afl-3.0", "tags": ["es", "bert"], "pipeline_tag": "text-classification", "widget": [{"text": "Mi nombre es Omar", "exdample_title": "Example 1"}, {"text": "Otra prueba", "example_title": "Test"}]}
text-classification
hackertec9/test
[ "es", "bert", "text-classification", "license:afl-3.0", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #es #bert #text-classification #license-afl-3.0 #region-us
# Test
[ "# Test" ]
[ "TAGS\n#es #bert #text-classification #license-afl-3.0 #region-us \n", "# Test" ]
[ 23, 2 ]
[ "passage: TAGS\n#es #bert #text-classification #license-afl-3.0 #region-us \n# Test" ]
[ -0.05100857838988304, 0.02528073452413082, -0.007913495413959026, 0.024975361302495003, 0.02358436957001686, 0.06707512587308884, 0.17326758801937103, 0.11449629813432693, 0.25053277611732483, -0.04770093038678169, 0.17883630096912384, 0.07218790054321289, -0.014369344338774681, 0.04590992256999016, -0.11209185421466827, -0.09518726915121078, 0.04397508129477501, 0.016242532059550285, 0.06156281381845474, 0.11960306018590927, 0.051926665008068085, -0.05060204118490219, 0.05171525478363037, -0.06941404193639755, -0.01829490438103676, 0.08948980271816254, 0.010779883712530136, -0.08415832370519638, 0.10999888181686401, -0.009010502137243748, 0.0956479161977768, 0.08704177290201187, -0.00956327747553587, -0.25807878375053406, 0.0006540088797919452, -0.08281291276216507, -0.10300144553184509, 0.0026868884451687336, 0.06815013289451599, -0.013095144182443619, 0.015754956752061844, 0.13787652552127838, 0.013087216764688492, 0.04988671466708183, -0.161357581615448, -0.12692883610725403, -0.0998040959239006, -0.03686962276697159, 0.053896572440862656, 0.08233345299959183, -0.003152256365865469, 0.1566794514656067, -0.21870896220207214, 0.03818300738930702, 0.13252274692058563, -0.28099435567855835, 0.04802630841732025, 0.1993950605392456, 0.11825592815876007, 0.09605136513710022, -0.04461073875427246, 0.07013044506311417, 0.15507951378822327, -0.00005872624751646072, -0.1486252099275589, -0.077751524746418, 0.011859669350087643, 0.12707838416099548, -0.08023662865161896, -0.07945232838392258, 0.3247866928577423, 0.015515999868512154, -0.04643471539020538, 0.035639937967061996, 0.03522128239274025, -0.05426051467657089, 0.10893485695123672, -0.01258816383779049, 0.035056475549936295, 0.06146370247006416, 0.10457923263311386, 0.023557888343930244, -0.12143135815858841, -0.10935589671134949, -0.20031113922595978, 0.09981951117515564, 0.010489076375961304, 0.04165879637002945, -0.14510172605514526, 0.030187489464879036, -0.06572932004928589, -0.06014658510684967, -0.08662991970777512, -0.07046010345220566, 0.03226286172866821, -0.05102244019508362, -0.04459952563047409, 0.02643880993127823, 0.1481170952320099, 0.15796127915382385, -0.08316536247730255, 0.07005348801612854, -0.08862011879682541, 0.14477765560150146, 0.013948196545243263, 0.1278822124004364, 0.22246412932872772, 0.050929706543684006, -0.06878147274255753, -0.05660136044025421, -0.01748622953891754, -0.028718823567032814, -0.1112527996301651, 0.0061683570966124535, -0.017580879852175713, 0.1505761444568634, -0.04240885749459267, -0.08584650605916977, -0.09836869686841965, 0.04346419870853424, 0.05098310485482216, -0.05706092342734337, 0.013772442005574703, 0.0745236799120903, -0.01559667382389307, -0.1028018668293953, -0.061504531651735306, -0.02221750095486641, 0.06900425255298615, 0.09197171032428741, -0.05558714270591736, -0.013454047031700611, -0.026685122400522232, -0.01180686429142952, 0.0965670645236969, -0.08605091273784637, 0.025097861886024475, -0.11719363927841187, -0.207988440990448, -0.03003944270312786, -0.019121287390589714, -0.026845602318644524, 0.08396869152784348, -0.0032183961011469364, 0.011839628219604492, -0.02413792535662651, -0.06827744096517563, -0.08217418938875198, -0.09807540476322174, 0.11096000671386719, 0.032518576830625534, -0.017003878951072693, -0.11664538085460663, -0.008265923708677292, -0.12012165784835815, 0.01561453752219677, -0.030396543443202972, -0.0035995019134134054, -0.17440097033977509, 0.11553750932216644, -0.041329894214868546, -0.04564497247338295, -0.05165259540081024, 0.06254696846008301, -0.09037408977746964, 0.20115230977535248, -0.18107520043849945, -0.03454993665218353, 0.07824517786502838, -0.12647810578346252, -0.2049504667520523, 0.05907773971557617, -0.024647895246744156, 0.03965521231293678, 0.09544597566127777, 0.39501240849494934, -0.030056867748498917, -0.12409543991088867, 0.08341296017169952, 0.18407133221626282, 0.005078345537185669, -0.11094604432582855, 0.17711187899112701, -0.14365500211715698, -0.20054656267166138, 0.002556773368269205, -0.09634710103273392, -0.02045365795493126, -0.03414663299918175, -0.04752540588378906, 0.017688795924186707, 0.015898065641522408, 0.09568531811237335, 0.060967765748500824, 0.05942337214946747, -0.1552821695804596, 0.0018981160828843713, 0.011269984766840935, 0.013394146226346493, 0.06185285001993179, -0.019046928733587265, -0.08270976692438126, 0.11964171379804611, 0.047423962503671646, -0.04141067713499069, -0.10635378956794739, -0.00982451718300581, 0.045443419367074966, 0.08331418037414551, 0.08997838199138641, 0.13002996146678925, 0.03307456150650978, -0.08857385814189911, 0.005133453756570816, -0.0302451029419899, 0.04631773382425308, 0.02467205934226513, -0.047551229596138, -0.11772911250591278, 0.0738859698176384, -0.043789174407720566, -0.07205366343259811, -0.15745675563812256, -0.016533350571990013, 0.12313771992921829, -0.06574441492557526, -0.02237549051642418, 0.0837787613272667, -0.03328043967485428, 0.016457725316286087, -0.02148636430501938, 0.000033273456210736185, 0.06349077820777893, -0.028342025354504585, -0.09302722662687302, 0.08687561750411987, 0.004492874722927809, 0.1888096034526825, 0.13538312911987305, -0.07104717940092087, -0.03005846217274666, -0.08308101445436478, -0.00777605501934886, 0.06874103099107742, -0.04128996282815933, -0.025853537023067474, 0.09270422905683517, -0.04153947904706001, 0.07111703604459763, -0.11562346667051315, -0.06557827442884445, -0.05400252714753151, -0.04196596518158913, -0.06562813371419907, 0.14918768405914307, 0.13363860547542572, -0.22355927526950836, 0.15004903078079224, 0.3133009970188141, 0.030149832367897034, 0.15837787091732025, -0.10764702409505844, 0.00447120564058423, -0.0002604008768685162, 0.08943246304988861, -0.03214425966143608, 0.1145448163151741, -0.1500960737466812, 0.03025597147643566, 0.035145353525877, 0.09584540873765945, 0.05719052255153656, -0.15996208786964417, -0.1179654523730278, 0.013107310980558395, -0.07663490623235703, -0.20393414795398712, 0.04852798953652382, -0.041597768664360046, 0.06836723536252975, -0.004845785908401012, -0.14318281412124634, 0.12052157521247864, -0.026333581656217575, -0.1567220389842987, 0.1806662380695343, -0.1262436807155609, -0.11788827180862427, -0.12702029943466187, -0.06686519086360931, 0.012630720622837543, 0.05274203419685364, 0.12881702184677124, -0.12861065566539764, -0.01130642183125019, -0.03934783115983009, -0.049059294164180756, -0.10721292346715927, -0.016317464411258698, -0.04210789501667023, 0.09060440212488174, -0.05451511591672897, -0.09360174834728241, -0.07837358117103577, -0.007135440595448017, 0.05751771852374077, 0.09414105862379074, -0.16746582090854645, 0.06863096356391907, 0.13135617971420288, -0.007745738606899977, 0.046710871160030365, -0.09941237419843674, 0.21392697095870972, -0.09009312838315964, -0.11318641155958176, 0.08602161705493927, -0.04593775048851967, -0.010516458190977573, 0.1254388839006424, 0.01715676672756672, -0.12829527258872986, 0.024042582139372826, -0.07266063988208771, -0.06804445385932922, -0.4020809531211853, -0.02659784071147442, -0.03013904020190239, 0.12465370446443558, -0.006176460534334183, 0.11806461960077286, 0.0598018504679203, 0.03163802623748779, 0.09666580706834793, -0.0914587453007698, 0.01692402921617031, 0.0070892563089728355, 0.1958559900522232, -0.017808593809604645, 0.0423603430390358, -0.13069671392440796, -0.02167520672082901, 0.12231837958097458, 0.03604534640908241, 0.13352885842323303, 0.2507868707180023, 0.04357130452990532, 0.12992417812347412, 0.008983018808066845, 0.08517461270093918, 0.021965455263853073, 0.06661830842494965, -0.027805229648947716, -0.04633506387472153, -0.027631307020783424, 0.03773500770330429, 0.04406401142477989, 0.024516010656952858, -0.13482603430747986, -0.06220658868551254, -0.20851776003837585, 0.08148770779371262, -0.06982626020908356, 0.1126970574259758, -0.13924233615398407, 0.09393103420734406, 0.07631687819957733, -0.0010192178888246417, -0.006692172959446907, 0.14369888603687286, -0.03438839688897133, -0.0693509504199028, 0.11816143244504929, 0.055428966879844666, 0.12186036258935928, 0.08511408418416977, 0.047981999814510345, -0.048027168959379196, -0.23756609857082367, 0.006517502944916487, 0.16674785315990448, -0.3133000433444977, 0.29833298921585083, 0.02111382782459259, -0.02722320333123207, -0.01922067627310753, -0.06740040332078934, 0.011016188189387321, 0.20743630826473236, 0.1742124706506729, -0.017226651310920715, -0.1565140336751938, -0.11594931781291962, 0.012051465921103954, 0.009728324599564075, 0.10939644277095795, 0.017602749168872833, -0.027135750278830528, -0.029108867049217224, 0.10079063475131989, -0.020537540316581726, 0.05034350976347923, -0.12447793036699295, 0.029618052765727043, -0.02523881383240223, 0.0030406066216528416, -0.020452233031392097, -0.027072548866271973, -0.018704451620578766, -0.15136000514030457, 0.09331290423870087, -0.17499016225337982, -0.007944095879793167, -0.06351342797279358, -0.14129865169525146, 0.04525023326277733, -0.03425826504826546, -0.09368734061717987, -0.018574053421616554, -0.06201484426856041, -0.06526168435811996, -0.12350255995988846, 0.08249955624341965, -0.06201471388339996, -0.060533203184604645, -0.06210075691342354, 0.10995600372552872, -0.059343986213207245, 0.09334836900234222, 0.07756917923688889, 0.02731843665242195, -0.0350557416677475, -0.1140855923295021, 0.07732654362916946, -0.1394767165184021, -0.051329731941223145, 0.06654337048530579, -0.015980307012796402, 0.03482963889837265, -0.03707076609134674, -0.06991292536258698, 0.1937093436717987, 0.333270788192749, -0.011198540218174458, 0.1574942171573639, 0.16798128187656403, -0.15307846665382385, -0.2458811104297638, 0.0020079025998711586, -0.13450069725513458, -0.04118833690881729, 0.11224542558193207, -0.11710935086011887, 0.04832783341407776, 0.11854352802038193, -0.11055870354175568, 0.15683645009994507, -0.1931702047586441, -0.06018412113189697, 0.1887875199317932, -0.04610292240977287, 0.2763429284095764, -0.19707217812538147, -0.15947522222995758, -0.058042336255311966, -0.05436103418469429, 0.09378506243228912, -0.029428649693727493, 0.06695759296417236, -0.031072737649083138, -0.05631275102496147, -0.022647414356470108, 0.00987337063997984, 0.2838899791240692, -0.017942864447832108, 0.08978446573019028, -0.04650068283081055, -0.0683533251285553, 0.08847682923078537, -0.005901393014937639, 0.058703307062387466, -0.1434526890516281, 0.02599196881055832, -0.21827536821365356, -0.009928995743393898, 0.000038060905353631824, 0.09299484640359879, -0.011016905307769775, -0.02949131838977337, -0.13449928164482117, 0.002912065014243126, -0.11322983354330063, -0.038284458220005035, 0.31390807032585144, -0.09687423706054688, 0.13275733590126038, 0.048337142914533615, 0.16378319263458252, -0.040483951568603516, -0.0059239743277430534, -0.006094376090914011, -0.08857337385416031, 0.05833082273602486, -0.18795225024223328, -0.029168903827667236, 0.15715914964675903, -0.03248853608965874, 0.1379871964454651, 0.09056904911994934, -0.07603397965431213, 0.006480447482317686, 0.16955004632472992, -0.07630807906389236, -0.02670685574412346, -0.014966449700295925, -0.05188074707984924, 0.04258190095424652, -0.012727477587759495, 0.03854689374566078, 0.06689821928739548, 0.03639952838420868, -0.001605413039214909, -0.013165567070245743, -0.08686356246471405, 0.10472721606492996, 0.070245660841465, 0.03772270679473877, -0.09426933526992798, 0.1604403406381607, 0.02851804718375206, -0.01851411536335945, -0.00617994787171483, 0.08434411883354187, -0.04736999049782753, -0.06885531544685364, -0.06235286593437195, 0.18622639775276184, -0.09205025434494019, -0.12035498023033142, -0.12223440408706665, -0.13426147401332855, 0.040729571133852005, 0.16860705614089966, 0.12077127397060394, 0.07400508224964142, 0.08231604844331741, -0.05576622113585472, 0.1476643830537796, 0.0033670016564428806, -0.1199905052781105, 0.021460335701704025, -0.09672920405864716, -0.09392568469047546, 0.00953709427267313, 0.07475633919239044, -0.05802612379193306, -0.04354441538453102, -0.1938871443271637, 0.11644189059734344, -0.15009962022304535, 0.08741818368434906, 0.010277125984430313, -0.015738917514681816, 0.06153879314661026, -0.05120784789323807, -0.07710109651088715, -0.043847180902957916, -0.15120676159858704, 0.06941010057926178, 0.05058502405881882, 0.15299315750598907, -0.10380066186189651, -0.011232626624405384, 0.11239966005086899, -0.008925494737923145, 0.07434581965208054, 0.021983450278639793, -0.053943224251270294, 0.13693813979625702, -0.2185247391462326, -0.005957311484962702, 0.1206197440624237, 0.019174344837665558, -0.007457104045897722, -0.02767559513449669, 0.008955446071922779, 0.10418658703565598, -0.01241082139313221, 0.13635222613811493, -0.07468098402023315, -0.07649684697389603, -0.04239931330084801, -0.043632932007312775, -0.1838197112083435, 0.036433059722185135, -0.06504668295383453, 0.15801754593849182, 0.03790043666958809, 0.16814705729484558, -0.0068507627584040165, -0.004513947293162346, -0.050780825316905975, 0.0024275388568639755, 0.0010834059212356806, -0.044587038457393646, -0.174136221408844, -0.02502664178609848, -0.008969765156507492, -0.04017968848347664, 0.34384259581565857, 0.05769791454076767, -0.047236062586307526, 0.05905080586671829, 0.09023673832416534, 0.10396330803632736, -0.014195692725479603, 0.27108532190322876, 0.03133812174201012, -0.012444443069398403, -0.10344559699296951, -0.033375103026628494, -0.04484294354915619, -0.13293394446372986, 0.16755284368991852, 0.1698366105556488, -0.09402790665626526, 0.08235322684049606, 0.0247398242354393, -0.01906767301261425, 0.06205524131655693, -0.06517400592565536, 0.10985953360795975, 0.033811911940574646, 0.08998148888349533, 0.10932943969964981, 0.15963909029960632, -0.11517080664634705, 0.021428711712360382, -0.1162426546216011, -0.04882875829935074, -0.2370181530714035, -0.040270138531923294, -0.062107060104608536, -0.13039880990982056, 0.09545369446277618, -0.046402011066675186, 0.015795692801475525, 0.14862436056137085, 0.06213797256350517, -0.03968203440308571, -0.010196874849498272, -0.12078820168972015, -0.05732546001672745, 0.045686472207307816, -0.08478743582963943, -0.0018421831773594022, -0.1096821054816246, -0.05400359630584717, 0.0547642782330513, -0.10524823516607285, -0.05959270894527435, 0.010276016779243946, -0.03154708072543144, -0.03534244745969772, -0.16534636914730072, -0.05204084888100624, -0.0056738113053143024, 0.07831596583127975, -0.01608850061893463, 0.2329472303390503, 0.014043985866010189, 0.04552340507507324, 0.11454984545707703, 0.12248096615076065, 0.0015732768224552274, -0.07014204561710358, -0.012117554433643818, 0.195881187915802, 0.016541263088583946, 0.12238262593746185, -0.033713843673467636, -0.06007765233516693, 0.00722245080396533, 0.16677667200565338, 0.22713543474674225, -0.0395478829741478, -0.009129974991083145, -0.028472257778048515, 0.03415174037218094, 0.12856236100196838, 0.11593769490718842, -0.03178286924958229, 0.17030680179595947, -0.07491818070411682, -0.01990530639886856, -0.04699699208140373, 0.0347495973110199, 0.005419056862592697, 0.056457534432411194, 0.09760167449712753, -0.08136913925409317, -0.0976804867386818, 0.1901906430721283, -0.1308603286743164, 0.07698020339012146, 0.08943808823823929, -0.0885494202375412, -0.0487656444311142, -0.010854275897145271, 0.13795751333236694, -0.06429246068000793, 0.0349220335483551, -0.08007565885782242, -0.08243066072463989, -0.18157722055912018, -0.019266817718744278, -0.24481914937496185, -0.11723294854164124, 0.06753236055374146, 0.03267575800418854, 0.17328357696533203, 0.03144017234444618, 0.2433488517999649, 0.02554316818714142, 0.027716120705008507, -0.0318252258002758, 0.16622468829154968, 0.08514365553855896, 0.04026352986693382, -0.030095001682639122, -0.11709359288215637, 0.010747327469289303, 0.0214995089918375, 0.13260242342948914, 0.03241123631596565, 0.04666347801685333, 0.039997369050979614, -0.15010088682174683, -0.16969487071037292, 0.03380025550723076, -0.14361710846424103, 0.024791169911623, 0.024801669642329216, -0.006022418849170208, -0.008019105531275272, -0.0361543670296669, 0.0627087727189064, 0.051074057817459106, -0.19389869272708893, -0.032780516892671585, 0.006909150630235672, -0.003909219056367874, 0.16828520596027374, -0.03651031106710434, -0.24641110002994537, 0.014819755218923092, -0.07670151442289352, 0.0750337466597557, -0.06390393525362015, 0.0696823000907898, 0.09006528556346893, 0.026269622147083282, 0.004227792378515005, -0.2390366941690445, 0.02745678648352623, 0.02611847221851349, -0.06271176040172577, -0.06548931449651718 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
automatic-speech-recognition
hady/wav2vec2-base-timit-demo-colab
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
# wav2vec2-base-timit-demo-colab This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
[ "# wav2vec2-base-timit-demo-colab\n\nThis model is a fine-tuned version of facebook/wav2vec2-base on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.13.3\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "# wav2vec2-base-timit-demo-colab\n\nThis model is a fine-tuned version of facebook/wav2vec2-base on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.13.3\n- Tokenizers 0.10.3" ]
[ 56, 39, 6, 12, 8, 3, 117, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n# wav2vec2-base-timit-demo-colab\n\nThis model is a fine-tuned version of facebook/wav2vec2-base on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 1\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.13.3\n- Tokenizers 0.10.3" ]
[ -0.09273098409175873, 0.10152115672826767, -0.0026473680045455694, 0.04871191456913948, 0.11409777402877808, 0.008386694826185703, 0.10209741443395615, 0.11028235405683517, -0.060141608119010925, 0.07944442331790924, 0.08489079028367996, 0.032313618808984756, 0.07154252380132675, 0.1699596643447876, -0.03070991113781929, -0.21942326426506042, 0.02615547925233841, -0.035502925515174866, -0.07127311825752258, 0.09100721776485443, 0.07716988027095795, -0.10093852877616882, 0.06961527466773987, 0.01669836789369583, -0.15163816511631012, 0.01946125738322735, -0.034279100596904755, -0.07812753319740295, 0.10707911103963852, 0.017469346523284912, 0.060007885098457336, 0.032967809587717056, 0.1357959806919098, -0.23446226119995117, 0.002507888013496995, 0.09428930282592773, 0.02532052807509899, 0.07089979946613312, 0.06476349383592606, 0.002805309137329459, 0.1194760873913765, -0.15700902044773102, 0.10377201437950134, 0.04579611495137215, -0.0865638330578804, -0.18848155438899994, -0.0793788731098175, 0.07742831856012344, 0.09813486039638519, 0.0947505310177803, -0.008461050689220428, 0.09037367254495621, -0.08370723575353622, 0.06959008425474167, 0.2045276015996933, -0.2388690710067749, -0.06387967616319656, 0.004404791165143251, 0.05021527782082558, 0.025624675676226616, -0.10235415399074554, 0.018680715933442116, 0.030995935201644897, 0.04164697229862213, 0.09400516748428345, -0.012541132047772408, -0.059420764446258545, -0.018868546932935715, -0.12274569272994995, -0.0019420440075919032, 0.0864548534154892, 0.06532051414251328, -0.04608643427491188, -0.10975781083106995, -0.049674637615680695, -0.06147186458110809, -0.03091873787343502, -0.062237512320280075, 0.029179977253079414, -0.034138597548007965, -0.0779372900724411, -0.040075868368148804, -0.05627361685037613, -0.05910302698612213, 0.009199406020343304, 0.1045369952917099, 0.0189864132553339, 0.021900754421949387, -0.0409962423145771, 0.07806592434644699, 0.03577711805701256, -0.11149430274963379, 0.011495466344058514, -0.009588785469532013, -0.11353989690542221, -0.0325954407453537, -0.03768973425030708, 0.011552919633686543, 0.024520818144083023, 0.12418635189533234, -0.04485101252794266, 0.11117301881313324, -0.007382125593721867, -0.007651554886251688, -0.016284989193081856, 0.11444573104381561, -0.04423997551202774, -0.07291977852582932, -0.019736476242542267, 0.07191780209541321, -0.004687081556767225, -0.026131995022296906, -0.05832967162132263, -0.006481044925749302, 0.0654926747083664, 0.04982943832874298, -0.04435388371348381, 0.011626757681369781, -0.04725651815533638, -0.020401813089847565, -0.0038627770263701677, -0.11332361400127411, 0.05148503929376602, 0.02406313829123974, -0.0531097911298275, 0.030893759801983833, 0.014310845173895359, 0.011666584759950638, -0.03713950142264366, 0.08780866116285324, -0.05174655094742775, -0.015576214529573917, -0.05052930861711502, -0.054421838372945786, 0.020203812047839165, -0.0811464861035347, -0.02254033088684082, -0.07537458837032318, -0.14831310510635376, -0.04513659328222275, 0.06659935414791107, -0.06265159696340561, -0.02056516893208027, -0.043795324862003326, -0.04429008439183235, 0.040049295872449875, -0.024838590994477272, 0.16676217317581177, -0.05832834541797638, 0.04302344098687172, -0.034191858023405075, 0.058633413165807724, 0.028664935380220413, 0.043183568865060806, -0.03868021070957184, 0.029155010357499123, -0.12238816171884537, 0.089399054646492, -0.09527932852506638, 0.01033907663077116, -0.13416960835456848, -0.0816236212849617, 0.003657630877569318, -0.006915003526955843, 0.07786927372217178, 0.11765921860933304, -0.2331668883562088, -0.05368313938379288, 0.12902647256851196, -0.08442726731300354, -0.04896656796336174, 0.09360706061124802, -0.03395761176943779, 0.012682032771408558, 0.057702261954545975, 0.18185770511627197, 0.057868823409080505, -0.1551603376865387, -0.0006975031574256718, -0.007383732590824366, 0.04174569621682167, 0.028693897649645805, 0.026261791586875916, -0.03083234839141369, 0.03049602173268795, 0.0008455570205114782, -0.012596006505191326, -0.010678334161639214, -0.07696159183979034, -0.07515006512403488, -0.0375920794904232, -0.08292723447084427, 0.01167369820177555, -0.005776341538876295, 0.0028754163067787886, -0.07597833126783371, -0.09924160689115524, 0.06044822558760643, 0.1047443225979805, -0.06655128300189972, 0.03271056339144707, -0.07336867600679398, 0.0030507578048855066, 0.03568301349878311, -0.012175893411040306, -0.1771288812160492, -0.05319331958889961, 0.025133417919278145, -0.09941602498292923, 0.02829766646027565, 0.026682015508413315, 0.0524047389626503, 0.04313578084111214, -0.036373067647218704, -0.014080547727644444, -0.0977194681763649, 0.024476604536175728, -0.07367938756942749, -0.2141570746898651, -0.04978252574801445, -0.03524773195385933, 0.13087527453899384, -0.19468411803245544, -0.010160463862121105, 0.035867974162101746, 0.1458967626094818, 0.03407337889075279, -0.054329268634319305, -0.011201725341379642, 0.05222777649760246, 0.03146979957818985, -0.0953633040189743, 0.045249707996845245, 0.0030684100929647684, -0.08020579814910889, -0.03702680394053459, -0.12502869963645935, 0.018252147361636162, 0.09428456425666809, 0.057643014937639236, -0.08905606716871262, -0.008036407642066479, -0.06886900961399078, -0.03548404946923256, -0.07350162416696548, 0.012457325123250484, 0.22013457119464874, 0.03327829763293266, 0.0909663587808609, -0.06050843745470047, -0.06316064298152924, 0.030662233009934425, 0.013904351741075516, -0.023092757910490036, 0.08833523094654083, 0.09414321184158325, -0.09103263914585114, 0.05622635781764984, 0.11346136033535004, 0.0011807878036051989, 0.1373237669467926, -0.03634089231491089, -0.06772355735301971, -0.023068411275744438, -0.029337778687477112, -0.020168663933873177, 0.1288432776927948, -0.10771494358778, 0.006242906209081411, 0.015588602051138878, 0.03744570165872574, 0.040017109364271164, -0.15711955726146698, 0.01705288514494896, 0.008000979200005531, -0.06017698347568512, -0.025202367454767227, -0.005954940337687731, 0.025349359959363937, 0.08202408254146576, 0.029697585850954056, -0.015330066904425621, 0.006758442614227533, -0.020276593044400215, -0.09218230098485947, 0.16025419533252716, -0.13143403828144073, -0.18441073596477509, -0.06874590367078781, 0.02355494722723961, -0.04871870577335358, -0.03723745048046112, 0.028919028118252754, -0.11824467033147812, -0.06600957363843918, -0.08317844569683075, 0.020182795822620392, -0.026852697134017944, 0.02254185825586319, 0.1026838943362236, 0.015059275552630424, 0.0774935930967331, -0.1173454150557518, -0.007778332103043795, -0.04297726973891258, -0.03834635019302368, -0.009820906445384026, 0.08073422312736511, 0.059712495654821396, 0.09863828122615814, 0.008845836855471134, 0.03395092859864235, -0.028685232624411583, 0.24172359704971313, -0.07450764626264572, 0.038543131202459335, 0.1278650164604187, -0.0039322529919445515, 0.041832443326711655, 0.10547833889722824, 0.03151218593120575, -0.12406453490257263, 0.034523554146289825, 0.07461918145418167, -0.01752573437988758, -0.2217389941215515, -0.05313368886709213, -0.0287123192101717, -0.061930976808071136, 0.10384705662727356, 0.033800724893808365, -0.05214449018239975, 0.016719480976462364, 0.021026674658060074, 0.007173818536102772, 0.004242049530148506, 0.05145170912146568, 0.08923762291669846, 0.04091200977563858, 0.09128633141517639, -0.022402789443731308, -0.00207449309527874, 0.08081627637147903, -0.021966977044939995, 0.24141336977481842, 0.017441710457205772, 0.03213299810886383, 0.06307193636894226, 0.11443009227514267, -0.008263303898274899, 0.04227032884955406, 0.023294249549508095, -0.019329942762851715, -0.0036105350591242313, -0.0592987947165966, -0.019475754350423813, 0.02556503191590309, 0.016496792435646057, -0.01054664608091116, -0.09632095694541931, 0.03997521847486496, 0.025541314855217934, 0.2989582121372223, 0.049087975174188614, -0.24507784843444824, -0.05660563334822655, -0.006882570218294859, -0.06522991508245468, -0.060510262846946716, 0.024691926315426826, 0.12185297161340714, -0.12746262550354004, 0.10481645166873932, -0.045334212481975555, 0.08551624417304993, -0.030772404745221138, 0.025260519236326218, 0.0515286847949028, 0.1261475682258606, -0.004159650765359402, 0.04317886009812355, -0.22475536167621613, 0.2266407310962677, 0.017226312309503555, 0.12185107916593552, -0.07206892222166061, 0.02989254705607891, 0.011337422765791416, 0.004437191411852837, 0.10214429348707199, 0.0050191995687782764, -0.10677769035100937, -0.11250556260347366, -0.0764818862080574, 0.05144835263490677, 0.13347095251083374, -0.023300135508179665, 0.06252603232860565, -0.02391829900443554, 0.00242634117603302, 0.04070790112018585, -0.018252165988087654, -0.20936357975006104, -0.1270744800567627, 0.001544671249575913, 0.038782164454460144, -0.007738704793155193, -0.07347425818443298, -0.09042529761791229, -0.04457468539476395, 0.13479280471801758, -0.0017965800361707807, -0.018266811966896057, -0.15423306822776794, 0.049088574945926666, 0.13572140038013458, -0.04242665693163872, 0.03361967206001282, 0.03163575381040573, 0.1244724914431572, 0.01365876104682684, -0.09859540313482285, 0.06933780759572983, -0.09879690408706665, -0.1917167454957962, -0.047550275921821594, 0.13489726185798645, 0.09533106535673141, 0.03064357489347458, 0.016760915517807007, 0.024903763085603714, 0.013342365622520447, -0.10175921022891998, 0.06770985573530197, 0.09415407478809357, 0.03764607012271881, 0.018766460940241814, -0.04346532002091408, -0.019343877211213112, -0.0315256342291832, -0.028003625571727753, 0.11324633657932281, 0.23234452307224274, -0.0785273090004921, 0.1317570060491562, 0.12323902547359467, -0.06883988529443741, -0.1656889021396637, 0.06966260075569153, 0.11444368213415146, 0.020979903638362885, 0.035510558634996414, -0.2008323073387146, 0.1216411143541336, 0.09764116257429123, -0.0062124901451170444, 0.019731031730771065, -0.27553147077560425, -0.14074386656284332, 0.089520163834095, 0.08471103757619858, 0.040210336446762085, -0.07620301842689514, -0.02156219072639942, -0.06422138959169388, -0.09855236113071442, 0.14608633518218994, -0.13112840056419373, 0.09797859936952591, 0.012040965259075165, 0.07519865036010742, 0.0018674847669899464, -0.026905827224254608, 0.12629295885562897, 0.04196496307849884, 0.07814635336399078, -0.03274013102054596, 0.07103009521961212, 0.012142808176577091, -0.05329957976937294, 0.02108231745660305, -0.05305061116814613, 0.05402962118387222, -0.0943685844540596, -0.02376677095890045, -0.08473097532987595, 0.06901369988918304, -0.054770927876234055, -0.055052779614925385, -0.032483965158462524, 0.05001528188586235, 0.07277105003595352, -0.04247797653079033, -0.02544432319700718, -0.012258334085345268, 0.08028900623321533, 0.10511860996484756, 0.10668560117483139, -0.05993703380227089, -0.05745246633887291, 0.00681287981569767, -0.03364510461688042, 0.05468850955367088, -0.06643632054328918, 0.030339961871504784, 0.11247360706329346, 0.027440568432211876, 0.12618601322174072, 0.03658147528767586, -0.07477869093418121, -0.00928779412060976, 0.03277427330613136, -0.11915995180606842, -0.11997099965810776, 0.016287853941321373, -0.021548910066485405, -0.08809155225753784, 0.012079193256795406, 0.13799764215946198, -0.039262592792510986, -0.003056073561310768, -0.014036493375897408, 0.03024769201874733, -0.039513781666755676, 0.17908109724521637, 0.019595367833971977, 0.06720563769340515, -0.10237851738929749, 0.1372564733028412, 0.031961116939783096, -0.10622712224721909, 0.09197378158569336, 0.07936078310012817, -0.09331130981445312, -0.013214333914220333, 0.06330428272485733, 0.169855996966362, 0.012927144765853882, -0.05737711116671562, -0.06436142325401306, -0.14007116854190826, 0.07921098172664642, 0.15495665371418, 0.017864219844341278, -0.019632404670119286, -0.05351019278168678, 0.02336493693292141, -0.11045335233211517, 0.054572898894548416, 0.04987955838441849, 0.02780841290950775, -0.11554069817066193, 0.1078280657529831, 0.02204979583621025, 0.017272213473916054, -0.0181256290525198, 0.015253023244440556, -0.1150187999010086, -0.009931158274412155, -0.13876153528690338, -0.022528834640979767, -0.03653433546423912, 0.008926774375140667, -0.01141890324652195, -0.04095105826854706, -0.05253352224826813, 0.0312358271330595, -0.07326618582010269, -0.047674693167209625, 0.005739415995776653, 0.0416579432785511, -0.14095620810985565, 0.011720813810825348, 0.01806267537176609, -0.09821438789367676, 0.08527382463216782, 0.04770493507385254, -0.0014453930780291557, 0.03482061251997948, -0.12460918724536896, -0.03174041956663132, 0.02743455022573471, 0.01739395037293434, 0.06902743875980377, -0.12193484604358673, -0.023020153865218163, -0.01824100688099861, 0.04573662579059601, 0.02429749071598053, 0.09749763458967209, -0.08893284201622009, -0.01506147813051939, -0.06491945683956146, -0.06206810474395752, -0.049155108630657196, 0.0335506908595562, 0.12385436147451401, 0.045094095170497894, 0.1517418920993805, -0.09269580990076065, 0.04689669609069824, -0.17836427688598633, -0.0324128158390522, -0.003747464157640934, -0.007263159845024347, -0.018872743472456932, -0.037141792476177216, 0.10431444644927979, -0.05310532823204994, 0.13060195744037628, -0.018602166324853897, 0.07265486568212509, 0.04182662442326546, -0.1162513867020607, -0.11471216380596161, 0.02324313297867775, 0.16199728846549988, 0.054638464003801346, -0.0008918153471313417, 0.07681188732385635, -0.021699754521250725, 0.06108075752854347, 0.07378968596458435, 0.2309635579586029, 0.17537304759025574, 0.00889397133141756, 0.0714949518442154, 0.07402975112199783, -0.12692967057228088, -0.11720702052116394, 0.14954090118408203, -0.08749441057443619, 0.13381142914295197, -0.06741685420274734, 0.13889457285404205, 0.04997755587100983, -0.18141919374465942, 0.045373398810625076, -0.041009850800037384, -0.09439733624458313, -0.1250685304403305, -0.039893195033073425, -0.07051575183868408, -0.13876833021640778, 0.026434076949954033, -0.10345929861068726, 0.04998018965125084, 0.039465900510549545, 0.02986122854053974, 0.028140511363744736, 0.12438425421714783, -0.04569514840841293, -0.010846899822354317, 0.1006573960185051, 0.029217993840575218, -0.0379565954208374, -0.05518396198749542, -0.07417476922273636, 0.026115020737051964, 0.033839669078588486, 0.058595966547727585, -0.02893706038594246, -0.05767720565199852, 0.041690509766340256, 0.0017184141324833035, -0.061389364302158356, 0.03463032469153404, -0.017293864861130714, 0.03894662857055664, 0.05653739348053932, 0.06477620452642441, -0.022258831188082695, -0.02998250350356102, 0.23772236704826355, -0.08599468320608139, -0.08794494718313217, -0.14478608965873718, 0.1591671258211136, 0.007653958164155483, 0.0020937970839440823, 0.038070570677518845, -0.0807119682431221, -0.04877452552318573, 0.18139642477035522, 0.14658187329769135, -0.08011263608932495, -0.00614060927182436, -0.024715838953852654, -0.011935710906982422, -0.047998346388339996, 0.15287873148918152, 0.11050760000944138, 0.03816840052604675, -0.04255038872361183, -0.012904864735901356, -0.02241147682070732, -0.07316115498542786, -0.0697801262140274, 0.09898992627859116, 0.012549755163490772, -0.013176819309592247, -0.03072771057486534, 0.09611061215400696, -0.019923223182559013, -0.2096748799085617, 0.025024713948369026, -0.16005094349384308, -0.17188218235969543, -0.011624705046415329, 0.058378659188747406, -0.0027505888137966394, 0.047482699155807495, 0.0008256530272774398, -0.0026306689251214266, 0.138593852519989, -0.007046137936413288, -0.017189230769872665, -0.10982036590576172, 0.07906314730644226, -0.08426131308078766, 0.1766405701637268, -0.007963023148477077, 0.04050508141517639, 0.09479394555091858, 0.05721314623951912, -0.11736464500427246, 0.03888905420899391, 0.04893648251891136, -0.0785762146115303, 0.013145096600055695, 0.14516529440879822, -0.05213006213307381, 0.08425405621528625, 0.057896994054317474, -0.12666212022304535, -0.01392033789306879, -0.04241150990128517, -0.020871661603450775, -0.05519198626279831, 0.006705539766699076, -0.07165300101041794, 0.15108397603034973, 0.17428003251552582, -0.040531307458877563, 0.016124481335282326, -0.06924276798963547, 0.04996880888938904, 0.009058336727321148, 0.06005377322435379, -0.03815822675824165, -0.23050913214683533, 0.027147416025400162, 0.015523852780461311, 0.016735145822167397, -0.18719981610774994, -0.09949738532304764, 0.03251316770911217, -0.041417207568883896, -0.05544726550579071, 0.1088595986366272, 0.02242814004421234, 0.024868428707122803, -0.03429373726248741, -0.0924631804227829, -0.015757758170366287, 0.1600075215101242, -0.15039348602294922, -0.029499545693397522 ]
null
null
transformers
Github: https://github.com/haisongzhang/roberta-tiny-cased
{}
feature-extraction
haisongzhang/roberta-tiny-cased
[ "transformers", "pytorch", "tf", "jax", "bert", "feature-extraction", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tf #jax #bert #feature-extraction #endpoints_compatible #has_space #region-us
Github: URL
[]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #feature-extraction #endpoints_compatible #has_space #region-us \n" ]
[ 39 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #bert #feature-extraction #endpoints_compatible #has_space #region-us \n" ]
[ -0.012085038237273693, -0.016690419986844063, -0.007059650495648384, 0.03816450014710426, 0.08332963287830353, 0.041208259761333466, -0.008235120214521885, 0.11648426204919815, 0.03447621315717697, 0.011145622469484806, 0.11127715557813644, 0.1686859130859375, -0.04042953997850418, 0.053377795964479446, -0.03346177190542221, -0.2669609487056732, 0.05755194276571274, 0.06480339914560318, -0.09153101593255997, 0.09303387999534607, 0.06214716285467148, -0.10217596590518951, 0.06751804798841476, -0.015741735696792603, -0.1491197794675827, 0.0657089576125145, 0.0261700376868248, -0.0827254056930542, 0.12349047511816025, 0.03178500756621361, 0.14673860371112823, 0.0400327704846859, -0.09128913283348083, -0.0785704180598259, 0.037595100700855255, 0.014459382742643356, -0.09198273718357086, 0.043098606169223785, 0.0246723759919405, -0.07079275697469711, 0.09538909047842026, 0.05452902242541313, 0.021053923293948174, 0.010696184821426868, -0.1690196394920349, -0.2345055192708969, -0.054104533046483994, 0.06889045983552933, -0.05090828984975815, 0.06783445179462433, 0.012091667391359806, 0.16291069984436035, -0.15022584795951843, 0.07983632385730743, 0.24327877163887024, -0.3264079988002777, -0.02683611772954464, 0.12395988404750824, 0.1530500054359436, 0.04017407074570656, -0.05078563094139099, 0.05661759153008461, 0.014319329522550106, 0.02778601460158825, 0.11442486196756363, -0.0905798077583313, -0.10988735407590866, 0.09341437369585037, -0.12497273087501526, -0.07585637271404266, 0.23150794208049774, -0.021972913295030594, 0.061615440994501114, 0.027385257184505463, -0.0992702916264534, -0.08801870793104172, -0.0021394602954387665, -0.032784394919872284, -0.008193598128855228, 0.035035066306591034, -0.0055586243979632854, -0.05294317379593849, -0.12577344477176666, 0.01523064449429512, -0.18336141109466553, 0.1791859120130539, -0.015705805271863937, 0.07903552800416946, -0.18534055352210999, 0.06307203322649002, -0.07470344007015228, -0.10787980258464813, 0.04647471010684967, -0.09241070598363876, 0.01039409264922142, 0.013556530699133873, -0.08391234278678894, 0.006516985595226288, 0.03949593007564545, 0.10472865402698517, -0.016452830284833908, -0.0024967656936496496, 0.027697931975126266, 0.1043328046798706, 0.03121744468808174, 0.09980776160955429, -0.03458685055375099, -0.03655300661921501, 0.003262806683778763, -0.07562274485826492, -0.04902612417936325, -0.0687025785446167, -0.1249752938747406, -0.05487999692559242, 0.06061211973428726, 0.03873426467180252, 0.05507482588291168, 0.03569352999329567, -0.039711251854896545, 0.003095251275226474, 0.04898552596569061, -0.058065369725227356, 0.016055019572377205, -0.02207128517329693, 0.05660594254732132, 0.09272628277540207, 0.01702374778687954, -0.03519841283559799, 0.02284534089267254, 0.03202472999691963, -0.10741867870092392, -0.007060840260237455, -0.04393823444843292, -0.10875415802001953, 0.037294652312994, -0.1257510930299759, 0.04648870229721069, -0.1833987832069397, -0.020181428641080856, 0.03873639553785324, 0.06466725468635559, -0.010878849774599075, -0.010323881171643734, 0.07590210437774658, -0.07995292544364929, 0.05193368345499039, -0.047270867973566055, -0.021462850272655487, -0.0577002614736557, 0.09814303368330002, -0.048925209790468216, 0.11593303084373474, -0.12596110999584198, 0.07676487416028976, -0.06546948105096817, 0.023803865537047386, -0.1670805662870407, -0.01837552711367607, -0.03244328871369362, 0.13390113413333893, 0.009363100863993168, -0.06809817999601364, -0.16402201354503632, 0.054270971566438675, -0.03664514049887657, 0.11272206157445908, -0.1365480273962021, -0.08104365319013596, 0.16333244740962982, -0.08402643352746964, -0.17960499227046967, 0.06628846377134323, -0.0016469567781314254, 0.010334750637412071, -0.0059187100268900394, 0.23670165240764618, 0.09289604425430298, -0.0731891617178917, 0.04037581384181976, 0.1557610034942627, -0.09048577398061752, -0.05628151074051857, 0.043195296078920364, 0.01330594439059496, -0.0388871468603611, 0.0011934965150430799, 0.022428877651691437, 0.09155276417732239, -0.06225161254405975, -0.04427002742886543, -0.048226166516542435, -0.02434135600924492, 0.08575598895549774, 0.047518495470285416, 0.10813100636005402, -0.054198477417230606, -0.03966328501701355, 0.030510006472468376, -0.0026728040538728237, 0.0446796715259552, 0.04362211748957634, -0.031542498618364334, 0.19067959487438202, -0.06052936986088753, -0.014176635071635246, -0.21358376741409302, -0.10439034551382065, -0.02087104693055153, 0.09515784680843353, -0.027916330844163895, 0.252949059009552, 0.0895857885479927, -0.0835711658000946, 0.0008073940989561379, -0.025971800088882446, 0.05353228375315666, 0.05333429574966431, -0.03627423197031021, -0.08364304155111313, -0.03633158281445503, -0.08913981914520264, -0.08676708489656448, -0.03302017226815224, 0.01518256962299347, 0.11469302326440811, 0.11717412620782852, 0.018901441246271133, 0.0338757261633873, -0.04552517831325531, 0.03014713153243065, -0.04848521202802658, -0.01858936809003353, 0.04353722929954529, -0.010554074309766293, -0.04013906046748161, 0.192239448428154, -0.1225525364279747, 0.40087252855300903, 0.20670324563980103, -0.2654496729373932, -0.030519092455506325, 0.05817407742142677, -0.025666004046797752, 0.05427868291735649, 0.07697700709104538, -0.06756023317575455, 0.0005538865807466209, -0.050308648496866226, 0.10925985127687454, -0.03836958482861519, -0.06645900756120682, 0.011868187226355076, -0.01644621603190899, -0.07908538728952408, 0.05042719468474388, 0.023458754643797874, -0.16100382804870605, 0.1814679354429245, 0.346246600151062, 0.0062086679972708225, 0.18003371357917786, -0.01881597563624382, -0.02573913149535656, -0.012517399154603481, -0.03051096387207508, -0.05637720599770546, 0.09718477725982666, -0.25992727279663086, -0.07475090771913528, 0.07261881232261658, 0.009237999096512794, 0.061661381274461746, -0.11164570599794388, -0.06321445852518082, 0.05754990503191948, 0.046686600893735886, -0.08691132813692093, 0.12446165084838867, 0.054854393005371094, 0.08899568766355515, 0.010776100680232048, -0.07953257113695145, 0.07082310318946838, 0.01847282610833645, -0.03180253505706787, 0.1281980574131012, -0.11283352971076965, -0.24345798790454865, -0.0506095290184021, -0.08113516867160797, 0.03763176500797272, -0.008041445165872574, 0.10668450593948364, -0.048498302698135376, 0.000778975198045373, 0.01240735873579979, 0.014619747176766396, -0.16705748438835144, 0.06439685821533203, -0.10044295340776443, 0.008477248251438141, -0.053011804819107056, -0.09161455929279327, -0.0806252732872963, -0.035652365535497665, -0.041119515895843506, 0.10312256962060928, -0.04910733550786972, 0.10718484222888947, 0.12192406505346298, -0.015503001399338245, 0.0787314847111702, -0.02429492585361004, 0.23931804299354553, -0.07703138887882233, -0.008283967152237892, 0.18355637788772583, 0.008222983218729496, 0.061817679554224014, 0.09932681918144226, 0.050782281905412674, -0.02442399226129055, -0.034738849848508835, -0.02499557100236416, -0.11759709566831589, -0.10914986580610275, -0.05770065635442734, -0.165190190076828, -0.006513622123748064, -0.0031227588187903166, 0.06005043908953667, 0.12372016906738281, 0.030185161158442497, 0.052114296704530716, -0.022210897877812386, -0.06778468191623688, 0.016734890639781952, 0.15394607186317444, -0.03949209302663803, 0.11291910707950592, -0.03772768750786781, -0.09551370143890381, 0.07644054293632507, 0.0240660160779953, 0.1515815705060959, 0.06489703059196472, -0.03384757041931152, 0.06320622563362122, 0.22044435143470764, 0.11366001516580582, 0.1223313957452774, -0.022579608485102654, -0.05490187555551529, -0.03280920162796974, -0.030351798981428146, 0.011820436455309391, 0.061513591557741165, 0.18224026262760162, -0.09982765465974808, -0.06341372430324554, -0.22071988880634308, 0.07598068565130234, 0.06052492931485176, 0.06084107980132103, -0.17542052268981934, 0.005487275309860706, 0.06768385320901871, -0.002675221301615238, -0.04577748104929924, 0.053374212235212326, 0.0935138687491417, -0.08742714673280716, 0.017879130318760872, -0.012295735068619251, 0.09006232768297195, 0.0898735374212265, 0.07716808468103409, -0.016447976231575012, -0.15112194418907166, 0.026927750557661057, 0.030221320688724518, -0.21951380372047424, 0.24665437638759613, -0.013822300359606743, -0.1043979600071907, -0.02756822295486927, -0.007017949130386114, 0.04492081329226494, 0.15789930522441864, 0.11778086423873901, 0.03891405090689659, -0.06338100880384445, -0.12147412449121475, 0.08247065544128418, 0.004762175492942333, 0.1050257757306099, -0.07486727833747864, -0.0007763123721815646, -0.018340490758419037, -0.006308068986982107, 0.019730539992451668, 0.22272291779518127, 0.033957961946725845, -0.12645021080970764, 0.0780249685049057, -0.035213060677051544, -0.02604043297469616, -0.023339590057730675, -0.03715294599533081, -0.09958773106336594, 0.11490237712860107, 0.02689635194838047, -0.018324900418519974, -0.12464425712823868, -0.09629824757575989, 0.13247254490852356, -0.05658993124961853, 0.08436299860477448, -0.03822549805045128, -0.021844595670700073, -0.06288281083106995, -0.19497516751289368, 0.1486223340034485, -0.10507333278656006, 0.0415816567838192, -0.05164960399270058, 0.12197564542293549, -0.10764288157224655, 0.052440110594034195, 0.009542515501379967, 0.04577038064599037, -0.12962456047534943, -0.07414383441209793, 0.016053782775998116, -0.07774937152862549, 0.01979493536055088, 0.0013915508752688766, -0.031765151768922806, 0.0442606545984745, 0.053606919944286346, 0.0708543062210083, 0.21776330471038818, 0.14299479126930237, -0.11462180316448212, 0.11384722590446472, 0.025515511631965637, 0.0037869808729737997, -0.27738815546035767, -0.04011039435863495, -0.13322745263576508, -0.0183938629925251, 0.07652992755174637, -0.06862524151802063, 0.07724335789680481, -0.007006647996604443, -0.03287184238433838, 0.11867871135473251, -0.2307177186012268, -0.058701131492853165, 0.1151873767375946, -0.019312122836709023, 0.37635594606399536, -0.14756248891353607, -0.03968243673443794, 0.059031471610069275, -0.21473325788974762, 0.11807963997125626, -0.08393208682537079, 0.06731072813272476, -0.01632796972990036, 0.01719033159315586, 0.043672654777765274, -0.04610918462276459, 0.10954459756612778, -0.025427235290408134, 0.049262747168540955, -0.07810432463884354, -0.15025945007801056, 0.11717552691698074, -0.03853784129023552, -0.006720271427184343, -0.0016179244266822934, 0.012382522225379944, -0.17602349817752838, 0.01815607398748398, -0.15505191683769226, 0.09310326725244522, -0.00007223943975986913, -0.05501655116677284, -0.02725961059331894, 0.0075479247607290745, 0.018553992733359337, -0.008457060903310776, 0.23134158551692963, -0.03558405116200447, 0.21483376622200012, 0.06706743687391281, 0.009057238698005676, -0.1819351613521576, -0.15895844995975494, -0.0006498720613308251, -0.044125355780124664, 0.11072338372468948, -0.12493378669023514, 0.04033626243472099, 0.0883212685585022, -0.0012122864136472344, 0.027773438021540642, 0.13322675228118896, -0.010237577371299267, -0.01917247101664543, 0.15316221117973328, -0.20452991127967834, -0.05974726751446724, -0.07456079870462418, -0.07862313091754913, 0.0768958255648613, 0.01946166157722473, 0.1014198511838913, 0.0064702630043029785, -0.004555254243314266, -0.010836434550583363, -0.059001922607421875, -0.09838767349720001, 0.009623531252145767, 0.08134771138429642, 0.05826948583126068, -0.10317891091108322, -0.022067595273256302, 0.021868528798222542, -0.2117064744234085, -0.03136038780212402, 0.11058259755373001, -0.06880002468824387, -0.1458299309015274, -0.07601074874401093, 0.04988543316721916, -0.11103305965662003, 0.029285380616784096, -0.008798426948487759, -0.1068463996052742, 0.04570624604821205, 0.2375684380531311, 0.0847085490822792, 0.09647921472787857, -0.020908234640955925, 0.011618223041296005, 0.053257036954164505, -0.013521197251975536, -0.017502635717391968, 0.03034515492618084, -0.14430250227451324, 0.061531249433755875, -0.03009812720119953, 0.17011353373527527, -0.09820672869682312, -0.024841593578457832, -0.15247265994548798, 0.00551961874589324, -0.016443973407149315, -0.12611518800258636, -0.09000261127948761, -0.07069197297096252, 0.025610005483031273, -0.09080416709184647, -0.06263408064842224, -0.024878088384866714, -0.1477099359035492, 0.00375951686874032, 0.010662944987416267, 0.039900749921798706, -0.0689658671617508, -0.0389896035194397, 0.08775520324707031, -0.060170069336891174, 0.08542437106370926, 0.13938574492931366, -0.05413848161697388, 0.09844402968883514, -0.054110459983348846, -0.14410804212093353, 0.08018575608730316, 0.023026729002594948, 0.09757430106401443, 0.0850491002202034, 0.011065813712775707, -0.0029565629083663225, 0.01859891600906849, 0.0355844646692276, -0.05527230724692345, -0.09467596560716629, -0.020025305449962616, 0.005444543901830912, -0.15113897621631622, -0.006021429784595966, -0.049710772931575775, 0.15806129574775696, 0.010893517173826694, 0.0656755268573761, 0.02017766237258911, 0.05504293367266655, -0.11495285481214523, -0.0005251675029285252, -0.022803986445069313, -0.17373357713222504, 0.01532699353992939, -0.047606173902750015, 0.027032969519495964, -0.021333888173103333, 0.20613084733486176, 0.0665791854262352, -0.011821460910141468, 0.03099832683801651, 0.016162684187293053, 0.07892569899559021, 0.007019633427262306, 0.21718497574329376, 0.08480872958898544, -0.06757030636072159, -0.09111227840185165, 0.08089839667081833, 0.007302944082766771, 0.010444975458085537, 0.10301580280065536, 0.12253983318805695, 0.052806660532951355, 0.08953586965799332, 0.06746672838926315, -0.007661923300474882, -0.11312808841466904, -0.21360346674919128, 0.016411764547228813, 0.08718734234571457, -0.041457440704107285, 0.009136577136814594, 0.1829671859741211, -0.04103030636906624, 0.09323599189519882, -0.03697633370757103, 0.00863821990787983, -0.12181491404771805, -0.04130303114652634, -0.037498872727155685, -0.12662586569786072, -0.02745312824845314, -0.07272547483444214, 0.05042855814099312, 0.14273156225681305, 0.02313651517033577, 0.008337758481502533, 0.12668482959270477, 0.07251141220331192, -0.051717471331357956, 0.06340870261192322, 0.009621844626963139, 0.017863763496279716, -0.026414716616272926, 0.027250194922089577, -0.08778471499681473, -0.0704195648431778, -0.07921400666236877, -0.003705169539898634, -0.09331219643354416, -0.004384693689644337, -0.1135277971625328, -0.11268068104982376, -0.04392336681485176, 0.006275393068790436, -0.05985067039728165, 0.10490429401397705, 0.0055334134958684444, 0.0029378617182374, -0.012648389674723148, 0.21837420761585236, -0.11400701850652695, 0.008077877573668957, -0.028733793646097183, 0.17964403331279755, 0.056056905537843704, 0.09342441707849503, -0.024854814633727074, 0.0037632037419825792, -0.08724015206098557, 0.21781863272190094, 0.30002570152282715, -0.06255760043859482, 0.08600770682096481, 0.09516545385122299, 0.02161169797182083, 0.051123153418302536, 0.07516099512577057, 0.11059658974409103, 0.26012009382247925, -0.09010213613510132, -0.01992921531200409, -0.06371254473924637, 0.012532321736216545, -0.059817537665367126, 0.05169982835650444, 0.10171792656183243, -0.06265170872211456, -0.044478971511125565, 0.0570821538567543, -0.12057945132255554, 0.07203337550163269, 0.09456798434257507, -0.25290465354919434, -0.060519516468048096, -0.04695887491106987, 0.15022817254066467, -0.012127327732741833, 0.11816878616809845, -0.05012105405330658, -0.10564345866441727, 0.02615816704928875, 0.02629195898771286, -0.2133931964635849, -0.07767949998378754, 0.14633560180664062, -0.019101034849882126, 0.03669761121273041, -0.06560010462999344, -0.03804542124271393, 0.09182096272706985, 0.08657310158014297, -0.013826441951096058, 0.017782187089323997, 0.05050543323159218, -0.09108685702085495, -0.11731897294521332, 0.029969708994030952, 0.018353626132011414, -0.06644952297210693, 0.06133200228214264, -0.19428935647010803, 0.035399459302425385, -0.02209537662565708, -0.00790147203952074, 0.0034703626297414303, -0.03264308348298073, -0.02862788923084736, 0.0657113566994667, 0.10353545099496841, 0.00553987268358469, -0.03542613983154297, -0.0491492785513401, -0.038685575127601624, 0.10258474946022034, -0.0321209542453289, -0.1821281909942627, -0.02006000094115734, -0.05946766585111618, 0.03318304196000099, -0.056314002722501755, -0.06368861347436905, -0.07220814377069473, -0.006194104440510273, 0.05278320237994194, -0.08655606210231781, 0.05287941172719002, 0.08320501446723938, 0.0325666181743145, 0.014395114965736866, -0.022917788475751877, 0.027761591598391533, 0.07531604915857315, -0.14988629519939423, -0.04127506539225578 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-SNS_BRANDS_100k This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0735 | 1.0 | 2928 | 0.0670 | | 0.0574 | 2.0 | 5856 | 0.0529 | | 0.0497 | 3.0 | 8784 | 0.0483 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "bertweet-base-SNS_BRANDS_100k", "results": []}]}
fill-mask
haji2438/bertweet-base-SNS_BRANDS_100k
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
bertweet-base-SNS\_BRANDS\_100k =============================== This model is a fine-tuned version of vinai/bertweet-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.0483 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ 48, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ -0.10025105625391006, 0.029563292860984802, -0.0018171786796301603, 0.11933372914791107, 0.19689007103443146, 0.031895607709884644, 0.11491629481315613, 0.10415680706501007, -0.11298622936010361, 0.03738545998930931, 0.13098374009132385, 0.16048197448253632, 0.008026189170777798, 0.12286213040351868, -0.03940344974398613, -0.2642512023448944, -0.030858643352985382, 0.03471856936812401, -0.10407150536775589, 0.12449852377176285, 0.07893501222133636, -0.15539151430130005, 0.0718606486916542, -0.0037345997989177704, -0.24686120450496674, 0.018703727051615715, 0.03263759985566139, -0.06063734367489815, 0.14234782755374908, 0.0034318866673856974, 0.1720479428768158, -0.0077295550145208836, 0.10215429216623306, -0.1458887755870819, 0.01727469637989998, 0.0639120563864708, 0.015988381579518318, 0.08194991201162338, 0.04929738491773605, -0.0041591874323785305, 0.09102834016084671, -0.10450123995542526, 0.06954299658536911, 0.0016574192559346557, -0.13474665582180023, -0.2086869776248932, -0.07557312399148941, -0.01200691144913435, 0.04823625832796097, 0.10561627894639969, -0.006941903382539749, 0.1639847308397293, -0.103751540184021, 0.09559255093336105, 0.23107366263866425, -0.26398009061813354, -0.09109386801719666, 0.04037380591034889, 0.007107066456228495, 0.06393848359584808, -0.12012162059545517, -0.008333169855177402, 0.05316435173153877, 0.05751695856451988, 0.1336647868156433, -0.029748063534498215, -0.10453560948371887, 0.015814267098903656, -0.14355149865150452, -0.0013723246520385146, 0.04328938201069832, 0.01972869597375393, -0.020303066819906235, -0.018318235874176025, -0.06490408629179001, -0.16990576684474945, -0.04823889955878258, -0.026307061314582825, 0.042047884315252304, -0.06528519839048386, -0.1191176250576973, 0.0070176576264202595, -0.0966281145811081, -0.06848260760307312, -0.07552984356880188, 0.17418812215328217, 0.03668326139450073, 0.01893201656639576, -0.04122932627797127, 0.10070343315601349, -0.0296007189899683, -0.14218953251838684, 0.053582120686769485, 0.03214491531252861, -0.03717741742730141, -0.056045182049274445, -0.07479865849018097, -0.1259458065032959, 0.007728964556008577, 0.0967775359749794, -0.05062507092952728, 0.048505015671253204, 0.043723415583372116, 0.04380868375301361, -0.10388240963220596, 0.19536757469177246, -0.05631250888109207, -0.03433414548635483, 0.002081828424707055, 0.05488402396440506, 0.0037764799781143665, -0.009363576769828796, -0.09740874916315079, 0.005785889457911253, 0.09390045702457428, -0.0009755303617566824, -0.06118778884410858, 0.06082727760076523, -0.04306087642908096, -0.007479268126189709, -0.036381348967552185, -0.09589611738920212, 0.04282097518444061, -0.023311756551265717, -0.08532991260290146, -0.004500003531575203, 0.02609497308731079, 0.0132594620808959, -0.0012247824342921376, 0.16930106282234192, -0.10092167556285858, 0.043153066188097, -0.12654103338718414, -0.12243479490280151, -0.0011083731660619378, -0.08263129740953445, 0.018289588391780853, -0.09274478256702423, -0.14052903652191162, -0.02031194232404232, 0.06821545958518982, -0.039321042597293854, -0.023694239556789398, -0.035657595843076706, -0.07349608838558197, 0.009914126247167587, -0.0066200378350913525, 0.17922085523605347, -0.048384614288806915, 0.11917256563901901, 0.060006171464920044, 0.098197802901268, -0.05095706507563591, 0.04681883007287979, -0.08567587286233902, 0.000254638260230422, -0.22546890377998352, 0.027311427518725395, -0.05096173286437988, 0.07106996327638626, -0.06061451509594917, -0.1156211867928505, -0.01627318561077118, -0.0002630866365507245, 0.10696660727262497, 0.08570895344018936, -0.17883004248142242, -0.08500456809997559, 0.1733299046754837, -0.057675160467624664, -0.07873065769672394, 0.12378700077533722, -0.06106334552168846, 0.028536619618535042, 0.06556777656078339, 0.13785476982593536, 0.04902619123458862, -0.11107028275728226, 0.02672663703560829, -0.03623965382575989, 0.04476344585418701, -0.05391883850097656, 0.04017580673098564, 0.010469017550349236, 0.019226359203457832, 0.028363825753331184, -0.006068115122616291, 0.06728538870811462, -0.12045454978942871, -0.09198521822690964, -0.0353509895503521, -0.11681155860424042, 0.07157537341117859, 0.08604632318019867, 0.09544257819652557, -0.10663428157567978, -0.07949279993772507, 0.06022947281599045, 0.05604754388332367, -0.0443229041993618, 0.019844885915517807, -0.057059746235609055, 0.06066873297095299, -0.07038778811693192, -0.03193021938204765, -0.19856035709381104, -0.04205138236284256, -0.007742241490632296, 0.028627652674913406, 0.03241792693734169, 0.02020283415913582, 0.099900022149086, 0.07006523758172989, -0.06723958253860474, 0.0003642593801487237, -0.04176592081785202, -0.011083804070949554, -0.1463598757982254, -0.20420779287815094, -0.02676275186240673, -0.020789822563529015, 0.10254447162151337, -0.1902160793542862, 0.017636360600590706, -0.06879568099975586, 0.08936988562345505, 0.021348603069782257, -0.01768822781741619, -0.05633862316608429, 0.11193148791790009, -0.009669489227235317, -0.05330679565668106, 0.061669252812862396, -0.019380033016204834, -0.06885094940662384, -0.08069001138210297, -0.10715726017951965, 0.18531794846057892, 0.13692231476306915, -0.14232629537582397, -0.11257606744766235, 0.04241804778575897, -0.06500283628702164, -0.023855432868003845, -0.06003318354487419, 0.049917299300432205, 0.1706758737564087, -0.005238234996795654, 0.13777893781661987, -0.05023995414376259, -0.03455343842506409, 0.03136700764298439, -0.041403260082006454, 0.038271673023700714, 0.09236239641904831, 0.1384146809577942, -0.04383373260498047, 0.1288495659828186, 0.1360023021697998, -0.13994379341602325, 0.153437539935112, -0.013541271910071373, -0.0829339548945427, -0.01750340685248375, -0.03295261412858963, 0.014499100856482983, 0.12312638759613037, -0.10764423757791519, -0.017831960693001747, 0.005731191020458937, 0.004514922387897968, 0.028642915189266205, -0.2344738095998764, -0.05759439617395401, 0.027923939749598503, -0.009245137684047222, -0.005267212633043528, -0.011346373707056046, 0.018349487334489822, 0.11736134439706802, 0.005628691520541906, -0.06979694962501526, 0.020899802446365356, 0.005534153897315264, -0.05613751336932182, 0.20701105892658234, -0.06761384755373001, -0.12689411640167236, -0.10127754509449005, -0.07735380530357361, -0.03647631034255028, 0.013449135236442089, 0.03509017825126648, -0.12478435784578323, -0.021329864859580994, -0.026103831827640533, 0.02447258122265339, 0.026368174701929092, 0.06170884147286415, 0.014411617070436478, -0.005648913327604532, 0.07829008251428604, -0.09781617671251297, -0.005672225262969732, -0.07145532965660095, -0.07078807055950165, 0.06410547345876694, 0.06964413076639175, 0.13525390625, 0.1624118834733963, -0.042600955814123154, 0.005541106685996056, -0.020993418991565704, 0.2339814454317093, -0.08285677433013916, -0.037864815443754196, 0.11190815269947052, -0.014585675671696663, 0.05360803380608559, 0.09992527216672897, 0.08001028746366501, -0.09555446356534958, 0.017175765708088875, 0.047194719314575195, -0.05069147050380707, -0.19190189242362976, -0.029101336374878883, -0.05621490627527237, -0.05510621517896652, 0.08521337062120438, 0.013534528203308582, 0.03456483781337738, 0.07256178557872772, 0.06817036122083664, 0.08908369392156601, -0.07517971843481064, 0.03911533206701279, 0.052595604211091995, 0.048891015350818634, 0.1322762817144394, -0.0352039560675621, -0.09953949600458145, 0.015560311265289783, -0.031756188720464706, 0.22539940476417542, -0.0050971671007573605, 0.06455469131469727, 0.05567648261785507, 0.18981774151325226, 0.00011040962999686599, 0.09038740396499634, 0.005898331291973591, -0.07885652780532837, 0.0029794431757181883, -0.04069296270608902, -0.03487905487418175, 0.006783754099160433, -0.016071492806077003, 0.06139881908893585, -0.11385300755500793, -0.00030972054810263216, 0.050341878086328506, 0.23819249868392944, 0.03609630465507507, -0.32780829071998596, -0.07318447530269623, -0.015527846291661263, -0.018203092738986015, -0.011091315187513828, -0.005136257037520409, 0.1134582906961441, -0.09177084267139435, 0.029316410422325134, -0.08136387169361115, 0.0812942162156105, -0.006460456643253565, 0.04317231476306915, 0.06397294998168945, 0.1352912038564682, -0.004711237736046314, 0.053008951246738434, -0.3115460276603699, 0.28727397322654724, 0.005281990393996239, 0.0995020791888237, -0.08150021731853485, -0.005519812926650047, 0.040127236396074295, 0.01419624499976635, 0.04613600671291351, -0.023620476946234703, -0.018717974424362183, -0.21209007501602173, -0.031212376430630684, 0.03076562099158764, 0.12732186913490295, -0.0033361532259732485, 0.1069052442908287, -0.010686836205422878, -0.005471489392220974, 0.07722636312246323, -0.007462683133780956, -0.06419699639081955, -0.07493798434734344, -0.018676381558179855, 0.01149270124733448, -0.09297100454568863, -0.056889522820711136, -0.12624399363994598, -0.14065691828727722, 0.14655819535255432, 0.03368442878127098, -0.0072259376756846905, -0.12422153353691101, 0.12612588703632355, 0.08883992582559586, -0.07816212624311447, 0.051171813160181046, 0.01498764380812645, 0.053418323397636414, 0.020639989525079727, -0.05992267280817032, 0.11284478008747101, -0.06436270475387573, -0.1443292498588562, -0.07648003101348877, 0.07517287135124207, 0.04064588621258736, 0.07292329519987106, -0.02294422872364521, 0.02776266261935234, -0.018241068348288536, -0.07907893508672714, 0.05553008243441582, -0.04220890998840332, 0.06089261919260025, 0.033486124128103256, -0.041694603860378265, -0.008137241937220097, -0.05186932533979416, -0.009653805755078793, 0.17786021530628204, 0.23461252450942993, -0.0944293886423111, -0.009803245775401592, 0.028495747596025467, -0.04827268049120903, -0.21091702580451965, 0.09349624812602997, 0.08565834909677505, 0.022458050400018692, 0.062073517590761185, -0.1588997095823288, 0.13829322159290314, 0.09682360291481018, -0.002497325651347637, 0.1296360194683075, -0.3125346302986145, -0.1312355101108551, 0.10162173956632614, 0.17393535375595093, 0.13961021602153778, -0.143130362033844, -0.006550570949912071, -0.022495342418551445, -0.10696735978126526, 0.0723576471209526, -0.08302351087331772, 0.13001468777656555, -0.021223463118076324, 0.09958097338676453, 0.01133260689675808, -0.07993558049201965, 0.1011102944612503, -0.0179887842386961, 0.10655438154935837, -0.06777533143758774, -0.042936090379953384, 0.04881583899259567, -0.027139462530612946, -0.01583847776055336, -0.030782846733927727, 0.011136756278574467, -0.03250490128993988, -0.0159966591745615, -0.09890011698007584, 0.04528697207570076, -0.02596896141767502, -0.06543996185064316, -0.02515565976500511, 0.03635798394680023, 0.03336386755108833, -0.02325884811580181, 0.09986244142055511, 0.011036219075322151, 0.18729542195796967, 0.06932606548070908, 0.049046702682971954, -0.051103077828884125, -0.05688207596540451, 0.0073374612256884575, -0.014405901543796062, 0.060062505304813385, -0.11942936480045319, 0.009985165670514107, 0.14537163078784943, 0.030625496059656143, 0.11416821926832199, 0.09093645215034485, -0.030314279720187187, 0.027959130704402924, 0.0909663662314415, -0.16192594170570374, -0.05863509327173233, 0.010562440380454063, -0.0943252220749855, -0.10984066873788834, 0.04072801023721695, 0.07658053934574127, -0.0692836344242096, -0.002981005236506462, -0.014845548197627068, -0.013311090879142284, -0.07936881482601166, 0.23405101895332336, 0.07415924221277237, 0.04358239099383354, -0.09316661953926086, 0.049422986805438995, 0.04556858912110329, -0.0869135856628418, 0.0010648730676621199, 0.0812043771147728, -0.06228141859173775, -0.014645932242274284, 0.11714554578065872, 0.1998835802078247, -0.04530797526240349, -0.013728903606534004, -0.15876273810863495, -0.10014469921588898, 0.05743471533060074, 0.1892772763967514, 0.09608214348554611, -0.0163455568253994, -0.04962964355945587, 0.04069201648235321, -0.14675380289554596, 0.06964022666215897, 0.05512479320168495, 0.0795951560139656, -0.12875990569591522, 0.20139296352863312, 0.003044951008632779, 0.048330772668123245, -0.033399950712919235, 0.04115281626582146, -0.11593633890151978, 0.022153383120894432, -0.10683147609233856, -0.06483347713947296, -0.003822247963398695, -0.023210208863019943, -0.005970686208456755, -0.06559329479932785, -0.06693270057439804, 0.005442729685455561, -0.12735967338085175, -0.03041745349764824, 0.045823510736227036, 0.005374780390411615, -0.11133124679327011, -0.039404548704624176, 0.025340989232063293, -0.04764023795723915, 0.03876304626464844, 0.05177287012338638, 0.022792527452111244, 0.07126127928495407, -0.17104409635066986, -0.023216597735881805, 0.06109173595905304, -0.011411544866859913, 0.0952654555439949, -0.04667195677757263, -0.011655640788376331, -0.02121744677424431, 0.10740572959184647, 0.023367760702967644, 0.07482591271400452, -0.13995856046676636, 0.016029218211770058, -0.029611794278025627, -0.09838612377643585, -0.0614587627351284, 0.023457378149032593, 0.07748457789421082, 0.01056352537125349, 0.17594636976718903, -0.10001004487276077, 0.06691790372133255, -0.21520164608955383, -0.009614817798137665, -0.01989906094968319, -0.09272842109203339, -0.08663541078567505, -0.043251749128103256, 0.08541559427976608, -0.05643152445554733, 0.1115427240729332, 0.038904253393411636, 0.06623471528291702, 0.027372116222977638, -0.034374482929706573, -0.0008043183479458094, 0.02710842713713646, 0.18905942142009735, 0.039606258273124695, -0.047821592539548874, 0.058379869908094406, 0.08939295262098312, 0.10377126187086105, 0.11968767642974854, 0.22964145243167877, 0.14890557527542114, 0.0055916933342814445, 0.09700992703437805, 0.027937768027186394, -0.04979046434164047, -0.14592453837394714, 0.02249101921916008, -0.07514648139476776, 0.08358562737703323, -0.029083454981446266, 0.1700754165649414, 0.06960597634315491, -0.15629786252975464, 0.050720177590847015, -0.06463748961687088, -0.10014055669307709, -0.1024233028292656, -0.014060860499739647, -0.08068674802780151, -0.1252214014530182, 0.021671650931239128, -0.09538524597883224, 0.022721780464053154, 0.12384059280157089, 0.009822916239500046, -0.01854526996612549, 0.22667545080184937, 0.03420092537999153, 0.05104712396860123, 0.057641368359327316, 0.01528699416667223, -0.013028024695813656, -0.08012385666370392, -0.06064353510737419, -0.041853681206703186, -0.009527641348540783, 0.03654760867357254, -0.07610936462879181, -0.10645242780447006, 0.0449347198009491, -0.000048252055421471596, -0.10977678000926971, 0.024301348254084587, 0.019926656037569046, 0.07669910043478012, 0.02913471683859825, -0.001026070094667375, 0.02415820211172104, -0.03923959657549858, 0.20830491185188293, -0.09084252268075943, -0.08839379251003265, -0.10767417401075363, 0.2647325098514557, 0.03702150285243988, 0.0003665895783342421, 0.006792996544390917, -0.07154711335897446, 0.005067888647317886, 0.25278252363204956, 0.21131263673305511, -0.11610739678144455, -0.0006119399331510067, 0.009419865906238556, -0.013729327358305454, -0.05264674499630928, 0.13225430250167847, 0.12615928053855896, 0.05869516357779503, -0.10836096853017807, -0.0421450175344944, -0.062257710844278336, -0.018704485148191452, -0.04503374174237251, 0.032358381897211075, 0.06379708647727966, 0.02744198963046074, -0.05697587504982948, 0.06353054195642471, -0.06161212921142578, -0.11773976683616638, 0.09369757026433945, -0.23009511828422546, -0.17446208000183105, -0.009513219818472862, 0.10887669771909714, -0.008028213866055012, 0.08107315003871918, -0.029100121930241585, 0.0012853506486862898, 0.035172317177057266, -0.02304636687040329, -0.052112266421318054, -0.10178961604833603, 0.0886615440249443, -0.10129942744970322, 0.1950823813676834, -0.05062304809689522, 0.06194588914513588, 0.128459170460701, 0.06688709557056427, -0.048806753009557724, 0.05986083671450615, 0.04245682805776596, -0.11011149734258652, 0.015543333254754543, 0.14076578617095947, -0.038404032588005066, 0.03616824746131897, 0.03871278464794159, -0.13106311857700348, 0.040015965700149536, -0.10192148387432098, -0.03024625964462757, -0.03702040761709213, -0.03270157799124718, -0.05850363150238991, 0.12074004858732224, 0.23988163471221924, -0.006062841508537531, 0.03441300988197327, -0.07954384386539459, 0.013259122148156166, 0.057554811239242554, 0.06176064535975456, -0.11870922148227692, -0.25242751836776733, 0.0164777971804142, 0.05669456720352173, -0.04487016424536705, -0.24483950436115265, -0.09420199692249298, 0.00827152281999588, -0.08177955448627472, -0.08383258432149887, 0.07851848751306534, 0.0820961520075798, 0.06509261578321457, -0.04393383115530014, -0.11224370449781418, -0.070366770029068, 0.15900544822216034, -0.16522502899169922, -0.08849367499351501 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-SNS_BRANDS_200k This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0428 | 1.0 | 5882 | 0.0336 | | 0.0276 | 2.0 | 11764 | 0.0241 | | 0.0251 | 3.0 | 17646 | 0.0243 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "bertweet-base-SNS_BRANDS_200k", "results": []}]}
fill-mask
haji2438/bertweet-base-SNS_BRANDS_200k
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
bertweet-base-SNS\_BRANDS\_200k =============================== This model is a fine-tuned version of vinai/bertweet-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.0243 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 48, 116, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10901247709989548, 0.03486131876707077, -0.0019135281909257174, 0.12172488123178482, 0.17532433569431305, 0.026714187115430832, 0.115680992603302, 0.12500974535942078, -0.09220006316900253, 0.03581244871020317, 0.13196517527103424, 0.15910041332244873, 0.00918031670153141, 0.15063247084617615, -0.037046339362859726, -0.27761897444725037, -0.024356579408049583, 0.019314128905534744, -0.09075195342302322, 0.12840867042541504, 0.07301720976829529, -0.14884288609027863, 0.07813143730163574, -0.005227332003414631, -0.1984914243221283, 0.015526143833994865, 0.01694442145526409, -0.05258273705840111, 0.14978352189064026, -0.0025466117076575756, 0.1391754299402237, 0.004394878167659044, 0.11001097410917282, -0.16682158410549164, 0.017165878787636757, 0.05497283488512039, 0.0143223712220788, 0.08094676584005356, 0.04415769502520561, -0.012496323324739933, 0.109303317964077, -0.11091423779726028, 0.07097148150205612, -0.002046283334493637, -0.14159804582595825, -0.21173378825187683, -0.07801980525255203, -0.013922112993896008, 0.06817019730806351, 0.10149630159139633, -0.010845771990716457, 0.16092300415039062, -0.09387516230344772, 0.1083964928984642, 0.2536507248878479, -0.2697244882583618, -0.0865519642829895, 0.02489399164915085, 0.015740489587187767, 0.0551040917634964, -0.1150776818394661, -0.006307321600615978, 0.03402649238705635, 0.052766233682632446, 0.1385476440191269, -0.03652782365679741, -0.09987270087003708, 0.014212542213499546, -0.13510964810848236, -0.010796739719808102, 0.05084768682718277, 0.029747208580374718, -0.03156377747654915, -0.026082022115588188, -0.07053987681865692, -0.17249350249767303, -0.05399378761649132, -0.025308415293693542, 0.045007072389125824, -0.05973551794886589, -0.11034321784973145, -0.0011519481195136905, -0.08620591461658478, -0.07531150430440903, -0.05319258198142052, 0.1797608584165573, 0.03171785920858383, 0.007167446427047253, -0.02854122221469879, 0.10968155413866043, -0.02625741809606552, -0.15190397202968597, 0.033620186150074005, 0.038644954562187195, -0.050132982432842255, -0.05681701749563217, -0.06225397065281868, -0.09220269322395325, 0.00357447424903512, 0.12840799987316132, -0.03924020379781723, 0.06486237049102783, 0.039495863020420074, 0.02501356601715088, -0.10140687227249146, 0.18729721009731293, -0.053655195981264114, -0.04433918744325638, -0.0032742475159466267, 0.0670044869184494, 0.005489320494234562, -0.024653740227222443, -0.1018863394856453, 0.011187789961695671, 0.08755964040756226, 0.008679159916937351, -0.06490451097488403, 0.059238314628601074, -0.042668405920267105, -0.005079272203147411, -0.018751822412014008, -0.0988711267709732, 0.04778177663683891, -0.01613422855734825, -0.0853056088089943, -0.037120599299669266, 0.024667084217071533, 0.020769799128174782, 0.0055647012777626514, 0.16913096606731415, -0.09682213515043259, 0.040890444070100784, -0.11359094828367233, -0.1233723908662796, -0.004780815448611975, -0.09871041029691696, 0.02559918724000454, -0.08534640818834305, -0.1580231636762619, -0.015914157032966614, 0.07511556893587112, -0.053738970309495926, -0.02103291265666485, -0.050902172923088074, -0.07475849986076355, 0.015851136296987534, -0.005167510360479355, 0.18004345893859863, -0.06461802870035172, 0.11438989639282227, 0.048257652670145035, 0.09377514570951462, -0.03088669665157795, 0.04582936316728592, -0.08712080121040344, 0.014614970423281193, -0.22976061701774597, 0.03563344478607178, -0.05013733729720116, 0.06398473680019379, -0.07495735585689545, -0.1073850765824318, 0.0004884132649749517, -0.00034033611882478, 0.10880865901708603, 0.10916567593812943, -0.19291110336780548, -0.0779786929488182, 0.1776014119386673, -0.051908984780311584, -0.07993249595165253, 0.12177425622940063, -0.06763416528701782, 0.03703014552593231, 0.058108121156692505, 0.16033075749874115, 0.05159123241901398, -0.11725469678640366, 0.031395308673381805, -0.03185873106122017, 0.05461137741804123, -0.027333982288837433, 0.0422968752682209, 0.008841406553983688, 0.034103669226169586, 0.018783818930387497, -0.011563797481358051, 0.0576600506901741, -0.11378966271877289, -0.0945371463894844, -0.03089352510869503, -0.10220679640769958, 0.06499931961297989, 0.07213585078716278, 0.07775019854307175, -0.11301795393228531, -0.09146399796009064, 0.04815709963440895, 0.07192254066467285, -0.042267464101314545, 0.03277900069952011, -0.06658878177404404, 0.05637577176094055, -0.04178617522120476, -0.028894472867250443, -0.190835103392601, -0.02746056206524372, -0.0001969248114619404, 0.029781602323055267, 0.021809130907058716, 0.004298856947571039, 0.10405876487493515, 0.08064790070056915, -0.06823296844959259, -0.011873613111674786, -0.041685495525598526, -0.003903843928128481, -0.14355303347110748, -0.22435401380062103, -0.035924945026636124, -0.03004462830722332, 0.10537859052419662, -0.18571701645851135, 0.01698572188615799, -0.04574350640177727, 0.08217170834541321, 0.026680631563067436, -0.02254718728363514, -0.04351893812417984, 0.09488023072481155, -0.013234078884124756, -0.062072716653347015, 0.06006540730595589, -0.016768598929047585, -0.08289938420057297, -0.07440970093011856, -0.11763545125722885, 0.15423540771007538, 0.12110739201307297, -0.09725720435380936, -0.11281998455524445, 0.022961417213082314, -0.0632983073592186, -0.03018619678914547, -0.052627064287662506, 0.05497431010007858, 0.17191466689109802, 0.008380265906453133, 0.13067729771137238, -0.052435219287872314, -0.03490811958909035, 0.03198998421430588, -0.03641946241259575, 0.03646654635667801, 0.11207354813814163, 0.13002395629882812, -0.045439328998327255, 0.11784375458955765, 0.12768608331680298, -0.10489597171545029, 0.15072539448738098, -0.013627025298774242, -0.08381476998329163, -0.02877943031489849, -0.02497299760580063, 0.011297319084405899, 0.1291196197271347, -0.11438732594251633, -0.009503662586212158, 0.004898508545011282, 0.014161793515086174, 0.00910885725170374, -0.22431157529354095, -0.05286881700158119, 0.035988129675388336, -0.032263245433568954, -0.019155627116560936, -0.010373573750257492, 0.006342882756143808, 0.11100298911333084, 0.01479857973754406, -0.07494854182004929, 0.01167328841984272, 0.00420035608112812, -0.05153946205973625, 0.20901766419410706, -0.07345636934041977, -0.11967499554157257, -0.08640722930431366, -0.0939369648694992, -0.033342909067869186, 0.016257135197520256, 0.04723578318953514, -0.114703468978405, -0.02302708476781845, -0.04618263244628906, 0.012062139809131622, 0.023132551461458206, 0.056155815720558167, 0.0016132208984345198, -0.01585627906024456, 0.06514380127191544, -0.09260177612304688, -0.010643248446285725, -0.061554327607154846, -0.06087282672524452, 0.06646271049976349, 0.07012313604354858, 0.134718120098114, 0.13976073265075684, -0.02499898336827755, 0.013553141616284847, -0.022281991317868233, 0.2399713099002838, -0.08856009691953659, -0.016698120161890984, 0.10840985178947449, -0.017916280776262283, 0.0552913136780262, 0.1137014701962471, 0.06971673667430878, -0.10333183407783508, 0.019371433183550835, 0.05551377683877945, -0.04685590788722038, -0.18088793754577637, -0.01733633317053318, -0.05509191006422043, -0.03518857806921005, 0.09020978212356567, 0.015996180474758148, 0.019572937861084938, 0.06354056298732758, 0.061366673558950424, 0.05483362451195717, -0.06365665048360825, 0.045382894575595856, 0.03684099018573761, 0.05224115028977394, 0.12985628843307495, -0.02700357511639595, -0.08578547090291977, 0.027056075632572174, -0.019709831103682518, 0.22749817371368408, -0.0015178463654592633, 0.0769788920879364, 0.05139036476612091, 0.18557888269424438, -0.01548150833696127, 0.08766207098960876, 0.007037616800516844, -0.06977550685405731, -0.012122147716581821, -0.041425805538892746, -0.024412604048848152, 0.02017843909561634, -0.025030871853232384, 0.052508264780044556, -0.11937649548053741, 0.019997484982013702, 0.05514777451753616, 0.27015024423599243, 0.04507734254002571, -0.31217682361602783, -0.07775267213582993, -0.00435454910621047, -0.030843699350953102, -0.01689070649445057, -0.0027896163519471884, 0.11262858659029007, -0.10213617235422134, 0.04047401621937752, -0.08111491054296494, 0.08095472306013107, -0.01125576626509428, 0.04408120736479759, 0.06055867299437523, 0.12689219415187836, -0.014824699610471725, 0.05009569600224495, -0.3154852092266083, 0.3080051839351654, 0.010227171704173088, 0.09340450167655945, -0.08643711358308792, -0.004252406768500805, 0.046789370477199554, 0.023929482325911522, 0.07104285061359406, -0.020132653415203094, -0.059198472648859024, -0.21242883801460266, -0.05043989419937134, 0.03201548010110855, 0.1196950152516365, -0.0228811614215374, 0.11627659946680069, -0.01393020898103714, -0.008273831568658352, 0.07391814142465591, -0.0042403871193528175, -0.05976707488298416, -0.07062926888465881, -0.013586830347776413, 0.008171217516064644, -0.0744645819067955, -0.05701276287436485, -0.1208827942609787, -0.10374034196138382, 0.1348489671945572, 0.04422258585691452, -0.012304656207561493, -0.13473370671272278, 0.1036820188164711, 0.09548503905534744, -0.08668719232082367, 0.042621590197086334, 0.017648344859480858, 0.053510632365942, 0.024007825180888176, -0.04897452890872955, 0.12812526524066925, -0.06898918002843857, -0.16188324987888336, -0.06926649808883667, 0.08538400381803513, 0.05666014179587364, 0.07264533638954163, -0.028370743617415428, 0.03495213761925697, -0.02131749875843525, -0.08114702999591827, 0.06556481868028641, -0.061937082558870316, 0.0585344024002552, 0.02328338474035263, -0.048529401421546936, 0.026065059006214142, -0.05577656999230385, -0.020807957276701927, 0.16570378839969635, 0.28232771158218384, -0.09278850257396698, 0.02275644615292549, 0.027302676811814308, -0.05177824944257736, -0.19923865795135498, 0.0735655128955841, 0.07172795385122299, 0.01955600641667843, 0.07607211917638779, -0.18510152399539948, 0.11817766726016998, 0.08276765048503876, -0.0022594216279685497, 0.12856481969356537, -0.30973178148269653, -0.1333349645137787, 0.11054715514183044, 0.16203130781650543, 0.12303382903337479, -0.13389326632022858, -0.0045500751584768295, -0.011131411418318748, -0.09914138913154602, 0.06046995148062706, -0.09208767861127853, 0.13580499589443207, -0.01928299106657505, 0.10248623043298721, 0.015663327649235725, -0.06631926447153091, 0.10440824925899506, -0.006376620847731829, 0.11506535857915878, -0.06329505890607834, -0.032594066113233566, 0.03089161589741707, -0.03618467226624489, -0.014215432107448578, -0.05760359391570091, 0.014605007134377956, -0.0485428124666214, -0.01579977571964264, -0.095759816467762, 0.04210765287280083, -0.03328528627753258, -0.07530780136585236, -0.01777109131217003, 0.043582670390605927, 0.05155707895755768, -0.019804861396551132, 0.1075042337179184, -0.002556371968239546, 0.16930097341537476, 0.07053517550230026, 0.0556783601641655, -0.05487653240561485, -0.0349695198237896, 0.01670261099934578, -0.00828205980360508, 0.04453234747052193, -0.11441682279109955, 0.018288828432559967, 0.14005103707313538, 0.028313247486948967, 0.11823852360248566, 0.0822678729891777, -0.029045430943369865, 0.02264625020325184, 0.07593601197004318, -0.1692357361316681, -0.060675811022520065, 0.014885411597788334, -0.10187669843435287, -0.10519792139530182, 0.02668565697968006, 0.09216982871294022, -0.059141650795936584, -0.004852195270359516, -0.011813903227448463, 0.001857072114944458, -0.06981310993432999, 0.22554482519626617, 0.05448184534907341, 0.04955049976706505, -0.0962580144405365, 0.05361940339207649, 0.03330804035067558, -0.07430329918861389, 0.02150333859026432, 0.09624289721250534, -0.0733686238527298, -0.020207002758979797, 0.10503526777029037, 0.2070419192314148, -0.03720356523990631, -0.011484337039291859, -0.16522598266601562, -0.09696727991104126, 0.06657294183969498, 0.18405285477638245, 0.08865026384592056, -0.018014119938015938, -0.05677121505141258, 0.04295177012681961, -0.13603119552135468, 0.08787117898464203, 0.06548198312520981, 0.07352716475725174, -0.11979252845048904, 0.19664911925792694, -0.0059782820753753185, 0.05152222141623497, -0.028829358518123627, 0.038538627326488495, -0.11851362884044647, 0.021844182163476944, -0.109042227268219, -0.062444861978292465, -0.018331367522478104, -0.01522620115429163, -0.011050587520003319, -0.0682079941034317, -0.06287404149770737, -0.0012550752144306898, -0.12834471464157104, -0.030484993010759354, 0.036272481083869934, 0.01096017099916935, -0.11384496092796326, -0.049327488988637924, 0.030667072162032127, -0.06091203913092613, 0.058407366275787354, 0.05367196351289749, 0.01860375702381134, 0.059258680790662766, -0.14963489770889282, -0.008762241341173649, 0.046440087258815765, -0.014345112256705761, 0.08632386475801468, -0.08007476478815079, -0.016685551032423973, -0.03494774550199509, 0.09988027065992355, 0.020346516743302345, 0.08992938697338104, -0.13701149821281433, 0.02279314212501049, -0.029136374592781067, -0.1066618487238884, -0.05983519181609154, 0.03203402832150459, 0.07367654889822006, 0.01098285149782896, 0.17325280606746674, -0.09973664581775665, 0.06617533415555954, -0.21280288696289062, -0.012480765581130981, -0.013375140726566315, -0.10202344506978989, -0.10216457396745682, -0.06244425103068352, 0.09149713069200516, -0.06612328439950943, 0.10589142143726349, 0.033025242388248444, 0.07306750863790512, 0.030126025900244713, -0.06205179542303085, 0.0034550742711871862, 0.020167618989944458, 0.17352135479450226, 0.033773623406887054, -0.05267156660556793, 0.08140745759010315, 0.0817723274230957, 0.09928438067436218, 0.12836410105228424, 0.2448272705078125, 0.1394542157649994, 0.0359514057636261, 0.09622760862112045, 0.020903369411826134, -0.07433497905731201, -0.16485752165317535, 0.01956724375486374, -0.06440640240907669, 0.0903317779302597, -0.035330891609191895, 0.19026969373226166, 0.05905202031135559, -0.16721007227897644, 0.05863213539123535, -0.05891959369182587, -0.10034218430519104, -0.11968044936656952, -0.02115125022828579, -0.08499621599912643, -0.12809230387210846, 0.014429330825805664, -0.09862738102674484, 0.03760695084929466, 0.10512026399374008, 0.008201426826417446, -0.007952569983899593, 0.22050149738788605, 0.025225071236491203, 0.0525195375084877, 0.058803215622901917, 0.0168917253613472, -0.01233398076146841, -0.06924742460250854, -0.07644709944725037, -0.03606374189257622, -0.016205379739403725, 0.025301925837993622, -0.07919037342071533, -0.101265549659729, 0.04628954455256462, -0.0021228839177638292, -0.11267508566379547, 0.018843993544578552, 0.02116916887462139, 0.07935431599617004, 0.03424691781401634, 0.007244672626256943, 0.01717616245150566, -0.03255818784236908, 0.23061108589172363, -0.09507358819246292, -0.07992655038833618, -0.10730953514575958, 0.2701515853404999, 0.03533293679356575, -0.006914258003234863, 0.007481345906853676, -0.06895264238119125, 0.003125343471765518, 0.24372132122516632, 0.19821195304393768, -0.1131380945444107, -0.001678086002357304, 0.0025531649589538574, -0.009198279120028019, -0.0355449803173542, 0.11979272216558456, 0.12382358312606812, 0.03270011022686958, -0.10937061905860901, -0.049328114837408066, -0.056137531995773315, -0.030996831133961678, -0.046854764223098755, 0.05323050543665886, 0.05933326110243797, 0.025499258190393448, -0.049991950392723083, 0.06059517711400986, -0.05922173336148262, -0.13707612454891205, 0.08375731110572815, -0.22575218975543976, -0.17483776807785034, -0.012646527029573917, 0.09231732040643692, 0.008161542937159538, 0.08197391033172607, -0.026406876742839813, -0.004400265868753195, 0.05536460131406784, -0.016213994473218918, -0.04451637715101242, -0.10469178110361099, 0.10121464729309082, -0.11483137309551239, 0.200916588306427, -0.05351151153445244, 0.02556644007563591, 0.13140182197093964, 0.06604713201522827, -0.05775677412748337, 0.0623527467250824, 0.05431817099452019, -0.10903558135032654, 0.016052253544330597, 0.13953854143619537, -0.046675827354192734, 0.04155287891626358, 0.040053270757198334, -0.1321309357881546, 0.03670506924390793, -0.08991629630327225, -0.04545322805643082, -0.03137987107038498, -0.032942745834589005, -0.05674669146537781, 0.1231689304113388, 0.2391768991947174, -0.013603066094219685, 0.033203765749931335, -0.08713722229003906, 0.021438244730234146, 0.05522575229406357, 0.050441890954971313, -0.11465562880039215, -0.25227418541908264, 0.01862538419663906, 0.07682164758443832, -0.03688160330057144, -0.24407052993774414, -0.10345640778541565, 0.012713615782558918, -0.07265952974557877, -0.08634725213050842, 0.09029319882392883, 0.06831254065036774, 0.06310427188873291, -0.04540160670876503, -0.10297323018312454, -0.06498109549283981, 0.16717471182346344, -0.16895286738872528, -0.07808494567871094 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-SNS_BRANDS_50k This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0490 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0787 | 1.0 | 1465 | 0.0751 | | 0.0662 | 2.0 | 2930 | 0.0628 | | 0.053 | 3.0 | 4395 | 0.0531 | | 0.0452 | 4.0 | 5860 | 0.0490 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "bertweet-base-SNS_BRANDS_50k", "results": []}]}
fill-mask
haji2438/bertweet-base-SNS_BRANDS_50k
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
bertweet-base-SNS\_BRANDS\_50k ============================== This model is a fine-tuned version of vinai/bertweet-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.0490 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 48, 116, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 4### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.11010938137769699, 0.0363854356110096, -0.0019059007754549384, 0.12226388603448868, 0.17550960183143616, 0.027062656357884407, 0.1150815486907959, 0.1248515248298645, -0.0914720743894577, 0.03631262108683586, 0.1314951777458191, 0.1579989790916443, 0.009048135951161385, 0.14986556768417358, -0.03710281476378441, -0.2774045169353485, -0.025293229147791862, 0.020102612674236298, -0.09171625226736069, 0.12789671123027802, 0.07224853336811066, -0.14938130974769592, 0.07844047248363495, -0.0050265113823115826, -0.19999520480632782, 0.015714723616838455, 0.017679475247859955, -0.0523853562772274, 0.15008486807346344, -0.0023212027736008167, 0.13937774300575256, 0.0036564962938427925, 0.10984363406896591, -0.16492894291877747, 0.017161937430500984, 0.054822903126478195, 0.014122435823082924, 0.0816430151462555, 0.044085972011089325, -0.012354052625596523, 0.10864585638046265, -0.11149545758962631, 0.06997673958539963, -0.002323261694982648, -0.141464963555336, -0.21461106836795807, -0.07756166905164719, -0.015053425915539265, 0.06707892566919327, 0.10168823599815369, -0.011201241053640842, 0.1600579172372818, -0.09307388961315155, 0.10819801688194275, 0.2510192394256592, -0.27146393060684204, -0.08611605316400528, 0.023438286036252975, 0.014875594526529312, 0.05530566722154617, -0.1161966547369957, -0.0060461293905973434, 0.034915827214717865, 0.0523950532078743, 0.13809466361999512, -0.03651856631040573, -0.10010868310928345, 0.014237048104405403, -0.1340176910161972, -0.010209527797996998, 0.05169832333922386, 0.030037134885787964, -0.031565725803375244, -0.02476438693702221, -0.07116366922855377, -0.17190101742744446, -0.054240334779024124, -0.0245633777230978, 0.04555026814341545, -0.05971803143620491, -0.11013254523277283, -0.0004444779478944838, -0.08630489557981491, -0.07445815205574036, -0.053718943148851395, 0.17907807230949402, 0.03165503963828087, 0.007428778801113367, -0.028394371271133423, 0.10895995050668716, -0.027142027392983437, -0.15250352025032043, 0.03434533253312111, 0.03933274745941162, -0.04993477836251259, -0.056177567690610886, -0.06251494586467743, -0.09051457047462463, 0.0036045322194695473, 0.1280956119298935, -0.03974005952477455, 0.06482143700122833, 0.03908579424023628, 0.024498967453837395, -0.10170023143291473, 0.1870361715555191, -0.053346745669841766, -0.04510157182812691, -0.002424270613119006, 0.06613029539585114, 0.0051981606520712376, -0.02469073049724102, -0.10202743858098984, 0.010501581244170666, 0.08724662661552429, 0.0075908382423222065, -0.06546884030103683, 0.05960274115204811, -0.04197339341044426, -0.004334707278758287, -0.01941569149494171, -0.0993620976805687, 0.04843141883611679, -0.015740569680929184, -0.08549005538225174, -0.037358757108449936, 0.02481880597770214, 0.020071739330887794, 0.005234865006059408, 0.16853588819503784, -0.09731858223676682, 0.04060019552707672, -0.1137048602104187, -0.12384959310293198, -0.005059586372226477, -0.09798039495944977, 0.02637903019785881, -0.08505816757678986, -0.15714682638645172, -0.01644469052553177, 0.07514701038599014, -0.05367131531238556, -0.021288728341460228, -0.05059739947319031, -0.07516811788082123, 0.015932105481624603, -0.004718082025647163, 0.18068724870681763, -0.06430137157440186, 0.11426646262407303, 0.04887687414884567, 0.09423284977674484, -0.031167536973953247, 0.04566710814833641, -0.08696844428777695, 0.014396324753761292, -0.2301502376794815, 0.03519690781831741, -0.049872223287820816, 0.06463415920734406, -0.07448207587003708, -0.10735920816659927, 0.0010762676829472184, -0.0003059794253204018, 0.10857225954532623, 0.10924207419157028, -0.19255049526691437, -0.07837126404047012, 0.17812542617321014, -0.05159729719161987, -0.0795067846775055, 0.12196630984544754, -0.06813924014568329, 0.03743618354201317, 0.058821361511945724, 0.16113388538360596, 0.05163813754916191, -0.11673765629529953, 0.0310737956315279, -0.03184272348880768, 0.054616689682006836, -0.02687634713947773, 0.041387975215911865, 0.00925475638359785, 0.033408477902412415, 0.018954310566186905, -0.009919911623001099, 0.057218994945287704, -0.11356490850448608, -0.09425685554742813, -0.03132186830043793, -0.10195612162351608, 0.06555616110563278, 0.07236379384994507, 0.07842804491519928, -0.1132836565375328, -0.09182704985141754, 0.047764915972948074, 0.0717742070555687, -0.042254116386175156, 0.032208334654569626, -0.06655489653348923, 0.056851305067539215, -0.04229128733277321, -0.028591616079211235, -0.1909683644771576, -0.027241099625825882, -0.0003379497502464801, 0.02972491830587387, 0.022098492830991745, 0.005211018491536379, 0.10417836159467697, 0.08085685968399048, -0.0681798905134201, -0.011628697626292706, -0.04133450239896774, -0.003872025990858674, -0.14452974498271942, -0.2246565967798233, -0.0354275107383728, -0.029678771272301674, 0.10645635426044464, -0.18762710690498352, 0.016849560663104057, -0.044835370033979416, 0.08237488567829132, 0.02677696757018566, -0.021988363936543465, -0.04383137449622154, 0.09441398084163666, -0.012666631489992142, -0.06172278895974159, 0.05985052511096001, -0.01628582924604416, -0.08264133334159851, -0.07508087158203125, -0.11715270578861237, 0.15480487048625946, 0.12199117988348007, -0.09796269983053207, -0.11270474642515182, 0.02380969189107418, -0.06289380043745041, -0.030441666021943092, -0.052277445793151855, 0.05480353161692619, 0.17248786985874176, 0.007446896284818649, 0.13111978769302368, -0.05207565426826477, -0.03437266871333122, 0.03245606645941734, -0.0361081026494503, 0.03819381818175316, 0.11247409880161285, 0.12817369401454926, -0.044203463941812515, 0.11783450841903687, 0.12688955664634705, -0.1048438623547554, 0.150327667593956, -0.014361483044922352, -0.08383156359195709, -0.02895728498697281, -0.02567213773727417, 0.010806274600327015, 0.12968015670776367, -0.115153007209301, -0.009924700483679771, 0.005538721568882465, 0.013506253249943256, 0.008818279020488262, -0.22452928125858307, -0.05185795575380325, 0.0356307178735733, -0.03173863887786865, -0.02049277164041996, -0.010694517754018307, 0.006494966335594654, 0.11107862740755081, 0.014674517326056957, -0.07446146756410599, 0.011669592000544071, 0.00429398100823164, -0.051024723798036575, 0.20854552090168, -0.07377283275127411, -0.11832459270954132, -0.08649463951587677, -0.0932874009013176, -0.03261035308241844, 0.01641131564974785, 0.047329485416412354, -0.11493069678544998, -0.023065248504281044, -0.04508078098297119, 0.011616832576692104, 0.023186122998595238, 0.05661547929048538, 0.001310054212808609, -0.015756823122501373, 0.0655379444360733, -0.0921783521771431, -0.010228174738585949, -0.06153418496251106, -0.060751039534807205, 0.06663599610328674, 0.07093613594770432, 0.13438110053539276, 0.13901542127132416, -0.02542474865913391, 0.013225555419921875, -0.021755659952759743, 0.24079979956150055, -0.08950132131576538, -0.01568523235619068, 0.10825668275356293, -0.018269088119268417, 0.05499964579939842, 0.11382288485765457, 0.07024189829826355, -0.10322955250740051, 0.01862870343029499, 0.055256593972444534, -0.04612458497285843, -0.1810116469860077, -0.016982829198241234, -0.05517435818910599, -0.03589240089058876, 0.09050215035676956, 0.01570865325629711, 0.01937510445713997, 0.0636398047208786, 0.0619313083589077, 0.05662531033158302, -0.06473000347614288, 0.04480016604065895, 0.0384938046336174, 0.05200853571295738, 0.1294373869895935, -0.02786017395555973, -0.08594849705696106, 0.026912521570920944, -0.020391307771205902, 0.22892016172409058, -0.0015902315499261022, 0.07823126018047333, 0.05062486603856087, 0.18660487234592438, -0.014849350787699223, 0.087478406727314, 0.006823862437158823, -0.0695732980966568, -0.011816841550171375, -0.04114694520831108, -0.023746788501739502, 0.020790742710232735, -0.026183489710092545, 0.0519566610455513, -0.1193266436457634, 0.018817825242877007, 0.05472274124622345, 0.2688547968864441, 0.045370493084192276, -0.31262555718421936, -0.0788884237408638, -0.004545775707811117, -0.030603958293795586, -0.01760041154921055, -0.0029221186414361, 0.11355713754892349, -0.10156823694705963, 0.04041942581534386, -0.08123184740543365, 0.0811852440237999, -0.011607176624238491, 0.04465552419424057, 0.06051964312791824, 0.12702526152133942, -0.014903518371284008, 0.05039018392562866, -0.31432926654815674, 0.3075893521308899, 0.010886501520872116, 0.09365373849868774, -0.08651597797870636, -0.0041921730153262615, 0.04681972786784172, 0.024782123044133186, 0.07054995745420456, -0.019913645461201668, -0.06107793375849724, -0.21134409308433533, -0.04969104751944542, 0.032682888209819794, 0.11927784234285355, -0.02267664670944214, 0.11632585525512695, -0.013473565690219402, -0.00885673426091671, 0.07365037500858307, -0.006004038266837597, -0.05955668166279793, -0.07067549973726273, -0.013971645385026932, 0.008934622630476952, -0.07354774326086044, -0.05655365064740181, -0.12075532972812653, -0.10354457795619965, 0.13442298769950867, 0.04403316602110863, -0.012385516427457333, -0.13474047183990479, 0.10426528751850128, 0.0956583097577095, -0.08668912202119827, 0.04310005530714989, 0.01795484498143196, 0.05375697836279869, 0.024755647405982018, -0.04867665469646454, 0.12864014506340027, -0.06827981770038605, -0.16184204816818237, -0.06920090317726135, 0.08542076498270035, 0.056151553988456726, 0.07205622643232346, -0.028240783140063286, 0.03548185154795647, -0.022389456629753113, -0.08079373091459274, 0.06623602658510208, -0.06344311684370041, 0.05935174971818924, 0.022197570651769638, -0.04903629049658775, 0.025837698951363564, -0.054992564022541046, -0.02072194777429104, 0.16443230211734772, 0.2806766629219055, -0.09301859140396118, 0.021993232890963554, 0.02770301327109337, -0.05199344828724861, -0.1988227814435959, 0.07421914488077164, 0.07150701433420181, 0.020055292174220085, 0.07437705248594284, -0.1861318200826645, 0.11908909678459167, 0.08187177777290344, -0.001957034459337592, 0.13148723542690277, -0.30740994215011597, -0.13323278725147247, 0.10998395830392838, 0.1610255390405655, 0.12526223063468933, -0.13382957875728607, -0.005305842496454716, -0.011436223052442074, -0.09951046854257584, 0.05925127863883972, -0.09462461620569229, 0.13519828021526337, -0.018947837874293327, 0.1039053276181221, 0.015695391222834587, -0.06594505161046982, 0.10463739931583405, -0.005342294927686453, 0.11537464708089828, -0.06314413994550705, -0.03264191001653671, 0.030785463750362396, -0.03578990697860718, -0.014718270860612392, -0.05694330856204033, 0.014529844745993614, -0.04934258013963699, -0.015038038603961468, -0.09553668648004532, 0.04224476218223572, -0.03321161866188049, -0.07461831718683243, -0.017499316483736038, 0.042789097875356674, 0.05080036446452141, -0.019684286788105965, 0.10662265866994858, -0.0022252206690609455, 0.16895253956317902, 0.0709388330578804, 0.05423220247030258, -0.05498464033007622, -0.035618964582681656, 0.017842745408415794, -0.008218876086175442, 0.0453014150261879, -0.11617084592580795, 0.018286703154444695, 0.14051981270313263, 0.028518086299300194, 0.11782459169626236, 0.08206289261579514, -0.02864508330821991, 0.022712143138051033, 0.07589437067508698, -0.1697635054588318, -0.06110726669430733, 0.015031781047582626, -0.10414891690015793, -0.10444042086601257, 0.02649478241801262, 0.09262459725141525, -0.0593750923871994, -0.004671565722674131, -0.011994928121566772, 0.0011792494915425777, -0.06978708505630493, 0.22537074983119965, 0.05467649921774864, 0.04934636875987053, -0.09683065861463547, 0.05352192744612694, 0.03449671342968941, -0.07577511668205261, 0.02115381509065628, 0.095615454018116, -0.07395215332508087, -0.020451869815587997, 0.10461438447237015, 0.20896472036838531, -0.035861413925886154, -0.012215184979140759, -0.1654159128665924, -0.0968203917145729, 0.06640081107616425, 0.1828082948923111, 0.0884997546672821, -0.018240677192807198, -0.056799035519361496, 0.04283365234732628, -0.13652712106704712, 0.0883704125881195, 0.06597709655761719, 0.07386394590139389, -0.11943784356117249, 0.19744513928890228, -0.006151587702333927, 0.05152582749724388, -0.028972048312425613, 0.03879629820585251, -0.11824880540370941, 0.021328559145331383, -0.10929203778505325, -0.06153886020183563, -0.01733935996890068, -0.015267878770828247, -0.01121524814516306, -0.06835609674453735, -0.06270100921392441, -0.0012736365897580981, -0.1286650449037552, -0.030109161511063576, 0.03709012642502785, 0.01113032829016447, -0.11332069337368011, -0.04949523136019707, 0.03065720573067665, -0.06098908185958862, 0.058394335210323334, 0.054257504642009735, 0.018667958676815033, 0.0592055469751358, -0.14744873344898224, -0.008640692569315434, 0.046161945909261703, -0.01422775536775589, 0.08690638095140457, -0.07981941103935242, -0.016555290669202805, -0.03535453975200653, 0.10049420595169067, 0.01975891925394535, 0.09033778309822083, -0.13707298040390015, 0.022482525557279587, -0.02873123437166214, -0.10626716911792755, -0.060242895036935806, 0.03179795295000076, 0.07327951490879059, 0.010325215756893158, 0.17274147272109985, -0.0994933620095253, 0.06575876474380493, -0.2131470888853073, -0.012637943029403687, -0.013508431613445282, -0.10301029682159424, -0.1010046973824501, -0.06303812563419342, 0.0920051634311676, -0.06684684753417969, 0.10567040741443634, 0.03324007987976074, 0.0729210376739502, 0.029955333098769188, -0.06224367022514343, 0.0013107926351949573, 0.020490091294050217, 0.17362365126609802, 0.03402360528707504, -0.052733153104782104, 0.08060625940561295, 0.08201685547828674, 0.09897534549236298, 0.12948939204216003, 0.24305561184883118, 0.13897785544395447, 0.03702295199036598, 0.09608864784240723, 0.020624304190278053, -0.07430350035429001, -0.16571752727031708, 0.021572822704911232, -0.06511694937944412, 0.0913286879658699, -0.03559223562479019, 0.18949830532073975, 0.05871332809329033, -0.16638848185539246, 0.05903567001223564, -0.05915847048163414, -0.10070591419935226, -0.11892220377922058, -0.019924240186810493, -0.08545508235692978, -0.12834545969963074, 0.014251591637730598, -0.09829805791378021, 0.037998784333467484, 0.10526929795742035, 0.007498221937566996, -0.008651639334857464, 0.22094736993312836, 0.025221893563866615, 0.052259691059589386, 0.05918451026082039, 0.017165087163448334, -0.01279150415211916, -0.0685768648982048, -0.0764436200261116, -0.03587436303496361, -0.01620323769748211, 0.024760659784078598, -0.07913368940353394, -0.10089748352766037, 0.04648367688059807, -0.0016626528231427073, -0.11212603002786636, 0.018694095313549042, 0.021624553948640823, 0.07942502945661545, 0.033266581594944, 0.006803097203373909, 0.017110290005803108, -0.032966431230306625, 0.23099562525749207, -0.09521020948886871, -0.07896950095891953, -0.1071910560131073, 0.2690131366252899, 0.0348399318754673, -0.007463617250323296, 0.007447970565408468, -0.06900903582572937, 0.004258374683558941, 0.2444738745689392, 0.1978892982006073, -0.1127951368689537, -0.0020481462124735117, 0.0027025556191802025, -0.00940871611237526, -0.035380881279706955, 0.12014329433441162, 0.12330279499292374, 0.03200935199856758, -0.10932490974664688, -0.049944646656513214, -0.05649545416235924, -0.03100038319826126, -0.047961924225091934, 0.054559964686632156, 0.058431997895240784, 0.025028400123119354, -0.04979060962796211, 0.06042191758751869, -0.0579104907810688, -0.13950113952159882, 0.08515311777591705, -0.22547858953475952, -0.17525018751621246, -0.012599421665072441, 0.09314850717782974, 0.00895102508366108, 0.08174397796392441, -0.026674164459109306, -0.004499891772866249, 0.05735843628644943, -0.016421988606452942, -0.04419723153114319, -0.10466840118169785, 0.10074612498283386, -0.11741653084754944, 0.2002020627260208, -0.05339566245675087, 0.026039667427539825, 0.13122591376304626, 0.06629462540149689, -0.05778924375772476, 0.061778005212545395, 0.05403289943933487, -0.10970093309879303, 0.016354752704501152, 0.1397065669298172, -0.04646749794483185, 0.04017040133476257, 0.03971857577562332, -0.13134315609931946, 0.036008525639772415, -0.08972251415252686, -0.04599374532699585, -0.03147011250257492, -0.03391819819808006, -0.056849874556064606, 0.12276478856801987, 0.23936143517494202, -0.013634152710437775, 0.033614736050367355, -0.0870160385966301, 0.02105296589434147, 0.056077953428030014, 0.04933968558907509, -0.11459871381521225, -0.251987099647522, 0.018644053488969803, 0.07841026782989502, -0.0366547666490078, -0.24355219304561615, -0.10260171443223953, 0.012160931713879108, -0.07250366359949112, -0.08572302013635635, 0.09025076031684875, 0.06862461566925049, 0.06280744820833206, -0.0455305241048336, -0.10371530055999756, -0.06461062282323837, 0.1669456660747528, -0.16854123771190643, -0.07868542522192001 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-finetuned-IGtext This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6741 | 1.0 | 505 | 2.2096 | | 2.3183 | 2.0 | 1010 | 2.0934 | | 2.2089 | 3.0 | 1515 | 2.0595 | | 2.1473 | 4.0 | 2020 | 2.0246 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "bertweet-base-finetuned-IGtext", "results": []}]}
fill-mask
haji2438/bertweet-base-finetuned-IGtext
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
bertweet-base-finetuned-IGtext ============================== This model is a fine-tuned version of vinai/bertweet-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 2.0334 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.10.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 48, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4### Training results### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ -0.09944996237754822, 0.03342540189623833, -0.001800650148652494, 0.12103135138750076, 0.19727203249931335, 0.03294604271650314, 0.11858096718788147, 0.10169856250286102, -0.11184687912464142, 0.03652423992753029, 0.12972117960453033, 0.15868309140205383, 0.007660186383873224, 0.11961647123098373, -0.03876100480556488, -0.2653195858001709, -0.034024205058813095, 0.03440878912806511, -0.10881416499614716, 0.12499473989009857, 0.07768755406141281, -0.1548178642988205, 0.07165425270795822, -0.004851633217185736, -0.2492912858724594, 0.01984516903758049, 0.03327024355530739, -0.05873902887105942, 0.14570088684558868, 0.003771956777200103, 0.17373239994049072, -0.009270267561078072, 0.10407731682062149, -0.14489895105361938, 0.01779194548726082, 0.060440316796302795, 0.014147892594337463, 0.08101696521043777, 0.04807179793715477, -0.004222183022648096, 0.08928865194320679, -0.10522574186325073, 0.06626389920711517, -0.00006981052865739912, -0.13529641926288605, -0.21379514038562775, -0.0728573277592659, -0.012753983959555626, 0.04601012542843819, 0.10483290255069733, -0.0073527018539607525, 0.1626054048538208, -0.10337555408477783, 0.09537290781736374, 0.2296827733516693, -0.2670152187347412, -0.09017376601696014, 0.03463836759328842, 0.005673747509717941, 0.06385380774736404, -0.12067435681819916, -0.0107018006965518, 0.052212368696928024, 0.05862089619040489, 0.1319768875837326, -0.031511664390563965, -0.10278710722923279, 0.017735492438077927, -0.14170649647712708, -0.0013507307739928365, 0.04328057914972305, 0.018690520897507668, -0.019200779497623444, -0.015434633940458298, -0.0661688968539238, -0.164585143327713, -0.04797487333416939, -0.02456376701593399, 0.04246293008327484, -0.06496860831975937, -0.12102124840021133, 0.007802125532180071, -0.09848399460315704, -0.06853009015321732, -0.0741533413529396, 0.17540256679058075, 0.036926768720149994, 0.019572634249925613, -0.04292996600270271, 0.10049693286418915, -0.027824537828564644, -0.1439039260149002, 0.05639607086777687, 0.03217757120728493, -0.037380799651145935, -0.0542600080370903, -0.07445017993450165, -0.11983449757099152, 0.007125918287783861, 0.1000877395272255, -0.0509374737739563, 0.04774555563926697, 0.04589008539915085, 0.043508708477020264, -0.10403011739253998, 0.1913420408964157, -0.05517252907156944, -0.03393356502056122, 0.0014252793043851852, 0.05288063362240791, 0.0029473465401679277, -0.009859375655651093, -0.09989254921674728, 0.006506169680505991, 0.0911775529384613, -0.0005408647703006864, -0.06418946385383606, 0.05930975452065468, -0.0433344766497612, -0.005770065821707249, -0.040067195892333984, -0.09668981283903122, 0.04364882782101631, -0.02111700363457203, -0.08578552305698395, -0.006443928927183151, 0.02525503560900688, 0.012331025674939156, -0.0011902058031409979, 0.16780008375644684, -0.10128399729728699, 0.043538909405469894, -0.1245916336774826, -0.12368179857730865, -0.0008109749178402126, -0.07788842916488647, 0.019613254815340042, -0.09276499599218369, -0.13979950547218323, -0.01888054423034191, 0.06788384914398193, -0.039781611412763596, -0.023136192932724953, -0.03505680337548256, -0.07395266741514206, 0.009426992386579514, -0.005039726849645376, 0.17600759863853455, -0.04778231680393219, 0.11917522549629211, 0.06150037422776222, 0.09989822655916214, -0.05062738433480263, 0.046589404344558716, -0.08822688460350037, 0.0007362387259490788, -0.22328396141529083, 0.026047002524137497, -0.04965339973568916, 0.06987552344799042, -0.059910599142313004, -0.11728031188249588, -0.013061290606856346, -0.00010472173744346946, 0.10533686727285385, 0.08577533811330795, -0.1795087605714798, -0.08821482956409454, 0.1791711300611496, -0.05799328535795212, -0.0760740265250206, 0.12275435775518417, -0.06263268738985062, 0.0308084674179554, 0.0653507336974144, 0.1381252259016037, 0.04837441444396973, -0.10964717715978622, 0.027330903336405754, -0.03499414026737213, 0.04417877644300461, -0.05237744376063347, 0.040458325296640396, 0.011516436003148556, 0.018946297466754913, 0.027582203969359398, -0.005348399747163057, 0.06787616014480591, -0.1213240846991539, -0.09260169416666031, -0.03322224318981171, -0.11541258543729782, 0.07471918314695358, 0.08526580035686493, 0.09624266624450684, -0.10700218379497528, -0.07974452525377274, 0.06231805309653282, 0.05587972328066826, -0.04521775618195534, 0.018385784700512886, -0.057603053748607635, 0.05981283262372017, -0.06873239576816559, -0.032086580991744995, -0.1980137974023819, -0.04358619451522827, -0.007647180464118719, 0.030387837439775467, 0.034820977598428726, 0.023616375401616096, 0.10172513872385025, 0.07259001582860947, -0.06647166609764099, -0.0009656197507865727, -0.04307889938354492, -0.01152375154197216, -0.14529192447662354, -0.20452633500099182, -0.028188208118081093, -0.02076716162264347, 0.10420173406600952, -0.19192519783973694, 0.01781178079545498, -0.0669982060790062, 0.08980272710323334, 0.02115226909518242, -0.017112519592046738, -0.057885292917490005, 0.11093711107969284, -0.008392944000661373, -0.05178620666265488, 0.06150808930397034, -0.019024908542633057, -0.06796558946371078, -0.079981230199337, -0.10665958374738693, 0.18691135942935944, 0.13671399652957916, -0.14338478446006775, -0.1118827536702156, 0.040947504341602325, -0.06511010974645615, -0.02428988181054592, -0.05945564806461334, 0.04896089807152748, 0.17132875323295593, -0.0057813688181340694, 0.13833940029144287, -0.04956568777561188, -0.03538363799452782, 0.030242012813687325, -0.04222573712468147, 0.04020986706018448, 0.09479797631502151, 0.13723132014274597, -0.04616530239582062, 0.1292433887720108, 0.1351548731327057, -0.13980916142463684, 0.155093714594841, -0.014569805935025215, -0.08331745117902756, -0.020837703719735146, -0.03310086578130722, 0.013490986078977585, 0.12405741959810257, -0.10515075922012329, -0.016798844560980797, 0.005910860374569893, 0.001960570691153407, 0.0266649778932333, -0.23654820024967194, -0.058627333492040634, 0.028722763061523438, -0.008904845453798771, -0.008457609452307224, -0.011142428033053875, 0.018969865515828133, 0.11737324297428131, 0.004963682033121586, -0.0707581415772438, 0.02114057168364525, 0.0054620858281850815, -0.056138668209314346, 0.20717163383960724, -0.06809143722057343, -0.1259307563304901, -0.10288557410240173, -0.07615205645561218, -0.032249510288238525, 0.013999024406075478, 0.03406120464205742, -0.12512969970703125, -0.020469045266509056, -0.022339140996336937, 0.026143690571188927, 0.02609541267156601, 0.06291160732507706, 0.012545651756227016, -0.004604186397045851, 0.07724243402481079, -0.09765195101499557, -0.0049703544937074184, -0.07090277969837189, -0.06961178779602051, 0.06636356562376022, 0.07069950550794601, 0.13448666036128998, 0.1613735854625702, -0.04289105162024498, 0.003696215571835637, -0.01907215267419815, 0.23639114201068878, -0.08294694870710373, -0.036243900656700134, 0.10976168513298035, -0.017200196161866188, 0.054855506867170334, 0.09939482063055038, 0.08210837095975876, -0.09455668181180954, 0.016704553738236427, 0.04711296036839485, -0.049803800880908966, -0.19279888272285461, -0.02798795886337757, -0.055961813777685165, -0.05558649078011513, 0.08661874383687973, 0.012086070142686367, 0.032184164971113205, 0.07152534276247025, 0.06787784397602081, 0.092424176633358, -0.07678678631782532, 0.03758707642555237, 0.05304630845785141, 0.04804946854710579, 0.13053731620311737, -0.03627965599298477, -0.10364712029695511, 0.01588554121553898, -0.031263791024684906, 0.22542594373226166, -0.003488407237455249, 0.06771256029605865, 0.05477537587285042, 0.18989036977291107, 0.000601289386395365, 0.09180530160665512, 0.008394531905651093, -0.07793191075325012, 0.003064107848331332, -0.04091905429959297, -0.032720454037189484, 0.011575362645089626, -0.015610839240252972, 0.05974208563566208, -0.11311326920986176, -0.0006660877261310816, 0.04989350214600563, 0.23859840631484985, 0.036665916442871094, -0.3260905146598816, -0.07627584785223007, -0.014064527116715908, -0.019400376826524734, -0.007882500067353249, -0.004845563322305679, 0.11796548217535019, -0.09273988008499146, 0.027286941185593605, -0.0809963271021843, 0.08061603456735611, -0.0073917582631111145, 0.04382437467575073, 0.06385539472103119, 0.13245798647403717, -0.004838199354708195, 0.053610239177942276, -0.30804309248924255, 0.2874234914779663, 0.005228390917181969, 0.09609714895486832, -0.08174970746040344, -0.0057413289323449135, 0.04141448438167572, 0.011220535263419151, 0.047056280076503754, -0.022251103073358536, -0.02169756591320038, -0.21176233887672424, -0.029056383296847343, 0.03103615529835224, 0.1290627270936966, -0.00579408323392272, 0.10843454301357269, -0.010355215519666672, -0.005979181732982397, 0.07729151099920273, -0.010984114371240139, -0.06187677010893822, -0.07457144558429718, -0.019081469625234604, 0.009789799340069294, -0.09395680576562881, -0.05699726194143295, -0.1279553771018982, -0.13680773973464966, 0.14637704193592072, 0.031129980459809303, -0.008249828591942787, -0.12393255531787872, 0.12525466084480286, 0.09022027999162674, -0.07935386151075363, 0.050875041633844376, 0.01646849326789379, 0.054987333714962006, 0.01938674971461296, -0.060056351125240326, 0.11396811157464981, -0.06398959457874298, -0.14497564733028412, -0.07550667226314545, 0.07823251187801361, 0.04227985069155693, 0.07273544371128082, -0.023368479683995247, 0.026520773768424988, -0.019550543278455734, -0.07894846796989441, 0.058992885053157806, -0.04704349488019943, 0.06193285062909126, 0.0325927771627903, -0.04261880740523338, -0.005712482612580061, -0.04942519590258598, -0.007459455635398626, 0.17826543748378754, 0.23694556951522827, -0.09474176913499832, -0.011578948237001896, 0.026152383536100388, -0.04833782836794853, -0.2106044441461563, 0.09200635552406311, 0.08370506763458252, 0.023681996390223503, 0.06221714988350868, -0.16305740177631378, 0.1384105235338211, 0.09294002503156662, -0.002138631185516715, 0.13049964606761932, -0.31155115365982056, -0.130788192152977, 0.10069097578525543, 0.1735590100288391, 0.14208988845348358, -0.14201441407203674, -0.007944069802761078, -0.022911589592695236, -0.10764831304550171, 0.07258707284927368, -0.08817648887634277, 0.12936371564865112, -0.021458474919199944, 0.1046731248497963, 0.010675235651433468, -0.07934828847646713, 0.10111626982688904, -0.015763679519295692, 0.1077815517783165, -0.06756708770990372, -0.04459325969219208, 0.05005267262458801, -0.024142950773239136, -0.01749824732542038, -0.030638325959444046, 0.010451539419591427, -0.033530380576848984, -0.01450730673968792, -0.09838671237230301, 0.04542694613337517, -0.02605934999883175, -0.06551322340965271, -0.02350175939500332, 0.0364254005253315, 0.03112078458070755, -0.02306079864501953, 0.09602136164903641, 0.012478683143854141, 0.18533889949321747, 0.06932753324508667, 0.048648394644260406, -0.042282167822122574, -0.057898763567209244, 0.0077382540330290794, -0.013519756495952606, 0.06199769303202629, -0.12044600397348404, 0.009954124689102173, 0.14594648778438568, 0.03161054477095604, 0.11491367965936661, 0.09083496034145355, -0.030129099264740944, 0.02738616056740284, 0.09193098545074463, -0.164108008146286, -0.06134925037622452, 0.009594283998012543, -0.09903723001480103, -0.10786520689725876, 0.03962220996618271, 0.07834891974925995, -0.06781209260225296, -0.004728848580271006, -0.015914632007479668, -0.013991140760481358, -0.08050195872783661, 0.23230281472206116, 0.0761752799153328, 0.04385412484407425, -0.09424899518489838, 0.04799554497003555, 0.04642849415540695, -0.08470746129751205, 0.0012217609910294414, 0.08506102859973907, -0.06104899197816849, -0.015240329317748547, 0.11875585466623306, 0.20243094861507416, -0.0448877178132534, -0.013784890994429588, -0.16001565754413605, -0.09895417839288712, 0.05648791790008545, 0.18956831097602844, 0.0959397479891777, -0.01621176302433014, -0.05088603496551514, 0.04060386121273041, -0.14625805616378784, 0.07087740302085876, 0.056249622255563736, 0.07840128242969513, -0.12717682123184204, 0.20485903322696686, 0.000669707078486681, 0.04863407090306282, -0.03352600708603859, 0.04121231660246849, -0.11874117702245712, 0.02196536213159561, -0.1097392812371254, -0.06554784625768661, -0.0027688699774444103, -0.02303951419889927, -0.006693423260003328, -0.06477233022451401, -0.06526847928762436, 0.005813575349748135, -0.1278645247220993, -0.02917427383363247, 0.04695194959640503, 0.005745736416429281, -0.11368407309055328, -0.03992919623851776, 0.027372512966394424, -0.047965336591005325, 0.039990779012441635, 0.05476000905036926, 0.023586049675941467, 0.07221067696809769, -0.16629521548748016, -0.02331423945724964, 0.06150972470641136, -0.010115230455994606, 0.09521209448575974, -0.04575284942984581, -0.012484405189752579, -0.023572739213705063, 0.10854747891426086, 0.022669969126582146, 0.07781621813774109, -0.1388615369796753, 0.017913373187184334, -0.029668673872947693, -0.10107891261577606, -0.06173641234636307, 0.022021327167749405, 0.07689207047224045, 0.009035138413310051, 0.17368289828300476, -0.09903373569250107, 0.06812481582164764, -0.21476072072982788, -0.010610031895339489, -0.020133206620812416, -0.09334015846252441, -0.08566539734601974, -0.04586359113454819, 0.08360704779624939, -0.05708170682191849, 0.11057770997285843, 0.03830200433731079, 0.06377815455198288, 0.026248112320899963, -0.03326645493507385, -0.0009599241893738508, 0.0280706025660038, 0.18642558157444, 0.03897394239902496, -0.04944508522748947, 0.054900918155908585, 0.08967633545398712, 0.1021440252661705, 0.11888165026903152, 0.22755195200443268, 0.14732836186885834, 0.009433518163859844, 0.0949748158454895, 0.03046993352472782, -0.05046120285987854, -0.15031903982162476, 0.02001134119927883, -0.07310071587562561, 0.08152087777853012, -0.029172757640480995, 0.17206136882305145, 0.0676976814866066, -0.15532155334949493, 0.0511598214507103, -0.06476664543151855, -0.10159150511026382, -0.10116495937108994, -0.012461621314287186, -0.08004722744226456, -0.1224939376115799, 0.021209200844168663, -0.09469863027334213, 0.021051928400993347, 0.12258709222078323, 0.007999522611498833, -0.020072240382432938, 0.22734275460243225, 0.035805102437734604, 0.050588179379701614, 0.056256432086229324, 0.01596721261739731, -0.01361444965004921, -0.07766605168581009, -0.06022656336426735, -0.04244334623217583, -0.010915161110460758, 0.03402287885546684, -0.07827746868133545, -0.1064736470580101, 0.044299300760030746, -0.000577743339817971, -0.10886987298727036, 0.022919224575161934, 0.02240821160376072, 0.07654644548892975, 0.026883939281105995, -0.0013710943749174476, 0.023399515077471733, -0.03900442272424698, 0.2060723453760147, -0.09201034158468246, -0.08839961886405945, -0.10647846758365631, 0.266233891248703, 0.03319888934493065, 0.0008410924347117543, 0.006986149121075869, -0.07036975026130676, 0.006932427641004324, 0.2517477869987488, 0.21321165561676025, -0.11800320446491241, 0.0009348096209578216, 0.009937252849340439, -0.013339734636247158, -0.051560088992118835, 0.13091547787189484, 0.12600529193878174, 0.06152268871665001, -0.11031977832317352, -0.04326535388827324, -0.06301309913396835, -0.01905212365090847, -0.045128945261240005, 0.03427637368440628, 0.06267303228378296, 0.02648988924920559, -0.05661238729953766, 0.06366981565952301, -0.06306589394807816, -0.11924561113119125, 0.09569980204105377, -0.22858747839927673, -0.17436517775058746, -0.00939197652041912, 0.10868655145168304, -0.006794668734073639, 0.08139446377754211, -0.03026541694998741, -0.0006017758860252798, 0.04048101231455803, -0.021645644679665565, -0.056475065648555756, -0.09886767715215683, 0.09114866703748703, -0.10737967491149902, 0.18907874822616577, -0.05116906017065048, 0.06648928672075272, 0.12773603200912476, 0.06853857636451721, -0.045925840735435486, 0.05895639955997467, 0.043688978999853134, -0.11175099015235901, 0.013032691553235054, 0.14151647686958313, -0.038252223283052444, 0.03561830893158913, 0.03882652893662453, -0.13163650035858154, 0.0395936593413353, -0.09706077724695206, -0.0314854271709919, -0.0372941829264164, -0.03483574464917183, -0.05881393700838089, 0.11926720291376114, 0.24088996648788452, -0.006090002600103617, 0.034431569278240204, -0.07815134525299072, 0.01288667879998684, 0.060598645359277725, 0.06111961975693703, -0.11898190528154373, -0.25153449177742004, 0.014994782395660877, 0.057946860790252686, -0.04264124855399132, -0.2463337928056717, -0.0951794907450676, 0.005205955822020769, -0.08097543567419052, -0.08397412300109863, 0.0786169245839119, 0.08200742304325104, 0.06555130332708359, -0.04344293102622032, -0.11409260332584381, -0.07048982381820679, 0.15731294453144073, -0.1643090397119522, -0.08894041925668716 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-finetuned-SNS-brand-personality This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0757 | 1.0 | 1549 | 0.0723 | | 0.0605 | 2.0 | 3098 | 0.0573 | | 0.0498 | 3.0 | 4647 | 0.0498 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "bertweet-base-finetuned-SNS-brand-personality", "results": []}]}
fill-mask
haji2438/bertweet-base-finetuned-SNS-brand-personality
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
bertweet-base-finetuned-SNS-brand-personality ============================================= This model is a fine-tuned version of vinai/bertweet-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.0498 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ 48, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ -0.0999392569065094, 0.03139244765043259, -0.0018329611048102379, 0.11918722838163376, 0.19605819880962372, 0.03185560181736946, 0.11564851552248001, 0.1041843518614769, -0.11267565935850143, 0.03706691786646843, 0.13050517439842224, 0.15977610647678375, 0.0082620307803154, 0.12273860722780228, -0.039417631924152374, -0.26435309648513794, -0.03076820820569992, 0.03481351584196091, -0.10504556447267532, 0.1245298758149147, 0.0787600427865982, -0.1553220897912979, 0.07161590456962585, -0.004051245748996735, -0.248114213347435, 0.019211148843169212, 0.03312775865197182, -0.060824379324913025, 0.14221125841140747, 0.0033744198735803366, 0.17165198922157288, -0.007301011588424444, 0.1024513840675354, -0.1459837257862091, 0.017224233597517014, 0.06336169689893723, 0.01583210565149784, 0.08201399445533752, 0.050037771463394165, -0.0033478999976068735, 0.09180464595556259, -0.10445167124271393, 0.06890403479337692, 0.001136208069510758, -0.1339474469423294, -0.20768983662128448, -0.07560088485479355, -0.011570117436349392, 0.04835045710206032, 0.10489629954099655, -0.006618571933358908, 0.1647671014070511, -0.10384954512119293, 0.09516007453203201, 0.23142607510089874, -0.2646408975124359, -0.09107702970504761, 0.038898345082998276, 0.007433316670358181, 0.06392496824264526, -0.12006514519453049, -0.007914384827017784, 0.05257974937558174, 0.05764924734830856, 0.13348311185836792, -0.030071722343564034, -0.10449826717376709, 0.016046268865466118, -0.14328601956367493, -0.0012082548346370459, 0.043297555297613144, 0.019765231758356094, -0.02056007832288742, -0.01823613792657852, -0.06536440551280975, -0.16728128492832184, -0.04791675880551338, -0.02702825888991356, 0.042360831052064896, -0.06508860737085342, -0.12003837525844574, 0.005955605302006006, -0.09699536859989166, -0.06909424811601639, -0.07526634633541107, 0.17493492364883423, 0.03656015172600746, 0.019438063725829124, -0.041218288242816925, 0.10079029202461243, -0.02911890111863613, -0.14201751351356506, 0.05313770845532417, 0.03159113600850105, -0.03708083555102348, -0.055563509464263916, -0.07467833161354065, -0.12615740299224854, 0.00758334482088685, 0.09695925563573837, -0.050683196634054184, 0.048313599079847336, 0.043313633650541306, 0.04396286979317665, -0.10452385246753693, 0.1951591670513153, -0.05586954951286316, -0.034449849277734756, 0.0018178519094362855, 0.05460335314273834, 0.004202717449516058, -0.009454707615077496, -0.097864530980587, 0.005134132225066423, 0.0939868688583374, -0.0012602693168446422, -0.06128741428256035, 0.05974506586790085, -0.043090105056762695, -0.0077715590596199036, -0.03690420091152191, -0.09583339840173721, 0.043206751346588135, -0.023230403661727905, -0.08545241504907608, -0.004229231271892786, 0.026325616985559464, 0.013534664176404476, -0.0010562344687059522, 0.16892538964748383, -0.10048870742321014, 0.04320735111832619, -0.12619313597679138, -0.12176176905632019, -0.0007936391630209982, -0.08225873112678528, 0.01819208823144436, -0.09339979290962219, -0.1400129348039627, -0.019420944154262543, 0.06786081194877625, -0.03937199339270592, -0.023648401722311974, -0.035052359104156494, -0.07327673584222794, 0.010042756795883179, -0.006637980695813894, 0.1778971552848816, -0.04828914999961853, 0.1189936175942421, 0.06004583090543747, 0.09818024188280106, -0.05208937078714371, 0.04612913727760315, -0.08568199723958969, 0.0004242129798512906, -0.2243596613407135, 0.026803750544786453, -0.04999827221035957, 0.06980250030755997, -0.0606008879840374, -0.11580894887447357, -0.016580093652009964, -0.00047777919098734856, 0.10683548450469971, 0.08615768700838089, -0.17934972047805786, -0.08511193841695786, 0.17379283905029297, -0.057883184403181076, -0.07819245010614395, 0.12379153817892075, -0.06061701476573944, 0.02842356450855732, 0.06562906503677368, 0.1379346400499344, 0.04894310235977173, -0.11080644279718399, 0.026961781084537506, -0.03578748181462288, 0.045468397438526154, -0.053932495415210724, 0.04123330116271973, 0.010079730302095413, 0.019961923360824585, 0.028357772156596184, -0.00704719265922904, 0.06708384305238724, -0.12000150233507156, -0.09198729693889618, -0.035329051315784454, -0.1168256625533104, 0.07286901026964188, 0.08552510291337967, 0.09554067999124527, -0.10661047697067261, -0.07909318804740906, 0.0620461031794548, 0.05634359270334244, -0.044542890042066574, 0.020124200731515884, -0.05779525265097618, 0.06084944307804108, -0.07034839689731598, -0.03220994770526886, -0.19802501797676086, -0.04198772460222244, -0.007503969594836235, 0.028565187007188797, 0.03260108456015587, 0.020800374448299408, 0.10004889965057373, 0.07074777036905289, -0.06723282486200333, -0.00009080461313715205, -0.04290572553873062, -0.011180834844708443, -0.14619770646095276, -0.20381921529769897, -0.026981446892023087, -0.020522072911262512, 0.10294374823570251, -0.19005513191223145, 0.017423875629901886, -0.0677194595336914, 0.09061161428689957, 0.02165418490767479, -0.017547182738780975, -0.0568201020359993, 0.11123566329479218, -0.009474098682403564, -0.053163301199674606, 0.06158335879445076, -0.01907597854733467, -0.0688919648528099, -0.08049839735031128, -0.10728522390127182, 0.18620046973228455, 0.13687707483768463, -0.14116568863391876, -0.11124527454376221, 0.04215839132666588, -0.06494668126106262, -0.024033626541495323, -0.059982605278491974, 0.04951675608754158, 0.16971355676651, -0.005054448265582323, 0.13771209120750427, -0.05057704076170921, -0.034659791737794876, 0.030585458502173424, -0.041657980531454086, 0.03770872578024864, 0.09144236892461777, 0.13800430297851562, -0.044738564640283585, 0.12839116156101227, 0.13739100098609924, -0.14034616947174072, 0.15403471887111664, -0.013106578961014748, -0.08315519988536835, -0.01786394976079464, -0.03286494314670563, 0.014285252429544926, 0.12347529828548431, -0.10580729693174362, -0.017742393538355827, 0.0058648246340453625, 0.0042350273579359055, 0.02867255173623562, -0.23437996208667755, -0.057469405233860016, 0.027850331738591194, -0.009280210360884666, -0.005185217596590519, -0.011156337335705757, 0.017947833985090256, 0.11750216037034988, 0.00606552604585886, -0.06983716040849686, 0.021215377375483513, 0.005506970454007387, -0.05664321407675743, 0.20633922517299652, -0.06790260225534439, -0.12752483785152435, -0.10149181634187698, -0.07594086229801178, -0.036634985357522964, 0.013867439702153206, 0.034560125321149826, -0.12433838844299316, -0.021212032064795494, -0.025999443605542183, 0.024106832221150398, 0.026412634178996086, 0.062280576676130295, 0.014384736306965351, -0.0051407883875072, 0.07878358662128448, -0.09729917347431183, -0.005389826837927103, -0.07132129371166229, -0.0705924704670906, 0.06372412294149399, 0.0697360560297966, 0.13533473014831543, 0.16210083663463593, -0.0425354540348053, 0.005396767053753138, -0.020439334213733673, 0.2329360544681549, -0.08231712132692337, -0.03802376985549927, 0.11293681710958481, -0.015429661609232426, 0.05349310114979744, 0.09972003102302551, 0.07956056296825409, -0.09501627087593079, 0.017059938982129097, 0.04660720378160477, -0.05068421736359596, -0.19179293513298035, -0.02895750105381012, -0.05628526583313942, -0.055461153388023376, 0.0852346122264862, 0.013558868318796158, 0.03348606079816818, 0.07228090614080429, 0.0677599087357521, 0.08896681666374207, -0.07490666210651398, 0.03917083516716957, 0.05174900218844414, 0.04937891662120819, 0.13247177004814148, -0.035123713314533234, -0.0996330976486206, 0.01589144393801689, -0.03174089640378952, 0.2237773984670639, -0.005241463892161846, 0.06339440494775772, 0.05525670573115349, 0.19051246345043182, 0.00004504701428231783, 0.0900057852268219, 0.0068756090477108955, -0.07826525717973709, 0.00280567049048841, -0.040919702500104904, -0.035377390682697296, 0.008115795440971851, -0.014805595390498638, 0.06137092784047127, -0.11339528113603592, 0.0005988676566630602, 0.05072670057415962, 0.23901793360710144, 0.03665129840373993, -0.3281437158584595, -0.0732705146074295, -0.014645976945757866, -0.01841687224805355, -0.01059422455728054, -0.005414546467363834, 0.11529834568500519, -0.09211848676204681, 0.029728472232818604, -0.08163974434137344, 0.08061031997203827, -0.006058011204004288, 0.04325925558805466, 0.0640764832496643, 0.13498803973197937, -0.0037915485445410013, 0.05295992270112038, -0.3110748529434204, 0.28631433844566345, 0.005378699395805597, 0.09888338297605515, -0.0813305526971817, -0.005395847372710705, 0.0401851125061512, 0.01348644495010376, 0.04618464410305023, -0.023506687954068184, -0.020074548199772835, -0.210798978805542, -0.031024301424622536, 0.031106190755963326, 0.12803657352924347, -0.003614140907302499, 0.10672682523727417, -0.011019264347851276, -0.0055844746530056, 0.07714320719242096, -0.008170446380972862, -0.06468800455331802, -0.0748763233423233, -0.018387803807854652, 0.010671809315681458, -0.09319666028022766, -0.057227931916713715, -0.12618432939052582, -0.13890396058559418, 0.1481478065252304, 0.032047975808382034, -0.006864767521619797, -0.1244388073682785, 0.1259363293647766, 0.08838272094726562, -0.078191839158535, 0.05089724436402321, 0.015704670920968056, 0.055387452244758606, 0.020856650546193123, -0.06042657420039177, 0.11272080987691879, -0.06468730419874191, -0.14466220140457153, -0.0761009156703949, 0.0760960727930069, 0.040939293801784515, 0.07294648140668869, -0.02221456915140152, 0.02749587967991829, -0.017128905281424522, -0.07870598137378693, 0.055679455399513245, -0.04059777036309242, 0.06091628596186638, 0.03351590037345886, -0.041360825300216675, -0.007735815364867449, -0.051454540342092514, -0.009205467998981476, 0.17798484861850739, 0.23420242965221405, -0.09446781128644943, -0.008900868706405163, 0.027904408052563667, -0.04824696481227875, -0.21144062280654907, 0.09389618784189224, 0.08551161736249924, 0.02281411923468113, 0.0628504753112793, -0.15853455662727356, 0.13732710480690002, 0.0962265208363533, -0.0025658884551376104, 0.12760455906391144, -0.3126372694969177, -0.1311613917350769, 0.10089436918497086, 0.17368918657302856, 0.13857077062129974, -0.14208120107650757, -0.00718779768794775, -0.02352052368223667, -0.1059773713350296, 0.07281650602817535, -0.0855339914560318, 0.12884457409381866, -0.021723177284002304, 0.09969081729650497, 0.011642216704785824, -0.07958714663982391, 0.10168073326349258, -0.018784893676638603, 0.10576295852661133, -0.06771782785654068, -0.04180308058857918, 0.04875548928976059, -0.027182143181562424, -0.01625262387096882, -0.031129736453294754, 0.01125334296375513, -0.03169580176472664, -0.0157308392226696, -0.09880227595567703, 0.04522997513413429, -0.02550443448126316, -0.06506290286779404, -0.02468888834118843, 0.036244362592697144, 0.03316322714090347, -0.023006413131952286, 0.0990791916847229, 0.011369585059583187, 0.18648245930671692, 0.070233054459095, 0.050308793783187866, -0.049830809235572815, -0.05651497840881348, 0.00705324811860919, -0.014307625591754913, 0.060128986835479736, -0.11884594708681107, 0.010263348929584026, 0.14494870603084564, 0.030646787956357002, 0.11384475976228714, 0.0909469798207283, -0.030899712815880775, 0.028218207880854607, 0.09142139554023743, -0.16296210885047913, -0.05845952033996582, 0.0102815181016922, -0.0933031514286995, -0.11007291078567505, 0.04030141234397888, 0.07733913511037827, -0.06904727965593338, -0.0030828649178147316, -0.014632264152169228, -0.013158834539353848, -0.08013889938592911, 0.23392565548419952, 0.07382871955633163, 0.04302125424146652, -0.09259674698114395, 0.0494549423456192, 0.04434652253985405, -0.08562437444925308, 0.0013959815260022879, 0.08112376928329468, -0.06205650418996811, -0.014277821406722069, 0.11732527613639832, 0.19796346127986908, -0.045423731207847595, -0.014587701298296452, -0.15866532921791077, -0.09967184066772461, 0.05659192427992821, 0.18800489604473114, 0.09616570174694061, -0.01651439629495144, -0.049904994666576385, 0.040406085550785065, -0.14602026343345642, 0.06915372610092163, 0.05520913004875183, 0.07974068820476532, -0.12946738302707672, 0.2022029310464859, 0.002371890703216195, 0.04868265613913536, -0.033590126782655716, 0.04170948639512062, -0.11583200097084045, 0.022114558145403862, -0.10759677737951279, -0.06486380100250244, -0.0036374691408127546, -0.023451488465070724, -0.006317513063549995, -0.0658729299902916, -0.06745078414678574, 0.005361855495721102, -0.12761050462722778, -0.030350597575306892, 0.045633118599653244, 0.0050856731832027435, -0.1115921214222908, -0.03938685730099678, 0.026109622791409492, -0.048119112849235535, 0.03881436586380005, 0.05213228613138199, 0.023164277896285057, 0.07242120802402496, -0.17000482976436615, -0.02439388632774353, 0.061620138585567474, -0.010849609039723873, 0.09475157409906387, -0.04612623155117035, -0.011844937689602375, -0.020562175661325455, 0.10750050097703934, 0.023474590852856636, 0.07610403001308441, -0.13926778733730316, 0.01540016196668148, -0.030618226155638695, -0.0986536517739296, -0.061379339545965195, 0.023846520110964775, 0.07765290141105652, 0.011520618572831154, 0.17590658366680145, -0.10021389275789261, 0.06633209437131882, -0.21467411518096924, -0.00955111812800169, -0.01983349397778511, -0.09223922342061996, -0.08714643865823746, -0.04302733391523361, 0.0852346196770668, -0.05642163008451462, 0.11043325811624527, 0.03821604326367378, 0.06616299599409103, 0.027610542252659798, -0.03471868857741356, 0.00020910275634378195, 0.027201980352401733, 0.1886749267578125, 0.039393436163663864, -0.04764466732740402, 0.058440882712602615, 0.08881796896457672, 0.10369233042001724, 0.11891404539346695, 0.23015256226062775, 0.14902140200138092, 0.005377543158829212, 0.09760434180498123, 0.028787359595298767, -0.04924881458282471, -0.14680902659893036, 0.022134624421596527, -0.07511499524116516, 0.08317463099956512, -0.02921835333108902, 0.17058496177196503, 0.07025928795337677, -0.157233327627182, 0.04989277198910713, -0.06444723159074783, -0.10018936544656754, -0.10270242393016815, -0.013712751679122448, -0.08098522573709488, -0.12502846121788025, 0.021658381447196007, -0.09508992731571198, 0.02263900637626648, 0.12341108918190002, 0.009154712781310081, -0.018656443804502487, 0.2260095477104187, 0.03374391421675682, 0.05058525875210762, 0.05741740018129349, 0.015183848328888416, -0.013198335655033588, -0.07861228287220001, -0.061143338680267334, -0.04175884649157524, -0.008797934278845787, 0.037034984678030014, -0.0765065923333168, -0.10609159618616104, 0.04458584636449814, -0.00045155922998674214, -0.1094120442867279, 0.024282656610012054, 0.020223313942551613, 0.07674232870340347, 0.02783016301691532, -0.00045090276398696005, 0.023343617096543312, -0.03894513472914696, 0.2080928087234497, -0.09164966642856598, -0.08773056417703629, -0.1078648716211319, 0.26416006684303284, 0.036954570561647415, 0.0008161697769537568, 0.007110733538866043, -0.07179165631532669, 0.00466298358514905, 0.25110161304473877, 0.2110554724931717, -0.11705683171749115, -0.0003325114375911653, 0.00886539462953806, -0.013632336631417274, -0.053090065717697144, 0.13241331279277802, 0.12584391236305237, 0.05895436927676201, -0.10800681263208389, -0.042624376714229584, -0.06181102991104126, -0.0186693724244833, -0.04469698667526245, 0.032890837639570236, 0.06273582577705383, 0.02725669927895069, -0.057076867669820786, 0.06341439485549927, -0.06124815717339516, -0.11762163043022156, 0.09288610517978668, -0.22984857857227325, -0.1748664677143097, -0.008628352545201778, 0.10840403288602829, -0.008601680397987366, 0.0813794732093811, -0.0298431646078825, 0.0012281524250283837, 0.03545378893613815, -0.022758562117815018, -0.05308375135064125, -0.10094384849071503, 0.08940470218658447, -0.10125093907117844, 0.19453327357769012, -0.05037302151322365, 0.0632275715470314, 0.12818250060081482, 0.06726961582899094, -0.04814555123448372, 0.05912664160132408, 0.04271380603313446, -0.11076856404542923, 0.015228663571178913, 0.14165863394737244, -0.038831185549497604, 0.036431875079870224, 0.03970090672373772, -0.13081079721450806, 0.039267122745513916, -0.10251764953136444, -0.0303599014878273, -0.03726503625512123, -0.032436810433864594, -0.05906126648187637, 0.12063270807266235, 0.23939035832881927, -0.006119396071881056, 0.03427758812904358, -0.07905328273773193, 0.0137642128393054, 0.05753091722726822, 0.061932358890771866, -0.1178293377161026, -0.25193139910697937, 0.016135092824697495, 0.055680908262729645, -0.04470880702137947, -0.24491222202777863, -0.09491463750600815, 0.007856753654778004, -0.08171331137418747, -0.08394113183021545, 0.07929715514183044, 0.08166906237602234, 0.06419598311185837, -0.04394242912530899, -0.1129467710852623, -0.07066555321216583, 0.15830965340137482, -0.16538850963115692, -0.0884469598531723 ]
null
null
transformers
# XLNet-japanese ## Model description This model require Mecab and senetencepiece with XLNetTokenizer. See details https://qiita.com/mkt3/items/4d0ae36f3f212aee8002 This model uses NFKD as the normalization method for character encoding. Japanese muddle marks and semi-muddle marks will be lost. *日本語の濁点・半濁点がないモデルです* #### How to use ```python from fugashi import Tagger from transformers import ( pipeline, XLNetLMHeadModel, XLNetTokenizer ) class XLNet(): def __init__(self): self.m = Tagger('-Owakati') self.gen_model = XLNetLMHeadModel.from_pretrained("hajime9652/xlnet-japanese") self.gen_tokenizer = XLNetTokenizer.from_pretrained("hajime9652/xlnet-japanese") def generate(self, prompt="福岡のご飯は美味しい。コンパクトで暮らしやすい街。"): prompt = self.m.parse(prompt) inputs = self.gen_tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") prompt_length = len(self.gen_tokenizer.decode(inputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)) outputs = self.gen_model.generate(inputs, max_length=200, do_sample=True, top_p=0.95, top_k=60) generated = prompt + self.gen_tokenizer.decode(outputs[0])[prompt_length:] return generated ``` #### Limitations and bias This model's training use the Japanese Business News. # Important matter The company that created and published this model is called Stockmark. This repository is for use by HuggingFace and not for infringement. See this documents https://qiita.com/mkt3/items/4d0ae36f3f212aee8002 published by https://github.com/mkt3
{"language": ["ja"], "license": ["apache-2.0"], "tags": ["xlnet", "lm-head", "causal-lm"], "datasets": ["Japanese_Business_News"]}
text-generation
hajime9652/xlnet-japanese
[ "transformers", "pytorch", "xlnet", "text-generation", "lm-head", "causal-lm", "ja", "dataset:Japanese_Business_News", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ja" ]
TAGS #transformers #pytorch #xlnet #text-generation #lm-head #causal-lm #ja #dataset-Japanese_Business_News #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# XLNet-japanese ## Model description This model require Mecab and senetencepiece with XLNetTokenizer. See details URL This model uses NFKD as the normalization method for character encoding. Japanese muddle marks and semi-muddle marks will be lost. *日本語の濁点・半濁点がないモデルです* #### How to use #### Limitations and bias This model's training use the Japanese Business News. # Important matter The company that created and published this model is called Stockmark. This repository is for use by HuggingFace and not for infringement. See this documents URL published by URL
[ "# XLNet-japanese", "## Model description\nThis model require Mecab and senetencepiece with XLNetTokenizer.\nSee details URL\n\nThis model uses NFKD as the normalization method for character encoding.\nJapanese muddle marks and semi-muddle marks will be lost.\n\n*日本語の濁点・半濁点がないモデルです*", "#### How to use", "#### Limitations and bias\nThis model's training use the Japanese Business News.", "# Important matter\nThe company that created and published this model is called Stockmark.\nThis repository is for use by HuggingFace and not for infringement.\nSee this documents URL\npublished by URL" ]
[ "TAGS\n#transformers #pytorch #xlnet #text-generation #lm-head #causal-lm #ja #dataset-Japanese_Business_News #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# XLNet-japanese", "## Model description\nThis model require Mecab and senetencepiece with XLNetTokenizer.\nSee details URL\n\nThis model uses NFKD as the normalization method for character encoding.\nJapanese muddle marks and semi-muddle marks will be lost.\n\n*日本語の濁点・半濁点がないモデルです*", "#### How to use", "#### Limitations and bias\nThis model's training use the Japanese Business News.", "# Important matter\nThe company that created and published this model is called Stockmark.\nThis repository is for use by HuggingFace and not for infringement.\nSee this documents URL\npublished by URL" ]
[ 68, 7, 71, 5, 18, 42 ]
[ "passage: TAGS\n#transformers #pytorch #xlnet #text-generation #lm-head #causal-lm #ja #dataset-Japanese_Business_News #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# XLNet-japanese## Model description\nThis model require Mecab and senetencepiece with XLNetTokenizer.\nSee details URL\n\nThis model uses NFKD as the normalization method for character encoding.\nJapanese muddle marks and semi-muddle marks will be lost.\n\n*日本語の濁点・半濁点がないモデルです*#### How to use#### Limitations and bias\nThis model's training use the Japanese Business News.# Important matter\nThe company that created and published this model is called Stockmark.\nThis repository is for use by HuggingFace and not for infringement.\nSee this documents URL\npublished by URL" ]
[ -0.018909825012087822, 0.1371171772480011, 0.0007642882410436869, 0.05506831780076027, 0.1300216168165207, 0.015295705758035183, 0.21931040287017822, 0.06492559611797333, -0.030857905745506287, -0.021469788625836372, 0.05629611760377884, 0.030636347830295563, 0.07430810481309891, 0.15614154934883118, -0.036982063204050064, -0.2358863651752472, 0.0854620561003685, 0.07745703309774399, 0.12409590184688568, 0.08038898557424545, 0.09392773360013962, -0.06553216278553009, 0.08599601686000824, 0.01850622519850731, -0.16034311056137085, 0.0030777594074606895, 0.06021186336874962, -0.06309587508440018, 0.04134570062160492, 0.07963324338197708, 0.011165068484842777, 0.0009393053478561342, 0.04774179682135582, -0.11212507635354996, 0.03389054164290428, -0.02231028489768505, -0.041707593947649, 0.06526898592710495, 0.05930027365684509, 0.11500892043113708, 0.15252918004989624, -0.03684670478105545, -0.06195998191833496, 0.028020072728395462, -0.030484303832054138, -0.045111823827028275, -0.0627494603395462, 0.14128775894641876, 0.169904887676239, 0.14767105877399445, -0.01429981179535389, 0.12404816597700119, -0.08462520688772202, 0.06717740744352341, 0.08757775276899338, -0.2485368400812149, -0.062372297048568726, 0.10890714079141617, -0.026955032721161842, 0.020124683156609535, 0.008391366340219975, 0.058399710804224014, 0.1042092815041542, 0.026421453803777695, -0.029307546094059944, -0.07970751076936722, 0.07177716493606567, -0.011380549520254135, -0.07046925276517868, 0.043271783739328384, 0.29434695839881897, 0.03237314149737358, -0.03113558329641819, -0.0713864415884018, 0.05120037496089935, 0.08077014237642288, -0.017009181901812553, 0.00695976335555315, -0.03325137868523598, 0.012963954359292984, 0.10620389878749847, -0.07769277691841125, -0.06583024561405182, -0.03465213626623154, -0.10125192254781723, 0.14046548306941986, 0.02031213976442814, 0.06466587632894516, -0.07676725089550018, 0.01821685954928398, -0.08135142922401428, -0.10761269927024841, 0.01911287195980549, -0.07960084825754166, 0.06042801961302757, 0.08634724467992783, 0.024381088092923164, -0.08214163780212402, 0.05596970021724701, -0.09252351522445679, -0.11179690062999725, 0.019998488947749138, 0.03269044682383537, 0.08281378448009491, 0.016463790088891983, 0.06528005748987198, -0.12918531894683838, 0.013699364848434925, 0.10783973336219788, 0.040668290108442307, 0.062173016369342804, -0.04163465276360512, -0.1349099725484848, -0.035448022186756134, 0.020941946655511856, 0.04010574147105217, 0.04178837314248085, 0.1075555607676506, -0.03724553808569908, -0.03793523833155632, 0.1562769114971161, -0.10601934045553207, 0.031054558232426643, -0.038730818778276443, -0.09663044661283493, 0.07075256109237671, 0.005810862872749567, 0.0010228814790025353, -0.05988354608416557, 0.021887607872486115, -0.037648722529411316, -0.009846208617091179, -0.0571773387491703, -0.06407184153795242, 0.06011446192860603, -0.0017103826394304633, 0.03367619588971138, -0.11646672338247299, -0.23144283890724182, -0.044080354273319244, 0.014250528067350388, 0.011703426949679852, -0.09245436638593674, -0.034059539437294006, -0.08741720765829086, 0.004978419281542301, -0.031121421605348587, 0.02442757785320282, -0.06358157843351364, 0.006634247023612261, -0.05777958035469055, 0.04076071083545685, -0.12917089462280273, 0.003555475501343608, -0.10162337869405746, 0.03685111552476883, -0.0029856141190975904, 0.03888919577002525, -0.014331461861729622, -0.016159921884536743, -0.02087952010333538, -0.037675850093364716, -0.02326451614499092, 0.022945955395698547, -0.00002843224319803994, 0.14553424715995789, -0.1701706200838089, -0.01717297174036503, 0.016391290351748466, -0.10687504708766937, -0.04180854186415672, 0.09059753268957138, -0.051623616367578506, 0.0979575514793396, 0.06459283083677292, 0.11293220520019531, 0.030626676976680756, -0.024539947509765625, -0.058103229850530624, -0.0010853102430701256, -0.12473892420530319, -0.03983838111162186, 0.006538918241858482, 0.07676897197961807, -0.22142170369625092, 0.09035291522741318, -0.156171515583992, -0.0047211069613695145, -0.06068574637174606, -0.08518587052822113, 0.013026515953242779, -0.06891606003046036, 0.009801379404962063, 0.01166935171931982, 0.03438258916139603, -0.023237325251102448, -0.06611562520265579, -0.04254225268959999, 0.04696263372898102, -0.04990623518824577, 0.015745313838124275, -0.06810707598924637, 0.044566232711076736, -0.05311164632439613, 0.07233603298664093, -0.07791296392679214, -0.03668045997619629, 0.03455405309796333, 0.0029306935612112284, 0.08014744520187378, -0.02724098227918148, -0.015123056247830391, -0.04758797213435173, -0.053662557154893875, -0.06197420135140419, 0.01474370714277029, -0.009415719658136368, -0.02733740396797657, -0.17482224106788635, 0.041138648986816406, -0.013752277940511703, 0.015944089740514755, -0.10611744970083237, 0.022006221115589142, -0.13317075371742249, 0.01773393526673317, -0.07799126207828522, 0.07121440023183823, 0.05877898633480072, 0.09278227388858795, -0.04103584960103035, 0.017854033038020134, 0.04816874861717224, 0.03902054205536842, -0.16960693895816803, 0.22708991169929504, -0.13066093623638153, 0.06358014047145844, 0.11693448573350906, -0.002479264046996832, -0.033358603715896606, 0.019993778318166733, -0.0054505011066794395, -0.05337124317884445, -0.05293533578515053, 0.05971786007285118, 0.13838383555412292, -0.06612184643745422, 0.039745211601257324, -0.09847939759492874, 0.048281144350767136, 0.03385462984442711, -0.10502825677394867, -0.06251991540193558, 0.09657282382249832, 0.13040369749069214, -0.14326123893260956, 0.11596456915140152, -0.018698103725910187, -0.08133554458618164, 0.23042096197605133, -0.03900395333766937, 0.016798684373497963, -0.03156793862581253, -0.03032667376101017, 0.022534731775522232, 0.11122474819421768, -0.033683620393276215, 0.050870031118392944, 0.05547129735350609, 0.015791866928339005, 0.06687580049037933, -0.12432430684566498, -0.10434969514608383, -0.045685309916734695, -0.09360306710004807, 0.004076795186847448, 0.012362669222056866, -0.024125419557094574, 0.12615643441677094, -0.013487793505191803, -0.00206923414953053, 0.046092718839645386, -0.012167363427579403, -0.13568498194217682, 0.11856719851493835, -0.13153374195098877, -0.29789549112319946, -0.16926056146621704, 0.046762946993112564, -0.11688028275966644, -0.04862893000245094, -0.008481836877763271, -0.07015947252511978, -0.07556560635566711, -0.13569341599941254, -0.08588723838329315, 0.005945966579020023, -0.026969924569129944, 0.04019040986895561, -0.012927944771945477, -0.011111404746770859, -0.09523040801286697, 0.004664839245378971, -0.0031016224529594183, 0.0005990217323414981, 0.08444155752658844, -0.07888392359018326, 0.1733895093202591, 0.15981875360012054, -0.019440244883298874, -0.009309838525950909, 0.005177452694624662, 0.16450275480747223, -0.08308423310518265, 0.06406000256538391, 0.13563357293605804, 0.0012293033068999648, 0.04854109510779381, 0.18580396473407745, 0.02585238218307495, -0.006764286197721958, 0.03641171008348465, -0.04753899946808815, -0.07012857496738434, -0.20261789858341217, -0.0434487983584404, -0.06605340540409088, 0.07871121913194656, -0.10540331900119781, 0.0598285011947155, 0.08870988339185715, 0.01171878818422556, -0.022601066157221794, 0.05359350144863129, 0.06216617301106453, 0.043940432369709015, 0.049578264355659485, 0.053204480558633804, 0.053901758044958115, -0.0523923859000206, 0.009442895650863647, 0.12385311722755432, -0.053730741143226624, 0.17810243368148804, -0.030042124912142754, 0.05384454503655434, 0.08765009045600891, 0.12199636548757553, 0.11171448975801468, 0.0545002780854702, 0.024884764105081558, 0.02684241533279419, -0.017968323081731796, -0.08761715143918991, 0.06411561369895935, 0.08965635299682617, -0.07711663097143173, 0.0015576553996652365, 0.015359895303845406, 0.05747273191809654, 0.006621628068387508, 0.0686706155538559, -0.019480297341942787, -0.15266315639019012, -0.03645188361406326, 0.008380490355193615, 0.021986698731780052, -0.0030582547187805176, 0.01757754571735859, 0.12196801602840424, -0.13480010628700256, 0.11029887944459915, 0.03320319950580597, 0.14747339487075806, 0.013282851316034794, -0.011163327842950821, -0.036560673266649246, 0.004762688651680946, -0.026755811646580696, 0.10588403046131134, -0.31544795632362366, 0.15810194611549377, 0.03464358299970627, 0.10504836589097977, -0.01966664381325245, -0.048364803194999695, 0.07040441036224365, 0.14137804508209229, 0.09710445255041122, 0.004865087103098631, -0.09443903714418411, -0.0809616893529892, -0.10434945672750473, 0.039396658539772034, -0.017279060557484627, 0.13688814640045166, 0.03261229395866394, 0.050906211137771606, -0.030578766018152237, 0.019700299948453903, 0.054085370153188705, -0.21225202083587646, -0.1017129123210907, 0.0005496423109434545, 0.09044139832258224, -0.04649718478322029, -0.026905464008450508, -0.04806344211101532, 0.025402426719665527, 0.10917019844055176, 0.0156390517950058, -0.07754966616630554, -0.12193191796541214, -0.044545575976371765, 0.09117848426103592, -0.11483706533908844, -0.025097345933318138, -0.040821824222803116, 0.09619592875242233, 0.0004640653496608138, -0.12154150009155273, -0.01998373493552208, -0.042770761996507645, -0.12694919109344482, 0.004658603109419346, 0.017027534544467926, 0.05591050907969475, 0.055599767714738846, 0.03316578269004822, -0.06141841784119606, 0.02820075862109661, -0.16587679088115692, 0.015561070293188095, 0.12398380041122437, 0.009901922196149826, 0.061578378081321716, -0.07445374131202698, -0.12678758800029755, -0.14025947451591492, -0.09735192358493805, 0.02087150514125824, 0.27462637424468994, -0.05227174237370491, 0.024464504793286324, 0.13309890031814575, -0.1237548217177391, -0.23198264837265015, -0.07353159785270691, -0.024394620209932327, 0.08340302109718323, -0.04407911002635956, -0.0251550804823637, 0.05776217207312584, 0.0411427803337574, -0.04973909258842468, 0.10080856829881668, -0.19319503009319305, -0.11871886998414993, 0.014422529377043247, 0.04924517124891281, 0.16737717390060425, -0.09489864856004715, -0.02924407832324505, -0.002470196457579732, -0.11598167568445206, 0.13850824534893036, -0.06746021658182144, 0.06548402458429337, -0.022351857274770737, 0.026914646849036217, -0.03403589501976967, -0.034605786204338074, 0.13716720044612885, -0.028439776971936226, 0.08629050105810165, -0.053768470883369446, -0.09420213103294373, 0.004576395265758038, -0.010606699623167515, 0.19321337342262268, -0.05740366503596306, 0.010498333722352982, -0.08327039331197739, -0.06866177916526794, -0.11366799473762512, 0.06545113772153854, -0.03313538804650307, -0.08399731665849686, -0.07788477838039398, 0.10397859662771225, 0.020141342654824257, 0.012613575905561447, 0.015971988439559937, -0.03987617790699005, -0.010538268834352493, 0.18961802124977112, 0.13756126165390015, -0.01110778283327818, 0.09431871771812439, -0.04486191272735596, -0.08153990656137466, 0.09682632237672806, -0.09879782795906067, 0.009570925496518612, 0.04887938126921654, -0.04020733758807182, 0.11853981018066406, 0.020186834037303925, -0.11915257573127747, 0.022607145830988884, 0.04168863222002983, -0.1232883483171463, -0.09427960962057114, -0.06474867463111877, -0.030814645811915398, 0.04482276737689972, -0.041852355003356934, 0.05668129026889801, -0.1426004320383072, 0.008051852695643902, 0.008399007841944695, 0.03720154985785484, -0.02276146598160267, 0.09157997369766235, 0.09543430060148239, 0.008555806241929531, -0.0903870016336441, 0.07975860685110092, 0.08126307278871536, 0.07116815447807312, 0.07447865605354309, 0.10332998633384705, -0.10374753922224045, -0.056517913937568665, 0.06691247224807739, 0.2931893765926361, -0.008142485283315182, -0.1723446100950241, -0.13994231820106506, -0.12222032994031906, 0.004124623257666826, -0.008592442609369755, 0.045519813895225525, 0.01885697990655899, 0.03135838732123375, -0.08056245744228363, -0.0894991084933281, 0.0733032301068306, 0.14301469922065735, 0.01204017922282219, -0.10285633057355881, 0.04283002391457558, 0.09956413507461548, 0.14963789284229279, -0.0892372578382492, 0.002659188350662589, -0.11204441636800766, 0.016590507701039314, -0.10423960536718369, 0.08485174924135208, -0.09579572081565857, -0.05525260791182518, -0.03804218769073486, -0.06279145926237106, -0.10733266174793243, 0.03541187569499016, -0.03290025144815445, -0.01949690282344818, -0.023199541494250298, -0.0019064747029915452, -0.025633089244365692, -0.07303182035684586, 0.0547492653131485, 0.019716788083314896, -0.0013400649186223745, 0.013784997165203094, -0.06833384186029434, 0.07747980207204819, -0.12906263768672943, 0.07975436002016068, 0.0862751305103302, 0.030144358053803444, 0.020956816151738167, -0.030833041295409203, -0.01299436017870903, 0.09792382270097733, 0.002992382040247321, 0.0038602857384830713, -0.03206934407353401, -0.1152542233467102, -0.008098285645246506, -0.13162320852279663, -0.028822962194681168, -0.0677570179104805, 0.0912688747048378, 0.14352653920650482, 0.09190584719181061, 0.17241472005844116, -0.09270278364419937, 0.0897262692451477, -0.06581207364797592, -0.008274982683360577, -0.01742960885167122, -0.10369978845119476, -0.012802650220692158, -0.021478304639458656, 0.03395833075046539, -0.0008641158347018063, 0.19579856097698212, 0.09463901817798615, -0.16016048192977905, -0.00932896789163351, -0.047798752784729004, 0.020547039806842804, -0.007122170180082321, 0.13846097886562347, -0.01283134426921606, 0.011647301726043224, -0.002576184459030628, 0.03034563548862934, -0.020053014159202576, 0.0037118804175406694, 0.13720208406448364, 0.004517998546361923, 0.12720783054828644, 0.12822377681732178, 0.07342338562011719, 0.0042882319539785385, 0.04020190238952637, -0.04881918802857399, -0.12377727776765823, 0.0720522552728653, 0.010632161051034927, 0.07573384046554565, 0.1781359314918518, -0.13146480917930603, 0.0826273113489151, 0.06161043047904968, -0.09462955594062805, -0.147765651345253, -0.24547679722309113, -0.10059995949268341, -0.070165254175663, -0.0073460848070681095, -0.10429055243730545, -0.02734356001019478, 0.07438527792692184, 0.0010143984109163284, -0.11150253564119339, -0.004841594025492668, 0.06190231069922447, -0.015987955033779144, 0.14438173174858093, -0.01234287116676569, -0.029129039496183395, -0.022163603454828262, 0.02733444795012474, -0.004247400909662247, -0.02459217607975006, 0.009784458205103874, 0.06986063718795776, -0.02964421920478344, 0.07157938927412033, -0.013759003952145576, -0.11214203387498856, 0.0009575010044500232, 0.008314287289977074, 0.11611078679561615, 0.09018133580684662, 0.06699188798666, -0.028780996799468994, 0.034265581518411636, 0.13889949023723602, 0.025947606191039085, -0.06790103018283844, -0.0902341678738594, 0.09254182130098343, -0.0864737331867218, -0.05858808383345604, 0.008288823999464512, -0.06961527466773987, 0.0008128815097734332, 0.28528982400894165, 0.20812895894050598, -0.09077265858650208, -0.011609559878706932, -0.09966675192117691, 0.004506012890487909, -0.0007497732876800001, 0.16729561984539032, 0.026299599558115005, 0.25050902366638184, -0.03165591135621071, 0.07110923528671265, -0.15370747447013855, -0.01219735573977232, -0.10808184742927551, -0.020463144406676292, 0.10265783965587616, -0.11510397493839264, -0.09581665694713593, 0.07896839827299118, -0.22544227540493011, -0.032831963151693344, -0.051027245819568634, 0.013344410806894302, -0.05565471574664116, -0.0167715921998024, -0.006380304228514433, -0.006113885901868343, 0.044069644063711166, -0.07816504687070847, 0.1457911878824234, 0.055408794432878494, -0.006232056766748428, -0.09993866831064224, 0.019492601975798607, 0.041823647916316986, 0.0439189113676548, 0.14040568470954895, 0.04661444202065468, 0.06768056005239487, 0.033369459211826324, -0.024104220792651176, -0.06337658315896988, 0.17550233006477356, 0.004078917670994997, 0.0442037507891655, 0.05221224203705788, 0.033116791397333145, 0.008046615868806839, -0.04633818566799164, 0.054445985704660416, 0.008102423511445522, 0.04465111717581749, -0.04518889635801315, -0.039099231362342834, -0.10664404928684235, 0.07800327986478806, -0.11094779521226883, 0.11002172529697418, 0.14917515218257904, -0.058767180889844894, -0.041946426033973694, -0.03219567611813545, 0.08592023700475693, -0.039053790271282196, 0.00875033624470234, 0.029418397694826126, -0.03946318477392197, -0.031035374850034714, 0.006527272053062916, 0.029252443462610245, -0.1693105846643448, 0.006110801827162504, -0.14847739040851593, -0.07359545677900314, -0.06164834275841713, 0.016167905181646347, 0.06245078518986702, -0.023694338276982307, -0.03423105925321579, -0.10335100442171097, 0.012944785878062248, 0.019983582198619843, -0.023978428915143013, -0.11825896054506302 ]
null
null
transformers
This model has been initialized with random values. It is supposed to be used for the purpose of debugging.
{}
text-generation
hakurei/gpt-j-random-tinier
[ "transformers", "pytorch", "gptj", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gptj #text-generation #autotrain_compatible #endpoints_compatible #region-us
This model has been initialized with random values. It is supposed to be used for the purpose of debugging.
[]
[ "TAGS\n#transformers #pytorch #gptj #text-generation #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 38 ]
[ "passage: TAGS\n#transformers #pytorch #gptj #text-generation #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.03151220455765724, 0.03707336261868477, -0.007071870379149914, 0.0017476322827860713, 0.17550218105316162, 0.041412875056266785, 0.06822680681943893, 0.15192539989948273, -0.0028824196197092533, -0.03256594389677048, 0.15555061399936676, 0.23781636357307434, -0.024892881512641907, 0.1473873406648636, -0.049011047929525375, -0.2775580585002899, 0.06584495306015015, 0.09494838118553162, -0.013777283951640129, 0.11993943899869919, 0.07632021605968475, -0.047684215009212494, 0.08393528312444687, -0.026972385123372078, -0.19710978865623474, 0.015898795798420906, 0.017967719584703445, -0.12383844703435898, 0.09878624230623245, 0.06138170510530472, 0.08247498422861099, 0.02209017239511013, -0.08755389600992203, -0.11167534440755844, 0.031160524114966393, 0.017747657373547554, -0.06584755331277847, 0.04502895846962929, 0.08679348230361938, -0.09504932165145874, 0.07202108204364777, 0.043690115213394165, -0.027658484876155853, 0.04201428219676018, -0.14984412491321564, -0.12746208906173706, -0.01851898431777954, 0.01862230896949768, 0.05458783358335495, 0.08329953253269196, -0.011250312440097332, 0.1298505961894989, -0.10167486220598221, 0.11950743943452835, 0.15904280543327332, -0.29614710807800293, -0.001627553254365921, 0.10248466581106186, 0.04741263389587402, 0.023154553025960922, -0.0020266633946448565, 0.04751226305961609, 0.01063463930040598, 0.01710410788655281, 0.00028000841848552227, -0.08625026047229767, -0.12598443031311035, 0.045534174889326096, -0.08142338693141937, -0.06148264557123184, 0.2619574964046478, -0.08855904638767242, 0.07061000913381577, -0.02506810799241066, -0.0929417610168457, -0.014947259798645973, -0.026307551190257072, 0.01530848816037178, -0.0707181841135025, 0.07557594776153564, -0.000564271118491888, -0.0453343503177166, -0.12541106343269348, -0.011339031159877777, -0.1798100769519806, 0.1976306140422821, 0.037942033261060715, 0.051710497587919235, -0.19175775349140167, 0.11477487534284592, -0.031865473836660385, -0.09600309282541275, 0.02040717750787735, -0.10116102546453476, 0.059744108468294144, -0.023178568109869957, -0.05489618331193924, -0.07644879817962646, 0.09123460203409195, 0.1268267184495926, 0.05813661217689514, 0.020550431683659554, 0.011739281006157398, 0.08003080636262894, 0.03749508783221245, 0.1008874922990799, 0.000465858553070575, -0.023850098252296448, 0.06882618367671967, -0.15177954733371735, -0.020143602043390274, -0.05883725360035896, -0.13321663439273834, -0.05151035636663437, 0.03850160166621208, 0.09309699386358261, 0.01724337786436081, 0.10648662596940994, -0.03549748286604881, -0.018040094524621964, 0.11053623259067535, -0.05922706425189972, -0.006570661440491676, -0.030643735080957413, 0.03125409036874771, 0.12799637019634247, -0.006093597039580345, -0.0010609433520585299, -0.11617495119571686, 0.10182081907987595, -0.060071662068367004, -0.0010186312720179558, -0.03463878110051155, -0.0376923531293869, 0.02057117037475109, -0.0767161026597023, 0.03845762088894844, -0.16579559445381165, -0.16603033244609833, 0.01161336712539196, 0.001375691732391715, -0.012137191370129585, -0.05322078987956047, -0.02226819097995758, -0.018987197428941727, 0.03858328238129616, -0.06768464297056198, -0.015443463809788227, -0.0640794038772583, 0.11859317868947983, -0.020377477630972862, 0.07902072370052338, -0.11424156278371811, 0.08009770512580872, -0.11536715179681778, -0.03842497989535332, -0.09913934767246246, 0.051218610256910324, -0.035355303436517715, 0.15356910228729248, 0.0005610828520730138, -0.028039881959557533, -0.049313418567180634, 0.044323161244392395, -0.04550134390592575, 0.17294104397296906, -0.05977828800678253, -0.13170675933361053, 0.2849401831626892, -0.06919427961111069, -0.1379150003194809, 0.09073033183813095, 0.02237512916326523, 0.05119442939758301, 0.10456212610006332, 0.16592779755592346, 0.06751891225576401, -0.0007788332877680659, 0.0877680629491806, 0.10701018571853638, -0.1288803368806839, -0.10709404945373535, -0.0020441405940800905, -0.01743694394826889, -0.13654553890228271, 0.07253856211900711, 0.06880289316177368, 0.1082848608493805, -0.04964519664645195, -0.013115920126438141, -0.04249207302927971, -0.0026739821769297123, 0.07932359725236893, 0.03825939819216728, 0.12198621779680252, -0.06681143492460251, -0.02492417022585869, -0.03233812376856804, 0.005398034118115902, -0.004145813174545765, 0.022859416902065277, -0.018361076712608337, 0.10494852066040039, -0.05143984034657478, 0.07253605127334595, -0.15968003869056702, -0.07916484773159027, 0.006278707645833492, 0.08878109604120255, -0.009359870105981827, 0.11318203061819077, 0.06251663714647293, -0.034212902188301086, -0.001812968635931611, -0.012723004445433617, 0.17079047858715057, -0.009916776791214943, -0.055602505803108215, -0.040433406829833984, 0.08011013269424438, -0.055242374539375305, -0.02686125971376896, -0.005838421173393726, 0.01527310535311699, 0.060781825333833694, 0.10973378270864487, -0.0008373140008188784, 0.040041111409664154, 0.0034737070091068745, 0.0330461785197258, -0.059878867119550705, -0.0027495657559484243, 0.08832237869501114, 0.008492691442370415, -0.027223972603678703, 0.20217745006084442, -0.14776653051376343, 0.26809659600257874, 0.19876869022846222, -0.2695048749446869, 0.004929766990244389, -0.014728586189448833, -0.02094225026667118, 0.012075221166014671, 0.03225378692150116, 0.010688871145248413, 0.06388229131698608, 0.00015890740905888379, 0.19102443754673004, -0.038347046822309494, -0.05962871387600899, 0.003270199988037348, -0.07255034893751144, 0.014554842375218868, 0.05893850326538086, 0.10247236490249634, -0.14644168317317963, 0.19831664860248566, 0.17376255989074707, 0.028010735288262367, 0.195783793926239, 0.0214996337890625, -0.0011843818938359618, 0.07653800398111343, -0.0032105506397783756, -0.030258944258093834, -0.07029304653406143, -0.21548305451869965, -0.03496744856238365, 0.0923917219042778, 0.029650313779711723, 0.09876517206430435, -0.1213965192437172, -0.047838255763053894, -0.00962784606963396, -0.007615337148308754, 0.0033828250598162413, 0.12740439176559448, 0.0403982512652874, 0.08968637138605118, -0.014331508427858353, 0.025052199140191078, 0.11064980924129486, 0.037151701748371124, -0.06392659991979599, 0.1835697442293167, -0.1384696364402771, -0.3695679306983948, -0.16000811755657196, -0.16982266306877136, -0.03623782470822334, 0.06372473388910294, 0.13562093675136566, -0.13306501507759094, -0.04562617093324661, 0.06078742817044258, 0.06974658370018005, -0.045037753880023956, 0.033245839178562164, -0.08232969045639038, 0.041240040212869644, -0.08612990379333496, -0.07487888634204865, -0.05983339995145798, -0.01060960441827774, -0.0646623969078064, 0.167014017701149, -0.11750119179487228, 0.07633187621831894, 0.14863160252571106, 0.02449009194970131, 0.0753343254327774, -0.026104863733053207, 0.2013784795999527, -0.09973248839378357, -0.012085337191820145, 0.20709019899368286, -0.018807461485266685, 0.0738348513841629, 0.0982021614909172, 0.0017653228715062141, -0.07931460440158844, 0.026727963238954544, -0.05352002754807472, -0.09800251573324203, -0.19859269261360168, -0.12201059609651566, -0.1321074515581131, 0.0694907084107399, 0.05472753569483757, 0.07535327970981598, 0.15709616243839264, 0.10762650519609451, -0.023958612233400345, 0.06659785658121109, -0.00659692008048296, 0.09210693836212158, 0.20091088116168976, -0.017185727134346962, 0.13523106276988983, -0.07075963914394379, -0.13715381920337677, 0.10246718674898148, 0.057375311851501465, 0.12915703654289246, 0.04318271204829216, 0.039763204753398895, 0.023587986826896667, 0.1051025390625, 0.15832018852233887, 0.11873368173837662, 0.016528356820344925, -0.026332775130867958, -0.018474319949746132, -0.013993718661367893, -0.06207828223705292, 0.030055269598960876, 0.028660649433732033, -0.16685327887535095, -0.03271558880805969, -0.1414652168750763, 0.08460081368684769, 0.07361278682947159, 0.041430406272411346, -0.20731081068515778, 0.006837774068117142, 0.07433027029037476, -0.012659668922424316, -0.12468031793832779, 0.058678001165390015, -0.03402986377477646, -0.15183068811893463, 0.06273781508207321, -0.044653963297605515, 0.1136665940284729, -0.07415879517793655, 0.07613469660282135, -0.007263060659170151, -0.07172515988349915, 0.025071771815419197, 0.1364073008298874, -0.3211840093135834, 0.1877652108669281, 0.0003780387341976166, -0.0384247824549675, -0.11004525423049927, 0.009285520762205124, 0.016016216948628426, 0.15834660828113556, 0.07735977321863174, 0.009140821173787117, -0.00551434513181448, -0.14697468280792236, -0.011442545801401138, 0.035267382860183716, 0.10653096437454224, -0.028471242636442184, -0.023476427420973778, -0.03270047530531883, -0.02529638633131981, -0.05248558521270752, -0.044984158128499985, 0.011750434525310993, -0.17288997769355774, 0.10549255460500717, 0.03812883421778679, 0.106228306889534, 0.0077005596831440926, -0.00907888449728489, -0.1003204733133316, 0.2347191572189331, -0.03026527538895607, -0.11105775833129883, -0.10677628219127655, -0.08168819546699524, 0.05499221757054329, -0.0974348708987236, 0.06041272357106209, -0.09334225952625275, -0.002755561377853155, -0.05052782967686653, -0.20742133259773254, 0.11286700516939163, -0.11172983795404434, -0.032591063529253006, -0.046926349401474, 0.14728420972824097, -0.08641737699508667, -0.010398102924227715, 0.01146936696022749, 0.012436644174158573, -0.14456813037395477, -0.1016213670372963, -0.0019087573746219277, 0.003203726839274168, 0.03194073587656021, 0.02161046490073204, -0.054708901792764664, 0.002008966635912657, -0.01267519872635603, -0.024786293506622314, 0.27424585819244385, 0.16491465270519257, -0.045934975147247314, 0.16771647334098816, 0.1260625720024109, -0.06032343581318855, -0.309770792722702, -0.11425772309303284, -0.11045655608177185, -0.04398525506258011, -0.09500124305486679, -0.18565696477890015, 0.10231947898864746, 0.025354726240038872, -0.01759127900004387, 0.131089448928833, -0.21440641582012177, -0.08033140748739243, 0.15508152544498444, -0.0059756203554570675, 0.37745657563209534, -0.12287385016679764, -0.08928390592336655, -0.04647797718644142, -0.20473800599575043, 0.12560726702213287, -0.014341633766889572, 0.10569804161787033, -0.04033660888671875, 0.10667499154806137, 0.04124046117067337, -0.06189761683344841, 0.0827556774020195, 0.018028048798441887, -0.0027729833964258432, -0.11908969283103943, -0.005427781958132982, 0.037330836057662964, 0.0058838604018092155, 0.038162510842084885, -0.0211408119648695, 0.025556031614542007, -0.13596314191818237, -0.04485263675451279, -0.11071023344993591, 0.04395507648587227, 0.055599145591259, -0.06605301052331924, 0.008166026324033737, -0.05368953198194504, -0.02623230591416359, 0.001955678453668952, 0.18859443068504333, -0.032264675945043564, 0.16248038411140442, 0.017915822565555573, 0.061699241399765015, -0.2131144255399704, 0.0001550401939311996, -0.06295984983444214, -0.06551593542098999, 0.07972439378499985, -0.10897208750247955, 0.06162695586681366, 0.09493593871593475, -0.0550190731883049, 0.05816870555281639, 0.10558537393808365, 0.015814559534192085, -0.014361199922859669, 0.1391412913799286, -0.27428776025772095, 0.07481314241886139, -0.07797183096408844, -0.013885238207876682, 0.11706466972827911, 0.0914216935634613, 0.1399575173854828, 0.043782178312540054, -0.06813227385282516, -0.006982195191085339, -0.0031752721406519413, -0.030768726021051407, 0.07999695837497711, 0.02331979013979435, 0.020107470452785492, -0.163397878408432, 0.02372591756284237, 0.014981063082814217, -0.1348113864660263, -0.013427863828837872, 0.15431173145771027, -0.16395573318004608, -0.12808829545974731, 0.008915727958083153, 0.09718075394630432, -0.13786260783672333, -0.02174106240272522, -0.05153400078415871, -0.0995328277349472, 0.08156455308198929, 0.11245695501565933, 0.08718431740999222, 0.09184054285287857, -0.03695494309067726, -0.017955588176846504, -0.041809603571891785, -0.02114316262304783, 0.02141645736992359, 0.05969555675983429, -0.07898231595754623, 0.05391881987452507, -0.03138475865125656, 0.15629547834396362, -0.09316448122262955, -0.06033721938729286, -0.1587001532316208, 0.032785601913928986, -0.08087195456027985, -0.08479191362857819, -0.11347627639770508, -0.04557791352272034, 0.0002567548071965575, -0.037613075226545334, -0.01753467321395874, -0.04149655997753143, -0.12441752105951309, 0.017146142199635506, -0.03829406946897507, 0.010931672528386116, -0.05811680108308792, -0.008663719519972801, 0.09447751194238663, -0.027902944013476372, 0.11650321632623672, 0.11688197404146194, -0.08923262357711792, 0.10900924354791641, -0.11480636894702911, -0.11036177724599838, 0.11488474160432816, 0.01133766584098339, 0.05226748436689377, 0.09664200246334076, 0.0452880859375, 0.06880165636539459, 0.030284151434898376, 0.06122501567006111, 0.020336538553237915, -0.12300695478916168, 0.048408228904008865, -0.03444572910666466, -0.1429934799671173, -0.05953800678253174, -0.02918248437345028, 0.05130946636199951, 0.024396706372499466, 0.11290157586336136, -0.04501543939113617, 0.09416015446186066, -0.028185313567519188, -0.001477750949561596, -0.004872435703873634, -0.21893969178199768, -0.0504576601088047, -0.0729994997382164, 0.018002768978476524, 0.024589112028479576, 0.2580176889896393, 0.035799842327833176, 0.016602937132120132, 0.01481608022004366, 0.0902845710515976, 0.04691626876592636, -0.014098089188337326, 0.19049955904483795, 0.1093553826212883, -0.043861083686351776, -0.10956389456987381, 0.10990467667579651, 0.01068804319947958, -0.06239248067140579, 0.10300081968307495, -0.020474513992667198, 0.0003835942188743502, 0.07576970010995865, -0.04989642649888992, 0.022763792425394058, -0.11206382513046265, -0.1767910271883011, -0.034227415919303894, 0.07417725026607513, -0.0006204710225574672, 0.05491982772946358, 0.12787184119224548, -0.008543367497622967, 0.034753695130348206, -0.002907110145315528, -0.044527314603328705, -0.17147091031074524, -0.14621102809906006, -0.08630190789699554, -0.14793746173381805, 0.0190786924213171, -0.0839877501130104, 0.03924823924899101, 0.05102156847715378, 0.051837824285030365, -0.05538314953446388, 0.09522181749343872, 0.10324229300022125, -0.0988502949476242, 0.049616921693086624, -0.0501939058303833, 0.030683284625411034, -0.0029872003942728043, -0.0034636224154382944, -0.13122345507144928, -0.005105981603264809, -0.011908148415386677, 0.04666009545326233, -0.07080256193876266, 0.01316530629992485, -0.15000644326210022, -0.10332248359918594, -0.05356411263346672, 0.08138561993837357, -0.053934432566165924, 0.0994570404291153, -0.0014823476085439324, -0.010538178496062756, 0.04940152168273926, 0.19277051091194153, -0.044229596853256226, -0.08742257207632065, -0.036329664289951324, 0.1808408498764038, 0.07235650718212128, 0.10242252051830292, -0.013352932408452034, 0.02063535712659359, -0.06923840939998627, 0.3531532883644104, 0.26858821511268616, -0.018447961658239365, 0.03309110552072525, 0.038829293102025986, 0.033893972635269165, 0.12439677864313126, 0.1530785858631134, 0.10072127729654312, 0.2654051184654236, -0.07902508229017258, -0.03626459091901779, -0.011937260627746582, -0.019930606707930565, -0.12488619238138199, 0.04357904568314552, 0.04491405934095383, -0.07011903077363968, -0.033207207918167114, 0.0878094732761383, -0.2121572494506836, 0.21441073715686798, -0.06745455414056778, -0.15629106760025024, -0.05864774435758591, -0.005939108319580555, 0.1302892118692398, -0.004313112702220678, 0.07851271331310272, 0.00010306494368705899, -0.08810977637767792, 0.09500984102487564, 0.01990063488483429, -0.23626677691936493, -0.02694002166390419, 0.06947129219770432, -0.06700648367404938, -0.018467217683792114, -0.026268189772963524, 0.029670950025320053, 0.05944996699690819, 0.036614418029785156, -0.04607617110013962, 0.04073259234428406, -0.023219695314764977, -0.05424519255757332, 0.016090352088212967, 0.04292331263422966, 0.016028806567192078, -0.1393764466047287, 0.049013204872608185, -0.14424192905426025, 0.04227766394615173, -0.055631183087825775, 0.00035895337350666523, -0.0105360122397542, 0.018617257475852966, -0.046715766191482544, 0.05485781654715538, 0.07827278226613998, 0.008474894799292088, -0.009075884707272053, -0.07942800223827362, 0.0000073377573244215455, 0.007906041108071804, -0.07692286372184753, -0.12948128581047058, -0.09903234243392944, -0.11407486349344254, 0.08519060164690018, 0.00946003757417202, -0.12884648144245148, 0.008852420374751091, -0.11711031198501587, 0.04678783193230629, -0.16973750293254852, 0.1007298156619072, 0.05157482624053955, 0.02837679535150528, 0.00024361057148780674, -0.05811697989702225, 0.040675777941942215, 0.06669099628925323, -0.1293530911207199, -0.10037686675786972 ]
null
null
transformers
# Lit-125M - A Small Fine-tuned Model For Fictional Storytelling Lit-125M is a GPT-Neo 125M model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text. ## Model Description The model used for fine-tuning is [GPT-Neo 125M](https://huggingface.co/EleutherAI/gpt-neo-125M), which is a 125 million parameter auto-regressive language model trained on [The Pile](https://pile.eleuther.ai/).. ## Training Data & Annotative Prompting The data used in fine-tuning has been gathered from various sources such as the [Gutenberg Project](https://www.gutenberg.org/). The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations. ``` [ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror; Tags: 3rdperson, scary; Style: Dark ] *** When a traveler in north central Massachusetts takes the wrong fork... ``` The annotations can be mixed and matched to help generate towards a specific style. ## Downstream Uses This model can be used for entertainment purposes and as a creative writing assistant for fiction writers. The small size of the model can also help for easy debugging or further development of other models with a similar purpose. ## Example Code ``` from transformers import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained('hakurei/lit-125M') tokenizer = AutoTokenizer.from_pretrained('hakurei/lit-125M') prompt = '''[ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror ] *** When a traveler''' input_ids = tokenizer.encode(prompt, return_tensors='pt') output = model.generate(input_ids, do_sample=True, temperature=1.0, top_p=0.9, repetition_penalty=1.2, max_length=len(input_ids[0])+100, pad_token_id=tokenizer.eos_token_id) generated_text = tokenizer.decode(output[0]) print(generated_text) ``` An example output from this code produces a result that will look similar to: ``` [ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror ] *** When a traveler takes a trip through the streets of the world, the traveler feels like a youkai with a whole world inside her mind. It can be very scary for a youkai. When someone goes in the opposite direction and knocks on your door, it is actually the first time you have ever come to investigate something like that. That's right: everyone has heard stories about youkai, right? If you have heard them, you know what I'm talking about. It's hard not to say you ``` ## Team members and Acknowledgements - [Anthony Mercurio](https://github.com/harubaru) - Imperishable_NEET
{"language": ["en"], "license": "mit", "tags": ["pytorch", "causal-lm"]}
text-generation
hakurei/lit-125M
[ "transformers", "pytorch", "gpt_neo", "text-generation", "causal-lm", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt_neo #text-generation #causal-lm #en #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
# Lit-125M - A Small Fine-tuned Model For Fictional Storytelling Lit-125M is a GPT-Neo 125M model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text. ## Model Description The model used for fine-tuning is GPT-Neo 125M, which is a 125 million parameter auto-regressive language model trained on The Pile.. ## Training Data & Annotative Prompting The data used in fine-tuning has been gathered from various sources such as the Gutenberg Project. The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations. The annotations can be mixed and matched to help generate towards a specific style. ## Downstream Uses This model can be used for entertainment purposes and as a creative writing assistant for fiction writers. The small size of the model can also help for easy debugging or further development of other models with a similar purpose. ## Example Code An example output from this code produces a result that will look similar to: ## Team members and Acknowledgements - Anthony Mercurio - Imperishable_NEET
[ "# Lit-125M - A Small Fine-tuned Model For Fictional Storytelling\n\nLit-125M is a GPT-Neo 125M model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text.", "## Model Description\n\nThe model used for fine-tuning is GPT-Neo 125M, which is a 125 million parameter auto-regressive language model trained on The Pile..", "## Training Data & Annotative Prompting\n\nThe data used in fine-tuning has been gathered from various sources such as the Gutenberg Project. The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations.\n\n\n\nThe annotations can be mixed and matched to help generate towards a specific style.", "## Downstream Uses\n\nThis model can be used for entertainment purposes and as a creative writing assistant for fiction writers. The small size of the model can also help for easy debugging or further development of other models with a similar purpose.", "## Example Code\n\n\n\nAn example output from this code produces a result that will look similar to:", "## Team members and Acknowledgements\n\n- Anthony Mercurio\n- Imperishable_NEET" ]
[ "TAGS\n#transformers #pytorch #gpt_neo #text-generation #causal-lm #en #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Lit-125M - A Small Fine-tuned Model For Fictional Storytelling\n\nLit-125M is a GPT-Neo 125M model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text.", "## Model Description\n\nThe model used for fine-tuning is GPT-Neo 125M, which is a 125 million parameter auto-regressive language model trained on The Pile..", "## Training Data & Annotative Prompting\n\nThe data used in fine-tuning has been gathered from various sources such as the Gutenberg Project. The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations.\n\n\n\nThe annotations can be mixed and matched to help generate towards a specific style.", "## Downstream Uses\n\nThis model can be used for entertainment purposes and as a creative writing assistant for fiction writers. The small size of the model can also help for easy debugging or further development of other models with a similar purpose.", "## Example Code\n\n\n\nAn example output from this code produces a result that will look similar to:", "## Team members and Acknowledgements\n\n- Anthony Mercurio\n- Imperishable_NEET" ]
[ 56, 70, 41, 89, 51, 20, 19 ]
[ "passage: TAGS\n#transformers #pytorch #gpt_neo #text-generation #causal-lm #en #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Lit-125M - A Small Fine-tuned Model For Fictional Storytelling\n\nLit-125M is a GPT-Neo 125M model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text.## Model Description\n\nThe model used for fine-tuning is GPT-Neo 125M, which is a 125 million parameter auto-regressive language model trained on The Pile..## Training Data & Annotative Prompting\n\nThe data used in fine-tuning has been gathered from various sources such as the Gutenberg Project. The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations.\n\n\n\nThe annotations can be mixed and matched to help generate towards a specific style.## Downstream Uses\n\nThis model can be used for entertainment purposes and as a creative writing assistant for fiction writers. The small size of the model can also help for easy debugging or further development of other models with a similar purpose.## Example Code\n\n\n\nAn example output from this code produces a result that will look similar to:## Team members and Acknowledgements\n\n- Anthony Mercurio\n- Imperishable_NEET" ]
[ -0.035474833101034164, -0.0002966953907161951, -0.0039184787310659885, 0.049942586570978165, 0.08604453504085541, 0.03611595928668976, 0.11806835979223251, 0.08107948303222656, -0.0427522212266922, 0.01519907545298338, 0.011626449413597584, -0.05190148204565048, 0.053695447742938995, 0.07296158373355865, 0.10934209823608398, -0.30688074231147766, 0.0318802110850811, -0.03394628316164017, 0.15190483629703522, 0.05106230080127716, 0.0926194116473198, -0.003619272029027343, 0.04474076256155968, 0.04363450035452843, -0.08665569126605988, -0.04224540665745735, 0.042427368462085724, -0.03908207267522812, 0.12262091040611267, 0.14545348286628723, 0.04372169077396393, -0.0005735432496294379, 0.0572267547249794, -0.11561604589223862, 0.022116683423519135, 0.061802271753549576, -0.004323511850088835, -0.02387256920337677, 0.035945598036050797, -0.029610401019454002, 0.284171998500824, 0.0709712952375412, 0.05147252231836319, 0.07028835266828537, -0.09980495274066925, -0.15643750131130219, 0.007429101970046759, -0.016197845339775085, 0.03788472339510918, 0.1304086595773697, -0.01341258268803358, -0.015714412555098534, -0.04767652601003647, 0.009824207052588463, 0.1719575971364975, -0.11428192257881165, -0.04675895348191261, 0.07480982691049576, 0.1065400168299675, 0.07137856632471085, -0.010769586078822613, 0.03177686780691147, -0.0613408163189888, 0.06118388473987579, 0.16612789034843445, -0.023521877825260162, 0.058039892464876175, -0.025622162967920303, -0.09599456936120987, -0.09361069649457932, 0.14038480818271637, -0.01753644272685051, -0.12497632950544357, -0.15666785836219788, 0.01956445723772049, 0.17706522345542908, -0.05929594486951828, -0.00631142919883132, -0.022870296612381935, 0.0242023728787899, 0.09357469528913498, -0.09709113836288452, -0.11135676503181458, -0.08652741461992264, 0.03704986721277237, 0.086400605738163, -0.00791968498378992, 0.006811600178480148, -0.06001219525933266, 0.13256949186325073, -0.20641745626926422, -0.040380626916885376, -0.059963323175907135, -0.04564632475376129, -0.02129104733467102, -0.00025628082221373916, -0.04699941352009773, -0.12982764840126038, -0.04117756336927414, 0.13943149149417877, 0.16454435884952545, 0.004002023953944445, 0.013408277183771133, 0.04848087951540947, 0.045487482100725174, 0.09230243414640427, 0.021416570991277695, -0.029005492106080055, 0.10165772587060928, 0.06516222655773163, 0.07518008351325989, -0.06944511085748672, -0.10648969560861588, -0.058089274913072586, -0.033875979483127594, 0.01572936214506626, 0.07311666011810303, 0.03644372522830963, -0.06545770913362503, 0.024353379383683205, 0.2031094878911972, -0.0811825692653656, -0.018588174134492874, -0.0011241186875849962, -0.008479826152324677, 0.007964561693370342, 0.05695974826812744, 0.008855154737830162, -0.03405679389834404, 0.04135364294052124, -0.029906587675213814, -0.03478235751390457, -0.10892674326896667, -0.10076425224542618, 0.03127554431557655, 0.035729460418224335, -0.019118890166282654, -0.1708429455757141, -0.23543179035186768, -0.0514322891831398, 0.05362013727426529, -0.048209406435489655, -0.0652986466884613, -0.05320437625050545, -0.004051465541124344, 0.008674045093357563, -0.01738792657852173, -0.004569179844111204, -0.0347570925951004, 0.03507891297340393, -0.04845888540148735, 0.0583931989967823, -0.09088464826345444, 0.04174771159887314, -0.061146728694438934, 0.0006701562670059502, -0.19999824464321136, 0.1109294444322586, 0.008927402086555958, -0.012990348041057587, -0.0010901420610025525, -0.014876455999910831, -0.08689868450164795, 0.06907191872596741, -0.052390504628419876, 0.12228512018918991, -0.12354368716478348, -0.09694071859121323, 0.06457391381263733, -0.15585185587406158, -0.03630711883306503, 0.11496184766292572, -0.020414283499121666, 0.17039646208286285, 0.12538160383701324, 0.04599163308739662, 0.19974954426288605, 0.0023176330141723156, 0.011585269123315811, -0.013976668938994408, -0.10004733502864838, 0.09785337746143341, 0.06624387204647064, 0.03923599049448967, -0.047320544719696045, 0.03496556729078293, -0.09623778611421585, 0.053902555257081985, 0.0051762922666966915, 0.0013990586157888174, 0.034452926367521286, 0.0071799964644014835, -0.0031655016355216503, 0.02341226302087307, -0.02003180980682373, 0.014203017577528954, -0.117935910820961, -0.07722983509302139, 0.04993092268705368, -0.07473638653755188, 0.05682983249425888, -0.054826799780130386, 0.033465996384620667, -0.00233028968796134, 0.03909013420343399, -0.1659337282180786, -0.059406861662864685, 0.019696176052093506, -0.03493250906467438, 0.07775694876909256, 0.025119774043560028, -0.006693623960018158, 0.05046989396214485, -0.01876399666070938, 0.038537170737981796, -0.10078417509794235, -0.04544578492641449, -0.007604109589010477, -0.04996461421251297, -0.07641531527042389, -0.07137198746204376, 0.037463780492544174, -0.11745379865169525, 0.039916034787893295, 0.005157036706805229, -0.06221618503332138, 0.023642219603061676, -0.05588509887456894, 0.02245955727994442, 0.050023335963487625, -0.0681014135479927, -0.03223374858498573, 0.06505771726369858, 0.022517986595630646, -0.06991304457187653, 0.0892333984375, -0.19072222709655762, -0.04391162097454071, 0.03695911914110184, 0.027395151555538177, -0.10026898235082626, 0.005651349201798439, 0.03725448250770569, -0.004942883737385273, -0.0676940381526947, -0.1334640234708786, 0.19611597061157227, -0.017774520441889763, 0.07139716297388077, -0.07247421890497208, 0.001435335143469274, -0.0008155352552421391, -0.021800143644213676, 0.030653348192572594, 0.04132334887981415, 0.11154276132583618, 0.047960635274648666, 0.019943062216043472, 0.02580050379037857, 0.0004439323674887419, 0.17094138264656067, 0.09080290794372559, -0.05172903463244438, 0.046823900192976, -0.030284956097602844, 0.05508725717663765, 0.0260192658752203, -0.0769817978143692, -0.006106119602918625, 0.03515733405947685, 0.008969265967607498, 0.0477137565612793, -0.08997663110494614, -0.024545373395085335, 0.07140972465276718, -0.051246415823698044, -0.05204864218831062, 0.038212984800338745, -0.06467729061841965, 0.07010672986507416, 0.04502967745065689, 0.04344148188829422, 0.019646594300866127, -0.03925517573952675, -0.13945196568965912, 0.11196596175432205, -0.025020750239491463, -0.2787289023399353, -0.20167039334774017, 0.047772131860256195, 0.03247838094830513, 0.05930190160870552, 0.0589204765856266, -0.015040397644042969, -0.05781450867652893, -0.14499583840370178, 0.1546715795993805, -0.053230833262205124, -0.059066858142614365, -0.0912209078669548, 0.008757608942687511, -0.07356002926826477, -0.1124846562743187, 0.003554443595930934, 0.05989976227283478, -0.1165117472410202, 0.04980988800525665, -0.038852810859680176, 0.11063412576913834, 0.11597180366516113, 0.06885511428117752, -0.04515684396028519, -0.04704991355538368, 0.20678624510765076, -0.05007246881723404, 0.12520255148410797, 0.2605804204940796, -0.015860121697187424, 0.044120706617832184, 0.0627504363656044, 0.021389640867710114, -0.06518944352865219, 0.04482778534293175, -0.059265874326229095, -0.13819552958011627, -0.048892367631196976, -0.06284121423959732, -0.06911826878786087, -0.0015111516695469618, 0.010194731876254082, 0.05719219893217087, 0.05091650411486626, 0.061838772147893906, -0.02462116815149784, 0.07395815849304199, 0.11809303611516953, 0.09750817716121674, 0.13275811076164246, 0.003176181809976697, 0.06105063483119011, -0.046093009412288666, 0.035908713936805725, 0.06134800612926483, -0.03212043270468712, 0.23868486285209656, -0.01552917342633009, 0.1589953750371933, 0.0425286628305912, -0.06711350381374359, 0.09683078527450562, 0.050669703632593155, -0.015822120010852814, 0.001467583584599197, -0.06475362926721573, -0.036004915833473206, -0.053365789353847504, 0.09632232785224915, -0.09129182249307632, -0.133229598402977, -0.08494973182678223, -0.08030260354280472, -0.021125076338648796, 0.03734968975186348, -0.039566341787576675, -0.20448122918605804, -0.018552549183368683, 0.06889321655035019, -0.030754953622817993, -0.07921069860458374, -0.008503627963364124, 0.1380264014005661, -0.15845002233982086, 0.007722768466919661, -0.00029532238841056824, 0.08441202342510223, -0.10149578750133514, -0.0017788148252293468, -0.04682610556483269, 0.05539858713746071, -0.021193131804466248, 0.07272744178771973, -0.1239299401640892, 0.032457783818244934, -0.004281873814761639, 0.1089051142334938, -0.06133093312382698, 0.0008955542580224574, 0.03161060810089111, 0.0767701268196106, 0.11272654682397842, -0.00022958357294555753, -0.022851116955280304, -0.10038228332996368, -0.006731458008289337, 0.10919009149074554, 0.03303752839565277, -0.1475847363471985, 0.09781782329082489, -0.019387494772672653, 0.028998570516705513, -0.03478831425309181, 0.009068670682609081, -0.11775078624486923, -0.20354489982128143, 0.028376463800668716, 0.10713137686252594, 0.09057244658470154, -0.05568449944257736, 0.012678364291787148, 0.0749233216047287, 0.054242391139268875, -0.02627822384238243, -0.09806116670370102, -0.08624128252267838, -0.011772067286074162, 0.03430135175585747, -0.050814978778362274, 0.09013932198286057, 0.01843683421611786, 0.11771336197853088, -0.058679960668087006, -0.08067309111356735, -0.010207485407590866, -0.05426215007901192, -0.09462293982505798, -0.049263373017311096, 0.0919673889875412, 0.1185419112443924, 0.056294042617082596, -0.000949008681345731, 0.016495076939463615, 0.01960870996117592, -0.08909065276384354, -0.045975811779499054, 0.18399196863174438, -0.032890092581510544, -0.013264290988445282, -0.055686865001916885, -0.0282740518450737, -0.03995939716696739, -0.06481589376926422, 0.12379559874534607, 0.13234521448612213, -0.04247602820396423, 0.13196438550949097, 0.07366697490215302, -0.09123913198709488, -0.21623894572257996, -0.05946406349539757, 0.04433581233024597, 0.047680146992206573, 0.0609443336725235, -0.28785327076911926, -0.00802566483616829, 0.0493871234357357, 0.006788349710404873, 0.1023651584982872, -0.2777568995952606, -0.07236267626285553, 0.016246918588876724, 0.05360538139939308, 0.07844081521034241, -0.07464096695184708, 0.02150765061378479, -0.053036075085401535, -0.1284460574388504, 0.06699158251285553, 0.004269533324986696, 0.07426425069570541, -0.006612007971853018, 0.03099735639989376, 0.0284636989235878, -0.012800263240933418, 0.07229580730199814, 0.014801331795752048, 0.03762306272983551, -0.05624338239431381, 0.052325744181871414, 0.040117546916007996, -0.039173003286123276, 0.15864649415016174, -0.09497040510177612, -0.052549947053194046, -0.046374887228012085, -0.11982938647270203, -0.09236271679401398, 0.07457023113965988, 0.0028553432784974575, -0.05302691459655762, -0.08344239741563797, 0.025649799033999443, -0.044024255126714706, 0.01116259302943945, -0.08588516712188721, -0.15120194852352142, 0.02194463089108467, -0.07474233210086823, 0.18543213605880737, -0.10907062888145447, -0.11583872139453888, 0.012012138031423092, -0.018752429634332657, 0.10859903693199158, -0.13876228034496307, 0.01563503034412861, 0.06025461107492447, -0.026087898761034012, 0.1040169969201088, 0.06698710471391678, -0.10469132661819458, 0.12180916965007782, 0.11099593341350555, -0.0645751804113388, -0.14269369840621948, -0.03756936267018318, 0.05227908119559288, -0.03714914619922638, -0.10358484834432602, 0.08869924396276474, -0.0831684097647667, -0.017650382593274117, -0.010998537763953209, 0.025986533612012863, 0.04211512953042984, 0.005343384109437466, -0.05384994298219681, 0.009466993622481823, -0.023278649896383286, 0.05225473269820213, 0.04954377934336662, -0.15012258291244507, 0.012575219385325909, 0.1052805483341217, -0.09823277592658997, -0.06487936526536942, -0.11063632369041443, 0.02658049948513508, -0.0663723349571228, -0.06757615506649017, 0.02474990300834179, -0.07758968323469162, 0.035999588668346405, 0.03872876614332199, -0.009892244823276997, 0.01847188174724579, -0.04278089106082916, 0.046457864344120026, -0.04603208228945732, 0.010466031730175018, 0.00368697801604867, 0.009097100235521793, -0.07368292659521103, 0.05602973699569702, 0.07854878902435303, -0.00901734083890915, -0.025424422696232796, -0.06322825700044632, -0.02146153710782528, 0.003462010296061635, 0.015665728598833084, -0.03758562356233597, -0.1190374568104744, -0.0166793093085289, -0.018728768453001976, 0.059913914650678635, 0.025660965591669083, 0.01445687748491764, -0.04172607511281967, -0.07386087626218796, -0.0972379669547081, 0.04049420356750488, -0.03446592018008232, 0.018860219046473503, 0.07971425354480743, -0.09285850077867508, 0.08387017995119095, 0.01439677458256483, -0.05392967164516449, 0.04731660336256027, -0.17159578204154968, 0.03383750468492508, 0.013776511885225773, 0.021841680631041527, -0.05395207554101944, -0.019007330760359764, -0.029337743297219276, -0.013502239249646664, 0.004680658224970102, -0.013911140151321888, 0.06700996309518814, -0.0992874801158905, 0.1364949494600296, 0.0703585296869278, -0.0368550568819046, -0.04046342894434929, 0.0027786260470747948, 0.03282317891716957, 0.07432495057582855, 0.10270331799983978, -0.04134819284081459, 0.093803770840168, -0.13567793369293213, 0.011819902807474136, 0.001887624035589397, 0.030337249860167503, 0.0045582870952785015, -0.05982542410492897, 0.01298651471734047, 0.013118648901581764, 0.07567001134157181, 0.0405159629881382, 0.013073815032839775, 0.001820222707465291, -0.018901782110333443, 0.14637990295886993, -0.0323784276843071, 0.005920622497797012, 0.09627501666545868, -0.05483189970254898, -0.044174883514642715, 0.016303997486829758, 0.025552304461598396, -0.03555045276880264, 0.10827537626028061, -0.03395247086882591, 0.07900345325469971, 0.06695850938558578, 0.0012727086432278156, 0.01101466454565525, -0.13072140514850616, 0.00490823108702898, 0.06139032170176506, 0.06904008984565735, -0.03979436308145523, 0.1477830708026886, 0.19990594685077667, -0.018743503838777542, 0.09043966233730316, 0.037374358624219894, -0.024630729109048843, -0.04327227175235748, -0.2666572332382202, -0.009140604175627232, -0.10913874953985214, -0.010419132187962532, -0.07083088159561157, 0.04046362638473511, 0.07717155665159225, -0.021626893430948257, 0.008785215206444263, 0.15119951963424683, -0.027443204075098038, -0.10367081314325333, 0.058159101754426956, -0.049169689416885376, 0.01562662050127983, 0.03618976101279259, 0.032628558576107025, 0.04138154536485672, 0.03162620961666107, 0.042098671197891235, 0.1021699532866478, -0.027166176587343216, 0.04005676880478859, -0.07246595621109009, -0.046337295323610306, -0.04728057235479355, 0.025021711364388466, -0.007598203141242266, 0.08378634601831436, 0.03892992064356804, -0.09772097319364548, 0.02820921130478382, 0.16449163854122162, -0.0006107249646447599, -0.06191464886069298, -0.13624797761440277, 0.1554635465145111, -0.07165185362100601, -0.04427146539092064, -0.06769438087940216, -0.05733055993914604, 0.0017921110847964883, 0.17330457270145416, 0.13687178492546082, -0.015107491053640842, -0.020656444132328033, -0.08777639269828796, -0.004271155223250389, -0.0022427327930927277, 0.13368941843509674, 0.03906263783574104, 0.3915758728981018, -0.07704626023769379, 0.040286652743816376, -0.08782868832349777, 0.011633964255452156, -0.01549515500664711, 0.0969727635383606, -0.026169590651988983, 0.008244757540524006, -0.08498059958219528, 0.11495013535022736, -0.01241752877831459, -0.07635114341974258, -0.03790673986077309, 0.04407532885670662, 0.023217177018523216, 0.025608474388718605, -0.045513298362493515, -0.0821973904967308, 0.12573125958442688, -0.01545208040624857, -0.017591753974556923, 0.01837802119553089, 0.0010718000121414661, -0.13853509724140167, -0.01984347030520439, 0.09505057334899902, 0.06713340431451797, 0.20317627489566803, -0.04223126918077469, 0.07994135469198227, 0.0407380647957325, 0.05552025884389877, -0.1302700638771057, 0.09368643164634705, -0.027953462675213814, 0.01842978596687317, 0.028970954939723015, 0.11653265357017517, 0.007293288595974445, 0.08171678334474564, 0.058030981570482254, -0.03986150771379471, 0.08542712777853012, 0.015429943799972534, -0.030237600207328796, -0.0593121238052845, -0.02240605466067791, -0.09528421610593796, 0.10806046426296234, 0.07786428183317184, 0.013283815234899521, -0.04218903183937073, -0.04013022407889366, 0.030103834345936775, 0.03138519823551178, 0.13962167501449585, -0.025873785838484764, -0.07560526579618454, -0.031400248408317566, -0.023393677547574043, -0.05699137970805168, -0.26357850432395935, -0.06735222786664963, -0.049961403012275696, 0.01641841232776642, 0.036655671894550323, 0.02997637540102005, 0.07292347401380539, -0.0178176611661911, -0.046236149966716766, -0.04513049125671387, 0.01685509830713272, 0.1289897859096527, -0.10500787198543549, -0.10202160477638245 ]
null
null
transformers
# Lit-6B - A Large Fine-tuned Model For Fictional Storytelling Lit-6B is a GPT-J 6B model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text. ## Model Description The model used for fine-tuning is [GPT-J](https://github.com/kingoflolz/mesh-transformer-jax), which is a 6 billion parameter auto-regressive language model trained on [The Pile](https://pile.eleuther.ai/). ## Training Data & Annotative Prompting The data used in fine-tuning has been gathered from various sources such as the [Gutenberg Project](https://www.gutenberg.org/). The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations. ``` [ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror; Tags: 3rdperson, scary; Style: Dark ] *** When a traveler in north central Massachusetts takes the wrong fork... ``` The annotations can be mixed and matched to help generate towards a specific style. ## Downstream Uses This model can be used for entertainment purposes and as a creative writing assistant for fiction writers. ## Example Code ``` from transformers import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained('hakurei/lit-6B') tokenizer = AutoTokenizer.from_pretrained('hakurei/lit-6B') prompt = '''[ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror ] *** When a traveler''' input_ids = tokenizer.encode(prompt, return_tensors='pt') output = model.generate(input_ids, do_sample=True, temperature=1.0, top_p=0.9, repetition_penalty=1.2, max_length=len(input_ids[0])+100, pad_token_id=tokenizer.eos_token_id) generated_text = tokenizer.decode(output[0]) print(generated_text) ``` An example output from this code produces a result that will look similar to: ``` [ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror ] *** When a traveler comes to an unknown region, his thoughts turn inevitably towards the old gods and legends which cluster around its appearance. It is not that he believes in them or suspects their reality—but merely because they are present somewhere else in creation just as truly as himself, and so belong of necessity in any landscape whose features cannot be altogether strange to him. Moreover, man has been prone from ancient times to brood over those things most connected with the places where he dwells. Thus the Olympian deities who ruled Hyper ``` ## Team members and Acknowledgements This project would not have been possible without the computational resources graciously provided by the [TPU Research Cloud](https://sites.research.google/trc/) - [Anthony Mercurio](https://github.com/harubaru) - Imperishable_NEET
{"language": ["en"], "license": "mit", "tags": ["pytorch", "causal-lm"]}
null
hakurei/lit-6B-8bit
[ "transformers", "pytorch", "causal-lm", "en", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #causal-lm #en #license-mit #endpoints_compatible #region-us
# Lit-6B - A Large Fine-tuned Model For Fictional Storytelling Lit-6B is a GPT-J 6B model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text. ## Model Description The model used for fine-tuning is GPT-J, which is a 6 billion parameter auto-regressive language model trained on The Pile. ## Training Data & Annotative Prompting The data used in fine-tuning has been gathered from various sources such as the Gutenberg Project. The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations. The annotations can be mixed and matched to help generate towards a specific style. ## Downstream Uses This model can be used for entertainment purposes and as a creative writing assistant for fiction writers. ## Example Code An example output from this code produces a result that will look similar to: ## Team members and Acknowledgements This project would not have been possible without the computational resources graciously provided by the TPU Research Cloud - Anthony Mercurio - Imperishable_NEET
[ "# Lit-6B - A Large Fine-tuned Model For Fictional Storytelling\n\nLit-6B is a GPT-J 6B model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text.", "## Model Description\n\nThe model used for fine-tuning is GPT-J, which is a 6 billion parameter auto-regressive language model trained on The Pile.", "## Training Data & Annotative Prompting\n\nThe data used in fine-tuning has been gathered from various sources such as the Gutenberg Project. The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations.\n\n\n\nThe annotations can be mixed and matched to help generate towards a specific style.", "## Downstream Uses\n\nThis model can be used for entertainment purposes and as a creative writing assistant for fiction writers.", "## Example Code\n\n\n\nAn example output from this code produces a result that will look similar to:", "## Team members and Acknowledgements\n\nThis project would not have been possible without the computational resources graciously provided by the TPU Research Cloud\n\n- Anthony Mercurio\n- Imperishable_NEET" ]
[ "TAGS\n#transformers #pytorch #causal-lm #en #license-mit #endpoints_compatible #region-us \n", "# Lit-6B - A Large Fine-tuned Model For Fictional Storytelling\n\nLit-6B is a GPT-J 6B model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text.", "## Model Description\n\nThe model used for fine-tuning is GPT-J, which is a 6 billion parameter auto-regressive language model trained on The Pile.", "## Training Data & Annotative Prompting\n\nThe data used in fine-tuning has been gathered from various sources such as the Gutenberg Project. The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations.\n\n\n\nThe annotations can be mixed and matched to help generate towards a specific style.", "## Downstream Uses\n\nThis model can be used for entertainment purposes and as a creative writing assistant for fiction writers.", "## Example Code\n\n\n\nAn example output from this code produces a result that will look similar to:", "## Team members and Acknowledgements\n\nThis project would not have been possible without the computational resources graciously provided by the TPU Research Cloud\n\n- Anthony Mercurio\n- Imperishable_NEET" ]
[ 34, 67, 37, 89, 26, 20, 41 ]
[ "passage: TAGS\n#transformers #pytorch #causal-lm #en #license-mit #endpoints_compatible #region-us \n# Lit-6B - A Large Fine-tuned Model For Fictional Storytelling\n\nLit-6B is a GPT-J 6B model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text.## Model Description\n\nThe model used for fine-tuning is GPT-J, which is a 6 billion parameter auto-regressive language model trained on The Pile.## Training Data & Annotative Prompting\n\nThe data used in fine-tuning has been gathered from various sources such as the Gutenberg Project. The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations.\n\n\n\nThe annotations can be mixed and matched to help generate towards a specific style.## Downstream Uses\n\nThis model can be used for entertainment purposes and as a creative writing assistant for fiction writers.## Example Code\n\n\n\nAn example output from this code produces a result that will look similar to:## Team members and Acknowledgements\n\nThis project would not have been possible without the computational resources graciously provided by the TPU Research Cloud\n\n- Anthony Mercurio\n- Imperishable_NEET" ]
[ -0.024334339424967766, 0.09658319503068924, -0.003623771946877241, 0.08191291242837906, 0.06120017543435097, 0.04377333074808121, 0.13091060519218445, 0.08756925910711288, -0.05741262808442116, -0.006469207815825939, 0.03763137012720108, 0.04947822913527489, 0.05164952576160431, 0.11647059768438339, 0.039657775312662125, -0.23269733786582947, 0.012757152318954468, -0.010317080654203892, 0.017199240624904633, 0.056963227689266205, 0.09965784102678299, 0.012089897878468037, 0.05352485552430153, -0.0022129768040031195, -0.12456254661083221, -0.012436367571353912, -0.025363236665725708, 0.00873473659157753, 0.10862229764461517, 0.18898554146289825, 0.04766280576586723, 0.05029163509607315, -0.016622669994831085, -0.10433005541563034, 0.03574446588754654, 0.04674289748072624, -0.04747910797595978, -0.009475279599428177, 0.08044743537902832, -0.05822169780731201, 0.1959591805934906, 0.029096925631165504, 0.010419410653412342, 0.04349856078624725, -0.10079885274171829, -0.05690128728747368, -0.03290415555238724, -0.040384095162153244, 0.016811054199934006, 0.06851980835199356, -0.0033276176545768976, 0.11245030909776688, -0.029830962419509888, 0.06750407814979553, 0.09324431419372559, -0.17684489488601685, -0.05636349692940712, 0.13952358067035675, 0.07268639653921127, 0.025996506214141846, 0.011000237427651882, 0.0008886827272363007, -0.027677403762936592, 0.06907019764184952, 0.06325633823871613, -0.027946649119257927, -0.08798989653587341, -0.0212150439620018, -0.11413320153951645, -0.03683426231145859, 0.16157594323158264, -0.043066270649433136, -0.06217081472277641, -0.18389767408370972, -0.022219840437173843, 0.15865793824195862, 0.020056042820215225, 0.021396150812506676, -0.06102942302823067, 0.00907563604414463, 0.0682762935757637, -0.07172579318284988, -0.10227330029010773, -0.05170523375272751, 0.014197846874594688, 0.06917274743318558, 0.02977476641535759, 0.034005772322416306, -0.12717054784297943, 0.1412922739982605, -0.062077395617961884, -0.04696505144238472, -0.03042779676616192, -0.09899108856916428, -0.04823824390769005, -0.02003931999206543, -0.07177808880805969, -0.16197827458381653, 0.03433729335665703, 0.11069658398628235, 0.1049731969833374, 0.028931336477398872, 0.033362165093421936, 0.05625424161553383, 0.05959826707839966, 0.0371273010969162, -0.02804051712155342, 0.012846018187701702, 0.10915086418390274, 0.026563674211502075, 0.021642571315169334, -0.03543143346905708, -0.0984940156340599, -0.08443040400743484, -0.08545398712158203, 0.0379757396876812, 0.07883720099925995, 0.06927215307950974, -0.06858445703983307, -0.04163017496466637, 0.10857478529214859, -0.0767548531293869, -0.06616230309009552, -0.014995754696428776, -0.03702038526535034, -0.04332456365227699, 0.07907029241323471, -0.024845708161592484, -0.03113914281129837, 0.008074281737208366, -0.017549285665154457, -0.06986947357654572, -0.07317996770143509, -0.08126693218946457, 0.0454435832798481, 0.0037511945702135563, 0.0059894174337387085, -0.10921875387430191, -0.1467963010072708, -0.04898062348365784, 0.07475133240222931, -0.03718489408493042, -0.02590668387711048, -0.05813686549663544, 0.034317515790462494, -0.02379465661942959, 0.015249047428369522, 0.0005875859060324728, -0.021019143983721733, 0.018206292763352394, -0.046136096119880676, 0.09562771767377853, -0.11966408044099808, 0.0246436707675457, -0.11351745575666428, 0.0056429398246109486, -0.16339077055454254, 0.08682449907064438, 0.012321392074227333, -0.040748659521341324, -0.04258275032043457, 0.007329270709306002, -0.015578054822981358, 0.037014439702034, -0.019292442128062248, 0.14375001192092896, -0.19247257709503174, -0.04643956571817398, 0.126925989985466, -0.12290718406438828, -0.0672607496380806, 0.1366257220506668, -0.02232367731630802, 0.12308391183614731, 0.06731051951646805, 0.0965970829129219, 0.21040266752243042, 0.05233418568968773, -0.009273650124669075, 0.008192296139895916, -0.06613277643918991, 0.12088561058044434, 0.03785843774676323, 0.07721295207738876, -0.052255913615226746, 0.046733349561691284, 0.01357120182365179, 0.026640038937330246, -0.017387982457876205, -0.018156809732317924, -0.01410722266882658, -0.004243133123964071, 0.003899205941706896, -0.01327816117554903, -0.00763251818716526, 0.002791718579828739, -0.05950028449296951, -0.08879555016756058, 0.05356055125594139, -0.10949373990297318, 0.03011118806898594, -0.05406064912676811, 0.03262527287006378, 0.013274245895445347, 0.033121053129434586, -0.16121067106723785, -0.08902961015701294, 0.04112838953733444, -0.10471587628126144, 0.1095641627907753, 0.05727338045835495, -0.008693337440490723, 0.08906576782464981, -0.037689145654439926, 0.02421405166387558, 0.004490543156862259, -0.05884896218776703, 0.00309159723110497, -0.1320333629846573, -0.08711836487054825, -0.06745021045207977, 0.08464181423187256, -0.08853523433208466, 0.03306889161467552, 0.008047935552895069, 0.08576446026563644, -0.011925211176276207, -0.04475448280572891, 0.0891944095492363, 0.037405405193567276, -0.07429903745651245, -0.024391792714595795, 0.06428064405918121, 0.010540545918047428, -0.17930319905281067, 0.08236134797334671, -0.10741783678531647, -0.058514147996902466, 0.07745577394962311, 0.027177810668945312, -0.057113729417324066, -0.04869042709469795, 0.002535441191866994, -0.029254581779241562, -0.026746714487671852, -0.011861820705235004, 0.19910947978496552, -0.012738247402012348, 0.09560980647802353, -0.07811729609966278, -0.02195577323436737, -0.006086907349526882, -0.03128720447421074, 0.014807489700615406, 0.09910454601049423, 0.0314984954893589, -0.08838746696710587, 0.04311435669660568, 0.014858139678835869, 0.04019639268517494, 0.18643082678318024, 0.08109134435653687, -0.00399791682139039, 0.007806891575455666, 0.024203941226005554, 0.035133443772792816, -0.0256626196205616, -0.045946262776851654, 0.03395654633641243, 0.05766086280345917, -0.005264206789433956, 0.06998501718044281, -0.07053295522928238, -0.031053468585014343, 0.022273872047662735, -0.033892422914505005, -0.036591723561286926, 0.08684130012989044, -0.014728566631674767, 0.053447823971509933, 0.002980782650411129, 0.04497227817773819, 0.022357787936925888, -0.04847930371761322, -0.10875595360994339, 0.12777259945869446, -0.05941270664334297, -0.3007594347000122, -0.18872494995594025, 0.07204738259315491, -0.08434147387742996, 0.030033022165298462, 0.07967308163642883, -0.015633685514330864, -0.03497249260544777, -0.11362136155366898, 0.16627705097198486, -0.0759231448173523, -0.051050275564193726, -0.17322108149528503, 0.026169277727603912, -0.06351161748170853, -0.13991831243038177, 0.02983896993100643, 0.05464008077979088, -0.0867653638124466, 0.1148081123828888, -0.08388452976942062, 0.06472665816545486, 0.05607018619775772, 0.0004955068579874933, -0.033023275434970856, -0.03750070184469223, 0.24013034999370575, -0.035838522017002106, 0.07354159653186798, 0.2425360381603241, -0.0644524022936821, 0.04416315630078316, 0.07853958755731583, 0.012802407145500183, -0.09534287452697754, 0.05517522618174553, -0.07555748522281647, -0.08963584899902344, -0.15557917952537537, -0.08242646604776382, -0.08462555706501007, 0.007243974134325981, 0.035784341394901276, 0.03313073143362999, -0.07508205622434616, 0.08091990649700165, -0.10573093593120575, 0.09928005933761597, 0.07290754467248917, 0.07788994163274765, 0.1308525949716568, 0.010832847096025944, 0.051660992205142975, -0.07377152144908905, 0.023096581920981407, 0.07622703164815903, 0.04896464943885803, 0.22244560718536377, -0.014330636709928513, 0.16893719136714935, 0.07276953756809235, 0.032852038741111755, 0.11412867158651352, 0.03852652758359909, -0.004659621510654688, 0.04530533775687218, -0.07540519535541534, -0.06245328485965729, -0.0452054925262928, 0.08454249054193497, -0.0681803822517395, -0.08905864506959915, -0.046410951763391495, -0.07928317040205002, -0.01088966615498066, 0.12350206077098846, 0.03236296400427818, -0.18013401329517365, -0.0599328875541687, 0.06426579505205154, 0.010862701572477818, -0.08846619725227356, -0.00954915676265955, 0.11591805517673492, -0.12852105498313904, 0.05187526345252991, -0.006913616321980953, 0.07554352283477783, -0.12469914555549622, -0.019953036680817604, -0.0666411891579628, -0.0033116352278739214, -0.005164504982531071, 0.10466611385345459, -0.1822921335697174, 0.07008713483810425, 0.03974796459078789, 0.050411105155944824, -0.0756937637925148, -0.00131703307852149, 0.003100253874436021, 0.08054962754249573, 0.10935477912425995, 0.0014265961945056915, 0.0581962876021862, -0.046811554580926895, -0.0463738776743412, 0.09231523424386978, 0.05104430019855499, -0.08229018747806549, 0.07806091010570526, -0.00385403074324131, 0.01656177267432213, -0.05939921364188194, 0.038317061960697174, -0.11141737550497055, -0.20784540474414825, 0.06075223535299301, 0.05976489931344986, 0.07472999393939972, -0.034807004034519196, 0.002491042949259281, 0.08053738623857498, 0.1246199682354927, -0.06007539480924606, -0.07155551016330719, -0.06760682165622711, -0.0023956431541591883, 0.10662893950939178, -0.02585039660334587, 0.05546187236905098, -0.03116605244576931, 0.0905052125453949, -0.06931786239147186, -0.17694225907325745, 0.004388725385069847, -0.07969899475574493, -0.09942426532506943, -0.07566934823989868, 0.08170115947723389, 0.07928021252155304, 0.06879288703203201, 0.01613709330558777, 0.007478277664631605, -0.05456715449690819, -0.07635226100683212, -0.0352165512740612, 0.17382344603538513, 0.040692396461963654, 0.0333501435816288, -0.054891664534807205, -0.020861102268099785, -0.039288196712732315, -0.0938936099410057, 0.0924561396241188, 0.17144179344177246, -0.03553524240851402, 0.12977910041809082, 0.10984669625759125, -0.0988444834947586, -0.19134880602359772, -0.05573924630880356, 0.02737346477806568, 0.06795985996723175, 0.034130796790122986, -0.19834713637828827, 0.004811227321624756, 0.009657160378992558, 0.04680444672703743, 0.07829232513904572, -0.2816549837589264, -0.09667304158210754, -0.021643321961164474, 0.03305604308843613, 0.07014688849449158, -0.061151161789894104, -0.018483154475688934, -0.057519834488630295, -0.1304931342601776, 0.10091590136289597, -0.049017470329999924, 0.10305774211883545, -0.06111687049269676, 0.021331612020730972, 0.021076424047350883, -0.019421815872192383, 0.07349376380443573, 0.01211745385080576, 0.05352417007088661, -0.033573828637599945, 0.05048512667417526, 0.021582426503300667, -0.021833648905158043, 0.12414197623729706, -0.0640076994895935, 0.026360437273979187, -0.06527255475521088, -0.08503083139657974, -0.07737503945827484, 0.09253101795911789, -0.025847196578979492, -0.046111058443784714, -0.08292955905199051, 0.03959302231669426, -0.027918078005313873, 0.017547955736517906, -0.032374218106269836, -0.1172337755560875, 0.08192116022109985, 0.01863100193440914, 0.19702237844467163, -0.01514592207968235, -0.055185068398714066, 0.01982083171606064, -0.020252378657460213, 0.09543673694133759, -0.13073089718818665, -0.007884347811341286, 0.107654869556427, -0.009101302362978458, 0.04771647974848747, 0.06016992777585983, -0.1032203808426857, 0.06582549214363098, 0.06964150071144104, -0.15176954865455627, -0.08882610499858856, -0.057194191962480545, 0.028919486328959465, -0.00819927267730236, -0.03143487498164177, 0.1262045055627823, -0.06473588198423386, -0.047232676297426224, -0.012494714930653572, -0.0367480106651783, 0.024223338812589645, 0.04666521027684212, -0.03801035135984421, 0.011079389601945877, -0.059519894421100616, 0.0725221037864685, 0.04952681064605713, -0.15127062797546387, 0.014653468504548073, 0.07579657435417175, -0.10787888616323471, -0.08055365830659866, -0.03531910851597786, 0.0220959335565567, -0.03769878298044205, -0.025704847648739815, -0.0058052376843988895, -0.047439396381378174, 0.006088311318308115, 0.14594538509845734, 0.013634494505822659, 0.07941374182701111, -0.02043277770280838, -0.02484797313809395, -0.04165496304631233, 0.0026152064092457294, 0.03845103830099106, 0.04000216722488403, -0.048606500029563904, 0.0617201067507267, 0.014872485771775246, -0.007421425078064203, -0.0284135565161705, -0.049259379506111145, -0.07077491283416748, -0.00929301604628563, -0.024171393364667892, -0.006272299215197563, -0.048631809651851654, 0.004912026226520538, -0.04131273552775383, 0.010129733011126518, 0.02988983877003193, 0.01340149249881506, -0.03187783807516098, -0.031112927943468094, -0.10554354637861252, 0.06870944797992706, -0.027499735355377197, -0.006327582523226738, 0.028116822242736816, -0.09858883917331696, 0.07460997253656387, 0.024592962116003036, -0.08984657377004623, 0.030585626140236855, -0.14748749136924744, -0.021869756281375885, -0.036069657653570175, 0.05068077892065048, -0.023272013291716576, -0.030689576640725136, -0.04096964746713638, -0.017271338030695915, -0.025949034839868546, -0.00046583113726228476, 0.12295322120189667, -0.09628099203109741, -0.011304576881229877, 0.04041079059243202, -0.024587707594037056, -0.061559755355119705, -0.00968985166400671, 0.08659406751394272, 0.09661249816417694, 0.09812957048416138, -0.026054618880152702, 0.07580974698066711, -0.14696772396564484, -0.02067999728024006, -0.007974816486239433, -0.03511884808540344, -0.029222747310996056, -0.06763214617967606, 0.040223751217126846, 0.016509776934981346, 0.11069809645414352, 0.007135186810046434, 0.025987066328525543, -0.004212232772260904, 0.012762094847857952, 0.016818108037114143, 0.0054247998632490635, 0.018565138801932335, 0.05960911512374878, -0.0021119872108101845, -0.07073087990283966, 0.04666250944137573, -0.01534117292612791, 0.04019136726856232, 0.0651773065328598, -0.060226038098335266, 0.039392102509737015, 0.055862899869680405, 0.016766324639320374, 0.03994575887918472, -0.04792426899075508, -0.021841296926140785, 0.10544032603502274, 0.09700736403465271, -0.02133316546678543, 0.05387907475233078, 0.13510538637638092, -0.04162498190999031, 0.1042916476726532, -0.024115893989801407, -0.038561251014471054, -0.044394854456186295, -0.21040722727775574, -0.04217119142413139, -0.04808550328016281, -0.0075253937393426895, -0.10476842522621155, 0.07553216069936752, 0.060443028807640076, 0.020696155726909637, -0.00798396673053503, 0.12395410239696503, 0.04584498330950737, -0.09768729656934738, 0.027989156544208527, -0.03248588368296623, 0.020870285108685493, 0.026903167366981506, 0.03159220516681671, 0.05552564561367035, 0.027576830238103867, 0.0085963299497962, 0.10573821514844894, 0.05591702461242676, 0.007152635604143143, -0.08435063064098358, -0.08547243475914001, -0.05011197552084923, 0.03413166105747223, 0.009481665678322315, 0.09404198825359344, 0.018690817058086395, -0.09363307058811188, 0.0281823743134737, 0.15670067071914673, -0.006765016354620457, -0.05563884228467941, -0.08148299902677536, 0.1940535306930542, -0.07776162028312683, -0.015497633256018162, -0.021615857258439064, -0.05035277456045151, 0.019324926659464836, 0.14261771738529205, 0.16775143146514893, -0.005267307627946138, -0.011498617008328438, 0.006051425356417894, 0.009571939706802368, 0.00478133512660861, 0.13078618049621582, 0.05042179301381111, 0.30378490686416626, -0.07673139125108719, 0.05405162647366524, -0.06557488441467285, 0.0037740871775895357, -0.011171583086252213, 0.09477867931127548, -0.01641273684799671, -0.016239292919635773, -0.029656991362571716, 0.10306841880083084, -0.0654965490102768, -0.06307656317949295, -0.020166493952274323, -0.05279871076345444, -0.023075880482792854, -0.06141448765993118, -0.04450923949480057, -0.08176824450492859, 0.1354406327009201, -0.04909440875053406, -0.0005979759152978659, 0.040708962827920914, -0.010826748795807362, -0.13865628838539124, -0.04195806756615639, 0.07178053259849548, -0.0591433160007, 0.09319735318422318, -0.006198138929903507, 0.160455584526062, 0.0373167023062706, 0.035618290305137634, -0.09217191487550735, 0.038525454699993134, -0.029445653781294823, 0.05584239214658737, 0.05150865763425827, 0.09611743688583374, -0.01593109779059887, 0.1316479742527008, 0.0223260298371315, -0.03293703496456146, 0.115947425365448, 0.04861162230372429, -0.024493932723999023, -0.06143117696046829, 0.07749217003583908, -0.07689067721366882, 0.13070128858089447, 0.1247420683503151, -0.04355663061141968, -0.02272307127714157, -0.06700807809829712, 0.04705578461289406, 0.029024723917245865, 0.09672314673662186, -0.009507233276963234, -0.09435810148715973, -0.025453904643654823, -0.013576843775808811, 0.0010193410562351346, -0.26193752884864807, -0.03949908912181854, -0.054988980293273926, -0.006413497496396303, -0.0032843167427927256, 0.06844507157802582, 0.0249454565346241, 0.00495971878990531, -0.034815121442079544, -0.053023677319288254, 0.012430296279489994, 0.025036873295903206, -0.08355201035737991, -0.12593196332454681 ]
null
null
transformers
# Lit-6B - A Large Fine-tuned Model For Fictional Storytelling Lit-6B is a GPT-J 6B model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text. ## Model Description The model used for fine-tuning is [GPT-J](https://github.com/kingoflolz/mesh-transformer-jax), which is a 6 billion parameter auto-regressive language model trained on [The Pile](https://pile.eleuther.ai/). ## Training Data & Annotative Prompting The data used in fine-tuning has been gathered from various sources such as the [Gutenberg Project](https://www.gutenberg.org/). The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations. ``` [ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror; Tags: 3rdperson, scary; Style: Dark ] *** When a traveler in north central Massachusetts takes the wrong fork... ``` The annotations can be mixed and matched to help generate towards a specific style. ## Downstream Uses This model can be used for entertainment purposes and as a creative writing assistant for fiction writers. ## Example Code ``` from transformers import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained('hakurei/lit-6B') tokenizer = AutoTokenizer.from_pretrained('hakurei/lit-6B') prompt = '''[ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror ] *** When a traveler''' input_ids = tokenizer.encode(prompt, return_tensors='pt') output = model.generate(input_ids, do_sample=True, temperature=1.0, top_p=0.9, repetition_penalty=1.2, max_length=len(input_ids[0])+100, pad_token_id=tokenizer.eos_token_id) generated_text = tokenizer.decode(output[0]) print(generated_text) ``` An example output from this code produces a result that will look similar to: ``` [ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror ] *** When a traveler comes to an unknown region, his thoughts turn inevitably towards the old gods and legends which cluster around its appearance. It is not that he believes in them or suspects their reality—but merely because they are present somewhere else in creation just as truly as himself, and so belong of necessity in any landscape whose features cannot be altogether strange to him. Moreover, man has been prone from ancient times to brood over those things most connected with the places where he dwells. Thus the Olympian deities who ruled Hyper ``` ## Team members and Acknowledgements This project would not have been possible without the computational resources graciously provided by the [TPU Research Cloud](https://sites.research.google/trc/) - [Anthony Mercurio](https://github.com/harubaru) - Imperishable_NEET
{"language": ["en"], "license": "mit", "tags": ["pytorch", "causal-lm"]}
text-generation
hakurei/lit-6B
[ "transformers", "pytorch", "gptj", "text-generation", "causal-lm", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gptj #text-generation #causal-lm #en #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
# Lit-6B - A Large Fine-tuned Model For Fictional Storytelling Lit-6B is a GPT-J 6B model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text. ## Model Description The model used for fine-tuning is GPT-J, which is a 6 billion parameter auto-regressive language model trained on The Pile. ## Training Data & Annotative Prompting The data used in fine-tuning has been gathered from various sources such as the Gutenberg Project. The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations. The annotations can be mixed and matched to help generate towards a specific style. ## Downstream Uses This model can be used for entertainment purposes and as a creative writing assistant for fiction writers. ## Example Code An example output from this code produces a result that will look similar to: ## Team members and Acknowledgements This project would not have been possible without the computational resources graciously provided by the TPU Research Cloud - Anthony Mercurio - Imperishable_NEET
[ "# Lit-6B - A Large Fine-tuned Model For Fictional Storytelling\n\nLit-6B is a GPT-J 6B model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text.", "## Model Description\n\nThe model used for fine-tuning is GPT-J, which is a 6 billion parameter auto-regressive language model trained on The Pile.", "## Training Data & Annotative Prompting\n\nThe data used in fine-tuning has been gathered from various sources such as the Gutenberg Project. The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations.\n\n\n\nThe annotations can be mixed and matched to help generate towards a specific style.", "## Downstream Uses\n\nThis model can be used for entertainment purposes and as a creative writing assistant for fiction writers.", "## Example Code\n\n\n\nAn example output from this code produces a result that will look similar to:", "## Team members and Acknowledgements\n\nThis project would not have been possible without the computational resources graciously provided by the TPU Research Cloud\n\n- Anthony Mercurio\n- Imperishable_NEET" ]
[ "TAGS\n#transformers #pytorch #gptj #text-generation #causal-lm #en #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Lit-6B - A Large Fine-tuned Model For Fictional Storytelling\n\nLit-6B is a GPT-J 6B model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text.", "## Model Description\n\nThe model used for fine-tuning is GPT-J, which is a 6 billion parameter auto-regressive language model trained on The Pile.", "## Training Data & Annotative Prompting\n\nThe data used in fine-tuning has been gathered from various sources such as the Gutenberg Project. The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations.\n\n\n\nThe annotations can be mixed and matched to help generate towards a specific style.", "## Downstream Uses\n\nThis model can be used for entertainment purposes and as a creative writing assistant for fiction writers.", "## Example Code\n\n\n\nAn example output from this code produces a result that will look similar to:", "## Team members and Acknowledgements\n\nThis project would not have been possible without the computational resources graciously provided by the TPU Research Cloud\n\n- Anthony Mercurio\n- Imperishable_NEET" ]
[ 55, 67, 37, 89, 26, 20, 41 ]
[ "passage: TAGS\n#transformers #pytorch #gptj #text-generation #causal-lm #en #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Lit-6B - A Large Fine-tuned Model For Fictional Storytelling\n\nLit-6B is a GPT-J 6B model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text.## Model Description\n\nThe model used for fine-tuning is GPT-J, which is a 6 billion parameter auto-regressive language model trained on The Pile.## Training Data & Annotative Prompting\n\nThe data used in fine-tuning has been gathered from various sources such as the Gutenberg Project. The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations.\n\n\n\nThe annotations can be mixed and matched to help generate towards a specific style.## Downstream Uses\n\nThis model can be used for entertainment purposes and as a creative writing assistant for fiction writers.## Example Code\n\n\n\nAn example output from this code produces a result that will look similar to:## Team members and Acknowledgements\n\nThis project would not have been possible without the computational resources graciously provided by the TPU Research Cloud\n\n- Anthony Mercurio\n- Imperishable_NEET" ]
[ -0.04609451815485954, -0.007601390592753887, -0.0037006644997745752, 0.07226185500621796, 0.08780638128519058, 0.011842170730233192, 0.11162299662828445, 0.10716504603624344, -0.02765606716275215, 0.03488805517554283, 0.08198770135641098, 0.04551081731915474, 0.04519601911306381, 0.07054373621940613, 0.06897446513175964, -0.2373153120279312, 0.0510396845638752, -0.058719951659440994, 0.12491859495639801, 0.06314744800329208, 0.08516797423362732, 0.02812916226685047, 0.04036790505051613, 0.021835707128047943, -0.123046875, -0.013693363405764103, 0.025205301120877266, -0.04838995635509491, 0.12179829180240631, 0.16898725926876068, 0.010794608853757381, 0.012552724219858646, 0.013850110583007336, -0.11102084070444107, 0.015245138667523861, 0.05358374863862991, -0.0106846634298563, 0.015821553766727448, 0.01732652634382248, -0.05895410105586052, 0.2305050939321518, 0.07249462604522705, 0.027867894619703293, 0.06068161502480507, -0.13359937071800232, -0.0869133397936821, -0.010577735491096973, -0.008956081233918667, 0.045248448848724365, 0.12352745980024338, -0.013652017340064049, 0.039099834859371185, -0.014348710887134075, 0.052682068198919296, 0.10538388043642044, -0.11435708403587341, -0.06786956638097763, 0.056156206876039505, 0.09652355313301086, 0.07030978053808212, 0.0140285799279809, -0.011154022999107838, -0.04769469425082207, 0.07714997977018356, 0.09364057332277298, -0.01026061549782753, -0.04096407815814018, 0.007090748753398657, -0.11958658695220947, -0.10730741173028946, 0.15669335424900055, -0.03919598460197449, -0.11006820201873779, -0.12770353257656097, 0.012759995646774769, 0.16369788348674774, -0.025596724823117256, 0.041143596172332764, -0.09425337612628937, 0.020987294614315033, 0.068618543446064, -0.05122217535972595, -0.11325236409902573, -0.06989135593175888, 0.07338888943195343, 0.01877620257437229, -0.013807685114443302, 0.027150414884090424, -0.08503002673387527, 0.13906385004520416, -0.12303933501243591, -0.05801073834300041, -0.04091942682862282, -0.05554064363241196, -0.005856498144567013, -0.006507362239062786, -0.04482360929250717, -0.22466959059238434, 0.007623129058629274, 0.06570114940404892, 0.1766427457332611, 0.021258115768432617, -0.0080958167091012, 0.08987517654895782, 0.0025624914560467005, 0.1543714553117752, 0.06185612455010414, 0.08773193508386612, 0.10346907377243042, 0.08763442933559418, 0.04313432797789574, -0.07195397466421127, -0.10405297577381134, -0.04443025961518288, -0.01244179904460907, 0.03504267707467079, 0.09405914694070816, 0.042336758226156235, -0.0809052363038063, 0.03416597470641136, 0.14239560067653656, -0.0971481204032898, -0.017362792044878006, -0.0011004583211615682, -0.05423499271273613, -0.10556019097566605, 0.09418725967407227, -0.02949426881968975, -0.09102566540241241, 0.0010066756512969732, -0.03827958181500435, -0.043612703680992126, -0.11411336064338684, -0.09282276034355164, 0.015359750017523766, 0.04683186113834381, -0.029427872970700264, -0.10052674263715744, -0.17670276761054993, -0.060397837311029434, 0.07375800609588623, -0.047147009521722794, -0.07042694836854935, -0.09955177456140518, -0.011107289232313633, 0.01730087399482727, 0.03354622423648834, 0.015964293852448463, -0.02940806746482849, 0.05931317061185837, -0.03366025537252426, 0.05678287893533707, -0.09462181478738785, 0.03532714769244194, -0.10707616060972214, 0.00033187484950758517, -0.22253581881523132, 0.10654003918170929, -0.021481072530150414, 0.009572676382958889, -0.0427870899438858, -0.014915809035301208, -0.0006397407851181924, 0.06322547048330307, -0.012317607179284096, 0.17667195200920105, -0.17543652653694153, -0.07379262149333954, 0.1048368513584137, -0.13020993769168854, -0.031816400587558746, 0.14316748082637787, -0.008434227667748928, 0.1777433305978775, 0.07503822445869446, 0.07290790230035782, 0.1286633014678955, 0.037460602819919586, 0.0464477576315403, -0.013769259676337242, -0.07252553105354309, 0.108681321144104, 0.007626458536833525, 0.02803526632487774, -0.07422749698162079, 0.0419999323785305, -0.011753213591873646, 0.008413584902882576, -0.005685425829142332, 0.000993749825283885, 0.005212199408560991, 0.03459646925330162, -0.08056484162807465, -0.01228389237076044, -0.05498538911342621, -0.012918803840875626, -0.13470551371574402, -0.13268788158893585, 0.013653826899826527, -0.10587747395038605, 0.025194644927978516, -0.05741104856133461, 0.05181097611784935, 0.04704098403453827, 0.03725195303559303, -0.14534519612789154, -0.0230561476200819, 0.0385107584297657, 0.010000395588576794, 0.10104665905237198, -0.010925293900072575, -0.010512220673263073, 0.06665617227554321, 0.02393326163291931, 0.009233682416379452, -0.060548506677150726, -0.06306945532560349, -0.024783385917544365, -0.08560997992753983, -0.05437532812356949, -0.037977948784828186, 0.07397492974996567, -0.11789113283157349, 0.06365761905908585, -0.00590452691540122, -0.05470162630081177, 0.007959212176501751, -0.06201179698109627, 0.059456124901771545, 0.03789794445037842, -0.06459107995033264, -0.01713346131145954, 0.06436718255281448, 0.03553587570786476, -0.09283020347356796, 0.08055811375379562, -0.1625029593706131, -0.12862876057624817, 0.0389089398086071, 0.02782309241592884, -0.08617844432592392, 0.0005218580481596291, 0.008739353157579899, -0.011496073566377163, -0.06631104648113251, -0.057166747748851776, 0.226532980799675, -0.033585432916879654, 0.0868133082985878, -0.06066277250647545, -0.024219227954745293, 0.006372195202857256, -0.0354791134595871, 0.013520813547074795, 0.10694563388824463, 0.10129724442958832, 0.0038001039065420628, 0.014495369046926498, -0.022297417744994164, 0.001484603388234973, 0.1100253164768219, 0.0666947290301323, -0.04297712445259094, 0.03212892636656761, 0.022556478157639503, 0.08413410931825638, 0.01620103232562542, -0.05644863843917847, -0.006262517999857664, 0.032254040241241455, -0.02209516428411007, 0.040210507810115814, -0.12822075188159943, -0.025308137759566307, 0.028955845162272453, -0.05901689827442169, -0.07192202657461166, 0.04934869706630707, -0.053868260234594345, 0.0587344653904438, -0.0030296756885945797, 0.014605498872697353, 0.01723303832113743, -0.04107006639242172, -0.13907945156097412, 0.1373552531003952, -0.05356413871049881, -0.31834790110588074, -0.22275978326797485, 0.07210519164800644, 0.029442837461829185, 0.05755821615457535, 0.07696158438920975, -0.010604927316308022, -0.06106795370578766, -0.15601885318756104, 0.16377706825733185, -0.03563649579882622, -0.04966060072183609, -0.1171673834323883, -0.006245333701372147, -0.03167717903852463, -0.12049618363380432, 0.0012862314470112324, 0.07377688586711884, -0.09119892120361328, 0.10686842352151871, -0.051836833357810974, 0.0882076844573021, 0.08675336837768555, 0.05113525316119194, -0.02605748176574707, -0.04730161279439926, 0.2751707136631012, -0.03834228590130806, 0.11689534038305283, 0.21507768332958221, -0.10608509927988052, 0.05109543725848198, 0.09030468761920929, 0.009177680127322674, -0.08162655681371689, 0.05742311477661133, -0.10111300647258759, -0.11740373075008392, -0.10064470022916794, -0.023903697729110718, -0.06448428332805634, 0.058833565562963486, 0.0449722521007061, 0.06084241345524788, 0.008291506208479404, 0.06386289745569229, -0.06598997861146927, 0.09079291671514511, 0.10142632573843002, 0.10688813775777817, 0.11712344735860825, 0.015664400532841682, 0.04429398477077484, -0.059081461280584335, 0.02487047389149666, 0.043479666113853455, -0.02332155406475067, 0.17163196206092834, -0.04128951206803322, 0.11913766711950302, 0.05630405992269516, -0.016223113983869553, 0.09763070195913315, 0.03873598575592041, -0.03893493488430977, 0.025208450853824615, -0.07024626433849335, -0.062617227435112, -0.08780094981193542, 0.09591274708509445, -0.11213526874780655, -0.08074083924293518, -0.09071098268032074, -0.030434181913733482, -0.013473715633153915, 0.12127002328634262, 0.025116534903645515, -0.2062450647354126, -0.08303992450237274, 0.03245491907000542, -0.020876608788967133, -0.0955740436911583, 0.005555534269660711, 0.1045440062880516, -0.119685597717762, -0.003950371872633696, -0.012154456228017807, 0.0799698755145073, -0.09273138642311096, 0.017316803336143494, -0.0406682975590229, 0.04990973696112633, -0.0382741317152977, 0.1004553735256195, -0.2232612818479538, 0.053178977221250534, 0.01206057146191597, 0.0649816021323204, -0.09084559977054596, 0.029279764741659164, -0.006874788552522659, 0.015378996729850769, 0.11633128672838211, -0.015576217323541641, -0.011351996101439, -0.05035990849137306, -0.03833341598510742, 0.09279202669858932, 0.013255870901048183, -0.1025165542960167, 0.10666703432798386, -0.010204195976257324, 0.0194706954061985, -0.03854701295495033, 0.038277190178632736, -0.07915844768285751, -0.21240687370300293, 0.036757152527570724, 0.06282990425825119, 0.09234553575515747, -0.0676421970129013, 0.007339386269450188, 0.12865643203258514, 0.11248990893363953, -0.031496476382017136, -0.06073781102895737, -0.0717335045337677, 0.04959501698613167, 0.0461445078253746, -0.04717117175459862, 0.052633319050073624, -0.0038316103164106607, 0.09240250289440155, -0.03883453458547592, -0.08062919974327087, 0.02226203866302967, -0.06423278898000717, -0.07627534121274948, -0.0784614160656929, 0.10261538624763489, 0.11044473201036453, 0.0664898008108139, -0.0010482281213626266, 0.04628627374768257, -0.05312690511345863, -0.059799924492836, 0.026489531621336937, 0.12865591049194336, -0.035062313079833984, 0.03167170658707619, -0.05835125595331192, -0.08811196684837341, -0.07667890936136246, -0.08612843602895737, 0.10894817858934402, 0.11165247112512589, -0.00696868821978569, 0.11038850247859955, 0.02202681265771389, -0.10299453884363174, -0.20445452630519867, -0.04652559012174606, 0.07166695594787598, 0.07471466064453125, 0.0023179936688393354, -0.24382063746452332, -0.016478808596730232, 0.0180370956659317, 0.028910323977470398, 0.127488374710083, -0.3220450282096863, -0.06500856578350067, 0.026123899966478348, 0.07974456995725632, -0.008459607139229774, -0.09048797935247421, -0.004713973496109247, -0.011254626326262951, -0.0667535662651062, 0.0578775629401207, 0.06829334050416946, 0.062961645424366, -0.017413998022675514, 0.0759972333908081, 0.04322491213679314, -0.01380222663283348, 0.05004602298140526, -0.024631578475236893, 0.021457048133015633, -0.0666029304265976, 0.03714025765657425, -0.045098137110471725, -0.029453527182340622, 0.1367347240447998, -0.11772024631500244, -0.0009588855900801718, -0.008242795243859291, -0.08117277920246124, -0.08877375721931458, 0.10251890122890472, -0.03984198346734047, -0.03160763904452324, -0.056315600872039795, -0.007048098836094141, -0.04311300069093704, 0.017876140773296356, -0.09960360825061798, -0.1454336941242218, 0.11522787809371948, -0.00846655759960413, 0.15261326730251312, -0.029502594843506813, -0.05077546089887619, 0.01189831830561161, 0.001272538211196661, 0.08654642105102539, -0.15144477784633636, -0.0068634008057415485, 0.06689411401748657, -0.017882833257317543, 0.12372545897960663, 0.06587936729192734, -0.12606824934482574, 0.07045784592628479, 0.113502636551857, -0.1328067034482956, -0.07680968195199966, -0.04492269083857536, 0.11689141392707825, -0.03893068805336952, -0.09886335581541061, 0.103775754570961, -0.08327200263738632, -0.02204498089849949, 0.014253666624426842, 0.03878074884414673, 0.05238000676035881, 0.020412564277648926, -0.03634478524327278, 0.03100714646279812, -0.016657233238220215, 0.01542234979569912, 0.07720456272363663, -0.16780489683151245, 0.04071928188204765, 0.15913917124271393, -0.08046706020832062, -0.056412141770124435, -0.06719556450843811, 0.051861636340618134, -0.058280106633901596, -0.012650450691580772, -0.025614220649003983, -0.08198265731334686, 0.07576954364776611, 0.1195417121052742, -0.017105182632803917, 0.03860125690698624, -0.023482322692871094, 0.018462901934981346, -0.03964973986148834, 0.041387706995010376, -0.026870500296354294, 0.008444289676845074, -0.01800837740302086, 0.03903275355696678, 0.04735671728849411, -0.013247612863779068, 0.00017966887389775366, -0.06731168925762177, -0.0829230546951294, -0.0015561629552394152, 0.01179445069283247, 0.00447245966643095, -0.028128236532211304, -0.015470909886062145, -0.01814332976937294, 0.0063356319442391396, 0.047357574105262756, 0.029944807291030884, -0.05538890138268471, -0.07684168964624405, -0.10698557645082474, 0.07555115222930908, -0.055446479469537735, 0.015345261432230473, 0.07285049557685852, -0.09475142508745193, 0.08457104861736298, 0.03811850771307945, -0.12423951923847198, 0.0478658564388752, -0.15557131171226501, 0.020683549344539642, -0.004424738232046366, 0.01148915383964777, -0.03934074938297272, -0.042435307055711746, -0.020376570522785187, -0.015342473052442074, -0.04789185896515846, -0.012480624951422215, 0.11270266771316528, -0.08900513499975204, 0.06039924547076225, 0.09909849613904953, -0.03243811056017876, -0.06293534487485886, 0.033773794770240784, 0.009403280913829803, 0.05036085098981857, 0.08194628357887268, -0.06886935979127884, 0.10268854349851608, -0.14999547600746155, 0.00777736259624362, 0.027021856978535652, -0.007518164813518524, -0.06664814800024033, -0.07098233699798584, 0.04566172510385513, -0.007392721250653267, 0.01098625548183918, 0.049018483608961105, 0.02368113026022911, -0.004379538353532553, 0.0022240467369556427, 0.04141295701265335, 0.006301522720605135, 0.015076568350195885, 0.046644337475299835, -0.03339630737900734, -0.028676459565758705, 0.00025987086701206863, 0.018773341551423073, 0.01805051602423191, 0.1263980269432068, -0.11486451327800751, 0.12011221796274185, 0.0513630136847496, 0.005963590461760759, 0.017756881192326546, -0.053025100380182266, -0.010419699363410473, 0.07807960361242294, 0.1239430382847786, -0.02010391280055046, 0.15151020884513855, 0.15525421500205994, -0.011014078743755817, 0.08616840839385986, -0.024810241535305977, -0.061318375170230865, -0.019593320786952972, -0.28421980142593384, 0.003771351184695959, -0.07541456073522568, -0.009105436503887177, -0.09464804083108902, 0.057373568415641785, -0.002893929835408926, -0.02133922651410103, -0.011504746973514557, 0.13275164365768433, 0.014578374102711678, -0.09976795315742493, 0.059089116752147675, -0.051584843546152115, -0.008484238758683205, -0.005455798003822565, 0.04037770256400108, 0.030138861387968063, 0.08513939380645752, 0.03256779909133911, 0.12842290103435516, 0.043471161276102066, 0.0330151803791523, -0.10343910753726959, -0.047872304916381836, -0.02110467478632927, 0.025014841929078102, -0.004776444751769304, 0.0725957453250885, 0.021858835592865944, -0.09367701411247253, 0.056748855859041214, 0.20760536193847656, -0.009270880371332169, -0.12769223749637604, -0.10387516021728516, 0.2384866625070572, -0.08007656037807465, -0.07164520025253296, -0.05870327353477478, -0.05423843115568161, -0.0009996485896408558, 0.1882546842098236, 0.14330510795116425, -0.026510532945394516, -0.012866713106632233, -0.07648995518684387, 0.004268044140189886, 0.007574928924441338, 0.12321169674396515, 0.09245721995830536, 0.3348763585090637, -0.08264009654521942, 0.05653264373540878, -0.08564443141222, 0.00014683119661640376, -0.029532035812735558, 0.09787364304065704, -0.013014375232160091, -0.019209690392017365, -0.06632938981056213, 0.10539302974939346, -0.08937489986419678, -0.1026775985956192, -0.14928145706653595, -0.011591842398047447, -0.012149963527917862, -0.01810608059167862, -0.004305423237383366, -0.08812333643436432, 0.1378927379846573, -0.018628017976880074, -0.000024941511583165266, 0.03376065939664841, -0.015310925431549549, -0.0988268330693245, -0.006017287261784077, 0.04540245980024338, -0.1108209490776062, 0.12544451653957367, -0.014268162660300732, 0.1112266555428505, 0.04689402878284454, 0.034622978419065475, -0.09017245471477509, 0.09142957627773285, -0.023313958197832108, 0.06323084980249405, 0.054900988936424255, 0.11336617171764374, 0.01994461752474308, 0.1007019430398941, 0.04738099128007889, 0.006174725014716387, 0.10352075099945068, -0.00472320057451725, -0.009596560150384903, -0.03805141896009445, 0.017667919397354126, -0.08835987746715546, 0.1113748550415039, 0.13994792103767395, -0.029645895585417747, -0.030090443789958954, -0.06696095317602158, 0.02088961936533451, -0.019616587087512016, 0.07832682877779007, -0.015132501721382141, -0.08277615904808044, -0.011569265276193619, -0.040400683879852295, -0.048202674835920334, -0.2895442247390747, -0.043855395168066025, -0.07248329371213913, -0.0036922392901033163, -0.0007681683637201786, 0.08777282387018204, 0.07026862353086472, -0.024579571560025215, -0.04734354093670845, 0.06325984746217728, 0.02674528956413269, 0.11630001664161682, -0.039744727313518524, -0.10652931034564972 ]
null
null
transformers
# DOC DialoGPT Model
{"tags": ["conversational"]}
text-generation
hama/Doctor_Bot
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# DOC DialoGPT Model
[ "# DOC DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# DOC DialoGPT Model" ]
[ 51, 7 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# DOC DialoGPT Model" ]
[ -0.024352245032787323, 0.03555891290307045, -0.006832820829004049, -0.01694377139210701, 0.135661318898201, 0.0025940018240362406, 0.12586413323879242, 0.14561918377876282, -0.01705276593565941, -0.021938087418675423, 0.12341953068971634, 0.15399307012557983, -0.010025168769061565, 0.08289792388677597, -0.07491482049226761, -0.32141581177711487, 0.057549744844436646, 0.07695896178483963, 0.05852462723851204, 0.11278320103883743, 0.09283583611249924, -0.057526979595422745, 0.0735345333814621, 0.008885396644473076, -0.17109212279319763, 0.005741702392697334, 0.025057753548026085, -0.11260437220335007, 0.09347546845674515, 0.03534213826060295, 0.019769642502069473, 0.02210509590804577, -0.0322575606405735, -0.14317086338996887, 0.031677138060331345, -0.018699705600738525, -0.04311147704720497, 0.055818554013967514, 0.012849094346165657, -0.08159860223531723, 0.12053551524877548, 0.05922282114624977, 0.002260734559968114, 0.03209204971790314, -0.15910130739212036, -0.029521076008677483, -0.00010238443792331964, 0.019308574497699738, 0.06225988641381264, 0.11381048709154129, -0.04281986877322197, 0.14902256429195404, -0.07650305330753326, 0.11732441931962967, 0.09606780856847763, -0.320292592048645, -0.012977748177945614, 0.13313047587871552, 0.08126843720674515, 0.04500655457377434, -0.04640227183699608, 0.08841253072023392, -0.018994703888893127, 0.003299728035926819, -0.015180161222815514, -0.07118253409862518, -0.07287489622831345, 0.011454773135483265, -0.08725679665803909, -0.02016059122979641, 0.25966760516166687, -0.05494382232427597, 0.06956249475479126, -0.09492119401693344, -0.09142147749662399, -0.06416488438844681, -0.05614887923002243, -0.03703386336565018, -0.06158797815442085, 0.06974516808986664, 0.03393496572971344, -0.07618380337953568, -0.119851253926754, -0.035886067897081375, -0.1857251524925232, 0.13037125766277313, 0.044738706201314926, 0.03865830600261688, -0.20985041558742523, 0.1047433465719223, 0.005292592570185661, -0.09175512939691544, 0.006752620451152325, -0.06753397732973099, -0.003309752559289336, 0.021943088620901108, -0.05308167636394501, -0.023087533190846443, 0.09889793395996094, 0.11672662943601608, -0.013945135287940502, -0.009366181679069996, -0.0382581502199173, 0.052359797060489655, 0.0527588315308094, 0.08123395591974258, -0.02125367894768715, -0.014572322368621826, 0.03814312815666199, -0.09889683127403259, -0.010348130948841572, -0.029572980478405952, -0.17178066074848175, -0.036708541214466095, 0.028472837060689926, 0.0683068260550499, 0.022648850455880165, 0.1245228722691536, -0.01080259308218956, -0.0386749729514122, 0.06475868821144104, -0.02487487532198429, -0.01908116228878498, 0.01462680846452713, 0.026055896654725075, 0.1671370267868042, 0.04722354933619499, 0.06045651435852051, -0.1564941108226776, 0.020514430478215218, -0.04320147633552551, 0.00733568798750639, -0.03051765076816082, -0.04426383227109909, -0.004460610914975405, -0.06454778462648392, 0.017293550074100494, -0.14223022758960724, -0.1484745293855667, -0.0055291661992669106, -0.018645083531737328, -0.05096893757581711, -0.08027435094118118, -0.0891735702753067, -0.011114059016108513, 0.03114449791610241, -0.0593363419175148, -0.03452126681804657, -0.060680706053972244, 0.0775429904460907, -0.035985518246889114, 0.09734492003917694, -0.14668351411819458, 0.07879392802715302, -0.07962819188833237, -0.03666156157851219, -0.04703264683485031, 0.12410850822925568, 0.006244059652090073, 0.041781503707170486, -0.03036830760538578, -0.02513451874256134, -0.09898949414491653, 0.0633402019739151, -0.01067696325480938, 0.23360680043697357, -0.05152731388807297, -0.09150579571723938, 0.33783113956451416, -0.027108795940876007, -0.15796247124671936, 0.13652881979942322, 0.002889139112085104, 0.09755995124578476, 0.13033826649188995, 0.20306630432605743, 0.007003726437687874, -0.08800014108419418, 0.09217159450054169, 0.07271918654441833, -0.08216636627912521, -0.012914101593196392, 0.027286091819405556, -0.033924512565135956, -0.001668382785283029, 0.044802989810705185, 0.05522792786359787, 0.04303789883852005, -0.07553132623434067, -0.008294602856040001, -0.014754717238247395, 0.0035232205409556627, 0.017878789454698563, -0.05390659347176552, 0.12328971922397614, -0.026260683313012123, -0.04085145890712738, 0.022113988175988197, 0.008616236038506031, -0.04937983676791191, 0.0395674966275692, -0.07608973234891891, 0.027361050248146057, -0.024837661534547806, 0.07634424418210983, -0.1458066999912262, -0.0809883251786232, -0.02288411185145378, 0.19794216752052307, 0.042598191648721695, 0.11004111170768738, 0.03965485468506813, -0.0452859103679657, -0.010640413500368595, 0.028372859582304955, 0.152432382106781, -0.010696972720324993, -0.09348016232252121, -0.07170651108026505, 0.11937729269266129, -0.06484600156545639, 0.028123904019594193, -0.04431508481502533, 0.022014733403921127, 0.004890710115432739, 0.1086742952466011, -0.005026374477893114, 0.025883885100483894, 0.025719305500388145, -0.016324618831276894, -0.03304680064320564, 0.027721170336008072, 0.1012788936495781, -0.007540225982666016, -0.05805579572916031, 0.25433260202407837, -0.17595212161540985, 0.16996902227401733, 0.17363062500953674, -0.24145852029323578, 0.03165578842163086, -0.17511166632175446, -0.04565351456403732, 0.0037793065421283245, 0.03323090448975563, -0.08829038590192795, 0.21437454223632812, -0.0170510895550251, 0.19155368208885193, -0.025227069854736328, -0.0374210886657238, -0.027535583823919296, -0.056155283004045486, 0.010697715915739536, 0.07989362627267838, 0.08725839853286743, -0.11899733543395996, 0.1469883918762207, 0.09949158132076263, 0.06823112815618515, 0.18457837402820587, 0.018009167164564133, -0.02595638670027256, 0.0398157574236393, -0.01261449046432972, -0.04059934988617897, -0.11244542896747589, -0.29622840881347656, -0.040984079241752625, 0.09704552590847015, 0.07013712078332901, 0.11857308447360992, -0.07929170876741409, -0.02210139110684395, -0.011401772499084473, -0.02537248283624649, 0.020446857437491417, 0.1419198364019394, 0.02338208630681038, 0.13590461015701294, -0.033232711255550385, -0.007386696990579367, 0.061415258795022964, 0.013765242882072926, -0.09757966548204422, 0.17843300104141235, -0.13107673823833466, -0.36540988087654114, -0.11285094171762466, -0.20638710260391235, -0.026138996705412865, 0.04912397265434265, 0.1132863238453865, -0.0959942415356636, -0.0317501462996006, 0.004005682189017534, 0.07723536342382431, -0.051682405173778534, -0.0003270778397563845, -0.05348226800560951, 0.00962347537279129, -0.11009187996387482, -0.10877294093370438, -0.07261936366558075, -0.029725557193160057, -0.07302803546190262, 0.15530318021774292, -0.14872634410858154, 0.033123839646577835, 0.1981744021177292, 0.05128949135541916, 0.05540478602051735, -0.031174853444099426, 0.1926470398902893, -0.10047148913145065, 0.010675329715013504, 0.2097032219171524, -0.03058190830051899, 0.04284277930855751, 0.11221639811992645, 0.0031126593239605427, -0.09543544799089432, 0.048280078917741776, -0.02900822088122368, -0.046016864478588104, -0.23615065217018127, -0.13299982249736786, -0.1259552389383316, 0.04564526677131653, 0.01945209875702858, 0.04081276059150696, 0.14266033470630646, 0.054063159972429276, -0.03202945739030838, 0.014657949097454548, 0.03736579418182373, 0.08689025789499283, 0.2596081793308258, -0.07992443442344666, 0.14688199758529663, -0.008034632541239262, -0.15847888588905334, 0.07008260488510132, 0.07053976505994797, 0.09332499653100967, 0.06290584802627563, 0.12002179771661758, 0.042613886296749115, 0.02445358596742153, 0.1355859786272049, 0.05902838334441185, 0.04506663605570793, -0.033467426896095276, -0.027439361438155174, -0.05608829855918884, -0.025031678378582, 0.015216086991131306, 0.05303763598203659, -0.17793849110603333, -0.03208092227578163, -0.027142904698848724, 0.07265367358922958, 0.05662195011973381, 0.06988921016454697, -0.17644266784191132, -0.0031213327310979366, 0.05442430451512337, -0.02015264518558979, -0.15909169614315033, 0.08170468360185623, 0.003609489416703582, -0.12098123878240585, 0.022684864699840546, -0.014573939144611359, 0.1307392418384552, -0.05401930585503578, 0.0900479108095169, -0.11445412784814835, -0.0691969245672226, 0.009462707675993443, 0.09676823019981384, -0.316980242729187, 0.19522151350975037, -0.006539019290357828, -0.051476556807756424, -0.10112791508436203, -0.009533190168440342, 0.004959927871823311, 0.14068572223186493, 0.11590474843978882, -0.005122336558997631, 0.08780622482299805, 0.048371296375989914, -0.08205890655517578, 0.034888800233602524, 0.11626464128494263, -0.04987432807683945, -0.005622277967631817, -0.03189254552125931, -0.016078725457191467, -0.015502508729696274, -0.09410378336906433, -0.005432224832475185, -0.1741875410079956, 0.09472194314002991, 0.0793573334813118, 0.12675127387046814, 0.030699068680405617, -0.011420756578445435, -0.10953681915998459, 0.2595435082912445, 0.018773194402456284, -0.08852557092905045, -0.11111481487751007, 0.01928395964205265, 0.06201530247926712, -0.052963703870773315, 0.04367310181260109, -0.065090611577034, 0.01966247335076332, -0.04874761775135994, -0.18161910772323608, 0.13483700156211853, -0.10896291583776474, -0.05206854268908501, -0.03267206624150276, 0.2316121757030487, -0.03230549767613411, 0.010135914199054241, 0.04689066857099533, 0.01824267953634262, -0.13606806099414825, -0.07252310961484909, 0.03712579235434532, 0.06011119857430458, 0.05268113687634468, 0.07229987531900406, -0.0878194272518158, -0.11541470885276794, -0.030613437294960022, -0.029061755165457726, 0.3144679665565491, 0.14211001992225647, -0.024898583069443703, 0.1696595400571823, 0.1085939109325409, -0.07382823526859283, -0.2945076525211334, -0.09105609357357025, -0.029667658731341362, -0.029552163556218147, -0.08913929015398026, -0.17189714312553406, 0.108538419008255, -0.008784397505223751, -0.010423152707517147, 0.09994903951883316, -0.24304869771003723, -0.10862456262111664, 0.1664031594991684, -0.03022238425910473, 0.37249234318733215, -0.12149395793676376, -0.08360196650028229, -0.027855489403009415, -0.2154228836297989, 0.1840331107378006, -0.033176202327013016, 0.10796152055263519, -0.023353757336735725, 0.13112550973892212, 0.05148164555430412, -0.02307020127773285, 0.08928801119327545, 0.015054210089147091, -0.05946938320994377, -0.0883978083729744, -0.07429199665784836, 0.018877943977713585, 0.04072839394211769, 0.07140368968248367, -0.01573651097714901, 0.03922264650464058, -0.13266929984092712, -0.05954565480351448, -0.09295868128538132, 0.027921736240386963, 0.023630227893590927, -0.07383015006780624, 0.0027319779619574547, -0.07512285560369492, -0.002345055341720581, 0.009002979844808578, 0.1634288877248764, -0.12636667490005493, 0.08627495914697647, 0.09548696130514145, 0.13257478177547455, -0.0994456484913826, -0.029602373018860817, -0.07811835408210754, -0.07291896641254425, 0.06616467982530594, -0.07649607956409454, 0.026426192373037338, 0.12301904708147049, -0.049545902758836746, 0.09491575509309769, 0.0903279036283493, 0.010056429542601109, 0.011518334038555622, 0.08253099769353867, -0.22591181099414825, -0.05946781113743782, -0.08396144211292267, 0.027065744623541832, 0.05831583961844444, 0.10287261009216309, 0.20942401885986328, -0.008334576152265072, -0.03486204892396927, 0.005457300692796707, 0.023537825793027878, -0.04660845175385475, 0.09248445928096771, -0.015498955734074116, 0.011932198889553547, -0.14447076618671417, 0.03518979623913765, 0.0019600302912294865, -0.1208530068397522, 0.030758921056985855, 0.15179193019866943, -0.12640541791915894, -0.13175779581069946, -0.05394372716546059, 0.08028905093669891, -0.10825321823358536, -0.00684139272198081, -0.019434884190559387, -0.13987693190574646, 0.08512487262487411, 0.08433303236961365, 0.03195177763700485, 0.04395870491862297, -0.0968102440237999, -0.023042956367135048, -0.023625638335943222, 0.02634267322719097, 0.0015669431304559112, -0.008520099334418774, -0.013278559781610966, 0.09507165104150772, -0.05265529081225395, 0.12055383622646332, -0.09248446673154831, -0.09630214422941208, -0.14729398488998413, 0.038224004209041595, -0.10476373881101608, -0.06058177724480629, -0.0784403383731842, -0.06038258597254753, -0.00848926231265068, -0.03723762929439545, -0.015168818645179272, -0.04179137572646141, -0.1079317182302475, 0.02184084616601467, -0.045674990862607956, 0.013034900650382042, -0.047847017645835876, 0.015844596549868584, 0.05045308545231819, -0.03810112178325653, 0.18505889177322388, 0.15387234091758728, -0.11874406039714813, 0.07311087846755981, -0.16495485603809357, -0.06251148879528046, 0.14937172830104828, 0.04603709280490875, 0.04126053676009178, 0.05159261077642441, 0.006845558062195778, 0.07919283956289291, 0.04382831230759621, 0.04942505061626434, 0.0451524443924427, -0.09471853077411652, 0.02971486561000347, -0.07193085551261902, -0.10323891788721085, -0.04987705498933792, -0.04370918497443199, -0.016517432406544685, 0.05036838352680206, 0.08795806020498276, -0.061166372150182724, 0.07250635325908661, -0.06655196845531464, 0.03530372306704521, 0.013126026839017868, -0.17472408711910248, -0.0198333989828825, -0.08404827117919922, 0.060689035803079605, 0.024368006736040115, 0.23006032407283783, -0.008027954958379269, -0.051821596920490265, 0.02111807093024254, 0.08750155568122864, 0.037829138338565826, 0.007317998446524143, 0.21296443045139313, 0.10581544041633606, -0.04595700278878212, -0.13116015493869781, 0.07216200977563858, 0.022243861109018326, 0.02075931988656521, 0.10267076641321182, -0.01600031740963459, -0.022051749750971794, 0.0740991085767746, -0.0034494816791266203, 0.022924290969967842, -0.11086650937795639, -0.17541643977165222, -0.03767465427517891, 0.04912198707461357, -0.055282868444919586, 0.07570366561412811, 0.15412868559360504, -0.020259853452444077, 0.025165092200040817, -0.010598655790090561, -0.06580504775047302, -0.16421787440776825, -0.14958593249320984, -0.06830406934022903, -0.10519754141569138, -0.015555542893707752, -0.14852315187454224, 0.07532763481140137, -0.019085684791207314, 0.09237810969352722, -0.06212850660085678, 0.13053427636623383, 0.0188087597489357, -0.10604535788297653, 0.08119209855794907, -0.039706774055957794, 0.10492904484272003, -0.0465073324739933, 0.021175747737288475, -0.06715419143438339, 0.05657036975026131, 0.029329776763916016, 0.06641344726085663, -0.03995629400014877, -0.015387509018182755, -0.13476423919200897, -0.08078652620315552, -0.051864996552467346, 0.06110984459519386, -0.029332837089896202, 0.12969046831130981, 0.0343843512237072, -0.05065774545073509, 0.037191297858953476, 0.2283697873353958, -0.07177092880010605, -0.12098223716020584, -0.07869213074445724, 0.1376986801624298, 0.03285656496882439, 0.09408385306596756, -0.034214604645967484, 0.006242067087441683, -0.08157456666231155, 0.35993877053260803, 0.3087821304798126, -0.08314294368028641, 0.012922192923724651, 0.03663792088627815, 0.0452866405248642, 0.1386938840150833, 0.1137879341840744, 0.11453606933355331, 0.3082309067249298, -0.05063360556960106, -0.018793679773807526, -0.02299986593425274, -0.04332759231328964, -0.08599779009819031, -0.012360929511487484, 0.06242046132683754, -0.09224244952201843, -0.00671487208455801, 0.09801549464464188, -0.23524680733680725, 0.11387697607278824, -0.16008077561855316, -0.16144464910030365, -0.06041552871465683, -0.03427143394947052, 0.03819001466035843, 0.03489045798778534, 0.06041667237877846, -0.010501054115593433, -0.06243423372507095, 0.11810670793056488, 0.008010400459170341, -0.1918177455663681, 0.03386513516306877, 0.07309862971305847, -0.04660934954881668, -0.09122659265995026, -0.0037246134597808123, 0.11158318817615509, 0.049543119966983795, 0.042860083281993866, -0.0071420022286474705, 0.06784237176179886, -0.0420810766518116, -0.047495488077402115, 0.06023852154612541, 0.028335001319646835, 0.02456566132605076, -0.13503380119800568, 0.05809290334582329, -0.15381069481372833, 0.037022389471530914, 0.023241693153977394, -0.0496002621948719, -0.022509541362524033, 0.057498540729284286, -0.059836503118276596, 0.05670388415455818, 0.08588553220033646, -0.008465097285807133, 0.0002781763323582709, -0.03314504027366638, 0.005212750285863876, -0.005909061059355736, -0.07677843421697617, -0.08093036711215973, -0.17509816586971283, -0.0863414779305458, 0.10275807231664658, -0.0018630705308169127, -0.19636419415473938, 0.00679796515032649, -0.12277758866548538, 0.05950293317437172, -0.1510694921016693, 0.11400853842496872, 0.08233798295259476, 0.033515334129333496, -0.0005182322347536683, -0.020464923232793808, 0.06230122596025467, 0.09509553760290146, -0.12826597690582275, -0.07338797301054001 ]
null
null
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
text-generation
hama/Harry_Bot
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Harry Potter DialoGPT Model
[ "# Harry Potter DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry Potter DialoGPT Model" ]
[ 51, 8 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Potter DialoGPT Model" ]
[ -0.0009023238671943545, 0.07815738022327423, -0.006546166725456715, 0.07792752981185913, 0.10655936598777771, 0.048972971737384796, 0.17639793455600739, 0.12185695022344589, 0.016568755730986595, -0.04774167761206627, 0.11647630482912064, 0.2130284160375595, -0.002118367003276944, 0.024608047679066658, -0.05022026598453522, -0.3065771162509918, 0.0474756620824337, 0.014356585219502449, -0.07174845039844513, 0.11724270135164261, 0.09064973145723343, -0.046179238706827164, 0.08330509811639786, -0.009135239757597446, -0.13198648393154144, -0.039482954889535904, 0.019292812794446945, -0.11745545268058777, 0.1662212759256363, 0.05298272892832756, 0.02469746209681034, -0.008447164669632912, -0.06598151475191116, -0.15036040544509888, 0.037190426141023636, -0.027472136542201042, -0.01080626156181097, 0.05462246760725975, 0.023526115342974663, -0.07521048933267593, 0.170567125082016, 0.17678891122341156, 0.0833497866988182, 0.0349111407995224, -0.14917024970054626, -0.045548245310783386, 0.008950977586209774, 0.05421316996216774, -0.017893504351377487, 0.09349167346954346, -0.019903047010302544, 0.11801653355360031, -0.04491448402404785, 0.09210366010665894, 0.15255063772201538, -0.4016275703907013, -0.027563704177737236, 0.08920855820178986, 0.05989706888794899, 0.12076901644468307, -0.10560955852270126, 0.03972794860601425, -0.0039703017100691795, 0.01236654631793499, -0.014540530741214752, -0.08304883539676666, -0.07308239489793777, 0.032504837960004807, -0.1272556483745575, 0.008525865152478218, 0.23756256699562073, -0.10643257945775986, 0.037069112062454224, -0.09791990369558334, -0.07414398342370987, 0.048336777836084366, -0.053761593997478485, -0.081727035343647, -0.054839808493852615, 0.06347949057817459, 0.004366500303149223, -0.06301609426736832, -0.08326146006584167, -0.0006536149303428829, -0.12781435251235962, 0.17595994472503662, 0.061243366450071335, 0.041611745953559875, -0.21322020888328552, 0.08940251916646957, 0.04477722570300102, -0.04711297154426575, 0.007116159424185753, -0.11796226352453232, 0.04023287072777748, 0.005483259446918964, -0.03256071358919144, -0.021854614838957787, 0.0393419973552227, 0.13909944891929626, -0.01777748204767704, 0.03252175822854042, 0.006831915583461523, 0.05811219662427902, 0.08162496984004974, 0.02222144603729248, 0.019291909411549568, -0.0818009302020073, 0.019385190680623055, -0.08128736168146133, -0.0030400939285755157, -0.048940129578113556, -0.17071883380413055, -0.07477642595767975, 0.052610911428928375, 0.020047198981046677, 0.03746970370411873, 0.08054786175489426, -0.0017944995779544115, -0.05560554191470146, 0.03284840285778046, 0.01671096310019493, -0.020622212439775467, -0.010361049324274063, -0.02412462793290615, 0.19123271107673645, 0.019619356840848923, 0.014111656695604324, -0.12379156798124313, 0.10023640841245651, -0.08179095387458801, 0.0037731381598860025, 0.02743307314813137, -0.04204464703798294, -0.004716555587947369, 0.02917117439210415, 0.023101668804883957, -0.1252521574497223, -0.1099385917186737, -0.0030569476075470448, -0.012054097838699818, -0.036421261727809906, -0.10490952432155609, -0.08483029156923294, -0.012153145857155323, 0.0449371263384819, -0.013397793285548687, 0.007936403155326843, -0.05143149942159653, 0.0985720232129097, -0.0514979362487793, 0.09873400628566742, -0.08342572301626205, 0.06359215080738068, -0.09124887734651566, -0.061886150389909744, -0.11452563107013702, 0.05216052383184433, 0.012905281968414783, 0.066250741481781, 0.016998225823044777, -0.044836658984422684, -0.014836243353784084, 0.05253177136182785, -0.07656687498092651, 0.1940697431564331, -0.041674621403217316, -0.12459053844213486, 0.24146439135074615, -0.09138800948858261, -0.1802034229040146, 0.12973085045814514, -0.022254703566432, 0.08523941785097122, 0.12802475690841675, 0.20380465686321259, -0.00019822151807602495, -0.01302915159612894, 0.07281201332807541, 0.07031642645597458, -0.09803894907236099, 0.06239739805459976, 0.029653839766979218, -0.008071083575487137, -0.08906278014183044, 0.05762826278805733, 0.046033453196287155, -0.010650773532688618, -0.035073768347501755, -0.001896020956337452, -0.012895751744508743, -0.022185025736689568, 0.14126582443714142, -0.02006692811846733, 0.1300428807735443, -0.06926563382148743, -0.03515486419200897, -0.009500149637460709, 0.03533667325973511, -0.04091939330101013, 0.08151165395975113, -0.0436173714697361, 0.10586477071046829, 0.09034156054258347, 0.053724925965070724, -0.13120363652706146, 0.00466286763548851, -0.015246815048158169, 0.17014820873737335, 0.08964069187641144, 0.05222717300057411, 0.06265474855899811, -0.0020888058934360743, -0.06708643585443497, 0.045407816767692566, 0.13778303563594818, -0.037020038813352585, -0.12218865007162094, -0.1755627691745758, 0.051157694309949875, -0.045444171875715256, 0.10855234414339066, -0.10010123997926712, 0.022670533508062363, -0.055906031280756, 0.07772238552570343, -0.024998966604471207, 0.020512236282229424, -0.0013405600329861045, -0.021700702607631683, -0.08356887847185135, -0.002377772703766823, 0.08597290515899658, -0.02048647589981556, -0.06707409024238586, 0.16556480526924133, -0.16400809586048126, 0.1631954461336136, 0.2116095870733261, -0.28542569279670715, -0.005696662236005068, -0.15163889527320862, -0.0208092350512743, 0.019645055755972862, 0.07834604382514954, 0.026225795969367027, 0.2044338881969452, -0.012928472831845284, 0.16565458476543427, -0.05699567869305611, -0.07730039209127426, -0.06881127506494522, -0.048101142048835754, 0.013522743247449398, 0.09095205366611481, 0.04542696103453636, -0.11962861567735672, 0.13119758665561676, 0.1054433062672615, 0.06484298408031464, 0.12711186707019806, 0.1030748188495636, -0.008113685995340347, 0.07252490520477295, -0.03624548763036728, -0.03462279960513115, -0.09254947304725647, -0.30446043610572815, -0.04840317741036415, 0.0939924493432045, 0.007963384501636028, 0.09285714477300644, -0.0919896736741066, -0.03311870992183685, 0.006042704917490482, 0.009473444893956184, 0.028337622061371803, 0.09653715789318085, 0.013490920886397362, 0.15320514142513275, -0.008011690340936184, -0.03430786728858948, 0.05891305208206177, 0.017982570454478264, -0.09147711098194122, 0.17280617356300354, -0.17050009965896606, -0.27190929651260376, -0.06990014761686325, -0.21745692193508148, -0.013139115646481514, 0.05258983001112938, 0.0786920040845871, -0.11818131804466248, -0.018352627754211426, -0.006239492911845446, 0.05685517191886902, -0.2425733357667923, 0.0004911290016025305, -0.1354890614748001, 0.0501418262720108, -0.1974833607673645, -0.09718500077724457, -0.02271542325615883, -0.013450481928884983, -0.0464281290769577, 0.13365240395069122, -0.1448695808649063, -0.011572926305234432, 0.2329535037279129, 0.032479673624038696, 0.027794739231467247, -0.05020907148718834, 0.19788463413715363, -0.0958966314792633, -0.023973820731043816, 0.11024576425552368, -0.05038975924253464, 0.04834126681089401, 0.06649978458881378, -0.012981836684048176, -0.08557141572237015, 0.023789849132299423, -0.068336620926857, -0.03150583803653717, -0.27926525473594666, -0.0930178239941597, -0.09319330751895905, 0.11305391043424606, 0.04079577326774597, 0.06421639025211334, 0.16545771062374115, 0.05191578343510628, -0.024325082078576088, -0.03006586618721485, 0.11609793454408646, 0.12905290722846985, 0.2277202159166336, -0.06067761778831482, 0.10221996158361435, 0.009445492178201675, -0.08203992247581482, 0.06062209978699684, 0.056782789528369904, 0.06324724853038788, 0.02584579586982727, 0.03694582358002663, -0.030939655378460884, 0.1121687963604927, 0.12571842968463898, 0.05258069559931755, 0.0481170229613781, 0.0002127334737451747, -0.0561506561934948, -0.008168719708919525, -0.05726633965969086, 0.06774696707725525, 0.061340972781181335, -0.12918008863925934, -0.08061543852090836, 0.0011613310780376196, 0.06660808622837067, -0.016230419278144836, 0.06823775917291641, -0.13560809195041656, -0.03582429885864258, 0.0790911465883255, -0.07693151384592056, -0.14156894385814667, 0.11972879618406296, -0.026570770889520645, -0.19904157519340515, 0.05265914276242256, 0.007704653777182102, 0.0908159390091896, -0.06360849738121033, 0.05343840271234512, -0.13023801147937775, -0.12935101985931396, -0.018437571823596954, 0.07945099472999573, -0.3450873792171478, 0.13536721467971802, -0.013286802917718887, -0.02876877970993519, -0.06474969536066055, -0.02640824392437935, 0.013905409723520279, 0.12719078361988068, 0.08667250722646713, 0.0008821099763736129, 0.0991629809141159, 0.03823768347501755, 0.04188435152173042, -0.002011700300499797, 0.10950417071580887, 0.0050011589191854, 0.004797275178134441, -0.04982118681073189, 0.007274609990417957, -0.05164213851094246, -0.07472953200340271, 0.08393982797861099, -0.20678792893886566, 0.09087453782558441, -0.03378438204526901, 0.08427679538726807, 0.04304937273263931, -0.018965769559144974, -0.1001204177737236, 0.19745583832263947, -0.012206900864839554, -0.11405988782644272, -0.07517550885677338, -0.02810264565050602, 0.09103139489889145, -0.013817726634442806, 0.012886416167020798, -0.045470476150512695, 0.032183047384023666, -0.1263762265443802, -0.1597503274679184, 0.08734500408172607, -0.04441224783658981, -0.10894393920898438, -0.025462759658694267, 0.20382575690746307, -0.007266622502356768, 0.08242089301347733, 0.01605331338942051, 0.010653935372829437, -0.18066231906414032, -0.04018142446875572, 0.02645772136747837, -0.0016437612939625978, 0.005979063920676708, 0.047698814421892166, 0.019091911613941193, 0.06207629665732384, -0.1069745197892189, -0.013920160941779613, 0.3158324360847473, 0.15978319942951202, -0.00912671908736229, 0.14943915605545044, 0.1093616932630539, -0.08669080585241318, -0.17238758504390717, -0.1171615794301033, -0.1210922971367836, -0.08425768464803696, -0.10681738704442978, -0.1525043100118637, 0.09535340964794159, -0.03392014652490616, 0.03498011827468872, 0.14615866541862488, -0.280263751745224, -0.10949636250734329, 0.13820378482341766, 0.010744688101112843, 0.3510635495185852, -0.12303631007671356, -0.044944874942302704, -0.06214528530836105, -0.16933435201644897, 0.08021392673254013, -0.031203703954815865, 0.11581093072891235, -0.0744495838880539, 0.19395925104618073, 0.01719796098768711, 0.014287159778177738, 0.0916559100151062, 0.05038322135806084, -0.05808406323194504, -0.07368700206279755, -0.10248131304979324, 0.010812131687998772, 0.03546109423041344, 0.010252019390463829, -0.008802837692201138, 0.0211968794465065, -0.11341743916273117, -0.050869911909103394, -0.06302189081907272, 0.0072614275850355625, -0.01001308299601078, -0.042155615985393524, -0.05533592775464058, -0.022557416930794716, -0.020093943923711777, 0.02266426384449005, 0.14185629785060883, -0.07527699321508408, 0.18586260080337524, 0.02357078716158867, 0.1586609035730362, -0.11956068128347397, -0.06724818795919418, -0.029193658381700516, -0.05280323326587677, 0.06468886137008667, -0.08884575963020325, -0.027708567678928375, 0.1332162618637085, -0.01903904788196087, 0.04655366763472557, 0.12936700880527496, 0.02046884410083294, 0.015383756719529629, 0.034968774765729904, -0.2578005790710449, -0.07463036477565765, -0.03505445644259453, -0.012416874058544636, 0.05272092670202255, 0.05525677278637886, 0.19735674560070038, -0.03551921248435974, -0.08521962910890579, 0.020131373777985573, 0.02735883742570877, -0.02776256389915943, 0.10749414563179016, 0.019579345360398293, -0.004837906453758478, -0.16151933372020721, 0.08257976174354553, -0.005964108742773533, -0.08297000825405121, 0.028665626421570778, 0.2024049311876297, -0.12141239643096924, -0.10309756547212601, -0.06804922968149185, 0.07315051555633545, -0.09220825880765915, 0.016043387353420258, -0.005091092549264431, -0.1521538347005844, 0.06916408240795135, 0.07598215341567993, 0.04075418785214424, 0.06513199955224991, -0.11743064224720001, -0.015730571001768112, -0.04170290008187294, -0.002195435343310237, 0.03521120920777321, 0.01863143965601921, -0.057492829859256744, 0.15846455097198486, -0.0676199421286583, 0.08538917452096939, -0.0744810476899147, -0.1058846190571785, -0.1395980566740036, 0.04660497233271599, -0.08038312196731567, -0.07247276604175568, -0.12832807004451752, -0.052204377949237823, -0.0067099276930093765, -0.03388519585132599, 0.006552806124091148, -0.06627799570560455, -0.10922821611166, 0.01822470687329769, -0.00743203004822135, -0.009385870769619942, -0.06096754968166351, 0.026706209406256676, 0.06246216222643852, -0.039788868278265, 0.15730851888656616, 0.22509248554706573, -0.13591648638248444, 0.11564400047063828, -0.09797432273626328, -0.105463907122612, 0.046008042991161346, 0.009427277371287346, 0.03594303876161575, 0.0503489226102829, -0.03594081476330757, 0.0044484552927315235, 0.03905477747321129, 0.08074651658535004, 0.08456914126873016, -0.06776505708694458, 0.020801106467843056, -0.05122765153646469, -0.14904099702835083, -0.016655439510941505, -0.0464773029088974, 0.06876829266548157, -0.006725262850522995, 0.11020535975694656, -0.0515950471162796, 0.07739507406949997, -0.07558431476354599, 0.050614211708307266, 0.021146971732378006, -0.14688286185264587, -0.006612539757043123, -0.07093682140111923, 0.042144812643527985, -0.008834975771605968, 0.20241086184978485, -0.03228091076016426, 0.010342049412429333, 0.033811055123806, 0.06203942745923996, -0.01957780309021473, 0.009357001632452011, 0.2014283686876297, 0.12640917301177979, -0.08496357500553131, -0.02679651789367199, 0.06793134659528732, 0.07248228788375854, 0.07093550264835358, 0.10807815194129944, -0.015352966263890266, 0.028434239327907562, 0.07829629629850388, -0.060215238481760025, 0.07576877623796463, -0.08603982627391815, -0.11668483167886734, 0.05793621391057968, 0.012955795042216778, -0.055695828050374985, 0.20305177569389343, 0.19142870604991913, -0.026278704404830933, 0.018410727381706238, -0.0029499190859496593, -0.10117456316947937, -0.15619947016239166, -0.05423750728368759, -0.07170962542295456, -0.1319410353899002, -0.004549739416688681, -0.16646917164325714, 0.022016216069459915, -0.01132756657898426, 0.09506805986166, -0.06855440139770508, -0.01345991250127554, 0.1364889293909073, -0.1055467277765274, 0.0847758799791336, -0.024517204612493515, 0.07877567410469055, -0.03746940940618515, -0.018209461122751236, -0.10342709720134735, 0.007514837197959423, 0.01131442841142416, 0.06840907037258148, -0.10897937417030334, 0.02432350255548954, -0.12208317965269089, -0.08617185056209564, -0.026142612099647522, 0.09279687702655792, -0.0403008833527565, 0.15116846561431885, 0.02645145356655121, -0.06710928678512573, -0.004313822835683823, 0.2646709978580475, -0.08046227693557739, -0.08319197595119476, -0.030799202620983124, 0.2152107208967209, 0.04053696244955063, 0.06396269053220749, 0.019140036776661873, 0.038027774542570114, -0.07184682041406631, 0.2957373559474945, 0.34401440620422363, -0.1318037211894989, -0.007773484103381634, 0.04225075617432594, 0.04406323283910751, 0.14687567949295044, 0.07998795062303543, 0.11360671371221542, 0.2849363386631012, -0.09197647124528885, 0.016657205298542976, -0.04230864346027374, -0.01424806285649538, -0.06908884644508362, 0.045314885675907135, 0.08216670155525208, -0.09241747111082077, -0.022950593382120132, 0.08125471323728561, -0.29741767048835754, 0.10791494697332382, -0.15600289404392242, -0.14948409795761108, -0.05027429759502411, -0.008771711029112339, 0.014683255925774574, 0.019041186198592186, 0.09663030505180359, 0.025651484727859497, -0.07275258749723434, 0.07816889137029648, 0.024486342445015907, -0.23020237684249878, -0.01345184724777937, 0.1456068754196167, -0.06789913028478622, -0.025938833132386208, -0.021313713863492012, 0.051610056310892105, 0.05763651058077812, 0.09027529507875443, -0.03809558227658272, -0.0746568813920021, -0.007141788024455309, -0.022818787023425102, 0.01914946548640728, 0.0597183033823967, 0.06841408461332321, -0.0920223817229271, 0.1167774423956871, -0.07350476831197739, 0.0650370642542839, 0.037623800337314606, -0.022277191281318665, 0.0018526542698964477, 0.013183658011257648, -0.06512464582920074, 0.05533479526638985, 0.1295643299818039, -0.025459708645939827, -0.002524374984204769, -0.028180841356515884, -0.0767761766910553, -0.024015206843614578, -0.04643676429986954, -0.09101243317127228, -0.18130090832710266, -0.12738600373268127, 0.041754670441150665, -0.03240608796477318, -0.2046082615852356, 0.0060346988029778, -0.1128578633069992, 0.03700976446270943, -0.14154092967510223, 0.10004086047410965, 0.07216610759496689, 0.004716616589576006, 0.006774604320526123, 0.0675399899482727, 0.045677728950977325, 0.14796748757362366, -0.16543124616146088, -0.04919974133372307 ]
null
null
transformers
# BArney DialoGPT Model
{"tags": ["conversational"]}
text-generation
hama/barney_bot
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# BArney DialoGPT Model
[ "# BArney DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# BArney DialoGPT Model" ]
[ 51, 9 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# BArney DialoGPT Model" ]
[ -0.018189867958426476, 0.06438262015581131, -0.0065445248037576675, 0.023112254217267036, 0.12555621564388275, -0.007072750013321638, 0.14931634068489075, 0.12332622706890106, -0.00392430555075407, -0.041092149913311005, 0.1177300214767456, 0.15231367945671082, -0.01044540200382471, 0.1086677610874176, -0.0637977123260498, -0.29379332065582275, 0.04833056405186653, 0.054141491651535034, 0.07257690280675888, 0.1148514449596405, 0.08986857533454895, -0.03951023519039154, 0.07518621534109116, 0.00871075876057148, -0.11165173351764679, 0.02467147260904312, 0.008655570447444916, -0.1071401983499527, 0.10931356996297836, 0.0593249574303627, 0.04744341969490051, 0.02370280772447586, -0.05556097626686096, -0.14642333984375, 0.038893382996320724, -0.022800913080573082, -0.03871435672044754, 0.043106455355882645, 0.0029055196791887283, -0.1054704338312149, 0.12070855498313904, 0.09930270165205002, -0.0008349779527634382, 0.030378691852092743, -0.1512206792831421, -0.0007897652685642242, 0.005775486584752798, 0.07132092863321304, 0.0644339919090271, 0.10185834020376205, -0.04466403275728226, 0.09864088147878647, -0.06948880106210709, 0.11556459218263626, 0.11244881898164749, -0.31060275435447693, -0.018807146698236465, 0.10491704195737839, 0.051169253885746, 0.06846849620342255, -0.04327905923128128, 0.07219040393829346, 0.018430713564157486, 0.00142584927380085, -0.028510987758636475, -0.07215569913387299, -0.06988293677568436, 0.020657580345869064, -0.08530541509389877, -0.023449884727597237, 0.21293905377388, -0.043924979865550995, 0.05235164612531662, -0.06944578886032104, -0.0915634036064148, -0.027848724275827408, -0.05039186775684357, -0.0185171477496624, -0.08497467637062073, 0.07957275956869125, -0.026433425024151802, -0.1124100387096405, -0.11664021760225296, -0.015841549262404442, -0.16677457094192505, 0.1292244791984558, 0.031087679788470268, 0.033938437700271606, -0.2129606306552887, 0.11289779096841812, 0.02760954760015011, -0.09275450557470322, 0.009250029921531677, -0.08269871771335602, 0.01407852303236723, 0.008303445763885975, -0.019168702885508537, 0.02561746910214424, 0.06932541728019714, 0.1543429046869278, -0.022832589223980904, 0.015391025692224503, -0.04007842764258385, 0.048696354031562805, 0.028933614492416382, 0.07296320796012878, -0.013227902352809906, -0.0861540287733078, 0.04429219290614128, -0.09131819009780884, 0.007454403210431337, -0.052086926996707916, -0.18760044872760773, -0.03823331743478775, 0.055141985416412354, 0.05638963729143143, 0.029679033905267715, 0.11289384216070175, -0.02306833676993847, -0.039023809134960175, 0.062306225299835205, -0.01717212051153183, -0.015232758596539497, 0.01870819181203842, -0.0007812372059561312, 0.09574233740568161, 0.04247904568910599, 0.0527496263384819, -0.11525779962539673, 0.009959124028682709, -0.051829319447278976, -0.006421125028282404, -0.01879364252090454, -0.044537536799907684, -0.01209021545946598, -0.025928940623998642, 0.012211802415549755, -0.14341069757938385, -0.1901692897081375, 0.013174415566027164, -0.01839410327374935, -0.05164026468992233, -0.0883026272058487, -0.1134948655962944, -0.01905665546655655, 0.027995215728878975, -0.06333759427070618, -0.019207682460546494, -0.05340972915291786, 0.06918647140264511, -0.024035995826125145, 0.09208353608846664, -0.11347505450248718, 0.06517267972230911, -0.10477422177791595, -0.020641719922423363, -0.0843503475189209, 0.13799351453781128, 0.010759067721664906, 0.07410779595375061, -0.028583742678165436, -0.021421808749437332, -0.10190209746360779, 0.05995611101388931, -0.015282202512025833, 0.22302204370498657, -0.07935530692338943, -0.10896817594766617, 0.2865791320800781, -0.043049074709415436, -0.09890004247426987, 0.1388922482728958, -0.021102532744407654, 0.09238251298666, 0.14504563808441162, 0.18808943033218384, 0.03680691495537758, 0.016831617802381516, 0.10419359803199768, 0.08921203017234802, -0.08581217378377914, -0.006442568264901638, 0.009650452062487602, -0.020045068114995956, -0.08788971602916718, 0.0356239378452301, 0.09873147308826447, 0.07941728085279465, -0.04958247393369675, -0.022490428760647774, 0.005434019025415182, 0.005533063784241676, 0.06733196973800659, -0.03151461482048035, 0.12459499388933182, -0.02612927183508873, -0.05462639406323433, 0.032082706689834595, 0.01789499633014202, -0.0552256740629673, 0.03975766524672508, -0.077391117811203, 0.09276311099529266, -0.015695808455348015, 0.05305004119873047, -0.12990237772464752, -0.033854469656944275, -0.039091698825359344, 0.15326082706451416, 0.057242512702941895, 0.09020764380693436, 0.06039921194314957, -0.03865411877632141, -0.019571613520383835, 0.0293109193444252, 0.17882776260375977, -0.020434731617569923, -0.07946587353944778, -0.09591928124427795, 0.09464089572429657, -0.06346884369850159, 0.10946449637413025, -0.06994696706533432, 0.009381772950291634, -0.006794886663556099, 0.11078724265098572, -0.01608060859143734, 0.0261509008705616, 0.022054176777601242, -0.016326067969202995, -0.06360021233558655, 0.003539364319294691, 0.10453047603368759, -0.006344320252537727, -0.08320922404527664, 0.23150400817394257, -0.1766515076160431, 0.10689347237348557, 0.17824949324131012, -0.18373820185661316, 0.007609559688717127, -0.12503276765346527, -0.03074536845088005, -0.0001573595218360424, 0.06655725836753845, -0.03839810937643051, 0.23875419795513153, -0.016088418662548065, 0.17654669284820557, -0.05026990920305252, -0.0505053848028183, -0.032728731632232666, -0.04295727610588074, 0.011463422328233719, 0.10342079401016235, 0.06364265829324722, -0.1850733757019043, 0.15827001631259918, 0.0716816708445549, 0.030080953612923622, 0.2233564555644989, 0.04324570670723915, -0.005267091561108828, 0.04939991608262062, 0.011415766552090645, -0.045411013066768646, -0.06888821721076965, -0.30424705147743225, -0.036744244396686554, 0.06584638357162476, 0.016085371375083923, 0.11790899932384491, -0.08365384489297867, -0.01988530531525612, -0.007575630210340023, -0.032795362174510956, 0.028202101588249207, 0.10601278394460678, 0.03186999261379242, 0.11196541786193848, -0.00776730477809906, -0.07349541783332825, 0.05932646617293358, 0.0179726742208004, -0.08276678621768951, 0.1778140813112259, -0.11649277806282043, -0.30270636081695557, -0.11994478106498718, -0.17354562878608704, -0.041244007647037506, 0.047390975058078766, 0.10260579735040665, -0.08456527441740036, -0.011916227638721466, -0.022953106090426445, 0.07041484862565994, -0.07316514849662781, 0.005793524440377951, -0.029220854863524437, -0.005793802905827761, -0.11970142275094986, -0.09946854412555695, -0.05231054127216339, -0.045129768550395966, -0.051082588732242584, 0.10539710521697998, -0.1576053500175476, 0.011968881823122501, 0.20984432101249695, 0.04509497061371803, 0.04836937412619591, -0.046880073845386505, 0.2052076905965805, -0.08627752214670181, 0.00963178277015686, 0.1382116675376892, -0.05539367347955704, 0.05882421135902405, 0.13264650106430054, -0.018471799790859222, -0.07414385676383972, 0.035399179905653, -0.02873658761382103, -0.07590360939502716, -0.20810270309448242, -0.12793689966201782, -0.11813130974769592, 0.09763900190591812, 0.0284428708255291, 0.0433787927031517, 0.1493644118309021, 0.05696367099881172, -0.04659515619277954, 0.0003420822322368622, 0.06616303324699402, 0.09225104004144669, 0.2570556700229645, -0.06685587763786316, 0.14163067936897278, -0.013141386210918427, -0.16090667247772217, 0.07553117722272873, 0.05676232650876045, 0.09164490550756454, 0.05130714923143387, 0.09022068977355957, 0.008600927889347076, 0.043738361448049545, 0.13047170639038086, 0.06140964850783348, 0.0008617010898888111, -0.029847724363207817, -0.03911781683564186, -0.04163220152258873, -0.008425578474998474, 0.04121651500463486, 0.08081746846437454, -0.1319800466299057, -0.0014436319470405579, -0.029816659167408943, 0.06345326453447342, 0.06443417817354202, 0.10186278820037842, -0.2025986909866333, -0.02767932415008545, 0.0786282867193222, -0.030400529503822327, -0.11400853097438812, 0.07366502285003662, 0.01798510178923607, -0.11063845455646515, 0.02749672904610634, -0.005243206396698952, 0.10855143517255783, -0.08254760503768921, 0.06625612080097198, -0.12165527045726776, -0.04816652834415436, -0.008446704596281052, 0.09411841630935669, -0.25525954365730286, 0.19756117463111877, -0.010574456304311752, -0.043618157505989075, -0.0951911211013794, -0.009703032672405243, 0.017359526827931404, 0.07386787980794907, 0.10204386711120605, -0.0088278166949749, 0.06471811234951019, -0.003748273476958275, -0.07527022063732147, 0.022398311644792557, 0.08124098926782608, -0.05065973848104477, -0.00897810235619545, -0.03662409633398056, -0.012078777886927128, -0.007908587343990803, -0.08247479796409607, -0.002648051828145981, -0.19250978529453278, 0.06788244843482971, 0.08865474164485931, 0.05328524112701416, 0.03213294968008995, -0.043382298201322556, -0.04607577994465828, 0.2646890878677368, -0.01354682445526123, -0.09706337749958038, -0.07888135313987732, -0.016480473801493645, 0.07539743185043335, -0.05914110690355301, 0.0319981686770916, -0.06614658981561661, 0.01978498324751854, -0.07280334830284119, -0.17440125346183777, 0.11599794030189514, -0.08588004112243652, -0.03739580139517784, -0.030732903629541397, 0.2333391010761261, -0.004408569540828466, 0.014919320121407509, 0.05453295260667801, -0.004885849077254534, -0.10162485390901566, -0.09228284657001495, -0.03394763916730881, 0.018742233514785767, 0.0034938687458634377, 0.03501226007938385, -0.03033803030848503, -0.07694695889949799, -0.06351512670516968, -0.013042429462075233, 0.3056730329990387, 0.142752006649971, -0.04447650909423828, 0.1716713160276413, 0.12605303525924683, -0.07007104903459549, -0.23921345174312592, -0.10827804356813431, -0.08000178635120392, -0.032826367765665054, -0.07637186348438263, -0.14423561096191406, 0.07444528490304947, -0.041160546243190765, -0.012501589953899384, 0.09288185834884644, -0.26683712005615234, -0.11806001514196396, 0.1936928629875183, -0.03458767384290695, 0.4106944799423218, -0.08837638050317764, -0.08738043159246445, -0.04384331405162811, -0.12496583163738251, 0.1260506808757782, -0.007608351763337851, 0.11736416816711426, -0.013222143054008484, 0.1729370504617691, 0.05332174152135849, -0.006587778218090534, 0.07294991612434387, 0.02984434925019741, -0.05207910016179085, -0.09412969648838043, -0.07318510115146637, 0.009945962578058243, 0.016086019575595856, 0.03651123866438866, -0.045295607298612595, 0.03808516636490822, -0.14089791476726532, -0.0603787824511528, -0.07998210191726685, 0.038098305463790894, 0.03093791753053665, -0.0639493390917778, -0.010541277937591076, -0.04078088700771332, -0.015973422676324844, 0.018298398703336716, 0.14762263000011444, -0.09666449576616287, 0.11828737705945969, 0.0998658686876297, 0.13517355918884277, -0.11285784095525742, 0.025910671800374985, -0.042869482189416885, -0.06124964728951454, 0.059775326400995255, -0.07401692867279053, 0.02399417944252491, 0.10850165039300919, -0.02850060909986496, 0.08114201575517654, 0.08896525949239731, -0.015218090265989304, 0.022097820416092873, 0.09631228446960449, -0.25478845834732056, -0.0726572647690773, -0.06647217273712158, -0.02934461645781994, 0.066744863986969, 0.08370111882686615, 0.2093946933746338, -0.011547202244400978, -0.034657012671232224, 0.01506105251610279, 0.01813429221510887, -0.052419036626815796, 0.0802602544426918, -0.012824482284486294, 0.010110527276992798, -0.14436528086662292, 0.04470972716808319, 0.00042671547271311283, -0.07129253447055817, 0.031769949942827225, 0.14416445791721344, -0.11156868189573288, -0.11444845795631409, -0.09056466072797775, 0.13286352157592773, -0.11714676022529602, 0.003196318633854389, -0.03331240266561508, -0.11206880211830139, 0.08056728541851044, 0.11725408583879471, 0.04868120700120926, 0.07246100902557373, -0.10011420398950577, -0.018214739859104156, -0.02041177824139595, 0.017600690945982933, 0.05244415998458862, -0.017744850367307663, -0.02713901922106743, 0.0462474524974823, -0.0339566171169281, 0.09245850145816803, -0.09127169847488403, -0.11155571043491364, -0.16611118614673615, 0.05074460804462433, -0.1446237564086914, -0.0729370266199112, -0.1148756742477417, -0.03928633779287338, -0.008607316762208939, -0.04514096677303314, -0.03959199786186218, -0.03818931430578232, -0.09792168438434601, 0.03815772384405136, -0.037572599947452545, 0.02780776098370552, -0.08158109337091446, 0.02591814287006855, 0.04747040569782257, -0.028679093345999718, 0.16842123866081238, 0.15463808178901672, -0.10662870854139328, 0.06424354761838913, -0.1623537242412567, -0.06181344389915466, 0.10786133259534836, -0.0009796798694878817, 0.055790014564991, 0.03781173378229141, 0.014291277155280113, 0.06529677659273148, 0.06365872174501419, 0.04886236786842346, 0.06314283609390259, -0.08374712616205215, 0.04017636924982071, -0.039427462965250015, -0.12383120507001877, -0.03734709694981575, -0.03565213456749916, 0.017361097037792206, 0.04330110177397728, 0.09542208909988403, -0.06486055999994278, 0.07138680666685104, -0.06131921708583832, 0.029775355011224747, 0.010437095537781715, -0.15510010719299316, -0.004883341491222382, -0.09310366958379745, 0.03744802996516228, 0.016585733741521835, 0.21149596571922302, 0.008441878482699394, 0.004707683343440294, 0.016015827655792236, 0.04221058636903763, 0.03819699212908745, 0.00484837731346488, 0.19000482559204102, 0.10176907479763031, -0.055429648607969284, -0.09722363948822021, 0.07954510301351547, 0.03993717208504677, 0.05226483941078186, 0.08057058602571487, -0.005616720765829086, -0.016672469675540924, 0.09402946382761002, 0.007631769869476557, 0.04245428740978241, -0.1439696103334427, -0.14864280819892883, -0.035548966377973557, 0.05086752027273178, -0.0565190464258194, 0.11166403442621231, 0.17569714784622192, -0.02917717956006527, 0.016602568328380585, 0.010611629113554955, -0.06575844436883926, -0.17233753204345703, -0.1974077969789505, -0.07520808279514313, -0.12680694460868835, 0.010040286928415298, -0.12993654608726501, 0.0347118154168129, 0.016501814126968384, 0.09662678837776184, -0.055947378277778625, 0.08013096451759338, 0.07349374145269394, -0.11323823034763336, 0.08040689677000046, -0.025950372219085693, 0.0886399894952774, -0.02781466208398342, -0.004732758272439241, -0.07118169218301773, 0.03468712046742439, 0.005128090735524893, 0.041744835674762726, -0.027863724157214165, 0.01043977215886116, -0.11951574683189392, -0.0768209919333458, -0.05647888407111168, 0.07027692347764969, -0.0023059649392962456, 0.15876254439353943, 0.03034086711704731, -0.04691397398710251, 0.0340329073369503, 0.21887752413749695, -0.06871354579925537, -0.10629869997501373, -0.06926364451646805, 0.20533114671707153, 0.00880493875592947, 0.10088947415351868, -0.04221275448799133, 0.009898776188492775, -0.07098539173603058, 0.3234427273273468, 0.3011553883552551, -0.0828309953212738, 0.011889147572219372, 0.013303577899932861, 0.04269968345761299, 0.11621712148189545, 0.08619271963834763, 0.10696645826101303, 0.2991522550582886, -0.04721897840499878, -0.0361173152923584, -0.003099585883319378, -0.03537491708993912, -0.07701551169157028, 0.04953238368034363, 0.038996875286102295, -0.060382112860679626, -0.033386558294296265, 0.10433948785066605, -0.26350757479667664, 0.07133051753044128, -0.15859872102737427, -0.1847608983516693, -0.07540767639875412, 0.00021074386313557625, 0.10424730181694031, 0.026727093383669853, 0.07837013900279999, -0.003250235691666603, -0.07587379962205887, 0.041836414486169815, 0.010314001701772213, -0.20673976838588715, 0.002512355800718069, 0.0692274197936058, -0.042103271931409836, -0.0366363525390625, -0.03944350779056549, 0.05962550640106201, 0.08390600979328156, 0.06242945417761803, -0.027071721851825714, 0.02643091045320034, -0.010973691940307617, -0.037085629999637604, 0.02995096892118454, 0.04250631481409073, 0.010256240144371986, -0.08159579336643219, 0.0789746418595314, -0.11373107135295868, 0.05582685396075249, -0.016966991126537323, -0.02085649035871029, -0.03603838384151459, 0.018005795776844025, -0.062404565513134, 0.07841658592224121, 0.07076708972454071, -0.01510927826166153, -0.01127996202558279, -0.024768831208348274, -0.030754882842302322, -0.02793322317302227, -0.06342323869466782, -0.0962885245680809, -0.16160494089126587, -0.11467567086219788, 0.08128208667039871, 0.006665798835456371, -0.2020244300365448, 0.018649915233254433, -0.13173936307430267, 0.05862390995025635, -0.12895123660564423, 0.12403878569602966, 0.08295200765132904, 0.03031863085925579, 0.006967656314373016, -0.05188553035259247, 0.03837909549474716, 0.08002755790948868, -0.1472475677728653, -0.08460476249456406 ]
null
null
transformers
# me 101
{"tags": ["conversational"]}
text-generation
hama/me0.01
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# me 101
[ "# me 101" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# me 101" ]
[ 51, 3 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# me 101" ]
[ -0.038836318999528885, 0.027217404916882515, -0.006820776499807835, 0.004655676893889904, 0.1656612753868103, 0.022653864696621895, 0.11027619987726212, 0.11719764769077301, 0.0082860691472888, -0.027204833924770355, 0.16020262241363525, 0.18265913426876068, -0.018055519089102745, 0.09254514425992966, -0.0666799247264862, -0.27870965003967285, 0.056569792330265045, 0.03403543680906296, 0.016816331073641777, 0.11532242596149445, 0.0797891914844513, -0.05593480169773102, 0.0744110718369484, -0.04080822691321373, -0.14586451649665833, 0.00830825325101614, 0.03709309175610542, -0.1299397051334381, 0.12664885818958282, 0.03680986911058426, 0.056817810982465744, 0.012726809829473495, -0.05949903652071953, -0.1977742612361908, 0.036248579621315, -0.010177341289818287, -0.06620684266090393, 0.04265372455120087, 0.050756342709064484, -0.08257196098566055, 0.10166456550359726, 0.09372597932815552, -0.015588287264108658, 0.06818711012601852, -0.17690810561180115, -0.023247821256518364, -0.027695363387465477, 0.0206547062844038, 0.0631655603647232, 0.10469081252813339, -0.03920595720410347, 0.09571383148431778, -0.07116805762052536, 0.0926741510629654, 0.133368119597435, -0.339539110660553, -0.009817778132855892, 0.09556062519550323, 0.02406526915729046, 0.0873667448759079, -0.057305801659822464, 0.06313251703977585, 0.03640079125761986, 0.01948368363082409, -0.011861275881528854, -0.07574725151062012, -0.07068702578544617, 0.05137158930301666, -0.07250122725963593, -0.044325247406959534, 0.24157781898975372, -0.03528699651360512, 0.0706687718629837, -0.04886062070727348, -0.10633214563131332, -0.06123286113142967, -0.03477955609560013, 0.0020408639684319496, -0.055820588022470474, 0.08491044491529465, 0.009818541817367077, -0.09781168401241302, -0.1367785781621933, -0.028047744184732437, -0.16492417454719543, 0.13972236216068268, 0.012937542051076889, 0.03865443170070648, -0.18087151646614075, 0.09283493459224701, 0.0075513459742069244, -0.07494094222784042, 0.014529762789607048, -0.09077010303735733, 0.0316099151968956, 0.011597536504268646, -0.01685776747763157, -0.05602000653743744, 0.07612818479537964, 0.07749956846237183, -0.038520485162734985, 0.025314997881650925, -0.028531812131404877, 0.06787648797035217, 0.04344454035162926, 0.09729468077421188, 0.008445244282484055, -0.03797878324985504, 0.02102140709757805, -0.12052768468856812, 0.007996068336069584, -0.06629189103841782, -0.15123571455478668, 0.013808525167405605, 0.05847904831171036, 0.09644133597612381, -0.003500201040878892, 0.09773224592208862, -0.041036270558834076, -0.03283181041479111, 0.019457533955574036, -0.05038174241781235, 0.00988063495606184, 0.026206478476524353, 0.010210425592958927, 0.12354359030723572, -0.008777006529271603, 0.024097004905343056, -0.14292007684707642, 0.01010341290384531, -0.06587837636470795, 0.00814317911863327, -0.04231826215982437, -0.04186984896659851, 0.02925480157136917, -0.05248985067009926, -0.013111153617501259, -0.14849726855754852, -0.14716513454914093, -0.010327151976525784, -0.002382082398980856, -0.04620123282074928, -0.0718105360865593, -0.09987695515155792, -0.016504190862178802, 0.05470196157693863, -0.055608510971069336, -0.009202318266034126, -0.06411358714103699, 0.10070343315601349, -0.03128204867243767, 0.07360442727804184, -0.10553140938282013, 0.091016985476017, -0.1024373322725296, -0.014672795310616493, -0.06985459476709366, 0.059138067066669464, -0.013857783749699593, 0.08805524557828903, 0.017156321555376053, -0.00838638748973608, -0.0710090696811676, 0.045946359634399414, -0.04845866560935974, 0.22310401499271393, -0.0632714107632637, -0.10026691854000092, 0.26554906368255615, -0.043709803372621536, -0.13149233162403107, 0.11596053093671799, -0.0006397351389750838, 0.07635413855314255, 0.11346954852342606, 0.17801380157470703, -0.02802804484963417, 0.012226143851876259, 0.0756639838218689, 0.10188990831375122, -0.08806551247835159, -0.05269257351756096, 0.0060440110974013805, -0.0394974946975708, -0.09829432517290115, 0.031017854809761047, 0.10671992599964142, 0.05627201870083809, -0.038361940532922745, -0.03405747190117836, 0.0015668293926864862, -0.004204255528748035, 0.0869249776005745, -0.013743363320827484, 0.11302407085895538, -0.0919012725353241, -0.02731117233633995, -0.03688598796725273, -0.019573019817471504, -0.05935075506567955, 0.02985764667391777, -0.03257549926638603, 0.09104699641466141, -0.014727693051099777, 0.0693461149930954, -0.1589016616344452, -0.06465325504541397, -0.012578756548464298, 0.1720106154680252, 0.017645513638854027, 0.09398391842842102, 0.06525186449289322, -0.020657990127801895, 0.0007872946443967521, 0.0006418943521566689, 0.09713722765445709, -0.011278324760496616, -0.08095752447843552, -0.04539955034852028, 0.09783085435628891, -0.0697082132101059, 0.061335984617471695, -0.08331003785133362, 0.015970829874277115, 0.05119521915912628, 0.08576162904500961, 0.002533379476517439, 0.023890996351838112, -0.0026608065236359835, -0.004949587397277355, -0.030290108174085617, -0.007707215379923582, 0.11867237091064453, 0.011476520448923111, -0.05622720345854759, 0.2073281854391098, -0.21256808936595917, 0.15363940596580505, 0.1936623752117157, -0.307110458612442, 0.02535431832075119, -0.08131042122840881, -0.043787632137537, 0.019849825650453568, 0.049334991723299026, -0.04029932618141174, 0.169285386800766, -0.023300057277083397, 0.1903737187385559, -0.049341827630996704, -0.06142416596412659, -0.011225949972867966, -0.05640018731355667, -0.025341439992189407, 0.0833435207605362, 0.11059801280498505, -0.14697998762130737, 0.1913747787475586, 0.19082865118980408, 0.05572696402668953, 0.21654683351516724, 0.02618653140962124, -0.00390756968408823, 0.08110637217760086, 0.003826393047347665, -0.05987075716257095, -0.04482703283429146, -0.2503700256347656, -0.04882054403424263, 0.07125687599182129, 0.04697012901306152, 0.12156189233064651, -0.13758105039596558, -0.03242231532931328, -0.018730543553829193, -0.02515861950814724, 0.03542744368314743, 0.07623297721147537, 0.05209444463253021, 0.1329883486032486, 0.012786819599568844, -0.013702419586479664, 0.09289781004190445, 0.022693635895848274, -0.12032708525657654, 0.1868147999048233, -0.15492261946201324, -0.34777432680130005, -0.12926314771175385, -0.17462767660617828, -0.013360799290239811, 0.055444445461034775, 0.10300517082214355, -0.12032945454120636, -0.005960352253168821, 0.007335118018090725, 0.10812504589557648, -0.10632434487342834, -0.013719898648560047, -0.0027354976627975702, 0.031247200444340706, -0.11780312657356262, -0.09066779166460037, -0.07274550199508667, -0.034016404300928116, -0.06562662869691849, 0.13624908030033112, -0.12014215439558029, 0.05322820693254471, 0.19914083182811737, 0.033688515424728394, 0.05131068825721741, -0.0502263642847538, 0.19589897990226746, -0.09265860170125961, 0.004982296377420425, 0.18911312520503998, -0.03677980974316597, 0.08200709521770477, 0.10754669457674026, -0.003472712589427829, -0.09115539491176605, 0.03524751216173172, -0.024636542424559593, -0.08149342983961105, -0.22357600927352905, -0.1200466975569725, -0.1233358308672905, 0.13701307773590088, 0.03497529402375221, 0.05662204325199127, 0.16946740448474884, 0.05952933058142662, -0.031890854239463806, 0.01323285698890686, 0.031098827719688416, 0.07828820496797562, 0.23081150650978088, -0.061190374195575714, 0.10863103717565536, -0.035853877663612366, -0.1281345635652542, 0.08141160756349564, 0.06340375542640686, 0.10298065841197968, 0.09527140855789185, 0.0775347426533699, 0.015222351998090744, 0.032947953790426254, 0.1255156546831131, 0.08919707685709, 0.024089284241199493, -0.02086034044623375, -0.03868897631764412, -0.028328897431492805, -0.03959982842206955, 0.03365834057331085, 0.05606422573328018, -0.14577995240688324, -0.06278352439403534, -0.07058341801166534, 0.08888941258192062, 0.09048473089933395, 0.07520246505737305, -0.16334088146686554, -0.013352653943002224, 0.09511155635118484, -0.05193705856800079, -0.12273998558521271, 0.08275431394577026, 0.025390993803739548, -0.15274928510189056, 0.012541642412543297, -0.031789448112249374, 0.11265683174133301, -0.09173700958490372, 0.0929272249341011, -0.07351024448871613, -0.07632480561733246, 0.014929717406630516, 0.1334463506937027, -0.2784133851528168, 0.20499928295612335, -0.008423928171396255, -0.03915920853614807, -0.1173928752541542, -0.009110847488045692, 0.009771138429641724, 0.047554031014442444, 0.08297722786664963, 0.0014507225714623928, 0.007124952040612698, -0.05639391392469406, -0.0099937217310071, 0.026397699490189552, 0.13326381146907806, -0.040799304842948914, -0.0009937183931469917, -0.04061427712440491, 0.0022687180899083614, -0.03878413513302803, -0.05390268191695213, 0.0018473734380677342, -0.196859210729599, 0.07904006540775299, 0.049683038145303726, 0.10556267946958542, 0.015201032161712646, -0.00481381407007575, -0.11649095267057419, 0.238833948969841, -0.07919566333293915, -0.08989455550909042, -0.10507329553365707, -0.03648851811885834, 0.01099067647010088, -0.06094735115766525, 0.019536003470420837, -0.07701192796230316, 0.01965666562318802, -0.09550698101520538, -0.18272341787815094, 0.12606240808963776, -0.10567285865545273, -0.06857197731733322, -0.020801210775971413, 0.22791656851768494, -0.048687998205423355, 0.02388046681880951, 0.024997439235448837, 0.01597285084426403, -0.10753680765628815, -0.10656367987394333, 0.056723702698946, -0.009056320413947105, 0.035151321440935135, 0.0039885202422738075, -0.06514576077461243, -0.002481394913047552, -0.05648394301533699, -0.029982207342982292, 0.35053780674934387, 0.1621953547000885, -0.03370429575443268, 0.18688039481639862, 0.14110390841960907, -0.0775558203458786, -0.2987838387489319, -0.11029228568077087, -0.12249650806188583, -0.0374293178319931, -0.09729855507612228, -0.21811458468437195, 0.06176584213972092, 0.01722179725766182, -0.0026601694989949465, 0.12372393161058426, -0.23276667296886444, -0.07741308212280273, 0.1383967101573944, 0.0012831130297854543, 0.4105256497859955, -0.08979929983615875, -0.099666066467762, -0.03264826908707619, -0.1356373280286789, 0.1683056801557541, -0.035766392946243286, 0.12077455222606659, 0.000721837452147156, 0.13317987322807312, 0.03737621754407883, -0.02329406701028347, 0.09934292733669281, -0.013053311966359615, -0.032132588326931, -0.09299035370349884, -0.09088487923145294, -0.010539917275309563, 0.017693815752863884, 0.020394595339894295, -0.04151361808180809, 0.00607312424108386, -0.12729103863239288, -0.04376005008816719, -0.08195526897907257, 0.02507653646171093, 0.028555842116475105, -0.07515732944011688, 0.0063901981338858604, -0.06331199407577515, -0.014776629395782948, 0.008200965821743011, 0.18601657450199127, -0.06422446668148041, 0.17226922512054443, 0.07808201014995575, 0.1278972625732422, -0.14138895273208618, 0.009336560033261776, -0.09132104367017746, -0.07266388088464737, 0.0732835978269577, -0.09202022850513458, 0.05318145081400871, 0.10403317213058472, -0.0456070750951767, 0.09501791000366211, 0.09822278469800949, -0.014113964512944221, 0.0015318715013563633, 0.10770678520202637, -0.24898023903369904, -0.04501631483435631, -0.07471620291471481, -0.0036284280940890312, 0.07332895696163177, 0.07660693675279617, 0.19966267049312592, 0.011591306887567043, -0.03836086764931679, -0.00941522978246212, 0.028385963290929794, -0.033206380903720856, 0.08584115654230118, 0.017723560333251953, 0.021624809131026268, -0.14149433374404907, 0.08621633797883987, 0.0007619346724823117, -0.1382196694612503, 0.02332964353263378, 0.19635722041130066, -0.11697152256965637, -0.12037688493728638, -0.0625104233622551, 0.10234957933425903, -0.096586674451828, -0.02122950181365013, -0.06254494190216064, -0.12748664617538452, 0.09290449321269989, 0.13831238448619843, 0.06308317929506302, 0.08988673239946365, -0.06683652102947235, -0.01880980283021927, -0.0016409780364483595, 0.0023661511950194836, -0.00007507295231334865, -0.006467062514275312, -0.06272527575492859, 0.06213802471756935, -0.027213141322135925, 0.15484453737735748, -0.08144928514957428, -0.11238876730203629, -0.16506148874759674, 0.025985199958086014, -0.0823579952120781, -0.0938720554113388, -0.09978798031806946, -0.05455422401428223, -0.005966910161077976, 0.005096102599054575, -0.04166209697723389, -0.05578617379069328, -0.12236660718917847, 0.026026006788015366, -0.056930311024188995, 0.019610576331615448, -0.05818723514676094, 0.019586525857448578, 0.08955968171358109, -0.03532746806740761, 0.15034285187721252, 0.13234201073646545, -0.08261079341173172, 0.09827297925949097, -0.16491597890853882, -0.08731408417224884, 0.1074669361114502, 0.014146057888865471, 0.04799135774374008, 0.07924797385931015, 0.0008514225482940674, 0.05386504530906677, 0.04403776675462723, 0.06222012639045715, 0.03247154504060745, -0.11787921190261841, 0.08159954845905304, -0.06510864943265915, -0.15969063341617584, -0.05326542258262634, -0.04728896915912628, 0.021488193422555923, -0.012471885420382023, 0.09461063146591187, -0.06467436254024506, 0.10648299753665924, -0.036415789276361465, 0.04239368438720703, 0.02224217727780342, -0.1539023220539093, -0.03557983785867691, -0.08316625654697418, 0.04919601231813431, 0.017884433269500732, 0.2151329070329666, 0.010640262626111507, 0.0028685464058071375, 0.040852006524801254, 0.06507367640733719, 0.01013660803437233, 0.02105722203850746, 0.17745915055274963, 0.10904623568058014, -0.07496080547571182, -0.10493063181638718, 0.08440050482749939, 0.03137224540114403, 0.02814127691090107, 0.13982734084129333, 0.012263689190149307, 0.032170023769140244, 0.10169946402311325, -0.010678059421479702, -0.00180179497692734, -0.08724649995565414, -0.11506231129169464, -0.013781123794615269, 0.04389086365699768, -0.051014550030231476, 0.1298055201768875, 0.14308543503284454, -0.02547922171652317, 0.02462400496006012, -0.008039548061788082, -0.06669937074184418, -0.17000886797904968, -0.13428406417369843, -0.06384700536727905, -0.12742336094379425, 0.008291680365800858, -0.10979389399290085, 0.038088709115982056, 0.05207936465740204, 0.07067157328128815, -0.060481730848550797, 0.0937068909406662, 0.021768195554614067, -0.10909765213727951, 0.0843457356095314, -0.03254874795675278, 0.10875211656093597, -0.02883264236152172, -0.01523098349571228, -0.0785452201962471, -0.004515099339187145, 0.021512998268008232, 0.060225483030080795, -0.050268519669771194, -0.0011522133136168122, -0.13635362684726715, -0.09669584035873413, -0.03777281194925308, 0.06787727773189545, -0.04281792789697647, 0.16108198463916779, 0.011658348143100739, -0.019656706601381302, 0.043131932616233826, 0.22133855521678925, -0.0931108295917511, -0.055179860442876816, -0.0681268721818924, 0.1731950342655182, 0.023158950731158257, 0.1229269951581955, -0.022021546959877014, -0.02099762298166752, -0.07923555374145508, 0.3586651384830475, 0.2982804477214813, -0.08958664536476135, 0.015125840902328491, 0.020165488123893738, 0.046990446746349335, 0.1208154633641243, 0.10843150317668915, 0.11421486735343933, 0.28239476680755615, -0.07520916312932968, -0.02577563002705574, -0.03435656055808067, -0.04163633659482002, -0.10603412240743637, 0.10367388278245926, 0.06476883590221405, -0.040740229189395905, -0.03798968344926834, 0.10192857682704926, -0.20198574662208557, 0.09498240053653717, -0.11004442721605301, -0.16259640455245972, -0.066209577023983, 0.02583140693604946, 0.10017082095146179, 0.01183424424380064, 0.10875584185123444, 0.015082893893122673, -0.10794169455766678, 0.053210679441690445, 0.052423857152462006, -0.24083618819713593, 0.016421182081103325, 0.06346232444047928, -0.08691039681434631, 0.000636804208625108, -0.03719130903482437, 0.05322352424263954, 0.07899884879589081, 0.03128539025783539, -0.007654824759811163, 0.07296817749738693, 0.024549709632992744, -0.06593833863735199, 0.02470322512090206, 0.05757544934749603, 0.024969054386019707, -0.08950220048427582, 0.07378984987735748, -0.15113741159439087, 0.037822604179382324, 0.013570593670010567, -0.0739913210272789, -0.004085725173354149, 0.023214561864733696, -0.07065356522798538, 0.061776284128427505, 0.07739424705505371, -0.0022862046025693417, -0.011080115102231503, -0.04362797364592552, -0.02999413013458252, -0.028376402333378792, -0.09688351303339005, -0.08775399625301361, -0.1486007273197174, -0.11944987624883652, 0.07569246739149094, 0.008107095956802368, -0.17556238174438477, 0.015980198979377747, -0.08888213336467743, 0.09021355956792831, -0.15564927458763123, 0.08321981132030487, 0.07471641898155212, 0.007333759684115648, -0.011954926885664463, -0.022828396409749985, 0.04379802197217941, 0.0909971296787262, -0.0867789015173912, -0.06592221558094025 ]
null
null
transformers
# Rick and Morty DialoGPT Model
{"tags": ["conversational"]}
text-generation
hama/rick_bot
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Rick and Morty DialoGPT Model
[ "# Rick and Morty DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Rick and Morty DialoGPT Model" ]
[ 51, 10 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Rick and Morty DialoGPT Model" ]
[ -0.01990443281829357, 0.10367733240127563, -0.006012056488543749, 0.013662099838256836, 0.1287931650876999, 0.004103946499526501, 0.13405320048332214, 0.13470496237277985, -0.029608309268951416, -0.0377325713634491, 0.1409052610397339, 0.2081032246351242, -0.009616929106414318, 0.025026321411132812, -0.08027864247560501, -0.33285143971443176, 0.04419311136007309, 0.04611847549676895, -0.04805411398410797, 0.11171722412109375, 0.09962809830904007, -0.03511058911681175, 0.07650627940893173, 0.012189619243144989, -0.11959464848041534, 0.014523470774292946, 0.01571112684905529, -0.09889741986989975, 0.11399844288825989, 0.07783890515565872, 0.031239205971360207, 0.033389654010534286, -0.042143791913986206, -0.13308840990066528, 0.04855761677026749, -0.0014628645731136203, -0.03996938467025757, 0.06519230455160141, 0.0068825362250208855, -0.09896008670330048, 0.13105708360671997, 0.11774895340204239, -0.001342291128821671, 0.030811335891485214, -0.1546017825603485, -0.03095608949661255, -0.013916928321123123, 0.04583658277988434, 0.05571185424923897, 0.1092928797006607, -0.03970988467335701, 0.11546611040830612, -0.046847838908433914, 0.11656361073255539, 0.13404695689678192, -0.27711591124534607, -0.013774634338915348, 0.14150507748126984, 0.03755388408899307, 0.031246060505509377, -0.03764049708843231, 0.09234841167926788, 0.010574371553957462, -0.009135077707469463, -0.054559025913476944, -0.07839421927928925, -0.06956472247838974, 0.03881034255027771, -0.08538595587015152, -0.0028573249001055956, 0.22309143841266632, -0.029777048155665398, 0.0931403860449791, -0.061110686510801315, -0.083645299077034, 0.0022445949725806713, -0.04396601766347885, -0.031562261283397675, -0.0995510146021843, 0.08443354815244675, -0.04024428874254227, -0.08693728595972061, -0.10731299221515656, -0.022938303649425507, -0.15873323380947113, 0.16214832663536072, 0.03501884266734123, 0.03956814110279083, -0.21219894289970398, 0.07603893429040909, -0.04213596507906914, -0.10128775984048843, 0.025763655081391335, -0.0809730738401413, 0.0031352867372334003, 0.01420458871871233, -0.034850042313337326, -0.01257789321243763, 0.09354974329471588, 0.11913833022117615, -0.002085368847474456, 0.028482265770435333, -0.03459439426660538, 0.04555915296077728, 0.04445279389619827, 0.04635937884449959, -0.030874032527208328, -0.005519113503396511, 0.024999095126986504, -0.0903957337141037, -0.010871811769902706, -0.060442280024290085, -0.1946737915277481, 0.013364237733185291, 0.05735969915986061, 0.055262304842472076, 0.030765585601329803, 0.13551434874534607, 0.0010974886827170849, -0.0475224107503891, 0.03023342229425907, -0.020769428461790085, -0.016528211534023285, 0.029149476438760757, -0.0072809201665222645, 0.1526104062795639, 0.022983204573392868, 0.05690442770719528, -0.11451500654220581, 0.012773441150784492, -0.03330712020397186, -0.006917042192071676, -0.03216493874788284, -0.061537809669971466, 0.003289242973551154, 0.0014469954185187817, 0.013694697991013527, -0.12761977314949036, -0.15719962120056152, -0.003717299085110426, 0.00613630935549736, -0.05369097366929054, -0.10004933178424835, -0.10542158782482147, -0.03153182193636894, 0.046352777630090714, -0.053748197853565216, 0.03198752924799919, -0.039340607821941376, 0.09383489936590195, -0.03441528603434563, 0.0691300630569458, -0.0863635316491127, 0.0905333161354065, -0.06098577380180359, -0.04111234471201897, -0.0643690675497055, 0.12356391549110413, 0.011561519466340542, 0.04442533850669861, -0.03781363368034363, -0.01636880449950695, -0.11087207496166229, 0.06495212018489838, -0.03516015037894249, 0.22487092018127441, -0.08996163308620453, -0.09683383256196976, 0.22284504771232605, -0.04562665522098541, -0.12769415974617004, 0.12243670970201492, -0.03600937873125076, 0.09682484716176987, 0.11536505818367004, 0.16257616877555847, 0.03866875544190407, -0.0002237519365735352, 0.10846788436174393, 0.10610917955636978, -0.07603283226490021, 0.006744202226400375, 0.0250004380941391, -0.02382737584412098, -0.09139634668827057, 0.015165179036557674, 0.07776524871587753, 0.04803644120693207, -0.05478836968541145, -0.015317765064537525, 0.015090391971170902, -0.003627530997619033, 0.06564177572727203, -0.017049036920070648, 0.11691898107528687, -0.03955721855163574, -0.07620245963335037, -0.014626736752688885, 0.028113901615142822, -0.06986767798662186, 0.026787258684635162, -0.07962338626384735, 0.02948051132261753, -0.01967560686171055, 0.06687499582767487, -0.16950036585330963, -0.09430424869060516, -0.06010226905345917, 0.23349159955978394, 0.07496993243694305, 0.11698364466428757, 0.06350064277648926, -0.056928664445877075, 0.0006459777359850705, 0.037900060415267944, 0.19767099618911743, -0.006904584355652332, -0.07503941655158997, -0.11777795851230621, 0.10312607139348984, -0.07375676929950714, 0.06138577312231064, -0.0416308231651783, 0.007855354808270931, 0.019795136526226997, 0.11127804219722748, -0.04220014438033104, 0.039965033531188965, 0.012499134056270123, -0.03696384280920029, -0.05908297002315521, 0.0004571304307319224, 0.09440597146749496, -0.0005542659782804549, -0.10514124482870102, 0.2379530370235443, -0.21215155720710754, 0.12180843949317932, 0.1799643337726593, -0.2256188690662384, 0.008836638182401657, -0.10462760180234909, -0.016665222123265266, 0.01030759233981371, 0.03996801748871803, -0.040312353521585464, 0.24249082803726196, -0.014560520648956299, 0.17035135626792908, -0.04880015179514885, -0.05010494217276573, -0.0440804697573185, -0.05291803553700447, 0.0003277618088759482, 0.12486644089221954, 0.09157522767782211, -0.18372175097465515, 0.17465431988239288, 0.06325390189886093, 0.03004654310643673, 0.1566917598247528, 0.022896459326148033, 0.020663797855377197, 0.05599488690495491, -0.0012882096925750375, -0.03033529780805111, -0.07880529016256332, -0.20945574343204498, -0.012111871503293514, 0.07547834515571594, 0.04618273675441742, 0.10363037884235382, -0.1018955409526825, -0.030724551528692245, -0.006948297843337059, -0.030821966007351875, 0.03848150745034218, 0.13554143905639648, 0.015318007208406925, 0.12024796009063721, -0.019162237644195557, -0.06668011844158173, 0.0741129145026207, 0.01461794413626194, -0.09263674914836884, 0.18050695955753326, -0.1221487745642662, -0.3382752537727356, -0.10329627990722656, -0.20327065885066986, -0.04040617123246193, 0.0422586165368557, 0.11002974957227707, -0.1460546851158142, -0.029720865190029144, 0.0010455691954120994, 0.08435780555009842, -0.1366978883743286, 0.006720550823956728, -0.017843635752797127, -0.01294276025146246, -0.1374056041240692, -0.09384968876838684, -0.04747654125094414, -0.060003772377967834, -0.03218422830104828, 0.10381519794464111, -0.1596987098455429, 0.007801016326993704, 0.230968177318573, 0.04797196388244629, 0.07053504139184952, -0.036995481699705124, 0.17910921573638916, -0.08220451325178146, 0.016473548486828804, 0.24478016793727875, -0.05610832944512367, 0.0740312784910202, 0.10560029745101929, -0.005553957540541887, -0.052998270839452744, 0.03756273165345192, 0.00788428820669651, -0.0785532221198082, -0.21784749627113342, -0.1030275970697403, -0.11046822369098663, 0.04284128174185753, 0.05120398849248886, 0.04543844982981682, 0.1585974246263504, 0.06446543335914612, -0.05187172442674637, -0.011306295171380043, 0.08315242826938629, 0.08576013147830963, 0.24794787168502808, -0.06311704963445663, 0.1473274976015091, -0.020790869370102882, -0.16434483230113983, 0.07334780693054199, 0.06416254490613937, 0.07227631658315659, 0.06913222372531891, 0.11215730756521225, 0.0020037174690514803, 0.017364054918289185, 0.12614323198795319, 0.05889604985713959, -0.011050567030906677, -0.031410302966833115, -0.04586650803685188, -0.04347039759159088, -0.020151739940047264, 0.041160233318805695, 0.05188119783997536, -0.1600257307291031, -0.02415069006383419, 0.022831739857792854, 0.046689603477716446, -0.003216250566765666, 0.08608495444059372, -0.19217506051063538, -0.018159521743655205, 0.06477150321006775, -0.0016290671192109585, -0.09313707798719406, 0.08108778297901154, -0.009849769994616508, -0.09697907418012619, 0.03780587762594223, -0.03585495799779892, 0.1301390826702118, -0.0750122219324112, 0.07286842167377472, -0.1119815781712532, -0.02080838568508625, -0.0087605444714427, 0.11860883235931396, -0.3024371266365051, 0.1707288920879364, -0.0030656929593533278, -0.04842326417565346, -0.11293680220842361, -0.015061003156006336, 0.03821004554629326, 0.08916047215461731, 0.10371578484773636, -0.030773809179663658, -0.06436607241630554, 0.0791664570569992, -0.050910793244838715, 0.03525971621274948, 0.10187692940235138, -0.04662879928946495, -0.014911266043782234, -0.05685164034366608, 0.0027524156030267477, 0.02270045317709446, -0.10804066807031631, 0.014929873868823051, -0.19113284349441528, 0.07794220000505447, 0.0811065286397934, 0.0722472071647644, 0.04095001146197319, -0.029467018321156502, -0.1261810064315796, 0.2744207978248596, 0.007417048793286085, -0.09985779225826263, -0.11269644647836685, 0.04465123638510704, 0.05646880716085434, -0.07145541161298752, -0.028514720499515533, -0.07924950867891312, 0.052012015134096146, -0.07113154232501984, -0.1981293261051178, 0.11338871717453003, -0.09873685240745544, -0.04736494645476341, -0.03962721675634384, 0.2276533544063568, -0.027753405272960663, 0.02130931057035923, 0.0393831804394722, -0.001616212772205472, -0.12734149396419525, -0.09492160379886627, 0.004517016001045704, -0.0013660878175869584, 0.02586340345442295, 0.022777099162340164, -0.04388801380991936, 0.0049570053815841675, -0.06949588656425476, -0.0037953434512019157, 0.3158918023109436, 0.10998717695474625, -0.04474896565079689, 0.1561327874660492, 0.10242960602045059, -0.06360200047492981, -0.28859275579452515, -0.11298105865716934, -0.07240703701972961, -0.05466444417834282, -0.0838940367102623, -0.18133240938186646, 0.08497140556573868, -0.042584747076034546, -0.00881777424365282, 0.042027126997709274, -0.2644155025482178, -0.09412363916635513, 0.18815293908119202, -0.01533579919487238, 0.4300551414489746, -0.11307147145271301, -0.07450833916664124, -0.05387028306722641, -0.13561248779296875, 0.18766070902347565, -0.018648525699973106, 0.0966244488954544, 0.00443116994574666, 0.20654869079589844, 0.05815155804157257, -0.0008219819865189493, 0.0747876986861229, 0.011587066575884819, -0.0452013723552227, -0.09014920890331268, -0.09217863529920578, -0.020688166841864586, 0.005974666681140661, 0.034957773983478546, -0.0941787138581276, 0.05258546397089958, -0.11336535215377808, -0.05589618906378746, -0.07209338247776031, 0.026715638116002083, 0.02418643794953823, -0.06410122662782669, -0.006407043896615505, -0.048794936388731, -0.0010418962920084596, 0.00979152973741293, 0.21295785903930664, -0.11305148899555206, 0.12096642702817917, 0.04414689913392067, 0.1508360654115677, -0.08366664499044418, -0.03614836558699608, -0.04910365119576454, -0.05565084517002106, 0.0676501989364624, -0.1319035291671753, 0.04462771117687225, 0.10053624957799911, -0.030742639675736427, 0.0898696631193161, 0.11227817088365555, -0.02972952462732792, 0.0016581144882366061, 0.07279330492019653, -0.23832836747169495, -0.08509121090173721, -0.07718803733587265, 0.05435929819941521, 0.057659514248371124, 0.09007556736469269, 0.21964938938617706, 0.011087107472121716, -0.023847850039601326, 0.027587326243519783, 0.029717741534113884, -0.01658647321164608, 0.05797221511602402, 0.008770608343183994, 0.031205764040350914, -0.14632299542427063, 0.04562913626432419, -0.010501107200980186, -0.07197817414999008, 0.03429242596030235, 0.16717956960201263, -0.10209374874830246, -0.12234743684530258, -0.04288604483008385, 0.17517046630382538, -0.13247300684452057, -0.017495078966021538, -0.05478521063923836, -0.1241658553481102, 0.07977617532014847, 0.11423204839229584, 0.05072414129972458, 0.042339734733104706, -0.09691346436738968, -0.03881148621439934, -0.05552472919225693, 0.01957569271326065, 0.018891409039497375, -0.030404040589928627, -0.037885911762714386, 0.025801094248890877, -0.04172535613179207, 0.11203933507204056, -0.087384894490242, -0.09792038798332214, -0.16838693618774414, 0.03925701230764389, -0.049022991210222244, -0.07899222522974014, -0.09344983100891113, -0.03523614630103111, 0.014231358654797077, -0.03348008170723915, -0.018664700910449028, -0.02225758694112301, -0.0958842933177948, 0.03419994190335274, -0.048781368881464005, -0.005008503329008818, -0.08496184647083282, 0.017331385985016823, 0.04781922325491905, -0.023604100570082664, 0.1431105136871338, 0.12453559041023254, -0.11789791285991669, 0.10031480342149734, -0.16611437499523163, -0.06820093840360641, 0.09455996751785278, 0.02471991442143917, 0.043245621025562286, 0.028927266597747803, 0.005174829158931971, 0.04808570072054863, 0.05950818210840225, 0.03694291412830353, 0.041101954877376556, -0.07111897319555283, 0.061451081186532974, -0.06278520077466965, -0.11226452142000198, -0.04257739707827568, -0.005422866903245449, 0.00011432790051912889, 0.07346735894680023, 0.11052975058555603, -0.05098198726773262, 0.09580544382333755, -0.050767768174409866, 0.046003878116607666, 0.0289035402238369, -0.16526201367378235, 0.008764104917645454, -0.08482556790113449, 0.05248309671878815, 0.0030253108125180006, 0.15688744187355042, 0.028536081314086914, -0.03175791725516319, 0.02630779519677162, 0.05105529725551605, 0.06318540126085281, -0.00840448122471571, 0.19050461053848267, 0.09726009517908096, -0.04487645998597145, -0.09418396651744843, 0.08849480748176575, 0.05022666975855827, 0.05143674090504646, 0.1403687596321106, -0.020687401294708252, 0.012512898072600365, 0.07724163681268692, 0.014415515586733818, 0.017872430384159088, -0.07756411284208298, -0.09487451612949371, -0.011494439095258713, 0.025514457374811172, -0.02882363088428974, 0.1138797178864479, 0.16729387640953064, -0.0008394720498472452, 0.013234704732894897, -0.01801590994000435, -0.05735309422016144, -0.20129387080669403, -0.1959676295518875, -0.09400797635316849, -0.13690303266048431, -0.0009418319095857441, -0.13835963606834412, 0.03616710752248764, 0.042394787073135376, 0.09917435795068741, -0.039446551352739334, 0.019261397421360016, 0.026794444769620895, -0.10323353111743927, 0.039175424724817276, -0.04838612675666809, 0.09421038627624512, -0.007761404849588871, 0.005773975048214197, -0.046786144375801086, 0.02436385303735733, 0.02127891033887863, 0.038409680128097534, -0.012736459262669086, 0.024856114760041237, -0.11602245271205902, -0.09478921443223953, -0.058010075241327286, 0.0558818019926548, 0.0046934462152421474, 0.18179026246070862, 0.02449701726436615, -0.03384847193956375, 0.0275272186845541, 0.19317778944969177, -0.06196035072207451, -0.09709009528160095, -0.08241496980190277, 0.2182236760854721, -0.018931716680526733, 0.09253086894750595, -0.035876765847206116, 0.012440751306712627, -0.07121489197015762, 0.33243879675865173, 0.29320472478866577, -0.10524016618728638, 0.010426074266433716, -0.0019151283195242286, 0.0405552051961422, 0.1290767937898636, 0.07575080543756485, 0.11663594841957092, 0.256552129983902, -0.06501701474189758, -0.057690393179655075, -0.014668738469481468, -0.027142031118273735, -0.06502988189458847, 0.04214107245206833, 0.04939494654536247, -0.07117093354463577, -0.00912293791770935, 0.12242040783166885, -0.24606983363628387, 0.04577518254518509, -0.13518153131008148, -0.14807558059692383, -0.0726354643702507, 0.002261551097035408, 0.09914402663707733, 0.010166509076952934, 0.08546656370162964, -0.014570544473826885, -0.0710548534989357, 0.03896206244826317, 0.021210450679063797, -0.2144380509853363, 0.021960165351629257, 0.07259857654571533, -0.028754761442542076, -0.07154250144958496, -0.013138728216290474, 0.08338925242424011, 0.09720319509506226, 0.03173141926527023, -0.009079075418412685, 0.04570826143026352, -0.0000614441087236628, -0.06747788935899734, 0.035688117146492004, 0.022403022274374962, 0.01331246830523014, -0.05491582676768303, 0.07895619422197342, -0.17176033556461334, 0.020258452743291855, -0.03599786013364792, -0.06506339460611343, -0.006352625321596861, 0.02872123196721077, -0.06236473098397255, 0.0810769721865654, 0.08681372553110123, -0.010693355463445187, -0.015406738966703415, -0.019259916618466377, -0.012411676347255707, -0.028850549831986427, -0.07069326192140579, -0.09390060603618622, -0.15529757738113403, -0.12466321885585785, 0.08110006153583527, -0.008061634376645088, -0.2096063792705536, 0.012769150547683239, -0.13104628026485443, 0.04622570425271988, -0.10809949785470963, 0.09371429681777954, 0.08394473046064377, 0.020185640081763268, -0.007141938898712397, 0.003890183288604021, 0.036074474453926086, 0.07894916087388992, -0.13067346811294556, -0.08049263805150986 ]
null
null
transformers
# mBart50 for Zeroshot Azerbaijani-Turkish Translation The mBart50 model is finetuned on English-Azerbaijani-Turkish translation leaving Az<->Tr as zeroshot directions. The method of tied representations is used to enforce alignment between semantically equivalent sentences leading to superior zeroshot performance.
{}
text2text-generation
hamishs/mBART50-en-az-tr1
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #mbart #text2text-generation #autotrain_compatible #endpoints_compatible #region-us
# mBart50 for Zeroshot Azerbaijani-Turkish Translation The mBart50 model is finetuned on English-Azerbaijani-Turkish translation leaving Az<->Tr as zeroshot directions. The method of tied representations is used to enforce alignment between semantically equivalent sentences leading to superior zeroshot performance.
[ "# mBart50 for Zeroshot Azerbaijani-Turkish Translation\nThe mBart50 model is finetuned on English-Azerbaijani-Turkish translation leaving Az<->Tr as zeroshot directions. The method of tied representations is used to enforce alignment between semantically equivalent sentences leading to superior zeroshot performance." ]
[ "TAGS\n#transformers #pytorch #mbart #text2text-generation #autotrain_compatible #endpoints_compatible #region-us \n", "# mBart50 for Zeroshot Azerbaijani-Turkish Translation\nThe mBart50 model is finetuned on English-Azerbaijani-Turkish translation leaving Az<->Tr as zeroshot directions. The method of tied representations is used to enforce alignment between semantically equivalent sentences leading to superior zeroshot performance." ]
[ 39, 74 ]
[ "passage: TAGS\n#transformers #pytorch #mbart #text2text-generation #autotrain_compatible #endpoints_compatible #region-us \n# mBart50 for Zeroshot Azerbaijani-Turkish Translation\nThe mBart50 model is finetuned on English-Azerbaijani-Turkish translation leaving Az<->Tr as zeroshot directions. The method of tied representations is used to enforce alignment between semantically equivalent sentences leading to superior zeroshot performance." ]
[ -0.07213454693555832, -0.2399548590183258, -0.004269155208021402, -0.012183859013020992, 0.04873587563633919, 0.019561294466257095, 0.20961609482765198, 0.0859118327498436, -0.013841998763382435, -0.03877853602170944, 0.11844590306282043, 0.12992031872272491, 0.0766492411494255, 0.10712730139493942, -0.04350551962852478, -0.18546733260154724, 0.0159395020455122, 0.020666582509875298, -0.0011141063878312707, 0.14728476107120514, 0.0889541283249855, -0.004891450051218271, 0.014707391150295734, -0.015187235549092293, -0.21657244861125946, 0.07261122018098831, 0.0072736553847789764, -0.06136322021484375, 0.0723877102136612, 0.04608327895402908, 0.002747239777818322, 0.0038074387703090906, -0.057256150990724564, -0.07878205925226212, 0.038984764367341995, -0.06122415512800217, -0.02832983434200287, 0.0025384838227182627, 0.040457773953676224, -0.14079898595809937, 0.13406339287757874, -0.09364985674619675, -0.05098138377070427, 0.00627597700804472, -0.06115977466106415, -0.00702306441962719, 0.020914511755108833, 0.03329885005950928, 0.11381583660840988, 0.04780498892068863, -0.01782836951315403, 0.09976154565811157, -0.02396092377603054, 0.1350730061531067, 0.1362203061580658, -0.361972838640213, -0.05460599809885025, 0.0648372694849968, -0.08964124321937561, 0.1114630326628685, -0.029995905235409737, 0.0868569016456604, 0.0038932638708502054, -0.01284914929419756, -0.003196512581780553, -0.05562923848628998, 0.048272810876369476, -0.0725276991724968, -0.018724393099546432, 0.04563846439123154, 0.15901689231395721, -0.03827141597867012, 0.021623453125357628, -0.09138532727956772, -0.09871216118335724, -0.05871181935071945, -0.1456945389509201, -0.0012540924362838268, -0.05478599667549133, 0.011714613065123558, -0.05503235384821892, -0.0007723591406829655, -0.09135738760232925, -0.043373122811317444, -0.19530965387821198, 0.16618718206882477, 0.03915980085730553, 0.051546186208724976, -0.22419779002666473, 0.05291929841041565, -0.07892660796642303, -0.12385781109333038, 0.05056712031364441, -0.07348278164863586, -0.01344434916973114, 0.130928635597229, -0.08808621764183044, -0.15816104412078857, 0.0800323635339737, 0.043405644595623016, 0.2128800004720688, 0.13556446135044098, 0.06803260743618011, 0.06204145774245262, -0.07004821300506592, 0.09503912925720215, 0.044438306242227554, -0.22768911719322205, -0.0003986479714512825, -0.06149142235517502, 0.014436236582696438, -0.04226566106081009, -0.10606037080287933, -0.11340464651584625, 0.05321793258190155, 0.026672696694731712, -0.02281060814857483, 0.08100178837776184, 0.037107162177562714, 0.021112849935889244, -0.16011592745780945, -0.10639989376068115, -0.0004970469744876027, -0.08081480115652084, 0.03226495534181595, 0.2036108672618866, -0.017839323729276657, -0.04733539745211601, -0.0971774086356163, 0.04882962629199028, 0.007534760516136885, 0.002803884679451585, -0.028854364529252052, -0.06891359388828278, -0.03256722912192345, -0.000013629595741804224, 0.009488862007856369, -0.1327822208404541, -0.04615025967359543, 0.02356645092368126, 0.0949859693646431, -0.054483816027641296, 0.11931736767292023, -0.08167105913162231, -0.03857018053531647, 0.08719967305660248, -0.05305638164281845, 0.07302654534578323, -0.013169930316507816, 0.061864469200372696, 0.05031813681125641, 0.12479133158922195, -0.08005284518003464, 0.005408255849033594, -0.08414279669523239, -0.03334769979119301, -0.022598538547754288, 0.14452359080314636, -0.004073373042047024, 0.033356353640556335, -0.06470834463834763, 0.017334846779704094, -0.1058749258518219, 0.016481684520840645, 0.06159081682562828, 0.11160579323768616, -0.17909987270832062, -0.07379729300737381, 0.2199329435825348, -0.030063634738326073, -0.06720918416976929, 0.053707607090473175, -0.012680201791226864, 0.068235844373703, 0.12611526250839233, 0.18625624477863312, 0.08323628455400467, -0.04409034177660942, 0.06590971350669861, 0.057308588176965714, -0.08858491480350494, -0.026581469923257828, -0.008516603149473667, 0.0593220517039299, -0.1528611034154892, 0.0939074456691742, -0.01892470009624958, 0.05214512348175049, -0.028618453070521355, -0.026848141103982925, -0.015793267637491226, 0.021506067365407944, 0.06028928607702255, -0.05661042034626007, 0.10902619361877441, -0.18707779049873352, -0.06457942724227905, -0.05155378580093384, 0.025021113455295563, -0.02047165110707283, 0.028796361759305, -0.05998072400689125, 0.05626532435417175, -0.16865819692611694, 0.0785585418343544, -0.1068263128399849, -0.006590228993445635, -0.09385931491851807, 0.13310067355632782, 0.11649687588214874, 0.03226350247859955, 0.07661151140928268, 0.002535541309043765, -0.04365367814898491, 0.03464606776833534, 0.1321297138929367, 0.02855708822607994, -0.07414476573467255, -0.13368096947669983, 0.11648892611265182, -0.013641481287777424, 0.05569382756948471, 0.12413389980792999, -0.005140019580721855, -0.059233371168375015, 0.06471115350723267, -0.01995876431465149, 0.0637284517288208, -0.07809717953205109, 0.02073383703827858, -0.00961823109537363, 0.007462203968316317, 0.08734922111034393, -0.024314671754837036, -0.07779984921216965, 0.1306455284357071, -0.24979852139949799, 0.08433081954717636, 0.20921099185943604, -0.09077730774879456, -0.021037453785538673, -0.09442878514528275, 0.0174542386084795, -0.030582526698708534, 0.1500239372253418, 0.06485070288181305, -0.0035111093893647194, 0.047539498656988144, 0.12180901318788528, -0.06824561953544617, -0.037765022367239, 0.049537546932697296, -0.09753808379173279, -0.040513698011636734, 0.06677872687578201, -0.0221237950026989, -0.2512686252593994, 0.107297882437706, 0.2350916564464569, 0.09284105151891708, 0.2235310971736908, 0.06965464353561401, -0.05483117327094078, -0.054255641996860504, -0.021656937897205353, -0.05296386778354645, 0.11943092197179794, -0.06816604733467102, -0.07416829466819763, 0.06758099049329758, 0.014886153861880302, 0.04270908981561661, -0.07408038526773453, 0.04860737547278404, 0.010712702758610249, -0.019576672464609146, 0.04778094217181206, 0.11155979335308075, -0.045041006058454514, 0.1208953708410263, -0.01990544982254505, -0.023362260311841965, 0.008706439286470413, -0.0044631254859268665, -0.06019251048564911, 0.05680445581674576, -0.12490463256835938, -0.21105344593524933, -0.1293543130159378, -0.05860128626227379, -0.11600040644407272, -0.017710557207465172, 0.07470938563346863, -0.11790712177753448, 0.0230336245149374, -0.00390524510294199, -0.011302941478788853, -0.07735104113817215, -0.01100278738886118, -0.04417230188846588, -0.008049089461565018, -0.05556304380297661, -0.08821441978216171, -0.11084836721420288, -0.05839992314577103, -0.00046234941692091525, 0.09508176892995834, -0.16507472097873688, 0.009403875097632408, 0.09280169010162354, -0.08551795780658722, 0.08683721721172333, -0.06517243385314941, 0.10406146943569183, -0.08178959041833878, 0.038819145411252975, 0.035120390355587006, 0.0693739503622055, 0.04382335767149925, 0.13657501339912415, -0.05738053098320961, -0.025994569063186646, 0.005183360073715448, 0.012748029083013535, -0.06391697376966476, -0.06955982744693756, -0.012602556496858597, -0.14267924427986145, -0.047424644231796265, -0.007035607472062111, -0.010523919016122818, 0.036573395133018494, 0.11071360856294632, -0.019726919010281563, -0.0016795857809484005, 0.0865936130285263, 0.1351114809513092, 0.22520948946475983, 0.045181915163993835, 0.16597363352775574, -0.09826526790857315, -0.08434779942035675, 0.06921903789043427, 0.01464894600212574, 0.14294515550136566, 0.08941837400197983, -0.058753106743097305, 0.07667656242847443, 0.09154275059700012, 0.07424882054328918, 0.10776544362306595, -0.01998016983270645, -0.005715441890060902, -0.04034198820590973, -0.08127740770578384, -0.09395910054445267, -0.010449987836182117, -0.10087738931179047, -0.03064591996371746, 0.007057285401970148, 0.016877861693501472, 0.16630598902702332, 0.011960959993302822, 0.05783068761229515, -0.16142944991588593, -0.07618975639343262, 0.01189416740089655, -0.022211682051420212, -0.08017260581254959, 0.05209462717175484, -0.06102921441197395, -0.07336722314357758, 0.12476640194654465, -0.03484179079532623, 0.1265086829662323, 0.15710459649562836, 0.0798238217830658, -0.2253328412771225, -0.05057496577501297, -0.007905174978077412, 0.09854879230260849, -0.37527260184288025, 0.12056322395801544, 0.03366220369935036, 0.024591820314526558, -0.07758737355470657, -0.06499206274747849, 0.07011286914348602, -0.056183136999607086, 0.02827257290482521, 0.014724045991897583, -0.09261983633041382, -0.004301402252167463, -0.0999922975897789, 0.07460058480501175, 0.13202768564224243, 0.03525995835661888, 0.05162619799375534, -0.06811179220676422, -0.002122029894962907, -0.02079457975924015, 0.0979992151260376, -0.061855241656303406, -0.19623525440692902, 0.051254626363515854, 0.08364108949899673, -0.13778497278690338, 0.07094024121761322, -0.03905244171619415, 0.021148307248950005, 0.08133458346128464, -0.10282082110643387, -0.08827868849039078, -0.10174570232629776, 0.018325945362448692, 0.03416237607598305, -0.09653337299823761, 0.012990892864763737, -0.11366776376962662, 0.03470626473426819, -0.04682987555861473, -0.2339870184659958, 0.05930443853139877, -0.07058605551719666, 0.018130173906683922, -0.013574253767728806, 0.18856975436210632, -0.02278693951666355, 0.011452642269432545, 0.05251603201031685, 0.003304846351966262, -0.09101314842700958, -0.05659043788909912, -0.03070639632642269, -0.0328422486782074, 0.10702021420001984, -0.037789296358823776, -0.03510008752346039, -0.21112526953220367, -0.10169941186904907, -0.023179449141025543, 0.15240471065044403, 0.17740148305892944, -0.06844232231378555, 0.11450211703777313, 0.0983191654086113, -0.03984915465116501, -0.0916997566819191, -0.1152498871088028, -0.025860561057925224, 0.09887221455574036, -0.04197828471660614, 0.060568537563085556, 0.02532927133142948, -0.059010423719882965, -0.015034284442663193, 0.0026462506502866745, -0.26153817772865295, -0.11316333711147308, 0.17148129642009735, 0.06534653156995773, 0.47118452191352844, -0.08588919788599014, -0.028838232159614563, -0.1413555145263672, -0.2135348916053772, 0.11211059987545013, -0.019293099641799927, 0.11097433418035507, -0.07459576427936554, 0.1522950977087021, 0.027797572314739227, 0.007683905772864819, 0.08686534315347672, 0.03281307592988014, 0.050604965537786484, -0.10879343748092651, -0.06543032824993134, 0.06988785415887833, -0.008162600919604301, 0.09537296742200851, -0.14740510284900665, 0.03746715933084488, -0.02521546743810177, -0.045679669827222824, -0.06125258654356003, -0.02920372039079666, -0.014638484455645084, -0.059220992028713226, -0.04597385972738266, -0.05336993187665939, 0.018701525405049324, -0.04342510923743248, 0.0479138046503067, -0.1268768459558487, 0.02736574411392212, 0.01236800942569971, 0.0032680819276720285, -0.08065111935138702, -0.0037255932111293077, -0.05345843732357025, -0.03691708296537399, 0.08427383005619049, -0.05387939140200615, 0.02689368464052677, 0.12887461483478546, -0.06894578039646149, 0.017613176256418228, 0.06344276666641235, 0.0050070988945662975, -0.014509049244225025, 0.14084117114543915, -0.11668272316455841, 0.031319599598646164, 0.0067083146423101425, 0.0340397022664547, 0.20587393641471863, 0.07880722731351852, 0.15860454738140106, -0.06440829485654831, 0.0015766769647598267, 0.014834503643214703, -0.024294886738061905, -0.05128313973546028, 0.08042581379413605, 0.019214309751987457, -0.01413231436163187, -0.0844278633594513, 0.051420196890830994, -0.04944135248661041, -0.04382051154971123, 0.09240656346082687, 0.05151098594069481, -0.11307420581579208, -0.0349586084485054, 0.11505158245563507, 0.22295349836349487, -0.11259407550096512, -0.017847103998064995, -0.015003830194473267, -0.09044167399406433, 0.039434775710105896, 0.12825943529605865, 0.06884989887475967, -0.0019718247931450605, -0.10246262699365616, -0.0069968788884580135, -0.06422894448041916, 0.06722089648246765, 0.08525928109884262, 0.020580818876624107, -0.01447860524058342, 0.05808072164654732, 0.005338565446436405, 0.041356492787599564, -0.09356483817100525, -0.06588821113109589, -0.02366938628256321, 0.007850832305848598, -0.21145519614219666, -0.061056047677993774, -0.10869213193655014, -0.03245256841182709, 0.061119355261325836, -0.047870934009552, -0.04667308181524277, -0.042674362659454346, -0.039304282516241074, 0.014871752820909023, -0.06310489773750305, -0.013774056918919086, -0.0883113369345665, -0.0026539394166320562, 0.025704922154545784, -0.019152583554387093, 0.0280949417501688, 0.22644013166427612, -0.06986094266176224, 0.12552915513515472, -0.04527182877063751, -0.0763586089015007, -0.04519793763756752, 0.0025051841512322426, 0.03572459518909454, 0.058993905782699585, 0.03989977017045021, 0.11321485042572021, 0.11508271843194962, 0.04978896677494049, 0.19508832693099976, -0.0627904012799263, -0.09716058522462845, -0.13908278942108154, -0.08411414176225662, -0.05315328389406204, 0.027690209448337555, 0.03026861697435379, 0.08924784511327744, 0.08619757741689682, -0.08583816885948181, 0.0004706420877482742, -0.08488043397665024, -0.011894791387021542, -0.01856992393732071, -0.1665320098400116, 0.041502684354782104, -0.14559602737426758, 0.018037548288702965, -0.011247278191149235, 0.14114001393318176, 0.04633471742272377, 0.03618098795413971, -0.03088357299566269, -0.06353525817394257, -0.015965357422828674, -0.07035021483898163, 0.21360498666763306, 0.06988658010959625, 0.004722138401120901, -0.08569104969501495, 0.06370279937982559, 0.020160190761089325, -0.08280673623085022, 0.03609718009829521, -0.00041716036503203213, 0.022257860749959946, 0.13500982522964478, -0.02209142968058586, 0.053184740245342255, 0.00842286553233862, -0.10659801959991455, -0.05867793411016464, 0.030567117035388947, 0.002818335546180606, 0.14175592362880707, 0.3324431777000427, -0.10763877630233765, 0.059528108686208725, -0.03615975007414818, -0.08015310764312744, -0.07612963765859604, -0.2263585776090622, -0.07205762714147568, -0.11409322917461395, -0.030772114172577858, -0.08114811778068542, 0.008962869644165039, 0.06026581674814224, 0.1377088874578476, -0.038057904690504074, 0.18401239812374115, -0.04051215946674347, -0.1389460414648056, 0.1257508546113968, -0.022504247725009918, 0.05595211312174797, 0.047181982547044754, 0.021350407972931862, -0.01176560390740633, 0.014235997572541237, 0.02877366729080677, 0.09732275456190109, -0.003104930277913809, -0.06355331838130951, -0.03426920622587204, -0.0643097460269928, -0.043674517422914505, 0.030432594940066338, 0.08985520154237747, 0.10895376652479172, 0.0319402739405632, -0.05005072429776192, -0.05173270404338837, 0.1635817289352417, -0.03400930389761925, -0.21321620047092438, 0.036767762154340744, 0.10905224829912186, 0.0366026870906353, 0.08931943774223328, -0.062075018882751465, 0.005896145012229681, -0.03664645552635193, 0.18660984933376312, 0.24803271889686584, -0.1175333559513092, -0.03667140379548073, 0.0346839465200901, 0.0363256111741066, 0.055798765271902084, 0.11650720983743668, -0.0347331166267395, 0.2515406608581543, -0.02050117775797844, 0.11039447784423828, -0.08366882055997849, -0.02135411649942398, -0.04356008768081665, 0.1457362323999405, 0.014384341426193714, -0.10718560963869095, 0.014804038219153881, 0.10850769281387329, 0.061659518629312515, -0.027301572263240814, 0.021399766206741333, -0.03843848407268524, -0.09825694561004639, 0.08328031748533249, 0.16571883857250214, 0.03259778022766113, 0.03777262941002846, -0.030766502022743225, 0.06532759219408035, -0.006797637324780226, 0.02543571963906288, -0.09328054636716843, -0.04140530154109001, 0.03212609142065048, -0.04890865460038185, -0.04313606023788452, 0.028018856421113014, 0.08558797091245651, 0.0634840726852417, 0.06126681715250015, 0.01987908035516739, 0.18505597114562988, -0.027498958632349968, 0.10018446296453476, 0.10227356851100922, 0.01506816502660513, -0.0004255049570929259, -0.1317828893661499, 0.12066156417131424, -0.03537604585289955, 0.03734336420893669, -0.010258234106004238, -0.06067575141787529, 0.0016471114940941334, 0.06634571403265, -0.03502408787608147, 0.05974714830517769, 0.0974031314253807, -0.023760540410876274, 0.009752153418958187, -0.06090313196182251, 0.04143095761537552, 0.036709628999233246, -0.03879573941230774, -0.04069465398788452, -0.06439670920372009, -0.036005787551403046, 0.15448205173015594, -0.001277361181564629, -0.20556387305259705, -0.037909410893917084, -0.10184010118246078, -0.007408959325402975, -0.07664792984724045, 0.11481320858001709, 0.013308567926287651, -0.010625358670949936, -0.0365915484726429, -0.25542575120925903, 0.025826644152402878, 0.08428960293531418, -0.1345878690481186, -0.06301917135715485 ]
null
null
null
hello
{}
null
hamxxxa/SBert
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
hello
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-small-discriminator-finetuned-squad This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5751 | 1.0 | 2767 | 1.3952 | | 1.2939 | 2.0 | 5534 | 1.2458 | | 1.1866 | 3.0 | 8301 | 1.2174 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "electra-small-discriminator-finetuned-squad", "results": []}]}
question-answering
hankzhong/electra-small-discriminator-finetuned-squad
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #electra #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
electra-small-discriminator-finetuned-squad =========================================== This model is a fine-tuned version of google/electra-small-discriminator on the squad dataset. It achieves the following results on the evaluation set: * Loss: 1.2174 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #electra #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 55, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #electra #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.11192195862531662, 0.0922975018620491, -0.0018215221352875233, 0.1178152933716774, 0.17848016321659088, 0.027504051104187965, 0.086948923766613, 0.11847887188196182, -0.08536211401224136, 0.03895227238535881, 0.1376526802778244, 0.1889333724975586, 0.009095384739339352, 0.05814999341964722, -0.04533708468079567, -0.21870680153369904, -0.015325772576034069, 0.05154169723391533, -0.11062663793563843, 0.1428707093000412, 0.09078362584114075, -0.14766539633274078, 0.07773318886756897, 0.005599017720669508, -0.19427575170993805, 0.021493196487426758, -0.0010745726758614182, -0.0411621630191803, 0.15070025622844696, 0.010284198448061943, 0.12216783314943314, -0.0069089606404304504, 0.07283578813076019, -0.19335514307022095, 0.018569543957710266, 0.05286853015422821, 0.0009472387027926743, 0.08607669919729233, 0.03263362869620323, 0.010886563919484615, 0.11433445662260056, -0.07898428291082382, 0.04356398805975914, 0.02186903916299343, -0.12881192564964294, -0.23859457671642303, -0.10252977162599564, -0.0006181288626976311, 0.06860144436359406, 0.11528998613357544, -0.0049916342832148075, 0.17630493640899658, -0.10679521411657333, 0.08564812690019608, 0.26406803727149963, -0.29419830441474915, -0.06825121492147446, 0.022283799946308136, 0.0402483232319355, 0.07550159841775894, -0.0969688817858696, -0.02803875505924225, 0.05670909583568573, 0.052819106727838516, 0.1085168719291687, -0.03500181436538696, -0.11398684978485107, 0.054021403193473816, -0.15140919387340546, -0.048658400774002075, 0.15409652888774872, 0.053766053169965744, -0.026587843894958496, -0.02634701132774353, -0.061374250799417496, -0.1517496109008789, -0.01092162262648344, -0.020006077364087105, 0.04395782947540283, -0.04826951026916504, -0.0753869041800499, 0.001261708210222423, -0.10889467597007751, -0.09024718403816223, -0.06860530376434326, 0.1429704874753952, 0.046679481863975525, 0.03707177937030792, -0.04058115929365158, 0.10412599891424179, 0.017133520916104317, -0.12407248467206955, 0.012168548069894314, 0.035042714327573776, -0.02008902095258236, -0.03378688171505928, -0.06560821086168289, -0.06500290334224701, 0.036674488335847855, 0.1352357417345047, -0.04552118852734566, 0.031457215547561646, 0.0735817402601242, 0.041122809052467346, -0.08030135184526443, 0.16491882503032684, -0.07097164541482925, -0.006427486892789602, -0.008257684297859669, 0.044081225991249084, 0.0046668206341564655, -0.0012630519922822714, -0.09716465324163437, -0.006198490504175425, 0.08723773807287216, 0.029947839677333832, -0.04176756739616394, 0.04356508329510689, -0.05859464406967163, -0.025080809369683266, 0.0031985000241547823, -0.0845629945397377, 0.023985624313354492, -0.009858504869043827, -0.10101217776536942, -0.024174889549613, 0.007173533085733652, 0.026373254135251045, -0.019912544637918472, 0.08264025300741196, -0.0934872105717659, 0.030875256285071373, -0.09829208999872208, -0.1009780690073967, 0.025478370487689972, -0.10367242246866226, 0.035676825791597366, -0.0858549252152443, -0.17168520390987396, -0.015142582356929779, 0.05470384657382965, -0.024788038805127144, -0.062479954212903976, -0.0309139396995306, -0.07834020256996155, -0.00888089369982481, -0.021106690168380737, 0.14920862019062042, -0.063181571662426, 0.11954280734062195, 0.04665672406554222, 0.06820055097341537, -0.040569473057985306, 0.05574283376336098, -0.09997966885566711, 0.003212300129234791, -0.15597030520439148, 0.02491587959229946, -0.04560539498925209, 0.06410601735115051, -0.10845229774713516, -0.11499541252851486, 0.02550402283668518, -0.006803868804126978, 0.08423393219709396, 0.09040370583534241, -0.16963988542556763, -0.056793179363012314, 0.14506269991397858, -0.06072688475251198, -0.14809924364089966, 0.12154661864042282, -0.0542474240064621, 0.029097842052578926, 0.06975798308849335, 0.13422007858753204, 0.04319380596280098, -0.09072869271039963, 0.007291553542017937, -0.021939808502793312, 0.024878880009055138, -0.08611073344945908, 0.0843370333313942, -0.006705502513796091, 0.022229604423046112, 0.016267748549580574, -0.0488433875143528, 0.05552409961819649, -0.1116023138165474, -0.09698256105184555, -0.047839000821113586, -0.10435592383146286, 0.041928958147764206, 0.08606792241334915, 0.05613076686859131, -0.1068749949336052, -0.07790070027112961, 0.06799019873142242, 0.08020662516355515, -0.059734273701906204, 0.022635921835899353, -0.07390589267015457, 0.059557151049375534, -0.08094605058431625, -0.03554714098572731, -0.19366033375263214, -0.03073892556130886, -0.0003949856909457594, -0.005701420828700066, 0.01757812686264515, 0.0603153258562088, 0.06929540634155273, 0.03946053609251976, -0.041389111429452896, -0.021340886130928993, -0.055969659239053726, -0.013828632421791553, -0.1275593787431717, -0.19168996810913086, -0.037665531039237976, -0.017674202099442482, 0.08817071467638016, -0.2048483043909073, 0.025377631187438965, -0.03220741078257561, 0.07384147495031357, -0.0050081596709787846, -0.010729995556175709, -0.039421841502189636, 0.083182692527771, -0.02487063594162464, -0.04531099274754524, 0.07174671441316605, -0.006477635353803635, -0.09424859285354614, -0.06853921711444855, -0.07067806273698807, 0.15390044450759888, 0.12119197845458984, -0.11454518884420395, -0.060041237622499466, 0.0058293030597269535, -0.06424634158611298, -0.042219340801239014, -0.058666642755270004, 0.03404020890593529, 0.18022046983242035, -0.003999720327556133, 0.12397917360067368, -0.08532441407442093, -0.04577019438147545, 0.014793760143220425, -0.03733886405825615, 0.04678197577595711, 0.13308444619178772, 0.14665015041828156, -0.08385201543569565, 0.1416117548942566, 0.13523580133914948, -0.10011094808578491, 0.11081922799348831, -0.05776825547218323, -0.08664817363023758, -0.03303984925150871, -0.001242264756001532, -0.0054782684892416, 0.11360620707273483, -0.14251257479190826, 0.016997335478663445, 0.03189563378691673, 0.01566299982368946, 0.022765500470995903, -0.2325384020805359, -0.06308751553297043, 0.0246176328510046, -0.049150433391332626, -0.0256404560059309, 0.0002986928157042712, 0.012772951275110245, 0.0994807779788971, -0.012624125927686691, -0.06886803358793259, 0.04372793436050415, 0.004240829031914473, -0.07072072476148605, 0.21785984933376312, -0.06597672402858734, -0.11722692102193832, -0.10324558615684509, -0.026540467515587807, -0.03410922363400459, -0.006968386005610228, 0.0685504898428917, -0.0933934822678566, -0.021651046350598335, -0.050535812973976135, 0.013133580796420574, -0.002004431327804923, 0.022718222811818123, 0.0077133686281740665, -0.0017233919352293015, 0.06660956889390945, -0.12143087387084961, 0.008699732832610607, -0.05363578721880913, -0.07047805935144424, 0.05104755237698555, 0.05844201520085335, 0.1319354921579361, 0.13855013251304626, -0.012537394650280476, 0.005258973687887192, -0.01790839619934559, 0.2446761131286621, -0.0731976106762886, -0.040775444358587265, 0.15149478614330292, 0.011068088002502918, 0.05875413119792938, 0.10088854283094406, 0.0713612511754036, -0.08976399153470993, 0.01250695064663887, 0.037546057254076004, -0.04307107999920845, -0.2606559693813324, -0.027784161269664764, -0.05459222570061684, -0.03269112482666969, 0.08022022247314453, 0.030300065875053406, 0.04520123079419136, 0.07688020914793015, 0.03876054659485817, 0.04321114346385002, -0.07824668288230896, 0.042127665132284164, 0.09619325399398804, 0.05688922107219696, 0.11400672793388367, -0.05271058902144432, -0.06635626405477524, 0.02632620930671692, 0.0002456774527672678, 0.25369685888290405, 0.004460509400814772, 0.16795159876346588, 0.08095536381006241, 0.2104502171278, -0.012428744696080685, 0.08922144025564194, -0.009451974183321, -0.049914196133613586, -0.00962656270712614, -0.028547124937176704, -0.030253825709223747, 0.016024000942707062, -0.032492510974407196, 0.06679200381040573, -0.09149692207574844, -0.004935051780194044, 0.0475478321313858, 0.27753376960754395, 0.027133271098136902, -0.31369492411613464, -0.07692465931177139, -0.009183702990412712, -0.032872334122657776, -0.009084399789571762, 0.016058651730418205, 0.11908150464296341, -0.09455668926239014, 0.004923790693283081, -0.07267285138368607, 0.09940315037965775, -0.019466806203126907, 0.029602117836475372, 0.06808354705572128, 0.09432985633611679, 0.009971607476472855, 0.09345423430204391, -0.29425594210624695, 0.2672957181930542, -0.0009677358902990818, 0.07771684229373932, -0.08478277921676636, -0.014153563417494297, 0.013419770635664463, 0.017143288627266884, 0.07224205881357193, -0.0157312098890543, -0.027649367228150368, -0.17523877322673798, -0.042191509157419205, 0.046423930674791336, 0.07223960757255554, -0.030585838481783867, 0.09930101782083511, -0.01824367418885231, 0.021142689511179924, 0.0687985047698021, -0.0008048534509725869, -0.046115752309560776, -0.07816814631223679, -0.019648341462016106, 0.028201719745993614, -0.04391060397028923, -0.06272415071725845, -0.10567823797464371, -0.10870049148797989, 0.10073406249284744, -0.026916420087218285, -0.03931307792663574, -0.10426484793424606, 0.09852766990661621, 0.11171630769968033, -0.09138769656419754, 0.04309464991092682, 0.019015466794371605, 0.0364973358809948, 0.0534275658428669, -0.04792223870754242, 0.10170552879571915, -0.06187622249126434, -0.1563308835029602, -0.047152966260910034, 0.09583726525306702, 0.05920371040701866, 0.058011651039123535, -0.012240705080330372, 0.018334850668907166, -0.06070828437805176, -0.09528584033250809, 0.032049600034952164, -0.04773567616939545, 0.09724660962820053, 0.044912438839673996, -0.019130105152726173, 0.05112072825431824, -0.05446310341358185, -0.046113014221191406, 0.19209764897823334, 0.22999383509159088, -0.09357493370771408, 0.0011885816929861903, 0.03880539536476135, -0.050394851714372635, -0.16731412708759308, 0.035330142825841904, 0.06767237931489944, 0.00006560787005582824, 0.07361545413732529, -0.17347382009029388, 0.15241730213165283, 0.12632133066654205, -0.005913935601711273, 0.12813124060630798, -0.3555363714694977, -0.10943742841482162, 0.09611579030752182, 0.15606509149074554, 0.11971145123243332, -0.16151294112205505, -0.022169632837176323, -0.007681229617446661, -0.1651408076286316, 0.10573608428239822, -0.0954337939620018, 0.11622599512338638, -0.040182776749134064, 0.10214462131261826, -0.0029125765431672335, -0.07063829898834229, 0.13649438321590424, 0.026024624705314636, 0.10296661406755447, -0.05077670142054558, -0.03198833763599396, 0.05139936879277229, -0.020525630563497543, 0.02985837124288082, -0.0952344462275505, 0.03623489663004875, -0.10988158732652664, -0.01798570156097412, -0.09856032580137253, 0.04017717391252518, -0.03321520984172821, -0.04724155366420746, -0.04381999745965004, 0.01586088351905346, 0.039947398006916046, -0.008273869752883911, 0.1380167454481125, 0.03457823023200035, 0.15002848207950592, 0.07534638047218323, 0.07793060690164566, -0.04957893490791321, -0.12372369319200516, -0.025012364611029625, -0.0017878442304208875, 0.06127624586224556, -0.1369498074054718, 0.027889281511306763, 0.15267729759216309, 0.03957374766469002, 0.1302264928817749, 0.06900980323553085, -0.0346677266061306, 0.0248438511043787, 0.0435156375169754, -0.14479811489582062, -0.11989612132310867, 0.015565053559839725, -0.04896083474159241, -0.11870964616537094, 0.06778018176555634, 0.07195623964071274, -0.05039258673787117, -0.01898263581097126, -0.011365118436515331, -0.003523496212437749, -0.05861717090010643, 0.21049009263515472, 0.086373470723629, 0.0572877936065197, -0.11033544689416885, 0.07633914798498154, 0.04472154378890991, -0.08570710569620132, 0.0020844158716499805, 0.054951488971710205, -0.06295690685510635, -0.045535389333963394, 0.102019302546978, 0.1673296093940735, -0.08305229991674423, -0.05126722529530525, -0.1439918875694275, -0.0952146053314209, 0.07798798382282257, 0.1551065742969513, 0.10962919145822525, -0.0025513714645057917, -0.03637062758207321, 0.009437952190637589, -0.11689507961273193, 0.07943130284547806, 0.0450684130191803, 0.05618070065975189, -0.13269244134426117, 0.11860557645559311, 0.012712796218693256, 0.053802017122507095, -0.012219627387821674, 0.033107858151197433, -0.08921623229980469, 0.03312292322516441, -0.1358814835548401, -0.029395656660199165, -0.02563844807446003, -0.007166134659200907, -0.0008001360693015158, -0.0798489898443222, -0.06909596920013428, 0.024754194542765617, -0.12288577109575272, -0.019582057371735573, 0.051185254007577896, 0.05041085183620453, -0.13540638983249664, -0.04773640260100365, 0.039492882788181305, -0.0464562363922596, 0.062057431787252426, 0.056351128965616226, 0.013854932971298695, 0.05315794423222542, -0.13186015188694, 0.0031808416824787855, 0.05463280901312828, 0.014459170401096344, 0.07024432718753815, -0.09506305307149887, -0.014036036096513271, 0.002524614566937089, 0.07244659215211868, 0.008820921182632446, 0.02152741141617298, -0.14400751888751984, -0.019117772579193115, -0.024912452325224876, -0.08205162733793259, -0.07692506164312363, 0.005200609099119902, 0.09691493958234787, 0.0271295215934515, 0.2095007449388504, -0.0499739944934845, 0.049765314906835556, -0.21761949360370636, 0.0009500132873654366, -0.014716439880430698, -0.0840439423918724, -0.11273539811372757, -0.04023031145334244, 0.06301098316907883, -0.06337404996156693, 0.12881655991077423, -0.009469212964177132, 0.047194402664899826, 0.018788369372487068, 0.0004560855159070343, 0.030081167817115784, 0.013723652809858322, 0.23138628900051117, 0.022937601432204247, -0.027761271223425865, 0.06630328297615051, 0.051080454140901566, 0.07466737180948257, 0.10548164695501328, 0.19625194370746613, 0.16199146211147308, 0.02570498175919056, 0.07857943326234818, 0.02804037742316723, -0.05148224160075188, -0.12836959958076477, 0.03412766009569168, -0.017886383458971977, 0.07699226588010788, 0.006742770317941904, 0.2521311342716217, 0.07830806821584702, -0.1665978580713272, 0.04771474376320839, -0.06565999984741211, -0.08846855163574219, -0.09152593463659286, -0.049021776765584946, -0.07391306012868881, -0.14878493547439575, 0.0143894637003541, -0.12100421637296677, 0.022556453943252563, 0.16164906322956085, 0.003584803780540824, -0.02857465296983719, 0.15722666680812836, 0.07260388135910034, 0.026548126712441444, 0.024442359805107117, -0.00155343406368047, -0.016210321336984634, -0.06817156821489334, -0.04626131430268288, 0.0018742118263617158, -0.02812502719461918, 0.045300956815481186, -0.061336811631917953, -0.08777905255556107, 0.045047562569379807, -0.033716749399900436, -0.09866410493850708, 0.005907490849494934, 0.025410456582903862, 0.06701254844665527, 0.045576080679893494, 0.019212504848837852, 0.035060156136751175, -0.01805904321372509, 0.2188066989183426, -0.06842092424631119, -0.07673536986112595, -0.09919583797454834, 0.1995825320482254, 0.04308090731501579, -0.01680980809032917, 0.042864274233579636, -0.07302310317754745, 0.01325905229896307, 0.21894711256027222, 0.15921251475811005, -0.08913334459066391, -0.019558699801564217, -0.002081111306324601, -0.011915995739400387, -0.041094835847616196, 0.07722926884889603, 0.14039866626262665, 0.03856058418750763, -0.11444761604070663, -0.03848510980606079, -0.07704945653676987, -0.006555683445185423, -0.04359922930598259, 0.028706764802336693, 0.04932333528995514, -0.00036360291414894164, -0.031219810247421265, 0.0728008896112442, -0.05540173873305321, -0.12368272989988327, 0.0797806829214096, -0.17701201140880585, -0.16424673795700073, -0.0237769465893507, 0.1251038908958435, 0.009915687143802643, 0.058897946029901505, -0.038749922066926956, 0.00290793739259243, 0.06105300784111023, -0.016252951696515083, -0.1084560677409172, -0.09114711731672287, 0.1190737783908844, -0.10777247697114944, 0.18174810707569122, -0.04484976828098297, 0.09462857246398926, 0.1338161826133728, 0.05056605860590935, -0.08082899451255798, 0.06934837251901627, 0.05588633194565773, -0.08458101749420166, 0.02942909114062786, 0.07439754158258438, -0.011308002285659313, 0.046312104910612106, 0.04080278053879738, -0.10683563351631165, 0.009973724372684956, -0.03620167821645737, -0.018818547949194908, -0.05915336683392525, -0.025149578228592873, -0.05963875725865364, 0.1272881180047989, 0.1970081776380539, -0.042732834815979004, 0.012753251008689404, -0.07975652068853378, 0.015967225655913353, 0.06513664126396179, 0.031808529049158096, -0.07673963159322739, -0.21161381900310516, 0.028709935024380684, 0.060300860553979874, -0.029766516759991646, -0.204667866230011, -0.08905532211065292, 0.01265565026551485, -0.09764302521944046, -0.0666736289858818, 0.054290130734443665, 0.08380832523107529, 0.06104160472750664, -0.04618233069777489, -0.06425844877958298, -0.0908195897936821, 0.15756140649318695, -0.15761448442935944, -0.09160369634628296 ]
null
null
transformers
## Not yet
{}
fill-mask
hansgun/model_test
[ "transformers", "tf", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #tf #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
## Not yet
[ "## Not yet" ]
[ "TAGS\n#transformers #tf #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n", "## Not yet" ]
[ 35, 3 ]
[ "passage: TAGS\n#transformers #tf #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n## Not yet" ]
[ -0.02829541265964508, 0.007260027341544628, -0.0044104233384132385, 0.04096074774861336, 0.11420577764511108, 0.030877916142344475, 0.0792388916015625, 0.09964034706354141, 0.07081344723701477, 0.02477997913956642, 0.17113010585308075, 0.1359398066997528, -0.015976041555404663, 0.2342730462551117, -0.11357041448354721, -0.21663610637187958, 0.047337327152490616, 0.07575618475675583, -0.09478861093521118, 0.0676908865571022, 0.05746210739016533, -0.0321577750146389, 0.0845513716340065, -0.05266750976443291, -0.14134731888771057, 0.04320475459098816, 0.05837668105959892, -0.10800454765558243, 0.09129267930984497, 0.07515493780374527, 0.17829690873622894, 0.04181744530797005, -0.08137740194797516, -0.0483834408223629, 0.035695381462574005, 0.03208230808377266, -0.07638786733150482, 0.03488246724009514, 0.0164033155888319, -0.04287146404385567, -0.04172574356198311, 0.028183335438370705, 0.03205800801515579, 0.0836586132645607, -0.1753019094467163, -0.13289566338062286, -0.05410534888505936, -0.0014306760858744383, 0.008970479480922222, 0.041278328746557236, 0.024340566247701645, 0.22368742525577545, -0.03158432990312576, 0.09504370391368866, 0.14425770938396454, -0.3293483853340149, -0.02059222385287285, 0.0645444393157959, 0.05658242106437683, -0.02746259607374668, -0.03965752571821213, 0.06583941727876663, 0.08440642803907394, 0.04964906722307205, 0.04624199867248535, -0.041674502193927765, -0.03764667734503746, -0.013494853861629963, -0.1101800948381424, -0.033367253839969635, 0.19436399638652802, 0.00322710326872766, 0.007421313319355249, 0.016448715701699257, -0.1383194923400879, -0.08048407733440399, -0.0045563578605651855, -0.0372886024415493, -0.03913115710020065, 0.07230575382709503, -0.03560033440589905, -0.07389473915100098, -0.08481057733297348, 0.021784385666251183, -0.23165525496006012, 0.24263136088848114, -0.010491366498172283, 0.07090771198272705, -0.18580229580402374, 0.03078766167163849, -0.11425159126520157, -0.1153402104973793, 0.03904436156153679, -0.09150069952011108, -0.037683434784412384, -0.03824752941727638, -0.03473895415663719, -0.06876318156719208, 0.06716538965702057, 0.19287802278995514, 0.0822870284318924, 0.04984638839960098, -0.07068907469511032, 0.07440491765737534, -0.035876497626304626, 0.07054642587900162, 0.004109549336135387, -0.06749359518289566, 0.0754242092370987, -0.13779637217521667, 0.0013196078361943364, -0.0792243629693985, -0.15166909992694855, -0.06440100073814392, -0.017340220510959625, 0.07010551542043686, 0.04228561744093895, 0.07931934297084808, -0.049775462597608566, -0.001265340601094067, 0.08526657521724701, -0.07311931252479553, -0.04057837277650833, -0.0740855410695076, 0.062283460050821304, 0.0643702894449234, 0.06867610663175583, -0.01844942197203636, 0.01971944235265255, 0.06325207650661469, -0.08466193079948425, -0.10698949545621872, -0.04884634539484978, -0.08696769177913666, 0.061770565807819366, -0.13208913803100586, 0.026599684730172157, -0.20568688213825226, -0.09445027261972427, 0.10301685333251953, 0.035423643887043, -0.03434156998991966, 0.0142681198194623, 0.047245949506759644, -0.047963760793209076, 0.07593289017677307, -0.02149198018014431, -0.05020175501704216, -0.036111488938331604, 0.05863947421312332, 0.05602801591157913, 0.14374695718288422, -0.15661682188510895, 0.04184412211179733, -0.07407530397176743, 0.014678730629384518, -0.1770302802324295, -0.01910061575472355, -0.02228831872344017, 0.14855219423770905, -0.029372354969382286, 0.0019472329877316952, -0.13241389393806458, 0.02127857878804207, -0.0007596235955134034, 0.162877157330513, -0.12075261026620865, -0.09211520105600357, 0.2547682225704193, -0.10435357689857483, -0.18493753671646118, 0.09862881898880005, 0.04787955805659294, 0.0025627086870372295, 0.008695470169186592, 0.09631967544555664, 0.04301195219159126, -0.16251899302005768, 0.10684932768344879, 0.1339567005634308, -0.12003428488969803, -0.055128131061792374, 0.03653212636709213, -0.037056177854537964, -0.14513301849365234, 0.039482422173023224, 0.1231778934597969, 0.10558672249317169, -0.0819629356265068, -0.02076789364218712, -0.06291214376688004, -0.062215231359004974, 0.12458886206150055, -0.0032846112735569477, 0.06922643631696701, -0.07972057908773422, -0.01960926689207554, -0.030999314039945602, -0.029651621356606483, 0.08192576467990875, 0.036415815353393555, -0.09333699196577072, 0.10909759253263474, -0.09664171189069748, 0.008823195472359657, -0.1441313475370407, -0.18839967250823975, 0.017650792375206947, 0.09586279839277267, 0.012408719398081303, 0.2045920193195343, 0.11888616532087326, -0.0287624541670084, -0.024369170889258385, -0.003923086915165186, 0.11238418519496918, 0.0380508229136467, -0.03588591143488884, -0.08419613540172577, 0.05052655190229416, -0.1019807904958725, -0.0495564267039299, 0.010600182227790356, -0.014927094802260399, 0.038912564516067505, 0.19697852432727814, 0.039454419165849686, 0.020279938355088234, -0.03318342566490173, -0.0021033904049545527, -0.07330957055091858, -0.04583417996764183, 0.04671383276581764, 0.01106396783143282, -0.1122165396809578, 0.13937942683696747, -0.13499261438846588, 0.3070801794528961, 0.18511469662189484, -0.2072928547859192, -0.06257881969213486, 0.08812898397445679, -0.01965213753283024, 0.004661418963223696, 0.057206861674785614, -0.016418298706412315, -0.03199391067028046, -0.009883508086204529, 0.19606530666351318, -0.021524488925933838, -0.022723760455846786, 0.06177864596247673, -0.06989158689975739, -0.09839582443237305, 0.00019190744205843657, 0.03563779219985008, -0.20134055614471436, 0.1660393476486206, 0.24468843638896942, 0.04011334851384163, 0.2099512368440628, -0.0036903065629303455, -0.025591736659407616, 0.0007237110985442996, 0.025782562792301178, 0.013109354302287102, 0.03023768588900566, -0.1940702646970749, -0.029736464843153954, 0.07681959867477417, 0.018969938158988953, 0.034800078719854355, -0.06728869676589966, -0.021020706743001938, 0.04252240061759949, 0.02529149129986763, -0.02980857715010643, 0.1799049973487854, 0.008092718198895454, 0.0900770053267479, 0.0660196989774704, -0.05974976345896721, 0.13815443217754364, -0.008575381711125374, -0.07042678445577621, 0.11464062333106995, -0.1875874549150467, -0.3071185052394867, -0.12936535477638245, -0.17107605934143066, -0.008528139442205429, 0.06189627945423126, 0.0781979188323021, -0.08561547100543976, -0.09181773662567139, 0.0599154531955719, -0.03486158698797226, -0.05924252048134804, 0.10168134421110153, -0.027968980371952057, -0.003515369724482298, 0.005083341151475906, -0.06996528059244156, -0.06076738238334656, 0.020842228084802628, -0.03420456126332283, 0.11127053201198578, -0.11131990700960159, 0.10431989282369614, 0.15302184224128723, -0.030981676653027534, 0.08956819772720337, -0.021337145939469337, 0.24252578616142273, -0.08443678170442581, 0.023526618257164955, 0.1493990570306778, -0.035286709666252136, 0.06519857048988342, 0.14759708940982819, -0.009539726190268993, -0.07749910652637482, 0.04085761681199074, -0.029069801792502403, -0.13612592220306396, -0.16714507341384888, -0.06111916899681091, -0.1522640883922577, -0.0028803162276744843, 0.03015051782131195, 0.06258887052536011, 0.19709466397762299, 0.062005240470170975, 0.008340997621417046, 0.03845944255590439, -0.09314320981502533, 0.05939500778913498, 0.14160597324371338, -0.00004435720984474756, 0.08853234350681305, -0.0900239571928978, -0.09695007652044296, 0.10529527068138123, 0.004138072486966848, 0.04014262929558754, 0.11874844133853912, 0.0503668338060379, 0.015060730278491974, 0.14980843663215637, 0.1311824917793274, 0.12439119070768356, 0.062472742050886154, -0.07079241424798965, -0.024570859968662262, -0.034843236207962036, -0.02620251104235649, 0.04272108152508736, 0.10170384496450424, -0.08077570050954819, -0.06351535022258759, -0.08705489337444305, 0.03436308354139328, 0.11921732872724533, 0.11387915909290314, -0.21358363330364227, 0.012054874561727047, 0.04782286286354065, -0.009170515462756157, -0.12214299291372299, 0.04604320973157883, 0.03404780104756355, -0.0953185185790062, 0.12250091880559921, -0.018093209713697433, 0.08601822704076767, 0.1120305061340332, 0.041453417390584946, 0.04889616370201111, -0.05479661002755165, 0.005959956906735897, 0.03364889323711395, -0.3021724224090576, 0.25497564673423767, 0.02757675014436245, -0.032586876302957535, -0.06374138593673706, 0.002342576626688242, 0.018617717549204826, 0.14657706022262573, 0.13501617312431335, 0.023060500621795654, -0.042294226586818695, -0.13239304721355438, 0.04101109877228737, -0.02298642322421074, 0.15483909845352173, 0.017063137143850327, -0.006434913258999586, -0.06799788773059845, -0.04684964567422867, 0.038515280932188034, 0.14037272334098816, -0.06037944182753563, -0.10861475020647049, 0.10724791884422302, 0.05882763862609863, -0.03059464693069458, -0.02075236476957798, -0.017331605777144432, -0.09568537026643753, 0.1822327971458435, -0.030935775488615036, -0.013882734812796116, -0.15904423594474792, -0.08471950143575668, 0.1122218444943428, -0.07070289552211761, 0.11814416199922562, -0.13066114485263824, 0.04966072738170624, -0.0820583924651146, -0.21712367236614227, 0.16132284700870514, -0.11463139951229095, -0.03972526267170906, -0.0735756903886795, 0.1001676395535469, -0.12323994934558868, 0.028352433815598488, 0.0018641657661646605, 0.01680286042392254, -0.036676373332738876, -0.03752173110842705, 0.05981221795082092, -0.07921236753463745, 0.005997024942189455, 0.035381920635700226, -0.05421049892902374, 0.05868011340498924, 0.07435295730829239, -0.014149562455713749, 0.195735901594162, 0.2795006334781647, -0.09539379179477692, 0.13007675111293793, 0.1300680786371231, -0.023566506803035736, -0.3145689368247986, -0.04580790549516678, -0.13666126132011414, -0.008999853394925594, -0.01937982253730297, -0.04244823008775711, 0.02918052114546299, -0.06638239324092865, -0.01474263146519661, 0.13155695796012878, -0.078461192548275, -0.09790996462106705, 0.1977136731147766, -0.026199009269475937, 0.40299251675605774, -0.15692299604415894, -0.09194236993789673, -0.06317263841629028, -0.11306005716323853, 0.0764908418059349, -0.030360981822013855, 0.09875348955392838, 0.018122419714927673, 0.05860336497426033, 0.025630315765738487, -0.06059560179710388, 0.0969858169555664, -0.07837001234292984, 0.020671140402555466, -0.11742392182350159, -0.03904741257429123, 0.12063919752836227, -0.032638225704431534, 0.01920970156788826, 0.08047281205654144, 0.013698033057153225, -0.009390446357429028, -0.026455922052264214, -0.09397850930690765, 0.13577863574028015, 0.047307658940553665, -0.09366835653781891, -0.02937966212630272, -0.0195588618516922, 0.03878059238195419, -0.046143848448991776, 0.1627895087003708, -0.04680103063583374, 0.2267124354839325, 0.11157969385385513, 0.05771373584866524, -0.17083081603050232, -0.008355813100934029, -0.01718919351696968, -0.10185903310775757, 0.08021771162748337, -0.06615404039621353, 0.05349356308579445, 0.07454811781644821, -0.009442372247576714, 0.06969012320041656, 0.11728089302778244, -0.013960394077003002, -0.05634447559714317, 0.15472668409347534, -0.20748034119606018, 0.040619440376758575, -0.08052162081003189, -0.03442611172795296, 0.0976807251572609, 0.015617899596691132, 0.10955532640218735, 0.007289674133062363, 0.017658481374382973, -0.0076404050923883915, -0.052374135702848434, -0.0820179358124733, 0.044036418199539185, 0.0878712385892868, 0.042144257575273514, -0.10766235738992691, 0.04950577765703201, -0.03388640284538269, -0.1829599142074585, 0.059124656021595, 0.06295786052942276, -0.11633675545454025, -0.08400449901819229, 0.05199560523033142, 0.14124232530593872, -0.13635772466659546, -0.02439047396183014, -0.049402039498090744, -0.07239820063114166, 0.05358098819851875, 0.3540145456790924, 0.05950118973851204, 0.07922152429819107, -0.0025633196346461773, 0.00283462880179286, -0.024527575820684433, -0.023563260212540627, -0.01725492626428604, 0.028586842119693756, -0.16345873475074768, 0.08143894374370575, -0.04300830885767937, 0.15452584624290466, -0.12083443999290466, -0.030414439737796783, -0.1528022140264511, -0.010783187113702297, -0.0990862175822258, -0.08605106174945831, -0.024539759382605553, -0.07158190757036209, 0.05358745902776718, -0.0933580994606018, -0.042515724897384644, -0.05353911221027374, -0.12194549292325974, 0.001195486867800355, 0.04331321269273758, -0.011575097218155861, -0.025053035467863083, -0.04457858204841614, 0.07033954560756683, -0.03164898604154587, 0.03882697597146034, 0.1018550768494606, -0.06698443740606308, 0.07255010306835175, -0.12009269744157791, -0.11223452538251877, 0.07303867489099503, 0.0006003525340929627, 0.11726447194814682, 0.08680301904678345, -0.00007809414819348603, 0.010224713943898678, 0.026208098977804184, 0.043141547590494156, 0.05930336192250252, -0.10196994245052338, -0.03606000542640686, -0.017474254593253136, -0.12104563415050507, -0.0416252575814724, -0.04023214802145958, 0.12992806732654572, 0.03222019970417023, 0.04376458004117012, -0.05514146015048027, 0.07046870142221451, -0.02461668662726879, -0.018929993733763695, -0.03206229209899902, -0.11042524874210358, 0.03099396452307701, -0.005717019084841013, 0.024853479117155075, -0.00037187195266596973, 0.19435210525989532, -0.02769526094198227, 0.04753239452838898, 0.049662113189697266, -0.026036560535430908, -0.010604944080114365, -0.030901551246643066, 0.20185506343841553, 0.10862360894680023, -0.03640113025903702, -0.09088046103715897, 0.08945213258266449, 0.011339154094457626, -0.0536026656627655, 0.1491546332836151, 0.014492367394268513, -0.07456597685813904, 0.10992123931646347, 0.0038768562953919172, -0.037957340478897095, -0.11386708170175552, -0.19625942409038544, 0.0019160239025950432, 0.08571382611989975, -0.006508082151412964, -0.04747949540615082, 0.14182338118553162, -0.030401550233364105, 0.02884174883365631, -0.04174992814660072, -0.00007387995719909668, -0.21435868740081787, -0.09800936281681061, -0.0906452089548111, -0.08763200044631958, 0.021693333983421326, -0.0438922755420208, 0.052445877343416214, 0.02725006267428398, 0.058875828981399536, -0.01480842661112547, 0.18633408844470978, -0.08092080801725388, -0.03620234504342079, 0.06456710398197174, 0.0015755891799926758, 0.012502236291766167, -0.03504200279712677, -0.0801628977060318, -0.12369028478860855, 0.019342893734574318, -0.11092966794967651, 0.009993248619139194, -0.044389016926288605, 0.051032423973083496, -0.06851585954427719, -0.1276978701353073, -0.054668739438056946, 0.07220274955034256, -0.02276996709406376, 0.07933705300092697, -0.017698969691991806, 0.015406020916998386, -0.012138412334024906, 0.14267651736736298, -0.11066315323114395, -0.09025715291500092, -0.09229334443807602, 0.17878007888793945, -0.013177327811717987, 0.10017818212509155, -0.045215167105197906, 0.01284819282591343, -0.11039061844348907, 0.3442106246948242, 0.2242496758699417, -0.037395019084215164, 0.05733566731214523, 0.056824274361133575, 0.03514882177114487, 0.04879964515566826, 0.13219057023525238, 0.04113699868321419, 0.22151479125022888, -0.0760992169380188, -0.055086687207221985, -0.02146608941257, -0.029553458094596863, -0.09175659716129303, 0.07630177587270737, 0.034202199429273605, 0.0005220971070230007, -0.057161442935466766, 0.06080618500709534, -0.14422915875911713, 0.05501808598637581, 0.03762750327587128, -0.14717935025691986, -0.023934852331876755, -0.06414272636175156, 0.0661739632487297, -0.00416900310665369, 0.09084347635507584, -0.03332650288939476, -0.04723682254552841, 0.04159839451313019, 0.020770158618688583, -0.1835719645023346, -0.06541568040847778, 0.09799574315547943, -0.025762654840946198, 0.08961068838834763, -0.02282976545393467, 0.011688546277582645, 0.10798268020153046, 0.07711572200059891, -0.030152667313814163, 0.023548290133476257, 0.03299655392765999, -0.07506311684846878, -0.07474129647016525, 0.06830116361379623, -0.02168089896440506, -0.06257561594247818, 0.00869391206651926, -0.24879837036132812, 0.02815808542072773, -0.004671107977628708, -0.04549352079629898, -0.01139619667083025, 0.06055697426199913, -0.06256580352783203, 0.1220393180847168, 0.0969088226556778, -0.005953142419457436, -0.020195987075567245, -0.06748861819505692, 0.014583943411707878, 0.065487802028656, -0.09911413490772247, -0.12320771813392639, -0.08586853742599487, -0.054904524236917496, 0.054811399430036545, -0.02356996200978756, -0.1708645522594452, -0.06066674366593361, -0.07307092845439911, 0.061482734978199005, -0.12631559371948242, 0.08808931708335876, 0.07521690428256989, 0.0408000648021698, 0.001733398879878223, -0.0559786781668663, 0.03518117964267731, 0.053528156131505966, -0.1555810421705246, -0.061647456139326096 ]
null
null
transformers
# Helsinki-NLP/opus-mt-en-vi - This model is a fine-tune checkpoint of [Helsinki-NLP/opus-mt-en-vi](https://huggingface.co/Helsinki-NLP/opus-mt-en-vi). - This model reaches BLEU score = 33.086 on the test set of IWSLT'15 English-Vietnamese data. # Fine-tuning hyper-parameters - learning_rate = 1e-4 - batch_size = 4 - num_train_epochs = 3.0
{}
text2text-generation
haotieu/en-vi-mt-model
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #marian #text2text-generation #autotrain_compatible #endpoints_compatible #has_space #region-us
# Helsinki-NLP/opus-mt-en-vi - This model is a fine-tune checkpoint of Helsinki-NLP/opus-mt-en-vi. - This model reaches BLEU score = 33.086 on the test set of IWSLT'15 English-Vietnamese data. # Fine-tuning hyper-parameters - learning_rate = 1e-4 - batch_size = 4 - num_train_epochs = 3.0
[ "# Helsinki-NLP/opus-mt-en-vi\n- This model is a fine-tune checkpoint of Helsinki-NLP/opus-mt-en-vi.\n- This model reaches BLEU score = 33.086 on the test set of IWSLT'15 English-Vietnamese data.", "# Fine-tuning hyper-parameters\n- learning_rate = 1e-4\n- batch_size = 4\n- num_train_epochs = 3.0" ]
[ "TAGS\n#transformers #pytorch #marian #text2text-generation #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Helsinki-NLP/opus-mt-en-vi\n- This model is a fine-tune checkpoint of Helsinki-NLP/opus-mt-en-vi.\n- This model reaches BLEU score = 33.086 on the test set of IWSLT'15 English-Vietnamese data.", "# Fine-tuning hyper-parameters\n- learning_rate = 1e-4\n- batch_size = 4\n- num_train_epochs = 3.0" ]
[ 43, 71, 36 ]
[ "passage: TAGS\n#transformers #pytorch #marian #text2text-generation #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Helsinki-NLP/opus-mt-en-vi\n- This model is a fine-tune checkpoint of Helsinki-NLP/opus-mt-en-vi.\n- This model reaches BLEU score = 33.086 on the test set of IWSLT'15 English-Vietnamese data.# Fine-tuning hyper-parameters\n- learning_rate = 1e-4\n- batch_size = 4\n- num_train_epochs = 3.0" ]
[ -0.131881982088089, -0.0004096522752661258, -0.0016915417509153485, 0.06943164020776749, 0.05184110254049301, -0.056868817657232285, 0.034208785742521286, 0.047316983342170715, -0.016313496977090836, 0.02939430996775627, 0.13681283593177795, 0.07271759957075119, -0.0034499529283493757, 0.15150870382785797, -0.0837382897734642, -0.2659989595413208, 0.07804173976182938, 0.0803472250699997, -0.07981064170598984, 0.09629496932029724, 0.07953272014856339, -0.06539639830589294, 0.07323797047138214, 0.02736581489443779, -0.06722743809223175, 0.06191214174032211, -0.013793961144983768, -0.09468748420476913, 0.07514382898807526, 0.03310564160346985, 0.08896493911743164, 0.04647858440876007, 0.018247293308377266, -0.08126997947692871, 0.013787887059152126, -0.015280297957360744, 0.0177852064371109, 0.010029063560068607, 0.0416058674454689, 0.02659328281879425, 0.23361916840076447, -0.05101459473371506, 0.014074304141104221, -0.03628171980381012, -0.037273209542036057, 0.011337686330080032, -0.0030695670284330845, -0.017230497673153877, 0.08903154730796814, 0.11168640851974487, -0.062419939786195755, 0.2650901675224304, -0.2734375596046448, 0.1045345738530159, 0.13343028724193573, -0.2724944055080414, -0.02283223532140255, 0.12494546920061111, 0.07124526798725128, 0.0010909870034083724, -0.043982356786727905, 0.050213806331157684, 0.11265349388122559, 0.04151786118745804, -0.04520975053310394, -0.06841401010751724, -0.0311574786901474, 0.0626603215932846, -0.1375153809785843, 0.07989023625850677, 0.2214759737253189, 0.03806223347783089, -0.009018638171255589, -0.016936376690864563, -0.05375250428915024, -0.10209934413433075, 0.016796592622995377, -0.15216462314128876, 0.0005903058336116374, -0.03685455769300461, 0.0007528304704464972, 0.030737753957509995, -0.0725872814655304, -0.014588377438485622, -0.06733036786317825, 0.106962189078331, 0.03158039599657059, -0.0019118890631943941, -0.07131745666265488, 0.051353875547647476, -0.08326102048158646, -0.0440460741519928, -0.005255896132439375, -0.02099870704114437, -0.03198331966996193, -0.028777705505490303, -0.06525859236717224, -0.03716336563229561, -0.02076457254588604, 0.017943866550922394, 0.010039684362709522, -0.016531072556972504, 0.06454034894704819, 0.019841467961668968, 0.005470042582601309, 0.14546257257461548, -0.09065990895032883, -0.11355966329574585, 0.007089410442858934, 0.006606912240386009, -0.004648372530937195, -0.015689443796873093, -0.05612305924296379, -0.08837194740772247, 0.09039179235696793, -0.010049683041870594, -0.12347614020109177, 0.031689222902059555, -0.023221071809530258, -0.03562892973423004, -0.018430529162287712, -0.10701082646846771, 0.05107502639293671, -0.03229216858744621, -0.09303104877471924, 0.1782068908214569, -0.002513315761461854, -0.013538792729377747, -0.11210912466049194, 0.08328887075185776, -0.04357115179300308, -0.011113462969660759, -0.0336710624396801, -0.08629421144723892, 0.005637638736516237, -0.07548422366380692, 0.02943149209022522, -0.12272776663303375, -0.04107964411377907, -0.02315920777618885, 0.053428713232278824, -0.05145411193370819, -0.0591292679309845, -0.12319573760032654, -0.05784382298588753, 0.0072796037420630455, -0.049390699714422226, 0.00026789927505888045, -0.044928815215826035, 0.030875323340296745, 0.006978882011026144, 0.07095786929130554, 0.0038283071480691433, 0.023752162232995033, -0.08608105033636093, -0.00695172930136323, -0.07209815084934235, 0.032031215727329254, -0.025731045752763748, -0.032959017902612686, -0.0006003306480124593, -0.12299520522356033, 0.011381392367184162, 0.08318039774894714, 0.048093196004629135, 0.12507468461990356, -0.10207773745059967, -0.08272790163755417, 0.043573442846536636, -0.08362283557653427, -0.07309884577989578, 0.17304319143295288, 0.002981971949338913, -0.021187368780374527, 0.08179406076669693, 0.1677601933479309, -0.011912775225937366, -0.09006981551647186, -0.038554832339286804, 0.04392031207680702, -0.04602254182100296, -0.12562450766563416, 0.06392918527126312, 0.13219836354255676, -0.1356496810913086, 0.06289153546094894, -0.005283971782773733, 0.0332370400428772, -0.04478246346116066, -0.053008902817964554, -0.0246548093855381, -0.06917539983987808, -0.019559413194656372, 0.022414490580558777, 0.15104366838932037, -0.15533442795276642, -0.062263134866952896, 0.10301517695188522, 0.1176375076174736, -0.055192798376083374, 0.05853751301765442, -0.09560953825712204, 0.14049947261810303, -0.1179187223315239, -0.027820270508527756, -0.08761704713106155, 0.12084616720676422, -0.017528189346194267, 0.07152149081230164, 0.03547624498605728, 0.2540551722049713, 0.0415218286216259, 0.05898980796337128, -0.035604387521743774, 0.0356864370405674, 0.019437287002801895, 0.0013537141494452953, -0.09161243587732315, -0.10101800411939621, 0.05886154621839523, -0.029143165796995163, 0.0220666341483593, -0.2363753318786621, -0.05151481553912163, 0.02665182761847973, 0.1431286782026291, -0.014644795097410679, 0.07336172461509705, -0.027368037030100822, 0.07127367705106735, -0.06165727972984314, 0.010354040190577507, 0.039267051964998245, -0.032603804022073746, -0.015206236392259598, 0.07686690986156464, -0.09875603765249252, 0.18245571851730347, 0.16410233080387115, -0.09600342810153961, -0.05112982168793678, 0.018712855875492096, -0.0440160408616066, 0.011582101695239544, -0.045995112508535385, 0.10960064828395844, 0.08044623583555222, -0.04093406721949577, 0.14816176891326904, -0.0972285121679306, 0.025875087827444077, 0.02632393129169941, -0.06118082255125046, -0.04378092661499977, 0.19759060442447662, 0.1093551442027092, -0.11010487377643585, 0.05973043665289879, 0.10490988194942474, -0.10895605385303497, 0.20223481953144073, 0.035967323929071426, -0.06533748656511307, -0.008750902488827705, 0.004525788594037294, -0.03479335457086563, 0.1421777606010437, -0.2136348932981491, -0.024819524958729744, 0.019165566191077232, 0.07818740606307983, 0.0778474509716034, -0.13430415093898773, -0.06780372560024261, 0.03051348216831684, -0.006206744350492954, 0.018689526244997978, 0.07724609971046448, 0.00902455672621727, 0.10872656106948853, -0.054020002484321594, -0.1914059966802597, -0.020409855991601944, 0.017081402242183685, -0.08748992532491684, 0.15426497161388397, -0.05948915705084801, -0.27593496441841125, -0.0725274533033371, -0.00981835275888443, -0.12672720849514008, -0.0022989031858742237, 0.03783460333943367, -0.1738024652004242, -0.08867765218019485, -0.10272204130887985, 0.10309767723083496, 0.03674229234457016, 0.05034102872014046, -0.060451626777648926, 0.0672675296664238, -0.054502423852682114, -0.09007226675748825, -0.007786931935697794, -0.0787588357925415, -0.00020968216995242983, 0.043681930750608444, -0.13373854756355286, 0.009327941574156284, 0.1692925989627838, -0.08156508952379227, 0.07462196797132492, 0.03243524208664894, 0.1736166775226593, -0.07057732343673706, -0.007689726073294878, 0.07171624153852463, 0.1193263828754425, -0.05729207769036293, 0.12572568655014038, -0.0317893922328949, -0.08343711495399475, 0.05440088361501694, 0.03644055873155594, -0.0078001501969993114, -0.16560019552707672, -0.09877274185419083, -0.05721027031540871, 0.05863407626748085, 0.04408418387174606, 0.04622792825102806, -0.03471687063574791, 0.06930182874202728, 0.06974966078996658, 0.06478818506002426, -0.05021466687321663, 0.003284023841843009, 0.10538190603256226, -0.033958058804273605, 0.11077017337083817, -0.06616001576185226, -0.12920713424682617, 0.11522437632083893, -0.011401660740375519, 0.07056538760662079, -0.054132986813783646, -0.11162374168634415, 0.022743208333849907, 0.15884189307689667, 0.08743195235729218, 0.06548400968313217, -0.02140382118523121, -0.05825554206967354, -0.015378318727016449, -0.047682024538517, 0.030745094642043114, 0.050302281975746155, 0.08984238654375076, -0.0156082259491086, -0.13064919412136078, 0.049253545701503754, 0.030196459963917732, 0.045449282974004745, 0.21104265749454498, -0.18348529934883118, 0.0018567845690995455, 0.03940289095044136, -0.013758243061602116, -0.019093597307801247, 0.1366432160139084, 0.10788042098283768, -0.09009770303964615, 0.02858731336891651, 0.032217394560575485, 0.09209945797920227, 0.07237665355205536, 0.01383567601442337, -0.034881193190813065, 0.04507458582520485, 0.010473817586898804, 0.10982868820428848, -0.2085721343755722, 0.2141040414571762, -0.017905332148075104, 0.0446445494890213, -0.045088183134794235, -0.04890476167201996, 0.018977023661136627, 0.154452383518219, 0.06313207000494003, 0.03310946375131607, 0.0005324212252162397, -0.09108348935842514, -0.10476034134626389, 0.06659787893295288, 0.004248198587447405, 0.0972786396741867, -0.0021694733295589685, -0.008994418196380138, -0.0115354647859931, 0.004325054585933685, 0.004717122297734022, -0.06817595660686493, -0.029550734907388687, -0.039036571979522705, 0.07140366733074188, -0.09567534923553467, 0.030085232108831406, -0.15743187069892883, -0.13526101410388947, 0.2798370122909546, 0.12404383718967438, 0.03806536644697189, -0.06965533643960953, 0.04472346231341362, 0.08478955179452896, -0.03922494128346443, -0.05534879118204117, 0.00449853902682662, 0.025778377428650856, -0.019344903528690338, -0.029367880895733833, 0.08230292797088623, -0.026094309985637665, -0.05228835716843605, 0.011561164632439613, 0.08331678062677383, -0.016273105517029762, 0.03808613866567612, 0.026842664927244186, -0.015182598493993282, -0.0074556549079716206, -0.09658271074295044, -0.10567548871040344, -0.007416523993015289, 0.03967699036002159, 0.0727592408657074, -0.023827970027923584, -0.005226839333772659, -0.047324758023023605, -0.05641224980354309, 0.13924096524715424, 0.2549242675304413, -0.04651939868927002, 0.06569042056798935, 0.13778674602508545, -0.020607750862836838, -0.19743287563323975, 0.040869973599910736, -0.06474851071834564, 0.13604426383972168, -0.06032243371009827, 0.037979450076818466, 0.17726098001003265, 0.05797819048166275, -0.01380813866853714, -0.028288569301366806, -0.16730622947216034, -0.16585387289524078, 0.19497253000736237, 0.09829510748386383, 0.2980929911136627, 0.006287181284278631, 0.051431719213724136, -0.043165452778339386, -0.09462930262088776, 0.1160358190536499, -0.059851158410310745, 0.10289595276117325, -0.03233563154935837, 0.0322917103767395, 0.04598058760166168, -0.01125299371778965, 0.1353817582130432, -0.0025105958338826895, 0.0040726931765675545, -0.06341075897216797, 0.015862951055169106, -0.10638410598039627, -0.009820709004998207, 0.1580144762992859, -0.06160786375403404, 0.03371725603938103, -0.1609264612197876, -0.08464226871728897, -0.043127644807100296, 0.052989985793828964, -0.01129126362502575, -0.042663171887397766, -0.11721917986869812, 0.08428837358951569, 0.040607720613479614, -0.023401806131005287, 0.08963271230459213, -0.017435424029827118, -0.04868479073047638, 0.007360031828284264, 0.07874585688114166, -0.22775942087173462, 0.054863277822732925, 0.06919636577367783, -0.0005474106874316931, 0.06660729646682739, -0.015985997393727303, 0.014806459657847881, 0.15199247002601624, -0.05982411280274391, 0.1297023892402649, 0.027823764830827713, -0.03387853130698204, -0.025973010808229446, 0.07661443948745728, -0.11927344650030136, 0.03401672840118408, -0.06693574041128159, -0.0955626517534256, 0.09894463419914246, 0.03772009536623955, 0.096987783908844, -0.14343366026878357, 0.0014689643867313862, -0.015550082549452782, -0.00556636368855834, -0.10664693266153336, 0.1251189261674881, 0.06378089636564255, 0.046148475259542465, -0.09979796409606934, 0.06558755040168762, 0.0221465602517128, -0.21193905174732208, 0.06939450651407242, 0.1066705510020256, -0.0692339837551117, -0.05069204047322273, 0.13348400592803955, 0.18562786281108856, -0.019558101892471313, -0.07750340551137924, -0.12989172339439392, -0.1307055801153183, 0.0858360230922699, 0.0577986016869545, 0.15274932980537415, 0.029937678948044777, -0.08270754665136337, -0.11592225730419159, -0.12072138488292694, 0.04117642715573311, 0.15353037416934967, -0.007991784252226353, -0.1594219207763672, 0.0731702521443367, 0.019108066335320473, 0.1126028522849083, -0.07044844329357147, -0.047876935452222824, -0.11632818728685379, 0.02884906344115734, -0.10192057490348816, -0.017200028523802757, -0.09774557501077652, 0.004182091448456049, -0.018078625202178955, -0.0656038373708725, -0.10986073315143585, -0.009167496114969254, -0.09071621298789978, 0.08029262721538544, -0.01040738821029663, -0.0223308727145195, -0.0404413603246212, -0.013391593471169472, 0.049070220440626144, -0.05434853211045265, -0.006221378687769175, 0.020392054691910744, -0.08312021940946579, 0.07293279469013214, -0.016858434304594994, -0.037603434175252914, 0.055650170892477036, 0.06461663544178009, 0.14333389699459076, -0.08535964787006378, 0.05103277415037155, 0.12140397727489471, 0.19376696646213531, 0.03806677088141441, 0.08052477985620499, -0.03924960643053055, -0.06999798864126205, -0.16690517961978912, -0.155853733420372, -0.0745159387588501, 0.04988190904259682, 0.050079625099897385, 0.04144984856247902, 0.154035747051239, -0.0758899450302124, 0.01732683926820755, -0.10341242700815201, -0.006794502958655357, -0.03102702647447586, -0.0917818695306778, 0.005073488689959049, 0.003555150469765067, 0.04487011209130287, -0.02300080843269825, 0.16184891760349274, 0.09604936838150024, -0.008591475896537304, 0.021623926237225533, -0.17550598084926605, 0.10923997312784195, 0.0253291018307209, 0.14133350551128387, 0.05458149313926697, 0.04279053583741188, -0.08768096566200256, 0.03936302289366722, 0.12984324991703033, 0.19458897411823273, 0.10443320870399475, 0.13459274172782898, -0.0471779890358448, 0.21437260508537292, -0.05803613364696503, -0.022889303043484688, -0.053764428943395615, -0.06289373338222504, -0.13431325554847717, 0.06523612886667252, -0.027634816244244576, 0.032230883836746216, 0.13571786880493164, -0.1231110692024231, 0.014737776480615139, -0.05789941921830177, -0.13311584293842316, -0.2033126950263977, -0.15617302060127258, -0.13717566430568695, -0.16039399802684784, 0.026599369943141937, -0.11521557718515396, -0.0075538731180131435, 0.02411530166864395, 0.16042138636112213, -0.04369189217686653, 0.06955119967460632, -0.1144004687666893, 0.04906286671757698, 0.06984015554189682, -0.026471057906746864, 0.025823278352618217, 0.0006219976930879056, 0.049478013068437576, -0.039180412888526917, -0.05301380157470703, -0.0073961252346634865, -0.0091458884999156, -0.07110428065061569, 0.007809971924871206, 0.02003379911184311, -0.03892146423459053, -0.03747670352458954, -0.024594899266958237, 0.08720141649246216, 0.10572375357151031, 0.06358431279659271, -0.06755562126636505, -0.03973979130387306, 0.1465446650981903, -0.02611881121993065, -0.10963688790798187, -0.15908503532409668, 0.15348422527313232, 0.043000005185604095, 0.06371013075113297, 0.01432496216148138, -0.0027868389151990414, -0.08842449635267258, 0.26440557837486267, 0.21822121739387512, -0.05677783116698265, -0.023302322253584862, 0.002438663737848401, 0.012278463691473007, -0.029118333011865616, 0.09260404109954834, 0.07245089113712311, 0.22266331315040588, -0.06167267635464668, -0.11861178278923035, -0.11713863909244537, -0.07713568210601807, -0.009964926168322563, 0.04825795814394951, 0.10208052396774292, -0.051532190293073654, -0.07625173777341843, 0.04686299338936806, -0.05757951736450195, 0.09713391214609146, 0.02062935195863247, -0.1564905047416687, -0.1622549593448639, -0.0022182597313076258, 0.07190104573965073, -0.037265144288539886, 0.07496746629476547, -0.07810145616531372, -0.011034902185201645, -0.053247369825839996, 0.008135701529681683, -0.14134663343429565, -0.06850180774927139, 0.07988271117210388, 0.06772635132074356, 0.07462334632873535, 0.04325185343623161, 0.13178490102291107, 0.07660837471485138, 0.04045983776450157, -0.019865235313773155, 0.09538032859563828, 0.00803771149367094, 0.007567981723695993, 0.03824867680668831, 0.09541942924261093, -0.023515421897172928, 0.0019015073776245117, 0.0443124994635582, -0.13057860732078552, 0.01909852959215641, -0.1352832168340683, -0.03895137831568718, -0.09998253732919693, 0.03388206660747528, -0.08878625184297562, 0.08915248513221741, 0.17837516963481903, -0.0032444195821881294, -0.00007392698171315715, -0.07981281727552414, 0.10587402433156967, -0.05970710888504982, -0.08777832239866257, 0.058221593499183655, -0.18178130686283112, -0.022804806008934975, -0.03415374457836151, -0.03433169424533844, -0.20404736697673798, -0.05823871120810509, -0.08672185242176056, -0.0689563900232315, -0.06975921988487244, 0.08269498497247696, 0.01707627810537815, 0.09503220021724701, -0.0427960604429245, -0.0362209752202034, -0.005107528995722532, 0.05133814737200737, -0.08514376729726791, -0.17621402442455292 ]
null
null
sentence-transformers
# multi-qa-MiniLM-L6-cos-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and was designed for **semantic search**. It has been trained on 215M (question, answer) pairs from diverse sources. For an introduction to semantic search, have a look at: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html) ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer, util query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] #Load the model model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1') #Encode query and documents query_emb = model.encode(query) doc_emb = model.encode(docs) #Compute dot score between query and all document embeddings scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take average of all tokens def mean_pooling(model_output, attention_mask): token_embeddings = model_output.last_hidden_state #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) #Encode text def encode(texts): # Tokenize sentences encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input, return_dict=True) # Perform pooling embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) return embeddings # Sentences we want sentence embeddings for query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-MiniLM-L6-cos-v1") model = AutoModel.from_pretrained("sentence-transformers/multi-qa-MiniLM-L6-cos-v1") #Encode query and docs query_emb = encode(query) doc_emb = encode(docs) #Compute dot score between query and all document embeddings scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## Technical Details In the following some technical details how this model must be used: | Setting | Value | | --- | :---: | | Dimensions | 384 | | Produces normalized embeddings | Yes | | Pooling-Method | Mean pooling | | Suitable score functions | dot-product (`util.dot_score`), cosine-similarity (`util.cos_sim`), or euclidean distance | Note: When loaded with `sentence-transformers`, this model produces normalized embeddings with length 1. In that case, dot-product and cosine-similarity are equivalent. dot-product is preferred as it is faster. Euclidean distance is proportional to dot-product and can also be used. ---- ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used for semantic search: It encodes queries / questions and text paragraphs in a dense vector space. It finds relevant documents for the given passages. Note that there is a limit of 512 word pieces: Text longer than that will be truncated. Further note that the model was just trained on input text up to 250 word pieces. It might not work well for longer text. ## Training procedure The full training script is accessible in this current repository: `train_script.py`. ### Pre-training We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure. #### Training We use the concatenation from multiple datasets to fine-tune our model. In total we have about 215M (question, answer) pairs. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. The model was trained with [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) using Mean-pooling, cosine-similarity as similarity function, and a scale of 20. | Dataset | Number of training tuples | |--------------------------------------------------------|:--------------------------:| | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs from WikiAnswers | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) Automatically generated (Question, Paragraph) pairs for each paragraph in Wikipedia | 64,371,441 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs from all StackExchanges | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs from all StackExchanges | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) Triplets (query, answer, hard_negative) for 500k queries from Bing search engine | 17,579,773 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) (query, answer) pairs for 3M Google queries and Google featured snippet | 3,012,496 | | [Amazon-QA](http://jmcauley.ucsd.edu/data/amazon/qa/) (Question, Answer) pairs from Amazon product pages | 2,448,839 | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) pairs from Yahoo Answers | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) pairs from Yahoo Answers | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) pairs from Yahoo Answers | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) (Question, Answer) pairs for 140k questions, each with Top5 Google snippets on that question | 582,261 | | [ELI5](https://huggingface.co/datasets/eli5) (Question, Answer) pairs from Reddit ELI5 (explainlikeimfive) | 325,475 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions pairs (titles) | 304,525 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) (Question, Duplicate_Question, Hard_Negative) triplets for Quora Questions Pairs dataset | 103,663 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) (Question, Paragraph) pairs for 100k real Google queries with relevant Wikipedia paragraph | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) (Question, Paragraph) pairs from SQuAD2.0 dataset | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) (Question, Evidence) pairs | 73,346 | | **Total** | **214,988,242** |
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "feature-extraction"}
feature-extraction
haqishen/test-mode-fe
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us
multi-qa-MiniLM-L6-cos-v1 ========================= This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and was designed for semantic search. It has been trained on 215M (question, answer) pairs from diverse sources. For an introduction to semantic search, have a look at: URL - Semantic Search Usage (Sentence-Transformers) ----------------------------- Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: Usage (HuggingFace Transformers) -------------------------------- Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings. Technical Details ----------------- In the following some technical details how this model must be used: Note: When loaded with 'sentence-transformers', this model produces normalized embeddings with length 1. In that case, dot-product and cosine-similarity are equivalent. dot-product is preferred as it is faster. Euclidean distance is proportional to dot-product and can also be used. --- Background ---------- The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developped this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. Intended uses ------------- Our model is intented to be used for semantic search: It encodes queries / questions and text paragraphs in a dense vector space. It finds relevant documents for the given passages. Note that there is a limit of 512 word pieces: Text longer than that will be truncated. Further note that the model was just trained on input text up to 250 word pieces. It might not work well for longer text. Training procedure ------------------ The full training script is accessible in this current repository: 'train\_script.py'. ### Pre-training We use the pretrained 'nreimers/MiniLM-L6-H384-uncased' model. Please refer to the model card for more detailed information about the pre-training procedure. #### Training We use the concatenation from multiple datasets to fine-tune our model. In total we have about 215M (question, answer) pairs. We sampled each dataset given a weighted probability which configuration is detailed in the 'data\_config.json' file. The model was trained with MultipleNegativesRankingLoss using Mean-pooling, cosine-similarity as similarity function, and a scale of 20.
[ "### Pre-training\n\n\nWe use the pretrained 'nreimers/MiniLM-L6-H384-uncased' model. Please refer to the model card for more detailed information about the pre-training procedure.", "#### Training\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. In total we have about 215M (question, answer) pairs.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file.\n\n\nThe model was trained with MultipleNegativesRankingLoss using Mean-pooling, cosine-similarity as similarity function, and a scale of 20." ]
[ "TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n", "### Pre-training\n\n\nWe use the pretrained 'nreimers/MiniLM-L6-H384-uncased' model. Please refer to the model card for more detailed information about the pre-training procedure.", "#### Training\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. In total we have about 215M (question, answer) pairs.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file.\n\n\nThe model was trained with MultipleNegativesRankingLoss using Mean-pooling, cosine-similarity as similarity function, and a scale of 20." ]
[ 39, 48, 105 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n### Pre-training\n\n\nWe use the pretrained 'nreimers/MiniLM-L6-H384-uncased' model. Please refer to the model card for more detailed information about the pre-training procedure.#### Training\n\n\nWe use the concatenation from multiple datasets to fine-tune our model. In total we have about 215M (question, answer) pairs.\nWe sampled each dataset given a weighted probability which configuration is detailed in the 'data\\_config.json' file.\n\n\nThe model was trained with MultipleNegativesRankingLoss using Mean-pooling, cosine-similarity as similarity function, and a scale of 20." ]
[ -0.07878090441226959, -0.014136195182800293, 0.00026786341913975775, 0.046022623777389526, 0.09105613082647324, 0.06739871203899384, 0.0783359482884407, 0.09494861215353012, -0.09066295623779297, 0.01826399192214012, 0.10167950391769409, 0.017023412510752678, 0.03747183829545975, 0.03214169293642044, -0.01786644756793976, -0.20478202402591705, 0.029999349266290665, 0.04478589817881584, -0.053907107561826706, 0.09564230591058731, 0.0695168673992157, -0.10067673027515411, 0.051276132464408875, 0.020991474390029907, -0.20124384760856628, 0.008900589309632778, -0.008473184891045094, 0.03828330338001251, 0.08933526277542114, 0.020477740094065666, 0.10070434957742691, 0.04412319138646126, 0.06402011215686798, -0.0811266377568245, 0.02061440423130989, 0.006555050611495972, 0.06251739710569382, 0.03816463425755501, 0.03674277663230896, -0.05873364955186844, 0.05961940065026283, 0.02179955504834652, 0.04859865456819534, 0.03024669736623764, -0.0734839141368866, -0.05710626766085625, 0.0025330670177936554, 0.009295185096561909, 0.12446610629558563, 0.029000964015722275, -0.027074644342064857, 0.12649673223495483, -0.1824771761894226, 0.03826676681637764, 0.038733720779418945, -0.20169177651405334, -0.01861407794058323, 0.24709635972976685, -0.01402058731764555, -0.03672288730740547, 0.01411323994398117, -0.03618801012635231, 0.1435007005929947, 0.02512681484222412, -0.019287951290607452, -0.042603764683008194, -0.029897309839725494, 0.032489076256752014, -0.14436326920986176, 0.014979906380176544, 0.24473921954631805, -0.010288731195032597, -0.017987264320254326, -0.08411680907011032, -0.00013171725731808692, 0.013063457794487476, -0.0008926116279326379, -0.036916982382535934, -0.009512539021670818, -0.05021078139543533, -0.008782624267041683, 0.08711928874254227, -0.11539660394191742, -0.1580861359834671, -0.04709845036268234, 0.12952569127082825, 0.07066196203231812, 0.03375335782766342, -0.12595829367637634, 0.1040959283709526, -0.13398616015911102, -0.10475383698940277, 0.02433517575263977, -0.08656126260757446, -0.09189249575138092, -0.04117106273770332, -0.1404600292444229, -0.13830775022506714, 0.08366239070892334, 0.030087806284427643, 0.010589473880827427, 0.019592249765992165, 0.08296577632427216, 0.055197618901729584, 0.12499475479125977, 0.030979687348008156, -0.0818961039185524, -0.010365806519985199, -0.07858908176422119, 0.05525728687644005, -0.06397027522325516, 0.004850225057452917, -0.0874130129814148, -0.03793899714946747, 0.08173860609531403, -0.02231595665216446, -0.07724408060312271, 0.08088794350624084, -0.027184968814253807, -0.09554694592952728, 0.016474472358822823, -0.070305734872818, -0.03159274905920029, 0.009179565124213696, -0.11564107984304428, 0.08492311835289001, -0.0403035543859005, 0.00679883174598217, -0.029146170243620872, 0.07153823226690292, -0.06641845405101776, -0.0337115153670311, -0.10461768507957458, -0.14503109455108643, -0.031856510788202286, -0.04659101366996765, 0.037876371294260025, -0.06544598937034607, -0.13422554731369019, -0.06610823422670364, 0.04890770465135574, -0.032197948545217514, -0.0358913354575634, -0.11558068543672562, 0.019769955426454544, -0.05156756564974785, -0.00492078997194767, 0.08560174703598022, -0.047072090208530426, 0.0132455388084054, -0.017822153866291046, 0.09958112239837646, -0.0012964954366907477, 0.02885502390563488, -0.1317547708749771, 0.011618688702583313, 0.0022382191382348537, 0.04333128407597542, 0.005479919724166393, 0.04771724343299866, -0.06651898473501205, -0.09938094019889832, -0.06541591882705688, 0.03164128214120865, 0.006986659020185471, 0.10057108849287033, -0.14865808188915253, -0.062433309853076935, 0.14708970487117767, -0.11772940307855606, -0.0569254532456398, 0.1204557791352272, -0.08662353456020355, 0.0548798069357872, 0.0718047246336937, 0.20800743997097015, 0.15784604847431183, 0.02462048828601837, 0.09051619470119476, 0.0733335018157959, -0.04122725874185562, -0.02978472411632538, 0.050190381705760956, 0.046803295612335205, -0.22131820023059845, 0.053498126566410065, 0.02597299963235855, 0.01252662017941475, -0.12060486525297165, -0.03973473235964775, -0.019016629084944725, -0.1017034575343132, 0.027514809742569923, 0.03047327883541584, 0.04346996918320656, -0.10118987411260605, -0.001396526349708438, -0.023100582882761955, 0.1580781191587448, -0.11373580992221832, -0.047253623604774475, -0.05032889544963837, 0.03418082743883133, -0.08456401526927948, -0.05511808395385742, -0.11012079566717148, 0.010092208161950111, 0.0441589318215847, 0.036973945796489716, 0.021487314254045486, 0.2232617735862732, 0.0511992946267128, 0.0700405016541481, -0.0004734913818538189, 0.016638658940792084, 0.11716989427804947, -0.012153486721217632, -0.026537364348769188, -0.17749591171741486, -0.08376660943031311, -0.06567449122667313, 0.1566535234451294, -0.12767393887043, -0.010576875880360603, -0.14173384010791779, 0.0640801340341568, -0.07031263411045074, 0.0319879874587059, 0.0711982473731041, 0.04105362296104431, -0.008907829411327839, 0.004029075149446726, 0.11570422351360321, 0.015119707211852074, -0.03733237087726593, 0.01447257213294506, -0.10139808803796768, -0.08604001998901367, 0.09725450724363327, -0.020915545523166656, -0.056060776114463806, -0.08394346386194229, -0.05197768658399582, -0.04127735644578934, -0.057465121150016785, 0.05035204812884331, 0.2133379727602005, -0.008450016379356384, 0.12474852800369263, -0.08522627502679825, -0.027819281443953514, 0.01634104549884796, -0.05005538836121559, 0.012647164985537529, 0.08276984095573425, 0.05865632742643356, -0.20499667525291443, 0.04555974155664444, -0.059324007481336594, -0.11151568591594696, 0.14132922887802124, -0.0326978974044323, -0.0600615069270134, 0.021292250603437424, 0.008992139250040054, -0.06450659036636353, 0.09883792698383331, -0.1063651517033577, -0.02634158357977867, 0.07406426221132278, 0.021541355177760124, 0.09191407263278961, -0.14905308187007904, -0.005141174886375666, 0.060334887355566025, -0.009123564697802067, 0.011596402153372765, 0.015258539468050003, -0.005869051441550255, 0.07273491472005844, -0.009416978806257248, -0.10833606868982315, 0.0029446056578308344, -0.037355873733758926, -0.10305194556713104, 0.21388860046863556, -0.016836252063512802, -0.10254182666540146, -0.06565847992897034, 0.09288262575864792, -0.05005454644560814, -0.0002265391667606309, -0.0013342974707484245, -0.07397547364234924, -0.0279409009963274, -0.06192727014422417, 0.0594651997089386, -0.1256306916475296, -0.009278930723667145, -0.1335420459508896, -0.007840253412723541, -0.007768827024847269, -0.1507595181465149, -0.009064693003892899, -0.0774683877825737, -0.10333369672298431, 0.049129098653793335, -0.14774514734745026, 0.012712297029793262, 0.22044117748737335, -0.03828173875808716, 0.06779292970895767, -0.04147718846797943, 0.17545673251152039, 0.0387788750231266, -0.0654103085398674, 0.13301461935043335, 0.005219141021370888, -0.03120158240199089, 0.14044877886772156, 0.028744127601385117, -0.02249586023390293, 0.053384874016046524, 0.00813546497374773, -0.03137543424963951, -0.14301621913909912, -0.1287105679512024, 0.0017333320574834943, 0.05762647092342377, 0.1263887733221054, -0.0020723647903651, 0.06860527396202087, 0.10845416784286499, -0.011226837523281574, -0.037751246243715286, -0.04746035486459732, 0.032060835510492325, -0.01255058404058218, 0.045138757675886154, 0.13997873663902283, 0.007146457210183144, -0.05430563539266586, 0.035372816026210785, -0.016798652708530426, 0.16436359286308289, -0.032017022371292114, -0.0037099900655448437, 0.1095859631896019, 0.08807417750358582, 0.06610020995140076, 0.10627858340740204, -0.07196654379367828, -0.002974485047161579, -0.03891410678625107, -0.041043903678655624, -0.035031091421842575, 0.05224314332008362, 0.07971791177988052, 0.07233874499797821, -0.14903098344802856, -0.04017211124300957, 0.00025226001162081957, 0.10250860452651978, 0.17392374575138092, -0.3281180262565613, -0.06676319986581802, 0.0034557790495455265, 0.024035954847931862, 0.002117777708917856, 0.12318864464759827, 0.09420499205589294, -0.06662634760141373, 0.017276888713240623, 0.0062059881165623665, 0.10494261980056763, -0.05547394976019859, 0.02576807513833046, -0.021350694820284843, 0.0549592524766922, -0.015488647855818272, 0.14577427506446838, -0.25060349702835083, 0.161227747797966, -0.007639133837074041, 0.03446175530552864, -0.06372228264808655, -0.04188469797372818, -0.0027481906581670046, 0.08659142255783081, 0.07991914451122284, -0.03732961043715477, -0.013573948293924332, -0.09437122195959091, -0.02119790017604828, 0.07454061508178711, 0.011730864644050598, -0.03900441899895668, 0.0620170421898365, -0.011629319749772549, 0.0011126601602882147, 0.0015671344008296728, 0.053273484110832214, -0.09854787588119507, -0.037142470479011536, -0.017529558390378952, 0.01779341697692871, -0.07066156715154648, -0.03275067359209061, -0.08124987781047821, -0.1021438017487526, 0.15743263065814972, 0.008379487320780754, -0.08541697263717651, -0.07171499729156494, 0.12342968583106995, 0.10067643970251083, -0.006997213698923588, -0.07434704154729843, 0.01059263851493597, 0.08764464408159256, -0.03595548868179321, -0.14074675738811493, 0.007601027376949787, -0.09347576647996902, -0.03154539689421654, -0.038746610283851624, 0.14100466668605804, 0.06731857359409332, 0.08017225563526154, 0.030906302854418755, -0.018037820234894753, -0.043168745934963226, -0.08284308016300201, -0.017270797863602638, 0.07279708981513977, 0.17466099560260773, 0.04054589942097664, -0.025784190744161606, 0.06033851206302643, -0.045815106481313705, 0.10039310902357101, 0.1347765326499939, 0.07983878999948502, -0.08351358771324158, 0.031879547983407974, 0.14292119443416595, -0.05624719709157944, -0.20777888596057892, 0.015174205414950848, 0.05206742510199547, 0.09432860463857651, -0.07397150993347168, -0.08761446177959442, 0.1389753669500351, 0.04499482735991478, 0.0010767570929601789, -0.09063254296779633, -0.35596346855163574, -0.088149793446064, 0.1307174414396286, 0.09473712742328644, 0.2854151129722595, -0.035327233374118805, 0.020198550075292587, 0.01182587817311287, -0.15593288838863373, 0.15223421156406403, -0.17168094217777252, 0.08794823288917542, -0.01917325146496296, 0.023267997428774834, 0.051013633608818054, -0.06039029359817505, 0.11697062849998474, 0.10362039506435394, 0.10619790107011795, 0.007807544432580471, -0.04859350621700287, -0.04275345429778099, -0.006457219831645489, 0.12662982940673828, -0.03454849496483803, 0.08190730214118958, -0.08578698337078094, -0.10343771427869797, -0.07633312046527863, 0.006871355231851339, 0.0027836428489536047, -0.08071035891771317, -0.09687209874391556, 0.08282820880413055, 0.04800957068800926, 0.015140493400394917, -0.056335411965847015, -0.07653801143169403, 0.08134597539901733, 0.1154709905385971, 0.18787960708141327, -0.11697213351726532, -0.06591352075338364, 0.03526252880692482, 0.002732685534283519, 0.15082210302352905, -0.13287736475467682, 0.03598294407129288, 0.13742832839488983, 0.03478824719786644, 0.08995115756988525, 0.08714495599269867, -0.04860146716237068, -0.05930371582508087, 0.03474012389779091, -0.13450296223163605, -0.1088993176817894, -0.04656936600804329, -0.09102042019367218, -0.03132103756070137, 0.028950534760951996, 0.08123014122247696, -0.09826210886240005, -0.003534686518833041, -0.011653028428554535, -0.04159592464566231, -0.1024104654788971, 0.21415677666664124, 0.060567088425159454, 0.09209123998880386, -0.12384795397520065, 0.04634026437997818, 0.047651469707489014, -0.10870946943759918, 0.011438124813139439, -0.022920988500118256, -0.10757951438426971, -0.045774538069963455, 0.03926868364214897, 0.2290031462907791, 0.048738714307546616, -0.13009950518608093, -0.09490649402141571, -0.1112835630774498, 0.009280662052333355, 0.07153850793838501, 0.154532328248024, 0.07696133106946945, -0.04223359003663063, -0.057789526879787445, -0.1988784223794937, 0.045874178409576416, 0.10210899263620377, 0.034769680351018906, -0.05142505466938019, 0.19128505885601044, -0.019796958193182945, 0.09411761164665222, -0.06497370451688766, -0.06879978626966476, -0.086015485227108, 0.04928787425160408, -0.049303289502859116, 0.015208041295409203, -0.11059121787548065, -0.016606615856289864, 0.057151924818754196, -0.01206937525421381, -0.025696199387311935, 0.01867772825062275, -0.06274288892745972, 0.048926692456007004, -0.010346892289817333, 0.048803508281707764, 0.004025127273052931, -0.024125581607222557, 0.014014024287462234, -0.010532304644584656, -0.013027742505073547, 0.019819213077425957, -0.04881083220243454, 0.03530842810869217, -0.06297870725393295, -0.07812248915433884, -0.009832077659666538, 0.044480305165052414, 0.028025349602103233, -0.10775373131036758, 0.02684253826737404, 0.01695283129811287, -0.009332941845059395, -0.007263729814440012, -0.018555346876382828, -0.06330171972513199, -0.01450615469366312, -0.035433005541563034, -0.029311293736100197, -0.08812188357114792, -0.05054445192217827, 0.027700604870915413, 0.12016481161117554, 0.09581787884235382, -0.05441495403647423, 0.03726780414581299, -0.12630167603492737, -0.026476850733160973, 0.010729396715760231, -0.05226947367191315, -0.09585535526275635, -0.0341142863035202, 0.06041867285966873, -0.013177967630326748, 0.1738450527191162, 0.048349298536777496, -0.004088186658918858, -0.03308402746915817, -0.0012904118048027158, 0.14815452694892883, 0.023565493524074554, 0.21555876731872559, 0.02121216431260109, -0.007575367111712694, -0.029315469786524773, 0.1244533583521843, 0.0404922291636467, 0.14003078639507294, 0.14360696077346802, 0.09021379798650742, -0.0009499316802248359, 0.05366714671254158, 0.0009796295780688524, -0.06243826076388359, 0.08641478419303894, 0.10696544498205185, 0.03659198433160782, 0.02351457066833973, 0.026825496926903725, 0.07148157805204391, 0.1670396625995636, -0.11690221726894379, 0.06176808476448059, -0.01839316077530384, -0.10708392411470413, -0.12182709574699402, -0.17718379199504852, -0.08392103016376495, -0.15537676215171814, 0.0030992489773780107, -0.1296137273311615, -0.0630047619342804, 0.1873857080936432, 0.0935908704996109, -0.0359351672232151, 0.08795125037431717, -0.0029047406278550625, -0.000369985937140882, 0.03999869525432587, -0.059772640466690063, 0.060717206448316574, -0.05599946901202202, -0.010285469703376293, 0.04828241094946861, -0.04793229326605797, 0.02870284952223301, -0.0479264073073864, 0.09141581505537033, 0.00111137586645782, 0.008809313178062439, -0.07813087105751038, -0.012611247599124908, -0.037247758358716965, 0.05846928060054779, 0.019911713898181915, 0.04860082268714905, -0.025963248685002327, -0.01864994503557682, 0.12171906232833862, -0.027869541198015213, -0.13706085085868835, -0.1471126675605774, 0.27674567699432373, 0.023155800998210907, 0.032145723700523376, 0.11641913652420044, -0.030385909602046013, -0.06678930670022964, 0.2428339123725891, 0.24890081584453583, -0.01734880730509758, -0.03740682825446129, 0.03680647537112236, -0.009761924855411053, 0.007642530836164951, 0.08818625658750534, -0.049196433275938034, 0.1087992936372757, -0.07915300130844116, -0.03836230933666229, -0.03884698450565338, -0.04673169553279877, 0.00979323498904705, 0.04001500830054283, 0.11062563955783844, -0.05189599469304085, -0.023795459419488907, 0.07333911955356598, -0.0653805211186409, 0.06163584440946579, 0.03621837869286537, -0.05643509700894356, -0.11047174781560898, -0.04632061719894409, 0.019099637866020203, 0.022560136392712593, 0.119927316904068, -0.12216746062040329, 0.01925579458475113, 0.01943257451057434, -0.03802042454481125, -0.1441469043493271, -0.08935760706663132, 0.07196327298879623, 0.06543069332838058, 0.07011009007692337, 0.005388934165239334, 0.17145632207393646, 0.06289853900671005, 0.013357366435229778, -0.03705534338951111, 0.020032474771142006, 0.024864885956048965, 0.018425116315484047, 0.05734950676560402, 0.09547138959169388, 0.0022117248736321926, 0.06285493075847626, 0.011160619556903839, -0.2732876241207123, 0.01200244389474392, -0.09002764523029327, -0.04175460711121559, -0.13002941012382507, 0.056144602596759796, -0.009236154146492481, 0.14407266676425934, 0.1531575322151184, -0.010914642363786697, -0.034133799374103546, -0.03648698702454567, 0.07707766443490982, 0.006325467023998499, 0.11845225095748901, -0.033681608736515045, -0.134553000330925, -0.01009626779705286, -0.1246713399887085, -0.022851023823022842, -0.2065451294183731, 0.0017279774183407426, 0.016467418521642685, -0.043616119772195816, 0.03587179630994797, 0.05500783771276474, 0.04143933206796646, 0.07235433906316757, -0.07465440034866333, -0.0943564772605896, -0.0025524168740957975, 0.07850982993841171, -0.13882265985012054, -0.19073772430419922 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2251 | 1.0 | 5533 | 1.1707 | | 0.9554 | 2.0 | 11066 | 1.1211 | | 0.7645 | 3.0 | 16599 | 1.1642 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
question-answering
hark99/distilbert-base-uncased-finetuned-squad
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-squad ======================================= This model is a fine-tuned version of distilbert-base-uncased on the squad dataset. It achieves the following results on the evaluation set: * Loss: 1.1642 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 56, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ -0.107207752764225, 0.07390245795249939, -0.0017876919591799378, 0.1200171634554863, 0.16664810478687286, 0.02082579769194126, 0.0897156372666359, 0.1255141943693161, -0.09776943922042847, 0.03211628645658493, 0.13493673503398895, 0.17389148473739624, 0.00020853150635957718, 0.07081133872270584, -0.05018555000424385, -0.21631070971488953, -0.016894662752747536, 0.05636920779943466, -0.0907549038529396, 0.14447593688964844, 0.08629545569419861, -0.14915646612644196, 0.07255229353904724, 0.0028788095805794, -0.21394599974155426, 0.018627334386110306, 0.0031228181906044483, -0.0361381433904171, 0.13880503177642822, 0.0066014789044857025, 0.11658777296543121, -0.000011850167538796086, 0.06482226401567459, -0.17991793155670166, 0.014269051142036915, 0.050986699759960175, 0.0077520329505205154, 0.08084458857774734, 0.047127753496170044, 0.005742602050304413, 0.10719753801822662, -0.09369556605815887, 0.037809960544109344, 0.02481287717819214, -0.12792417407035828, -0.2546813488006592, -0.10567567497491837, 0.01383540965616703, 0.06952812522649765, 0.12422299385070801, -0.005550147965550423, 0.1623779833316803, -0.11271505802869797, 0.08997417241334915, 0.2596393823623657, -0.30364400148391724, -0.06938289105892181, 0.03131015598773956, 0.026962993666529655, 0.06378260254859924, -0.10772505402565002, -0.033416904509067535, 0.05784454941749573, 0.05552035942673683, 0.10803000628948212, -0.04690147191286087, -0.12416163831949234, 0.03658882901072502, -0.14875516295433044, -0.044146277010440826, 0.14223672449588776, 0.04578465223312378, -0.027674516662955284, -0.031057855114340782, -0.05978504195809364, -0.13041919469833374, -0.023850465193390846, -0.018310463055968285, 0.04826074838638306, -0.04841860756278038, -0.08325657993555069, 0.0021140894386917353, -0.10845869779586792, -0.07775217294692993, -0.07697483897209167, 0.129514679312706, 0.040109917521476746, 0.032882727682590485, -0.051777422428131104, 0.09785286337137222, 0.006965328473597765, -0.13169032335281372, 0.009103070013225079, 0.03534228354692459, -0.017144115641713142, -0.03623189032077789, -0.06880342215299606, -0.06061474606394768, 0.02432859316468239, 0.1205051839351654, -0.08293323218822479, 0.03565973788499832, 0.053459469228982925, 0.03885810449719429, -0.08333496004343033, 0.17510217428207397, -0.07092170417308807, 0.0005423157708719373, -0.007003623992204666, 0.03336358815431595, 0.0011595995165407658, 0.004655053839087486, -0.09456098824739456, -0.006212973035871983, 0.09507860243320465, 0.021022077649831772, -0.03955655172467232, 0.05724368989467621, -0.04824288189411163, -0.024463549256324768, 0.005010397173464298, -0.08579961955547333, 0.029036927968263626, -0.005438622552901506, -0.0927925631403923, -0.01583690755069256, 0.006502525415271521, 0.013904918916523457, -0.01802896149456501, 0.09762463718652725, -0.09273084253072739, 0.03808429092168808, -0.09638026356697083, -0.09611493349075317, 0.029602261260151863, -0.08205988258123398, 0.03009985387325287, -0.0780119076371193, -0.1589825600385666, -0.013572408817708492, 0.05267428234219551, -0.027775991708040237, -0.04734371230006218, -0.03186165541410446, -0.09048506617546082, -0.00983051024377346, -0.021439779549837112, 0.16343796253204346, -0.05924111232161522, 0.11665191501379013, 0.04491102322936058, 0.06730355322360992, -0.04100988432765007, 0.05683695152401924, -0.10803394019603729, 0.014844336546957493, -0.1738251894712448, 0.03380323573946953, -0.05218213424086571, 0.06756017357110977, -0.10478176921606064, -0.12539084255695343, 0.02485932782292366, -0.018595904111862183, 0.08698022365570068, 0.09711968153715134, -0.16289590299129486, -0.05594984069466591, 0.14741280674934387, -0.05470997840166092, -0.14849869906902313, 0.1186794862151146, -0.05384617671370506, 0.03295808285474777, 0.06484914571046829, 0.16820763051509857, 0.05027800425887108, -0.09241407364606857, 0.004479764029383659, -0.003767127636820078, 0.031302157789468765, -0.08509935438632965, 0.07165207713842392, -0.0035410940181463957, 0.0329374223947525, 0.02539316564798355, -0.051459409296512604, 0.05251626297831535, -0.11205192655324936, -0.09416170418262482, -0.052573688328266144, -0.1052270159125328, 0.0358981229364872, 0.09031164646148682, 0.07046420127153397, -0.10464474558830261, -0.0701005607843399, 0.07707800716161728, 0.06825396418571472, -0.0564379021525383, 0.033693645149469376, -0.06504391878843307, 0.06676935404539108, -0.07292377203702927, -0.029686639085412025, -0.1977924406528473, -0.027733957394957542, 0.0029408938717097044, 0.0062336185947060585, 0.007030452601611614, 0.04601314291357994, 0.07677402347326279, 0.03278050944209099, -0.05655771493911743, -0.017575204372406006, -0.03875506669282913, -0.01034279353916645, -0.1316032111644745, -0.18459750711917877, -0.03757305070757866, -0.01662536896765232, 0.08851645886898041, -0.1800338476896286, 0.02226785011589527, -0.012450279667973518, 0.07059919089078903, -0.009660201147198677, -0.011846343986690044, -0.036924052983522415, 0.0802306979894638, -0.016871990635991096, -0.0482729934155941, 0.0786738246679306, -0.0023220453877002, -0.08776477724313736, -0.05581500381231308, -0.058602649718523026, 0.14761881530284882, 0.13116301596164703, -0.11451438814401627, -0.0649494156241417, 0.007696556393057108, -0.07377859205007553, -0.038454145193099976, -0.04173287749290466, 0.04240456596016884, 0.17798595130443573, -0.003527756780385971, 0.12349710613489151, -0.08356782793998718, -0.054795823991298676, 0.016341395676136017, -0.03358137607574463, 0.039834219962358475, 0.1270994246006012, 0.12017956376075745, -0.07279671728610992, 0.14127488434314728, 0.15241557359695435, -0.0889342799782753, 0.097054123878479, -0.06650799512863159, -0.08690725266933441, -0.03191877156496048, 0.005072164349257946, -0.007380838040262461, 0.11882109940052032, -0.1422446221113205, 0.018165186047554016, 0.031795404851436615, 0.023233875632286072, 0.027101045474410057, -0.22898171842098236, -0.06099063158035278, 0.017512913793325424, -0.04897727817296982, -0.03287597373127937, -0.00037070023245178163, 0.019014934077858925, 0.0996197760105133, -0.003390334779396653, -0.059265367686748505, 0.04743882268667221, -0.0004345023480709642, -0.07127873599529266, 0.22191013395786285, -0.07251866161823273, -0.12433761358261108, -0.09067878872156143, -0.0511864498257637, -0.04714641720056534, -0.00840010866522789, 0.07022914290428162, -0.09536165744066238, -0.016546856611967087, -0.049718182533979416, 0.014673949219286442, -0.009497913531959057, 0.022936781868338585, 0.009121190756559372, -0.0055101667530834675, 0.07729470729827881, -0.11865203082561493, 0.004073369316756725, -0.05831532180309296, -0.07499637454748154, 0.05431734770536423, 0.05244553089141846, 0.1283949911594391, 0.13982942700386047, -0.014871541410684586, 0.009619082324206829, -0.02502042055130005, 0.25256314873695374, -0.06774865835905075, -0.04155854508280754, 0.14431066811084747, 0.019163968041539192, 0.05829852074384689, 0.10814903676509857, 0.07047386467456818, -0.09497338533401489, 0.007202587556093931, 0.03874453157186508, -0.039146825671195984, -0.24834418296813965, -0.03213609755039215, -0.060506753623485565, -0.026520172134041786, 0.07112356275320053, 0.026301318779587746, 0.030794600024819374, 0.07095351815223694, 0.04248608648777008, 0.039917152374982834, -0.07160600274801254, 0.04243561252951622, 0.10963195562362671, 0.046055179089307785, 0.11674991250038147, -0.04945237934589386, -0.05800360068678856, 0.02789689600467682, -0.001100749708712101, 0.2496793568134308, -0.011192130856215954, 0.13973553478717804, 0.08111437410116196, 0.21020500361919403, -0.019012240692973137, 0.08517742902040482, -0.016251640394330025, -0.05298437550663948, -0.004977891221642494, -0.03339456766843796, -0.026406392455101013, 0.006314316298812628, -0.043962229043245316, 0.0673532783985138, -0.10181113332509995, -0.013057970441877842, 0.058986324816942215, 0.2742939591407776, 0.03314557671546936, -0.29747113585472107, -0.08794111758470535, -0.009366659447550774, -0.02950114943087101, -0.006336042657494545, 0.020839598029851913, 0.11847742646932602, -0.0931425616145134, 0.006707311142235994, -0.07003390789031982, 0.10087423026561737, -0.005568504799157381, 0.03853536397218704, 0.07862284034490585, 0.08486026525497437, 0.01714567095041275, 0.09242431074380875, -0.3174431025981903, 0.2700210511684418, 0.001213334035128355, 0.07843853533267975, -0.08048198372125626, -0.013640315271914005, 0.00346064823679626, 0.03282352164387703, 0.08795691281557083, -0.007369462866336107, -0.0049750530160963535, -0.16603001952171326, -0.03928878903388977, 0.03965862840414047, 0.0802171528339386, -0.008004442788660526, 0.09519882500171661, -0.011630098335444927, 0.016581401228904724, 0.07267101109027863, 0.0064386771991848946, -0.045876551419496536, -0.07877350598573685, -0.015537956729531288, 0.012202119454741478, -0.05766476318240166, -0.06768020987510681, -0.10488325357437134, -0.11864864826202393, 0.13163940608501434, 0.005443476606160402, -0.04186287522315979, -0.10701561719179153, 0.09140974283218384, 0.10573144257068634, -0.0879783034324646, 0.03375794738531113, 0.015004399232566357, 0.02976001799106598, 0.0435105636715889, -0.06436929851770401, 0.10092076659202576, -0.06005207449197769, -0.15114310383796692, -0.04391654208302498, 0.11243945360183716, 0.048764411360025406, 0.0641324445605278, -0.012232083827257156, 0.01756954751908779, -0.053728099912405014, -0.10278942435979843, 0.023695174604654312, -0.04018740728497505, 0.10012532770633698, 0.019720669835805893, -0.027743490412831306, 0.05450214818120003, -0.05720808729529381, -0.02535034529864788, 0.19239269196987152, 0.22860561311244965, -0.100385382771492, 0.015210360288619995, 0.02909310907125473, -0.046785544604063034, -0.18595212697982788, 0.053901880979537964, 0.07105186581611633, -0.011212212033569813, 0.04902217909693718, -0.15559837222099304, 0.15422466397285461, 0.11415062099695206, -0.006514223292469978, 0.11321595311164856, -0.36421558260917664, -0.11579444259405136, 0.09076686948537827, 0.15730932354927063, 0.13180868327617645, -0.16319577395915985, -0.01941649615764618, 0.0005220038001425564, -0.17637072503566742, 0.10756248235702515, -0.09166086465120316, 0.11561955511569977, -0.04107622057199478, 0.10660930722951889, -0.002427252708002925, -0.07526897639036179, 0.12296982109546661, 0.03912483528256416, 0.0997617170214653, -0.05098814517259598, -0.029273852705955505, 0.08405398577451706, -0.02099386416375637, 0.024875333532691002, -0.0666813999414444, 0.04119647666811943, -0.10892686992883682, -0.013068354688584805, -0.11053037643432617, 0.0392465814948082, -0.04231509566307068, -0.05293107032775879, -0.041557542979717255, 0.026601945981383324, 0.050425488501787186, -0.012744557112455368, 0.1240643560886383, 0.0304220300167799, 0.1438686102628708, 0.09009061753749847, 0.07381558418273926, -0.0703686997294426, -0.11538856476545334, -0.015722909942269325, -0.005933484062552452, 0.05067870393395424, -0.14309437572956085, 0.024980973452329636, 0.157964825630188, 0.04844855144619942, 0.11743764579296112, 0.07673759758472443, -0.02777993120253086, 0.011440505273640156, 0.043726831674575806, -0.16266098618507385, -0.13531188666820526, 0.017298685386776924, -0.06921610981225967, -0.11950252950191498, 0.06259609758853912, 0.06035789102315903, -0.05120692029595375, -0.014566164463758469, -0.006122047547250986, 0.00022427561634685844, -0.06734619289636612, 0.20951375365257263, 0.07836280763149261, 0.051835574209690094, -0.11497041583061218, 0.07446750998497009, 0.04103456810116768, -0.09647494554519653, -0.0048233033157885075, 0.06366600841283798, -0.06916482746601105, -0.04499518871307373, 0.10166365653276443, 0.15000766515731812, -0.059789903461933136, -0.038652680814266205, -0.12933863699436188, -0.11003384739160538, 0.08044804632663727, 0.14609645307064056, 0.11361131072044373, 0.009775438345968723, -0.04018905758857727, 0.007673322223126888, -0.1247672438621521, 0.080618716776371, 0.03806372359395027, 0.0613902322947979, -0.12503613531589508, 0.13107682764530182, 0.0029883470851927996, 0.06466111540794373, -0.018407199531793594, 0.0367562472820282, -0.09820449352264404, 0.030336372554302216, -0.14379887282848358, -0.035686805844306946, -0.0353817380964756, -0.0060761538334190845, -0.009224855341017246, -0.08001361042261124, -0.06550796329975128, 0.02706267312169075, -0.12276873737573624, -0.019910622388124466, 0.049186937510967255, 0.04217841476202011, -0.14277230203151703, -0.047083932906389236, 0.03188931569457054, -0.04825702682137489, 0.06491701304912567, 0.0676976889371872, 0.009823027998209, 0.05522187426686287, -0.13252392411231995, -0.0204330887645483, 0.052604708820581436, 0.010558819398283958, 0.08290976285934448, -0.09538809955120087, -0.01789904572069645, 0.0160119216889143, 0.06844200938940048, 0.019762258976697922, 0.040215104818344116, -0.14251816272735596, -0.013857031241059303, -0.028911100700497627, -0.07423428446054459, -0.07383352518081665, 0.01113926526159048, 0.09949512779712677, 0.032427966594696045, 0.19990983605384827, -0.05940573662519455, 0.05935625731945038, -0.21784624457359314, -0.009518333710730076, -0.013811415061354637, -0.09566441923379898, -0.10705841332674026, -0.037896059453487396, 0.068532295525074, -0.05815906450152397, 0.12851306796073914, -0.008213730528950691, 0.058015577495098114, 0.024979453533887863, -0.017287680879235268, 0.0312582403421402, 0.013938735239207745, 0.23871444165706635, 0.013672234490513802, -0.03201251104474068, 0.08354325592517853, 0.06093909963965416, 0.07091856747865677, 0.11975569278001785, 0.21256621181964874, 0.1756231188774109, 0.012664557434618473, 0.0745994821190834, 0.029133513569831848, -0.0455135852098465, -0.13510705530643463, 0.038704413920640945, -0.02532798796892166, 0.08243726938962936, -0.016806431114673615, 0.23454076051712036, 0.06315730512142181, -0.17649097740650177, 0.058814793825149536, -0.06867080181837082, -0.09340135008096695, -0.08427685499191284, -0.027590295299887657, -0.06792698800563812, -0.15281963348388672, 0.015337835066020489, -0.12624841928482056, 0.018760593608021736, 0.1332079917192459, 0.011906178668141365, -0.031828030943870544, 0.1828395575284958, 0.05410240963101387, 0.030538097023963928, 0.037912413477897644, -0.0021868422627449036, -0.020880192518234253, -0.07441923767328262, -0.036637987941503525, -0.00043279994861222804, -0.029545579105615616, 0.04472358897328377, -0.04819894954562187, -0.07660190016031265, 0.03307267278432846, -0.036851175129413605, -0.09226632118225098, 0.002747991820797324, 0.040772028267383575, 0.07294809073209763, 0.058486394584178925, 0.018250172957777977, 0.033159803599119186, -0.024548610672354698, 0.21801258623600006, -0.07536919414997101, -0.08610028773546219, -0.09524000436067581, 0.2537468671798706, 0.03688251972198486, -0.022616567090153694, 0.04004743695259094, -0.07063383609056473, 0.004353360738605261, 0.24899975955486298, 0.176326185464859, -0.09461193531751633, -0.012711701914668083, 0.005773018579930067, -0.008937572129070759, -0.033112816512584686, 0.0905606746673584, 0.14748913049697876, 0.05353212729096413, -0.11146561056375504, -0.04911601170897484, -0.07509355247020721, -0.013210964389145374, -0.04465704783797264, 0.049804314970970154, 0.050603657960891724, -0.0036502694711089134, -0.03718412667512894, 0.06575385481119156, -0.06542752683162689, -0.12152253091335297, 0.07078777998685837, -0.19351442158222198, -0.15614794194698334, -0.017562855035066605, 0.11166068911552429, 0.007386543322354555, 0.06613585352897644, -0.03224816545844078, 0.013759925030171871, 0.07054104655981064, -0.015468254685401917, -0.09729095548391342, -0.07868223637342453, 0.11538951843976974, -0.12920446693897247, 0.18367354571819305, -0.03929932415485382, 0.09025624394416809, 0.13145330548286438, 0.058942049741744995, -0.09188813716173172, 0.061625782400369644, 0.056400638073682785, -0.09389904886484146, 0.016990382224321365, 0.08066490292549133, -0.011318273842334747, 0.035415519028902054, 0.03665050491690636, -0.11983399838209152, 0.011796706356108189, -0.042082447558641434, -0.01547099370509386, -0.06936182081699371, -0.03358154371380806, -0.05873534455895424, 0.12419798225164413, 0.214829221367836, -0.039792973548173904, 0.0158014465123415, -0.08151117712259293, 0.01175118237733841, 0.05030011758208275, 0.025659820064902306, -0.07692840695381165, -0.21380358934402466, 0.03012354113161564, 0.05932023003697395, -0.03174656257033348, -0.2019977867603302, -0.08840060234069824, 0.024233542382717133, -0.08986889570951462, -0.06830468028783798, 0.061686549335718155, 0.07227315753698349, 0.0579715222120285, -0.04673509672284126, -0.06760967522859573, -0.08709178119897842, 0.15924754738807678, -0.15022173523902893, -0.08471480011940002 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ingredients This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ingredients_yes_no dataset. It achieves the following results on the evaluation set: - Loss: 0.0105 - Precision: 0.9899 - Recall: 0.9932 - F1: 0.9915 - Accuracy: 0.9978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 47 | 0.2783 | 0.4 | 0.5492 | 0.4629 | 0.8910 | | No log | 2.0 | 94 | 0.1089 | 0.8145 | 0.8780 | 0.8450 | 0.9718 | | No log | 3.0 | 141 | 0.0273 | 0.9865 | 0.9932 | 0.9899 | 0.9973 | | No log | 4.0 | 188 | 0.0168 | 0.9865 | 0.9932 | 0.9899 | 0.9973 | | No log | 5.0 | 235 | 0.0156 | 0.9865 | 0.9898 | 0.9882 | 0.9957 | | No log | 6.0 | 282 | 0.0129 | 0.9865 | 0.9932 | 0.9899 | 0.9973 | | No log | 7.0 | 329 | 0.0121 | 0.9899 | 0.9932 | 0.9915 | 0.9978 | | No log | 8.0 | 376 | 0.0115 | 0.9899 | 0.9932 | 0.9915 | 0.9978 | | No log | 9.0 | 423 | 0.0108 | 0.9899 | 0.9932 | 0.9915 | 0.9978 | | No log | 10.0 | 470 | 0.0105 | 0.9899 | 0.9932 | 0.9915 | 0.9978 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["ingredients_yes_no"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-ingredients", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "ingredients_yes_no", "type": "ingredients_yes_no", "args": "IngredientsYesNo"}, "metrics": [{"type": "precision", "value": 0.9898648648648649, "name": "Precision"}, {"type": "recall", "value": 0.9932203389830508, "name": "Recall"}, {"type": "f1", "value": 0.9915397631133671, "name": "F1"}, {"type": "accuracy", "value": 0.9978308026030369, "name": "Accuracy"}]}]}]}
token-classification
harr/distilbert-base-uncased-finetuned-ingredients
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:ingredients_yes_no", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-ingredients_yes_no #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us
distilbert-base-uncased-finetuned-ingredients ============================================= This model is a fine-tuned version of distilbert-base-uncased on the ingredients\_yes\_no dataset. It achieves the following results on the evaluation set: * Loss: 0.0105 * Precision: 0.9899 * Recall: 0.9932 * F1: 0.9915 * Accuracy: 0.9978 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.10.2 * Pytorch 1.9.0+cu102 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-ingredients_yes_no #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ 77, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-ingredients_yes_no #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ -0.11178664863109589, 0.14183713495731354, -0.0016214576316997409, 0.13223056495189667, 0.1451699435710907, 0.02072683908045292, 0.1228378638625145, 0.12694619596004486, -0.06389816850423813, 0.04533449187874794, 0.12908343970775604, 0.13190974295139313, 0.025089498609304428, 0.12261457741260529, -0.04341055080294609, -0.2318476289510727, 0.0039038248360157013, 0.055506836622953415, -0.05362086370587349, 0.13230448961257935, 0.08893605321645737, -0.1304733157157898, 0.09783122688531876, 0.021753428503870964, -0.1877809762954712, -0.019443698227405548, 0.007506897673010826, -0.053140491247177124, 0.13108642399311066, 0.02255377173423767, 0.1206672191619873, 0.012253114953637123, 0.08121132850646973, -0.15167438983917236, 0.0072342827916145325, 0.052389055490493774, 0.007380895782262087, 0.09930165112018585, 0.04097464308142662, 0.008945639245212078, 0.06589177250862122, -0.07997142523527145, 0.0540124885737896, 0.016160881146788597, -0.13004013895988464, -0.23243947327136993, -0.09304966777563095, 0.04695858806371689, 0.061749961227178574, 0.0922183096408844, -0.00527586042881012, 0.1416541188955307, -0.05804118514060974, 0.07764101773500443, 0.19496013224124908, -0.290770947933197, -0.0705350860953331, 0.04997457191348076, 0.03878545016050339, 0.06993351131677628, -0.09733902662992477, -0.03744807839393616, 0.04326833412051201, 0.04178670793771744, 0.15889453887939453, -0.025239896029233932, -0.03983039781451225, 0.0023965220898389816, -0.14097315073013306, -0.04010648652911186, 0.16733784973621368, 0.06710466742515564, -0.03580305725336075, -0.05138835310935974, -0.06546463817358017, -0.1749245971441269, -0.03018718585371971, -0.00019885496294591576, 0.041362229734659195, -0.02975313551723957, -0.07429458200931549, -0.014268062077462673, -0.1005324050784111, -0.04996560141444206, -0.0557655431330204, 0.11000135540962219, 0.02037389576435089, 0.002711012028157711, -0.009106181561946869, 0.09968943148851395, -0.01321801170706749, -0.1399344652891159, 0.02960871532559395, 0.020430153235793114, -0.007874581962823868, -0.052113503217697144, -0.042940542101860046, -0.05389919877052307, 0.004202481359243393, 0.11320240795612335, -0.03401528671383858, 0.03690110892057419, 0.03658946231007576, 0.04601985588669777, -0.09284783899784088, 0.2098585069179535, -0.06529620289802551, -0.04953903704881668, 0.0032656248658895493, 0.08989273756742477, 0.03744197264313698, -0.015793027356266975, -0.14324495196342468, 0.001645984360948205, 0.11137976497411728, -0.008277283981442451, -0.043655265122652054, 0.061509545892477036, -0.062257226556539536, -0.036089152097702026, 0.04499440640211105, -0.07344553619623184, 0.028272757306694984, -0.009701789356768131, -0.0678028091788292, -0.04242415353655815, 0.014850211329758167, 0.02030668407678604, 0.004353630822151899, 0.10400131344795227, -0.1108628436923027, 0.013729390688240528, -0.08929979801177979, -0.11956104636192322, 0.01923871412873268, -0.11025827378034592, 0.024372655898332596, -0.09984108060598373, -0.14858607947826385, -0.008040258660912514, 0.06282276660203934, -0.02906494215130806, -0.07393303513526917, -0.039846114814281464, -0.07314097136259079, 0.016703875735402107, -0.006243578158318996, 0.1056985929608345, -0.07089103013277054, 0.10200636088848114, 0.018180664628744125, 0.062423814088106155, -0.05073923617601395, 0.05304071307182312, -0.10442231595516205, 0.04218529537320137, -0.15716376900672913, 0.03107640892267227, -0.04586613178253174, 0.07452268898487091, -0.10070116072893143, -0.10396162420511246, 0.011690525338053703, -0.029942885041236877, 0.07109373062849045, 0.0785890519618988, -0.17699165642261505, -0.0636533573269844, 0.1320122927427292, -0.05101220682263374, -0.1365264654159546, 0.13218167424201965, -0.0539848655462265, 0.03265165165066719, 0.047516874969005585, 0.19073857367038727, 0.08742961287498474, -0.0835455134510994, -0.008908812887966633, 0.010880720801651478, 0.07528091967105865, -0.0738653615117073, 0.09508360177278519, 0.007064848206937313, 0.015910981222987175, 0.014009954407811165, -0.04203310236334801, 0.06438452005386353, -0.07679896801710129, -0.09366705268621445, -0.03234438598155975, -0.1021914929151535, 0.06568188965320587, 0.06512682139873505, 0.061396557837724686, -0.08868524432182312, -0.10394937545061111, 0.05183710157871246, 0.08127642422914505, -0.056038614362478256, 0.016359843313694, -0.07179706543684006, 0.11225809156894684, -0.08717048913240433, -0.03994162380695343, -0.1595400720834732, -0.023058410733938217, 0.01233473140746355, 0.0095154894515872, 0.02073580212891102, 0.030341485515236855, 0.06241786852478981, 0.07005663216114044, -0.05363187938928604, -0.02661799266934395, -0.038955092430114746, 0.0192265585064888, -0.12908360362052917, -0.1836540699005127, -0.057287756353616714, -0.020597273483872414, 0.16075579822063446, -0.19474367797374725, 0.032250985503196716, -0.001938073430210352, 0.0821487307548523, 0.026192452758550644, -0.020876213908195496, -0.031344614923000336, 0.07140172272920609, -0.04654868319630623, -0.06796930730342865, 0.06681890040636063, 0.020887665450572968, -0.10395079851150513, -0.050967197865247726, -0.12429835647344589, 0.16979913413524628, 0.13296528160572052, -0.05697154626250267, -0.06590383499860764, -0.0009261274244636297, -0.04701097309589386, -0.024695802479982376, -0.027763929218053818, 0.021622560918331146, 0.13211283087730408, 0.007130884565412998, 0.15429987013339996, -0.07903261482715607, -0.03970250114798546, 0.03311649709939957, -0.02542024664580822, 0.0005515228258445859, 0.11344326287508011, 0.11167769134044647, -0.10502016544342041, 0.1647607833147049, 0.17898419499397278, -0.07998065650463104, 0.11812734603881836, -0.03382635861635208, -0.06284549832344055, -0.05006987228989601, -0.026157528162002563, 0.0066654272377491, 0.12925821542739868, -0.12010619044303894, 0.002089124172925949, 0.03266552835702896, 0.023889601230621338, 0.0034693924244493246, -0.20282503962516785, -0.038884811103343964, 0.04759779945015907, -0.03409801423549652, -0.02101711370050907, -0.01310960203409195, -0.0037364426534622908, 0.09316712617874146, 0.025361360982060432, -0.08600106090307236, 0.04330086708068848, 0.007243679836392403, -0.05645228549838066, 0.18360020220279694, -0.08406359702348709, -0.15367022156715393, -0.13151419162750244, -0.07677041739225388, -0.052831538021564484, 0.02284347638487816, 0.05299077183008194, -0.058980245143175125, -0.02696870267391205, -0.0812048465013504, -0.020073607563972473, -0.018999595195055008, 0.018076958134770393, 0.006182192824780941, -0.01285492442548275, 0.08325591683387756, -0.0972520187497139, -0.012626019306480885, -0.021432850509881973, -0.01837734878063202, 0.04282374307513237, 0.023960206657648087, 0.11584539711475372, 0.14290182292461395, -0.01783032715320587, 0.0046417443081736565, -0.029861360788345337, 0.262005478143692, -0.0734485611319542, -0.012000469490885735, 0.13656091690063477, -0.009707128629088402, 0.06674320995807648, 0.1333317905664444, 0.07065658271312714, -0.07885078340768814, -0.005711749661713839, 0.024231305345892906, -0.04116222634911537, -0.18282069265842438, -0.04186394438147545, -0.06443781405687332, -0.01772162690758705, 0.10524806380271912, 0.017321240156888962, 0.036171890795230865, 0.07904811203479767, 0.03115233965218067, 0.09372838586568832, -0.05374985933303833, 0.07085635513067245, 0.12493269890546799, 0.04985199496150017, 0.12756788730621338, -0.034171588718891144, -0.049991585314273834, 0.038444697856903076, 0.030424579977989197, 0.1991714984178543, 0.008695218712091446, 0.17209631204605103, 0.043477412313222885, 0.19239956140518188, 0.000485026219394058, 0.05116689205169678, -0.0012798302341252565, -0.02599363774061203, -0.0275974590331316, -0.03681686520576477, -0.037992868572473526, 0.020139429718255997, -0.017801029607653618, 0.0606394037604332, -0.10399369895458221, 0.00019098111079074442, 0.04474891349673271, 0.25472792983055115, 0.05268930271267891, -0.35474470257759094, -0.10331255197525024, 0.005529825109988451, -0.017874889075756073, -0.03559756651520729, 0.010858508758246899, 0.11612898111343384, -0.07891868054866791, 0.021201448515057564, -0.0762949138879776, 0.09241913259029388, -0.0496649406850338, 0.04018358513712883, 0.08461897075176239, 0.07300294935703278, 0.0005462552653625607, 0.08177881687879562, -0.24582427740097046, 0.2651323974132538, 0.012840334326028824, 0.04848620668053627, -0.06789055466651917, -0.003441858571022749, 0.02734931744635105, 0.06911572068929672, 0.07990432530641556, 0.0005095652886666358, -0.021034615114331245, -0.21990787982940674, -0.07478203624486923, 0.010850015096366405, 0.05694204196333885, -0.053564876317977905, 0.10089050978422165, -0.039089228957891464, 0.0003359481634106487, 0.06640216708183289, 0.04079471528530121, -0.01616141013801098, -0.1047288030385971, 0.010325869545340538, 0.03883233293890953, -0.04706034064292908, -0.06561727076768875, -0.10494931787252426, -0.12324757128953934, 0.1415742188692093, -0.029940512031316757, -0.04326749965548515, -0.10820698738098145, 0.060817912220954895, 0.08247020840644836, -0.08404939621686935, 0.03553132340312004, -0.008177656680345535, 0.09404453635215759, 0.018978344276547432, -0.05207689478993416, 0.10574785619974136, -0.0559198260307312, -0.15632492303848267, -0.06795711070299149, 0.11272713541984558, 0.020908169448375702, 0.0697258934378624, -0.00853585172444582, 0.03296006843447685, -0.051255956292152405, -0.0740518644452095, 0.01783960685133934, -0.012938442640006542, 0.08707257360219955, -0.01772281900048256, -0.01972940005362034, 0.044617973268032074, -0.05421650409698486, -0.02009417675435543, 0.1751772165298462, 0.2451937049627304, -0.1127815768122673, 0.008743738755583763, 0.01922008953988552, -0.050264131277799606, -0.1663929671049118, 0.03680598363280296, 0.05580215901136398, 0.016085626557469368, 0.05029531195759773, -0.15392877161502838, 0.09481340646743774, 0.10057296603918076, -0.020238224416971207, 0.10301771759986877, -0.3076038360595703, -0.11742633581161499, 0.09616155177354813, 0.12528547644615173, 0.08286760002374649, -0.13256889581680298, -0.02825821191072464, -0.011724009178578854, -0.14113786816596985, 0.12535594403743744, -0.060367289930582047, 0.12064235657453537, -0.01841086708009243, 0.08379802852869034, 0.01247867289930582, -0.057403791695833206, 0.13904918730258942, 0.0039870599284768105, 0.08580595254898071, -0.05567895248532295, -0.04943659529089928, 0.059581588953733444, -0.06001586094498634, 0.010005397722125053, -0.0931258425116539, 0.025342678651213646, -0.10571381449699402, -0.018860990181565285, -0.07550384849309921, 0.03233661875128746, -0.03585551679134369, -0.06307773292064667, -0.050712183117866516, 0.05159788206219673, 0.059329960495233536, -0.017047729343175888, 0.14434710144996643, 0.026330921798944473, 0.14385367929935455, 0.12338942289352417, 0.06094599887728691, -0.07743708789348602, -0.08856909722089767, -0.013201048597693443, -0.02627682499587536, 0.0625835433602333, -0.13294441998004913, 0.02714790217578411, 0.13934817910194397, 0.019104599952697754, 0.13902346789836884, 0.06710407137870789, -0.026403332129120827, 0.00878036580979824, 0.05487644299864769, -0.15494279563426971, -0.11260608583688736, -0.012264695949852467, -0.03249174356460571, -0.1417328268289566, 0.015612679533660412, 0.10907628387212753, -0.07406461983919144, -0.0073404754512012005, 0.006745114456862211, 0.0019203749252483249, -0.044262588024139404, 0.16755905747413635, 0.06682882457971573, 0.053956083953380585, -0.08687036484479904, 0.06373612582683563, 0.08201687783002853, -0.08609233796596527, 0.002502923598513007, 0.02387501858174801, -0.09071199595928192, -0.04113785922527313, 0.026635579764842987, 0.14607404172420502, -0.05083441734313965, -0.02747786045074463, -0.1319657564163208, -0.10446441918611526, 0.06932590156793594, 0.12984251976013184, 0.1051294207572937, 0.016633974388241768, -0.05362622067332268, -0.0002644463093020022, -0.10841812193393707, 0.10436715185642242, 0.03610575571656227, 0.08064466714859009, -0.16608232259750366, 0.13522012531757355, -0.008226905018091202, 0.04312678426504135, -0.011490070261061192, 0.03075687773525715, -0.09503081440925598, -0.00335691892541945, -0.11800654977560043, -0.00802234373986721, -0.046745575964450836, 0.010646244511008263, -0.01348175574094057, -0.06620300561189651, -0.05739309638738632, 0.005145134404301643, -0.10596289485692978, -0.02928013727068901, 0.03685047850012779, 0.05881804600358009, -0.10603262484073639, -0.03865819424390793, 0.02974635362625122, -0.06565430760383606, 0.0670449510216713, 0.015949027612805367, 0.02175021730363369, 0.018985306844115257, -0.07926423102617264, 0.015484821982681751, 0.043180882930755615, 0.026610806584358215, 0.07809651643037796, -0.11086471378803253, -0.0076345764100551605, -0.019890213385224342, 0.034048229455947876, 0.018258940428495407, 0.08718639612197876, -0.13518579304218292, -0.01977107673883438, -0.006504792720079422, -0.05556309595704079, -0.06916327774524689, 0.04253051057457924, 0.09737366437911987, 0.02724284864962101, 0.20709814131259918, -0.054586686193943024, 0.033025577664375305, -0.2087256908416748, -0.003887452185153961, -0.015136189758777618, -0.11313118785619736, -0.10131629556417465, -0.0642194077372551, 0.054188650101423264, -0.05733836442232132, 0.11480844765901566, 0.026912348344922066, 0.05094883218407631, 0.030038833618164062, -0.0051396070048213005, 0.020603204146027565, 0.011963403783738613, 0.1951667219400406, 0.018979553133249283, -0.039856430143117905, 0.06942780315876007, 0.02967049553990364, 0.09102708101272583, 0.1343601644039154, 0.16685931384563446, 0.1492156684398651, -0.0026025085244327784, 0.07406281679868698, 0.0293307863175869, -0.045132849365472794, -0.20360976457595825, 0.0430433414876461, -0.035306282341480255, 0.11905451864004135, -0.018883103504776955, 0.21562807261943817, 0.06584836542606354, -0.18081718683242798, 0.03739042580127716, -0.06584280729293823, -0.08303707093000412, -0.0802801102399826, -0.09677030146121979, -0.08070816099643707, -0.1225271001458168, -0.008225985802710056, -0.10719668120145798, 0.009328721091151237, 0.1240493580698967, -0.003277348354458809, -0.023507487028837204, 0.15168070793151855, 0.0006782286218367517, 0.020457549020648003, 0.04648340493440628, 0.01808212138712406, -0.03326475992798805, -0.10808024555444717, -0.07336228340864182, -0.0008311167475767434, -0.007047560997307301, 0.038214534521102905, -0.06111299246549606, -0.029021821916103363, 0.02578793652355671, -0.013986273668706417, -0.10417888313531876, 0.0036956463009119034, 0.01579275354743004, 0.06303203850984573, 0.041146449744701385, -0.0015947758220136166, 0.023876389488577843, -0.012177071534097195, 0.22004586458206177, -0.08373736590147018, -0.045684702694416046, -0.10839998722076416, 0.2127828598022461, 0.003035732312127948, -0.037219684571027756, 0.034406017512083054, -0.07255582511425018, 0.020514918491244316, 0.22411170601844788, 0.18379534780979156, -0.10395468026399612, -0.01091810967773199, 0.0024316480848938227, -0.012904188595712185, -0.03623673692345619, 0.09185152500867844, 0.1115185022354126, 0.0015415481757372618, -0.09509839117527008, -0.03053067810833454, -0.07766697555780411, -0.004672858398407698, -0.024055110290646553, 0.06156265735626221, 0.030834147706627846, 0.0059204623103141785, -0.05034814029932022, 0.05226462706923485, -0.04202845320105553, -0.10583100467920303, 0.06730141490697861, -0.21488861739635468, -0.17257381975650787, -0.013940522447228432, 0.08742208033800125, -0.007097089663147926, 0.05201409384608269, -0.030187690630555153, 0.014703741297125816, 0.06643463671207428, -0.02058354578912258, -0.0680948942899704, -0.06893082708120346, 0.10087202489376068, -0.06435751914978027, 0.22162680327892303, -0.04381260648369789, 0.04362354427576065, 0.13055706024169922, 0.0714094415307045, -0.09081192314624786, 0.06005492061376572, 0.06400522589683533, -0.040647298097610474, 0.027164584025740623, 0.07182984054088593, -0.02710595540702343, 0.10289707034826279, 0.04908371716737747, -0.12635158002376556, 0.00579378567636013, -0.0657784715294838, -0.03654639050364494, -0.04301650822162628, -0.04184378311038017, -0.0488005056977272, 0.15179666876792908, 0.19952237606048584, -0.04812759533524513, -0.03072764165699482, -0.05779612809419632, 0.002444424433633685, 0.07656900584697723, 0.017054248601198196, -0.07188154011964798, -0.20840145647525787, 0.005185946822166443, 0.022185014560818672, -0.008180148899555206, -0.22666004300117493, -0.09742670506238937, 0.004623785614967346, -0.06214180588722229, -0.07193136215209961, 0.09350161254405975, 0.06378201395273209, 0.041918084025382996, -0.06872749328613281, 0.0007185813738033175, -0.08548716455698013, 0.14427100121974945, -0.14642177522182465, -0.08188126981258392 ]
null
null
null
Simple Sentiment Ananlysis
{}
null
harsh2040/sentiment_ananlysis
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
Simple Sentiment Ananlysis
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
# Wav2Vec2-Large-LV60-TIMIT Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the [timit_asr dataset](https://huggingface.co/datasets/timit_asr). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor model_name = "hktayal345/wav2vec2-large-lv60-timit-asr" processor = Wav2Vec2Processor.from_pretrained(model_name) model = Wav2Vec2ForCTC.from_pretrained(model_name) model.eval() dataset = load_dataset("timit_asr", split="test").shuffle().select(range(10)) char_translations = str.maketrans({"-": " ", ",": "", ".": "", "?": ""}) def prepare_example(example): example["speech"], _ = sf.read(example["file"]) example["text"] = example["text"].translate(char_translations) example["text"] = " ".join(example["text"].split()) # clean up whitespaces example["text"] = example["text"].lower() return example dataset = dataset.map(prepare_example, remove_columns=["file"]) inputs = processor(dataset["speech"], sampling_rate=16000, return_tensors="pt", padding="longest") with torch.no_grad(): predicted_ids = torch.argmax(model(inputs.input_values).logits, dim=-1) predicted_ids[predicted_ids == -100] = processor.tokenizer.pad_token_id # see fine-tuning script predicted_transcripts = processor.tokenizer.batch_decode(predicted_ids) for reference, predicted in zip(dataset["text"], predicted_transcripts): print("reference:", reference) print("predicted:", predicted) print("--") ``` Here's the output: ``` reference: the emblem depicts the acropolis all aglow predicted: the amblum depicts the acropolis all a glo -- reference: don't ask me to carry an oily rag like that predicted: don't ask me to carry an oily rag like that -- reference: they enjoy it when i audition predicted: they enjoy it when i addition -- reference: set aside to dry with lid on sugar bowl predicted: set aside to dry with a litt on shoogerbowl -- reference: a boring novel is a superb sleeping pill predicted: a bor and novel is a suberb sleeping peel -- reference: only the most accomplished artists obtain popularity predicted: only the most accomplished artists obtain popularity -- reference: he has never himself done anything for which to be hated which of us has predicted: he has never himself done anything for which to be hated which of us has -- reference: the fish began to leap frantically on the surface of the small lake predicted: the fish began to leap frantically on the surface of the small lake -- reference: or certain words or rituals that child and adult go through may do the trick predicted: or certain words or rituals that child an adult go through may do the trick -- reference: are your grades higher or lower than nancy's predicted: are your grades higher or lower than nancies -- ``` ## Fine-Tuning Script You can find the script used to produce this model [here](https://colab.research.google.com/drive/1gVaZhFuIXxBDN2pD0esW490azlbQtQ7C?usp=sharing). **Note:** This model can be fine-tuned further; [trainer_state.json](https://huggingface.co/harshit345/wav2vec2-large-lv60-timit/blob/main/trainer_state.json) shows useful details, namely the last state (this checkpoint): ```json { "epoch": 29.51, "eval_loss": 25.424150466918945, "eval_runtime": 182.9499, "eval_samples_per_second": 9.183, "eval_wer": 0.1351704233095107, "step": 8500 } ```
{"language": "en", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech"], "datasets": ["timit_asr"]}
automatic-speech-recognition
harshit345/wav2vec2-large-lv60-timit
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "en", "dataset:timit_asr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #en #dataset-timit_asr #license-apache-2.0 #endpoints_compatible #region-us
# Wav2Vec2-Large-LV60-TIMIT Fine-tuned facebook/wav2vec2-large-lv60 on the timit_asr dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: Here's the output: ## Fine-Tuning Script You can find the script used to produce this model here. Note: This model can be fine-tuned further; trainer_state.json shows useful details, namely the last state (this checkpoint):
[ "# Wav2Vec2-Large-LV60-TIMIT\n\nFine-tuned facebook/wav2vec2-large-lv60\non the timit_asr dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:\n\n\n\nHere's the output:", "## Fine-Tuning Script\n\nYou can find the script used to produce this model\nhere.\n\nNote: This model can be fine-tuned further;\ntrainer_state.json\nshows useful details, namely the last state (this checkpoint):" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #en #dataset-timit_asr #license-apache-2.0 #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-LV60-TIMIT\n\nFine-tuned facebook/wav2vec2-large-lv60\non the timit_asr dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:\n\n\n\nHere's the output:", "## Fine-Tuning Script\n\nYou can find the script used to produce this model\nhere.\n\nNote: This model can be fine-tuned further;\ntrainer_state.json\nshows useful details, namely the last state (this checkpoint):" ]
[ 64, 60, 26, 50 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #en #dataset-timit_asr #license-apache-2.0 #endpoints_compatible #region-us \n# Wav2Vec2-Large-LV60-TIMIT\n\nFine-tuned facebook/wav2vec2-large-lv60\non the timit_asr dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:\n\n\n\nHere's the output:## Fine-Tuning Script\n\nYou can find the script used to produce this model\nhere.\n\nNote: This model can be fine-tuned further;\ntrainer_state.json\nshows useful details, namely the last state (this checkpoint):" ]
[ -0.15263491868972778, -0.04560253396630287, -0.0018916703993454576, 0.010651006363332272, 0.12732958793640137, -0.07521825283765793, 0.08276427537202835, 0.07781699299812317, -0.01999671570956707, -0.03851541131734848, 0.0678846687078476, 0.11659923195838928, 0.02702694572508335, 0.13876275718212128, 0.028644215315580368, -0.1859326958656311, -0.018121933564543724, -0.021395709365606308, 0.0777665227651596, 0.08735181391239166, 0.10169236361980438, -0.05489422008395195, 0.07939844578504562, 0.08563930541276932, -0.0660535991191864, 0.051791559904813766, 0.05514875426888466, -0.10858787596225739, 0.10894431173801422, 0.06154096499085426, -0.06750216335058212, 0.05322828143835068, 0.07875267416238785, -0.12203112989664078, 0.0350208654999733, 0.017774512991309166, 0.045444849878549576, 0.026742679998278618, 0.051061876118183136, -0.029427893459796906, 0.1580609232187271, 0.02815103344619274, -0.08077756315469742, 0.07658518850803375, -0.05680711939930916, -0.1477971225976944, 0.016475873067975044, 0.046795554459095, 0.07530375570058823, 0.0677238404750824, -0.030350439250469208, 0.06913424283266068, -0.07348448783159256, 0.11237504333257675, 0.11956227570772171, -0.23089690506458282, 0.03816220164299011, 0.02287880890071392, 0.045454952865839005, 0.010490977205336094, 0.012045073322951794, 0.038066763430833817, 0.026730166748166084, -0.0004189687024336308, 0.06386340409517288, -0.061117205768823624, -0.14591571688652039, -0.01290752924978733, -0.14968787133693695, -0.03555337339639664, 0.27109721302986145, 0.005382142495363951, -0.0692688599228859, -0.07326187938451767, -0.05288662016391754, 0.05711720883846283, -0.04740625247359276, -0.0298748966306448, -0.01953134872019291, 0.04319853335618973, -0.004616590216755867, -0.010906495153903961, -0.1018109917640686, -0.10389372706413269, -0.02059853821992874, -0.023429814726114273, -0.00988776981830597, 0.049679987132549286, -0.20774942636489868, 0.04496842622756958, -0.1271253377199173, -0.06303661316633224, -0.024003347381949425, -0.028637446463108063, -0.0011564373271539807, -0.016901960596442223, -0.03942403197288513, -0.1111355721950531, 0.062887042760849, 0.033192284405231476, 0.14368639886379242, -0.0007511251606047153, -0.03622191771864891, 0.052712954580783844, 0.030020199716091156, 0.09564318507909775, -0.11355248838663101, -0.059658341109752655, 0.08171993494033813, 0.006317099090665579, -0.0007645149016752839, -0.015405477024614811, -0.0911552906036377, -0.06703965365886688, 0.006224584765732288, 0.03232598677277565, 0.05011332035064697, 0.05305046588182449, -0.022082433104515076, -0.05465863645076752, 0.1297624558210373, -0.09731718897819519, -0.021694891154766083, 0.05291210114955902, -0.00907856784760952, 0.194321870803833, 0.07938116788864136, 0.037072598934173584, -0.1184128075838089, -0.04842174053192139, 0.02282327599823475, 0.042459748685359955, 0.012452749535441399, -0.0700918659567833, 0.017743689939379692, -0.03124585747718811, 0.036337487399578094, -0.1801537275314331, -0.15444055199623108, -0.004055182449519634, 0.021768206730484962, 0.0220849197357893, 0.007653867360204458, -0.05397754907608032, 0.007894781418144703, 0.007637177128344774, -0.08849742263555527, 0.035402439534664154, -0.07628890126943588, 0.025199048221111298, 0.08386626839637756, 0.1454174816608429, -0.025191424414515495, 0.06094596907496452, -0.10025891661643982, -0.040651895105838776, 0.0514729842543602, 0.10759419202804565, -0.003514577867463231, 0.01885738968849182, -0.13828502595424652, -0.05351771041750908, -0.12031719833612442, 0.02214648202061653, 0.02503659948706627, 0.12740249931812286, -0.27772948145866394, -0.08076296746730804, 0.20356424152851105, -0.07455191761255264, -0.06845449656248093, 0.14553651213645935, 0.04304300248622894, 0.09752319008111954, 0.13331688940525055, 0.17863884568214417, 0.09855426847934723, -0.216192826628685, 0.06254487484693527, 0.08662497997283936, -0.11747259646654129, -0.09883404523134232, 0.09061156958341599, -0.0043175178579986095, -0.036835141479969025, 0.0391925573348999, -0.036182720214128494, 0.09940529614686966, 0.0007660859264433384, -0.06567218899726868, -0.040109630674123764, -0.12266013026237488, 0.026660626754164696, -0.009547334164381027, 0.028609827160835266, 0.024535780772566795, -0.018596474081277847, -0.0003950518148485571, 0.10644561797380447, -0.058182597160339355, 0.04567410796880722, -0.1478097289800644, 0.08114476501941681, -0.11025882512331009, 0.05631012097001076, -0.17026343941688538, 0.21618589758872986, -0.0341196246445179, 0.12780457735061646, 0.07033383101224899, 0.11435814946889877, 0.056270699948072433, 0.01273167971521616, 0.017826193943619728, 0.011192244477570057, 0.10824105143547058, -0.0021760931704193354, 0.01327966246753931, -0.10842825472354889, -0.05208217725157738, -0.049173273146152496, 0.03957248479127884, -0.10507526993751526, -0.03362869471311569, 0.011528948321938515, 0.00678364047780633, 0.0027017625980079174, 0.01869126223027706, 0.07858318835496902, 0.009069747291505337, -0.026023196056485176, -0.012427354231476784, 0.06300278007984161, -0.004053074400871992, 0.036184266209602356, 0.14415204524993896, -0.10976921766996384, 0.04461430758237839, 0.16004282236099243, -0.04693446680903435, 0.033672332763671875, 0.11327118426561356, -0.011602593585848808, -0.009897807613015175, -0.022718382999300957, -0.01368950679898262, 0.16336601972579956, -0.00865293201059103, 0.13526228070259094, -0.06321536004543304, 0.028271295130252838, 0.06837186217308044, -0.08083178848028183, 0.027357064187526703, 0.03443114086985588, 0.07187684625387192, -0.07945292443037033, -0.06458365172147751, 0.04785089194774628, -0.04402540251612663, 0.17037126421928406, 0.002166661201044917, -0.118270143866539, 0.056830551475286484, -0.025014175102114677, 0.011533678509294987, -0.00646258145570755, -0.16645818948745728, -0.07757209241390228, 0.06559427082538605, -0.015891291201114655, 0.03771987184882164, -0.09946856647729874, 0.042748868465423584, 0.045739591121673584, -0.08055371046066284, -0.17054061591625214, 0.10192739963531494, -0.09146337956190109, 0.028988778591156006, -0.05629132688045502, -0.09291628748178482, -0.0036633536219596863, 0.0033875489607453346, -0.1475430428981781, 0.0778670459985733, -0.04252028837800026, -0.2417159080505371, -0.1459776908159256, -0.0647909939289093, 0.01217737514525652, 0.06516965478658676, 0.07688811421394348, -0.08026768267154694, -0.033417392522096634, -0.03688467666506767, 0.035919155925512314, 0.0434730090200901, 0.008781601674854755, 0.08776608109474182, 0.005848657339811325, 0.07542891800403595, -0.1255819946527481, 0.008283038623631, -0.002550508128479123, 0.022381648421287537, 0.007413486950099468, 0.0009370732586830854, 0.0762348473072052, 0.17148634791374207, 0.027747871354222298, 0.050011713057756424, -0.00028155281324870884, 0.2656881809234619, 0.007346746511757374, 0.0171333197504282, 0.2712208926677704, -0.002643771469593048, -0.009573115967214108, 0.09177139401435852, 0.0031289299950003624, -0.04513952508568764, 0.00967472419142723, -0.06688561290502548, -0.1038261130452156, -0.14108550548553467, -0.06412610411643982, -0.07164828479290009, 0.027744578197598457, 0.08640865981578827, 0.029018497094511986, 0.008759851567447186, 0.031142190098762512, 0.01346589159220457, 0.07115728408098221, 0.026650451123714447, 0.02039472945034504, 0.06347375363111496, -0.00586998974904418, 0.0680067241191864, -0.06524712592363358, -0.021739216521382332, 0.07723250240087509, 0.05955268442630768, 0.008672920987010002, 0.07527688145637512, 0.11336804926395416, 0.06624525040388107, 0.10344776511192322, 0.06790894269943237, 0.14356039464473724, -0.056189995259046555, -0.007112622726708651, -0.007672735024243593, -0.11215900629758835, -0.057688158005476, 0.07962571084499359, 0.07731948047876358, -0.07068289071321487, -0.04488910362124443, 0.10230959951877594, 0.0016169310547411442, 0.11710159480571747, 0.09304236620664597, -0.290208101272583, -0.08142925798892975, -0.010178627446293831, -0.0419544093310833, 0.010458960197865963, 0.07655458152294159, 0.032148994505405426, -0.06419602036476135, 0.060748592019081116, 0.04566961154341698, 0.09993267804384232, 0.0014974256046116352, 0.0638069361448288, -0.061108291149139404, 0.02213909849524498, 0.06243216246366501, 0.0888424962759018, -0.25137051939964294, 0.09236907213926315, 0.005689798854291439, 0.11318137496709824, -0.06736079603433609, -0.01563761942088604, 0.011206007562577724, 0.10242264717817307, 0.13988175988197327, 0.0069690123200416565, 0.04311012849211693, -0.054506704211235046, -0.07351220399141312, 0.029682761058211327, 0.0069597032852470875, 0.07551448047161102, 0.02310522086918354, -0.054811250418424606, -0.0827898159623146, 0.004829637240618467, -0.017614224925637245, -0.20272564888000488, -0.05320948362350464, 0.029547959566116333, 0.2433144599199295, 0.09613240510225296, 0.018819982185959816, -0.039279915392398834, -0.11892255395650864, 0.055132050067186356, -0.06291120499372482, -0.007750586606562138, -0.0455467626452446, -0.07849228382110596, 0.09267128258943558, -0.06984949856996536, 0.022597555071115494, 0.042422015219926834, 0.10939593613147736, -0.015280031599104404, -0.16436021029949188, 0.05188768357038498, -0.15148310363292694, -0.04114590957760811, 0.030561162158846855, 0.16002418100833893, -0.014429520815610886, 0.016522124409675598, 0.07760785520076752, -0.0021073182579129934, -0.06946726888418198, -0.05379451811313629, 0.06424315273761749, 0.13307587802410126, -0.1263643205165863, -0.0795149952173233, 0.040965232998132706, -0.18060502409934998, -0.04128284007310867, -0.0017331840936094522, 0.18774831295013428, 0.06980951875448227, -0.07167293131351471, 0.18412183225154877, 0.21340884268283844, -0.05130062252283096, -0.24429267644882202, -0.09959664195775986, 0.013194885104894638, 0.04745747148990631, -0.004122370388358831, -0.13402271270751953, 0.12036234885454178, -0.11811280250549316, -0.0326835960149765, -0.00890907272696495, -0.27334922552108765, -0.15655256807804108, 0.18420135974884033, -0.038889314979314804, 0.2123921811580658, -0.04032156616449356, -0.04029117524623871, -0.09691043943166733, -0.1385812610387802, 0.07142529636621475, -0.2521933913230896, 0.08990970253944397, 0.030860064551234245, 0.08349978178739548, 0.013207465410232544, -0.03910990431904793, 0.02329321764409542, 0.09229503571987152, -0.05681392177939415, -0.018423156812787056, 0.049674130976200104, 0.048624977469444275, -0.005577315576374531, 0.2116336226463318, -0.05469120666384697, 0.0450480580329895, -0.033630941063165665, -0.09165291488170624, -0.10770193487405777, 0.06510502099990845, 0.06292399764060974, -0.03261689096689224, 0.055817924439907074, -0.0845373198390007, 0.04567309841513634, 0.0043043517507612705, -0.04578059911727905, -0.08398694545030594, -0.0958256870508194, 0.18430322408676147, 0.1936757117509842, -0.15500596165657043, -0.06412976235151291, -0.012124617584049702, -0.050426729023456573, 0.10260863602161407, -0.09005673974752426, 0.08092942088842392, 0.026577051728963852, 0.03968144208192825, 0.07690881192684174, 0.025927836075425148, -0.05997316166758537, 0.013721934519708157, 0.10264984518289566, -0.0888669341802597, -0.07773318141698837, -0.06781002879142761, -0.008541218005120754, 0.02199101448059082, 0.0744711309671402, 0.12641143798828125, -0.10157261043787003, -0.010888475924730301, -0.0313827209174633, 0.027000244706869125, -0.14638525247573853, 0.12523147463798523, 0.06537516415119171, 0.04326894134283066, -0.1356363594532013, 0.057431336492300034, -0.007065910845994949, -0.030735408887267113, 0.04429122805595398, -0.0055807000026106834, -0.10722151398658752, -0.10554932057857513, -0.04589897394180298, 0.023245466873049736, -0.023896386846899986, -0.12801633775234222, -0.008889356628060341, -0.016355687752366066, 0.027637364342808723, 0.05025167390704155, 0.0252750962972641, 0.02233796939253807, -0.12631912529468536, -0.06514200568199158, -0.0939263254404068, 0.04854162409901619, 0.07332434505224228, -0.022261669859290123, -0.17893105745315552, 0.14747925102710724, 0.0032403324730694294, 0.08320941776037216, -0.05312597006559372, -0.057601381093263626, 0.00373679562471807, 0.06271958351135254, -0.09546550363302231, 0.026350094005465508, -0.11919868737459183, 0.011324143037199974, -0.0016903458163142204, -0.015840357169508934, -0.013556149788200855, 0.11437401175498962, -0.07745302468538284, 0.030110405758023262, -0.031335510313510895, 0.047778286039829254, -0.1254505068063736, 0.04707817733287811, -0.005668544210493565, -0.00772254541516304, 0.03876625746488571, 0.0965343564748764, -0.16680091619491577, 0.10456103086471558, -0.17854639887809753, -0.1227043941617012, 0.1110711544752121, 0.052126526832580566, 0.024088341742753983, -0.06265152245759964, 0.0218362994492054, 0.1043672263622284, 0.04389852285385132, -0.05689322203397751, 0.0632181465625763, -0.03920324146747589, -0.019984643906354904, -0.05761590972542763, 0.03195267915725708, -0.032452233135700226, 0.02231094241142273, 0.05285878852009773, 0.10539691150188446, 0.1429181545972824, -0.07847687602043152, 0.0062818266451358795, -0.07884401828050613, 0.011430557817220688, -0.051120027899742126, -0.06641381233930588, -0.19482241570949554, -0.05735943093895912, 0.04649719223380089, -0.05298120900988579, 0.10343575477600098, 0.01788359135389328, 0.044310975819826126, -0.04596661031246185, -0.07916849851608276, -0.02883543074131012, -0.012029414065182209, 0.265939325094223, 0.04665130004286766, 0.022488392889499664, -0.08112097531557083, 0.039196837693452835, 0.0925951674580574, 0.19111497700214386, 0.03505922108888626, 0.06858410686254501, -0.028354274109005928, 0.1102881208062172, 0.04817346855998039, -0.04508759081363678, -0.1423523873090744, -0.08421482145786285, -0.13741670548915863, 0.10417378693819046, -0.10175483673810959, 0.08623164892196655, 0.1754055619239807, -0.01196654699742794, 0.015937117859721184, -0.03226784989237785, -0.05443708598613739, -0.18261247873306274, -0.21480488777160645, -0.05907068029046059, -0.1462477743625641, 0.007856451906263828, -0.06645212322473526, 0.045066915452480316, -0.06392336636781693, 0.013849502429366112, -0.008477754890918732, 0.14532481133937836, -0.018712665885686874, -0.09397663921117783, 0.06546727567911148, -0.11638233065605164, -0.05666346102952957, 0.012644976377487183, 0.06769905984401703, 0.09399264305830002, -0.04635375738143921, 0.04292764142155647, 0.01981665939092636, -0.047077726572752, 0.07545361667871475, -0.08308785408735275, -0.05461614951491356, -0.04060263931751251, 0.03154594078660011, 0.04984968900680542, 0.04219383746385574, 0.1260051131248474, -0.09795234352350235, 0.03497779369354248, 0.13121908903121948, -0.03862569481134415, -0.2125193327665329, -0.11630874127149582, 0.1630389541387558, 0.058516521006822586, 0.05039653554558754, -0.05310399830341339, -0.04441909119486809, -0.015073824673891068, 0.31710338592529297, 0.17298837006092072, 0.05410943552851677, 0.016005435958504677, -0.09078662097454071, 0.0360349677503109, -0.02748091332614422, 0.08610399812459946, 0.10577306151390076, 0.21589502692222595, -0.00898194219917059, -0.00896617490798235, -0.03912869840860367, -0.0707959458231926, -0.04660098999738693, 0.042150139808654785, -0.07799354940652847, -0.07009823620319366, 0.03196611627936363, 0.10072706639766693, -0.1402634233236313, -0.025720808655023575, -0.2096417099237442, 0.03227614238858223, 0.0008236116264015436, -0.040097661316394806, -0.008801786229014397, 0.11849812418222427, 0.029435332864522934, -0.08015121519565582, 0.026615984737873077, 0.1068061888217926, 0.01497487910091877, -0.15682904422283173, 0.07466936111450195, 0.012214387767016888, -0.05060865730047226, -0.053230125457048416, -0.030401000753045082, 0.11747090518474579, 0.0062552643939852715, 0.10460006445646286, -0.10683327913284302, 0.09537963569164276, -0.0501859150826931, -0.02285613678395748, 0.061242345720529556, 0.11306728422641754, -0.030058972537517548, 0.041298698633909225, -0.020207731053233147, -0.08724118769168854, 0.015192064456641674, -0.02071744203567505, 0.0353098101913929, -0.0862194299697876, 0.009242875501513481, -0.02910258062183857, 0.09531182050704956, 0.030261734500527382, -0.07747487723827362, -0.03301478177309036, -0.07887096703052521, 0.08784808963537216, 0.004233152139931917, -0.11421804875135422, -0.087746262550354, -0.12759199738502502, -0.04339674115180969, -0.09331157058477402, 0.042602915316820145, -0.1339917927980423, -0.008922770619392395, -0.0332796648144722, -0.0399077869951725, -0.024683190509676933, 0.05737060308456421, 0.12828035652637482, 0.015594953671097755, -0.0030804334674030542, 0.043640997260808945, 0.05915224179625511, 0.09859611839056015, -0.19795995950698853, -0.1533818542957306 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-greek Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on greek using the [Common Voice](https://huggingface.co/datasets/common_voice) and [CSS10 Greek: Single Speaker Speech Dataset](https://www.kaggle.com/bryanpark/greek-single-speaker-speech-dataset). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "el", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` | Reference | Prediction | | ------------- | ------------- | | ΤΟ ΒΑΣΙΛΌΠΟΥΛΟ, ΠΟΥ ΜΟΙΆΖΕΙ ΛΕΟΝΤΑΡΆΚΙ ΚΑΙ ΑΕΤΟΥΔΆΚΙ | ΤΟ ΒΑΣΙΛΌΠΟΥΛΟ ΠΟΥ ΜΙΑΣΕ ΛΙΟΝΤΑΡΑΚΉ ΚΑΙ ΑΪΤΟΥΔΆΚΙ | | ΣΥΝΆΜΑ ΞΕΠΡΌΒΑΛΑΝ ΑΠΌ ΜΈΣΑ ΑΠΌ ΤΑ ΔΈΝΤΡΑ, ΔΕΞΙΆ, ΑΡΜΑΤΩΜΈΝΟΙ ΚΑΒΑΛΑΡΈΟΙ. | ΣΥΝΆΜΑ ΚΑΙ ΤΡΌΒΑΛΑΝ ΑΠΌ ΜΈΣΑ ΑΠΌ ΤΑ ΔΈΝΤΡΑ ΔΕΞΙΆ ΑΡΜΑΤΩΜΈΝΟΙ ΚΑΒΑΛΑΡΈΟΙ | | ΤΑ ΣΥΣΚΕΥΑΣΜΈΝΑ ΒΙΟΛΟΓΙΚΆ ΛΑΧΑΝΙΚΆ ΔΕΝ ΠΕΡΙΈΧΟΥΝ ΣΥΝΤΗΡΗΤΙΚΆ ΚΑΙ ΟΡΜΌΝΕΣ | ΤΑ ΣΥΣΚΕΦΑΣΜΈΝΑ ΒΙΟΛΟΓΙΚΆ ΛΑΧΑΝΙΚΆ ΔΕΝ ΠΕΡΙΈΧΟΥΝ ΣΙΔΗΡΗΤΙΚΆ ΚΑΙ ΟΡΜΌΝΕΣ | | ΑΚΟΛΟΥΘΉΣΕΤΕ ΜΕ! | ΑΚΟΛΟΥΘΉΣΤΕ ΜΕ | | ΚΑΙ ΠΟΎ ΜΠΟΡΏ ΝΑ ΤΟΝ ΒΡΩ; | Ε ΠΟΎ ΜΠΟΡΏ ΝΑ ΤΙ ΕΒΡΩ | | ΝΑΙ! ΑΠΟΚΡΊΘΗΚΕ ΤΟ ΠΑΙΔΊ | ΝΑΙ ΑΠΟΚΡΊΘΗΚΕ ΤΟ ΠΑΙΔΊ | | ΤΟ ΠΑΛΆΤΙ ΜΟΥ ΤΟ ΠΡΟΜΉΘΕΥΕ. | ΤΟ ΠΑΛΆΤΙ ΜΟΥ ΤΟ ΠΡΟΜΉΘΕΥΕ | | ΉΛΘΕ ΜΉΝΥΜΑ ΑΠΌ ΤΟ ΘΕΊΟ ΒΑΣΙΛΙΆ; | ΉΛΘΑ ΜΕΊΝΕΙ ΜΕ ΑΠΌ ΤΟ ΘΕΊΟ ΒΑΣΊΛΙΑ | | ΠΑΡΑΚΆΤΩ, ΈΝΑ ΡΥΆΚΙ ΜΟΥΡΜΟΎΡΙΖΕ ΓΛΥΚΆ, ΚΥΛΏΝΤΑΣ ΤΑ ΚΡΥΣΤΑΛΛΈΝΙΑ ΝΕΡΆ ΤΟΥ ΑΝΆΜΕΣΑ ΣΤΑ ΠΥΚΝΆ ΧΑΜΌΔΕΝΤΡΑ. | ΠΑΡΑΚΆΤΩ ΈΝΑ ΡΥΆΚΙ ΜΟΥΡΜΟΎΡΙΖΕ ΓΛΥΚΆ ΚΥΛΏΝΤΑΣ ΤΑ ΚΡΥΣΤΑΛΛΈΝΙΑ ΝΕΡΆ ΤΟΥ ΑΝΆΜΕΣΑ ΣΤΑ ΠΥΚΡΆ ΧΑΜΌΔΕΝΤΡΑ | | ΠΡΆΓΜΑΤΙ, ΕΊΝΑΙ ΑΣΤΕΊΟ ΝΑ ΠΆΡΕΙ Ο ΔΙΆΒΟΛΟΣ | ΠΡΆΓΜΑΤΗ ΕΊΝΑΙ ΑΣΤΕΊΟ ΝΑ ΠΆΡΕΙ Ο ΔΙΆΒΟΛΟΣ | ## Evaluation The model can be evaluated as follows on the greek test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "el", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data normalize_greek_letters = {"ς": "σ"} # normalize_greek_letters = {"ά": "α", "έ": "ε", "ί": "ι", 'ϊ': "ι", "ύ": "υ", "ς": "σ", "ΐ": "ι", 'ϋ': "υ", "ή": "η", "ώ": "ω", 'ό': "ο"} remove_chars_greek = {"a": "", "h": "", "n": "", "g": "", "o": "", "v": "", "e": "", "r": "", "t": "", "«": "", "»": "", "m": "", '́': '', "·": "", "’": "", '´': ""} replacements = {**normalize_greek_letters, **remove_chars_greek} resampler = { 48_000: torchaudio.transforms.Resample(48_000, 16_000), 44100: torchaudio.transforms.Resample(44100, 16_000), 32000: torchaudio.transforms.Resample(32000, 16_000) } # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() for key, value in replacements.items(): batch["sentence"] = batch["sentence"].replace(key, value) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler[sampling_rate](speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]]))) ``` **Test Result**: 18.996669 % ## Training The Common Voice train dataset was used for training. Also all of `CSS10 Greek` was used using the normalized transcripts. During text preprocessing letter `ς` is normalized to `σ` the reason is that both letters sound the same with `ς` only used as the ending character of words. So, the change can be mapped up to proper dictation easily. I tried removing all accents from letters as well that improved `WER` significantly. The model was reaching `17%` WER easily without having converged. However, the text preprocessing needed to do after to fix transcrtiptions would be more complicated. A language model should fix things easily though. Another thing that could be tried out would be to change all of `ι`, `η` ... etc to a single character since all sound the same. similar for `o` and `ω` these should help the acoustic model part significantly since all these characters map to the same sound. But further text normlization would be needed.
{"language": "el", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer", "cer"], "model-index": [{"name": "V XLSR Wav2Vec2 Large 53 - greek", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice el", "type": "common_voice", "args": "el"}, "metrics": [{"type": "wer", "value": 18.996669, "name": "Test WER"}, {"type": "cer", "value": 5.781874, "name": "Test CER"}]}]}]}
automatic-speech-recognition
harshit345/xlsr-53-wav2vec-greek
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "el", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "el" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #el #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
Wav2Vec2-Large-XLSR-53-greek ============================ Fine-tuned facebook/wav2vec2-large-xlsr-53 on greek using the Common Voice and CSS10 Greek: Single Speaker Speech Dataset. When using this model, make sure that your speech input is sampled at 16kHz. Usage ----- The model can be used directly (without a language model) as follows: Evaluation ---------- The model can be evaluated as follows on the greek test data of Common Voice. Test Result: 18.996669 % Training -------- The Common Voice train dataset was used for training. Also all of 'CSS10 Greek' was used using the normalized transcripts. During text preprocessing letter 'ς' is normalized to 'σ' the reason is that both letters sound the same with 'ς' only used as the ending character of words. So, the change can be mapped up to proper dictation easily. I tried removing all accents from letters as well that improved 'WER' significantly. The model was reaching '17%' WER easily without having converged. However, the text preprocessing needed to do after to fix transcrtiptions would be more complicated. A language model should fix things easily though. Another thing that could be tried out would be to change all of 'ι', 'η' ... etc to a single character since all sound the same. similar for 'o' and 'ω' these should help the acoustic model part significantly since all these characters map to the same sound. But further text normlization would be needed.
[]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #el #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n" ]
[ 77 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #el #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n" ]
[ -0.1576029509305954, 0.13533742725849152, -0.005251778289675713, -0.05818736553192139, 0.056231286376714706, -0.04292404279112816, 0.12853097915649414, 0.11309422552585602, 0.056543298065662384, 0.0011017972137778997, 0.05464695766568184, 0.18029053509235382, 0.04198789969086647, 0.0642545223236084, -0.07800717651844025, -0.19134551286697388, 0.09662085771560669, 0.04213810712099075, 0.10624106228351593, 0.09464772790670395, 0.0969344973564148, -0.05578237026929855, 0.007438482251018286, 0.058543309569358826, -0.05591374263167381, 0.005046924576163292, 0.07163042575120926, -0.1697450429201126, 0.1173391118645668, 0.05797934904694557, -0.01828119158744812, 0.059810057282447815, 0.03266250714659691, -0.23366105556488037, 0.010194450616836548, -0.0022682202979922295, 0.012114852666854858, 0.025067131966352463, 0.07928521186113358, 0.004310326650738716, -0.03109797090291977, 0.05750088021159172, -0.03491606190800667, 0.08481157571077347, -0.04946263134479523, -0.21177995204925537, -0.0727783739566803, 0.05704907327890396, 0.08429330587387085, 0.08836029469966888, -0.035984333604574203, 0.15369759500026703, -0.09521432965993881, 0.07709307223558426, 0.10710348933935165, -0.274558961391449, 0.03460589423775673, -0.03752760961651802, 0.07093176990747452, 0.007213215809315443, -0.018549127504229546, 0.07162599265575409, 0.05005272477865219, 0.004866862203925848, -0.061569202691316605, -0.043845899403095245, -0.20020748674869537, 0.005568849388509989, -0.0833476334810257, -0.041940879076719284, 0.2554992735385895, 0.04122014343738556, 0.018560880795121193, -0.07873669266700745, -0.01670694723725319, -0.007403429597616196, -0.06098365783691406, -0.015578782185912132, 0.012130341492593288, 0.06787697225809097, 0.025628380477428436, 0.011918551288545132, -0.10264619439840317, -0.05488079413771629, -0.1502438485622406, 0.1507611870765686, 0.012362802401185036, 0.03259497135877609, -0.14333266019821167, -0.022040696814656258, -0.033526528626680374, -0.08566975593566895, -0.025774523615837097, 0.029809530824422836, 0.009859727695584297, 0.027564257383346558, -0.021941928192973137, 0.005119708366692066, 0.16054227948188782, 0.09617392718791962, 0.03508913144469261, 0.01697208732366562, -0.05511562153697014, 0.07852547615766525, 0.021871766075491905, 0.11929037421941757, -0.01859327219426632, -0.08886955678462982, 0.04474286362528801, -0.046181317418813705, 0.04769288748502731, -0.03755617141723633, -0.08562774956226349, -0.048802390694618225, 0.017812935635447502, 0.09107816219329834, 0.06466080248355865, -0.006490274798125029, -0.05504234507679939, -0.003619018942117691, 0.0683850571513176, -0.11248647421598434, -0.004172604531049728, 0.0464576780796051, 0.036377422511577606, 0.13940511643886566, -0.02225678227841854, 0.06382464617490768, -0.09229326248168945, 0.0017683592159301043, 0.0011453846236690879, 0.003998766653239727, 0.05043228715658188, -0.016892211511731148, 0.04784287139773369, -0.13500472903251648, 0.04586666822433472, -0.09686169773340225, -0.07715165615081787, -0.04553603008389473, -0.04763508588075638, 0.017054036259651184, -0.14995650947093964, -0.06394970417022705, -0.03595900163054466, 0.014769842848181725, -0.11717220395803452, 0.039947956800460815, -0.11265738308429718, 0.08237168937921524, 0.023488406091928482, 0.03957892209291458, -0.08832374960184097, 0.08556342124938965, -0.05842413753271103, -0.032487496733665466, 0.04368315637111664, 0.08107953518629074, -0.069963738322258, 0.03729144483804703, -0.09787771850824356, -0.030847061425447464, -0.032051052898168564, 0.06786932051181793, -0.041542354971170425, 0.08468189090490341, -0.1908208280801773, -0.145391047000885, 0.16092152893543243, -0.09817235171794891, -0.10310276597738266, 0.1280001997947693, 0.055123452097177505, -0.04178880155086517, 0.1260102093219757, 0.27469149231910706, 0.025726154446601868, -0.13201077282428741, 0.017121147364377975, 0.09922081977128983, -0.055464133620262146, -0.12866143882274628, 0.05943889543414116, -0.08554033935070038, -0.015920894220471382, 0.04198936000466347, -0.008803474716842175, 0.07141084969043732, -0.04443378001451492, -0.07418647408485413, -0.010640416294336319, -0.09366628527641296, 0.0002145346807083115, -0.04068707302212715, 0.002133394591510296, -0.04761006310582161, 0.0010704781161621213, -0.019940264523029327, 0.11269839107990265, -0.01914895512163639, 0.052605681121349335, -0.14645299315452576, 0.11233221739530563, -0.059374239295721054, 0.0071133398450911045, -0.1434306800365448, 0.1941004991531372, -0.02592603676021099, 0.10598665475845337, 0.08693160861730576, 0.06779155135154724, 0.01858106628060341, -0.0987982228398323, 0.019080964848399162, -0.06352389603853226, 0.12782776355743408, 0.037735339254140854, -0.029032312333583832, -0.16007691621780396, 0.04278397932648659, -0.06233817711472511, -0.023068087175488472, -0.034746475517749786, -0.05048442631959915, 0.017942754551768303, 0.06170361861586571, -0.0024389317259192467, 0.043835170567035675, 0.020313454791903496, 0.03872159495949745, -0.002492341445758939, 0.032269708812236786, 0.05585082992911339, 0.0001209892870974727, -0.06635168194770813, 0.2636979818344116, -0.1403697431087494, 0.22052711248397827, 0.1870519071817398, -0.15604889392852783, 0.1066468358039856, 0.11347431689500809, -0.0029939860105514526, -0.029588820412755013, -0.00952901691198349, -0.015221316367387772, 0.2093961536884308, -0.014317735098302364, 0.11561726033687592, -0.06769091635942459, 0.010467402637004852, 0.02453744411468506, -0.0557868629693985, -0.03644697368144989, 0.06525742262601852, 0.036045048385858536, -0.013941623270511627, 0.09159745275974274, 0.10877158492803574, -0.028199313208460808, 0.16471651196479797, -0.08600138127803802, -0.06847839057445526, 0.08065787702798843, -0.060398414731025696, -0.054148703813552856, 0.04048316925764084, -0.22073103487491608, -0.053320642560720444, 0.08115853369235992, 0.02858966961503029, 0.07969114929437637, -0.1635395586490631, 0.00044073385652154684, -0.024162542074918747, -0.10400410741567612, -0.13821838796138763, 0.047701068222522736, -0.01160289067775011, 0.07611307501792908, -0.0981355607509613, -0.16938327252864838, 0.061373092234134674, -0.03967509791254997, -0.1272442638874054, 0.06108946353197098, -0.11954881250858307, -0.24022695422172546, -0.13041673600673676, -0.09136094897985458, -0.0024773553013801575, 0.013362422585487366, 0.1452433317899704, -0.09617828577756882, -0.035899773240089417, 0.011208564974367619, 0.04169971123337746, -0.02007719874382019, 0.02174118161201477, 0.025528734549880028, 0.016400761902332306, 0.05065280571579933, -0.14664451777935028, -0.0009663964156061411, -0.03747706860303879, 0.013797584921121597, 0.033985305577516556, -0.019514473155140877, 0.04435719549655914, 0.20501494407653809, 0.10412529110908508, 0.01566600240767002, -0.010509766638278961, 0.17502540349960327, -0.1096029132604599, -0.07135345786809921, 0.22473685443401337, -0.011578838340938091, -0.0021113702096045017, 0.16952764987945557, 0.03027423843741417, -0.05892427638173103, -0.0487431101500988, -0.01073223166167736, -0.03066852129995823, -0.29112839698791504, -0.14113874733448029, -0.0926578938961029, -0.029098991304636, -0.04365916550159454, 0.07088768482208252, 0.08313801884651184, -0.034515634179115295, -0.022543737664818764, -0.08695892989635468, 0.02235512249171734, -0.019630059599876404, 0.22569823265075684, -0.02501184493303299, 0.10287798196077347, -0.06627827137708664, -0.040677014738321304, 0.058620281517505646, 0.10574574768543243, 0.06720463186502457, 0.17276142537593842, 0.12337303161621094, 0.04623328894376755, 0.10869882255792618, 0.12552385032176971, 0.02117972820997238, 0.03910292685031891, -0.006626017391681671, 0.0009870027424767613, -0.03474710136651993, -0.04553540423512459, 0.026549648493528366, 0.2037290632724762, -0.09083407372236252, -0.04764122515916824, -0.08352342993021011, 0.02967199869453907, 0.22630946338176727, 0.07533631473779678, -0.1621304601430893, 0.02318042516708374, 0.031100844964385033, -0.11174585670232773, 0.002574479440227151, 0.10999618470668793, -0.021351614966988564, -0.05402616783976555, 0.0960225760936737, 0.08125942200422287, 0.11344989389181137, -0.07341271638870239, 0.04862963408231735, -0.11078830063343048, -0.045467961579561234, 0.05482329800724983, 0.07616301625967026, -0.24763797223567963, 0.24299617111682892, 0.008916651830077171, 0.11075011640787125, -0.02820488251745701, 0.019974516704678535, 0.02614939957857132, 0.12839818000793457, 0.12296672910451889, -0.0035406395327299833, -0.06668099015951157, -0.054688699543476105, -0.10826193541288376, 0.04917357116937637, 0.002181066432967782, 0.07422462105751038, -0.05609270557761192, -0.012848196551203728, -0.03860326111316681, 0.02661260776221752, -0.10928060114383698, -0.1360158622264862, -0.0748865082859993, 0.014937091618776321, 0.27262452244758606, 0.09438905119895935, -0.023959733545780182, -0.08292096108198166, -0.228759765625, 0.04375720024108887, -0.09585355222225189, -0.0005362929659895599, -0.059583038091659546, -0.15120361745357513, 0.11547578126192093, -0.034122541546821594, 0.00472182547673583, 0.03917839378118515, 0.037174299359321594, -0.03129592165350914, -0.0985468253493309, 0.11997955292463303, -0.11888100206851959, -0.06537948548793793, -0.045384228229522705, 0.24588154256343842, -0.0025506357196718454, 0.057702966034412384, 0.043497148901224136, 0.012825757265090942, -0.022515902295708656, -0.015354053117334843, 0.08480659872293472, 0.10207542032003403, -0.057003773748874664, 0.0021727655548602343, 0.03129499405622482, -0.21108314394950867, -0.08830145001411438, -0.06202385574579239, 0.1774965524673462, 0.11038079857826233, -0.04284551367163658, 0.21431398391723633, 0.2541908621788025, -0.057685550302267075, -0.2548011839389801, -0.14683260023593903, -0.020434655249118805, 0.008528763428330421, -0.05147378891706467, -0.16502012312412262, 0.1400214433670044, -0.0303349606692791, -0.07806640863418579, 0.030101284384727478, -0.27361711859703064, -0.08737125247716904, 0.24805504083633423, -0.12016312032938004, 0.2475564330816269, -0.05209578946232796, -0.11044421046972275, -0.03258676081895828, -0.1288503110408783, 0.058345817029476166, -0.06002531573176384, 0.06859970837831497, 0.04083630442619324, 0.06665683537721634, 0.004797273315489292, 0.001672558719292283, 0.11493407189846039, 0.11593325436115265, -0.042362432926893234, -0.010381987318396568, 0.030611449852585793, -0.04204298555850983, 0.028222789987921715, 0.05065549910068512, -0.10351323336362839, 0.024129774421453476, -0.08647692203521729, -0.07118790596723557, -0.06764363497495651, 0.09533216804265976, 0.062165819108486176, 0.023377055302262306, 0.057161279022693634, -0.1148139014840126, -0.014846413396298885, 0.011022119782865047, 0.21678365767002106, -0.08322089165449142, 0.03083680011332035, 0.1147109642624855, 0.1856427639722824, -0.19723202288150787, -0.13103249669075012, -0.11535526812076569, -0.08368255198001862, 0.1269800364971161, -0.015709325671195984, 0.0628276988863945, 0.05998877435922623, 0.012120364233851433, 0.07612759619951248, 0.044173263013362885, -0.04821905493736267, 0.024361200630664825, 0.06358423829078674, -0.057935431599617004, -0.07892349362373352, 0.013947798870503902, 0.02848191373050213, 0.06546910107135773, 0.0959799587726593, 0.13455629348754883, 0.02059854380786419, -0.03340914100408554, -0.0114131486043334, 0.03251661732792854, -0.12966294586658478, 0.20768892765045166, 0.031206078827381134, 0.03697589412331581, -0.19319266080856323, 0.09604262560606003, -0.019565261900424957, -0.15425227582454681, 0.002760986564680934, 0.01250495109707117, -0.06589272618293762, -0.10996232181787491, -0.022564508020877838, 0.0660758763551712, -0.044738270342350006, -0.16345958411693573, -0.015481251291930676, -0.16012471914291382, 0.08470000326633453, 0.15356756746768951, 0.05946999415755272, 0.08631530404090881, -0.07922423630952835, -0.08153626322746277, 0.019011307507753372, 0.0036037121899425983, 0.012127632275223732, 0.007777844555675983, -0.14498327672481537, 0.0012754207709804177, 0.030815955251455307, 0.10091031342744827, -0.06651806086301804, -0.07107140868902206, -0.04570499435067177, 0.08284857124090195, -0.09516159445047379, 0.045709770172834396, -0.07819493114948273, 0.023637348785996437, 0.03281301632523537, -0.10204429179430008, -0.03201187774538994, 0.04866718500852585, -0.10590224713087082, 0.02608119696378708, 0.010000472888350487, 0.1186690628528595, -0.105959951877594, 0.02293439395725727, 0.025955326855182648, -0.03344973921775818, 0.12326662242412567, 0.15736700594425201, -0.11345861852169037, 0.10627058148384094, -0.21563002467155457, -0.19159895181655884, 0.12847039103507996, 0.06774112582206726, -0.008584108203649521, -0.046495333313941956, 0.014432087540626526, 0.15581049025058746, 0.022375158965587616, -0.006850080098956823, 0.03130590170621872, -0.11239013075828552, -0.057870104908943176, -0.12370288372039795, -0.07318932563066483, -0.010809598490595818, -0.08448441326618195, 0.1826319843530655, 0.07043670862913132, 0.14608190953731537, -0.06802588701248169, 0.005277520511299372, -0.04562291502952576, 0.06786574423313141, -0.0767417624592781, -0.12693509459495544, -0.1560041457414627, -0.012063776142895222, 0.05103066563606262, -0.04423544928431511, 0.20728591084480286, -0.01518024317920208, -0.007913283072412014, 0.02122921124100685, 0.006593166850507259, -0.08245071023702621, 0.032376207411289215, 0.34281742572784424, 0.08350575715303421, 0.007269986439496279, -0.03959125652909279, -0.04060908779501915, 0.03198892995715141, 0.07744332402944565, -0.0310723464936018, 0.13778729736804962, 0.14026521146297455, 0.1314302235841751, 0.1072007268667221, -0.08501118421554565, -0.08703438192605972, -0.01636509783565998, -0.09401541948318481, 0.06597635895013809, 0.0007802488980814815, 0.17182432115077972, 0.13621886074543, 0.02528383396565914, 0.042229507118463516, -0.03052631765604019, -0.005415389779955149, -0.19505032896995544, -0.10201768577098846, -0.09541047364473343, -0.1318361908197403, 0.02650579623878002, -0.04485410451889038, 0.060559697449207306, 0.05499890446662903, 0.02652422897517681, -0.03237659111618996, -0.022000884637236595, -0.000953525013756007, -0.07387372106313705, 0.06813638657331467, -0.06402362138032913, -0.022070033475756645, -0.09585221856832504, -0.019771317020058632, 0.09043069183826447, 0.019855951890349388, 0.00504461070522666, 0.008872793056070805, -0.07981640100479126, 0.05679679661989212, -0.11911952495574951, -0.09603162109851837, -0.00757643673568964, -0.037123896181583405, 0.04325978085398674, 0.163056418299675, 0.09645821154117584, -0.03937976062297821, 0.08411351591348648, 0.1682087630033493, -0.0783398449420929, -0.1781153678894043, -0.06962321698665619, 0.09760695695877075, 0.011545021086931229, 0.07513502985239029, -0.015982063487172127, -0.043698932975530624, -0.05850820615887642, 0.2280639410018921, 0.2545108199119568, 0.0007976467604748905, 0.041638728231191635, -0.06428273767232895, 0.008147911168634892, -0.05271157994866371, 0.0006481659365817904, 0.11199028044939041, 0.2323981374502182, 0.0016108612762764096, -0.06327728182077408, -0.08254414051771164, -0.0018687105039134622, -0.068302221596241, 0.07117949426174164, -0.06402087211608887, -0.14400142431259155, 0.02435809187591076, 0.1264788806438446, -0.1403900384902954, 0.0039580403827130795, -0.11802075058221817, -0.10729296505451202, -0.05736445263028145, -0.01378235686570406, 0.15070362389087677, 0.16861969232559204, 0.0006820303970016539, -0.048808254301548004, -0.05356153845787048, 0.09105577319860458, -0.027612553909420967, -0.20190763473510742, -0.007710785139352083, 0.015268895775079727, -0.07127957791090012, 0.057987965643405914, 0.01261319313198328, 0.14305369555950165, -0.005642372649163008, 0.1446254700422287, -0.022787077352404594, 0.17422768473625183, -0.003739018924534321, -0.10561874508857727, 0.07463869452476501, 0.09358691424131393, -0.0005428318399935961, 0.06672549247741699, 0.065373994410038, -0.1048157662153244, 0.04806768521666527, -0.08182793855667114, -0.06147975102066994, -0.07268305122852325, 0.01738140545785427, -0.05700429156422615, 0.03691713511943817, -0.08258377760648727, -0.03446440398693085, -0.05979788303375244, 0.0032018783967942, 0.0143917016685009, 0.03002292476594448, -0.0929068922996521, -0.05470380187034607, -0.15417470037937164, -0.027302520349621773, -0.07770536094903946, 0.015362854115664959, -0.10860055685043335, -0.015284470282495022, -0.0971718281507492, -0.025212125852704048, -0.06497763097286224, -0.009860421530902386, 0.11763404309749603, -0.011252369731664658, 0.0004157043294981122, -0.050618331879377365, 0.10863213241100311, 0.1038980707526207, -0.1369594782590866, -0.08638305217027664 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-hindi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) hindi using the [Multilingual and code-switching ASR challenges for low resource Indian languages](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "hi", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi") model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the hindi test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "hi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi") model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi") model.to("cuda") resampler = torchaudio.transforms.Resample(48_000, 16_000) chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**:20.22 % ## Training The script used for training can be found [Hindi ASR Fine Tuning Wav2Vec2](https://colab.research.google.com/drive/1nY5WMj1oNlexD_qDeNYL7ZM427A021CV?usp=sharing)
{"language": "hi", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["Interspeech 2021"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Hindi by Shyam Sunder Kumar", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hi", "type": "common_voice", "args": "hi"}, "metrics": [{"type": "wer", "value": 20.22, "name": "Test WER"}]}]}]}
automatic-speech-recognition
harshit345/xlsr-53-wav2vec-hi
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "hi", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "hi" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hi #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-hindi Fine-tuned facebook/wav2vec2-large-xlsr-53 hindi using the Multilingual and code-switching ASR challenges for low resource Indian languages. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the hindi test data of Common Voice. Test Result:20.22 % ## Training The script used for training can be found Hindi ASR Fine Tuning Wav2Vec2
[ "# Wav2Vec2-Large-XLSR-53-hindi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 hindi using the Multilingual and code-switching ASR challenges for low resource Indian languages.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the hindi test data of Common Voice. \n\n\n\n\nTest Result:20.22 %", "## Training\n\nThe script used for training can be found Hindi ASR Fine Tuning Wav2Vec2" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hi #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-hindi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 hindi using the Multilingual and code-switching ASR challenges for low resource Indian languages.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the hindi test data of Common Voice. \n\n\n\n\nTest Result:20.22 %", "## Training\n\nThe script used for training can be found Hindi ASR Fine Tuning Wav2Vec2" ]
[ 68, 76, 20, 27, 22 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hi #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-hindi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 hindi using the Multilingual and code-switching ASR challenges for low resource Indian languages.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the hindi test data of Common Voice. \n\n\n\n\nTest Result:20.22 %## Training\n\nThe script used for training can be found Hindi ASR Fine Tuning Wav2Vec2" ]
[ -0.1448645144701004, -0.05412046238780022, -0.0005816497141495347, -0.013239992782473564, 0.09444356709718704, -0.06024744361639023, 0.09925001859664917, 0.09589079022407532, 0.027900733053684235, -0.033692747354507446, 0.0477585569024086, 0.025314414873719215, 0.060894351452589035, 0.14048150181770325, -0.02535311132669449, -0.19851906597614288, -0.006640992593020201, -0.02845381759107113, 0.08280884474515915, 0.10510178655385971, 0.12955212593078613, -0.04154202714562416, 0.01778423599898815, 0.10966428369283676, -0.11991982907056808, 0.062217049300670624, 0.03435169905424118, -0.10414589941501617, 0.08096550405025482, 0.05978037044405937, 0.0636560469865799, 0.04647628217935562, 0.09925009310245514, -0.16906218230724335, 0.03661436215043068, -0.02810598723590374, 0.015693046152591705, -0.012302663177251816, 0.07325059175491333, 0.02123665250837803, 0.12031088024377823, 0.06964555382728577, -0.05384256690740585, 0.09338309615850449, -0.06357251852750778, -0.09175701439380646, 0.009703331626951694, 0.024450797587633133, 0.07103940844535828, 0.13283245265483856, -0.05971217900514603, 0.08743222057819366, -0.125946044921875, 0.07117664813995361, 0.018759801983833313, -0.1422794759273529, 0.02716022916138172, 0.07447190582752228, 0.059105660766363144, 0.11923573911190033, -0.07071390002965927, -0.010018969886004925, 0.06515348702669144, 0.013846438378095627, -0.034192923456430435, -0.06415071338415146, -0.14997977018356323, -0.0018803084967657924, -0.10649022459983826, -0.0012427327455952764, 0.09673504531383514, -0.038288965821266174, -0.06855795532464981, -0.0977652445435524, -0.06576746702194214, 0.028066448867321014, -0.035945065319538116, -0.030912047252058983, -0.02397714927792549, 0.08625094592571259, 0.11388091742992401, -0.02776094526052475, -0.10187377035617828, -0.10330011695623398, 0.08792807906866074, 0.04491103067994118, 0.012602192349731922, 0.030667200684547424, -0.17672015726566315, 0.00027141490136273205, -0.05985657870769501, -0.06790859252214432, -0.025263698771595955, -0.0002573133970145136, -0.05776217207312584, 0.05385074019432068, -0.05937452241778374, -0.15653814375400543, 0.029671963304281235, -0.13170528411865234, -0.02469954453408718, 0.03526360169053078, 0.0020700949244201183, 0.02541709505021572, 0.01149960607290268, 0.11461635679006577, -0.0652691125869751, 0.015642467886209488, 0.044810906052589417, 0.028516806662082672, 0.018566245213150978, -0.03307369723916054, -0.06460492312908173, -0.08995871245861053, -0.07186204195022583, 0.03395414352416992, -0.10644667595624924, -0.023129962384700775, -0.036654651165008545, -0.022484272718429565, 0.11287404596805573, -0.1424914449453354, -0.011064710095524788, 0.04257650673389435, 0.06918173283338547, 0.1784072071313858, 0.023142559453845024, 0.012236256152391434, -0.09473558515310287, -0.10952410846948624, -0.009158752858638763, 0.0772319883108139, -0.07386491447687149, -0.0455593466758728, -0.014367046765983105, -0.01223209872841835, -0.02383904531598091, -0.09850858151912689, -0.13960881531238556, -0.030662210658192635, -0.043067049235105515, -0.009084970690310001, 0.006028680596500635, -0.07624964416027069, -0.01547324564307928, 0.009582795202732086, -0.07199161499738693, 0.053224723786115646, -0.03506135195493698, 0.02618011273443699, 0.0962577760219574, 0.09554704278707504, 0.032722022384405136, 0.08176852017641068, -0.06040472537279129, 0.005491110496222973, 0.11757627129554749, 0.12147247791290283, -0.05113593488931656, -0.06808838993310928, -0.07164553552865982, -0.06555377691984177, -0.0363808274269104, 0.0688592791557312, 0.008349255658686161, 0.07461415976285934, -0.20399241149425507, -0.06826288998126984, 0.2133733034133911, -0.14213669300079346, -0.027749694883823395, 0.15777435898780823, 0.020220281556248665, 0.08832798153162003, 0.05332329496741295, 0.13137935101985931, 0.10110508650541306, -0.14990386366844177, 0.0326412171125412, 0.07041060924530029, -0.03483288735151291, -0.03415679186582565, 0.07191100716590881, -0.012115439400076866, 0.02383279614150524, 0.01909722574055195, -0.03969062492251396, 0.04642610624432564, -0.02304326556622982, -0.07915455847978592, -0.05644594877958298, -0.09409194439649582, 0.022248124703764915, 0.023499464616179466, 0.028661586344242096, 0.02120414562523365, -0.02861364558339119, 0.024338187649846077, 0.14180444180965424, -0.10047950595617294, 0.06302780658006668, -0.17524731159210205, 0.06492030620574951, -0.15084604918956757, 0.0029524171259254217, -0.11782582104206085, 0.2187231183052063, -0.00022025707585271448, 0.02585185505449772, 0.03577983006834984, 0.19240418076515198, 0.030262676998972893, -0.0021936718840152025, -0.035333406180143356, -0.00382800679653883, 0.024596838280558586, -0.012585846707224846, -0.028026819229125977, -0.08309768885374069, -0.03258536010980606, -0.07380588352680206, 0.08179812878370285, -0.17598694562911987, -0.03289620950818062, 0.05942220240831375, 0.01604238897562027, -0.02271466702222824, 0.009925826452672482, 0.09190886467695236, 0.08393119275569916, 0.02163432352244854, -0.006597800180315971, 0.03362496197223663, -0.0015412861248478293, -0.02781333029270172, 0.1584896743297577, -0.08785559982061386, -0.014412159100174904, 0.0757128968834877, -0.09960529208183289, 0.040463801473379135, 0.0892561674118042, 0.00612206244841218, -0.023396098986268044, -0.05774657800793648, 0.01830524392426014, 0.25544804334640503, -0.0024704819079488516, 0.15589113533496857, -0.05944875627756119, 0.03621520847082138, 0.019809208810329437, -0.09792238473892212, 0.050590988248586655, 0.05351922661066055, 0.005607701372355223, -0.011027558706700802, 0.03955930843949318, -0.031757861375808716, -0.08476986736059189, 0.20522712171077728, -0.004624170251190662, -0.1239268109202385, 0.06656025350093842, -0.022936474531888962, -0.05755805969238281, -0.004760517738759518, -0.18082118034362793, -0.0607302300632, 0.050528835505247116, 0.01999087631702423, 0.05335034430027008, -0.10607300698757172, 0.013660543598234653, -0.0028202554676681757, -0.09972085058689117, -0.1601266711950302, 0.10837479680776596, -0.07112371176481247, 0.021830575540661812, -0.091640904545784, -0.023465842008590698, 0.030793199315667152, -0.035521943122148514, -0.19283105432987213, 0.10081930458545685, -0.036383818835020065, -0.26485803723335266, -0.19525733590126038, -0.013409867882728577, 0.04649593308568001, 0.01257397048175335, 0.06371963769197464, -0.18176601827144623, -0.07089648395776749, -0.017993930727243423, 0.08709773421287537, 0.02059033513069153, -0.06440827250480652, -0.0009330110042355955, -0.018929755315184593, 0.05151727795600891, -0.14588609337806702, 0.02015194669365883, 0.05007775500416756, -0.031804557889699936, 0.03751286119222641, 0.008640190586447716, -0.03529134765267372, 0.15157221257686615, -0.022024882957339287, 0.007597249932587147, 0.04190065339207649, 0.18469251692295074, -0.07145876437425613, 0.010202997364103794, 0.24723944067955017, -0.0024462395813316107, -0.022390607744455338, 0.08127778768539429, -0.005971480160951614, -0.058581702411174774, -0.007535533979535103, -0.04519093781709671, -0.045349206775426865, -0.24408826231956482, -0.10147334635257721, -0.07597832381725311, -0.12229020148515701, -0.031725164502859116, -0.007030659820884466, 0.033538106828927994, 0.03534635901451111, -0.029392005875706673, -0.007941336371004581, -0.01142915990203619, -0.011549030430614948, 0.11589042842388153, -0.020622069016098976, 0.07239052653312683, -0.08071469515562057, 0.0006543885101564229, 0.0264867153018713, 0.054716162383556366, 0.10691028088331223, 0.09476516395807266, 0.12095678597688675, 0.07894546538591385, 0.10268910229206085, 0.1460142582654953, 0.024351369589567184, -0.06901586800813675, -0.04954608529806137, 0.036561716347932816, -0.030958829447627068, -0.06837041676044464, 0.11742157489061356, 0.10146921128034592, -0.06036665663123131, 0.02899160422384739, 0.0031190961599349976, -0.009551036171615124, 0.159318745136261, 0.05079146847128868, -0.17827735841274261, -0.07259947806596756, 0.0028692653868347406, -0.1286548376083374, -0.03378995507955551, 0.04834730923175812, 0.13029104471206665, -0.07704956084489822, 0.039253197610378265, -0.003561328863725066, 0.09901046007871628, 0.042438119649887085, 0.015085697174072266, -0.1596246212720871, 0.012317841872572899, 0.03823864832520485, 0.10907169431447983, -0.2801319658756256, 0.1869671791791916, 0.026769094169139862, 0.11416968703269958, -0.012210686691105366, -0.015469556674361229, 0.008877057582139969, 0.08252954483032227, 0.06553944945335388, 0.011185712181031704, 0.07277896255254745, -0.05588388070464134, -0.03825711831450462, 0.053966224193573, 0.017448898404836655, 0.16899734735488892, 0.05027540773153305, -0.03065052442252636, -0.008193322457373142, -0.005194608587771654, -0.012668044306337833, -0.1518307775259018, -0.03860039636492729, 0.06936591118574142, 0.15660373866558075, 0.12249293178319931, -0.037272680550813675, -0.08931265771389008, -0.12005153298377991, 0.04422982037067413, -0.11216029524803162, -0.06273434311151505, -0.045454878360033035, -0.018276695162057877, 0.07860051095485687, -0.05283971130847931, 0.02228698506951332, 0.08183404058218002, 0.12406491488218307, -0.027908766642212868, -0.01612638495862484, -0.013723167590796947, -0.06637011468410492, -0.1364830583333969, 0.035126544535160065, 0.11895191669464111, 0.08227179944515228, 0.02342921681702137, 0.053364381194114685, -0.008606601506471634, -0.016892243176698685, -0.05701570212841034, 0.025543123483657837, 0.13210320472717285, -0.15317575633525848, -0.00891280546784401, 0.02668153867125511, -0.13324575126171112, -0.04426649212837219, -0.11209364980459213, 0.1370251625776291, 0.062026046216487885, -0.010505366139113903, 0.2039864957332611, 0.23220738768577576, -0.08510607481002808, -0.18209514021873474, -0.051596324890851974, 0.03668032959103584, 0.14811953902244568, -0.03649992495775223, -0.12491749972105026, 0.08538298308849335, -0.04243890196084976, -0.035672590136528015, -0.09907642006874084, -0.16799715161323547, -0.1255142241716385, 0.1322832852602005, 0.004685806110501289, 0.1416425108909607, -0.059719301760196686, -0.037863314151763916, -0.08744516968727112, -0.0710945725440979, -0.04411601647734642, -0.09392190724611282, 0.09241543710231781, -0.04853015020489693, 0.1372963786125183, 0.014854089356958866, -0.027454527094960213, 0.08700641244649887, 0.040936779230833054, -0.051092177629470825, 0.00008529126353096217, 0.08554410189390182, 0.05452549830079079, 0.08010032027959824, 0.17524071037769318, -0.06574580818414688, 0.018201204016804695, -0.07013384997844696, -0.10662820190191269, -0.07151743769645691, 0.03341124206781387, 0.059765953570604324, -0.014134950935840607, 0.035184815526008606, -0.04052712395787239, 0.014515209943056107, 0.016481958329677582, -0.05344557389616966, -0.1605299860239029, -0.03557164594531059, 0.1151469424366951, 0.2584916055202484, -0.09439107775688171, -0.008926103822886944, -0.05606001988053322, -0.00618013134226203, 0.11631821095943451, -0.10299768298864365, 0.04566602408885956, 0.010142631828784943, 0.04964030906558037, 0.12719310820102692, -0.0013083259109407663, -0.04305555298924446, 0.09396182000637054, 0.07115556299686432, 0.0780508741736412, -0.12917397916316986, -0.012091641314327717, 0.03644056245684624, -0.01414891704916954, -0.013836576603353024, 0.11425384134054184, -0.12122256308794022, -0.035158075392246246, -0.05724908784031868, 0.056895267218351364, -0.15939345955848694, 0.1563783586025238, 0.08678846061229706, 0.0643409788608551, -0.09626098722219467, -0.005163230467587709, -0.006646908354014158, -0.06150722876191139, 0.017158133909106255, 0.05925727263092995, -0.08221141993999481, -0.1050463318824768, -0.04465600848197937, 0.027940494939684868, -0.03112759441137314, -0.11678606271743774, -0.03148379176855087, -0.0686492994427681, 0.008381041698157787, 0.07811538875102997, 0.015589868649840355, 0.006542735733091831, -0.12620684504508972, -0.07448345422744751, -0.07557922601699829, 0.023100214079022408, 0.045569755136966705, -0.008349213749170303, -0.1251334249973297, 0.12723124027252197, 0.04685157537460327, 0.06682619452476501, -0.06481360644102097, -0.04954807832837105, 0.025416135787963867, 0.07037531584501266, -0.1762564331293106, 0.04782173037528992, -0.07704558968544006, 0.007928113453090191, 0.0007810911047272384, -0.07219548523426056, -0.009423834271728992, 0.09286241233348846, -0.07425471395254135, 0.05033155530691147, -0.023849710822105408, 0.09673265367746353, -0.044974397867918015, 0.04507650062441826, 0.04210039600729942, -0.01925727166235447, 0.022652771323919296, 0.0927833840250969, -0.18140675127506256, 0.12601223587989807, -0.2375563532114029, -0.026859348639845848, 0.05005694180727005, 0.0944976657629013, 0.025620460510253906, -0.0954221561551094, 0.046473391354084015, 0.13794022798538208, 0.05855993181467056, 0.00511498237028718, 0.15038138628005981, -0.03169920668005943, 0.004600376822054386, -0.16781604290008545, -0.0035023477394133806, -0.050637077540159225, 0.06406767666339874, 0.06065436452627182, 0.10453864187002182, 0.14155331254005432, -0.11113978922367096, 0.062465518712997437, -0.0692930817604065, 0.01978883519768715, -0.050480492413043976, 0.015523030422627926, -0.10021703690290451, -0.08436743170022964, 0.05909551680088043, -0.047538015991449356, 0.16252292692661285, -0.036104943603277206, 0.028347859159111977, -0.002467988757416606, -0.1578502207994461, 0.016053156927227974, -0.016627687960863113, 0.26031407713890076, 0.08898778259754181, 0.058964114636182785, -0.044814061373472214, -0.030959172174334526, -0.006243053358048201, 0.1478056162595749, -0.0908517986536026, 0.15674307942390442, -0.077390156686306, 0.10695162415504456, 0.023830117657780647, -0.11032336950302124, -0.06513243168592453, -0.010586267337203026, -0.19986869394779205, 0.024626851081848145, -0.09348870068788528, 0.10872672498226166, 0.24248385429382324, -0.06917118281126022, 0.08880288898944855, -0.020732026547193527, -0.09545595943927765, -0.10563509166240692, -0.08600270748138428, -0.08785261958837509, -0.17861345410346985, 0.07305098325014114, -0.07735070586204529, 0.06752301752567291, 0.06487082690000534, 0.03418842703104019, -0.03313872590661049, 0.20672106742858887, 0.033268723636865616, -0.08687808364629745, 0.017809029668569565, -0.08285471051931381, 0.06495159864425659, -0.045057591050863266, 0.05231650918722153, 0.11697324365377426, -0.05206358805298805, 0.04876368120312691, 0.016670899465680122, -0.06667064130306244, 0.0023572889622300863, -0.0596187487244606, -0.03067067265510559, 0.007873897440731525, 0.011248146183788776, 0.06170887500047684, 0.20814326405525208, 0.09060799330472946, -0.06350855529308319, -0.010723508894443512, 0.010994866490364075, -0.020839186385273933, -0.16063128411769867, -0.13379253447055817, 0.1545349359512329, 0.06778240948915482, 0.02797197923064232, -0.010390362702310085, -0.011948119848966599, -0.015569565817713737, 0.2330915629863739, 0.08832013607025146, 0.0003497305151540786, 0.020428156480193138, -0.040226079523563385, 0.011119022965431213, -0.07245909422636032, 0.09504468739032745, 0.08066626638174057, 0.20521046221256256, -0.0491996631026268, -0.028669262304902077, -0.11302462220191956, -0.08935546875, -0.03277015686035156, 0.0598846897482872, -0.11189132928848267, -0.08027435094118118, 0.009346652776002884, 0.1119692400097847, -0.04565201699733734, -0.0722336396574974, -0.09676659107208252, 0.0029918828513473272, -0.03499230369925499, -0.013893887400627136, -0.06864957511425018, 0.08376353234052658, -0.0024436376988887787, -0.04696488380432129, 0.010893979109823704, 0.12490789592266083, 0.02987390011548996, -0.049101926386356354, 0.03240172937512398, 0.08925626426935196, -0.1947072297334671, -0.09281962364912033, -0.0005131178186275065, 0.19903002679347992, 0.007965022698044777, 0.1409192532300949, -0.004060375038534403, 0.19844894111156464, -0.011856497265398502, -0.041276805102825165, 0.02671779692173004, 0.19700618088245392, -0.016363475471735, 0.07050825655460358, 0.0002830384182743728, -0.07153552770614624, 0.033708490431308746, -0.050926323980093, 0.005088533274829388, -0.06672903895378113, 0.03671694174408913, -0.04987836256623268, 0.09262604266405106, 0.06562984734773636, -0.06517525762319565, -0.08027547597885132, -0.06345947086811066, 0.11019425094127655, -0.02332591637969017, -0.06845620274543762, -0.07110259681940079, -0.22119086980819702, -0.01317513920366764, -0.086369588971138, 0.016689954325556755, -0.14595766365528107, -0.02564350888133049, -0.02963382378220558, -0.04099268838763237, -0.00405876524746418, 0.06791744381189346, 0.06284359842538834, 0.017276281490921974, 0.024134201928973198, -0.07140649110078812, 0.060618191957473755, 0.09361178427934647, -0.17156139016151428, -0.12890151143074036 ]
null
null
transformers
~~~ # requirement packages !pip install git+https://github.com/huggingface/datasets.git !pip install git+https://github.com/huggingface/transformers.git !pip install torchaudio !pip install librosa ~~~ # prediction ~~~ import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from transformers import AutoConfig, Wav2Vec2FeatureExtractor import librosa import IPython.display as ipd import numpy as np import pandas as pd ~~~ ~~~ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition" config = AutoConfig.from_pretrained(model_name_or_path) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) sampling_rate = feature_extractor.sampling_rate model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device) ~~~ ~~~ def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(_sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech def predict(path, sampling_rate): speech = speech_file_to_array_fn(path, sampling_rate) inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to(device) for key in inputs} with torch.no_grad(): logits = model(**inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return outputs ~~~ # prediction ~~~ # path for a sample path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav' outputs = predict(path, sampling_rate) ~~~ ~~~ [{'Emotion': 'anger', 'Score': '78.3%'}, {'Emotion': 'disgust', 'Score': '11.7%'}, {'Emotion': 'fear', 'Score': '5.4%'}, {'Emotion': 'happiness', 'Score': '4.1%'}, {'Emotion': 'sadness', 'Score': '0.5%'}] ~~~ ## Evaluation The following tables summarize the scores obtained by model overall and per each class. | Emotions | precision | recall | f1-score | accuracy | |-----------|-----------|--------|----------|----------| | anger | 0.82 | 1.00 | 0.81 | | | disgust | 0.85 | 0.96 | 0.85 | | | fear | 0.78 | 0.88 | 0.80 | | | happiness | 0.84 | 0.71 | 0.78 | | | sadness | 0.86 | 1.00 | 0.79 | | | | | | Overall | 0.806 | ## Colab Notebook https://colab.research.google.com/drive/1aPPb_ZVS5dlFVZySly8Q80a44La1XjJu?usp=sharing
{"language": "en", "license": "apache-2.0", "tags": ["audio", "audio-classification", "speech"], "datasets": ["aesdd"]}
audio-classification
harshit345/xlsr-wav2vec-speech-emotion-recognition
[ "transformers", "pytorch", "wav2vec2", "audio", "audio-classification", "speech", "en", "dataset:aesdd", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #wav2vec2 #audio #audio-classification #speech #en #dataset-aesdd #license-apache-2.0 #endpoints_compatible #has_space #region-us
``` # requirement packages !pip install git+URL !pip install git+URL !pip install torchaudio !pip install librosa ``` prediction ========== ``` import torch import URL as nn import URL.functional as F import torchaudio from transformers import AutoConfig, Wav2Vec2FeatureExtractor import librosa import IPython.display as ipd import numpy as np import pandas as pd ``` ``` device = URL("cuda" if URL.is_available() else "cpu") model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition" config = AutoConfig.from_pretrained(model_name_or_path) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) sampling_rate = feature_extractor.sampling_rate model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device) ``` ``` def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = URL(path) resampler = torchaudio.transforms.Resample(_sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech def predict(path, sampling_rate): speech = speech_file_to_array_fn(path, sampling_rate) inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to(device) for key in inputs} with torch.no_grad(): logits = model(inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return outputs ``` prediction ========== ``` # path for a sample path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav' outputs = predict(path, sampling_rate) ``` ``` [{'Emotion': 'anger', 'Score': '78.3%'}, {'Emotion': 'disgust', 'Score': '11.7%'}, {'Emotion': 'fear', 'Score': '5.4%'}, {'Emotion': 'happiness', 'Score': '4.1%'}, {'Emotion': 'sadness', 'Score': '0.5%'}] ``` Evaluation ---------- The following tables summarize the scores obtained by model overall and per each class. Colab Notebook URL
[ "# requirement packages\n!pip install git+URL\n!pip install git+URL\n!pip install torchaudio\n!pip install librosa\n\n\n```\n\nprediction\n==========\n\n\n\n```\nimport torch\nimport URL as nn\nimport URL.functional as F\nimport torchaudio\nfrom transformers import AutoConfig, Wav2Vec2FeatureExtractor\nimport librosa\nimport IPython.display as ipd\nimport numpy as np\nimport pandas as pd\n\n```\n\n\n```\ndevice = URL(\"cuda\" if URL.is_available() else \"cpu\")\nmodel_name_or_path = \"harshit345/xlsr-wav2vec-speech-emotion-recognition\"\nconfig = AutoConfig.from_pretrained(model_name_or_path)\nfeature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)\nsampling_rate = feature_extractor.sampling_rate\nmodel = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)\n\n```\n\n\n```\ndef speech_file_to_array_fn(path, sampling_rate):\n speech_array, _sampling_rate = URL(path)\n resampler = torchaudio.transforms.Resample(_sampling_rate)\n speech = resampler(speech_array).squeeze().numpy()\n return speech\ndef predict(path, sampling_rate):\n speech = speech_file_to_array_fn(path, sampling_rate)\n inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors=\"pt\", padding=True)\n inputs = {key: inputs[key].to(device) for key in inputs}\n with torch.no_grad():\n logits = model(inputs).logits\n scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]\n outputs = [{\"Emotion\": config.id2label[i], \"Score\": f\"{round(score * 100, 3):.1f}%\"} for i, score in enumerate(scores)]\n return outputs\n\n```\n\nprediction\n==========\n\n\n\n```", "# path for a sample\npath = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav' \noutputs = predict(path, sampling_rate)\n\n```\n\n\n```\n[{'Emotion': 'anger', 'Score': '78.3%'},\n {'Emotion': 'disgust', 'Score': '11.7%'},\n {'Emotion': 'fear', 'Score': '5.4%'},\n {'Emotion': 'happiness', 'Score': '4.1%'},\n {'Emotion': 'sadness', 'Score': '0.5%'}]\n\n```\n\nEvaluation\n----------\n\n\nThe following tables summarize the scores obtained by model overall and per each class.\n\n\n\n\nColab Notebook\nURL" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #audio #audio-classification #speech #en #dataset-aesdd #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "# requirement packages\n!pip install git+URL\n!pip install git+URL\n!pip install torchaudio\n!pip install librosa\n\n\n```\n\nprediction\n==========\n\n\n\n```\nimport torch\nimport URL as nn\nimport URL.functional as F\nimport torchaudio\nfrom transformers import AutoConfig, Wav2Vec2FeatureExtractor\nimport librosa\nimport IPython.display as ipd\nimport numpy as np\nimport pandas as pd\n\n```\n\n\n```\ndevice = URL(\"cuda\" if URL.is_available() else \"cpu\")\nmodel_name_or_path = \"harshit345/xlsr-wav2vec-speech-emotion-recognition\"\nconfig = AutoConfig.from_pretrained(model_name_or_path)\nfeature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)\nsampling_rate = feature_extractor.sampling_rate\nmodel = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)\n\n```\n\n\n```\ndef speech_file_to_array_fn(path, sampling_rate):\n speech_array, _sampling_rate = URL(path)\n resampler = torchaudio.transforms.Resample(_sampling_rate)\n speech = resampler(speech_array).squeeze().numpy()\n return speech\ndef predict(path, sampling_rate):\n speech = speech_file_to_array_fn(path, sampling_rate)\n inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors=\"pt\", padding=True)\n inputs = {key: inputs[key].to(device) for key in inputs}\n with torch.no_grad():\n logits = model(inputs).logits\n scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]\n outputs = [{\"Emotion\": config.id2label[i], \"Score\": f\"{round(score * 100, 3):.1f}%\"} for i, score in enumerate(scores)]\n return outputs\n\n```\n\nprediction\n==========\n\n\n\n```", "# path for a sample\npath = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav' \noutputs = predict(path, sampling_rate)\n\n```\n\n\n```\n[{'Emotion': 'anger', 'Score': '78.3%'},\n {'Emotion': 'disgust', 'Score': '11.7%'},\n {'Emotion': 'fear', 'Score': '5.4%'},\n {'Emotion': 'happiness', 'Score': '4.1%'},\n {'Emotion': 'sadness', 'Score': '0.5%'}]\n\n```\n\nEvaluation\n----------\n\n\nThe following tables summarize the scores obtained by model overall and per each class.\n\n\n\n\nColab Notebook\nURL" ]
[ 60, 567, 195 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #audio #audio-classification #speech #en #dataset-aesdd #license-apache-2.0 #endpoints_compatible #has_space #region-us \n" ]
[ -0.08869872242212296, 0.10977646708488464, -0.0036745418328791857, -0.011438565328717232, 0.06046586111187935, -0.0264582596719265, 0.07010950893163681, 0.09357349574565887, -0.03553309664130211, -0.0036260972265154123, 0.07902668416500092, 0.1507144570350647, -0.015061961486935616, -0.0004946403205394745, -0.08215892314910889, -0.22248604893684387, 0.08875152468681335, 0.035813573747873306, -0.02025076374411583, 0.0792577937245369, 0.10248105227947235, -0.06350074708461761, 0.010208545252680779, 0.039270319044589996, -0.0644034594297409, 0.021806346252560616, 0.034494780004024506, -0.13130861520767212, 0.08848068118095398, 0.02681572735309601, 0.06842057406902313, 0.04578886926174164, -0.009203064255416393, -0.1825432926416397, 0.02104046382009983, 0.01753099635243416, -0.02983918972313404, 0.046181995421648026, 0.05349983647465706, -0.030621906742453575, -0.006565956398844719, 0.009390814229846, -0.04000934958457947, 0.050648283213377, -0.0634063258767128, -0.2858525514602661, -0.04736648499965668, 0.05661892145872116, 0.055226296186447144, 0.07528062909841537, -0.020185619592666626, 0.09383498132228851, -0.1111898347735405, 0.047330230474472046, 0.1524941623210907, -0.30700382590293884, 0.03009198047220707, 0.06544732302427292, 0.10796599090099335, 0.04871300607919693, -0.04608718305826187, 0.073216512799263, 0.05456200987100601, 0.03104771487414837, 0.02893937937915325, -0.06283001601696014, -0.17261245846748352, 0.035127729177474976, -0.08286570012569427, -0.06553363800048828, 0.30469653010368347, 0.00984584167599678, 0.025787383317947388, -0.0454447865486145, -0.03233569115400314, -0.04454372450709343, -0.008262437768280506, 0.06833664327859879, 0.01748521625995636, 0.08079830557107925, 0.02901894971728325, -0.0065896036103367805, -0.13557274639606476, -0.012216915376484394, -0.15218660235404968, 0.14312249422073364, -0.008008729666471481, 0.06781915575265884, -0.12491146475076675, 0.017826545983552933, -0.042479708790779114, -0.11367306113243103, 0.013138226233422756, -0.041030481457710266, 0.032207660377025604, 0.03763187304139137, -0.10555094480514526, 0.03925328701734543, 0.10197962820529938, 0.07891511917114258, -0.05018965154886246, -0.003789489157497883, -0.03906725347042084, 0.13419757783412933, 0.05465106666088104, 0.006772088818252087, -0.06920061260461807, -0.04154515638947487, 0.042648814618587494, -0.08294306695461273, 0.0769968330860138, -0.054693497717380524, -0.14625395834445953, -0.0581667460501194, -0.03634079173207283, 0.05430817976593971, 0.08328516036272049, -0.018497345969080925, -0.07643481343984604, 0.007197169587016106, 0.088979072868824, -0.05891547352075577, 0.019628312438726425, 0.010538115166127682, 0.09024198353290558, 0.10534735023975372, 0.03188130259513855, 0.09185869991779327, -0.02875356562435627, 0.08848605304956436, -0.012066404335200787, -0.014652863144874573, 0.012512881308794022, -0.02243676781654358, 0.10002494603395462, -0.09959713369607925, 0.07430107146501541, -0.11857505887746811, -0.01859174855053425, 0.011997749097645283, 0.04420708492398262, 0.037929147481918335, -0.14831064641475677, 0.05475170165300369, -0.054345499724149704, 0.08623239398002625, -0.1334204077720642, 0.011596414260566235, -0.09951818734407425, 0.07485085725784302, -0.08336770534515381, 0.08418700844049454, -0.19310323894023895, 0.1094919890165329, -0.04620102792978287, 0.02425549551844597, -0.026158370077610016, 0.0022307266481220722, -0.06532389670610428, 0.03966096416115761, -0.057556506246328354, -0.08951154351234436, -0.09225313365459442, 0.05350286513566971, -0.028268825262784958, 0.041732609272003174, -0.17205223441123962, -0.09005602449178696, 0.10820486396551132, -0.09495314955711365, -0.12100487947463989, 0.11841210722923279, 0.04478554427623749, -0.07770130038261414, 0.02771615982055664, 0.24883344769477844, 0.03442441672086716, -0.13765746355056763, -0.026038430631160736, 0.129888117313385, -0.02866252511739731, -0.1300738900899887, 0.12278558313846588, -0.057874009013175964, 0.051387764513492584, -0.00035328976809978485, 0.015683811157941818, 0.07847552746534348, -0.00047500990331172943, -0.07550230622291565, -0.05883526802062988, -0.06414937973022461, 0.04913177341222763, -0.021326735615730286, 0.00793266762048006, -0.02120942249894142, -0.03126632794737816, 0.06485593318939209, 0.07968252897262573, 0.00737280398607254, 0.09633004665374756, -0.05845685675740242, 0.14631065726280212, -0.08958479762077332, -0.02529001794755459, -0.15467995405197144, 0.12329110503196716, -0.0706954151391983, 0.059549130499362946, 0.054020579904317856, 0.1585666537284851, 0.02292974665760994, -0.10400400310754776, -0.029434895142912865, -0.03790157288312912, 0.05496630817651749, 0.07236547768115997, 0.0034093852154910564, -0.16500769555568695, 0.008684100583195686, -0.061152491718530655, -0.021331949159502983, 0.008913879282772541, -0.053690530359745026, 0.11981523036956787, 0.09989086538553238, -0.022676801308989525, 0.044360656291246414, 0.036299288272857666, 0.022800039499998093, -0.05038386583328247, 0.03494199365377426, 0.06677086651325226, 0.022663438692688942, -0.058223120868206024, 0.25397583842277527, -0.08346819877624512, 0.28186631202697754, 0.23245370388031006, -0.19964954257011414, 0.11526893079280853, 0.06722298264503479, -0.004977250471711159, -0.006813212297856808, -0.025714078918099403, -0.04450267180800438, 0.13556326925754547, -0.020354531705379486, 0.10644160211086273, -0.07729509472846985, 0.007486182730644941, 0.02778026834130287, -0.06260678917169571, -0.03624246269464493, 0.018809298053383827, 0.006960683967918158, -0.07084168493747711, 0.17230519652366638, 0.3464581370353699, -0.06885542720556259, 0.18557722866535187, -0.06570916622877121, -0.05335676670074463, 0.04309207201004028, -0.06846284866333008, -0.08204083144664764, 0.08664777874946594, -0.2140672355890274, 0.0002384549006819725, 0.10741275548934937, 0.059683382511138916, 0.050312936305999756, -0.14537760615348816, -0.03450474515557289, 0.021295232698321342, -0.01945893093943596, -0.1518464833498001, 0.06841317564249039, 0.009576542302966118, 0.07210542261600494, -0.040899187326431274, -0.0969611257314682, 0.10879100114107132, -0.02141675353050232, -0.07295668870210648, 0.05319271981716156, -0.17870628833770752, -0.22805102169513702, -0.11657506227493286, -0.0896226093173027, -0.005983141250908375, 0.021168142557144165, 0.1505361944437027, -0.06560077518224716, -0.03210585564374924, 0.03545038029551506, -0.008665629662573338, -0.0971863865852356, 0.02671293541789055, 0.04825387895107269, 0.03823437541723251, 0.02251112274825573, -0.10263067483901978, -0.012535333633422852, 0.0239139124751091, 0.02347971685230732, 0.05234026163816452, 0.03414826840162277, 0.04126051440834999, 0.18280267715454102, 0.08927975594997406, 0.006788209546357393, -0.018920429050922394, 0.1682451367378235, -0.1056576818227768, 0.001068243756890297, 0.20916861295700073, -0.07013078778982162, 0.03328963741660118, 0.205825537443161, 0.06048930808901787, 0.0007831072434782982, -0.024735629558563232, -0.02456812374293804, -0.09775533527135849, -0.2459137737751007, -0.15065835416316986, -0.16676409542560577, -0.030408689752221107, -0.029852505773305893, 0.058578215539455414, 0.06659406423568726, 0.02033262699842453, -0.02287045307457447, -0.04581950977444649, -0.011190604418516159, -0.009259002283215523, 0.22670233249664307, -0.06114519014954567, 0.1199994683265686, -0.08626522868871689, -0.03612738847732544, 0.10263397544622421, 0.15683570504188538, 0.10617219656705856, 0.14587551355361938, 0.034310951828956604, 0.08694061636924744, 0.1273661106824875, 0.1287221759557724, 0.058093637228012085, 0.02536298707127571, 0.000007760652806609869, -0.025209253653883934, -0.061478011310100555, 0.011164230294525623, 0.07398047298192978, 0.17823246121406555, -0.1364765465259552, -0.003971510101109743, -0.1675662398338318, 0.036996468901634216, 0.1556876003742218, 0.11268790066242218, -0.12399782240390778, 0.030085686594247818, 0.10985857248306274, -0.022147012874484062, -0.06986046582460403, 0.12143877148628235, 0.08924318850040436, -0.041886474937200546, 0.11410484462976456, 0.0631851851940155, 0.09184517711400986, -0.02537844330072403, 0.03877531737089157, -0.02271052449941635, -0.1538933515548706, 0.06066031754016876, 0.061497725546360016, -0.18579897284507751, 0.21177083253860474, -0.0031285136938095093, -0.027238480746746063, -0.023133009672164917, 0.015461103990674019, 0.046143073588609695, 0.1621970236301422, 0.1556805968284607, 0.044748805463314056, -0.1333705186843872, -0.020268775522708893, -0.0345255509018898, 0.003051485400646925, 0.033226143568754196, 0.10095539689064026, -0.09324602037668228, -0.03005380369722843, -0.015458348207175732, 0.03883182257413864, 0.07029319554567337, -0.07774928957223892, -0.13219773769378662, 0.048371098935604095, 0.27668243646621704, 0.048573050647974014, -0.04124653339385986, -0.08176036924123764, -0.23332026600837708, 0.10988032817840576, -0.09907890856266022, -0.0530521422624588, -0.07189689576625824, -0.17009088397026062, 0.12653030455112457, 0.0054359459318220615, 0.10303424298763275, -0.026566945016384125, 0.03613623231649399, -0.09012821316719055, -0.12148424237966537, 0.11911109834909439, -0.12472397089004517, -0.026267018169164658, -0.03684566915035248, 0.21456953883171082, -0.07464912533760071, 0.07224380224943161, 0.029180441051721573, 0.068916916847229, -0.07659819722175598, -0.08394870907068253, 0.047401703894138336, 0.0180704053491354, 0.029931850731372833, 0.02668112702667713, -0.013662930577993393, -0.17099803686141968, 0.07549887895584106, -0.06005017086863518, 0.23143017292022705, 0.15766140818595886, -0.10289236903190613, 0.19931189715862274, 0.17542360723018646, -0.05864931270480156, -0.32664021849632263, -0.11501692235469818, -0.060494016855955124, -0.0016263580182567239, 0.031182412058115005, -0.15088918805122375, 0.11980040371417999, -0.028726156800985336, -0.11236175149679184, 0.04575706273317337, -0.2042020559310913, -0.07587460428476334, 0.20416006445884705, -0.12011247873306274, 0.2789613902568817, -0.09975099563598633, -0.07063544541597366, -0.06447070837020874, -0.17306950688362122, 0.12308043241500854, -0.17791064083576202, 0.07709415256977081, 0.03810509294271469, 0.05992484092712402, 0.008276769891381264, -0.04599715769290924, 0.14485478401184082, 0.05627799034118652, -0.031098710373044014, -0.0464341901242733, 0.003425182309001684, 0.07469329237937927, -0.006966612301766872, -0.007108460180461407, -0.10942229628562927, -0.0038271183148026466, -0.15694743394851685, -0.007851832546293736, -0.08433946222066879, 0.0713745728135109, 0.006255984306335449, -0.03092893213033676, -0.02553389221429825, -0.04140615090727806, 0.02973863109946251, -0.004004833288490772, 0.2754143476486206, -0.056069836020469666, 0.03173533082008362, 0.17586596310138702, 0.10490795224905014, -0.12787295877933502, -0.12450110912322998, -0.03674687072634697, -0.08629141747951508, 0.09976010769605637, -0.18259812891483307, 0.08475281298160553, 0.07424528896808624, -0.016178447753190994, 0.022361915558576584, 0.07800069451332092, -0.024932382628321648, 0.00008948170579969883, 0.14398770034313202, -0.10096421092748642, -0.01294903177767992, -0.025928059592843056, 0.0823986753821373, 0.06356370449066162, 0.03608781099319458, 0.14639697968959808, 0.010105963796377182, -0.01619504764676094, 0.008941161446273327, 0.0041910381987690926, -0.1862832009792328, 0.07082938402891159, 0.06184447556734085, 0.029558975249528885, -0.14838223159313202, 0.09147793054580688, -0.003270534798502922, -0.15967659652233124, -0.0035774526186287403, -0.002956930547952652, -0.07728959619998932, -0.13217408955097198, -0.04576243460178375, -0.09908980131149292, -0.049681905657052994, -0.12937131524085999, 0.06294795125722885, -0.1537339985370636, 0.028956517577171326, 0.0917569249868393, 0.07310695201158524, 0.07048751413822174, -0.03701326251029968, -0.08045758306980133, 0.044495027512311935, 0.01048812922090292, -0.06790140271186829, 0.02773919887840748, -0.18390630185604095, -0.05536834895610809, 0.009462250396609306, 0.09971265494823456, -0.0715196281671524, -0.01421155221760273, -0.06818969547748566, 0.06824491173028946, -0.10574156045913696, -0.005119482055306435, -0.09392423927783966, -0.028887905180454254, 0.011652148328721523, -0.08486084640026093, -0.04200906679034233, 0.04148044064640999, -0.11102291941642761, 0.010411625728011131, -0.007625294383615255, 0.09203731268644333, -0.11292608082294464, -0.040790412575006485, 0.06121562421321869, -0.029831748455762863, 0.10862601548433304, 0.10515756160020828, -0.09366998076438904, 0.03663921356201172, -0.14729903638362885, -0.1789073348045349, 0.15952938795089722, 0.048023246228694916, 0.014808578416705132, -0.07873173803091049, -0.0025895810686051846, 0.12297775596380234, 0.03059408813714981, 0.01123303733766079, 0.04003072530031204, -0.08549565076828003, -0.06712943315505981, -0.0847867950797081, -0.08209419250488281, -0.002284377347677946, -0.08821266889572144, 0.21795186400413513, 0.0464186854660511, 0.13783612847328186, 0.011656548827886581, 0.012289527803659439, -0.035564124584198, 0.06416052579879761, -0.06452162563800812, -0.15383487939834595, -0.11513511836528778, -0.02848241478204727, -0.012277979403734207, -0.05383728817105293, 0.24614563584327698, -0.006771830376237631, -0.12079248577356339, 0.052589304745197296, 0.054286301136016846, -0.06108115240931511, 0.032134976238012314, 0.27766653895378113, 0.05270092189311981, -0.037994615733623505, -0.09118090569972992, -0.031974922865629196, 0.022638212889432907, 0.06502531468868256, -0.027530480176210403, 0.15059983730316162, 0.14891241490840912, 0.06521473824977875, 0.08366281539201736, -0.06402521580457687, -0.1782199740409851, -0.056676872074604034, -0.024252325296401978, 0.09813021123409271, -0.01645265519618988, 0.08874798566102982, 0.12068933248519897, -0.05852634087204933, 0.07172136753797531, -0.05718962475657463, 0.006656366400420666, -0.18347226083278656, -0.08482997119426727, -0.048008326441049576, -0.12308235466480255, -0.012493220157921314, -0.06886838376522064, 0.08942031115293503, 0.10847170650959015, 0.021998148411512375, -0.00484427809715271, 0.0385424941778183, -0.05038047581911087, -0.0655411034822464, 0.056914687156677246, -0.010553929954767227, 0.022489961236715317, -0.02303238958120346, -0.012760205194354057, 0.043614186346530914, -0.04147469997406006, -0.02842724323272705, -0.001542319543659687, -0.05709128826856613, 0.05206536501646042, -0.12357231974601746, -0.06737672537565231, -0.04903315752744675, 0.009616753086447716, 0.03956115245819092, 0.21215417981147766, 0.03566356748342514, 0.008539984002709389, 0.06233391910791397, 0.1569426953792572, -0.12075167894363403, -0.11826860904693604, -0.05347786843776703, 0.04234130308032036, -0.011786293238401413, 0.07538051903247833, -0.005026235710829496, -0.016553713008761406, -0.08242820203304291, 0.21778911352157593, 0.27220189571380615, -0.04476382955908775, 0.05403972417116165, -0.012593543156981468, 0.017148248851299286, -0.014883478172123432, 0.01760968379676342, 0.15362820029258728, 0.21189609169960022, -0.042360588908195496, -0.048567548394203186, -0.09201699495315552, -0.001638122834265232, -0.08221137523651123, 0.05896434932947159, -0.05195727199316025, -0.16434043645858765, 0.023897439241409302, 0.0995582789182663, -0.159134179353714, 0.05667399242520332, -0.037855759263038635, -0.16446208953857422, -0.044343266636133194, -0.004206591285765171, 0.1911836564540863, 0.08994878083467484, 0.0020885486155748367, -0.06495627760887146, -0.08568696677684784, 0.09715984761714935, -0.004657271318137646, -0.1574842780828476, 0.024444079026579857, 0.039393991231918335, -0.08248637616634369, 0.02099606581032276, -0.0021029794588685036, 0.11530160903930664, 0.017606079578399658, 0.1343749761581421, -0.04495137929916382, 0.09451265633106232, 0.025397740304470062, -0.1450539231300354, -0.04648413136601448, 0.06762053072452545, -0.0584336519241333, 0.0428643673658371, 0.047680843621492386, -0.07086095958948135, 0.050848543643951416, 0.005116676911711693, -0.042891476303339005, -0.03431825712323189, -0.019113950431346893, -0.07596364617347717, 0.05842791497707367, -0.08906105905771255, -0.0220140740275383, -0.08632659912109375, -0.01770896464586258, -0.03204396367073059, 0.0478687547147274, -0.09892848134040833, -0.06407282501459122, -0.05695662647485733, -0.00567402271553874, -0.0065122488886117935, 0.041800715029239655, -0.07300880551338196, -0.02046351321041584, -0.05393056944012642, 0.028691047802567482, -0.10903516411781311, -0.01707230694591999, 0.06775988638401031, -0.0494338795542717, -0.0038560712710022926, 0.0043857465498149395, 0.06382949650287628, 0.018711591139435768, -0.10154907405376434, -0.08118199557065964 ]
null
null
transformers
# Wav2vec2-Large-English Fine-tuned [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on English using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows... Using the [ASRecognition](https://github.com/jonatasgrosman/asrecognition) library: ```python from asrecognition import ASREngine asr = ASREngine("fr", model_path="jonatasgrosman/wav2vec2-large-english") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = asr.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "en" MODEL_ID = "jonatasgrosman/wav2vec2-large-english" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | "SHE'LL BE ALL RIGHT." | SHELL BE ALL RIGHT | | SIX | SIX | | "ALL'S WELL THAT ENDS WELL." | ALLAS WELL THAT ENDS WELL | | DO YOU MEAN IT? | W MEAN IT | | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESTION | | HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOW IS MOSILLA GOING TO BANDL AND BE WHIT IS LIKE QU AND QU | | "I GUESS YOU MUST THINK I'M KINDA BATTY." | RUSTION AS HAME AK AN THE POT | | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING | | SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUCE IS SAUCE FOR THE GONDER | | GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD | ## Evaluation The model can be evaluated as follows on the English (en) test data of Common Voice. ```python import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "en" MODEL_ID = "jonatasgrosman/wav2vec2-large-english" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") ``` **Test Result**: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well. Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. | Model | WER | CER | | ------------- | ------------- | ------------- | | wav2vec2-large-xlsr-53-english | **18.98%** | **8.29%** | | wav2vec2-large-xlsr-53-greek | 18.99% | 10.60% | | wav2vec2-large-xlsr-53-hindi | 20.01% | 9.66% | | wav2vec2-large-960h-lv60-english | 22.03% | 10.39% | | wav2vec2-base-100h-lv60-english | 24.97% | 11.14% | |
{"language": "en", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer", "cer"], "model-index": [{"name": "Wav2Vec2 English by Jonatas Grosman", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice en", "type": "common_voice", "args": "en"}, "metrics": [{"type": "wer", "value": 21.53, "name": "Test WER"}, {"type": "cer", "value": 9.66, "name": "Test CER"}]}]}]}
automatic-speech-recognition
harshit345/xlsr_wav2vec_english
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "en", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #en #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
Wav2vec2-Large-English ====================== Fine-tuned facebook/wav2vec2-large on English using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. Usage ----- The model can be used directly (without a language model) as follows... Using the ASRecognition library: Writing your own inference script: Evaluation ---------- The model can be evaluated as follows on the English (en) test data of Common Voice. Test Result: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well. Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. Model: wav2vec2-large-xlsr-53-english, WER: 18.98%, CER: 8.29% Model: wav2vec2-large-xlsr-53-greek, WER: 18.99%, CER: 10.60% Model: wav2vec2-large-xlsr-53-hindi, WER: 20.01%, CER: 9.66% Model: wav2vec2-large-960h-lv60-english, WER: 22.03%, CER: 10.39% Model: wav2vec2-base-100h-lv60-english, WER: 24.97%, CER: 11.14% Model: , WER: , CER:
[]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #en #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n" ]
[ 77 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #en #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n" ]
[ -0.16942381858825684, 0.1442357897758484, -0.0051186345517635345, -0.06432798504829407, 0.05449637025594711, -0.048894792795181274, 0.12496339529752731, 0.11669611930847168, 0.04733394831418991, 0.0040340120904147625, 0.05297492444515228, 0.17327076196670532, 0.04426427185535431, 0.05982885882258415, -0.07364393770694733, -0.19087794423103333, 0.1018693819642067, 0.041997265070676804, 0.09787806868553162, 0.10365891456604004, 0.0996352881193161, -0.05183243006467819, 0.0030723975505679846, 0.06869249045848846, -0.06618347018957138, -0.009506963193416595, 0.08398393541574478, -0.16314560174942017, 0.12013888359069824, 0.05287208780646324, -0.027303792536258698, 0.06890906393527985, 0.033049292862415314, -0.23097428679466248, 0.011813848279416561, 0.0034492232371121645, 0.019308874383568764, 0.029415547847747803, 0.07831980288028717, 0.011496678926050663, -0.04552528262138367, 0.060018982738256454, -0.048501916229724884, 0.09484446048736572, -0.04815862327814102, -0.22160229086875916, -0.08335594832897186, 0.05212939903140068, 0.07951594889163971, 0.08513353019952774, -0.04019699618220329, 0.16229656338691711, -0.09833782911300659, 0.07606200873851776, 0.10365370661020279, -0.28128859400749207, 0.030763817951083183, -0.03813326358795166, 0.05933265760540962, -0.004604243207722902, -0.012297498062252998, 0.07417908310890198, 0.043753448873758316, 0.002963801147416234, -0.06501326709985733, -0.04245232790708542, -0.18357330560684204, 0.0020215525291860104, -0.08491147309541702, -0.04298488423228264, 0.25831881165504456, 0.04308051988482475, 0.011573142372071743, -0.08913260698318481, -0.013729998841881752, -0.006244181655347347, -0.06602462381124496, -0.012212944217026234, 0.006179062649607658, 0.07428404688835144, 0.025632869452238083, 0.009733928367495537, -0.10555381327867508, -0.061912983655929565, -0.14078912138938904, 0.1387171447277069, 0.010240282863378525, 0.0336194671690464, -0.1412598341703415, -0.015528462827205658, -0.035763174295425415, -0.08057321608066559, -0.028440015390515327, 0.02758656069636345, -0.0004513106541708112, 0.023608576506376266, -0.024597005918622017, 0.003966521471738815, 0.16182419657707214, 0.09042984992265701, 0.04177424684166908, 0.012627236545085907, -0.06873828172683716, 0.07767143100500107, 0.019898714497685432, 0.11497022956609726, -0.027807053178548813, -0.0829208567738533, 0.057691168040037155, -0.04033207893371582, 0.04485410079360008, -0.028905771672725677, -0.07613269239664078, -0.06591374427080154, 0.024527914822101593, 0.10086797922849655, 0.07411809265613556, 0.0018931208178400993, -0.053439147770404816, -0.005926813464611769, 0.06926197558641434, -0.11044932156801224, -0.007739220280200243, 0.05225624144077301, 0.041775744408369064, 0.14709609746932983, -0.02722223661839962, 0.060826562345027924, -0.10311964154243469, -0.00008346259710378945, 0.0032472102902829647, 0.008686279878020287, 0.05866478756070137, -0.010037138126790524, 0.05206512659788132, -0.12828828394412994, 0.032984357327222824, -0.0848822072148323, -0.06913941353559494, -0.04767157509922981, -0.05193869769573212, 0.017196273431181908, -0.16207818686962128, -0.05723613500595093, -0.038203250616788864, 0.01060082484036684, -0.11772125959396362, 0.04906335845589638, -0.11168000847101212, 0.09268058836460114, 0.018952516838908195, 0.03657190129160881, -0.09221796691417694, 0.08790025860071182, -0.06630029529333115, -0.03325258567929268, 0.05092047527432442, 0.08519361168146133, -0.06759322434663773, 0.027601830661296844, -0.0994780957698822, -0.03597640246152878, -0.04668339714407921, 0.06177981570363045, -0.04391844570636749, 0.08772556483745575, -0.2094065397977829, -0.14591988921165466, 0.17922572791576385, -0.09553314745426178, -0.0912049189209938, 0.13669392466545105, 0.05606026574969292, -0.03444501757621765, 0.12975727021694183, 0.2698373794555664, 0.031160784885287285, -0.12762364745140076, 0.026631133630871773, 0.09674537926912308, -0.07121682912111282, -0.1317254900932312, 0.05183493718504906, -0.09626418352127075, -0.023547904565930367, 0.05089259892702103, -0.019103972241282463, 0.06930013000965118, -0.03945504128932953, -0.07600459456443787, -0.01591797173023224, -0.0902206227183342, -0.001545255072414875, -0.03573976084589958, -0.002560719847679138, -0.050224851816892624, -0.0004398429882712662, -0.02972654439508915, 0.11059712618589401, -0.017887748777866364, 0.056167468428611755, -0.13928109407424927, 0.12888476252555847, -0.05906656011939049, 0.012446939013898373, -0.14875049889087677, 0.2100858986377716, -0.02486080676317215, 0.1006263718008995, 0.09020186960697174, 0.07010046392679214, 0.013853455893695354, -0.10418970882892609, 0.015452600084245205, -0.05680157244205475, 0.1392883062362671, 0.035093262791633606, -0.022438466548919678, -0.15667037665843964, 0.04116082936525345, -0.0585150420665741, 0.010108389891684055, -0.02883814089000225, -0.05193852633237839, 0.034339480102062225, 0.055097684264183044, -0.003807711647823453, 0.03741532191634178, 0.03075036220252514, 0.033043671399354935, 0.008556178770959377, 0.03569729998707771, 0.06183083727955818, 0.003481547348201275, -0.05077877640724182, 0.26757338643074036, -0.13748179376125336, 0.20163674652576447, 0.19255493581295013, -0.1527339220046997, 0.10170119255781174, 0.10526207089424133, -0.004747909028083086, -0.027034347876906395, -0.01842118427157402, -0.01029057428240776, 0.1940165013074875, -0.009249864146113396, 0.11607034504413605, -0.0690075233578682, 0.012597269378602505, 0.025258570909500122, -0.05500007048249245, -0.029393702745437622, 0.05654771998524666, 0.03494734317064285, -0.028970232233405113, 0.0837324857711792, 0.10705534368753433, -0.018235305324196815, 0.16575226187705994, -0.09467131644487381, -0.06965843588113785, 0.07609520852565765, -0.05442507937550545, -0.05073641613125801, 0.04070102795958519, -0.2189328521490097, -0.046690598130226135, 0.08315376937389374, 0.03001580201089382, 0.08017085492610931, -0.16779997944831848, 0.0023966797161847353, -0.033763136714696884, -0.11267075687646866, -0.14300259947776794, 0.05373402684926987, -0.0038723761681467295, 0.07741095870733261, -0.0967419445514679, -0.16053949296474457, 0.07046377658843994, -0.04370849207043648, -0.13288329541683197, 0.048498500138521194, -0.1188189759850502, -0.24649502336978912, -0.1340285688638687, -0.07731086015701294, -0.0031297714449465275, 0.008283952251076698, 0.1362268030643463, -0.08994268625974655, -0.031591154634952545, 0.014039402827620506, 0.035679157823324203, -0.016799302771687508, 0.025218896567821503, 0.005647154059261084, 0.02653029002249241, 0.0674966499209404, -0.14192266762256622, 0.00306520564481616, -0.039239075034856796, 0.011819620616734028, 0.03045344352722168, -0.01782596856355667, 0.03508371114730835, 0.20649407804012299, 0.10497274249792099, 0.01957460306584835, -0.004546739626675844, 0.17539651691913605, -0.10974613577127457, -0.06828395277261734, 0.20961685478687286, -0.004851365927606821, -0.008628182113170624, 0.17204903066158295, 0.030155206099152565, -0.05666140466928482, -0.05704881623387337, -0.0076156724244356155, -0.032041992992162704, -0.2768707871437073, -0.14634452760219574, -0.09545361250638962, -0.03138362243771553, -0.04719245061278343, 0.0685444325208664, 0.08873935043811798, -0.03943537175655365, -0.02697313018143177, -0.10214237868785858, 0.02882990427315235, -0.024646645411849022, 0.2416636198759079, -0.02771378494799137, 0.10219176858663559, -0.06898002326488495, -0.03553558140993118, 0.057801827788352966, 0.09916669130325317, 0.058599937707185745, 0.1670883148908615, 0.1313592791557312, 0.040657445788383484, 0.1325065791606903, 0.1363518238067627, 0.022151676937937737, 0.04622353985905647, -0.003998501691967249, 0.0032724414486438036, -0.03631946071982384, -0.04936141148209572, 0.02187540754675865, 0.22369149327278137, -0.09928134828805923, -0.04327421262860298, -0.09490080922842026, 0.02789331041276455, 0.24625571072101593, 0.08825847506523132, -0.13978001475334167, 0.01982942968606949, 0.02278953231871128, -0.1129397377371788, 0.005811578594148159, 0.11093668639659882, -0.02952614612877369, -0.059101998805999756, 0.09198913723230362, 0.0695861428976059, 0.11225073784589767, -0.07195517420768738, 0.04623932018876076, -0.11336623132228851, -0.03880351409316063, 0.054219286888837814, 0.07693412154912949, -0.23536796867847443, 0.24912935495376587, 0.011927706189453602, 0.11303794384002686, -0.03401299938559532, 0.013394366018474102, 0.02827705629169941, 0.12679290771484375, 0.12515845894813538, -0.0036517013795673847, -0.06597384810447693, -0.04930555820465088, -0.11390838772058487, 0.045202724635601044, -0.0017340142512694001, 0.08814696222543716, -0.0564819872379303, -0.020029990002512932, -0.043294116854667664, 0.02679646760225296, -0.10638066381216049, -0.1298292726278305, -0.07269395142793655, 0.018846603110432625, 0.2789700925350189, 0.0866774395108223, -0.026496486738324165, -0.08233342319726944, -0.22663326561450958, 0.04867289960384369, -0.08642375469207764, 0.005350747145712376, -0.059690527617931366, -0.14215292036533356, 0.12442519515752792, -0.02966456674039364, -0.0023063153494149446, 0.0267094187438488, 0.03876197338104248, -0.028824789449572563, -0.09599465131759644, 0.1179155558347702, -0.10488022863864899, -0.07067697495222092, -0.042211875319480896, 0.2671557664871216, -0.0049619488418102264, 0.05812280997633934, 0.044620662927627563, 0.0164813119918108, -0.011765016242861748, -0.01230351161211729, 0.0941270962357521, 0.09383466094732285, -0.08026773482561111, -0.0008103586151264608, 0.03406991437077522, -0.21935048699378967, -0.08891111612319946, -0.05731387808918953, 0.18157532811164856, 0.1123841404914856, -0.050085727125406265, 0.2253980040550232, 0.2526385188102722, -0.050264034420251846, -0.2605874538421631, -0.13611802458763123, -0.026765083894133568, 0.008694940246641636, -0.057043783366680145, -0.16190896928310394, 0.1406135857105255, -0.032748837023973465, -0.08207251876592636, 0.027934322133660316, -0.2635532319545746, -0.08553631603717804, 0.2485521286725998, -0.12982505559921265, 0.2456366866827011, -0.04299118369817734, -0.11233945190906525, -0.022164681926369667, -0.12772130966186523, 0.06269324570894241, -0.06844043731689453, 0.07089338451623917, 0.04275957867503166, 0.06413964182138443, 0.007681787014007568, -0.005077921785414219, 0.10670004040002823, 0.11021900177001953, -0.0467008575797081, -0.008444293402135372, 0.03576735407114029, -0.03911472111940384, 0.03954801335930824, 0.053210318088531494, -0.09721482545137405, 0.028333516791462898, -0.06476777046918869, -0.07460315525531769, -0.08384139090776443, 0.1030803993344307, 0.05879789590835571, 0.02487162873148918, 0.05906500667333603, -0.10596845299005508, -0.019303251057863235, 0.009782754816114902, 0.18713483214378357, -0.09171498566865921, 0.023123569786548615, 0.1296868622303009, 0.18996502459049225, -0.198522686958313, -0.12182353436946869, -0.1135607585310936, -0.08659396320581436, 0.125035360455513, 0.0004010890261270106, 0.06490908563137054, 0.05196399614214897, 0.022874897345900536, 0.07199954241514206, 0.03809802234172821, -0.05407864227890968, 0.018012186512351036, 0.05643761530518532, -0.06231165677309036, -0.09712192416191101, 0.013803415931761265, 0.010792369022965431, 0.06032220646739006, 0.0876459851861, 0.13248799741268158, 0.024711746722459793, -0.031334616243839264, -0.008783824741840363, 0.03388984501361847, -0.13558143377304077, 0.21086952090263367, 0.030857812613248825, 0.03462537005543709, -0.19720019400119781, 0.09407186508178711, -0.021930338814854622, -0.14331026375293732, 0.0013320825528353453, 0.011231856420636177, -0.07221722602844238, -0.11267148703336716, -0.034405238926410675, 0.03664258494973183, -0.024558186531066895, -0.1578391194343567, -0.009309330955147743, -0.1601395159959793, 0.08443282544612885, 0.14084969460964203, 0.059773243963718414, 0.09249002486467361, -0.08413770794868469, -0.09602085500955582, 0.006833177991211414, 0.0014081159606575966, 0.014141415245831013, 0.0009165062219835818, -0.12944622337818146, 0.013395553454756737, 0.02570756897330284, 0.0957220047712326, -0.06646110117435455, -0.07929645478725433, -0.02897222526371479, 0.08153454214334488, -0.11072394251823425, 0.03369338437914848, -0.08513008803129196, 0.02192063443362713, 0.031961798667907715, -0.09690656512975693, -0.02877434343099594, 0.04776401445269585, -0.11132903397083282, 0.024864140897989273, 0.00417677266523242, 0.11217977106571198, -0.10509613156318665, 0.030072733759880066, 0.03221411257982254, -0.030780639499425888, 0.13185256719589233, 0.1637018322944641, -0.12243272364139557, 0.10924779623746872, -0.2241777926683426, -0.20858795940876007, 0.11787674576044083, 0.06591594219207764, -0.01343365665525198, -0.0591161735355854, 0.01532426755875349, 0.16355623304843903, 0.02920394204556942, -0.0036180452443659306, 0.041857440024614334, -0.10951363295316696, -0.06062100827693939, -0.12231292575597763, -0.06704256683588028, -0.014086786657571793, -0.08730845153331757, 0.17981067299842834, 0.0766214057803154, 0.14957177639007568, -0.07095316797494888, 0.009981365874409676, -0.051076099276542664, 0.066554956138134, -0.08619635552167892, -0.12797771394252777, -0.15844494104385376, -0.007874537259340286, 0.0557667538523674, -0.03913267329335213, 0.20934858918190002, -0.02282119169831276, -0.014014133252203465, 0.02546655386686325, 0.001237489515915513, -0.0798565074801445, 0.03524662181735039, 0.3481886684894562, 0.0906832218170166, 0.001983922440558672, -0.03183823078870773, -0.0450955405831337, 0.014341707341372967, 0.09218981117010117, -0.030541811138391495, 0.14184431731700897, 0.1363111138343811, 0.12442666292190552, 0.11037712544202805, -0.08772803843021393, -0.06571728736162186, 0.008716623298823833, -0.10878027230501175, 0.07285533100366592, -0.006178420037031174, 0.1849815398454666, 0.12297094613313675, 0.028280293568968773, 0.04340151324868202, -0.03764071688055992, -0.011539983563125134, -0.19895894825458527, -0.11941277235746384, -0.09584100544452667, -0.12740041315555573, 0.027399543672800064, -0.034417714923620224, 0.06312373280525208, 0.04205666482448578, 0.021654343232512474, -0.039243701845407486, -0.01873806305229664, -0.001799585297703743, -0.07833653688430786, 0.07737088948488235, -0.06703297048807144, -0.02583164907991886, -0.09307578951120377, -0.019097816199064255, 0.09247872233390808, 0.014001798816025257, 0.010594538412988186, 0.00989198125898838, -0.08246272057294846, 0.05599454045295715, -0.12507706880569458, -0.09886447340250015, -0.005856082774698734, -0.03475028648972511, 0.04968822002410889, 0.17187334597110748, 0.10495591908693314, -0.04149072244763374, 0.0832124650478363, 0.1540517359972, -0.07263407111167908, -0.1847599297761917, -0.07726677507162094, 0.09225417673587799, -0.0008778196643106639, 0.06520006060600281, -0.011003556661307812, -0.03949021175503731, -0.0409378819167614, 0.23122987151145935, 0.27011963725090027, -0.0011829858412966132, 0.0455741286277771, -0.06907307356595993, 0.004270832985639572, -0.055481862276792526, 0.006714893039315939, 0.10505406558513641, 0.22945858538150787, 0.000884468259755522, -0.06012517958879471, -0.08010394126176834, -0.01070104818791151, -0.06930869072675705, 0.07136081904172897, -0.06765114516019821, -0.14804776012897491, 0.021765684708952904, 0.1307499259710312, -0.13497579097747803, 0.0009660903015173972, -0.12511762976646423, -0.09513460844755173, -0.06005264073610306, -0.012839882634580135, 0.12138732522726059, 0.17673152685165405, -0.0026893215253949165, -0.05788567662239075, -0.03997666761279106, 0.10279429703950882, -0.03631100058555603, -0.2002761960029602, -0.00698505574837327, 0.022083686664700508, -0.07000358402729034, 0.05043155699968338, 0.018059587106108665, 0.1416134089231491, -0.005173529498279095, 0.14568404853343964, -0.026463428512215614, 0.178289532661438, -0.004876113496720791, -0.11343864351511002, 0.07198305428028107, 0.10099818557500839, 0.00544940447434783, 0.06117713451385498, 0.06795388460159302, -0.09517162293195724, 0.057921234518289566, -0.09826615452766418, -0.06158670410513878, -0.08246316015720367, 0.022511931136250496, -0.05561676248908043, 0.0375797376036644, -0.07590834051370621, -0.036089055240154266, -0.05883445218205452, -0.004108356311917305, 0.009980191476643085, 0.03007080778479576, -0.10091806203126907, -0.05794338509440422, -0.15449273586273193, -0.023925013840198517, -0.0752529427409172, 0.005287401843816042, -0.10845766216516495, -0.01780914142727852, -0.0914168506860733, -0.028712788596749306, -0.05636739730834961, -0.0002646654611453414, 0.10946235805749893, -0.007287509739398956, 0.007155551575124264, -0.029081691056489944, 0.10556527227163315, 0.09994782507419586, -0.13852794468402863, -0.08381301909685135 ]
null
null
transformers
## EsperBERTo: RoBERTa-like Language model trained on Esperanto
{"language": "eo", "thumbnail": "https://huggingface.co/blog/assets/01_how-to-train/EsperBERTo-thumbnail-v2.png", "widget": [{"text": "\u0108u vi paloras la <mask> Esperanto?"}]}
fill-mask
hashk1/EsperBERTo-malgranda
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "eo", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "eo" ]
TAGS #transformers #pytorch #jax #roberta #fill-mask #eo #autotrain_compatible #endpoints_compatible #region-us
## EsperBERTo: RoBERTa-like Language model trained on Esperanto
[ "## EsperBERTo: RoBERTa-like Language model trained on Esperanto" ]
[ "TAGS\n#transformers #pytorch #jax #roberta #fill-mask #eo #autotrain_compatible #endpoints_compatible #region-us \n", "## EsperBERTo: RoBERTa-like Language model trained on Esperanto" ]
[ 42, 16 ]
[ "passage: TAGS\n#transformers #pytorch #jax #roberta #fill-mask #eo #autotrain_compatible #endpoints_compatible #region-us \n## EsperBERTo: RoBERTa-like Language model trained on Esperanto" ]
[ -0.02155323512852192, 0.07001886516809464, -0.008501884527504444, 0.07339750230312347, 0.17035673558712006, -0.014625359326601028, 0.01952269859611988, 0.048521753400564194, 0.1135292574763298, -0.019047511741518974, 0.12359181046485901, 0.2499062865972519, -0.05144314467906952, 0.1366853415966034, -0.03314767777919769, -0.42161595821380615, 0.01737232692539692, 0.04124279320240021, -0.035049788653850555, 0.05475315824151039, 0.1937745362520218, -0.06439124792814255, 0.08563846349716187, -0.0027303320821374655, -0.05782724916934967, 0.11466870456933975, -0.03575461730360985, -0.14974714815616608, 0.09832914173603058, 0.048011086881160736, 0.12794461846351624, -0.004230129532516003, -0.0029608639888465405, -0.07233327627182007, 0.004393911920487881, -0.06109189987182617, -0.03190447762608528, -0.0318341888487339, 0.025388911366462708, -0.14398911595344543, -0.03203599154949188, 0.0358411967754364, 0.06159933656454086, -0.04026155173778534, -0.17903628945350647, -0.11934737861156464, 0.09821627289056778, -0.08566340804100037, 0.10557840019464493, 0.09421814978122711, -0.021572137251496315, 0.06996327638626099, -0.05281933769583702, 0.08142700791358948, 0.1278781145811081, -0.11922859400510788, -0.029817035421729088, -0.10995221138000488, 0.1329401731491089, 0.06346099078655243, -0.015327312983572483, 0.0008912795456126332, 0.08731016516685486, 0.0008158943383023143, -0.03837135434150696, -0.1384495496749878, -0.07718244194984436, -0.0548480786383152, -0.08146258443593979, -0.0008019430097192526, 0.1901819407939911, -0.05862656980752945, 0.01511763222515583, 0.030317451804876328, -0.08779113739728928, 0.043131060898303986, 0.009453002363443375, -0.17064236104488373, 0.04856047406792641, 0.028612198308110237, 0.10836098343133926, -0.030241673812270164, -0.07023635506629944, 0.049001313745975494, -0.12844045460224152, 0.31129246950149536, 0.08268655836582184, -0.03681366145610809, -0.15799814462661743, -0.02869999408721924, 0.00044653203804045916, -0.11374840885400772, 0.03762849420309067, -0.01912468858063221, 0.12031986564397812, 0.04218865931034088, 0.005713298451155424, -0.04797076806426048, 0.06656564027070999, 0.1389196664094925, -0.05409363657236099, 0.024911845102906227, 0.13087612390518188, 0.07399912178516388, 0.12535975873470306, 0.17930440604686737, 0.09081868082284927, -0.12280984222888947, 0.035261914134025574, -0.12531039118766785, -0.03222037851810455, -0.03573215380311012, -0.21317237615585327, 0.0003867043706122786, 0.010666911490261555, 0.06296699494123459, 0.011585939675569534, -0.009145883843302727, -0.0571889653801918, -0.02483363263309002, -0.04425322264432907, -0.10519476979970932, 0.043212514370679855, -0.0935976654291153, 0.033591900020837784, 0.2151365876197815, -0.08861739933490753, -0.011340650729835033, -0.11230962723493576, -0.015321620739996433, -0.03156096860766411, -0.03371676057577133, -0.09765460342168808, -0.09061934053897858, -0.009247977286577225, -0.09861533343791962, 0.11969354748725891, -0.2498997300863266, -0.1358199417591095, -0.03808210790157318, 0.024104679003357887, -0.044571954756975174, -0.06779184192419052, -0.14993877708911896, 0.04460146278142929, 0.011915495619177818, -0.06005427986383438, -0.14280711114406586, -0.05651309713721275, 0.014153794385492802, 0.029340017586946487, 0.08605445176362991, -0.055812884122133255, 0.08089528977870941, -0.07669870555400848, -0.044716477394104004, -0.2037471979856491, 0.06544005125761032, 0.040315281599760056, 0.06172248721122742, -0.03404559567570686, -0.03589992970228195, -0.020715055987238884, 0.18760259449481964, -0.04259376972913742, 0.11935864388942719, -0.04107972979545593, -0.10746312886476517, 0.20962290465831757, -0.044415101408958435, -0.032943110913038254, 0.14138031005859375, 0.0021671210415661335, 0.1299687922000885, 0.12224080413579941, 0.1857466846704483, -0.07906933128833771, -0.035541731864213943, 0.14759433269500732, 0.09387364238500595, -0.0063385856337845325, -0.003727375529706478, 0.07961314916610718, -0.035352978855371475, -0.08604904264211655, 0.021751422435045242, -0.013158448040485382, 0.0023765689693391323, -0.05199549347162247, 0.014214487746357918, 0.07652634382247925, -0.004958541598170996, 0.03109055943787098, -0.03709038719534874, 0.1224135085940361, -0.0835113376379013, -0.07839417457580566, 0.004068488255143166, 0.05167762190103531, -0.019436771050095558, 0.023102736100554466, -0.11142069846391678, 0.09320709109306335, 0.04214179888367653, -0.016057772561907768, -0.1390971541404724, 0.056365303695201874, 0.024953683838248253, 0.07469743490219116, 0.039287932217121124, 0.12027283012866974, -0.007974833250045776, -0.030624015256762505, -0.00864027626812458, -0.02093086577951908, 0.035466257482767105, 0.02409280836582184, -0.022164897993206978, -0.14378754794597626, 0.1452079862356186, -0.08692020922899246, -0.13082273304462433, 0.03315264359116554, -0.051444847136735916, -0.10163236409425735, 0.0394071489572525, -0.02937680296599865, 0.08525867015123367, -0.13898883759975433, 0.07230547815561295, -0.09042971581220627, 0.020134376361966133, 0.026529308408498764, -0.015797225758433342, 0.0030992424581199884, 0.16839848458766937, -0.07752535492181778, 0.2504901587963104, 0.1441664844751358, -0.2968231439590454, -0.039885859936475754, 0.0943794995546341, 0.03202345222234726, 0.03395707532763481, 0.03080439753830433, -0.05971004068851471, 0.3039052486419678, -0.10511016845703125, 0.1785079687833786, -0.09412507712841034, 0.027292009443044662, -0.004965121857821941, -0.14670617878437042, -0.04674138128757477, 0.12397792935371399, 0.0369633249938488, -0.13076253235340118, 0.22166390717029572, 0.1864185631275177, -0.04549911618232727, 0.19679298996925354, 0.08085678517818451, 0.02540162391960621, -0.013380579650402069, 0.0024551351089030504, -0.0498221218585968, -0.01825697161257267, -0.21368786692619324, -0.03306456282734871, 0.0027978301513940096, 0.012006698176264763, 0.09213428199291229, -0.07586181908845901, -0.014958411455154419, 0.04378170520067215, 0.046068090945482254, 0.04458935931324959, 0.05558345466852188, -0.056301385164260864, 0.06311888992786407, -0.038107652217149734, -0.2069508135318756, 0.041123080998659134, 0.03454499691724777, -0.03163705766201019, 0.21848036348819733, -0.17853598296642303, -0.3533347249031067, -0.08074413985013962, -0.1645645648241043, 0.05913252383470535, 0.09338942170143127, 0.12680725753307343, -0.14006660878658295, -0.03625330328941345, 0.08891382813453674, 0.06383141130208969, -0.12539829313755035, -0.014858897775411606, -0.018388759344816208, 0.03885433077812195, -0.11918936669826508, -0.03985071927309036, -0.1120712086558342, 0.000569172203540802, -0.04110586270689964, 0.06861086934804916, -0.14903764426708221, 0.06870611011981964, 0.17514736950397491, -0.013068224303424358, 0.002287148032337427, -0.039904575794935226, 0.19641585648059845, -0.09182315319776535, -0.013470944948494434, 0.18101215362548828, -0.03980201855301857, 0.05993543565273285, 0.05422710254788399, -0.03535645827651024, -0.06688287109136581, 0.0009078013245016336, -0.04940413683652878, -0.06769349426031113, -0.25274303555488586, -0.05897393450140953, -0.07705067098140717, -0.03368141129612923, 0.062184181064367294, 0.031253084540367126, 0.10365936905145645, 0.08145067095756531, 0.03385838493704796, 0.03755926340818405, -0.0349217988550663, 0.07444475591182709, 0.10747657716274261, -0.08411113917827606, 0.08337122946977615, 0.029729312285780907, -0.21452480554580688, 0.028127046301960945, 0.09739062190055847, 0.03158942982554436, 0.17335417866706848, 0.01982579007744789, 0.030522001907229424, -0.011336962692439556, 0.026220778003335, 0.04343138635158539, 0.025243479758501053, 0.00537250516936183, -0.11040396988391876, 0.010139960795640945, -0.001340620219707489, 0.08846887201070786, 0.09531766921281815, -0.05202574282884598, -0.14410682022571564, -0.009630187414586544, 0.03857945278286934, 0.04578317329287529, -0.028530435636639595, -0.18040727078914642, 0.06492653489112854, 0.11001162230968475, 0.0012182279024273157, -0.09380178898572922, 0.1101401150226593, -0.03252614662051201, -0.12144865840673447, 0.03377481922507286, 0.06119605153799057, 0.087178073823452, -0.0047811586409807205, 0.08196854591369629, -0.14054356515407562, 0.061184026300907135, 0.03249334543943405, 0.09603828191757202, -0.265537828207016, 0.26613909006118774, -0.036831486970186234, 0.02534542605280876, -0.03909887745976448, 0.029258251190185547, 0.006525002885609865, 0.0674833208322525, 0.20728474855422974, -0.002222724026069045, -0.20084470510482788, -0.03353014588356018, -0.016489645466208458, 0.016886569559574127, 0.09619233012199402, -0.06439802795648575, -0.0025464969221502542, -0.0058682141825556755, 0.00458487868309021, 0.015374293550848961, -0.10588515549898148, -0.035460248589515686, -0.17333778738975525, 0.01097844261676073, -0.0033270958811044693, -0.007423813454806805, 0.026021035388112068, -0.07085099071264267, -0.07259386032819748, 0.0891527533531189, -0.04757823422551155, -0.07341501861810684, -0.04197084531188011, -0.0713953897356987, 0.028892716392874718, -0.15479908883571625, 0.03393801301717758, -0.021880583837628365, 0.04946508631110191, -0.07705226540565491, -0.028912575915455818, 0.1756347417831421, -0.17194926738739014, 0.020442763343453407, -0.09684837609529495, 0.05969762057065964, 0.04700795188546181, 0.013877158984541893, 0.08107714354991913, -0.042999450117349625, -0.07940010726451874, -0.041940804570913315, -0.034970205277204514, 0.032541945576667786, -0.03724795952439308, 0.09422332793474197, -0.13807733356952667, -0.0019033406861126423, -0.08154881745576859, -0.07642444968223572, 0.20762044191360474, 0.1530204862356186, 0.0063408296555280685, 0.04670194908976555, 0.24708113074302673, -0.14985291659832, -0.279000848531723, -0.10315270721912384, 0.010672071948647499, 0.05677478760480881, 0.01631886512041092, -0.20040714740753174, 0.035341717302799225, -0.006352241151034832, 0.0011250502429902554, -0.06211491674184799, -0.19066360592842102, -0.10390681773424149, 0.25572577118873596, 0.0007772570825181901, 0.4534423053264618, -0.08294229209423065, -0.020045408979058266, -0.11471135914325714, 0.06064246594905853, 0.027513420209288597, 0.13534444570541382, 0.07443995773792267, 0.01922360621392727, 0.054750606417655945, 0.022491805255413055, 0.06417044252157211, 0.1066441684961319, 0.018540572375059128, -0.02105618827044964, -0.016469964757561684, -0.16853240132331848, -0.03683781996369362, 0.03020135499536991, -0.033214300870895386, 0.04408968240022659, -0.05399515479803085, -0.11508248001337051, -0.1010793074965477, -0.03056814707815647, 0.06123749911785126, 0.017799969762563705, -0.07268023490905762, 0.051656678318977356, -0.009276032447814941, 0.035928383469581604, -0.000763323565479368, 0.18148496747016907, -0.0380125418305397, 0.040840741246938705, -0.004072791896760464, 0.04842294752597809, -0.09461662918329239, -0.13116033375263214, -0.026951897889375687, -0.045704517513513565, 0.06980417668819427, 0.053378768265247345, 0.010594543069601059, 0.07012959569692612, -0.07918833941221237, 0.09119763225317001, 0.09740706533193588, -0.024630753323435783, 0.014785641804337502, 0.09401446580886841, -0.043766506016254425, -0.08943183720111847, -0.09110355377197266, -0.020541412755846977, 0.14273908734321594, -0.029301131144165993, 0.1343293935060501, -0.007326657418161631, -0.08054269105195999, -0.07809646427631378, 0.02729647234082222, 0.004529567435383797, 0.06866767257452011, 0.07307366281747818, -0.018171845003962517, -0.06112106516957283, 0.04047068580985069, 0.01642516441643238, -0.18984410166740417, 0.07052706927061081, 0.07073917984962463, 0.02509273774921894, -0.07158619165420532, 0.030694549903273582, 0.2008116990327835, -0.20612283051013947, -0.0907619446516037, -0.15625862777233124, -0.14116886258125305, 0.045636724680662155, 0.05447676405310631, 0.10035435110330582, -0.0450906902551651, -0.021219676360487938, 0.053924232721328735, 0.004323373548686504, -0.017770903185009956, 0.13854160904884338, -0.026707367971539497, -0.0585755854845047, -0.019258664920926094, 0.02438417263329029, 0.12900744378566742, -0.05726216733455658, -0.06035084277391434, -0.17886342108249664, 0.052976109087467194, 0.04136070981621742, 0.0438457652926445, -0.045310791581869125, -0.06638982146978378, 0.04384883865714073, -0.07865561544895172, -0.03374795988202095, 0.024015799164772034, -0.12949328124523163, 0.04695485904812813, 0.041527215391397476, 0.0716722384095192, 0.06431185454130173, -0.07802359759807587, 0.051705989986658096, -0.0296260304749012, 0.017772264778614044, 0.07659891247749329, -0.0632372722029686, 0.08908501267433167, -0.2705950140953064, -0.016162727028131485, 0.09913913905620575, 0.07162842899560928, 0.11983826011419296, -0.0046747406013309956, 0.050114307552576065, 0.05217829346656799, 0.020308390259742737, -0.05219186469912529, -0.0031647111754864454, -0.09864331036806107, 0.06661339104175568, 0.06155921146273613, -0.2748294472694397, 0.000944100902415812, -0.0009411436622031033, 0.0681985542178154, -0.025709478184580803, 0.08450553566217422, -0.08720811456441879, 0.12758281826972961, 0.002920488128438592, 0.038408905267715454, -0.0017465590499341488, -0.10576050728559494, -0.0043282886035740376, -0.08371131867170334, 0.0333637073636055, 0.014371599070727825, 0.16751106083393097, 0.12437552958726883, 0.1271214336156845, 0.0020167443435639143, -0.10439728945493698, 0.06045512109994888, 0.06163675710558891, 0.05314123257994652, -0.0020048876758664846, -0.019933946430683136, -0.14935408532619476, 0.07586116343736649, 0.12766247987747192, 0.10633041709661484, 0.0075312890112400055, 0.11584186553955078, 0.12634390592575073, 0.2099468857049942, -0.007016079034656286, 0.06813415884971619, -0.09599091112613678, -0.16729675233364105, 0.1515098214149475, 0.030750256031751633, 0.042696673423051834, 0.03159511461853981, 0.10518943518400192, -0.03510928899049759, 0.05680378898978233, -0.006147002801299095, -0.051327191293239594, -0.2443494200706482, -0.08571208268404007, -0.08581551164388657, -0.06435004621744156, -0.03893757238984108, -0.15870074927806854, 0.020379263907670975, -0.0844540074467659, 0.03905262425541878, -0.08606265485286713, -0.01267782412469387, 0.052803680300712585, -0.13260449469089508, 0.05414249375462532, -0.0012213174486532807, 0.15820899605751038, -0.0211038775742054, -0.03870682790875435, -0.164095938205719, 0.05928651988506317, -0.06177501380443573, -0.010967211797833443, -0.06728412210941315, -0.013900716789066792, -0.0777299627661705, -0.0316220261156559, -0.038112957030534744, 0.014250949956476688, -0.03264402225613594, 0.08999248594045639, 0.024623310193419456, -0.09318432211875916, 0.038405224680900574, 0.13030299544334412, 0.0010274028172716498, -0.047940678894519806, -0.029493093490600586, 0.16202273964881897, 0.1862090528011322, 0.1966276317834854, 0.0016628354787826538, 0.010808640159666538, -0.1278839111328125, 0.22756178677082062, 0.24574795365333557, -0.026006145402789116, 0.0033460576087236404, -0.01079997606575489, 0.05567663162946701, 0.10768656432628632, 0.056562792509794235, 0.07607647031545639, 0.3233720064163208, -0.013930315151810646, 0.0039108069613575935, -0.10090892761945724, 0.0754530280828476, -0.1349928230047226, 0.006028315518051386, 0.0760691910982132, -0.024217581376433372, 0.012802660465240479, 0.08482685685157776, -0.12221837788820267, -0.024347832426428795, -0.014789449982345104, -0.21790218353271484, -0.09734439104795456, 0.012195109389722347, 0.15089838206768036, 0.09525952488183975, 0.17485615611076355, -0.00969642773270607, -0.1295650750398636, 0.09013505280017853, 0.04736471548676491, -0.1609567403793335, -0.018071210011839867, 0.0625908300280571, -0.0402047336101532, 0.09726585447788239, -0.004178783390671015, 0.09962960332632065, 0.08448810130357742, 0.08271895349025726, 0.06234186142683029, 0.059267476201057434, 0.00580099830403924, 0.02446776255965233, 0.14019903540611267, -0.02996104396879673, -0.07725296169519424, -0.08804455399513245, 0.04234243556857109, -0.09071927517652512, 0.054619740694761276, 0.03035685233771801, -0.11246699839830399, 0.009820962324738503, 0.10368448495864868, -0.16442865133285522, -0.0021453825756907463, 0.09547197073698044, 0.01538599468767643, -0.07531910389661789, 0.009916020557284355, 0.07118715345859528, 0.06895814090967178, 0.023219216614961624, -0.09549785405397415, -0.140013188123703, -0.08115734159946442, 0.060749076306819916, 0.029719308018684387, -0.0824761912226677, -0.012561192736029625, -0.13356930017471313, -0.0026642605662345886, -0.1532915234565735, 0.0521027147769928, -0.027165228500962257, 0.037753477692604065, 0.008810212835669518, 0.02128012105822563, -0.020750179886817932, 0.08837022632360458, -0.0671466514468193, -0.07956133782863617 ]
null
null
transformers
# Arabic Named Entity Recognition Model Pretrained BERT-based ([arabic-bert-base](https://huggingface.co/asafaya/bert-base-arabic)) Named Entity Recognition model for Arabic. The pre-trained model can recognize the following entities: 1. **PERSON** - و هذا ما نفاه المعاون السياسي للرئيس ***نبيه بري*** ، النائب ***علي حسن خليل*** - لكن أوساط ***الحريري*** تعتبر أنه ضحى كثيرا في سبيل البلد - و ستفقد الملكة ***إليزابيث الثانية*** بذلك سيادتها على واحدة من آخر ممالك الكومنولث 2. **ORGANIZATION** - حسب أرقام ***البنك الدولي*** - أعلن ***الجيش العراقي*** - و نقلت وكالة ***رويترز*** عن ثلاثة دبلوماسيين في ***الاتحاد الأوروبي*** ، أن ***بلجيكا*** و ***إيرلندا*** و ***لوكسمبورغ*** تريد أيضاً مناقشة - ***الحكومة الاتحادية*** و ***حكومة إقليم كردستان*** - و هو ما يثير الشكوك حول مشاركة النجم البرتغالي في المباراة المرتقبة أمام ***برشلونة*** الإسباني في 3. ***LOCATION*** - الجديد هو تمكين اللاجئين من “ مغادرة الجزيرة تدريجياً و بهدوء إلى ***أثينا*** ” - ***جزيرة ساكيز*** تبعد 1 كم عن ***إزمير*** 4. **DATE** - ***غدا الجمعة*** - ***06 أكتوبر 2020*** - ***العام السابق*** 5. **PRODUCT** - عبر حسابه ب ***تطبيق “ إنستغرام ”*** - الجيل الثاني من ***نظارة الواقع الافتراضي أوكولوس كويست*** تحت اسم " ***أوكولوس كويست 2*** " 6. **COMPETITION** - عدم المشاركة في ***بطولة فرنسا المفتوحة للتنس*** - في مباراة ***كأس السوبر الأوروبي*** 7. **PRIZE** - ***جائزة نوبل ل لآداب*** - الذي فاز ب ***جائزة “ إيمي ” لأفضل دور مساند*** 8. **EVENT** - تسجّل أغنية جديدة خاصة ب ***العيد الوطني السعودي*** - ***مهرجان المرأة يافوية*** في دورته الرابعة 9. **DISEASE** - في مكافحة فيروس ***كورونا*** و عدد من الأمراض - الأزمات المشابهة مثل “ ***انفلونزا الطيور*** ” و ” ***انفلونزا الخنازير*** ## Example [Find here a complete example to use this model](https://github.com/hatmimoha/arabic-ner) ## Training Corpus The training corpus is made of 378.000 tokens (14.000 sentences) collected from the Web and annotated manually. ## Results The results on a valid corpus made of 30.000 tokens shows an F-measure of ~87%.
{"language": "ar"}
token-classification
hatmimoha/arabic-ner
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "token-classification", "ar", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ar" ]
TAGS #transformers #pytorch #tf #jax #safetensors #bert #token-classification #ar #autotrain_compatible #endpoints_compatible #has_space #region-us
# Arabic Named Entity Recognition Model Pretrained BERT-based (arabic-bert-base) Named Entity Recognition model for Arabic. The pre-trained model can recognize the following entities: 1. PERSON - و هذا ما نفاه المعاون السياسي للرئيس *نبيه بري* ، النائب *علي حسن خليل* - لكن أوساط *الحريري* تعتبر أنه ضحى كثيرا في سبيل البلد - و ستفقد الملكة *إليزابيث الثانية* بذلك سيادتها على واحدة من آخر ممالك الكومنولث 2. ORGANIZATION - حسب أرقام *البنك الدولي* - أعلن *الجيش العراقي* - و نقلت وكالة *رويترز* عن ثلاثة دبلوماسيين في *الاتحاد الأوروبي* ، أن *بلجيكا* و *إيرلندا* و *لوكسمبورغ* تريد أيضاً مناقشة - *الحكومة الاتحادية* و *حكومة إقليم كردستان* - و هو ما يثير الشكوك حول مشاركة النجم البرتغالي في المباراة المرتقبة أمام *برشلونة* الإسباني في 3. *LOCATION* - الجديد هو تمكين اللاجئين من “ مغادرة الجزيرة تدريجياً و بهدوء إلى *أثينا* ” - *جزيرة ساكيز* تبعد 1 كم عن *إزمير* 4. DATE - *غدا الجمعة* - *06 أكتوبر 2020* - *العام السابق* 5. PRODUCT - عبر حسابه ب *تطبيق “ إنستغرام ”* - الجيل الثاني من *نظارة الواقع الافتراضي أوكولوس كويست* تحت اسم " *أوكولوس كويست 2* " 6. COMPETITION - عدم المشاركة في *بطولة فرنسا المفتوحة للتنس* - في مباراة *كأس السوبر الأوروبي* 7. PRIZE - *جائزة نوبل ل لآداب* - الذي فاز ب *جائزة “ إيمي ” لأفضل دور مساند* 8. EVENT - تسجّل أغنية جديدة خاصة ب *العيد الوطني السعودي* - *مهرجان المرأة يافوية* في دورته الرابعة 9. DISEASE - في مكافحة فيروس *كورونا* و عدد من الأمراض - الأزمات المشابهة مثل “ *انفلونزا الطيور* ” و ” *انفلونزا الخنازير* ## Example Find here a complete example to use this model ## Training Corpus The training corpus is made of 378.000 tokens (14.000 sentences) collected from the Web and annotated manually. ## Results The results on a valid corpus made of 30.000 tokens shows an F-measure of ~87%.
[ "# Arabic Named Entity Recognition Model\n\nPretrained BERT-based (arabic-bert-base) Named Entity Recognition model for Arabic.\n\nThe pre-trained model can recognize the following entities:\n1. PERSON\n\n- و هذا ما نفاه المعاون السياسي للرئيس *نبيه بري* ، النائب *علي حسن خليل* \n\n- لكن أوساط *الحريري* تعتبر أنه ضحى كثيرا في سبيل البلد \n\n- و ستفقد الملكة *إليزابيث الثانية* بذلك سيادتها على واحدة من آخر ممالك الكومنولث \n\n2. ORGANIZATION\n\n- حسب أرقام *البنك الدولي* \n\n- أعلن *الجيش العراقي* \n\n- و نقلت وكالة *رويترز* عن ثلاثة دبلوماسيين في *الاتحاد الأوروبي* ، أن *بلجيكا* و *إيرلندا* و *لوكسمبورغ* تريد أيضاً مناقشة \n\n- *الحكومة الاتحادية* و *حكومة إقليم كردستان* \n\n- و هو ما يثير الشكوك حول مشاركة النجم البرتغالي في المباراة المرتقبة أمام *برشلونة* الإسباني في \n\n\n3. *LOCATION*\n\n- الجديد هو تمكين اللاجئين من “ مغادرة الجزيرة تدريجياً و بهدوء إلى *أثينا* ” \n\n- *جزيرة ساكيز* تبعد 1 كم عن *إزمير* \n\n\n4. DATE\n\n- *غدا الجمعة* \n\n- *06 أكتوبر 2020* \n\n- *العام السابق* \n\n\n5. PRODUCT\n\n- عبر حسابه ب *تطبيق “ إنستغرام ”* \n\n- الجيل الثاني من *نظارة الواقع الافتراضي أوكولوس كويست* تحت اسم \" *أوكولوس كويست 2* \" \n\n\n6. COMPETITION\n\n- عدم المشاركة في *بطولة فرنسا المفتوحة للتنس* \n\n- في مباراة *كأس السوبر الأوروبي* \n\n7. PRIZE\n\n- *جائزة نوبل ل لآداب*\n\n- الذي فاز ب *جائزة “ إيمي ” لأفضل دور مساند*\n\n8. EVENT\n\n- تسجّل أغنية جديدة خاصة ب *العيد الوطني السعودي*\n\n- *مهرجان المرأة يافوية* في دورته الرابعة \n\n9. DISEASE\n\n- في مكافحة فيروس *كورونا* و عدد من الأمراض \n\n- الأزمات المشابهة مثل “ *انفلونزا الطيور* ” و ” *انفلونزا الخنازير*", "## Example\n\nFind here a complete example to use this model", "## Training Corpus\n\nThe training corpus is made of 378.000 tokens (14.000 sentences) collected from the Web and annotated manually.", "## Results\n\nThe results on a valid corpus made of 30.000 tokens shows an F-measure of ~87%." ]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #token-classification #ar #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Arabic Named Entity Recognition Model\n\nPretrained BERT-based (arabic-bert-base) Named Entity Recognition model for Arabic.\n\nThe pre-trained model can recognize the following entities:\n1. PERSON\n\n- و هذا ما نفاه المعاون السياسي للرئيس *نبيه بري* ، النائب *علي حسن خليل* \n\n- لكن أوساط *الحريري* تعتبر أنه ضحى كثيرا في سبيل البلد \n\n- و ستفقد الملكة *إليزابيث الثانية* بذلك سيادتها على واحدة من آخر ممالك الكومنولث \n\n2. ORGANIZATION\n\n- حسب أرقام *البنك الدولي* \n\n- أعلن *الجيش العراقي* \n\n- و نقلت وكالة *رويترز* عن ثلاثة دبلوماسيين في *الاتحاد الأوروبي* ، أن *بلجيكا* و *إيرلندا* و *لوكسمبورغ* تريد أيضاً مناقشة \n\n- *الحكومة الاتحادية* و *حكومة إقليم كردستان* \n\n- و هو ما يثير الشكوك حول مشاركة النجم البرتغالي في المباراة المرتقبة أمام *برشلونة* الإسباني في \n\n\n3. *LOCATION*\n\n- الجديد هو تمكين اللاجئين من “ مغادرة الجزيرة تدريجياً و بهدوء إلى *أثينا* ” \n\n- *جزيرة ساكيز* تبعد 1 كم عن *إزمير* \n\n\n4. DATE\n\n- *غدا الجمعة* \n\n- *06 أكتوبر 2020* \n\n- *العام السابق* \n\n\n5. PRODUCT\n\n- عبر حسابه ب *تطبيق “ إنستغرام ”* \n\n- الجيل الثاني من *نظارة الواقع الافتراضي أوكولوس كويست* تحت اسم \" *أوكولوس كويست 2* \" \n\n\n6. COMPETITION\n\n- عدم المشاركة في *بطولة فرنسا المفتوحة للتنس* \n\n- في مباراة *كأس السوبر الأوروبي* \n\n7. PRIZE\n\n- *جائزة نوبل ل لآداب*\n\n- الذي فاز ب *جائزة “ إيمي ” لأفضل دور مساند*\n\n8. EVENT\n\n- تسجّل أغنية جديدة خاصة ب *العيد الوطني السعودي*\n\n- *مهرجان المرأة يافوية* في دورته الرابعة \n\n9. DISEASE\n\n- في مكافحة فيروس *كورونا* و عدد من الأمراض \n\n- الأزمات المشابهة مثل “ *انفلونزا الطيور* ” و ” *انفلونزا الخنازير*", "## Example\n\nFind here a complete example to use this model", "## Training Corpus\n\nThe training corpus is made of 378.000 tokens (14.000 sentences) collected from the Web and annotated manually.", "## Results\n\nThe results on a valid corpus made of 30.000 tokens shows an F-measure of ~87%." ]
[ 54, 484, 12, 30, 24 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #token-classification #ar #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
[ -0.012921826913952827, 0.039506155997514725, -0.0061760637909173965, 0.03812192380428314, 0.09193561226129532, 0.009975082240998745, 0.056147053837776184, 0.09539962559938431, 0.033838823437690735, 0.009046045131981373, 0.13109564781188965, 0.1771358996629715, -0.04817647486925125, 0.13805511593818665, -0.08274303376674652, -0.23305949568748474, 0.08047110587358475, 0.03189901262521744, -0.06283832341432571, 0.10394597798585892, 0.09659744799137115, -0.10667737573385239, 0.06259118020534515, -0.03808603435754776, -0.12348395586013794, 0.046738263219594955, 0.06376767158508301, -0.13441576063632965, 0.12477996200323105, 0.02476678229868412, 0.19702963531017303, 0.06838078051805496, -0.03641713783144951, -0.08261965960264206, 0.0364522859454155, 0.05316167697310448, -0.08447609096765518, 0.06195659562945366, 0.04616162180900574, -0.04993928223848343, -0.010223736986517906, 0.022158287465572357, 0.04156887158751488, 0.029699182137846947, -0.1429213434457779, -0.22330543398857117, -0.0293053537607193, 0.052993860095739365, 0.022835057228803635, 0.03777318075299263, 0.014133302494883537, 0.24464167654514313, -0.15159454941749573, 0.09830694645643234, 0.1320188343524933, -0.32785624265670776, -0.02146822027862072, 0.164700448513031, 0.07947821170091629, 0.04973536357283592, -0.07191813737154007, 0.03987109288573265, 0.06132372096180916, 0.011597421020269394, 0.13695047795772552, -0.06656453013420105, -0.15471547842025757, 0.054453518241643906, -0.1210060864686966, -0.036621712148189545, 0.2125069499015808, -0.0321076400578022, 0.05012655258178711, -0.005368152167648077, -0.0961698442697525, -0.06933137774467468, 0.016993388533592224, -0.039257436990737915, -0.01829899474978447, 0.028348449617624283, 0.020617106929421425, 0.03245454281568527, -0.1311517059803009, 0.01825680211186409, -0.19802604615688324, 0.20359240472316742, -0.001692291465587914, 0.06047146022319794, -0.1677774339914322, 0.06636474281549454, -0.004837412387132645, -0.10944756120443344, 0.07227832823991776, -0.09364587068557739, 0.0012639041524380445, -0.038492318242788315, -0.03839481994509697, 0.025696709752082825, 0.08236423134803772, 0.14294999837875366, -0.014537827111780643, 0.017776748165488243, -0.0027104117907583714, 0.08658331632614136, 0.033414412289857864, 0.08763232827186584, -0.03497203066945076, -0.017173681408166885, 0.043702125549316406, -0.05047369748353958, -0.012313908897340298, -0.05605863034725189, -0.10973884910345078, -0.01996728405356407, 0.13186031579971313, 0.08183832466602325, 0.03472037985920906, 0.08266841620206833, -0.03500311076641083, 0.020329847931861877, 0.08806858956813812, -0.0695251077413559, 0.026429476216435432, -0.011860840022563934, 0.06010817736387253, -0.002740598516538739, -0.013380310498178005, 0.0031080087646842003, 0.022762633860111237, 0.09879200905561447, -0.09556088596582413, -0.032076384872198105, -0.029093459248542786, -0.12352094054222107, 0.04944257438182831, -0.09747491031885147, 0.043561700731515884, -0.21727000176906586, -0.015526924282312393, 0.02694702334702015, 0.027598204091191292, 0.013153222389519215, -0.036775991320610046, 0.07389415055513382, -0.06568437069654465, 0.034125715494155884, -0.061381012201309204, -0.031426988542079926, -0.0714760273694992, 0.07858354598283768, -0.04559691250324249, 0.08706247061491013, -0.09517929702997208, 0.03037925809621811, -0.1049688532948494, 0.0179020706564188, -0.127302348613739, -0.06377875059843063, -0.0793391689658165, 0.1634082943201065, -0.0038628133479505777, -0.047102540731430054, -0.09293942898511887, 0.049188144505023956, -0.0515943318605423, 0.10151656717061996, -0.12443549185991287, -0.04967862740159035, 0.16037717461585999, -0.11539705842733383, -0.1511385291814804, 0.0951809212565422, 0.004602690227329731, -0.0006014247192069888, 0.018395008519291878, 0.19131141901016235, 0.07539277523756027, -0.07573264092206955, 0.023888487368822098, 0.11827363073825836, -0.10628890991210938, -0.0640212818980217, 0.024931680411100388, 0.042173199355602264, -0.12450675666332245, 0.01703852228820324, 0.044937148690223694, 0.07123564928770065, -0.05920250341296196, -0.0460929311811924, -0.04661434143781662, -0.028276007622480392, 0.1032772809267044, 0.04544246941804886, 0.09639868140220642, -0.09438347071409225, -0.04079702869057655, -0.006077229510992765, 0.00931999459862709, 0.059406258165836334, -0.0034361497964709997, -0.0727163776755333, 0.14506784081459045, -0.05812239646911621, -0.009977955371141434, -0.16296306252479553, -0.15344667434692383, -0.007808607071638107, 0.07981175929307938, -0.04404095187783241, 0.19216382503509521, 0.07884185761213303, -0.045704036951065063, -0.01690814457833767, -0.05163493752479553, 0.15626154839992523, 0.0807216465473175, -0.054190102964639664, -0.10138015449047089, 0.01636233553290367, -0.10268957912921906, -0.023120716214179993, -0.07747787982225418, 0.021247360855340958, 0.1093648225069046, 0.1556880921125412, 0.031217224895954132, 0.07971056550741196, -0.020417768508195877, 0.040966279804706573, -0.07737652212381363, -0.014881563372910023, 0.05938263237476349, -0.006771557964384556, -0.028587190434336662, 0.16668638586997986, -0.17974959313869476, 0.43636026978492737, 0.20358151197433472, -0.21536488831043243, -0.04687237739562988, 0.03637197986245155, -0.01925879716873169, 0.035491958260536194, 0.018987901508808136, -0.023586224764585495, -0.05888546630740166, -0.05969439819455147, 0.137107253074646, -0.047530580312013626, -0.06836242228746414, 0.021696647629141808, -0.060832805931568146, -0.08110439032316208, 0.053578320890665054, 0.008974193595349789, -0.2152836173772812, 0.20655600726604462, 0.3357643783092499, -0.008758137002587318, 0.1391204446554184, -0.01881774328649044, 0.024347728118300438, 0.017273414880037308, -0.03717969357967377, -0.04298190400004387, 0.058063387870788574, -0.1191866472363472, -0.04039493203163147, 0.07789985835552216, 0.03106679767370224, 0.01695680432021618, -0.13167642056941986, -0.058385979384183884, 0.025616630911827087, 0.06256302446126938, -0.02174653857946396, 0.12180108577013016, 0.05117380619049072, 0.13008327782154083, -0.01661100797355175, -0.1396675705909729, 0.08271259069442749, 0.004839435685425997, -0.052044644951820374, 0.1461908370256424, -0.1344730257987976, -0.2812267243862152, -0.05158734321594238, -0.09249056875705719, 0.015374393202364445, 0.011020105332136154, 0.0742064118385315, -0.08612153679132462, -0.04083304479718208, -0.014354231767356396, -0.04124622046947479, -0.0837603285908699, 0.0850699245929718, -0.07487888634204865, 0.04692169651389122, -0.003434781450778246, -0.06688357144594193, -0.07207164168357849, -0.021633196622133255, -0.04575929418206215, 0.15140417218208313, -0.020662609487771988, 0.06637411564588547, 0.15469573438167572, -0.043732400983572006, 0.036429259926080704, -0.040319837629795074, 0.1985412836074829, -0.06502152979373932, 0.034876346588134766, 0.15336093306541443, -0.038529422134160995, 0.06372004002332687, 0.19678135216236115, 0.030133124440908432, -0.031819749623537064, 0.015386967919766903, -0.022091615945100784, -0.10434070974588394, -0.12943238019943237, -0.10313510149717331, -0.10280809551477432, 0.02354387938976288, 0.03499692305922508, 0.08808029443025589, 0.12725883722305298, 0.05958389863371849, 0.041948914527893066, -0.035721030086278915, -0.05228103697299957, 0.04932916536927223, 0.1421939581632614, -0.020758919417858124, 0.147854283452034, -0.04137283191084862, -0.13935409486293793, 0.06981895864009857, 0.05227458477020264, 0.04743972420692444, 0.07192932069301605, -0.09251109510660172, 0.031217258423566818, 0.21605505049228668, 0.1533081978559494, 0.11174598336219788, 0.005661677569150925, -0.07320542633533478, -0.025723204016685486, -0.02188064344227314, -0.002690319437533617, 0.04435674846172333, 0.07982559502124786, -0.09669031202793121, -0.035629525780677795, -0.16847115755081177, 0.08676769584417343, 0.051633045077323914, 0.08141938596963882, -0.2185003012418747, 0.021758371964097023, 0.08609511703252792, -0.005924524273723364, -0.055279456079006195, 0.07449817657470703, 0.07288636267185211, -0.07352882623672485, 0.03632917255163193, -0.01226175669580698, 0.0675818920135498, 0.04901041090488434, 0.08241742849349976, -0.023026708513498306, -0.10416547954082489, -0.0014357309555634856, 0.051957398653030396, -0.23818640410900116, 0.22841399908065796, -0.0072646248154342175, -0.094239242374897, -0.04851457104086876, -0.01679070293903351, 0.05157048627734184, 0.19928249716758728, 0.10643109679222107, 0.029212836176156998, -0.14427873492240906, -0.17088918387889862, 0.01639675907790661, 0.0009020258439704776, 0.07455422729253769, -0.022988809272646904, 0.00444074347615242, -0.04373455047607422, -0.009198418818414211, 0.0297690462321043, 0.07378213852643967, -0.01823614351451397, -0.0850517526268959, 0.06233985349535942, 0.05962330847978592, -0.00012549654638860375, -0.03489299863576889, -0.06171654537320137, -0.18173711001873016, 0.13609090447425842, -0.005453560966998339, -0.017412127926945686, -0.12694460153579712, -0.11124315112829208, 0.08544150739908218, -0.06089893728494644, 0.06219704449176788, -0.06481070816516876, 0.02259802632033825, -0.04232361167669296, -0.16573791205883026, 0.15776875615119934, -0.137836754322052, -0.03539353236556053, -0.07903151959180832, 0.09710105508565903, -0.122837133705616, 0.027570685371756554, 0.016106490045785904, 0.05715000256896019, -0.09080088883638382, -0.07269272953271866, 0.02918536216020584, -0.07861389219760895, 0.040521327406167984, 0.0023514926433563232, -0.04794099181890488, -0.07431615144014359, 0.04233019798994064, 0.029356375336647034, 0.20455531775951385, 0.2343619167804718, -0.12056634575128555, 0.08116204291582108, 0.11046597361564636, 0.011312070302665234, -0.34190499782562256, -0.06685107946395874, -0.1566217839717865, -0.03899699077010155, 0.06344852596521378, -0.009946836158633232, 0.08869197219610214, -0.0012635588645935059, -0.07808151841163635, 0.0825294777750969, -0.13109783828258514, -0.069361113011837, 0.21010318398475647, -0.0008138808771036565, 0.33909764885902405, -0.14707131683826447, -0.034296706318855286, 0.03316301852464676, -0.0981631726026535, 0.12501391768455505, -0.08866826444864273, 0.037423256784677505, -0.009757012128829956, -0.010178321041166782, 0.04262448847293854, -0.06820972263813019, 0.10623163729906082, -0.0641351044178009, 0.06727437674999237, -0.11706121265888214, -0.1421189308166504, 0.06887907534837723, -0.05021483451128006, 0.0008922372362576425, -0.018837744370102882, 0.031895507127046585, -0.09639590233564377, 0.01686127483844757, -0.10122532397508621, 0.10256419330835342, 0.011515621095895767, -0.08212956041097641, -0.0287579707801342, 0.024750543758273125, -0.009978520683944225, -0.04750218242406845, 0.2499367743730545, -0.01418441254645586, 0.23788480460643768, 0.17846137285232544, 0.05565151199698448, -0.15148073434829712, -0.0031157268676906824, 0.01100018061697483, -0.0735333263874054, 0.1084568202495575, -0.09695634990930557, 0.07265284657478333, 0.08648420125246048, -0.03661250323057175, 0.05302494391798973, 0.11242441833019257, 0.01717001013457775, -0.052421584725379944, 0.1801091730594635, -0.22705349326133728, -0.026553399860858917, -0.02997581660747528, -0.003919422160834074, 0.05892699584364891, 0.0731222927570343, 0.10986940562725067, -0.005884902086108923, -0.015035448595881462, -0.0025637890212237835, -0.019972024485468864, -0.05205386132001877, 0.044900719076395035, 0.10623188316822052, 0.060607220977544785, -0.08932819217443466, 0.016372747719287872, 0.0494178906083107, -0.1301555037498474, -0.02452688105404377, 0.0824146568775177, -0.11327522248029709, -0.1479761004447937, -0.020774787291884422, 0.05350504815578461, -0.053481340408325195, -0.028345581144094467, -0.030798140913248062, -0.13391843438148499, 0.031771086156368256, 0.22226174175739288, 0.10389783978462219, 0.08836717158555984, 0.011797845363616943, -0.03072020597755909, 0.007440734654664993, 0.021886102855205536, -0.026372984051704407, 0.05782324820756912, -0.20736519992351532, 0.06914390623569489, -0.02169930748641491, 0.14093071222305298, -0.11066719889640808, -0.013090778142213821, -0.18738998472690582, -0.0025028951931744814, -0.04563875123858452, -0.08172290772199631, -0.06162063032388687, -0.034473247826099396, 0.0317244753241539, -0.10415396094322205, -0.04863234981894493, -0.03133334219455719, -0.12494686245918274, 0.044589653611183167, 0.03331398218870163, 0.05393969640135765, -0.055515117943286896, -0.06464235484600067, 0.08271922916173935, -0.025492850691080093, 0.10088441520929337, 0.059711962938308716, -0.0615101121366024, 0.08140197396278381, -0.09288592636585236, -0.10434342920780182, 0.11553242057561874, 0.00562144024297595, 0.10002786666154861, 0.036176640540361404, 0.012774755246937275, 0.038585811853408813, 0.01831287518143654, 0.05508759245276451, 0.016540024429559708, -0.09129615128040314, 0.030489685013890266, -0.00261409068480134, -0.159506693482399, -0.004056350793689489, -0.08667957037687302, 0.1328607052564621, -0.04366537183523178, 0.1165061816573143, -0.018336042761802673, 0.028731876984238625, -0.11130205541849136, 0.005586476065218449, -0.042213547974824905, -0.20362570881843567, -0.06249967962503433, -0.011683233082294464, 0.0280531644821167, -0.028962528333067894, 0.2125091552734375, 0.08632425963878632, -0.056982312351465225, 0.05408269539475441, 0.011655778624117374, 0.03332890197634697, 0.031259629875421524, 0.14913398027420044, 0.05231957137584686, -0.06263090670108795, -0.10073661804199219, 0.03156479075551033, 0.00614325562492013, -0.0799499973654747, 0.08272766321897507, 0.09863586723804474, -0.007922201417386532, 0.055015143007040024, 0.035995785146951675, -0.02978125959634781, -0.10701658576726913, -0.16046050190925598, -0.055816058069467545, 0.05966321378946304, -0.025923114269971848, -0.004351235460489988, 0.20136302709579468, -0.005889612715691328, 0.030197441577911377, -0.07933399081230164, 0.002946773311123252, -0.17951348423957825, -0.08660727739334106, -0.08870667964220047, -0.0944819301366806, -0.016838345676660538, -0.05525251105427742, -0.0034624882973730564, 0.11621491611003876, 0.05330180376768112, -0.00846986286342144, 0.11094319075345993, 0.042286425828933716, -0.017415529116988182, 0.0324476920068264, 0.020047390833497047, 0.015977151691913605, -0.03507601469755173, -0.00168106728233397, -0.12021638453006744, -0.024946972727775574, -0.08370846509933472, -0.013441527262330055, -0.07216280698776245, 0.008932559750974178, -0.1160411387681961, -0.10553795099258423, -0.042152222245931625, 0.02766341157257557, -0.06000085920095444, 0.07530880719423294, 0.002299613319337368, 0.029139379039406776, 0.023403089493513107, 0.21876093745231628, -0.09133297204971313, -0.05921483039855957, -0.041777051985263824, 0.2587430775165558, 0.012321886606514454, 0.11300435662269592, -0.014724217355251312, 0.0016223336569964886, -0.073776975274086, 0.22146792709827423, 0.30879610776901245, -0.05997496470808983, 0.10194080322980881, 0.016930362209677696, 0.00817655399441719, 0.022732751443982124, 0.117934949696064, 0.09961435198783875, 0.21352262794971466, -0.08317891508340836, 0.005557835567742586, -0.04263541102409363, 0.016212893649935722, -0.08440247923135757, 0.04124275967478752, 0.05124293640255928, -0.025334959849715233, -0.06934698671102524, 0.044174157083034515, -0.09451381862163544, 0.09532170742750168, 0.04025249555706978, -0.207474023103714, -0.0717838704586029, 0.007224263623356819, 0.16329199075698853, -0.04480950906872749, 0.06458733975887299, -0.05105871707201004, -0.07562941312789917, -0.03284398838877678, -0.009980855509638786, -0.12946774065494537, -0.04978383332490921, 0.09602859616279602, 0.005825623404234648, 0.10663057118654251, -0.03869068995118141, 0.025777433067560196, 0.10766874253749847, 0.02866426482796669, -0.06629624962806702, 0.06510353088378906, 0.03712738677859306, -0.07795151323080063, -0.05951112136244774, -0.01694450154900551, 0.019824622198939323, -0.025227613747119904, 0.06272217631340027, -0.1823750138282776, 0.035504307597875595, -0.07675124704837799, -0.03133883699774742, -0.01755138300359249, 0.025876447558403015, -0.010375125333666801, 0.0860619768500328, 0.055201489478349686, -0.013593143783509731, -0.016168370842933655, -0.05298817157745361, -0.02263374999165535, 0.047786783427000046, -0.08759710937738419, -0.1175549253821373, -0.058650627732276917, -0.01934167370200157, 0.06916528940200806, -0.017352191731333733, -0.09433440864086151, -0.044366367161273956, -0.06605849415063858, 0.03125530853867531, -0.12142837792634964, 0.05695712938904762, 0.09815068542957306, 0.04124316945672035, -0.008628683164715767, -0.032562628388404846, 0.013216584920883179, 0.06098402291536331, -0.13088278472423553, -0.0654810220003128 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8508 - Matthews Correlation: 0.5452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5221 | 1.0 | 535 | 0.5370 | 0.4246 | | 0.3462 | 2.0 | 1070 | 0.5157 | 0.5183 | | 0.2332 | 3.0 | 1605 | 0.6324 | 0.5166 | | 0.1661 | 4.0 | 2140 | 0.7616 | 0.5370 | | 0.1263 | 5.0 | 2675 | 0.8508 | 0.5452 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5451837431775948, "name": "Matthews Correlation"}]}]}]}
text-classification
hchc/distilbert-base-uncased-finetuned-cola
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-cola ====================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.8508 * Matthews Correlation: 0.5452 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.9.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ -0.10383464395999908, 0.10120540857315063, -0.0022520474158227444, 0.12276788055896759, 0.1666901409626007, 0.03386859595775604, 0.12563511729240417, 0.12651139497756958, -0.0849364846944809, 0.02301187440752983, 0.12144501507282257, 0.15821129083633423, 0.02150956355035305, 0.1176779568195343, -0.0500313974916935, -0.26335206627845764, -0.01199560146778822, 0.047591447830200195, -0.052915725857019424, 0.13415201008319855, 0.0914519876241684, -0.1218477264046669, 0.09053158015012741, 0.011740590445697308, -0.19487455487251282, -0.0030731521546840668, -0.0018347986042499542, -0.05301673710346222, 0.14652033150196075, 0.025461170822381973, 0.12319207191467285, 0.0002757393231149763, 0.08609022945165634, -0.19391244649887085, 0.010576637461781502, 0.046777643263339996, 0.004549761302769184, 0.09336379170417786, 0.04553539305925369, 0.004809728357940912, 0.11498267203569412, -0.08228803426027298, 0.05460359901189804, 0.022279221564531326, -0.11481517553329468, -0.20749254524707794, -0.08067397028207779, 0.037087466567754745, 0.07932272553443909, 0.10563372820615768, -0.0061493744142353535, 0.11785659193992615, -0.07940715551376343, 0.0925544947385788, 0.21885614097118378, -0.28837862610816956, -0.06684252619743347, 0.04550871625542641, 0.014547529630362988, 0.04462137818336487, -0.10061807185411453, -0.03611601144075394, 0.04725038632750511, 0.052576031535863876, 0.12716594338417053, -0.028269920498132706, -0.12018435448408127, 0.003766693640500307, -0.14113639295101166, -0.032865699380636215, 0.16969040036201477, 0.04058093950152397, -0.028601227328181267, -0.05618457868695259, -0.05986873805522919, -0.14789673686027527, -0.036896493285894394, -0.011091555468738079, 0.047054409980773926, -0.023050963878631592, -0.04104197770357132, -0.010017036460340023, -0.10836482793092728, -0.06269247829914093, -0.07704642415046692, 0.10798846185207367, 0.0363718718290329, 0.007675514556467533, -0.02780025266110897, 0.11206065863370895, -0.005865945480763912, -0.1226966381072998, 0.02355601079761982, 0.02097540907561779, 0.012689893133938313, -0.04021593555808067, -0.053721170872449875, -0.060798708349466324, 0.012131081894040108, 0.1301577240228653, -0.047122616320848465, 0.04111204668879509, 0.050219759345054626, 0.048597291111946106, -0.09160886704921722, 0.19202455878257751, -0.03580522909760475, -0.03084646537899971, 0.010216610506176949, 0.047627296298742294, 0.01875482127070427, -0.011267484165728092, -0.12374192476272583, 0.004814791027456522, 0.08891398459672928, 0.008239168673753738, -0.061873115599155426, 0.07499396800994873, -0.05582471191883087, -0.02490629069507122, 0.004633262753486633, -0.09194502234458923, 0.022087836638092995, -0.00043343057041056454, -0.07030903548002243, -0.020085500553250313, 0.035151250660419464, 0.015435033477842808, -0.020707372575998306, 0.10835091024637222, -0.08790647983551025, 0.026752416044473648, -0.09399555623531342, -0.10904170572757721, 0.018905211240053177, -0.1054951474070549, 0.022351134568452835, -0.09458732604980469, -0.18699942529201508, -0.01751835271716118, 0.06014962121844292, -0.02431575581431389, -0.06193213537335396, -0.05482735112309456, -0.06901878118515015, 0.012110859155654907, -0.00983006227761507, 0.11879443377256393, -0.06429483741521835, 0.09071192145347595, 0.021251793950796127, 0.060370951890945435, -0.043897293508052826, 0.059785354882478714, -0.10187559574842453, 0.01549298595637083, -0.1526920348405838, 0.0408407486975193, -0.05135400965809822, 0.07098919153213501, -0.08210058510303497, -0.10425343364477158, 0.010064732283353806, -0.004529314115643501, 0.062102872878313065, 0.09292205423116684, -0.18618054687976837, -0.07498625665903091, 0.15663810074329376, -0.07117488980293274, -0.12234161049127579, 0.12099763751029968, -0.05984745919704437, 0.05509231239557266, 0.05852442607283592, 0.1775212585926056, 0.08262517303228378, -0.07750746607780457, 0.0012844196753576398, 0.02524842508137226, 0.052299730479717255, -0.06836514174938202, 0.06896835565567017, 0.005808686837553978, 0.018939658999443054, 0.03648047521710396, -0.02968413196504116, 0.0635809674859047, -0.08595447987318039, -0.09853983670473099, -0.04041954129934311, -0.08297623693943024, 0.041030269116163254, 0.07508224993944168, 0.06832760572433472, -0.09199556708335876, -0.07680521160364151, 0.04883570224046707, 0.0831286609172821, -0.05810406804084778, 0.02351146563887596, -0.05041094496846199, 0.07698944211006165, -0.027233602479100227, -0.022448653355240822, -0.1808081865310669, -0.038663145154714584, 0.007631292100995779, 0.0018355275969952345, 0.01636991649866104, 0.028570203110575676, 0.06043994426727295, 0.060524117201566696, -0.047912828624248505, -0.017734834924340248, -0.03082859516143799, 0.0006979885511100292, -0.12819665670394897, -0.19176749885082245, -0.030620023608207703, -0.024150285869836807, 0.15774306654930115, -0.20662398636341095, 0.04879447817802429, -0.01645759679377079, 0.0705208107829094, 0.011696664616465569, -0.005864947568625212, -0.03661194443702698, 0.07415825128555298, -0.044359076768159866, -0.05301404371857643, 0.08113250136375427, 0.01833578385412693, -0.08794702589511871, -0.04984605312347412, -0.09590908139944077, 0.1567656546831131, 0.1280987411737442, -0.10459812730550766, -0.07575517147779465, -0.020878275856375694, -0.06691842526197433, -0.03409746289253235, -0.047989316284656525, 0.025730803608894348, 0.18737000226974487, -0.004891610238701105, 0.1502373367547989, -0.06775445491075516, -0.043505072593688965, 0.017105212435126305, -0.0354619100689888, 0.017654012888669968, 0.127474844455719, 0.13544870913028717, -0.05933381989598274, 0.15501481294631958, 0.14625869691371918, -0.09007735550403595, 0.145008385181427, -0.04167001321911812, -0.06466987729072571, -0.014875674620270729, -0.03127446398139, -0.011656396090984344, 0.10141626745462418, -0.15232256054878235, 0.00046135549200698733, 0.03373405337333679, 0.016051579266786575, 0.025546474382281303, -0.22458040714263916, -0.03958557918667793, 0.03429880738258362, -0.041943419724702835, -0.005592979025095701, -0.006588132120668888, 0.005876943934708834, 0.10101965814828873, 0.0009335147333331406, -0.08730443567037582, 0.03876351937651634, 0.0026612894143909216, -0.08317001909017563, 0.21557371318340302, -0.08268748223781586, -0.17337356507778168, -0.13115668296813965, -0.0732383280992508, -0.04811685532331467, -0.0008401619852520525, 0.06681433320045471, -0.08871054649353027, -0.031200826168060303, -0.0722622498869896, 0.02185654826462269, 0.011155236512422562, 0.024382706731557846, 0.005853694397956133, 0.0042718700133264065, 0.06375089287757874, -0.11019960045814514, -0.014874882064759731, -0.05734575167298317, -0.04420655965805054, 0.044547777622938156, 0.031888268887996674, 0.11349225789308548, 0.15286670625209808, -0.013132772408425808, 0.011214667931199074, -0.030240574851632118, 0.24049602448940277, -0.059938911348581314, -0.017851121723651886, 0.1448054313659668, -0.011044110171496868, 0.05103641003370285, 0.11945586651563644, 0.0726076140999794, -0.07772540301084518, 0.004312608391046524, 0.03502294048666954, -0.035924188792705536, -0.23050586879253387, -0.05830783024430275, -0.0580093115568161, 0.009028274565935135, 0.09132799506187439, 0.024537084624171257, 0.02863651141524315, 0.07243366539478302, 0.04168015345931053, 0.07879020273685455, -0.03953266516327858, 0.05483550578355789, 0.13301809132099152, 0.032634686678647995, 0.1260862797498703, -0.045483481138944626, -0.06399229913949966, 0.04336586594581604, -0.008293651044368744, 0.2258092761039734, 0.004300337750464678, 0.1276758313179016, 0.06198640540242195, 0.16354146599769592, -0.0054830461740493774, 0.07840268313884735, -0.010732418857514858, -0.035221271216869354, -0.018141191452741623, -0.037992700934410095, -0.03924349322915077, 0.024502256885170937, -0.066899374127388, 0.06215522065758705, -0.11995606124401093, 0.015325220301747322, 0.059730853885412216, 0.2496272623538971, 0.03515489399433136, -0.32345208525657654, -0.09898092597723007, 0.0024053663946688175, -0.03313731774687767, -0.021863920614123344, 0.0273530725389719, 0.09445612877607346, -0.10076729208230972, 0.02960696630179882, -0.0755845382809639, 0.09671586006879807, -0.052783574908971786, 0.04845432937145233, 0.08535827696323395, 0.0919003114104271, 0.012496222741901875, 0.09286853671073914, -0.2853424847126007, 0.2713872790336609, -0.0006739680538885295, 0.05729370191693306, -0.07760540395975113, 0.009966375306248665, 0.04410833492875099, 0.06337082386016846, 0.08130016177892685, -0.012899746187031269, -0.024346675723791122, -0.18258428573608398, -0.07169398665428162, 0.02936336025595665, 0.06109060347080231, -0.037930890917778015, 0.08424566686153412, -0.032300740480422974, 0.006599531043320894, 0.07140441238880157, 0.0006967696244828403, -0.05066028609871864, -0.10880037397146225, -0.005909185390919447, 0.02397346869111061, -0.059398870915174484, -0.060056257992982864, -0.12077134102582932, -0.12826916575431824, 0.15705078840255737, -0.032003022730350494, -0.04085267707705498, -0.10877475887537003, 0.08466852456331253, 0.06152741611003876, -0.08914316445589066, 0.045669879764318466, 0.0005959231639280915, 0.07997871935367584, 0.023172641173005104, -0.07432542741298676, 0.10017267614603043, -0.0770445391535759, -0.1564350724220276, -0.06561274826526642, 0.10553765296936035, 0.03183136135339737, 0.06541163474321365, -0.011658147908747196, 0.007049757055938244, -0.04838663712143898, -0.09031575173139572, 0.015589798800647259, 0.008393027819693089, 0.08043350279331207, 0.018246319144964218, -0.07738076895475388, 0.006795120891183615, -0.05987853184342384, -0.032692547887563705, 0.20929457247257233, 0.21413227915763855, -0.10129690170288086, 0.02511221170425415, 0.02223113179206848, -0.07324153184890747, -0.2009669840335846, 0.03277604281902313, 0.05662359669804573, 0.010021238587796688, 0.039619337767362595, -0.18115434050559998, 0.13914503157138824, 0.10754189640283585, -0.013608374632894993, 0.10514360666275024, -0.31820085644721985, -0.12163776159286499, 0.13657836616039276, 0.13423913717269897, 0.10293001681566238, -0.13001638650894165, -0.02109033241868019, -0.017615579068660736, -0.13718068599700928, 0.11693181097507477, -0.09116905927658081, 0.11928858608007431, -0.035122472792863846, 0.08117944002151489, 0.001484388718381524, -0.058530353009700775, 0.11903737485408783, 0.028600307181477547, 0.09206292778253555, -0.05895908921957016, -0.03317354619503021, 0.031762782484292984, -0.044518113136291504, 0.035449836403131485, -0.09415918588638306, 0.03010070137679577, -0.1054188460111618, -0.02599860541522503, -0.06674744933843613, 0.04529062658548355, -0.04255272075533867, -0.06765837222337723, -0.03653636947274208, 0.0265487227588892, 0.049170009791851044, -0.00828699953854084, 0.1216089129447937, 0.028320735320448875, 0.1416580229997635, 0.09587123990058899, 0.0723763257265091, -0.06913235038518906, -0.07920902222394943, -0.026813743636012077, -0.012333118356764317, 0.04966241866350174, -0.13442431390285492, 0.020594606176018715, 0.15339164435863495, 0.018398359417915344, 0.15040840208530426, 0.0824565514922142, -0.01817503198981285, 0.00042826015851460397, 0.057545337826013565, -0.16661566495895386, -0.08804254233837128, -0.014039109461009502, -0.06740307062864304, -0.12129536271095276, 0.043095141649246216, 0.09405700117349625, -0.06721849739551544, -0.008372144773602486, -0.004349705297499895, 0.01469674613326788, -0.04716181382536888, 0.18609417974948883, 0.06154899299144745, 0.04665590450167656, -0.09985218197107315, 0.07054084539413452, 0.04595160111784935, -0.07237152010202408, 0.004001410212367773, 0.07434456795454025, -0.08947034925222397, -0.05526033788919449, 0.06606078147888184, 0.18938665091991425, -0.04767127335071564, -0.046722978353500366, -0.14104586839675903, -0.12372433394193649, 0.07955270260572433, 0.138994500041008, 0.12064179033041, 0.009997307322919369, -0.06806571036577225, 0.0008344626985490322, -0.10814674198627472, 0.10490357875823975, 0.0500030592083931, 0.06362494826316833, -0.14433597028255463, 0.13988278806209564, 0.01719871535897255, 0.04968564584851265, -0.020083755254745483, 0.02561938390135765, -0.09876364469528198, 0.005827938672155142, -0.09868337959051132, -0.013722161762416363, -0.034054242074489594, 0.012985744513571262, -0.006318570114672184, -0.04628748074173927, -0.05590714141726494, 0.011486109346151352, -0.1063002273440361, -0.023162195459008217, 0.026437468826770782, 0.07011197507381439, -0.10760872066020966, -0.037009451538324356, 0.02772824652493, -0.06170268356800079, 0.07782692462205887, 0.04435008391737938, 0.016347121447324753, 0.04947372525930405, -0.1355273425579071, 0.015554004348814487, 0.07456210255622864, 0.031121879816055298, 0.06483486294746399, -0.09732333570718765, -0.006183636840432882, -0.0053562866523861885, 0.03837743028998375, 0.020266860723495483, 0.07684716582298279, -0.1402582824230194, 0.001986164366826415, -0.02268778160214424, -0.07965659350156784, -0.06818123906850815, 0.026137690991163254, 0.09063076227903366, 0.021467387676239014, 0.20138542354106903, -0.07626044750213623, 0.0504453144967556, -0.21508574485778809, 0.006239953450858593, -0.009531225077807903, -0.10962431132793427, -0.10492591559886932, -0.0708090215921402, 0.05526723712682724, -0.057914890348911285, 0.15390664339065552, 0.04661954566836357, 0.021831315010786057, 0.024545500054955482, -0.006454572547227144, 0.014578753150999546, 0.012197021394968033, 0.18873350322246552, 0.03011610172688961, -0.03411165624856949, 0.058970674872398376, 0.04362010210752487, 0.1044016182422638, 0.11286903917789459, 0.20154213905334473, 0.1411353200674057, -0.0035453320015221834, 0.09319974482059479, 0.04145777225494385, -0.05831583961844444, -0.1595756560564041, 0.04808640480041504, -0.03739310801029205, 0.11085674911737442, -0.020981188863515854, 0.21646925806999207, 0.05933288857340813, -0.17026998102664948, 0.04735904932022095, -0.053758326917886734, -0.08698701858520508, -0.11291085183620453, -0.05158152058720589, -0.07855936139822006, -0.12850584089756012, -0.0048876600340008736, -0.11775918304920197, -0.004291563760489225, 0.12715089321136475, 0.00402813870459795, -0.027962086722254753, 0.15618298947811127, 0.008514098823070526, 0.023025378584861755, 0.058054350316524506, 0.011157182045280933, -0.035986416041851044, -0.1311996579170227, -0.058934230357408524, -0.017828846350312233, -0.007932404056191444, 0.03251632675528526, -0.06198100745677948, -0.03958696126937866, 0.032886818051338196, -0.022165410220623016, -0.09309859573841095, 0.00464885076507926, 0.013179652392864227, 0.0537240244448185, 0.0472228042781353, 0.010846700519323349, 0.01863093301653862, -0.0025611836463212967, 0.1995515376329422, -0.07102957367897034, -0.06607849895954132, -0.10830643028020859, 0.22878491878509521, 0.03340505436062813, -0.022732146084308624, 0.035306405276060104, -0.06456553936004639, 0.003613264998421073, 0.24900740385055542, 0.2179601937532425, -0.08370130509138107, -0.008082468062639236, 0.016643453389406204, -0.00917835719883442, -0.023115193471312523, 0.10133684426546097, 0.14451496303081512, 0.054607093334198, -0.09270896017551422, -0.047325845807790756, -0.058867841958999634, -0.018412597477436066, -0.03700585663318634, 0.06911364942789078, 0.04735378548502922, 0.007375677581876516, -0.03428792208433151, 0.05537526309490204, -0.07130070775747299, -0.09046456962823868, 0.05387882888317108, -0.2163361757993698, -0.1704862415790558, -0.013822370208799839, 0.0987531989812851, 0.0034812605008482933, 0.06009683758020401, -0.03093436360359192, -0.002978322794660926, 0.09441496431827545, -0.02123800292611122, -0.095933698117733, -0.06828540563583374, 0.08796283602714539, -0.10804197937250137, 0.22152897715568542, -0.046514566987752914, 0.05472701042890549, 0.12552043795585632, 0.0690474659204483, -0.07079540193080902, 0.06335695087909698, 0.042938705533742905, -0.04169972985982895, 0.028012003749608994, 0.06953982263803482, -0.03557710722088814, 0.062061816453933716, 0.04843403026461601, -0.1381770670413971, 0.019411461427807808, -0.04943867027759552, -0.06664104014635086, -0.045684222131967545, -0.02263425663113594, -0.062341805547475815, 0.13239061832427979, 0.2164263278245926, -0.02681135945022106, -0.010401031002402306, -0.06996437907218933, 0.010908642783761024, 0.053030818700790405, 0.02387501858174801, -0.05681249126791954, -0.21032701432704926, 0.016414105892181396, 0.039088454097509384, -0.018967248499393463, -0.24550600349903107, -0.10100843757390976, 0.0007038508774712682, -0.07268606871366501, -0.09750784933567047, 0.0743163600564003, 0.08655436336994171, 0.050482649356126785, -0.05656850337982178, -0.039083562791347504, -0.07675884664058685, 0.14508365094661713, -0.14432379603385925, -0.09256170690059662 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8657 - Matthews Correlation: 0.5472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.527 | 1.0 | 535 | 0.5545 | 0.3893 | | 0.3518 | 2.0 | 1070 | 0.5170 | 0.4970 | | 0.2448 | 3.0 | 1605 | 0.6734 | 0.5142 | | 0.1779 | 4.0 | 2140 | 0.7728 | 0.5466 | | 0.1339 | 5.0 | 2675 | 0.8657 | 0.5472 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5471613867597194, "name": "Matthews Correlation"}]}]}]}
text-classification
hcjang1987/distilbert-base-uncased-finetuned-cola
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-cola ====================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.8657 * Matthews Correlation: 0.5472 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.9.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ -0.10332313179969788, 0.1015724390745163, -0.002312843920662999, 0.12276768684387207, 0.16639408469200134, 0.033813461661338806, 0.12579520046710968, 0.125900536775589, -0.08453615009784698, 0.023038864135742188, 0.12107968330383301, 0.15842050313949585, 0.022394772619009018, 0.11741199344396591, -0.05019248276948929, -0.26342472434043884, -0.012488359585404396, 0.04783770069479942, -0.053303979337215424, 0.13424590229988098, 0.09187149256467819, -0.12198898196220398, 0.08984480053186417, 0.0111010130494833, -0.19435623288154602, -0.0028592711314558983, -0.0013934202725067735, -0.052089229226112366, 0.1472260057926178, 0.02647952362895012, 0.12323863059282303, 0.00009305680578108877, 0.0856972187757492, -0.19567826390266418, 0.010562565177679062, 0.046667419373989105, 0.004705554340034723, 0.09324687719345093, 0.045802921056747437, 0.00554001796990633, 0.11468727141618729, -0.08120270073413849, 0.05472080782055855, 0.021681981161236763, -0.11497081071138382, -0.2068820297718048, -0.07962364703416824, 0.03758406266570091, 0.0796554908156395, 0.10459806025028229, -0.006230704020708799, 0.11870469897985458, -0.08066938817501068, 0.09285569190979004, 0.2200051099061966, -0.2877482771873474, -0.06635250151157379, 0.04505614936351776, 0.014677424915134907, 0.044682469218969345, -0.10079862177371979, -0.03739927336573601, 0.046519577503204346, 0.05224716290831566, 0.12726302444934845, -0.028189096599817276, -0.12085065245628357, 0.004253816325217485, -0.14072443544864655, -0.03378709405660629, 0.1690913736820221, 0.04055400192737579, -0.027766436338424683, -0.057021185755729675, -0.059814922511577606, -0.1471635103225708, -0.03632897883653641, -0.011735448613762856, 0.04698709771037102, -0.022290624678134918, -0.04063256457448006, -0.009078622795641422, -0.10850299149751663, -0.06297571212053299, -0.07638081163167953, 0.10666792094707489, 0.03696318715810776, 0.007606412284076214, -0.02870200015604496, 0.11179010570049286, -0.006500004790723324, -0.12308304011821747, 0.02411290816962719, 0.02037799172103405, 0.011989167891442776, -0.04045587778091431, -0.05343877151608467, -0.06197403371334076, 0.011763134971261024, 0.13093285262584686, -0.04615522548556328, 0.041309114545583725, 0.04994659498333931, 0.04885588958859444, -0.09086945652961731, 0.1909227818250656, -0.03595937415957451, -0.029715662822127342, 0.008950082585215569, 0.04760708287358284, 0.018111692741513252, -0.01136650238186121, -0.12376341223716736, 0.005472174379974604, 0.08962500095367432, 0.008479108102619648, -0.061838965862989426, 0.07425087690353394, -0.056802667677402496, -0.024721097201108932, 0.004131217021495104, -0.09165093302726746, 0.022375939413905144, 0.00033538369461894035, -0.07052337378263474, -0.02074437029659748, 0.03414750099182129, 0.01585099846124649, -0.021162237972021103, 0.1092941090464592, -0.087677501142025, 0.02684328332543373, -0.0942973792552948, -0.10961209982633591, 0.018874282017350197, -0.10485763847827911, 0.02286994270980358, -0.09466932713985443, -0.1851903200149536, -0.017025593668222427, 0.06075085327029228, -0.02460683509707451, -0.06200755387544632, -0.055202122777700424, -0.06892786920070648, 0.01180870458483696, -0.010335119441151619, 0.11862587183713913, -0.06403875350952148, 0.09118888527154922, 0.020777493715286255, 0.06117178127169609, -0.0423162616789341, 0.06002867966890335, -0.10274525731801987, 0.015605755150318146, -0.15236058831214905, 0.04064709693193436, -0.050737909972667694, 0.07045005261898041, -0.08265955746173859, -0.10432752966880798, 0.009228657931089401, -0.004601517226547003, 0.06231971085071564, 0.09285847097635269, -0.18612444400787354, -0.07489040493965149, 0.15832285583019257, -0.0711991935968399, -0.12159720063209534, 0.12100826948881149, -0.059955913573503494, 0.055244315415620804, 0.058458197861909866, 0.1785026490688324, 0.08259300887584686, -0.07753928750753403, 0.002370839472860098, 0.025448424741625786, 0.05233263596892357, -0.06794770061969757, 0.0690544992685318, 0.005663874093443155, 0.018977288156747818, 0.036096855998039246, -0.029562193900346756, 0.06485143303871155, -0.0860382616519928, -0.09845629334449768, -0.039371419697999954, -0.08255274593830109, 0.04162424057722092, 0.07586991786956787, 0.06841401010751724, -0.09105948358774185, -0.0763910561800003, 0.05037301406264305, 0.0821889340877533, -0.0580642893910408, 0.02314496599137783, -0.0503016896545887, 0.07639402896165848, -0.026829233393073082, -0.02250770479440689, -0.1813187450170517, -0.037914179265499115, 0.008298509754240513, 0.00030782754765823483, 0.015607019886374474, 0.029432959854602814, 0.060222942382097244, 0.06053614616394043, -0.047357939183712006, -0.0169009231030941, -0.030366290360689163, 0.000577409693505615, -0.12813152372837067, -0.1917385756969452, -0.03057681769132614, -0.02423953078687191, 0.156190887093544, -0.2069481760263443, 0.04874441400170326, -0.01621382124722004, 0.07090775668621063, 0.012564027681946754, -0.00612019095569849, -0.03682919591665268, 0.07420222461223602, -0.04411347210407257, -0.0523916520178318, 0.0812264010310173, 0.01811138167977333, -0.08667171746492386, -0.04919980838894844, -0.09627891331911087, 0.1572272926568985, 0.12718626856803894, -0.1034059002995491, -0.0760594829916954, -0.021347712725400925, -0.06660434603691101, -0.0343066044151783, -0.04873832315206528, 0.02556426078081131, 0.1869177520275116, -0.00420853728428483, 0.15050604939460754, -0.06820410490036011, -0.04405202716588974, 0.017060501500964165, -0.035558294504880905, 0.01752503030002117, 0.12857049703598022, 0.13672372698783875, -0.059757087379693985, 0.1549672782421112, 0.14600029587745667, -0.08956955373287201, 0.14581584930419922, -0.042081791907548904, -0.06494435667991638, -0.01576518639922142, -0.030440280213952065, -0.011823378503322601, 0.10109712183475494, -0.15218202769756317, 0.0007694849045947194, 0.03372877836227417, 0.01625664345920086, 0.02555510401725769, -0.22482292354106903, -0.03977283835411072, 0.03489000350236893, -0.04164525121450424, -0.005474809091538191, -0.006538841873407364, 0.006175834219902754, 0.10060788691043854, 0.0008367682457901537, -0.08789040148258209, 0.03857361525297165, 0.0023531760089099407, -0.08380384743213654, 0.21612940728664398, -0.0819648951292038, -0.1740206778049469, -0.13029010593891144, -0.07211651653051376, -0.04652172699570656, -0.0014287153026089072, 0.06717630475759506, -0.0880398079752922, -0.03136340528726578, -0.07241464406251907, 0.022426960989832878, 0.011682678945362568, 0.023577624931931496, 0.004165343940258026, 0.004691360052675009, 0.0627281442284584, -0.1105419248342514, -0.014563986100256443, -0.05693874508142471, -0.04303474351763725, 0.04511274769902229, 0.03093869984149933, 0.11271077394485474, 0.15332992374897003, -0.013051684014499187, 0.01073325052857399, -0.02979433536529541, 0.24044188857078552, -0.059675466269254684, -0.01778922788798809, 0.1437002569437027, -0.011180400848388672, 0.051581159234046936, 0.12121641635894775, 0.07256301492452621, -0.07762006670236588, 0.004628076683729887, 0.035162415355443954, -0.0359310582280159, -0.23016569018363953, -0.058164145797491074, -0.05894760414958, 0.009408839978277683, 0.09179161489009857, 0.02400859072804451, 0.027960199862718582, 0.07174859195947647, 0.042059510946273804, 0.07843010127544403, -0.03859678655862808, 0.054722584784030914, 0.13206149637699127, 0.03266603872179985, 0.12596671283245087, -0.04504057765007019, -0.06483356654644012, 0.042597446590662, -0.007978210225701332, 0.2260333150625229, 0.0050354874692857265, 0.12834273278713226, 0.06157848238945007, 0.16391128301620483, -0.005736029241234064, 0.07894665747880936, -0.011094123125076294, -0.034968651831150055, -0.018255941569805145, -0.0379565991461277, -0.038966793566942215, 0.025144007056951523, -0.06575246900320053, 0.06110115349292755, -0.11959076672792435, 0.014438965357840061, 0.0594814196228981, 0.25026071071624756, 0.03524284064769745, -0.3214956820011139, -0.09808036684989929, 0.002536571817472577, -0.034383345395326614, -0.021274391561746597, 0.027477042749524117, 0.09572268277406693, -0.10085224360227585, 0.02785705029964447, -0.07533792406320572, 0.09723755717277527, -0.05295697599649429, 0.048160042613744736, 0.0843612551689148, 0.09058960527181625, 0.01258720550686121, 0.09319695085287094, -0.28638818860054016, 0.2723681628704071, -0.0008076443918980658, 0.05655864253640175, -0.07818366587162018, 0.009896758943796158, 0.042666301131248474, 0.061884805560112, 0.0813923180103302, -0.01270498987287283, -0.02475418895483017, -0.1838969737291336, -0.07109882682561874, 0.02905798889696598, 0.06135738268494606, -0.03827906772494316, 0.08329746127128601, -0.0324702113866806, 0.007173488847911358, 0.07173983007669449, 0.0008045090944506228, -0.0504738986492157, -0.10899591445922852, -0.006050938740372658, 0.02169676125049591, -0.05962556600570679, -0.0599365308880806, -0.12079009413719177, -0.1269187182188034, 0.15617236495018005, -0.033901963382959366, -0.040993835777044296, -0.10791885852813721, 0.08506791293621063, 0.061464518308639526, -0.08936470001935959, 0.04514557868242264, 0.000738253234885633, 0.08025779575109482, 0.02236143685877323, -0.07390578091144562, 0.1018131747841835, -0.07649685442447662, -0.15652239322662354, -0.06577601283788681, 0.10586735606193542, 0.032722651958465576, 0.06549611687660217, -0.011707024648785591, 0.006774700712412596, -0.04805860295891762, -0.09038307517766953, 0.014813804998993874, 0.008345239795744419, 0.07965285331010818, 0.018025413155555725, -0.07637076824903488, 0.005135191138833761, -0.060153014957904816, -0.032382380217313766, 0.2090013027191162, 0.2155594676733017, -0.1015942245721817, 0.025482993572950363, 0.023000963032245636, -0.07321760803461075, -0.20099571347236633, 0.03190016746520996, 0.05648031458258629, 0.010165005922317505, 0.040752872824668884, -0.18096204102039337, 0.13816599547863007, 0.10710378736257553, -0.01384048257023096, 0.10350605845451355, -0.32117003202438354, -0.12191008031368256, 0.13653840124607086, 0.13403931260108948, 0.10183296352624893, -0.1296095997095108, -0.02106289006769657, -0.017516952008008957, -0.13864044845104218, 0.11807448416948318, -0.08963292092084885, 0.11879412829875946, -0.03526000306010246, 0.08031516522169113, 0.0020454502664506435, -0.05874130129814148, 0.11840783059597015, 0.02880481816828251, 0.09245019406080246, -0.058894455432891846, -0.033727724105119705, 0.03141928091645241, -0.043636053800582886, 0.03591449186205864, -0.0946180671453476, 0.03074265830218792, -0.10552147775888443, -0.02620120160281658, -0.06658472865819931, 0.04482881352305412, -0.04277663305401802, -0.06828492879867554, -0.03765833377838135, 0.02682824432849884, 0.04986222833395004, -0.00781317986547947, 0.12128283083438873, 0.028487224131822586, 0.14118783175945282, 0.09725944697856903, 0.07234017550945282, -0.06849604099988937, -0.07944117486476898, -0.027130937203764915, -0.011693665757775307, 0.050213951617479324, -0.13466434180736542, 0.021673152223229408, 0.15386183559894562, 0.018748361617326736, 0.15085408091545105, 0.08224688470363617, -0.018408451229333878, -0.000038588772440562025, 0.05739474296569824, -0.1663547307252884, -0.09028971940279007, -0.013794506900012493, -0.06592530012130737, -0.120988629758358, 0.04149267077445984, 0.09305112063884735, -0.06741011887788773, -0.00843020249158144, -0.004281180445104837, 0.015313797630369663, -0.04723663255572319, 0.18638592958450317, 0.0613778792321682, 0.047127142548561096, -0.09929908812046051, 0.06995432078838348, 0.04666122794151306, -0.07269814610481262, 0.0037318868562579155, 0.07431449741125107, -0.0890774056315422, -0.05519365519285202, 0.06728839129209518, 0.1886058747768402, -0.046692654490470886, -0.046155206859111786, -0.14003561437129974, -0.12357745319604874, 0.0792497843503952, 0.13904134929180145, 0.1200082004070282, 0.01049793791025877, -0.06785153597593307, 0.00019744649762287736, -0.10795047134160995, 0.10540682822465897, 0.05073263496160507, 0.06298930197954178, -0.1433083862066269, 0.1401301622390747, 0.017138760536909103, 0.04845019429922104, -0.020050548017024994, 0.025569729506969452, -0.10050269961357117, 0.006125289481133223, -0.09719518572092056, -0.013121053576469421, -0.03435098007321358, 0.012958516366779804, -0.0064702765084803104, -0.04612487182021141, -0.05527234822511673, 0.011158852837979794, -0.10654842853546143, -0.02305331639945507, 0.025587547570466995, 0.07028084993362427, -0.10805141925811768, -0.03703869506716728, 0.028576882556080818, -0.061755064874887466, 0.07746455818414688, 0.04322964698076248, 0.016438275575637817, 0.04968917369842529, -0.13629023730754852, 0.015906615182757378, 0.07404516637325287, 0.03180790692567825, 0.06392928212881088, -0.09730302542448044, -0.006607840768992901, -0.005123616196215153, 0.038434166461229324, 0.019799381494522095, 0.07685714215040207, -0.1412917673587799, 0.0021086919587105513, -0.023897405713796616, -0.0807764083147049, -0.0678190290927887, 0.02554340846836567, 0.0894806906580925, 0.02105056308209896, 0.20164498686790466, -0.07591917365789413, 0.0509612113237381, -0.21506349742412567, 0.006144605576992035, -0.008797867223620415, -0.10902569442987442, -0.10422297567129135, -0.07086947560310364, 0.054850414395332336, -0.058269016444683075, 0.15395615994930267, 0.04735720157623291, 0.021246599033474922, 0.02455235831439495, -0.006538163870573044, 0.01522935088723898, 0.012810862623155117, 0.18856413662433624, 0.029759394004940987, -0.03423094376921654, 0.05727945640683174, 0.043753206729888916, 0.10342049598693848, 0.11351202428340912, 0.20185501873493195, 0.14232799410820007, -0.005171371158212423, 0.09228657931089401, 0.04151700809597969, -0.05877390503883362, -0.15959346294403076, 0.04877897724509239, -0.03697333112359047, 0.11068490892648697, -0.021118618547916412, 0.21789439022541046, 0.05992208421230316, -0.17065757513046265, 0.048043910413980484, -0.053645841777324677, -0.08722954988479614, -0.11285875737667084, -0.05258123204112053, -0.07861709594726562, -0.12828193604946136, -0.005204194225370884, -0.11737766861915588, -0.004195031244307756, 0.12757103145122528, 0.003938696812838316, -0.027955971658229828, 0.1557133048772812, 0.009171603247523308, 0.022800177335739136, 0.05762377381324768, 0.011028269305825233, -0.03618573397397995, -0.13145752251148224, -0.05800700932741165, -0.017793944105505943, -0.008399343118071556, 0.032397568225860596, -0.06183177977800369, -0.03914433345198631, 0.03199723735451698, -0.022326383739709854, -0.0926566794514656, 0.004562407732009888, 0.01310307439416647, 0.05314285308122635, 0.04719266667962074, 0.010972186923027039, 0.01877301000058651, -0.002532846527174115, 0.1987847238779068, -0.07100319862365723, -0.06681003421545029, -0.10774929076433182, 0.22878898680210114, 0.03362390398979187, -0.021538235247135162, 0.03544759377837181, -0.06479744613170624, 0.0036737825721502304, 0.2484002709388733, 0.21674033999443054, -0.08312531560659409, -0.00759905856102705, 0.01681341417133808, -0.00897079799324274, -0.022863857448101044, 0.10122310370206833, 0.14477795362472534, 0.056590210646390915, -0.09298194199800491, -0.047185901552438736, -0.05862809717655182, -0.018856044858694077, -0.03680088743567467, 0.06937605887651443, 0.047937873750925064, 0.006903874687850475, -0.034425750374794006, 0.05617259442806244, -0.07130328565835953, -0.08916787803173065, 0.05344979837536812, -0.2158796489238739, -0.17011554539203644, -0.014292381703853607, 0.09855776280164719, 0.002965447725728154, 0.05995777249336243, -0.031091291457414627, -0.0030942149460315704, 0.09429243206977844, -0.020759472623467445, -0.09757246822118759, -0.06830491870641708, 0.0873854011297226, -0.10813889652490616, 0.22028540074825287, -0.04601934924721718, 0.055698469281196594, 0.12523353099822998, 0.06925327330827713, -0.06964798271656036, 0.06347110867500305, 0.04355892911553383, -0.04115929454565048, 0.02771109528839588, 0.0693083107471466, -0.03504079580307007, 0.062450800091028214, 0.048572130501270294, -0.1388675570487976, 0.019971951842308044, -0.05054435878992081, -0.06622850894927979, -0.04647599533200264, -0.022433726117014885, -0.06176520138978958, 0.131880983710289, 0.21606285870075226, -0.026814909651875496, -0.01065120194107294, -0.07013331353664398, 0.01093422994017601, 0.05241850018501282, 0.024957731366157532, -0.05686246231198311, -0.21026171743869781, 0.01677129603922367, 0.03862840309739113, -0.018214931711554527, -0.24465087056159973, -0.10062010586261749, -0.00022786681074649096, -0.07280272245407104, -0.09730440378189087, 0.07464796304702759, 0.08722440898418427, 0.05100062116980553, -0.056749243289232254, -0.0422816202044487, -0.07694271206855774, 0.14514240622520447, -0.14397749304771423, -0.09265366196632385 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2672 | 1.0 | 5533 | 1.2131 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
question-answering
hcy11/distilbert-base-uncased-finetuned-squad
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-squad ======================================= This model is a fine-tuned version of distilbert-base-uncased on the squad dataset. It achieves the following results on the evaluation set: * Loss: 1.2131 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.6
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6" ]
[ 56, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6" ]
[ -0.10762248933315277, 0.07268542051315308, -0.0018104235641658306, 0.1205499991774559, 0.16758860647678375, 0.021556876599788666, 0.09022851288318634, 0.12457366287708282, -0.09375619888305664, 0.032938797026872635, 0.13384336233139038, 0.17292816936969757, 0.000056304153986275196, 0.07161390036344528, -0.048923660069704056, -0.21748684346675873, -0.017976369708776474, 0.05648648366332054, -0.09205783903598785, 0.14425541460514069, 0.08518490195274353, -0.14982342720031738, 0.07147074490785599, 0.001220149570144713, -0.21452681720256805, 0.018325185403227806, 0.0035098548978567123, -0.03418487310409546, 0.1407565474510193, 0.007052050903439522, 0.11777883023023605, -0.0005032659973949194, 0.06524723768234253, -0.18000704050064087, 0.014535488560795784, 0.05098762363195419, 0.007455858401954174, 0.08081365376710892, 0.04631994292140007, 0.004886152688413858, 0.10714045912027359, -0.09363356977701187, 0.036355938762426376, 0.024884143844246864, -0.12854665517807007, -0.2571008503437042, -0.10327184945344925, 0.01220072340220213, 0.06868261843919754, 0.12347065657377243, -0.006310191471129656, 0.15957622230052948, -0.11338835209608078, 0.0904080718755722, 0.25801777839660645, -0.30347028374671936, -0.06871708482503891, 0.03164578974246979, 0.023364363238215446, 0.06462729722261429, -0.1088709682226181, -0.03430606797337532, 0.057175248861312866, 0.054060764610767365, 0.10809935629367828, -0.04643099755048752, -0.12544992566108704, 0.03703949227929115, -0.14842954277992249, -0.044083449989557266, 0.14056825637817383, 0.04597342014312744, -0.02663157694041729, -0.028720080852508545, -0.06158128380775452, -0.13043880462646484, -0.024082522839307785, -0.01677165925502777, 0.04836710914969444, -0.04767542704939842, -0.08247401565313339, 0.004013984929770231, -0.10809897631406784, -0.07792659848928452, -0.07772935926914215, 0.1288752257823944, 0.04039957374334335, 0.03295023366808891, -0.05059310793876648, 0.09779486060142517, 0.004587261937558651, -0.13229665160179138, 0.0110624385997653, 0.03772256150841713, -0.019712300971150398, -0.035123877227306366, -0.06865277141332626, -0.059539806097745895, 0.023928893730044365, 0.11885074526071548, -0.08224646002054214, 0.03544510900974274, 0.05422368273139, 0.039163991808891296, -0.08381817489862442, 0.1741040199995041, -0.0694299042224884, 0.00036145816557109356, -0.007974210195243359, 0.032524242997169495, 0.0005186247290112078, 0.0040744333527982235, -0.0954376831650734, -0.00515881460160017, 0.09588532149791718, 0.01968703605234623, -0.0404181107878685, 0.05661585554480553, -0.04901903122663498, -0.023540854454040527, 0.002916945843026042, -0.08578687161207199, 0.02970864623785019, -0.004319524392485619, -0.09274426102638245, -0.01709843799471855, 0.005379507318139076, 0.012713744305074215, -0.018584318459033966, 0.09810453653335571, -0.09363968670368195, 0.03936222568154335, -0.09713592380285263, -0.09788156300783157, 0.029252534732222557, -0.08198508620262146, 0.03044828027486801, -0.07695866376161575, -0.1580829620361328, -0.013759266585111618, 0.053586725145578384, -0.02785739116370678, -0.0478937104344368, -0.032381851226091385, -0.0903276652097702, -0.00950575340539217, -0.02102910354733467, 0.1630200892686844, -0.05902036651968956, 0.11756345629692078, 0.04443781077861786, 0.06859688460826874, -0.040141358971595764, 0.05741175636649132, -0.10874899476766586, 0.01501765288412571, -0.17468911409378052, 0.03353206440806389, -0.053010787814855576, 0.0677725076675415, -0.10449639707803726, -0.12408976256847382, 0.0242240522056818, -0.018592122942209244, 0.08677984029054642, 0.09673456102609634, -0.16481569409370422, -0.05741714686155319, 0.14932425320148468, -0.05504178628325462, -0.14629565179347992, 0.1199851706624031, -0.05447462573647499, 0.03340994939208031, 0.06428302824497223, 0.17012697458267212, 0.05071527138352394, -0.09107092022895813, 0.004857217893004417, -0.0030790481250733137, 0.031559884548187256, -0.0857626274228096, 0.07088685780763626, -0.0024503334425389767, 0.03265010565519333, 0.02484949864447117, -0.048528362065553665, 0.05305321887135506, -0.11366534978151321, -0.0941176488995552, -0.05178205668926239, -0.10444217920303345, 0.03638686239719391, 0.09197948127985, 0.0709102526307106, -0.10389027744531631, -0.07159478962421417, 0.0760577991604805, 0.06783293187618256, -0.05667524412274361, 0.03238522261381149, -0.06371096521615982, 0.06620445847511292, -0.0727701261639595, -0.028837157413363457, -0.19941794872283936, -0.028501762077212334, 0.0038911523297429085, 0.004686761647462845, 0.008628500625491142, 0.04842325672507286, 0.07647109031677246, 0.03363587707281113, -0.05625760927796364, -0.016603542491793633, -0.03868064284324646, -0.010753761976957321, -0.1329653263092041, -0.18548636138439178, -0.03815343230962753, -0.01681598462164402, 0.08967965096235275, -0.18256519734859467, 0.022459935396909714, -0.01260120328515768, 0.06917184591293335, -0.009275032207369804, -0.0120793292298913, -0.038101911544799805, 0.0811382308602333, -0.016506146639585495, -0.04726020619273186, 0.07870309054851532, -0.0038590701296925545, -0.08709003776311874, -0.05765336751937866, -0.058735378086566925, 0.14860087633132935, 0.1307910829782486, -0.11620519310235977, -0.06586549431085587, 0.007498082239180803, -0.07283439487218857, -0.03873984143137932, -0.042938102036714554, 0.04300512745976448, 0.1770986169576645, -0.003342017997056246, 0.12314151227474213, -0.0823523998260498, -0.053397033363580704, 0.01734948717057705, -0.03317752480506897, 0.042138129472732544, 0.12987445294857025, 0.12127247452735901, -0.0720851868391037, 0.1421971321105957, 0.1512366533279419, -0.08949108421802521, 0.09730733931064606, -0.06766150891780853, -0.08757415413856506, -0.032222308218479156, 0.004159258678555489, -0.007954434491693974, 0.11959412693977356, -0.14402979612350464, 0.017672454938292503, 0.032023970037698746, 0.022735610604286194, 0.026606043800711632, -0.23073163628578186, -0.06113091856241226, 0.01766134612262249, -0.049488846212625504, -0.03506047651171684, -0.0020205220207571983, 0.018934423103928566, 0.10020178556442261, -0.004528678022325039, -0.06036734580993652, 0.04569712281227112, -0.00008689264359418303, -0.06998694688081741, 0.22296054661273956, -0.07080205529928207, -0.12210667133331299, -0.09068592637777328, -0.04975797235965729, -0.04500062018632889, -0.008414500392973423, 0.07044114917516708, -0.095638707280159, -0.016096223145723343, -0.048946164548397064, 0.015972143039107323, -0.007884753867983818, 0.022996563464403152, 0.006802557501941919, -0.005214277189224958, 0.07595036923885345, -0.1184815987944603, 0.004541782196611166, -0.05890020355582237, -0.07491771876811981, 0.05610918253660202, 0.052539266645908356, 0.12834981083869934, 0.1419813334941864, -0.015196260064840317, 0.009123057126998901, -0.024396676570177078, 0.25252005457878113, -0.06839437782764435, -0.03928915783762932, 0.14231930673122406, 0.01942848227918148, 0.05904916301369667, 0.1102961003780365, 0.07174951583147049, -0.09439089894294739, 0.006765491329133511, 0.03951222822070122, -0.03928416967391968, -0.24698090553283691, -0.032618198543787, -0.06066395342350006, -0.026208817958831787, 0.07181849330663681, 0.025970788672566414, 0.02914181724190712, 0.07064064592123032, 0.04367728531360626, 0.04063967615365982, -0.072550468146801, 0.0410202220082283, 0.10918914526700974, 0.04580947756767273, 0.11695533990859985, -0.05003374442458153, -0.058765411376953125, 0.02727733738720417, -0.0019325895700603724, 0.2531324625015259, -0.011230234056711197, 0.14278478920459747, 0.08053786307573318, 0.2100583016872406, -0.018271030858159065, 0.08573159575462341, -0.01618609018623829, -0.05322809889912605, -0.00501588499173522, -0.0328112468123436, -0.025712482631206512, 0.006624230183660984, -0.04407243803143501, 0.06572086364030838, -0.10149607807397842, -0.013777904212474823, 0.05811471864581108, 0.27186575531959534, 0.034593112766742706, -0.2955063581466675, -0.08906824141740799, -0.009207027032971382, -0.029788359999656677, -0.0055090212263166904, 0.020360959693789482, 0.12091974914073944, -0.0914129987359047, 0.003800477832555771, -0.06920977681875229, 0.10214845091104507, -0.006331130396574736, 0.03921586647629738, 0.07756277918815613, 0.08482779562473297, 0.016715914011001587, 0.09329124540090561, -0.3160988986492157, 0.27320921421051025, 0.0016532879089936614, 0.07765863090753555, -0.0815812200307846, -0.014486514963209629, 0.00297873024828732, 0.031408023089170456, 0.08674527704715729, -0.0067952401004731655, -0.0051172636449337006, -0.16836023330688477, -0.03848635405302048, 0.03991183638572693, 0.08045750856399536, -0.00964792538434267, 0.09505779296159744, -0.010541222989559174, 0.015935726463794708, 0.07309704273939133, 0.007723561488091946, -0.04433957114815712, -0.07794132083654404, -0.01656232960522175, 0.011915012262761593, -0.0586417131125927, -0.06689976155757904, -0.1054365336894989, -0.11734402924776077, 0.12975643575191498, 0.0043510193936526775, -0.04076990485191345, -0.10602706670761108, 0.0944085344672203, 0.10568621754646301, -0.08955380320549011, 0.033434998244047165, 0.01513652317225933, 0.02799675241112709, 0.04316435754299164, -0.0637923926115036, 0.10309537500143051, -0.05895276367664337, -0.15047776699066162, -0.044260505586862564, 0.11135216802358627, 0.04923148453235626, 0.06550877541303635, -0.013525700196623802, 0.017571832984685898, -0.05441214144229889, -0.10267961770296097, 0.02400253713130951, -0.04352876543998718, 0.097784124314785, 0.02062671072781086, -0.02859656699001789, 0.05295690894126892, -0.05696583166718483, -0.02589079737663269, 0.1921258419752121, 0.23018471896648407, -0.10093538463115692, 0.01332611683756113, 0.030473826453089714, -0.0466851145029068, -0.1867087185382843, 0.05319010093808174, 0.0709628164768219, -0.010856974869966507, 0.04839558154344559, -0.15806356072425842, 0.15547862648963928, 0.1145412027835846, -0.006352751050144434, 0.1150624006986618, -0.36481767892837524, -0.11551682651042938, 0.09182710200548172, 0.15690751373767853, 0.13487644493579865, -0.1641969382762909, -0.019821619614958763, 0.0016642335103824735, -0.17733314633369446, 0.10798443853855133, -0.09258583188056946, 0.11645086109638214, -0.040491826832294464, 0.10700066387653351, -0.0022658007219433784, -0.07519116252660751, 0.12203041464090347, 0.04133477807044983, 0.1013014167547226, -0.049991827458143234, -0.03027188964188099, 0.08419463038444519, -0.019754497334361076, 0.024053597822785378, -0.0659467875957489, 0.04024714231491089, -0.1085481271147728, -0.012549517676234245, -0.10982061177492142, 0.038727935403585434, -0.04206879064440727, -0.05370185896754265, -0.04157869517803192, 0.026616208255290985, 0.048878014087677, -0.012573184445500374, 0.12473108619451523, 0.03037996217608452, 0.1445557326078415, 0.09144225716590881, 0.06989303231239319, -0.07061341404914856, -0.1155126616358757, -0.01564919203519821, -0.0048171584494411945, 0.051272615790367126, -0.14604319632053375, 0.025502001866698265, 0.15949957072734833, 0.04961836338043213, 0.11823772639036179, 0.07721215486526489, -0.02707533910870552, 0.011875149793922901, 0.043249960988759995, -0.16149170696735382, -0.13926418125629425, 0.018152587115764618, -0.0707719624042511, -0.11922042816877365, 0.0625918060541153, 0.05921114236116409, -0.05128127336502075, -0.01429496705532074, -0.0065432265400886536, -0.00012011126818833873, -0.06685801595449448, 0.2106509506702423, 0.07936443388462067, 0.053346771746873856, -0.11508249491453171, 0.07357268035411835, 0.04386577010154724, -0.09875363111495972, -0.006924252491444349, 0.06437361240386963, -0.06900333613157272, -0.045832034200429916, 0.10254815965890884, 0.15211744606494904, -0.05816562473773956, -0.036727048456668854, -0.12974701821804047, -0.11062024533748627, 0.08056680858135223, 0.1477503776550293, 0.11410356312990189, 0.00963117927312851, -0.04083559662103653, 0.007897771894931793, -0.12459113448858261, 0.08126746863126755, 0.03963300958275795, 0.06113707274198532, -0.12372663617134094, 0.13221824169158936, 0.0029222650919109583, 0.06504295766353607, -0.018633617088198662, 0.03553186357021332, -0.09944962710142136, 0.030328193679451942, -0.14251385629177094, -0.03563976287841797, -0.03536836802959442, -0.006312189158052206, -0.009168088436126709, -0.08030890673398972, -0.06438002735376358, 0.02609855681657791, -0.1231696605682373, -0.01922374591231346, 0.04873663932085037, 0.04219767823815346, -0.1426212042570114, -0.0474807545542717, 0.03273790329694748, -0.04752369597554207, 0.0652112066745758, 0.0669710710644722, 0.010590915568172932, 0.05482228100299835, -0.13400325179100037, -0.018639784306287766, 0.05224080756306648, 0.01145334355533123, 0.08383826911449432, -0.09369243681430817, -0.01777302287518978, 0.013854233548045158, 0.0700167715549469, 0.018734831362962723, 0.04146751016378403, -0.14325450360774994, -0.012832613661885262, -0.03047499805688858, -0.0767095535993576, -0.07391057163476944, 0.011204681359231472, 0.09833039343357086, 0.03127167001366615, 0.19963285326957703, -0.05909956246614456, 0.060149941593408585, -0.21937769651412964, -0.00931903813034296, -0.013072660192847252, -0.09611160308122635, -0.1048409715294838, -0.03974798694252968, 0.0683690756559372, -0.058410562574863434, 0.12706416845321655, -0.007302992045879364, 0.05800364539027214, 0.024105727672576904, -0.016874002292752266, 0.029672887176275253, 0.014097818173468113, 0.23831194639205933, 0.015214372426271439, -0.03222181275486946, 0.08154250681400299, 0.06169835478067398, 0.07113632559776306, 0.12348672747612, 0.21203681826591492, 0.1766546368598938, 0.012288367375731468, 0.07340369373559952, 0.028242411091923714, -0.04710432514548302, -0.13558684289455414, 0.04199029505252838, -0.02627221867442131, 0.08256231248378754, -0.016924280673265457, 0.2348758727312088, 0.062090352177619934, -0.17525550723075867, 0.06047170236706734, -0.06835456937551498, -0.09438405930995941, -0.08364629745483398, -0.027552790939807892, -0.06796929240226746, -0.15323302149772644, 0.014240169897675514, -0.12525682151317596, 0.01812189817428589, 0.1352301836013794, 0.011870955117046833, -0.031208835542201996, 0.1836400032043457, 0.05484665930271149, 0.03131306543946266, 0.037272706627845764, -0.002330441726371646, -0.021809080615639687, -0.07439875602722168, -0.03627243638038635, -0.00046112987911328673, -0.03054097667336464, 0.04341663792729378, -0.04802941530942917, -0.07667075842618942, 0.033042896538972855, -0.03699454665184021, -0.09257534891366959, 0.002474346198141575, 0.040527842938899994, 0.07168346643447876, 0.058793049305677414, 0.017586564645171165, 0.03317643329501152, -0.02453729137778282, 0.21930156648159027, -0.07444712519645691, -0.08698374778032303, -0.09352666139602661, 0.25502318143844604, 0.03637801855802536, -0.022238943725824356, 0.03971349075436592, -0.07059670239686966, 0.005238876678049564, 0.24755582213401794, 0.17620988190174103, -0.09546545147895813, -0.012631131336092949, 0.00694371247664094, -0.00928482785820961, -0.03217395767569542, 0.09072913229465485, 0.14694440364837646, 0.05581492930650711, -0.11200353503227234, -0.048796843737363815, -0.07486439496278763, -0.014131292700767517, -0.046299152076244354, 0.050256114453077316, 0.05160802602767944, -0.003340800991281867, -0.03821073845028877, 0.06633450090885162, -0.0660727247595787, -0.12042921036481857, 0.0725075900554657, -0.19471433758735657, -0.15625014901161194, -0.01812436245381832, 0.11297838389873505, 0.00861288234591484, 0.0654221773147583, -0.03316774591803551, 0.013620533980429173, 0.06908401846885681, -0.015425163321197033, -0.09814059734344482, -0.07916715741157532, 0.1143483892083168, -0.13154442608356476, 0.18201753497123718, -0.03999694064259529, 0.09060744196176529, 0.1315334439277649, 0.05908991023898125, -0.09113702923059464, 0.062433771789073944, 0.0563323087990284, -0.09405283629894257, 0.016432568430900574, 0.080776147544384, -0.01120003592222929, 0.0353836826980114, 0.03672301396727562, -0.1211136132478714, 0.011739610694348812, -0.04200355336070061, -0.016227446496486664, -0.06890054792165756, -0.03536675125360489, -0.05796496197581291, 0.12331768125295639, 0.21466094255447388, -0.03913154453039169, 0.016445623710751534, -0.08165455609560013, 0.010428317822515965, 0.050841815769672394, 0.02672462724149227, -0.0779937282204628, -0.21359829604625702, 0.03046899475157261, 0.059832215309143066, -0.03096091002225876, -0.20214113593101501, -0.08784235268831253, 0.023761311545968056, -0.08933909237384796, -0.06813512742519379, 0.06149393692612648, 0.07390834391117096, 0.058807749301195145, -0.04745561629533768, -0.07286278903484344, -0.08646449446678162, 0.15997762978076935, -0.15007154643535614, -0.08587731420993805 ]