sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
# Belgian GPT-2 🇧🇪 **A GPT-2 model pre-trained on a very large and heterogeneous French corpus (~60Gb).** ## Usage You can use BelGPT-2 with [🤗 transformers](https://github.com/huggingface/transformers): ```python import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel # Load pretrained model and tokenizer model = GPT2LMHeadModel.from_pretrained("antoiloui/belgpt2") tokenizer = GPT2Tokenizer.from_pretrained("antoiloui/belgpt2") # Generate a sample of text model.eval() output = model.generate( bos_token_id=random.randint(1,50000), do_sample=True, top_k=50, max_length=100, top_p=0.95, num_return_sequences=1 ) # Decode it decoded_output = [] for sample in output: decoded_output.append(tokenizer.decode(sample, skip_special_tokens=True)) print(decoded_output) ``` ## Data Below is the list of all French copora used to pre-trained the model: | Dataset | `$corpus_name` | Raw size | Cleaned size | | :------| :--- | :---: | :---: | | CommonCrawl | `common_crawl` | 200.2 GB | 40.4 GB | | NewsCrawl | `news_crawl` | 10.4 GB | 9.8 GB | | Wikipedia | `wiki` | 19.4 GB | 4.1 GB | | Wikisource | `wikisource` | 4.6 GB | 2.3 GB | | Project Gutenberg | `gutenberg` | 1.3 GB | 1.1 GB | | EuroParl | `europarl` | 289.9 MB | 278.7 MB | | NewsCommentary | `news_commentary` | 61.4 MB | 58.1 MB | | **Total** | | **236.3 GB** | **57.9 GB** | ## Documentation Detailed documentation on the pre-trained model, its implementation, and the data can be found [here](https://github.com/antoiloui/belgpt2/blob/master/docs/index.md). ## Citation For attribution in academic contexts, please cite this work as: ``` @misc{louis2020belgpt2, author = {Louis, Antoine}, title = {{BelGPT-2: a GPT-2 model pre-trained on French corpora.}}, year = {2020}, howpublished = {\url{https://github.com/antoiloui/belgpt2}}, } ```
{"language": ["fr"], "license": ["mit"], "widget": [{"text": "Hier, Elon Musk a"}, {"text": "Pourquoi a-t-il"}, {"text": "Tout \u00e0 coup, elle"}]}
text-generation
antoinelouis/belgpt2
[ "transformers", "pytorch", "tf", "jax", "safetensors", "gpt2", "text-generation", "fr", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "fr" ]
TAGS #transformers #pytorch #tf #jax #safetensors #gpt2 #text-generation #fr #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Belgian GPT-2 🇧🇪 ================ A GPT-2 model pre-trained on a very large and heterogeneous French corpus (~60Gb). Usage ----- You can use BelGPT-2 with transformers: Data ---- Below is the list of all French copora used to pre-trained the model: Documentation ------------- Detailed documentation on the pre-trained model, its implementation, and the data can be found here. For attribution in academic contexts, please cite this work as:
[]
[ "TAGS\n#transformers #pytorch #tf #jax #safetensors #gpt2 #text-generation #fr #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 65 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #gpt2 #text-generation #fr #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.028639141470193863, 0.014947979710996151, -0.006127930246293545, 0.04458294063806534, 0.12104924768209457, 0.004401865415275097, 0.14052847027778625, 0.12381710112094879, 0.008473933674395084, -0.035619474947452545, 0.1571531742811203, 0.21785230934619904, -0.004171071574091911, 0.10547531396150589, -0.0911974161863327, -0.22303269803524017, 0.055211447179317474, 0.037809163331985474, 0.0020685791969299316, 0.11907226592302322, 0.11408305168151855, -0.0384964756667614, 0.09094099700450897, -0.03068036213517189, -0.14595761895179749, 0.0015428068581968546, 0.07378454506397247, -0.12606869637966156, 0.12379421293735504, 0.06862877309322357, 0.0616556815803051, 0.08499932289123535, -0.03740778565406799, -0.11845146119594574, 0.034964676946401596, 0.025508826598525047, -0.10229408740997314, 0.052898768335580826, 0.08860985934734344, -0.05379026010632515, 0.14942355453968048, 0.06470444798469543, -0.02424013800919056, 0.06666626781225204, -0.14341993629932404, -0.13861088454723358, -0.05573752894997597, 0.09274119138717651, 0.053100086748600006, 0.08977796137332916, 0.008396110497415066, 0.16250057518482208, -0.05416123941540718, 0.12089262157678604, 0.13853424787521362, -0.3633709251880646, -0.011280334554612637, 0.09467604756355286, 0.0724971815943718, 0.04068112373352051, -0.04631220921874046, 0.0584862045943737, 0.055655401200056076, 0.01802351325750351, 0.07312270253896713, -0.07446875423192978, -0.11500106751918793, 0.022328514605760574, -0.09346907585859299, -0.056223295629024506, 0.23879778385162354, -0.045910727232694626, 0.007971714250743389, -0.04274323210120201, -0.0832672268152237, -0.011824358254671097, -0.007133773528039455, -0.009466797113418579, -0.043658267706632614, 0.07475101202726364, 0.03472782298922539, -0.056500717997550964, -0.14166899025440216, -0.031832195818424225, -0.15926668047904968, 0.14695128798484802, 0.02179562672972679, 0.04773717746138573, -0.1721288114786148, 0.09736277908086777, -0.00332476943731308, -0.1089916080236435, -0.0021182168275117874, -0.09168744087219238, 0.0959397703409195, -0.021827977150678635, -0.021341778337955475, -0.04788024351000786, 0.11541261523962021, 0.15903466939926147, -0.0724048912525177, 0.0036011054180562496, -0.06366056948900223, 0.08813481032848358, -0.015621365047991276, 0.018683981150388718, 0.020498663187026978, 0.026068784296512604, 0.10807699710130692, -0.10328968614339828, 0.015179246664047241, -0.04372863844037056, -0.1407398283481598, -0.01610385812819004, 0.05697954073548317, 0.1073673740029335, 0.012122533284127712, 0.11384380608797073, -0.022279998287558556, 0.022004062309861183, 0.11598382145166397, -0.0643082708120346, -0.019836794584989548, 0.00028547621332108974, 0.06030043959617615, 0.022706711664795876, 0.027296490967273712, 0.00420162221416831, -0.08943133801221848, 0.06674226373434067, -0.0679662674665451, -0.03957204893231392, -0.005610624328255653, -0.06562324613332748, 0.06148536130785942, -0.07007694989442825, 0.031407494097948074, -0.18556152284145355, -0.1825135201215744, 0.041558168828487396, 0.008826049044728279, -0.009430701844394207, -0.06548182666301727, 0.015763558447360992, -0.06900633126497269, 0.03078087605535984, -0.06262201815843582, -0.019744502380490303, -0.06797175854444504, 0.12397467344999313, -0.04400493949651718, 0.03535782918334007, -0.14945414662361145, 0.042102545499801636, -0.1154608279466629, -0.014528697356581688, -0.06272400170564651, 0.002565228147432208, -0.03570796176791191, 0.1338059902191162, -0.008681598119437695, -0.036977920681238174, -0.060378510504961014, 0.04355721175670624, -0.04782022908329964, 0.18184955418109894, -0.08642719686031342, -0.0817561000585556, 0.2689439058303833, -0.14979204535484314, -0.21786904335021973, 0.11149243265390396, 0.02161756530404091, 0.052729684859514236, 0.0907590389251709, 0.17404811084270477, 0.06275110691785812, -0.08187348395586014, 0.06887820363044739, 0.12594904005527496, -0.11281261593103409, -0.10207499563694, 0.029283713549375534, -0.014043337665498257, -0.1440640389919281, 0.03811485692858696, 0.018617058172822, 0.08014124631881714, -0.04539550468325615, -0.031241945922374725, -0.05967326834797859, -0.008460106328129768, 0.020940423011779785, 0.005339990369975567, 0.074652299284935, -0.08837076276540756, -0.03602564334869385, -0.03545992821455002, -0.00923932995647192, 0.0033884295262396336, 0.01606721803545952, -0.06029747426509857, 0.12957845628261566, 0.025291377678513527, 0.04537908732891083, -0.12354202568531036, -0.08479851484298706, -0.002069835551083088, 0.10056263953447342, -0.0010238741524517536, 0.06685652583837509, 0.06162893772125244, 0.01779100112617016, -0.023845288902521133, -0.014819974079728127, 0.157246395945549, 0.011598424054682255, -0.03391144052147865, -0.12188448756933212, 0.07447744160890579, -0.05796048790216446, 0.02519914321601391, -0.10782462358474731, 0.03771873936057091, 0.10132106393575668, 0.08950021117925644, -0.0018740021623671055, 0.04781745374202728, -0.030230175703763962, -0.015097690746188164, -0.07348605990409851, -0.016200389713048935, 0.0892433151602745, 0.03668469563126564, -0.06199319660663605, 0.2116057425737381, -0.1592429131269455, 0.32633382081985474, 0.21159493923187256, -0.17940765619277954, -0.02783738449215889, -0.048812951892614365, -0.03491887450218201, 0.022929292172193527, 0.037001825869083405, -0.0211927630007267, 0.016248323023319244, -0.025952545925974846, 0.17614492774009705, -0.09493966400623322, -0.07630102336406708, 0.029450194910168648, -0.05054973065853119, -0.018625924363732338, 0.07074553519487381, 0.09815122932195663, -0.21740444004535675, 0.1931043416261673, 0.22361664474010468, 0.05513012409210205, 0.17140018939971924, -0.046107009053230286, 0.0057792579755187035, 0.05362690985202789, 0.05134192854166031, 0.003532256232574582, -0.013244246132671833, -0.13815264403820038, 0.008629626594483852, 0.06945516169071198, 0.01233556866645813, 0.056139152497053146, -0.1385570764541626, -0.07094357162714005, -0.014228430576622486, -0.04010353982448578, -0.018559155985713005, 0.11346517503261566, 0.009257098659873009, 0.13989652693271637, -0.05789191275835037, -0.056693919003009796, 0.12390967458486557, 0.022195016965270042, -0.12181653827428818, 0.1953197568655014, -0.1196296215057373, -0.2886985242366791, -0.1210135892033577, -0.10913142561912537, -0.029956378042697906, 0.03051029145717621, 0.1380816549062729, -0.05844435468316078, -0.03286297246813774, -0.04161781072616577, 0.001805102452635765, -0.05203961580991745, 0.03114546462893486, -0.08743658661842346, 0.042080942541360855, -0.042069513350725174, -0.10504894703626633, -0.06680997461080551, 0.0005878011579625309, -0.09061938524246216, 0.1553029865026474, -0.07396169751882553, 0.06798012554645538, 0.12442141026258469, -0.007132378872483969, 0.04410763084888458, -0.07717833667993546, 0.1979970932006836, -0.062298573553562164, 0.02961324341595173, 0.21448276937007904, -0.025315897539258003, 0.07336888462305069, 0.10648800432682037, 0.013165525160729885, -0.0839819610118866, 0.03286372870206833, -0.047285567969083786, -0.09235011786222458, -0.2322997748851776, -0.08151379227638245, -0.11067664623260498, 0.09907970577478409, 0.04219783470034599, 0.09419561177492142, 0.163614422082901, 0.08154039084911346, -0.04945817217230797, 0.004697481635957956, 0.06735024601221085, 0.09102387726306915, 0.18391184508800507, -0.006928649730980396, 0.11666586995124817, -0.08240814507007599, -0.09574919193983078, 0.11591143161058426, 0.014575443230569363, 0.09928227216005325, 0.052330680191516876, 0.01271252240985632, 0.06405018270015717, 0.13813534379005432, 0.11421475559473038, 0.1424739807844162, -0.005988267250359058, -0.037124861031770706, -0.030215611681342125, -0.059544824063777924, -0.01701434701681137, 0.0247616209089756, -0.08213527500629425, -0.11257768422365189, -0.06318311393260956, -0.09391050785779953, 0.07089889794588089, 0.09200930595397949, 0.03264601156115532, -0.2197730839252472, 0.0014225097838789225, 0.06853029876947403, 0.006819179281592369, -0.1003003716468811, 0.08579554408788681, 0.03191964700818062, -0.1049867793917656, 0.09775576740503311, -0.0585518442094326, 0.09414472430944443, 0.03590923547744751, 0.06829744577407837, -0.00980748888105154, -0.0654740184545517, -0.0036873130593448877, 0.10673625767230988, -0.33456987142562866, 0.21063286066055298, 0.00010648488387232646, -0.006727878469973803, -0.08402730524539948, 0.014521986246109009, 0.016791077330708504, 0.18396328389644623, 0.16248540580272675, 0.0008182261954061687, -0.04661567136645317, -0.05931723117828369, -0.0013794341357424855, 0.03684799745678902, 0.08983749151229858, -0.025178510695695877, -0.014005464501678944, -0.052866775542497635, -0.004347463604062796, 0.004211642779409885, -0.010295752435922623, -0.04838424548506737, -0.1429767906665802, 0.05574986711144447, 0.028761904686689377, 0.0739339217543602, -0.05030415579676628, -0.01646709069609642, -0.12713122367858887, 0.18003056943416595, -0.0981883630156517, -0.0988662913441658, -0.1254281848669052, -0.09595660120248795, 0.009446024894714355, -0.06509754806756973, 0.053357698023319244, -0.0723283588886261, 0.015654312446713448, -0.07450909912586212, -0.2038601189851761, 0.12027934193611145, -0.12734679877758026, -0.08439745754003525, -0.038822323083877563, 0.18014323711395264, -0.08399538695812225, -0.005125650204718113, 0.03829651698470116, 0.005854635499417782, -0.07182873040437698, -0.12237956374883652, 0.004575465805828571, -0.06296009570360184, 0.03268948197364807, -0.04151167348027229, -0.09106376767158508, -0.05841977521777153, 0.0020450716838240623, -0.03188168630003929, 0.2276117503643036, 0.23811253905296326, -0.05124679580330849, 0.15539497137069702, 0.1364348977804184, -0.07241944223642349, -0.3114365339279175, -0.11310042440891266, -0.1462559700012207, -0.07377883046865463, -0.00612487131729722, -0.1138409972190857, 0.05796302855014801, 0.03005526401102543, -0.04442965239286423, 0.15357470512390137, -0.21360324323177338, -0.09025705605745316, 0.14770841598510742, 0.04853643849492073, 0.3080137372016907, -0.17658814787864685, -0.09369845688343048, -0.026632100343704224, -0.1550852656364441, 0.19375699758529663, -0.12957638502120972, 0.06626486778259277, -0.019108576700091362, 0.0024983084294945, 0.021340180188417435, -0.05530231446027756, 0.06507278978824615, -0.03328337520360947, 0.05862134322524071, -0.12343550473451614, 0.010238932445645332, 0.09563711285591125, 0.01149109099060297, 0.058803629130125046, -0.13901562988758087, 0.04419315606355667, -0.07372580468654633, -0.04010768234729767, -0.07872181385755539, 0.10076040029525757, -0.004702773876488209, -0.08914501965045929, -0.006308861076831818, -0.028678713366389275, -0.012032036669552326, -0.036758020520210266, 0.18581771850585938, -0.02895098552107811, 0.2044336050748825, 0.14932484924793243, 0.1168534904718399, -0.13905031979084015, 0.046419646590948105, -0.057117678225040436, -0.08243649452924728, 0.0641583725810051, -0.11231493949890137, 0.04087536409497261, 0.08268840610980988, -0.020763462409377098, 0.07569202780723572, 0.10124193131923676, -0.003238174831494689, -0.03162422776222229, 0.14366847276687622, -0.2550586462020874, -0.05420517921447754, -0.07608823478221893, -0.0033291401341557503, 0.08362746238708496, 0.09069585055112839, 0.1501718908548355, -0.02032562345266342, -0.019320502877235413, -0.010340532287955284, 0.01620018668472767, -0.04448861628770828, 0.040075164288282394, 0.03476322069764137, 0.016264410689473152, -0.12642905116081238, 0.05091644451022148, 0.002837776206433773, -0.1064305379986763, 0.0016529812710359693, 0.14834006130695343, -0.14774368703365326, -0.13715346157550812, -0.004405898507684469, 0.08233921974897385, -0.1273432821035385, -0.05470055714249611, -0.03605629876255989, -0.16444465517997742, 0.0677514597773552, 0.20290403068065643, 0.05353614687919617, 0.09426124393939972, 0.011343632824718952, -0.03104470483958721, -0.04305750131607056, 0.03286324441432953, -0.05159513279795647, 0.03389187157154083, -0.12561067938804626, 0.06804248690605164, -0.014863798394799232, 0.09559290111064911, -0.0826006531715393, -0.006389004178345203, -0.15369358658790588, 0.001085000578314066, -0.06781996786594391, -0.02944917231798172, -0.07300823926925659, -0.026446551084518433, -0.002714523347094655, -0.033562611788511276, -0.026684030890464783, -0.016893640160560608, -0.09644673019647598, 0.020553847774863243, -0.0029724494088441133, 0.05422334000468254, -0.10572342574596405, -0.026542125269770622, 0.05256011337041855, -0.03232484310865402, 0.14264149963855743, 0.09322793036699295, -0.09530794620513916, 0.11324368417263031, -0.23035478591918945, -0.042383767664432526, 0.106581911444664, 0.013250053860247135, 0.012463856488466263, 0.06586742401123047, 0.036953166127204895, 0.08779197931289673, -0.02033674530684948, 0.0643538236618042, -0.014095577411353588, -0.12192592024803162, 0.02263137884438038, -0.00990405771881342, -0.11583645641803741, -0.0287120770663023, -0.046522632241249084, 0.06197422742843628, -0.024304678663611412, 0.14487294852733612, -0.07590114325284958, 0.047885917127132416, -0.10976725816726685, 0.015005446970462799, 0.01218568067997694, -0.1796664297580719, -0.14257821440696716, -0.054920587688684464, 0.009388558566570282, 0.005355652887374163, 0.21931172907352448, 0.04606131836771965, -0.0705222487449646, 0.05349917337298393, 0.037853632122278214, 0.06441128998994827, -0.0076654586009681225, 0.2539096772670746, 0.0461212582886219, -0.039329227060079575, -0.13514642417430878, 0.03376442566514015, 0.005723148584365845, -0.10722813755273819, 0.13889886438846588, 0.059847135096788406, -0.06076778843998909, 0.04841991513967514, 0.04803996533155441, 0.00012187800166429952, -0.037621431052684784, -0.13780181109905243, 0.000698863179422915, 0.06724633276462555, -0.014811432920396328, 0.07144448906183243, 0.20720404386520386, -0.025094255805015564, 0.005928099155426025, -0.02818671613931656, -0.029793089255690575, -0.18095967173576355, -0.1550559550523758, -0.07850854843854904, -0.10610116273164749, 0.024701852351427078, -0.08924473822116852, 0.03640243038535118, 0.0052856397815048695, 0.07595838606357574, -0.0686269998550415, 0.06621316820383072, 0.05053326487541199, -0.07580021023750305, 0.05234329774975777, -0.016745517030358315, 0.028096895664930344, -0.03186848387122154, -0.023494094610214233, -0.0702349990606308, -0.037387680262327194, -0.038145847618579865, 0.04448980465531349, -0.004606923088431358, 0.04554752632975578, -0.13664546608924866, -0.07561177760362625, -0.02230575866997242, 0.06944113224744797, -0.018307717517018318, 0.1320158988237381, 0.009098277427256107, -0.016597118228673935, 0.06760402023792267, 0.19164876639842987, -0.04006991907954216, -0.13064263761043549, -0.015423612669110298, 0.24478979408740997, 0.037858299911022186, 0.09364669770002365, 0.008385858498513699, 0.009504921734333038, -0.014135255478322506, 0.29889747500419617, 0.30004823207855225, -0.03788847476243973, 0.05121822655200958, -0.011520753614604473, 0.025553181767463684, 0.09029430150985718, 0.13686047494411469, 0.09464259445667267, 0.27684903144836426, -0.05687650665640831, 0.010741443373262882, -0.027110863476991653, 0.03473662957549095, -0.09986727684736252, 0.09444345533847809, 0.03026428446173668, -0.0640144795179367, 0.002440202049911022, 0.09284112602472305, -0.16180483996868134, 0.08428634703159332, -0.059923600405454636, -0.10346035659313202, -0.026519570499658585, -0.006735200062394142, 0.08828098326921463, 0.005944910459220409, 0.04749281331896782, -0.02833058498799801, -0.05367141216993332, 0.03621014207601547, 0.011557101272046566, -0.20306091010570526, 0.012004001997411251, 0.05390968546271324, -0.05047689378261566, 0.0924939438700676, -0.01090247742831707, 0.06606651842594147, 0.0824849084019661, 0.01524324156343937, -0.06956581771373749, 0.09735319763422012, 0.007660307921469212, -0.04184184595942497, 0.018214799463748932, -0.0354037843644619, 0.021413855254650116, -0.08267845958471298, 0.04058463126420975, -0.10630705952644348, 0.04286649078130722, -0.014769659377634525, -0.07303408533334732, -0.03886017948389053, 0.04982421547174454, -0.058283135294914246, 0.06757193803787231, 0.061812374740839005, -0.014192398637533188, -0.006297148764133453, -0.09025741368532181, 0.00927729532122612, 0.037350282073020935, -0.10806956142187119, -0.026358572766184807, -0.09685148298740387, -0.06064946576952934, 0.10547511279582977, 0.003938277717679739, -0.23191659152507782, 0.0018748632865026593, -0.12541954219341278, 0.044960055500268936, -0.2109343558549881, 0.05837300792336464, 0.12189270555973053, 0.02327718213200569, 0.004786692094057798, -0.023254089057445526, 0.014059648849070072, 0.07605072855949402, -0.08107005804777145, -0.0651739239692688 ]
null
null
transformers
# NetBERT 📶 <img align="left" src="illustration.jpg" width="150"/> <br><br><br> &nbsp;&nbsp;&nbsp;NetBERT is a [BERT-base](https://huggingface.co/bert-base-cased) model further pre-trained on a huge corpus of computer networking text (~23Gb). <br><br> ## Usage You can use the raw model for masked language modeling (MLM), but it's mostly intended to be fine-tuned on a downstream task, especially one that uses the whole sentence to make decisions such as text classification, extractive question answering, or semantic search. You can use this model directly with a pipeline for [masked language modeling](https://huggingface.co/tasks/fill-mask): ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='antoinelouis/netbert') unmasker("The nodes of a computer network may include [MASK].") ``` You can also use this model to [extract the features](https://huggingface.co/tasks/feature-extraction) of a given text: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('antoinelouis/netbert') model = AutoModel.from_pretrained('antoinelouis/netbert') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Documentation Detailed documentation on the pre-trained model, its implementation, and the data can be found on [Github](https://github.com/antoiloui/netbert/blob/master/docs/index.md). ## Citation For attribution in academic contexts, please cite this work as: ``` @mastersthesis{louis2020netbert, title={NetBERT: A Pre-trained Language Representation Model for Computer Networking}, author={Louis, Antoine}, year={2020}, school={University of Liege} } ```
{"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "widget": [{"text": "The nodes of a computer network may include [MASK]."}]}
fill-mask
antoinelouis/netbert
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tf #jax #bert #fill-mask #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# NetBERT <img align="left" src="URL" width="150"/> <br><br><br> &nbsp;&nbsp;&nbsp;NetBERT is a BERT-base model further pre-trained on a huge corpus of computer networking text (~23Gb). <br><br> ## Usage You can use the raw model for masked language modeling (MLM), but it's mostly intended to be fine-tuned on a downstream task, especially one that uses the whole sentence to make decisions such as text classification, extractive question answering, or semantic search. You can use this model directly with a pipeline for masked language modeling: You can also use this model to extract the features of a given text: ## Documentation Detailed documentation on the pre-trained model, its implementation, and the data can be found on Github. For attribution in academic contexts, please cite this work as:
[ "# NetBERT \n\n<img align=\"left\" src=\"URL\" width=\"150\"/>\n<br><br><br>\n\n&nbsp;&nbsp;&nbsp;NetBERT is a BERT-base model further pre-trained on a huge corpus of computer networking text (~23Gb).\n\n<br><br>", "## Usage\n\nYou can use the raw model for masked language modeling (MLM), but it's mostly intended to be fine-tuned on a downstream task, especially one that uses the whole sentence to make decisions such as text classification, extractive question answering, or semantic search.\n\nYou can use this model directly with a pipeline for masked language modeling:\n\n\n\nYou can also use this model to extract the features of a given text:", "## Documentation\n\nDetailed documentation on the pre-trained model, its implementation, and the data can be found on Github.\n\nFor attribution in academic contexts, please cite this work as:" ]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #fill-mask #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# NetBERT \n\n<img align=\"left\" src=\"URL\" width=\"150\"/>\n<br><br><br>\n\n&nbsp;&nbsp;&nbsp;NetBERT is a BERT-base model further pre-trained on a huge corpus of computer networking text (~23Gb).\n\n<br><br>", "## Usage\n\nYou can use the raw model for masked language modeling (MLM), but it's mostly intended to be fine-tuned on a downstream task, especially one that uses the whole sentence to make decisions such as text classification, extractive question answering, or semantic search.\n\nYou can use this model directly with a pipeline for masked language modeling:\n\n\n\nYou can also use this model to extract the features of a given text:", "## Documentation\n\nDetailed documentation on the pre-trained model, its implementation, and the data can be found on Github.\n\nFor attribution in academic contexts, please cite this work as:" ]
[ 52, 75, 97, 42 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #bert #fill-mask #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# NetBERT \n\n<img align=\"left\" src=\"URL\" width=\"150\"/>\n<br><br><br>\n\n&nbsp;&nbsp;&nbsp;NetBERT is a BERT-base model further pre-trained on a huge corpus of computer networking text (~23Gb).\n\n<br><br>## Usage\n\nYou can use the raw model for masked language modeling (MLM), but it's mostly intended to be fine-tuned on a downstream task, especially one that uses the whole sentence to make decisions such as text classification, extractive question answering, or semantic search.\n\nYou can use this model directly with a pipeline for masked language modeling:\n\n\n\nYou can also use this model to extract the features of a given text:## Documentation\n\nDetailed documentation on the pre-trained model, its implementation, and the data can be found on Github.\n\nFor attribution in academic contexts, please cite this work as:" ]
[ -0.08916964381933212, -0.010895969346165657, -0.00024323318211827427, 0.09631839394569397, 0.0992559939622879, 0.0107595669105649, 0.14384257793426514, 0.04135392606258392, 0.033118557184934616, -0.02793012373149395, 0.11453589051961899, 0.04221650958061218, -0.002641483210027218, 0.15341666340827942, 0.053739141672849655, -0.27793821692466736, -0.03602698817849159, -0.04108068719506264, 0.0156681090593338, 0.12503445148468018, 0.12396015971899033, -0.06373819708824158, 0.12820769846439362, 0.044372402131557465, -0.0925060287117958, 0.03466084599494934, 0.0030006400775164366, -0.06923183053731918, 0.08768703043460846, 0.11366058140993118, 0.02972809039056301, -0.007626567501574755, 0.06533869355916977, -0.1293288767337799, 0.054912105202674866, 0.027384186163544655, -0.04163875803351402, 0.09189598262310028, 0.05734960734844208, -0.04403861612081528, 0.1399022489786148, 0.014094194397330284, 0.0027794644702225924, 0.052614856511354446, -0.1027902290225029, -0.01284762378782034, -0.01999790593981743, 0.09052670747041702, 0.05799562484025955, 0.08545911312103271, -0.013120906427502632, 0.0653684213757515, -0.084842748939991, 0.11586719751358032, 0.11698497086763382, -0.18430396914482117, -0.04705336317420006, 0.11681270599365234, 0.025408461689949036, 0.03502606227993965, 0.012656786479055882, 0.08609870076179504, -0.03303639963269234, 0.0060255988501012325, 0.13325099647045135, -0.03574495017528534, -0.06759106367826462, -0.031597089022397995, -0.12882710993289948, 0.00756615586578846, 0.19291308522224426, 0.026306385174393654, -0.029960155487060547, -0.1211281418800354, -0.052812568843364716, 0.11841589212417603, -0.04207265004515648, -0.016867484897375107, -0.0034630894660949707, 0.01461015548557043, -0.03135770559310913, -0.14082063734531403, -0.07417136430740356, -0.08027492463588715, -0.11268497258424759, 0.08615082502365112, 0.003324156627058983, 0.04847324267029762, -0.10916314274072647, 0.07052386552095413, -0.13657346367835999, -0.09175015985965729, -0.012899817898869514, -0.06778782606124878, -0.025371158495545387, -0.022205539047718048, -0.031046677380800247, -0.13671371340751648, 0.03051077201962471, 0.1551126092672348, 0.0083574578166008, -0.004240884445607662, -0.00021827506134286523, 0.05984879285097122, 0.06423141062259674, 0.06034795567393303, -0.21059976518154144, -0.0006625759997405112, 0.09199593961238861, -0.0851496085524559, -0.03084135800600052, -0.03546476736664772, -0.1330920308828354, 0.015296105295419693, -0.05973944813013077, 0.030703647062182426, 0.024159718304872513, 0.12248203158378601, -0.004083350300788879, -0.10730552673339844, 0.06137608736753464, -0.10426335781812668, -0.03202192857861519, 0.01965186558663845, -0.047473713755607605, -0.10302898287773132, 0.08139068633317947, 0.006327468901872635, -0.035748835653066635, -0.02979911118745804, -0.09000874310731888, -0.0005687220836989582, -0.05837344750761986, -0.1600698083639145, 0.002745778765529394, 0.01660456694662571, 0.0017346523236483335, -0.15125428140163422, -0.20425774157047272, 0.003330780193209648, 0.10969746857881546, -0.02271164208650589, 0.03544333577156067, -0.001981721492484212, 0.03711000084877014, -0.035893864929676056, -0.02007260173559189, 0.04954984039068222, -0.05523432046175003, -0.021848134696483612, -0.03983592987060547, 0.07553271949291229, -0.07297751307487488, 0.04090004786849022, -0.0653771460056305, -0.014348752796649933, -0.1622619330883026, 0.15255500376224518, -0.046914104372262955, 0.06541786342859268, -0.12352326512336731, -0.0334291085600853, -0.039743825793266296, 0.045095015317201614, 0.06291117519140244, 0.13802090287208557, -0.08779110759496689, -0.04369634389877319, 0.18650807440280914, -0.06903236359357834, -0.09679106622934341, 0.11944019049406052, -0.07961883395910263, 0.1321641206741333, 0.10083547234535217, 0.17368708550930023, 0.1141257956624031, -0.08791913837194443, 0.10391811281442642, 0.10747800022363663, -0.0569041408598423, -0.012733496725559235, 0.10467267036437988, 0.03585764393210411, -0.1306302845478058, 0.013154068030416965, -0.12157828360795975, 0.06587774306535721, -0.05686761811375618, -0.0879269540309906, 0.05194869637489319, -0.032455503940582275, 0.025310412049293518, -0.020052742213010788, 0.0746278464794159, 0.025933722034096718, -0.05251302570104599, 0.060207635164260864, 0.04247543588280678, -0.07031378149986267, -0.009085353463888168, -0.09578179568052292, 0.03099524974822998, -0.06587091833353043, 0.03502399101853371, -0.22505198419094086, -0.05137290805578232, -0.010993318632245064, 0.025722837075591087, 0.1326483190059662, -0.015374366194009781, 0.02701590768992901, 0.07607986778020859, -0.03088073432445526, 0.04729072377085686, 0.0024790868628770113, -0.006060512270778418, -0.05053810775279999, -0.14205896854400635, -0.05452657863497734, -0.041503578424453735, 0.03510185703635216, -0.0565313957631588, 0.033291224390268326, -0.03420503810048103, -0.02479035034775734, 0.03707273676991463, -0.007212507538497448, 0.05853942781686783, -0.019193774089217186, -0.009873578324913979, -0.013531572185456753, 0.030543358996510506, 0.012236249633133411, -0.10540676862001419, 0.10431066900491714, -0.06499134749174118, 0.062580905854702, 0.09132828563451767, -0.07912247627973557, -0.06533342599868774, -0.016700906679034233, -0.0448032021522522, 0.015070895664393902, -0.03529910743236542, -0.010136209428310394, 0.19371217489242554, 0.005290616769343615, 0.10118785500526428, -0.1109500601887703, -0.03923296928405762, -0.02062683179974556, -0.055706318467855453, -0.0009301404352299869, 0.08016063272953033, 0.08179425448179245, -0.20714320242404938, 0.03232567012310028, 0.020658012479543686, -0.04062584415078163, 0.16988426446914673, 0.05083214491605759, -0.050748832523822784, -0.024284347891807556, -0.04026830196380615, -0.013780685141682625, 0.029845038428902626, -0.15252119302749634, -0.034415353089571, 0.047011200338602066, -0.013653568923473358, 0.05804664269089699, -0.04798818752169609, 0.03308645635843277, 0.03967620059847832, -0.056418731808662415, -0.0824030265212059, 0.011110927909612656, -0.07842700183391571, 0.06933611631393433, 0.05583229660987854, 0.009426583535969257, -0.019295748323202133, -0.030637133866548538, -0.13605503737926483, 0.21952834725379944, -0.09149190038442612, -0.29468870162963867, -0.13193389773368835, -0.09293846786022186, -0.10017810016870499, 0.03546801209449768, 0.017791004851460457, -0.03917839005589485, -0.06439390778541565, -0.09562262147665024, 0.056607261300086975, 0.012405255809426308, -0.021426385268568993, -0.021347733214497566, -0.0023986888118088245, -0.012797967530786991, -0.14857248961925507, -0.002104197395965457, -0.04295719787478447, -0.012978116981685162, 0.032568011432886124, -0.09067639708518982, 0.09244436025619507, 0.12857896089553833, 0.004716245923191309, 0.06713326275348663, -0.026575878262519836, 0.2124788463115692, -0.0062619773671031, 0.022975219413638115, 0.15557730197906494, -0.019318263977766037, 0.015280681662261486, 0.1036779060959816, 0.07221561670303345, -0.06859254091978073, 0.0631830170750618, -0.0008998014964163303, -0.08077143132686615, -0.17582431435585022, -0.12251795083284378, -0.07253539562225342, -0.03728431090712547, 0.06181478500366211, 0.02783280424773693, 0.03357642889022827, 0.057943448424339294, 0.001458776998333633, 0.022695334628224373, 0.08633887767791748, 0.057947684079408646, 0.04341123253107071, -0.05060718581080437, 0.10585862398147583, 0.007024429738521576, -0.022751405835151672, 0.09893311560153961, -0.002846156945452094, 0.15080246329307556, -0.013902523554861546, 0.16815443336963654, 0.12473741918802261, 0.036860570311546326, 0.012223567813634872, 0.11935275048017502, -0.07167986780405045, 0.04590849205851555, -0.05495462939143181, -0.10570704936981201, 0.01094584260135889, 0.037331778556108475, -0.032054170966148376, -0.04680291563272476, -0.05177798494696617, 0.025493836030364037, 0.05325794965028763, 0.18805097043514252, 0.011353406123816967, -0.2721780240535736, -0.11373159289360046, -0.016512295231223106, 0.015043924562633038, -0.04887229576706886, -0.009497989900410175, 0.07781843841075897, -0.09139134734869003, 0.019121510908007622, 0.014081564731895924, 0.13234882056713104, 0.0014177642296999693, 0.012288973666727543, -0.0278471652418375, 0.09984744340181351, -0.036623552441596985, 0.11295612901449203, -0.23078039288520813, 0.22556748986244202, 0.052278243005275726, 0.038290444761514664, -0.09663783758878708, -0.002120265970006585, 0.08013830333948135, 0.13132810592651367, 0.1532614678144455, 0.03107479028403759, 0.10846555978059769, -0.027406979352235794, -0.10482434183359146, 0.03002725914120674, 0.0280083529651165, -0.10603568702936172, -0.0013344037579372525, 0.018277300521731377, -0.039141420274972916, 0.01587403193116188, 0.05655989795923233, -0.17558692395687103, -0.08609110116958618, 0.028340430930256844, -0.008324747905135155, -0.04485590383410454, -0.02200792171061039, -0.04512990266084671, 0.046336859464645386, 0.23469947278499603, -0.030598776414990425, -0.0739574283361435, -0.14759093523025513, 0.06582088768482208, 0.05814988911151886, -0.10429075360298157, 0.041228681802749634, -0.019156770780682564, 0.13067756593227386, -0.02027961239218712, -0.18024098873138428, 0.1356862485408783, -0.1332361251115799, 0.0015308308647945523, -0.022600863128900528, 0.014875420369207859, 0.10631213337182999, 0.03542710840702057, 0.05557568743824959, -0.009768442250788212, -0.0649794265627861, -0.11396100372076035, -0.08805587142705917, 0.08653388917446136, 0.028714947402477264, 0.10450869798660278, -0.13673703372478485, -0.12422386556863785, -0.024861803278326988, 0.044100552797317505, 0.1669672727584839, -0.010901673696935177, -0.06783751398324966, 0.11280672252178192, 0.28802618384361267, -0.06695371121168137, -0.3172116279602051, -0.0007910995627753437, 0.04479747265577316, 0.051585979759693146, 0.040562793612480164, -0.20010530948638916, 0.12726688385009766, 0.009253783151507378, -0.012190448120236397, -0.029381878674030304, -0.19047366082668304, -0.15849244594573975, 0.18010461330413818, 0.08473912626504898, 0.07993315160274506, -0.042181819677352905, -0.03651405870914459, -0.07661815732717514, 0.015200769528746605, 0.1459142416715622, -0.18843013048171997, 0.08332853764295578, 0.04100522771477699, -0.017721977084875107, -0.0027862805873155594, -0.037221308797597885, 0.059129294008016586, 0.0608331598341465, 0.05068871006369591, -0.05560210347175598, -0.006719131022691727, 0.14524415135383606, -0.03174788877367973, 0.18742859363555908, 0.0031618941575288773, 0.09233181178569794, -0.08883646875619888, -0.08543404936790466, -0.05017559975385666, 0.09880285710096359, 0.010512201115489006, -0.1095050796866417, -0.02238771878182888, 0.04417303577065468, 0.0265662744641304, 0.015238870866596699, 0.015048151835799217, -0.0851285457611084, 0.03871196135878563, 0.10534809529781342, 0.1691179871559143, -0.12537476420402527, -0.033747926354408264, 0.017802996560931206, -0.028045939281582832, 0.11628906428813934, -0.13116106390953064, 0.038927674293518066, 0.05049685761332512, 0.04104992747306824, 0.10672101378440857, 0.029802577570080757, -0.05867437645792961, -0.017075780779123306, 0.06458209455013275, -0.13079416751861572, -0.03155776485800743, -0.09045298397541046, -0.04274303466081619, -0.0669407993555069, -0.0024730071891099215, 0.13178908824920654, -0.03965950757265091, -0.014710347168147564, 0.017212487757205963, 0.037607062608003616, -0.04410165175795555, 0.10201654583215714, 0.07254570722579956, 0.016828564926981926, -0.10455427318811417, 0.009814927354454994, 0.03579278290271759, 0.038504134863615036, 0.01670779287815094, 0.05542376637458801, -0.13372331857681274, -0.125060573220253, -0.03745279088616371, 0.10580606758594513, -0.03817179054021835, -0.03893290087580681, -0.0018975625280290842, -0.05331501364707947, 0.037330515682697296, 0.09287476539611816, 0.060177214443683624, -0.02751176245510578, -0.08125040680170059, -0.0328347347676754, 0.010630528442561626, 0.08611395955085754, 0.018242122605443, -0.03706315904855728, -0.038379967212677, 0.07004430890083313, 0.025923993438482285, 0.09462786465883255, -0.07417386770248413, -0.056107524782419205, -0.11937917023897171, 0.028031524270772934, -0.06638934463262558, 0.04681660979986191, -0.09373148530721664, 0.02511175535619259, -0.031095430254936218, -0.019689131528139114, -0.018559515476226807, 0.03675778955221176, -0.08078599721193314, -0.012757203541696072, -0.048585787415504456, 0.06190487742424011, -0.11545764654874802, -0.008546639233827591, 0.022259443998336792, -0.012026581913232803, 0.13017435371875763, 0.049769047647714615, -0.055667877197265625, 0.03901653364300728, -0.21329781413078308, -0.027632983401417732, 0.003265928942710161, 0.07843288034200668, 0.028814924880862236, -0.06670845299959183, 0.04302555322647095, -0.0071947709657251835, 0.0067540849559009075, -0.012629379518330097, 0.1035558208823204, -0.1017020121216774, 0.02396601438522339, -0.05223699286580086, 0.004044664558023214, -0.04826325178146362, 0.0728255957365036, 0.024127714335918427, 0.07348595559597015, 0.08230309188365936, -0.05491555854678154, 0.020904092118144035, -0.11979269981384277, 0.023227708414196968, 0.004520460031926632, -0.03619404137134552, -0.13786590099334717, -0.0967802032828331, 0.05946365371346474, -0.055349837988615036, 0.23359017074108124, 0.12694473564624786, 0.001374105573631823, -0.005449169781059027, 0.08195099979639053, 0.09456637501716614, -0.021613484248518944, 0.1317329853773117, -0.010138611309230328, 0.027062254026532173, -0.014479435048997402, 0.08326195925474167, 0.02298891544342041, -0.037907011806964874, 0.11206243187189102, 0.03773945942521095, 0.02805684506893158, 0.02263692580163479, 0.1160544753074646, 0.023887887597084045, -0.06772660464048386, -0.11763399839401245, -0.0017614958342164755, 0.06480446457862854, -0.04672616720199585, -0.03293457627296448, 0.1503268927335739, -0.1097816601395607, 0.10995207726955414, 0.07405032217502594, -0.07787073403596878, -0.13838937878608704, -0.21370331943035126, -0.05886254459619522, -0.039770469069480896, -0.03142128139734268, -0.14580529928207397, -0.0654190331697464, 0.01688416302204132, 0.051971517503261566, 0.003243057755753398, 0.16537432372570038, -0.07062322646379471, -0.0987730622291565, 0.0607294887304306, -0.03339105471968651, 0.005305915605276823, -0.027819102630019188, -0.009758523665368557, 0.05085602402687073, 0.057036228477954865, 0.032107241451740265, 0.023592866957187653, 0.0036630777176469564, 0.03509202599525452, -0.05647340044379234, -0.06754438579082489, -0.09015598148107529, -0.0009700623340904713, -0.0010366188362240791, 0.12062886357307434, 0.024902835488319397, -0.11650843918323517, 0.03256719559431076, 0.12186513096094131, -0.032892826944589615, -0.06624062359333038, -0.1515260934829712, 0.26383325457572937, 0.0018474431708455086, 0.01890658400952816, -0.028070906177163124, -0.03815600275993347, -0.005130880977958441, 0.24619826674461365, 0.3407156467437744, -0.07103578746318817, 0.007612635847181082, 0.037416961044073105, 0.006823876406997442, 0.04916536062955856, 0.14502213895320892, 0.0187817569822073, 0.27336564660072327, -0.022485103458166122, 0.041809260845184326, -0.006868932396173477, -0.07039812207221985, -0.05221797525882721, -0.039966143667697906, 0.06848148256540298, -0.05588299781084061, -0.013955564238131046, 0.15277032554149628, -0.13775534927845, -0.12398526072502136, -0.04364074394106865, -0.026519646868109703, -0.07654700428247452, -0.07606479525566101, -0.11390645056962967, 0.06626824289560318, 0.06902189552783966, -0.029941201210021973, 0.021312318742275238, 0.03296424448490143, 0.04837736114859581, -0.133428692817688, -0.08698273450136185, 0.1195920780301094, 0.07310611009597778, 0.16079822182655334, -0.01668482832610607, 0.05930905416607857, 0.08006696403026581, -0.01908860169351101, -0.058056265115737915, 0.07384268194437027, -0.036407411098480225, 0.005059631075710058, 0.05690619349479675, 0.0004741645825561136, -0.040704816579818726, -0.027862807735800743, 0.004243544768542051, -0.10232369601726532, 0.036840010434389114, -0.06489962339401245, -0.030617931857705116, -0.10293823480606079, 0.057851411402225494, -0.09226211905479431, 0.12044121325016022, 0.16307750344276428, -0.030414016917347908, -0.03591788932681084, -0.08531999588012695, 0.052261821925640106, 0.017703544348478317, -0.06997960060834885, -0.06359841674566269, -0.11604602634906769, -0.030304228886961937, -0.0661565512418747, 0.02452918142080307, -0.30202460289001465, -0.012930631637573242, 0.005985225085169077, 0.005483629181981087, -0.00588432140648365, 0.057690225541591644, 0.1658705621957779, 0.04176924750208855, -0.0061350357718765736, -0.04380953311920166, 0.019412068650126457, 0.01647714339196682, -0.20093472301959991, -0.08420812338590622 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-ft-common-language This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the common_language dataset. It achieves the following results on the evaluation set: - Loss: 2.7214 - Accuracy: 0.2797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 4 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.6543 | 1.0 | 173 | 3.7611 | 0.0491 | | 3.2221 | 2.0 | 346 | 3.4868 | 0.1352 | | 2.9332 | 3.0 | 519 | 3.2732 | 0.1861 | | 2.7299 | 4.0 | 692 | 3.0944 | 0.2172 | | 2.5638 | 5.0 | 865 | 2.9790 | 0.2400 | | 2.3871 | 6.0 | 1038 | 2.8668 | 0.2590 | | 2.3384 | 7.0 | 1211 | 2.7972 | 0.2653 | | 2.2648 | 8.0 | 1384 | 2.7625 | 0.2695 | | 2.2162 | 9.0 | 1557 | 2.7405 | 0.2782 | | 2.1915 | 10.0 | 1730 | 2.7214 | 0.2797 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["audio-classification", "generated_from_trainer"], "datasets": ["common_language"], "metrics": ["accuracy"], "model-index": [{"name": "distilhubert-ft-common-language", "results": []}]}
audio-classification
anton-l/distilhubert-ft-common-language
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:common_language", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #hubert #audio-classification #generated_from_trainer #dataset-common_language #license-apache-2.0 #endpoints_compatible #region-us
distilhubert-ft-common-language =============================== This model is a fine-tuned version of ntu-spml/distilhubert on the common\_language dataset. It achieves the following results on the evaluation set: * Loss: 2.7214 * Accuracy: 0.2797 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 4 * seed: 0 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 10.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.0.dev0 * Pytorch 1.9.1+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 4\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #hubert #audio-classification #generated_from_trainer #dataset-common_language #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 4\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ 57, 160, 4, 37 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #hubert #audio-classification #generated_from_trainer #dataset-common_language #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 4\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ -0.13944955170154572, 0.09749532490968704, -0.0022293191868811846, 0.06074688956141472, 0.13571271300315857, 0.004952613729983568, 0.09805609285831451, 0.12043583393096924, -0.10300640016794205, 0.08302368968725204, 0.09120486676692963, 0.08509926497936249, 0.04481355473399162, 0.09198489040136337, -0.026559369638562202, -0.3267236649990082, 0.012131194584071636, 0.03368677198886871, -0.1791321188211441, 0.11675205081701279, 0.11332690715789795, -0.09591410309076309, 0.034116875380277634, 0.04563039913773537, -0.14081093668937683, 0.0073750680312514305, -0.013397825881838799, -0.06499702483415604, 0.09902187436819077, 0.044054463505744934, 0.10823817551136017, 0.02701273374259472, 0.07939531654119492, -0.22488269209861755, 0.013299185782670975, 0.06680503487586975, 0.0422295518219471, 0.08075769245624542, 0.10258035361766815, -0.012522784993052483, 0.1271856427192688, -0.05817144364118576, 0.06947119534015656, 0.055771343410015106, -0.11341512948274612, -0.2959219813346863, -0.10398013144731522, 0.040316637605428696, 0.0990997776389122, 0.08865472674369812, -0.02410164102911949, 0.07044079899787903, -0.067537821829319, 0.08264555782079697, 0.2275986671447754, -0.24241399765014648, -0.08806565403938293, -0.0063020349480211735, 0.07284770905971527, 0.053014304488897324, -0.12590454518795013, -0.025882968679070473, 0.05917542427778244, 0.0370541550219059, 0.10509411990642548, 0.009700090624392033, -0.014909680932760239, 0.0024008196778595448, -0.14184144139289856, -0.06018901988863945, 0.1616199016571045, 0.08348485082387924, -0.05453746020793915, -0.06360895931720734, -0.009739404544234276, -0.23820413649082184, -0.03940710052847862, 0.01827516034245491, 0.0325266532599926, -0.04852284863591194, -0.10872388631105423, 0.012235024012625217, -0.0842791423201561, -0.09574863314628601, 0.027356302365660667, 0.18169791996479034, 0.04481480270624161, -0.01931162364780903, 0.0012340915855020285, 0.10985821485519409, 0.04442868009209633, -0.15406188368797302, -0.020956316962838173, 0.02970775030553341, -0.08481309562921524, -0.030598800629377365, -0.058162953704595566, -0.02172182872891426, -0.012638137675821781, 0.1534905880689621, -0.06043855845928192, 0.07088601589202881, 0.02599525824189186, 0.029730727896094322, -0.0810236781835556, 0.17902982234954834, -0.0607791505753994, -0.020991405472159386, -0.03820949047803879, 0.0905412957072258, -0.014042054302990437, -0.015603918582201004, -0.05345284938812256, 0.029743924736976624, 0.10240885615348816, 0.03042498603463173, -0.044495441019535065, 0.0125502310693264, -0.06606783717870712, -0.03720971941947937, 0.002470082836225629, -0.09314548224210739, 0.024731416255235672, 0.014495326206088066, -0.0756351426243782, 0.012057560496032238, 0.011873951181769371, 0.023980876430869102, 0.004099992103874683, 0.12720035016536713, -0.08721178770065308, -0.011342187412083149, -0.09289082884788513, -0.09630489349365234, 0.0428781732916832, -0.045369457453489304, 0.021855201572179794, -0.06366661190986633, -0.1112789586186409, -0.03863737732172012, 0.06643463671207428, -0.02941703237593174, -0.09481772780418396, -0.03511073812842369, -0.07511546462774277, 0.04888851195573807, -0.028941882774233818, 0.1552225947380066, -0.06176183372735977, 0.11005501449108124, 0.0440429225564003, 0.04159769043326378, 0.019921813160181046, 0.07125658541917801, -0.057336531579494476, 0.05581037327647209, -0.1609039455652237, 0.06168751418590546, -0.10437486320734024, 0.05819828435778618, -0.118341363966465, -0.13405539095401764, -0.024346785619854927, 0.005019388161599636, 0.09117297828197479, 0.08253475278615952, -0.154488205909729, -0.10734343528747559, 0.14664246141910553, -0.0804898664355278, -0.12556040287017822, 0.12404067814350128, -0.02132086455821991, -0.006276966538280249, 0.04778927564620972, 0.1425875872373581, 0.13320323824882507, -0.09843039512634277, -0.025909652933478355, -0.05626966804265976, 0.13581839203834534, 0.007672473322600126, 0.11345253139734268, -0.018757013604044914, -0.0015742797404527664, 0.001264277147129178, -0.04560812562704086, 0.0627140924334526, -0.10087335854768753, -0.08740951120853424, -0.02978150174021721, -0.09409864991903305, 0.026875047013163567, 0.06558574736118317, 0.047243695706129074, -0.0906592607498169, -0.12535460293293, 0.08100669831037521, 0.11300306767225266, -0.08946329355239868, 0.029436655342578888, -0.06987020373344421, 0.04996612295508385, -0.045877985656261444, -0.03452954441308975, -0.18537333607673645, -0.03799540922045708, 0.018761415034532547, -0.07466097176074982, 0.028815707191824913, -0.02301493100821972, 0.07094451785087585, 0.05909452959895134, -0.05932380259037018, -0.06636368483304977, -0.1090708076953888, -0.010268169455230236, -0.06939458847045898, -0.20474563539028168, -0.09125620126724243, -0.01898857019841671, 0.16551831364631653, -0.2228218913078308, 0.009309627115726471, 0.017079036682844162, 0.11731935292482376, 0.04147075116634369, -0.05286053940653801, -0.015307708643376827, 0.08341224491596222, -0.02703934721648693, -0.06215248256921768, 0.01779187098145485, 0.026275064796209335, -0.11382617801427841, -0.00755554111674428, -0.09154440462589264, 0.12153994292020798, 0.0979890301823616, -0.02212679572403431, -0.07634757459163666, -0.038817696273326874, -0.08547632396221161, -0.06364262104034424, -0.025728890672326088, -0.005110404919832945, 0.15752555429935455, 0.02102724462747574, 0.12489300966262817, -0.08730889856815338, -0.046102967113256454, 0.044609300792217255, -0.0009982399642467499, -0.005376819521188736, 0.1178484708070755, 0.06755764782428741, -0.037882000207901, 0.11706814914941788, 0.09844833612442017, -0.09995128959417343, 0.17157122492790222, -0.08704449981451035, -0.13084816932678223, -0.01709200069308281, 0.005730083677917719, 0.03541664779186249, 0.12874819338321686, -0.12895502150058746, 0.011525780893862247, 0.020877618342638016, 0.03798924759030342, 0.02830931358039379, -0.20221808552742004, -0.014276504516601562, 0.047751110047101974, -0.05035634711384773, -0.0653502345085144, -0.00684671476483345, -0.007465332746505737, 0.07675734907388687, 0.005544704385101795, -0.033988021314144135, -0.0019759046845138073, -0.010207257233560085, -0.07275336980819702, 0.19207800924777985, -0.0883944183588028, -0.1377883404493332, -0.1635645627975464, -0.032787520438432693, -0.030771471560001373, -0.008374322205781937, 0.04733490198850632, -0.09941604733467102, -0.031938426196575165, -0.04140273854136467, 0.059575412422418594, -0.051465217024087906, 0.03174624964594841, 0.011217008344829082, 0.017747294157743454, 0.09941120445728302, -0.11016868054866791, 0.032485395669937134, -0.006393399089574814, -0.044038232415914536, 0.010272146202623844, 0.022785136476159096, 0.09901895374059677, 0.16356149315834045, 0.03464280441403389, 0.018669961020350456, -0.02611931413412094, 0.1892198771238327, -0.11911128461360931, -0.0388646237552166, 0.11148424446582794, -0.00031249088351614773, 0.0357314795255661, 0.09997227787971497, 0.06831644475460052, -0.0807323306798935, 0.03031104989349842, 0.06951064616441727, -0.03498527780175209, -0.24936194717884064, -0.03046390600502491, -0.07649210095405579, -0.00905338954180479, 0.1141095906496048, 0.028044596314430237, 0.03330465406179428, 0.047057051211595535, -0.016069116070866585, 0.025654278695583344, -0.008573214523494244, 0.06867857277393341, 0.07894030958414078, 0.05308857560157776, 0.11849802732467651, -0.025642002001404762, -0.027242962270975113, 0.03426285833120346, 0.018298489972949028, 0.2571081817150116, 0.00932314433157444, 0.17327366769313812, 0.06671775877475739, 0.14504048228263855, 0.01747782714664936, 0.09272903949022293, 0.015124903060495853, -0.032333679497241974, 0.025528447702527046, -0.05727880075573921, -0.024143612012267113, 0.027577323839068413, 0.04790481925010681, 0.05229175463318825, -0.1446441262960434, -0.031126873567700386, -0.0023640701547265053, 0.33825916051864624, 0.07235103845596313, -0.3222335875034332, -0.1211196556687355, 0.005512550473213196, -0.060894858092069626, -0.0516824908554554, 0.0371813140809536, 0.08370260894298553, -0.08352804183959961, 0.0677676722407341, -0.08031757175922394, 0.10896272212266922, -0.035332825034856796, -0.012817610055208206, 0.11341603100299835, 0.07650456577539444, -0.010643473826348782, 0.05934401974081993, -0.2238064855337143, 0.28050753474235535, -0.015044738538563251, 0.08435001969337463, -0.0183691568672657, 0.03242990002036095, 0.03988990560173988, -0.010950770229101181, 0.05801093578338623, -0.008868022821843624, -0.09666489064693451, -0.19921281933784485, -0.08414053171873093, 0.023030148819088936, 0.11584606766700745, -0.060859158635139465, 0.12664280831813812, -0.03199676051735878, -0.0023818649351596832, 0.06256870180368423, -0.07741459459066391, -0.11683440208435059, -0.10413677245378494, 0.027749886736273766, 0.01278045866638422, 0.07855351269245148, -0.10911156237125397, -0.1264280378818512, -0.056786440312862396, 0.14171993732452393, -0.05656027793884277, -0.01803501881659031, -0.1338413804769516, 0.0893213301897049, 0.18081359565258026, -0.05658606067299843, 0.07052233815193176, 0.017515098676085472, 0.13970869779586792, 0.040926527231931686, -0.016246240586042404, 0.09087185561656952, -0.07816442847251892, -0.19560682773590088, -0.03989299759268761, 0.17235404253005981, 0.04165728762745857, 0.06540104001760483, -0.029599817469716072, 0.03608039766550064, -0.007077720481902361, -0.08666131645441055, 0.0335923433303833, -0.041549649089574814, 0.017011985182762146, 0.04894476756453514, -0.03825443983078003, 0.05500050261616707, -0.04515531659126282, -0.053492650389671326, 0.12954196333885193, 0.27011266350746155, -0.073316790163517, 0.006535755470395088, 0.028585292398929596, -0.04612274095416069, -0.13589301705360413, 0.04632306843996048, 0.15584684908390045, 0.039094652980566025, 0.02075476199388504, -0.23253946006298065, 0.0922793447971344, 0.09876561164855957, -0.023934725672006607, 0.11736978590488434, -0.2981918752193451, -0.12498784065246582, 0.10171455889940262, 0.09998016059398651, -0.04140745848417282, -0.15839126706123352, -0.06065985560417175, -0.017833229154348373, -0.15946142375469208, 0.11817256361246109, -0.03318183869123459, 0.12573140859603882, -0.0028493234422057867, 0.05877922102808952, 0.02041255496442318, -0.04560243338346481, 0.15262529253959656, 0.0022728031035512686, 0.05273371562361717, 0.005586881656199694, 0.05104037746787071, 0.05452125892043114, -0.0545622818171978, 0.0024076870176941156, -0.06547357141971588, 0.016562165692448616, -0.1374496966600418, -0.038052164018154144, -0.09113647788763046, 0.02805369719862938, -0.05291842669248581, -0.038219209760427475, -0.025243088603019714, 0.048543818295001984, 0.05054793134331703, -0.0046269213780760765, 0.16571921110153198, -0.027118833735585213, 0.16177299618721008, 0.08135627955198288, 0.09182845056056976, -0.014916365034878254, -0.12425260990858078, -0.002957363147288561, -0.015618907287716866, 0.06274784356355667, -0.13748466968536377, 0.03828088194131851, 0.15002432465553284, 0.06284210085868835, 0.1344301998615265, 0.07234227657318115, -0.06012492999434471, 0.01910983957350254, 0.08219300955533981, -0.07305283099412918, -0.10427974164485931, -0.033776164054870605, 0.03589130565524101, -0.15431059896945953, 0.021073944866657257, 0.0977819412946701, -0.06873248517513275, -0.007829244248569012, 0.019389456138014793, 0.0014318636385723948, -0.07013431936502457, 0.2266255021095276, 0.04212769865989685, 0.07919131219387054, -0.09301169961690903, 0.08434594422578812, 0.04847823828458786, -0.1717386394739151, -0.012576752342283726, 0.06483426690101624, -0.03991999849677086, -0.00278618186712265, 0.006942487321794033, 0.05526464805006981, -0.04808276146650314, -0.0580565445125103, -0.12190885841846466, -0.14673352241516113, 0.08514336496591568, 0.09226450324058533, 0.051192618906497955, 0.04395449161529541, -0.046806417405605316, 0.06040133535861969, -0.11497675627470016, 0.10098332166671753, 0.102720707654953, 0.09402848780155182, -0.16456350684165955, 0.12095978856086731, 0.00973015371710062, 0.013950426131486893, 0.000172546278918162, -0.008803175762295723, -0.08708664029836655, 0.020372062921524048, -0.1289411336183548, -0.02990860864520073, -0.03575316444039345, -0.0008369623683393002, -0.0026160809211432934, -0.05750546231865883, -0.08741205930709839, 0.02785545587539673, -0.12181130051612854, -0.046923622488975525, -0.002175724832341075, 0.07363421469926834, -0.0983419418334961, -0.009815910831093788, 0.06929003447294235, -0.12025405466556549, 0.07404894381761551, 0.05288161709904671, 0.03634052351117134, 0.0467413067817688, -0.07462860643863678, 0.009723659604787827, 0.047020990401506424, -0.003757581114768982, 0.032735176384449005, -0.17343811690807343, -0.004192395135760307, -0.020404627546668053, 0.051562462002038956, -0.011431091465055943, 0.00004634398646885529, -0.13271664083003998, -0.060885097831487656, -0.023672327399253845, -0.051522962749004364, -0.05376942828297615, 0.037526536732912064, 0.0800737664103508, 0.05924265831708908, 0.17588970065116882, -0.06595960259437561, 0.026782894507050514, -0.23297423124313354, 0.011859222315251827, -0.027488354593515396, -0.08351118117570877, -0.07158919423818588, -0.026590419933199883, 0.07003674656152725, -0.0569167286157608, 0.09067479521036148, -0.06168311834335327, 0.05571764335036278, 0.04166356846690178, -0.06961360573768616, 0.03593989089131355, 0.05023195967078209, 0.2602899372577667, 0.057157374918460846, -0.01766636222600937, 0.07514581829309464, 0.005865528713911772, 0.05592220276594162, 0.1410685032606125, 0.17307227849960327, 0.15784719586372375, -0.008294107392430305, 0.07938459515571594, 0.04945861175656319, -0.09329362213611603, -0.1477026492357254, 0.10238417237997055, -0.0194714292883873, 0.13619332015514374, 0.010230720043182373, 0.22855985164642334, 0.09818139672279358, -0.20044921338558197, 0.06478603184223175, -0.04036901891231537, -0.08967254310846329, -0.09452119469642639, -0.03358372300863266, -0.06961905211210251, -0.18689893186092377, 0.0155038395896554, -0.13162146508693695, 0.05440216511487961, 0.07088592648506165, 0.02698536403477192, 0.020197898149490356, 0.15846379101276398, 0.027597591280937195, -0.0015616263262927532, 0.09784016758203506, 0.004246093332767487, -0.015947148203849792, -0.050197482109069824, -0.09614071995019913, 0.03917231783270836, -0.029200708493590355, 0.04476179555058479, -0.07099905610084534, -0.09952433407306671, 0.07010775059461594, 0.028540441766381264, -0.10197585076093674, 0.02245042659342289, -0.002468041842803359, 0.08159825950860977, 0.056281737983226776, 0.0053314026445150375, 0.01590125449001789, -0.01782231591641903, 0.24871192872524261, -0.09407331794500351, -0.03532826527953148, -0.14846590161323547, 0.2166300266981125, 0.015565052628517151, -0.023080628365278244, 0.03846324607729912, -0.07398435473442078, -0.015292292460799217, 0.14895199239253998, 0.11886914074420929, -0.009199229069054127, -0.03461827337741852, 0.009269658476114273, -0.014279942959547043, -0.05212651193141937, 0.08668165653944016, 0.113979771733284, 0.08445252478122711, -0.07116875052452087, -0.05256807804107666, -0.06061243638396263, -0.04455895349383354, -0.002889742609113455, 0.08568234741687775, 0.027486279606819153, -0.02496875822544098, -0.03198527172207832, 0.11462178081274033, -0.07284537702798843, -0.10941428691148758, 0.032124344259500504, -0.1718515306711197, -0.19381816685199738, -0.06048591434955597, 0.05234741419553757, 0.011458391323685646, 0.0522964745759964, -0.014455161057412624, -0.042973797768354416, 0.10091017186641693, -0.0009100152528844774, -0.04274166002869606, -0.1334211826324463, 0.10025620460510254, -0.04826074466109276, 0.20418564975261688, -0.04659649357199669, 0.03524238243699074, 0.10863275080919266, 0.0703139379620552, -0.07415467500686646, 0.01496867649257183, 0.07680103927850723, -0.1484028398990631, 0.027659138664603233, 0.19015368819236755, -0.049077484756708145, 0.12150320410728455, 0.020416399464011192, -0.14259018003940582, 0.006163208279758692, -0.07588865607976913, -0.05060949549078941, -0.0665249451994896, -0.03082767315208912, -0.057799115777015686, 0.12590138614177704, 0.22096726298332214, -0.06999412924051285, -0.026571422815322876, -0.061393145471811295, 0.03417360782623291, 0.0748000517487526, 0.12566320598125458, -0.027284495532512665, -0.2854473888874054, 0.014649897813796997, 0.015640508383512497, -0.018728939816355705, -0.24853301048278809, -0.08875339478254318, 0.04340396448969841, -0.06172145530581474, -0.04219021648168564, 0.10956098139286041, 0.058977484703063965, 0.04419853910803795, -0.05391436070203781, -0.0755433440208435, -0.06738006323575974, 0.17677174508571625, -0.1698075830936432, -0.0741862803697586 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-ft-keyword-spotting This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.1163 - Accuracy: 0.9706 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 256 - eval_batch_size: 32 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8176 | 1.0 | 200 | 0.7718 | 0.8116 | | 0.2364 | 2.0 | 400 | 0.2107 | 0.9662 | | 0.1198 | 3.0 | 600 | 0.1374 | 0.9678 | | 0.0891 | 4.0 | 800 | 0.1163 | 0.9706 | | 0.085 | 5.0 | 1000 | 0.1180 | 0.9690 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["audio-classification", "generated_from_trainer"], "datasets": ["superb"], "metrics": ["accuracy"], "model-index": [{"name": "distilhubert-ft-keyword-spotting", "results": []}]}
audio-classification
anton-l/distilhubert-ft-keyword-spotting
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #hubert #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #region-us
distilhubert-ft-keyword-spotting ================================ This model is a fine-tuned version of ntu-spml/distilhubert on the superb dataset. It achieves the following results on the evaluation set: * Loss: 0.1163 * Accuracy: 0.9706 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 256 * eval\_batch\_size: 32 * seed: 0 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 5.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.0.dev0 * Pytorch 1.9.1+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 32\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #hubert #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 32\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ 55, 131, 4, 37 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #hubert #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 32\n* seed: 0\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ -0.11923036724328995, 0.1360771358013153, -0.003427231917157769, 0.07167264819145203, 0.1276320219039917, -0.0034213669132441282, 0.10394416749477386, 0.13054011762142181, -0.1366923451423645, 0.06726245582103729, 0.09749910980463028, 0.13749314844608307, 0.031050803139805794, 0.13717973232269287, -0.05294375494122505, -0.27001991868019104, 0.02947348542511463, 0.048104822635650635, -0.07651591300964355, 0.11918129771947861, 0.08413724601268768, -0.12541857361793518, 0.054160889238119125, 0.020763462409377098, -0.1705528348684311, 0.00977055449038744, 0.005778281483799219, -0.08134301006793976, 0.0895116850733757, 0.006761232856661081, 0.09330276399850845, 0.05161244049668312, 0.07257416844367981, -0.18618930876255035, 0.011628223583102226, 0.07747601717710495, 0.023696858435869217, 0.08807402104139328, 0.0774696096777916, -0.020175674930214882, 0.11118193715810776, -0.07444114983081818, 0.06964635103940964, 0.028016667813062668, -0.10999990999698639, -0.27503225207328796, -0.11185569316148758, 0.051246318966150284, 0.06993179023265839, 0.07701359689235687, -0.0013772493693977594, 0.11466077715158463, -0.06870738416910172, 0.09966608136892319, 0.2682819366455078, -0.2716176211833954, -0.050367072224617004, -0.006691863294690847, 0.05059563368558884, 0.09015698730945587, -0.09637804329395294, -0.029649510979652405, 0.03861213102936745, 0.04428645595908165, 0.1492113620042801, -0.0202056635171175, -0.06341196596622467, -0.013544936664402485, -0.145993173122406, -0.06042854115366936, 0.13193821907043457, 0.01825256273150444, -0.054364003241062164, -0.05043242499232292, -0.05346071720123291, -0.24022747576236725, -0.05238747224211693, 0.015159635804593563, 0.04662906005978584, -0.05193604528903961, -0.07535941153764725, -0.0016038893954828382, -0.0588737353682518, -0.07634390145540237, -0.026660343632102013, 0.1675741821527481, 0.05963495373725891, 0.0125435721129179, -0.029172293841838837, 0.09516318142414093, -0.010711747221648693, -0.15435820817947388, -0.010118145495653152, 0.022042740136384964, -0.01989728771150112, -0.029002517461776733, -0.04742996022105217, -0.0456966906785965, 0.0020246393978595734, 0.15297989547252655, -0.12932707369327545, 0.08294203132390976, -0.019232453778386116, 0.04174342378973961, -0.0738682672381401, 0.15597915649414062, -0.03503415361046791, -0.003741578198969364, 0.017468402162194252, 0.07345332950353622, 0.0380062572658062, -0.022070184350013733, -0.08132375031709671, 0.03238774463534355, 0.0969230905175209, 0.030490504577755928, -0.04290861263871193, 0.03233286738395691, -0.05178414657711983, -0.03106873482465744, 0.04467931389808655, -0.11092473566532135, 0.035247769206762314, 0.0179817546159029, -0.05553354322910309, 0.0017323625506833196, 0.016521023586392403, 0.0031806407496333122, -0.04683883488178253, 0.12763473391532898, -0.07177864015102386, 0.020504912361502647, -0.0802607387304306, -0.11226313561201096, 0.04290587455034256, -0.12627895176410675, 0.012272605672478676, -0.0654631108045578, -0.10613968223333359, -0.016902312636375427, 0.053008075803518295, -0.023196857422590256, -0.07381225377321243, -0.033710967749357224, -0.08531130850315094, 0.03778955712914467, -0.041969556361436844, 0.10344177484512329, -0.08041033893823624, 0.1010860726237297, 0.021767280995845795, 0.06516795605421066, -0.025264067575335503, 0.07852613180875778, -0.07118897140026093, 0.03448539599776268, -0.22508803009986877, 0.05388011410832405, -0.09882035851478577, 0.023277953267097473, -0.09789062291383743, -0.12816616892814636, 0.02332419343292713, -0.005324422847479582, 0.09100030362606049, 0.08046462386846542, -0.16216182708740234, -0.0891554206609726, 0.17001184821128845, -0.08913113176822662, -0.08087305724620819, 0.11553585529327393, -0.027013318613171577, -0.055768225342035294, 0.058534134179353714, 0.20272395014762878, 0.10405220836400986, -0.1142456904053688, -0.013853238895535469, -0.03475380316376686, 0.07986068725585938, -0.05367753654718399, 0.0760195255279541, 0.0013988647842779756, 0.04817970469594002, 0.009951156564056873, -0.018342988565564156, 0.03688068315386772, -0.08595270663499832, -0.07611145079135895, -0.0479389950633049, -0.07959616184234619, 0.022970059886574745, 0.05796483904123306, 0.03959663584828377, -0.10611837357282639, -0.10268234461545944, 0.08063442260026932, 0.09804078191518784, -0.08537377417087555, 0.06571608781814575, -0.08269110321998596, 0.0973278135061264, -0.04764663800597191, -0.02941088192164898, -0.21439795196056366, 0.021384909749031067, 0.022655244916677475, -0.04021996259689331, 0.031327586621046066, -0.040459077805280685, 0.050613537430763245, 0.072276771068573, -0.053792692720890045, -0.05684583634138107, -0.04969983920454979, 0.0057630822993814945, -0.08209031075239182, -0.22400586307048798, -0.051621753722429276, -0.034001901745796204, 0.04622337967157364, -0.14299984276294708, 0.014759927056729794, 0.05517954006791115, 0.10168308764696121, 0.0444093681871891, -0.043889109045267105, -0.00048448724555782974, 0.10985586047172546, -0.025997303426265717, -0.06759949773550034, 0.05195210874080658, 0.03213381767272949, -0.06416554749011993, -0.0004182496923021972, -0.11076714098453522, 0.1609768122434616, 0.12859001755714417, -0.012820803560316563, -0.05773162096738815, 0.010327068157494068, -0.06551375985145569, -0.037022583186626434, -0.042281340807676315, 0.05622519925236702, 0.19259977340698242, 0.008529837243258953, 0.1419408768415451, -0.09775366634130478, -0.03493078425526619, 0.05180807784199715, -0.011619732715189457, 0.011093724519014359, 0.10984858870506287, 0.07186645269393921, -0.051655180752277374, 0.13811011612415314, 0.11785471439361572, -0.09139134734869003, 0.15503954887390137, -0.09153882414102554, -0.09785103052854538, -0.014237331226468086, -0.02353449910879135, 0.009902404621243477, 0.12107834219932556, -0.12227744609117508, -0.002435592468827963, 0.026091933250427246, 0.04684828221797943, 0.02003578282892704, -0.20679442584514618, 0.0021613806020468473, 0.02935490570962429, -0.07068014144897461, -0.07582588493824005, -0.008293467573821545, 0.019542036578059196, 0.09462164342403412, -0.01119663380086422, -0.058127276599407196, 0.016588551923632622, 0.008676059544086456, -0.06069643795490265, 0.1685124933719635, -0.1182912215590477, -0.15480169653892517, -0.11428365856409073, -0.071433886885643, -0.046063896268606186, -0.012765849009156227, 0.07571211457252502, -0.08382657915353775, -0.04056743159890175, -0.06312883645296097, 0.00005326309474185109, -0.017036685720086098, 0.032197896391153336, 0.019689567387104034, -0.0005247191293165088, 0.08247920870780945, -0.10725520551204681, -0.0046055433340370655, -0.025288982316851616, -0.018793385475873947, 0.030910221859812737, 0.0656571313738823, 0.0873681977391243, 0.14959411323070526, -0.005927828140556812, 0.026635667309165, -0.030983708798885345, 0.19868507981300354, -0.0865512415766716, -0.023769641295075417, 0.1282912790775299, -0.02023126929998398, 0.06931769847869873, 0.10783521831035614, 0.05917299911379814, -0.07328657805919647, -0.017673416063189507, 0.033929891884326935, -0.05355406925082207, -0.24587683379650116, -0.04451165348291397, -0.06519156694412231, -0.006500094197690487, 0.09109115600585938, 0.027776474133133888, 0.009135770611464977, 0.03205808252096176, 0.00730674434453249, 0.02424166351556778, -0.027511607855558395, 0.06901650875806808, 0.10559432953596115, 0.0459282286465168, 0.1281713992357254, -0.05107373371720314, -0.008389228954911232, 0.04879161715507507, 0.020835554227232933, 0.23298174142837524, -0.0038861343637108803, 0.1492561548948288, 0.06507305055856705, 0.16389290988445282, 0.035308193415403366, 0.07034074515104294, -0.012098893523216248, -0.011693784035742283, 0.006001926958560944, -0.05030406266450882, -0.04074716195464134, -0.007291084621101618, -0.008644366636872292, 0.023669766262173653, -0.12635061144828796, -0.003413318656384945, 0.01648569293320179, 0.3162553310394287, 0.03672517463564873, -0.31623393297195435, -0.09606019407510757, 0.0033087809570133686, -0.04153365269303322, -0.032823264598846436, 0.050307098776102066, 0.10257252305746078, -0.05956191197037697, 0.08070125430822372, -0.06424814462661743, 0.09971913695335388, -0.0597662553191185, 0.01230466179549694, 0.0822654440999031, 0.09636598080396652, 0.002064208500087261, 0.03675577789545059, -0.26183921098709106, 0.24518780410289764, 0.012554673478007317, 0.08108922839164734, -0.0377112552523613, 0.015045767650008202, 0.029986709356307983, 0.057743463665246964, 0.07660852372646332, -0.007669078651815653, -0.1440252661705017, -0.16951827704906464, -0.10589689761400223, 0.006455192342400551, 0.0987296923995018, 0.023762153461575508, 0.09645748883485794, -0.01896512508392334, -0.007799538783729076, 0.04887203499674797, -0.10869965702295303, -0.07365972548723221, -0.09687995910644531, 0.0140445651486516, 0.04406669735908508, -0.007766437251120806, -0.08065018057823181, -0.1174827292561531, -0.06131480634212494, 0.13777969777584076, -0.04528127238154411, -0.05189963057637215, -0.1289936602115631, 0.03966059908270836, 0.11707358062267303, -0.06976621598005295, 0.06489365547895432, 0.00801766011863947, 0.10313278436660767, 0.030007269233465195, -0.08286206424236298, 0.0958537831902504, -0.06733914464712143, -0.1752505600452423, -0.038682255893945694, 0.15736818313598633, 0.03710421919822693, 0.07235069572925568, -0.032202936708927155, 0.042818162590265274, 0.014696058817207813, -0.08085725456476212, 0.031213678419589996, -0.00003320681571494788, 0.08546099066734314, 0.01633266545832157, -0.04350058734416962, 0.010294746607542038, -0.03926674276590347, -0.026320146396756172, 0.1636674404144287, 0.22306862473487854, -0.08579371869564056, 0.10056145489215851, 0.04042693227529526, -0.06714688986539841, -0.1972190886735916, 0.029720153659582138, 0.09526151418685913, 0.008568013086915016, 0.006835756823420525, -0.2240232229232788, 0.07564335316419601, 0.0774819478392601, -0.015350226312875748, 0.11703552305698395, -0.3188321888446808, -0.1181938648223877, 0.11519090831279755, 0.11238354444503784, 0.05523740500211716, -0.146937295794487, -0.03521525114774704, -0.004649181384593248, -0.12135383486747742, 0.13369907438755035, -0.09742327779531479, 0.13019414246082306, -0.027222009375691414, 0.062213871628046036, 0.01438821665942669, -0.05273505672812462, 0.10163401812314987, 0.010678291320800781, 0.07496565580368042, -0.028631580993533134, 0.02974827028810978, 0.07505440711975098, -0.05633258447051048, 0.014521858654916286, -0.0821998342871666, 0.03337906301021576, -0.09802982211112976, -0.019346443936228752, -0.08185099065303802, 0.007567993830889463, -0.03518836200237274, -0.026328498497605324, -0.04370947554707527, 0.026335841044783592, 0.0749911293387413, -0.02744789980351925, 0.20313037931919098, 0.001365669071674347, 0.12782837450504303, 0.15089693665504456, 0.08885617554187775, -0.08113635331392288, -0.1272822916507721, -0.0006322195986285806, -0.029091181233525276, 0.06280242651700974, -0.15413406491279602, 0.049599647521972656, 0.1432599425315857, 0.038613684475421906, 0.09615454077720642, 0.06964613497257233, -0.04774457588791847, 0.019544154405593872, 0.05971740186214447, -0.14498308300971985, -0.09781412780284882, 0.0013107666745781898, 0.002598719671368599, -0.08684820681810379, 0.04576360806822777, 0.10056072473526001, -0.0625116303563118, -0.014869775623083115, 0.00873126182705164, 0.02542460896074772, -0.05009792000055313, 0.21351215243339539, 0.03681330755352974, 0.0580902025103569, -0.1281321793794632, 0.10518425703048706, 0.04221102595329285, -0.1537836194038391, 0.033106155693531036, 0.08850117772817612, -0.08031059801578522, -0.012491201050579548, 0.07040325552225113, 0.10995610058307648, -0.024818699806928635, -0.06408239156007767, -0.13211099803447723, -0.13771606981754303, 0.10643484443426132, 0.16476239264011383, 0.0648331418633461, 0.023744851350784302, -0.0584777407348156, 0.021324753761291504, -0.1223858892917633, 0.09633927792310715, 0.05319135636091232, 0.07955837994813919, -0.16140957176685333, 0.13170252740383148, 0.015876585617661476, 0.03487108647823334, -0.01885499618947506, 0.015261669643223286, -0.09577780216932297, 0.02350503019988537, -0.14056630432605743, 0.006387854926288128, -0.03267337381839752, 0.005616456735879183, -0.023393183946609497, -0.03970981761813164, -0.0765305832028389, 0.048101846128702164, -0.11606989055871964, -0.02282080613076687, -0.004217080771923065, 0.043240293860435486, -0.11358336359262466, -0.006636822130531073, 0.02416333183646202, -0.09520962089300156, 0.06887873262166977, 0.06356662511825562, -0.006974547170102596, 0.038731057196855545, -0.05085628107190132, -0.034415990114212036, 0.07418449968099594, 0.005572163034230471, 0.0600985512137413, -0.14279432594776154, -0.007278710603713989, 0.007177014369517565, 0.027247583493590355, 0.004146704915910959, 0.08181378245353699, -0.12410932779312134, -0.017834626138210297, -0.024487560614943504, -0.049869686365127563, -0.0618613176047802, 0.04777555167675018, 0.1358834058046341, 0.03533449396491051, 0.18374978005886078, -0.0769963189959526, 0.0250498466193676, -0.1966249793767929, 0.003745034337043762, -0.00650372076779604, -0.13168686628341675, -0.08693519234657288, -0.023056987673044205, 0.075290746986866, -0.055460456758737564, 0.12486490607261658, -0.0057816277258098125, 0.018968814983963966, 0.04272744432091713, -0.06270969659090042, -0.028694365173578262, 0.046559568494558334, 0.2006354033946991, 0.02652428112924099, -0.046569086611270905, 0.08062317967414856, 0.007288898807018995, 0.0767074003815651, 0.1501111090183258, 0.21119707822799683, 0.14996623992919922, 0.05148673430085182, 0.07793474197387695, 0.031121648848056793, -0.0754869356751442, -0.18426008522510529, 0.10097932815551758, -0.047304704785346985, 0.15187229216098785, 0.004487709142267704, 0.22372941672801971, 0.07922160625457764, -0.17483538389205933, 0.08711861819028854, -0.037167370319366455, -0.08968193829059601, -0.12500421702861786, -0.052387792617082596, -0.07971449941396713, -0.1711496263742447, 0.00593865942209959, -0.13276252150535583, 0.0704062432050705, 0.06437172740697861, 0.015483388677239418, 0.017558805644512177, 0.14492356777191162, 0.017051860690116882, 0.008383405394852161, 0.08092105388641357, 0.013570936396718025, -0.04615040868520737, -0.03931952640414238, -0.07939648628234863, 0.04958929866552353, -0.030827170237898827, 0.052572283893823624, -0.0295394416898489, -0.05621611326932907, 0.07182791829109192, -0.015324228443205357, -0.08911046385765076, 0.028367839753627777, 0.00929174479097128, 0.09106852859258652, 0.0785461813211441, 0.010112782940268517, 0.0024528796784579754, -0.006677132565528154, 0.2042115330696106, -0.07994701713323593, -0.0502486489713192, -0.11278284341096878, 0.23673520982265472, 0.045869529247283936, -0.02395777218043804, 0.05937601998448372, -0.06071292981505394, -0.03696010261774063, 0.16827651858329773, 0.1649693101644516, -0.017349952831864357, -0.017508940771222115, -0.013164237141609192, -0.010126007720828056, -0.04061266779899597, 0.11070483177900314, 0.14204975962638855, 0.07115945219993591, -0.06613090634346008, -0.06752955168485641, -0.06183783337473869, -0.021118510514497757, -0.03854776918888092, 0.0742148831486702, 0.021473394706845284, -0.02485801838338375, -0.03126630187034607, 0.05671374872326851, -0.08822689205408096, -0.10489924997091293, 0.03904462978243828, -0.19047309458255768, -0.1727735549211502, -0.02232060581445694, 0.09565478563308716, 0.005695033818483353, 0.026056237518787384, -0.00440544867888093, -0.02166624739766121, 0.09645558893680573, -0.016933375969529152, -0.06357920169830322, -0.08870051056146622, 0.08816719055175781, -0.12607917189598083, 0.18409691751003265, -0.034459494054317474, 0.05712800845503807, 0.10064418613910675, 0.07435926049947739, -0.08620448410511017, 0.046539321541786194, 0.04167252779006958, -0.1347496509552002, -0.0035335903521627188, 0.1721571832895279, -0.049251195043325424, 0.08509082347154617, 0.021458815783262253, -0.08982940763235092, -0.008914426900446415, -0.0857376828789711, -0.058893658220767975, -0.022516610100865364, -0.05278031900525093, -0.05918436869978905, 0.11749996989965439, 0.17613928020000458, -0.03710755333304405, -0.0009544879430904984, -0.07113808393478394, 0.024640778079628944, 0.07021304965019226, 0.04467160254716873, -0.028790492564439774, -0.2561860680580139, 0.019438566640019417, 0.05490388721227646, -0.0127910440787673, -0.2249448001384735, -0.08243299275636673, 0.020092839375138283, -0.04949593171477318, -0.11103582382202148, 0.08564409613609314, 0.03596685826778412, 0.04858633875846863, -0.06208707392215729, -0.04031803086400032, -0.06365787982940674, 0.15690642595291138, -0.16469420492649078, -0.0646822452545166 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-base-ft-keyword-spotting This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0774 - Accuracy: 0.9819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0422 | 1.0 | 399 | 0.8999 | 0.6918 | | 0.3296 | 2.0 | 798 | 0.1505 | 0.9778 | | 0.2088 | 3.0 | 1197 | 0.0901 | 0.9816 | | 0.202 | 4.0 | 1596 | 0.0848 | 0.9813 | | 0.1535 | 5.0 | 1995 | 0.0774 | 0.9819 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["audio-classification", "generated_from_trainer"], "datasets": ["superb"], "metrics": ["accuracy"], "model-index": [{"name": "hubert-base-ft-keyword-spotting", "results": []}]}
audio-classification
anton-l/hubert-base-ft-keyword-spotting
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #hubert #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #has_space #region-us
hubert-base-ft-keyword-spotting =============================== This model is a fine-tuned version of facebook/hubert-base-ls960 on the superb dataset. It achieves the following results on the evaluation set: * Loss: 0.0774 * Accuracy: 0.9819 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 0 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 5.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.0.dev0 * Pytorch 1.9.1+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #hubert #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ 59, 159, 4, 37 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #hubert #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ -0.13547730445861816, 0.09770535677671432, -0.0019511941354721785, 0.05823710933327675, 0.13565237820148468, 0.008398162201046944, 0.09706829488277435, 0.12149316817522049, -0.09401124715805054, 0.08690274506807327, 0.0865107998251915, 0.08005515486001968, 0.04701423645019531, 0.10026959329843521, -0.02306104078888893, -0.3251911401748657, 0.01391033548861742, 0.028849992901086807, -0.17643329501152039, 0.11318033933639526, 0.10885980725288391, -0.10511209070682526, 0.03533075749874115, 0.03957663103938103, -0.13592708110809326, 0.014277695678174496, -0.01642421819269657, -0.06772814691066742, 0.09578478336334229, 0.034157805144786835, 0.11175654828548431, 0.022090962156653404, 0.09395875781774521, -0.21648962795734406, 0.014479033648967743, 0.07718644291162491, 0.038992736488580704, 0.08489358425140381, 0.10668163746595383, -0.0070786550641059875, 0.13689526915550232, -0.06451224535703659, 0.0696779415011406, 0.05056716501712799, -0.11683299392461777, -0.29799628257751465, -0.10655258595943451, 0.04161407798528671, 0.097892165184021, 0.07850004732608795, -0.0229227002710104, 0.07110382616519928, -0.07149412482976913, 0.07423267513513565, 0.23440729081630707, -0.23766760528087616, -0.09374526888132095, 0.0003831015492323786, 0.07563744485378265, 0.04456326737999916, -0.12359217554330826, -0.03283858299255371, 0.05392521247267723, 0.03556104376912117, 0.109772689640522, 0.008856512606143951, -0.015649428591132164, 0.00861862301826477, -0.14997927844524384, -0.054617445915937424, 0.15032874047756195, 0.08207832276821136, -0.052119895815849304, -0.05501104146242142, -0.01311182975769043, -0.22959336638450623, -0.04371371492743492, 0.02605183608829975, 0.029947424307465553, -0.0524652861058712, -0.10939846187829971, 0.023261437192559242, -0.08097215741872787, -0.09908415377140045, 0.022029047831892967, 0.17641231417655945, 0.04385710507631302, -0.01609937846660614, 0.0036586960777640343, 0.11429964005947113, 0.043116651475429535, -0.15796248614788055, -0.01606818288564682, 0.02755173109471798, -0.09170562773942947, -0.03233915567398071, -0.05293168127536774, -0.0036663233768194914, -0.01079458836466074, 0.1451500803232193, -0.05592067539691925, 0.06429550051689148, 0.03562990948557854, 0.035311173647642136, -0.07485052198171616, 0.1645890176296234, -0.0693059116601944, -0.014694075100123882, -0.03835892304778099, 0.09418438374996185, -0.011782321147620678, -0.012927855364978313, -0.05006546527147293, 0.02719099074602127, 0.09037867933511734, 0.028642283752560616, -0.0308640468865633, 0.0085268784314394, -0.059603795409202576, -0.02943253517150879, 0.008234372362494469, -0.09511468559503555, 0.028477095067501068, 0.01892995834350586, -0.08146019279956818, 0.0005250871181488037, 0.006327974144369364, 0.02454792708158493, 0.005206872243434191, 0.14200226962566376, -0.08794185519218445, -0.006898289546370506, -0.09713630378246307, -0.09688442945480347, 0.04632780700922012, -0.05382585525512695, 0.0165867917239666, -0.06296966969966888, -0.11311034858226776, -0.04001607373356819, 0.0640755146741867, -0.03207596391439438, -0.0950702652335167, -0.028784872964024544, -0.07875492423772812, 0.051608260720968246, -0.03102804161608219, 0.16468873620033264, -0.06437292695045471, 0.1123596727848053, 0.03350721299648285, 0.042284078896045685, 0.01311112754046917, 0.06929044425487518, -0.06377854943275452, 0.05123518034815788, -0.14831127226352692, 0.04594182223081589, -0.10070975124835968, 0.05747224763035774, -0.12005876749753952, -0.13650035858154297, -0.028480850160121918, 0.0030032657086849213, 0.09433094412088394, 0.08152009546756744, -0.17015552520751953, -0.10150780528783798, 0.1367214322090149, -0.08231616765260696, -0.12067407369613647, 0.11542054265737534, -0.019106363877654076, -0.003980756271630526, 0.03653542324900627, 0.13695785403251648, 0.12183668464422226, -0.08866846561431885, -0.028917772695422173, -0.054930198937654495, 0.13691432774066925, 0.009076716378331184, 0.11313446611166, -0.011090029031038284, 0.005572529509663582, -0.005140483845025301, -0.035209160298109055, 0.056551218032836914, -0.10209139436483383, -0.09263606369495392, -0.04024570435285568, -0.09396092593669891, 0.018256142735481262, 0.07255015522241592, 0.042761173099279404, -0.0914420336484909, -0.12489441782236099, 0.07581453770399094, 0.11374253779649734, -0.08267559111118317, 0.026179946959018707, -0.06647324562072754, 0.05728127434849739, -0.03987666219472885, -0.03518863022327423, -0.18485042452812195, -0.0295279361307621, 0.018459122627973557, -0.07027266919612885, 0.027214858680963516, -0.022611606866121292, 0.06714002043008804, 0.06153528392314911, -0.05628955364227295, -0.07299662381410599, -0.10687915980815887, -0.010501994751393795, -0.06906342506408691, -0.2135680466890335, -0.10415568947792053, -0.02211231179535389, 0.12716317176818848, -0.21974553167819977, 0.008169523440301418, 0.008369682356715202, 0.123633474111557, 0.03656257688999176, -0.05284770205616951, -0.015157963149249554, 0.09191982448101044, -0.026101229712367058, -0.06741832941770554, 0.02156991697847843, 0.019955195486545563, -0.10557428002357483, -0.007816553115844727, -0.09114263206720352, 0.1327369511127472, 0.09770161658525467, -0.024091335013508797, -0.0777164176106453, -0.02962985634803772, -0.08803173899650574, -0.060711245983839035, -0.0447043851017952, 0.004624620079994202, 0.14944830536842346, 0.02298792451620102, 0.1127612516283989, -0.09091280400753021, -0.05553164705634117, 0.043315865099430084, 0.0030786984134465456, -0.006529092788696289, 0.11604870110750198, 0.08664966374635696, -0.05451234057545662, 0.11771570891141891, 0.10775371640920639, -0.1034204512834549, 0.17139483988285065, -0.09005745500326157, -0.1335512399673462, -0.016504161059856415, -0.00041800172766670585, 0.03220289200544357, 0.14087706804275513, -0.12039349228143692, 0.014380578882992268, 0.017955070361495018, 0.03545031696557999, 0.028117068111896515, -0.2059955596923828, -0.022725043818354607, 0.03772830590605736, -0.05047266185283661, -0.08376432210206985, 0.00024216750171035528, -0.0009020306752063334, 0.08588716387748718, -0.004541510250419378, -0.026804208755493164, -0.009569281712174416, -0.011891010217368603, -0.06991422921419144, 0.1883455514907837, -0.08483865112066269, -0.12742821872234344, -0.15153318643569946, -0.013300531543791294, -0.016478722915053368, -0.011973676271736622, 0.04625262692570686, -0.10016515105962753, -0.03161530941724777, -0.04611853510141373, 0.04663940891623497, -0.050577033311128616, 0.03225308656692505, -0.008165203966200352, 0.02466168813407421, 0.10507585853338242, -0.11175898462533951, 0.03716789558529854, -0.003654361702501774, -0.05320555716753006, 0.009978999383747578, 0.04368038475513458, 0.09328369051218033, 0.15448395907878876, 0.03220409154891968, 0.00939586665481329, -0.025196397677063942, 0.1872366964817047, -0.11221407353878021, -0.032369427382946014, 0.12099659442901611, 0.0012847883626818657, 0.04011662304401398, 0.104166679084301, 0.06968937814235687, -0.07493962347507477, 0.026438025757670403, 0.06796976923942566, -0.0333409309387207, -0.24909906089305878, -0.029310686513781548, -0.07687897235155106, -0.01442793570458889, 0.11765415221452713, 0.031985871493816376, -0.001779391197487712, 0.04979143291711807, -0.024774441495537758, 0.016230760142207146, -0.032052841037511826, 0.06532014906406403, 0.06455844640731812, 0.05606384575366974, 0.11944291740655899, -0.029358919709920883, -0.02929956279695034, 0.031201764941215515, 0.020221246406435966, 0.2544774115085602, 0.00020953835337422788, 0.13987305760383606, 0.061134446412324905, 0.15533454716205597, 0.016430296003818512, 0.09593246132135391, 0.017817342653870583, -0.031508516520261765, 0.022822383791208267, -0.05775199830532074, -0.01772884465754032, 0.034289076924324036, 0.05059587210416794, 0.050751715898513794, -0.1396106779575348, -0.034950848668813705, -0.0011015040799975395, 0.3363879919052124, 0.07012175768613815, -0.30731287598609924, -0.11683222651481628, 0.011590301059186459, -0.06832737475633621, -0.04776758328080177, 0.03406572341918945, 0.1075514405965805, -0.0775936022400856, 0.06549853086471558, -0.07728951424360275, 0.10897934436798096, -0.026704126968979836, -0.015024884603917599, 0.11968642473220825, 0.0779503732919693, -0.008482472039759159, 0.060358867049217224, -0.22613857686519623, 0.2841654419898987, -0.014079066924750805, 0.08428753167390823, -0.018977485597133636, 0.031212978065013885, 0.04558946564793587, -0.016310056671500206, 0.054997533559799194, -0.004585327114909887, -0.12575654685497284, -0.20116271078586578, -0.07490245252847672, 0.02628246136009693, 0.11545204371213913, -0.053812962025403976, 0.12001758068799973, -0.030469786375761032, -0.0017956196097657084, 0.06573370099067688, -0.08102092146873474, -0.12346061319112778, -0.09837896376848221, 0.027204131707549095, 0.005536279641091824, 0.06614799797534943, -0.1162794828414917, -0.1250070035457611, -0.055658239871263504, 0.12445752322673798, -0.061770129948854446, -0.009933867491781712, -0.13405168056488037, 0.09327196329832077, 0.18813592195510864, -0.055306680500507355, 0.06980512291193008, 0.020292723551392555, 0.13360300660133362, 0.04293577000498772, -0.020326819270849228, 0.09086785465478897, -0.08355193585157394, -0.1999897062778473, -0.049350351095199585, 0.15991561114788055, 0.04621845483779907, 0.06873735040426254, -0.032882269471883774, 0.03997649624943733, -0.01180968340486288, -0.0867651030421257, 0.043716154992580414, -0.039404045790433884, 0.023523764684796333, 0.04970114305615425, -0.042386494576931, 0.048824459314346313, -0.036629606038331985, -0.058341119438409805, 0.12474780529737473, 0.26330849528312683, -0.07673020660877228, 0.006132456008344889, 0.011684724129736423, -0.05187893286347389, -0.14443981647491455, 0.05079047381877899, 0.15401725471019745, 0.03826010227203369, 0.017408357933163643, -0.2412528097629547, 0.09564408659934998, 0.09671267122030258, -0.02746802754700184, 0.12787367403507233, -0.3009921610355377, -0.12159433960914612, 0.09853371232748032, 0.09957126528024673, -0.037088844925165176, -0.15762977302074432, -0.05286731198430061, -0.010372128337621689, -0.1415116786956787, 0.12489530444145203, -0.03671939671039581, 0.12399575859308243, -0.0055728028528392315, 0.05881623551249504, 0.019882623106241226, -0.0475931242108345, 0.1504230499267578, -0.005437162239104509, 0.0636485144495964, 0.007693106308579445, 0.05347311496734619, 0.05086482688784599, -0.048954084515571594, -0.005687350407242775, -0.06812074780464172, 0.018200505524873734, -0.13331599533557892, -0.02473974972963333, -0.09021201729774475, 0.03810718655586243, -0.053462374955415726, -0.03685648366808891, -0.025831004604697227, 0.06033214554190636, 0.05051615834236145, -0.005442235618829727, 0.16866379976272583, -0.029232485219836235, 0.17630299925804138, 0.07398451119661331, 0.09111662954092026, -0.004928876180201769, -0.11222181469202042, 0.0014795190654695034, -0.013206494972109795, 0.06581500172615051, -0.14694394171237946, 0.0343051441013813, 0.14670290052890778, 0.06394441425800323, 0.12084683030843735, 0.0733567550778389, -0.05772795155644417, 0.01643860712647438, 0.09078820794820786, -0.07723691314458847, -0.09308789670467377, -0.024602899327874184, 0.06156957894563675, -0.1572369635105133, 0.017255954444408417, 0.08785615116357803, -0.0686180368065834, -0.013888437300920486, 0.018000248819589615, 0.009368463419377804, -0.07139191031455994, 0.2248278260231018, 0.044499147683382034, 0.08246057480573654, -0.0888657420873642, 0.08660475164651871, 0.04635119438171387, -0.17108191549777985, -0.010313833132386208, 0.07123633474111557, -0.03094221092760563, -0.005014460068196058, 0.01357412338256836, 0.051049038767814636, -0.04389060288667679, -0.05488763004541397, -0.11819764971733093, -0.1431370973587036, 0.08371615409851074, 0.11129000782966614, 0.044547680765390396, 0.042232368141412735, -0.04464082792401314, 0.061407893896102905, -0.10880789905786514, 0.09823600947856903, 0.10063989460468292, 0.10018672794103622, -0.16799920797348022, 0.13376958668231964, 0.005859185475856066, 0.010193089954555035, 0.0005340859643183649, 0.004302299581468105, -0.09505602717399597, 0.015359542332589626, -0.11902308464050293, -0.03266561031341553, -0.04485993832349777, -0.002027304144576192, -0.003772970987483859, -0.059539008885622025, -0.0906536728143692, 0.02364654839038849, -0.12140177935361862, -0.04572378844022751, -0.006870661862194538, 0.07738132029771805, -0.09759648889303207, -0.004356429446488619, 0.07020726054906845, -0.1164507195353508, 0.06964399665594101, 0.049603916704654694, 0.03361240774393082, 0.04202912002801895, -0.08603210002183914, 0.010332527570426464, 0.037796784192323685, 0.0010550699662417173, 0.03174912557005882, -0.16902919113636017, 0.00040280522080138326, -0.027139928191900253, 0.05153440311551094, -0.012445756234228611, 0.0036959261633455753, -0.13481424748897552, -0.06046035513281822, -0.019834870472550392, -0.053612153977155685, -0.05232766643166542, 0.03149038180708885, 0.08609642088413239, 0.05323014408349991, 0.17437082529067993, -0.06822766363620758, 0.027061166241765022, -0.24067828059196472, 0.014675309881567955, -0.02698744833469391, -0.08805613964796066, -0.07299728691577911, -0.024630291387438774, 0.07502003014087677, -0.058485329151153564, 0.10029537975788116, -0.05097408965229988, 0.045793529599905014, 0.043069709092378616, -0.08176640421152115, 0.04032163694500923, 0.053083136677742004, 0.26795274019241333, 0.053242143243551254, -0.019761091098189354, 0.07195828855037689, 0.000355486263288185, 0.04640376940369606, 0.1406039148569107, 0.18132174015045166, 0.154890775680542, 0.010503550991415977, 0.07907944917678833, 0.054413266479969025, -0.10798580944538116, -0.12879517674446106, 0.11260814219713211, -0.015347566455602646, 0.13270439207553864, 0.0017842046217992902, 0.22105851769447327, 0.09594425559043884, -0.2067144513130188, 0.0603698305785656, -0.05096447840332985, -0.08250399678945541, -0.09722957760095596, -0.0338590107858181, -0.06427222490310669, -0.19126373529434204, 0.017918026074767113, -0.13203725218772888, 0.06449846923351288, 0.06634289026260376, 0.015976836904883385, 0.02242577262222767, 0.14505544304847717, 0.04023243859410286, 0.010486013256013393, 0.10360842943191528, 0.014082865789532661, -0.013647329062223434, -0.03928234055638313, -0.09936989843845367, 0.037844467908144, -0.033593032509088516, 0.04051986709237099, -0.07277504354715347, -0.10284781455993652, 0.07681581377983093, 0.03029690869152546, -0.09881535172462463, 0.02291577309370041, -0.0075530605390667915, 0.0794256180524826, 0.06712453812360764, 0.00930712278932333, 0.025167372077703476, -0.01999060995876789, 0.2594761550426483, -0.10355346649885178, -0.030572477728128433, -0.14537549018859863, 0.22680674493312836, 0.011556806042790413, -0.03032642789185047, 0.039280641824007034, -0.07201515883207321, -0.019581329077482224, 0.13537205755710602, 0.121879443526268, -0.009367755614221096, -0.030225509777665138, 0.00558538967743516, -0.01727975346148014, -0.0630258172750473, 0.091521255671978, 0.1216929480433464, 0.07750377804040909, -0.07836303859949112, -0.06415534764528275, -0.0642075389623642, -0.04228653013706207, -0.0033509740605950356, 0.0824432224035263, 0.02891598269343376, -0.02790153957903385, -0.029919937252998352, 0.11422906070947647, -0.08774719387292862, -0.10086073726415634, 0.030560573562979698, -0.16619057953357697, -0.19445361196994781, -0.05607016384601593, 0.06135573610663414, 0.014103330671787262, 0.047592535614967346, -0.017458034679293633, -0.03745556250214577, 0.09138274937868118, -0.0015311464667320251, -0.03436814621090889, -0.13985684514045715, 0.09750009328126907, -0.06270711123943329, 0.20640447735786438, -0.04723117873072624, 0.03192834556102753, 0.1098254844546318, 0.06846129894256592, -0.08042153716087341, 0.015745660290122032, 0.0769394040107727, -0.15634626150131226, 0.023485135287046432, 0.20261235535144806, -0.043866537511348724, 0.1315942108631134, 0.023058194667100906, -0.13109634816646576, 0.009915119037032127, -0.07670993357896805, -0.04479464143514633, -0.0655486062169075, -0.023327386006712914, -0.05596771836280823, 0.1328561007976532, 0.22113193571567535, -0.0724187046289444, -0.02754143439233303, -0.06368187069892883, 0.0320252850651741, 0.06921549886465073, 0.12188533693552017, -0.028851250186562538, -0.28119438886642456, 0.018736088648438454, 0.018530355766415596, -0.014561586081981659, -0.23371431231498718, -0.08473161607980728, 0.04968029260635376, -0.06854333728551865, -0.0464494451880455, 0.1085667535662651, 0.05651363730430603, 0.04396509379148483, -0.05657532066106796, -0.08459972590208054, -0.06156960874795914, 0.17679159343242645, -0.16763333976268768, -0.07042577117681503 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-mid-100k-ft-common-language This model is a fine-tuned version of [asapp/sew-mid-100k](https://huggingface.co/asapp/sew-mid-100k) on the common_language dataset. It achieves the following results on the evaluation set: - Loss: 2.1189 - Accuracy: 0.3842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 4 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.608 | 1.0 | 173 | 3.7266 | 0.0540 | | 3.1298 | 2.0 | 346 | 3.2180 | 0.1654 | | 2.8481 | 3.0 | 519 | 2.9270 | 0.2019 | | 2.648 | 4.0 | 692 | 2.6991 | 0.2619 | | 2.5 | 5.0 | 865 | 2.5236 | 0.3004 | | 2.2578 | 6.0 | 1038 | 2.4019 | 0.3212 | | 2.2782 | 7.0 | 1211 | 2.1698 | 0.3658 | | 2.1665 | 8.0 | 1384 | 2.1976 | 0.3631 | | 2.1626 | 9.0 | 1557 | 2.1473 | 0.3791 | | 2.1514 | 10.0 | 1730 | 2.1189 | 0.3842 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["audio-classification", "generated_from_trainer"], "datasets": ["common_language"], "metrics": ["accuracy"], "model-index": [{"name": "sew-mid-100k-ft-common-language", "results": []}]}
audio-classification
anton-l/sew-mid-100k-ft-common-language
[ "transformers", "pytorch", "tensorboard", "sew", "audio-classification", "generated_from_trainer", "dataset:common_language", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #sew #audio-classification #generated_from_trainer #dataset-common_language #license-apache-2.0 #endpoints_compatible #region-us
sew-mid-100k-ft-common-language =============================== This model is a fine-tuned version of asapp/sew-mid-100k on the common\_language dataset. It achieves the following results on the evaluation set: * Loss: 2.1189 * Accuracy: 0.3842 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 4 * seed: 0 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 10.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.0.dev0 * Pytorch 1.9.1+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 4\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #sew #audio-classification #generated_from_trainer #dataset-common_language #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 4\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ 57, 160, 4, 37 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #sew #audio-classification #generated_from_trainer #dataset-common_language #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 4\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ -0.14161452651023865, 0.09353943914175034, -0.0021780505776405334, 0.058706317096948624, 0.1335739940404892, 0.004155070520937443, 0.09658361971378326, 0.12251022458076477, -0.1058545634150505, 0.08189885318279266, 0.09108421951532364, 0.08789347112178802, 0.0471930168569088, 0.09641586989164352, -0.02123018354177475, -0.3222353160381317, 0.01592879928648472, 0.03368976339697838, -0.1771252304315567, 0.11805285513401031, 0.1124933660030365, -0.09272513538599014, 0.03194079548120499, 0.04833695665001869, -0.13967078924179077, 0.009410535916686058, -0.01646442338824272, -0.06268562376499176, 0.10094373673200607, 0.04714994505047798, 0.10648838430643082, 0.02459714002907276, 0.07841099053621292, -0.23177945613861084, 0.014288623817265034, 0.06546465307474136, 0.04017005115747452, 0.07862341403961182, 0.10058523714542389, -0.014408866874873638, 0.11553090810775757, -0.06233343109488487, 0.07090769708156586, 0.059098031371831894, -0.10951443016529083, -0.2978116273880005, -0.10083801299333572, 0.03797898069024086, 0.10413108021020889, 0.09414423257112503, -0.024957064539194107, 0.06639979034662247, -0.06678102165460587, 0.08461122959852219, 0.2274307906627655, -0.23187190294265747, -0.08573613315820694, -0.012087088078260422, 0.07269884645938873, 0.04902789741754532, -0.12240875512361526, -0.027131536975502968, 0.05802086740732193, 0.039260074496269226, 0.10352834314107895, 0.011562815867364407, -0.010127393528819084, 0.0006098762387409806, -0.14188340306282043, -0.06433653831481934, 0.16656793653964996, 0.08748461306095123, -0.055690035223960876, -0.059791479259729385, -0.010407515801489353, -0.24258272349834442, -0.04216481000185013, 0.020074723288416862, 0.03131477162241936, -0.04597165808081627, -0.1087484359741211, 0.008783658035099506, -0.08819707483053207, -0.10133930295705795, 0.02887623757123947, 0.17999260127544403, 0.045824915170669556, -0.01988626830279827, -0.002380771329626441, 0.10682455450296402, 0.03370344638824463, -0.14859327673912048, -0.02262462116777897, 0.03628452122211456, -0.09027760475873947, -0.026118727400898933, -0.059268008917570114, -0.029572540894150734, -0.011000974103808403, 0.15891027450561523, -0.05950210988521576, 0.07202092558145523, 0.03747645765542984, 0.031960684806108475, -0.08255111426115036, 0.17805932462215424, -0.05798957496881485, -0.014412648044526577, -0.038705501705408096, 0.0870937779545784, -0.012492929585278034, -0.019444134086370468, -0.052053868770599365, 0.02477322891354561, 0.104557566344738, 0.02904529869556427, -0.03935583680868149, 0.009057958610355854, -0.06761830300092697, -0.03520214557647705, 0.0006158276228234172, -0.09961185604333878, 0.019581710919737816, 0.010422898456454277, -0.07194128632545471, 0.009725208394229412, 0.016146153211593628, 0.028564853593707085, 0.0020643225871026516, 0.12508894503116608, -0.08507222682237625, -0.01310693845152855, -0.09304369240999222, -0.08946873992681503, 0.042071107774972916, -0.04558078944683075, 0.020491862669587135, -0.06392797827720642, -0.12592211365699768, -0.040519583970308304, 0.0640743225812912, -0.025390466675162315, -0.10149842500686646, -0.03701580688357353, -0.07429121434688568, 0.049652423709630966, -0.029695844277739525, 0.15364769101142883, -0.06331638246774673, 0.10915397107601166, 0.044805314391851425, 0.03468872234225273, 0.013955684378743172, 0.07006214559078217, -0.05833623558282852, 0.05664025992155075, -0.15082868933677673, 0.0628385841846466, -0.1006990596652031, 0.06099905073642731, -0.12216784805059433, -0.13059474527835846, -0.02948722057044506, 0.007336983922868967, 0.09178736060857773, 0.08391477912664413, -0.16584739089012146, -0.10891204327344894, 0.14694972336292267, -0.08438698947429657, -0.12645657360553741, 0.1290578991174698, -0.018365323543548584, -0.0036937352269887924, 0.048261914402246475, 0.14817702770233154, 0.14090652763843536, -0.08999133110046387, -0.025500858202576637, -0.05224880203604698, 0.13221527636051178, 0.0008088327595032752, 0.11530458927154541, -0.026900723576545715, 0.003235303796827793, 0.0026212171651422977, -0.04572639241814613, 0.06286939233541489, -0.0972437784075737, -0.08986382186412811, -0.035364456474781036, -0.09304220974445343, 0.025706879794597626, 0.06404543668031693, 0.04543063044548035, -0.08957193791866302, -0.12264877557754517, 0.0851946473121643, 0.11534937471151352, -0.09096714854240417, 0.03323347866535187, -0.07001040875911713, 0.050841882824897766, -0.04576954245567322, -0.032595884054899216, -0.18471819162368774, -0.04203784093260765, 0.014798782765865326, -0.0803261399269104, 0.03090372495353222, -0.02727533131837845, 0.07103331387042999, 0.055049456655979156, -0.05119052901864052, -0.06855393946170807, -0.11386014521121979, -0.009707847610116005, -0.06981519609689713, -0.20340198278427124, -0.09218709915876389, -0.017828192561864853, 0.1615101844072342, -0.2146931141614914, 0.01486684288829565, 0.019816486164927483, 0.11561082303524017, 0.03611462190747261, -0.054795097559690475, -0.014611250720918179, 0.08253207057714462, -0.024455836042761803, -0.05930415540933609, 0.018916763365268707, 0.027456264942884445, -0.12380877137184143, -0.003953562118113041, -0.09685465693473816, 0.12177461385726929, 0.09541333466768265, -0.024847829714417458, -0.07527842372655869, -0.03804675117135048, -0.08602894842624664, -0.06708022952079773, -0.030114123597741127, -0.013208835385739803, 0.1612839698791504, 0.025057503953576088, 0.12333667278289795, -0.08740261197090149, -0.048083726316690445, 0.04447732865810394, -0.004826645366847515, -0.0034764432348310947, 0.1176019012928009, 0.06648111343383789, -0.028866436332464218, 0.11861809343099594, 0.10310982167720795, -0.10421689599752426, 0.17412087321281433, -0.09047079086303711, -0.13045138120651245, -0.014192236587405205, 0.006290174555033445, 0.03202245756983757, 0.12636791169643402, -0.1351790428161621, 0.015250383876264095, 0.020023001357913017, 0.04074689373373985, 0.0286357793956995, -0.20503120124340057, -0.01456177793443203, 0.05095342546701431, -0.05571611970663071, -0.06376148015260696, -0.007525672670453787, -0.010164109990000725, 0.07088664174079895, 0.007476708386093378, -0.031805671751499176, 0.0030630072578787804, -0.010671627707779408, -0.07789346575737, 0.19467756152153015, -0.08904826641082764, -0.13448037207126617, -0.1691529005765915, -0.021627428010106087, -0.028753239661455154, -0.010384717024862766, 0.05094277858734131, -0.1021234542131424, -0.03354312852025032, -0.044119417667388916, 0.056724365800619125, -0.05524815246462822, 0.03361985832452774, 0.011966879479587078, 0.015758901834487915, 0.10236359387636185, -0.10980677604675293, 0.03340444341301918, -0.0032879915088415146, -0.04201044514775276, 0.0031800116412341595, 0.02287176065146923, 0.10243132710456848, 0.16567865014076233, 0.03719739988446236, 0.017856325954198837, -0.02423040010035038, 0.19636832177639008, -0.11891329288482666, -0.0424172580242157, 0.12137430161237717, -0.0014448651345446706, 0.03967021033167839, 0.10131259262561798, 0.06811533123254776, -0.07807987928390503, 0.03069266490638256, 0.07399731129407883, -0.037513285875320435, -0.24828459322452545, -0.02772809937596321, -0.07366157323122025, -0.00429856451228261, 0.10852578282356262, 0.03041308932006359, 0.033435188233852386, 0.049345292150974274, -0.017417507246136665, 0.02595793642103672, -0.006326018366962671, 0.06888706982135773, 0.07871988415718079, 0.05505744740366936, 0.11810313910245895, -0.025859903544187546, -0.02512500435113907, 0.03328034281730652, 0.02270684391260147, 0.25169652700424194, 0.012833036482334137, 0.18522022664546967, 0.06853961944580078, 0.1474994719028473, 0.017358778044581413, 0.08712030947208405, 0.015653356909751892, -0.030498644337058067, 0.02850235067307949, -0.055079374462366104, -0.026016125455498695, 0.02829020284116268, 0.04466407001018524, 0.053285062313079834, -0.1462470442056656, -0.027910206466913223, -0.0006047018687240779, 0.33898061513900757, 0.06558208912611008, -0.32218724489212036, -0.12267231196165085, 0.007586234714835882, -0.06524556130170822, -0.04908004403114319, 0.034149035811424255, 0.07875054329633713, -0.08633384108543396, 0.064796581864357, -0.07872200012207031, 0.11138436943292618, -0.0364004485309124, -0.009380958043038845, 0.11364749073982239, 0.07690874487161636, -0.008284131996333599, 0.06177399680018425, -0.22242209315299988, 0.28091099858283997, -0.014602270908653736, 0.08714938163757324, -0.014384381473064423, 0.03147711977362633, 0.0360088087618351, -0.007383888121694326, 0.0614435076713562, -0.009188837371766567, -0.09763643145561218, -0.19565854966640472, -0.0827634334564209, 0.02583116479218006, 0.11522186547517776, -0.06394173949956894, 0.12329185009002686, -0.033969443291425705, 0.0004706428153440356, 0.06290140748023987, -0.07912294566631317, -0.11630642414093018, -0.10515028238296509, 0.028838183730840683, 0.0148983895778656, 0.08397485315799713, -0.1098080724477768, -0.12564460933208466, -0.05926520749926567, 0.1496640294790268, -0.0649622306227684, -0.022619109600782394, -0.13722479343414307, 0.08532343804836273, 0.17997528612613678, -0.05859210714697838, 0.07385377585887909, 0.017011888325214386, 0.14322343468666077, 0.04013330116868019, -0.015151642262935638, 0.08776340633630753, -0.07778827100992203, -0.19751952588558197, -0.035813361406326294, 0.16927103698253632, 0.03860597312450409, 0.06288646161556244, -0.028863895684480667, 0.032977525144815445, -0.010736113414168358, -0.08929566293954849, 0.03477973863482475, -0.03594609722495079, 0.009610111825168133, 0.0471857488155365, -0.03079964593052864, 0.052382323890924454, -0.04434476047754288, -0.05895334854722023, 0.13144783675670624, 0.2728806436061859, -0.07192923873662949, 0.0056881411001086235, 0.030736178159713745, -0.04802672564983368, -0.13551364839076996, 0.03822328522801399, 0.1572658121585846, 0.04000643268227577, 0.02488001622259617, -0.22834055125713348, 0.08883760124444962, 0.10428717732429504, -0.025298651307821274, 0.10324934124946594, -0.30815935134887695, -0.12917177379131317, 0.09939131140708923, 0.1036774218082428, -0.03840792179107666, -0.15895096957683563, -0.065183125436306, -0.023119552060961723, -0.15766951441764832, 0.11568957567214966, -0.04234318435192108, 0.1241767406463623, -0.0017044759588316083, 0.06453042477369308, 0.019393058493733406, -0.045710306614637375, 0.15652652084827423, 0.004728466738015413, 0.05074405297636986, 0.005283234175294638, 0.06638195365667343, 0.046427324414253235, -0.05570485070347786, 0.007357024122029543, -0.06780386716127396, 0.016742326319217682, -0.13369391858577728, -0.037253424525260925, -0.08957850933074951, 0.029181137681007385, -0.053858816623687744, -0.03486628457903862, -0.022859565913677216, 0.04028855636715889, 0.048876240849494934, -0.005118933506309986, 0.17282618582248688, -0.028155086562037468, 0.1576841026544571, 0.07555077224969864, 0.09420399367809296, -0.010054443031549454, -0.13879892230033875, -0.003106849966570735, -0.017358899116516113, 0.059352681040763855, -0.13992777466773987, 0.041501715779304504, 0.14820709824562073, 0.06268470734357834, 0.13630123436450958, 0.07255050539970398, -0.06433375924825668, 0.020049354061484337, 0.0815921500325203, -0.07005810737609863, -0.11189959943294525, -0.03366350382566452, 0.037394892424345016, -0.16151590645313263, 0.025652553886175156, 0.0993729680776596, -0.06786132603883743, -0.00790323130786419, 0.018995169550180435, 0.003757922677323222, -0.0742795392870903, 0.22890859842300415, 0.04467715695500374, 0.08043520897626877, -0.09119150042533875, 0.08589403331279755, 0.044460147619247437, -0.16994518041610718, -0.008431035093963146, 0.06694109737873077, -0.04070369899272919, -0.005426664371043444, 0.011124160140752792, 0.053968992084264755, -0.060874857008457184, -0.06437116116285324, -0.12700442969799042, -0.1444469392299652, 0.08426422625780106, 0.10054760426282883, 0.05192504823207855, 0.045279067009687424, -0.04250626266002655, 0.05756225809454918, -0.11162727326154709, 0.1013684794306755, 0.10523894429206848, 0.09400773048400879, -0.16751597821712494, 0.12146608531475067, 0.013671964406967163, 0.019824862480163574, 0.00176167581230402, -0.009052883833646774, -0.08537508547306061, 0.024164527654647827, -0.12039517611265182, -0.02845098450779915, -0.03689064830541611, -0.0016498379409313202, 0.00023360228806268424, -0.05471161752939224, -0.08242025971412659, 0.029584411531686783, -0.11979416757822037, -0.05189770832657814, -0.0034273487981408834, 0.07097933441400528, -0.10020746290683746, -0.0078083183616399765, 0.07423964887857437, -0.11783882975578308, 0.0698641687631607, 0.049813151359558105, 0.03890666738152504, 0.050515271723270416, -0.081105537712574, 0.016978401690721512, 0.046520527452230453, -0.005120843183249235, 0.027039308100938797, -0.1652427315711975, -0.009670712053775787, -0.01945348270237446, 0.05090012028813362, -0.012315123341977596, 0.0030884877778589725, -0.13668453693389893, -0.05776654928922653, -0.02007148042321205, -0.050590258091688156, -0.0567496120929718, 0.03531118109822273, 0.07415780425071716, 0.06501850485801697, 0.1774347573518753, -0.06430355459451675, 0.028456391766667366, -0.22944721579551697, 0.015637779608368874, -0.025986546650528908, -0.08149635791778564, -0.07342968136072159, -0.028755242004990578, 0.06752409040927887, -0.05933716893196106, 0.08476950228214264, -0.06480946391820908, 0.06558587402105331, 0.0429382249712944, -0.07360684126615524, 0.04147739335894585, 0.049617018550634384, 0.2632196247577667, 0.05467973276972771, -0.013706155121326447, 0.07911419123411179, 0.004656882490962744, 0.051473088562488556, 0.13132523000240326, 0.16510312259197235, 0.1524379402399063, -0.01193341612815857, 0.08704213052988052, 0.04735548049211502, -0.08953163772821426, -0.14619788527488708, 0.09621293842792511, -0.01934598572552204, 0.13190729916095734, 0.0115238968282938, 0.22885851562023163, 0.10736313462257385, -0.1974201202392578, 0.06618361175060272, -0.0330854132771492, -0.09325768053531647, -0.09982369840145111, -0.039001885801553726, -0.06965995579957962, -0.18521958589553833, 0.015243506990373135, -0.13163934648036957, 0.054866332560777664, 0.07656972855329514, 0.02369334176182747, 0.023072315379977226, 0.15967901051044464, 0.03111250139772892, -0.001875458750873804, 0.09081314504146576, -0.0001028549813781865, -0.01655622199177742, -0.04785942658782005, -0.09737473726272583, 0.04349267855286598, -0.02851445972919464, 0.04512649402022362, -0.0717630609869957, -0.10022854059934616, 0.07106223702430725, 0.02663276344537735, -0.10191847383975983, 0.021091219037771225, -0.0029204708989709616, 0.07931744307279587, 0.05306888744235039, 0.008105084300041199, 0.01434324961155653, -0.017862269654870033, 0.2529340982437134, -0.09451369196176529, -0.034867435693740845, -0.14933963119983673, 0.20953738689422607, 0.01962951384484768, -0.027088738977909088, 0.0363524854183197, -0.07961182296276093, -0.010246438905596733, 0.15091988444328308, 0.10938912630081177, -0.0061972737312316895, -0.031877052038908005, 0.006371483206748962, -0.01427130401134491, -0.051151569932699203, 0.08275499939918518, 0.11244682967662811, 0.08017571270465851, -0.07364534586668015, -0.04638553783297539, -0.06222943589091301, -0.046476125717163086, -0.008504943922162056, 0.082515187561512, 0.021635059267282486, -0.019873814657330513, -0.03004581853747368, 0.11818798631429672, -0.07554899901151657, -0.10683570057153702, 0.028881821781396866, -0.161584734916687, -0.189999520778656, -0.05940304324030876, 0.05594980716705322, 0.011637788265943527, 0.05053997039794922, -0.014141584746539593, -0.04106611758470535, 0.10237234085798264, 0.0006354512879624963, -0.047931134700775146, -0.13523593544960022, 0.09553980827331543, -0.045181386172771454, 0.2037406712770462, -0.045724768191576004, 0.034523237496614456, 0.10586614906787872, 0.07220327109098434, -0.07514195144176483, 0.0204366073012352, 0.07470084726810455, -0.13896892964839935, 0.02740560472011566, 0.193024143576622, -0.04684806242585182, 0.1212342157959938, 0.01828812249004841, -0.1472698450088501, 0.0035401422064751387, -0.07588241249322891, -0.04939865693449974, -0.06294495612382889, -0.029205381870269775, -0.060865432024002075, 0.12426088750362396, 0.21579419076442719, -0.07081108540296555, -0.028577808290719986, -0.0622774139046669, 0.033444080501794815, 0.07086998969316483, 0.11818382889032364, -0.02754232846200466, -0.28433600068092346, 0.016702638939023018, 0.022711096331477165, -0.019593575969338417, -0.24537116289138794, -0.09267447888851166, 0.04433909058570862, -0.06079292297363281, -0.03774823248386383, 0.10828510671854019, 0.06535787135362625, 0.04121329262852669, -0.053521778434515, -0.07444304972887039, -0.06479794532060623, 0.17723548412322998, -0.17000211775302887, -0.07969309389591217 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-mid-100k-ft-keyword-spotting This model is a fine-tuned version of [asapp/sew-mid-100k](https://huggingface.co/asapp/sew-mid-100k) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0975 - Accuracy: 0.9757 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5999 | 1.0 | 399 | 0.2262 | 0.9635 | | 0.4271 | 2.0 | 798 | 0.1230 | 0.9697 | | 0.3778 | 3.0 | 1197 | 0.1052 | 0.9731 | | 0.3227 | 4.0 | 1596 | 0.0975 | 0.9757 | | 0.3081 | 5.0 | 1995 | 0.0962 | 0.9753 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["audio-classification", "generated_from_trainer"], "datasets": ["superb"], "metrics": ["accuracy"], "model-index": [{"name": "sew-mid-100k-ft-keyword-spotting", "results": []}]}
audio-classification
anton-l/sew-mid-100k-ft-keyword-spotting
[ "transformers", "pytorch", "tensorboard", "sew", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #sew #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #region-us
sew-mid-100k-ft-keyword-spotting ================================ This model is a fine-tuned version of asapp/sew-mid-100k on the superb dataset. It achieves the following results on the evaluation set: * Loss: 0.0975 * Accuracy: 0.9757 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 0 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 5.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.0.dev0 * Pytorch 1.9.1+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #sew #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ 55, 159, 4, 37 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #sew #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ -0.1464269757270813, 0.10994111001491547, -0.0018083736067637801, 0.06266514956951141, 0.13755157589912415, 0.019578304141759872, 0.10784547030925751, 0.11849314719438553, -0.11424553394317627, 0.06876502186059952, 0.09433490037918091, 0.09563075751066208, 0.035231925547122955, 0.10164856910705566, -0.02110489271581173, -0.30432066321372986, 0.016261553391814232, 0.025769973173737526, -0.19370701909065247, 0.11918850988149643, 0.09979657828807831, -0.1066652312874794, 0.049889061599969864, 0.046470124274492264, -0.15093128383159637, 0.003791776718571782, -0.018422815948724747, -0.06537961959838867, 0.09929554164409637, 0.03477106988430023, 0.1061200350522995, 0.028334317728877068, 0.09027854353189468, -0.19818969070911407, 0.013743946328759193, 0.07143158465623856, 0.030628902837634087, 0.08437518775463104, 0.08031569421291351, -0.009000181220471859, 0.11263219267129898, -0.06406868249177933, 0.07652657479047775, 0.05730175971984863, -0.10893771052360535, -0.3039189875125885, -0.1081233099102974, 0.05624908208847046, 0.10268917679786682, 0.08344059437513351, -0.012895042076706886, 0.07726631313562393, -0.05920243263244629, 0.07952208071947098, 0.22976645827293396, -0.2438025325536728, -0.08705593645572662, -0.012450048699975014, 0.06232363358139992, 0.052894704043865204, -0.10887572914361954, -0.017085224390029907, 0.047940097749233246, 0.03593296557664871, 0.1126600056886673, 0.009360568597912788, 0.003246760694310069, 0.010080952197313309, -0.15006785094738007, -0.06081346794962883, 0.1705900877714157, 0.0785042867064476, -0.06759367138147354, -0.055311888456344604, -0.033884353935718536, -0.24061831831932068, -0.03973468765616417, 0.009351140819489956, 0.0358612947165966, -0.05429903045296669, -0.11823917925357819, -0.008573133498430252, -0.07506714016199112, -0.1198205053806305, 0.019483687356114388, 0.21477214992046356, 0.047026392072439194, 0.0007775588892400265, -0.009573346003890038, 0.12312144041061401, 0.0446581207215786, -0.15857745707035065, -0.03085954487323761, 0.03415955975651741, -0.0849141925573349, -0.022322863340377808, -0.05919112637639046, -0.012209699489176273, -0.01070309802889824, 0.18365943431854248, -0.047365691512823105, 0.06253450363874435, 0.046245794743299484, 0.028654132038354874, -0.08723856508731842, 0.17759904265403748, -0.04961608722805977, -0.03625934571027756, -0.019531041383743286, 0.09872780740261078, 0.022381996735930443, -0.020654115825891495, -0.06926199048757553, 0.020955165848135948, 0.0906134843826294, 0.0266744252294302, -0.02340075746178627, 0.015307905152440071, -0.06175671145319939, -0.04064645245671272, 0.046736329793930054, -0.09389056265354156, 0.018227016553282738, 0.014437536709010601, -0.08061983436346054, -0.010785163380205631, 0.018533673137426376, 0.03144121170043945, 0.013718261383473873, 0.13885943591594696, -0.09162049740552902, -0.019052328541874886, -0.08815682679414749, -0.07767848670482635, 0.038576602935791016, -0.06256139278411865, 0.01685298979282379, -0.06211911514401436, -0.15292638540267944, -0.017739158123731613, 0.05380076915025711, -0.0227347519248724, -0.10102114081382751, -0.02621162123978138, -0.08506011217832565, 0.049161456525325775, -0.023966237902641296, 0.146957665681839, -0.06709154695272446, 0.10594196617603302, 0.06980077922344208, 0.03733820468187332, 0.0015149449463933706, 0.06026165187358856, -0.0585356280207634, 0.05257480964064598, -0.16438491642475128, 0.05485754832625389, -0.09079053997993469, 0.04962814599275589, -0.11335024237632751, -0.12586964666843414, -0.015940196812152863, 0.0028341093566268682, 0.08281243592500687, 0.09614536166191101, -0.15613064169883728, -0.11698903888463974, 0.1289089024066925, -0.08804436028003693, -0.14050647616386414, 0.12056902050971985, -0.01388632319867611, -0.03143748641014099, 0.04613873362541199, 0.1092613935470581, 0.13638301193714142, -0.08844972401857376, -0.030518708750605583, -0.04398062080144882, 0.12390368431806564, -0.007461344823241234, 0.1280994415283203, -0.019739173352718353, 0.014448489062488079, 0.004078418482095003, -0.07227665930986404, 0.04636680707335472, -0.09432988613843918, -0.09782451391220093, -0.045237865298986435, -0.09512579441070557, 0.04058755934238434, 0.06113651394844055, 0.04155460745096207, -0.08524098992347717, -0.13326036930084229, 0.08618728816509247, 0.13030138611793518, -0.07525157928466797, 0.032826680690050125, -0.08290081471204758, 0.07118090242147446, -0.05754417926073074, -0.029442811384797096, -0.184231698513031, -0.042490892112255096, 0.009564791806042194, -0.06429357826709747, 0.021985922008752823, -0.023671023547649384, 0.06951891630887985, 0.07808148115873337, -0.05672823637723923, -0.07715020328760147, -0.12330424785614014, -0.014376583509147167, -0.0692916139960289, -0.2171511948108673, -0.11067353934049606, -0.017607925459742546, 0.1522606611251831, -0.19080151617527008, 0.021112294867634773, 0.03142603486776352, 0.12488521635532379, 0.039387915283441544, -0.057715851813554764, -0.022244738414883614, 0.08314739167690277, -0.031023986637592316, -0.06515644490718842, 0.022364327684044838, 0.023122640326619148, -0.12509147822856903, -0.03908077999949455, -0.09337125718593597, 0.14696559309959412, 0.10752394795417786, -0.027972489595413208, -0.06222788617014885, -0.010374566540122032, -0.09032108634710312, -0.056693460792303085, -0.033127348870038986, -0.0007370691746473312, 0.14825664460659027, 0.027717387303709984, 0.12648119032382965, -0.08357325941324234, -0.054647937417030334, 0.04404725879430771, 0.00969831645488739, -0.0037756473757326603, 0.09450046718120575, 0.07274428755044937, -0.03837912902235985, 0.1238618865609169, 0.12332966923713684, -0.10551611334085464, 0.17079050838947296, -0.09027518332004547, -0.10961487889289856, -0.02041601575911045, -0.01050730049610138, 0.029071591794490814, 0.13948993384838104, -0.14354415237903595, 0.0027415051590651274, 0.018826685845851898, 0.033057354390621185, 0.018339386209845543, -0.2066897600889206, -0.012514290399849415, 0.053374066948890686, -0.057057932019233704, -0.06585050374269485, -0.005320119671523571, -0.017341405153274536, 0.0701657235622406, 0.01503005065023899, -0.025362437590956688, 0.011952458880841732, -0.0018418962135910988, -0.06743919849395752, 0.18920806050300598, -0.08566047996282578, -0.11122943460941315, -0.17404192686080933, -0.011089412495493889, -0.06060481816530228, -0.0028678737580776215, 0.0468791201710701, -0.09976111352443695, -0.029060324653983116, -0.033019449561834335, 0.058157358318567276, -0.042938366532325745, 0.04461151733994484, 0.01927625760436058, 0.00961911678314209, 0.10416611284017563, -0.11275308579206467, 0.0333067961037159, -0.0066653285175561905, -0.058286167681217194, -0.01609293557703495, 0.053504474461078644, 0.10967440158128738, 0.1512359082698822, 0.03627030923962593, 0.018809093162417412, -0.014382483437657356, 0.21256867051124573, -0.1198185384273529, -0.04057130590081215, 0.14727407693862915, -0.011954415589571, 0.03966299071907997, 0.0853683352470398, 0.06960460543632507, -0.07424885779619217, 0.011636219918727875, 0.06619174778461456, -0.03753375634551048, -0.23579610884189606, -0.02390606328845024, -0.06607483327388763, -0.008079448714852333, 0.09337250143289566, 0.03459911420941353, 0.034714024513959885, 0.05805654078722, -0.03214646875858307, 0.03497590497136116, -0.02574063651263714, 0.0743037760257721, 0.07525385171175003, 0.06483859568834305, 0.12500828504562378, -0.03263494744896889, -0.0231313593685627, 0.034628547728061676, 0.019416851922869682, 0.2238251268863678, 0.004354848992079496, 0.18281488120555878, 0.0631437599658966, 0.15417763590812683, 0.009238218888640404, 0.07373785972595215, 0.02381855435669422, -0.03138655424118042, 0.02166666090488434, -0.054926082491874695, -0.034996870905160904, 0.027450159192085266, 0.019767286255955696, 0.07454438507556915, -0.1435571312904358, -0.0045725698582828045, 0.012126132845878601, 0.3414156138896942, 0.05392611399292946, -0.3301005959510803, -0.1300644874572754, 0.015453940257430077, -0.04765717312693596, -0.03385189548134804, 0.023940501734614372, 0.08748676627874374, -0.08023349195718765, 0.08451274037361145, -0.08045424520969391, 0.10055956244468689, -0.04114833474159241, -0.0001990644377656281, 0.1234954372048378, 0.09264204651117325, -0.002726704115048051, 0.05086581036448479, -0.20230431854724884, 0.25897860527038574, -0.0023435174953192472, 0.0984252318739891, -0.021313590928912163, 0.03241772577166557, 0.043078530579805374, 0.03756396099925041, 0.058471061289310455, -0.015261317603290081, -0.08598168194293976, -0.1846642643213272, -0.07931381464004517, 0.026480015367269516, 0.110808826982975, -0.08315783739089966, 0.12155381590127945, -0.040648624300956726, -0.011229258030653, 0.06378662586212158, -0.06031901389360428, -0.09569784998893738, -0.09519190341234207, 0.02719051204621792, 0.003565124236047268, 0.05980692803859711, -0.10925030708312988, -0.12245293706655502, -0.037564557045698166, 0.14666876196861267, -0.09929556399583817, -0.028423702344298363, -0.1449442207813263, 0.07892604917287827, 0.1632673144340515, -0.06128093600273132, 0.07197172939777374, 0.012437884695827961, 0.1445455104112625, 0.04363071545958519, -0.034690145403146744, 0.0778936892747879, -0.08352470397949219, -0.2320113629102707, -0.03653079271316528, 0.1549474447965622, 0.032365549355745316, 0.06035429239273071, -0.04091804474592209, 0.04305504262447357, -0.006937440950423479, -0.08744975179433823, 0.04853403568267822, -0.0271549541503191, 0.036820217967033386, 0.03599386289715767, -0.0061542256735265255, 0.06263281404972076, -0.030773311853408813, -0.04111802577972412, 0.10848525911569595, 0.2801148593425751, -0.0747540220618248, 0.0008054068312048912, 0.02673356793820858, -0.04435303062200546, -0.14812131226062775, 0.03951307386159897, 0.13520021736621857, 0.026895347982645035, 0.011573509313166142, -0.23228754103183746, 0.09286826848983765, 0.09786577522754669, -0.03292730078101158, 0.11580195277929306, -0.31126686930656433, -0.1349477618932724, 0.09541318565607071, 0.11111727356910706, -0.0006576825398951769, -0.16250771284103394, -0.06066960468888283, -0.02472636103630066, -0.1549576073884964, 0.11005887389183044, -0.06962379813194275, 0.11379067599773407, -0.011772969737648964, 0.047324761748313904, 0.012975776568055153, -0.04307277873158455, 0.16009780764579773, 0.004308432340621948, 0.06144694611430168, 0.0054453653283417225, 0.04528903588652611, 0.05718120560050011, -0.05359211564064026, -0.007668434176594019, -0.08473356813192368, 0.02405661903321743, -0.1173342764377594, -0.028284870088100433, -0.08604230731725693, 0.03563946858048439, -0.05194873362779617, -0.0368841215968132, -0.02129359170794487, 0.03295491635799408, 0.030272454023361206, -0.016104530543088913, 0.20898275077342987, -0.002804997144266963, 0.15548712015151978, 0.08774248510599136, 0.09389036893844604, -0.0026995742227882147, -0.1409894973039627, -0.007553845643997192, -0.020151477307081223, 0.07235373556613922, -0.15346446633338928, 0.033064860850572586, 0.12972527742385864, 0.0683557540178299, 0.11582747846841812, 0.07854235172271729, -0.057542115449905396, 0.024261649698019028, 0.08633685111999512, -0.10169712454080582, -0.11724915355443954, -0.04020141065120697, -0.0005057934322394431, -0.15788915753364563, 0.05411819741129875, 0.10345172882080078, -0.06399746239185333, -0.00916366558521986, 0.018600407987833023, 0.007945315912365913, -0.07069684565067291, 0.2244824916124344, 0.05232546478509903, 0.08143594115972519, -0.10311371833086014, 0.09738276153802872, 0.03246884047985077, -0.14515291154384613, -0.0035498347133398056, 0.06106853857636452, -0.04760425165295601, -0.003586351405829191, 0.016622023656964302, 0.07342609018087387, -0.06846145540475845, -0.06611054390668869, -0.14479996263980865, -0.1292276680469513, 0.07824185490608215, 0.11302752792835236, 0.06158265098929405, 0.04745763540267944, -0.04694749042391777, 0.07017318159341812, -0.10690976679325104, 0.1078057512640953, 0.08124115318059921, 0.09763695299625397, -0.193048357963562, 0.13539594411849976, 0.011167665012180805, 0.027364252135157585, -0.003857402130961418, 0.0019331977237015963, -0.07981457561254501, 0.012926025316119194, -0.14321567118167877, -0.0374131016433239, -0.03209518641233444, 0.002793906955048442, -0.005388165824115276, -0.06349879503250122, -0.0900554209947586, 0.034737151116132736, -0.11643563210964203, -0.053204987198114395, 0.005676671862602234, 0.05097246170043945, -0.11726521700620651, 0.004101961385458708, 0.06799830496311188, -0.12601794302463531, 0.07097887992858887, 0.056316476315259933, 0.04335663467645645, 0.05370311811566353, -0.03773367777466774, 0.010395047254860401, 0.0440339595079422, -0.005411056336015463, 0.03648409619927406, -0.14186008274555206, -0.009993326850235462, -0.03179171681404114, 0.04783330485224724, -0.014511458575725555, 0.04365864396095276, -0.13397669792175293, -0.046908196061849594, -0.010760299861431122, -0.04527980089187622, -0.06119379773736, 0.03296994790434837, 0.10706072300672531, 0.052312493324279785, 0.18877756595611572, -0.05719342082738876, 0.016604384407401085, -0.23556803166866302, 0.012940630316734314, -0.017856761813163757, -0.09992820769548416, -0.10356677323579788, -0.02509521134197712, 0.0685088261961937, -0.06093328818678856, 0.0805496945977211, -0.06601201742887497, 0.08361563086509705, 0.04645484313368797, -0.04868502914905548, 0.04488325119018555, 0.05707133188843727, 0.24383489787578583, 0.057254016399383545, -0.015704089775681496, 0.08232821524143219, 0.009731649421155453, 0.061697863042354584, 0.10007490962743759, 0.17960001528263092, 0.13245141506195068, -0.01395723968744278, 0.09724531322717667, 0.057756923139095306, -0.09485961496829987, -0.17509937286376953, 0.07567312568426132, -0.03173026815056801, 0.13343878090381622, 0.009696600027382374, 0.20287679135799408, 0.0980091392993927, -0.1917829066514969, 0.05222088843584061, -0.03395633399486542, -0.08054788410663605, -0.11181190609931946, -0.026456793770194054, -0.0641666129231453, -0.19032472372055054, 0.018283661454916, -0.12516652047634125, 0.043299559503793716, 0.07653743028640747, 0.00892125628888607, 0.016471220180392265, 0.16403447091579437, 0.03430855646729469, 0.015776250511407852, 0.0722745731472969, 0.011206933297216892, -0.02532045915722847, -0.028662120923399925, -0.1045890748500824, 0.047107767313718796, -0.034628067165613174, 0.04865638539195061, -0.07606767863035202, -0.11346542835235596, 0.08154606074094772, 0.03189607337117195, -0.10997439920902252, 0.027651989832520485, -0.0007702362490817904, 0.07966376096010208, 0.04247044399380684, 0.0018305692356079817, 0.02501695044338703, -0.013564562425017357, 0.2534756064414978, -0.10219138860702515, -0.023395564407110214, -0.14502592384815216, 0.21266688406467438, 0.01614692620933056, -0.027031663805246353, 0.051626693457365036, -0.08708295971155167, -0.02961106412112713, 0.14008016884326935, 0.1227518618106842, -0.017994295805692673, -0.032297033816576004, 0.014549345709383488, -0.01723831333220005, -0.057307612150907516, 0.08452970534563065, 0.10470159351825714, 0.07849235087633133, -0.06700693815946579, -0.05120976269245148, -0.04791531339287758, -0.046962056308984756, 0.011231965385377407, 0.08979637920856476, 0.01428937166929245, -0.017067313194274902, -0.03166581690311432, 0.09615612030029297, -0.06993148475885391, -0.12841175496578217, 0.06317836791276932, -0.1607201248407364, -0.19134798645973206, -0.056111808866262436, 0.07591629773378372, 0.009659224189817905, 0.05833805352449417, 0.00008136886754073203, -0.04780058190226555, 0.10492429882287979, -0.0040206206031143665, -0.05554988235235214, -0.14359921216964722, 0.11073422431945801, -0.05559925362467766, 0.21132038533687592, -0.05486885830760002, 0.038824066519737244, 0.11112584173679352, 0.06203469634056091, -0.08611651510000229, 0.006658870726823807, 0.07015678286552429, -0.1438428908586502, 0.017221765592694283, 0.1934671849012375, -0.044964805245399475, 0.11131928116083145, 0.019035063683986664, -0.12650837004184723, -0.0039225067012012005, -0.06805355101823807, -0.05542083829641342, -0.05216469243168831, -0.032696161419153214, -0.06142223998904228, 0.1252828687429428, 0.2121463119983673, -0.06416624784469604, -0.018748300150036812, -0.06294357776641846, 0.044840916991233826, 0.08375304937362671, 0.1065390408039093, -0.01800258457660675, -0.2813463509082794, 0.012181305326521397, 0.03340345621109009, -0.027641309425234795, -0.2458919882774353, -0.0956142470240593, 0.05172860994935036, -0.056906357407569885, -0.04148150607943535, 0.09242048859596252, 0.06424882262945175, 0.042315199971199036, -0.05902902036905289, -0.04632768779993057, -0.07756847143173218, 0.16434630751609802, -0.17739298939704895, -0.07899942249059677 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0952 - Accuracy: 0.9823 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7908 | 1.0 | 399 | 0.6776 | 0.9009 | | 0.3202 | 2.0 | 798 | 0.2061 | 0.9763 | | 0.221 | 3.0 | 1197 | 0.1257 | 0.9785 | | 0.1773 | 4.0 | 1596 | 0.0990 | 0.9813 | | 0.1729 | 5.0 | 1995 | 0.0952 | 0.9823 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["superb"], "metrics": ["accuracy"], "model-index": [{"name": "wav2vec2-base-finetuned-ks", "results": []}]}
audio-classification
anton-l/wav2vec2-base-finetuned-ks
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-base-finetuned-ks ========================== This model is a fine-tuned version of facebook/wav2vec2-base on the superb dataset. It achieves the following results on the evaluation set: * Loss: 0.0952 * Accuracy: 0.9823 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.9.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ 58, 144, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ -0.13292020559310913, 0.14160001277923584, -0.0018329831073060632, 0.0931263267993927, 0.16549243032932281, 0.037518419325351715, 0.10775992274284363, 0.10338520258665085, -0.09774249792098999, 0.070259690284729, 0.09477230906486511, 0.11478443443775177, 0.03648606687784195, 0.14456753432750702, -0.029113860800862312, -0.24611984193325043, 0.00006973755807848647, 0.016581479460000992, -0.1403423696756363, 0.13810475170612335, 0.06667745858430862, -0.13379345834255219, 0.054184019565582275, -0.00635681813582778, -0.18558838963508606, -0.022431455552577972, -0.018084309995174408, -0.04898759350180626, 0.12131547182798386, 0.00795680470764637, 0.1198899894952774, 0.03560185804963112, 0.12173403054475784, -0.1706175059080124, 0.006817157380282879, 0.07318899780511856, 0.023359138518571854, 0.09576616436243057, 0.0780167356133461, 0.026451710611581802, 0.06501960009336472, -0.09281643480062485, 0.047738607972860336, 0.00830062199383974, -0.11237085610628128, -0.21465857326984406, -0.10655181109905243, 0.03365665674209595, 0.07098014652729034, 0.08557802438735962, -0.0048933508805930614, 0.09147105365991592, -0.0839894711971283, 0.07987122982740402, 0.24894408881664276, -0.27100035548210144, -0.06460247933864594, 0.02699064463376999, 0.028757179155945778, 0.08171640336513519, -0.09776592254638672, -0.02605043351650238, 0.03966725990176201, 0.02893788367509842, 0.13583973050117493, -0.005073961336165667, -0.06360664963722229, -0.0006149651599116623, -0.15552100539207458, -0.04894380643963814, 0.10895698517560959, 0.04796505719423294, -0.03849773481488228, -0.02687789313495159, -0.06427160650491714, -0.26469072699546814, -0.03211429342627525, 0.018178865313529968, 0.049147989600896835, -0.06656530499458313, -0.09567420929670334, 0.032505203038454056, -0.06348748505115509, -0.08981190621852875, -0.020518222823739052, 0.13886307179927826, 0.040248844772577286, 0.00980477686971426, 0.014332949183881283, 0.12186679244041443, 0.02594848722219467, -0.15454748272895813, 0.030811334028840065, 0.03594719618558884, -0.08581025898456573, -0.019499722868204117, -0.05002789571881294, 0.013920841738581657, 0.0005195726989768445, 0.1265384405851364, -0.048790257424116135, 0.04242115095257759, 0.04751765355467796, 0.03483309969305992, -0.07795310020446777, 0.17208485305309296, -0.09691937267780304, -0.0787753313779831, -0.013025807216763496, 0.10625309497117996, 0.02564896270632744, -0.022318532690405846, -0.08674163371324539, 0.0027338021900504827, 0.09912948310375214, 0.019877895712852478, -0.032478466629981995, 0.03727514669299126, -0.0597708635032177, -0.036195769906044006, 0.04880330339074135, -0.10287640988826752, 0.025419307872653008, 0.018888715654611588, -0.07994107156991959, -0.004594522062689066, 0.003815456759184599, 0.005951030645519495, -0.013379806652665138, 0.15933679044246674, -0.08844994008541107, 0.005107209552079439, -0.08093132823705673, -0.10048282891511917, 0.03155042603611946, -0.13040292263031006, 0.001629500649869442, -0.04764130711555481, -0.12573857605457306, -0.028310954570770264, 0.04925200343132019, -0.044799741357564926, -0.09510018676519394, -0.039117347449064255, -0.09045092761516571, 0.03406654670834541, -0.038321781903505325, 0.15222682058811188, -0.07190466672182083, 0.11589734256267548, 0.02073569968342781, 0.07605139911174774, -0.018475214019417763, 0.06823822110891342, -0.06286998838186264, 0.03530207276344299, -0.17542406916618347, 0.048550114035606384, -0.07252666354179382, 0.03147392347455025, -0.09428621828556061, -0.11988306790590286, 0.016208214685320854, -0.01418651919811964, 0.09411520510911942, 0.0815465971827507, -0.20322053134441376, -0.08628984540700912, 0.14704719185829163, -0.0691567063331604, -0.10032885521650314, 0.12060417979955673, -0.018311670050024986, -0.052919864654541016, 0.04810034856200218, 0.13344456255435944, 0.09078602492809296, -0.07927141338586807, -0.031591713428497314, -0.02702341601252556, 0.10210859775543213, -0.05036536976695061, 0.1045633852481842, 0.007727033458650112, 0.05349799618124962, -0.0017135718371719122, -0.06696438044309616, 0.058994684368371964, -0.10763576626777649, -0.09418841451406479, -0.031619008630514145, -0.09981882572174072, 0.05381780117750168, 0.06348719447851181, 0.03434073179960251, -0.06783189624547958, -0.10224369168281555, 0.03994397446513176, 0.10522231459617615, -0.08200085908174515, 0.023860538378357887, -0.05835887789726257, 0.07971024513244629, -0.07267294824123383, -0.02983718551695347, -0.2080259919166565, -0.020700113847851753, 0.014697542414069176, -0.024985911324620247, 0.021821536123752594, 0.0022535433527082205, 0.05149742215871811, 0.07807795703411102, -0.0538502037525177, -0.050404101610183716, -0.06399203091859818, -0.011759346351027489, -0.090988889336586, -0.23129360377788544, -0.08775651454925537, -0.01577221043407917, 0.12926799058914185, -0.17993015050888062, -0.001313139102421701, -0.009761056862771511, 0.08804244548082352, 0.017931664362549782, -0.040343109518289566, -0.025030381977558136, 0.10472200065851212, -0.01747937873005867, -0.07146696001291275, 0.05322963371872902, 0.007373636122792959, -0.08069445937871933, -0.04629332944750786, -0.08600083738565445, 0.14349742233753204, 0.12117039412260056, -0.030158255249261856, -0.07532261312007904, 0.01325940527021885, -0.07070422172546387, -0.04942438006401062, -0.045102789998054504, 0.02586052194237709, 0.15610451996326447, 0.022991109639406204, 0.12337073683738708, -0.07957956939935684, -0.04224734753370285, 0.039676517248153687, 0.014547384344041348, 0.03415398672223091, 0.10551232844591141, 0.13445276021957397, -0.06218412518501282, 0.13705140352249146, 0.12576191127300262, -0.10223805159330368, 0.13552524149417877, -0.0705857053399086, -0.10582143813371658, -0.023788919672369957, -0.030727334320545197, 0.00687813526019454, 0.127915620803833, -0.10845499485731125, 0.003984188660979271, 0.02868187241256237, 0.024717675521969795, 0.011600133962929249, -0.21443983912467957, -0.02552958019077778, 0.02860027737915516, -0.06430180370807648, -0.061211246997117996, -0.03593241423368454, 0.00794040784239769, 0.10571783035993576, -0.004082084633409977, -0.06759358942508698, 0.006228316575288773, -0.007001960184425116, -0.05257995054125786, 0.18201258778572083, -0.07404231280088425, -0.13304027915000916, -0.11889450252056122, -0.04070528596639633, -0.033981118351221085, -0.005738738924264908, 0.03100387565791607, -0.08265175670385361, -0.030733700841665268, -0.03989104554057121, 0.01304609701037407, 0.02374662086367607, 0.0511506050825119, 0.04111725464463234, -0.00675467774271965, 0.0796830803155899, -0.09786087274551392, 0.027146562933921814, -0.03553948178887367, -0.05345839262008667, 0.026173656806349754, 0.08488006144762039, 0.10802116245031357, 0.16659393906593323, 0.0014764037914574146, 0.0004920163191854954, -0.007931952364742756, 0.2170514315366745, -0.10055727511644363, -0.0216209776699543, 0.1088079884648323, -0.030032062903046608, 0.05288190394639969, 0.1364239752292633, 0.0710596814751625, -0.07430049777030945, -0.010828717611730099, 0.03849329799413681, -0.046824559569358826, -0.22997456789016724, -0.05233605206012726, -0.059868697077035904, -0.01441357471048832, 0.09937149286270142, 0.011568338610231876, -0.022911356762051582, 0.047638773918151855, 0.010264892131090164, 0.052456486970186234, -0.04713256284594536, 0.025542594492435455, 0.0598980113863945, 0.06615585088729858, 0.1298701912164688, -0.032876789569854736, -0.037626978009939194, 0.03415627405047417, 0.011057757772505283, 0.24818089604377747, -0.038264982402324677, 0.16837985813617706, 0.04474649205803871, 0.170525461435318, 0.017248107120394707, 0.1054636612534523, -0.003945503383874893, -0.020789125934243202, -0.0025144813116639853, -0.043624743819236755, -0.0411246195435524, -0.020886577665805817, 0.0040092323906719685, 0.03653200343251228, -0.10624366253614426, 0.008685152046382427, 0.021520745009183884, 0.29092007875442505, 0.06230011582374573, -0.32969796657562256, -0.08380039036273956, -0.013241667300462723, -0.012605752795934677, -0.013900610618293285, 0.01384660042822361, 0.1466597020626068, -0.07100638747215271, 0.055764783173799515, -0.06871270388364792, 0.08253752440214157, -0.06897427886724472, 0.014512726105749607, 0.1339932680130005, 0.09802761673927307, 0.007960557006299496, 0.045701831579208374, -0.213328555226326, 0.26092132925987244, -0.003653140040114522, 0.0637589693069458, -0.051918722689151764, 0.010090604424476624, 0.02418627217411995, 0.014957455918192863, 0.05973535031080246, -0.005103067494928837, -0.036056749522686005, -0.19903509318828583, -0.11426419764757156, 0.025423817336559296, 0.10057216137647629, -0.03690071031451225, 0.11156649887561798, -0.0254500862210989, -0.024696646258234978, 0.05436837300658226, -0.04970276728272438, -0.03209666907787323, -0.10017082095146179, 0.017021119594573975, 0.007039558608084917, -0.0005832458846271038, -0.06110069528222084, -0.13480393588542938, -0.10638206452131271, 0.12917093932628632, -0.0581447072327137, -0.028455976396799088, -0.11842731386423111, 0.09706339240074158, 0.16303275525569916, -0.0687461644411087, 0.058539409190416336, 0.02827715314924717, 0.08935243636369705, 0.049660809338092804, -0.05511658266186714, 0.09063214063644409, -0.06916581839323044, -0.20799772441387177, -0.054640863090753555, 0.13886019587516785, 0.03506830707192421, 0.07654088735580444, -0.040191397070884705, 0.02908887155354023, 0.011422655545175076, -0.092044398188591, 0.033741869032382965, -0.015682676807045937, 0.06242487579584122, 0.04975373297929764, -0.025037085637450218, -0.002378764096647501, -0.03424438461661339, -0.03002510964870453, 0.15335385501384735, 0.25227776169776917, -0.08939989656209946, 0.039835125207901, 0.040562260895967484, -0.051181379705667496, -0.19120685756206512, 0.02315894514322281, 0.12818355858325958, 0.028779488056898117, 0.02853696048259735, -0.19499287009239197, 0.11416357755661011, 0.1061670109629631, -0.016890812665224075, 0.12122273445129395, -0.33249932527542114, -0.11869871616363525, 0.071055106818676, 0.11508453637361526, 0.040975432842969894, -0.14761246740818024, -0.034756824374198914, -0.008562436327338219, -0.14913833141326904, 0.1426139771938324, -0.06365017592906952, 0.13499951362609863, -0.013826049864292145, 0.03285965695977211, 0.009593771770596504, -0.059723421931266785, 0.12208682298660278, 0.032633356750011444, 0.06923440098762512, -0.017099764198064804, -0.004678396042436361, 0.06220027804374695, -0.03386465460062027, -0.01900186948478222, -0.06563428789377213, 0.025435203686356544, -0.06956332176923752, -0.014411259442567825, -0.09622009843587875, -0.005425030365586281, -0.04526868090033531, -0.035851746797561646, -0.01416696049273014, 0.04650221765041351, 0.06428273022174835, -0.022842999547719955, 0.12802590429782867, 0.023706860840320587, 0.1181001216173172, 0.11218971759080887, 0.0690365880727768, -0.029963932931423187, -0.11019422113895416, -0.01724945940077305, -0.008795138448476791, 0.054483819752931595, -0.1120414137840271, 0.033793095499277115, 0.1562238186597824, 0.05355849117040634, 0.10294023156166077, 0.07426108419895172, -0.027624722570180893, 0.00689343037083745, 0.0730409026145935, -0.13190236687660217, -0.08675222098827362, 0.01554748136550188, -0.0648866519331932, -0.13057450950145721, 0.03750118613243103, 0.09502464532852173, -0.04548424109816551, -0.01104484312236309, 0.008736752904951572, 0.017169442027807236, -0.052932728081941605, 0.2547827959060669, 0.04437951371073723, 0.07482743263244629, -0.12810125946998596, 0.08098051697015762, 0.05552076920866966, -0.12393363565206528, -0.0034358715638518333, 0.06316099315881729, -0.08783425390720367, 0.0019990436267107725, 0.07458862662315369, 0.0902676209807396, -0.034967828541994095, -0.037645403295755386, -0.1223113089799881, -0.1206040307879448, 0.0855058953166008, 0.12254413217306137, 0.07556243985891342, 0.04095177352428436, -0.04644985496997833, 0.020168792456388474, -0.12327691912651062, 0.09695801138877869, 0.07169844210147858, 0.0902491956949234, -0.16760647296905518, 0.15539398789405823, 0.005004244856536388, 0.03793412819504738, -0.019615888595581055, 0.041450705379247665, -0.09690234810113907, 0.005571108311414719, -0.10723336786031723, -0.010697109624743462, -0.028895145282149315, -0.0012602935312315822, -0.01884867623448372, -0.05177999287843704, -0.07047083973884583, 0.012623945251107216, -0.1073126569390297, -0.041373111307621, 0.004870655480772257, 0.03427305817604065, -0.11206936091184616, -0.008738573640584946, 0.0362890399992466, -0.09346852451562881, 0.08410666882991791, 0.049379296600818634, 0.033011049032211304, 0.040843039751052856, -0.09664437919855118, -0.029433876276016235, 0.0567774772644043, 0.01121549867093563, 0.07482219487428665, -0.122516930103302, -0.003157929051667452, -0.022086860612034798, 0.041604891419410706, 0.0031665179412811995, 0.06099652498960495, -0.13201090693473816, -0.0001684325688984245, -0.038521163165569305, -0.03583001345396042, -0.058185040950775146, 0.02683623693883419, 0.115218386054039, 0.03582606092095375, 0.18294359743595123, -0.06119827181100845, 0.037050068378448486, -0.23674063384532928, -0.006754583213478327, -0.02096453495323658, -0.10034748166799545, -0.10809691995382309, -0.03341108188033104, 0.08883825689554214, -0.055328890681266785, 0.10882990807294846, -0.02505972981452942, 0.057604264467954636, 0.01399767491966486, -0.03091868944466114, -0.013478203676640987, 0.05319414287805557, 0.1997898519039154, 0.0451301634311676, -0.03954211249947548, 0.07007326930761337, 0.024823879823088646, 0.06960996985435486, 0.12446337193250656, 0.20899802446365356, 0.12230919301509857, 0.03280170261859894, 0.06342235207557678, 0.054754793643951416, -0.11570703238248825, -0.1714906394481659, 0.10045171529054642, -0.08666711300611496, 0.13059264421463013, 0.001142563996836543, 0.22971314191818237, 0.026666270568966866, -0.1918465495109558, 0.05315720662474632, -0.05553538724780083, -0.0941031351685524, -0.08995404094457626, -0.028302229940891266, -0.06767082214355469, -0.15559491515159607, 0.006863724440336227, -0.12367382645606995, 0.043995898216962814, 0.14839079976081848, 0.012371557764708996, 0.008751148357987404, 0.1487138420343399, 0.036547936499118805, 0.0244801864027977, 0.06322386860847473, 0.03640993312001228, -0.02130054496228695, -0.0440017431974411, -0.08056679368019104, 0.025472430512309074, -0.004263410810381174, 0.06287835538387299, -0.0692351758480072, -0.08084067702293396, 0.07981601357460022, 0.020473266020417213, -0.09825381636619568, 0.025646550580859184, -0.011982720345258713, 0.08827077597379684, 0.05108199268579483, -0.0014061963884159923, 0.030826549977064133, -0.024424074217677116, 0.22400827705860138, -0.0840471088886261, -0.06312545388936996, -0.12254367023706436, 0.18153779208660126, 0.01475516613572836, -0.024593044072389603, 0.06235533580183983, -0.07229908555746078, -0.02978495880961418, 0.16486109793186188, 0.1832755208015442, -0.08759883046150208, -0.028204375877976418, 0.019853051751852036, -0.009702462702989578, -0.04147450253367424, 0.11832468211650848, 0.14073973894119263, 0.08964929729700089, -0.09124607592821121, -0.05313711613416672, -0.06259522587060928, -0.027866194024682045, 0.005020329728722572, 0.046736203134059906, 0.02942916937172413, -0.004128186963498592, -0.03976082056760788, 0.06479977816343307, -0.07806272804737091, -0.15297932922840118, 0.06298880279064178, -0.22240372002124786, -0.21016526222229004, -0.03656960651278496, 0.10652728378772736, 0.01658814586699009, 0.042924072593450546, -0.011456522159278393, -0.021539276465773582, 0.08077035844326019, -0.019200367853045464, -0.055885184556245804, -0.0863572210073471, 0.07654043287038803, -0.08507269620895386, 0.18166372179985046, -0.043767549097537994, 0.07412503659725189, 0.10073723644018173, 0.0767650455236435, -0.09291588515043259, 0.028109094128012657, 0.05662601813673973, -0.13177745044231415, 0.02617710642516613, 0.15247361361980438, -0.05041183531284332, 0.07381783425807953, 0.027949152514338493, -0.0953359305858612, -0.004148508887737989, -0.04894779995083809, -0.021633213385939598, -0.0351218543946743, -0.056788213551044464, -0.05089694261550903, 0.14820516109466553, 0.21430453658103943, -0.04651148244738579, 0.008726864121854305, -0.06240411475300789, 0.012476162053644657, 0.05527716875076294, 0.10025676339864731, -0.047190338373184204, -0.26516327261924744, 0.02242155559360981, 0.017601054161787033, -0.005422630812972784, -0.19425992667675018, -0.07272659987211227, 0.025318069383502007, -0.07186102867126465, -0.10080267488956451, 0.0932963490486145, 0.030455147847533226, 0.060340765863657, -0.055405061691999435, -0.031728919595479965, -0.0777798742055893, 0.15451651811599731, -0.1897014081478119, -0.09212898463010788 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ft-keyword-spotting This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0824 - Accuracy: 0.9826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8972 | 1.0 | 399 | 0.7023 | 0.8174 | | 0.3274 | 2.0 | 798 | 0.1634 | 0.9773 | | 0.1993 | 3.0 | 1197 | 0.1048 | 0.9788 | | 0.1777 | 4.0 | 1596 | 0.0824 | 0.9826 | | 0.1527 | 5.0 | 1995 | 0.0812 | 0.9810 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["audio-classification", "generated_from_trainer"], "datasets": ["superb"], "metrics": ["accuracy"], "model-index": [{"name": "wav2vec2-base-ft-keyword-spotting", "results": []}]}
audio-classification
anton-l/wav2vec2-base-ft-keyword-spotting
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-base-ft-keyword-spotting ================================= This model is a fine-tuned version of facebook/wav2vec2-base on the superb dataset. It achieves the following results on the evaluation set: * Loss: 0.0824 * Accuracy: 0.9826 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 0 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 5.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.0.dev0 * Pytorch 1.9.1+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ 58, 159, 4, 37 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ -0.131468266248703, 0.09674689918756485, -0.0018097981810569763, 0.0574999637901783, 0.148492231965065, 0.011044739745557308, 0.1009833812713623, 0.11945847421884537, -0.1072453185915947, 0.07640687376260757, 0.0957227274775505, 0.08147742599248886, 0.04722527414560318, 0.1107378751039505, -0.020090430974960327, -0.31812188029289246, 0.01401514932513237, 0.03227485343813896, -0.19269488751888275, 0.11679298430681229, 0.10836882144212723, -0.10637814551591873, 0.04136242717504501, 0.04154438152909279, -0.15582993626594543, 0.012559392489492893, -0.01067893672734499, -0.06854795664548874, 0.09509400278329849, 0.04838189110159874, 0.11052601039409637, 0.02097649686038494, 0.09288404881954193, -0.2115459144115448, 0.012724477797746658, 0.08155570179224014, 0.0386321097612381, 0.08968117833137512, 0.09844505786895752, 0.006567643955349922, 0.11310631036758423, -0.06664655357599258, 0.07232260704040527, 0.054727859795093536, -0.11834400147199631, -0.31107616424560547, -0.10493624210357666, 0.040726032108068466, 0.10061302781105042, 0.08195213228464127, -0.017954329028725624, 0.08286172151565552, -0.05947168171405792, 0.07848113030195236, 0.21961601078510284, -0.24016280472278595, -0.0934762954711914, -0.0028684469871222973, 0.06603454798460007, 0.05101194977760315, -0.11668600887060165, -0.023279549553990364, 0.055630799382925034, 0.028923509642481804, 0.11290236562490463, 0.014679335057735443, -0.011927626095712185, 0.006240608170628548, -0.14563621580600739, -0.0560280941426754, 0.1653508096933365, 0.0902206152677536, -0.053430262953042984, -0.054068662226200104, -0.02008729986846447, -0.23115356266498566, -0.039472389966249466, 0.013896851800382137, 0.03585680201649666, -0.053723614662885666, -0.12140991538763046, 0.01332120131701231, -0.08111404627561569, -0.10614287108182907, 0.0173047948628664, 0.18684493005275726, 0.039457570761442184, -0.008230200037360191, -0.005488723050802946, 0.11489645391702652, 0.03372802957892418, -0.15485134720802307, -0.019223805516958237, 0.026819860562682152, -0.0964246615767479, -0.02984756976366043, -0.05930789187550545, -0.02117312327027321, -0.013758133165538311, 0.15951356291770935, -0.05220888927578926, 0.06894028186798096, 0.030820615589618683, 0.030423082411289215, -0.08018633723258972, 0.17476056516170502, -0.06625702232122421, -0.01861782930791378, -0.04016067832708359, 0.08825132250785828, -0.0038083407562226057, -0.01262732595205307, -0.05328800529241562, 0.027960294857621193, 0.08485347777605057, 0.026473864912986755, -0.027551837265491486, 0.01894286461174488, -0.06021492928266525, -0.03842290863394737, 0.01898340880870819, -0.09200578927993774, 0.024458840489387512, 0.009371689520776272, -0.08606850355863571, 0.012466753832995892, 0.014919646084308624, 0.022141845896840096, 0.009537425823509693, 0.1318759024143219, -0.09523110091686249, -0.014038185589015484, -0.10032736510038376, -0.09495346248149872, 0.04177911579608917, -0.042474377900362015, 0.01395627111196518, -0.0661507174372673, -0.12787918746471405, -0.033336054533720016, 0.06675736606121063, -0.03314261510968208, -0.09173412621021271, -0.02067066729068756, -0.07081113755702972, 0.05348401516675949, -0.030300891026854515, 0.16288110613822937, -0.06053708866238594, 0.1067788228392601, 0.05521401762962341, 0.04791015759110451, 0.01071803830564022, 0.06348145753145218, -0.06048721820116043, 0.050811175256967545, -0.16330140829086304, 0.04581940174102783, -0.09859197586774826, 0.06355596333742142, -0.12549400329589844, -0.12921424210071564, -0.02578824944794178, 0.0038973174523562193, 0.0901017114520073, 0.08173922449350357, -0.15455470979213715, -0.10604076832532883, 0.14566798508167267, -0.08644609898328781, -0.13169676065444946, 0.11373354494571686, -0.011790902353823185, -0.0074006663635373116, 0.04560348764061928, 0.12302835285663605, 0.12457768619060516, -0.08336082100868225, -0.025778548792004585, -0.05543006956577301, 0.1306692510843277, 0.002534095197916031, 0.1163242980837822, -0.015343175269663334, 0.005383976269513369, 0.0029497998766601086, -0.05598892271518707, 0.06173677369952202, -0.10496803373098373, -0.08977906405925751, -0.044904373586177826, -0.09518440812826157, 0.028359202668070793, 0.06615979224443436, 0.04858701676130295, -0.0848282054066658, -0.1297425925731659, 0.08940334618091583, 0.11994349956512451, -0.08356047421693802, 0.027072420343756676, -0.07551788538694382, 0.0398702472448349, -0.053178489208221436, -0.027789371088147163, -0.1848340779542923, -0.044754259288311005, 0.015030596405267715, -0.08210726827383041, 0.01967899687588215, -0.02680351585149765, 0.07264859229326248, 0.06153271719813347, -0.06482593715190887, -0.06876977533102036, -0.113701231777668, -0.010277947410941124, -0.06363833695650101, -0.21567966043949127, -0.10305555164813995, -0.019618907943367958, 0.13934361934661865, -0.2206350415945053, 0.013566563837230206, 0.014109628275036812, 0.1287156045436859, 0.047078002244234085, -0.05495821312069893, -0.020258313044905663, 0.08165138959884644, -0.02633345127105713, -0.06915091723203659, 0.020078791305422783, 0.019605126231908798, -0.11496659368276596, -0.01977040432393551, -0.08656170219182968, 0.13540013134479523, 0.10254412144422531, -0.025522340089082718, -0.07431081682443619, -0.02389167994260788, -0.08736021816730499, -0.06297191977500916, -0.03683941438794136, -0.00976602267473936, 0.12342598289251328, 0.024048352614045143, 0.12247291207313538, -0.08295346051454544, -0.05197149142622948, 0.04602936655282974, 0.0020585639867931604, -0.007076033391058445, 0.1015702486038208, 0.0895761251449585, -0.056781698018312454, 0.11927705258131027, 0.11184205114841461, -0.101168192923069, 0.1746359020471573, -0.09023594111204147, -0.12696848809719086, -0.020187746733427048, -0.0018960274755954742, 0.03651463985443115, 0.12982779741287231, -0.12187846004962921, 0.018549123778939247, 0.021912051364779472, 0.035873860120773315, 0.023686053231358528, -0.20088522136211395, -0.013579201884567738, 0.04493183270096779, -0.05309048667550087, -0.062309619039297104, -0.011106963269412518, -0.012272546999156475, 0.07921015471220016, 0.00737251341342926, -0.013368056155741215, 0.004020070191472769, -0.006478775292634964, -0.06992094218730927, 0.19316793978214264, -0.08672529458999634, -0.13158531486988068, -0.16589689254760742, -0.02006872370839119, -0.03165794536471367, -0.008405836299061775, 0.039986420422792435, -0.10539189726114273, -0.03839407488703728, -0.03761319816112518, 0.051332227885723114, -0.03812796622514725, 0.04009632021188736, 0.02424706146121025, 0.019557904452085495, 0.11340451240539551, -0.11122440546751022, 0.0389040932059288, -0.0005371253937482834, -0.05533565208315849, 0.005736387334764004, 0.04435636103153229, 0.10324444621801376, 0.15591461956501007, 0.033136941492557526, 0.014235093258321285, -0.01773500256240368, 0.1936393678188324, -0.11901555955410004, -0.0305774062871933, 0.12874267995357513, 0.002595841186121106, 0.03759562596678734, 0.09463635087013245, 0.07187493145465851, -0.07948959618806839, 0.030374303460121155, 0.07011786103248596, -0.034259699285030365, -0.24541491270065308, -0.02620360627770424, -0.06666672974824905, -0.01225943211466074, 0.11451153457164764, 0.030291253700852394, 0.0184988621622324, 0.05400968715548515, -0.0220261812210083, 0.028238261118531227, -0.02770189382135868, 0.06962812691926956, 0.0779251828789711, 0.06301385164260864, 0.12685222923755646, -0.03555408492684364, -0.02581190876662731, 0.037578292191028595, 0.016217824071645737, 0.2563018798828125, 0.0083649642765522, 0.1663147658109665, 0.06048247590661049, 0.13999882340431213, 0.01652994379401207, 0.09194610267877579, 0.02107285149395466, -0.0383346863090992, 0.0221103485673666, -0.056810684502124786, -0.01568056084215641, 0.029096029698848724, 0.029231086373329163, 0.05315038189291954, -0.1343388855457306, -0.026298463344573975, 0.006758738774806261, 0.33427777886390686, 0.06321214884519577, -0.3263874053955078, -0.1269351691007614, 0.007772033102810383, -0.06100921332836151, -0.047534823417663574, 0.024945342913269997, 0.09568993002176285, -0.08320356160402298, 0.07773645967245102, -0.08541535586118698, 0.10495734214782715, -0.02522108145058155, -0.007136163301765919, 0.12590977549552917, 0.08802493661642075, -0.008698862977325916, 0.05497579276561737, -0.2217557430267334, 0.2752665579319, -0.012110348790884018, 0.08762598782777786, -0.017367709428071976, 0.035184454172849655, 0.037986546754837036, 0.00479429867118597, 0.0466056689620018, -0.01192309521138668, -0.11134377866983414, -0.19761799275875092, -0.07028927654027939, 0.02854912541806698, 0.11514364928007126, -0.058561429381370544, 0.12564626336097717, -0.03481495380401611, -0.005660113412886858, 0.07013016194105148, -0.07473059743642807, -0.12035327404737473, -0.10158300399780273, 0.02895430289208889, 0.0050812410190701485, 0.08032777905464172, -0.11240161210298538, -0.12368812412023544, -0.046564072370529175, 0.13963989913463593, -0.07218823581933975, -0.0156157948076725, -0.13758808374404907, 0.10204187780618668, 0.1815129518508911, -0.05607108399271965, 0.07464448362588882, 0.01668453775346279, 0.14482775330543518, 0.05276317521929741, -0.026453828439116478, 0.09534456580877304, -0.08317249268293381, -0.21183960139751434, -0.042983606457710266, 0.1466093510389328, 0.034587640315294266, 0.059201035648584366, -0.03474728763103485, 0.0363280363380909, -0.002036310965195298, -0.08986105024814606, 0.04748071730136871, -0.030046362429857254, 0.009110745042562485, 0.0488242544233799, -0.027767624706029892, 0.043538112193346024, -0.03282879665493965, -0.06023416668176651, 0.11787354201078415, 0.2698827385902405, -0.07556456327438354, -0.0017613805830478668, 0.029859747737646103, -0.04898058623075485, -0.1383172571659088, 0.05376376584172249, 0.1489458829164505, 0.027808303013443947, 0.026221036911010742, -0.23874594271183014, 0.10393450409173965, 0.10826633125543594, -0.027467478066682816, 0.12760791182518005, -0.29933449625968933, -0.1275200992822647, 0.08962573856115341, 0.10674095153808594, -0.03336738422513008, -0.16174213588237762, -0.060910094529390335, -0.023556523025035858, -0.15364718437194824, 0.13194429874420166, -0.0525091327726841, 0.12031769007444382, -0.007043286692351103, 0.04834480956196785, 0.01495286263525486, -0.0469634085893631, 0.16004009544849396, -0.011015371419489384, 0.06143678352236748, 0.0034992117434740067, 0.06087980046868324, 0.06618247181177139, -0.04810290411114693, -0.004900273401290178, -0.0641217976808548, 0.019473224878311157, -0.12397908419370651, -0.031106775626540184, -0.09001844376325607, 0.025675883516669273, -0.0516522116959095, -0.03980284556746483, -0.02100451849400997, 0.05311572551727295, 0.04262199252843857, -0.010313677601516247, 0.17667417228221893, -0.0158319603651762, 0.16981835663318634, 0.09940935671329498, 0.08421741425991058, -0.004400661215186119, -0.11968811601400375, -0.006357287988066673, -0.017718281596899033, 0.07166600227355957, -0.15371441841125488, 0.03823569416999817, 0.140893816947937, 0.05780614912509918, 0.12396255135536194, 0.07162956893444061, -0.05852249637246132, 0.019416220486164093, 0.09183741360902786, -0.07916074991226196, -0.11160781979560852, -0.02597864530980587, 0.03783278912305832, -0.16133883595466614, 0.03107544779777527, 0.10213366150856018, -0.06468947231769562, -0.0032447336707264185, 0.020887553691864014, 0.009865459986031055, -0.06627735495567322, 0.2335187792778015, 0.04554164782166481, 0.08339706063270569, -0.09117581695318222, 0.08996524661779404, 0.04668007418513298, -0.16835640370845795, -0.010067339986562729, 0.0672922432422638, -0.03951650485396385, -0.0011758047621697187, 0.011060002259910107, 0.05028030648827553, -0.06428028643131256, -0.06473339349031448, -0.13049380481243134, -0.14014947414398193, 0.08366822451353073, 0.09679309278726578, 0.044776152819395065, 0.04000459983944893, -0.03814185410737991, 0.0647992342710495, -0.11124547570943832, 0.09751516580581665, 0.09393899142742157, 0.10284321010112762, -0.1762203723192215, 0.13334251940250397, 0.010971855372190475, 0.010499494150280952, -0.001174698700197041, 0.002777945250272751, -0.09282765537500381, 0.013655568473041058, -0.12941698729991913, -0.03800063952803612, -0.03492569178342819, -0.0042169722728431225, -0.0014697769656777382, -0.0603262335062027, -0.09370569884777069, 0.02600676380097866, -0.12047865241765976, -0.049163661897182465, 0.00477133272215724, 0.0658988207578659, -0.1022486761212349, 0.0013265330344438553, 0.06877284497022629, -0.11672186851501465, 0.0687146782875061, 0.0455733984708786, 0.04327644407749176, 0.048764459788799286, -0.08093523979187012, 0.016025660559535027, 0.04320647194981575, -0.0065246326848864555, 0.03129274398088455, -0.15777373313903809, -0.00348460441455245, -0.02645762450993061, 0.056914497166872025, -0.011782671324908733, 0.011909043416380882, -0.13852453231811523, -0.05270683765411377, -0.020150532945990562, -0.04698541387915611, -0.05838606879115105, 0.03222348913550377, 0.08202109485864639, 0.054022081196308136, 0.17788107693195343, -0.06922733038663864, 0.01855849102139473, -0.24360091984272003, 0.015819700434803963, -0.02562696672976017, -0.09074470400810242, -0.07154259830713272, -0.018828682601451874, 0.06868311762809753, -0.06148828938603401, 0.0936252623796463, -0.06387684494256973, 0.06062899902462959, 0.0497715137898922, -0.08199567347764969, 0.024863116443157196, 0.05047878995537758, 0.26527920365333557, 0.0601995550096035, -0.013259157538414001, 0.0726260393857956, 0.010659011080861092, 0.05226875841617584, 0.12260841578245163, 0.1774415820837021, 0.14841316640377045, -0.01797599345445633, 0.08698145300149918, 0.04973680153489113, -0.10040933638811111, -0.14192277193069458, 0.10809405893087387, -0.03162848949432373, 0.14463013410568237, 0.006080768071115017, 0.2042887806892395, 0.10048840194940567, -0.19547368586063385, 0.05145850032567978, -0.04416133463382721, -0.08391691744327545, -0.09571576118469238, -0.033715713769197464, -0.06687873601913452, -0.20347605645656586, 0.014225547201931477, -0.1307881474494934, 0.05977410078048706, 0.07362943142652512, 0.018261658027768135, 0.017606595531105995, 0.16044972836971283, 0.043269991874694824, 0.0055989851243793964, 0.08992359787225723, 0.005744335241615772, -0.01950557716190815, -0.04006386920809746, -0.10093411803245544, 0.037801653146743774, -0.020969780161976814, 0.043270740658044815, -0.06712181866168976, -0.10720827430486679, 0.07810528576374054, 0.03840314596891403, -0.10243899375200272, 0.02359403669834137, 0.001944802817888558, 0.07223876565694809, 0.04678385704755783, 0.001067367964424193, 0.0208407212048769, -0.022261781617999077, 0.26122811436653137, -0.1032160297036171, -0.030587127432227135, -0.15085485577583313, 0.20872275531291962, 0.015998585149645805, -0.022826412692666054, 0.04028152674436569, -0.07902440428733826, -0.027944296598434448, 0.13937370479106903, 0.11404145509004593, -0.004175654146820307, -0.03426516428589821, 0.00776559766381979, -0.017766334116458893, -0.058225374668836594, 0.09921792149543762, 0.11398406326770782, 0.06925970315933228, -0.07206937670707703, -0.04822290688753128, -0.052508458495140076, -0.046234626322984695, 0.0004938420606777072, 0.07401447743177414, 0.028072968125343323, -0.018038157373666763, -0.03332243114709854, 0.11065897345542908, -0.06784655153751373, -0.11192528903484344, 0.04269380122423172, -0.1631719022989273, -0.19402335584163666, -0.059450291097164154, 0.06801042705774307, 0.009869780391454697, 0.051925770938396454, -0.012469436042010784, -0.040254734456539154, 0.09650168567895889, -0.0003694577026180923, -0.04161086678504944, -0.14902934432029724, 0.10331355780363083, -0.06070569157600403, 0.2064337283372879, -0.0486503429710865, 0.027578221634030342, 0.11104299128055573, 0.05684174224734306, -0.0906338319182396, 0.014344524592161179, 0.06868449598550797, -0.14950385689735413, 0.02726217545568943, 0.19172197580337524, -0.04425995051860809, 0.1290593147277832, 0.014987969771027565, -0.14102894067764282, -0.0011990458006039262, -0.06399548053741455, -0.04150570556521416, -0.06014283746480942, -0.029967129230499268, -0.05859997496008873, 0.1273331642150879, 0.22712397575378418, -0.07315037399530411, -0.02115788124501705, -0.06478550285100937, 0.045057736337184906, 0.07299971580505371, 0.11654549092054367, -0.029585711658000946, -0.28537940979003906, 0.019632957875728607, 0.030740467831492424, -0.015141326934099197, -0.23948688805103302, -0.08746934682130814, 0.045584458857774734, -0.06449227035045624, -0.04005696251988411, 0.10657888650894165, 0.07022026926279068, 0.04828299209475517, -0.05773157253861427, -0.08454901725053787, -0.06788038462400436, 0.17352542281150818, -0.17059504985809326, -0.07648508250713348 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-keyword-spotting This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0746 - Accuracy: 0.9843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8279 | 1.0 | 399 | 0.6792 | 0.8558 | | 0.2961 | 2.0 | 798 | 0.1383 | 0.9798 | | 0.2069 | 3.0 | 1197 | 0.0972 | 0.9809 | | 0.1757 | 4.0 | 1596 | 0.0843 | 0.9825 | | 0.1607 | 5.0 | 1995 | 0.0746 | 0.9843 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["audio-classification", "generated_from_trainer"], "datasets": ["superb"], "metrics": ["accuracy"], "model-index": [{"name": "wav2vec2-base-keyword-spotting", "results": []}]}
audio-classification
anton-l/wav2vec2-base-keyword-spotting
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-base-keyword-spotting ============================== This model is a fine-tuned version of facebook/wav2vec2-base on the superb dataset. It achieves the following results on the evaluation set: * Loss: 0.0746 * Accuracy: 0.9843 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 0 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 5.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.1+cu111 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 58, 159, 4, 37 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #dataset-superb #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.131146639585495, 0.09553849697113037, -0.0017406520200893283, 0.05712660029530525, 0.14965024590492249, 0.009924981743097305, 0.10162191838026047, 0.1193154826760292, -0.10567817091941833, 0.0765218734741211, 0.09589580446481705, 0.0814262181520462, 0.047931279987096786, 0.11014098674058914, -0.01986263133585453, -0.31815698742866516, 0.014941944740712643, 0.03178611397743225, -0.19274182617664337, 0.11699850112199783, 0.10869798809289932, -0.10560557246208191, 0.04157564416527748, 0.042175695300102234, -0.15432153642177582, 0.012538744136691093, -0.010556303896009922, -0.06811061501502991, 0.09591779112815857, 0.04967812821269035, 0.11155230551958084, 0.020164620131254196, 0.09255200624465942, -0.2138490080833435, 0.012992102652788162, 0.08262265473604202, 0.03832229599356651, 0.08902127295732498, 0.09781774133443832, 0.005540352314710617, 0.11341596394777298, -0.06654510647058487, 0.07222943007946014, 0.05641777813434601, -0.11949792504310608, -0.31166207790374756, -0.10370936244726181, 0.040778957307338715, 0.10003913938999176, 0.08316849917173386, -0.01877075619995594, 0.0831739529967308, -0.05845385417342186, 0.07937702536582947, 0.22227726876735687, -0.2368718534708023, -0.09288786351680756, -0.0036094910465180874, 0.06404095143079758, 0.049385666847229004, -0.11652734875679016, -0.024688681587576866, 0.05519124120473862, 0.028650492429733276, 0.11290338635444641, 0.014492087066173553, -0.012303796596825123, 0.0051570311188697815, -0.1452418863773346, -0.057711537927389145, 0.16433562338352203, 0.0904216468334198, -0.05296161770820618, -0.05391585826873779, -0.020649490877985954, -0.23148666322231293, -0.03891010209918022, 0.01454820204526186, 0.035033270716667175, -0.052824053913354874, -0.12199490517377853, 0.015398065559566021, -0.08122637122869492, -0.10557282716035843, 0.0172891728579998, 0.18658490478992462, 0.03911834582686424, -0.008783157914876938, -0.005956664215773344, 0.11523842811584473, 0.03494776412844658, -0.15544258058071136, -0.019365018233656883, 0.02797088772058487, -0.09711520373821259, -0.03022371232509613, -0.05873570963740349, -0.022621633484959602, -0.01440280769020319, 0.16042454540729523, -0.05138028785586357, 0.06926571577787399, 0.03135775402188301, 0.030452989041805267, -0.07969488203525543, 0.1755112111568451, -0.0674121081829071, -0.016397953033447266, -0.04045824706554413, 0.08644254505634308, -0.004259804263710976, -0.012763986364006996, -0.05245109647512436, 0.029330549761652946, 0.08539826422929764, 0.026720255613327026, -0.026932144537568092, 0.019297847524285316, -0.06012565642595291, -0.03812386095523834, 0.01938825286924839, -0.09178312867879868, 0.024146176874637604, 0.00966875534504652, -0.08708475530147552, 0.011927510611712933, 0.015465758740901947, 0.02139437198638916, 0.008724655024707317, 0.13184450566768646, -0.09604257345199585, -0.012995735742151737, -0.09974203258752823, -0.0967763289809227, 0.04223324730992317, -0.04280447959899902, 0.01407079678028822, -0.06716860830783844, -0.12788182497024536, -0.034321628510951996, 0.06725012511014938, -0.03211604431271553, -0.09045057743787766, -0.021337978541851044, -0.07080250233411789, 0.05343867465853691, -0.029932232573628426, 0.1609705090522766, -0.06081632524728775, 0.10674257576465607, 0.05410373955965042, 0.047527480870485306, 0.011751305311918259, 0.06412922590970993, -0.06222229823470116, 0.051536623388528824, -0.16358259320259094, 0.04657385125756264, -0.09967871755361557, 0.0652831494808197, -0.1266571581363678, -0.1292496919631958, -0.02532307244837284, 0.003937961533665657, 0.09119057655334473, 0.08174586296081543, -0.15366792678833008, -0.10645613819360733, 0.14610901474952698, -0.08717475086450577, -0.1321558952331543, 0.11470432579517365, -0.012181094847619534, -0.0061158607713878155, 0.04547356069087982, 0.12364852428436279, 0.12476550042629242, -0.08404682576656342, -0.02699551358819008, -0.0564306378364563, 0.12967348098754883, 0.003016140777617693, 0.11565293371677399, -0.01559250894933939, 0.005762850400060415, 0.0026673644315451384, -0.0546804778277874, 0.06352508068084717, -0.10564173012971878, -0.08929242193698883, -0.04519428685307503, -0.09463407099246979, 0.02639700099825859, 0.06700262427330017, 0.049068424850702286, -0.08439823240041733, -0.12948822975158691, 0.08975720405578613, 0.11930419504642487, -0.08420424163341522, 0.027152834460139275, -0.07507837563753128, 0.03822082653641701, -0.05294805020093918, -0.026806728914380074, -0.18491506576538086, -0.04543256759643555, 0.014999481849372387, -0.08376818895339966, 0.019197043031454086, -0.028537603095173836, 0.07240885496139526, 0.059657931327819824, -0.06362129002809525, -0.06771063804626465, -0.11275292932987213, -0.00983731634914875, -0.0626165047287941, -0.21443510055541992, -0.10365030914545059, -0.019775932654738426, 0.13999325037002563, -0.22081980109214783, 0.014420515857636929, 0.013876647688448429, 0.12759846448898315, 0.04716971516609192, -0.05532298982143402, -0.019802970811724663, 0.08142542093992233, -0.026415793225169182, -0.07014694064855576, 0.01918518729507923, 0.019691303372383118, -0.11590113490819931, -0.01887752301990986, -0.0875759869813919, 0.1348492056131363, 0.10172855854034424, -0.026543911546468735, -0.07562941312789917, -0.023636534810066223, -0.08721207082271576, -0.06330832093954086, -0.03818916529417038, -0.011174933984875679, 0.12328620254993439, 0.025280997157096863, 0.1223151758313179, -0.08216099441051483, -0.051399413496255875, 0.047502949833869934, 0.001004174118861556, -0.0068093594163656235, 0.10316276550292969, 0.08936676383018494, -0.05805462226271629, 0.11938060075044632, 0.11017217487096786, -0.10058743506669998, 0.1735946387052536, -0.09038649499416351, -0.12671826779842377, -0.020161505788564682, -0.00224503711797297, 0.03685278818011284, 0.12945392727851868, -0.12277191877365112, 0.018489085137844086, 0.021629193797707558, 0.036801356822252274, 0.023120321333408356, -0.20099280774593353, -0.014259831048548222, 0.04630705714225769, -0.053329650312662125, -0.06458857655525208, -0.011781695298850536, -0.011996546760201454, 0.07795562595129013, 0.007338597904890776, -0.012624471448361874, 0.0034505194053053856, -0.006759533658623695, -0.07119101285934448, 0.19512809813022614, -0.08600317686796188, -0.13156093657016754, -0.1664983630180359, -0.020186815410852432, -0.0314442478120327, -0.007923951372504234, 0.04123306646943092, -0.10553011298179626, -0.038917843252420425, -0.03916694223880768, 0.05275632441043854, -0.037378210574388504, 0.03839869052171707, 0.0229334756731987, 0.01886414922773838, 0.11286496371030807, -0.11264189332723618, 0.038381267338991165, 0.00010553374886512756, -0.055755723267793655, 0.0066122389398515224, 0.042106274515390396, 0.10359275341033936, 0.1578151285648346, 0.03341074660420418, 0.014361206442117691, -0.01786409690976143, 0.19435550272464752, -0.1194228082895279, -0.029949968680739403, 0.12722328305244446, 0.002986985258758068, 0.03845946863293648, 0.09558086842298508, 0.0721735879778862, -0.07907876372337341, 0.031203852966427803, 0.07086651772260666, -0.03562864288687706, -0.24395444989204407, -0.025993268936872482, -0.06658034771680832, -0.010823293589055538, 0.11631263792514801, 0.030166279524564743, 0.020128343254327774, 0.05461302772164345, -0.02243995852768421, 0.027039365842938423, -0.02707660011947155, 0.07049073278903961, 0.0776251032948494, 0.06311672925949097, 0.12571150064468384, -0.03551212325692177, -0.026009198278188705, 0.037049759179353714, 0.015363316051661968, 0.25755515694618225, 0.008583485148847103, 0.17002518475055695, 0.060419704765081406, 0.13838866353034973, 0.015972550958395004, 0.09292317926883698, 0.021020609885454178, -0.039026547223329544, 0.0227290578186512, -0.056548822671175, -0.015903327614068985, 0.028983991593122482, 0.027969835326075554, 0.052929703146219254, -0.1343483328819275, -0.02673507109284401, 0.006529357749968767, 0.33474162220954895, 0.06321343779563904, -0.32561546564102173, -0.12771910429000854, 0.007103435695171356, -0.061527542769908905, -0.0478101521730423, 0.024790583178400993, 0.09531018137931824, -0.08367288112640381, 0.07550378143787384, -0.08499711751937866, 0.10668276995420456, -0.02532212622463703, -0.007846123538911343, 0.12479804456233978, 0.08654459565877914, -0.010374835692346096, 0.054613299667835236, -0.22185581922531128, 0.27743926644325256, -0.012950212694704533, 0.08782455325126648, -0.018166758120059967, 0.03472523391246796, 0.03776603192090988, 0.003902279306203127, 0.046568043529987335, -0.010983404703438282, -0.11041350662708282, -0.20039066672325134, -0.07006517052650452, 0.028382064774632454, 0.11363761872053146, -0.05813052877783775, 0.12544545531272888, -0.034830644726753235, -0.004741883836686611, 0.07080167531967163, -0.07199237495660782, -0.1198287233710289, -0.10129889845848083, 0.028268149122595787, 0.005522324703633785, 0.08129891008138657, -0.11239681392908096, -0.12310992181301117, -0.04655962064862251, 0.13645882904529572, -0.0708429291844368, -0.01539171114563942, -0.13732358813285828, 0.1022072434425354, 0.18143227696418762, -0.05746716260910034, 0.07413627952337265, 0.016352767124772072, 0.14317366480827332, 0.05158984661102295, -0.02618732489645481, 0.09609320759773254, -0.0825045257806778, -0.21144913136959076, -0.043317265808582306, 0.14521360397338867, 0.035435691475868225, 0.05939819663763046, -0.03469390794634819, 0.036450836807489395, -0.002909614471718669, -0.08985010534524918, 0.04683413356542587, -0.03170083090662956, 0.006936286576092243, 0.04940233379602432, -0.02609170414507389, 0.044819511473178864, -0.03441588580608368, -0.06063546612858772, 0.11724326014518738, 0.27120640873908997, -0.07582992315292358, -0.0037676789797842503, 0.030069034546613693, -0.048280250281095505, -0.13761621713638306, 0.05390883609652519, 0.14842748641967773, 0.026800410822033882, 0.02566410042345524, -0.23872917890548706, 0.10479123890399933, 0.10912895202636719, -0.027892207726836205, 0.12844520807266235, -0.30061548948287964, -0.1286226361989975, 0.09173950552940369, 0.10757840424776077, -0.032394327223300934, -0.1625761091709137, -0.0602591298520565, -0.02377849817276001, -0.1564292460680008, 0.13289430737495422, -0.05063936114311218, 0.12047059088945389, -0.006374917458742857, 0.048692651093006134, 0.015164673328399658, -0.04736795648932457, 0.15930522978305817, -0.008951135911047459, 0.06273982673883438, 0.0030879713594913483, 0.0599055215716362, 0.06618790328502655, -0.04870780184864998, -0.003314474131911993, -0.06295205652713776, 0.019131537526845932, -0.12412464618682861, -0.03103448450565338, -0.0899997130036354, 0.026301562786102295, -0.051604263484478, -0.040239814668893814, -0.021371616050601006, 0.053135085850954056, 0.04403255879878998, -0.010727905668318272, 0.1789998859167099, -0.01690857671201229, 0.17034070193767548, 0.10016792267560959, 0.08121853321790695, -0.005979036446660757, -0.11899497359991074, -0.005734962411224842, -0.016719859093427658, 0.07176894694566727, -0.15353941917419434, 0.03957771137356758, 0.14097023010253906, 0.05932067334651947, 0.1257493942975998, 0.07146710157394409, -0.057694606482982635, 0.0193649772554636, 0.09056425839662552, -0.07691656053066254, -0.11369530856609344, -0.026305513456463814, 0.038311224430799484, -0.16108693182468414, 0.031039737164974213, 0.1013755276799202, -0.06547880917787552, -0.0025984016247093678, 0.020728930830955505, 0.009816775098443031, -0.06625336408615112, 0.23346763849258423, 0.04682109132409096, 0.0840088501572609, -0.09135805815458298, 0.08992914855480194, 0.04791201651096344, -0.16958071291446686, -0.010606157593429089, 0.067203089594841, -0.039284124970436096, -0.0013644021237269044, 0.01032058522105217, 0.050516437739133835, -0.06672915071249008, -0.06386429816484451, -0.13158759474754333, -0.1403900682926178, 0.08390096575021744, 0.09972643852233887, 0.04465137794613838, 0.041379664093256, -0.03794006258249283, 0.06460724025964737, -0.11209308356046677, 0.09700959920883179, 0.09504247456789017, 0.1025223508477211, -0.17545634508132935, 0.1334843933582306, 0.011180936358869076, 0.010257748886942863, -0.0007267320179380476, 0.0009400531416758895, -0.09445895999670029, 0.014275469817221165, -0.12984547019004822, -0.03786598891019821, -0.03711129352450371, -0.00436067022383213, -0.000775595661252737, -0.05955265834927559, -0.09290719777345657, 0.025787485763430595, -0.12034667283296585, -0.04921281710267067, 0.004829149227589369, 0.0653463751077652, -0.10318274796009064, 0.0011419699294492602, 0.06953393667936325, -0.11647472530603409, 0.06865660101175308, 0.04595337435603142, 0.04241902753710747, 0.04696165770292282, -0.08272500336170197, 0.01773781143128872, 0.042519424110651016, -0.006985923275351524, 0.03094164840877056, -0.15823994576931, -0.0036166030913591385, -0.02748984657227993, 0.055752210319042206, -0.012217124924063683, 0.011312220245599747, -0.1392277330160141, -0.05121684446930885, -0.01967180147767067, -0.04761205241084099, -0.05836019292473793, 0.03231131657958031, 0.08130752295255661, 0.05372024327516556, 0.17711201310157776, -0.06940103322267532, 0.020053310319781303, -0.24372172355651855, 0.015108305960893631, -0.024557407945394516, -0.09040450304746628, -0.06961788982152939, -0.019804732874035835, 0.06793557107448578, -0.06119868531823158, 0.09327080100774765, -0.06366412341594696, 0.0592326857149601, 0.04987586662173271, -0.08162178099155426, 0.024555491283535957, 0.04951244220137596, 0.2661017179489136, 0.05927712097764015, -0.014430120587348938, 0.07229438424110413, 0.011005637235939503, 0.05208523944020271, 0.12423763424158096, 0.1774904727935791, 0.14887236058712006, -0.019473090767860413, 0.08658059686422348, 0.04877844825387001, -0.10098767280578613, -0.13992224633693695, 0.10632093250751495, -0.03030981682240963, 0.1445702314376831, 0.007237004116177559, 0.20383155345916748, 0.10040038824081421, -0.19476807117462158, 0.05212974175810814, -0.04340146481990814, -0.0835166722536087, -0.09538645297288895, -0.035538915544748306, -0.06639759987592697, -0.2040030062198639, 0.014059806242585182, -0.1306103765964508, 0.05978861451148987, 0.07327847182750702, 0.018825793638825417, 0.017673173919320107, 0.16151325404644012, 0.04278961941599846, 0.004749804735183716, 0.08942785859107971, 0.005355472676455975, -0.02044554241001606, -0.042022235691547394, -0.09974472224712372, 0.03851104900240898, -0.021794697269797325, 0.04316575080156326, -0.06607624888420105, -0.10638630390167236, 0.0779743492603302, 0.03800412639975548, -0.10288617014884949, 0.02316512167453766, 0.0026522090192884207, 0.07120753079652786, 0.048683542758226395, 0.0012564826756715775, 0.022159701213240623, -0.02239968813955784, 0.26184147596359253, -0.10245542228221893, -0.031533993780612946, -0.1513042002916336, 0.21080061793327332, 0.016040191054344177, -0.0233886931091547, 0.03938978910446167, -0.07952483743429184, -0.026911932975053787, 0.1387140303850174, 0.11392160505056381, -0.0024358611553907394, -0.03343122825026512, 0.0068269106559455395, -0.01791452243924141, -0.057121068239212036, 0.0981622114777565, 0.11248847097158432, 0.0706176608800888, -0.07215622812509537, -0.047265272587537766, -0.05307149887084961, -0.047301165759563446, 0.00020286280778236687, 0.07419230043888092, 0.02901800163090229, -0.018191656097769737, -0.03405202180147171, 0.11145389825105667, -0.07016230374574661, -0.11142954230308533, 0.043509360402822495, -0.16301392018795013, -0.1916457861661911, -0.06031017377972603, 0.06549113988876343, 0.010642167180776596, 0.051890112459659576, -0.012120726518332958, -0.03956082463264465, 0.09740635752677917, 0.0005566579638980329, -0.042464423924684525, -0.1494586318731308, 0.10285580903291702, -0.06062379106879234, 0.20660313963890076, -0.04904315620660782, 0.026067344471812248, 0.11133231967687607, 0.057710129767656326, -0.09080378711223602, 0.015182914212346077, 0.0682859718799591, -0.1483708918094635, 0.025745421648025513, 0.19061386585235596, -0.04357847571372986, 0.12894847989082336, 0.013957370072603226, -0.14369967579841614, -0.000559928419534117, -0.06240564584732056, -0.040389932692050934, -0.061087969690561295, -0.0313262976706028, -0.05782740190625191, 0.12725940346717834, 0.22766102850437164, -0.07319771498441696, -0.021348660811781883, -0.06501992046833038, 0.04352978244423866, 0.07323102653026581, 0.11592020094394684, -0.030314305797219276, -0.2855053246021271, 0.020897775888442993, 0.03124786540865898, -0.015399588271975517, -0.24048399925231934, -0.0878898873925209, 0.04587149992585182, -0.06598217785358429, -0.03694431111216545, 0.10593309998512268, 0.07038582116365433, 0.05028035119175911, -0.057970330119132996, -0.08530087023973465, -0.06697632372379303, 0.17490001022815704, -0.16951578855514526, -0.07729749381542206 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-lang-id This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the anton-l/common_language dataset. It achieves the following results on the evaluation set: - Loss: 0.9836 - Accuracy: 0.7945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 4 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.9568 | 1.0 | 173 | 3.2866 | 0.1146 | | 1.9243 | 2.0 | 346 | 2.1241 | 0.3840 | | 1.2923 | 3.0 | 519 | 1.5498 | 0.5489 | | 0.8659 | 4.0 | 692 | 1.4953 | 0.6126 | | 0.5539 | 5.0 | 865 | 1.2431 | 0.6926 | | 0.4101 | 6.0 | 1038 | 1.1443 | 0.7232 | | 0.2945 | 7.0 | 1211 | 1.0870 | 0.7544 | | 0.1552 | 8.0 | 1384 | 1.1080 | 0.7661 | | 0.0968 | 9.0 | 1557 | 0.9836 | 0.7945 | | 0.0623 | 10.0 | 1730 | 1.0252 | 0.7993 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["audio-classification", "generated_from_trainer"], "datasets": ["common_language"], "metrics": ["accuracy"], "model-index": [{"name": "wav2vec2-base-lang-id", "results": []}]}
audio-classification
anton-l/wav2vec2-base-lang-id
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:common_language", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #dataset-common_language #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-base-lang-id ===================== This model is a fine-tuned version of facebook/wav2vec2-base on the anton-l/common\_language dataset. It achieves the following results on the evaluation set: * Loss: 0.9836 * Accuracy: 0.7945 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 32 * eval\_batch\_size: 4 * seed: 0 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 10.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.1+cu111 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 4\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #dataset-common_language #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 4\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 60, 159, 4, 37 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #audio-classification #generated_from_trainer #dataset-common_language #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 4\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.1+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ -0.13796932995319366, 0.08837594836950302, -0.002310005249455571, 0.04870469495654106, 0.13987183570861816, 0.0017145684687420726, 0.09324874728918076, 0.13313263654708862, -0.10557238012552261, 0.07396221160888672, 0.0899132564663887, 0.09111474454402924, 0.057126350700855255, 0.09441149234771729, -0.024979662150144577, -0.3204045295715332, 0.012677767314016819, 0.0320541188120842, -0.17387503385543823, 0.1169586330652237, 0.11458119004964828, -0.099046990275383, 0.03298747539520264, 0.04374368116259575, -0.13371331989765167, 0.015532617457211018, -0.014826705679297447, -0.06953268498182297, 0.10290279239416122, 0.04319638013839722, 0.11376781761646271, 0.013602702878415585, 0.08591626584529877, -0.24381384253501892, 0.015060484409332275, 0.07762012630701065, 0.04282446950674057, 0.07999052107334137, 0.11921443045139313, -0.015925530344247818, 0.1416296362876892, -0.06677228957414627, 0.069569893181324, 0.05722960829734802, -0.11437393724918365, -0.32690349221229553, -0.09614520519971848, 0.027777528390288353, 0.0977698564529419, 0.09614411741495132, -0.023227179422974586, 0.06869713217020035, -0.05930902063846588, 0.08259144425392151, 0.22324837744235992, -0.2170248180627823, -0.08975612372159958, -0.00627273740246892, 0.061881911009550095, 0.04484618455171585, -0.12626095116138458, -0.03290681168437004, 0.055170051753520966, 0.03715714439749718, 0.10468048602342606, 0.013918745331466198, -0.02449934370815754, 0.01056602317839861, -0.14064918458461761, -0.06601972877979279, 0.14937251806259155, 0.08749447762966156, -0.05089978128671646, -0.0543166808784008, 0.00044278401765041053, -0.2246398627758026, -0.04492189362645149, 0.03359397128224373, 0.028053678572177887, -0.03965241461992264, -0.11293182522058487, 0.01987743377685547, -0.09550028294324875, -0.09862978011369705, 0.02610151283442974, 0.1603625863790512, 0.04682941362261772, -0.01724625937640667, -0.004832873120903969, 0.10837491601705551, 0.05123424530029297, -0.14628833532333374, -0.009957652539014816, 0.03649716451764107, -0.09066701680421829, -0.027852725237607956, -0.04758994281291962, -0.030224688351154327, -0.010031341575086117, 0.11631593853235245, -0.04908638447523117, 0.07565757632255554, 0.023938270285725594, 0.03507537022233009, -0.08360842615365982, 0.17166998982429504, -0.06700112670660019, 0.007577488664537668, -0.046725280582904816, 0.08595055341720581, -0.030581103637814522, -0.014303418807685375, -0.045750051736831665, 0.02896479144692421, 0.0988580659031868, 0.03340386599302292, -0.033867694437503815, 0.009689314290881157, -0.06818307936191559, -0.029590502381324768, -0.020208753645420074, -0.0995837077498436, 0.025356054306030273, 0.016563039273023605, -0.08283674716949463, 0.01503810379654169, 0.01077877078205347, 0.027142565697431564, -0.0008859350346028805, 0.12365862727165222, -0.07645305246114731, -0.0035972220357507467, -0.10258886963129044, -0.10297297686338425, 0.044663798063993454, -0.036554522812366486, 0.017133038491010666, -0.06540556252002716, -0.11526533216238022, -0.04455997049808502, 0.07714904099702835, -0.02812029793858528, -0.08333008736371994, -0.04009604454040527, -0.07311511039733887, 0.0500597320497036, -0.024765755981206894, 0.17616817355155945, -0.06139063835144043, 0.11942098289728165, 0.027603069320321083, 0.0331469364464283, 0.018263211473822594, 0.07245023548603058, -0.05765175819396973, 0.05056120082736015, -0.13046465814113617, 0.05272798612713814, -0.09838259220123291, 0.07026958465576172, -0.13413770496845245, -0.13295301795005798, -0.02958904579281807, 0.00578316580504179, 0.09869305044412613, 0.0715266615152359, -0.17498156428337097, -0.09849400073289871, 0.152212455868721, -0.08226149529218674, -0.12108661234378815, 0.11914146691560745, -0.024040862917900085, 0.014319200068712234, 0.04110926017165184, 0.14233705401420593, 0.12293751537799835, -0.09621001034975052, -0.011289463378489017, -0.05276960879564285, 0.1321718841791153, 0.00584487384185195, 0.11596924066543579, -0.03247328847646713, 0.0018866769969463348, -0.004999453201889992, -0.028548359870910645, 0.06811469048261642, -0.10296902805566788, -0.09155284613370895, -0.03188905119895935, -0.0892563983798027, 0.004847842734307051, 0.07195297628641129, 0.042694251984357834, -0.09230347722768784, -0.11972132325172424, 0.06196059286594391, 0.11849141865968704, -0.09596113860607147, 0.027245933189988136, -0.067889504134655, 0.039006102830171585, -0.04733525589108467, -0.026063470169901848, -0.17677657306194305, -0.028960956260561943, 0.017150988802313805, -0.06775730848312378, 0.0201248936355114, -0.01821703277528286, 0.075403593480587, 0.04466494172811508, -0.05224437266588211, -0.06958729773759842, -0.11023727059364319, -0.009180156514048576, -0.06529010087251663, -0.21586833894252777, -0.08510712534189224, -0.021862614899873734, 0.1466454267501831, -0.23544932901859283, 0.008134410716593266, 0.02323336899280548, 0.10622001439332962, 0.04040190204977989, -0.05380212515592575, -0.013650523498654366, 0.07890421897172928, -0.022235289216041565, -0.06832532584667206, 0.02282886952161789, 0.019702672958374023, -0.1158057227730751, 0.011609614826738834, -0.08667862415313721, 0.12005451321601868, 0.09757228195667267, -0.043381836265325546, -0.07511549443006516, -0.05027619004249573, -0.08308827877044678, -0.06664329767227173, -0.0367189384996891, -0.003502103267237544, 0.1629343032836914, 0.026162616908550262, 0.11797668039798737, -0.09038397669792175, -0.04344893619418144, 0.04509410262107849, -0.005430174525827169, -0.008405043743550777, 0.12862904369831085, 0.07675713300704956, -0.04481511935591698, 0.11248289048671722, 0.10562735050916672, -0.09247861057519913, 0.17083114385604858, -0.09059559553861618, -0.1417737901210785, -0.00861765630543232, 0.017147254198789597, 0.03644153103232384, 0.131103977560997, -0.12295925617218018, 0.018396243453025818, 0.022967714816331863, 0.042898159474134445, 0.03147721290588379, -0.21354421973228455, -0.020082518458366394, 0.04668577015399933, -0.057951703667640686, -0.07795005291700363, -0.009363514371216297, -0.0031459438614547253, 0.0821339413523674, -0.0021221379283815622, -0.028975266963243484, -0.003900354029610753, -0.0182492658495903, -0.07958003878593445, 0.19720236957073212, -0.09391454607248306, -0.12798278033733368, -0.15670068562030792, -0.023713160306215286, -0.00373174250125885, -0.013230572454631329, 0.04231487587094307, -0.113588847219944, -0.03423409163951874, -0.048183873295784, 0.048885591328144073, -0.07507862150669098, 0.02432910166680813, 0.0036141511518508196, 0.03270141780376434, 0.10309196263551712, -0.10917824506759644, 0.03226642310619354, -0.00259365513920784, -0.05219193547964096, 0.024131398648023605, 0.022154996171593666, 0.09485536068677902, 0.16219566762447357, 0.03296168893575668, 0.016716431826353073, -0.03149569779634476, 0.16529132425785065, -0.10955026745796204, -0.04142827168107033, 0.11605630815029144, 0.005179135594516993, 0.04035216197371483, 0.101664699614048, 0.06795209646224976, -0.08186844736337662, 0.03659861907362938, 0.07221388816833496, -0.03089173510670662, -0.25771889090538025, -0.01943138986825943, -0.07060442119836807, -0.017986033111810684, 0.11970078945159912, 0.02793109603226185, 0.007387799676507711, 0.04801519960165024, -0.01586766168475151, 0.015836238861083984, -0.010857517831027508, 0.06607034802436829, 0.05960535258054733, 0.04863227903842926, 0.11194843798875809, -0.03246898949146271, -0.023794660344719887, 0.03555215522646904, 0.02128755860030651, 0.2761599123477936, 0.004045558627694845, 0.1677752584218979, 0.07208429276943207, 0.1493280827999115, 0.012630782090127468, 0.09058127552270889, 0.013645502738654613, -0.03027331829071045, 0.023854516446590424, -0.05871427431702614, -0.022763006389141083, 0.03515060618519783, 0.04520629346370697, 0.044665444642305374, -0.14598684012889862, -0.030610481277108192, -0.002219863934442401, 0.3404091000556946, 0.0611143484711647, -0.3084312677383423, -0.10659011453390121, 0.004288546275347471, -0.06812748312950134, -0.05812470242381096, 0.030100025236606598, 0.09981391578912735, -0.0927056148648262, 0.05372413247823715, -0.08203819394111633, 0.11515038460493088, -0.03960203751921654, -0.01692540943622589, 0.10760980099439621, 0.07625866681337357, -0.00997809786349535, 0.07606714963912964, -0.25362253189086914, 0.30383360385894775, -0.01771255023777485, 0.08771906048059464, -0.025843381881713867, 0.03155158832669258, 0.03806038573384285, -0.03646518662571907, 0.05296064913272858, -0.0075733778066933155, -0.12171794474124908, -0.2110813409090042, -0.07478120923042297, 0.03217145800590515, 0.11975069344043732, -0.04863034188747406, 0.1168055310845375, -0.033701714128255844, 0.004292212426662445, 0.06855370104312897, -0.08619045466184616, -0.12142505496740341, -0.10483994334936142, 0.022123876959085464, 0.015509583987295628, 0.07833077013492584, -0.12078799307346344, -0.12104664742946625, -0.05719992145895958, 0.1382887214422226, -0.052989114075899124, -0.014127636328339577, -0.1331322342157364, 0.09757228195667267, 0.1828068345785141, -0.05783150717616081, 0.07065165787935257, 0.019116871058940887, 0.13524237275123596, 0.04269351437687874, -0.010273340158164501, 0.09144613891839981, -0.08450832962989807, -0.18796353042125702, -0.04860922694206238, 0.15837730467319489, 0.04631673917174339, 0.06302191317081451, -0.027658184990286827, 0.024942828342318535, -0.01921713352203369, -0.0858868807554245, 0.04119439423084259, -0.01951039955019951, 0.018426505848765373, 0.05397392436861992, -0.046502068638801575, 0.04447655379772186, -0.05179277062416077, -0.07670291513204575, 0.13626323640346527, 0.27436092495918274, -0.06731510162353516, -0.00028107044636271894, 0.020024800673127174, -0.05636226385831833, -0.13167476654052734, 0.057764891535043716, 0.1590389907360077, 0.03795474022626877, 0.02117173932492733, -0.24498113989830017, 0.08128705620765686, 0.09648154675960541, -0.022306514903903008, 0.10670188814401627, -0.3066181540489197, -0.11998794227838516, 0.1034051924943924, 0.11350519210100174, -0.04806331545114517, -0.15694016218185425, -0.058477502316236496, -0.0203995443880558, -0.15310411155223846, 0.1125616803765297, -0.03247576579451561, 0.11927872151136398, -0.003891953034326434, 0.06778062880039215, 0.023863080888986588, -0.051194749772548676, 0.15680469572544098, -0.013327471911907196, 0.06381916999816895, 0.004134550224989653, 0.07208189368247986, 0.04622277989983559, -0.047184109687805176, -0.00043943821219727397, -0.06574391573667526, 0.019019825384020805, -0.14399521052837372, -0.031763408333063126, -0.08968111127614975, 0.027996577322483063, -0.04926740378141403, -0.04138398915529251, -0.021690264344215393, 0.05271027609705925, 0.05352063849568367, -0.0023379854392260313, 0.1535867601633072, -0.0377592109143734, 0.16012655198574066, 0.05461645498871803, 0.08809760957956314, -0.0036442826967686415, -0.10869430750608444, -0.004381980746984482, -0.010466402396559715, 0.06041127070784569, -0.14249898493289948, 0.038424838334321976, 0.15257719159126282, 0.05289172753691673, 0.14125946164131165, 0.06732124835252762, -0.0698796883225441, 0.014633859507739544, 0.08414485305547714, -0.056753452867269516, -0.09001703560352325, -0.024544255807995796, 0.0844033807516098, -0.15995104610919952, 0.008821079507470131, 0.08766460418701172, -0.06183895096182823, -0.009398354217410088, 0.013270409777760506, 0.0073997266590595245, -0.07305272668600082, 0.22809556126594543, 0.0429798886179924, 0.08003725856542587, -0.08527979999780655, 0.09081782400608063, 0.05070243403315544, -0.17968082427978516, -0.004743820056319237, 0.054443880915641785, -0.02886364422738552, -0.005507813300937414, 0.029737120494246483, 0.0651964619755745, -0.03538290038704872, -0.066461481153965, -0.115996815264225, -0.14423543214797974, 0.08250075578689575, 0.08987189829349518, 0.04364857077598572, 0.042521022260189056, -0.03863224387168884, 0.04947874695062637, -0.11521477997303009, 0.09113224595785141, 0.10713248699903488, 0.08762598037719727, -0.15922832489013672, 0.1369444727897644, 0.00868837907910347, 0.008975621312856674, 0.010708649642765522, -0.007601126097142696, -0.08785899728536606, 0.03114314191043377, -0.1128155067563057, -0.026033764705061913, -0.04570610821247101, -0.004013286903500557, 0.008816461078822613, -0.05347530543804169, -0.07513200491666794, 0.02364598959684372, -0.12697993218898773, -0.04820771887898445, -0.0003143065550830215, 0.0813666582107544, -0.09451647847890854, -0.018887639045715332, 0.06888219714164734, -0.11161048710346222, 0.06836561113595963, 0.047912560403347015, 0.036658719182014465, 0.04564351215958595, -0.1094951406121254, 0.02240907959640026, 0.0452384352684021, -0.002745239296928048, 0.02249974198639393, -0.16811992228031158, -0.0005932401982136071, -0.016647392883896828, 0.045446351170539856, -0.011491112411022186, 0.0013319944264367223, -0.13915970921516418, -0.06906094402074814, -0.02173205278813839, -0.05741189420223236, -0.052138037979602814, 0.04545363783836365, 0.06449376046657562, 0.062169600278139114, 0.17109745740890503, -0.06917081028223038, 0.032950084656476974, -0.2312527447938919, 0.01787721924483776, -0.03359284996986389, -0.07890728116035461, -0.0552436038851738, -0.02935967966914177, 0.0721505656838417, -0.06767727434635162, 0.08441103994846344, -0.05513383820652962, 0.04784834384918213, 0.0364268496632576, -0.10017922520637512, 0.046846311539411545, 0.045086298137903214, 0.2749527096748352, 0.05132455378770828, -0.0116311339661479, 0.07333049178123474, -0.000036100791476201266, 0.0484592542052269, 0.16147170960903168, 0.15969476103782654, 0.17445240914821625, 0.0032389936968684196, 0.08515892177820206, 0.04957573115825653, -0.10683107376098633, -0.11466927081346512, 0.11347309499979019, -0.013424336910247803, 0.13616108894348145, 0.0054407245479524136, 0.23697668313980103, 0.10583849996328354, -0.20544052124023438, 0.05961812660098076, -0.03623422235250473, -0.08792899549007416, -0.09401232749223709, -0.043517809361219406, -0.06471042335033417, -0.18567077815532684, 0.018026424571871758, -0.12627604603767395, 0.06628318876028061, 0.06420877575874329, 0.028650907799601555, 0.018468191847205162, 0.14830684661865234, 0.03829778730869293, -0.006855770945549011, 0.10524117201566696, 0.0051079620607197285, -0.014665567316114902, -0.05365879833698273, -0.09856677800416946, 0.042004916816949844, -0.03445442020893097, 0.042748428881168365, -0.06952649354934692, -0.10009396821260452, 0.07219330221414566, 0.023966718465089798, -0.10028965771198273, 0.018910948187112808, -0.010259737260639668, 0.07857465744018555, 0.07157541066408157, 0.015275600366294384, 0.019147515296936035, -0.019044071435928345, 0.2625255584716797, -0.09722757339477539, -0.038330402225255966, -0.1433386504650116, 0.2205168753862381, 0.016529861837625504, -0.03272928670048714, 0.02953553944826126, -0.07128532230854034, -0.003493847092613578, 0.15233953297138214, 0.10973650962114334, -0.005627343896776438, -0.03243276849389076, 0.0016583919059485197, -0.01752379536628723, -0.06052275747060776, 0.0947629064321518, 0.11598309874534607, 0.060705605894327164, -0.08149716258049011, -0.057945042848587036, -0.06560888886451721, -0.03591018170118332, -0.010748832486569881, 0.07675860822200775, 0.025756599381566048, -0.02433266118168831, -0.024022327736020088, 0.12376157939434052, -0.06488808244466782, -0.09739609062671661, 0.01906471885740757, -0.15585313737392426, -0.18717236816883087, -0.05821096897125244, 0.049818459898233414, 0.017019089311361313, 0.044603995978832245, -0.023778382688760757, -0.02662540413439274, 0.09904997050762177, 0.004295985214412212, -0.03905632346868515, -0.14165249466896057, 0.09681130945682526, -0.06582546979188919, 0.20265044271945953, -0.0448349229991436, 0.02993122860789299, 0.11239264160394669, 0.07220131158828735, -0.0738816186785698, 0.028827430680394173, 0.0708124116063118, -0.13360847532749176, 0.03155412897467613, 0.19257324934005737, -0.046348925679922104, 0.13074062764644623, 0.024144135415554047, -0.12358918786048889, 0.012738782912492752, -0.0944015383720398, -0.044299568980932236, -0.06416837126016617, -0.024422088637948036, -0.058612752705812454, 0.12543074786663055, 0.22178798913955688, -0.07043767720460892, -0.024874793365597725, -0.06999990344047546, 0.031291112303733826, 0.06436032056808472, 0.11341764777898788, -0.03470560163259506, -0.2779785096645355, 0.01684478111565113, 0.018415626138448715, -0.011574962176382542, -0.23687121272087097, -0.08633106201887131, 0.05089086666703224, -0.07174354046583176, -0.04314631596207619, 0.10730203986167908, 0.06623422354459763, 0.04753733426332474, -0.057067614048719406, -0.07664386183023453, -0.05753280222415924, 0.18240323662757874, -0.16319629549980164, -0.06797380745410919 ]
null
null
transformers
# Model Card for wav2vec2-base-superb-sv # Model Details ## Model Description - **Developed by:** Shu-wen Yang et al. - **Shared by:** Anton Lozhkov - **Model type:** Wav2Vec2 with an XVector head - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Related Models:** - **Parent Model:** wav2vec2-large-lv60 - **Resources for more information:** - [GitHub Repo](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/sv_voxceleb1) - [Associated Paper](https://arxiv.org/abs/2105.010517) # Uses ## Direct Use This is a ported version of [S3PRL's Wav2Vec2 for the SUPERB Speaker Verification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/sv_voxceleb1). The base model is [wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60), which is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051) ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data See the [superb dataset card](https://huggingface.co/datasets/superb) ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data See the [superb dataset card](https://huggingface.co/datasets/superb) ### Factors ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed # Citation **BibTeX:** ``` @misc{https://doi.org/10.48550/arxiv.2006.11477, doi = {10.48550/ARXIV.2006.11477}, url = {https://arxiv.org/abs/2006.11477}, author = {Baevski, Alexei and Zhou, Henry and Mohamed, Abdelrahman and Auli, Michael}, keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering}, title = {wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations}, publisher = {arXiv}, @misc{https://doi.org/10.48550/arxiv.2105.01051, doi = {10.48550/ARXIV.2105.01051}, url = {https://arxiv.org/abs/2105.01051}, author = {Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y. and Liu, Andy T. and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and Huang, Tzu-Hsien and Tseng, Wei-Cheng and Lee, Ko-tik and Liu, Da-Rong and Huang, Zili and Dong, Shuyan and Li, Shang-Wen and Watanabe, Shinji and Mohamed, Abdelrahman and Lee, Hung-yi}, keywords = {Computation and Language (cs.CL), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering}, title = {SUPERB: Speech processing Universal PERformance Benchmark}, publisher = {arXiv}, year = {2021}, } ``` # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Anton Lozhkov in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoProcessor, AutoModelForAudioXVector processor = AutoProcessor.from_pretrained("anton-l/wav2vec2-base-superb-sv") model = AutoModelForAudioXVector.from_pretrained("anton-l/wav2vec2-base-superb-sv") ``` </details>
{"language": "en", "license": "apache-2.0", "tags": ["speech", "audio", "wav2vec2", "audio-classification"], "datasets": ["superb"]}
audio-classification
anton-l/wav2vec2-base-superb-sv
[ "transformers", "pytorch", "wav2vec2", "audio-xvector", "speech", "audio", "audio-classification", "en", "dataset:superb", "arxiv:2105.01051", "arxiv:1910.09700", "arxiv:2006.11477", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2105.01051", "1910.09700", "2006.11477" ]
[ "en" ]
TAGS #transformers #pytorch #wav2vec2 #audio-xvector #speech #audio #audio-classification #en #dataset-superb #arxiv-2105.01051 #arxiv-1910.09700 #arxiv-2006.11477 #license-apache-2.0 #endpoints_compatible #has_space #region-us
# Model Card for wav2vec2-base-superb-sv # Model Details ## Model Description - Developed by: Shu-wen Yang et al. - Shared by: Anton Lozhkov - Model type: Wav2Vec2 with an XVector head - Language(s) (NLP): English - License: Apache 2.0 - Related Models: - Parent Model: wav2vec2-large-lv60 - Resources for more information: - GitHub Repo - Associated Paper # Uses ## Direct Use This is a ported version of S3PRL's Wav2Vec2 for the SUPERB Speaker Verification task. The base model is wav2vec2-large-lv60, which is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. For more information refer to SUPERB: Speech processing Universal PERformance Benchmark ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data See the superb dataset card ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data See the superb dataset card ### Factors ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: More information needed - Hours used: More information needed - Cloud Provider: More information needed - Compute Region: More information needed - Carbon Emitted: More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed BibTeX: # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Anton Lozhkov in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> </details>
[ "# Model Card for wav2vec2-base-superb-sv", "# Model Details", "## Model Description\n \n \n- Developed by: Shu-wen Yang et al.\n- Shared by: Anton Lozhkov\n- Model type: Wav2Vec2 with an XVector head\n- Language(s) (NLP): English\n- License: Apache 2.0\n- Related Models:\n - Parent Model: wav2vec2-large-lv60\n- Resources for more information: \n - GitHub Repo\n - Associated Paper", "# Uses", "## Direct Use\n \nThis is a ported version of \nS3PRL's Wav2Vec2 for the SUPERB Speaker Verification task.\n\nThe base model is wav2vec2-large-lv60, which is pretrained on 16kHz \nsampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. \n\nFor more information refer to SUPERB: Speech processing Universal PERformance Benchmark", "## Out-of-Scope Use\n \nThe model should not be used to intentionally create hostile or alienating environments for people.", "# Bias, Risks, and Limitations\n \nSignificant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.", "## Recommendations\n \nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "# Training Details", "## Training Data\n \nSee the superb dataset card", "## Training Procedure", "### Preprocessing\n \nMore information needed", "### Speeds, Sizes, Times\n \nMore information needed", "# Evaluation", "## Testing Data, Factors & Metrics", "### Testing Data\n \nSee the superb dataset card", "### Factors", "### Metrics\n \nMore information needed", "## Results \n \nMore information needed", "# Model Examination\n \nMore information needed", "# Environmental Impact\n \n \nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n \n- Hardware Type: More information needed\n- Hours used: More information needed\n- Cloud Provider: More information needed\n- Compute Region: More information needed\n- Carbon Emitted: More information needed", "# Technical Specifications [optional]", "## Model Architecture and Objective\n \nMore information needed", "## Compute Infrastructure\n \nMore information needed", "### Hardware\n \nMore information needed", "### Software\nMore information needed\n \nBibTeX:", "# Glossary [optional]\nMore information needed", "# More Information [optional]\n \nMore information needed", "# Model Card Authors [optional]\n \n \nAnton Lozhkov in collaboration with Ezi Ozoani and the Hugging Face team", "# Model Card Contact\n \nMore information needed", "# How to Get Started with the Model\n \nUse the code below to get started with the model.\n \n<details>\n<summary> Click to expand </summary>\n\n\n</details>" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #audio-xvector #speech #audio #audio-classification #en #dataset-superb #arxiv-2105.01051 #arxiv-1910.09700 #arxiv-2006.11477 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "# Model Card for wav2vec2-base-superb-sv", "# Model Details", "## Model Description\n \n \n- Developed by: Shu-wen Yang et al.\n- Shared by: Anton Lozhkov\n- Model type: Wav2Vec2 with an XVector head\n- Language(s) (NLP): English\n- License: Apache 2.0\n- Related Models:\n - Parent Model: wav2vec2-large-lv60\n- Resources for more information: \n - GitHub Repo\n - Associated Paper", "# Uses", "## Direct Use\n \nThis is a ported version of \nS3PRL's Wav2Vec2 for the SUPERB Speaker Verification task.\n\nThe base model is wav2vec2-large-lv60, which is pretrained on 16kHz \nsampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. \n\nFor more information refer to SUPERB: Speech processing Universal PERformance Benchmark", "## Out-of-Scope Use\n \nThe model should not be used to intentionally create hostile or alienating environments for people.", "# Bias, Risks, and Limitations\n \nSignificant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.", "## Recommendations\n \nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "# Training Details", "## Training Data\n \nSee the superb dataset card", "## Training Procedure", "### Preprocessing\n \nMore information needed", "### Speeds, Sizes, Times\n \nMore information needed", "# Evaluation", "## Testing Data, Factors & Metrics", "### Testing Data\n \nSee the superb dataset card", "### Factors", "### Metrics\n \nMore information needed", "## Results \n \nMore information needed", "# Model Examination\n \nMore information needed", "# Environmental Impact\n \n \nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n \n- Hardware Type: More information needed\n- Hours used: More information needed\n- Cloud Provider: More information needed\n- Compute Region: More information needed\n- Carbon Emitted: More information needed", "# Technical Specifications [optional]", "## Model Architecture and Objective\n \nMore information needed", "## Compute Infrastructure\n \nMore information needed", "### Hardware\n \nMore information needed", "### Software\nMore information needed\n \nBibTeX:", "# Glossary [optional]\nMore information needed", "# More Information [optional]\n \nMore information needed", "# Model Card Authors [optional]\n \n \nAnton Lozhkov in collaboration with Ezi Ozoani and the Hugging Face team", "# Model Card Contact\n \nMore information needed", "# How to Get Started with the Model\n \nUse the code below to get started with the model.\n \n<details>\n<summary> Click to expand </summary>\n\n\n</details>" ]
[ 93, 15, 3, 91, 3, 98, 28, 87, 41, 3, 9, 4, 8, 12, 3, 11, 11, 4, 8, 5, 8, 68, 9, 10, 8, 6, 11, 11, 10, 27, 7, 41 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #audio-xvector #speech #audio #audio-classification #en #dataset-superb #arxiv-2105.01051 #arxiv-1910.09700 #arxiv-2006.11477 #license-apache-2.0 #endpoints_compatible #has_space #region-us \n# Model Card for wav2vec2-base-superb-sv# Model Details## Model Description\n \n \n- Developed by: Shu-wen Yang et al.\n- Shared by: Anton Lozhkov\n- Model type: Wav2Vec2 with an XVector head\n- Language(s) (NLP): English\n- License: Apache 2.0\n- Related Models:\n - Parent Model: wav2vec2-large-lv60\n- Resources for more information: \n - GitHub Repo\n - Associated Paper# Uses## Direct Use\n \nThis is a ported version of \nS3PRL's Wav2Vec2 for the SUPERB Speaker Verification task.\n\nThe base model is wav2vec2-large-lv60, which is pretrained on 16kHz \nsampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. \n\nFor more information refer to SUPERB: Speech processing Universal PERformance Benchmark## Out-of-Scope Use\n \nThe model should not be used to intentionally create hostile or alienating environments for people.# Bias, Risks, and Limitations\n \nSignificant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.## Recommendations\n \nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.# Training Details## Training Data\n \nSee the superb dataset card## Training Procedure### Preprocessing\n \nMore information needed### Speeds, Sizes, Times\n \nMore information needed# Evaluation" ]
[ -0.0795808881521225, 0.13047201931476593, -0.005528058856725693, -0.007876221090555191, 0.10476787388324738, -0.02524806559085846, 0.04749766364693642, 0.08203325420618057, -0.05444943904876709, 0.12089361995458603, 0.012087037786841393, -0.012852263636887074, 0.10395054519176483, 0.07120783627033234, 0.07128898054361343, -0.19283653795719147, 0.06366246938705444, -0.08455077558755875, 0.04962926357984543, 0.08075285702943802, 0.11691729724407196, -0.10073541849851608, 0.05608636140823364, -0.013523699715733528, -0.029340045526623726, 0.03771989792585373, -0.023761337623000145, -0.05432458221912384, 0.05210691690444946, 0.06066041812300682, 0.04738341271877289, 0.044496044516563416, 0.11837057769298553, -0.2886888086795807, 0.020650682970881462, 0.08944142609834671, 0.04713203012943268, 0.05478651449084282, 0.07943431288003922, -0.007660206872969866, 0.02444702945649624, -0.09123662859201431, 0.04455587640404701, 0.07642940431833267, -0.0999118834733963, -0.13873963057994843, -0.07954934984445572, 0.16559748351573944, 0.06422721594572067, 0.03013775870203972, -0.042780984193086624, 0.08115028589963913, -0.03498360142111778, 0.039233703166246414, 0.194609135389328, -0.133217453956604, -0.014155619777739048, 0.032564304769039154, 0.0043941885232925415, 0.05434723198413849, -0.09764993190765381, 0.04014533385634422, 0.03380525857210159, 0.0002917821111623198, 0.03905796632170677, -0.012380952946841717, 0.004278087988495827, -0.014654426835477352, -0.13252201676368713, -0.05991208180785179, 0.08320972323417664, 0.04135238006711006, -0.12510976195335388, -0.14174990355968475, -0.029636047780513763, -0.03670789673924446, -0.006809160578995943, -0.07600701600313187, 0.049898888915777206, -0.01129845716059208, 0.03363078832626343, -0.05759035423398018, -0.08347705006599426, -0.08770047873258591, 0.020704513415694237, 0.13194218277931213, 0.03151555731892586, 0.03093820810317993, 0.027658307924866676, 0.08917079865932465, -0.051745835691690445, -0.08185284584760666, -0.08071177452802658, -0.06762093305587769, -0.11430585384368896, -0.03580395132303238, -0.010467366315424442, -0.04001353681087494, 0.010218098759651184, 0.1176559254527092, -0.03877211734652519, 0.05436289310455322, 0.0013168258592486382, 0.02027720771729946, 0.09202226996421814, 0.06472498923540115, -0.06843072921037674, -0.02913564257323742, -0.019781187176704407, 0.0008081009145826101, 0.022264886647462845, -0.02873975783586502, -0.00010540127550484613, -0.03446388617157936, 0.021488796919584274, 0.09381312876939774, 0.01724160648882389, 0.02954632230103016, -0.02818874828517437, -0.0270366370677948, 0.1054891049861908, -0.15092910826206207, 0.0123068206012249, 0.039283495396375656, -0.01985103078186512, 0.07836591452360153, 0.01940727047622204, 0.008037985302507877, -0.11800865828990936, 0.0835837572813034, -0.02205631695687771, 0.004155614413321018, -0.06211468577384949, -0.038856107741594315, 0.03769184648990631, -0.00857471115887165, -0.0397975817322731, -0.08760649710893631, -0.12837667763233185, -0.0594562366604805, -0.0030567485373467207, -0.03563956916332245, -0.03312939032912254, -0.04131694883108139, -0.0016060492489486933, 0.00025324340094812214, -0.048035528510808945, 0.04239349812269211, -0.023140188306570053, 0.03393629193305969, -0.019873280078172684, 0.02446400187909603, 0.04868147149682045, 0.028210150077939034, -0.06677667051553726, 0.01851079612970352, -0.09870481491088867, 0.10389328747987747, -0.08025112748146057, -0.03212656453251839, -0.12844806909561157, -0.056428976356983185, -0.05303853377699852, 0.05368934944272041, 0.02874496392905712, 0.09939420223236084, -0.16038143634796143, -0.035898059606552124, 0.21848037838935852, -0.1547565907239914, -0.0031418560538440943, 0.12728248536586761, -0.013314031064510345, 0.013616645708680153, 0.13402609527111053, 0.09155787527561188, 0.05684446915984154, -0.14516307413578033, -0.06918002665042877, -0.033531565219163895, -0.03345249220728874, 0.141781747341156, 0.06907844543457031, -0.06511729210615158, 0.07134630531072617, 0.014460175298154354, -0.06181497871875763, -0.07072687894105911, -0.011347010731697083, -0.051305141299963, -0.018095141276717186, -0.04767390713095665, 0.03812455013394356, -0.028605183586478233, -0.06900027394294739, -0.032753217965364456, -0.1251000612974167, 0.058440808206796646, 0.1297048032283783, -0.03716525435447693, 0.051525358110666275, -0.11669142544269562, 0.039214327931404114, 0.02928205020725727, -0.0020259495358914137, -0.1455410122871399, 0.06427045911550522, 0.0017658349825069308, -0.07066057622432709, 0.1005316749215126, 0.0442652627825737, 0.01748291216790676, 0.07512523978948593, -0.050701066851615906, -0.013192334212362766, -0.030831392854452133, 0.010905897244811058, -0.006201517768204212, -0.1272953301668167, -0.028739195317029953, -0.022318365052342415, 0.038052912801504135, -0.1615709811449051, 0.02325817570090294, 0.08065511286258698, 0.09167736768722534, 0.027803579345345497, -0.07443230599164963, 0.035414520651102066, 0.008225394412875175, 0.013431044295430183, -0.01771491952240467, 0.019246894866228104, -0.009088949300348759, 0.00931637641042471, 0.041589733213186264, -0.14846371114253998, -0.09937452524900436, 0.08265198022127151, -0.019077293574810028, -0.1008271649479866, -0.0031865600030869246, -0.005902240984141827, -0.003053411142900586, -0.1230812668800354, -0.0877111479640007, 0.17272162437438965, 0.014989932999014854, 0.06118541583418846, -0.0819067731499672, -0.03808971494436264, 0.010352566838264465, -0.04807138070464134, -0.002575425198301673, 0.01975788176059723, 0.04353870078921318, -0.09366507828235626, 0.07901837676763535, 0.005883481819182634, 0.015896355733275414, 0.147483229637146, 0.004757444374263287, -0.11478745937347412, -0.006676278077065945, -0.005594434682279825, -0.018007805570960045, 0.08001723885536194, -0.04807350039482117, 0.005521818995475769, 0.025042571127414703, 0.05638531222939491, 0.005788533948361874, -0.0960378348827362, 0.054133206605911255, 0.04237016290426254, -0.059126097708940506, -0.09059654176235199, -0.03739851713180542, -0.02327919378876686, 0.08218398690223694, -0.005541044753044844, 0.08332627266645432, -0.0339062437415123, -0.06577395647764206, -0.13547545671463013, 0.08821571618318558, -0.07397297024726868, -0.21978813409805298, -0.1461334526538849, -0.009761554189026356, -0.01081145741045475, 0.015193219296634197, 0.030348781496286392, -0.06806878000497818, -0.07797753810882568, -0.10796234011650085, 0.09327349811792374, -0.029520193114876747, -0.04369377717375755, 0.010387221351265907, 0.0766945332288742, 0.05194096267223358, -0.09997635334730148, 0.020271558314561844, -0.012713470496237278, -0.09966059774160385, -0.04774767905473709, 0.09765809774398804, 0.058824412524700165, 0.09089828282594681, 0.036526601761579514, -0.04011793062090874, -0.021866511553525925, 0.1826951950788498, -0.10086192190647125, 0.05297670513391495, 0.17908531427383423, -0.10493979603052139, 0.04582693800330162, 0.14483730494976044, 0.030604034662246704, -0.054924607276916504, 0.01104893907904625, 0.033050816506147385, -0.055052272975444794, -0.23058786988258362, -0.056041959673166275, -0.024424266070127487, -0.009473882615566254, 0.04815547168254852, 0.05750683322548866, -0.01556481048464775, 0.05478028953075409, -0.10595526546239853, -0.04395386576652527, 0.07364438474178314, 0.054687101393938065, 0.014703674241900444, -0.008255092427134514, 0.07425179332494736, -0.051216524094343185, 0.006758611649274826, 0.0700993463397026, 0.021844547241926193, 0.16766275465488434, 0.011891983449459076, 0.12898606061935425, 0.07157474756240845, 0.05626831576228142, 0.06523580104112625, 0.0494413748383522, -0.02484273724257946, 0.007691556122153997, -0.02033226005733013, -0.07761871069669724, -0.06923291087150574, 0.05813110992312431, 0.0652921199798584, 0.007694825064390898, -0.024568505585193634, -0.05684540048241615, 0.05127652734518051, 0.24248522520065308, 0.04128441959619522, -0.11482103168964386, -0.0748315304517746, 0.059193991124629974, -0.07580750435590744, -0.04714185744524002, 0.022993676364421844, 0.12748977541923523, -0.15402637422084808, 0.08280695229768753, 0.05971837788820267, 0.0874868705868721, -0.08791401237249374, 0.01330493949353695, -0.044667571783065796, 0.07125566154718399, -0.02294756844639778, 0.08673742413520813, -0.1607070118188858, 0.06315620243549347, -0.008727899752557278, 0.09319647401571274, -0.033672209829092026, 0.05109013617038727, -0.0005298035102896392, 0.048303086310625076, 0.16928307712078094, 0.015676112845540047, -0.13376086950302124, -0.1279630959033966, -0.0689830556511879, 0.017545711249113083, 0.09158138185739517, -0.03622284159064293, 0.07931384444236755, -0.03515257686376572, 0.003605230711400509, -0.03134454786777496, -0.013341298326849937, -0.16999387741088867, -0.13757312297821045, 0.01731976680457592, -0.06953496485948563, 0.07129655033349991, -0.06726980209350586, -0.03374149277806282, -0.08147914707660675, 0.12192924320697784, -0.24687904119491577, -0.07330509275197983, -0.08959265798330307, 0.001272983499802649, 0.06717802584171295, -0.04591086506843567, -0.0031940084882080555, 0.04210939630866051, 0.1857859492301941, -0.0068710786290466785, -0.05564646050333977, 0.021535446867346764, -0.07117016613483429, -0.2164442092180252, -0.04018431901931763, 0.18184460699558258, 0.06010965630412102, 0.08389124274253845, 0.010661349631845951, 0.04802219942212105, 0.07429561764001846, -0.10903206467628479, 0.04560946300625801, 0.2035343497991562, -0.026450444012880325, 0.083845354616642, -0.04431363195180893, -0.16338497400283813, -0.09403505176305771, -0.06489214301109314, 0.1576482057571411, 0.1972285509109497, -0.049404602497816086, 0.2034960687160492, 0.18408773839473724, -0.1465623825788498, -0.2905844449996948, -0.024474339559674263, 0.059049904346466064, 0.029234249144792557, 0.08277355134487152, -0.21177275478839874, 0.06543049216270447, 0.0649527832865715, -0.012619164772331715, 0.012429817579686642, -0.1816025823354721, -0.13414601981639862, 0.08545488864183426, 0.03293134644627571, -0.035819850862026215, -0.09774007648229599, -0.068932443857193, -0.06458601355552673, -0.04969102889299393, 0.11251523345708847, -0.08115237951278687, 0.06374036520719528, 0.050724323838949203, 0.010005938820540905, 0.0556604377925396, -0.019759200513362885, 0.12794992327690125, -0.00920046865940094, 0.015845024958252907, -0.09488558024168015, 0.0400366336107254, -0.008301351219415665, -0.03448646143078804, 0.08665746450424194, -0.011652277782559395, 0.009920138865709305, -0.022267647087574005, -0.06292123347520828, -0.04759431257843971, 0.032574061304330826, -0.060664866119623184, -0.04928363487124443, -0.052573494613170624, 0.058565907180309296, 0.07960504293441772, -0.02448832429945469, 0.0009721870883367956, -0.12123218178749084, -0.0028638301882892847, 0.22736617922782898, 0.1852743774652481, 0.028860541060566902, -0.12344976514577866, -0.015804030001163483, -0.03675803914666176, 0.06208372488617897, -0.10024242103099823, 0.07589219510555267, 0.053711239248514175, 0.04197365418076515, 0.09805314242839813, -0.0020957968663424253, -0.13583102822303772, 0.009484891779720783, 0.04954740032553673, -0.08106735348701477, -0.20720195770263672, 0.0067691197618842125, 0.032034773379564285, -0.10840411484241486, -0.036223527044057846, 0.1387733817100525, -0.061052896082401276, -0.017533140257000923, 0.004462617915123701, 0.09832289069890976, -0.053714409470558167, 0.12459170073270798, 0.0415799580514431, 0.06483876705169678, -0.07592705637216568, 0.10630578547716141, 0.06862740218639374, -0.044248513877391815, 0.03260581195354462, 0.034866590052843094, -0.06275257468223572, -0.03692202642560005, -0.06629964709281921, -0.010653159581124783, 0.06955907493829727, -0.09486372768878937, 0.013917307369410992, -0.11670882254838943, 0.02915792167186737, 0.03167247772216797, 0.01754877157509327, 0.023677054792642593, 0.0061240969225764275, 0.05300547927618027, -0.08360124379396439, 0.07219120860099792, -0.004029209725558758, 0.040264006704092026, -0.11405625939369202, 0.1296660602092743, 0.04240534082055092, 0.011882917955517769, -0.022194303572177887, -0.04469941556453705, -0.08486124128103256, 0.04243570938706398, -0.13327741622924805, 0.0288661178201437, -0.08230890333652496, -0.01447861548513174, -0.00037289102328941226, -0.031560350209474564, -0.008483308367431164, 0.05389665812253952, -0.043814197182655334, -0.011616655625402927, -0.02903732843697071, 0.08586657792329788, -0.14709465205669403, 0.05320323631167412, 0.10031643509864807, -0.08841674774885178, 0.08980923891067505, 0.01831301487982273, -0.050096169114112854, 0.09652013331651688, -0.17168866097927094, -0.038412660360336304, 0.004718582611531019, 0.05364661291241646, -0.029440758749842644, -0.10618533939123154, -0.0025285875890403986, -0.0060656326822936535, -0.030400656163692474, -0.009032707661390305, 0.07054919749498367, -0.06618339568376541, 0.033040646463632584, 0.01634281501173973, -0.033671293407678604, -0.04932555556297302, 0.012622874230146408, 0.07252941280603409, 0.058670759201049805, 0.11327467858791351, -0.07401710003614426, 0.04497494921088219, -0.15932194888591766, 0.01948736608028412, 0.0163860060274601, 0.034841787070035934, -0.05369994789361954, -0.044418055564165115, 0.07632550597190857, -0.025253476575016975, 0.1661485731601715, -0.058780185878276825, -0.025299420580267906, 0.06762631237506866, -0.07205254584550858, -0.045531436800956726, 0.06141137704253197, 0.09127141535282135, 0.04121936112642288, -0.014725670218467712, -0.050717320293188095, -0.07101496309041977, -0.022348299622535706, -0.024914659559726715, 0.10278008133172989, 0.1675695776939392, 0.08894289284944534, 0.010563538409769535, 0.05776490643620491, -0.04934944957494736, -0.01472738292068243, 0.08164988458156586, -0.06516627967357635, -0.008461232297122478, -0.057223279029130936, 0.12761344015598297, 0.1272292137145996, -0.12846973538398743, 0.10014248639345169, -0.05932798981666565, -0.07342212647199631, -0.1397232860326767, -0.17310881614685059, -0.03255234286189079, -0.053324535489082336, 0.014880230650305748, -0.09366469085216522, 0.06491399556398392, 0.09095924347639084, 0.02038838528096676, -0.017325369641184807, 0.08465942740440369, -0.08668697625398636, -0.08167541027069092, 0.03217360004782677, -0.004934423137456179, 0.013911701738834381, 0.019619369879364967, 0.011435071006417274, 0.09971432387828827, 0.07434548437595367, 0.09208465367555618, 0.06480833142995834, 0.004190548788756132, 0.013197820633649826, -0.04334414005279541, -0.04599367082118988, 0.02518848329782486, -0.026358673349022865, 0.021199509501457214, 0.1358676254749298, 0.08515099436044693, -0.010715650394558907, -0.00267625181004405, 0.20557768642902374, -0.052736517041921616, -0.08313717693090439, -0.16400164365768433, 0.0728345587849617, 0.03700602054595947, 0.06630372256040573, 0.04640381410717964, -0.11728862673044205, -0.017709091305732727, 0.1509246826171875, 0.18335014581680298, -0.04086364805698395, 0.041284170001745224, -0.036448296159505844, 0.011156905442476273, -0.0106308963149786, 0.08445195108652115, 0.027622587978839874, 0.18483297526836395, -0.03878430277109146, 0.12562914192676544, 0.002725862665101886, -0.045449454337358475, -0.02789863757789135, 0.12926171720027924, -0.06358959525823593, 0.029209643602371216, -0.07546338438987732, 0.11853817105293274, -0.09744329005479813, -0.2936784327030182, -0.0345129631459713, -0.04604975879192352, -0.10103097558021545, 0.025732342153787613, 0.034325648099184036, 0.07472007721662521, 0.02323834039270878, 0.02855844795703888, -0.0023703621700406075, 0.1814890056848526, 0.03479483723640442, -0.04095151275396347, -0.042215850204229355, 0.07698163390159607, -0.03289089351892471, 0.17144396901130676, 0.021171987056732178, 0.09912583976984024, 0.03325488790869713, 0.014813395217061043, -0.11662252992391586, 0.06320320069789886, 0.015576031990349293, -0.11020801961421967, 0.002309053670614958, 0.21324904263019562, -0.021683240309357643, 0.1265954226255417, 0.07414072006940842, -0.05443761870265007, 0.015064838342368603, 0.020432759076356888, -0.028605107218027115, -0.06603740155696869, 0.08743449300527573, -0.09980916976928711, 0.11105548590421677, 0.11540583521127701, -0.04400411620736122, -0.001999183092266321, -0.07020483165979385, 0.031469035893678665, -0.02181416191160679, 0.03795691579580307, 0.0244244784116745, -0.20515599846839905, 0.02755122259259224, -0.01023374404758215, 0.09223803877830505, -0.21226470172405243, -0.06277282536029816, 0.027485214173793793, -0.004835283383727074, -0.021451633423566818, 0.08822868019342422, 0.06585577130317688, 0.017222946509718895, -0.04364621639251709, -0.11133727431297302, 0.024931970983743668, 0.119237020611763, -0.08498764783143997, -0.060168005526065826 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Chuvash Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Chuvash using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-chuvash") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-chuvash") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Chuvash test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/cv.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-chuvash") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-chuvash") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/cv/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/cv/clips/" def clean_sentence(sent): sent = sent.lower() # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 40.01 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](github.com)
{"language": "cv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Chuvash XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice cv", "type": "common_voice", "args": "cv"}, "metrics": [{"type": "wer", "value": 40.01, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anton-l/wav2vec2-large-xlsr-53-chuvash
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "cv", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "cv" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cv #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Chuvash Fine-tuned facebook/wav2vec2-large-xlsr-53 on Chuvash using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Chuvash test data of Common Voice. Test Result: 40.01 % ## Training The Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here
[ "# Wav2Vec2-Large-XLSR-53-Chuvash\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Chuvash using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Chuvash test data of Common Voice.\n\n\n\nTest Result: 40.01 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\n\nThe script used for training can be found here" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cv #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Chuvash\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Chuvash using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Chuvash test data of Common Voice.\n\n\n\nTest Result: 40.01 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\n\nThe script used for training can be found here" ]
[ 81, 67, 20, 29, 32 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cv #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Chuvash\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Chuvash using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Chuvash test data of Common Voice.\n\n\n\nTest Result: 40.01 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\n\nThe script used for training can be found here" ]
[ -0.1645575314760208, 0.028605109080672264, -0.0006975739961490035, -0.03175687417387962, 0.11596263200044632, -0.04041123762726784, 0.17484810948371887, 0.10000625997781754, -0.046234000474214554, -0.003109295852482319, 0.04415027052164078, -0.01896660216152668, 0.06809443235397339, 0.13745103776454926, 0.041356973350048065, -0.20099636912345886, -0.019856838509440422, 0.014988286420702934, 0.06287942081689835, 0.12760809063911438, 0.09287988394498825, -0.08102356642484665, -0.000355348369339481, 0.08048886805772781, -0.15552233159542084, 0.016822464764118195, 0.01327897422015667, -0.10811056196689606, 0.1331731081008911, 0.05681609734892845, 0.07817240804433823, 0.040214575827121735, 0.10825573652982712, -0.2174430787563324, 0.03451072797179222, 0.05273228883743286, 0.027870502322912216, 0.04710307717323303, 0.03646549582481384, -0.031178181990981102, 0.1318422108888626, 0.07872849702835083, -0.026070179417729378, 0.09715816378593445, -0.06120280176401138, -0.1745460480451584, -0.014225401915609837, -0.00317950127646327, 0.0785917118191719, 0.1466905176639557, -0.06450653821229935, 0.07518570125102997, -0.1361297070980072, 0.08762790262699127, 0.11780995875597, -0.12412360310554504, -0.004730944521725178, 0.09267986565828323, 0.07542523741722107, 0.04719556123018265, -0.07612621039152145, 0.021175215020775795, 0.046089403331279755, 0.0136746009811759, 0.047290533781051636, 0.004853719845414162, -0.22120216488838196, -0.019207408651709557, -0.12280811369419098, -0.0484195277094841, 0.19788527488708496, -0.02073686756193638, -0.07199439406394958, -0.12707637250423431, -0.01383914053440094, -0.042126793414354324, -0.005920011084526777, -0.029835721477866173, -0.02028079703450203, 0.04243052750825882, -0.07565531134605408, -0.019460031762719154, -0.1293574422597885, -0.15038172900676727, 0.04680190235376358, -0.0008612772799097002, 0.008216354995965958, 0.009654941968619823, -0.16117286682128906, 0.11035989969968796, 0.0006118185119703412, -0.06868235021829605, -0.00936130154877901, 0.01167434360831976, -0.04586958885192871, -0.00649094907566905, -0.07318467646837234, -0.13059277832508087, 0.023178117349743843, 0.022096190601587296, 0.09628914296627045, 0.017518045380711555, -0.04483181610703468, 0.049031686037778854, 0.035950373858213425, 0.09297767281532288, -0.05664661154150963, -0.0016785500338301063, 0.04854479432106018, 0.06176653504371643, -0.05053221434354782, -0.022279275581240654, -0.0727727860212326, -0.05791844427585602, 0.0686429813504219, 0.07862409949302673, -0.011376004666090012, 0.0029988177120685577, -0.040147315710783005, -0.03661903738975525, 0.05335579067468643, -0.09052330255508423, -0.04619919881224632, 0.0924575999379158, -0.025295788422226906, 0.08590733259916306, 0.08019012212753296, 0.06069303676486015, -0.07876306772232056, -0.03168267384171486, 0.00019826380594167858, 0.07371380925178528, -0.030386336147785187, -0.08954175561666489, 0.03849421441555023, -0.010651578195393085, -0.015553497709333897, -0.11085641384124756, -0.12029168754816055, -0.07015924900770187, -0.0018675540341064334, 0.04455560818314552, 0.024310601875185966, -0.10434486716985703, -0.0006569710676558316, -0.03320933133363724, -0.05181072652339935, 0.13272923231124878, -0.04829581826925278, 0.06603624671697617, 0.015500875189900398, 0.060519713908433914, 0.09411462396383286, 0.07385364919900894, -0.07858783006668091, -0.07400708645582199, 0.05885855853557587, 0.12016509473323822, -0.009334702044725418, -0.024725906550884247, -0.09993916749954224, -0.08275611698627472, -0.0834023654460907, 0.05440767481923103, 0.059026654809713364, 0.1365373730659485, -0.28026852011680603, -0.09094398468732834, 0.2398305982351303, -0.11100054532289505, -0.030519142746925354, 0.17401152849197388, -0.021018315106630325, 0.09473849833011627, 0.13536123931407928, 0.15490412712097168, 0.12188848853111267, -0.221685528755188, 0.030199773609638214, 0.0019272604258731008, 0.0021029221825301647, -0.07347310334444046, 0.08747036755084991, -0.04593448340892792, 0.011905130930244923, 0.031030485406517982, -0.07185010612010956, 0.10506466031074524, -0.048442542552948, -0.06153573468327522, -0.014466122724115849, -0.06934312731027603, 0.029569968581199646, 0.03635886311531067, 0.01887696236371994, -0.005857761949300766, -0.07823799550533295, -0.0001193461794173345, 0.12456464767456055, -0.13335303962230682, 0.05326736345887184, -0.1043829619884491, 0.046802010387182236, -0.042578622698783875, 0.0009633382433094084, -0.14732380211353302, 0.15840326249599457, -0.021004894748330116, 0.06746654957532883, 0.015834031626582146, 0.12917406857013702, 0.010249806568026543, 0.038125187158584595, -0.018142061308026314, -0.0041974252089858055, -0.020878881216049194, -0.038566432893276215, -0.03386785835027695, -0.07617618888616562, -0.05931108444929123, -0.07122215628623962, 0.14749811589717865, -0.1950833946466446, 0.012441643513739109, 0.0423622652888298, 0.012838474474847317, 0.012196183204650879, -0.036387860774993896, 0.09545134752988815, 0.0744067132472992, -0.021318629384040833, -0.013890477828681469, 0.0498831570148468, 0.01640130952000618, -0.047584809362888336, 0.08574491739273071, -0.1577712595462799, -0.0687648206949234, 0.11448937654495239, -0.035460881888866425, -0.00005107638207846321, -0.04188643395900726, -0.0343293733894825, -0.013380160555243492, -0.10785903036594391, -0.020210696384310722, 0.23951750993728638, -0.007751191034913063, 0.12847106158733368, -0.08933559060096741, -0.005416593514382839, 0.020389720797538757, -0.06733543425798416, 0.05369934067130089, 0.032523296773433685, 0.015436762012541294, 0.054879967123270035, 0.008252146653831005, -0.049311812967061996, -0.05320890247821808, 0.2546238303184509, -0.025570129975676537, -0.10107256472110748, 0.02705543488264084, -0.015745025128126144, -0.01206472609192133, 0.03624289482831955, -0.17101293802261353, -0.06802336126565933, 0.03434241935610771, 0.028736133128404617, 0.06068158894777298, -0.16793905198574066, 0.010817409493029118, 0.02358829975128174, -0.11961749196052551, -0.15877623856067657, 0.05518900975584984, -0.06157364696264267, 0.042140860110521317, -0.09519730508327484, -0.0013554332545027137, -0.022932955995202065, -0.046736396849155426, -0.18993791937828064, 0.14616860449314117, -0.07895652204751968, -0.18948934972286224, -0.12541796267032623, 0.04870598763227463, 0.08203405141830444, 0.02851676568388939, 0.07709576934576035, -0.13042713701725006, 0.008568788878619671, -0.043112337589263916, 0.08929098397493362, 0.02777717635035515, -0.025213129818439484, -0.0042389328591525555, 0.037710100412368774, 0.054764047265052795, -0.14457955956459045, 0.024880426004529, -0.051974106580019, -0.0508590042591095, 0.01305175106972456, -0.0006359065300785005, 0.00986916571855545, 0.16959616541862488, 0.052652548998594284, 0.020530376583337784, -0.04023353010416031, 0.16766077280044556, -0.06676536798477173, -0.020579414442181587, 0.23021379113197327, -0.007344340905547142, -0.028917476534843445, 0.04345898702740669, 0.010402245447039604, -0.06237425282597542, 0.021938713267445564, -0.04014399275183678, -0.11438208073377609, -0.23423154652118683, -0.09810429066419601, -0.06323648989200592, -0.03482033684849739, 0.026480816304683685, -0.013432417996227741, 0.05877877026796341, 0.01976923458278179, -0.04509079083800316, -0.05050953850150108, 0.0727217048406601, 0.002926483051851392, 0.026531537994742393, 0.008640180341899395, 0.09516387432813644, -0.03388624265789986, -0.0008628367213532329, 0.0010528910206630826, 0.022569436579942703, 0.18438303470611572, 0.02741583064198494, 0.11180540919303894, 0.08533058315515518, 0.09252852201461792, 0.10927698016166687, 0.07963959872722626, -0.03285357356071472, -0.015134332701563835, 0.017043940722942352, -0.06993500143289566, -0.07798678427934647, 0.04256557673215866, 0.10893025994300842, -0.05451704189181328, -0.06307605654001236, 0.01303167175501585, 0.0064733210019767284, 0.17764434218406677, 0.07335890084505081, -0.2302350252866745, -0.09408017247915268, -0.031815532594919205, -0.03383345529437065, 0.027745317667722702, 0.04387807473540306, 0.15952010452747345, -0.1370086669921875, -0.0026436294429004192, -0.010938326828181744, 0.08916088193655014, -0.01609175093472004, 0.020170219242572784, -0.058949291706085205, 0.038831718266010284, 0.0017014789627864957, 0.08539803326129913, -0.26674866676330566, 0.19001887738704681, 0.005371862556785345, 0.14444509148597717, -0.0721132829785347, 0.003447524271905422, 0.018200470134615898, 0.003916813991963863, 0.10575126856565475, 0.00536613492295146, 0.015667587518692017, -0.09033715724945068, -0.0859580859541893, 0.04938908666372299, -0.013062609359622002, -0.0016211746260523796, 0.04666171595454216, -0.006504712160676718, -0.0038171003106981516, 0.017953839153051376, -0.04432528838515282, -0.17732536792755127, -0.06830348074436188, 0.008255884051322937, 0.12391621619462967, 0.10786088556051254, -0.038176100701093674, -0.0908885970711708, -0.015685250982642174, 0.01973951794207096, -0.12645776569843292, -0.04442713037133217, -0.04845881834626198, 0.043057531118392944, 0.07237700372934341, -0.06849221885204315, 0.007192178629338741, 0.08642888814210892, 0.1318657249212265, -0.03221763297915459, -0.058765895664691925, 0.03498624637722969, -0.13712045550346375, -0.13077408075332642, -0.02603318728506565, 0.1965552717447281, 0.10389765352010727, 0.06799957901239395, 0.04705042764544487, 0.003608995582908392, -0.016476981341838837, -0.025483055040240288, 0.008537710644304752, 0.17116162180900574, -0.058019865304231644, -0.011605659499764442, -0.016882633790373802, -0.169168621301651, -0.09959915280342102, -0.07145610451698303, 0.18087105453014374, 0.07544214278459549, -0.04834781214594841, 0.1470903605222702, 0.21433094143867493, -0.08987067639827728, -0.20350518822669983, -0.00999844167381525, 0.09345465898513794, 0.11135167628526688, -0.01057001668959856, -0.23422160744667053, 0.04740409553050995, -0.0030196041334420443, -0.01257489062845707, -0.014420070685446262, -0.33365118503570557, -0.1486912965774536, 0.12210043519735336, -0.01602904684841633, 0.11409272998571396, -0.012168190442025661, -0.02192746289074421, -0.013865682296454906, -0.03583771735429764, 0.044786274433135986, -0.1566142588853836, 0.11201144009828568, 0.02148820273578167, 0.0419260673224926, 0.037176456302404404, -0.058760203421115875, 0.052723225206136703, 0.09330547600984573, -0.02886207588016987, -0.007440662942826748, 0.03311486169695854, 0.02992502972483635, -0.0017543126596137881, 0.11220131814479828, -0.11649548262357712, 0.02857091836631298, -0.08267087489366531, -0.09705927968025208, -0.08346870541572571, 0.060766592621803284, 0.020372848957777023, -0.036684561520814896, 0.010905303992331028, -0.03139536455273628, 0.022894125431776047, 0.007263938430696726, -0.07479532063007355, -0.10743409395217896, 0.0685683861374855, 0.16877448558807373, 0.17554382979869843, -0.029923010617494583, -0.028436848893761635, -0.018568510189652443, -0.015503482893109322, 0.1293519288301468, -0.10712555795907974, 0.014584296382963657, 0.06296186149120331, 0.05796283110976219, 0.13183943927288055, 0.020329834893345833, -0.09590274840593338, 0.08335074037313461, 0.04110291600227356, -0.060141418129205704, -0.10044673085212708, -0.03840978816151619, -0.009705216623842716, -0.06744381785392761, 0.00585615960881114, 0.10515663772821426, -0.08759800344705582, -0.019514748826622963, -0.026336006820201874, 0.03392414376139641, -0.1034470871090889, 0.20936167240142822, 0.023662911728024483, 0.07706334441900253, -0.09917622059583664, 0.025392873212695122, 0.003379217814654112, -0.02657458931207657, 0.04405372962355614, -0.029317332431674004, -0.10447849333286285, -0.06999750435352325, -0.052964549511671066, 0.09003487974405289, 0.048432812094688416, -0.09844563901424408, -0.048403654247522354, -0.0686085894703865, 0.009475416503846645, 0.04845966026186943, 0.03436435014009476, 0.02630031295120716, -0.1095028817653656, -0.027662836015224457, -0.12081533670425415, 0.059923477470874786, 0.07755723595619202, -0.032493215054273605, -0.07874885201454163, 0.21963706612586975, 0.08886244148015976, 0.015751440078020096, -0.025985976681113243, -0.08195021003484726, -0.011130275204777718, 0.08777017146348953, -0.06072629988193512, -0.011233343742787838, -0.07645033299922943, -0.00511866994202137, -0.0188820268958807, -0.05227745696902275, 0.009768891148269176, 0.09554500877857208, -0.06825893372297287, 0.0399259515106678, -0.04223339259624481, 0.0693788230419159, -0.10446076840162277, 0.02834981121122837, 0.011072205379605293, -0.0614192970097065, 0.07387961447238922, 0.12220548093318939, -0.08349102735519409, 0.10977093130350113, -0.23811157047748566, -0.0559510812163353, 0.07266586273908615, 0.04318445175886154, -0.046118393540382385, -0.09085244685411453, 0.03795253485441208, 0.05568457394838333, 0.0524824820458889, -0.01989104598760605, 0.09316478669643402, -0.05419088155031204, -0.024627944454550743, -0.02854428067803383, 0.0284389890730381, -0.04330297186970711, 0.06256052851676941, 0.06001235917210579, 0.13395404815673828, 0.13859683275222778, -0.09981004893779755, 0.10785141587257385, -0.1563066989183426, 0.0051129707135260105, -0.046949103474617004, -0.01257951557636261, -0.15081755816936493, -0.070075623691082, 0.07072281092405319, -0.048624977469444275, 0.08204686641693115, -0.0007879079785197973, 0.03955022618174553, -0.023271741345524788, -0.06004452332854271, 0.018504155799746513, -0.0035369140096008778, 0.22598420083522797, 0.041966717690229416, 0.020104262977838516, -0.030514482408761978, 0.010276063345372677, 0.05062537267804146, 0.1005585566163063, 0.05019697546958923, 0.1444590985774994, -0.0004300101427361369, 0.07325591146945953, 0.05944026634097099, -0.07037761807441711, -0.079221211373806, -0.04553869739174843, -0.13914832472801208, 0.045974090695381165, -0.08008840680122375, 0.16275428235530853, 0.15300095081329346, -0.09631993621587753, 0.041891735047101974, 0.017154229804873466, -0.09001578390598297, -0.14236630499362946, -0.13938693702220917, -0.03516935929656029, -0.13455994427204132, 0.027846908196806908, -0.07766058295965195, 0.021850962191820145, 0.040574558079242706, 0.04018754884600639, -0.028136195614933968, 0.18440821766853333, 0.0811636671423912, -0.10898032784461975, 0.07956811785697937, -0.07770790159702301, -0.009107192046940327, -0.07631274312734604, 0.027574189007282257, 0.17550894618034363, -0.014597454108297825, 0.08427499234676361, 0.0031031544785946608, -0.04746551439166069, 0.057552892714738846, -0.0765811949968338, -0.07227044552564621, -0.011879573576152325, -0.015500172041356564, 0.07611492276191711, 0.14204753935337067, 0.13004571199417114, -0.05128578469157219, 0.02545173466205597, 0.12726104259490967, -0.020764630287885666, -0.12821651995182037, -0.15880228579044342, 0.09263575077056885, 0.05439567193388939, 0.002233987208455801, -0.010081515647470951, -0.029391907155513763, -0.004441045690327883, 0.2245681881904602, 0.21345771849155426, 0.053739454597234726, 0.02897634170949459, -0.0248807892203331, -0.010044644586741924, -0.029005704447627068, 0.0810229480266571, 0.09839306026697159, 0.15619537234306335, -0.014758884906768799, 0.031684741377830505, -0.05451301857829094, -0.10339849442243576, 0.00025129818823188543, 0.02477841079235077, -0.08210831135511398, -0.06624375283718109, 0.007193280849605799, 0.11420144885778427, -0.052481602877378464, -0.10616254061460495, -0.10180442035198212, -0.08230258524417877, -0.06511660665273666, -0.020586103200912476, 0.03435783460736275, 0.11849697679281235, 0.028878241777420044, -0.06860417872667313, 0.03424612060189247, 0.1418963521718979, -0.00804714486002922, -0.052429184317588806, -0.05812245234847069, 0.042288970202207565, -0.09135173261165619, 0.01896427758038044, -0.039407070726156235, 0.14544157683849335, 0.022082576528191566, 0.1086818054318428, -0.046618882566690445, 0.11654272675514221, -0.01415922213345766, -0.018145663663744926, 0.018408063799142838, 0.12127326428890228, -0.04441166669130325, 0.08924858272075653, 0.012457145377993584, -0.11519941687583923, 0.054200030863285065, -0.11071369051933289, 0.007124509662389755, -0.09065064042806625, 0.0621214434504509, -0.017434069886803627, 0.09742093831300735, 0.07396265864372253, -0.08926063030958176, -0.053739942610263824, -0.0463387593626976, 0.046521399170160294, 0.020289137959480286, -0.02472294121980667, -0.05001448839902878, -0.24224887788295746, -0.01575222611427307, -0.06441756337881088, 0.011707889847457409, -0.18095646798610687, -0.015227461233735085, -0.01882190816104412, -0.09628107398748398, 0.0026675767730921507, 0.06802568584680557, 0.08782587945461273, 0.030315294861793518, -0.0008564204326830804, 0.03172830119729042, 0.053549401462078094, 0.12325192987918854, -0.1878998577594757, -0.11424217373132706 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Estonian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Estonian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "et", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-estonian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-estonian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Estonian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/et.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-estonian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-estonian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/et/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/et/clips/" def clean_sentence(sent): sent = sent.lower() # normalize apostrophes sent = sent.replace("’", "'") # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() or ch == "'" else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 30.74 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](github.com)
{"language": "et", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Estonian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice et", "type": "common_voice", "args": "et"}, "metrics": [{"type": "wer", "value": 30.74, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anton-l/wav2vec2-large-xlsr-53-estonian
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "et", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "et" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #et #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Estonian Fine-tuned facebook/wav2vec2-large-xlsr-53 on Estonian using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Estonian test data of Common Voice. Test Result: 30.74 % ## Training The Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here
[ "# Wav2Vec2-Large-XLSR-53-Estonian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Estonian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Estonian test data of Common Voice.\n\n\n\nTest Result: 30.74 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\n\nThe script used for training can be found here" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #et #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Estonian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Estonian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Estonian test data of Common Voice.\n\n\n\nTest Result: 30.74 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\n\nThe script used for training can be found here" ]
[ 80, 65, 20, 29, 32 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #et #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Estonian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Estonian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Estonian test data of Common Voice.\n\n\n\nTest Result: 30.74 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training.\n\nThe script used for training can be found here" ]
[ -0.15640467405319214, -0.06527739018201828, -0.0013329527573660016, -0.014086098410189152, 0.10975542664527893, -0.05112604796886444, 0.1949043869972229, 0.10977942496538162, 0.03631587326526642, -0.011067761108279228, 0.039422616362571716, -0.017532331869006157, 0.059247445315122604, 0.141755610704422, 0.0576665997505188, -0.2189827263355255, 0.0040213484317064285, 0.007878935895860195, 0.0708686038851738, 0.10387122631072998, 0.12839771807193756, -0.0695146694779396, -0.010548933409154415, 0.08348146826028824, -0.16928985714912415, 0.06769340485334396, 0.015985390171408653, -0.11194249242544174, 0.1504763513803482, 0.032223884016275406, 0.0768585130572319, 0.007107018493115902, 0.08953332901000977, -0.19220292568206787, 0.0212857685983181, 0.03157687932252884, 0.015761416405439377, 0.013920284807682037, 0.041886188089847565, -0.038817450404167175, 0.10367339104413986, 0.07250402867794037, -0.021011417731642723, 0.07630234211683273, -0.04127319157123566, -0.20834356546401978, 0.010270710103213787, -0.005625596735626459, 0.1262616515159607, 0.17531736195087433, -0.07563529908657074, 0.0852903202176094, -0.16576507687568665, 0.09255988895893097, 0.12349629402160645, -0.11171215027570724, 0.0009410043712705374, 0.05979853495955467, 0.049155183136463165, 0.08789435774087906, -0.06248193979263306, 0.01643717661499977, 0.010304628871381283, 0.036071814596652985, 0.03981224074959755, -0.005228939466178417, -0.22538280487060547, -0.039727240800857544, -0.1271299421787262, -0.0021456589456647635, 0.2579651474952698, -0.019686425104737282, -0.05458168685436249, -0.1350065916776657, 0.011733679100871086, -0.01059629675000906, -0.013220058754086494, -0.03121761791408062, -0.019456902518868446, 0.01245823409408331, 0.011807193048298359, -0.06453488767147064, -0.13706497848033905, -0.14842437207698822, 0.042877811938524246, 0.11284510791301727, 0.02839762158691883, -0.004988469649106264, -0.12789107859134674, 0.10118100047111511, -0.09418424218893051, -0.05699814483523369, -0.01457937154918909, 0.01598898321390152, -0.048360537737607956, 0.023359814658761024, -0.07663776725530624, -0.21298788487911224, 0.004226693417876959, 0.024558423087000847, 0.1511467844247818, 0.017979905009269714, -0.0020512351766228676, 0.08510829508304596, -0.010191711597144604, 0.14755304157733917, -0.016530601307749748, -0.0340404137969017, 0.02002543956041336, 0.01502513699233532, -0.0475725457072258, -0.012196594849228859, -0.09683052450418472, -0.07933064550161362, 0.010362643748521805, 0.06813468039035797, -0.026409562677145004, 0.01334264688193798, -0.027900610119104385, -0.0330352857708931, 0.04368310049176216, -0.11174972355365753, -0.05294577777385712, 0.07477479428052902, -0.03285490348935127, 0.08748731017112732, 0.07177437841892242, 0.04744616150856018, -0.1199112981557846, -0.052763551473617554, 0.03494929522275925, 0.0964827910065651, -0.0295674130320549, -0.12751014530658722, 0.02024713158607483, -0.03858834505081177, -0.0035336024593561888, -0.1281222254037857, -0.07157878577709198, -0.06961512565612793, -0.014981317333877087, 0.05252208560705185, 0.041109200567007065, -0.1114407554268837, -0.003325626254081726, -0.03325100243091583, -0.04407143220305443, 0.052223049104213715, -0.022662609815597534, 0.032842010259628296, -0.030892785638570786, 0.05434146896004677, 0.07206284254789352, 0.08874022960662842, -0.1081952452659607, -0.11325901746749878, -0.026223046705126762, 0.09949055314064026, -0.047325994819402695, -0.026713883504271507, -0.0980108305811882, -0.07932113856077194, -0.0738660916686058, 0.059631772339344025, 0.05874841660261154, 0.1317167580127716, -0.24852919578552246, -0.0990331619977951, 0.19528238475322723, -0.1190844476222992, -0.029902387410402298, 0.1936328262090683, 0.0022376729175448418, 0.13499696552753448, 0.1249597892165184, 0.25165751576423645, 0.1338529735803604, -0.2195495367050171, 0.03198090195655823, 0.026143724098801613, -0.027004661038517952, -0.10748250782489777, 0.09697938710451126, -0.05474920943379402, 0.06135554984211922, 0.042763661593198776, -0.12069417536258698, 0.0913514718413353, -0.008242030628025532, -0.0582379475235939, -0.010148435831069946, -0.04163334518671036, 0.003934867680072784, 0.04409916698932648, 0.031384676694869995, -0.05298039689660072, -0.09067588299512863, 0.06042033061385155, 0.1275678426027298, -0.14759577810764313, 0.07482634484767914, -0.08838216215372086, 0.060678280889987946, -0.025249643251299858, -0.0071729994378983974, -0.11465835571289062, 0.15077228844165802, -0.0198023971170187, 0.011007568798959255, 0.052617397159338, 0.13491860032081604, 0.016760990023612976, 0.015243561007082462, -0.03418580815196037, -0.013818013481795788, -0.03543576970696449, -0.02723770961165428, -0.03594982996582985, -0.08408859372138977, -0.017216311767697334, -0.06285245716571808, 0.07342864573001862, -0.14815054833889008, 0.0253673754632473, 0.04322229325771332, 0.010725711472332478, 0.003443025751039386, -0.025006158277392387, 0.054767489433288574, 0.09121455997228622, -0.019924966618418694, -0.010500418953597546, 0.05453142523765564, 0.0031685209833085537, -0.04754859581589699, 0.14141802489757538, -0.13945220410823822, -0.052128925919532776, 0.10735563188791275, -0.07169592380523682, -0.01285148598253727, 0.032285235822200775, -0.023741796612739563, -0.014254138804972172, -0.06499515473842621, -0.038479626178741455, 0.256712406873703, -0.0044841761700809, 0.11882401257753372, -0.08236312121152878, -0.00756983133032918, 0.02334202267229557, -0.09731601178646088, 0.04434515908360481, 0.0659109503030777, -0.005984270013868809, 0.0390697605907917, 0.020403610542416573, -0.05194627121090889, -0.08554369956254959, 0.28781744837760925, -0.018795136362314224, -0.10334646701812744, 0.030468270182609558, -0.019375286996364594, -0.02449415624141693, 0.0639987513422966, -0.20682941377162933, -0.07388285547494888, 0.028044510632753372, 0.059101253747940063, 0.086479552090168, -0.14785867929458618, -0.012959056533873081, 0.004797962494194508, -0.11747021228075027, -0.17608989775180817, 0.10184156894683838, -0.06464726477861404, 0.04386400431394577, -0.10526017844676971, -0.023472348228096962, -0.02049298770725727, -0.043504808098077774, -0.17337830364704132, 0.15803590416908264, -0.09446080029010773, -0.2245362251996994, -0.17785881459712982, 0.05321007966995239, 0.06327711045742035, -0.0024954229593276978, 0.10574808716773987, -0.15798301994800568, -0.006442711688578129, -0.04354345425963402, 0.14891548454761505, 0.02325328253209591, -0.05659305304288864, -0.06641169637441635, 0.04694583639502525, 0.048097241669893265, -0.15148013830184937, 0.00509518152102828, -0.05314914882183075, -0.03168787807226181, 0.010397640988230705, -0.04304792359471321, 0.007389824837446213, 0.15866555273532867, 0.016696631908416748, 0.013890743255615234, -0.018268980085849762, 0.15281008183956146, -0.10970563441514969, 0.0218216460198164, 0.19502674043178558, 0.00429900735616684, -0.01827985979616642, 0.06899818032979965, 0.027914192527532578, -0.037612415850162506, 0.0030842397827655077, -0.03201162442564964, -0.08788738399744034, -0.27694129943847656, -0.10552739351987839, -0.06668888032436371, -0.056785788387060165, -0.005238959100097418, 0.0017445102566853166, 0.03748678043484688, 0.02206607349216938, -0.021243633702397346, -0.11234404891729355, 0.08016044646501541, 0.01841859519481659, 0.0984589010477066, 0.0029106605798006058, 0.09143292903900146, -0.059223324060440063, 0.009811787866055965, 0.010071735829114914, 0.011530651710927486, 0.18317954242229462, 0.029434721916913986, 0.11130474507808685, 0.080681212246418, 0.07545477896928787, 0.07078150659799576, 0.07468364387750626, -0.025012942031025887, -0.01851225085556507, 0.02234705537557602, -0.04905364289879799, 0.01849440671503544, 0.04001422971487045, 0.08026652783155441, -0.07778547704219818, -0.051295362412929535, -0.024234915152192116, 0.044974178075790405, 0.14543727040290833, 0.0657060369849205, -0.18348966538906097, -0.11279860883951187, -0.03603069856762886, -0.07037360221147537, 0.006841099821031094, 0.029678013175725937, 0.17570184171199799, -0.14311917126178741, 0.003974823746830225, -0.0004123339313082397, 0.08355756103992462, 0.07272231578826904, 0.005450133234262466, -0.06809406727552414, 0.05019354820251465, -0.001374781597405672, 0.10508212447166443, -0.2235880047082901, 0.2291380912065506, -0.009924228303134441, 0.1520824134349823, -0.05141860246658325, -0.0015553493285551667, 0.022476527839899063, 0.08067715167999268, 0.13137173652648926, 0.03253057599067688, 0.00343417190015316, -0.11093293875455856, -0.08045431971549988, 0.05086333304643631, -0.001169369206763804, -0.0129604022949934, 0.025111403316259384, 0.009925451129674911, 0.012791844084858894, 0.014025251381099224, -0.10550406575202942, -0.12434441596269608, -0.038223814219236374, 0.005277431104332209, 0.13173642754554749, 0.06922025233507156, -0.015077846124768257, -0.10648123919963837, -0.07725776731967926, 0.04071711003780365, -0.1327100545167923, -0.0501699335873127, -0.05670139566063881, -0.028718551620841026, 0.08997832238674164, -0.09840644150972366, 0.014391430653631687, 0.09041336923837662, 0.12866489589214325, -0.039691630750894547, -0.035976022481918335, 0.039692752063274384, -0.13989032804965973, -0.07718431204557419, 0.007599761243909597, 0.18380823731422424, 0.11636475473642349, 0.06540732830762863, 0.03319349139928818, 0.010704421438276768, -0.03457824885845184, -0.041467588394880295, 0.008350273594260216, 0.10559360682964325, -0.09184224158525467, 0.00043295297655276954, -0.026852412149310112, -0.17528033256530762, -0.1465052217245102, -0.07299169152975082, 0.1912626177072525, 0.11153285205364227, -0.0717901661992073, 0.1358308494091034, 0.18507735431194305, -0.10752519965171814, -0.23602059483528137, 0.024938657879829407, 0.09259438514709473, 0.13009381294250488, 0.0011584076564759016, -0.22080756723880768, 0.06285404413938522, 0.0026222956366837025, -0.016289211809635162, -0.06114258989691734, -0.2922240197658539, -0.16739130020141602, 0.16860543191432953, -0.02325439453125, 0.10987367480993271, 0.04196644574403763, 0.022494494915008545, 0.017945153638720512, 0.034498974680900574, -0.010218869894742966, -0.10714832693338394, 0.11895018815994263, 0.019702082499861717, 0.07706959545612335, 0.03940248116850853, -0.045116305351257324, 0.07537924498319626, 0.09930194169282913, -0.013632559217512608, -0.012000191025435925, 0.047000396996736526, 0.043282054364681244, -0.0061211492866277695, 0.17799243330955505, -0.1006736159324646, 0.013029612600803375, -0.0876535102725029, -0.09347167611122131, -0.09782783687114716, 0.10366430878639221, 0.032628823071718216, -0.04611974582076073, -0.007655360270291567, -0.021206622943282127, 0.011090481653809547, 0.003561887191608548, -0.029366571456193924, -0.12458536773920059, 0.020224614068865776, 0.08993428200483322, 0.17119894921779633, 0.001869065104983747, -0.10542638599872589, 0.011050723493099213, -0.023715054616332054, 0.11355388164520264, -0.11241693794727325, -0.004026005044579506, 0.06791061908006668, 0.03952540084719658, 0.11930003017187119, 0.0008558015688322484, -0.12598364055156708, 0.0771045908331871, 0.05394365265965462, -0.023008104413747787, -0.09763652086257935, -0.048451993614435196, -0.055301181972026825, -0.028993668034672737, 0.020956669002771378, 0.08184629678726196, -0.12042704224586487, -0.00718148285523057, -0.0335262157022953, 0.015978440642356873, -0.11328299343585968, 0.18300525844097137, 0.06762342154979706, 0.06731794029474258, -0.08047595620155334, 0.046545930206775665, -0.028409728780388832, -0.018435470759868622, 0.06518423557281494, 0.005355507601052523, -0.09288065880537033, -0.0771336778998375, -0.004931358154863119, 0.07492206990718842, 0.04693927988409996, -0.12500642240047455, -0.0879853144288063, -0.06335286796092987, -0.004481087438762188, 0.056476518511772156, 0.07014051079750061, -0.020090630277991295, -0.12190697342157364, -0.03773781657218933, -0.10379060357809067, 0.07139226049184799, 0.08533774316310883, -0.04851730167865753, -0.07193953543901443, 0.21242056787014008, 0.10619055479764938, 0.01438185852020979, -0.0322100929915905, -0.08057526499032974, 0.02556479535996914, 0.0786094143986702, -0.0035081200767308474, -0.03842034190893173, -0.046072158962488174, 0.005281183868646622, -0.03230645880103111, -0.08497434109449387, -0.015590204857289791, 0.09191212058067322, -0.08812403678894043, 0.0506555549800396, -0.03680013492703438, 0.06873613595962524, -0.06996526569128036, 0.013548211194574833, 0.029708515852689743, -0.06014473736286163, 0.07409240305423737, 0.14724643528461456, -0.09015660732984543, 0.14274902641773224, -0.2010861337184906, -0.015221738256514072, 0.07268206030130386, 0.06256315857172012, -0.033111464232206345, -0.08115169405937195, 0.02128073014318943, 0.05900876596570015, 0.09102852642536163, -0.014255114831030369, 0.060289930552244186, -0.057348739355802536, 0.013107070699334145, -0.03566646948456764, -0.012863481417298317, -0.05515419319272041, 0.09195947647094727, 0.0464307926595211, 0.1503107249736786, 0.15307803452014923, -0.10460696369409561, 0.13018496334552765, -0.11680248379707336, 0.019048620015382767, -0.04207899793982506, -0.03741471841931343, -0.10048764199018478, -0.05484281852841377, 0.04684494435787201, -0.06207694858312607, 0.11545167118310928, 0.03026757948100567, 0.014203105121850967, -0.0033720661886036396, -0.08097147941589355, -0.015040975995361805, -0.007739844731986523, 0.1873563975095749, 0.019135864451527596, 0.024399738758802414, -0.07094395160675049, -0.013750404119491577, 0.031049350276589394, 0.10615141689777374, 0.026674792170524597, 0.1606452316045761, 0.011362857185304165, 0.09530653059482574, 0.06806463748216629, -0.057852622121572495, -0.12829424440860748, -0.07172806560993195, -0.11238262802362442, 0.04110420122742653, -0.06645677238702774, 0.21659351885318756, 0.17102785408496857, -0.08653464913368225, 0.06314398348331451, 0.04144924134016037, -0.11393871158361435, -0.15623866021633148, -0.12727859616279602, -0.040384747087955475, -0.1354794055223465, 0.02363491803407669, -0.06981568783521652, 0.034276459366083145, 0.02913835644721985, 0.06455006450414658, -0.04863175004720688, 0.24462926387786865, 0.05050173029303551, -0.11800677329301834, 0.08475840836763382, -0.09225240349769592, -0.018651721999049187, -0.08760024607181549, 0.0419553779065609, 0.15191572904586792, -0.010334568098187447, 0.0726102739572525, 0.003985539078712463, -0.06898953020572662, 0.02434857003390789, -0.10838557034730911, -0.06785982102155685, -0.03445788472890854, 0.007288267835974693, 0.07206080108880997, 0.11528901755809784, 0.1231997013092041, -0.06922370940446854, 0.006014020182192326, 0.12403924763202667, -0.00041639318806119263, -0.15842294692993164, -0.12866199016571045, 0.10564806312322617, 0.06911404430866241, -0.0010894514853134751, -0.04485097527503967, -0.027008214965462685, -0.029123039916157722, 0.23089465498924255, 0.22933627665042877, 0.12842030823230743, 0.02206547185778618, -0.01979704760015011, -0.012949679978191853, -0.035889364778995514, 0.07705527544021606, 0.05009834095835686, 0.14765815436840057, -0.011700264178216457, 0.0662483498454094, -0.0830998495221138, -0.07448338717222214, -0.008360042236745358, 0.042673345655202866, -0.055117417126894, -0.09648644179105759, -0.032591015100479126, 0.1317519098520279, -0.020190976560115814, -0.08395843207836151, -0.10261515527963638, -0.0737912580370903, -0.08229448646306992, -0.007690264377743006, 0.04858345910906792, 0.08889824897050858, 0.04393848031759262, -0.06169195845723152, 0.012943489477038383, 0.11159218102693558, -0.00008676332072354853, -0.04147842898964882, -0.09110339730978012, 0.04872715473175049, -0.11486630886793137, 0.04962391406297684, -0.022537805140018463, 0.16280938684940338, 0.005012940615415573, 0.08837597817182541, -0.013212249614298344, 0.1448577642440796, -0.020548317581415176, 0.03859035298228264, 0.03017394058406353, 0.12277381867170334, -0.06610823422670364, 0.09346222877502441, 0.00909661129117012, -0.13715995848178864, 0.06626662611961365, -0.14740189909934998, -0.047458846122026443, -0.07621335238218307, 0.056077949702739716, -0.03947843983769417, 0.08123338967561722, 0.1038452684879303, -0.06623739004135132, -0.0848676934838295, -0.05848830193281174, 0.03444382920861244, 0.052004121243953705, -0.038084521889686584, -0.024029552936553955, -0.22961172461509705, -0.011447501368820667, -0.05210776627063751, 0.00036947871558368206, -0.16684800386428833, -0.03214682266116142, -0.021755358204245567, -0.08203930407762527, 0.008669005706906319, 0.03674094378948212, 0.07022839039564133, 0.014699136838316917, 0.006124062929302454, 0.03935304284095764, 0.06031470373272896, 0.10964335501194, -0.16388365626335144, -0.12157873064279556 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Hungarian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Hungarian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "hu", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-hungarian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-hungarian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Hungarian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/hu.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-hungarian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-hungarian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/hu/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/hu/clips/" def clean_sentence(sent): sent = sent.lower() # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 42.26 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "hu", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Hungarian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hu", "type": "common_voice", "args": "hu"}, "metrics": [{"type": "wer", "value": 42.26, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anton-l/wav2vec2-large-xlsr-53-hungarian
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "hu", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "hu" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hu #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Hungarian Fine-tuned facebook/wav2vec2-large-xlsr-53 on Hungarian using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Hungarian test data of Common Voice. Test Result: 42.26 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Hungarian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Hungarian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Hungarian test data of Common Voice.\n\n\n\nTest Result: 42.26 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hu #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Hungarian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Hungarian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Hungarian test data of Common Voice.\n\n\n\nTest Result: 42.26 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 80, 66, 20, 29, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hu #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Hungarian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Hungarian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Hungarian test data of Common Voice.\n\n\n\nTest Result: 42.26 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.15068405866622925, -0.0003541869518812746, -0.0014923005364835262, -0.05062703788280487, 0.09329178929328918, -0.056753817945718765, 0.22456826269626617, 0.06976883113384247, 0.020232686772942543, -0.006932293530553579, 0.025764670222997665, 0.004256876651197672, 0.042614519596099854, 0.021809455007314682, -0.013325524516403675, -0.22181466221809387, 0.04832635074853897, -0.022852279245853424, 0.07710292935371399, 0.08705329149961472, 0.10874887555837631, -0.059073884040117264, 0.0020411000587046146, 0.07185512781143188, -0.11679794639348984, 0.05514993518590927, 0.018396949395537376, -0.09991834312677383, 0.15354031324386597, 0.05989062786102295, 0.035098422318696976, 0.05336602032184601, 0.07251540571451187, -0.1726866215467453, 0.012690826319158077, 0.026682885363698006, 0.042066991329193115, 0.017384300008416176, 0.0503515750169754, -0.023445744067430496, 0.19014114141464233, 0.06747730076313019, -0.02984323352575302, 0.06176140531897545, -0.027062049135565758, -0.2139882743358612, -0.01634509302675724, 0.04260380193591118, 0.10718519985675812, 0.1252029985189438, -0.0694112777709961, 0.11395877599716187, -0.12878020107746124, 0.0975903645157814, 0.09665349125862122, -0.1851111650466919, 0.004156747832894325, 0.07089820504188538, 0.051509276032447815, 0.12874162197113037, -0.05506148189306259, 0.056289192289114, 0.049710169434547424, 0.030866485089063644, 0.0027653577271848917, -0.044430751353502274, -0.2880449891090393, -0.05548974871635437, -0.15611447393894196, -0.025372525677084923, 0.21916984021663666, -0.0036614194978028536, -0.07036430388689041, -0.14199155569076538, -0.0021219621412456036, 0.04606315493583679, -0.0018051071092486382, -0.025546357035636902, -0.0288771390914917, 0.021067865192890167, 0.000009601265446690377, -0.005474271718412638, -0.08652748167514801, -0.13225503265857697, 0.01717284508049488, 0.0873430147767067, 0.03245566785335541, 0.03188170865178108, -0.07431323826313019, 0.05863901600241661, -0.06493758410215378, -0.08780088275671005, 0.009031307883560658, 0.05731329321861267, -0.08884915709495544, -0.0022647841833531857, -0.07007189095020294, -0.12316858023405075, 0.02712583914399147, -0.05359983071684837, 0.02222779020667076, 0.0216363538056612, -0.014381146989762783, 0.06871864944696426, 0.03086196817457676, 0.1235329881310463, -0.09380172938108444, -0.0493348054587841, -0.01672528311610222, -0.029663918539881706, -0.03000418283045292, -0.045103322714567184, -0.08526235818862915, -0.06443815678358078, 0.025942830368876457, 0.05778312310576439, -0.05707105994224548, 0.012906096875667572, 0.026171855628490448, -0.051742345094680786, 0.015483316965401173, -0.08772213757038116, -0.05223174765706062, 0.07535819709300995, 0.005344864446669817, 0.13049164414405823, -0.01908848248422146, 0.08034803718328476, -0.07816959172487259, 0.01177131850272417, 0.021901937201619148, 0.03938326984643936, -0.016159100458025932, -0.13146336376667023, 0.022291995584964752, -0.02001834474503994, 0.01219653058797121, -0.08782441169023514, -0.06199834123253822, -0.06452383100986481, -0.003633210202679038, 0.03261679783463478, 0.000326974899508059, -0.10640881955623627, -0.03883012384176254, -0.009966842830181122, -0.056983012706041336, 0.08568696677684784, -0.047773413360118866, 0.0672050192952156, -0.0723329558968544, 0.018857762217521667, -0.0045689004473388195, 0.06383475661277771, -0.11781175434589386, -0.030253153294324875, -0.00439074682071805, 0.13011930882930756, -0.05295977741479874, 0.006714475806802511, -0.07141955941915512, -0.05976556986570358, 0.01993563398718834, 0.04504571110010147, 0.03793987259268761, 0.07243503630161285, -0.26962727308273315, -0.09701012820005417, 0.1303301900625229, -0.15252873301506042, -0.030900971964001656, 0.22372129559516907, -0.017136894166469574, 0.09547990560531616, 0.15900994837284088, 0.3060392141342163, 0.1745067685842514, -0.17066746950149536, -0.024890311062335968, 0.0007697523687966168, 0.00018232263391837478, -0.04042496532201767, 0.08883831650018692, -0.037761133164167404, -0.04085880145430565, 0.019083093851804733, -0.09572698175907135, 0.07285719364881516, -0.029318619519472122, -0.0444173701107502, -0.0010773689718917012, -0.10311638563871384, 0.08179035782814026, 0.049400921911001205, 0.029620273038744926, -0.0604826919734478, -0.031464844942092896, 0.05373543128371239, 0.15839171409606934, -0.14620690047740936, 0.03984992578625679, -0.0884513333439827, 0.11365324258804321, -0.09045282751321793, -0.010931620374321938, -0.10949696600437164, 0.19243711233139038, 0.007218807470053434, 0.07490372657775879, 0.03808765858411789, 0.15454410016536713, 0.013285603374242783, 0.04768383875489235, -0.028452835977077484, 0.00754693616181612, -0.0025891587138175964, -0.008760822005569935, -0.03140309080481529, -0.12847520411014557, -0.0385715551674366, -0.052320972084999084, 0.1074211597442627, -0.14806044101715088, -0.013757012784481049, 0.021827733144164085, 0.025381645187735558, -0.012917893007397652, -0.015170673839747906, 0.009236386977136135, 0.10385572165250778, 0.007669136859476566, -0.002706535393372178, 0.04274042323231697, 0.01579083688557148, -0.03300946205854416, 0.14466512203216553, -0.1493203043937683, -0.04857948049902916, 0.08875907212495804, -0.06857775151729584, -0.009505994617938995, 0.049479421228170395, -0.028830504044890404, -0.0046859011054039, -0.0826067104935646, -0.025206323713064194, 0.3299199044704437, -0.029527127742767334, 0.10261619091033936, -0.09725596755743027, -0.010112183168530464, 0.025808759033679962, -0.06521802395582199, 0.06001680716872215, 0.09221401065587997, 0.02014191821217537, 0.025709839537739754, 0.026366280391812325, -0.042375367134809494, -0.08001888543367386, 0.2873710095882416, -0.0240466371178627, -0.12105368077754974, 0.04319554939866066, -0.0207735076546669, -0.031689196825027466, 0.10069572180509567, -0.19069617986679077, -0.02040592022240162, 0.026240190491080284, 0.06792955845594406, 0.0723075196146965, -0.11198174208402634, 0.029464777559041977, 0.0025812112726271152, -0.13790686428546906, -0.19714178144931793, 0.07203026860952377, -0.039480213075876236, 0.05212537571787834, -0.10493141412734985, -0.053635790944099426, -0.03243030607700348, -0.04011036828160286, -0.1847108155488968, 0.09869913756847382, -0.04494680091738701, -0.1432986855506897, -0.18879525363445282, -0.009082898497581482, -0.0038707051426172256, 0.01775476709008217, 0.08661755174398422, -0.09701335430145264, 0.0012609359109774232, -0.02038244716823101, 0.15456989407539368, -0.010078445076942444, -0.029968785122036934, -0.02218901924788952, 0.02734452113509178, 0.04627831652760506, -0.11487191170454025, 0.010323967784643173, -0.07002595067024231, -0.036408472806215286, -0.05602569133043289, -0.012980980798602104, 0.007902903482317924, 0.1735401451587677, 0.013102401979267597, 0.023828275501728058, -0.032243430614471436, 0.19890688359737396, -0.11258821934461594, -0.0379725843667984, 0.1870175004005432, -0.05477454140782356, -0.03967767953872681, 0.13502247631549835, 0.03546992689371109, -0.02709616906940937, -0.0188754815608263, -0.0077780988067388535, -0.09817568212747574, -0.19957385957241058, -0.15913406014442444, -0.06826537847518921, -0.06376547366380692, -0.04607095196843147, -0.008979854173958302, 0.06054506078362465, 0.050735507160425186, -0.0659116730093956, -0.06684377789497375, 0.033386196941137314, -0.009206476621329784, 0.09062552452087402, 0.0026623939629644156, 0.07834721356630325, -0.06857987493276596, -0.049720220267772675, 0.0046538240276277065, -0.011251352727413177, 0.19063988327980042, 0.047042712569236755, 0.04730355739593506, 0.09152740985155106, 0.09518849849700928, 0.11123447120189667, 0.07302975654602051, -0.0672827810049057, -0.019912611693143845, 0.014637227170169353, -0.08610355854034424, 0.004256484564393759, 0.029365787282586098, 0.09863439947366714, -0.009851941838860512, -0.10139761865139008, -0.0563119500875473, 0.02686525695025921, 0.2570001184940338, 0.07873818278312683, -0.1904734969139099, -0.09559958428144455, -0.0049340082332491875, -0.05999606102705002, 0.02214180678129196, 0.02742340974509716, 0.21133345365524292, -0.13161931931972504, 0.025891654193401337, 0.03209240362048149, 0.09368478506803513, -0.04669538140296936, 0.0388181172311306, -0.11502110958099365, 0.01625494286417961, -0.009513547644019127, 0.1267724335193634, -0.19982267916202545, 0.2186254858970642, 0.003799175377935171, 0.13956080377101898, -0.08620433509349823, -0.016905050724744797, 0.01664942502975464, 0.06666827946901321, 0.08508222550153732, 0.03198416531085968, 0.011020670644938946, -0.1221386194229126, -0.0995023101568222, 0.056767821311950684, -0.016340672969818115, -0.0023751489352434874, 0.038855571299791336, -0.018752222880721092, 0.010176458396017551, -0.013815405778586864, -0.04033156856894493, -0.09821393340826035, -0.04739417880773544, 0.006499140989035368, 0.22592061758041382, 0.07971201092004776, -0.010696178302168846, -0.0929703339934349, -0.12092911452054977, 0.048218246549367905, -0.09842195361852646, -0.07458031177520752, -0.042273424565792084, -0.11614455282688141, 0.1329164057970047, -0.06765950471162796, -0.03990699350833893, 0.11891444772481918, 0.12363686412572861, -0.04873664677143097, -0.06866839528083801, 0.009317184798419476, -0.12010596692562103, -0.1064877063035965, 0.011044507846236229, 0.20637387037277222, 0.13736729323863983, 0.0917714536190033, 0.06499354541301727, 0.01123566273599863, 0.015344199724495411, -0.08296339213848114, -0.028288336470723152, 0.09284117817878723, -0.12505720555782318, 0.006107022054493427, 0.004341185558587313, -0.1312020719051361, -0.13769865036010742, -0.058058954775333405, 0.16359448432922363, 0.09489012509584427, -0.08502940833568573, 0.1855238974094391, 0.23019620776176453, -0.07353322207927704, -0.17026425898075104, -0.018498437479138374, 0.12151119858026505, 0.12922556698322296, -0.011156919412314892, -0.1376911699771881, 0.061585646122694016, -0.014436174184083939, -0.032137587666511536, -0.05568094179034233, -0.3260500729084015, -0.13640202581882477, 0.17410491406917572, -0.03319647163152695, 0.15673691034317017, 0.03435203433036804, -0.028723381459712982, -0.00993633083999157, 0.02271435596048832, 0.0038697225973010063, -0.14798638224601746, 0.09325776249170303, 0.04856918007135391, 0.10203535109758377, 0.06546594202518463, -0.009756151586771011, 0.11585046350955963, 0.12311487644910812, -0.016643330454826355, -0.013036537915468216, 0.06726356595754623, 0.05787144973874092, 0.02086447738111019, 0.11688308417797089, -0.10273691266775131, 0.036364372819662094, -0.09858181327581406, -0.07543067634105682, -0.0694449320435524, 0.06013251468539238, 0.018632108345627785, -0.04979374632239342, 0.006186666898429394, -0.04909944161772728, 0.02857441082596779, 0.016293007880449295, -0.059140998870134354, -0.13212552666664124, 0.06255461275577545, 0.07441245764493942, 0.17048275470733643, -0.10452242195606232, -0.038385551422834396, -0.0076396530494093895, -0.028494330123066902, 0.13192462921142578, -0.0008220527088269591, 0.0381508506834507, 0.08644039928913116, 0.03701286017894745, 0.11055684089660645, 0.01014847680926323, -0.09049821645021439, 0.07501132786273956, 0.01854211464524269, -0.08328473567962646, -0.06927096843719482, -0.05058978497982025, -0.0045751286670565605, -0.022687256336212158, 0.045038431882858276, 0.12756013870239258, -0.11126038432121277, 0.00610589561983943, -0.04553384706377983, -0.024871090427041054, -0.12729404866695404, 0.21157525479793549, -0.015378442592918873, 0.08173365145921707, -0.1295551061630249, -0.00960951391607523, 0.010127011686563492, 0.00047225572052411735, 0.04814526066184044, -0.03623700141906738, -0.08717925101518631, -0.030868371948599815, -0.06557897478342056, 0.0961792841553688, 0.026531999930739403, -0.16381311416625977, -0.05464303493499756, -0.1346137970685959, -0.00988792348653078, 0.07762180268764496, 0.06676147133111954, 0.020050618797540665, -0.15056496858596802, -0.0878472849726677, -0.14382711052894592, 0.03915724530816078, 0.07399733364582062, -0.019585425034165382, -0.1271042674779892, 0.19653770327568054, 0.07525522261857986, 0.017455456778407097, -0.05976220592856407, -0.08287636935710907, 0.01358911395072937, 0.08005835115909576, -0.09510919451713562, -0.026809751987457275, -0.05279267206788063, 0.01672835275530815, -0.007931938394904137, -0.1019524484872818, -0.036975543946027756, 0.06687543541193008, -0.08739875257015228, 0.07942312955856323, -0.019106637686491013, 0.069512277841568, -0.06844022125005722, 0.03236919641494751, 0.04024231433868408, -0.06278501451015472, 0.08226479589939117, 0.12870027124881744, -0.08787406980991364, 0.12908191978931427, -0.18001680076122284, -0.06808017194271088, 0.040304895490407944, 0.06452461332082748, -0.004772456828504801, -0.07832280546426773, 0.026475464925169945, 0.0899045541882515, 0.06273458153009415, 0.014317519962787628, 0.05980644375085831, -0.038153257220983505, -0.015530601143836975, -0.03147309646010399, -0.014165530912578106, -0.01481047086417675, 0.054363030940294266, 0.04252450168132782, 0.14556452631950378, 0.13242685794830322, -0.10062093287706375, 0.10431946069002151, -0.09327445924282074, 0.018007146194577217, -0.059875644743442535, -0.010134104639291763, -0.10226292908191681, -0.08261839300394058, 0.05082875117659569, -0.05191277340054512, 0.14009252190589905, 0.014568021520972252, 0.09101743996143341, -0.026393301784992218, -0.02407369576394558, 0.05268007516860962, -0.02925499901175499, 0.2987256944179535, 0.05383407697081566, 0.042713187634944916, -0.04309830069541931, 0.005322439596056938, 0.022934934124350548, 0.0890846699476242, -0.012793094851076603, 0.1509014368057251, -0.01216016337275505, 0.04584508761763573, 0.1020287573337555, -0.05884413793683052, -0.045522209256887436, -0.04306284710764885, -0.08195371925830841, 0.015181648544967175, -0.06782703846693039, 0.21700464189052582, 0.1807754784822464, -0.12013030052185059, 0.0874052420258522, 0.07354247570037842, -0.07253368198871613, -0.14957959949970245, -0.0799909383058548, -0.04157140105962753, -0.16160894930362701, 0.013027912937104702, -0.08119940012693405, 0.003875855589285493, 0.08514367043972015, 0.05568777024745941, -0.018308434635400772, 0.1443215310573578, -0.027625981718301773, -0.08434857428073883, 0.07478319108486176, -0.09569858014583588, 0.021360117942094803, -0.10304957628250122, 0.00942909438163042, 0.18496546149253845, 0.0022105728276073933, 0.06168895587325096, -0.004843547474592924, -0.04860352352261543, -0.0028737306129187346, -0.07578019052743912, -0.05115792527794838, -0.010947749018669128, -0.04667965695261955, 0.09163347631692886, 0.13060669600963593, 0.13356490433216095, -0.0709439367055893, -0.028345372527837753, 0.13523583114147186, -0.049254897981882095, -0.1425492912530899, -0.15956266224384308, 0.13398660719394684, 0.03149406984448433, 0.020310407504439354, 0.0026885713450610638, -0.03839410841464996, -0.040151115506887436, 0.2560107111930847, 0.23078808188438416, 0.06604945659637451, 0.015181073918938637, -0.07003825902938843, -0.012217745184898376, -0.026870939880609512, 0.08972840011119843, 0.042786527425050735, 0.27093085646629333, -0.012016909196972847, 0.01639457419514656, -0.11163981258869171, -0.044993411749601364, -0.018160762265324593, 0.10364969819784164, -0.07277993112802505, -0.1234196275472641, 0.021909158676862717, 0.16122597455978394, -0.06094426289200783, -0.07219263911247253, -0.16039884090423584, -0.0838441550731659, -0.10349374264478683, 0.0012651399010792375, 0.01579270511865616, 0.10832281410694122, 0.013571269810199738, -0.07349611073732376, 0.029701514169573784, 0.11180850863456726, 0.001805869396775961, -0.04674871265888214, -0.0946681797504425, 0.06016245856881142, -0.1197710707783699, 0.06529609113931656, -0.036253634840250015, 0.14761023223400116, 0.029876187443733215, 0.10725518316030502, 0.006314773578196764, 0.1413549780845642, -0.017482940107584, -0.12198324501514435, 0.03812277317047119, 0.15515033900737762, -0.05136100947856903, 0.14595261216163635, 0.01643088273704052, -0.15827780961990356, 0.05462298542261124, -0.16442950069904327, 0.0011198106221854687, -0.04709020256996155, 0.04706326127052307, -0.0231498870998621, 0.07579594105482101, 0.08604373782873154, -0.06453574448823929, -0.02556699700653553, -0.07139094918966293, 0.036848727613687515, 0.037559378892183304, -0.11025591194629669, -0.03967252001166344, -0.2742510735988617, -0.0241794902831316, -0.10016123950481415, -0.04064334183931351, -0.22481030225753784, -0.005303285550326109, -0.01670285314321518, -0.0742761567234993, 0.01757902465760708, -0.0018946209456771612, 0.07948997616767883, -0.0017273351550102234, 0.002103199949488044, -0.015807604417204857, 0.03067127615213394, 0.1143403872847557, -0.1720130443572998, -0.10667433589696884 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Kyrgyz Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Kyrgyz using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ky", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-kyrgyz") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-kyrgyz") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Kyrgyz test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/ky.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-kyrgyz") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-kyrgyz") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/ky/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/ky/clips/" def clean_sentence(sent): sent = sent.lower() # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 31.88 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "ky", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Kyrgyz XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ky", "type": "common_voice", "args": "ky"}, "metrics": [{"type": "wer", "value": 31.88, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anton-l/wav2vec2-large-xlsr-53-kyrgyz
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ky", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ky" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ky #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Kyrgyz Fine-tuned facebook/wav2vec2-large-xlsr-53 on Kyrgyz using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Kyrgyz test data of Common Voice. Test Result: 31.88 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Kyrgyz\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Kyrgyz using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Kyrgyz test data of Common Voice.\n\n\n\nTest Result: 31.88 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ky #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Kyrgyz\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Kyrgyz using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Kyrgyz test data of Common Voice.\n\n\n\nTest Result: 31.88 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 80, 68, 20, 29, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ky #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Kyrgyz\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Kyrgyz using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Kyrgyz test data of Common Voice.\n\n\n\nTest Result: 31.88 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.11639873683452606, 0.022292232140898705, -0.001322491210885346, -0.05175675079226494, 0.07366496324539185, -0.03713135048747063, 0.1622331738471985, 0.11327170580625534, -0.006075706332921982, -0.015553894452750683, 0.03378961235284805, 0.015366160310804844, 0.07279398292303085, 0.10495312511920929, -0.026438983157277107, -0.21004585921764374, 0.0037316717207431793, 0.015799960121512413, 0.08042062073945999, 0.12131344527006149, 0.08669758588075638, -0.0925620049238205, -0.011932102963328362, 0.08636347204446793, -0.13592150807380676, 0.018334729596972466, 0.008896061219274998, -0.12667620182037354, 0.12386056035757065, 0.04895125702023506, 0.06181665137410164, 0.07298720628023148, 0.07739914953708649, -0.2184039056301117, 0.027800802141427994, 0.02926262654364109, 0.04523744061589241, 0.03437686339020729, 0.034368518739938736, -0.008215961046516895, 0.08299019187688828, 0.022153334692120552, -0.04866952821612358, 0.05065653473138809, -0.033134665340185165, -0.22685323655605316, -0.028945669531822205, 0.028396714478731155, 0.1330716907978058, 0.1072816401720047, -0.06931839138269424, 0.10505756735801697, -0.12105177342891693, 0.08817559480667114, 0.11067710071802139, -0.18011055886745453, 0.013518295250833035, 0.1051681786775589, 0.03702804818749428, 0.03490950167179108, -0.07650034874677658, 0.051709145307540894, 0.04018772765994072, 0.004882763605564833, 0.01913250982761383, -0.04853583872318268, -0.20094014704227448, -0.024216029793024063, -0.1306232064962387, -0.03292640671133995, 0.21207676827907562, -0.010351263917982578, -0.06871603429317474, -0.1375758945941925, 0.008110336028039455, 0.024329211562871933, -0.017412537708878517, -0.05080163851380348, -0.029958343133330345, -0.0009472939418628812, -0.09685496985912323, -0.025954434648156166, -0.12423419207334518, -0.1332576721906662, -0.02058001421391964, 0.12616728246212006, 0.043001022189855576, 0.0184808149933815, -0.10938980430364609, 0.10247182846069336, -0.08112791925668716, -0.07196351140737534, -0.01668989472091198, 0.039917703717947006, -0.06645263731479645, 0.00678594084456563, -0.06777369230985641, -0.11995672434568405, 0.06594305485486984, -0.05423319339752197, 0.016355931758880615, 0.03617134690284729, 0.013344096951186657, 0.03241414576768875, 0.07354675978422165, 0.08967765420675278, -0.05735597386956215, -0.03514113277196884, 0.021677710115909576, -0.011996706016361713, -0.051206279546022415, -0.026977233588695526, -0.05963728576898575, -0.07861518859863281, 0.061727091670036316, 0.05891463905572891, -0.01805051974952221, 0.01954537071287632, -0.011577123776078224, -0.03933536261320114, 0.0036058768164366484, -0.06673797219991684, -0.04261450469493866, 0.07209452986717224, -0.02550220489501953, 0.07171111553907394, 0.00010961543739540502, 0.0962519720196724, -0.055141158401966095, 0.021576162427663803, 0.02776721678674221, 0.035106536000967026, 0.004938576836138964, -0.09609480202198029, 0.012514645233750343, -0.0412844754755497, 0.011704719625413418, -0.09060635417699814, -0.10037311911582947, -0.08410309255123138, 0.0030476453248411417, 0.04331507533788681, -0.004718867130577564, -0.10588699579238892, -0.030476391315460205, 0.0036511768121272326, -0.06063356623053551, 0.10880684852600098, -0.043441809713840485, 0.061580758541822433, -0.017169605940580368, 0.059277161955833435, 0.04879504069685936, 0.07872753590345383, -0.09633882343769073, -0.040704529732465744, 0.060044970363378525, 0.13581669330596924, -0.03613034263253212, -0.08665749430656433, -0.12204431742429733, -0.08999257534742355, -0.044157475233078, 0.04708496108651161, 0.06464742124080658, 0.09794137626886368, -0.2135879546403885, -0.08536523580551147, 0.13935548067092896, -0.08802914619445801, -0.01874174177646637, 0.18256783485412598, -0.02469693124294281, 0.13653987646102905, 0.15358956158161163, 0.2641619145870209, 0.15799909830093384, -0.20351473987102509, -0.027206970378756523, 0.022690117359161377, -0.00800097081810236, -0.03395543247461319, 0.06336820125579834, -0.03395508602261543, -0.036456309258937836, 0.036372240632772446, -0.07596949487924576, 0.05521010980010033, -0.05057220160961151, -0.055945802479982376, -0.01061252411454916, -0.07756676524877548, 0.0955057218670845, 0.030405784025788307, 0.04253164306282997, -0.013692831620573997, -0.034377146512269974, 0.05701209232211113, 0.14077825844287872, -0.14355705678462982, 0.043652646243572235, -0.1062944233417511, 0.0379224568605423, -0.09786488115787506, -0.004912237636744976, -0.10165376961231232, 0.15697263181209564, -0.00219980557449162, -0.01422730553895235, 0.053631458431482315, 0.14874176681041718, 0.011344484984874725, 0.006114019080996513, -0.05337904021143913, -0.039310310035943985, 0.020817646756768227, -0.009688548743724823, -0.06437612324953079, -0.10195805877447128, -0.011218917556107044, -0.05233464390039444, 0.07444770634174347, -0.12104534357786179, -0.010528611950576305, 0.07078859955072403, -0.005183488596230745, 0.0009314533090218902, 0.011315540410578251, 0.08634684979915619, 0.08981488645076752, 0.00931425392627716, 0.02021811157464981, 0.040327854454517365, 0.0014671289827674627, -0.05510446056723595, 0.1490132361650467, -0.12916988134384155, -0.08959328383207321, 0.09975102543830872, 0.020279429852962494, 0.0021640530321747065, -0.003736260114237666, -0.01294103916734457, -0.03541072830557823, -0.07892969995737076, 0.012643367052078247, 0.31200292706489563, -0.011278384365141392, 0.08812806010246277, -0.08831795305013657, -0.038612768054008484, 0.034474849700927734, -0.08622293174266815, 0.04169071465730667, 0.06549348682165146, -0.038036052137613297, -0.012452932074666023, 0.015805259346961975, -0.027877967804670334, -0.08090447634458542, 0.26709645986557007, -0.029959188774228096, -0.08243170380592346, -0.0009258000063709915, -0.0413624532520771, -0.04744165390729904, 0.08482412993907928, -0.15317854285240173, -0.03912718966603279, 0.042127057909965515, 0.05015374347567558, 0.06537783890962601, -0.15461677312850952, 0.030792642384767532, -0.0036747087724506855, -0.1224895566701889, -0.18432898819446564, 0.07935185730457306, -0.044478293508291245, 0.03759027644991875, -0.07952506840229034, -0.004415420349687338, 0.000696474511642009, -0.050702568143606186, -0.1550641506910324, 0.13330474495887756, -0.07123444974422455, -0.20130500197410583, -0.116325244307518, 0.008266356773674488, 0.0015315376222133636, -0.010936489328742027, 0.09629887342453003, -0.1197485700249672, 0.015154452063143253, -0.023595748469233513, 0.12151665985584259, 0.003827958134934306, -0.0037619031500071287, -0.06124483421444893, 0.01325280126184225, 0.011694015003740788, -0.13824595510959625, 0.013318482786417007, -0.07188432663679123, -0.0423712283372879, 0.04054655507206917, 0.009460587985813618, 0.017815185710787773, 0.18471680581569672, 0.022773828357458115, 0.012442689388990402, -0.04903603345155716, 0.16488613188266754, -0.10293643176555634, -0.011928252875804901, 0.157151460647583, -0.006006420589983463, -0.01538509875535965, 0.11209989339113235, 0.016999077051877975, -0.040755826979875565, 0.014085712842643261, -0.00890234112739563, -0.08852444589138031, -0.22951088845729828, -0.11389358341693878, -0.044931672513484955, -0.05074996501207352, -0.020016586408019066, -0.019055919721722603, 0.07746562361717224, 0.04153625667095184, -0.027591390535235405, -0.07010508328676224, 0.051255002617836, -0.012337627820670605, 0.09336839616298676, 0.006867547519505024, 0.09329412877559662, -0.049066878855228424, -0.032376501709222794, 0.011129149235785007, 0.0632428377866745, 0.19431355595588684, 0.020834000781178474, 0.05007137358188629, 0.1020493134856224, 0.13986904919147491, 0.11633346974849701, 0.06267831474542618, -0.05694843456149101, -0.013931774534285069, 0.0226749237626791, -0.05921446159482002, 0.005782547406852245, 0.05479954928159714, 0.14021143317222595, -0.06279280036687851, -0.0502559095621109, -0.05024933069944382, 0.01819026842713356, 0.21639764308929443, 0.11343486607074738, -0.16995500028133392, -0.09111687541007996, -0.0211910679936409, -0.05948201194405556, 0.015791382640600204, 0.030348068103194237, 0.17875924706459045, -0.14932039380073547, 0.03442365676164627, -0.0015858926344662905, 0.07075950503349304, -0.04126018285751343, 0.010653854347765446, -0.10909518599510193, 0.03866583853960037, -0.02710779756307602, 0.10556256771087646, -0.25973430275917053, 0.21938833594322205, 0.015083680860698223, 0.14734873175621033, -0.08179627358913422, -0.03787907958030701, 0.010837821289896965, -0.0010904986411333084, 0.08781338483095169, 0.021750029176473618, -0.011656825430691242, -0.13908421993255615, -0.07751986384391785, 0.08203823119401932, 0.014155570417642593, 0.011401192285120487, 0.05728413164615631, 0.016990195959806442, -0.003813547547906637, 0.010588112287223339, -0.07632297277450562, -0.15987606346607208, -0.035500336438417435, -0.0019763652235269547, 0.18606500327587128, 0.10040000081062317, -0.014227516017854214, -0.09054563194513321, -0.06474165618419647, 0.006268779747188091, -0.07474785298109055, -0.0698322132229805, -0.031564440578222275, -0.06662820279598236, 0.13133648037910461, -0.0855744257569313, -0.010370059870183468, 0.09208473563194275, 0.10184815526008606, -0.032608795911073685, -0.07009798288345337, 0.02805974893271923, -0.10987670719623566, -0.14182297885417938, 0.007745412178337574, 0.18496188521385193, 0.1341387927532196, 0.08342861384153366, 0.08441633731126785, 0.018682774156332016, -0.016921093687415123, -0.05786101147532463, 0.030318796634674072, 0.09390115737915039, -0.08257830142974854, 0.006750490050762892, 0.04652678221464157, -0.16437488794326782, -0.15430866181850433, -0.07143387198448181, 0.1813124567270279, 0.10507832467556, -0.0669427141547203, 0.19464415311813354, 0.23765327036380768, -0.09228654205799103, -0.23095764219760895, -0.01688624732196331, 0.12817300856113434, 0.09974098205566406, -0.04600830003619194, -0.19788198173046112, 0.059614650905132294, -0.023095574229955673, -0.033002354204654694, -0.05383043363690376, -0.3079702854156494, -0.16590575873851776, 0.15634891390800476, -0.014484994113445282, 0.16914160549640656, 0.008414839394390583, -0.027764908969402313, -0.015100313350558281, 0.03944804146885872, 0.08745955675840378, -0.1278759390115738, 0.1238764151930809, 0.009387565776705742, 0.11378759145736694, 0.05127701908349991, -0.027138901874423027, 0.09019537270069122, 0.11272687464952469, -0.011643564328551292, 0.007369160186499357, 0.04477831721305847, 0.0451747290790081, -0.0040222397074103355, 0.11665808409452438, -0.08379372954368591, 0.045106999576091766, -0.08978535234928131, -0.08125773817300797, -0.09214921295642853, 0.08526119589805603, 0.03878602012991905, -0.06339505314826965, -0.015569073148071766, -0.03477007523179054, 0.02802329696714878, -0.007822750136256218, -0.04109668731689453, -0.08707848191261292, 0.04094895347952843, 0.13739389181137085, 0.1659332662820816, -0.009613728150725365, -0.03941537067294121, -0.009191918186843395, -0.048528384417295456, 0.11870300769805908, -0.10401686280965805, 0.025483382865786552, 0.08472642302513123, 0.07233623415231705, 0.11391399055719376, 0.002023896435275674, -0.11629178375005722, 0.10021251440048218, 0.026174256578087807, -0.06803538650274277, -0.13231633603572845, -0.03775709867477417, -0.057471998035907745, -0.033962175250053406, 0.046397674828767776, 0.10527922213077545, -0.0859009400010109, -0.022836292162537575, -0.03796195983886719, 0.023152414709329605, -0.10739141702651978, 0.25835004448890686, 0.02898661233484745, 0.07654080539941788, -0.11359401047229767, 0.014581222087144852, -0.016928786411881447, -0.007062818389385939, 0.06272398680448532, -0.07863117009401321, -0.07626387476921082, -0.05835874378681183, -0.012068432755768299, 0.042469002306461334, 0.059902604669332504, -0.13788388669490814, -0.013812419958412647, -0.09009907394647598, -0.01513959001749754, 0.08085259050130844, 0.049119722098112106, 0.02915729396045208, -0.09986041486263275, -0.05894848331809044, -0.13169848918914795, 0.08023334294557571, 0.08847127109766006, -0.020423049107193947, -0.11790375411510468, 0.19814248383045197, 0.06960040330886841, 0.062371548265218735, -0.054700661450624466, -0.08929257839918137, -0.017166508361697197, 0.079742930829525, -0.08096326887607574, 0.0056233699433505535, -0.07856778800487518, -0.00005335498644853942, -0.0063565275631845, -0.08903095871210098, -0.014731946401298046, 0.08596830070018768, -0.09766455739736557, 0.08036518841981888, -0.010772771202027798, 0.07863897830247879, -0.07416515052318573, 0.004159059375524521, 0.03086663968861103, -0.05404974892735481, 0.08549611270427704, 0.1305740922689438, -0.09180735051631927, 0.14580607414245605, -0.22689518332481384, -0.04419713467359543, 0.0744878426194191, 0.06319799274206161, -0.046050503849983215, -0.13658149540424347, 0.018709450960159302, 0.07264143973588943, 0.07284000515937805, 0.005875511094927788, 0.10726634413003922, -0.052801262587308884, -0.023808781057596207, -0.09541614353656769, 0.008293754421174526, -0.04177398607134819, 0.05070904269814491, 0.06093977764248848, 0.1580365002155304, 0.17398874461650848, -0.10377778857946396, 0.09931772947311401, -0.10226573795080185, 0.00520480377599597, -0.06115180253982544, -0.048958804458379745, -0.12262912839651108, -0.07818305492401123, 0.06812881678342819, -0.043604929000139236, 0.09710171073675156, 0.006384056061506271, 0.004995588678866625, -0.0546068511903286, -0.06221577525138855, -0.004982227925211191, -0.014342794194817543, 0.2846316397190094, 0.04351772367954254, 0.015754498541355133, -0.038809966295957565, 0.028143921867012978, 0.008239852264523506, 0.08434984087944031, -0.009257585741579533, 0.12457603961229324, 0.024843867868185043, 0.05320445075631142, 0.09498314559459686, -0.05905169993638992, -0.04924639314413071, 0.00535291712731123, -0.16134338080883026, 0.048622459173202515, -0.06758398562669754, 0.19775427877902985, 0.11590596288442612, -0.1283402144908905, 0.06825010478496552, 0.02572341449558735, -0.09791334718465805, -0.15261052548885345, -0.15368999540805817, -0.08031660318374634, -0.13866199553012848, 0.03331694006919861, -0.09205363690853119, 0.019756510853767395, 0.06484284996986389, 0.0425352044403553, -0.01198229193687439, 0.1575929820537567, 0.013856022618710995, -0.10864768177270889, 0.1081741452217102, -0.0831444188952446, -0.046120453625917435, -0.07292892783880234, 0.04198547080159187, 0.1738739013671875, -0.015315044671297073, 0.07065074145793915, 0.00774161983281374, -0.08356958627700806, 0.030218375846743584, -0.07836206257343292, -0.0771031603217125, -0.016557559370994568, -0.002377320546656847, 0.1288626790046692, 0.09416339546442032, 0.14395733177661896, -0.07519318908452988, 0.003708204021677375, 0.15271776914596558, -0.029236722737550735, -0.139924556016922, -0.13453111052513123, 0.14375829696655273, 0.030718684196472168, 0.006978493649512529, 0.030655736103653908, -0.04516177996993065, -0.004099000245332718, 0.20488853752613068, 0.2163933366537094, 0.0939406231045723, 0.03434308245778084, -0.05387895181775093, -0.004220365546643734, -0.02008582092821598, 0.08270015567541122, 0.06941167265176773, 0.22114022076129913, -0.032975781708955765, 0.035424500703811646, -0.07746117562055588, -0.07082846015691757, 0.011814464814960957, 0.057324763387441635, -0.06504911929368973, -0.13579080998897552, 0.001320627867244184, 0.14780956506729126, -0.09064958244562149, -0.12929393351078033, -0.11288730800151825, -0.09436164051294327, -0.07679414004087448, 0.00457300990819931, 0.0258086696267128, 0.11524299532175064, 0.023241927847266197, -0.08097357302904129, 0.06218729168176651, 0.07960807532072067, 0.010730643756687641, -0.07158166915178299, -0.03145445138216019, 0.06261254101991653, -0.07664941996335983, -0.0007884691585786641, -0.01599995419383049, 0.20827773213386536, 0.02087983302772045, 0.0763690173625946, -0.03296176344156265, 0.14529955387115479, -0.011337601579725742, -0.07870034128427505, 0.032709211111068726, 0.1606147736310959, -0.017572226002812386, 0.09613849967718124, 0.0435791052877903, -0.11268547922372818, 0.05793292447924614, -0.13347835838794708, 0.011673880741000175, -0.09813195466995239, 0.05714702978730202, -0.03438560292124748, 0.08651486039161682, 0.05750695988535881, -0.07677307724952698, -0.025287508964538574, -0.05065835639834404, 0.042112644761800766, 0.006875427905470133, -0.06536632776260376, -0.039174120873212814, -0.23253799974918365, -0.0034240917302668095, -0.10125356167554855, -0.001265914412215352, -0.18818089365959167, 0.004157416056841612, -0.022359684109687805, -0.07442687451839447, 0.01088041067123413, 0.04608947038650513, 0.09664428979158401, -0.003124828916043043, -0.0018306694692000747, -0.03540696203708649, 0.027977706864476204, 0.10145609825849533, -0.17877520620822906, -0.10635735094547272 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Latvian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Latvian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-latvian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-latvian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Latvian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/lv.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-latvian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-latvian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/lv/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/lv/clips/" def clean_sentence(sent): sent = sent.lower() # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 26.89 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "lv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Latvian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice lv", "type": "common_voice", "args": "lv"}, "metrics": [{"type": "wer", "value": 26.89, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anton-l/wav2vec2-large-xlsr-53-latvian
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "lv", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "lv" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #lv #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Latvian Fine-tuned facebook/wav2vec2-large-xlsr-53 on Latvian using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Latvian test data of Common Voice. Test Result: 26.89 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Latvian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Latvian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Latvian test data of Common Voice.\n\n\n\nTest Result: 26.89 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #lv #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Latvian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Latvian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Latvian test data of Common Voice.\n\n\n\nTest Result: 26.89 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 80, 66, 20, 28, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #lv #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Latvian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Latvian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Latvian test data of Common Voice.\n\n\n\nTest Result: 26.89 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.1595914512872696, -0.037238623946905136, -0.0035978329833596945, -0.0007070983992889524, 0.09660810977220535, -0.07335890084505081, 0.17609252035617828, 0.09235793352127075, 0.04357181116938591, -0.007608192507177591, 0.047139544039964676, -0.015950243920087814, 0.019727300852537155, 0.049656134098768234, 0.0031172004528343678, -0.19737038016319275, 0.010249322280287743, -0.012020589783787727, 0.015000974759459496, 0.09291429817676544, 0.11350696533918381, -0.059186968952417374, 0.014517925679683685, 0.07816825807094574, -0.10188736766576767, 0.07878998667001724, 0.05036439746618271, -0.08888677507638931, 0.1260143369436264, 0.07293977588415146, 0.020526621490716934, 0.03896001726388931, 0.07527858763933182, -0.20554497838020325, 0.010750084184110165, 0.022576143965125084, 0.029269158840179443, 0.016286784783005714, 0.04792294278740883, -0.05625595524907112, 0.13210059702396393, 0.011688142083585262, -0.022202221676707268, 0.07527526468038559, -0.06395550072193146, -0.24411597847938538, -0.004125581122934818, -0.047440312802791595, 0.11999610811471939, 0.12747520208358765, -0.07141051441431046, 0.08746645599603653, -0.13847695291042328, 0.10346638411283493, 0.17193396389484406, -0.18259918689727783, -0.007304322440177202, 0.08833026140928268, 0.055261172354221344, 0.06784706562757492, -0.04439732804894447, 0.06950395554304123, 0.032886750996112823, 0.03664914146065712, 0.03506326302886009, -0.03912780061364174, -0.22747881710529327, -0.0027803427074104548, -0.1600472629070282, -0.017788361757993698, 0.23481549322605133, -0.005552610848098993, -0.05188439413905144, -0.14802315831184387, 0.008432818576693535, -0.0025960972998291254, -0.013708843849599361, -0.05522511526942253, -0.00550891412422061, -0.0035088579170405865, 0.024624047800898552, -0.05446299910545349, -0.10669170320034027, -0.14620627462863922, 0.033045656979084015, 0.09311751276254654, 0.01654202863574028, 0.022226542234420776, -0.08377687633037567, 0.0628276914358139, -0.12500853836536407, -0.05799969658255577, -0.005737430416047573, 0.02211380936205387, -0.07859853655099869, 0.03806557506322861, -0.0672421008348465, -0.19664175808429718, 0.030634891241788864, -0.03891054168343544, 0.0661734864115715, 0.0010133894393220544, 0.009478212334215641, 0.061355896294116974, 0.014709755778312683, 0.15232230722904205, -0.04934382066130638, -0.01878865249454975, 0.010493508540093899, -0.024002471938729286, -0.04718238487839699, -0.010412958450615406, -0.08930204808712006, -0.0790124163031578, -0.010539054870605469, 0.07838853448629379, -0.05554831773042679, 0.016694677993655205, -0.03277036175131798, -0.03689396753907204, 0.017131377011537552, -0.09799204021692276, -0.027331659570336342, 0.06163947656750679, 0.0151578513905406, 0.0874699205160141, 0.07435573637485504, 0.03592522069811821, -0.09163490682840347, -0.06492527574300766, 0.042718250304460526, 0.05423823371529579, -0.008621170185506344, -0.15181677043437958, 0.02655022405087948, -0.06916231662034988, 0.009037335403263569, -0.10371702164411545, -0.07269531488418579, -0.07964704185724258, -0.002623013686388731, 0.020817678421735764, 0.002201840514317155, -0.12112374603748322, -0.030407210811972618, -0.02193242684006691, -0.03793281689286232, 0.03865142539143562, -0.04002084955573082, 0.032071296125650406, -0.03429865092039108, 0.05974831059575081, 0.047347426414489746, 0.07173442840576172, -0.1099148839712143, -0.049888551235198975, 0.04028987139463425, 0.13342086970806122, -0.08281411975622177, -0.06032510846853256, -0.08590469509363174, -0.08248735964298248, -0.01679224520921707, 0.06112154200673103, 0.06479824334383011, 0.11979536712169647, -0.2696515619754791, -0.10863664001226425, 0.18036070466041565, -0.09980863332748413, -0.016733581200242043, 0.2031071037054062, -0.004590654280036688, 0.10703633725643158, 0.16250477731227875, 0.25021418929100037, 0.16985167562961578, -0.2424904853105545, 0.04214192181825638, 0.03862792253494263, -0.02571178413927555, -0.055388014763593674, 0.08514747768640518, -0.04177260398864746, -0.0227771308273077, 0.05986442044377327, -0.06624677032232285, 0.06499715149402618, -0.028515370562672615, -0.06103801727294922, -0.015153043903410435, -0.07008593529462814, 0.07612734287977219, 0.05063987523317337, -0.0042498051188886166, -0.054252028465270996, -0.05765681341290474, 0.09629950672388077, 0.12078217417001724, -0.13324834406375885, 0.05528082698583603, -0.08965139836072922, 0.07628411799669266, -0.09196693450212479, -0.010206910781562328, -0.12031184136867523, 0.165077343583107, -0.026053156703710556, 0.061378903687000275, 0.05870889872312546, 0.21865986287593842, 0.040909651666879654, 0.014035046100616455, -0.044781189411878586, 0.013589059934020042, -0.02355079911649227, -0.02325916290283203, -0.04659377783536911, -0.12921854853630066, -0.0236680805683136, -0.07061099261045456, 0.037474580109119415, -0.1436440646648407, -0.01256606262177229, 0.025711681693792343, -0.013131799176335335, 0.044291235506534576, -0.011424408294260502, 0.04185650870203972, 0.10458212345838547, 0.030864672735333443, 0.006638757884502411, 0.050212759524583817, -0.017092404887080193, -0.010114848613739014, 0.15759292244911194, -0.1022271066904068, -0.02874893881380558, 0.07647106796503067, -0.013671083375811577, -0.002536145271733403, 0.049026649445295334, -0.032145485281944275, 0.00784164946526289, -0.06796150654554367, -0.011375294998288155, 0.2661651074886322, -0.0026530034374445677, 0.10386435687541962, -0.10553975403308868, -0.010225513949990273, 0.04650556668639183, -0.10323455184698105, 0.03798374533653259, 0.13586638867855072, 0.023637181147933006, 0.0645315870642662, 0.009805434383451939, -0.061726123094558716, -0.07758820801973343, 0.30234283208847046, -0.01589331217110157, -0.09561073780059814, 0.009039419703185558, -0.0423835813999176, -0.022704022005200386, 0.1124846413731575, -0.18647703528404236, -0.03294484689831734, 0.03974369168281555, 0.0665266141295433, 0.07802121341228485, -0.13211621344089508, 0.0017319262260571122, 0.016585946083068848, -0.15135130286216736, -0.16253291070461273, 0.12961886823177338, -0.03187733143568039, 0.051903873682022095, -0.10578322410583496, -0.018715549260377884, -0.050241608172655106, -0.049995336681604385, -0.17434121668338776, 0.11876919120550156, -0.08352813869714737, -0.22050203382968903, -0.1787828654050827, 0.003626752644777298, -0.03220925107598305, 0.015902722254395485, 0.09937900304794312, -0.1221112608909607, -0.026744695380330086, -0.042224712669849396, 0.19629082083702087, 0.0308074913918972, -0.048597514629364014, -0.07799725979566574, 0.05072867497801781, 0.07219833135604858, -0.13957150280475616, -0.0014004872646182775, -0.08161326497793198, -0.014720821753144264, -0.03594665601849556, -0.028190216049551964, 0.008796490728855133, 0.14908233284950256, 0.0394991859793663, 0.021283483132719994, -0.022023752331733704, 0.24169521033763885, -0.07212936878204346, -0.02853313274681568, 0.20778819918632507, 0.017170719802379608, -0.04162980243563652, 0.0893356129527092, 0.04254966229200363, -0.05785248801112175, -0.021790577098727226, 0.016869863495230675, -0.10133077204227448, -0.24699720740318298, -0.16164138913154602, -0.0789884477853775, -0.044256698340177536, -0.02133280225098133, 0.0001692005607765168, -0.00673703895881772, 0.007046972867101431, -0.016618195921182632, -0.07049060612916946, 0.059345636516809464, -0.017540063709020615, 0.13432340323925018, -0.03133239597082138, 0.07179022580385208, -0.0638279840350151, -0.04013874754309654, 0.037726759910583496, 0.000870753894560039, 0.16494318842887878, 0.03350676968693733, 0.031996432691812515, 0.11248930543661118, 0.09124665707349777, 0.06804841011762619, 0.07872723042964935, -0.044435109943151474, -0.024089151993393898, 0.021240685135126114, -0.07473423331975937, 0.01109308935701847, 0.040709737688302994, 0.10707996040582657, -0.047559160739183426, -0.07141068577766418, -0.0448027141392231, 0.029094113036990166, 0.21304260194301605, 0.10775008052587509, -0.15951849520206451, -0.08019017428159714, -0.01818656735122204, -0.0461154580116272, -0.017703114077448845, 0.03630299121141434, 0.1643649786710739, -0.11588768661022186, 0.029540542513132095, -0.00859837420284748, 0.098922960460186, 0.05435049533843994, 0.026046816259622574, -0.09287624061107635, 0.040676843374967575, 0.006152466405183077, 0.12315680086612701, -0.22833968698978424, 0.2254280000925064, 0.0027617409359663725, 0.11054899543523788, -0.06065216287970543, -0.016470979899168015, -0.02357974275946617, 0.0829649418592453, 0.14316877722740173, 0.04103490710258484, 0.07334061712026596, -0.12016504257917404, -0.07954172044992447, 0.05938336253166199, -0.023040303960442543, 0.01190792303532362, 0.029962187632918358, 0.002064557047560811, -0.007462887559086084, 0.0017185078468173742, -0.06535544246435165, -0.11666404455900192, -0.039875660091638565, -0.007270846050232649, 0.1430913358926773, 0.033346567302942276, 0.001409625867381692, -0.10399007052183151, -0.12099377065896988, 0.0673752874135971, -0.09020185470581055, -0.061029158532619476, -0.05862554535269737, -0.07370579987764359, 0.1396419256925583, -0.06923047453165054, -0.005794007796794176, 0.09998529404401779, 0.13106144964694977, -0.05580529198050499, -0.07157920300960541, 0.04197005555033684, -0.11455019563436508, -0.10538392513990402, 0.02275848761200905, 0.21055291593074799, 0.11129199713468552, 0.06578805297613144, 0.048069603741168976, 0.01981876976788044, -0.014944063499569893, -0.05750242993235588, 0.01383709255605936, 0.13448074460029602, -0.16028174757957458, 0.01454805489629507, 0.010671639814972878, -0.1351679116487503, -0.12551343441009521, -0.0376780666410923, 0.16930273175239563, 0.13550826907157898, -0.10428833216428757, 0.21703281998634338, 0.12540331482887268, -0.10925043374300003, -0.233701691031456, -0.00016689300537109375, 0.1278209090232849, 0.15965689718723297, 0.029997337609529495, -0.147888645529747, 0.038512229919433594, -0.03461465984582901, -0.037890639156103134, -0.05588456615805626, -0.280737042427063, -0.17524413764476776, 0.1565665751695633, -0.05952220782637596, 0.16974489390850067, 0.06651607900857925, -0.006994814611971378, -0.02350051887333393, 0.06650234013795853, 0.054876554757356644, -0.07794560492038727, 0.1097223088145256, 0.013822881504893303, 0.06699920445680618, 0.07345600426197052, -0.0005667586228810251, 0.11947838217020035, 0.07247511297464371, 0.01950531080365181, 0.01657056249678135, 0.08513499796390533, 0.013209268450737, -0.010160033591091633, 0.16048631072044373, -0.08867885172367096, 0.03647711127996445, -0.10142012685537338, -0.10133381187915802, -0.09697183221578598, 0.10025722533464432, 0.039189524948596954, -0.03716496005654335, -0.004396815784275532, -0.05302572622895241, 0.016985418274998665, -0.013752843253314495, -0.025300929322838783, -0.1464073359966278, 0.019263217225670815, 0.13140156865119934, 0.1719847172498703, -0.06761883944272995, -0.10085050761699677, 0.031932372599840164, -0.01680758036673069, 0.1199793890118599, -0.10642019659280777, 0.03744637966156006, 0.07427404820919037, 0.04577651992440224, 0.11147338151931763, -0.015531860291957855, -0.11770304292440414, 0.035164233297109604, 0.0403621569275856, -0.08171659708023071, -0.09804674237966537, -0.0704103484749794, -0.09459591656923294, -0.01689947582781315, 0.03275241702795029, 0.13469341397285461, -0.11317946016788483, 0.002768700709566474, -0.03481476381421089, 0.015865234658122063, -0.13746514916419983, 0.18921242654323578, 0.04282451421022415, 0.06992626190185547, -0.10870853811502457, -0.0013583314139395952, -0.043293360620737076, -0.03132973983883858, 0.052793391048908234, -0.0371144600212574, -0.05864689126610756, -0.05623378977179527, 0.006052836310118437, 0.09746049344539642, 0.05621098726987839, -0.12227711826562881, -0.06858427077531815, -0.11825252324342728, 0.012022910639643669, 0.10541900247335434, 0.08127856254577637, 0.016615519300103188, -0.1269799768924713, -0.07938118278980255, -0.10591860860586166, 0.09232612699270248, 0.10258270800113678, -0.059018079191446304, -0.11494209617376328, 0.17111065983772278, 0.07065712660551071, 0.05487899109721184, -0.057892002165317535, -0.05948982387781143, -0.0008786140824668109, 0.0847867801785469, -0.08421262353658676, -0.008426151238381863, -0.031967416405677795, 0.02210898883640766, -0.024161431938409805, -0.0783083438873291, -0.04129517450928688, 0.08198398351669312, -0.09272844344377518, 0.08603990077972412, -0.035876158624887466, 0.08153305947780609, -0.06262539327144623, 0.0003674011677503586, 0.030565839260816574, -0.054881490767002106, 0.07320592552423477, 0.10208679735660553, -0.09675892442464828, 0.1568676382303238, -0.18681320548057556, -0.011662404052913189, 0.09598476439714432, 0.08766639977693558, -0.01487947441637516, -0.09490304440259933, 0.030299803242087364, 0.07769951969385147, 0.07516317814588547, 0.001476524630561471, 0.031440380960702896, -0.0621781088411808, 0.0011332777794450521, -0.03056747280061245, -0.02209431864321232, -0.0134656373411417, 0.057612400501966476, 0.019253257662057877, 0.1745782196521759, 0.1487189084291458, -0.11052756756544113, 0.1197173148393631, -0.12634848058223724, 0.008355856873095036, -0.05602765083312988, -0.016048919409513474, -0.12551584839820862, -0.06186063215136528, 0.07091132551431656, -0.04796682670712471, 0.17988111078739166, 0.10690034925937653, 0.05372084304690361, -0.03804564103484154, -0.04698669910430908, 0.031770579516887665, -0.009887556545436382, 0.16167905926704407, 0.008431770838797092, 0.05597942695021629, -0.06884770095348358, 0.010415623895823956, 0.02113831602036953, 0.15262098610401154, -0.0312579944729805, 0.14393018186092377, 0.032818980515003204, 0.0652502179145813, 0.1021164059638977, -0.04832635447382927, -0.028663814067840576, -0.02922283299267292, -0.09517896920442581, 0.05517591908574104, -0.08582546561956406, 0.15488697588443756, 0.117758609354496, -0.11815595626831055, 0.11271976679563522, 0.045526910573244095, -0.09383416175842285, -0.19292497634887695, -0.13530172407627106, -0.0664585530757904, -0.17320621013641357, 0.013430939987301826, -0.09750453382730484, 0.01911950670182705, 0.02547875978052616, 0.04919581487774849, -0.020537184551358223, 0.13131900131702423, -0.024337491020560265, -0.11326543241739273, 0.09619591385126114, -0.08951692283153534, -0.00725153973326087, -0.08254116773605347, 0.0859794020652771, 0.18894636631011963, -0.002870564116165042, 0.03966287523508072, 0.02155487611889839, -0.06186080351471901, 0.008705055341124535, -0.09991800785064697, -0.06724127382040024, -0.03649319335818291, 0.00021653289149980992, 0.07640533149242401, 0.13612717390060425, 0.12960998713970184, -0.0800212100148201, -0.01090230606496334, 0.146021768450737, -0.030377108603715897, -0.14581073820590973, -0.1589205265045166, 0.1299210488796234, 0.040616195648908615, 0.0509989857673645, -0.026618460193276405, -0.02476460114121437, -0.03225674480199814, 0.2564806342124939, 0.2523162066936493, 0.09927789121866226, 0.033233966678380966, -0.05643356218934059, -0.0026867459528148174, -0.028631821274757385, 0.06564582139253616, 0.01979372836649418, 0.25830191373825073, -0.02373582497239113, 0.005816401448100805, -0.11341069638729095, -0.049522917717695236, 0.01288381963968277, 0.07869913429021835, -0.04716792702674866, -0.1225273460149765, 0.004535040818154812, 0.14305917918682098, -0.05083223059773445, -0.042874839156866074, -0.1115955263376236, -0.10161523520946503, -0.09830302000045776, -0.021564563736319542, 0.02260870672762394, 0.10673177987337112, 0.03380105644464493, -0.08467155694961548, 0.015926510095596313, 0.14006748795509338, -0.01265376340597868, -0.07195687294006348, -0.07315544784069061, 0.06411757320165634, -0.04738378897309303, 0.000542520429007709, -0.004693659953773022, 0.15787675976753235, -0.004163271281868219, 0.07539165019989014, -0.020686520263552666, 0.12809953093528748, -0.04404875263571739, -0.04726063087582588, 0.02653643861413002, 0.12143505364656448, -0.052402347326278687, 0.1201334074139595, 0.009232274256646633, -0.1294800192117691, 0.04197264462709427, -0.11962942034006119, -0.049041520804166794, -0.057386528700590134, 0.0794312134385109, -0.05660820007324219, 0.043463386595249176, 0.11543694883584976, -0.061596114188432693, -0.056910328567028046, -0.07105745375156403, 0.07409109175205231, 0.015497244894504547, -0.06888823956251144, -0.021866092458367348, -0.22668354213237762, -0.004756892565637827, -0.0239595677703619, -0.03996649011969566, -0.20895074307918549, -0.023404298350214958, -0.008647708222270012, -0.07322371006011963, 0.04189220070838928, 0.052550651133060455, 0.056490927934646606, 0.0038794351276010275, 0.0065732127986848354, -0.010163742117583752, 0.07644103467464447, 0.10583353042602539, -0.14594943821430206, -0.11602674424648285 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Lithuanian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Lithuanian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Lithuanian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/lt.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/lt/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/lt/clips/" def clean_sentence(sent): sent = sent.lower() # normalize apostrophes sent = sent.replace("’", "'") # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() or ch == "'" else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 49.00 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "lt", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Lithuanian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice lt", "type": "common_voice", "args": "lt"}, "metrics": [{"type": "wer", "value": 49.0, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anton-l/wav2vec2-large-xlsr-53-lithuanian
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "lt", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "lt" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #lt #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Lithuanian Fine-tuned facebook/wav2vec2-large-xlsr-53 on Lithuanian using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Lithuanian test data of Common Voice. Test Result: 49.00 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Lithuanian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Lithuanian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Lithuanian test data of Common Voice.\n\n\n\nTest Result: 49.00 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #lt #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Lithuanian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Lithuanian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Lithuanian test data of Common Voice.\n\n\n\nTest Result: 49.00 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 80, 67, 20, 28, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #lt #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Lithuanian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Lithuanian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Lithuanian test data of Common Voice.\n\n\n\nTest Result: 49.00 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.14556801319122314, 0.009491553530097008, -0.0021860250271856785, -0.0075595797970891, 0.07599619030952454, -0.04951390624046326, 0.18553446233272552, 0.10328111797571182, -0.015330201014876366, -0.01572481170296669, 0.047637440264225006, -0.010040662251412868, 0.03897843137383461, 0.06993274390697479, -0.0016566659323871136, -0.17390072345733643, 0.023387201130390167, 0.0014250517124310136, 0.013648523949086666, 0.10122384876012802, 0.10811330378055573, -0.06847221404314041, 0.0006962207262404263, 0.07908546924591064, -0.1225578784942627, 0.061985548585653305, 0.04520368203520775, -0.10133061558008194, 0.13680407404899597, 0.0762084573507309, 0.039407216012477875, 0.029032833874225616, 0.06649199873209, -0.20542515814304352, 0.014378935098648071, 0.031646162271499634, 0.03621375188231468, 0.0068938531912863255, 0.03545290231704712, -0.023187538608908653, 0.11257713288068771, 0.019314415752887726, -0.011525998823344707, 0.05317351594567299, -0.06183686852455139, -0.24365849792957306, -0.031507913023233414, 0.005634438246488571, 0.11556859314441681, 0.137851744890213, -0.06294936686754227, 0.12517514824867249, -0.11362732201814651, 0.09047871083021164, 0.060828566551208496, -0.15957607328891754, -0.013502002693712711, 0.07472162693738937, 0.010921631008386612, 0.07882365584373474, -0.045766640454530716, 0.041352491825819016, 0.030245695263147354, 0.0509776771068573, -0.0060125552117824554, -0.045071572065353394, -0.2347097396850586, -0.009249472059309483, -0.14662288129329681, -0.036850765347480774, 0.24109971523284912, -0.030501436442136765, -0.06810609996318817, -0.1488250344991684, 0.017047831788659096, 0.024721795693039894, -0.0016845534555613995, -0.0501253604888916, -0.019270649179816246, 0.014725151471793652, 0.012898820452392101, -0.04166385158896446, -0.12068904936313629, -0.11541834473609924, 0.017804911360144615, 0.1143762469291687, 0.009893120266497135, 0.030272003263235092, -0.10277847200632095, 0.05943017080426216, -0.09087686985731125, -0.0681501105427742, 0.009554065763950348, 0.028784066438674927, -0.0761900469660759, 0.016685007140040398, -0.07572045177221298, -0.22403521835803986, 0.03506848216056824, -0.05398629605770111, 0.06068694218993187, 0.00477715115994215, -0.0031497336458414793, 0.05844265967607498, 0.03231889009475708, 0.1419997215270996, -0.05722080543637276, -0.039729777723550797, 0.0058954325504601, -0.03497782722115517, -0.039206720888614655, -0.011896776966750622, -0.07056606560945511, -0.0672902762889862, -0.003953331150114536, 0.05670392885804176, -0.02210661582648754, 0.001228843815624714, -0.020889025181531906, -0.04670247063040733, -0.032047249376773834, -0.09098589420318604, -0.046636588871479034, 0.03941415995359421, 0.012137449346482754, 0.1285507082939148, 0.020579542964696884, 0.042250946164131165, -0.08386678993701935, -0.013285067863762379, 0.028283612802624702, 0.03234287351369858, -0.0070616863667964935, -0.14159667491912842, 0.028294391930103302, -0.020396146923303604, 0.014844127930700779, -0.087751105427742, -0.08008713275194168, -0.0902334600687027, 0.011217284016311169, 0.03533690422773361, -0.005007701925933361, -0.09119540452957153, -0.023665370419621468, -0.005761098116636276, -0.043177757412195206, 0.05214430019259453, -0.03312317654490471, 0.058786630630493164, -0.02516815811395645, 0.0317370779812336, 0.012022488750517368, 0.07423072308301926, -0.12079188972711563, -0.05375354364514351, 0.011205418035387993, 0.1333041787147522, -0.06283493340015411, -0.047200266271829605, -0.0925099179148674, -0.06748495995998383, -0.0007578951772302389, 0.055550526827573776, 0.06771332025527954, 0.11137548089027405, -0.27889034152030945, -0.08332991600036621, 0.14009739458560944, -0.13186950981616974, -0.01636406220495701, 0.19460447132587433, -0.01690012216567993, 0.11212976276874542, 0.15805278718471527, 0.2743956446647644, 0.18306303024291992, -0.18325845897197723, 0.012335247360169888, 0.0010200453689321876, -0.005727540235966444, -0.047308310866355896, 0.0783117413520813, -0.03602313622832298, -0.03142842277884483, 0.04270641505718231, -0.09735425561666489, 0.06789097934961319, -0.008063791319727898, -0.06835413724184036, -0.016127215698361397, -0.07768680155277252, 0.08782726526260376, 0.03592017665505409, -0.007747845258563757, -0.05397728458046913, -0.05753639340400696, 0.08856746554374695, 0.13521996140480042, -0.1382739096879959, 0.04045206308364868, -0.09475739300251007, 0.06646538525819778, -0.09890057891607285, -0.010466665029525757, -0.113939568400383, 0.14668609201908112, -0.020330727100372314, 0.06311658024787903, 0.06648007035255432, 0.1723303347826004, 0.032423216849565506, 0.0035979091189801693, -0.038204021751880646, -0.00866518635302782, -0.027215560898184776, -0.02323976717889309, -0.039553578943014145, -0.11468643695116043, -0.012881669215857983, -0.059692565351724625, 0.0361134335398674, -0.13858462870121002, -0.014600221998989582, 0.06436226516962051, -0.0041788979433476925, 0.027067046612501144, -0.016213761642575264, 0.05299513414502144, 0.11074080318212509, 0.020334800705313683, 0.007583286613225937, 0.03447623923420906, -0.0044589960016310215, -0.025539565831422806, 0.14687873423099518, -0.11950718611478806, -0.02137177065014839, 0.09986621141433716, 0.021819615736603737, -0.005988605320453644, 0.05265866592526436, -0.011425665579736233, 0.0022681879345327616, -0.0737844854593277, 0.013535067439079285, 0.3070773184299469, 0.005832407157868147, 0.07231359928846359, -0.09257720410823822, -0.011856704950332642, 0.04356647655367851, -0.07281886041164398, 0.03724685311317444, 0.09740430116653442, -0.013542943634092808, 0.04097456857562065, 0.03523610532283783, -0.06489699333906174, -0.062240127474069595, 0.25496986508369446, -0.031169187277555466, -0.09857314079999924, 0.006884527392685413, -0.028632158413529396, -0.019857369363307953, 0.15030254423618317, -0.1778586357831955, -0.013310788199305534, 0.035224005579948425, 0.06956613063812256, 0.06978646665811539, -0.1414395272731781, -0.0015280175721272826, 0.009685203433036804, -0.1381387859582901, -0.15733660757541656, 0.0900462344288826, -0.02771303802728653, 0.04320825636386871, -0.10372303426265717, 0.028540113940835, -0.03407905250787735, -0.04180356487631798, -0.16277329623699188, 0.12895414233207703, -0.08611612766981125, -0.2623233497142792, -0.1833728849887848, -0.010151006281375885, -0.009695015847682953, -0.00370326591655612, 0.08982337266206741, -0.1308797001838684, -0.026387488469481468, -0.013662700541317463, 0.18120788037776947, 0.003044386859983206, -0.039584930986166, -0.07350294291973114, 0.0381927415728569, 0.06399650871753693, -0.13585825264453888, 0.013593241572380066, -0.05691054090857506, 0.02146240882575512, -0.008159912191331387, -0.0004446617094799876, 0.011240293271839619, 0.1587236374616623, 0.005329471081495285, 0.012287230230867863, -0.029726658016443253, 0.22840669751167297, -0.11053241044282913, -0.03366798534989357, 0.21370287239551544, -0.017818571999669075, -0.04356338456273079, 0.1107156053185463, 0.026127025485038757, -0.06008124351501465, -0.013629124499857426, -0.011736489832401276, -0.0863485038280487, -0.25722649693489075, -0.15970444679260254, -0.06969013065099716, -0.037599921226501465, -0.013440465554594994, -0.002642517676576972, -0.024848027154803276, 0.02759283222258091, -0.01973925530910492, -0.046084340661764145, 0.04074540734291077, -0.01105236355215311, 0.17969205975532532, -0.014694781973958015, 0.07075712829828262, -0.060409385710954666, -0.03127945587038994, 0.04773418605327606, 0.03662661090493202, 0.12615454196929932, 0.029208553954958916, 0.006720396690070629, 0.0871855616569519, 0.1053682267665863, 0.07828576117753983, 0.06485503166913986, -0.052260421216487885, -0.012798063457012177, 0.017000360414385796, -0.07208923250436783, -0.009760239161550999, 0.036273177713155746, 0.11256512254476547, -0.04630730673670769, -0.05935508385300636, -0.04487210884690285, 0.02647567167878151, 0.1909482777118683, 0.11305340379476547, -0.17000846564769745, -0.10677126049995422, -0.024104122072458267, -0.06628623604774475, -0.008153253234922886, 0.027541374787688255, 0.19419769942760468, -0.13405360281467438, 0.025939136743545532, -0.009148120880126953, 0.08538047224283218, -0.0045632668770849705, 0.017755795270204544, -0.09108398109674454, 0.020570170134305954, -0.009352294728159904, 0.11341699957847595, -0.2439998984336853, 0.2166217416524887, 0.01268725749105215, 0.12389097362756729, -0.06042031943798065, -0.018915748223662376, -0.014112181030213833, 0.046769775450229645, 0.11693715304136276, 0.03486642241477966, 0.0353630967438221, -0.09145574271678925, -0.10198387503623962, 0.06755656003952026, -0.021771378815174103, 0.05170959234237671, 0.048670053482055664, 0.006150598172098398, 0.023037876933813095, -0.0023099102545529604, -0.05069324001669884, -0.09722206741571426, -0.0563654787838459, -0.0006589212571270764, 0.1613321304321289, 0.07563045620918274, -0.010960699990391731, -0.08931595087051392, -0.05640975013375282, 0.07198353856801987, -0.07531510293483734, -0.06681983172893524, -0.07882899791002274, -0.055369142442941666, 0.1516934484243393, -0.06164234131574631, -0.017024733126163483, 0.09786596149206161, 0.13168947398662567, -0.06308657675981522, -0.05881020799279213, 0.023344233632087708, -0.10542381554841995, -0.09613651037216187, 0.003905067453160882, 0.1777064949274063, 0.1057681292295456, 0.08661215007305145, 0.060243818908929825, 0.020255615934729576, -0.015806743875145912, -0.06283844262361526, 0.0034333262592554092, 0.08612743020057678, -0.14218252897262573, 0.01385014969855547, 0.02809925004839897, -0.16179512441158295, -0.1442125141620636, -0.05733601376414299, 0.1916268914937973, 0.10829533636569977, -0.08343952894210815, 0.2167702168226242, 0.13604658842086792, -0.11725414544343948, -0.22323115170001984, 0.021091599017381668, 0.11066225916147232, 0.15119384229183197, 0.0035790917463600636, -0.16449297964572906, 0.061029914766550064, -0.020392682403326035, -0.01914135180413723, -0.05196552723646164, -0.29274916648864746, -0.1548944115638733, 0.1391456574201584, -0.027497870847582817, 0.14343364536762238, 0.0413411408662796, -0.004434308968484402, -0.025199169293045998, 0.04050838202238083, 0.054464712738990784, -0.07527639716863632, 0.09739388525485992, 0.021586155518889427, 0.13389137387275696, 0.0627618134021759, -0.014023820869624615, 0.09979245811700821, 0.07036634534597397, 0.009243318811058998, 0.019562065601348877, 0.07165198773145676, 0.05191173404455185, 0.01842072233557701, 0.1484357714653015, -0.0760493353009224, 0.037584275007247925, -0.13010096549987793, -0.09481190145015717, -0.084775909781456, 0.07180957496166229, 0.030131537467241287, -0.059002190828323364, 0.002346532652154565, -0.030124664306640625, 0.023576030507683754, -0.009646392427384853, -0.0690639466047287, -0.11754197627305984, 0.039336398243904114, 0.06751634180545807, 0.17088383436203003, -0.028455516323447227, -0.12745681405067444, 0.022688686847686768, -0.021064219996333122, 0.10365240275859833, -0.1080380529165268, 0.026826726272702217, 0.07540223747491837, 0.054364509880542755, 0.1015469953417778, -0.004681740887463093, -0.11263356357812881, 0.06518279016017914, 0.03825758770108223, -0.07688841968774796, -0.09040580689907074, -0.03709257394075394, -0.027330739423632622, -0.03811560571193695, 0.014934948645532131, 0.13869412243366241, -0.11638464778661728, -0.008024693466722965, -0.025666192173957825, 0.003301272401586175, -0.13590121269226074, 0.22122244536876678, 0.03681100532412529, 0.07683423906564713, -0.11008601635694504, 0.01908152550458908, -0.019825680181384087, -0.061897143721580505, 0.054771121591329575, -0.0375850610435009, -0.061082623898983, -0.04987778887152672, 0.017530476674437523, 0.027638982981443405, 0.03662848100066185, -0.12492120265960693, -0.05758162587881088, -0.11863251030445099, -0.0008141480502672493, 0.1139931008219719, 0.07914718985557556, 0.021017177030444145, -0.12492503970861435, -0.09673918038606644, -0.11909445375204086, 0.06727712601423264, 0.08741986751556396, -0.04356890916824341, -0.11707033216953278, 0.19279330968856812, 0.07069328427314758, 0.02436416782438755, -0.04785842448472977, -0.06466402113437653, -0.01841621845960617, 0.08579734712839127, -0.08903633058071136, -0.001238641794770956, -0.031331952661275864, 0.019162213429808617, -0.014639806933701038, -0.07269324362277985, -0.04178154468536377, 0.07451296597719193, -0.09109994024038315, 0.08097896724939346, -0.028263108804821968, 0.05489332973957062, -0.06465474516153336, 0.0085120415315032, 0.03412749990820885, -0.053844816982746124, 0.06929846107959747, 0.10640288144350052, -0.09716040641069412, 0.1371881663799286, -0.1569768488407135, -0.0396193265914917, 0.06505002081394196, 0.08087759464979172, -0.013097390532493591, -0.1284620314836502, 0.03349194675683975, 0.0845598503947258, 0.06379684805870056, 0.028358155861496925, 0.0906510055065155, -0.04890158772468567, -0.011313848197460175, -0.04387330636382103, -0.02006845735013485, -0.01563526876270771, 0.049026742577552795, 0.03665175288915634, 0.15967752039432526, 0.180833101272583, -0.10330083966255188, 0.12405290454626083, -0.10388440638780594, 0.0038271620869636536, -0.07335957884788513, -0.026045849546790123, -0.13630948960781097, -0.04957015812397003, 0.06126018613576889, -0.03682514652609825, 0.16027848422527313, 0.0648941770195961, 0.04928607866168022, -0.012522017583251, -0.06779783219099045, -0.010950260795652866, -0.015180906280875206, 0.22314873337745667, 0.021707193925976753, 0.04072016105055809, -0.04407434165477753, 0.001181591534987092, 0.018365858122706413, 0.1484086513519287, -0.015330987051129341, 0.14785553514957428, 0.04874982312321663, 0.06264365464448929, 0.08696895837783813, -0.0217918548732996, -0.054487671703100204, -0.03978413715958595, -0.10105617344379425, 0.04555303230881691, -0.06828145682811737, 0.2292725294828415, 0.11317598819732666, -0.13589219748973846, 0.10231108963489532, 0.02401707135140896, -0.09552885591983795, -0.1524309515953064, -0.11987420171499252, -0.056412793695926666, -0.1673576831817627, 0.014162108302116394, -0.1169578954577446, 0.011235160753130913, 0.05068828910589218, 0.04740229621529579, -0.027700994163751602, 0.1264718621969223, -0.012799946591258049, -0.11164242774248123, 0.09028656035661697, -0.0700608566403389, -0.0033522360026836395, -0.07865993678569794, 0.07461700588464737, 0.1474374681711197, -0.010812772437930107, 0.06534046679735184, 0.019107848405838013, -0.06145234778523445, 0.005659374874085188, -0.08708619326353073, -0.05879529193043709, -0.029680326581001282, -0.011291096918284893, 0.10456979274749756, 0.13404573500156403, 0.12916933000087738, -0.07377075403928757, -0.013814570382237434, 0.1561828851699829, -0.027563387528061867, -0.17483770847320557, -0.16167324781417847, 0.15562954545021057, 0.011033042334020138, 0.028801530599594116, -0.009598215110599995, -0.037234898656606674, -0.008177417330443859, 0.2589389979839325, 0.22389328479766846, 0.07429884374141693, 0.020591530948877335, -0.03849652037024498, -0.004938235506415367, -0.041327103972435, 0.08882583677768707, 0.023718923330307007, 0.2557540237903595, -0.034194983541965485, 0.0076463609002530575, -0.12894046306610107, -0.06495624035596848, 0.03464685007929802, 0.07412344962358475, -0.06468133628368378, -0.13475465774536133, -0.001751405419781804, 0.17325040698051453, -0.07494852691888809, -0.057239044457674026, -0.10686081647872925, -0.12338599562644958, -0.11718113720417023, -0.021510634571313858, 0.015368360094726086, 0.08383980393409729, 0.0357295498251915, -0.07471461594104767, 0.017829343676567078, 0.1030300110578537, 0.0033069828059524298, -0.07621286064386368, -0.08381126075983047, 0.07639788836240768, -0.043724048882722855, 0.006090064533054829, -0.007968684658408165, 0.16479238867759705, 0.0066029950976371765, 0.08866951614618301, -0.019037805497646332, 0.102923683822155, -0.024481315165758133, -0.0697629526257515, 0.022290410473942757, 0.11582022905349731, -0.045898474752902985, 0.16139468550682068, 0.028853366151452065, -0.12361183017492294, 0.05048607662320137, -0.0940641462802887, -0.006988808512687683, -0.049550727009773254, 0.05451709032058716, -0.05543440207839012, 0.07065722346305847, 0.106740802526474, -0.06683089584112167, -0.041624702513217926, -0.06735614687204361, 0.07495014369487762, 0.023748647421598434, -0.04252903535962105, -0.01872926764190197, -0.23384472727775574, -0.024247273802757263, -0.06301168352365494, -0.0425976887345314, -0.23562592267990112, -0.029062544927001, 0.005451336968690157, -0.06570442020893097, 0.02795250527560711, 0.06671452522277832, 0.07055776566267014, -0.011940405704081059, -0.008368958719074726, 0.023611558601260185, 0.056374482810497284, 0.1042417511343956, -0.12977641820907593, -0.11487966030836105 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Mongolian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Mongolian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "mn", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Mongolian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/mn.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/mn/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/mn/clips/" def clean_sentence(sent): sent = sent.lower() # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 38.53 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "mn", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Mongolian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice mn", "type": "common_voice", "args": "mn"}, "metrics": [{"type": "wer", "value": 38.53, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anton-l/wav2vec2-large-xlsr-53-mongolian
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "mn", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "mn" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mn #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Mongolian Fine-tuned facebook/wav2vec2-large-xlsr-53 on Mongolian using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Mongolian test data of Common Voice. Test Result: 38.53 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Mongolian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Mongolian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Mongolian test data of Common Voice.\n\n\n\nTest Result: 38.53 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mn #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Mongolian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Mongolian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Mongolian test data of Common Voice.\n\n\n\nTest Result: 38.53 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 80, 66, 20, 29, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mn #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Mongolian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Mongolian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Mongolian test data of Common Voice.\n\n\n\nTest Result: 38.53 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.09190315753221512, 0.011353197507560253, -0.0017423591343685985, -0.023845916613936424, 0.08809126168489456, -0.0566471703350544, 0.22228975594043732, 0.09693149477243423, 0.012455065734684467, -0.03174760937690735, 0.040373243391513824, -0.04192272573709488, 0.04701686277985573, 0.10908087342977524, 0.04070236533880234, -0.25653430819511414, 0.011050465516746044, -0.0036796482745558023, 0.06673639267683029, 0.1062094122171402, 0.11338774859905243, -0.068121537566185, -0.010591727681457996, 0.0874713882803917, -0.12688672542572021, 0.06175201013684273, 0.018369151279330254, -0.129887193441391, 0.1335223913192749, 0.07167141884565353, 0.05697612836956978, 0.042094796895980835, 0.08279560506343842, -0.1845259666442871, 0.023968050256371498, -0.013247577473521233, -0.004771990701556206, 0.008798232302069664, 0.0678233951330185, -0.008283223956823349, 0.16698530316352844, 0.05878278240561485, -0.04687144234776497, 0.06518062949180603, -0.037103623151779175, -0.1887156218290329, 0.0053875381126999855, 0.021645141765475273, 0.09571754187345505, 0.13477253913879395, -0.07821778953075409, 0.1017022654414177, -0.160126730799675, 0.08999006450176239, 0.08374249935150146, -0.21498334407806396, -0.004957947880029678, 0.1333901435136795, 0.0348857156932354, 0.08901406824588776, -0.10507464408874512, 0.03154150769114494, 0.04403049871325493, 0.013088210485875607, -0.010151300579309464, -0.06515725702047348, -0.277040034532547, -0.02183578535914421, -0.12490086257457733, -0.011933659203350544, 0.2336137741804123, 0.008947372436523438, -0.07013238221406937, -0.10016795992851257, -0.002921311417594552, -0.024700338020920753, -0.0078273368999362, -0.02461744099855423, -0.009390193969011307, 0.013750896789133549, -0.05889562889933586, -0.04080025851726532, -0.12741492688655853, -0.11702043563127518, -0.03663589432835579, 0.05977202579379082, 0.014890080317854881, 0.02128094993531704, -0.13571776449680328, 0.05964772403240204, -0.09985119104385376, -0.06624732911586761, -0.006083297543227673, 0.015509497374296188, -0.09003005176782608, 0.020291391760110855, -0.06340920925140381, -0.19355396926403046, 0.044070880860090256, -0.005249631591141224, 0.057140376418828964, 0.06515853852033615, -0.058288827538490295, 0.05105132982134819, 0.016920102760195732, 0.14527033269405365, -0.04630941152572632, -0.03459778055548668, 0.019756736233830452, -0.023271627724170685, -0.03927929326891899, -0.02484320104122162, -0.08831068128347397, -0.10593920946121216, 0.021532129496335983, 0.0699680745601654, -0.045457061380147934, 0.029486147686839104, 0.026989830657839775, -0.02360931783914566, -0.013647748157382011, -0.10304086655378342, -0.05500860884785652, 0.041964735835790634, -0.027963466942310333, 0.08604443073272705, 0.013451166450977325, 0.06265804171562195, -0.025115584954619408, -0.055786535143852234, 0.03526965156197548, 0.07979897409677505, -0.021810928359627724, -0.08322064578533173, 0.022458860650658607, 0.04727870598435402, 0.009629852138459682, -0.11678681522607803, -0.08770488947629929, -0.055663373321294785, 0.008338353596627712, 0.02862340584397316, -0.002467440441250801, -0.097501240670681, -0.018300535157322884, 0.014527643099427223, -0.07611210644245148, 0.09696183353662491, -0.04363580048084259, 0.03794821724295616, 0.028661634773015976, 0.06626635789871216, 0.06878966838121414, 0.05943147838115692, -0.09904960542917252, -0.026703963056206703, 0.016797548159956932, 0.11896441876888275, -0.025981809943914413, -0.04026661440730095, -0.07933951169252396, -0.06097106635570526, -0.05617830902338028, 0.04412113502621651, 0.026543714106082916, 0.10517139732837677, -0.26148828864097595, -0.07822127640247345, 0.2300228774547577, -0.09969491511583328, 0.006737729534506798, 0.2017015814781189, -0.023895055055618286, 0.09316692501306534, 0.12624210119247437, 0.22948439419269562, 0.09857306629419327, -0.16913285851478577, 0.01457265205681324, 0.03166905790567398, -0.008665437810122967, -0.030014771968126297, 0.09328271448612213, -0.022714877501130104, -0.0330803245306015, 0.048508379608392715, -0.006635760888457298, 0.10136600583791733, -0.04382336512207985, -0.07599283754825592, -0.00949772633612156, -0.06586773693561554, 0.10040377825498581, 0.04374890401959419, 0.05400637164711952, -0.03134259954094887, -0.04652176424860954, 0.04999041184782982, 0.12975220382213593, -0.12561357021331787, 0.0635082870721817, -0.09445497393608093, 0.025494063273072243, -0.11038438230752945, -0.00784656684845686, -0.12275302410125732, 0.1560971438884735, -0.0021539428271353245, 0.03257698193192482, 0.07176613807678223, 0.16619515419006348, 0.026651829481124878, -0.010780200362205505, -0.0922313779592514, -0.005003703758120537, 0.013328327797353268, -0.040330398827791214, -0.04591836407780647, -0.11666989326477051, 0.01719610020518303, -0.06266618520021439, 0.0931951105594635, -0.15925537049770355, -0.035400208085775375, -0.02059227041900158, -0.014017367735505104, -0.014637680724263191, 0.02031632512807846, 0.09790623188018799, 0.08773666620254517, -0.019415821880102158, 0.030251774936914444, 0.027754688635468483, -0.0013499552151188254, -0.11872304975986481, 0.17797203361988068, -0.13246728479862213, -0.06520820409059525, 0.11849823594093323, -0.043485648930072784, -0.008637942373752594, 0.021909741684794426, -0.02638421207666397, -0.03119625337421894, -0.05340001359581947, 0.04082406312227249, 0.23935645818710327, -0.045706406235694885, 0.09011273831129074, -0.07788756489753723, 0.0068613686598837376, 0.022313350811600685, -0.10772397369146347, 0.023088593035936356, 0.08587614446878433, -0.001531227957457304, 0.025401411578059196, 0.050410978496074677, -0.07496790587902069, -0.09546513855457306, 0.2870890498161316, -0.003681677393615246, -0.10188078880310059, 0.006772687193006277, -0.00626329192891717, -0.025674402713775635, 0.10473046451807022, -0.1663181632757187, -0.03968709334731102, 0.04126434773206711, 0.0690944492816925, 0.0628073513507843, -0.11723797768354416, -0.0002700973127502948, -0.013244579546153545, -0.1491040140390396, -0.14722265303134918, 0.08863811939954758, -0.046504825353622437, 0.06696342676877975, -0.10936448723077774, -0.010262926109135151, 0.01380175445228815, -0.053272899240255356, -0.1704721599817276, 0.13116271793842316, -0.08215022087097168, -0.24205787479877472, -0.11944402009248734, -0.043299127370119095, -0.015156053937971592, 0.024804383516311646, 0.08362110704183578, -0.172432079911232, -0.011422621086239815, -0.031086908653378487, 0.09732142835855484, -0.018751630559563637, 0.01644846983253956, -0.06981334090232849, 0.03345280885696411, 0.064335398375988, -0.11112001538276672, 0.018789876252412796, -0.053099725395441055, -0.04359360411763191, 0.04772832244634628, -0.008981109596788883, 0.019522739574313164, 0.14662247896194458, 0.01680872216820717, -0.01707221195101738, -0.02950223721563816, 0.15645553171634674, -0.09724617004394531, -0.03301534056663513, 0.15010780096054077, -0.0043862550519406796, -0.04188377037644386, 0.13579431176185608, 0.010865295305848122, -0.04168309271335602, 0.0463617779314518, -0.0026561361737549305, -0.115826815366745, -0.2501778304576874, -0.08892077207565308, -0.08677023649215698, -0.05481743812561035, -0.04857135936617851, 0.018622415140271187, 0.0867525115609169, 0.022849787026643753, -0.03389075770974159, -0.02458789385855198, 0.037296146154403687, -0.003972796257585287, 0.0755467563867569, 0.033196453005075455, 0.07040969282388687, -0.07333328574895859, -0.021093904972076416, 0.0064055416733026505, 0.026560962200164795, 0.18888969719409943, 0.06744097918272018, 0.07317199558019638, 0.07804643362760544, 0.12142790853977203, 0.1482841968536377, 0.0405973382294178, -0.051843248307704926, -0.031666453927755356, 0.030048340559005737, -0.0637696385383606, -0.001484240172430873, 0.05976090580224991, 0.14677099883556366, -0.021751515567302704, -0.03192053362727165, -0.00724955927580595, 0.03496750071644783, 0.1503351479768753, 0.05744362249970436, -0.1482129991054535, -0.08716771751642227, -0.008455565199255943, -0.07583710551261902, 0.02710849978029728, 0.048404376953840256, 0.15152011811733246, -0.1684197634458542, 0.03882509097456932, -0.016588907688856125, 0.07427829504013062, 0.030961040407419205, 0.014488845132291317, -0.10706070065498352, 0.022247739136219025, -0.006471462547779083, 0.0955025926232338, -0.3519769608974457, 0.24418768286705017, 0.011049909517168999, 0.09155470132827759, -0.0503934845328331, -0.012128854170441628, 0.03577863425016403, 0.0017625160980969667, 0.1005624458193779, 0.017696576192975044, -0.05050358548760414, -0.09618936479091644, -0.09751744568347931, 0.06724561750888824, -0.012285476550459862, 0.06285818666219711, 0.0636506974697113, 0.02247077226638794, -0.009427732788026333, 0.013735233806073666, -0.016988644376397133, -0.1611647754907608, -0.05472500994801521, -0.0052218129858374596, 0.15007588267326355, 0.09729781746864319, -0.005193311721086502, -0.0743437185883522, -0.08288202434778214, 0.021100899204611778, -0.1106816977262497, -0.07909137010574341, -0.043305572122335434, -0.014844289049506187, 0.13407669961452484, -0.08437715470790863, -0.0056982748210430145, 0.07267071306705475, 0.11004413664340973, -0.014814440160989761, -0.06739646941423416, 0.01790602318942547, -0.11141771823167801, -0.12069708108901978, -0.006436731666326523, 0.16800197958946228, 0.13077571988105774, 0.13047188520431519, 0.04199781268835068, -0.00757349468767643, 0.002973362570628524, -0.05790959298610687, -0.026124371215701103, 0.08023349195718765, -0.12616032361984253, -0.02111581154167652, 0.022916577756404877, -0.1485505849123001, -0.12637537717819214, -0.10116548091173172, 0.17307937145233154, 0.09578397870063782, -0.06449272483587265, 0.21921294927597046, 0.21658937633037567, -0.09784001857042313, -0.17176280915737152, -0.013459415175020695, 0.1053466796875, 0.12356294691562653, -0.003404395654797554, -0.19167037308216095, 0.05900217220187187, -0.01796097867190838, -0.027638651430606842, -0.04457294940948486, -0.28486064076423645, -0.1650821566581726, 0.14496098458766937, -0.058017708361148834, 0.1434764713048935, -0.015314595773816109, -0.02675657905638218, -0.027073048055171967, 0.013889603316783905, 0.019436800852417946, -0.08391489833593369, 0.11869186908006668, 0.019158780574798584, 0.1260984241962433, 0.04617106541991234, -0.021922463551163673, 0.13219788670539856, 0.09832800924777985, -0.0114052202552557, -0.020213093608617783, 0.06654848158359528, 0.05302376672625542, 0.016613561660051346, 0.11774501204490662, -0.08969864994287491, 0.011843593791127205, -0.1163916066288948, -0.10411972552537918, -0.08111368119716644, 0.06098564714193344, 0.02488335594534874, -0.08012192696332932, -0.007293160073459148, -0.014698619022965431, 0.06189928203821182, -0.004878931678831577, 0.013024501502513885, -0.10565156489610672, 0.04813486337661743, 0.08873016387224197, 0.1716083586215973, 0.009652354754507542, -0.03558381646871567, -0.010359877720475197, -0.018102163448929787, 0.10002446174621582, -0.09011957049369812, 0.018185291439294815, 0.06308651715517044, 0.02407977357506752, 0.12656676769256592, -0.007663247641175985, -0.09302042424678802, 0.14601187407970428, 0.04066493734717369, -0.050393953919410706, -0.08849916607141495, 0.0010547013953328133, -0.05220717936754227, -0.014538104645907879, -0.022739065811038017, 0.07950093597173691, -0.10947258770465851, -0.013951746746897697, -0.015430757775902748, 0.011980963870882988, -0.10153956711292267, 0.17977769672870636, 0.0235875453799963, 0.0690438523888588, -0.0976153165102005, 0.032261092215776443, 0.008909239433705807, -0.02745656669139862, 0.04584583640098572, -0.02959536388516426, -0.0801132544875145, -0.025870218873023987, -0.011101976037025452, 0.07339935004711151, -0.0003277123032603413, -0.1437099426984787, -0.05995647609233856, -0.0829646959900856, -0.015288673341274261, 0.05938981845974922, 0.04552134871482849, -0.002186030615121126, -0.06744587421417236, -0.03468673676252365, -0.10575557500123978, 0.059181880205869675, 0.06827625632286072, -0.028969595208764076, -0.10057386755943298, 0.15243110060691833, 0.08105934411287308, 0.06872888654470444, -0.05393684282898903, -0.08598951250314713, -0.013211928308010101, 0.09845994412899017, -0.13828180730342865, 0.014283166266977787, -0.09925093501806259, -0.007299127522855997, -0.03325030952692032, -0.10096028447151184, -0.03220983222126961, 0.07046518474817276, -0.09980461746454239, 0.08605203777551651, -0.02044651471078396, 0.0727880448102951, -0.05947161838412285, 0.011710179969668388, 0.023632792755961418, -0.03650713339447975, 0.07750652730464935, 0.1890401840209961, -0.07878388464450836, 0.1572858691215515, -0.22482985258102417, -0.011592463590204716, 0.04877939447760582, 0.056388773024082184, -0.020797191187739372, -0.07998858392238617, 0.02192484773695469, 0.07755034416913986, 0.06548842042684555, -0.005909075029194355, 0.06377988308668137, -0.07483913004398346, -0.04541987180709839, -0.11617246270179749, 0.004521696362644434, -0.05653151124715805, 0.06180763244628906, 0.032281070947647095, 0.14241015911102295, 0.14647068083286285, -0.1393367052078247, 0.09196286648511887, -0.1068887785077095, -0.004975020419806242, -0.07158549875020981, -0.0007014681468717754, -0.12844540178775787, -0.0898728296160698, 0.06739313900470734, -0.0592215433716774, 0.16917529702186584, 0.024187974631786346, 0.08147362619638443, -0.03550585359334946, -0.1286374032497406, 0.049035727977752686, -0.02443806454539299, 0.25690388679504395, 0.06475333869457245, 0.04247212037444115, 0.005410278216004372, 0.0044077252969145775, 0.027501896023750305, 0.10263626277446747, 0.025983553379774094, 0.13651396334171295, 0.027172040194272995, 0.0976254865527153, 0.04443526640534401, -0.06504984945058823, -0.05655040591955185, -0.04528380557894707, -0.18038693070411682, 0.006819078233093023, -0.061121441423892975, 0.178135484457016, 0.18862004578113556, -0.10859997570514679, 0.08987637609243393, 0.027295902371406555, -0.08364257961511612, -0.14386610686779022, -0.13897553086280823, -0.08317063003778458, -0.15531380474567413, 0.04338439926505089, -0.095174640417099, 0.03133165091276169, 0.07072615623474121, 0.06938821077346802, -0.0305497907102108, 0.16903431713581085, 0.06054859608411789, -0.11055532842874527, 0.0581863671541214, -0.07270856201648712, -0.02070237696170807, -0.06427248567342758, 0.028705505654215813, 0.15548917651176453, -0.04154073819518089, 0.02101273648440838, 0.01289990171790123, -0.03614503890275955, 0.022748487070202827, -0.06475324928760529, -0.05579446256160736, -0.01458226703107357, -0.010436274111270905, 0.1358509361743927, 0.12397404760122299, 0.11628337949514389, -0.06861180067062378, -0.022724583745002747, 0.12990640103816986, -0.011323162354528904, -0.12471030652523041, -0.1442445069551468, 0.145772784948349, 0.006048707757145166, -0.0034546037204563618, -0.004236544016748667, -0.0400572307407856, -0.037691473960876465, 0.2424168437719345, 0.21517281234264374, 0.08115749806165695, 0.02841215394437313, -0.056663427501916885, -0.009512602351605892, -0.026117421686649323, 0.08832844346761703, 0.07664259523153305, 0.24494785070419312, -0.02560313045978546, -0.004643742926418781, -0.11758095771074295, -0.06310644000768661, 0.012265452183783054, 0.08818616718053818, -0.068210169672966, -0.09389668703079224, -0.008215093985199928, 0.13298296928405762, -0.12215914577245712, -0.09708841145038605, -0.11081928759813309, -0.08011370152235031, -0.08230537921190262, 0.014754462987184525, 0.01898024044930935, 0.14295729994773865, -0.01720048114657402, -0.08349547535181046, 0.05126234516501427, 0.06719779223203659, 0.02066487818956375, -0.04779916629195213, -0.06457529962062836, 0.07716672122478485, -0.004281381145119667, 0.0554845966398716, -0.007505690213292837, 0.15716150403022766, 0.018351949751377106, 0.09761478751897812, -0.015511278994381428, 0.16262437403202057, 0.03130755573511124, -0.06922829151153564, 0.037132687866687775, 0.1696930229663849, -0.010212907567620277, 0.14093562960624695, 0.025685368105769157, -0.01217638235539198, 0.06552877277135849, -0.13861434161663055, 0.02141137234866619, -0.10235472768545151, 0.0718948170542717, -0.04979386180639267, 0.08321930468082428, 0.10776592791080475, -0.07419620454311371, -0.04940559342503548, -0.06864555925130844, 0.0586756207048893, 0.002749947365373373, -0.09418690204620361, -0.0655861496925354, -0.2318473756313324, 0.012587416917085648, -0.05028709024190903, -0.02368585765361786, -0.1976454257965088, -0.040913552045822144, -0.027923816815018654, -0.0807121992111206, 0.020231034606695175, 0.031957272440195084, 0.05965031683444977, 0.01805415190756321, 0.003894777037203312, 0.006827380508184433, 0.044777367264032364, 0.10770941525697708, -0.1930607557296753, -0.12528489530086517 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Romanian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Romanian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ro", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-romanian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-romanian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Romanian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/ro.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-romanian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-romanian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/ro/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/ro/clips/" def clean_sentence(sent): sent = sent.lower() # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 24.84 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "ro", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Romanian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ro", "type": "common_voice", "args": "ro"}, "metrics": [{"type": "wer", "value": 24.84, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anton-l/wav2vec2-large-xlsr-53-romanian
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ro", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ro" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ro #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Romanian Fine-tuned facebook/wav2vec2-large-xlsr-53 on Romanian using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Romanian test data of Common Voice. Test Result: 24.84 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Romanian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romanian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Romanian test data of Common Voice.\n\n\n\nTest Result: 24.84 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ro #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Romanian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romanian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Romanian test data of Common Voice.\n\n\n\nTest Result: 24.84 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 80, 65, 20, 28, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ro #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Romanian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romanian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Romanian test data of Common Voice.\n\n\n\nTest Result: 24.84 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.1451476812362671, 0.026251599192619324, -0.0026156497187912464, -0.014674813486635685, 0.0875137597322464, -0.05461389943957329, 0.19055293500423431, 0.0805862694978714, -0.0015180613845586777, 0.0027262908406555653, 0.04658094048500061, -0.041926298290491104, 0.028387926518917084, 0.07056168466806412, 0.004258234519511461, -0.19628486037254333, 0.05222528427839279, 0.005118597764521837, 0.031243355944752693, 0.08442553877830505, 0.10110621899366379, -0.080299012362957, -0.004407085012644529, 0.09544508904218674, -0.12465604394674301, 0.07281389832496643, 0.033474672585725784, -0.12051547318696976, 0.1540348082780838, 0.0932830348610878, 0.04615047201514244, 0.05217859148979187, 0.10739639401435852, -0.1592843234539032, 0.014044741168618202, 0.018113888800144196, 0.008132020011544228, 0.021008756011724472, 0.07309368997812271, -0.030628060922026634, 0.10114236921072006, 0.07455972582101822, -0.019707757979631424, 0.062287069857120514, -0.038774121552705765, -0.18619093298912048, -0.009408744052052498, 0.039972640573978424, 0.08414143323898315, 0.15530696511268616, -0.06949734687805176, 0.13650229573249817, -0.17250363528728485, 0.07255073636770248, 0.06312002241611481, -0.19516149163246155, -0.008325531147420406, 0.019568821415305138, 0.01985096000134945, 0.09350980818271637, -0.03348568081855774, 0.060588348656892776, 0.02470395527780056, 0.029040135443210602, -0.00040500526665709913, -0.01329735480248928, -0.22974810004234314, -0.043496038764715195, -0.14177244901657104, -0.04897737130522728, 0.19665762782096863, 0.01632118411362171, -0.06146515905857086, -0.11555434763431549, -0.014549775049090385, 0.023709068074822426, -0.027143336832523346, -0.03529675304889679, -0.022448118776082993, 0.026187265291810036, -0.008415567688643932, -0.02281566523015499, -0.10546551644802094, -0.1279989331960678, 0.014209025539457798, 0.12193562835454941, 0.030200133100152016, 0.01843012124300003, -0.10089260339736938, 0.056149277836084366, -0.07393550127744675, -0.061310332268476486, 0.03202128782868385, 0.04646993800997734, -0.06698990613222122, 0.013433888554573059, -0.07244226336479187, -0.1542399823665619, 0.041539695113897324, -0.015706341713666916, 0.04047355055809021, 0.009880800731480122, -0.012566027231514454, 0.06394021958112717, 0.014904561452567577, 0.12834987044334412, -0.09817992895841599, -0.05264713615179062, 0.025274015963077545, -0.011803407222032547, -0.042583487927913666, -0.023782122880220413, -0.08409320563077927, -0.09826479852199554, 0.0027085398323833942, 0.048877451568841934, -0.024696189910173416, 0.0021049908827990294, 0.009411418810486794, -0.03472243249416351, 0.003240308491513133, -0.08700602501630783, -0.03654315695166588, 0.07015229761600494, -0.013218632899224758, 0.1633673459291458, 0.02342074364423752, 0.05413374304771423, -0.11254559457302094, -0.02195098251104355, 0.021747605875134468, 0.036750927567481995, -0.010921732522547245, -0.12150294333696365, 0.017890384420752525, -0.017468910664319992, -0.00533634889870882, -0.08136224001646042, -0.01969844661653042, -0.06267249584197998, 0.008769997395575047, 0.011514418758451939, -0.028446976095438004, -0.09646162390708923, 0.0006283078691922128, -0.0012028072960674763, -0.03945311903953552, 0.010407033376395702, -0.021804265677928925, 0.05168195068836212, -0.003472001990303397, 0.032303500920534134, -0.010106864385306835, 0.08822417259216309, -0.11155176162719727, -0.05598064512014389, -0.0013101797085255384, 0.12417671829462051, -0.04560587927699089, -0.009373120032250881, -0.1001461073756218, -0.05854398012161255, -0.030567901208996773, 0.05282869189977646, 0.07084864377975464, 0.10894864052534103, -0.2355591356754303, -0.09383676946163177, 0.18932539224624634, -0.13975653052330017, -0.0026577957905828953, 0.24520540237426758, 0.0011982216965407133, 0.07784382253885269, 0.1470160037279129, 0.23136967420578003, 0.12417355924844742, -0.16368907690048218, 0.029121126979589462, -0.010881505906581879, -0.0034820756409317255, -0.04970445856451988, 0.07987731695175171, -0.07305415719747543, 0.00975455716252327, 0.03446003422141075, -0.09401314705610275, 0.0971258357167244, -0.02835526131093502, -0.05536862835288048, -0.027348678559064865, -0.07129905372858047, 0.0636352077126503, 0.05493312329053879, 0.04904559627175331, -0.020925668999552727, -0.06908170133829117, 0.0618785098195076, 0.13482800126075745, -0.1607324331998825, 0.050973132252693176, -0.11839671432971954, 0.1777021288871765, -0.09125809371471405, -0.012440814636647701, -0.13325099647045135, 0.19557110965251923, -0.013131646439433098, 0.07926362007856369, 0.0756542906165123, 0.16621695458889008, 0.021527277305722237, 0.009570474736392498, -0.030183302238583565, -0.0020533930510282516, -0.014444662258028984, -0.0170186348259449, -0.021624740213155746, -0.12520574033260345, -0.008397061377763748, -0.04673478379845619, 0.11836481839418411, -0.16811777651309967, -0.01816866546869278, 0.02808963507413864, 0.03745038062334061, -0.009196203202009201, 0.005804117303341627, 0.009756220504641533, 0.09700509905815125, -0.001187682501040399, 0.015273552387952805, 0.051564741879701614, -0.017975008115172386, -0.018836816772818565, 0.11240821331739426, -0.10145383328199387, -0.016855260357260704, 0.10875595360994339, -0.08348234742879868, -0.022677868604660034, 0.0723268911242485, -0.007822458632290363, 0.00813757162541151, -0.06736332178115845, 0.010283692739903927, 0.29547783732414246, -0.011401894502341747, 0.12114959210157394, -0.08660703152418137, 0.04141237586736679, 0.04819396510720253, -0.06763384491205215, 0.027288177981972694, 0.08392953127622604, 0.09514303505420685, 0.007426992058753967, 0.028440235182642937, -0.04884063079953194, -0.11431464552879333, 0.23818394541740417, -0.020559901371598244, -0.13525275886058807, 0.04258335381746292, -0.013584615662693977, -0.014785400591790676, 0.09671860188245773, -0.1725359708070755, -0.01418462023139, 0.022955013439059258, 0.04353402182459831, 0.08551643788814545, -0.12640121579170227, 0.025959482416510582, 0.0002458368835505098, -0.12609419226646423, -0.1974055916070938, 0.06209803372621536, -0.05385046824812889, 0.05210069939494133, -0.0893610417842865, -0.06112033873796463, -0.00611067796126008, -0.015702180564403534, -0.16377614438533783, 0.10764973610639572, -0.051544949412345886, -0.2002895474433899, -0.18808990716934204, 0.038354746997356415, -0.019432159140706062, -0.0012036985717713833, 0.06625868380069733, -0.12039720267057419, -0.02974654734134674, -0.022336238995194435, 0.13631446659564972, -0.025277866050601006, -0.03577746823430061, -0.055995386093854904, 0.04824436455965042, 0.06320837140083313, -0.11577866226434708, 0.01640002243220806, -0.0766499936580658, -0.013840201310813427, -0.01984528638422489, -0.03171698749065399, 0.022972440347075462, 0.16384117305278778, -0.015038497745990753, 0.02225176990032196, 0.004104046616703272, 0.2197033315896988, -0.11270952969789505, -0.0378793329000473, 0.1754838228225708, -0.024468548595905304, -0.030979590490460396, 0.13248926401138306, 0.04659484326839447, -0.03422180190682411, -0.032250117510557175, -0.0036119783762842417, -0.06810018420219421, -0.21508732438087463, -0.16406908631324768, -0.07018275558948517, -0.10565788298845291, -0.021562781184911728, 0.00725415488705039, 0.03357568755745888, 0.03212757036089897, -0.04224780946969986, -0.07258004695177078, 0.024492207914590836, -0.016520986333489418, 0.18354998528957367, 0.010872443206608295, 0.07437781244516373, -0.07729087769985199, -0.06269684433937073, 0.012553364969789982, 0.0017260420136153698, 0.18855156004428864, 0.05492386594414711, 0.09041552990674973, 0.06346385926008224, 0.1192682683467865, 0.13836736977100372, 0.07349372655153275, -0.04904801771044731, -0.03484528884291649, 0.017963798716664314, -0.05151025205850601, 0.0013618589146062732, 0.012636839412152767, 0.14720018208026886, -0.054784175008535385, -0.055077288299798965, -0.04816482588648796, 0.02391601726412773, 0.25844788551330566, 0.06903170049190521, -0.20592162013053894, -0.08991813659667969, -0.03720040246844292, -0.07426873594522476, 0.0034677181392908096, 0.014206497929990292, 0.13974139094352722, -0.12365619093179703, 0.011718020774424076, 0.013472124934196472, 0.08712217956781387, -0.004906340967863798, 0.014668990857899189, -0.12903177738189697, 0.017418282106518745, -0.0022910526022315025, 0.10403262823820114, -0.1986664980649948, 0.24326051771640778, 0.008334293030202389, 0.11616884917020798, -0.048434700816869736, 0.005878186319023371, -0.008909732103347778, 0.1273285150527954, 0.08638254553079605, 0.017681146040558815, 0.03897112235426903, -0.10355373471975327, -0.09913188219070435, 0.07783462107181549, -0.03837719187140465, 0.04025671258568764, 0.05954978987574577, -0.014039909467101097, -0.0005787078989669681, 0.0018196373712271452, -0.054792944341897964, -0.14606726169586182, -0.08612137287855148, 0.014151564799249172, 0.14894695580005646, 0.07179427891969681, 0.011497028172016144, -0.11139337718486786, -0.1147930845618248, 0.0714295357465744, -0.07390078902244568, -0.03513514995574951, -0.06630346924066544, -0.05326629802584648, 0.14448612928390503, -0.07219776511192322, 0.006148111540824175, 0.0715658962726593, 0.11746846139431, -0.04367995634675026, -0.038238294422626495, 0.03102867491543293, -0.11419548094272614, -0.09528349339962006, 0.0004760999872814864, 0.15781576931476593, 0.12083734571933746, 0.08453286439180374, 0.06965988874435425, 0.005932554602622986, 0.0037177165504544973, -0.04513882100582123, -0.02765730582177639, 0.09298652410507202, -0.18776434659957886, -0.04239070042967796, -0.002868426963686943, -0.23393940925598145, -0.12790770828723907, -0.04873964190483093, 0.21503184735774994, 0.08529967814683914, -0.08469695597887039, 0.18548037111759186, 0.24531890451908112, -0.08176157623529434, -0.1803063154220581, 0.0036293924786150455, 0.09690997749567032, 0.1383567750453949, 0.0004989510052837431, -0.17868655920028687, 0.05034087970852852, -0.03429044410586357, -0.034605927765369415, -0.0663936510682106, -0.2680811583995819, -0.12828713655471802, 0.18124715983867645, -0.028715578839182854, 0.1751166433095932, 0.03941960260272026, 0.0006228804122656584, -0.018699871376156807, 0.03706008195877075, 0.02702639065682888, -0.0784023329615593, 0.07850410789251328, 0.04145491495728493, 0.10244480520486832, 0.059492725878953934, -0.011566240340471268, 0.09697356820106506, 0.057551026344299316, -0.044916242361068726, 0.009405088610947132, 0.06363515555858612, 0.0690951719880104, 0.044499270617961884, 0.11782155185937881, -0.06425841897726059, 0.011120964772999287, -0.11583229154348373, -0.10335300117731094, -0.059064313769340515, 0.06463029980659485, 0.02046055905520916, -0.015271595679223537, 0.042774468660354614, -0.04836130887269974, 0.015830019488930702, 0.011021015234291553, -0.0734366774559021, -0.12586259841918945, 0.003635051427409053, 0.0995989516377449, 0.1638689935207367, -0.05174381658434868, -0.06206398084759712, 0.014821424148976803, -0.030826786532998085, 0.12255530804395676, -0.05022582784295082, 0.04642616584897041, 0.07119150459766388, 0.033606287091970444, 0.09666614234447479, -0.0007640371914021671, -0.11363358050584793, 0.08735278993844986, 0.047622598707675934, -0.0661449208855629, -0.09578133374452591, -0.02088993601500988, -0.07535082846879959, -0.01782960258424282, 0.026471110060811043, 0.12657557427883148, -0.11575601249933243, -0.015836944803595543, -0.034170400351285934, -0.021976754069328308, -0.11879266053438187, 0.1968992054462433, 0.007804433815181255, 0.04579291492700577, -0.11484041064977646, 0.001623661839403212, 0.02222430892288685, -0.0670328289270401, 0.03845880180597305, -0.02910483069717884, -0.08448929339647293, -0.06714484840631485, -0.022581666707992554, 0.043137647211551666, 0.0075750830583274364, -0.1593252569437027, -0.09825185686349869, -0.10854079574346542, 0.0013485056115314364, 0.07746222615242004, 0.058226894587278366, -0.027520304545760155, -0.1371447741985321, -0.1005648821592331, -0.12784279882907867, 0.040479887276887894, 0.09243243932723999, -0.05829263851046562, -0.09267593175172806, 0.1696869134902954, 0.09857270121574402, -0.003658776869997382, -0.0523827001452446, -0.08147266507148743, 0.003391479142010212, 0.0844087153673172, -0.10890544205904007, -0.014389127492904663, -0.03126485273241997, 0.023562707006931305, -0.01753491722047329, -0.07944580912590027, -0.03328289836645126, 0.061779242008924484, -0.10868941247463226, 0.0785231813788414, 0.0032317519653588533, 0.06676928699016571, -0.05529617890715599, 0.06258679181337357, 0.03157283738255501, -0.049678072333335876, 0.09429395198822021, 0.12489373236894608, -0.09031921625137329, 0.12678301334381104, -0.21505890786647797, -0.0691489428281784, 0.020179802551865578, 0.06837047636508942, -0.0004340113664511591, -0.06866426020860672, 0.05485377833247185, 0.0946042612195015, 0.07159898430109024, 0.005368292797356844, 0.08163313567638397, -0.03908194974064827, 0.0000810147394076921, -0.04665693640708923, -0.040786683559417725, -0.023991486057639122, 0.06038520112633705, 0.04669380187988281, 0.13418899476528168, 0.14461550116539001, -0.09732409566640854, 0.10239651799201965, -0.08548527210950851, 0.023188883438706398, -0.0667981505393982, 0.01340470276772976, -0.14995147287845612, -0.07048550993204117, 0.05623941496014595, -0.028577148914337158, 0.14062057435512543, 0.040026258677244186, 0.11386147141456604, -0.01801426149904728, -0.07211856544017792, 0.006889369338750839, -0.010489778593182564, 0.22416098415851593, 0.06335610151290894, 0.07076454907655716, -0.08262766152620316, -0.014129101298749447, 0.004136199131608009, 0.13935339450836182, -0.04844309017062187, 0.14967651665210724, -0.017635473981499672, 0.07232625037431717, 0.0950506180524826, -0.058448925614356995, -0.02971401996910572, -0.011691359803080559, -0.132081538438797, 0.03413556143641472, -0.07764363288879395, 0.2042664736509323, 0.17120574414730072, -0.05838659778237343, 0.05650279298424721, 0.025753000751137733, -0.07819607108831406, -0.14611032605171204, -0.10394876450300217, -0.05974908173084259, -0.1845182478427887, 0.037520091980695724, -0.0698074921965599, 0.02378573827445507, 0.0675153061747551, 0.049653321504592896, -0.053356096148490906, 0.10638818889856339, 0.03458084166049957, -0.10820610821247101, 0.06242427974939346, -0.07363589853048325, 0.0012855679960921407, -0.08617605268955231, 0.03208707645535469, 0.1439523845911026, 0.010240159928798676, 0.05256599932909012, 0.014195921830832958, -0.055923089385032654, 0.02165803499519825, -0.07717518508434296, -0.042723797261714935, -0.025967827066779137, -0.030753199011087418, 0.08437582105398178, 0.17838962376117706, 0.11417385190725327, -0.07583623379468918, -0.028279365971684456, 0.08992603421211243, -0.020983899012207985, -0.13647405803203583, -0.17748615145683289, 0.1098918691277504, 0.029836658388376236, 0.03713664412498474, -0.01090295147150755, -0.031333066523075104, -0.030303191393613815, 0.2679857611656189, 0.22661636769771576, 0.07995722442865372, 0.01945669949054718, -0.031168194487690926, -0.011432457715272903, -0.03237859159708023, 0.07120554894208908, 0.03235044330358505, 0.27167192101478577, -0.04004308953881264, -0.007637819740921259, -0.1349581778049469, -0.04676533862948418, -0.01346513256430626, 0.08080799877643585, -0.06016402691602707, -0.10935907065868378, -0.005271032452583313, 0.1597886085510254, -0.07032445818185806, -0.0691215991973877, -0.1211681142449379, -0.1180364340543747, -0.09967149049043655, -0.02255817875266075, -0.006776245776563883, 0.10229405015707016, 0.020166469737887383, -0.09097801148891449, 0.015885798260569572, 0.13522349298000336, -0.00395344290882349, -0.0676364079117775, -0.08559912443161011, 0.08086120337247849, -0.0938572809100151, 0.056122247129678726, -0.012491599656641483, 0.16533099114894867, 0.024083850905299187, 0.11584725230932236, -0.008338713087141514, 0.13312670588493347, -0.028329724445939064, -0.06536652147769928, 0.04027407988905907, 0.11121749877929688, -0.03991442173719406, 0.1312757283449173, 0.02052551880478859, -0.09964890778064728, 0.10654383897781372, -0.20786798000335693, -0.004845696501433849, -0.05735671892762184, 0.08383536338806152, -0.039098478853702545, 0.07920515537261963, 0.10081277787685394, -0.06449609249830246, -0.06079583242535591, -0.07616705447435379, 0.06191301718354225, 0.038464080542325974, -0.08777663856744766, -0.05194691941142082, -0.275260329246521, 0.013982521370053291, -0.09990429878234863, -0.043265968561172485, -0.2204829603433609, -0.025695335119962692, -0.01918877847492695, -0.06188188120722771, 0.009451345540583134, 0.011048229411244392, 0.10791318118572235, -0.0007009683758951724, 0.004573167767375708, 0.021393802016973495, 0.032159242779016495, 0.08682005852460861, -0.13727633655071259, -0.09381616115570068 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Russian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Russian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ru", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-russian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-russian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Russian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/ru.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-russian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-russian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/ru/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/ru/clips/" def clean_sentence(sent): sent = sent.lower() # these letters are considered equivalent in written Russian sent = sent.replace('ё', 'е') # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) # free up some memory del model del processor del cv_test print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 17.39 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "ru", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Russian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ru", "type": "common_voice", "args": "ru"}, "metrics": [{"type": "wer", "value": 17.39, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anton-l/wav2vec2-large-xlsr-53-russian
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ru", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ru #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
# Wav2Vec2-Large-XLSR-53-Russian Fine-tuned facebook/wav2vec2-large-xlsr-53 on Russian using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Russian test data of Common Voice. Test Result: 17.39 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Russian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Russian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Russian test data of Common Voice.\n\n\n\n\nTest Result: 17.39 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ru #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "# Wav2Vec2-Large-XLSR-53-Russian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Russian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Russian test data of Common Voice.\n\n\n\n\nTest Result: 17.39 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 84, 64, 20, 27, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ru #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n# Wav2Vec2-Large-XLSR-53-Russian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Russian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Russian test data of Common Voice.\n\n\n\n\nTest Result: 17.39 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.12814460694789886, 0.0021636486053466797, -0.002336677396669984, -0.03343189135193825, 0.09441069513559341, -0.04468809440732002, 0.2209973931312561, 0.08075679838657379, 0.004928382113575935, -0.011842259205877781, 0.06015389412641525, -0.06628983467817307, 0.02753954380750656, 0.1327437162399292, 0.006786101497709751, -0.20731230080127716, 0.008022580295801163, -0.025622926652431488, 0.0278788935393095, 0.11057115346193314, 0.11761642247438431, -0.08515875041484833, -0.02004239335656166, 0.07294482737779617, -0.13509269058704376, 0.06857862323522568, 0.063272625207901, -0.11744900792837143, 0.13071510195732117, 0.09145831316709518, 0.06373310834169388, 0.04870538413524628, 0.06843923777341843, -0.196180522441864, 0.025388062000274658, 0.029473530128598213, -0.005484814755618572, 0.018517229706048965, 0.0696844607591629, -0.026369262486696243, 0.1339244395494461, 0.038762226700782776, -0.04632638767361641, 0.07632414996623993, -0.05905676260590553, -0.19336169958114624, -0.01843346655368805, 0.03279702365398407, 0.08015596866607666, 0.1657327562570572, -0.08329807966947556, 0.10058518499135971, -0.13293154537677765, 0.10161609202623367, 0.10341940820217133, -0.21564914286136627, -0.011970044113695621, 0.09897170215845108, 0.014110244810581207, 0.09983944892883301, -0.04866480827331543, 0.06995199620723724, 0.039357371628284454, 0.0015164926880970597, -0.008162721060216427, -0.01622694358229637, -0.19924163818359375, 0.0041311983950436115, -0.15338970720767975, -0.029899531975388527, 0.2270222157239914, -0.0004207630699966103, -0.03546895086765289, -0.1410640925168991, 0.00018443851149640977, -0.04636423662304878, -0.004373874980956316, -0.03538098186254501, -0.021977242082357407, 0.016684245318174362, -0.06148504838347435, -0.05963209643959999, -0.13967706263065338, -0.1399431973695755, 0.006179287098348141, 0.11357957124710083, 0.007157511543482542, 0.041047949343919754, -0.1129259318113327, 0.0544724240899086, -0.12642763555049896, -0.053920917212963104, 0.01201704703271389, -0.001824475359171629, -0.09767908602952957, 0.03286954388022423, -0.11700654774904251, -0.16411389410495758, 0.04748568683862686, -0.04276953265070915, 0.03624677285552025, 0.029150931164622307, 0.0027712818700820208, 0.0611838698387146, 0.025961702689528465, 0.13094757497310638, -0.06053021177649498, -0.010235668160021305, -0.013485659845173359, -0.034917544573545456, -0.05608631297945976, -0.016102323308587074, -0.0943373590707779, -0.08189745247364044, 0.011712008155882359, 0.054934918880462646, -0.041326068341732025, 0.00430706050246954, -0.00569376302883029, -0.012647349387407303, -0.007948869839310646, -0.0951504185795784, -0.020912043750286102, 0.06313494592905045, -0.0006145578809082508, 0.0777805745601654, 0.005408245604485273, 0.04879762977361679, -0.06859404593706131, -0.014461692422628403, 0.04734952747821808, 0.06582505255937576, -0.02636861987411976, -0.1302771270275116, -0.001969845499843359, -0.07208667695522308, 0.002788787940517068, -0.11192014813423157, -0.06467541307210922, -0.09377213567495346, -0.0038842391222715378, 0.023636939004063606, 0.005064983852207661, -0.08659786731004715, -0.04042981564998627, -0.006740994285792112, -0.060595136135816574, 0.04947077855467796, -0.045834437012672424, 0.04673594981431961, -0.013584690168499947, 0.0679268017411232, 0.05479736626148224, 0.0710390955209732, -0.09076642990112305, -0.08255719393491745, 0.049544647336006165, 0.15896369516849518, -0.056485578417778015, -0.07042839378118515, -0.08527203649282455, -0.0656878724694252, -0.06473594158887863, 0.07387694716453552, 0.06088525801897049, 0.10612965375185013, -0.26814958453178406, -0.0867827981710434, 0.183859720826149, -0.12449613958597183, 0.011048543266952038, 0.19282135367393494, -0.018819009885191917, 0.08046360313892365, 0.15464305877685547, 0.2505992352962494, 0.11137274652719498, -0.17331378161907196, -0.005629383493214846, -0.0069034406915307045, -0.037033695727586746, -0.0322650745511055, 0.05732779949903488, -0.03277449682354927, -0.00324450246989727, 0.02552666701376438, -0.042896632105112076, 0.055680178105831146, -0.041133105754852295, -0.07845359295606613, -0.019808195531368256, -0.08178102970123291, 0.07364910840988159, 0.027633050456643105, 0.029041895642876625, -0.05655054748058319, -0.08282794803380966, 0.028053071349859238, 0.10711738467216492, -0.1184384673833847, 0.0582706481218338, -0.11440730094909668, 0.03640615567564964, -0.05094707012176514, 0.0032693271059542894, -0.14445877075195312, 0.16608954966068268, -0.021079247817397118, 0.11489986628293991, 0.05915345251560211, 0.1939288228750229, 0.039827488362789154, -0.019174272194504738, -0.05434334650635719, -0.013628105632960796, -0.01546215545386076, -0.028731459751725197, -0.042322177439928055, -0.12889397144317627, -0.012457165867090225, -0.07194621860980988, 0.06675023585557938, -0.15219956636428833, -0.015498862601816654, 0.047554098069667816, 0.007185520604252815, 0.00918701570481062, 0.013363394886255264, 0.03394099697470665, 0.09442871809005737, -0.007295316085219383, 0.03366005793213844, 0.03849516063928604, -0.01830269768834114, -0.058310601860284805, 0.15310733020305634, -0.0980522558093071, -0.00565199414268136, 0.1139168068766594, -0.02249297872185707, -0.02686494030058384, 0.030314436182379723, -0.02272230200469494, 0.0006180331693030894, -0.052700649946928024, 0.006853033322840929, 0.2832493185997009, -0.012300470843911171, 0.07577076554298401, -0.08476091921329498, 0.019012993201613426, 0.04136515036225319, -0.09306599944829941, 0.01696639694273472, 0.08257196843624115, -0.014534701593220234, -0.0017732908017933369, 0.04063105583190918, -0.05877656862139702, -0.08500580489635468, 0.29746487736701965, -0.018076863139867783, -0.09953459352254868, 0.025113461539149284, -0.04321122169494629, -0.03966372460126877, 0.11385713517665863, -0.1348741352558136, -0.06113605573773384, 0.03146163374185562, 0.05056680738925934, 0.07869718223810196, -0.13979396224021912, 0.011414282955229282, -0.0022682086564600468, -0.14680515229701996, -0.15372471511363983, 0.07779405266046524, -0.04374633729457855, 0.05902904272079468, -0.10271964967250824, -0.027644941583275795, -0.007698156405240297, -0.05616072937846184, -0.1682441681623459, 0.10708055645227432, -0.08625870943069458, -0.21768952906131744, -0.134488046169281, 0.02197791263461113, 0.008452956564724445, 0.026474589481949806, 0.10765748471021652, -0.1762600839138031, -0.0031987500842660666, -0.036957740783691406, 0.11896952986717224, 0.00586501881480217, -0.008491214364767075, -0.072901152074337, 0.05265720933675766, 0.06255556643009186, -0.10562988370656967, 0.009764657355844975, -0.07456039637327194, -0.020933734253048897, 0.043563634157180786, 0.008451989851891994, 0.004210242070257664, 0.14741690456867218, 0.004695053678005934, 0.020465463399887085, -0.04830782860517502, 0.16803158819675446, -0.10822389274835587, -0.03369345888495445, 0.171355739235878, 0.012192939408123493, -0.040879059582948685, 0.10900861769914627, 0.010225262492895126, -0.048845719546079636, 0.017238736152648926, -0.012078340165317059, -0.08868193626403809, -0.24887627363204956, -0.15800096094608307, -0.07271304726600647, -0.04470628499984741, -0.027611015364527702, -0.0026318165473639965, 0.03947178274393082, 0.014286361634731293, -0.03925643116235733, -0.11946801841259003, 0.05461936444044113, -0.017569663003087044, 0.13235102593898773, -0.007384854834526777, 0.12141010165214539, -0.06213419884443283, -0.015706241130828857, 0.031188949942588806, -0.01827109232544899, 0.1891227662563324, 0.06265583634376526, 0.051168594509363174, 0.0807846412062645, 0.11461052298545837, 0.12402612715959549, 0.05151113122701645, 0.002237324370071292, -0.027933120727539062, 0.03174222633242607, -0.07026343792676926, -0.025438999757170677, 0.08361120522022247, 0.14990155398845673, -0.09931566566228867, -0.04390496388077736, -0.014014051295816898, 0.03756525367498398, 0.23013094067573547, 0.09718269854784012, -0.1807461678981781, -0.11948610097169876, -0.035650186240673065, -0.06631042063236237, 0.020808560773730278, 0.04933791980147362, 0.18320871889591217, -0.12465299665927887, 0.02327127754688263, 0.007059075869619846, 0.08958921581506729, 0.05252130329608917, 0.034934788942337036, -0.08795804530382156, 0.014379818923771381, -0.01093603577464819, 0.10664995014667511, -0.26411908864974976, 0.25201401114463806, -0.0013088794657960534, 0.10008730739355087, -0.06020635738968849, -0.027968252077698708, -0.008049605414271355, 0.044775646179914474, 0.08722435683012009, 0.010404523462057114, -0.03556341305375099, -0.09633318334817886, -0.08200179040431976, 0.05519210547208786, 0.016324903815984726, 0.04368443787097931, 0.05739358812570572, 0.001984511036425829, 0.0013046114472672343, 0.0176838431507349, -0.047318775206804276, -0.16190989315509796, -0.08523596078157425, -0.01773078367114067, 0.18108771741390228, 0.10244060307741165, -0.007313098758459091, -0.09881492704153061, -0.07698891311883926, 0.036483459174633026, -0.062216032296419144, -0.06102891266345978, -0.053971584886312485, -0.014637015759944916, 0.12990862131118774, -0.06610260903835297, 0.012923979200422764, 0.09917353093624115, 0.1160513386130333, -0.049452416598796844, -0.04535050690174103, 0.03529466688632965, -0.11844035983085632, -0.11828377842903137, 0.005360331851989031, 0.19573642313480377, 0.1295299232006073, 0.0865357294678688, 0.04169180244207382, 0.03699972480535507, -0.01371988095343113, -0.025841979309916496, 0.02689288929104805, 0.09170442074537277, -0.1116832047700882, 0.034829121083021164, 0.025743728503584862, -0.1653173267841339, -0.146038219332695, -0.06734952330589294, 0.1859729290008545, 0.09404004365205765, -0.1141270101070404, 0.23008006811141968, 0.1571774184703827, -0.08404543250799179, -0.21764469146728516, -0.003223360748961568, 0.12644192576408386, 0.15280190110206604, 0.0045216623693704605, -0.20083068311214447, 0.018163856118917465, -0.054352011531591415, -0.03310254216194153, -0.052218180149793625, -0.23641587793827057, -0.15578879415988922, 0.14365226030349731, -0.07915171980857849, 0.14485470950603485, 0.020639747381210327, -0.005620679352432489, -0.034025195986032486, 0.0710734874010086, 0.027322378009557724, -0.08053122460842133, 0.11484722793102264, 0.035223864018917084, 0.09758427739143372, 0.06734699010848999, -0.01428725104779005, 0.09204475581645966, 0.06136665493249893, -0.008087213151156902, -0.002056993544101715, 0.0735396072268486, 0.03828549012541771, 0.016750020906329155, 0.11402276903390884, -0.07567450404167175, 0.038094744086265564, -0.08797071874141693, -0.10421375930309296, -0.06122982129454613, 0.06805295497179031, 0.04032094404101372, -0.044771336019039154, -0.006701442878693342, -0.028868889436125755, 0.019867345690727234, -0.009283163584768772, -0.002409914042800665, -0.13485246896743774, 0.03369687870144844, 0.1525062769651413, 0.1688527911901474, -0.019308999180793762, -0.0725473165512085, 0.02075420320034027, -0.03389997035264969, 0.12894397974014282, -0.10904442518949509, 0.028192950412631035, 0.06881938129663467, 0.027257177978754044, 0.1039666160941124, -0.0042320601642131805, -0.10607652366161346, 0.06081124767661095, 0.0533427968621254, -0.10087990760803223, -0.11641030758619308, -0.03878220170736313, -0.04337407276034355, -0.0019529284909367561, 0.02253655344247818, 0.1454489678144455, -0.1297266185283661, 0.001882324693724513, -0.02688150852918625, 0.01702672615647316, -0.11323960870504379, 0.21340104937553406, 0.023424360901117325, 0.06964968144893646, -0.09840042144060135, 0.01947776973247528, -0.01646273024380207, -0.03322708234190941, 0.06835483759641647, -0.047792185097932816, -0.08040598779916763, -0.06408490240573883, -0.030516203492879868, 0.04825974628329277, 0.025310711935162544, -0.14584526419639587, -0.04862096905708313, -0.10389167815446854, 0.02294250577688217, 0.07133178412914276, 0.06446883827447891, -0.00899069756269455, -0.09658900648355484, -0.059092625975608826, -0.08784028887748718, 0.05814056098461151, 0.08868230879306793, -0.0548233799636364, -0.1254304200410843, 0.1741558462381363, 0.05371096730232239, 0.03970443457365036, -0.0599859245121479, -0.06088707223534584, -0.007835570722818375, 0.09083300083875656, -0.09458383172750473, -0.010828131809830666, -0.040070511400699615, -0.003104905830696225, -0.01077879685908556, -0.0735357478260994, -0.03408598154783249, 0.08566265553236008, -0.1015566810965538, 0.07492678612470627, -0.03527579456567764, 0.06648224592208862, -0.0792880579829216, 0.03920087218284607, -0.005252161528915167, -0.036800939589738846, 0.08871682733297348, 0.16769951581954956, -0.08654725551605225, 0.14028549194335938, -0.18210181593894958, -0.017488285899162292, 0.06827693432569504, 0.06333998590707779, -0.028973178938031197, -0.08584681153297424, 0.030732693150639534, 0.08291958272457123, 0.0706937238574028, 0.0037113958969712257, 0.07446294277906418, -0.05194208770990372, 0.005782718770205975, -0.07364468276500702, 0.015995439141988754, -0.02731134369969368, 0.05065390095114708, 0.04924589768052101, 0.1775275021791458, 0.1886376142501831, -0.1351625621318817, 0.11624440550804138, -0.1051056832075119, 0.018367527052760124, -0.06621924042701721, -0.03132379427552223, -0.12793047726154327, -0.07933685183525085, 0.08307655900716782, -0.05628899484872818, 0.16766391694545746, 0.07728084176778793, 0.027973975986242294, -0.013500213623046875, -0.10522278398275375, 0.025321492925286293, 0.003187893657013774, 0.22733749449253082, 0.04478280246257782, 0.03528029844164848, -0.04570557922124863, 0.012476126663386822, 0.022056160494685173, 0.12698133289813995, 0.0073097869753837585, 0.16255640983581543, 0.027468804270029068, 0.09441453963518143, 0.08422830700874329, -0.09241078048944473, 0.017829131335020065, -0.020219968631863594, -0.1724608838558197, 0.04362315312027931, -0.09734044969081879, 0.16291724145412445, 0.1622215062379837, -0.10104624927043915, 0.08683255314826965, 0.006149441469460726, -0.07833283394575119, -0.1511908918619156, -0.1123242899775505, -0.07879121601581573, -0.18817569315433502, 0.02666332758963108, -0.09382793307304382, 0.023468080908060074, 0.04317621514201164, 0.046289872378110886, -0.03157256171107292, 0.14382824301719666, 0.00547915231436491, -0.10550614446401596, 0.09326960891485214, -0.07774946093559265, -0.00557619147002697, -0.059197988361120224, 0.016755975782871246, 0.17294634878635406, -0.03487605229020119, 0.03149758651852608, 0.015303532592952251, -0.05653323978185654, 0.025746872648596764, -0.05815702676773071, -0.06851554661989212, -0.01360617857426405, 0.008133472874760628, 0.12029476463794708, 0.13905145227909088, 0.1192576140165329, -0.07125663757324219, -0.01824941672384739, 0.15663443505764008, -0.029683789238333702, -0.14336489140987396, -0.1364782601594925, 0.12964385747909546, 0.040249262005090714, 0.04867668077349663, -0.020759474486112595, -0.04424188658595085, -0.03783150017261505, 0.21829575300216675, 0.2964671552181244, 0.06491069495677948, 0.043327756226062775, -0.053992219269275665, 0.003485419787466526, -0.01652679219841957, 0.08103300631046295, 0.041138045489788055, 0.2023434340953827, -0.005120100453495979, 0.016733970493078232, -0.11320096254348755, -0.0515969842672348, -0.002239074558019638, 0.04979187995195389, -0.04561198502779007, -0.1317417174577713, 0.009050036780536175, 0.16730549931526184, -0.05723409727215767, -0.1044526919722557, -0.08601497858762741, -0.12230047583580017, -0.07887094467878342, 0.017468934878706932, 0.05951165407896042, 0.12167590111494064, 0.05182643607258797, -0.07693914324045181, 0.02999420091509819, 0.09645330905914307, 0.0007724211900494993, -0.07015819847583771, -0.056188419461250305, 0.05144498497247696, -0.09802600741386414, -0.012312833219766617, -0.022876350209116936, 0.1970718502998352, 0.014647887088358402, 0.09481092542409897, -0.011637795716524124, 0.137028768658638, -0.009019773453474045, -0.09971976280212402, 0.018419628962874413, 0.1172923818230629, -0.043163903057575226, 0.12191641330718994, 0.04539593309164047, -0.13947749137878418, 0.05521968752145767, -0.1421528458595276, 0.011195044964551926, -0.07266984134912491, 0.09407100081443787, -0.053329985588788986, 0.0644867941737175, 0.11033537238836288, -0.0756828784942627, -0.06284534186124802, -0.04066010192036629, 0.057812321931123734, 0.020675035193562508, -0.06474611163139343, -0.03253903612494469, -0.2511226236820221, -0.017833450809121132, -0.05288611352443695, -0.01747380942106247, -0.18034619092941284, -0.014473446644842625, -0.009521466679871082, -0.05709516257047653, 0.020784607157111168, 0.049611646682024, 0.08679722994565964, 0.0020873025059700012, 0.007172546349465847, -0.022721799090504646, 0.07243986427783966, 0.10485874861478806, -0.15757307410240173, -0.12488547712564468 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Sakha Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Sakha using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sah", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Sakha test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/sah.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/sah/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/sah/clips/" def clean_sentence(sent): sent = sent.lower() # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 32.23 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "sah", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Sakha XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice sah", "type": "common_voice", "args": "sah"}, "metrics": [{"type": "wer", "value": 32.23, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anton-l/wav2vec2-large-xlsr-53-sakha
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "sah", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "sah" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #sah #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Sakha Fine-tuned facebook/wav2vec2-large-xlsr-53 on Sakha using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Sakha test data of Common Voice. Test Result: 32.23 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Sakha\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Sakha using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Sakha test data of Common Voice.\n\n\n\nTest Result: 32.23 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #sah #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Sakha\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Sakha using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Sakha test data of Common Voice.\n\n\n\nTest Result: 32.23 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 80, 65, 20, 28, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #sah #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Sakha\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Sakha using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Sakha test data of Common Voice.\n\n\n\nTest Result: 32.23 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.1442311555147171, -0.02297801338136196, -0.0020131724886596203, -0.04146438464522362, 0.0880548357963562, -0.048915520310401917, 0.20784515142440796, 0.0700676441192627, 0.011963880620896816, -0.009759482927620411, 0.04019331559538841, -0.004002187866717577, 0.06671109050512314, 0.12070395797491074, -0.0046308874152600765, -0.213908851146698, 0.008862275630235672, -0.026033611968159676, 0.03185730054974556, 0.11256738752126694, 0.1021348088979721, -0.05960759148001671, 0.0019941646605730057, 0.08922166377305984, -0.13555048406124115, 0.03874214366078377, 0.061276666820049286, -0.12447891384363174, 0.1433722972869873, 0.09134320169687271, 0.06973957270383835, 0.05239059031009674, 0.09263934940099716, -0.18183784186840057, 0.03333747014403343, 0.029346095398068428, 0.04532986506819725, 0.026305630803108215, 0.02798987552523613, -0.004419646691530943, 0.1038828045129776, 0.08449151366949081, -0.04529574140906334, 0.08726302534341812, -0.0654875710606575, -0.17101246118545532, -0.022390490397810936, 0.001137837185524404, 0.1143229603767395, 0.1265156865119934, -0.07348737865686417, 0.07576646655797958, -0.12887850403785706, 0.07947412878274918, 0.0823541060090065, -0.1603952944278717, -0.012257459573447704, 0.09633081406354904, 0.033980242908000946, 0.10615720599889755, -0.05505780503153801, 0.06115180253982544, 0.04203550145030022, 0.02244861051440239, 0.026455985382199287, -0.03764936327934265, -0.202764093875885, 0.0008330788114108145, -0.12928368151187897, -0.038058459758758545, 0.2117694616317749, -0.00784677267074585, -0.08147315680980682, -0.1435210108757019, -0.030568769201636314, 0.010933692567050457, -0.010521486401557922, -0.046205777674913406, -0.010524870827794075, 0.026324544101953506, -0.008384499698877335, -0.02903263084590435, -0.1149647906422615, -0.17591474950313568, 0.0003303465782664716, 0.07998577505350113, 0.01377324853092432, 0.03445310890674591, -0.1485062688589096, 0.04213660582900047, -0.10715585201978683, -0.07834027707576752, -0.0011967499740421772, 0.0005921911215409636, -0.09793462604284286, 0.04528477415442467, -0.0865110456943512, -0.21365076303482056, 0.028035545721650124, -0.049709197133779526, 0.041017211973667145, 0.037792354822158813, -0.024778708815574646, 0.037210144102573395, 0.032572172582149506, 0.09614940732717514, -0.057919830083847046, 0.008314159698784351, 0.017830975353717804, 0.02001003548502922, -0.0260219257324934, -0.03752703219652176, -0.04458732530474663, -0.05672828480601311, -0.05278310552239418, 0.033803898841142654, -0.042526956647634506, -0.003992473240941763, -0.02367514744400978, -0.029349254444241524, -0.007053544279187918, -0.09899374842643738, -0.06578007340431213, 0.060721639543771744, 0.03618566691875458, 0.11238467693328857, 0.05071331188082695, 0.056397270411252975, -0.05149305984377861, -0.02246379293501377, 0.020947225391864777, 0.031381167471408844, -0.019203493371605873, -0.0636684000492096, -0.004337147809565067, -0.0062635778449475765, -0.020029332488775253, -0.09750256687402725, -0.1299208402633667, -0.07888337224721909, 0.00010055784514406696, 0.03202974051237106, -0.043074946850538254, -0.05685873702168465, -0.009120931848883629, -0.011276273056864738, -0.06797085702419281, 0.08641184121370316, -0.03682165965437889, 0.05924304947257042, 0.04247606545686722, 0.056322190910577774, 0.06015212833881378, 0.08070315420627594, -0.06207767874002457, -0.03194150701165199, -0.028642898425459862, 0.15282364189624786, -0.05580265447497368, -0.05602080374956131, -0.0894809365272522, -0.056886203587055206, -0.08001977205276489, 0.08224616944789886, 0.0499211810529232, 0.11726418882608414, -0.27905774116516113, -0.09621348232030869, 0.1963556706905365, -0.14388413727283478, -0.026244718581438065, 0.20556117594242096, -0.01250375248491764, 0.09167728573083878, 0.1285790652036667, 0.24568554759025574, 0.07601857930421829, -0.17366616427898407, 0.025288602337241173, 0.02001269720494747, 0.027754463255405426, -0.05210959538817406, 0.08884856849908829, -0.04838636517524719, -0.045573778450489044, 0.037620462477207184, -0.0780722051858902, 0.09704864770174026, -0.023011526092886925, -0.06925332546234131, -0.018290869891643524, -0.09536037594079971, 0.061332378536462784, 0.04110809415578842, 0.032517265528440475, -0.006797728594392538, -0.04922184720635414, 0.034439049661159515, 0.13638567924499512, -0.1150328740477562, 0.03974298760294914, -0.10388610512018204, 0.05536423996090889, -0.08043840527534485, -0.007255423814058304, -0.13784565031528473, 0.17966149747371674, -0.035123441368341446, 0.024984123185276985, 0.05590550974011421, 0.17004358768463135, 0.015325970016419888, 0.0014442208921536803, -0.03860063850879669, -0.005190475843846798, 0.01070435345172882, -0.022097548469901085, -0.02758815325796604, -0.10264377295970917, -0.01845797896385193, -0.058514200150966644, 0.14290377497673035, -0.1623542755842209, -0.0026378154288977385, -0.01905898191034794, -0.0039006290026009083, -0.00001041531049850164, -0.013001012615859509, 0.09610015153884888, 0.07648199796676636, 0.025351261720061302, 0.030620962381362915, 0.023961639031767845, 0.0026719938032329082, -0.06694728881120682, 0.1548910290002823, -0.1162634938955307, -0.03964369744062424, 0.09788599610328674, -0.024510927498340607, 0.009854898788034916, 0.06579728424549103, 0.002306616399437189, -0.0198837723582983, -0.11422649770975113, 0.007252430077642202, 0.28159916400909424, 0.007298030890524387, 0.10349863022565842, -0.08223295956850052, 0.018004024401307106, 0.03435908257961273, -0.09017373621463776, 0.06318008899688721, 0.06046745553612709, 0.006505683530122042, 0.038043420761823654, 0.02164490707218647, -0.029566271230578423, -0.09656830877065659, 0.22749188542366028, -0.05371391400694847, -0.08748070895671844, 0.026862313970923424, -0.04545890539884567, -0.04378310590982437, 0.07937340438365936, -0.13329768180847168, -0.05152537301182747, 0.04167322441935539, 0.04583251103758812, 0.043962400406599045, -0.12295237183570862, 0.01441540103405714, 0.018383335322141647, -0.11986948549747467, -0.1799575686454773, 0.08064882457256317, -0.057676441967487335, 0.03559432178735733, -0.10655325651168823, -0.009563094936311245, -0.011332844384014606, -0.04591458663344383, -0.16544124484062195, 0.13496708869934082, -0.04392794147133827, -0.18284723162651062, -0.13086055219173431, 0.0033353804610669613, 0.0002832038444466889, 0.017430461943149567, 0.08884147554636002, -0.14198116958141327, -0.009843630716204643, -0.015400470234453678, 0.10217081010341644, 0.0271434523165226, -0.022709764540195465, -0.034353215247392654, -0.020620044320821762, 0.07878381013870239, -0.11974070221185684, 0.019839368760585785, -0.06412317603826523, -0.0026993693318217993, 0.002918811747804284, 0.00280399271287024, 0.005540078971534967, 0.1619795262813568, 0.04688628762960434, 0.012213965877890587, -0.022442061454057693, 0.18425101041793823, -0.07142224162817001, -0.029787326231598854, 0.24826903641223907, -0.0161226075142622, -0.0272964034229517, 0.10624190419912338, 0.018004992976784706, -0.05531412735581398, -0.014773025177419186, -0.0014069285243749619, -0.1060890406370163, -0.2625454366207123, -0.10247929394245148, -0.07916685938835144, -0.060216546058654785, -0.04952684044837952, -0.0033097234554588795, 0.03259952738881111, 0.05160275846719742, -0.008905578404664993, -0.05447337403893471, 0.03444620966911316, -0.02465136907994747, 0.1201922595500946, -0.006231646053493023, 0.11176438629627228, -0.0693427175283432, -0.022069815546274185, 0.018854232504963875, -0.0005255573778413236, 0.12156771123409271, 0.043563734740018845, 0.08401517570018768, 0.0949959084391594, 0.08919979631900787, 0.13750506937503815, 0.04687618464231491, -0.04866441711783409, -0.03536053001880646, -0.005336626432836056, -0.060995154082775116, -0.08790646493434906, 0.07050575315952301, 0.09150759875774384, -0.03819841891527176, -0.0326431542634964, 0.007094025611877441, 0.005393005441874266, 0.2130270004272461, 0.0782831534743309, -0.18478699028491974, -0.09452173113822937, 0.0031042408663779497, -0.07251351326704025, -0.0016771790105849504, 0.06732144206762314, 0.15598954260349274, -0.1217680275440216, 0.035053178668022156, -0.009702351875603199, 0.09345247596502304, 0.02301601693034172, 0.03788980469107628, -0.10913193970918655, 0.024706853553652763, -0.006727681029587984, 0.07690056413412094, -0.26439279317855835, 0.21316969394683838, 0.002912299707531929, 0.10507865995168686, -0.04376429319381714, 0.004654054529964924, 0.023763803765177727, 0.06148335710167885, 0.1152825728058815, 0.022490834817290306, -0.05058467015624046, -0.040478795766830444, -0.052508868277072906, 0.07602669298648834, -0.04094594344496727, 0.028662225231528282, 0.022317353636026382, -0.001288370112888515, 0.00420789048075676, 0.004340296145528555, -0.009236357174813747, -0.13194748759269714, -0.04659628868103027, 0.008049029856920242, 0.16892299056053162, 0.11254501342773438, -0.035006579011678696, -0.07136959582567215, -0.0799267590045929, 0.012961545959115028, -0.048316020518541336, -0.06343164294958115, -0.0726727768778801, -0.042039304971694946, 0.09985784441232681, -0.06467559933662415, 0.004532868042588234, 0.0904918983578682, 0.10954563319683075, -0.031545743346214294, -0.05066665634512901, 0.035085372626781464, -0.11521901935338974, -0.10779144614934921, -0.00518318684771657, 0.16062289476394653, 0.10015932470560074, 0.07859142124652863, 0.03888919577002525, 0.01432468555867672, -0.010332743637263775, -0.03764532878994942, 0.021123986691236496, 0.15349818766117096, -0.10963989794254303, 0.008427749387919903, 0.05664139986038208, -0.17365646362304688, -0.09435192495584488, -0.07107362151145935, 0.14870841801166534, 0.0866280272603035, -0.05962346866726875, 0.20904293656349182, 0.24318143725395203, -0.08509108424186707, -0.20014885067939758, -0.04733851179480553, 0.09179544448852539, 0.14001168310642242, 0.03299562633037567, -0.1926104575395584, 0.08507242053747177, -0.03186165913939476, -0.0499236136674881, -0.13367238640785217, -0.2586500942707062, -0.14668981730937958, 0.1673964262008667, -0.044207774102687836, 0.193927600979805, -0.013892138376832008, -0.044248636811971664, -0.03660235553979874, -0.005077531561255455, -0.004107523709535599, -0.12469115853309631, 0.10306746512651443, 0.020070379599928856, 0.1278991848230362, 0.04518784210085869, -0.02372118830680847, 0.10135632753372192, 0.08889248222112656, -0.02195282280445099, 0.006659938022494316, 0.09358473867177963, -0.00039818775258027017, 0.011535326018929482, 0.11539220064878464, -0.12051395326852798, 0.05370854586362839, -0.11372338980436325, -0.0962948277592659, -0.08623626083135605, 0.053575724363327026, 0.04388522729277611, -0.04512408375740051, 0.026938222348690033, -0.0594695582985878, 0.018120914697647095, -0.005632218439131975, -0.0329662524163723, -0.14593924582004547, 0.0845293328166008, 0.12531408667564392, 0.18151859939098358, -0.007876889780163765, -0.0931587666273117, -0.03351594880223274, -0.03291470184922218, 0.122987762093544, -0.16719484329223633, 0.029037972912192345, 0.035118214786052704, 0.05882098153233528, 0.10732091963291168, 0.00669343676418066, -0.09352768957614899, 0.08428633213043213, 0.024771463125944138, -0.059794969856739044, -0.129902645945549, -0.030107200145721436, 0.007695441599935293, -0.04486613720655441, 0.025032367557287216, 0.12448128312826157, -0.09500929713249207, -0.02325463853776455, -0.02835795469582081, 0.023464055731892586, -0.12360879778862, 0.20708920061588287, 0.022336885333061218, 0.07960246503353119, -0.11364082992076874, 0.005944341886788607, -0.006638666614890099, -0.042476505041122437, 0.041485242545604706, -0.009253152646124363, -0.07725050300359726, -0.0630931705236435, -0.03879229351878166, 0.06525420397520065, 0.03078124299645424, -0.11858980357646942, -0.05233439803123474, -0.1278204619884491, -0.006235051900148392, 0.08338172733783722, 0.043302442878484726, -0.00964127667248249, -0.11370514333248138, -0.06418876349925995, -0.09457211196422577, 0.06056971102952957, 0.0688893273472786, -0.004714940208941698, -0.12801982462406158, 0.12663842737674713, 0.06354142725467682, 0.06227084621787071, -0.04842125624418259, -0.05217771604657173, -0.015845855697989464, 0.09269887208938599, -0.14085069298744202, 0.0002133604430127889, -0.051352910697460175, -0.000993378460407257, -0.007728095632046461, -0.08080504089593887, -0.014683499000966549, 0.0777091309428215, -0.09088204801082611, 0.08636653423309326, -0.01057813223451376, 0.08705733716487885, -0.0781472697854042, 0.042585842311382294, 0.02913658507168293, -0.04977374151349068, 0.08037569373846054, 0.15517807006835938, -0.09924858808517456, 0.12219410389661789, -0.17722409963607788, -0.03492597118020058, 0.05497582629323006, 0.05490727350115776, -0.03763686120510101, -0.10336945950984955, 0.04029396176338196, 0.06860538572072983, 0.05111826956272125, -0.017928805202245712, 0.07703287899494171, -0.04334922507405281, 0.018800033256411552, -0.04671147093176842, 0.019709143787622452, -0.0458519421517849, 0.02099766582250595, 0.06831689924001694, 0.1724574863910675, 0.12871049344539642, -0.10042791813611984, 0.10076618939638138, -0.1313066929578781, 0.015091442503035069, -0.06287628412246704, -0.023355785757303238, -0.15719455480575562, -0.11918933689594269, 0.06590061634778976, -0.06018736585974693, 0.12449875473976135, 0.03343474492430687, 0.02012319304049015, -0.02062845416367054, -0.07918212562799454, 0.07615330815315247, -0.012533828616142273, 0.25202322006225586, 0.04496031999588013, 0.04643566161394119, -0.008331689052283764, -0.019762106239795685, -0.0035657763946801424, 0.1670100837945938, -0.009406247176229954, 0.16558094322681427, -0.010838987305760384, 0.07113750278949738, 0.07103239744901657, -0.05490999296307564, -0.03152257204055786, -0.018126077950000763, -0.16939997673034668, 0.021438147872686386, -0.07429942488670349, 0.14334550499916077, 0.14133161306381226, -0.09286681562662125, 0.08371427655220032, -0.016116352751851082, -0.08166898787021637, -0.17475363612174988, -0.11076202988624573, -0.05576830357313156, -0.15766417980194092, 0.03172563388943672, -0.07614360749721527, 0.03163669630885124, 0.11710401624441147, 0.01603851467370987, 0.003519408404827118, 0.16882553696632385, 0.026168329641222954, -0.09248078614473343, 0.06017936021089554, -0.08175327628850937, -0.020173780620098114, -0.08587522804737091, 0.04418691620230675, 0.19494517147541046, -0.004621958825737238, 0.034114714711904526, -0.01094602607190609, -0.06248580664396286, 0.04533495754003525, -0.0629214197397232, -0.06719698011875153, -0.015455858781933784, -0.02030242793262005, 0.10088314861059189, 0.13104118406772614, 0.11895470321178436, -0.06440912187099457, 0.0022940251510590315, 0.1313399225473404, -0.05536951497197151, -0.13333183526992798, -0.16591212153434753, 0.15708962082862854, 0.003389172488823533, 0.009089247323572636, -0.010916231200098991, -0.028489883989095688, -0.009247811511158943, 0.23355649411678314, 0.20163792371749878, 0.03859942406415939, 0.029045691713690758, -0.04279250279068947, -0.0072629377245903015, -0.05991051346063614, 0.0771382749080658, 0.06329496204853058, 0.23287202417850494, -0.017505789175629616, 0.05389708653092384, -0.075508251786232, -0.10336054116487503, 0.011456598527729511, 0.09754438698291779, -0.07704108953475952, -0.11309462040662766, 0.03963310271501541, 0.14530393481254578, -0.06504794210195541, -0.11216457188129425, -0.1030961349606514, -0.07118115574121475, -0.07626398652791977, -0.02217649109661579, 0.020318446680903435, 0.13287575542926788, -0.00314016779884696, -0.09323270618915558, 0.02788427099585533, 0.15888871252536774, 0.0018397073727101088, -0.050858911126852036, -0.04563956707715988, 0.07485585659742355, -0.06491843611001968, -0.02297190949320793, 0.0037964079529047012, 0.1571507751941681, 0.004545221105217934, 0.08047473430633545, -0.02450883947312832, 0.14951373636722565, -0.01704154908657074, -0.09187474846839905, 0.0005944381700828671, 0.16069768369197845, -0.03315560892224312, 0.12973886728286743, 0.008641986176371574, -0.11572583764791489, 0.051247477531433105, -0.11637234687805176, -0.028146883472800255, -0.0699339285492897, 0.05449196323752403, -0.05138629302382469, 0.09838923066854477, 0.06098082661628723, -0.0636998638510704, -0.052124373614788055, -0.05714882165193558, 0.07913379371166229, 0.024195022881031036, -0.06149831414222717, -0.03512866795063019, -0.23616959154605865, -0.01367173157632351, -0.056238070130348206, -0.005177945829927921, -0.23815134167671204, -0.018354766070842743, -0.025498053058981895, -0.061050962656736374, 0.029608367010951042, 0.026993928477168083, 0.11528494954109192, 0.004308025352656841, 0.003147827461361885, 0.01011233776807785, 0.05049003288149834, 0.12295030802488327, -0.1545412242412567, -0.11105595529079437 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Slovenian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Slovenian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sl", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-slovenian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-slovenian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Slovenian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/sl.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-slovenian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-slovenian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/sl/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/sl/clips/" def clean_sentence(sent): sent = sent.lower() # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 36.04 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "sl", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Slovenian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice sl", "type": "common_voice", "args": "sl"}, "metrics": [{"type": "wer", "value": 36.04, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anton-l/wav2vec2-large-xlsr-53-slovenian
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "sl", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "sl" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #sl #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Slovenian Fine-tuned facebook/wav2vec2-large-xlsr-53 on Slovenian using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Slovenian test data of Common Voice. Test Result: 36.04 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Slovenian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Slovenian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Slovenian test data of Common Voice.\n\n\n\nTest Result: 36.04 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #sl #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Slovenian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Slovenian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Slovenian test data of Common Voice.\n\n\n\nTest Result: 36.04 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 80, 65, 20, 28, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #sl #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Slovenian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Slovenian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Slovenian test data of Common Voice.\n\n\n\nTest Result: 36.04 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.14911650121212006, -0.028264999389648438, -0.0022275226656347513, -0.026105251163244247, 0.06195461377501488, -0.05675118416547775, 0.17819903790950775, 0.07652779668569565, 0.0380045622587204, -0.003664452349767089, 0.0558868832886219, 0.06317173689603806, 0.02190851978957653, 0.03926582634449005, -0.017293274402618408, -0.22264839708805084, 0.05262000113725662, -0.03652876988053322, 0.08749731630086899, 0.10144174098968506, 0.12354559451341629, -0.08677327632904053, -0.012403175234794617, 0.07929585874080658, -0.1290990710258484, 0.055105894804000854, 0.03146819397807121, -0.1159328892827034, 0.12007047235965729, 0.066077820956707, 0.007494235411286354, 0.06779561191797256, 0.09521837532520294, -0.18844202160835266, 0.01471179723739624, 0.00022063046344555914, 0.0160407442599535, 0.014405440539121628, 0.05453074723482132, -0.02835802175104618, 0.18340495228767395, 0.03916998207569122, -0.03976847976446152, 0.03048885054886341, -0.038806453347206116, -0.23893392086029053, -0.0007603796548210084, -0.03574114292860031, 0.08192566782236099, 0.1077209860086441, -0.056609902530908585, 0.11946123838424683, -0.17472213506698608, 0.11374092847108841, 0.05388106405735016, -0.17770743370056152, -0.011251650750637054, 0.06859707832336426, 0.0670812651515007, 0.09676392376422882, -0.06644327193498611, 0.05709485337138176, 0.005782484542578459, 0.024008100852370262, -0.0002740418422035873, -0.04320252686738968, -0.22451701760292053, -0.02207677625119686, -0.14122214913368225, -0.04606647416949272, 0.2537626326084137, -0.013938335701823235, -0.06644540280103683, -0.1326049119234085, 0.025894558057188988, 0.04298535734415054, -0.0005494639626704156, -0.02738461084663868, -0.020684614777565002, -0.005206749774515629, -0.014903114177286625, -0.02212424762547016, -0.07699791342020035, -0.14424008131027222, 0.04888129234313965, 0.16782629489898682, 0.02688867785036564, 0.0451086200773716, -0.07396367937326431, 0.06491278111934662, -0.06872329860925674, -0.0726979523897171, -0.009883476421236992, 0.03724880889058113, -0.0615350641310215, 0.02771242894232273, -0.08225422352552414, -0.15376298129558563, 0.031101545318961143, -0.02148602157831192, 0.14324457943439484, 0.0038582882843911648, 0.01718215085566044, 0.08876001089811325, 0.03462943434715271, 0.08820775896310806, -0.05461091920733452, -0.0358019657433033, -0.005601316224783659, -0.06423205137252808, -0.03602182865142822, -0.03019324317574501, -0.11833649128675461, -0.08655750006437302, -0.01764957420527935, 0.08017119765281677, -0.02975086122751236, 0.0003975776780862361, 0.022987911477684975, -0.040814340114593506, -0.027848878875374794, -0.07338369637727737, -0.02250879816710949, 0.03365260362625122, -0.013629463501274586, 0.10877437889575958, -0.020793035626411438, 0.060449812561273575, -0.10220354795455933, 0.028704438358545303, 0.05723408982157707, 0.053868964314460754, -0.03704730421304703, -0.12934119999408722, 0.03873559460043907, -0.029379690065979958, 0.020956339314579964, -0.10351289808750153, -0.0995379164814949, -0.06670761853456497, -0.01236720010638237, -0.006857262458652258, -0.0005500536062754691, -0.1294979751110077, -0.01366649940609932, 0.0029600784182548523, -0.07396950572729111, 0.08870901167392731, -0.052221596240997314, 0.06002125144004822, -0.041039541363716125, 0.04285939782857895, -0.016603194177150726, 0.05747795104980469, -0.09077848494052887, -0.06693139672279358, 0.02063414268195629, 0.12568961083889008, -0.043596308678388596, -0.11052724719047546, -0.0796222910284996, -0.07310609519481659, -0.029022514820098877, 0.06116623803973198, 0.051574401557445526, 0.08725205063819885, -0.29504379630088806, -0.05853720381855965, 0.14882995188236237, -0.12710243463516235, 0.02881104126572609, 0.2027456909418106, -0.009026295505464077, 0.08419686555862427, 0.13550737500190735, 0.2768820822238922, 0.11441625654697418, -0.1781637966632843, 0.05707656964659691, 0.0042807129211723804, -0.013465900905430317, -0.09093283116817474, 0.0890793725848198, -0.0484142042696476, -0.00016927291289903224, 0.05824650451540947, -0.083247609436512, 0.0641014501452446, -0.034742970019578934, -0.039107564836740494, -0.02253882586956024, -0.0805782675743103, 0.08594352751970291, 0.03305713087320328, 0.01717539317905903, -0.06997484713792801, -0.033907607197761536, 0.0687667578458786, 0.12191909551620483, -0.13437792658805847, 0.04867488145828247, -0.06551322340965271, 0.11715511232614517, -0.1452598124742508, -0.027420824393630028, -0.11305779218673706, 0.17352502048015594, -0.005700977519154549, 0.05802902579307556, 0.017877038568258286, 0.19099482893943787, 0.04236816242337227, 0.02943025715649128, -0.049281202256679535, 0.014672806486487389, -0.014653644524514675, -0.007784275803714991, -0.01701822318136692, -0.13038016855716705, -0.04560565948486328, -0.04480176791548729, 0.008786287158727646, -0.13003729283809662, -0.053438734263181686, 0.013651798479259014, 0.04370305687189102, -0.008461957797408104, -0.011483958922326565, 0.02351001650094986, 0.12029650062322617, 0.023472387343645096, 0.04805056378245354, 0.04655282199382782, -0.0022412820253521204, -0.023361017927527428, 0.18445584177970886, -0.0863114520907402, -0.051848575472831726, 0.07342564314603806, -0.07890944182872772, 0.021022368222475052, 0.006431409157812595, -0.00979657843708992, -0.00802701711654663, -0.05920363590121269, -0.028568726032972336, 0.26881489157676697, -0.031767550855875015, 0.07245898246765137, -0.09891556948423386, -0.021439706906676292, 0.05567970499396324, -0.07486356794834137, 0.03445940464735031, 0.10681582242250443, 0.052714042365550995, 0.09595119953155518, 0.02310950681567192, -0.04568490758538246, -0.0660548284649849, 0.2778618037700653, -0.019115330651402473, -0.1364322006702423, 0.004679271951317787, -0.0297397430986166, -0.03535797446966171, 0.1194387897849083, -0.21860606968402863, -0.026236578822135925, 0.05566324666142464, 0.07193867862224579, 0.059022754430770874, -0.09841640293598175, 0.004569103941321373, 0.004078394267708063, -0.14417830109596252, -0.19621644914150238, 0.08929120749235153, -0.04052700102329254, 0.05042215809226036, -0.10866808891296387, -0.02838115394115448, 0.009927426464855671, -0.04979408532381058, -0.1422663778066635, 0.08794762194156647, -0.07719126343727112, -0.1536409705877304, -0.17255941033363342, 0.030371952801942825, -0.015572858974337578, 0.010275079868733883, 0.09751094877719879, -0.08449195325374603, -0.02555815875530243, -0.0076314592733979225, 0.13257566094398499, 0.006328612100332975, -0.04360470548272133, -0.10524720698595047, 0.03186509385704994, 0.014189036563038826, -0.11770381778478622, -0.00123932387214154, -0.0630558431148529, 0.008514601737260818, -0.010005326941609383, 0.026635056361556053, 0.04675264656543732, 0.111045241355896, 0.016337290406227112, 0.03055737540125847, -0.00549753662198782, 0.17792819440364838, -0.10890109837055206, -0.03273143246769905, 0.21253708004951477, -0.032731346786022186, -0.05318803712725639, 0.09111595153808594, 0.029239334166049957, -0.04191737249493599, -0.02755601517856121, -0.017845438793301582, -0.10190261900424957, -0.1952820122241974, -0.1595965176820755, -0.09288156777620316, -0.11852160096168518, -0.04628654196858406, -0.006579521112143993, 0.01827206462621689, 0.022655749693512917, -0.028908703476190567, -0.11875133961439133, 0.03235004469752312, -0.006302988156676292, 0.12088750302791595, -0.004333890974521637, 0.08211055397987366, -0.050108782947063446, -0.06773346662521362, 0.028965499252080917, -0.005871552508324385, 0.17325259745121002, 0.03660932928323746, 0.07950689643621445, 0.09189033508300781, 0.13213500380516052, 0.10531327873468399, 0.09142044186592102, -0.030943743884563446, -0.008284589275717735, 0.02267196588218212, -0.08636400103569031, -0.02493508905172348, 0.01460668258368969, 0.13859978318214417, -0.039913322776556015, -0.06991449743509293, -0.07372555881738663, 0.035482537001371384, 0.23142828047275543, 0.06990145146846771, -0.17951583862304688, -0.07421740889549255, -0.029710764065384865, -0.04637215659022331, -0.013867217116057873, 0.02207249030470848, 0.23768237233161926, -0.13428720831871033, -0.012684744782745838, 0.023414529860019684, 0.07244601845741272, -0.01566406898200512, 0.020734885707497597, -0.09787245094776154, 0.035764869302511215, 0.006365690380334854, 0.11925607174634933, -0.25541916489601135, 0.20577172935009003, -0.003235539887100458, 0.14449311792850494, -0.11000846326351166, -0.03600281849503517, -0.026874583214521408, 0.01238872017711401, 0.13536891341209412, 0.05117727443575859, -0.053139131516218185, -0.08228395134210587, -0.1135018914937973, 0.06185000762343407, 0.007310499437153339, 0.02248718962073326, 0.02821917086839676, 0.0020608236081898212, -0.0017451868625357747, -0.002772222738713026, -0.09688511490821838, -0.10800083726644516, -0.047230951488018036, 0.00883768405765295, 0.19670036435127258, 0.06113852187991142, -0.004084332846105099, -0.10024893283843994, -0.039239201694726944, 0.030997583642601967, -0.07879147678613663, -0.050946302711963654, -0.07595332711935043, -0.08518185466527939, 0.13753940165042877, -0.05058044567704201, -0.009220121428370476, 0.11382071673870087, 0.13117623329162598, -0.019245818257331848, -0.044192634522914886, 0.029306478798389435, -0.10314134508371353, -0.11274024099111557, 0.00009298752411268651, 0.1825615018606186, 0.11297646164894104, 0.06428388506174088, 0.062243033200502396, 0.03353298828005791, -0.006373440846800804, -0.06134463846683502, -0.010742616839706898, 0.09739749878644943, -0.13193926215171814, 0.013911380432546139, 0.017289435490965843, -0.0834355279803276, -0.06640879064798355, -0.07230880111455917, 0.18117918074131012, 0.09499533474445343, -0.0786774531006813, 0.20057253539562225, 0.203078493475914, -0.07949460297822952, -0.22324682772159576, -0.006824159529060125, 0.10028724372386932, 0.12660253047943115, -0.031668759882450104, -0.1112985834479332, 0.07054790109395981, 0.019241977483034134, -0.018527036532759666, -0.0197495948523283, -0.3126121759414673, -0.1571546494960785, 0.13575664162635803, -0.02492949552834034, 0.19013182818889618, 0.07026185840368271, -0.028686918318271637, -0.025459274649620056, 0.024064654484391212, -0.006117810029536486, -0.10678165405988693, 0.09159768372774124, 0.014313392341136932, 0.1129319965839386, 0.07377585768699646, -0.01906820386648178, 0.12075306475162506, 0.11228672415018082, -0.004826886113733053, -0.03026071935892105, 0.08543478697538376, 0.016470225527882576, 0.024004651233553886, 0.12383252382278442, -0.10147220641374588, 0.028621438890695572, -0.11285766214132309, -0.10684012621641159, -0.09642238914966583, 0.0945923775434494, 0.00880716647952795, -0.051816072314977646, 0.058599941432476044, -0.05423562973737717, 0.014829392544925213, -0.004726619925349951, -0.050198957324028015, -0.16118237376213074, 0.0008464217535220087, 0.11181902140378952, 0.16073571145534515, -0.02706090919673443, -0.07985594123601913, 0.02477981522679329, -0.02530348300933838, 0.10670681297779083, -0.008110175840556622, 0.03235287219285965, 0.07854330539703369, 0.039484694600105286, 0.0830867737531662, -0.002711609238758683, -0.08073875308036804, 0.058180175721645355, 0.0253352802246809, -0.08507432788610458, -0.07798761129379272, -0.02946125715970993, -0.05967175215482712, 0.022527560591697693, 0.0031328555196523666, 0.1005861684679985, -0.11123701930046082, 0.008277815766632557, -0.07005663961172104, -0.004357373807579279, -0.12727318704128265, 0.20273816585540771, 0.036786384880542755, 0.07201014459133148, -0.13256968557834625, 0.02865937538444996, -0.04857916757464409, -0.021377738565206528, 0.04309356212615967, -0.05091536045074463, -0.07820809632539749, -0.05078163743019104, 0.0025628639850765467, 0.09145476669073105, 0.04816735163331032, -0.16161750257015228, -0.06968320906162262, -0.13460539281368256, 0.0021960337180644274, 0.060180068016052246, 0.05527130141854286, -0.008640478365123272, -0.10859961807727814, -0.08853265643119812, -0.14493651688098907, 0.07186001539230347, 0.06411383301019669, -0.038188762962818146, -0.0666324719786644, 0.1842893660068512, 0.03530878946185112, 0.011829273775219917, -0.05709454044699669, -0.055513203144073486, -0.0005447554285638034, 0.08652143180370331, -0.09817220270633698, -0.026777498424053192, -0.05628233030438423, 0.011923777870833874, 0.0025076186284422874, -0.08902530372142792, -0.01932741515338421, 0.08329004049301147, -0.10175879299640656, 0.08125952631235123, -0.00331727322191, 0.055176328867673874, -0.05097107216715813, 0.005720492918044329, -0.001890091341920197, -0.055287398397922516, 0.07340286672115326, 0.17469224333763123, -0.08622688055038452, 0.14139266312122345, -0.2156682014465332, -0.007393854670226574, 0.04620431736111641, 0.06766793876886368, 0.001347151817753911, -0.06020781025290489, 0.05571689456701279, 0.11990979313850403, 0.06202654168009758, -0.002136099385097623, 0.07037729024887085, -0.06973563134670258, 0.013406474143266678, -0.019431287422776222, -0.053563058376312256, -0.018319401890039444, 0.08070487529039383, 0.029015984386205673, 0.13932976126670837, 0.15142160654067993, -0.10607391595840454, 0.09455236792564392, -0.06806796789169312, 0.012548845261335373, -0.04201434180140495, -0.024540942162275314, -0.13553905487060547, -0.08334499597549438, 0.06420689076185226, -0.051241595298051834, 0.1470794975757599, 0.05938001349568367, 0.05031587928533554, -0.03919333219528198, -0.08902771025896072, 0.026752036064863205, -0.02085629291832447, 0.22296646237373352, 0.02646743878722191, 0.04624856263399124, -0.08305125683546066, 0.010387079790234566, 0.0002067504683509469, 0.12054906785488129, -0.03398388996720314, 0.20075714588165283, 0.0713968425989151, 0.0680602565407753, 0.13281327486038208, -0.0733247920870781, 0.0028900608886033297, -0.027454711496829987, -0.07348877936601639, 0.04732837527990341, -0.08257804811000824, 0.19388270378112793, 0.09965108335018158, -0.12134955823421478, 0.0768284872174263, 0.03965479135513306, -0.09094759821891785, -0.15293817222118378, -0.1616218537092209, -0.06416038423776627, -0.14162077009677887, 0.028463153168559074, -0.11687768250703812, 0.051076069474220276, 0.026223547756671906, 0.048617273569107056, -0.045074231922626495, 0.11648190766572952, -0.01551723200827837, -0.08460529893636703, 0.09953222423791885, -0.08142533153295517, 0.02988324873149395, -0.10444007068872452, 0.010091707110404968, 0.1442253589630127, -0.005863914266228676, 0.04759306088089943, 0.01304446067661047, -0.0656958669424057, -0.04172101989388466, -0.08254706114530563, -0.06872470676898956, -0.0016743694432079792, -0.033754751086235046, 0.12035778164863586, 0.1487068235874176, 0.13141421973705292, -0.08611524105072021, -0.01813529059290886, 0.14736127853393555, -0.0243745818734169, -0.146620512008667, -0.13197281956672668, 0.07300709933042526, 0.04429863765835762, 0.05469562113285065, -0.0019337829435244203, -0.04065299034118652, -0.00775856664404273, 0.2216368466615677, 0.2293044924736023, 0.11204209923744202, 0.02351965196430683, -0.03885868564248085, -0.015941768884658813, -0.0022878521122038364, 0.08655453473329544, 0.028423797339200974, 0.21217547357082367, -0.004088380839675665, 0.050813380628824234, -0.09536748379468918, -0.02710648439824581, 0.015339850448071957, 0.08825758844614029, -0.08057726919651031, -0.16047297418117523, 0.003473942168056965, 0.16169658303260803, -0.07954226434230804, -0.03469162434339523, -0.07270132750272751, -0.08095167577266693, -0.10112249106168747, -0.0005742195644415915, 0.005611091386526823, 0.11947692930698395, 0.02727004699409008, -0.10317464917898178, 0.004632010590285063, 0.12654602527618408, 0.020785845816135406, -0.04925008863210678, -0.10348110646009445, 0.04294584318995476, -0.05536629259586334, 0.035341426730155945, -0.015066991560161114, 0.19204282760620117, 0.017968451604247093, 0.10406476259231567, -0.024260349571704865, 0.1578742414712906, -0.023581964895129204, -0.1104632094502449, 0.055785518139600754, 0.14210624992847443, -0.06008479744195938, 0.1465623676776886, 0.007049861829727888, -0.13071975111961365, 0.05962839722633362, -0.13193683326244354, -0.0115735474973917, -0.05491827055811882, 0.08584173023700714, -0.03263679891824722, 0.07731129229068756, 0.10575740784406662, -0.061426565051078796, -0.056256286799907684, -0.08136099576950073, 0.08687686175107956, 0.02400449849665165, -0.07714086025953293, -0.023528801277279854, -0.2210719883441925, -0.008883893489837646, -0.038054272532463074, -0.02575191855430603, -0.21302245557308197, -0.011001881211996078, -0.02797398343682289, -0.09956012666225433, 0.054226502776145935, 0.010295823216438293, 0.0802500769495964, 0.011212124489247799, 0.0004356222925707698, -0.00973742175847292, 0.07031503319740295, 0.11275267601013184, -0.14227566123008728, -0.09205707907676697 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Tatar Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Tatar using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-tatar") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-tatar") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Tatar test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/tt.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-tatar") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-tatar") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/tt/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/tt/clips/" def clean_sentence(sent): sent = sent.lower() # 'ё' is equivalent to 'е' sent = sent.replace('ё', 'е') # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 26.76 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "tt", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Tatar XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice tt", "type": "common_voice", "args": "tt"}, "metrics": [{"type": "wer", "value": 26.76, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anton-l/wav2vec2-large-xlsr-53-tatar
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "tt", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tt" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tt #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Tatar Fine-tuned facebook/wav2vec2-large-xlsr-53 on Tatar using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Tatar test data of Common Voice. Test Result: 26.76 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Tatar\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Tatar using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Tatar test data of Common Voice.\n\n\n\nTest Result: 26.76 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tt #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Tatar\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Tatar using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Tatar test data of Common Voice.\n\n\n\nTest Result: 26.76 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 80, 65, 20, 28, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tt #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Tatar\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Tatar using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Tatar test data of Common Voice.\n\n\n\nTest Result: 26.76 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.12905211746692657, 0.0017941639525815845, -0.0029940996319055557, -0.03365982696413994, 0.08839140832424164, -0.039137501269578934, 0.20545288920402527, 0.09105248004198074, -0.017757399007678032, -0.025942422449588776, 0.03438844531774521, -0.004360031336545944, 0.06395174562931061, 0.08997074514627457, 0.011165797710418701, -0.21060419082641602, 0.0005611567758023739, -0.0058985925279557705, 0.03551596775650978, 0.11465796083211899, 0.10076700150966644, -0.06608640402555466, -0.02233765833079815, 0.0998062714934349, -0.1258457750082016, 0.04923839494585991, 0.03854912519454956, -0.13083532452583313, 0.1370665282011032, 0.0824185460805893, 0.0731852650642395, 0.051013484597206116, 0.08791476488113403, -0.18513722717761993, 0.02621271088719368, 0.03642862290143967, 0.01686645857989788, 0.03234637528657913, 0.10875460505485535, -0.00271328492090106, 0.1037728488445282, 0.062441855669021606, -0.037713129073381424, 0.06464478373527527, -0.044273801147937775, -0.2055739015340805, -0.028531452640891075, 0.022400565445423126, 0.10885360091924667, 0.13365256786346436, -0.07312892377376556, 0.10560019314289093, -0.11695478111505508, 0.1062353327870369, 0.064093217253685, -0.20344915986061096, -0.006759310141205788, 0.040009014308452606, 0.017241261899471283, 0.10407052934169769, -0.04503902047872543, 0.056227907538414, 0.022644618526101112, 0.02388618513941765, 0.0015991717809811234, -0.022060342133045197, -0.18816344439983368, -0.017713146284222603, -0.13567134737968445, -0.049625229090452194, 0.204353928565979, -0.016430577263236046, -0.05330211669206619, -0.12002857774496078, -0.007515307050198317, 0.000927942746784538, -0.0110577791929245, -0.051667869091033936, -0.024622313678264618, 0.01805100403726101, -0.04071837291121483, -0.029241938143968582, -0.12275362014770508, -0.146859273314476, -0.02284178137779236, 0.06017722934484482, 0.024554314091801643, 0.033468667417764664, -0.1389130800962448, 0.05188937112689018, -0.09190675616264343, -0.06281381845474243, 0.010373641736805439, 0.017943326383829117, -0.08396752178668976, 0.017404047772288322, -0.0906882956624031, -0.1801919937133789, 0.02662505954504013, -0.08138564229011536, 0.056010350584983826, 0.043036673218011856, -0.012499635107815266, 0.05673426017165184, 0.02642965316772461, 0.09790880978107452, -0.07252353429794312, -0.018314536660909653, 0.013998828828334808, -0.02527162805199623, -0.056731898337602615, -0.026048878207802773, -0.07761915773153305, -0.06874917447566986, 0.01631217449903488, 0.04816652834415436, -0.023908643051981926, 0.008099250495433807, 0.016746655106544495, -0.028365442529320717, -0.0037348943296819925, -0.08003474026918411, -0.04582105576992035, 0.06942781805992126, -0.0028043624479323626, 0.1098857894539833, 0.019905101507902145, 0.04821624234318733, -0.0720774456858635, -0.034714095294475555, 0.0392882339656353, 0.045289795845746994, -0.023363932967185974, -0.12159854173660278, 0.005737355910241604, 0.00789088848978281, -0.010692511685192585, -0.10504761338233948, -0.09818939864635468, -0.06416856497526169, -0.0029940290842205286, 0.028329499065876007, -0.0036138598807156086, -0.08418705314397812, -0.020274102687835693, -0.0005303526413626969, -0.06646943837404251, 0.09439784288406372, -0.04591992124915123, 0.07667665183544159, -0.0016869287937879562, 0.05301743373274803, 0.06008618324995041, 0.0844232514500618, -0.08013021945953369, -0.055772919207811356, 0.0038931129965931177, 0.15339848399162292, -0.03584346920251846, -0.06994015723466873, -0.09653763473033905, -0.07207699120044708, -0.053025659173727036, 0.06234299764037132, 0.06738297641277313, 0.08829968422651291, -0.2593283951282501, -0.08563467860221863, 0.16276375949382782, -0.1011335551738739, 0.0005329558625817299, 0.20491579174995422, -0.009071444161236286, 0.09735569357872009, 0.14425219595432281, 0.26665037870407104, 0.14904916286468506, -0.15721236169338226, 0.01879938691854477, 0.023063862696290016, -0.0055418675765395164, -0.05406831204891205, 0.06388158351182938, -0.03760609030723572, -0.03141895681619644, 0.02991642989218235, -0.05540371313691139, 0.08362384885549545, -0.03907351568341255, -0.06118457764387131, -0.0045854137279093266, -0.0881015881896019, 0.07295958697795868, 0.03035191260278225, 0.050091516226530075, -0.034920722246170044, -0.062248606234788895, 0.033880554139614105, 0.10855145007371902, -0.11883396655321121, 0.051567163318395615, -0.10521124303340912, 0.0627666711807251, -0.10834651440382004, -0.004398152232170105, -0.1427500694990158, 0.17905935645103455, -0.021549083292484283, 0.04641064256429672, 0.05501842871308327, 0.18162335455417633, 0.023141197860240936, 0.011061638593673706, -0.043225258588790894, -0.007405546028167009, 0.02121579460799694, -0.015631308779120445, -0.06510401517152786, -0.10876921564340591, -0.009842711500823498, -0.06028354912996292, 0.06781663000583649, -0.11966026574373245, -0.008767194114625454, 0.017603084444999695, -0.014992172829806805, -0.011746058240532875, 0.01067753229290247, 0.06096601113677025, 0.09726475924253464, 0.012817511335015297, 0.026938093826174736, 0.04626385122537613, -0.0002763839438557625, -0.04964780434966087, 0.14290408790111542, -0.14019013941287994, -0.0178359504789114, 0.10646873712539673, -0.03106980212032795, -0.020708734169602394, 0.049374770373106, -0.006852676160633564, -0.01004986185580492, -0.06320732086896896, 0.007066874764859676, 0.29541340470314026, -0.0030508548952639103, 0.09255649894475937, -0.08859649300575256, 0.00975835882127285, 0.04859111085534096, -0.08298370242118835, 0.04388603940606117, 0.07814180850982666, 0.001508236164227128, -0.0009268217836506665, 0.02916746959090233, -0.042984675616025925, -0.07665585726499557, 0.2456800788640976, -0.012149895541369915, -0.10129870474338531, 0.0307699553668499, -0.045483220368623734, -0.029628127813339233, 0.10440448671579361, -0.1466848999261856, -0.03335600718855858, 0.04466572031378746, 0.060945864766836166, 0.06350669264793396, -0.15185604989528656, 0.021059583872556686, 0.015293232165277004, -0.12770654261112213, -0.22423186898231506, 0.07199982553720474, -0.040801096707582474, 0.062108609825372696, -0.10782070457935333, -0.016115373000502586, -0.0017685439670458436, -0.04655318334698677, -0.17518576979637146, 0.11138518899679184, -0.07962673157453537, -0.2126055508852005, -0.13808442652225494, 0.0020887746941298246, 0.01420055516064167, 0.01520228199660778, 0.1067938283085823, -0.14230598509311676, 0.0006750200409442186, -0.016627302393317223, 0.10808961093425751, -0.006578049156814814, -0.013405829668045044, -0.06013456732034683, 0.01276247389614582, 0.05583375692367554, -0.1262575387954712, 0.028090206906199455, -0.06441643089056015, -0.022585850208997726, 0.01999116688966751, -0.005488511174917221, 0.013754865154623985, 0.1610030084848404, 0.012903066352009773, 0.016848905012011528, -0.05187463387846947, 0.18358702957630157, -0.09321600198745728, -0.02855704352259636, 0.18328984081745148, 0.0010000794427469373, -0.02114875242114067, 0.0937703400850296, 0.0225291196256876, -0.036127954721450806, -0.008470321074128151, -0.017579438164830208, -0.09339050203561783, -0.2332128882408142, -0.11163569241762161, -0.06558006256818771, -0.06311868876218796, -0.043305713683366776, -0.012826149351894855, 0.03922155499458313, 0.02777450531721115, -0.031355660408735275, -0.06632387638092041, 0.03343089669942856, -0.024811306968331337, 0.1389230191707611, 0.0059326691552996635, 0.10254783928394318, -0.07096279412508011, -0.023113736882805824, 0.01630999892950058, 0.020219018682837486, 0.1641978770494461, 0.04489674046635628, 0.06441207975149155, 0.06975474208593369, 0.1255417764186859, 0.11825994402170181, 0.07861993461847305, -0.04111980274319649, -0.005206017289310694, 0.010859990492463112, -0.06417693197727203, -0.039263200014829636, 0.032918184995651245, 0.14658883213996887, -0.059172309935092926, -0.04762090742588043, -0.02294374629855156, 0.023428862914443016, 0.17730867862701416, 0.05887288972735405, -0.18460115790367126, -0.10005314648151398, -0.030273104086518288, -0.07308182120323181, 0.0037516287993639708, 0.042545974254608154, 0.15886658430099487, -0.12209136039018631, 0.026002777740359306, -0.001596734975464642, 0.09188313037157059, 0.034027524292469025, 0.03177432715892792, -0.07628006488084793, 0.025502117350697517, -0.015963643789291382, 0.11086077243089676, -0.2815729081630707, 0.22279982268810272, 0.016150692477822304, 0.1255691945552826, -0.07230053842067719, -0.01489664800465107, 0.016736820340156555, 0.05010645464062691, 0.09389251470565796, 0.01358713023364544, -0.010505064390599728, -0.10120893269777298, -0.10006417334079742, 0.0685708075761795, -0.009531150572001934, 0.05345301702618599, 0.051713038235902786, 0.016133692115545273, 0.009427911601960659, 0.010793493129312992, -0.03153764083981514, -0.14027519524097443, -0.06563185155391693, 0.005846051964908838, 0.13445420563220978, 0.08494009077548981, -0.006780359428375959, -0.09515658020973206, -0.1163712739944458, -0.015672583132982254, -0.09821978956460953, -0.0718679279088974, -0.057808615267276764, -0.04456266015768051, 0.10708179324865341, -0.0666557252407074, -0.012831607833504677, 0.09497081488370895, 0.10233703255653381, -0.030792932957410812, -0.06679214537143707, 0.024789974093437195, -0.11577059328556061, -0.1069665402173996, -0.008281150832772255, 0.1605948954820633, 0.10496752709150314, 0.1073404923081398, 0.05708656087517738, 0.005732997786253691, -0.010530058294534683, -0.0315948948264122, 0.009159397333860397, 0.07129725813865662, -0.1215827688574791, -0.024087034165859222, 0.05035044625401497, -0.14446914196014404, -0.1357259899377823, -0.05888922140002251, 0.15991243720054626, 0.07202911376953125, -0.07403531670570374, 0.2244747132062912, 0.19355948269367218, -0.09316523373126984, -0.19598063826560974, -0.017015786841511726, 0.1203264594078064, 0.12845930457115173, 0.005858056712895632, -0.18906310200691223, 0.041546791791915894, -0.0361410416662693, -0.03359384089708328, -0.04689791426062584, -0.27474772930145264, -0.1508694291114807, 0.16168710589408875, -0.031210586428642273, 0.15825875103473663, -0.003585626371204853, -0.023886190727353096, -0.020978450775146484, 0.059661708772182465, 0.038602713495492935, -0.09826087951660156, 0.11425469815731049, 0.03598404675722122, 0.1373981386423111, 0.04977339506149292, -0.017015686258673668, 0.08981599658727646, 0.06882057338953018, -0.02098909392952919, -0.005138328764587641, 0.11241079866886139, 0.06774263828992844, 0.022000283002853394, 0.08764074742794037, -0.07603967934846878, 0.03684749826788902, -0.1139434278011322, -0.08988992124795914, -0.0881042405962944, 0.056179750710725784, 0.028138455003499985, -0.048130229115486145, 0.020886853337287903, -0.06717070937156677, 0.04069356247782707, -0.026733888313174248, -0.04442921280860901, -0.10991410166025162, 0.04263512045145035, 0.11840494722127914, 0.17448702454566956, -0.020109767094254494, -0.09015800058841705, -0.013021092861890793, -0.038606636226177216, 0.12919996678829193, -0.09115061163902283, 0.015412639826536179, 0.06007750332355499, 0.04405534267425537, 0.08150851726531982, 0.00986691378057003, -0.09666237235069275, 0.08744814246892929, 0.030615201219916344, -0.07098867744207382, -0.12053713947534561, -0.01808881387114525, 0.012229789979755878, -0.013491126708686352, 0.021759288385510445, 0.11222606152296066, -0.10994905978441238, -0.0138274310156703, -0.025139065459370613, 0.011886844411492348, -0.11064909398555756, 0.24278850853443146, 0.02604527585208416, 0.06854292750358582, -0.1064685508608818, 0.015901872888207436, -0.011990636587142944, -0.046419281512498856, 0.05561622232198715, -0.04466492310166359, -0.07273620367050171, -0.05848276615142822, 0.006759318057447672, 0.08097448199987411, 0.03782478719949722, -0.14161400496959686, -0.05547672137618065, -0.11063169687986374, 0.009786409325897694, 0.09896140545606613, 0.045171938836574554, -0.0076577626168727875, -0.1316586285829544, -0.057579897344112396, -0.10729606449604034, 0.06792479753494263, 0.06496208906173706, -0.0367603562772274, -0.10497357696294785, 0.20130877196788788, 0.05740487203001976, 0.03617249056696892, -0.053402744233608246, -0.06134747713804245, -0.0008425622945651412, 0.0891818031668663, -0.11186359077692032, -0.006159564945846796, -0.054420921951532364, 0.006414102856069803, -0.014644045382738113, -0.0617561936378479, -0.020856335759162903, 0.07213784009218216, -0.09637525677680969, 0.08353865146636963, -0.01618773117661476, 0.06358710676431656, -0.07750330865383148, 0.042575180530548096, -0.0016399479936808348, -0.03745728358626366, 0.08353376388549805, 0.15836714208126068, -0.10033850371837616, 0.13103002309799194, -0.18588107824325562, -0.027386952191591263, 0.038624584674835205, 0.06738503277301788, -0.029866855591535568, -0.08821035921573639, 0.03698267042636871, 0.07513954490423203, 0.04421745985746384, 0.0036481120623648167, 0.10126079618930817, -0.04437832161784172, -0.002969451481476426, -0.0708201602101326, 0.026867877691984177, -0.03959153965115547, 0.0505095012485981, 0.04145784303545952, 0.14987218379974365, 0.16126146912574768, -0.1120234876871109, 0.10054852813482285, -0.11592007428407669, 0.002926391316577792, -0.047096796333789825, -0.025568779557943344, -0.1301504373550415, -0.09832189977169037, 0.08664519339799881, -0.040653079748153687, 0.13648083806037903, 0.05716584622859955, 0.05861850455403328, -0.030403856188058853, -0.06591188162565231, 0.030609076842665672, -0.023809654638171196, 0.2725769281387329, 0.03484908118844032, 0.03879985213279724, -0.03563227131962776, 0.011986935511231422, 0.013840436935424805, 0.12414062768220901, 0.004437115043401718, 0.1403341293334961, 0.021075844764709473, 0.07172102481126785, 0.08359719067811966, -0.0689227506518364, -0.026711730286478996, -0.03965000435709953, -0.1337287575006485, 0.03422681614756584, -0.0679963082075119, 0.15187010169029236, 0.129850834608078, -0.10137778520584106, 0.08404657244682312, -0.008849142119288445, -0.07847004383802414, -0.14607951045036316, -0.12847112119197845, -0.046180956065654755, -0.163280189037323, 0.016867339611053467, -0.08902197331190109, 0.031279731541872025, 0.06443987786769867, 0.03641793504357338, -0.02142830565571785, 0.14448076486587524, -0.010777154937386513, -0.09889749437570572, 0.072165347635746, -0.0799175277352333, -0.010761087760329247, -0.0855703055858612, 0.024362042546272278, 0.18403856456279755, -0.010510892607271671, 0.0512358658015728, 0.013254767283797264, -0.07041295617818832, 0.02424481138586998, -0.06430863589048386, -0.06095279008150101, -0.01649085059762001, -0.009241699241101742, 0.10475470125675201, 0.14998523890972137, 0.11706866323947906, -0.06456466019153595, -0.01572129689157009, 0.12609198689460754, -0.032211627811193466, -0.13239096105098724, -0.12885601818561554, 0.1540093570947647, 0.016872551292181015, 0.01861795224249363, 0.013874327763915062, -0.03663844242691994, -0.012605849653482437, 0.24753354489803314, 0.22899112105369568, 0.042781587690114975, 0.016435666009783745, -0.04348064959049225, -0.005177655257284641, -0.030910667032003403, 0.09710806608200073, 0.07459630817174911, 0.21752330660820007, -0.028752148151397705, 0.023659422993659973, -0.09823890775442123, -0.06142982840538025, 0.002721830504015088, 0.08559806644916534, -0.05853354558348656, -0.12297870963811874, 0.01811615750193596, 0.1585918664932251, -0.0793192982673645, -0.10892704874277115, -0.11190129071474075, -0.07164858281612396, -0.07792248576879501, 0.011911682784557343, 0.07156529277563095, 0.11895554512739182, 0.01800617203116417, -0.08660886436700821, 0.0508136972784996, 0.12352899461984634, 0.0017500676913186908, -0.06329739838838577, -0.053724098950624466, 0.05602162331342697, -0.08308630436658859, -0.004198337439447641, 0.00012274360051378608, 0.1844584345817566, 0.009442382492125034, 0.10328581184148788, -0.021712524816393852, 0.14255250990390778, -0.0001852199638960883, -0.0867905393242836, 0.02814565785229206, 0.13955990970134735, -0.024738572537899017, 0.09841453284025192, 0.020080816000699997, -0.1309346854686737, 0.06158948317170143, -0.12464598566293716, -0.0008075851947069168, -0.048364460468292236, 0.0663723275065422, -0.03668257221579552, 0.07374245673418045, 0.08392658829689026, -0.06620094925165176, -0.04234657064080238, -0.054270025342702866, 0.042905740439891815, 0.026540914550423622, -0.07900398224592209, -0.03850512579083443, -0.24747538566589355, -0.024945374578237534, -0.08891338109970093, -0.02452358789741993, -0.20697157084941864, -0.022249853238463402, -0.01973458006978035, -0.08025909215211868, 0.013497603125870228, 0.02884840779006481, 0.0848691537976265, 0.00016670918557792902, -0.00005752028664574027, 0.026581738144159317, 0.04661530628800392, 0.12293138355016708, -0.16574348509311676, -0.10882429778575897 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Ukrainian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Ukrainian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "uk", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-ukrainian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-ukrainian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Ukrainian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/uk.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-ukrainian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-ukrainian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/uk/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/uk/clips/" def clean_sentence(sent): sent = sent.lower() # normalize apostrophes sent = sent.replace("’", "'") # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() or ch == "'" else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 32.29 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "uk", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Ukrainian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice uk", "type": "common_voice", "args": "uk"}, "metrics": [{"type": "wer", "value": 32.29, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anton-l/wav2vec2-large-xlsr-53-ukrainian
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "uk", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "uk" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #uk #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Ukrainian Fine-tuned facebook/wav2vec2-large-xlsr-53 on Ukrainian using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Ukrainian test data of Common Voice. Test Result: 32.29 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Ukrainian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Ukrainian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Ukrainian test data of Common Voice.\n\n\n\nTest Result: 32.29 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #uk #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Ukrainian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Ukrainian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Ukrainian test data of Common Voice.\n\n\n\nTest Result: 32.29 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 80, 67, 20, 28, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #uk #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Ukrainian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Ukrainian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Ukrainian test data of Common Voice.\n\n\n\nTest Result: 32.29 %## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.1593949943780899, -0.0025023766793310642, -0.0034795228857547045, -0.039131201803684235, 0.10510560870170593, -0.04800867289304733, 0.22333180904388428, 0.07749715447425842, 0.019409647211432457, -0.006363320164382458, 0.04772629588842392, -0.017024915665388107, 0.0387553945183754, 0.07370880991220474, 0.027018386870622635, -0.20652706921100616, 0.03302418068051338, -0.01663120836019516, 0.00617957254871726, 0.07952875643968582, 0.12041718512773514, -0.09279372543096542, -0.030515437945723534, 0.0883282944560051, -0.13560815155506134, 0.06547580659389496, 0.0625210627913475, -0.12125330418348312, 0.1364433914422989, 0.08613328635692596, 0.06337897479534149, 0.01701653189957142, 0.0696420893073082, -0.20380352437496185, 0.026342807337641716, 0.032231565564870834, 0.009812400676310062, 0.0229342058300972, 0.09137119352817535, -0.02550678327679634, 0.18567752838134766, 0.018839439377188683, -0.04509366676211357, 0.06830115616321564, -0.04854109138250351, -0.2253568172454834, -0.007494289427995682, 0.05233035981655121, 0.10584499686956406, 0.17393723130226135, -0.0843137875199318, 0.11319120973348618, -0.09170175343751907, 0.10810138285160065, 0.06728799641132355, -0.1447778344154358, -0.0023919385857880116, 0.06115749105811119, -0.0026724364142864943, 0.09668625891208649, -0.04782983288168907, 0.0573013499379158, 0.023946966975927353, 0.011241638101637363, -0.038164932280778885, -0.0009580118930898607, -0.23471148312091827, -0.0023982960265129805, -0.15943112969398499, -0.07018959522247314, 0.2271631509065628, -0.0033867547754198313, -0.03491438925266266, -0.13006791472434998, 0.00008914313366403803, -0.003454501973465085, -0.012295260094106197, -0.03494483605027199, -0.034668829292058945, 0.008853988721966743, -0.049074918031692505, -0.053097810596227646, -0.14449994266033173, -0.12495381385087967, -0.008270814083516598, 0.12817835807800293, 0.024819647893309593, 0.06092038378119469, -0.09707828611135483, 0.06744495034217834, -0.08062718063592911, -0.042432963848114014, 0.01248091273009777, 0.04776981472969055, -0.09823928028345108, 0.0033595655113458633, -0.09271406382322311, -0.14370854198932648, 0.054555196315050125, -0.06532199680805206, -0.0129975825548172, -0.0028632963076233864, 0.03129749000072479, 0.06215710937976837, 0.021542930975556374, 0.07958394289016724, -0.07786804437637329, 0.03990018367767334, -0.032634370028972626, -0.0649653896689415, -0.05306681618094444, -0.003140621120110154, -0.09380315244197845, -0.09540852904319763, -0.006093574687838554, 0.06122840195894241, -0.02531266398727894, -0.016623103991150856, -0.006883649155497551, -0.030091380700469017, -0.018558887764811516, -0.08071199804544449, -0.03341636434197426, 0.05990548059344292, 0.019072357565164566, 0.11742377281188965, 0.010095073841512203, 0.05699468031525612, -0.09499794989824295, -0.020932286977767944, 0.04880252853035927, 0.06694353371858597, -0.01174478605389595, -0.12376934289932251, 0.026355907320976257, -0.0038996960502117872, 0.01776151731610298, -0.09941671043634415, -0.06947183609008789, -0.07588960975408554, -0.007007810287177563, 0.03962132707238197, 0.01898876391351223, -0.08169076591730118, -0.040065113455057144, -0.015285240486264229, -0.04106691852211952, 0.07892462611198425, -0.061507415026426315, 0.06037748232483864, -0.02354610711336136, 0.035257432609796524, 0.012143803760409355, 0.06301084905862808, -0.08690257370471954, -0.10242216289043427, 0.040688011795282364, 0.1337154507637024, -0.03340260311961174, -0.07686179131269455, -0.0731256976723671, -0.06297215074300766, -0.02108263224363327, 0.07939029484987259, 0.05802018940448761, 0.08734715729951859, -0.221932053565979, -0.10153819620609283, 0.16519081592559814, -0.13051782548427582, -0.00008909798634704202, 0.1965128481388092, -0.017995040863752365, 0.07973315566778183, 0.16971391439437866, 0.19272367656230927, 0.15020771324634552, -0.21435347199440002, -0.021115867421030998, -0.006528638303279877, -0.05584518611431122, -0.06124846637248993, 0.08459147065877914, -0.06530798226594925, -0.000720157811883837, 0.038485538214445114, -0.07978133112192154, 0.07586409151554108, -0.049588825553655624, -0.0820588693022728, -0.019599558785557747, -0.06896995007991791, 0.04913533478975296, 0.04975196719169617, 0.0041970135644078255, -0.07106179744005203, -0.06436340510845184, 0.07171013206243515, 0.12527692317962646, -0.1315418928861618, 0.06982342898845673, -0.09227883815765381, 0.03780054301023483, -0.08640442788600922, -0.013218364678323269, -0.15370425581932068, 0.1551564633846283, -0.05027420446276665, 0.06356155872344971, 0.05976860597729683, 0.17811810970306396, 0.017411569133400917, 0.01626221090555191, -0.05274525657296181, -0.0036503891460597515, -0.018898246809840202, -0.03681137412786484, -0.04970971494913101, -0.15215730667114258, -0.014241600409150124, -0.0503850020468235, 0.05640038102865219, -0.1451793760061264, -0.014699897728860378, 0.037003859877586365, 0.03129403293132782, -0.000014790354725846555, 0.0023564386647194624, 0.022206567227840424, 0.11548119783401489, -0.00862446241080761, 0.039607543498277664, 0.053592607378959656, -0.01833026483654976, -0.047174736857414246, 0.12158545106649399, -0.11759860813617706, -0.05247346684336662, 0.12559981644153595, -0.027735481038689613, -0.008845651522278786, 0.03690562769770622, -0.017968803644180298, -0.0005990417557768524, -0.07475322484970093, 0.0005175851401872933, 0.24048581719398499, -0.01851719804108143, 0.054807379841804504, -0.07495851814746857, 0.004396891687065363, 0.05034191161394119, -0.08429092913866043, 0.02202344313263893, 0.08819624036550522, -0.008225950412452221, 0.048869043588638306, 0.03138954937458038, -0.1052476018667221, -0.06865376979112625, 0.31192588806152344, -0.04510585218667984, -0.13214543461799622, 0.02007754147052765, -0.04259759187698364, -0.020552005618810654, 0.15117773413658142, -0.2078785002231598, -0.03829890489578247, 0.04152395576238632, 0.04653186723589897, 0.06888462603092194, -0.15152084827423096, 0.021023951470851898, -0.002505298238247633, -0.17048928141593933, -0.19428256154060364, 0.07070295512676239, -0.03687988966703415, 0.04944425821304321, -0.11690118908882141, 0.010651076212525368, -0.01495365984737873, -0.06225539371371269, -0.1771179437637329, 0.09048281610012054, -0.08785036951303482, -0.1611478477716446, -0.1755380928516388, -0.0019313868833705783, 0.0069300029426813126, 0.021296560764312744, 0.10614166408777237, -0.15772464871406555, -0.0014402722008526325, 0.010220186784863472, 0.18871578574180603, -0.0015760438982397318, -0.007485281676054001, -0.08388730883598328, 0.06961609423160553, 0.043059926480054855, -0.11539570242166519, 0.01989927515387535, -0.08084594458341599, -0.0018982025794684887, 0.01342734694480896, 0.0019701572600752115, 0.018017854541540146, 0.13829441368579865, 0.001274425769224763, 0.022009016945958138, -0.04696550592780113, 0.17852835357189178, -0.12947458028793335, -0.0648937001824379, 0.1753861904144287, 0.009101031348109245, -0.04701460152864456, 0.10766679048538208, 0.03031262569129467, -0.02216317690908909, -0.003903374308720231, -0.020566990599036217, -0.08343962579965591, -0.25423723459243774, -0.180805966258049, -0.06921248883008957, -0.03928080201148987, -0.03860468789935112, -0.013448446989059448, 0.018668394535779953, 0.025243639945983887, -0.07026632875204086, -0.12831968069076538, 0.05087772384285927, -0.006494420580565929, 0.12902997434139252, 0.01929323375225067, 0.0815080776810646, -0.06861911714076996, -0.023342888802289963, 0.054233368486166, -0.035643693059682846, 0.20303750038146973, 0.05508018657565117, 0.05412250757217407, 0.08110584318637848, 0.14082612097263336, 0.09042409062385559, 0.09395954757928848, 0.027862973511219025, -0.004826321732252836, 0.05557456240057945, -0.08041904121637344, 0.027073310688138008, 0.04668469354510307, 0.13851557672023773, -0.058566659688949585, -0.08027936518192291, -0.014231467619538307, 0.027248725295066833, 0.20620596408843994, 0.10464245080947876, -0.16984790563583374, -0.1377648413181305, -0.0453336276113987, -0.07126636058092117, 0.001237650983966887, 0.014192371629178524, 0.16879883408546448, -0.13839246332645416, 0.015024758875370026, 0.008968410082161427, 0.0827852115035057, 0.024826863780617714, 0.04105702415108681, -0.09500357508659363, 0.035740792751312256, -0.01353425532579422, 0.12008680403232574, -0.2538128197193146, 0.26464125514030457, 0.004448217805474997, 0.14851811528205872, -0.06413470208644867, -0.029476657509803772, 0.005411099176853895, 0.03278061002492905, 0.0878264382481575, 0.021619876846671104, -0.05458837375044823, -0.11695768684148788, -0.08504696935415268, 0.06458274275064468, 0.00436298968270421, 0.046061672270298004, 0.07760845124721527, 0.018799247220158577, 0.018033290281891823, 0.016721436753869057, -0.06407766044139862, -0.16764679551124573, -0.08260883390903473, -0.013684726320207119, 0.18374162912368774, 0.11236865818500519, -0.00826242659240961, -0.11008772999048233, -0.04929433763027191, -0.009855014272034168, -0.110124871134758, -0.09377791732549667, -0.07037022709846497, -0.0049323998391628265, 0.14454030990600586, -0.07417471706867218, 0.0031416756100952625, 0.10138227790594101, 0.13905762135982513, -0.04680846258997917, -0.04501912370324135, 0.029648160561919212, -0.10189885646104813, -0.11804832518100739, 0.017193354666233063, 0.18952122330665588, 0.15815484523773193, 0.07808543741703033, 0.03177895024418831, 0.028204213827848434, -0.024494841694831848, -0.022784631699323654, 0.01525755412876606, 0.07451920211315155, -0.08771739900112152, 0.06902173906564713, 0.0481012798845768, -0.19641703367233276, -0.15193632245063782, -0.10111609846353531, 0.1644999086856842, 0.08878079801797867, -0.08870328217744827, 0.18606312572956085, 0.16320091485977173, -0.09162008762359619, -0.19928708672523499, 0.001740624662488699, 0.12599240243434906, 0.1520356386899948, -0.021490655839443207, -0.18119128048419952, 0.05735264718532562, -0.02433575503528118, -0.01608615182340145, -0.03472049906849861, -0.23972748219966888, -0.1768042892217636, 0.1543693095445633, -0.046503301709890366, 0.13152338564395905, 0.04484272748231888, 0.002916700206696987, -0.030303331092000008, 0.004875837359577417, 0.02797221578657627, -0.10742975026369095, 0.10696446895599365, 0.030395090579986572, 0.120223768055439, 0.06307566910982132, -0.0028398504946380854, 0.11596798896789551, 0.09506344050168991, -0.008581159636378288, 0.008309622295200825, 0.09897486120462418, 0.07416136562824249, 0.029656708240509033, 0.11328363418579102, -0.03795802220702171, 0.0209182295948267, -0.10336003452539444, -0.09590210020542145, -0.08044278621673584, 0.06900957971811295, 0.02172689512372017, -0.04276789724826813, -0.015351828187704086, -0.054196517914533615, 0.010425930842757225, -0.013156408444046974, -0.0035129867028445005, -0.1057477593421936, 0.03163006529211998, 0.08023614436388016, 0.17656897008419037, -0.02226072922348976, -0.10494212806224823, 0.0190410315990448, -0.044507451355457306, 0.11827385425567627, -0.0790005773305893, 0.019335206598043442, 0.06505297869443893, 0.038008008152246475, 0.0590464286506176, 0.010067977011203766, -0.11769231408834457, 0.0758390724658966, 0.036564528942108154, -0.09472338110208511, -0.1400560736656189, -0.03087940625846386, -0.07087933272123337, -0.020206496119499207, 0.014787260442972183, 0.11690372228622437, -0.10492762178182602, 0.009897652082145214, -0.03030160441994667, -0.025137102231383324, -0.12697714567184448, 0.22973141074180603, 0.015693647786974907, 0.06141502410173416, -0.10715843737125397, 0.017465949058532715, -0.025484275072813034, -0.051392849534749985, 0.04796445369720459, -0.06077723950147629, -0.08246570080518723, -0.05155132710933685, 0.012993469834327698, 0.08593010157346725, -0.042912039905786514, -0.1697329729795456, -0.048729829490184784, -0.12071547657251358, 0.023298369720578194, 0.07901860028505325, 0.07599253207445145, -0.009482355788350105, -0.09309720993041992, -0.04372309893369675, -0.13407766819000244, 0.0908406600356102, 0.10577680170536041, -0.05402074754238129, -0.11676842719316483, 0.22551991045475006, 0.05787703022360802, 0.01930491253733635, -0.046225305646657944, -0.061275966465473175, 0.00979897752404213, 0.10374736040830612, -0.13712762296199799, -0.0217671487480402, -0.06902918219566345, -0.02582504041492939, -0.004629189148545265, -0.09208153933286667, -0.018857497721910477, 0.09544287621974945, -0.0749165490269661, 0.07596161216497421, -0.028520891442894936, 0.06019344925880432, -0.08110251277685165, 0.047041963785886765, -0.0028083669021725655, -0.03882426768541336, 0.09063239395618439, 0.19059953093528748, -0.07934990525245667, 0.15564391016960144, -0.1586126983165741, -0.008080816827714443, 0.056832533329725266, 0.06000137701630592, -0.018399527296423912, -0.09176681190729141, 0.02302813157439232, 0.09143557399511337, 0.09328947216272354, 0.01527270209044218, 0.08948411792516708, -0.037837810814380646, 0.005686309188604355, -0.05622190982103348, 0.021729890257120132, -0.030845005065202713, 0.06985060125589371, 0.0342126302421093, 0.15992146730422974, 0.21145841479301453, -0.13149923086166382, 0.09554082900285721, -0.09911929816007614, 0.02118125930428505, -0.06752152740955353, -0.006913674063980579, -0.13411933183670044, -0.07669541984796524, 0.07312475144863129, -0.05521673709154129, 0.14931975305080414, 0.03999047726392746, 0.08815935254096985, 0.00006929059600224718, -0.06165295094251633, 0.021593846380710602, -0.009542915970087051, 0.2752310335636139, 0.050814609974622726, 0.03281291201710701, -0.039692532271146774, 0.030262291431427002, 0.025077948346734047, 0.10856565833091736, 0.0021893607918173075, 0.1423986256122589, 0.07437719404697418, 0.08179011195898056, 0.09122251719236374, -0.03689214959740639, -0.027454501017928123, -0.08618127554655075, -0.11824921518564224, 0.004112883470952511, -0.07639815658330917, 0.14843590557575226, 0.1774076670408249, -0.13809911906719208, 0.0972694531083107, 0.03621969744563103, -0.09766021370887756, -0.15531247854232788, -0.12052340805530548, -0.05276854336261749, -0.18290087580680847, 0.022217905148863792, -0.10668366402387619, 0.00754920020699501, 0.07328229397535324, 0.05108090862631798, -0.038164764642715454, 0.12271282821893692, 0.031249182298779488, -0.10120924562215805, 0.079616479575634, -0.07458297908306122, 0.02733401022851467, -0.06750356405973434, 0.045090679079294205, 0.18396249413490295, -0.04878856614232063, 0.04831242933869362, 0.0327063724398613, -0.08805546164512634, 0.034567978233098984, -0.07856912910938263, -0.070543572306633, -0.0033056032843887806, 0.008260786533355713, 0.1088239848613739, 0.169551819562912, 0.1244964674115181, -0.06698726862668991, -0.018944475799798965, 0.15605510771274567, -0.029850874096155167, -0.1585742086172104, -0.14008267223834991, 0.11972443759441376, 0.029650401324033737, 0.028028324246406555, 0.016420191153883934, -0.060898203402757645, -0.03454608470201492, 0.23953969776630402, 0.22706128656864166, 0.10039766132831573, 0.030209308490157127, -0.04619739577174187, -0.012755964882671833, -0.03299499303102493, 0.07562891393899918, 0.0385049469769001, 0.23218606412410736, -0.015415665693581104, 0.008055835030972958, -0.11381492018699646, -0.05100172758102417, -0.029014982283115387, 0.030375415459275246, -0.054390810430049896, -0.15513193607330322, 0.022729739546775818, 0.16731791198253632, -0.06744759529829025, -0.0979994386434555, -0.0968165323138237, -0.059876449406147, -0.06548864394426346, 0.014979694038629532, 0.06940849870443344, 0.14351928234100342, 0.0326276533305645, -0.09438925236463547, 0.032195962965488434, 0.12633156776428223, 0.015018518082797527, -0.09796761721372604, -0.07383286952972412, 0.05539316684007645, -0.05393436178565025, -0.013211419805884361, -0.0061483182944357395, 0.20806299149990082, 0.005951727740466595, 0.09293720126152039, -0.025983842089772224, 0.11553338915109634, -0.026163844391703606, -0.06514772027730942, 0.03701692447066307, 0.11343339830636978, -0.042143773287534714, 0.08368207514286041, 0.04237079247832298, -0.14314110577106476, 0.05315704643726349, -0.08146650344133377, 0.0062922821380198, -0.06616644561290741, 0.08477573096752167, -0.05308166891336441, 0.04165501892566681, 0.09623550623655319, -0.06491704285144806, -0.03092631883919239, -0.04454778507351875, 0.062254294753074646, 0.05594441294670105, -0.05073468014597893, -0.024414459243416786, -0.235666424036026, -0.016138100996613503, -0.048216793686151505, -0.03157949075102806, -0.17761942744255066, -0.02956569381058216, 0.0006974192219786346, -0.08569730073213577, 0.026373960077762604, 0.04438501223921776, 0.1099056601524353, -0.004449389409273863, 0.010737009346485138, 0.03311722353100777, 0.06423145532608032, 0.11268753558397293, -0.1574210673570633, -0.13288266956806183 ]
null
null
null
This is a standalone Turkish Wav2Vec2 tokenizer config intended for use with `run_speech_recognition_ctc_streaming.py`
{"license": "cc0-1.0"}
null
anton-l/wav2vec2-tokenizer-turkish
[ "license:cc0-1.0", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #license-cc0-1.0 #region-us
This is a standalone Turkish Wav2Vec2 tokenizer config intended for use with 'run_speech_recognition_ctc_streaming.py'
[]
[ "TAGS\n#license-cc0-1.0 #region-us \n" ]
[ 14 ]
[ "passage: TAGS\n#license-cc0-1.0 #region-us \n" ]
[ -0.015827827155590057, 0.0207549799233675, -0.006497819907963276, -0.04290052875876427, -0.008116698823869228, 0.07027317583560944, 0.17494411766529083, 0.04256151616573334, 0.21734844148159027, -0.020508237183094025, 0.17894452810287476, 0.05383828282356262, 0.012251714244484901, 0.013546179048717022, -0.031910061836242676, -0.07461658120155334, 0.06502379477024078, -0.01734144240617752, 0.061062395572662354, 0.025558017194271088, -0.0035808782558888197, -0.045654892921447754, 0.016418294981122017, -0.02278972417116165, -0.11548300832509995, -0.007016019895672798, 0.08283799141645432, -0.034927476197481155, 0.09569909423589706, -0.03669785335659981, 0.1488795280456543, 0.12566709518432617, 0.047976598143577576, -0.21645991504192352, 0.007226462010294199, -0.074689120054245, -0.14275676012039185, 0.04021013155579567, -0.002384168328717351, 0.038798946887254715, 0.029695669189095497, 0.08111638575792313, -0.026238055899739265, 0.043591033667325974, -0.19998596608638763, -0.1481328010559082, -0.10702550411224365, 0.03871911019086838, 0.06454846262931824, 0.0650472566485405, 0.11070746183395386, 0.08298075199127197, -0.1759617030620575, -0.019254064187407494, 0.04221664369106293, -0.3985176384449005, 0.10433376580476761, 0.2524176836013794, 0.015190071426331997, 0.08450863510370255, -0.01707599312067032, 0.06626342982053757, 0.09601504355669022, -0.057876840233802795, -0.09547819942235947, -0.07555457204580307, -0.004737574141472578, 0.10565069317817688, 0.008250449784100056, -0.12633982300758362, 0.31104162335395813, 0.005960594862699509, -0.02898787520825863, 0.12754853069782257, -0.004315655212849379, -0.1518958956003189, 0.0220046304166317, 0.07752695679664612, 0.06581158190965652, 0.1794823259115219, 0.1345766931772232, -0.03197266533970833, -0.18553856015205383, -0.07936955243349075, -0.2299686074256897, 0.050761427730321884, -0.04536014050245285, 0.13710550963878632, -0.11852117627859116, 0.029426462948322296, -0.168117493391037, -0.011613838374614716, -0.08339264988899231, -0.025684406980872154, 0.09128108620643616, -0.007883008569478989, -0.06916080415248871, 0.18163245916366577, 0.0767785906791687, 0.13714002072811127, -0.03617716208100319, 0.0010543889366090298, -0.08272183686494827, 0.17322269082069397, -0.039915166795253754, 0.03520270064473152, 0.1707763373851776, 0.21105235815048218, 0.034060288220644, -0.17040330171585083, 0.05841115489602089, -0.03097379207611084, -0.20284830033779144, -0.028764287009835243, -0.1235160306096077, 0.178719624876976, -0.07272069156169891, -0.1120561882853508, -0.07850244641304016, 0.11062582582235336, 0.1746472865343094, 0.006332656368613243, 0.0015781199326738715, 0.052597835659980774, 0.04972757399082184, -0.06476195901632309, -0.03800445795059204, 0.009140897542238235, 0.11390510201454163, 0.08567581325769424, -0.15639014542102814, 0.009338120929896832, 0.00847355555742979, 0.04368881508708, 0.1489730179309845, -0.10177883505821228, 0.0031057363376021385, -0.0988050326704979, -0.1214434802532196, 0.02210068888962269, -0.018870722502470016, -0.0013024756917729974, 0.0697474479675293, 0.07618407905101776, 0.02391822822391987, -0.00707099586725235, -0.06859580427408218, -0.13437165319919586, -0.09691616892814636, 0.09489395469427109, -0.08992120623588562, 0.001434947014786303, -0.31798821687698364, -0.03579287976026535, -0.12229394912719727, 0.06312623620033264, 0.007610782980918884, -0.11566945910453796, -0.12733198702335358, 0.11878558993339539, -0.021428963169455528, 0.02241014502942562, -0.09214052557945251, 0.010798091068863869, -0.04514536261558533, 0.0935865119099617, -0.12018639594316483, -0.02178751304745674, 0.13598762452602386, -0.1433018445968628, -0.1446334421634674, -0.03895501047372818, 0.019982166588306427, 0.006798567716032267, 0.024144388735294342, 0.3136502802371979, -0.1047099232673645, -0.18356886506080627, 0.07592222094535828, 0.18125678598880768, -0.10997959971427917, -0.32262301445007324, 0.1311771422624588, -0.1998024582862854, -0.187198206782341, 0.0014316501328721642, -0.06889328360557556, 0.015019197016954422, -0.05126368626952171, -0.05998285487294197, -0.006330584641546011, -0.00101490318775177, -0.043657414615154266, -0.02342895045876503, 0.05602645128965378, -0.04209410771727562, 0.07747554033994675, -0.045815009623765945, -0.006485676858574152, 0.10631822049617767, 0.042011212557554245, -0.054521460086107254, 0.06824697554111481, -0.03340939059853554, -0.04051266610622406, -0.03962068259716034, -0.09377148747444153, 0.045961927622556686, 0.01636369340121746, 0.1081070527434349, 0.1499423384666443, 0.010570126585662365, -0.03262319043278694, 0.031655292958021164, 0.03699525073170662, 0.026514539495110512, 0.06497609615325928, 0.0337197445333004, -0.05697975680232048, 0.044706832617521286, -0.00427925493568182, -0.003093044040724635, -0.04839417338371277, -0.03098047524690628, 0.16389934718608856, -0.11026563495397568, -0.02162609063088894, 0.048698510974645615, -0.05410287529230118, 0.011966915801167488, 0.05759406089782715, 0.028150059282779694, 0.13676424324512482, 0.04184141010046005, -0.10588086396455765, 0.23670996725559235, -0.04869065061211586, 0.1752292364835739, 0.18292628228664398, -0.10221138596534729, -0.012063030153512955, -0.12153352797031403, 0.03150835260748863, 0.007108768448233604, 0.0687030777335167, -0.0007574483752250671, -0.010056051425635815, -0.02561722882091999, 0.04204174503684044, -0.05724786967039108, 0.0762060284614563, -0.006334691308438778, -0.07775887101888657, -0.09490123391151428, 0.002592582954093814, 0.29607272148132324, -0.13206219673156738, 0.11347667127847672, 0.43130505084991455, 0.07491658627986908, 0.08675660938024521, -0.1222805306315422, -0.05011172965168953, -0.09899600595235825, 0.02446424961090088, -0.008660665713250637, 0.1864352524280548, -0.06780783832073212, -0.018456993624567986, 0.05519538372755051, 0.053670529276132584, 0.08048956841230392, -0.22636665403842926, -0.1373836249113083, -0.011820163577795029, -0.06036384776234627, -0.21180830895900726, 0.024661719799041748, -0.06467945128679276, 0.04326812922954559, 0.031106621026992798, -0.1218821108341217, 0.15767976641654968, -0.021642114967107773, -0.08097198605537415, 0.09410100430250168, -0.2045363038778305, -0.0674152672290802, -0.2070121467113495, -0.05083119124174118, 0.05370981991291046, 0.05475202575325966, 0.048254210501909256, -0.024410801008343697, -0.05628518387675285, 0.019049039110541344, -0.10748866200447083, -0.14164051413536072, -0.03148767724633217, 0.04221876338124275, 0.09188827872276306, -0.07903469353914261, -0.08440255373716354, -0.09073856472969055, -0.03989356383681297, -0.06643612682819366, 0.057834167033433914, -0.10433634370565414, 0.09688135981559753, 0.20073744654655457, -0.011589284986257553, 0.06887412816286087, -0.06287635117769241, 0.08089158684015274, -0.01656951755285263, -0.12636809051036835, 0.06265083700418472, -0.009094814769923687, 0.02501223422586918, 0.18434375524520874, 0.10860177874565125, -0.11188825964927673, -0.0426454059779644, -0.14142030477523804, -0.15677288174629211, -0.2284785360097885, -0.0722619891166687, -0.07796493172645569, 0.10695859789848328, 0.049525342881679535, 0.1110767275094986, 0.13268820941448212, 0.02224240079522133, 0.09962653368711472, -0.017251551151275635, -0.00040528737008571625, 0.03874737024307251, 0.20739394426345825, -0.03365937992930412, -0.027623334899544716, -0.14161135256290436, 0.0691787451505661, 0.14249524474143982, 0.139995276927948, 0.16600163280963898, 0.3162063956260681, 0.22497759759426117, 0.12792226672172546, 0.1330370157957077, 0.16604992747306824, 0.0472303070127964, 0.09019041806459427, -0.019124092534184456, -0.017582710832357407, -0.02325849048793316, 0.013185273855924606, 0.04936143010854721, 0.062171682715415955, -0.21109169721603394, -0.0013586258282884955, -0.25098541378974915, -0.027053730562329292, -0.029432402923703194, 0.1569761335849762, -0.06975451111793518, 0.09832741320133209, 0.043669864535331726, 0.09876921027898788, -0.015986476093530655, 0.1536543369293213, -0.03239721804857254, -0.014573484659194946, -0.011625164188444614, 0.05013485625386238, 0.057652924209833145, 0.013699566945433617, 0.03295789659023285, -0.05778241157531738, -0.2052765190601349, 0.02501329965889454, 0.08287971466779709, -0.19295738637447357, 0.31623080372810364, 0.042994868010282516, -0.08778177201747894, -0.0479305237531662, -0.08007439970970154, -0.02403469756245613, 0.1669764518737793, 0.11431702226400375, 0.05748489871621132, -0.2534176707267761, -0.15290476381778717, -0.06660697609186172, -0.01424906775355339, 0.11530584841966629, 0.014175640419125557, -0.13470326364040375, -0.039485979825258255, 0.04143144562840462, 0.002195778302848339, 0.0799378752708435, -0.07753798365592957, -0.05727759376168251, 0.024149620905518532, 0.13680347800254822, 0.027762344107031822, -0.07132229208946228, 0.07605323195457458, -0.0003505912027321756, 0.04955020174384117, -0.18805696070194244, 0.05452967807650566, -0.06911149621009827, -0.2425590604543686, 0.04135144501924515, -0.02663508988916874, 0.01498977467417717, -0.05824420228600502, -0.12647001445293427, -0.12276162207126617, -0.15032735466957092, 0.11973794549703598, -0.03637445718050003, -0.0015369025059044361, -0.06563126295804977, 0.16168387234210968, -0.10179031640291214, 0.055348824709653854, 0.014502118341624737, 0.053833503276109695, -0.0014364761300384998, -0.10604432970285416, 0.11800113320350647, -0.12128034234046936, 0.05950487405061722, 0.04800638556480408, -0.020337622612714767, 0.030141154304146767, 0.07355710864067078, -0.06245864927768707, 0.19461935758590698, 0.3996458649635315, -0.06735697388648987, 0.21052922308444977, 0.29975077509880066, -0.11306716501712799, -0.23508331179618835, -0.0946723073720932, -0.28400173783302307, -0.09579131752252579, 0.031889621168375015, -0.12271463871002197, 0.004994374234229326, 0.21855145692825317, -0.12724006175994873, 0.32071229815483093, -0.2246803492307663, -0.0602361224591732, 0.11491435021162033, -0.05154652148485184, 0.46896660327911377, -0.11816392838954926, -0.14725728332996368, -0.03627987205982208, -0.23439070582389832, 0.14878790080547333, 0.024235181510448456, 0.06288565695285797, -0.006328092887997627, -0.04687908664345741, -0.021492354571819305, -0.047317106276750565, 0.21927282214164734, 0.018123384565114975, 0.1139855682849884, -0.05366784334182739, -0.1671951413154602, 0.25412479043006897, -0.015160803683102131, 0.00700352992862463, -0.026240788400173187, -0.04796367511153221, -0.027118513360619545, 0.046213872730731964, -0.03789704293012619, 0.057056162506341934, -0.019342228770256042, -0.07026860117912292, -0.09488411247730255, -0.023786107078194618, -0.11998835951089859, -0.04897436127066612, 0.315212219953537, -0.04751734435558319, 0.0377190001308918, 0.14091940224170685, -0.05110262334346771, -0.1145578920841217, 0.03313014656305313, -0.035150352865457535, -0.1092200055718422, 0.0739675909280777, -0.1602747142314911, 0.004372658208012581, 0.10586830973625183, -0.007210183423012495, 0.08530297130346298, 0.10976134985685349, -0.04242664948105812, 0.01910211332142353, 0.15716031193733215, -0.09256551414728165, 0.00018715320038609207, 0.06702352315187454, 0.032279256731271744, 0.17425884306430817, 0.008439388126134872, 0.04447799548506737, 0.006953931413590908, 0.042794425040483475, 0.0017727067461237311, 0.012158522382378578, -0.12908081710338593, -0.06533278524875641, 0.05416157469153404, -0.0037941618356853724, -0.1149822324514389, 0.2116687297821045, 0.04668469727039337, -0.05039292201399803, -0.06049032881855965, 0.04103400930762291, -0.08662349730730057, -0.07701002061367035, -0.17442163825035095, 0.005864012986421585, -0.20347069203853607, -0.11531949043273926, 0.02061457559466362, -0.1133415549993515, -0.015374796465039253, 0.15724389255046844, 0.039288803935050964, 0.17433549463748932, 0.057092487812042236, -0.012051633559167385, 0.07364100217819214, -0.10508841276168823, -0.27986207604408264, 0.019700372591614723, -0.042031969875097275, -0.024145841598510742, 0.010130248963832855, 0.03936855494976044, -0.053051792085170746, -0.07699041813611984, -0.15602891147136688, 0.08743733912706375, -0.10756352543830872, 0.042746059596538544, -0.09767849743366241, -0.058715805411338806, 0.08856650441884995, 0.016887011006474495, -0.04606348276138306, 0.015388241969048977, -0.16701138019561768, 0.040576010942459106, 0.013213451951742172, 0.056745436042547226, -0.06186240166425705, -0.028149524703621864, 0.07983431220054626, 0.05936424061655998, 0.07884479314088821, 0.07507334649562836, 0.04281532019376755, 0.12806454300880432, -0.16458827257156372, -0.005474859848618507, 0.10466022044420242, -0.022124456241726875, 0.006573962047696114, 0.080918088555336, -0.04723747447133064, 0.09231097251176834, -0.09327706694602966, 0.042155634611845016, -0.08635548502206802, -0.09218272566795349, -0.10282430052757263, -0.004678824916481972, -0.18162137269973755, 0.020271798595786095, -0.14090165495872498, 0.22998687624931335, 0.011611484922468662, 0.08870216459035873, 0.05398242920637131, -0.004889402538537979, 0.041578181087970734, -0.014590299688279629, -0.006731848232448101, -0.038029205054044724, -0.1499195694923401, -0.06091319024562836, -0.08210523426532745, -0.00894157961010933, 0.3709453344345093, -0.03841117024421692, -0.16051799058914185, 0.05174537003040314, 0.12808112800121307, -0.004495458677411079, 0.028847621753811836, 0.31545841693878174, 0.07578998804092407, -0.021821945905685425, -0.126447856426239, 0.05344526469707489, -0.06069440394639969, -0.17001225054264069, 0.1430491805076599, 0.03048855811357498, 0.08475354313850403, 0.04582849517464638, 0.1244293600320816, -0.10502518713474274, 0.0002800747752189636, -0.05334014445543289, 0.08342163264751434, 0.005081727635115385, 0.03116319328546524, 0.047058623284101486, 0.1639874279499054, -0.03309374675154686, -0.01276120450347662, -0.052541930228471756, -0.016218816861510277, -0.17245665192604065, -0.1259782910346985, 0.01787005178630352, -0.12343088537454605, 0.07029888033866882, 0.02314363420009613, 0.0693025290966034, 0.27778932452201843, 0.02227831445634365, -0.037991445511579514, -0.06574410200119019, -0.16170920431613922, -0.043377168476581573, -0.013468199409544468, -0.00225620623677969, 0.03427441418170929, -0.1587003618478775, -0.11113078147172928, 0.010077851824462414, -0.23150713741779327, -0.030404146760702133, 0.04201243445277214, 0.07477619498968124, -0.027351640164852142, -0.09659646451473236, -0.05292573198676109, -0.04989369213581085, 0.0978633314371109, -0.02792114019393921, 0.23666667938232422, -0.005066197831183672, 0.03435163199901581, 0.07493063807487488, 0.035143837332725525, -0.017472874373197556, -0.05500023066997528, 0.036954253911972046, 0.13017874956130981, -0.0026822062209248543, 0.10952424257993698, -0.05029696598649025, -0.018618782982230186, 0.022701913490891457, 0.1532883197069168, 0.2295265942811966, -0.06098145246505737, 0.016661008819937706, -0.00993722677230835, 0.018924623727798462, 0.06299242377281189, 0.18725284934043884, -0.029469145461916924, 0.2254985123872757, -0.07282853871583939, -0.0450349897146225, -0.040356263518333435, 0.05596847087144852, -0.07746271044015884, 0.01888779178261757, 0.006103279069066048, -0.11678760498762131, -0.11230915039777756, 0.09417769312858582, -0.12361448258161545, 0.1333419233560562, 0.2602144479751587, -0.08850222080945969, 0.08162997663021088, 0.009261987172067165, 0.10575367510318756, -0.028377942740917206, 0.06303248554468155, -0.14998990297317505, -0.09340017288923264, -0.07175090163946152, 0.010366047732532024, -0.35277682542800903, -0.1527424454689026, 0.05217723548412323, 0.13464516401290894, 0.19973614811897278, 0.0193361546844244, 0.17953117191791534, 0.00010866340744541958, 0.12162303924560547, -0.07970237731933594, 0.16948284208774567, 0.04674931988120079, -0.07192179560661316, -0.14947031438350677, -0.18935741484165192, -0.04290371760725975, 0.02863827347755432, 0.04246106371283531, -0.04032924026250839, 0.04598650708794594, 0.1590558886528015, -0.09096425026655197, -0.02076193317770958, -0.0870942771434784, -0.10240193456411362, 0.07305222749710083, -0.06793145835399628, 0.00989602878689766, -0.08067302405834198, 0.003461869666352868, -0.036065466701984406, 0.11958018690347672, -0.18655182421207428, -0.08325619250535965, 0.13677145540714264, 0.031074590981006622, 0.20743191242218018, -0.0042498474940657616, -0.06865084916353226, -0.006513423286378384, -0.07911794632673264, 0.0904112383723259, -0.13705450296401978, 0.03480922058224678, 0.09766968339681625, 0.01710483245551586, 0.020746951922774315, -0.21379989385604858, 0.07336468249559402, -0.006897794082760811, -0.05903564393520355, -0.09125455468893051 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-common_voice-tr-ft This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.5806 - Wer: 0.3998 - Cer: 0.1053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 0.5369 | 17.0 | 500 | 0.6021 | 0.6366 | 0.1727 | | 0.3542 | 34.0 | 1000 | 0.5265 | 0.4906 | 0.1278 | | 0.1866 | 51.0 | 1500 | 0.5805 | 0.4768 | 0.1261 | | 0.1674 | 68.01 | 2000 | 0.5336 | 0.4518 | 0.1186 | | 0.19 | 86.0 | 2500 | 0.5676 | 0.4427 | 0.1151 | | 0.0815 | 103.0 | 3000 | 0.5510 | 0.4268 | 0.1125 | | 0.0545 | 120.0 | 3500 | 0.5608 | 0.4175 | 0.1099 | | 0.0299 | 137.01 | 4000 | 0.5875 | 0.4222 | 0.1124 | | 0.0267 | 155.0 | 4500 | 0.5882 | 0.4026 | 0.1063 | | 0.025 | 172.0 | 5000 | 0.5806 | 0.3998 | 0.1053 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
{"language": ["tr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-common_voice-tr-ft", "results": []}]}
automatic-speech-recognition
anton-l/wav2vec2-xls-r-common_voice-tr-ft-100sh
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "tr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-xls-r-common\_voice-tr-ft ================================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the COMMON\_VOICE - TR dataset. It achieves the following results on the evaluation set: * Loss: 0.5806 * Wer: 0.3998 * Cer: 0.1053 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0005 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * distributed\_type: multi-GPU * num\_devices: 4 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 64 * total\_eval\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 5000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ 64, 191, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ -0.09650726616382599, 0.12117193639278412, -0.004527002107352018, 0.06514307856559753, 0.11457565426826477, 0.038704510778188705, 0.08740687370300293, 0.15096403658390045, -0.07117082923650742, 0.10256026685237885, 0.09016414731740952, 0.0954277291893959, 0.06730622053146362, 0.121658556163311, -0.0018589081009849906, -0.30084073543548584, -0.0006064401823095977, -0.035291507840156555, -0.14174160361289978, 0.11107107251882553, 0.06938152760267258, -0.10199827700853348, 0.035254497081041336, -0.008177969604730606, -0.09387392550706863, -0.015441520139575005, -0.033370617777109146, -0.04377298429608345, 0.10544753819704056, 0.03250429034233093, 0.05154293030500412, 0.03388528525829315, 0.11582028120756149, -0.2696355879306793, 0.0036237118765711784, 0.07798583060503006, 0.03489015996456146, 0.06552547961473465, 0.11395703256130219, -0.01575239934027195, 0.155069038271904, -0.07745800167322159, 0.07093654572963715, 0.04058479145169258, -0.09942469000816345, -0.26683321595191956, -0.07749894261360168, 0.023178834468126297, 0.11465299874544144, 0.07137655466794968, -0.01727989874780178, 0.03503761813044548, -0.08861485123634338, 0.07530400902032852, 0.21005716919898987, -0.2613418996334076, -0.05939130857586861, 0.011426916345953941, 0.02991652302443981, 0.06295371800661087, -0.10645954310894012, -0.010591779835522175, 0.002896168502047658, 0.021983426064252853, 0.10758715122938156, 0.016453802585601807, 0.03283093869686127, 0.021959437057375908, -0.14630067348480225, -0.03533899411559105, 0.07027588784694672, 0.06160784140229225, 0.000020418443455128, -0.10918369144201279, -0.03621574491262436, -0.21188385784626007, -0.04603882506489754, 0.010660563595592976, 0.025481369346380234, -0.03806672990322113, -0.07220764458179474, 0.03760514408349991, -0.036025211215019226, -0.08902984112501144, 0.024924386292696, 0.12707112729549408, 0.06156732514500618, -0.018294665962457657, 0.03176337480545044, 0.10607672482728958, 0.04564259573817253, -0.14285829663276672, 0.010038777254521847, 0.030723029747605324, -0.12570980191230774, 0.0032613875810056925, -0.006937896367162466, 0.013869810849428177, 0.0398072749376297, 0.1311415582895279, -0.012562629766762257, 0.09423021227121353, 0.036090951412916183, 0.0015186886303126812, -0.07671743631362915, 0.1566774547100067, -0.09057160466909409, -0.09620054811239243, -0.052357107400894165, 0.10791704803705215, 0.0013356053968891501, -0.011795931495726109, -0.060727328062057495, 0.034138571470975876, 0.08319862186908722, 0.05953458696603775, -0.00788439903408289, 0.03258901834487915, -0.06455041468143463, -0.02305104397237301, 0.026378018781542778, -0.1114794909954071, 0.0498797744512558, 0.04513555020093918, -0.0766843780875206, -0.010874662548303604, -0.011593121103942394, -0.005367440637201071, -0.031230654567480087, 0.11955691874027252, -0.0568624809384346, -0.017134033143520355, -0.07421621680259705, -0.09237245470285416, 0.01933680661022663, -0.05092591792345047, -0.006972816307097673, -0.03509507328271866, -0.0755171999335289, -0.055336419492959976, 0.0721474438905716, -0.08773519843816757, -0.06590203940868378, -0.06506765633821487, -0.07392776757478714, 0.05690854415297508, -0.012676794081926346, 0.1672700047492981, -0.06899184733629227, 0.10178542882204056, 0.003811935195699334, 0.07161282002925873, 0.10332481563091278, 0.06601402163505554, -0.025667661800980568, 0.04806382209062576, -0.15635289251804352, 0.09336093813180923, -0.10886199027299881, 0.02737072855234146, -0.14595738053321838, -0.1177339255809784, 0.012437171302735806, -0.012858756817877293, 0.09155197441577911, 0.10355601459741592, -0.17630049586296082, -0.07944928109645844, 0.16015970706939697, -0.05935999006032944, -0.05750656872987747, 0.12639184296131134, -0.0034450942184776068, -0.08173701167106628, 0.01364877913147211, 0.18014028668403625, 0.11558209359645844, -0.10465649515390396, 0.0258636474609375, -0.03916841000318527, 0.09431231766939163, 0.03784100338816643, 0.08851591497659683, -0.03213164582848549, 0.01864403858780861, 0.005747093353420496, -0.028984401375055313, 0.05206282064318657, -0.09483376145362854, -0.0845029428601265, -0.015388154424726963, -0.08690223097801208, 0.018435847014188766, 0.05585990846157074, 0.014366020448505878, -0.07803957164287567, -0.1408282369375229, -0.015206616371870041, 0.10370628535747528, -0.1025032326579094, 0.014914145693182945, -0.07959572970867157, 0.04273127019405365, -0.00136687105987221, 0.004191636107861996, -0.1508346050977707, -0.02572690136730671, 0.0373956672847271, -0.07912580668926239, 0.015243024565279484, -0.01703687757253647, 0.07285024225711823, 0.05898039788007736, -0.05843387544155121, -0.053451456129550934, -0.029981613159179688, -0.0005431451718322933, -0.05321763455867767, -0.24829073250293732, -0.06063608080148697, -0.017463689669966698, 0.11950088292360306, -0.19546708464622498, -0.005130867473781109, 0.009505760855972767, 0.1062871590256691, 0.015317042358219624, -0.057556916028261185, 0.0067534781992435455, 0.07056788355112076, -0.009248172864317894, -0.08137263357639313, 0.0394209586083889, -0.01087295450270176, -0.09308500587940216, -0.003892136737704277, -0.12488295137882233, 0.07878796756267548, 0.08454620093107224, 0.047100335359573364, -0.09303056448698044, -0.017544720321893692, -0.06039084121584892, -0.061199188232421875, -0.016729922965168953, 0.041393253952264786, 0.1784866452217102, 0.020322374999523163, 0.09032922238111496, -0.05505417659878731, -0.051257021725177765, 0.03983549773693085, 0.02499673143029213, -0.004433903377503157, 0.1588943600654602, 0.08472131192684174, -0.03040558286011219, 0.0873672366142273, 0.05281677842140198, -0.05540505051612854, 0.11064938455820084, -0.06559780985116959, -0.09643793106079102, -0.04491405561566353, 0.01520730834454298, 0.032546184957027435, 0.1147979199886322, -0.12804773449897766, 0.001790310605429113, 0.022178659215569496, 0.026831630617380142, 0.014585593715310097, -0.18266832828521729, -0.014595383778214455, 0.029792703688144684, -0.09041447192430496, -0.02908508852124214, -0.011465982533991337, -0.004178459290415049, 0.09733716398477554, 0.010962596163153648, -0.06074533611536026, -0.03238954395055771, -0.027315450832247734, -0.07195647060871124, 0.17312005162239075, -0.10649093240499496, -0.12859269976615906, -0.09693026542663574, -0.015674591064453125, -0.01656954362988472, -0.01806756481528282, 0.03416433557868004, -0.10802824050188065, -0.051601435989141464, -0.06305265426635742, 0.035556040704250336, -0.03626472130417824, 0.041519805788993835, 0.025757957249879837, 0.006891528144478798, 0.06608571112155914, -0.09295368939638138, 0.020806055516004562, -0.022632718086242676, -0.04870061203837395, 0.028026899322867393, 0.06267334520816803, 0.09605301171541214, 0.1769210547208786, 0.03849821165204048, 0.03229113295674324, -0.013883654028177261, 0.16069002449512482, -0.10870067030191422, 0.009016416035592556, 0.08731616288423538, 0.018506791442632675, 0.04322023317217827, 0.15436333417892456, 0.05321677401661873, -0.09025441855192184, 0.0074879880994558334, 0.05073830485343933, -0.028257351368665695, -0.2320399433374405, -0.05448167398571968, -0.05091191455721855, -0.01398072112351656, 0.11123993247747421, 0.03806055709719658, -0.05097490921616554, 0.003313750261440873, 0.009692511521279812, -0.020374102517962456, 0.02252248302102089, 0.03781552240252495, 0.07318771630525589, 0.04457278549671173, 0.10708366334438324, -0.019281012937426567, -0.02620791271328926, 0.043712861835956573, 0.00202089617960155, 0.23092514276504517, -0.026585832238197327, 0.1515386700630188, 0.04335152730345726, 0.1428251713514328, 0.002357055200263858, 0.03922758251428604, 0.006063040345907211, -0.009093119762837887, 0.02340478077530861, -0.042141810059547424, -0.016171788796782494, 0.015427989885210991, 0.09812910854816437, -0.00715153943747282, -0.0940544381737709, 0.02236972190439701, 0.03422601521015167, 0.3009266257286072, 0.07420157641172409, -0.26897305250167847, -0.07192477583885193, 0.0009158822358585894, -0.05961545929312706, -0.025527682155370712, 0.0429861806333065, 0.12171454727649689, -0.06417351961135864, 0.07781057804822922, -0.06511335074901581, 0.07244770973920822, -0.09089361876249313, -0.00297488272190094, 0.1191580668091774, 0.11426755785942078, 0.009926973842084408, 0.05497979745268822, -0.24731574952602386, 0.2645098865032196, -0.016467560082674026, 0.06259509176015854, -0.04513252526521683, 0.03186352923512459, 0.00009752627374837175, -0.03447254002094269, 0.08653848618268967, -0.0028904250357300043, -0.09974342584609985, -0.1672193855047226, -0.1084480956196785, 0.02069324627518654, 0.13463392853736877, -0.04463903233408928, 0.10218235850334167, -0.03758090361952782, -0.043390605598688126, 0.04232379421591759, -0.12660428881645203, -0.08346126228570938, -0.11520218104124069, 0.029666809365153313, -0.03263112157583237, 0.02876753732562065, -0.06936533004045486, -0.09426268935203552, -0.08865419030189514, 0.16735237836837769, -0.08708090335130692, -0.021659687161445618, -0.12905645370483398, 0.05929184705018997, 0.18283024430274963, -0.06577032059431076, 0.04774423688650131, 0.020175259560346603, 0.0815303847193718, 0.04569804668426514, -0.04685577377676964, 0.11585226655006409, -0.07228069752454758, -0.20218445360660553, -0.05953390896320343, 0.15543992817401886, 0.047235824167728424, 0.07142528891563416, -0.043016884475946426, 0.03287417069077492, -0.0021519677247852087, -0.09723682701587677, 0.08130601048469543, 0.047964420169591904, 0.01750962622463703, 0.03227691724896431, -0.03229621425271034, 0.02166011743247509, -0.05720260366797447, -0.05649036541581154, 0.10849513113498688, 0.26616954803466797, -0.10367998480796814, 0.0788557380437851, 0.04322325810790062, -0.05226834863424301, -0.17440110445022583, -0.02594470977783203, 0.11275532841682434, 0.02316022850573063, -0.0017402281519025564, -0.2179841250181198, 0.039338596165180206, 0.09111566841602325, -0.01732790842652321, 0.08656188100576401, -0.37155354022979736, -0.1328900307416916, 0.07441651076078415, 0.08302823454141617, -0.03580643981695175, -0.16398796439170837, -0.055205825716257095, 0.004730965476483107, -0.0922386422753334, 0.058545827865600586, 0.03238997980952263, 0.12864381074905396, -0.02110089175403118, 0.016660818830132484, 0.019528035074472427, -0.05383923649787903, 0.13569529354572296, 0.0033540388103574514, 0.04024743661284447, -0.018322423100471497, 0.041622571647167206, -0.011826783418655396, -0.05390524864196777, -0.0007410020334646106, -0.07462171465158463, 0.03651195392012596, -0.09747902303934097, -0.02385615184903145, -0.08681236952543259, -0.0008977237157523632, -0.03432483598589897, -0.034052833914756775, -0.029403725638985634, 0.05407027155160904, 0.09365296363830566, -0.022348325699567795, 0.08515956252813339, -0.031427234411239624, 0.11632730066776276, 0.09280026704072952, 0.07378551363945007, 0.007391475606709719, -0.10513000935316086, -0.00743955560028553, 0.0007005666266195476, 0.02865145169198513, -0.12448158115148544, 0.03713028505444527, 0.15550534427165985, 0.044977132230997086, 0.12117257714271545, 0.05319216102361679, -0.06144792214035988, 0.0004034526355098933, 0.07230211794376373, -0.09920009225606918, -0.16381962597370148, 0.008197021670639515, -0.038876764476299286, -0.10440065711736679, -0.001688867574557662, 0.07588072866201401, -0.030340440571308136, -0.007327147759497166, 0.01673533394932747, 0.06482790410518646, -0.029286077246069908, 0.24501995742321014, 0.013233632780611515, 0.07933172583580017, -0.10929732024669647, 0.09834078699350357, 0.05016762763261795, -0.14422036707401276, 0.030390016734600067, 0.10513386130332947, -0.06351803988218307, -0.009594671428203583, 0.07744330912828445, 0.06385409086942673, 0.032533757388591766, -0.02142919786274433, -0.1076708436012268, -0.14297744631767273, 0.10264381021261215, 0.061468422412872314, 0.025061914697289467, 0.030823374167084694, -0.03422961384057999, 0.03526155650615692, -0.10935273766517639, 0.10692198574542999, 0.09399983286857605, 0.06231293827295303, -0.1284976601600647, 0.10511147975921631, 0.008788865059614182, 0.006144794635474682, -0.009202076122164726, 0.017180537804961205, -0.1200597882270813, 0.011027061380445957, -0.09358393400907516, -0.024891065433621407, -0.056636590510606766, 0.00972068216651678, 0.0030919990967959166, -0.05646122246980667, -0.048842523247003555, 0.019678102806210518, -0.10384080559015274, -0.05550370365381241, -0.03154940903186798, 0.06059170514345169, -0.10915971547365189, -0.01491143461316824, 0.026812691241502762, -0.11137153953313828, 0.10208720713853836, 0.03846249729394913, 0.02717260830104351, 0.027643674984574318, -0.08544818311929703, -0.002567353192716837, 0.032409343868494034, -0.0006897735293023288, 0.03911951556801796, -0.18174827098846436, -0.005338575225323439, -0.03631289303302765, 0.0049512386322021484, -0.0007479509222321212, 0.036468468606472015, -0.12859341502189636, 0.022926101461052895, -0.06685075908899307, -0.05210915952920914, -0.05452004075050354, 0.04754200577735901, 0.08671417087316513, 0.027895305305719376, 0.14331623911857605, -0.08837692439556122, 0.05759640783071518, -0.21715058386325836, -0.009373086504638195, -0.013277309946715832, -0.05512319877743721, -0.04960798844695091, -0.004228977952152491, 0.10535820573568344, -0.052263420075178146, 0.11168516427278519, -0.0233757346868515, 0.033922214061021805, 0.02441100776195526, -0.07933463901281357, -0.0011383831733837724, 0.057502083480358124, 0.16502638161182404, 0.03995382413268089, -0.031749412417411804, 0.06735267490148544, 0.0014011558378115296, 0.0434248186647892, 0.12941449880599976, 0.1657746434211731, 0.1264907866716385, 0.05398554727435112, 0.04796602949500084, 0.06247594952583313, -0.16479066014289856, -0.17059847712516785, 0.16798456013202667, -0.09403549134731293, 0.1484539806842804, -0.026357892900705338, 0.20697996020317078, 0.061630766838788986, -0.2028375118970871, 0.07272141426801682, -0.03962358832359314, -0.10476059466600418, -0.10600815713405609, -0.07937774062156677, -0.08039525151252747, -0.18543218076229095, 0.020505433902144432, -0.09887391328811646, 0.08545331656932831, 0.06046439707279205, 0.05069505050778389, 0.0441245436668396, 0.09642977267503738, 0.05187873914837837, 0.020142411813139915, 0.07694606482982635, 0.04939291253685951, -0.034809134900569916, -0.010421297512948513, -0.0727028176188469, 0.02227138727903366, -0.028406711295247078, 0.06023168936371803, -0.0352761410176754, -0.10891562700271606, 0.072280153632164, 0.010031148791313171, -0.08480335026979446, 0.025013089179992676, -0.01962737925350666, 0.05326996371150017, 0.09589334577322006, 0.041658613830804825, -0.017702845856547356, -0.024416808038949966, 0.2402745485305786, -0.09461177885532379, -0.06592399626970291, -0.12304878234863281, 0.2732031047344208, -0.0005129066994413733, 0.004362833686172962, 0.035331759601831436, -0.059652362018823624, -0.03335849940776825, 0.15209072828292847, 0.17547371983528137, -0.029461288824677467, -0.026274021714925766, 0.022546999156475067, -0.008922592736780643, -0.01743367686867714, 0.10404233634471893, 0.12582863867282867, 0.07405202090740204, -0.05486546829342842, -0.038770899176597595, -0.046554576605558395, -0.05376826971769333, -0.037523310631513596, 0.08614908903837204, 0.03389982134103775, -0.011954160407185555, -0.026441430673003197, 0.09846607595682144, -0.07897283136844635, -0.14057864248752594, 0.060372188687324524, -0.18550674617290497, -0.19662149250507355, -0.03292994946241379, 0.07228443026542664, 0.007707824464887381, 0.04552292823791504, 0.012731441296637058, -0.02853395789861679, 0.101543128490448, 0.008695941418409348, -0.06344974786043167, -0.0904678925871849, 0.05386866256594658, -0.07269972562789917, 0.18769490718841553, -0.02542051672935486, 0.019987402483820915, 0.11124308407306671, 0.05846165493130684, -0.10489511489868164, 0.05290534719824791, 0.07746513187885284, -0.1457371860742569, 0.046982187777757645, 0.18174487352371216, -0.04381519556045532, 0.11560030281543732, 0.04037439450621605, -0.04501301795244217, 0.013095674104988575, -0.10848080366849899, -0.04496502876281738, -0.03941347822546959, -0.017140787094831467, -0.035666681826114655, 0.15170004963874817, 0.22492875158786774, -0.0535806305706501, 0.004094380885362625, -0.054887693375349045, 0.005916445516049862, 0.01393944676965475, 0.16744928061962128, -0.03273686766624451, -0.25648555159568787, 0.026252107694745064, -0.013258266262710094, 0.04055996611714363, -0.173325777053833, -0.08320947736501694, 0.029206736013293266, -0.04867954179644585, -0.07764510065317154, 0.13923712074756622, 0.0567268431186676, 0.04915127903223038, -0.058029480278491974, -0.09960106760263443, -0.022662555798888206, 0.17042776942253113, -0.19349786639213562, -0.05798094719648361 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-common_voice-tr-ft-stream This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.3519 - Wer: 0.2927 - Cer: 0.0694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.6768 | 9.01 | 500 | 0.4220 | 0.5143 | 0.1235 | | 0.3801 | 19.01 | 1000 | 0.3303 | 0.4403 | 0.1055 | | 0.3616 | 29.0 | 1500 | 0.3540 | 0.3716 | 0.0878 | | 0.2334 | 39.0 | 2000 | 0.3666 | 0.3671 | 0.0842 | | 0.3141 | 49.0 | 2500 | 0.3407 | 0.3373 | 0.0819 | | 0.1926 | 58.01 | 3000 | 0.3886 | 0.3520 | 0.0867 | | 0.1372 | 68.01 | 3500 | 0.3415 | 0.3189 | 0.0743 | | 0.091 | 78.0 | 4000 | 0.3750 | 0.3164 | 0.0757 | | 0.0893 | 88.0 | 4500 | 0.3559 | 0.2968 | 0.0712 | | 0.095 | 98.0 | 5000 | 0.3519 | 0.2927 | 0.0694 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
{"language": ["tr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-common_voice-tr-ft-stream", "results": []}]}
automatic-speech-recognition
anton-l/wav2vec2-xls-r-common_voice-tr-ft-stream
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "tr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-xls-r-common\_voice-tr-ft-stream ========================================= This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the COMMON\_VOICE - TR dataset. It achieves the following results on the evaluation set: * Loss: 0.3519 * Wer: 0.2927 * Cer: 0.0694 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0005 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * distributed\_type: multi-GPU * num\_devices: 4 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 64 * total\_eval\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 5000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.0.dev0 * Pytorch 1.10.2 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ 64, 191, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ -0.09708340466022491, 0.123112253844738, -0.004483203403651714, 0.06645161658525467, 0.11221414059400558, 0.03873610496520996, 0.09424649924039841, 0.15145829319953918, -0.06672719866037369, 0.10680897533893585, 0.08587447553873062, 0.09450570493936539, 0.06739989668130875, 0.12236902862787247, -0.005881501827389002, -0.29590681195259094, 0.00259216851554811, -0.03583206236362457, -0.14229947328567505, 0.10848086327314377, 0.06852485239505768, -0.09881313145160675, 0.035926561802625656, -0.007723635993897915, -0.09560459107160568, -0.01535017229616642, -0.032503336668014526, -0.043750911951065063, 0.10358407348394394, 0.03833933174610138, 0.05198868736624718, 0.030914293602108955, 0.11175552755594254, -0.2675160765647888, 0.004727359861135483, 0.08062958717346191, 0.030080994591116905, 0.06426609307527542, 0.11634349822998047, -0.020817957818508148, 0.16065841913223267, -0.07891291379928589, 0.07443206012248993, 0.03996475785970688, -0.09950761497020721, -0.2609938383102417, -0.07413537055253983, 0.02186519466340542, 0.11565817892551422, 0.06828462332487106, -0.015377731062471867, 0.03559396415948868, -0.08348655700683594, 0.0776565745472908, 0.21313846111297607, -0.2593514621257782, -0.05945070832967758, 0.013487910851836205, 0.028895758092403412, 0.06137877702713013, -0.10731623321771622, -0.012809005565941334, -0.0003380915441084653, 0.019853204488754272, 0.10958023369312286, 0.0158661138266325, 0.029265420511364937, 0.018711606040596962, -0.14479728043079376, -0.03429912403225899, 0.06172749772667885, 0.05743872746825218, 0.0011235193815082312, -0.11186368018388748, -0.04093155264854431, -0.20539641380310059, -0.0476541742682457, 0.01268367562443018, 0.023853575810790062, -0.03747273609042168, -0.06668829917907715, 0.03694699704647064, -0.0306050106883049, -0.09075834602117538, 0.02018078975379467, 0.13885018229484558, 0.06120777130126953, -0.019033897668123245, 0.02871895767748356, 0.10237082839012146, 0.04604865238070488, -0.14665155112743378, 0.007176143117249012, 0.033307723701000214, -0.13215133547782898, 0.0035967573057860136, -0.007440968882292509, 0.009212667122483253, 0.03924066573381424, 0.13343589007854462, -0.00946157705038786, 0.09906964749097824, 0.031788405030965805, 0.0001197719102492556, -0.0769546777009964, 0.15922307968139648, -0.08610229194164276, -0.09762619435787201, -0.04844046011567116, 0.10526161640882492, 0.0019324104068800807, -0.015156375244259834, -0.0583476684987545, 0.03534655272960663, 0.07878172397613525, 0.060069404542446136, -0.008935652673244476, 0.03204844519495964, -0.06516791135072708, -0.023017289116978645, 0.02420804463326931, -0.1163308322429657, 0.051324982196092606, 0.04577057063579559, -0.07623889297246933, -0.008890870027244091, -0.011653809808194637, -0.010214331559836864, -0.033838916569948196, 0.1206173226237297, -0.05692020803689957, -0.018341686576604843, -0.07458939403295517, -0.09407215565443039, 0.018845967948436737, -0.0538947656750679, -0.0099942022934556, -0.033827949315309525, -0.07823479175567627, -0.05661749094724655, 0.07415056973695755, -0.0869675725698471, -0.059192098677158356, -0.06345511972904205, -0.07218916714191437, 0.05955604463815689, -0.009108062833547592, 0.15989801287651062, -0.0707208439707756, 0.09741216152906418, -0.0021615016739815474, 0.07434287667274475, 0.10886005312204361, 0.0671105608344078, -0.02648168057203293, 0.05002281442284584, -0.156598761677742, 0.09508836269378662, -0.11178920418024063, 0.027280965819954872, -0.14780382812023163, -0.11424428224563599, 0.01684003882110119, -0.011427397839725018, 0.09069259464740753, 0.10135223716497421, -0.17936694622039795, -0.07778509706258774, 0.15532764792442322, -0.06475087255239487, -0.05673462152481079, 0.12510058283805847, -0.005675689782947302, -0.0837876945734024, 0.014820326119661331, 0.1830972582101822, 0.12084019184112549, -0.10573367774486542, 0.02633851021528244, -0.03823259100317955, 0.09497940540313721, 0.037827469408512115, 0.08428142219781876, -0.03008653037250042, 0.01622471585869789, 0.0044092643074691296, -0.028322581201791763, 0.050468094646930695, -0.08794873207807541, -0.08457810431718826, -0.016816837713122368, -0.08618170022964478, 0.012989334762096405, 0.05378377437591553, 0.010719497688114643, -0.07645794004201889, -0.14069461822509766, -0.013696789741516113, 0.10373178869485855, -0.10592744499444962, 0.014781592413783073, -0.08021073788404465, 0.04181743785738945, 0.0022921813651919365, 0.00783771276473999, -0.152248814702034, -0.032904863357543945, 0.036486972123384476, -0.09137055277824402, 0.015004989691078663, -0.02099612168967724, 0.072693832218647, 0.06112779304385185, -0.055391233414411545, -0.04986253008246422, -0.02885362319648266, -0.0023435482289642096, -0.05151592567563057, -0.24863743782043457, -0.059494707733392715, -0.02004953846335411, 0.10826984792947769, -0.1928507536649704, -0.004371516406536102, 0.014787214808166027, 0.10423990339040756, 0.019686227664351463, -0.05938434600830078, 0.010159268043935299, 0.06926847249269485, -0.011121412739157677, -0.08498495817184448, 0.036378465592861176, -0.011542785912752151, -0.09433671087026596, -0.00018440262647345662, -0.13099460303783417, 0.08345429599285126, 0.08138634264469147, 0.05928793549537659, -0.0923287570476532, -0.01849854178726673, -0.057766713201999664, -0.0610104501247406, -0.021235434338450432, 0.04348202794790268, 0.17967666685581207, 0.02238420397043228, 0.0888364240527153, -0.05595608055591583, -0.04990651085972786, 0.03547351062297821, 0.028844766318798065, -0.005199737381190062, 0.15609970688819885, 0.08306778967380524, -0.022630389779806137, 0.08500739932060242, 0.04962661489844322, -0.06305274367332458, 0.11041969805955887, -0.06701112538576126, -0.09261739253997803, -0.0446883924305439, 0.014481857419013977, 0.03586587309837341, 0.11379998177289963, -0.12282341718673706, 0.005387065466493368, 0.023171141743659973, 0.026376953348517418, 0.012405704706907272, -0.18084409832954407, -0.010743345133960247, 0.028735347092151642, -0.09267506003379822, -0.026901811361312866, -0.008016243577003479, -0.0039520263671875, 0.09405568987131119, 0.007516327779740095, -0.05912691727280617, -0.034546077251434326, -0.03084167279303074, -0.07071563601493835, 0.17579306662082672, -0.10572537034749985, -0.12729455530643463, -0.09777630865573883, -0.014667659066617489, -0.022385794669389725, -0.018955668434500694, 0.033816516399383545, -0.10333633422851562, -0.05795477703213692, -0.06629710644483566, 0.035963863134384155, -0.027019396424293518, 0.04374279826879501, 0.024270517751574516, 0.003100456902757287, 0.06646516174077988, -0.09821505844593048, 0.020059993490576744, -0.020153110846877098, -0.04876183345913887, 0.022958260029554367, 0.06500347703695297, 0.09763052314519882, 0.17618656158447266, 0.03759557753801346, 0.0329168438911438, -0.012602957896888256, 0.16606412827968597, -0.1081203892827034, 0.012204133905470371, 0.08598629385232925, 0.016289709135890007, 0.046253859996795654, 0.15550871193408966, 0.05418463051319122, -0.09390797466039658, 0.007658233400434256, 0.05204140394926071, -0.031006719917058945, -0.2318192571401596, -0.05408565327525139, -0.05282386764883995, -0.018226509913802147, 0.11426588147878647, 0.0403752438724041, -0.05112558603286743, 0.004752570763230324, 0.009370364248752594, -0.017480574548244476, 0.02417500503361225, 0.04060673713684082, 0.07543949037790298, 0.0534135103225708, 0.10691442340612411, -0.022000817582011223, -0.02174784615635872, 0.0431549958884716, 0.004371676128357649, 0.22942829132080078, -0.029225870966911316, 0.15772657096385956, 0.040746625512838364, 0.13663560152053833, 0.005159077700227499, 0.04217987507581711, 0.0011250199750065804, -0.007270888891071081, 0.023982875049114227, -0.04505401477217674, -0.01605888642370701, 0.016737505793571472, 0.0937945693731308, -0.009135554544627666, -0.08942463248968124, 0.02079571783542633, 0.03507209196686745, 0.2972845435142517, 0.06898444890975952, -0.2707175016403198, -0.07026863098144531, 0.0017686458304524422, -0.05896444618701935, -0.02515997737646103, 0.04304073750972748, 0.12316393107175827, -0.06355014443397522, 0.08046714961528778, -0.06527342647314072, 0.07602956146001816, -0.09460511058568954, -0.004949511494487524, 0.1163039356470108, 0.12127923965454102, 0.006524837575852871, 0.05138779059052467, -0.24865122139453888, 0.2611266076564789, -0.01609685830771923, 0.06555280089378357, -0.04554546996951103, 0.03186098486185074, 0.003940739203244448, -0.03671325370669365, 0.08341854810714722, -0.006082299631088972, -0.10793697834014893, -0.162232905626297, -0.10663843154907227, 0.02222195267677307, 0.13057394325733185, -0.04244270920753479, 0.09951233118772507, -0.03767655789852142, -0.044844042509794235, 0.042047131806612015, -0.13086703419685364, -0.08120281994342804, -0.11757500469684601, 0.029717860743403435, -0.02812616527080536, 0.031613245606422424, -0.06762196123600006, -0.09505794197320938, -0.0837499350309372, 0.16413839161396027, -0.0886337012052536, -0.024821294471621513, -0.13209427893161774, 0.047963935881853104, 0.18268372118473053, -0.06774618476629257, 0.04789208248257637, 0.017850002273917198, 0.08873315155506134, 0.04413802921772003, -0.05096021667122841, 0.11451714485883713, -0.0736694261431694, -0.19919463992118835, -0.060116272419691086, 0.15322642028331757, 0.04772886261343956, 0.06842628121376038, -0.04112133011221886, 0.033398766070604324, -0.0014903752598911524, -0.10215732455253601, 0.07605016231536865, 0.05037326738238335, 0.008682230487465858, 0.03432811424136162, -0.03084961511194706, 0.02000494860112667, -0.05655832588672638, -0.050784409046173096, 0.10213914513587952, 0.2626713812351227, -0.10347425937652588, 0.08452125638723373, 0.04472040385007858, -0.05264737457036972, -0.17573857307434082, -0.02353517711162567, 0.11173569411039352, 0.023353448137640953, -0.0015581020852550864, -0.21739614009857178, 0.04317023605108261, 0.09017045795917511, -0.016490770503878593, 0.08603951334953308, -0.37637585401535034, -0.13633210957050323, 0.0766601487994194, 0.08732996135950089, -0.03746713325381279, -0.16340483725070953, -0.05533153936266899, -0.0010075541213154793, -0.08887722343206406, 0.06491657346487045, 0.03188692405819893, 0.12639084458351135, -0.021021980792284012, 0.016467230394482613, 0.020406030118465424, -0.05158364772796631, 0.1373956948518753, 0.00986742414534092, 0.04457302764058113, -0.01835484243929386, 0.05071257799863815, -0.013672188855707645, -0.0576375350356102, 0.000856157683301717, -0.08371006697416306, 0.03699376806616783, -0.09649200737476349, -0.02411068044602871, -0.08089148998260498, 0.0010509849525988102, -0.03260461241006851, -0.03190239518880844, -0.0316913016140461, 0.050628095865249634, 0.0990065336227417, -0.02415432408452034, 0.08868148177862167, -0.02891821227967739, 0.1172749251127243, 0.09455347061157227, 0.06960716843605042, 0.005849598441272974, -0.1142682284116745, -0.00241970201022923, 0.004929282236844301, 0.033355165272951126, -0.12818607687950134, 0.039970993995666504, 0.15632154047489166, 0.04532111808657646, 0.1224624291062355, 0.05283626914024353, -0.05844571813941002, -0.00013993348693475127, 0.07173637300729752, -0.09845138341188431, -0.16486354172229767, 0.01182908471673727, -0.038329437375068665, -0.10234199464321136, -0.004535104148089886, 0.07684481143951416, -0.03107282891869545, -0.0029568749014288187, 0.019669432193040848, 0.06508081406354904, -0.023201633244752884, 0.2465585470199585, 0.013892162591218948, 0.07979929447174072, -0.11202466487884521, 0.10006172955036163, 0.051158249378204346, -0.14658589661121368, 0.03257300332188606, 0.10880515724420547, -0.06343161314725876, -0.00836294423788786, 0.08136594295501709, 0.06826445460319519, 0.03169620409607887, -0.021650416776537895, -0.1062016710639, -0.14263387024402618, 0.10315902531147003, 0.07145597785711288, 0.026947034522891045, 0.03262803703546524, -0.03813564032316208, 0.03307680785655975, -0.10711977630853653, 0.10711926221847534, 0.09755418449640274, 0.06382139027118683, -0.12234892696142197, 0.09811203926801682, 0.010760939680039883, 0.0036821034736931324, -0.00986426044255495, 0.013810639269649982, -0.1256767213344574, 0.009147027507424355, -0.09592614322900772, -0.017716698348522186, -0.060825929045677185, 0.012539324350655079, 0.0038721070159226656, -0.05880214646458626, -0.049153223633766174, 0.019449036568403244, -0.10407531261444092, -0.056828200817108154, -0.03339381515979767, 0.06053215637803078, -0.11276260763406754, -0.013393530622124672, 0.02932538464665413, -0.11453311145305634, 0.10003460943698883, 0.03538758307695389, 0.023767167702317238, 0.027515392750501633, -0.09022776782512665, -0.001944559277035296, 0.030843187123537064, -0.0005022844998165965, 0.03940568119287491, -0.1819745898246765, -0.002539536450058222, -0.037109918892383575, 0.003759484039619565, -0.002415100345388055, 0.04036194086074829, -0.1295977532863617, 0.027242405340075493, -0.06940453499555588, -0.05100986734032631, -0.052777208387851715, 0.046800870448350906, 0.08992382138967514, 0.026811381801962852, 0.14648517966270447, -0.08748271316289902, 0.05872950702905655, -0.2114032506942749, -0.012455154210329056, -0.010283258743584156, -0.05666137859225273, -0.04995337873697281, -0.00534874526783824, 0.10564364492893219, -0.05397621914744377, 0.11021674424409866, -0.018815284594893456, 0.03212767839431763, 0.025259453803300858, -0.07361817359924316, -0.0057209874503314495, 0.055188097059726715, 0.1632082462310791, 0.0413675419986248, -0.030257582664489746, 0.07259989529848099, -0.0021634548902511597, 0.043395254760980606, 0.1278219223022461, 0.16817434132099152, 0.12381463497877121, 0.04976625740528107, 0.05022549629211426, 0.06132610887289047, -0.16539502143859863, -0.17093166708946228, 0.16811490058898926, -0.09225627779960632, 0.14998412132263184, -0.026081601157784462, 0.20322097837924957, 0.05930488184094429, -0.20296482741832733, 0.07699404656887054, -0.030323106795549393, -0.10427676141262054, -0.10661925375461578, -0.0827418714761734, -0.08086570352315903, -0.1832336038351059, 0.01937785930931568, -0.09835866838693619, 0.08644725382328033, 0.06136118993163109, 0.050474103540182114, 0.04680264741182327, 0.10224292427301407, 0.04490302875638008, 0.018161125481128693, 0.0750197023153305, 0.05119473859667778, -0.03463025391101837, -0.005007974803447723, -0.07230564951896667, 0.016826899722218513, -0.029157467186450958, 0.059798866510391235, -0.030623242259025574, -0.09968660771846771, 0.07237901538610458, 0.006752936635166407, -0.08297285437583923, 0.02590889297425747, -0.01973455213010311, 0.047127865254879, 0.09716176986694336, 0.04557202011346817, -0.018396694213151932, -0.023332709446549416, 0.23910871148109436, -0.09419196099042892, -0.06606562435626984, -0.12360741943120956, 0.2700648307800293, 0.004492291249334812, 0.0035594685468822718, 0.032594338059425354, -0.05736343190073967, -0.03819623216986656, 0.15169082581996918, 0.17039379477500916, -0.02768678218126297, -0.024763058871030807, 0.017330320551991463, -0.008090423420071602, -0.014867434278130531, 0.10816439986228943, 0.12426535785198212, 0.07943955808877945, -0.04949444532394409, -0.03710078075528145, -0.04629074037075043, -0.05630826950073242, -0.041434984654188156, 0.08660101145505905, 0.02895866520702839, -0.01604476571083069, -0.02479700744152069, 0.09681287407875061, -0.08074696362018585, -0.1453768014907837, 0.061752188950777054, -0.183742955327034, -0.19735026359558105, -0.03379570320248604, 0.06989771872758865, 0.007399208843708038, 0.04352550208568573, 0.015397170558571815, -0.031156975775957108, 0.10249149799346924, 0.008804005570709705, -0.06433547288179398, -0.09285733848810196, 0.05349551513791084, -0.07480040192604065, 0.18776708841323853, -0.023415785282850266, 0.01658002659678459, 0.10934573411941528, 0.059715427458286285, -0.10691707581281662, 0.0542290098965168, 0.0775686576962471, -0.15278401970863342, 0.04608899727463722, 0.1814330369234085, -0.044454947113990784, 0.1154862642288208, 0.041124776005744934, -0.04104189574718475, 0.010763371363282204, -0.1096528172492981, -0.041866909712553024, -0.039108216762542725, -0.020934078842401505, -0.03641657158732414, 0.1507704257965088, 0.22590196132659912, -0.050375621765851974, 0.0021592658013105392, -0.05231296271085739, 0.008295176550745964, 0.01298009417951107, 0.16475220024585724, -0.031875789165496826, -0.2564619481563568, 0.027200322598218918, -0.010774344205856323, 0.04073798656463623, -0.1668022722005844, -0.08673913776874542, 0.028686899691820145, -0.046488240361213684, -0.07449369132518768, 0.14081574976444244, 0.05739855021238327, 0.047937579452991486, -0.05841344594955444, -0.1132873073220253, -0.02030651643872261, 0.16920135915279388, -0.19153012335300446, -0.06009126827120781 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-common_voice-tr-ft-500sh This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.5794 - Wer: 0.4009 - Cer: 0.1032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 0.5288 | 17.0 | 500 | 0.5099 | 0.5426 | 0.1432 | | 0.2967 | 34.0 | 1000 | 0.5421 | 0.4746 | 0.1256 | | 0.2447 | 51.0 | 1500 | 0.5347 | 0.4831 | 0.1267 | | 0.122 | 68.01 | 2000 | 0.5854 | 0.4479 | 0.1161 | | 0.1035 | 86.0 | 2500 | 0.5597 | 0.4457 | 0.1166 | | 0.081 | 103.0 | 3000 | 0.5748 | 0.4250 | 0.1144 | | 0.0849 | 120.0 | 3500 | 0.5598 | 0.4337 | 0.1145 | | 0.0542 | 137.01 | 4000 | 0.5687 | 0.4223 | 0.1097 | | 0.0318 | 155.0 | 4500 | 0.5904 | 0.4057 | 0.1052 | | 0.0106 | 172.0 | 5000 | 0.5794 | 0.4009 | 0.1032 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
{"language": ["tr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-common_voice-tr-ft-500sh", "results": []}]}
automatic-speech-recognition
anton-l/wav2vec2-xls-r-common_voice-tr-ft
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "tr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-xls-r-common\_voice-tr-ft-500sh ======================================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the COMMON\_VOICE - TR dataset. It achieves the following results on the evaluation set: * Loss: 0.5794 * Wer: 0.4009 * Cer: 0.1032 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0005 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * distributed\_type: multi-GPU * num\_devices: 4 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 64 * total\_eval\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 5000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ 64, 191, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ -0.09650726616382599, 0.12117193639278412, -0.004527002107352018, 0.06514307856559753, 0.11457565426826477, 0.038704510778188705, 0.08740687370300293, 0.15096403658390045, -0.07117082923650742, 0.10256026685237885, 0.09016414731740952, 0.0954277291893959, 0.06730622053146362, 0.121658556163311, -0.0018589081009849906, -0.30084073543548584, -0.0006064401823095977, -0.035291507840156555, -0.14174160361289978, 0.11107107251882553, 0.06938152760267258, -0.10199827700853348, 0.035254497081041336, -0.008177969604730606, -0.09387392550706863, -0.015441520139575005, -0.033370617777109146, -0.04377298429608345, 0.10544753819704056, 0.03250429034233093, 0.05154293030500412, 0.03388528525829315, 0.11582028120756149, -0.2696355879306793, 0.0036237118765711784, 0.07798583060503006, 0.03489015996456146, 0.06552547961473465, 0.11395703256130219, -0.01575239934027195, 0.155069038271904, -0.07745800167322159, 0.07093654572963715, 0.04058479145169258, -0.09942469000816345, -0.26683321595191956, -0.07749894261360168, 0.023178834468126297, 0.11465299874544144, 0.07137655466794968, -0.01727989874780178, 0.03503761813044548, -0.08861485123634338, 0.07530400902032852, 0.21005716919898987, -0.2613418996334076, -0.05939130857586861, 0.011426916345953941, 0.02991652302443981, 0.06295371800661087, -0.10645954310894012, -0.010591779835522175, 0.002896168502047658, 0.021983426064252853, 0.10758715122938156, 0.016453802585601807, 0.03283093869686127, 0.021959437057375908, -0.14630067348480225, -0.03533899411559105, 0.07027588784694672, 0.06160784140229225, 0.000020418443455128, -0.10918369144201279, -0.03621574491262436, -0.21188385784626007, -0.04603882506489754, 0.010660563595592976, 0.025481369346380234, -0.03806672990322113, -0.07220764458179474, 0.03760514408349991, -0.036025211215019226, -0.08902984112501144, 0.024924386292696, 0.12707112729549408, 0.06156732514500618, -0.018294665962457657, 0.03176337480545044, 0.10607672482728958, 0.04564259573817253, -0.14285829663276672, 0.010038777254521847, 0.030723029747605324, -0.12570980191230774, 0.0032613875810056925, -0.006937896367162466, 0.013869810849428177, 0.0398072749376297, 0.1311415582895279, -0.012562629766762257, 0.09423021227121353, 0.036090951412916183, 0.0015186886303126812, -0.07671743631362915, 0.1566774547100067, -0.09057160466909409, -0.09620054811239243, -0.052357107400894165, 0.10791704803705215, 0.0013356053968891501, -0.011795931495726109, -0.060727328062057495, 0.034138571470975876, 0.08319862186908722, 0.05953458696603775, -0.00788439903408289, 0.03258901834487915, -0.06455041468143463, -0.02305104397237301, 0.026378018781542778, -0.1114794909954071, 0.0498797744512558, 0.04513555020093918, -0.0766843780875206, -0.010874662548303604, -0.011593121103942394, -0.005367440637201071, -0.031230654567480087, 0.11955691874027252, -0.0568624809384346, -0.017134033143520355, -0.07421621680259705, -0.09237245470285416, 0.01933680661022663, -0.05092591792345047, -0.006972816307097673, -0.03509507328271866, -0.0755171999335289, -0.055336419492959976, 0.0721474438905716, -0.08773519843816757, -0.06590203940868378, -0.06506765633821487, -0.07392776757478714, 0.05690854415297508, -0.012676794081926346, 0.1672700047492981, -0.06899184733629227, 0.10178542882204056, 0.003811935195699334, 0.07161282002925873, 0.10332481563091278, 0.06601402163505554, -0.025667661800980568, 0.04806382209062576, -0.15635289251804352, 0.09336093813180923, -0.10886199027299881, 0.02737072855234146, -0.14595738053321838, -0.1177339255809784, 0.012437171302735806, -0.012858756817877293, 0.09155197441577911, 0.10355601459741592, -0.17630049586296082, -0.07944928109645844, 0.16015970706939697, -0.05935999006032944, -0.05750656872987747, 0.12639184296131134, -0.0034450942184776068, -0.08173701167106628, 0.01364877913147211, 0.18014028668403625, 0.11558209359645844, -0.10465649515390396, 0.0258636474609375, -0.03916841000318527, 0.09431231766939163, 0.03784100338816643, 0.08851591497659683, -0.03213164582848549, 0.01864403858780861, 0.005747093353420496, -0.028984401375055313, 0.05206282064318657, -0.09483376145362854, -0.0845029428601265, -0.015388154424726963, -0.08690223097801208, 0.018435847014188766, 0.05585990846157074, 0.014366020448505878, -0.07803957164287567, -0.1408282369375229, -0.015206616371870041, 0.10370628535747528, -0.1025032326579094, 0.014914145693182945, -0.07959572970867157, 0.04273127019405365, -0.00136687105987221, 0.004191636107861996, -0.1508346050977707, -0.02572690136730671, 0.0373956672847271, -0.07912580668926239, 0.015243024565279484, -0.01703687757253647, 0.07285024225711823, 0.05898039788007736, -0.05843387544155121, -0.053451456129550934, -0.029981613159179688, -0.0005431451718322933, -0.05321763455867767, -0.24829073250293732, -0.06063608080148697, -0.017463689669966698, 0.11950088292360306, -0.19546708464622498, -0.005130867473781109, 0.009505760855972767, 0.1062871590256691, 0.015317042358219624, -0.057556916028261185, 0.0067534781992435455, 0.07056788355112076, -0.009248172864317894, -0.08137263357639313, 0.0394209586083889, -0.01087295450270176, -0.09308500587940216, -0.003892136737704277, -0.12488295137882233, 0.07878796756267548, 0.08454620093107224, 0.047100335359573364, -0.09303056448698044, -0.017544720321893692, -0.06039084121584892, -0.061199188232421875, -0.016729922965168953, 0.041393253952264786, 0.1784866452217102, 0.020322374999523163, 0.09032922238111496, -0.05505417659878731, -0.051257021725177765, 0.03983549773693085, 0.02499673143029213, -0.004433903377503157, 0.1588943600654602, 0.08472131192684174, -0.03040558286011219, 0.0873672366142273, 0.05281677842140198, -0.05540505051612854, 0.11064938455820084, -0.06559780985116959, -0.09643793106079102, -0.04491405561566353, 0.01520730834454298, 0.032546184957027435, 0.1147979199886322, -0.12804773449897766, 0.001790310605429113, 0.022178659215569496, 0.026831630617380142, 0.014585593715310097, -0.18266832828521729, -0.014595383778214455, 0.029792703688144684, -0.09041447192430496, -0.02908508852124214, -0.011465982533991337, -0.004178459290415049, 0.09733716398477554, 0.010962596163153648, -0.06074533611536026, -0.03238954395055771, -0.027315450832247734, -0.07195647060871124, 0.17312005162239075, -0.10649093240499496, -0.12859269976615906, -0.09693026542663574, -0.015674591064453125, -0.01656954362988472, -0.01806756481528282, 0.03416433557868004, -0.10802824050188065, -0.051601435989141464, -0.06305265426635742, 0.035556040704250336, -0.03626472130417824, 0.041519805788993835, 0.025757957249879837, 0.006891528144478798, 0.06608571112155914, -0.09295368939638138, 0.020806055516004562, -0.022632718086242676, -0.04870061203837395, 0.028026899322867393, 0.06267334520816803, 0.09605301171541214, 0.1769210547208786, 0.03849821165204048, 0.03229113295674324, -0.013883654028177261, 0.16069002449512482, -0.10870067030191422, 0.009016416035592556, 0.08731616288423538, 0.018506791442632675, 0.04322023317217827, 0.15436333417892456, 0.05321677401661873, -0.09025441855192184, 0.0074879880994558334, 0.05073830485343933, -0.028257351368665695, -0.2320399433374405, -0.05448167398571968, -0.05091191455721855, -0.01398072112351656, 0.11123993247747421, 0.03806055709719658, -0.05097490921616554, 0.003313750261440873, 0.009692511521279812, -0.020374102517962456, 0.02252248302102089, 0.03781552240252495, 0.07318771630525589, 0.04457278549671173, 0.10708366334438324, -0.019281012937426567, -0.02620791271328926, 0.043712861835956573, 0.00202089617960155, 0.23092514276504517, -0.026585832238197327, 0.1515386700630188, 0.04335152730345726, 0.1428251713514328, 0.002357055200263858, 0.03922758251428604, 0.006063040345907211, -0.009093119762837887, 0.02340478077530861, -0.042141810059547424, -0.016171788796782494, 0.015427989885210991, 0.09812910854816437, -0.00715153943747282, -0.0940544381737709, 0.02236972190439701, 0.03422601521015167, 0.3009266257286072, 0.07420157641172409, -0.26897305250167847, -0.07192477583885193, 0.0009158822358585894, -0.05961545929312706, -0.025527682155370712, 0.0429861806333065, 0.12171454727649689, -0.06417351961135864, 0.07781057804822922, -0.06511335074901581, 0.07244770973920822, -0.09089361876249313, -0.00297488272190094, 0.1191580668091774, 0.11426755785942078, 0.009926973842084408, 0.05497979745268822, -0.24731574952602386, 0.2645098865032196, -0.016467560082674026, 0.06259509176015854, -0.04513252526521683, 0.03186352923512459, 0.00009752627374837175, -0.03447254002094269, 0.08653848618268967, -0.0028904250357300043, -0.09974342584609985, -0.1672193855047226, -0.1084480956196785, 0.02069324627518654, 0.13463392853736877, -0.04463903233408928, 0.10218235850334167, -0.03758090361952782, -0.043390605598688126, 0.04232379421591759, -0.12660428881645203, -0.08346126228570938, -0.11520218104124069, 0.029666809365153313, -0.03263112157583237, 0.02876753732562065, -0.06936533004045486, -0.09426268935203552, -0.08865419030189514, 0.16735237836837769, -0.08708090335130692, -0.021659687161445618, -0.12905645370483398, 0.05929184705018997, 0.18283024430274963, -0.06577032059431076, 0.04774423688650131, 0.020175259560346603, 0.0815303847193718, 0.04569804668426514, -0.04685577377676964, 0.11585226655006409, -0.07228069752454758, -0.20218445360660553, -0.05953390896320343, 0.15543992817401886, 0.047235824167728424, 0.07142528891563416, -0.043016884475946426, 0.03287417069077492, -0.0021519677247852087, -0.09723682701587677, 0.08130601048469543, 0.047964420169591904, 0.01750962622463703, 0.03227691724896431, -0.03229621425271034, 0.02166011743247509, -0.05720260366797447, -0.05649036541581154, 0.10849513113498688, 0.26616954803466797, -0.10367998480796814, 0.0788557380437851, 0.04322325810790062, -0.05226834863424301, -0.17440110445022583, -0.02594470977783203, 0.11275532841682434, 0.02316022850573063, -0.0017402281519025564, -0.2179841250181198, 0.039338596165180206, 0.09111566841602325, -0.01732790842652321, 0.08656188100576401, -0.37155354022979736, -0.1328900307416916, 0.07441651076078415, 0.08302823454141617, -0.03580643981695175, -0.16398796439170837, -0.055205825716257095, 0.004730965476483107, -0.0922386422753334, 0.058545827865600586, 0.03238997980952263, 0.12864381074905396, -0.02110089175403118, 0.016660818830132484, 0.019528035074472427, -0.05383923649787903, 0.13569529354572296, 0.0033540388103574514, 0.04024743661284447, -0.018322423100471497, 0.041622571647167206, -0.011826783418655396, -0.05390524864196777, -0.0007410020334646106, -0.07462171465158463, 0.03651195392012596, -0.09747902303934097, -0.02385615184903145, -0.08681236952543259, -0.0008977237157523632, -0.03432483598589897, -0.034052833914756775, -0.029403725638985634, 0.05407027155160904, 0.09365296363830566, -0.022348325699567795, 0.08515956252813339, -0.031427234411239624, 0.11632730066776276, 0.09280026704072952, 0.07378551363945007, 0.007391475606709719, -0.10513000935316086, -0.00743955560028553, 0.0007005666266195476, 0.02865145169198513, -0.12448158115148544, 0.03713028505444527, 0.15550534427165985, 0.044977132230997086, 0.12117257714271545, 0.05319216102361679, -0.06144792214035988, 0.0004034526355098933, 0.07230211794376373, -0.09920009225606918, -0.16381962597370148, 0.008197021670639515, -0.038876764476299286, -0.10440065711736679, -0.001688867574557662, 0.07588072866201401, -0.030340440571308136, -0.007327147759497166, 0.01673533394932747, 0.06482790410518646, -0.029286077246069908, 0.24501995742321014, 0.013233632780611515, 0.07933172583580017, -0.10929732024669647, 0.09834078699350357, 0.05016762763261795, -0.14422036707401276, 0.030390016734600067, 0.10513386130332947, -0.06351803988218307, -0.009594671428203583, 0.07744330912828445, 0.06385409086942673, 0.032533757388591766, -0.02142919786274433, -0.1076708436012268, -0.14297744631767273, 0.10264381021261215, 0.061468422412872314, 0.025061914697289467, 0.030823374167084694, -0.03422961384057999, 0.03526155650615692, -0.10935273766517639, 0.10692198574542999, 0.09399983286857605, 0.06231293827295303, -0.1284976601600647, 0.10511147975921631, 0.008788865059614182, 0.006144794635474682, -0.009202076122164726, 0.017180537804961205, -0.1200597882270813, 0.011027061380445957, -0.09358393400907516, -0.024891065433621407, -0.056636590510606766, 0.00972068216651678, 0.0030919990967959166, -0.05646122246980667, -0.048842523247003555, 0.019678102806210518, -0.10384080559015274, -0.05550370365381241, -0.03154940903186798, 0.06059170514345169, -0.10915971547365189, -0.01491143461316824, 0.026812691241502762, -0.11137153953313828, 0.10208720713853836, 0.03846249729394913, 0.02717260830104351, 0.027643674984574318, -0.08544818311929703, -0.002567353192716837, 0.032409343868494034, -0.0006897735293023288, 0.03911951556801796, -0.18174827098846436, -0.005338575225323439, -0.03631289303302765, 0.0049512386322021484, -0.0007479509222321212, 0.036468468606472015, -0.12859341502189636, 0.022926101461052895, -0.06685075908899307, -0.05210915952920914, -0.05452004075050354, 0.04754200577735901, 0.08671417087316513, 0.027895305305719376, 0.14331623911857605, -0.08837692439556122, 0.05759640783071518, -0.21715058386325836, -0.009373086504638195, -0.013277309946715832, -0.05512319877743721, -0.04960798844695091, -0.004228977952152491, 0.10535820573568344, -0.052263420075178146, 0.11168516427278519, -0.0233757346868515, 0.033922214061021805, 0.02441100776195526, -0.07933463901281357, -0.0011383831733837724, 0.057502083480358124, 0.16502638161182404, 0.03995382413268089, -0.031749412417411804, 0.06735267490148544, 0.0014011558378115296, 0.0434248186647892, 0.12941449880599976, 0.1657746434211731, 0.1264907866716385, 0.05398554727435112, 0.04796602949500084, 0.06247594952583313, -0.16479066014289856, -0.17059847712516785, 0.16798456013202667, -0.09403549134731293, 0.1484539806842804, -0.026357892900705338, 0.20697996020317078, 0.061630766838788986, -0.2028375118970871, 0.07272141426801682, -0.03962358832359314, -0.10476059466600418, -0.10600815713405609, -0.07937774062156677, -0.08039525151252747, -0.18543218076229095, 0.020505433902144432, -0.09887391328811646, 0.08545331656932831, 0.06046439707279205, 0.05069505050778389, 0.0441245436668396, 0.09642977267503738, 0.05187873914837837, 0.020142411813139915, 0.07694606482982635, 0.04939291253685951, -0.034809134900569916, -0.010421297512948513, -0.0727028176188469, 0.02227138727903366, -0.028406711295247078, 0.06023168936371803, -0.0352761410176754, -0.10891562700271606, 0.072280153632164, 0.010031148791313171, -0.08480335026979446, 0.025013089179992676, -0.01962737925350666, 0.05326996371150017, 0.09589334577322006, 0.041658613830804825, -0.017702845856547356, -0.024416808038949966, 0.2402745485305786, -0.09461177885532379, -0.06592399626970291, -0.12304878234863281, 0.2732031047344208, -0.0005129066994413733, 0.004362833686172962, 0.035331759601831436, -0.059652362018823624, -0.03335849940776825, 0.15209072828292847, 0.17547371983528137, -0.029461288824677467, -0.026274021714925766, 0.022546999156475067, -0.008922592736780643, -0.01743367686867714, 0.10404233634471893, 0.12582863867282867, 0.07405202090740204, -0.05486546829342842, -0.038770899176597595, -0.046554576605558395, -0.05376826971769333, -0.037523310631513596, 0.08614908903837204, 0.03389982134103775, -0.011954160407185555, -0.026441430673003197, 0.09846607595682144, -0.07897283136844635, -0.14057864248752594, 0.060372188687324524, -0.18550674617290497, -0.19662149250507355, -0.03292994946241379, 0.07228443026542664, 0.007707824464887381, 0.04552292823791504, 0.012731441296637058, -0.02853395789861679, 0.101543128490448, 0.008695941418409348, -0.06344974786043167, -0.0904678925871849, 0.05386866256594658, -0.07269972562789917, 0.18769490718841553, -0.02542051672935486, 0.019987402483820915, 0.11124308407306671, 0.05846165493130684, -0.10489511489868164, 0.05290534719824791, 0.07746513187885284, -0.1457371860742569, 0.046982187777757645, 0.18174487352371216, -0.04381519556045532, 0.11560030281543732, 0.04037439450621605, -0.04501301795244217, 0.013095674104988575, -0.10848080366849899, -0.04496502876281738, -0.03941347822546959, -0.017140787094831467, -0.035666681826114655, 0.15170004963874817, 0.22492875158786774, -0.0535806305706501, 0.004094380885362625, -0.054887693375349045, 0.005916445516049862, 0.01393944676965475, 0.16744928061962128, -0.03273686766624451, -0.25648555159568787, 0.026252107694745064, -0.013258266262710094, 0.04055996611714363, -0.173325777053833, -0.08320947736501694, 0.029206736013293266, -0.04867954179644585, -0.07764510065317154, 0.13923712074756622, 0.0567268431186676, 0.04915127903223038, -0.058029480278491974, -0.09960106760263443, -0.022662555798888206, 0.17042776942253113, -0.19349786639213562, -0.05798094719648361 ]
null
null
transformers
# Italian Bert Base Uncased on Squad-it ## Model description This model is the uncased base version of the italian BERT (which you may find at `dbmdz/bert-base-italian-uncased`) trained on the question answering task. #### How to use ```python from transformers import pipeline nlp = pipeline('question-answering', model='antoniocappiello/bert-base-italian-uncased-squad-it') # nlp(context="D'Annunzio nacque nel 1863", question="Quando nacque D'Annunzio?") # {'score': 0.9990354180335999, 'start': 22, 'end': 25, 'answer': '1863'} ``` ## Training data It has been trained on the question answering task using [SQuAD-it](http://sag.art.uniroma2.it/demo-software/squadit/), derived from the original SQuAD dataset and obtained through the semi-automatic translation of the SQuAD dataset in Italian. ## Training procedure ```bash python ./examples/run_squad.py \ --model_type bert \ --model_name_or_path dbmdz/bert-base-italian-uncased \ --do_train \ --do_eval \ --train_file ./squad_it_uncased/train-v1.1.json \ --predict_file ./squad_it_uncased/dev-v1.1.json \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir ./models/bert-base-italian-uncased-squad-it/ \ --per_gpu_eval_batch_size=3 \ --per_gpu_train_batch_size=3 \ --do_lower_case \ ``` ## Eval Results | Metric | # Value | | ------ | --------- | | **EM** | **63.8** | | **F1** | **75.30** | ## Comparison | Model | EM | F1 score | | -------------------------------------------------------------------------------------------------------------------------------- | --------- | --------- | | [DrQA-it trained on SQuAD-it](https://github.com/crux82/squad-it/blob/master/README.md#evaluating-a-neural-model-over-squad-it) | 56.1 | 65.9 | | This one | **63.8** | **75.30** |
{"language": "it", "widget": [{"text": "Quando nacque D'Annunzio?", "context": "D'Annunzio nacque nel 1863"}]}
question-answering
antoniocappiello/bert-base-italian-uncased-squad-it
[ "transformers", "pytorch", "question-answering", "it", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #question-answering #it #endpoints_compatible #has_space #region-us
Italian Bert Base Uncased on Squad-it ===================================== Model description ----------------- This model is the uncased base version of the italian BERT (which you may find at 'dbmdz/bert-base-italian-uncased') trained on the question answering task. #### How to use Training data ------------- It has been trained on the question answering task using SQuAD-it, derived from the original SQuAD dataset and obtained through the semi-automatic translation of the SQuAD dataset in Italian. Training procedure ------------------ Eval Results ------------ Comparison ---------- Model: DrQA-it trained on SQuAD-it, EM: 56.1, F1 score: 65.9 Model: This one, EM: 63.8, F1 score: 75.30
[ "#### How to use\n\n\nTraining data\n-------------\n\n\nIt has been trained on the question answering task using SQuAD-it, derived from the original SQuAD dataset and obtained through the semi-automatic translation of the SQuAD dataset in Italian.\n\n\nTraining procedure\n------------------\n\n\nEval Results\n------------\n\n\n\nComparison\n----------\n\n\nModel: DrQA-it trained on SQuAD-it, EM: 56.1, F1 score: 65.9\nModel: This one, EM: 63.8, F1 score: 75.30" ]
[ "TAGS\n#transformers #pytorch #question-answering #it #endpoints_compatible #has_space #region-us \n", "#### How to use\n\n\nTraining data\n-------------\n\n\nIt has been trained on the question answering task using SQuAD-it, derived from the original SQuAD dataset and obtained through the semi-automatic translation of the SQuAD dataset in Italian.\n\n\nTraining procedure\n------------------\n\n\nEval Results\n------------\n\n\n\nComparison\n----------\n\n\nModel: DrQA-it trained on SQuAD-it, EM: 56.1, F1 score: 65.9\nModel: This one, EM: 63.8, F1 score: 75.30" ]
[ 33, 113 ]
[ "passage: TAGS\n#transformers #pytorch #question-answering #it #endpoints_compatible #has_space #region-us \n#### How to use\n\n\nTraining data\n-------------\n\n\nIt has been trained on the question answering task using SQuAD-it, derived from the original SQuAD dataset and obtained through the semi-automatic translation of the SQuAD dataset in Italian.\n\n\nTraining procedure\n------------------\n\n\nEval Results\n------------\n\n\n\nComparison\n----------\n\n\nModel: DrQA-it trained on SQuAD-it, EM: 56.1, F1 score: 65.9\nModel: This one, EM: 63.8, F1 score: 75.30" ]
[ -0.1093226969242096, 0.0031429894734174013, 0.0005049300962127745, 0.07040009647607803, 0.13437451422214508, 0.08587895333766937, 0.03698419779539108, 0.1214599460363388, 0.0022225650027394295, 0.022817391902208328, 0.10599853843450546, 0.08414679020643234, 0.03438630327582359, 0.0931738093495369, -0.04800209775567055, -0.14116422832012177, 0.025723718106746674, 0.0407346673309803, -0.12926998734474182, 0.1383921504020691, 0.10831847041845322, -0.1128004863858223, 0.012041643261909485, -0.032799869775772095, -0.16503570973873138, 0.04130074009299278, -0.02817758172750473, -0.05580112338066101, 0.12839630246162415, 0.005730492994189262, 0.21051321923732758, 0.023198990151286125, 0.0742359459400177, -0.1733413189649582, 0.03300613537430763, 0.017534108832478523, -0.030115947127342224, 0.07301439344882965, 0.0002961471618618816, -0.013415198773145676, 0.06529422104358673, -0.0030174183193594217, 0.024768739938735962, 0.004116428084671497, -0.11251001060009003, -0.1554720103740692, -0.061728451400995255, -0.013776990585029125, 0.11959286779165268, 0.14645987749099731, -0.031573984771966934, 0.10725072026252747, -0.2266661524772644, 0.060049280524253845, 0.08298086374998093, -0.2591642737388611, -0.046214133501052856, 0.13995808362960815, -0.00923971924930811, 0.0009653830784372985, -0.1020180881023407, 0.039122529327869415, 0.036800384521484375, 0.05141964182257652, -0.021116185933351517, -0.022687342017889023, -0.07083921879529953, 0.0756046399474144, -0.13852836191654205, -0.07987944781780243, 0.28149527311325073, 0.015280336141586304, -0.03665696457028389, 0.007028771098703146, 0.007470614742487669, -0.08109667152166367, -0.0026507002767175436, -0.1101861447095871, -0.007336189970374107, -0.0044352891854941845, -0.0548454225063324, -0.024162938818335533, -0.14440728724002838, -0.17530333995819092, -0.12228576838970184, 0.15127165615558624, 0.03504783660173416, 0.025102294981479645, -0.10847970098257065, 0.13494566082954407, -0.018688613548874855, -0.04273901507258415, -0.05625537410378456, -0.034232594072818756, -0.11513391137123108, -0.04079378768801689, -0.09477660059928894, -0.035420287400484085, 0.028995834290981293, 0.10770158469676971, -0.009582140482962132, 0.012952563352882862, 0.05652725324034691, 0.0614561028778553, 0.0005787643021903932, 0.1683548539876938, -0.09826862812042236, -0.023128706961870193, -0.08060971647500992, -0.0007177299703471363, -0.09772910177707672, -0.009016117081046104, -0.12719540297985077, -0.09727304428815842, 0.09973429888486862, 0.045665379613637924, 0.004002148751169443, 0.027528388425707817, -0.04338992014527321, -0.0293102003633976, -0.13858619332313538, -0.07577227801084518, 0.02476184256374836, 0.001172723714262247, -0.12130195647478104, -0.0054966481402516365, 0.00002056698031083215, 0.010867896489799023, -0.014840351417660713, 0.04612109810113907, -0.041142236441373825, 0.007814832031726837, -0.1149996966123581, -0.10084235668182373, -0.007090344559401274, -0.08407971262931824, 0.018183734267950058, -0.0982561782002449, -0.12076210230588913, -0.03874248266220093, 0.042905520647764206, -0.06175461411476135, 0.053683090955019, -0.04718044772744179, -0.0400511734187603, 0.03562093898653984, -0.026086099445819855, 0.1256413608789444, -0.045992814004421234, 0.07286117970943451, -0.0035562312696129084, 0.11788627505302429, -0.06562423706054688, 0.06764617562294006, -0.02456522546708584, -0.005922835785895586, -0.06008139252662659, 0.09150359779596329, -0.07760855555534363, -0.03922726958990097, -0.07527525722980499, -0.092926025390625, -0.08626488596200943, 0.024107493460178375, 0.13049757480621338, 0.1669807732105255, -0.18004903197288513, 0.0329115130007267, 0.1131725162267685, -0.060588087886571884, -0.1282729059457779, 0.12149696052074432, -0.0663393884897232, 0.07408326864242554, 0.011162144131958485, 0.19233353435993195, 0.03842023015022278, -0.11050183326005936, -0.04013853520154953, 0.09907087683677673, -0.057873763144016266, -0.0293539110571146, 0.08894326537847519, 0.022716909646987915, -0.07092604041099548, 0.0024963365867733955, -0.12352745980024338, 0.03174464404582977, -0.1251204013824463, -0.09362497180700302, -0.02525925077497959, -0.05576108768582344, 0.0604688785970211, 0.042863789945840836, 0.11060693114995956, -0.0326305590569973, -0.04261362925171852, -0.030740607529878616, 0.09522830694913864, 0.0020327975507825613, -0.0037580064963549376, -0.09734039008617401, 0.1381198763847351, -0.10782889276742935, -0.005929024424403906, -0.16619272530078888, -0.06625514477491379, -0.04379523918032646, 0.1187211200594902, -0.030438095331192017, 0.13332007825374603, 0.07225383818149567, -0.020844360813498497, -0.02902965620160103, -0.03996637463569641, -0.08823787420988083, 0.0018286977428942919, -0.08499214798212051, -0.08730776607990265, -0.05849892273545265, -0.05343702435493469, 0.13142408430576324, -0.12729068100452423, 0.003910587634891272, -0.01062085572630167, 0.04118328168988228, -0.027280844748020172, 0.04517335444688797, -0.02576049044728279, 0.03228263184428215, -0.030581122264266014, 0.0044081006199121475, 0.0633668303489685, -0.0005833149771206081, -0.09635354578495026, -0.010388761758804321, 0.013622498139739037, 0.1724178045988083, 0.14113134145736694, -0.14868992567062378, -0.10445256531238556, -0.06329129636287689, -0.04293477535247803, 0.025551754981279373, -0.03709596395492554, -0.006088686175644398, 0.10987164825201035, -0.020494369789958, 0.09805835038423538, -0.05066937208175659, 0.024730579927563667, -0.01649809628725052, -0.05536329373717308, 0.000014911691323504783, 0.09748508781194687, 0.0793832540512085, -0.08155795186758041, 0.1026335135102272, 0.16616269946098328, -0.06379321217536926, 0.1591462641954422, -0.010436911135911942, -0.0926157757639885, -0.06851913779973984, 0.013278018683195114, -0.044120341539382935, 0.14363183081150055, -0.1890934556722641, -0.01906951330602169, 0.03397541865706444, 0.09621639549732208, 0.09097670763731003, -0.19227296113967896, -0.08297812193632126, 0.04711585491895676, -0.0376468300819397, -0.1414746642112732, 0.026681432500481606, 0.0017435100162401795, 0.11990849673748016, 0.028416277840733528, -0.05371091142296791, 0.04306803271174431, -0.022395793348550797, -0.06067350506782532, 0.2009996920824051, -0.06824751198291779, -0.15342625975608826, -0.06552798300981522, 0.038317322731018066, 0.018065033480525017, 0.015003830194473267, 0.04436836764216423, -0.12600409984588623, 0.026601174846291542, 0.020594481378793716, 0.06173674762248993, -0.11998485773801804, -0.0030691996216773987, -0.05635804310441017, -0.0051735700108110905, -0.024240106344223022, -0.10264217108488083, -0.007757762912660837, -0.08782240003347397, -0.08082418143749237, 0.07528311759233475, -0.09164149314165115, 0.13830998539924622, 0.08077383786439896, -0.051395315676927567, 0.08747777342796326, -0.034485869109630585, 0.20772677659988403, -0.1269194483757019, -0.04023841395974159, 0.05882830172777176, 0.05532628297805786, -0.022054284811019897, 0.10254953056573868, 0.01932128518819809, -0.07240667939186096, 0.0069526019506156445, 0.02028607949614525, -0.06019314378499985, -0.2385014295578003, -0.05163724347949028, -0.08009234070777893, -0.030278297141194344, -0.021359028294682503, 0.025774432346224785, 0.0476832278072834, 0.0741809830069542, 0.059578992426395416, -0.0967211201786995, -0.07439368963241577, 0.0028730081394314766, 0.013432302512228489, -0.01981966942548752, 0.13195998966693878, -0.0543096661567688, -0.05378670245409012, 0.07453183829784393, 0.06529506295919418, 0.26452040672302246, 0.015036025084555149, -0.007368396036326885, 0.06734681129455566, 0.2356017529964447, 0.0161306019872427, 0.10795186460018158, 0.020279299467802048, -0.06467810273170471, -0.019933128729462624, 0.031803615391254425, -0.022726239636540413, 0.04060959443449974, 0.1118561401963234, -0.05977781116962433, -0.10866891592741013, 0.022061944007873535, 0.057354386895895004, 0.16994866728782654, 0.066217802464962, -0.19253265857696533, -0.03978985920548439, -0.01685815490782261, 0.04091129079461098, -0.04506887495517731, 0.04599850997328758, 0.14660482108592987, -0.11256249994039536, -0.07712464034557343, 0.003735880134627223, 0.10936781764030457, 0.019132692366838455, 0.0030968384817242622, -0.03698865696787834, -0.05195657163858414, -0.0051954020746052265, 0.13483919203281403, -0.3474605083465576, 0.28439363837242126, -0.004948095418512821, 0.06957485526800156, -0.04237766191363335, -0.05931926146149635, 0.047115471214056015, 0.09538102149963379, 0.1769237071275711, 0.0011026161955669522, -0.057897891849279404, -0.18069219589233398, -0.009233738295733929, 0.021817941218614578, 0.09429451078176498, -0.012460894882678986, 0.07320491969585419, -0.020227918401360512, 0.055659763514995575, 0.04783089831471443, 0.20102085173130035, -0.06401896476745605, -0.07239434123039246, -0.02327021211385727, 0.05975555256009102, 0.049935828894376755, -0.02801661193370819, -0.08497808128595352, -0.04650780186057091, 0.03542288392782211, -0.05548692122101784, 0.025631699711084366, -0.12304306030273438, 0.10786038637161255, 0.053729381412267685, -0.053839024156332016, 0.0031061279587447643, -0.00003307620863779448, -0.0118922283872962, 0.037189967930316925, -0.004198702983558178, 0.09932580590248108, -0.09048757702112198, 0.013040918856859207, -0.023141665384173393, 0.027411457151174545, 0.01567087136209011, 0.07384485751390457, 0.06623876094818115, -0.009679856710135937, -0.08349839597940445, -0.10794686526060104, 0.11220826208591461, -0.09378669410943985, 0.07692443579435349, 0.11970998346805573, -0.06153258681297302, -0.000586880836635828, -0.02737506292760372, 0.0006072560208849609, 0.298289954662323, 0.10454961657524109, -0.1287713199853897, -0.03409286215901375, 0.06629382818937302, -0.06882983446121216, -0.2666914463043213, 0.06388834118843079, 0.05196349322795868, 0.07959897816181183, -0.035507313907146454, -0.1614494025707245, 0.017093922942876816, 0.044408880174160004, -0.02055238001048565, -0.015953117981553078, -0.25864818692207336, -0.0484112910926342, 0.13229583203792572, 0.07010912895202637, 0.24458114802837372, -0.09803961217403412, 0.005861416459083557, 0.048594970256090164, -0.12180587649345398, 0.09041125327348709, -0.13992001116275787, 0.13116705417633057, -0.027372855693101883, 0.0355994813144207, 0.011169427074491978, -0.0793825015425682, 0.15815918147563934, 0.05803694576025009, 0.1111985296010971, -0.04154829680919647, -0.08010726422071457, 0.046821437776088715, -0.023341741412878036, 0.1114281564950943, 0.07286996394395828, 0.04391659423708916, -0.18623894453048706, -0.035376328974962234, -0.09413604438304901, 0.032473497092723846, -0.018546883016824722, -0.049972038716077805, -0.011073580943048, 0.05621969699859619, 0.01881733536720276, 0.008738214150071144, 0.006563983391970396, -0.07206575572490692, 0.09724166244268417, 0.033193305134773254, 0.05835495516657829, -0.008948421105742455, -0.06644520908594131, 0.04309087246656418, 0.0029160864651203156, 0.09082317352294922, -0.07967420667409897, 0.0411197803914547, 0.1370646357536316, 0.02692991867661476, 0.1433863490819931, 0.10873731225728989, -0.012877615168690681, 0.05991575866937637, 0.08408761024475098, -0.08441658318042755, -0.16710352897644043, -0.01634388603270054, -0.07591719180345535, -0.02703067846596241, 0.04078815504908562, 0.03533702716231346, -0.00954199768602848, 0.023181920871138573, -0.03743370249867439, -0.05358732119202614, -0.09863553941249847, 0.1657668799161911, 0.10831030458211899, 0.039701178669929504, -0.07521935552358627, 0.06226136535406113, 0.003199162660166621, -0.0852799192070961, 0.05032826587557793, -0.021738702431321144, -0.08310957252979279, -0.08732451498508453, -0.04638352990150452, 0.20896591246128082, -0.08268986642360687, -0.10192413628101349, -0.08654671907424927, -0.07796650379896164, 0.05730392411351204, 0.03216295316815376, 0.10626747459173203, -0.004807050805538893, -0.04796872287988663, -0.005844666622579098, -0.08297163248062134, 0.04274792969226837, 0.029407793655991554, -0.00982606690376997, -0.07618337869644165, 0.08774378895759583, -0.00026086787693202496, 0.12296507507562637, -0.056302476674318314, -0.07382068783044815, -0.09632302820682526, 0.07456129789352417, -0.16807126998901367, -0.046473708003759384, -0.00512186111882329, -0.028544088825583458, 0.0008919549873098731, -0.09436137974262238, -0.08439642935991287, 0.01082345750182867, -0.13746999204158783, -0.0058007738552987576, 0.01940179616212845, 0.005619367118924856, -0.10368667542934418, -0.0437312014400959, 0.0189658235758543, -0.01339796744287014, 0.07277774065732956, 0.12938664853572845, 0.018741978332400322, 0.009921138174831867, -0.08507755398750305, -0.0419745035469532, -0.0428469181060791, 0.00490451417863369, 0.08671826124191284, -0.11019152402877808, 0.037837326526641846, 0.01185236219316721, 0.01366367656737566, 0.04732365161180496, 0.03918624296784401, -0.07155387103557587, -0.015559453517198563, -0.08609029650688171, -0.05314579978585243, -0.05504095181822777, 0.0738053247332573, 0.10409650951623917, 0.09640676528215408, 0.12653256952762604, -0.00815546978265047, 0.06652285903692245, -0.12012830376625061, 0.0022023734636604786, -0.0319710373878479, -0.02398708462715149, -0.07688852399587631, -0.0964292362332344, 0.062032584100961685, -0.051102519035339355, 0.10289710015058517, 0.051468830555677414, 0.06516918540000916, -0.0028699920512735844, 0.0005293710855767131, 0.03665800392627716, -0.02803868055343628, 0.15305906534194946, 0.03730543330311775, -0.03324958309531212, 0.04200552776455879, 0.12337515503168106, -0.0141025735065341, 0.12846535444259644, 0.08790052682161331, 0.18178865313529968, 0.04374784976243973, 0.07404665648937225, 0.0019180004019290209, -0.08126668632030487, -0.09210442751646042, -0.015109898522496223, -0.04359442740678787, -0.01898445002734661, -0.03308772295713425, 0.04229773208498955, 0.09509828686714172, -0.1482240855693817, 0.06307106465101242, -0.07797311991453171, -0.08521965891122818, -0.083580382168293, -0.018070537596940994, -0.04778698459267616, -0.1505744904279709, 0.016838017851114273, -0.11884568631649017, -0.007834605872631073, 0.2052460014820099, 0.07511794567108154, -0.019730525091290474, 0.19884218275547028, -0.044413406401872635, -0.023187773302197456, 0.07835760712623596, -0.045884404331445694, 0.0734776109457016, -0.11891307681798935, 0.002226690761744976, -0.0016607126453891397, -0.07892590761184692, 0.05589864030480385, -0.003116501960903406, -0.0492168627679348, -0.014824140816926956, -0.043022122234106064, -0.03252222016453743, -0.04219197481870651, 0.042330335825681686, 0.06848664581775665, 0.14407122135162354, -0.0069391424767673016, -0.006309401243925095, -0.01204720139503479, 0.2941392958164215, -0.05136127024888992, -0.05430328845977783, -0.17734302580356598, 0.1067904382944107, 0.07669054716825485, 0.058479055762290955, -0.011031074449419975, -0.06379356235265732, 0.0008923099376261234, 0.24692825973033905, 0.1564764529466629, -0.10749945044517517, -0.027083968743681908, 0.06512197107076645, 0.01011032983660698, 0.05494721233844757, 0.07042752206325531, 0.11012975126504898, 0.09782472252845764, -0.12247610837221146, 0.001884732278995216, -0.13816048204898834, -0.023535985499620438, 0.08180694282054901, 0.14205724000930786, 0.09410178661346436, -0.035073067992925644, -0.09676234424114227, 0.09794874489307404, -0.046456772834062576, -0.08831106126308441, 0.0678718090057373, -0.16327142715454102, -0.14172598719596863, -0.011412840336561203, 0.07626990228891373, 0.021388422697782516, 0.0905999019742012, -0.07883064448833466, -0.005750351585447788, 0.028873056173324585, 0.011126975528895855, -0.07666828483343124, -0.12054771184921265, 0.13145901262760162, -0.008115793578326702, 0.14424943923950195, -0.030461590737104416, 0.10870052129030228, 0.11078886687755585, 0.04350879415869713, -0.06852828711271286, 0.06425125896930695, 0.045868489891290665, 0.00142399943433702, -0.0023268244694918394, 0.034748684614896774, -0.017955850809812546, 0.012419069185853004, 0.034282803535461426, -0.20814938843250275, 0.05662461742758751, -0.07615004479885101, -0.07649706304073334, -0.11927298456430435, 0.06558355689048767, -0.042308058589696884, 0.12751899659633636, 0.18205823004245758, -0.02234797365963459, 0.031225893646478653, -0.07138221710920334, 0.058963075280189514, 0.024115582928061485, 0.02550475113093853, -0.07470913231372833, -0.11330600827932358, 0.022503923624753952, 0.03107135370373726, -0.042421605437994, -0.1623310148715973, -0.05389619991183281, 0.056652482599020004, -0.06865871697664261, 0.03719908371567726, 0.03156762570142746, 0.14604593813419342, 0.08370504528284073, -0.04320329800248146, -0.016759861260652542, -0.030830292031168938, 0.10952041298151016, -0.08513861894607544, -0.10212692618370056 ]
null
null
transformers
# Question answering model for Estonian This is a question answering model based on XLM-Roberta base model. It is fine-tuned subsequentially on: 1. English SQuAD v1.1 2. SQuAD v1.1 translated into Estonian 3. Small native Estonian dataset (800 samples) The model has retained good multilingual properties and can be used for extractive QA tasks in all languages included in XLM-Roberta. The performance is best in the fine-tuning languages of Estonian and English. | Tested on | F1 | EM | | ----------- | --- | --- | | EstQA test set | 82.4 | 75.3 | | SQuAD v1.1 dev set | 86.9 | 77.9 | The Estonian dataset used for fine-tuning and validating results is available in https://huggingface.co/datasets/anukaver/EstQA/ (version 1.0)
{"tags": ["question-answering"], "datasets": ["squad", "anukaver/EstQA"]}
question-answering
anukaver/xlm-roberta-est-qa
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "dataset:squad", "dataset:anukaver/EstQA", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #xlm-roberta #question-answering #dataset-squad #dataset-anukaver/EstQA #endpoints_compatible #region-us
Question answering model for Estonian ===================================== This is a question answering model based on XLM-Roberta base model. It is fine-tuned subsequentially on: 1. English SQuAD v1.1 2. SQuAD v1.1 translated into Estonian 3. Small native Estonian dataset (800 samples) The model has retained good multilingual properties and can be used for extractive QA tasks in all languages included in XLM-Roberta. The performance is best in the fine-tuning languages of Estonian and English. Tested on: EstQA test set, F1: 82.4, EM: 75.3 Tested on: SQuAD v1.1 dev set, F1: 86.9, EM: 77.9 The Estonian dataset used for fine-tuning and validating results is available in URL (version 1.0)
[]
[ "TAGS\n#transformers #pytorch #xlm-roberta #question-answering #dataset-squad #dataset-anukaver/EstQA #endpoints_compatible #region-us \n" ]
[ 49 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #question-answering #dataset-squad #dataset-anukaver/EstQA #endpoints_compatible #region-us \n" ]
[ -0.12480838596820831, 0.09146685153245926, -0.007749066222459078, -0.0004266511823516339, 0.11852368712425232, 0.07320306450128555, 0.054531168192625046, 0.10624785721302032, 0.09028752893209457, -0.003647019388154149, 0.13094070553779602, 0.2226932942867279, -0.006166793406009674, 0.055633094161748886, -0.10539251565933228, -0.12235067784786224, 0.04467181861400604, 0.10080049932003021, -0.07800672948360443, 0.12052025645971298, 0.07697542011737823, -0.12065239995718002, 0.06855230033397675, -0.039916615933179855, -0.11820831894874573, 0.047901999205350876, 0.006098079960793257, -0.06458276510238647, 0.11186202615499496, 0.05637618899345398, 0.1319209188222885, 0.04874057695269585, -0.08662239462137222, -0.19989855587482452, 0.04670624062418938, -0.012469409964978695, -0.058416157960891724, 0.044550031423568726, 0.02430585026741028, -0.0632789134979248, -0.007305409759283066, -0.029106823727488518, -0.0170159712433815, 0.054797254502773285, -0.16723918914794922, -0.1345091015100479, -0.0879276916384697, -0.04587606340646744, 0.07914812117815018, 0.07664043456315994, -0.022237339988350868, 0.22845527529716492, -0.15247996151447296, 0.1045033261179924, 0.14397543668746948, -0.28379330039024353, -0.026580194011330605, 0.044136177748441696, 0.10736719518899918, 0.04753099009394646, -0.021016571670770645, 0.060677338391542435, 0.04873933270573616, 0.025869295001029968, -0.07266708463430405, -0.10242343693971634, -0.13513219356536865, 0.09879238158464432, -0.08682142943143845, -0.06362666934728622, 0.34268155694007874, 0.02514377422630787, 0.05827701836824417, -0.002507016295567155, -0.061626896262168884, 0.05277455970644951, 0.002460239455103874, -0.019876016303896904, -0.01850719191133976, -0.009043176658451557, -0.030544353649020195, -0.004069629590958357, -0.11170607060194016, -0.0005569480708800256, -0.2465575635433197, 0.12928035855293274, 0.01692262850701809, 0.08795752376317978, -0.22947998344898224, 0.013023201376199722, 0.005779660306870937, -0.060217101126909256, -0.022143078967928886, -0.08634530007839203, -0.11268066614866257, -0.020638126879930496, -0.024495819583535194, -0.0013553804019466043, 0.12802599370479584, 0.14289453625679016, -0.03195595741271973, 0.013119278475642204, 0.015860212966799736, 0.06616420298814774, 0.11516116559505463, 0.08361920714378357, -0.0743291974067688, -0.06304554641246796, -0.003865570994094014, -0.1255851536989212, -0.05164355784654617, -0.023120107129216194, -0.05102432519197464, -0.05860016122460365, -0.001192991971038282, 0.13959696888923645, 0.1007039025425911, 0.01420558150857687, -0.07740041613578796, -0.03919677063822746, 0.00687195872887969, -0.033210523426532745, -0.003425422590225935, -0.0007783149485476315, -0.0019097994081676006, 0.12582358717918396, -0.06698063760995865, 0.03953368216753006, -0.030297748744487762, -0.036505408585071564, -0.08751246333122253, -0.022667039185762405, 0.01442453358322382, -0.04992019012570381, 0.06976324319839478, -0.1366882026195526, 0.07339698076248169, -0.12066880613565445, -0.1040419489145279, 0.004956747405230999, 0.01749400980770588, -0.01948815956711769, -0.0020832892041653395, -0.02186678908765316, -0.008328523486852646, -0.02079739421606064, -0.04867744445800781, 0.007340279407799244, -0.07600585371255875, 0.08890195190906525, 0.004121416248381138, 0.06320659071207047, -0.07634365558624268, 0.059688325971364975, -0.08590321242809296, 0.02657642960548401, -0.03326595947146416, 0.04596371203660965, -0.040801312774419785, 0.09982042759656906, -0.04587678983807564, -0.054990414530038834, -0.017636677250266075, 0.02679314836859703, -0.030498197302222252, 0.18331830203533173, -0.13994885981082916, -0.06528033316135406, 0.1840183138847351, -0.05088476464152336, -0.2543193995952606, 0.07687553018331528, -0.017454931512475014, -0.003172286320477724, 0.0772525891661644, 0.16804111003875732, 0.030978461727499962, -0.07908951491117477, -0.03541572019457817, 0.07730978727340698, -0.13320539891719818, -0.14948812127113342, 0.053929898887872696, 0.019191008061170578, -0.01699244976043701, 0.03551729768514633, 0.025476116687059402, 0.05418261140584946, -0.11600004881620407, -0.07702597975730896, -0.038761578500270844, -0.03968140855431557, 0.012948849238455296, 0.07070618122816086, 0.02957743965089321, -0.05591598525643349, 0.04809520021080971, -0.007179593201726675, 0.02441423200070858, 0.0217587873339653, -0.004525118041783571, -0.09791102260351181, 0.13056066632270813, -0.1721130609512329, -0.0028657333459705114, -0.20043708384037018, -0.16534192860126495, -0.04029713571071625, 0.11465124785900116, -0.05370436981320381, 0.19153353571891785, 0.07360009849071503, -0.1231403723359108, -0.0013396823778748512, -0.026424968615174294, 0.1238512173295021, 0.0205394234508276, -0.05957770720124245, -0.09061634540557861, 0.034018173813819885, -0.0934039056301117, 0.0021208624821156263, -0.04008942097425461, -0.03981315344572067, 0.02268623374402523, 0.1214025542140007, 0.009946501813828945, 0.0553637333214283, 0.03293583542108536, 0.045069754123687744, -0.023265812546014786, 0.016027214005589485, 0.10065165907144547, -0.022336017340421677, -0.08689237385988235, 0.09599226713180542, -0.017324266955256462, 0.21148943901062012, 0.1409028172492981, -0.19507808983325958, 0.028771843761205673, -0.05109678953886032, -0.052967872470617294, 0.019304288551211357, 0.010451956652104855, 0.015478799119591713, 0.03230362385511398, 0.024473724886775017, 0.07730947434902191, -0.051744524389505386, -0.045837968587875366, 0.019835276529192924, -0.040934283286333084, -0.05999917909502983, 0.11607789248228073, 0.13518063724040985, -0.1911778301000595, 0.157151460647583, 0.19627155363559723, 0.10496794432401657, 0.10578355193138123, -0.06717219948768616, -0.04522975906729698, -0.0289436187595129, -0.020634610205888748, -0.059386998414993286, 0.09283578395843506, -0.2157677561044693, 0.027348477393388748, 0.10107598453760147, -0.006131735164672136, 0.06919534504413605, -0.12156819552183151, -0.10463539510965347, -0.006636247504502535, -0.005104709416627884, -0.13009996712207794, 0.12405994534492493, 0.06430041790008545, 0.10707249492406845, -0.02158665843307972, -0.02482227422297001, 0.08755110949277878, -0.01677239127457142, -0.06756820529699326, 0.18038637936115265, -0.09842990338802338, -0.2993029057979584, -0.00718895997852087, -0.056577399373054504, -0.037903349846601486, -0.029436537995934486, 0.06627720594406128, -0.1090439185500145, -0.01147229690104723, 0.07972955703735352, 0.007795940153300762, -0.0935133844614029, 0.007466775830835104, -0.021393222734332085, 0.05997015908360481, -0.06533781439065933, -0.07870226353406906, -0.03783828765153885, -0.06661715358495712, -0.025786638259887695, 0.14120526611804962, -0.10138633102178574, 0.13256682455539703, 0.09089639037847519, 0.04696483165025711, 0.0649348646402359, -0.0323849655687809, 0.27021506428718567, -0.11573877930641174, 0.00043673504842445254, 0.1535256952047348, 0.03076031431555748, 0.05250925570726395, 0.13363949954509735, 0.012382258661091328, -0.09113737940788269, -0.023583630099892616, -0.006785445846617222, -0.0649716705083847, -0.3025449812412262, -0.10014209896326065, -0.13352079689502716, 0.011987310834228992, -0.02937217243015766, 0.014925043098628521, 0.013585254549980164, 0.09731252491474152, 0.03364274650812149, -0.09928037226200104, -0.11384373158216476, 0.003448422998189926, 0.1652652472257614, -0.029254188761115074, 0.08880723267793655, -0.09199649095535278, -0.0807570368051529, 0.08056661486625671, 0.12102150171995163, 0.20060689747333527, 0.09646537899971008, 0.000327875604853034, 0.10165713727474213, 0.1461225003004074, 0.07515903562307358, 0.08288631588220596, 0.010359319858253002, -0.06608850508928299, -0.011706887744367123, 0.02532554604113102, -0.05428086966276169, -0.007965237833559513, 0.15420246124267578, -0.10282104462385178, -0.05451716110110283, -0.08768031001091003, 0.09763920307159424, 0.09284244477748871, 0.09130831807851791, -0.14400160312652588, 0.020085841417312622, 0.07647839933633804, -0.009797676466405392, -0.0464613251388073, 0.04150272160768509, 0.04007493704557419, -0.13265550136566162, 0.04951845109462738, -0.04321736842393875, 0.1250385046005249, 0.017939113080501556, 0.02997409552335739, -0.026442309841513634, -0.09344889223575592, 0.04146070405840874, 0.09958042949438095, -0.24941740930080414, 0.29754459857940674, 0.020935015752911568, -0.054705679416656494, -0.09263727813959122, -0.05164485424757004, -0.04850732535123825, 0.11524356156587601, 0.19410724937915802, 0.032814282923936844, -0.097687728703022, -0.10034145414829254, 0.015357978641986847, 0.09753898531198502, 0.04558998718857765, 0.03221049904823303, 0.029369618743658066, 0.019989144057035446, 0.016827870160341263, -0.0168844573199749, 0.05426819249987602, 0.0013937221374362707, -0.12054383009672165, 0.024081915616989136, 0.029412273317575455, -0.027580181136727333, 0.012423031963407993, -0.03514279052615166, -0.10931205749511719, 0.12296842038631439, -0.037843652069568634, -0.07936316728591919, -0.09401598572731018, -0.0460512675344944, 0.13382303714752197, -0.09431856870651245, -0.004985813982784748, -0.042855069041252136, -0.020149044692516327, -0.03474424034357071, -0.13688264787197113, 0.08701453357934952, -0.11371470987796783, 0.019903216511011124, -0.04225011169910431, 0.14859795570373535, -0.038338176906108856, 0.03557521104812622, 0.03749656304717064, 0.0395757257938385, -0.10160987079143524, -0.08755506575107574, 0.05540715530514717, -0.034173231571912766, 0.0762898400425911, 0.12446589767932892, -0.01610110141336918, 0.01725873351097107, 0.005662852432578802, -0.014958875253796577, 0.25993141531944275, 0.16813762485980988, -0.07516803592443466, 0.10665062814950943, 0.09745802730321884, -0.0379047654569149, -0.2438262552022934, -0.028787797316908836, -0.09820403158664703, -0.023559710010886192, -0.001666245050728321, -0.10411674529314041, 0.11951271444559097, 0.06461896747350693, 0.005866487976163626, 0.08166452497243881, -0.29928281903266907, -0.01762755587697029, 0.13863752782344818, 0.003117190208286047, 0.33584848046302795, -0.13839003443717957, -0.05579259246587753, -0.019561106339097023, -0.1883557140827179, 0.16123266518115997, -0.030884351581335068, 0.07960978895425797, -0.050838690251111984, 0.10173989832401276, 0.021092932671308517, -0.07392441481351852, 0.17208515107631683, 0.06542911380529404, 0.0243977103382349, -0.04402880743145943, -0.09217556565999985, 0.10238289088010788, 0.013636436313390732, 0.0157818291336298, 0.03792211413383484, 0.03783384710550308, -0.22624215483665466, -0.0019568384159356356, -0.12169669568538666, 0.039171312004327774, 0.01693127490580082, -0.024295242503285408, -0.03488830476999283, 0.0013197918888181448, 0.018176548182964325, -0.011668180115520954, 0.19706177711486816, -0.028284450992941856, 0.14219225943088531, -0.03101964294910431, 0.15556612610816956, -0.15502367913722992, -0.1369137465953827, -0.07272014021873474, -0.03400328382849693, 0.05025652050971985, -0.06874237209558487, 0.05669606849551201, 0.1916862279176712, -0.0006925227353349328, 0.06147036328911781, 0.08313383907079697, 0.018521221354603767, 0.02707107923924923, 0.11091645061969757, -0.16176588833332062, -0.15122579038143158, 0.006523903924971819, -0.06946064531803131, -0.010224779136478901, 0.09951141476631165, 0.08911837637424469, 0.107960544526577, -0.04196787253022194, -0.02606174163520336, 0.014409746043384075, -0.04014674574136734, 0.12936340272426605, 0.11127382516860962, 0.0343506820499897, -0.15276983380317688, 0.05742349848151207, -0.021708974614739418, -0.17686183750629425, -0.014900144189596176, 0.0368347130715847, -0.0943957194685936, -0.10722602903842926, -0.022911496460437775, 0.11384917050600052, -0.19789201021194458, -0.06199832260608673, -0.07666348665952682, -0.0951567217707634, 0.08417510986328125, 0.18137674033641815, 0.07330676913261414, 0.06640003621578217, 0.01675810106098652, -0.09259825199842453, 0.0020561600103974342, 0.0074564553797245026, 0.019507789984345436, -0.00469157425686717, -0.09125899523496628, -0.05376354977488518, -0.0372285395860672, 0.22190755605697632, -0.06539211422204971, -0.06394027918577194, -0.1589754968881607, 0.08018246293067932, -0.2003975212574005, -0.04525561258196831, -0.11922474950551987, -0.04361230880022049, -0.0017603624146431684, -0.10601992905139923, -0.08135131001472473, -0.027237001806497574, -0.10382847487926483, 0.07814640551805496, 0.05499505624175072, 0.047038160264492035, -0.09412647038698196, -0.06471800804138184, 0.08368625491857529, -0.012590273283421993, 0.09931550174951553, 0.12501324713230133, -0.08270393311977386, 0.05280604958534241, -0.11368143558502197, -0.14627696573734283, 0.049943506717681885, 0.0531141571700573, 0.1257971078157425, -0.057892195880413055, 0.033826522529125214, 0.1087128296494484, 0.01576709933578968, 0.0887981653213501, -0.04941103607416153, -0.0916406586766243, 0.005696361884474754, -0.020024895668029785, -0.11541429907083511, -0.060710176825523376, -0.07536802440881729, 0.13802872598171234, 0.04053225740790367, 0.1192571371793747, 0.014655742794275284, 0.11272130161523819, -0.11843768507242203, -0.00633102934807539, -0.02475026436150074, -0.13945017755031586, 0.04677209258079529, -0.01897561177611351, 0.05615666136145592, -0.03040509857237339, 0.2843298316001892, -0.0357656367123127, 0.07940903306007385, 0.019543159753084183, 0.091245137155056, 0.023319832980632782, -0.00924327876418829, 0.18300406634807587, 0.06455188989639282, -0.03726717829704285, -0.019165808334946632, 0.09515516459941864, -0.047609828412532806, 0.03519193455576897, 0.15130122005939484, 0.11564355343580246, 0.11184350401163101, 0.035081345587968826, 0.03749202936887741, -0.0016322378069162369, 0.0380273275077343, -0.14517374336719513, -0.04361701384186745, 0.0157563928514719, 0.0434269905090332, 0.04321328178048134, 0.11728417128324509, -0.08800962567329407, 0.06983530521392822, -0.07688125222921371, -0.04557415097951889, -0.12807349860668182, -0.06259945034980774, -0.08401059359312057, -0.07253509759902954, 0.03111584298312664, -0.141324982047081, -0.02473726123571396, 0.12244636565446854, 0.058103885501623154, -0.03160673379898071, 0.05386020615696907, 0.08794356137514114, -0.038862816989421844, 0.014627539552748203, 0.00972866453230381, 0.054439228028059006, -0.004933733027428389, 0.07104703783988953, -0.04114781692624092, -0.03156469762325287, -0.032627396285533905, 0.02436693198978901, -0.06970072537660599, 0.02302606962621212, -0.15559224784374237, -0.08875439316034317, -0.08274678140878677, 0.07785511016845703, -0.036181822419166565, 0.07513311505317688, 0.019498717039823532, 0.06655776500701904, 0.04296107590198517, 0.1773400902748108, -0.02421777881681919, -0.07102217525243759, -0.11970601975917816, 0.10858796536922455, -0.004947703797370195, 0.0541405975818634, 0.024126488715410233, -0.012500101700425148, -0.022688670083880424, 0.2923106253147125, 0.2633183002471924, -0.0883219912648201, 0.02635693922638893, 0.006662076339125633, 0.03578740358352661, 0.048225920647382736, 0.023127304390072823, 0.08918988704681396, 0.25084760785102844, -0.09284573048353195, -0.06404519826173782, -0.07256656140089035, 0.022653251886367798, -0.005275750067085028, 0.04141400009393692, 0.08328638225793839, -0.020482635125517845, -0.030924523249268532, 0.1503015160560608, -0.12242441624403, 0.07664661854505539, 0.02656591683626175, -0.17413972318172455, -0.10279668867588043, -0.04524426534771919, 0.10612408816814423, 0.036322642117738724, 0.08037302643060684, -0.050333861261606216, -0.07264198362827301, 0.08061744272708893, 0.03953545168042183, -0.2419227808713913, -0.08136077225208282, 0.14569790661334991, -0.024661147966980934, 0.006423562299460173, -0.0205026064068079, 0.09035378694534302, 0.09784910082817078, 0.01831045374274254, -0.0686483234167099, 0.02312418259680271, 0.0780843049287796, -0.02220802567899227, -0.009681771509349346, -0.012280913069844246, 0.03439688682556152, -0.061579614877700806, 0.09574694186449051, -0.10450655221939087, 0.049886565655469894, 0.0055689215660095215, -0.0016880178591236472, -0.05861955136060715, 0.09067666530609131, -0.05462032929062843, 0.06900230795145035, 0.07242130488157272, -0.028768453747034073, 0.0019430327229201794, -0.046208467334508896, 0.028410719707608223, 0.02930843085050583, -0.034898072481155396, -0.10142533481121063, -0.08871957659721375, -0.031565070152282715, 0.0521099790930748, -0.02561725676059723, -0.09800312668085098, -0.0225636325776577, -0.0532100684940815, -0.011390496976673603, -0.025980589911341667, 0.04929773882031441, 0.072679802775383, 0.04988623037934303, -0.012860886752605438, -0.0027125792112201452, 0.018361881375312805, 0.07675626128911972, -0.08158101886510849, -0.06468789279460907 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-as This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.9068 - Wer: 0.6679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 240 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 5.7027 | 21.05 | 400 | 3.4157 | 1.0 | | 1.1638 | 42.1 | 800 | 1.3498 | 0.7461 | | 0.2266 | 63.15 | 1200 | 1.6147 | 0.7273 | | 0.1473 | 84.21 | 1600 | 1.6649 | 0.7108 | | 0.1043 | 105.26 | 2000 | 1.7691 | 0.7090 | | 0.0779 | 126.31 | 2400 | 1.8300 | 0.7009 | | 0.0613 | 147.36 | 2800 | 1.8681 | 0.6916 | | 0.0471 | 168.41 | 3200 | 1.8567 | 0.6875 | | 0.0343 | 189.46 | 3600 | 1.9054 | 0.6840 | | 0.0265 | 210.51 | 4000 | 1.9020 | 0.6786 | | 0.0219 | 231.56 | 4400 | 1.9068 | 0.6679 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-as --dataset mozilla-foundation/common_voice_7_0 --config as --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-as" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "as", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "জাহাজত তো তিশকুৰলৈ যাব কিন্তু জহাজিটো আহিপনে" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 67 | 56.995 |
{"language": ["as"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-as", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "as"}, "metrics": [{"type": "wer", "value": 56.995, "name": "Test WER"}, {"type": "cer", "value": 20.39, "name": "Test CER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xls-r-300m-as
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "as", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "as" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #hf-asr-leaderboard #robust-speech-event #as #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-large-xls-r-300m-as ============================ This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 1.9068 * Wer: 0.6679 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.12 * num\_epochs: 240 ### Training results ### Framework versions * Transformers 4.16.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_7\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 7 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 240", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 7 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #hf-asr-leaderboard #robust-speech-event #as #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 240", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 7 \"test\" (WER):" ]
[ 92, 144, 4, 35, 36, 8, 15 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #hf-asr-leaderboard #robust-speech-event #as #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 240### Training results### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'### Inference With LM### Eval results on Common Voice 7 \"test\" (WER):" ]
[ -0.11215634644031525, 0.12959110736846924, -0.00697297090664506, 0.03118935599923134, 0.08367100358009338, 0.014747746288776398, 0.10080301016569138, 0.16885869204998016, -0.04974254593253136, 0.12505799531936646, 0.06866682320833206, 0.08732202649116516, 0.08489532023668289, 0.09508002549409866, -0.03664928302168846, -0.22645555436611176, 0.013786058872938156, -0.044199004769325256, -0.09800765663385391, 0.11329706013202667, 0.10154468566179276, -0.09157131612300873, 0.027298709377646446, 0.01924421638250351, -0.07532370090484619, -0.009349706582725048, -0.042120277881622314, -0.04724779352545738, 0.07781581580638885, 0.04135490581393242, 0.019675685092806816, 0.0493333674967289, 0.05713183432817459, -0.28578364849090576, 0.0017655910924077034, 0.05767187848687172, 0.04179012030363083, 0.06201343238353729, 0.12392336130142212, -0.03097614087164402, 0.1223268210887909, -0.06741843372583389, 0.03324790298938751, 0.06782886385917664, -0.07450060546398163, -0.22698567807674408, -0.07770849019289017, 0.03681791573762894, 0.13968199491500854, 0.06645721197128296, -0.04529942572116852, 0.06174403801560402, -0.09721367806196213, 0.09393557906150818, 0.226456418633461, -0.21545428037643433, -0.05679988116025925, -0.005593718029558659, 0.01671345718204975, -0.003497318597510457, -0.11899729073047638, -0.01796908862888813, 0.017660198733210564, -0.00613428233191371, 0.06821338087320328, 0.004347852431237698, 0.0632329210639, 0.004196114372462034, -0.13853183388710022, -0.05700480192899704, 0.12898893654346466, 0.07752527296543121, -0.03161676600575447, -0.12228385359048843, -0.011690566316246986, -0.15802933275699615, -0.033984046429395676, 0.010370765812695026, 0.01760357990860939, -0.03982258960604668, -0.017501365393400192, 0.05416988953948021, -0.06203395500779152, -0.06510896980762482, 0.054098136723041534, 0.1456449329853058, 0.036834027618169785, -0.03468908742070198, 0.015730969607830048, 0.09142518043518066, 0.048444706946611404, -0.1727917194366455, -0.032778169959783554, 0.045175790786743164, -0.13188302516937256, -0.0211178045719862, -0.012700720690190792, 0.0004236951644998044, 0.09322789311408997, 0.13936564326286316, 0.010231740772724152, 0.10590671747922897, 0.013598243705928326, 0.009383167140185833, -0.04496128484606743, 0.183583602309227, -0.03717430680990219, -0.10053633153438568, -0.0469340980052948, 0.1376655101776123, -0.007312556263059378, -0.0022062186617404222, -0.043916892260313034, 0.03932734951376915, 0.12931497395038605, 0.07321424037218094, 0.006903381552547216, 0.01153787411749363, -0.0736609622836113, -0.027710655704140663, -0.001112273195758462, -0.1474715918302536, 0.051584888249635696, 0.09169093519449234, -0.056226152926683426, -0.00017449491133447737, -0.013696555979549885, -0.0024704423267394304, -0.04577341303229332, 0.0867566391825676, -0.0416136234998703, -0.0031357426196336746, -0.06082763895392418, -0.06905154138803482, 0.03115287981927395, -0.02525179460644722, -0.008886358700692654, -0.03926057368516922, -0.05004351586103439, -0.07842473685741425, 0.05410202220082283, -0.07930126041173935, -0.07291574776172638, -0.07514359802007675, -0.10392056405544281, 0.04333950951695442, -0.0070860134437680244, 0.15147271752357483, -0.04611275717616081, 0.08210258930921555, 0.05266399681568146, 0.04712345823645592, 0.16287176311016083, 0.05930871516466141, -0.024366267025470734, 0.05552434176206589, -0.15477254986763, 0.12397680431604385, -0.12924684584140778, 0.040130313485860825, -0.15520431101322174, -0.08771388232707977, 0.008895747363567352, -0.007462439592927694, 0.08468735963106155, 0.15097397565841675, -0.16185778379440308, -0.08459240943193436, 0.12418190389871597, -0.058639150112867355, -0.0848231092095375, 0.14423824846744537, -0.004808126483112574, -0.04157853126525879, -0.0018159914761781693, 0.1831568330526352, 0.12703658640384674, -0.09349552541971207, -0.0025363913737237453, -0.04397334158420563, 0.08249595761299133, 0.08206502348184586, 0.0933137908577919, -0.06956229358911514, 0.032327696681022644, -0.003966010175645351, -0.05501411855220795, 0.01882525347173214, -0.0648229643702507, -0.07656271755695343, -0.007986766286194324, -0.050765447318553925, -0.0022162203676998615, 0.04412337392568588, -0.014466171152889729, -0.08917061239480972, -0.137797549366951, -0.040122903883457184, 0.09504281729459763, -0.09170159697532654, 0.013953286223113537, -0.09614431858062744, 0.0828215479850769, -0.02266329899430275, 0.006969408132135868, -0.13705381751060486, 0.011907230131328106, 0.04803356155753136, -0.06811311841011047, 0.0008163873571902514, -0.0037178087513893843, 0.061544567346572876, 0.015548585914075375, -0.018475355580449104, -0.056074198335409164, -0.015033644624054432, -0.007421183865517378, -0.047281112521886826, -0.24688634276390076, -0.06878213584423065, -0.01976209692656994, 0.17748111486434937, -0.19761547446250916, 0.0051326691173017025, 0.11260874569416046, 0.109639473259449, 0.00444257166236639, -0.051653891801834106, 0.029903879389166832, 0.02271486632525921, -0.023806797340512276, -0.06396623700857162, 0.005548322107642889, -0.0011580770369619131, -0.11334259063005447, -0.0016807422507554293, -0.1412086933851242, 0.04177027940750122, 0.07936398684978485, 0.04345940425992012, -0.07585179805755615, -0.0471314862370491, -0.06531963497400284, -0.05361616238951683, -0.03287559747695923, -0.013957880437374115, 0.17002728581428528, 0.04293211176991463, 0.0804123654961586, -0.08001357316970825, -0.07178547233343124, 0.02660294994711876, -0.002765029203146696, -0.01268803421407938, 0.15842850506305695, 0.038940079510211945, -0.04694659262895584, 0.0669059157371521, 0.03370323032140732, -0.0647052600979805, 0.10446666181087494, -0.08519779145717621, -0.09193967282772064, -0.058519601821899414, 0.06111213564872742, 0.0336494967341423, 0.10528389364480972, -0.191831573843956, 0.002361863385885954, 0.038784850388765335, 0.010271917097270489, 0.02296067215502262, -0.1651066541671753, 0.018630685284733772, 0.04881761223077774, -0.0926278606057167, -0.0042509459890425205, 0.017973391339182854, 0.0010847547091543674, 0.06706243008375168, -0.0071719735860824585, -0.08514295518398285, -0.02937997691333294, -0.061096254736185074, -0.10876458138227463, 0.16697929799556732, -0.06170231103897095, -0.13119377195835114, -0.11365329474210739, 0.009385303594172001, -0.04259699583053589, -0.02460860088467598, 0.046530865132808685, -0.09018725901842117, -0.06060611829161644, -0.07775674760341644, 0.012986534275114536, -0.006093519274145365, 0.030678603798151016, 0.06594846397638321, 0.005211179610341787, 0.07549416273832321, -0.09875410795211792, 0.0012165114749222994, -0.016001882031559944, -0.007445952855050564, 0.012755490839481354, 0.04120131582021713, 0.07980439066886902, 0.1645820587873459, 0.03781653568148613, 0.05730472505092621, -0.014282363466918468, 0.19598641991615295, -0.1394709348678589, 0.01025757472962141, 0.0979832261800766, -0.00824833195656538, 0.050082430243492126, 0.14469477534294128, 0.032709356397390366, -0.07652612775564194, 0.006535505875945091, 0.04786510020494461, -0.0047723217867314816, -0.24702847003936768, -0.01802525483071804, -0.06759468466043472, -0.02690107375383377, 0.07090259343385696, 0.028192643076181412, 0.0061553725972771645, 0.012535314075648785, -0.002885655965656042, -0.05588092282414436, 0.044465042650699615, 0.05076610669493675, 0.08544452488422394, 0.05503265559673309, 0.1028488501906395, -0.01949373632669449, -0.026223545894026756, 0.013099274598062038, -0.007225793786346912, 0.19813919067382812, -0.0036914495285600424, 0.1885615885257721, 0.05801697075366974, 0.12443649768829346, -0.02496512420475483, 0.04504632577300072, -0.012820706702768803, -0.00016502919606864452, 0.03969774395227432, -0.06366016715765, -0.04059700667858124, 0.02631155401468277, 0.13656727969646454, 0.026403969153761864, -0.07488168776035309, 0.0565389022231102, 0.05977518856525421, 0.32393527030944824, 0.07307669520378113, -0.23507776856422424, -0.05834648385643959, 0.018602514639496803, -0.07606364041566849, -0.02019531838595867, 0.014317126013338566, 0.10754307359457016, -0.08424224704504013, 0.08549173176288605, -0.05120011419057846, 0.08010613918304443, -0.08029817044734955, 0.014671668410301208, 0.06735490262508392, 0.10411199927330017, 0.016162678599357605, 0.06986073404550552, -0.23015964031219482, 0.23987258970737457, -0.005297926254570484, 0.059878651052713394, -0.0637289509177208, 0.06287746876478195, 0.02279839850962162, -0.044666822999715805, 0.09502705186605453, -0.010852954350411892, -0.07208030670881271, -0.11797469854354858, -0.10478116571903229, 0.014325335621833801, 0.12388788908720016, -0.07299348711967468, 0.1254795491695404, -0.03922779858112335, -0.056631218641996384, 0.023907607421278954, -0.056826625019311905, -0.09307082742452621, -0.09676496684551239, 0.06429500132799149, -0.018130922690033913, 0.03309204801917076, -0.0708090290427208, -0.08894608914852142, -0.11144932359457016, 0.18156373500823975, -0.1437525749206543, -0.0340409092605114, -0.12628233432769775, 0.02403484843671322, 0.163272887468338, -0.06325534731149673, 0.0073228939436376095, 0.01989690214395523, 0.1367838829755783, 0.033473849296569824, -0.0033267808612436056, 0.09691913425922394, -0.0811966061592102, -0.20181311666965485, -0.03188667073845863, 0.20443762838840485, 0.016066057607531548, 0.06504266709089279, -0.012019002810120583, 0.004375832621008158, -0.0003400437708478421, -0.09295383840799332, 0.08698739111423492, 0.01639578863978386, -0.037063319236040115, 0.04722561687231064, -0.0019236464286223054, -0.020617591217160225, -0.109603151679039, -0.03883642330765724, 0.09314006567001343, 0.2652915120124817, -0.07235313951969147, 0.043670643121004105, 0.009248712100088596, -0.06007780507206917, -0.12292111665010452, -0.008342338725924492, 0.12265683710575104, 0.0370849147439003, -0.008866120129823685, -0.14510920643806458, 0.0270024836063385, 0.04611605405807495, -0.018169522285461426, 0.06961970031261444, -0.3165038526058197, -0.12800566852092743, 0.09742044657468796, 0.03792541101574898, -0.06651107221841812, -0.16863833367824554, -0.08161366730928421, -0.001861974480561912, -0.06542576104402542, 0.009070617146790028, 0.007634959649294615, 0.11678268760442734, -0.0034645141568034887, 0.0183585025370121, 0.03640307858586311, -0.05297870934009552, 0.15140998363494873, 0.04576200619339943, 0.02994869090616703, 0.00007056618778733537, 0.01946181058883667, -0.001198760000988841, -0.06305281072854996, 0.052702996879816055, -0.08197613805532455, 0.01850777305662632, -0.13955511152744293, -0.01608884520828724, -0.077029287815094, 0.01941148191690445, -0.058406274765729904, -0.0020012427121400833, -0.01792021282017231, 0.028401363641023636, 0.0999397337436676, 0.015206949785351753, 0.08035631477832794, -0.06668750196695328, 0.07736150920391083, 0.19225700199604034, 0.1265823245048523, 0.006603528745472431, -0.14561395347118378, 0.013184143230319023, 0.02673429250717163, 0.017302338033914566, -0.11380105465650558, 0.05762967839837074, 0.13154295086860657, 0.051586754620075226, 0.1492750495672226, 0.030769621953368187, -0.10948667675256729, -0.021154705435037613, 0.05939100310206413, -0.077792689204216, -0.159651979804039, -0.01465666200965643, 0.014502117410302162, -0.1499660611152649, -0.007194888778030872, 0.09758244454860687, -0.016498733311891556, 0.004280173685401678, 0.024139756336808205, 0.06768035888671875, -0.027535326778888702, 0.21281798183918, 0.023472003638744354, 0.11998549103736877, -0.09364337474107742, 0.07334640622138977, 0.039328642189502716, -0.08143262565135956, 0.04443494975566864, 0.08534635603427887, -0.03678674250841141, -0.01892165280878544, 0.028913293033838272, 0.08180595189332962, 0.06657279282808304, -0.039682891219854355, -0.13578669726848602, -0.1562056690454483, 0.07835270464420319, 0.061471812427043915, 0.04837355762720108, 0.03363744542002678, -0.013035431504249573, 0.02420658990740776, -0.09970186650753021, 0.12494426220655441, 0.11607973277568817, 0.05162901431322098, -0.12014241516590118, 0.057503752410411835, -0.012667636387050152, 0.00027477365802042186, 0.0023939884267747402, -0.009857908822596073, -0.09610497951507568, 0.021298393607139587, -0.06997615844011307, -0.00020096544176340103, -0.05879487842321396, 0.014404105953872204, 0.03810105845332146, -0.06424899399280548, -0.04575013369321823, 0.023442741483449936, -0.11169075220823288, -0.05248856171965599, -0.02133321203291416, 0.0791950523853302, -0.10935768485069275, -0.004759086761623621, 0.04721564054489136, -0.1523495316505432, 0.10699138790369034, 0.03386731818318367, 0.003555276431143284, -0.008286671712994576, -0.08648762851953506, -0.008611760102212429, 0.03744452819228172, 0.018024850636720657, 0.034141767770051956, -0.23572982847690582, -0.0023784346412867308, -0.02310861460864544, 0.0035682180896401405, -0.008670148439705372, 0.024597574025392532, -0.12789830565452576, 0.014535498805344105, -0.0538942888379097, -0.053071215748786926, -0.0474112406373024, 0.05946231260895729, 0.07100684940814972, 0.0016365725314244628, 0.17893634736537933, -0.06754440814256668, 0.07548585534095764, -0.21498991549015045, 0.002747712889686227, 0.000968282634858042, -0.0325530506670475, -0.0477319061756134, -0.006819024682044983, 0.10483525693416595, -0.06511665135622025, 0.06348904967308044, -0.03300140053033829, 0.054526157677173615, 0.02921302616596222, -0.08947371691465378, 0.04294263571500778, 0.054088134318590164, 0.1165306493639946, 0.026499243453145027, -0.015026046894490719, 0.07988817989826202, -0.056152667850255966, 0.043974295258522034, 0.03339033201336861, 0.13919880986213684, 0.13668256998062134, 0.035384371876716614, 0.0796598345041275, 0.0881422907114029, -0.12960968911647797, -0.12037873268127441, 0.179296612739563, -0.08032330870628357, 0.1336173266172409, -0.01857770048081875, 0.178888201713562, 0.11129903793334961, -0.19749467074871063, 0.08349697291851044, -0.04085426777601242, -0.08892223984003067, -0.09639084339141846, -0.09201525151729584, -0.08040869235992432, -0.15900301933288574, 0.021018587052822113, -0.093452587723732, 0.07225217670202255, 0.01383985299617052, 0.052035555243492126, 0.024264363572001457, 0.10665100067853928, 0.03385654091835022, 0.0005742058856412768, 0.11529245227575302, 0.006986656691879034, -0.03997938707470894, -0.016970688477158546, -0.05432623624801636, 0.05116613954305649, -0.0041682301089167595, 0.08612467348575592, -0.013934679329395294, -0.0743870958685875, 0.05631019175052643, 0.002382786711677909, -0.10913734883069992, 0.034718334674835205, -0.041685234755277634, 0.043365586549043655, 0.08509689569473267, 0.04130524396896362, -0.004004278220236301, -0.021954549476504326, 0.1644248366355896, -0.08638744801282883, -0.060278624296188354, -0.12931527197360992, 0.16743585467338562, 0.007507564965635538, 0.02137092687189579, 0.014271937310695648, -0.08450069278478622, -0.01714390143752098, 0.1725909560918808, 0.12285240739583969, -0.007691375445574522, -0.019329087808728218, 0.02075830101966858, -0.0031801590230315924, -0.017731908708810806, 0.026813272386789322, 0.10905688256025314, 0.04150780662894249, -0.02544538490474224, 0.0016880992334336042, -0.025360509753227234, -0.07888420671224594, -0.024436818435788155, 0.08327573537826538, 0.029186587780714035, -0.006746851839125156, -0.016839461401104927, 0.11778201907873154, -0.07134652137756348, -0.19142383337020874, 0.012974963523447514, -0.1647171825170517, -0.18596652150154114, -0.029838819056749344, 0.08155954629182816, 0.029348941519856453, 0.06253533810377121, 0.0005236956640146673, -0.05914366990327835, 0.12907730042934418, 0.009189240634441376, -0.037918660789728165, -0.06553800404071808, 0.05455389246344566, -0.13856631517410278, 0.1600050926208496, -0.019174419343471527, 0.05686623975634575, 0.1301901787519455, 0.03167995810508728, -0.10190040618181229, 0.028494514524936676, 0.09494572132825851, -0.14146779477596283, 0.06654106825590134, 0.20017856359481812, -0.006005510687828064, 0.12514758110046387, 0.05444585904479027, -0.06147237494587898, -0.0036065084859728813, -0.08642943948507309, -0.013034519739449024, -0.0745556578040123, -0.0034572635777294636, -0.04888433590531349, 0.1143723800778389, 0.20672781765460968, -0.0727531835436821, -0.0011894344352185726, -0.04634535312652588, 0.021630296483635902, 0.009744611568748951, 0.12609577178955078, -0.04426804184913635, -0.25751084089279175, 0.05130928382277489, -0.03174954280257225, 0.028731677681207657, -0.1758173257112503, -0.09309511631727219, 0.04228460416197777, -0.05137256160378456, -0.061698637902736664, 0.11460750550031662, 0.05535770580172539, 0.05279460921883583, -0.05091683566570282, -0.11429352313280106, -0.016912000253796577, 0.17484746873378754, -0.1759422868490219, -0.04593603312969208 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Bulgarian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BG dataset. It achieves the following results on the evaluation set: - Loss: 0.2473 - Wer: 0.3002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1589 | 3.48 | 400 | 3.0830 | 1.0 | | 2.8921 | 6.96 | 800 | 2.6605 | 0.9982 | | 1.3049 | 10.43 | 1200 | 0.5069 | 0.5707 | | 1.1349 | 13.91 | 1600 | 0.4159 | 0.5041 | | 1.0686 | 17.39 | 2000 | 0.3815 | 0.4746 | | 0.999 | 20.87 | 2400 | 0.3541 | 0.4343 | | 0.945 | 24.35 | 2800 | 0.3266 | 0.4132 | | 0.9058 | 27.83 | 3200 | 0.2969 | 0.3771 | | 0.8672 | 31.3 | 3600 | 0.2802 | 0.3553 | | 0.8313 | 34.78 | 4000 | 0.2662 | 0.3380 | | 0.8068 | 38.26 | 4400 | 0.2528 | 0.3181 | | 0.7796 | 41.74 | 4800 | 0.2537 | 0.3073 | | 0.7621 | 45.22 | 5200 | 0.2503 | 0.3036 | | 0.7611 | 48.7 | 5600 | 0.2477 | 0.2991 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-bg --dataset mozilla-foundation/common_voice_8_0 --config bg --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-bg --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-bg" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "bg", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "и надутият му ката блоонкурем взе да се събира" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 30.07 | 21.195 |
{"language": ["bg"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Bulgarian", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "bg"}, "metrics": [{"type": "wer", "value": 21.195, "name": "Test WER"}, {"type": "cer", "value": 4.786, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "bg"}, "metrics": [{"type": "wer", "value": 32.667, "name": "Test WER"}, {"type": "cer", "value": 12.452, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "bg"}, "metrics": [{"type": "wer", "value": 31.03, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xls-r-300m-bg
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "bg", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "bg" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #bg #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
XLS-R-300M - Bulgarian ====================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - BG dataset. It achieves the following results on the evaluation set: * Loss: 0.2473 * Wer: 0.3002 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 50.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' 2. To evaluate on 'speech-recognition-community-v2/dev\_data' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #bg #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ 111, 132, 4, 39, 60, 8, 15 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #bg #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'### Inference With LM### Eval results on Common Voice 8 \"test\" (WER):" ]
[ -0.10503694415092468, 0.14951837062835693, -0.006366066634654999, 0.02167411521077156, 0.10409969836473465, 0.03131416067481041, 0.10555198043584824, 0.16428419947624207, -0.03923604637384415, 0.14233830571174622, 0.05767828971147537, 0.10852036625146866, 0.08806639909744263, 0.09803421795368195, -0.0327577218413353, -0.21015851199626923, 0.03647731989622116, -0.06525789946317673, -0.06967666745185852, 0.10381212830543518, 0.08995483815670013, -0.08354352414608002, 0.02726409025490284, -0.012360455468297005, -0.061244044452905655, -0.011641127988696098, -0.030832476913928986, -0.043584778904914856, 0.06355471909046173, 0.03034580871462822, 0.021152198314666748, 0.02764756605029106, 0.05562597140669823, -0.3064557909965515, -0.0014091901248320937, 0.07728344947099686, 0.025527039542794228, 0.0429081916809082, 0.0950700119137764, -0.02659958228468895, 0.10142752528190613, -0.095610611140728, 0.04565524682402611, 0.07916493713855743, -0.08402806520462036, -0.23738668859004974, -0.10697171837091446, 0.03783446550369263, 0.15220783650875092, 0.07866668701171875, -0.05033568665385246, 0.039712920784950256, -0.09183035045862198, 0.09004233032464981, 0.19817006587982178, -0.2126588523387909, -0.04205911606550217, 0.001054273685440421, 0.02616853453218937, 0.0356222465634346, -0.0906243696808815, -0.01419915072619915, 0.006937080062925816, 0.00471725407987833, 0.04417090862989426, -0.004490914288908243, 0.0485469214618206, 0.0025385261978954077, -0.14386755228042603, -0.07951971143484116, 0.14257913827896118, 0.06566353887319565, -0.03925858810544014, -0.12270034849643707, -0.010254823602735996, -0.1802334189414978, -0.042105644941329956, 0.008936612866818905, 0.014855480752885342, -0.024713808670639992, -0.012007979676127434, 0.03144382685422897, -0.05606577545404434, -0.07197101414203644, 0.06216626986861229, 0.11176111549139023, 0.04492633417248726, -0.04441088065505028, 0.011704325675964355, 0.09055034816265106, 0.02982439659535885, -0.15580841898918152, -0.05167591571807861, 0.03796590492129326, -0.14030936360359192, -0.008896115235984325, -0.025432607159018517, 0.010702589526772499, 0.0891341120004654, 0.1907109171152115, 0.01746491715312004, 0.10270746052265167, -0.014127054251730442, 0.009286132641136646, -0.04541417956352234, 0.15525944530963898, -0.029950447380542755, -0.09483201056718826, -0.0345027856528759, 0.12199798971414566, -0.001961835427209735, -0.010756713338196278, -0.03383544087409973, 0.030240491032600403, 0.11644624173641205, 0.10047019273042679, 0.024296939373016357, 0.007663310039788485, -0.08748847991228104, -0.019469989463686943, -0.018419617787003517, -0.14968077838420868, 0.061208341270685196, 0.0797085240483284, -0.04730257764458656, -0.025323569774627686, -0.017023930326104164, 0.012354590930044651, -0.06307259947061539, 0.0940636545419693, -0.04823477938771248, -0.004472975153476, -0.06568317115306854, -0.10168725997209549, 0.05583624541759491, -0.022137915715575218, -0.033644214272499084, -0.0492180734872818, -0.07017450034618378, -0.08846130222082138, 0.03995196148753166, -0.055411629378795624, -0.04854908958077431, -0.08498714119195938, -0.09753038734197617, 0.04646793380379677, -0.01221480779349804, 0.13708378374576569, -0.05780179798603058, 0.08778279274702072, 0.02154027484357357, 0.04183214530348778, 0.12693363428115845, 0.06443341821432114, -0.017517652362585068, 0.06298168003559113, -0.12952126562595367, 0.12418320029973984, -0.13663004338741302, 0.04282912611961365, -0.16331642866134644, -0.0826030895113945, 0.01678823120892048, -0.001560780918225646, 0.09158454090356827, 0.14485380053520203, -0.18863657116889954, -0.0710228979587555, 0.16188408434391022, -0.05390813201665878, -0.0849759429693222, 0.1405525803565979, 0.00003379098779987544, -0.04692321643233299, 0.026932545006275177, 0.16303251683712006, 0.1284879595041275, -0.1039256677031517, -0.03136879950761795, -0.06870302557945251, 0.07318636029958725, 0.06039440631866455, 0.10395815223455429, -0.07802365720272064, 0.030641647055745125, -0.005846619140356779, -0.05575563758611679, 0.005455591715872288, -0.0602596215903759, -0.0794629454612732, -0.003567848354578018, -0.040588218718767166, -0.014676358550786972, 0.019404994323849678, -0.03661556914448738, -0.0876724123954773, -0.12954573333263397, -0.044284526258707047, 0.10328032076358795, -0.08721470832824707, 0.027602307498455048, -0.0959349200129509, 0.0720018595457077, 0.0018615839071571827, 0.027926089242100716, -0.14627140760421753, -0.030111221596598625, 0.04860847443342209, -0.07662595808506012, 0.004925748333334923, -0.04137267544865608, 0.03496164456009865, 0.021356618031859398, -0.006988652050495148, -0.05222664400935173, -0.04090423882007599, -0.010276081040501595, -0.04962664097547531, -0.21668951213359833, -0.06366506218910217, -0.023811081424355507, 0.2046305388212204, -0.1916375309228897, 0.02260778099298477, 0.10878852754831314, 0.09516948461532593, 0.005677422042936087, -0.053777601569890976, 0.015203922986984253, 0.051603492349386215, -0.02008497528731823, -0.05819179117679596, 0.011477827094495296, -0.009743605740368366, -0.094856858253479, -0.020353760570287704, -0.15179695188999176, 0.003484871005639434, 0.08310067653656006, 0.04958266392350197, -0.05974585562944412, -0.045108020305633545, -0.06232549995183945, -0.04376300424337387, -0.0510837584733963, -0.052032534033060074, 0.10187121480703354, 0.05151655524969101, 0.08421605080366135, -0.06904410570859909, -0.06302386522293091, 0.029159532859921455, 0.007596694864332676, -0.017194725573062897, 0.15592515468597412, 0.058211732655763626, -0.04484869912266731, 0.08478476852178574, 0.03011312521994114, -0.03684568032622337, 0.1022237166762352, -0.06242403760552406, -0.09183653444051743, -0.06031433492898941, 0.07277797162532806, 0.04170217365026474, 0.07690152525901794, -0.18801544606685638, -0.010360936634242535, 0.03712084889411926, 0.034776851534843445, 0.01990940421819687, -0.1700371354818344, 0.022405853495001793, 0.024547718465328217, -0.09010526537895203, -0.029490932822227478, 0.021017516031861305, -0.000915192358661443, 0.07327334582805634, 0.01405572984367609, -0.043268948793411255, -0.03217453882098198, -0.0639599859714508, -0.1258397251367569, 0.15504111349582672, -0.10524772852659225, -0.14541810750961304, -0.11778813600540161, -0.03803315758705139, -0.03681964799761772, -0.02761542610824108, 0.06902025640010834, -0.0998770222067833, -0.06069783866405487, -0.07933077216148376, -0.007409440353512764, -0.023556821048259735, 0.012896198779344559, 0.04034404084086418, 0.0164616871625185, 0.04823436960577965, -0.11168022453784943, -0.01273130252957344, -0.0032868869602680206, -0.019739562645554543, -0.0001262138830497861, 0.051836997270584106, 0.0885128453373909, 0.16221940517425537, 0.06187743321061134, 0.06434422731399536, -0.0183112695813179, 0.22671638429164886, -0.1186777725815773, -0.005683956202119589, 0.09668504446744919, -0.0014750304399058223, 0.06416698545217514, 0.16017480194568634, 0.02808217890560627, -0.089070625603199, 0.021537672728300095, 0.054895561188459396, -0.0064534954726696014, -0.2573924660682678, -0.033279843628406525, -0.07492037862539291, -0.009236529469490051, 0.08243390172719955, 0.04291063919663429, 0.015187709592282772, -0.001973414560779929, -0.019489919766783714, -0.01932273432612419, 0.05660063400864601, 0.06892571598291397, 0.09082219749689102, 0.03454267978668213, 0.0877571627497673, -0.02005106396973133, -0.0023967227898538113, 0.021267490461468697, -0.0005501608829945326, 0.221963569521904, 0.018600618466734886, 0.19793418049812317, 0.07781822234392166, 0.130912184715271, -0.020865241065621376, 0.03508155047893524, -0.001819463330321014, 0.02269594930112362, 0.039616361260414124, -0.06984441727399826, -0.04877244308590889, 0.03900177404284477, 0.12908416986465454, -0.0077471546828746796, -0.0808451771736145, 0.020491860806941986, 0.05136559158563614, 0.30582988262176514, 0.08492086082696915, -0.23476161062717438, -0.04772809520363808, 0.030077993869781494, -0.06641508638858795, -0.020937731489539146, 0.004632832016795874, 0.10053495317697525, -0.0859791710972786, 0.06718458980321884, -0.04546013101935387, 0.08951745182275772, -0.07195588946342468, 0.003718134481459856, 0.06192703917622566, 0.10356515645980835, 0.014771071262657642, 0.06134485453367233, -0.25571611523628235, 0.21369321644306183, 0.0006822828436270356, 0.07583850622177124, -0.06950541585683823, 0.05920112505555153, 0.021522607654333115, -0.06435887515544891, 0.10399692505598068, -0.0010348900686949492, -0.09869177639484406, -0.16172726452350616, -0.10225389897823334, 0.004379215184599161, 0.1385062336921692, -0.0733819454908371, 0.1356000155210495, -0.03489372879266739, -0.05772807076573372, 0.012251392938196659, -0.01801796816289425, -0.12841211259365082, -0.10091040283441544, 0.07657015323638916, 0.0213785283267498, 0.07649459689855576, -0.07677628099918365, -0.06727567315101624, -0.06029682978987694, 0.150204598903656, -0.16063235700130463, -0.02849350869655609, -0.12842713296413422, 0.05255049467086792, 0.1563093662261963, -0.07076762616634369, 0.024137718603014946, 0.013678773306310177, 0.1209784597158432, 0.030300868675112724, 0.002644067630171776, 0.08288148790597916, -0.07939180731773376, -0.19835743308067322, -0.039714228361845016, 0.2028302401304245, 0.01989421620965004, 0.06311734765768051, -0.01092672348022461, 0.011111735366284847, 0.006024322006851435, -0.09344162791967392, 0.08457858115434647, 0.07305891811847687, 0.0008940822444856167, 0.07944481074810028, -0.04962252452969551, -0.04869869351387024, -0.11415578424930573, -0.04961089789867401, 0.12186464667320251, 0.26493608951568604, -0.061792198568582535, 0.0472218282520771, 0.0335153192281723, -0.06587634235620499, -0.13079264760017395, -0.021079840138554573, 0.107433021068573, 0.02623797580599785, -0.016444914042949677, -0.17160604894161224, 0.005618685390800238, 0.08168066293001175, -0.011405007913708687, 0.10354862362146378, -0.33888643980026245, -0.1302444189786911, 0.05952787399291992, 0.05703403055667877, -0.03360018879175186, -0.17384904623031616, -0.0967835858464241, -0.02632996253669262, -0.09190371632575989, 0.06548760831356049, -0.011668442748486996, 0.12196420133113861, 0.014663656242191792, 0.016565779224038124, 0.026703299954533577, -0.05597027763724327, 0.14748354256153107, 0.0626833513379097, 0.015509424731135368, -0.01583269238471985, 0.007938966155052185, 0.027260281145572662, -0.07141953706741333, 0.051683127880096436, -0.07665284723043442, 0.014164955355226994, -0.1471240073442459, -0.02235633321106434, -0.07397201657295227, -0.004520919639617205, -0.06641106307506561, -0.0038098799996078014, -0.021680476143956184, 0.04407921060919762, 0.1143515557050705, 0.008626162074506283, 0.06643046438694, -0.05111522227525711, 0.08366350829601288, 0.13564081490039825, 0.10732517391443253, 0.02461095340549946, -0.12417317181825638, 0.007249347399920225, 0.0060435812920331955, 0.014146272093057632, -0.11122731119394302, 0.05301353707909584, 0.13185198605060577, 0.0410204641520977, 0.1708185076713562, 0.03871086612343788, -0.10822271555662155, -0.008264805190265179, 0.06618594378232956, -0.06230040639638901, -0.18096591532230377, -0.003243084764108062, 0.006278121843934059, -0.13722041249275208, -0.016767723485827446, 0.1179906576871872, -0.012015293352305889, 0.00315866875462234, 0.02080574817955494, 0.07201676070690155, -0.036402758210897446, 0.22371241450309753, 0.013155573047697544, 0.11539291590452194, -0.09122715145349503, 0.07587258517742157, 0.05056912451982498, -0.09808919578790665, 0.04613565281033516, 0.11440271139144897, -0.05688565969467163, -0.031975846737623215, -0.03696441277861595, 0.07020305097103119, 0.07350905984640121, -0.0425480417907238, -0.09993080049753189, -0.12605459988117218, 0.09837900847196579, 0.040154825896024704, 0.02396841160953045, 0.041024573147296906, -0.008307204581797123, 0.026212090626358986, -0.0922752246260643, 0.1164373829960823, 0.0977555364370346, 0.043014708906412125, -0.10202140361070633, 0.07291308790445328, 0.0015236481558531523, 0.004286996554583311, 0.01728832721710205, -0.018586646765470505, -0.10538490861654282, 0.03262083977460861, -0.08216559886932373, -0.013069969601929188, -0.0766962394118309, -0.010384557768702507, 0.03056548349559307, -0.053062088787555695, -0.04704749956727028, 0.024667127057909966, -0.10837509483098984, -0.08357121795415878, -0.043843407183885574, 0.09193369001150131, -0.12321582436561584, -0.005702881142497063, 0.03565993905067444, -0.151882141828537, 0.10995963215827942, 0.044414788484573364, 0.00003337908492540009, 0.0024882520083338022, -0.07302457839250565, -0.02070254273712635, 0.029432181268930435, 0.018575960770249367, 0.03311440348625183, -0.2253183126449585, -0.0018513601971790195, -0.022018427029252052, 0.003384583629667759, 0.0019587029237300158, 0.031083399429917336, -0.12468492239713669, -0.0040748524479568005, -0.04373334348201752, -0.0501522496342659, -0.05391103774309158, 0.04262048751115799, 0.0797996073961258, 0.01588364690542221, 0.171126589179039, -0.05136353522539139, 0.08257881551980972, -0.19870375096797943, -0.003908186219632626, 0.0013190165627747774, -0.03339647129178047, -0.014926795847713947, -0.0210398081690073, 0.10353634506464005, -0.06062335520982742, 0.05348624661564827, -0.04400581866502762, 0.048905737698078156, 0.027103064581751823, -0.06931019574403763, 0.009147326461970806, 0.041028812527656555, 0.14356742799282074, 0.05759349465370178, -0.025404412299394608, 0.057196732610464096, -0.052279990166425705, 0.04535548388957977, 0.048180870711803436, 0.15601012110710144, 0.15419639647006989, 0.11638542264699936, 0.06944899260997772, 0.08208820968866348, -0.13611289858818054, -0.13333556056022644, 0.1614759862422943, -0.08438489586114883, 0.1374778300523758, -0.044594548642635345, 0.18190814554691315, 0.09474571794271469, -0.1958865374326706, 0.08154483139514923, -0.023800883442163467, -0.08663514256477356, -0.09714476764202118, -0.10821353644132614, -0.07570680975914001, -0.1335122287273407, 0.012413562275469303, -0.09748046100139618, 0.08180519938468933, 0.024611331522464752, 0.045846641063690186, 0.0343925878405571, 0.08635035902261734, 0.011847153306007385, -0.014985991641879082, 0.11046814173460007, -0.005865638609975576, -0.022856157273054123, 0.0018700623186305165, -0.06640055030584335, 0.054439399391412735, -0.02142014354467392, 0.1047813668847084, 0.014433300122618675, -0.0823265016078949, 0.05586028844118118, -0.013365608640015125, -0.10093715786933899, 0.029046908020973206, -0.022733479738235474, 0.03085019811987877, 0.11214444786310196, 0.05432197079062462, -0.019481111317873, 0.004511246457695961, 0.1710791140794754, -0.07399190217256546, -0.075550876557827, -0.13847379386425018, 0.14475998282432556, 0.02847856469452381, 0.013401811011135578, 0.015069287270307541, -0.0967179387807846, -0.02720445580780506, 0.1616801768541336, 0.11403156816959381, -0.001492599956691265, -0.016850532963871956, 0.04005253687500954, -0.0029637515544891357, -0.02532634325325489, 0.06608837097883224, 0.10836546123027802, 0.10159019380807877, -0.017133427783846855, 0.015543864108622074, -0.021488571539521217, -0.08308883011341095, -0.03288422152400017, 0.07899884134531021, 0.008306274190545082, -0.010606685653328896, -0.009266517125070095, 0.12734469771385193, -0.05494419485330582, -0.15756092965602875, 0.019314981997013092, -0.14633427560329437, -0.17780858278274536, -0.019616641104221344, 0.08095663040876389, 0.03753693029284477, 0.05837968364357948, 0.00505357189103961, -0.04713042080402374, 0.15464025735855103, -0.007978585548698902, -0.03338483348488808, -0.0919218584895134, 0.059339072555303574, -0.07611321657896042, 0.16872262954711914, -0.021062154322862625, 0.06384976208209991, 0.1455264687538147, 0.03371208533644676, -0.11139782518148422, 0.05356220155954361, 0.09349381923675537, -0.12542182207107544, 0.05708632990717888, 0.1889445185661316, -0.032690227031707764, 0.12159360200166702, 0.04838244244456291, -0.08407749980688095, 0.00688175018876791, -0.02429826743900776, -0.009168720804154873, -0.08897974342107773, -0.004925335757434368, -0.06349620223045349, 0.11452262848615646, 0.19122864305973053, -0.07314882427453995, 0.014164498075842857, -0.04414685070514679, 0.014520361088216305, 0.0017055505886673927, 0.13035358488559723, -0.046759143471717834, -0.2669249475002289, 0.049021996557712555, -0.002515127183869481, 0.033137623220682144, -0.18407392501831055, -0.08642317354679108, 0.041770074516534805, -0.036281224340200424, -0.06820403039455414, 0.1203530803322792, 0.05866033583879471, 0.03694521263241768, -0.04832034558057785, -0.18974937498569489, -0.011523962952196598, 0.19523149728775024, -0.1678726226091385, -0.06027854233980179 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Hausa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.6094 - Wer: 0.5234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9599 | 6.56 | 400 | 2.8650 | 1.0 | | 2.7357 | 13.11 | 800 | 2.7377 | 0.9951 | | 1.3012 | 19.67 | 1200 | 0.6686 | 0.7111 | | 1.0454 | 26.23 | 1600 | 0.5686 | 0.6137 | | 0.9069 | 32.79 | 2000 | 0.5576 | 0.5815 | | 0.82 | 39.34 | 2400 | 0.5502 | 0.5591 | | 0.7413 | 45.9 | 2800 | 0.5970 | 0.5586 | | 0.6872 | 52.46 | 3200 | 0.5817 | 0.5428 | | 0.634 | 59.02 | 3600 | 0.5636 | 0.5314 | | 0.6022 | 65.57 | 4000 | 0.5780 | 0.5229 | | 0.5705 | 72.13 | 4400 | 0.6036 | 0.5323 | | 0.5408 | 78.69 | 4800 | 0.6119 | 0.5336 | | 0.5225 | 85.25 | 5200 | 0.6105 | 0.5270 | | 0.5265 | 91.8 | 5600 | 0.6034 | 0.5231 | | 0.5154 | 98.36 | 6000 | 0.6094 | 0.5234 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-ha-cv8 --dataset mozilla-foundation/common_voice_8_0 --config ha --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-ha-cv8" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ha", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "kakin hade ya ke da kyautar" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 47.821 | 36.295 |
{"language": ["ha"], "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "XLS-R-300M - Hausa", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "ha"}, "metrics": [{"type": "wer", "value": 36.295, "name": "Test WER"}, {"type": "cer", "value": 11.073, "name": "Test CER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xls-r-300m-ha-cv8
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "ha", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ha" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ha #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
XLS-R-300M - Hausa ================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.6094 * Wer: 0.5234 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 13 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine\_with\_restarts * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 100 ### Training results ### Framework versions * Transformers 4.16.1 * Pytorch 1.10.0+cu111 * Datasets 1.18.2 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 13\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 100", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.1\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ha #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 13\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 100", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.1\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ 99, 152, 4, 33, 36, 8, 15 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ha #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 13\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 100### Training results### Framework versions\n\n\n* Transformers 4.16.1\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'### Inference With LM### Eval results on Common Voice 8 \"test\" (WER):" ]
[ -0.12004068493843079, 0.127579927444458, -0.006354670040309429, 0.04779105633497238, 0.0824429839849472, 0.03261575475335121, 0.11854729056358337, 0.17347407341003418, -0.015935774892568588, 0.14628592133522034, 0.063412144780159, 0.07127576321363449, 0.08749507367610931, 0.12883128225803375, -0.034704774618148804, -0.17544710636138916, 0.04206801950931549, -0.0644168108701706, -0.07511810958385468, 0.10965023189783096, 0.08678556233644485, -0.09798213839530945, 0.035628095269203186, -0.012778034433722496, -0.05976369231939316, -0.02990100346505642, -0.03954054042696953, -0.016726570203900337, 0.08039691299200058, 0.025990162044763565, 0.050038520246744156, 0.045053597539663315, 0.06125206500291824, -0.27100905776023865, 0.005193373188376427, 0.06870857626199722, 0.03522774949669838, 0.05664888769388199, 0.08622466772794724, -0.009913435205817223, 0.08233626186847687, -0.07173563539981842, 0.03774794563651085, 0.05665835738182068, -0.09554737061262131, -0.1924450397491455, -0.10280756652355194, 0.0419476144015789, 0.13446079194545746, 0.06731200963258743, -0.04805015027523041, 0.07670649141073227, -0.09849616140127182, 0.09288182854652405, 0.2327001988887787, -0.2042478621006012, -0.047842543572187424, 0.02562776580452919, 0.04451620206236839, 0.017126156017184258, -0.09632434695959091, -0.025577522814273834, 0.007732137106359005, -0.0022211354225873947, 0.025527717545628548, -0.01352293137460947, 0.04670917987823486, -0.004683595150709152, -0.14304006099700928, -0.08590353280305862, 0.12273471057415009, 0.065815269947052, -0.023367807269096375, -0.1111779436469078, -0.0329609252512455, -0.21799765527248383, -0.03659718111157417, 0.00157265760935843, 0.016643183305859566, -0.04251083359122276, -0.011017873883247375, 0.056167371571063995, -0.06614147126674652, -0.07730719447135925, 0.06124322861433029, 0.06364667415618896, 0.04043308272957802, -0.038507040590047836, 0.018461817875504494, 0.10897443443536758, 0.03371986374258995, -0.17773418128490448, -0.05235082656145096, 0.04016070440411568, -0.16218870878219604, -0.023067539557814598, -0.022952590137720108, 0.0209813192486763, 0.10322850197553635, 0.19953522086143494, -0.0005774120218120515, 0.0883352980017662, 0.005663164891302586, 0.020467791706323624, -0.05469755455851555, 0.17326685786247253, -0.02962576411664486, -0.10552143305540085, -0.0354284942150116, 0.1474231481552124, -0.013221118599176407, -0.011903089471161366, -0.04989984631538391, 0.033662348985672, 0.1342177838087082, 0.09270606935024261, 0.013197849504649639, 0.01903100125491619, -0.08676102757453918, -0.01386087667196989, -0.007298050913959742, -0.15347571671009064, 0.04625209420919418, 0.08174985647201538, -0.04849011078476906, -0.03044964373111725, 0.013738814741373062, -0.014322448521852493, -0.04631200060248375, 0.07167134433984756, -0.05495671182870865, -0.01014444138854742, -0.06605958193540573, -0.08467139303684235, 0.045566000044345856, -0.03685890883207321, -0.027344800531864166, -0.05297438055276871, -0.0744219571352005, -0.10520602762699127, 0.03743140771985054, -0.0670914575457573, -0.06218548119068146, -0.08114147186279297, -0.10647809505462646, 0.04450363665819168, -0.009474231861531734, 0.10938568413257599, -0.0641317367553711, 0.07546161860227585, 0.03690144047141075, 0.03792053833603859, 0.14496643841266632, 0.05300569534301758, -0.04348975419998169, 0.07105571776628494, -0.1687818020582199, 0.10398616641759872, -0.13468697667121887, 0.05170179158449173, -0.1605219841003418, -0.080641008913517, 0.024381158873438835, -0.00970093160867691, 0.08116079866886139, 0.1521548628807068, -0.20685647428035736, -0.06930085271596909, 0.16520020365715027, -0.06834571063518524, -0.09372219443321228, 0.14145050942897797, -0.010750574059784412, -0.023186752572655678, 0.012234161607921124, 0.14204204082489014, 0.13675037026405334, -0.11199832707643509, -0.009704889729619026, -0.05010209605097771, 0.1041860356926918, 0.08633233606815338, 0.0865337923169136, -0.06816353648900986, 0.07101334631443024, -0.007035098038613796, -0.08767667412757874, 0.008073162287473679, -0.0602981299161911, -0.0840064138174057, -0.01091829314827919, -0.05163763836026192, -0.017871597781777382, 0.03449837863445282, -0.023695379495620728, -0.07297895103693008, -0.13944192230701447, -0.08450198173522949, 0.10223190486431122, -0.08825094252824783, 0.02491290494799614, -0.09381256252527237, 0.10149466246366501, 0.01267291884869337, 0.019139550626277924, -0.1443677693605423, -0.050051383674144745, 0.05667903646826744, -0.06633026152849197, 0.013271473348140717, 0.01936635747551918, 0.04786665737628937, 0.016896896064281464, -0.002291498938575387, -0.05087114870548248, -0.031139634549617767, -0.019057434052228928, -0.057009752839803696, -0.2399812638759613, -0.06849993765354156, -0.023780107498168945, 0.18737344443798065, -0.1942296326160431, 0.010498457588255405, 0.0989556685090065, 0.11241348087787628, 0.00011285512300673872, -0.0533483549952507, 0.01085018739104271, 0.03945976868271828, -0.034270644187927246, -0.06400967389345169, 0.0022454552818089724, -0.007941575720906258, -0.10287251323461533, -0.005930513143539429, -0.17024169862270355, 0.005306584760546684, 0.07238646596670151, 0.07455279678106308, -0.10231742262840271, -0.0375092513859272, -0.05749589949846268, -0.052006207406520844, -0.027958944439888, -0.03866202384233475, 0.1361931413412094, 0.055677179247140884, 0.07984524965286255, -0.06955739110708237, -0.06517833471298218, 0.016954822465777397, 0.014242241159081459, 0.02166142500936985, 0.15947498381137848, 0.05416553094983101, -0.06069669872522354, 0.08058836311101913, 0.03554132580757141, -0.07518880814313889, 0.07144317775964737, -0.08618767559528351, -0.09803878515958786, -0.054118141531944275, 0.0811891034245491, 0.04729342460632324, 0.09800220280885696, -0.17446312308311462, -0.0005586215993389487, 0.043192800134420395, 0.014558639377355576, 0.0020886415150016546, -0.15797951817512512, 0.016553891822695732, 0.03651292622089386, -0.09246040135622025, -0.0015098282601684332, 0.01859801448881626, 0.013103259727358818, 0.06737164407968521, -0.01223921962082386, -0.10021410137414932, -0.04216742143034935, -0.061878617852926254, -0.10437603294849396, 0.17811422049999237, -0.06937935948371887, -0.14570461213588715, -0.11464499682188034, -0.006726545747369528, -0.021595846861600876, -0.014026110991835594, 0.051179639995098114, -0.07025576382875443, -0.0631575807929039, -0.08076710999011993, 0.010479169897735119, 0.02576795034110546, 0.018765652552247047, 0.03324910253286362, 0.007332692388445139, 0.06052073836326599, -0.11480504274368286, -0.003368955571204424, -0.000026177207473665476, -0.029102887958288193, 0.011078888550400734, 0.04798800125718117, 0.0929882824420929, 0.18250569701194763, 0.05866404250264168, 0.044108085334300995, -0.015249378979206085, 0.2113211750984192, -0.1431444138288498, 0.002972709946334362, 0.08631843328475952, -0.03838130831718445, 0.0563850998878479, 0.1760101318359375, 0.01747225411236286, -0.08716967701911926, 0.008304592221975327, 0.05055378004908562, -0.010275563225150108, -0.23642387986183167, -0.01153554581105709, -0.07377767562866211, 0.011081553995609283, 0.08141165226697922, 0.03631589189171791, 0.021136676892638206, 0.013164938427507877, -0.01622840389609337, -0.046078652143478394, 0.05222482234239578, 0.04785199090838432, 0.07485895603895187, 0.04002133384346962, 0.11368998140096664, -0.012858763337135315, -0.015484499745070934, 0.006034614518284798, 0.010634058155119419, 0.2087852656841278, -0.012728475034236908, 0.21784599125385284, 0.06897088885307312, 0.13831397891044617, -0.02457893081009388, 0.047579552978277206, 0.003463695291429758, 0.01705443672835827, 0.033448390662670135, -0.06550426036119461, -0.04139120876789093, 0.03383029252290726, 0.11945447325706482, 0.0012209918349981308, -0.06793854385614395, 0.05643920600414276, 0.052334435284137726, 0.2952350080013275, 0.09197792410850525, -0.26100242137908936, -0.06461415439844131, 0.010781307704746723, -0.06973810493946075, -0.015950551256537437, 0.0014730460243299603, 0.11038126796483994, -0.10137668997049332, 0.059890858829021454, -0.045400723814964294, 0.08683327585458755, -0.08105632662773132, 0.012801449745893478, 0.07137200236320496, 0.06842883676290512, 0.027306780219078064, 0.05293857678771019, -0.22399915754795074, 0.23542486131191254, -0.01339942216873169, 0.040900103747844696, -0.05369483307003975, 0.06965256482362747, 0.022448286414146423, -0.03172032907605171, 0.12119927257299423, -0.013952379114925861, -0.09475868195295334, -0.1614617258310318, -0.10409862548112869, 0.0033047778997570276, 0.12199564278125763, -0.08956068009138107, 0.13773053884506226, -0.041273266077041626, -0.05310368165373802, 0.02603224478662014, -0.017957443371415138, -0.09197244793176651, -0.08806540071964264, 0.08560694009065628, -0.02065492793917656, 0.04529218748211861, -0.06651724129915237, -0.07756195217370987, -0.10364966839551926, 0.17506279051303864, -0.1453312188386917, -0.025357889011502266, -0.12074390053749084, 0.03824339061975479, 0.19129523634910583, -0.0838194340467453, 0.019068999215960503, 0.003948403522372246, 0.11551525443792343, 0.022146793082356453, 0.0036065811291337013, 0.08862433582544327, -0.07465191185474396, -0.23395755887031555, -0.03629434481263161, 0.1922035813331604, 0.01776249147951603, 0.06577538698911667, -0.0020690381061285734, 0.022723058238625526, -0.0029480732046067715, -0.088632732629776, 0.07074696570634842, 0.033458925783634186, -0.01376238465309143, 0.058740466833114624, -0.018964575603604317, -0.02380876988172531, -0.10052580386400223, -0.02497490495443344, 0.09490203857421875, 0.2902853190898895, -0.06480196863412857, 0.04439388960599899, 0.004566694609820843, -0.07162337005138397, -0.1485324651002884, -0.019471300765872, 0.10746163874864578, 0.036495503038167953, -0.009850939735770226, -0.1396566778421402, 0.02662714757025242, 0.06252643465995789, -0.023082571104168892, 0.10883031040430069, -0.3343459367752075, -0.1388724446296692, 0.09746789932250977, 0.019519174471497536, -0.06174352020025253, -0.179861381649971, -0.08645661920309067, -0.003124586772173643, -0.10100234299898148, 0.009812925010919571, -0.005012877751141787, 0.12313112616539001, 0.006087099201977253, 0.02866428904235363, 0.029818594455718994, -0.05832066386938095, 0.15235254168510437, 0.06524307280778885, 0.033221445977687836, -0.022856881842017174, 0.005915079731494188, 0.025992121547460556, -0.07729440927505493, 0.04555092751979828, -0.0778224989771843, 0.02132796309888363, -0.12506890296936035, -0.008395391516387463, -0.07485022395849228, 0.02038678713142872, -0.06066644564270973, 0.0070825559087097645, -0.024984296411275864, 0.046385470777750015, 0.09872789680957794, 0.01436417642980814, 0.10126268863677979, -0.06220337003469467, 0.0995316281914711, 0.16562877595424652, 0.10427071154117584, 0.013958817347884178, -0.1562698483467102, 0.02854043059051037, 0.023608703166246414, 0.018739843741059303, -0.08221610635519028, 0.05901119485497475, 0.14007647335529327, 0.03987642005085945, 0.1498778909444809, 0.03790666162967682, -0.1072009950876236, -0.017373619601130486, 0.07046150416135788, -0.07965065538883209, -0.15539346635341644, 0.013257413171231747, -0.016502046957612038, -0.16134151816368103, -0.006764765828847885, 0.1331748515367508, -0.007119054906070232, 0.004801748786121607, 0.026699505746364594, 0.06985757499933243, -0.02431483566761017, 0.23662614822387695, 0.016432588919997215, 0.12265058606863022, -0.09922029823064804, 0.060744039714336395, 0.05453689768910408, -0.08963888883590698, 0.03725240007042885, 0.11360469460487366, -0.05983657017350197, -0.040611982345581055, 0.01912447065114975, 0.09634239226579666, 0.04354692995548248, -0.018866121768951416, -0.1370396614074707, -0.12231618165969849, 0.07691881060600281, 0.09970103949308395, 0.04108040779829025, 0.05941537022590637, 0.0044882153160870075, 0.02006012387573719, -0.07608890533447266, 0.1282011866569519, 0.12323471903800964, 0.06508267670869827, -0.10126356035470963, 0.08692899346351624, -0.023691793903708458, 0.0008217552094720304, 0.005648319609463215, 0.010993283241987228, -0.11475532501935959, 0.026207396760582924, -0.07935106754302979, 0.004304906353354454, -0.05422138050198555, -0.01020255871117115, 0.03763996809720993, -0.05580225586891174, -0.03424089401960373, 0.024319401010870934, -0.11391758918762207, -0.0653153732419014, -0.03658382222056389, 0.08153203129768372, -0.13358661532402039, -0.007939525879919529, 0.05225207284092903, -0.1465350240468979, 0.11950782686471939, 0.02026231214404106, -0.002723668236285448, 0.001445624977350235, -0.09954145550727844, -0.007519010920077562, 0.038820233196020126, 0.02181430719792843, 0.033815450966358185, -0.20549306273460388, 0.002874744823202491, -0.03458692133426666, 0.007728638593107462, 0.00725879380479455, 0.012636453844606876, -0.12351009249687195, 0.003428500844165683, -0.03553779050707817, -0.04390811547636986, -0.04946490377187729, 0.038880929350852966, 0.06259780377149582, 0.022999456152319908, 0.164214625954628, -0.05652659013867378, 0.09428759664297104, -0.2141079604625702, -0.010937804356217384, 0.01937476173043251, -0.038795340806245804, -0.046174056828022, -0.030368365347385406, 0.11911080032587051, -0.07314395159482956, 0.056324686855077744, -0.05022815614938736, 0.05863223597407341, 0.020236240699887276, -0.05534731224179268, 0.04649795964360237, 0.05796927586197853, 0.09923218935728073, 0.04934922233223915, -0.025244897231459618, 0.05496346205472946, -0.05258963629603386, 0.038059260696172714, -0.01553731132298708, 0.19032476842403412, 0.14000199735164642, 0.08727896213531494, 0.07672055065631866, 0.08612073212862015, -0.14493969082832336, -0.09998048841953278, 0.14678771793842316, -0.09891676902770996, 0.13384705781936646, -0.039724092930555344, 0.18704384565353394, 0.08548367023468018, -0.18546217679977417, 0.09185329079627991, -0.05897989124059677, -0.08696860820055008, -0.10285967588424683, -0.11232071369886398, -0.08332475274801254, -0.1511865258216858, 0.0158960223197937, -0.0918484553694725, 0.06380055099725723, 0.04316495731472969, 0.03981969133019447, 0.024380378425121307, 0.10278861969709396, 0.02357093244791031, -0.0008452306501567364, 0.09450533986091614, 0.015782328322529793, -0.0215824693441391, -0.0036976069677621126, -0.06921423226594925, 0.05793708190321922, 0.006893510930240154, 0.09661825746297836, -0.014591973274946213, -0.057575974613428116, 0.06169939786195755, -0.013229580596089363, -0.10482027381658554, 0.02664289064705372, -0.023270640522241592, 0.019727610051631927, 0.08590694516897202, 0.03643962740898132, 0.019933870062232018, -0.00734289363026619, 0.16441716253757477, -0.07887900620698929, -0.09180958569049835, -0.13850019872188568, 0.15698085725307465, 0.005971542559564114, 0.012333442457020283, 0.0021140081807971, -0.08539178222417831, -0.012455124408006668, 0.16474874317646027, 0.13997331261634827, -0.016605239361524582, -0.00822885986417532, 0.04139260575175285, 0.0022248616442084312, -0.03127116337418556, 0.03484998643398285, 0.1099715530872345, 0.06709211319684982, -0.0250791497528553, 0.0010837034787982702, 0.0055246502161026, -0.08378542959690094, -0.023984890431165695, 0.05509481951594353, 0.010172564536333084, 0.01734621450304985, -0.018095627427101135, 0.11154399812221527, -0.082877978682518, -0.1758696436882019, 0.028340045362710953, -0.17357197403907776, -0.17609742283821106, -0.0349031537771225, 0.0949958860874176, 0.020871983841061592, 0.05127359926700592, -0.004938167054206133, -0.05690070986747742, 0.1543750762939453, -0.011463074944913387, -0.03026743046939373, -0.10134562104940414, 0.05741393193602562, -0.1114557608962059, 0.1557389199733734, -0.0236042533069849, 0.0675664097070694, 0.13138025999069214, 0.030170965939760208, -0.09868661314249039, 0.029591260477900505, 0.11299940943717957, -0.13613058626651764, 0.05482111871242523, 0.1865951120853424, -0.016738779842853546, 0.13318464159965515, 0.060312431305646896, -0.08156916499137878, 0.0003317768860142678, -0.06353449821472168, 0.005792471580207348, -0.09208079427480698, -0.013667270541191101, -0.05923634395003319, 0.11974276602268219, 0.20482227206230164, -0.06688714027404785, 0.007442709524184465, -0.04335925728082657, 0.01624840684235096, 0.008719385601580143, 0.11495284736156464, -0.05136384442448616, -0.2597285509109497, 0.05952664837241173, -0.01219850592315197, 0.041667740792036057, -0.15822291374206543, -0.09737574309110641, 0.05519694462418556, -0.03719150647521019, -0.06631486862897873, 0.12895943224430084, 0.047526028007268906, 0.045363493263721466, -0.042731449007987976, -0.1585467904806137, -0.0043626753613352776, 0.17174483835697174, -0.17722833156585693, -0.06507731974124908 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.4156 - Wer: 0.7181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.7703 | 2.72 | 400 | 2.2274 | 0.9259 | | 0.6515 | 5.44 | 800 | 1.5812 | 0.7581 | | 0.339 | 8.16 | 1200 | 2.0590 | 0.7825 | | 0.2262 | 10.88 | 1600 | 2.0324 | 0.7603 | | 0.1665 | 13.6 | 2000 | 2.1396 | 0.7481 | | 0.1311 | 16.33 | 2400 | 2.2090 | 0.7379 | | 0.1079 | 19.05 | 2800 | 2.3907 | 0.7612 | | 0.0927 | 21.77 | 3200 | 2.5294 | 0.7478 | | 0.0748 | 24.49 | 3600 | 2.5024 | 0.7452 | | 0.0644 | 27.21 | 4000 | 2.4715 | 0.7307 | | 0.0569 | 29.93 | 4400 | 2.4156 | 0.7181 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-hi", "results": []}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xls-r-300m-hi
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-large-xls-r-300m-hi ============================ This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 2.4156 * Wer: 0.7181 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 30 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ 65, 143, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ -0.13605695962905884, 0.10239491611719131, -0.0026786846574395895, 0.07665535062551498, 0.13536588847637177, 0.01284562423825264, 0.12584595382213593, 0.13119475543498993, -0.10427722334861755, 0.07636521011590958, 0.10076141357421875, 0.10336264967918396, 0.04141414910554886, 0.09404017776250839, -0.02573116309940815, -0.2943366765975952, -0.01087476871907711, 0.03317609056830406, -0.11779751628637314, 0.1315605342388153, 0.088501937687397, -0.12749990820884705, 0.04830952361226082, 0.03468766808509827, -0.1711147278547287, -0.005857060197740793, -0.00029149831971153617, -0.08969627320766449, 0.1418512910604477, 0.013135407119989395, 0.09932567924261093, 0.028485571965575218, 0.09925160557031631, -0.18461495637893677, 0.005597007926553488, 0.052762024104595184, 0.0385911725461483, 0.10189276933670044, 0.0831102728843689, -0.00703202560544014, 0.1165509968996048, -0.06437796354293823, 0.0649537742137909, 0.038342852145433426, -0.10067152231931686, -0.2876797616481781, -0.08016005903482437, 0.07612010091543198, 0.08476627618074417, 0.10822449624538422, -0.01453719288110733, 0.10887031257152557, -0.07690957933664322, 0.09702697396278381, 0.27027884125709534, -0.28371185064315796, -0.06743940711021423, -0.020821934565901756, 0.03727772459387779, 0.02064397931098938, -0.12196439504623413, -0.020092889666557312, 0.033480480313301086, 0.04205891862511635, 0.11735992133617401, -0.0016312990337610245, -0.0488961860537529, 0.008680208586156368, -0.14104284346103668, -0.04406943917274475, 0.12627021968364716, 0.03981347382068634, -0.036580804735422134, -0.08232709765434265, -0.05045979470014572, -0.22561658918857574, -0.03593229502439499, 0.0026502106338739395, 0.027682607993483543, -0.07338247448205948, -0.12959297001361847, 0.008916248567402363, -0.08871240168809891, -0.0953882560133934, -0.010684018954634666, 0.18795771896839142, 0.046802207827568054, 0.004114482551813126, -0.022879377007484436, 0.1201908141374588, 0.04864693433046341, -0.15977266430854797, 0.025640975683927536, 0.05347494035959244, -0.04830186441540718, 0.0018738718936219811, -0.0462639182806015, -0.027164828032255173, 0.0037481561303138733, 0.13622085750102997, -0.06060492992401123, 0.03317798674106598, 0.026759525761008263, 0.030597053468227386, -0.09311944991350174, 0.21115632355213165, -0.08813326060771942, -0.03573340177536011, -0.01865321211516857, 0.10638561844825745, 0.02902466244995594, -0.020254619419574738, -0.09212665259838104, 0.007712156046181917, 0.11315334588289261, 0.037503570318222046, -0.01648613065481186, 0.031883303076028824, -0.03626000136137009, -0.02785300277173519, 0.01824166253209114, -0.10643081367015839, 0.029713261872529984, 0.026212144643068314, -0.09288428723812103, 0.01767084002494812, 0.010093043558299541, 0.005399216897785664, -0.025264309719204903, 0.14901107549667358, -0.0853915736079216, 0.006065030116587877, -0.07201535999774933, -0.09940149635076523, 0.01896924152970314, -0.07757503539323807, -0.0002452850167173892, -0.07103274017572403, -0.1078566238284111, -0.021552320569753647, 0.02568138763308525, -0.04233047366142273, -0.07735670357942581, -0.04452931880950928, -0.11287009716033936, 0.03866640850901604, -0.018717942759394646, 0.1510591059923172, -0.04757915064692497, 0.13137218356132507, 0.05919174477458, 0.058110058307647705, 0.013014313764870167, 0.06146659702062607, -0.0696670189499855, 0.01622924767434597, -0.15677975118160248, 0.048756908625364304, -0.06425507366657257, 0.028935139998793602, -0.10245729982852936, -0.1340140551328659, 0.01630403846502304, -0.012364747002720833, 0.09591358155012131, 0.10277808457612991, -0.16964705288410187, -0.11669649928808212, 0.15527918934822083, -0.08154106140136719, -0.0955335721373558, 0.13270890712738037, -0.010186264291405678, -0.03236167132854462, 0.042619768530130386, 0.1630445271730423, 0.05759001523256302, -0.11005822569131851, -0.023372618481516838, -0.036181531846523285, 0.09726771712303162, -0.013848541304469109, 0.09441940486431122, -0.030238093808293343, 0.05816261097788811, 0.013382968492805958, -0.04543089121580124, 0.0488956943154335, -0.10686193406581879, -0.09031737595796585, -0.03667615354061127, -0.09391535073518753, 0.05578818544745445, 0.06917215138673782, 0.04880334436893463, -0.08591397851705551, -0.12662190198898315, 0.03653203696012497, 0.115383081138134, -0.0794975608587265, 0.03593605384230614, -0.0815940573811531, 0.08300592005252838, -0.03776697441935539, -0.02202998287975788, -0.19455276429653168, 0.00671153049916029, 0.024012833833694458, -0.03789603337645531, 0.026630457490682602, -0.027886223047971725, 0.07311876118183136, 0.06900624185800552, -0.056135665625333786, -0.06722376495599747, -0.07553709298372269, -0.017366299405694008, -0.08455687016248703, -0.2379463016986847, -0.0847070962190628, -0.009374934248626232, 0.14352145791053772, -0.16796065866947174, 0.018478794023394585, 0.019131092354655266, 0.12436765432357788, 0.029134348034858704, -0.03633487969636917, -0.015695547685027122, 0.0926998108625412, -0.025867905467748642, -0.051067862659692764, 0.03278595581650734, 0.0028608550783246756, -0.10104616731405258, -0.016984669491648674, -0.12084122747182846, 0.14290380477905273, 0.13687361776828766, -0.030475623905658722, -0.07506000250577927, 0.022209271788597107, -0.08383188396692276, -0.05003196746110916, -0.03464868664741516, -0.0010491431457921863, 0.17177334427833557, 0.03367258608341217, 0.13382643461227417, -0.07762616127729416, -0.05774146318435669, 0.042900074273347855, 0.003686982672661543, 0.006264188326895237, 0.11820534616708755, 0.08120889216661453, -0.011120847426354885, 0.12021585553884506, 0.08222392201423645, -0.10789736360311508, 0.14087660610675812, -0.06650780141353607, -0.09974949806928635, -0.033395785838365555, -0.021372579038143158, 0.02159574069082737, 0.1439150869846344, -0.14272022247314453, -0.022787300869822502, 0.0310828760266304, -0.006790405139327049, 0.016306979581713676, -0.22695539891719818, -0.009444250725209713, 0.02485269494354725, -0.06021800637245178, -0.04196568951010704, -0.00186703831423074, 0.015460791997611523, 0.10816733539104462, -0.0008528516627848148, -0.07934156060218811, -0.004265303257852793, -0.004062593448907137, -0.06338826566934586, 0.19014446437358856, -0.0747535452246666, -0.15594618022441864, -0.13965684175491333, -0.01190739031881094, -0.05826067924499512, -0.008878281340003014, 0.05041502043604851, -0.10103810578584671, -0.022000430151820183, -0.03779440000653267, 0.05118609964847565, -0.02361445687711239, 0.05160941556096077, 0.013272619806230068, 0.004320778418332338, 0.07136386632919312, -0.11994165182113647, 0.018109850585460663, -0.053521495312452316, -0.04149617254734039, 0.010982178151607513, 0.08640585094690323, 0.11176277697086334, 0.16828544437885284, 0.009908533655107021, 0.017331739887595177, -0.029624048620462418, 0.1756455898284912, -0.10561512410640717, -0.035848069936037064, 0.1435987800359726, -0.002020129468291998, 0.044633544981479645, 0.11502636224031448, 0.07584954053163528, -0.06538429111242294, -0.015751956030726433, 0.03309250250458717, -0.02398618310689926, -0.2349790334701538, -0.044932641088962555, -0.04570277780294418, 0.00780847342684865, 0.09524356573820114, 0.027281807735562325, 0.033361662179231644, 0.029660223051905632, -0.008008616976439953, 0.03307690843939781, -0.03187357634305954, 0.058467455208301544, 0.09849710017442703, 0.04382983222603798, 0.13430574536323547, -0.020866621285676956, -0.05998693034052849, 0.019946372136473656, -0.02027721330523491, 0.2091505378484726, -0.028078503906726837, 0.1571962982416153, 0.043028853833675385, 0.17954356968402863, 0.012727362103760242, 0.0886034294962883, 0.008299318142235279, -0.022040992975234985, 0.02878522500395775, -0.06105665862560272, -0.029751580208539963, 0.008446482941508293, 0.05329538881778717, 0.08471213281154633, -0.12752947211265564, -0.0030439049005508423, 0.03241065889596939, 0.3414963185787201, 0.055799636989831924, -0.31358101963996887, -0.11776673793792725, -0.026327380910515785, -0.053150445222854614, -0.026814624667167664, 0.02860545739531517, 0.11436879634857178, -0.09465743601322174, 0.044661521911621094, -0.07267492264509201, 0.07576300948858261, -0.0628131702542305, 0.026679694652557373, 0.09269652515649796, 0.09340646117925644, 0.006218818947672844, 0.052281491458415985, -0.25643134117126465, 0.29207843542099, 0.0033088894560933113, 0.08077815920114517, -0.05808592215180397, 0.022377852350473404, 0.016044409945607185, -0.011675366200506687, 0.06285165995359421, -0.02293909527361393, -0.006421213503926992, -0.1925460398197174, -0.09235963225364685, 0.011577589437365532, 0.1316409409046173, -0.06669263541698456, 0.11743135005235672, -0.025559114292263985, -0.02985967881977558, 0.05116063356399536, -0.07720690965652466, -0.05978880822658539, -0.08781441301107407, 0.02568228356540203, 0.0421772375702858, 0.0270999725908041, -0.08775157481431961, -0.13563618063926697, -0.0792778953909874, 0.13235613703727722, -0.10320863872766495, -0.04022596776485443, -0.12141509354114532, 0.08929135650396347, 0.16736827790737152, -0.0757690966129303, 0.04693593829870224, 0.01683514378964901, 0.11542639881372452, 0.017229072749614716, -0.03717080503702164, 0.09659630060195923, -0.07881394028663635, -0.23221230506896973, -0.04584871977567673, 0.185688778758049, 0.021228820085525513, 0.07424402981996536, -0.03619571775197983, 0.03380158543586731, -0.0270957313477993, -0.07575058192014694, 0.052303142845630646, -0.0034636708442121744, 0.026715703308582306, 0.028200004249811172, -0.01913668029010296, -0.017130373045802116, -0.07975330948829651, -0.033578600734472275, 0.1512901484966278, 0.25874629616737366, -0.0952153429389, 0.032731205224990845, 0.0679997131228447, -0.030681682750582695, -0.16199782490730286, 0.006863605231046677, 0.11347652226686478, 0.02592809870839119, -0.0015694403555244207, -0.19448810815811157, 0.08129028230905533, 0.07780350744724274, -0.02994876354932785, 0.09849273413419724, -0.3295871317386627, -0.14263220131397247, 0.10845334082841873, 0.09477347880601883, 0.009885520674288273, -0.158455491065979, -0.053199950605630875, -0.0038517978973686695, -0.1055208221077919, 0.08746841549873352, -0.03862294554710388, 0.12660135328769684, -0.02406269684433937, 0.08263763040304184, 0.019755393266677856, -0.0601358637213707, 0.11742973327636719, 0.007381190080195665, 0.05372411012649536, -0.00370333855971694, -0.019094226881861687, 0.05406370013952255, -0.02974538318812847, 0.016605325043201447, -0.056601230055093765, 0.037317074835300446, -0.07737818360328674, -0.018708940595388412, -0.1164223700761795, 0.03726210072636604, -0.0458039864897728, -0.05375391244888306, -0.011999668553471565, 0.016728827729821205, 0.02111993357539177, -0.015904299914836884, 0.13218605518341064, 0.007011016830801964, 0.16731998324394226, 0.11412090808153152, 0.0794367790222168, -0.02311405912041664, -0.11873766034841537, -0.015170780010521412, -0.024151509627699852, 0.07039958238601685, -0.11019694060087204, 0.013704436831176281, 0.14084243774414062, 0.08382617682218552, 0.10954851657152176, 0.07298646122217178, -0.07550136744976044, 0.011294559575617313, 0.06472120434045792, -0.1436174511909485, -0.10123240202665329, -0.024090969935059547, -0.011345910839736462, -0.13010868430137634, 0.06761287152767181, 0.10799771547317505, -0.06579140573740005, -0.020860105752944946, 0.011101609095931053, 0.004985006991773844, -0.04137556999921799, 0.2396412342786789, 0.051925573498010635, 0.08281935751438141, -0.12191285192966461, 0.0721748024225235, 0.04785218834877014, -0.1399976909160614, 0.019872061908245087, 0.07641155272722244, -0.061212215572595596, -0.007730850018560886, 0.012105618603527546, 0.07608634978532791, -0.0423651747405529, -0.05315939709544182, -0.15307676792144775, -0.13742302358150482, 0.08075080811977386, 0.13859252631664276, 0.05966074392199516, 0.03169307857751846, -0.0614265538752079, 0.04335540905594826, -0.1408320665359497, 0.11314355581998825, 0.07038422673940659, 0.07435433566570282, -0.15546034276485443, 0.17454560101032257, 0.02206384763121605, 0.03550809249281883, -0.005524214822798967, 0.013311530463397503, -0.09292453527450562, 0.021093279123306274, -0.09815220534801483, -0.04477229341864586, -0.030217422172427177, -0.0068687861785292625, -0.003672074992209673, -0.06543091684579849, -0.05886315926909447, 0.033280886709690094, -0.11352900415658951, -0.041427504271268845, 0.007898147217929363, 0.02955017425119877, -0.13708756864070892, -0.0010219392133876681, 0.03753900155425072, -0.10813798755407333, 0.1011262983083725, 0.08713695406913757, 0.02545839175581932, 0.06037246435880661, -0.06919526308774948, -0.017313463613390923, 0.04890661686658859, 0.0010162513935938478, 0.05619041994214058, -0.12533023953437805, -0.008779949508607388, -0.025176584720611572, 0.042783863842487335, 0.004459843505173922, 0.060618557035923004, -0.14334094524383545, 0.00013456273882184178, -0.013045188039541245, -0.04359987750649452, -0.07026823610067368, 0.03407030552625656, 0.09066317230463028, 0.030182551592588425, 0.17324362695217133, -0.0798678770661354, 0.05254368856549263, -0.22363609075546265, 0.010101991705596447, -0.04550158232450485, -0.09135206788778305, -0.11034657806158066, -0.014724234119057655, 0.0896105095744133, -0.06405670940876007, 0.08436229079961777, -0.028976716101169586, 0.08910979330539703, 0.031693004071712494, -0.0396939255297184, -0.015010488219559193, 0.04197276383638382, 0.20037996768951416, 0.04464622959494591, -0.028769630938768387, 0.071703240275383, 0.01702709123492241, 0.07456768304109573, 0.13929717242717743, 0.1674216091632843, 0.12318792194128036, 0.04157830402255058, 0.08602017164230347, 0.09144621342420578, -0.09219691157341003, -0.1906067281961441, 0.056072164326906204, -0.054029546678066254, 0.12087639421224594, -0.01713385246694088, 0.2322724461555481, 0.10108864307403564, -0.1662161946296692, 0.057296715676784515, -0.03369240090250969, -0.07835713028907776, -0.09957101941108704, -0.023621203377842903, -0.05993763357400894, -0.15781563520431519, 0.014414597302675247, -0.11725849658250809, 0.039895400404930115, 0.07333557307720184, 0.02371862903237343, 0.010996864177286625, 0.150360107421875, 0.04566650465130806, 0.01370087917894125, 0.0933636948466301, 0.03748143091797829, -0.033684391528367996, -0.059608470648527145, -0.07022830098867416, 0.01947004348039627, -0.016836170107126236, 0.04998663440346718, -0.058300167322158813, -0.12291464954614639, 0.05879542604088783, 0.0062131634913384914, -0.10777003318071365, 0.03653734177350998, -0.01663435809314251, 0.09166327118873596, 0.06650987267494202, 0.013196207582950592, 0.0051308926194906235, -0.027603115886449814, 0.2541216015815735, -0.11651084572076797, -0.07769760489463806, -0.11394571512937546, 0.2638086676597595, 0.01592622697353363, -0.035711925476789474, 0.03794771432876587, -0.08524362742900848, -0.03986123949289322, 0.19177056849002838, 0.18491128087043762, -0.02174147218465805, -0.01778492145240307, 0.026635807007551193, -0.01436215452849865, -0.06273052841424942, 0.0702790766954422, 0.14130397140979767, 0.1250072419643402, -0.07097984105348587, -0.022574443370103836, -0.058193519711494446, -0.04283289611339569, -0.019293950870633125, 0.08770202100276947, 0.015490634366869926, -0.025038208812475204, -0.03984344005584717, 0.07554324716329575, -0.06518705934286118, -0.15810750424861908, 0.04514399170875549, -0.22970212996006012, -0.18708986043930054, -0.01705465279519558, 0.10384690016508102, 0.02804560400545597, 0.06913267821073532, 0.007583111524581909, -0.01782197132706642, 0.09874231368303299, -0.0006384752341546118, -0.07236038893461227, -0.09507904201745987, 0.0927719920873642, -0.09742465615272522, 0.17850853502750397, -0.05312737077474594, 0.07208110392093658, 0.11523633450269699, 0.08075427263975143, -0.08665690571069717, 0.03420770913362503, 0.07142234593629837, -0.1545378565788269, 0.027502184733748436, 0.19687232375144958, -0.02228252962231636, 0.10155563801527023, 0.023890217766165733, -0.12942802906036377, 0.008010745979845524, -0.07429429143667221, -0.03728441148996353, -0.05541176348924637, -0.026877230033278465, -0.03281424567103386, 0.12499657273292542, 0.20998157560825348, -0.05702705308794975, -0.012711060233414173, -0.05944878235459328, 0.004578939639031887, 0.0722796618938446, 0.07509079575538635, -0.039562009274959564, -0.28285497426986694, 0.02225811779499054, -0.00678151985630393, -0.007798443082720041, -0.2505411207675934, -0.08194083720445633, 0.05097193643450737, -0.07228125631809235, -0.08751131594181061, 0.07262127846479416, 0.05459529533982277, 0.049800317734479904, -0.03919244930148125, -0.02293914556503296, -0.051654916256666183, 0.17410729825496674, -0.20637930929660797, -0.07141242921352386 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-mr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5479 - Wer: 0.5740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.7378 | 18.18 | 400 | 3.5047 | 1.0 | | 3.1707 | 36.36 | 800 | 2.6166 | 0.9912 | | 1.4942 | 54.55 | 1200 | 0.5778 | 0.6927 | | 1.2058 | 72.73 | 1600 | 0.5168 | 0.6362 | | 1.0558 | 90.91 | 2000 | 0.5105 | 0.6069 | | 0.9488 | 109.09 | 2400 | 0.5151 | 0.6089 | | 0.8588 | 127.27 | 2800 | 0.5157 | 0.5989 | | 0.7991 | 145.45 | 3200 | 0.5179 | 0.5740 | | 0.7545 | 163.64 | 3600 | 0.5348 | 0.5740 | | 0.7144 | 181.82 | 4000 | 0.5518 | 0.5724 | | 0.7041 | 200.0 | 4400 | 0.5479 | 0.5740 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-mr --dataset mozilla-foundation/common_voice_8_0 --config mr --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-mr" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "mr", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "या पानास लेखाचे स्वरूप यायला हावे" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 49.177 | 32.811 |
{"language": ["mr"], "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-mr", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "mr"}, "metrics": [{"type": "wer", "value": 32.811, "name": "Test WER"}, {"type": "cer", "value": 7.692, "name": "Test CER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xls-r-300m-mr
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "mr", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "mr" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #mr #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-large-xls-r-300m-mr ============================ This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.5479 * Wer: 0.5740 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 200 ### Training results ### Framework versions * Transformers 4.16.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #mr #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ 99, 143, 4, 35, 36, 8, 15 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #mr #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200### Training results### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.11.0#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'### Inference With LM### Eval results on Common Voice 8 \"test\" (WER):" ]
[ -0.10975132882595062, 0.14081859588623047, -0.006386423017829657, 0.05950456112623215, 0.08650501817464828, 0.019948182627558708, 0.11409088224172592, 0.17628790438175201, -0.030270228162407875, 0.12522822618484497, 0.07593602687120438, 0.09648412466049194, 0.07438722252845764, 0.10391324013471603, -0.01855769194662571, -0.228324756026268, 0.0030055351089686155, -0.05424068495631218, -0.08967257291078568, 0.10916206240653992, 0.09292592108249664, -0.090910404920578, 0.04835518077015877, 0.0028573856689035892, -0.06361926347017288, -0.010654487647116184, -0.03661249950528145, -0.030583476647734642, 0.07859405875205994, 0.03267978876829147, 0.011875145137310028, 0.020230945199728012, 0.07490827888250351, -0.29157328605651855, 0.0035768109373748302, 0.06613890081644058, 0.043770238757133484, 0.05764566734433174, 0.113744355738163, -0.026841096580028534, 0.10512915998697281, -0.06898054480552673, 0.03678817301988602, 0.0700063556432724, -0.08631899952888489, -0.21436789631843567, -0.0873718336224556, 0.02823072113096714, 0.14830870926380157, 0.06203344091773033, -0.03525247424840927, 0.04469317942857742, -0.06966965645551682, 0.10092753171920776, 0.246455118060112, -0.20991264283657074, -0.057725172489881516, 0.0020404416136443615, 0.029669512063264847, 0.0011082901619374752, -0.1122741848230362, -0.009076900780200958, 0.012346195988357067, 0.004283074289560318, 0.0696345716714859, -0.015827199444174767, 0.05215608328580856, 0.014756088145077229, -0.13559651374816895, -0.05509885773062706, 0.13047274947166443, 0.07010287046432495, -0.025404108688235283, -0.12642595171928406, -0.025499893352389336, -0.1670263111591339, -0.03891461342573166, 0.03063190169632435, 0.01949651911854744, -0.0402565598487854, -0.005194309167563915, 0.035634204745292664, -0.045882079750299454, -0.0757010281085968, 0.05494493618607521, 0.12064303457736969, 0.036202896386384964, -0.036446407437324524, 0.019869700074195862, 0.10089575499296188, 0.04673021659255028, -0.17516443133354187, -0.021183328703045845, 0.03642027825117111, -0.13710878789424896, -0.007748597301542759, 0.0015649889828637242, 0.024197615683078766, 0.0881531834602356, 0.14626233279705048, 0.03156285732984543, 0.09624936431646347, 0.023664306849241257, 0.007924042642116547, -0.044987719506025314, 0.16136792302131653, -0.056218139827251434, -0.11765703558921814, -0.04564138129353523, 0.13804182410240173, -0.0075762830674648285, -0.002258897991850972, -0.04819713532924652, 0.048163846135139465, 0.09834049642086029, 0.08578906208276749, 0.023137299343943596, 0.019889770075678825, -0.07923231273889542, -0.020022116601467133, -0.015639975666999817, -0.1472519189119339, 0.06058146432042122, 0.0845169648528099, -0.07676322013139725, -0.03911804407835007, -0.013399798423051834, -0.007706313859671354, -0.04599636420607567, 0.07221301645040512, -0.052040066570043564, 0.007714299485087395, -0.07481436431407928, -0.0837818831205368, 0.029349680989980698, -0.026844743639230728, -0.01259784959256649, -0.03608696907758713, -0.08743966370820999, -0.08148767799139023, 0.06024254485964775, -0.07798643410205841, -0.051085248589515686, -0.07484672963619232, -0.1006401851773262, 0.045403700321912766, -0.0020529702305793762, 0.14443925023078918, -0.053972531110048294, 0.08449475467205048, 0.03035358525812626, 0.04224101081490517, 0.15644782781600952, 0.060911357402801514, -0.028580317273736, 0.06929841637611389, -0.14341934025287628, 0.1006365418434143, -0.1348164975643158, 0.05621081590652466, -0.1553894281387329, -0.08272601664066315, 0.03661718964576721, -0.0006341672851704061, 0.08613147586584091, 0.15530480444431305, -0.19404597580432892, -0.06315433233976364, 0.12511327862739563, -0.03712696209549904, -0.09514646977186203, 0.13628140091896057, -0.012093083932995796, -0.02745744213461876, 0.0039879740215837955, 0.17718379199504852, 0.13710114359855652, -0.10969889163970947, 0.003471308620646596, -0.03784214332699776, 0.09325402975082397, 0.0860166996717453, 0.08707966655492783, -0.0606149397790432, 0.0526575967669487, -0.0018973236437886953, -0.056955866515636444, 0.015185872092843056, -0.06763342022895813, -0.07992598414421082, -0.010058612562716007, -0.05457578971982002, -0.012598167173564434, 0.038373447954654694, -0.021572217345237732, -0.08071282505989075, -0.13089022040367126, -0.03905940800905228, 0.10443009436130524, -0.0828707218170166, 0.007167642470449209, -0.0838412195444107, 0.08307770639657974, -0.007647163700312376, 0.010419032536447048, -0.13237792253494263, -0.022705763578414917, 0.047120485454797745, -0.0815124660730362, 0.007724304683506489, -0.0111216576769948, 0.0562613308429718, 0.032464783638715744, -0.013319728896021843, -0.059185463935136795, -0.017233604565262794, -0.012006409466266632, -0.052251383662223816, -0.2525762617588043, -0.07088359445333481, -0.019852284342050552, 0.14773403108119965, -0.1946791410446167, 0.010848957113921642, 0.07890588790178299, 0.11093871295452118, 0.014673244208097458, -0.05198274552822113, 0.04018118605017662, 0.021397072821855545, -0.031908780336380005, -0.07356207072734833, 0.011309843510389328, -0.005928593687713146, -0.09343600273132324, -0.004639190621674061, -0.1471664160490036, 0.04993622004985809, 0.06900806725025177, 0.03206908330321312, -0.07969339191913605, -0.039780616760253906, -0.06077258288860321, -0.0532052144408226, -0.04193738475441933, -0.02950213849544525, 0.14745543897151947, 0.03532407432794571, 0.08886981755495071, -0.079337939620018, -0.07542874664068222, 0.024030646309256554, -0.005871723871678114, -0.008104433305561543, 0.17645269632339478, 0.06118018925189972, -0.03467075526714325, 0.0818454772233963, 0.02382657304406166, -0.040894970297813416, 0.11404919624328613, -0.072563037276268, -0.08315810561180115, -0.0688377097249031, 0.059391554445028305, 0.029881520196795464, 0.11543629318475723, -0.17771907150745392, -0.008557895198464394, 0.03933404013514519, 0.02056996338069439, 0.018642036244273186, -0.16422516107559204, 0.008266039192676544, 0.03410585969686508, -0.09398064017295837, -0.0040556457825005054, 0.016070539131760597, -0.006061336491256952, 0.07990679144859314, -0.011479641310870647, -0.07394817471504211, -0.040015242993831635, -0.05681680887937546, -0.10471680760383606, 0.16432124376296997, -0.08829915523529053, -0.11480309069156647, -0.11795099079608917, -0.016806496307253838, -0.05441029369831085, -0.021112024784088135, 0.042900726199150085, -0.07632710784673691, -0.051027487963438034, -0.08481273055076599, 0.02075943350791931, -0.0013428807724267244, 0.021346217021346092, 0.03989914804697037, 0.014904795214533806, 0.06068923696875572, -0.10696055740118027, -0.0008376940386369824, -0.0017718434100970626, -0.002327544381842017, -0.0009287483408115804, 0.0508134625852108, 0.09717723727226257, 0.15624798834323883, 0.06174414977431297, 0.052618589252233505, -0.0045897881500422955, 0.21100105345249176, -0.1335318237543106, 0.021833349019289017, 0.10733991861343384, 0.0007185251452028751, 0.051795393228530884, 0.15421970188617706, 0.0400107279419899, -0.0917469710111618, 0.008907323703169823, 0.0590948723256588, -0.009953780099749565, -0.2377922534942627, -0.018275048583745956, -0.06570449471473694, -0.0009193448349833488, 0.08060984313488007, 0.03421112895011902, -0.027266046032309532, 0.006931532174348831, 0.00009450000652577728, -0.04495833441615105, 0.04561043530702591, 0.04978537932038307, 0.0501667745411396, 0.03492671996355057, 0.09300757199525833, -0.01876174472272396, -0.024799613282084465, 0.027170579880475998, 0.011398677714169025, 0.21942804753780365, -0.0185096375644207, 0.1994779258966446, 0.07095114141702652, 0.1083860769867897, -0.03962358459830284, 0.03956471011042595, -0.013237424194812775, 0.007626794278621674, 0.034236516803503036, -0.06594079732894897, -0.021999575197696686, 0.029590606689453125, 0.10786207765340805, 0.024653296917676926, -0.07231534272432327, 0.051207754760980606, 0.06402173638343811, 0.32223251461982727, 0.07542252540588379, -0.23305495083332062, -0.044880546629428864, 0.030530031770467758, -0.07321978360414505, -0.026796026155352592, 0.020402127876877785, 0.12193150073289871, -0.08072447031736374, 0.07802601158618927, -0.04767102003097534, 0.08528157323598862, -0.07934574037790298, 0.009784693829715252, 0.08367221802473068, 0.09289862960577011, 0.008942639455199242, 0.0707310140132904, -0.24053195118904114, 0.2504713535308838, 0.0031068320386111736, 0.05738518759608269, -0.06799665093421936, 0.06189116835594177, 0.028170442208647728, -0.044220682233572006, 0.11210817098617554, -0.00881129875779152, -0.08378515392541885, -0.14522431790828705, -0.09587442874908447, 0.00018814712530001998, 0.1248302087187767, -0.07299012690782547, 0.12717051804065704, -0.04082869738340378, -0.060338009148836136, 0.015931840986013412, -0.07335489988327026, -0.09373913705348969, -0.08649357408285141, 0.0661582350730896, -0.023219995200634003, 0.01385505311191082, -0.06974904984235764, -0.07432148605585098, -0.07724350690841675, 0.16372786462306976, -0.14419065415859222, -0.030368942767381668, -0.12945140898227692, 0.02267337404191494, 0.1690922975540161, -0.07128019630908966, 0.007925310172140598, 0.01254142913967371, 0.12675824761390686, 0.0384676568210125, -0.002793235005810857, 0.10195889323949814, -0.08555267006158829, -0.20570489764213562, -0.044856902211904526, 0.19482065737247467, 0.021236935630440712, 0.060424335300922394, -0.019456874579191208, 0.00860838033258915, -0.017055803909897804, -0.09853256493806839, 0.08783335983753204, 0.025663862004876137, -0.01909010484814644, 0.04905560985207558, -0.03734006732702255, -0.003229840425774455, -0.09515007585287094, -0.044883713126182556, 0.08514387160539627, 0.27637723088264465, -0.0764794796705246, 0.04620383679866791, 0.0106684984639287, -0.07900955528020859, -0.13646869361400604, -0.014991873875260353, 0.10141687095165253, 0.028983788564801216, 0.003613278502598405, -0.15696769952774048, 0.024780798703432083, 0.05170907452702522, -0.018798045814037323, 0.11170165240764618, -0.34207743406295776, -0.12916743755340576, 0.08081464469432831, 0.05082111433148384, -0.08195289224386215, -0.18467175960540771, -0.07851845026016235, -0.009067674167454243, -0.07023666799068451, 0.015793997794389725, -0.0030239252373576164, 0.12202711403369904, -0.0031833346001803875, 0.030915342271327972, 0.03144630044698715, -0.05779283866286278, 0.15938837826251984, 0.05345470830798149, 0.04578704014420509, -0.01498552318662405, -0.0024580853059887886, 0.011773735284805298, -0.06996668875217438, 0.05432255566120148, -0.08168993890285492, 0.02158639021217823, -0.16519416868686676, -0.010346981696784496, -0.0727478638291359, 0.014954417943954468, -0.06636711210012436, -0.014507276937365532, -0.02064920961856842, 0.045830294489860535, 0.09706912189722061, 0.015466718003153801, 0.07989567518234253, -0.06662805378437042, 0.07515618205070496, 0.1675775647163391, 0.10462507605552673, 0.010638045147061348, -0.1424189656972885, 0.013257312588393688, 0.031707245856523514, 0.008149423636496067, -0.12496207654476166, 0.06219743937253952, 0.14103859663009644, 0.052633363753557205, 0.1479337513446808, 0.028690841048955917, -0.0978640466928482, -0.010548915714025497, 0.05465613678097725, -0.08656219393014908, -0.1462884396314621, -0.008804293349385262, -0.007121735252439976, -0.14162510633468628, -0.012011811137199402, 0.1109859049320221, -0.003880536649376154, 0.007522581610828638, 0.023100990802049637, 0.07897516340017319, -0.024630503728985786, 0.2311444729566574, 0.027920203283429146, 0.11349529027938843, -0.09129559993743896, 0.07191672921180725, 0.028525400906801224, -0.0618828721344471, 0.03343943879008293, 0.11460346728563309, -0.042230892926454544, -0.03556183725595474, 0.012049051001667976, 0.1099771186709404, 0.05692392960190773, -0.027619047090411186, -0.14842961728572845, -0.13435670733451843, 0.08581636846065521, 0.06012093648314476, 0.041838955134153366, 0.025861505419015884, -0.011204053647816181, 0.018061049282550812, -0.08445915579795837, 0.1355494260787964, 0.11606907844543457, 0.05253422632813454, -0.11726505309343338, 0.06646440923213959, -0.010742386803030968, 0.017760291695594788, 0.002292768796905875, 0.0062677557580173016, -0.11477428674697876, 0.02859046868979931, -0.07976321876049042, -0.009853710420429707, -0.06224674731492996, 0.00962903629988432, 0.0259383674710989, -0.0623711422085762, -0.05523908883333206, 0.017729206010699272, -0.1114443838596344, -0.056597910821437836, -0.02738596498966217, 0.0834910124540329, -0.11270637810230255, -0.02122824266552925, 0.04183994606137276, -0.14259470999240875, 0.10822787880897522, 0.017532220110297203, 0.003954828716814518, -0.016392134130001068, -0.08648008108139038, 0.004049147013574839, 0.01791025698184967, 0.018751977011561394, 0.035341527312994, -0.2269396334886551, -0.0007323708850890398, -0.04151711240410805, 0.010186385363340378, -0.007688269950449467, 0.019312920048832893, -0.13017231225967407, 0.01697380654513836, -0.044033195823431015, -0.05654934048652649, -0.049900121986866, 0.05572095885872841, 0.0717979297041893, 0.00875153299421072, 0.16862034797668457, -0.052331604063510895, 0.08559399843215942, -0.21715235710144043, -0.0001758259895723313, 0.011712496168911457, -0.047448642551898956, -0.020033804699778557, -0.011886084452271461, 0.10980617254972458, -0.07363046705722809, 0.09149174392223358, -0.013958504423499107, 0.04385581612586975, 0.027993198484182358, -0.07293371111154556, 0.037232983857393265, 0.05526211857795715, 0.0879787728190422, 0.010771412402391434, -0.006288130301982164, 0.0652923658490181, -0.040555618703365326, 0.043915022164583206, 0.058325476944446564, 0.14725792407989502, 0.13384348154067993, 0.07180553674697876, 0.057395655661821365, 0.09321844577789307, -0.14586471021175385, -0.13201238214969635, 0.16331623494625092, -0.07592564076185226, 0.14957955479621887, -0.038932155817747116, 0.17847882211208344, 0.10283362120389938, -0.19653931260108948, 0.08712733536958694, -0.04002569988369942, -0.09199236333370209, -0.10127773135900497, -0.09863916039466858, -0.07616641372442245, -0.1492615044116974, 0.016059236600995064, -0.09802208095788956, 0.07995514571666718, 0.03090483695268631, 0.044273700565099716, 0.02467772178351879, 0.09933114796876907, 0.016827646642923355, -0.0000027834930733661167, 0.09909723699092865, 0.015491521917283535, -0.03329169750213623, -0.02054278366267681, -0.06543023139238358, 0.033084820955991745, -0.02785336598753929, 0.0721466988325119, -0.013725345022976398, -0.07826860249042511, 0.04761914536356926, -0.015312130562961102, -0.09358086436986923, 0.021766671910881996, -0.04394855350255966, 0.035839471966028214, 0.0893157422542572, 0.0446295291185379, -0.009301627986133099, -0.012224521487951279, 0.19237883388996124, -0.08359139412641525, -0.06168796494603157, -0.1339462697505951, 0.13719762861728668, -0.005324316211044788, 0.012898125685751438, 0.005607607774436474, -0.07711579650640488, -0.019700637087225914, 0.18126781284809113, 0.14228154718875885, -0.024105284363031387, -0.021627960726618767, 0.021880941465497017, 0.001592464279383421, -0.017520722001791, 0.044176213443279266, 0.10837628692388535, 0.06349500268697739, -0.029516225680708885, -0.00996200181543827, -0.03195841982960701, -0.07395981252193451, -0.04637174308300018, 0.10083706676959991, 0.029881073161959648, 0.010527901351451874, -0.01507579255849123, 0.11566442251205444, -0.06411430239677429, -0.1785055547952652, 0.01820620708167553, -0.16776283085346222, -0.1814383715391159, -0.028971560299396515, 0.08055280894041061, 0.031256675720214844, 0.06035039573907852, 0.0011584772728383541, -0.047799400985240936, 0.1315453201532364, -0.000030471735954051837, -0.04580957815051079, -0.09887143224477768, 0.05638297647237778, -0.1410108208656311, 0.19093534350395203, -0.028060972690582275, 0.03412424400448799, 0.14020861685276031, 0.0060656871646642685, -0.11285234242677689, 0.03812071681022644, 0.10661400854587555, -0.1308378279209137, 0.06353193521499634, 0.18612922728061676, -0.02197498083114624, 0.13389836251735687, 0.04682820662856102, -0.04355475679039955, -0.0024569567758589983, -0.05656053498387337, -0.019090723246335983, -0.08314381539821625, 0.003917728550732136, -0.0548969991505146, 0.125034362077713, 0.20639348030090332, -0.07583726197481155, 0.00598691264167428, -0.04847147315740585, 0.02474375069141388, 0.007773225661367178, 0.11828526854515076, -0.0436737984418869, -0.26354360580444336, 0.04798765107989311, -0.006397296208888292, 0.03015541099011898, -0.17421787977218628, -0.09480205923318863, 0.04543124884366989, -0.04847642034292221, -0.0614466592669487, 0.12060975283384323, 0.060913849622011185, 0.04832494258880615, -0.052771005779504776, -0.13713975250720978, -0.010276108980178833, 0.17220447957515717, -0.165293350815773, -0.0567108616232872 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-or This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.6618 - Wer: 0.5166 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 240 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.0493 | 23.53 | 400 | 2.9728 | 1.0 | | 0.5306 | 47.06 | 800 | 1.2895 | 0.6138 | | 0.1253 | 70.59 | 1200 | 1.6854 | 0.5703 | | 0.0763 | 94.12 | 1600 | 1.9433 | 0.5870 | | 0.0552 | 117.65 | 2000 | 1.4393 | 0.5575 | | 0.0382 | 141.18 | 2400 | 1.4665 | 0.5537 | | 0.0286 | 164.71 | 2800 | 1.5441 | 0.5320 | | 0.0212 | 188.24 | 3200 | 1.6502 | 0.5115 | | 0.0168 | 211.76 | 3600 | 1.6411 | 0.5332 | | 0.0129 | 235.29 | 4000 | 1.6618 | 0.5166 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-or --dataset mozilla-foundation/common_voice_7_0 --config or --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-or" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "or", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "ପରରାଏ ବାଲା ଗସ୍ତି ଫାଣ୍ଡି ଗୋପାଳ ପରଠାରୁ ଦେଢ଼କଶ ଦୂର" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 51.92 | 47.186 |
{"language": ["or"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-or", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "or"}, "metrics": [{"type": "wer", "value": 47.186, "name": "Test WER"}, {"type": "cer", "value": 11.82, "name": "Test CER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xls-r-300m-or
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "robust-speech-event", "hf-asr-leaderboard", "or", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "or" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #robust-speech-event #hf-asr-leaderboard #or #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-large-xls-r-300m-or ============================ This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 1.6618 * Wer: 0.5166 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.12 * num\_epochs: 240 ### Training results ### Framework versions * Transformers 4.16.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_7\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 7 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 240", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 7 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #robust-speech-event #hf-asr-leaderboard #or #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 240", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 7 \"test\" (WER):" ]
[ 92, 144, 4, 37, 36, 8, 15 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #robust-speech-event #hf-asr-leaderboard #or #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 240### Training results### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'### Inference With LM### Eval results on Common Voice 7 \"test\" (WER):" ]
[ -0.11357257515192032, 0.1292908489704132, -0.007125264033675194, 0.03496796637773514, 0.07095500826835632, 0.012948902323842049, 0.10793504118919373, 0.17058531939983368, -0.036167532205581665, 0.13729740679264069, 0.06947556138038635, 0.08158063143491745, 0.0816439613699913, 0.10279182344675064, -0.04226253554224968, -0.23462001979351044, 0.024253496900200844, -0.04775441810488701, -0.08031626045703888, 0.11312384903430939, 0.09832635521888733, -0.08936414867639542, 0.0222820695489645, 0.014520514756441116, -0.0658329650759697, -0.016647906973958015, -0.040434591472148895, -0.05179455131292343, 0.07766308635473251, 0.04130098223686218, 0.026171695441007614, 0.051740147173404694, 0.04975365847349167, -0.28644976019859314, 0.005741935223340988, 0.0550285167992115, 0.040458742529153824, 0.06110469624400139, 0.12222155183553696, -0.033477380871772766, 0.11379573494195938, -0.06445787847042084, 0.03541510924696922, 0.06967092305421829, -0.07510219514369965, -0.23290574550628662, -0.07269471883773804, 0.029264375567436218, 0.12834005057811737, 0.061696626245975494, -0.04643884673714638, 0.0644908994436264, -0.09104800224304199, 0.09612800180912018, 0.2325468361377716, -0.22305838763713837, -0.06292091310024261, -0.005354156717658043, 0.030098268762230873, -0.0020774169825017452, -0.11789800226688385, -0.015194850042462349, 0.009272733703255653, -0.0041231983341276646, 0.07230192422866821, 0.001899557071737945, 0.060663800686597824, 0.00220674742013216, -0.13276110589504242, -0.05496823787689209, 0.11322261393070221, 0.07711607217788696, -0.03272758424282074, -0.13888388872146606, -0.01728922128677368, -0.15406188368797302, -0.03890165686607361, 0.008196542970836163, 0.01857512816786766, -0.03521246835589409, -0.012262290343642235, 0.05210652947425842, -0.05470336601138115, -0.06560937315225601, 0.03938604146242142, 0.1501137912273407, 0.041545938700437546, -0.03574173152446747, 0.02322344109416008, 0.0862974002957344, 0.037703126668930054, -0.18134357035160065, -0.03936168551445007, 0.0402669757604599, -0.1423734873533249, -0.019137494266033173, -0.012596079148352146, -0.0021549288649111986, 0.09498763084411621, 0.15344442427158356, 0.005138558801263571, 0.1083420142531395, 0.008038579486310482, 0.003415229031816125, -0.045825473964214325, 0.1731647253036499, -0.028182534500956535, -0.09858497977256775, -0.04369646683335304, 0.1324886977672577, -0.012391768395900726, -0.005526619963347912, -0.038966186344623566, 0.03933867812156677, 0.12371496856212616, 0.07216037809848785, 0.01228212472051382, 0.008855152875185013, -0.07322138547897339, -0.02342156507074833, -0.00951351411640644, -0.1456160992383957, 0.053822051733732224, 0.09846216440200806, -0.05262438952922821, -0.00026038289070129395, -0.019770046696066856, -0.005330689251422882, -0.04450387507677078, 0.08663953095674515, -0.03476552292704582, -0.005276128184050322, -0.059836432337760925, -0.07043305784463882, 0.03589572757482529, -0.02808174304664135, -0.017720814794301987, -0.04270603135228157, -0.05348437651991844, -0.07981842011213303, 0.05986596271395683, -0.08694396167993546, -0.06792407482862473, -0.06792335212230682, -0.10597183555364609, 0.04911649972200394, -0.010373753495514393, 0.1431901454925537, -0.051433682441711426, 0.08503156900405884, 0.049924395978450775, 0.048655085265636444, 0.1633584201335907, 0.0569048672914505, -0.018028460443019867, 0.05728884041309357, -0.16234701871871948, 0.12702703475952148, -0.13342684507369995, 0.03797198086977005, -0.15313975512981415, -0.09137497842311859, 0.015178867615759373, -0.008080282248556614, 0.07975363731384277, 0.15272390842437744, -0.1661054790019989, -0.07668913155794144, 0.12876947224140167, -0.06219290941953659, -0.08652574568986893, 0.14809806644916534, -0.008642679080367088, -0.041119176894426346, 0.007747043389827013, 0.18585239350795746, 0.1263195276260376, -0.10929935425519943, -0.0031688292510807514, -0.046672239899635315, 0.09164861589670181, 0.09245418757200241, 0.09831896424293518, -0.05916144698858261, 0.03781451657414436, -0.002506470074877143, -0.050509076565504074, 0.01238308660686016, -0.06184106692671776, -0.07871957123279572, -0.010864506475627422, -0.049783844500780106, 0.002825882751494646, 0.04041131213307381, -0.01182099711149931, -0.09302211552858353, -0.1404581367969513, -0.04517928883433342, 0.0926753580570221, -0.08929120004177094, 0.009804882109165192, -0.10091913491487503, 0.08294669538736343, -0.007123312912881374, 0.005119164939969778, -0.13823772966861725, -0.0026976868975907564, 0.05356050282716751, -0.07105041295289993, 0.004042632412165403, -0.008156346157193184, 0.06261095404624939, 0.01817222498357296, -0.023740217089653015, -0.05655480548739433, -0.011243032291531563, -0.010123251006007195, -0.04581160098314285, -0.24047701060771942, -0.06672284007072449, -0.023528438061475754, 0.16144445538520813, -0.1876281052827835, 0.0054835425689816475, 0.11717921495437622, 0.11451643705368042, 0.010572008788585663, -0.049412112683057785, 0.02918180637061596, 0.021082328632473946, -0.02071605995297432, -0.06007205694913864, 0.0046818796545267105, 0.0012624366208910942, -0.10879404097795486, 0.0035688120406121016, -0.13568641245365143, 0.060486141592264175, 0.07623177766799927, 0.05896182358264923, -0.07825244963169098, -0.05090481787919998, -0.061259765177965164, -0.049041930586099625, -0.03861324116587639, -0.01726233959197998, 0.16793201863765717, 0.04358884319663048, 0.07872499525547028, -0.08949317783117294, -0.07247630506753922, 0.019128737971186638, 0.002036381047219038, -0.01049285288900137, 0.15873940289020538, 0.039799291640520096, -0.04131840914487839, 0.06995903700590134, 0.01639573834836483, -0.06892788410186768, 0.10560226440429688, -0.08906156569719315, -0.08929149061441422, -0.06438316404819489, 0.06757716089487076, 0.03970765694975853, 0.10037614405155182, -0.17631317675113678, 0.0067995586432516575, 0.04184393584728241, 0.015042407438158989, 0.016621585935354233, -0.16260285675525665, 0.014807459898293018, 0.045679040253162384, -0.0989365205168724, 0.003653998952358961, 0.02176768332719803, 0.0034439321607351303, 0.06852611154317856, -0.00480955746024847, -0.08114393800497055, -0.03488604724407196, -0.06422432512044907, -0.10515730828046799, 0.1629534512758255, -0.06504960358142853, -0.13312320411205292, -0.10903751105070114, -0.007290879730135202, -0.040895216166973114, -0.02426544763147831, 0.05263480171561241, -0.08699659258127213, -0.06340447813272476, -0.07989582419395447, 0.00556051405146718, 0.004470338113605976, 0.03411863371729851, 0.051479730755090714, 0.0076681338250637054, 0.07178221642971039, -0.09595303237438202, -0.002775011584162712, -0.010631621815264225, -0.00016719022823963314, 0.014133634977042675, 0.038208719342947006, 0.08057007938623428, 0.1562880128622055, 0.052180178463459015, 0.054835546761751175, -0.017723288387060165, 0.2030867338180542, -0.14175307750701904, 0.017598524689674377, 0.10860072076320648, -0.010832656174898148, 0.051863040775060654, 0.15611694753170013, 0.03554821386933327, -0.08387386053800583, 0.007136936765164137, 0.046268679201602936, -0.005927707999944687, -0.2500368654727936, -0.01934373937547207, -0.0722176805138588, -0.026596345007419586, 0.07015310972929001, 0.03365643694996834, 0.005323635879904032, 0.008820927701890469, -0.007826410233974457, -0.06157851964235306, 0.05480274558067322, 0.05287586897611618, 0.08745331317186356, 0.05432042106986046, 0.10715416818857193, -0.017939360812306404, -0.02832609973847866, 0.019691908732056618, -0.0008989623747766018, 0.21053393185138702, -0.004125908948481083, 0.19541138410568237, 0.05865579470992088, 0.12025165557861328, -0.01911924220621586, 0.035138826817274094, -0.014946913346648216, 0.00023600210261065513, 0.03629681095480919, -0.0653294175863266, -0.030303852632641792, 0.029636241495609283, 0.13062624633312225, 0.020864589139819145, -0.06834851205348969, 0.043219730257987976, 0.062295686453580856, 0.32315248250961304, 0.06941891461610794, -0.235558420419693, -0.05809813365340233, 0.021101538091897964, -0.09386822581291199, -0.0191437266767025, 0.0132680619135499, 0.11639931052923203, -0.09129063040018082, 0.08980761468410492, -0.05013388767838478, 0.0857764482498169, -0.07440880686044693, 0.013502473011612892, 0.0657840445637703, 0.09836610406637192, 0.014720824547111988, 0.0615931861102581, -0.23244719207286835, 0.24297679960727692, -0.008418072946369648, 0.062153350561857224, -0.06448390334844589, 0.06623224169015884, 0.033549435436725616, -0.04560975730419159, 0.0968630462884903, -0.019457265734672546, -0.0719490721821785, -0.10902964323759079, -0.10294987261295319, 0.015260111540555954, 0.12177760154008865, -0.07035333663225174, 0.12196303904056549, -0.03469071164727211, -0.05792338401079178, 0.019087594002485275, -0.05629386380314827, -0.08819423615932465, -0.08821960538625717, 0.06352904438972473, -0.015138181857764721, 0.0442771390080452, -0.07397893071174622, -0.08714209496974945, -0.11330220848321915, 0.1795213222503662, -0.14323250949382782, -0.036727532744407654, -0.1318439543247223, 0.0170181542634964, 0.1676299273967743, -0.07165533304214478, 0.014800372533500195, 0.015781190246343613, 0.14202183485031128, 0.027837591245770454, -0.0018362280679866672, 0.09516341984272003, -0.08086162805557251, -0.19895635545253754, -0.0349012166261673, 0.20061834156513214, 0.01771363988518715, 0.07032674551010132, -0.01054059062153101, 0.009444914758205414, -0.004775326233357191, -0.09488259255886078, 0.0774335041642189, 0.013111154548823833, -0.03175519034266472, 0.043337494134902954, -0.0032897116616368294, -0.024170685559511185, -0.10705816000699997, -0.03682760149240494, 0.09927647560834885, 0.2629610300064087, -0.0729006677865982, 0.05797477066516876, 0.00914249662309885, -0.05272833630442619, -0.1266210377216339, -0.012031872756779194, 0.13177509605884552, 0.039496082812547684, -0.01863691955804825, -0.15403005480766296, 0.02536187507212162, 0.05044630169868469, -0.020456377416849136, 0.07037505507469177, -0.31215718388557434, -0.13329774141311646, 0.08688458055257797, 0.042047493159770966, -0.07261373847723007, -0.17231254279613495, -0.09023471176624298, -0.0034702292177826166, -0.07038601487874985, 0.011196397244930267, -0.00030486853211186826, 0.11407843232154846, 0.002706998959183693, 0.009453783743083477, 0.033412206918001175, -0.05056500434875488, 0.16338057816028595, 0.04422058165073395, 0.030268555507063866, -0.0029210331849753857, 0.02775704860687256, -0.009196402505040169, -0.06505395472049713, 0.051458053290843964, -0.09239186346530914, 0.014029247686266899, -0.14338168501853943, -0.022681599482893944, -0.07677137851715088, 0.013972445391118526, -0.05684284865856171, -0.00007175902283051983, -0.022471744567155838, 0.03525076434016228, 0.10498512536287308, 0.01582670398056507, 0.07770853489637375, -0.0746971145272255, 0.08681392669677734, 0.18421995639801025, 0.1272978037595749, -0.004030718468129635, -0.1499377191066742, 0.014778169803321362, 0.025195902213454247, 0.01888323947787285, -0.11758182942867279, 0.055475108325481415, 0.13150683045387268, 0.04443274065852165, 0.1554594486951828, 0.028680291026830673, -0.10555111616849899, -0.016292590647935867, 0.05785304680466652, -0.07502663880586624, -0.1566917896270752, -0.011357717216014862, 0.011428984813392162, -0.14937040209770203, -0.02129853330552578, 0.10287586599588394, -0.008299204520881176, 0.002921187086030841, 0.028506699949502945, 0.06333290040493011, -0.019928516820073128, 0.2165437489748001, 0.01992839202284813, 0.1196463331580162, -0.0961296409368515, 0.05642140656709671, 0.03783784434199333, -0.082957923412323, 0.04118046537041664, 0.1045391783118248, -0.0425976924598217, -0.019920341670513153, 0.031572092324495316, 0.07762563228607178, 0.07361111044883728, -0.035218965262174606, -0.13823114335536957, -0.16001775860786438, 0.08632124960422516, 0.07960811257362366, 0.04962151497602463, 0.02925449050962925, -0.012161250226199627, 0.030553752556443214, -0.08319190889596939, 0.12851521372795105, 0.11642283201217651, 0.057413436472415924, -0.1159483790397644, 0.061304546892642975, -0.010745974257588387, -0.0030510048381984234, 0.0005281531484797597, -0.006577055435627699, -0.1053972840309143, 0.024790503084659576, -0.08309826254844666, 0.009450671263039112, -0.06383466720581055, 0.0112961046397686, 0.034256696701049805, -0.07331525534391403, -0.048978082835674286, 0.022957082837820053, -0.11291809380054474, -0.049563318490982056, -0.02382819354534149, 0.07922019064426422, -0.1148240938782692, -0.006338007282465696, 0.05414208397269249, -0.15658123791217804, 0.11236080527305603, 0.035036906599998474, -0.008306536823511124, -0.00807906873524189, -0.08685845881700516, -0.011231444776058197, 0.03477159142494202, 0.023318011313676834, 0.027483651414513588, -0.2402019053697586, 0.0049817198887467384, -0.02057904191315174, 0.004009007476270199, -0.00025510575505904853, 0.026050159707665443, -0.1252758800983429, 0.009662331081926823, -0.05301346629858017, -0.05460092052817345, -0.0435696542263031, 0.05306704714894295, 0.07642703503370285, -0.003543068189173937, 0.1714242696762085, -0.06490375101566315, 0.08364815264940262, -0.2142437994480133, 0.0020791273564100266, 0.0022831414826214314, -0.03584235906600952, -0.045478612184524536, -0.009362632408738136, 0.10861247032880783, -0.0657743513584137, 0.06504105031490326, -0.03312671184539795, 0.04104255884885788, 0.03076554462313652, -0.08385996520519257, 0.04276267811655998, 0.05451502650976181, 0.11521903425455093, 0.03753221407532692, -0.012892276048660278, 0.0804855227470398, -0.06266969442367554, 0.03668028861284256, 0.02140658162534237, 0.14683425426483154, 0.14917711913585663, 0.05885247513651848, 0.07255157083272934, 0.09604115784168243, -0.11512050032615662, -0.12319473922252655, 0.1772928237915039, -0.0874759778380394, 0.13098149001598358, -0.015407483093440533, 0.17261552810668945, 0.1078532338142395, -0.2015129029750824, 0.092622309923172, -0.033640310168266296, -0.08712494373321533, -0.10067299753427505, -0.10241328179836273, -0.0870923101902008, -0.15513746440410614, 0.023288246244192123, -0.09393848478794098, 0.06994269788265228, 0.01408678013831377, 0.053706057369709015, 0.02633405290544033, 0.1094372496008873, 0.026137765496969223, -0.006209214683622122, 0.12301141023635864, 0.00795053131878376, -0.03864435479044914, -0.006346229929476976, -0.05858876556158066, 0.04635990411043167, -0.0018316981149837375, 0.08230128884315491, -0.008482041768729687, -0.07157032936811447, 0.047104112803936005, -0.005971732549369335, -0.10513516515493393, 0.034450750797986984, -0.03838657587766647, 0.0398196205496788, 0.09703399986028671, 0.04398100823163986, -0.005637172609567642, -0.015039213001728058, 0.16724009811878204, -0.08408127725124359, -0.06948751956224442, -0.14239567518234253, 0.15851756930351257, -0.0008588689379394054, 0.01638217829167843, 0.01499788649380207, -0.07423218339681625, -0.025341885164380074, 0.17436671257019043, 0.12280255556106567, -0.015642013400793076, -0.014837311580777168, 0.029610106721520424, -0.0022835189010947943, -0.007377029862254858, 0.0327429361641407, 0.11086912453174591, 0.06918809562921524, -0.023603305220603943, -0.002843711758032441, -0.024918805807828903, -0.08250320702791214, -0.031823426485061646, 0.08133287727832794, 0.021765872836112976, -0.011726479046046734, -0.018362518399953842, 0.12139532715082169, -0.07378179579973221, -0.1827755570411682, 0.02026032656431198, -0.16410870850086212, -0.1882876455783844, -0.02683546207845211, 0.07640106976032257, 0.029623519629240036, 0.04943184554576874, 0.006280712317675352, -0.06042902171611786, 0.12849968671798706, 0.007453481201082468, -0.029548928141593933, -0.06801874190568924, 0.06114939972758293, -0.1353052407503128, 0.15308959782123566, -0.016321495175361633, 0.05975545197725296, 0.13178379833698273, 0.028097644448280334, -0.09737509489059448, 0.03694002330303192, 0.10398149490356445, -0.1558920443058014, 0.06267452985048294, 0.20128348469734192, -0.008298361673951149, 0.13162748515605927, 0.06483093649148941, -0.05642839893698692, -0.004631847143173218, -0.06751807034015656, -0.017816515639424324, -0.08090440183877945, 0.0085421372205019, -0.06062621250748634, 0.10868354141712189, 0.20904643833637238, -0.07217439264059067, -0.003242375561967492, -0.04108886793255806, 0.026471614837646484, 0.009714799001812935, 0.11976049095392227, -0.047572072595357895, -0.2650066018104553, 0.04936657473444939, -0.026861945167183876, 0.03626187890768051, -0.17901338636875153, -0.10488341748714447, 0.037886880338191986, -0.04291689395904541, -0.0641426369547844, 0.11310601234436035, 0.05479076877236366, 0.044742874801158905, -0.049167923629283905, -0.12282826751470566, -0.015125374309718609, 0.17328308522701263, -0.1763557642698288, -0.04257585480809212 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Punjabi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.2548 - Wer: 0.5677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 120 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.4804 | 16.65 | 400 | 1.8461 | 1.0 | | 0.474 | 33.33 | 800 | 1.1018 | 0.6624 | | 0.1389 | 49.98 | 1200 | 1.1918 | 0.6103 | | 0.0919 | 66.65 | 1600 | 1.1889 | 0.6058 | | 0.0657 | 83.33 | 2000 | 1.2266 | 0.5931 | | 0.0479 | 99.98 | 2400 | 1.2512 | 0.5902 | | 0.0355 | 116.65 | 2800 | 1.2548 | 0.5677 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-pa-in --dataset mozilla-foundation/common_voice_7_0 --config pa-IN --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-pa-in" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "pa-IN", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "ਉਨ੍ਹਾਂ ਨੇ ਸਾਰੇ ਤੇਅਰਵੇ ਵੱਖਰੀ ਕਿਸਮ ਦੇ ਕੀਤੇ ਹਨ" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 51.968 | 45.611 |
{"language": ["pa"], "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer"], "model-index": [{"name": "XLS-R-300M - Punjabi", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "pa-IN"}, "metrics": [{"type": "wer", "value": 45.611, "name": "Test WER"}, {"type": "cer", "value": 15.584, "name": "Test CER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xls-r-300m-pa-in
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "pa", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "pa" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #pa #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
XLS-R-300M - Punjabi ==================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 1.2548 * Wer: 0.5677 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.12 * num\_epochs: 120 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_7\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 7 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 120\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 7 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #pa #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 120\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 7 \"test\" (WER):" ]
[ 99, 159, 4, 35, 36, 8, 15 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #pa #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 120\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'### Inference With LM### Eval results on Common Voice 7 \"test\" (WER):" ]
[ -0.11245634406805038, 0.14045056700706482, -0.00672190310433507, 0.05004144087433815, 0.06940706074237823, 0.022515803575515747, 0.10258011519908905, 0.1744121015071869, -0.030650513246655464, 0.12924687564373016, 0.06367570906877518, 0.0751115083694458, 0.0794990211725235, 0.10107619315385818, -0.028302013874053955, -0.2467578947544098, 0.017067739740014076, -0.055273935198783875, -0.06561286002397537, 0.10759612917900085, 0.09699016809463501, -0.08664147555828094, 0.02629329450428486, 0.01324778888374567, -0.038915812969207764, -0.007026415318250656, -0.04954807460308075, -0.043344397097826004, 0.08249439299106598, 0.027065496891736984, 0.0199599526822567, 0.036082904785871506, 0.06556247919797897, -0.2887963354587555, 0.0049750227481126785, 0.05155511945486069, 0.036396969109773636, 0.060046762228012085, 0.1253655105829239, -0.036260947585105896, 0.104182168841362, -0.06968729943037033, 0.043424781411886215, 0.060822710394859314, -0.08779750019311905, -0.23304229974746704, -0.07891663908958435, 0.04443212226033211, 0.1396932452917099, 0.054969873279333115, -0.04263925552368164, 0.048293519765138626, -0.07465485483407974, 0.10282433032989502, 0.24567663669586182, -0.22974279522895813, -0.054323893040418625, -0.027588779106736183, 0.034885358065366745, 0.010763837024569511, -0.10323233157396317, -0.021927090361714363, 0.0024011770728975534, 0.015013355761766434, 0.05705874040722847, -0.008304258808493614, 0.022177832201123238, 0.0056321085430681705, -0.13831129670143127, -0.05994615703821182, 0.1122799888253212, 0.06632481515407562, -0.029091227799654007, -0.1276095062494278, -0.020142370834946632, -0.17925111949443817, -0.04367257282137871, 0.01706126146018505, 0.016744190827012062, -0.03897278383374214, -0.01669379509985447, 0.04597422853112221, -0.05371829494833946, -0.0714874342083931, 0.052393510937690735, 0.12055506557226181, 0.0506608709692955, -0.04076574742794037, 0.022239886224269867, 0.0967799499630928, 0.03471849113702774, -0.17256200313568115, -0.02318393439054489, 0.04323524981737137, -0.12307507544755936, -0.008691461756825447, -0.004985221195966005, -0.02290564402937889, 0.09064342081546783, 0.16078519821166992, -0.0006410173373296857, 0.11156098544597626, 0.012479733675718307, 0.0009422143921256065, -0.040417082607746124, 0.1602443903684616, -0.046398553997278214, -0.0901256874203682, -0.04836001619696617, 0.12801863253116608, -0.0060109905898571014, -0.0024035267997533083, -0.04337774217128754, 0.04320317879319191, 0.12468218803405762, 0.08107805997133255, 0.010786814615130424, 0.012496305629611015, -0.08051120489835739, -0.023991920053958893, 0.006882714573293924, -0.14464335143566132, 0.05462834611535072, 0.09089572727680206, -0.06534317880868912, -0.03284454718232155, -0.003953608684241772, -0.003245751606300473, -0.05465424060821533, 0.09251643717288971, -0.03535405173897743, 0.006233677268028259, -0.046742722392082214, -0.07791467010974884, 0.03726823255419731, -0.029665004462003708, -0.021975819021463394, -0.02971755713224411, -0.06845061480998993, -0.08273348212242126, 0.050076860934495926, -0.08042620867490768, -0.05902274325489998, -0.07908090949058533, -0.08621159195899963, 0.049405649304389954, -0.011331590823829174, 0.12795163691043854, -0.05742824822664261, 0.080889031291008, 0.029704000800848007, 0.04150449112057686, 0.15173940360546112, 0.0655321553349495, -0.033191122114658356, 0.06530273705720901, -0.15269827842712402, 0.11174158751964569, -0.12698765099048615, 0.03650471195578575, -0.15962421894073486, -0.09733737260103226, 0.030378947034478188, -0.006583949085325003, 0.09178431332111359, 0.1453694999217987, -0.1877889335155487, -0.0725560113787651, 0.14146198332309723, -0.05098005756735802, -0.0799875557422638, 0.14578215777873993, -0.012499484233558178, -0.048275016248226166, 0.009074525907635689, 0.2043195217847824, 0.12224485725164413, -0.11862750351428986, 0.007338433992117643, -0.056986719369888306, 0.09102804958820343, 0.10183688253164291, 0.08087235689163208, -0.07178660482168198, 0.05040428042411804, -0.003323990385979414, -0.04064280167222023, 0.015095277689397335, -0.0631430596113205, -0.08115639537572861, -0.005171910859644413, -0.0518733449280262, 0.0014340318739414215, 0.03607972338795662, -0.016422918066382408, -0.09051652252674103, -0.13727901875972748, -0.027993183583021164, 0.09772031009197235, -0.09588884562253952, 0.016001615673303604, -0.08962088078260422, 0.08063482493162155, 0.000804746407084167, 0.00028235907666385174, -0.13623380661010742, -0.009298770688474178, 0.053720440715551376, -0.09664763510227203, 0.02621694654226303, -0.037588056176900864, 0.06775562465190887, 0.030456561595201492, -0.017798254266381264, -0.06904982775449753, -0.002745463978499174, -0.005033280234783888, -0.04791593179106712, -0.24707655608654022, -0.0735137015581131, -0.013981075957417488, 0.15803849697113037, -0.18073804676532745, 0.0011649079388007522, 0.0792606994509697, 0.12669244408607483, 0.005631860811263323, -0.05083651840686798, 0.04815458506345749, 0.038406018167734146, -0.01361959706991911, -0.06261864304542542, 0.011773129925131798, -0.008616579696536064, -0.10593659430742264, 0.006340019404888153, -0.15630820393562317, 0.01847062259912491, 0.058907605707645416, 0.03700202330946922, -0.08746848255395889, -0.03275582566857338, -0.056478675454854965, -0.061623819172382355, -0.026241259649395943, -0.01956660859286785, 0.1881571114063263, 0.04468943923711777, 0.08523272722959518, -0.07799221575260162, -0.07078060507774353, 0.015783989802002907, -0.009857785888016224, -0.006784431170672178, 0.17073489725589752, 0.028056101873517036, -0.050536803901195526, 0.07450298219919205, 0.01198025792837143, -0.05543499439954758, 0.1203010305762291, -0.08284074068069458, -0.08883623778820038, -0.05988456308841705, 0.06668800860643387, 0.030814262107014656, 0.09257695078849792, -0.15978319942951202, -0.00431053014472127, 0.03762273117899895, 0.0145104443654418, 0.01500229723751545, -0.16503198444843292, 0.01797417923808098, 0.03244154527783394, -0.10210499167442322, -0.0031584277749061584, 0.020655380561947823, 0.01163454633206129, 0.070149265229702, -0.009648209437727928, -0.08699280768632889, -0.036008287221193314, -0.056253187358379364, -0.10158663988113403, 0.1629098653793335, -0.08468776941299438, -0.1402529627084732, -0.113399438560009, -0.006503035314381123, -0.039728179574012756, -0.03191514313220978, 0.05327799543738365, -0.07926063984632492, -0.05613083392381668, -0.0809083878993988, 0.00885444600135088, 0.005897382739931345, 0.014448810368776321, 0.01808829791843891, -0.00901571661233902, 0.0851585641503334, -0.1146194338798523, -0.00019794850959442556, -0.0070798653177917, -0.008935500867664814, 0.008099104277789593, 0.04844490438699722, 0.08528806269168854, 0.15859393775463104, 0.0592525340616703, 0.04755334183573723, -0.010614276863634586, 0.2074868232011795, -0.13032546639442444, 0.011525428853929043, 0.08886340260505676, -0.030886828899383545, 0.06051582098007202, 0.1660110056400299, 0.03606991469860077, -0.07513175159692764, -0.0025385767221450806, 0.049354299902915955, -0.0003276266506873071, -0.24713774025440216, -0.030300848186016083, -0.06300315260887146, -0.001430955482646823, 0.08038225769996643, 0.04461485147476196, -0.002557019703090191, -0.0051619005389511585, -0.009402718394994736, -0.06620501726865768, 0.04964839294552803, 0.0550570972263813, 0.08681250363588333, 0.04863565042614937, 0.09206277132034302, -0.012893861159682274, -0.03745071962475777, 0.021604206413030624, 0.007318247575312853, 0.19850389659404755, -0.009011231362819672, 0.21757863461971283, 0.06126993149518967, 0.12678448855876923, -0.021923739463090897, 0.036001045256853104, -0.02291872352361679, 0.01800602674484253, 0.03906123712658882, -0.06212371587753296, -0.014772066846489906, 0.026134783402085304, 0.12861734628677368, 0.005441139917820692, -0.06442048400640488, 0.020387127995491028, 0.061649199575185776, 0.32746952772140503, 0.07803133130073547, -0.2357099950313568, -0.04832262545824051, 0.017119161784648895, -0.0916917473077774, -0.02819383516907692, 0.011407779529690742, 0.10212969034910202, -0.09363039582967758, 0.0960041955113411, -0.051092084497213364, 0.08364000916481018, -0.08647947758436203, 0.00842986535280943, 0.0758126899600029, 0.09560301899909973, 0.010382615961134434, 0.061123114079236984, -0.2214011698961258, 0.24624307453632355, -0.006224492099136114, 0.05756525695323944, -0.05538330599665642, 0.05531027540564537, 0.023979175835847855, -0.07582004368305206, 0.10077223926782608, -0.010207371786236763, -0.07440449297428131, -0.1401628851890564, -0.1115417554974556, 0.006117525976151228, 0.12497298419475555, -0.059121739119291306, 0.12389809638261795, -0.026602886617183685, -0.06497231125831604, 0.016872141510248184, -0.08635558933019638, -0.09490044414997101, -0.08154220879077911, 0.06851081550121307, -0.005579586606472731, 0.04509405046701431, -0.06512537598609924, -0.08235415071249008, -0.10161108523607254, 0.1483224332332611, -0.12904593348503113, -0.04588289558887482, -0.11831609159708023, 0.008898249827325344, 0.19519782066345215, -0.07419474422931671, 0.027216698974370956, 0.01987386867403984, 0.11614291369915009, 0.03488237038254738, -0.004769372753798962, 0.10095962882041931, -0.07478746026754379, -0.21371091902256012, -0.036124248057603836, 0.21705973148345947, 0.030139438807964325, 0.06762523204088211, -0.022817203775048256, 0.024158397689461708, -0.011456659995019436, -0.08512549102306366, 0.08099406957626343, 0.0031768344342708588, -0.029457494616508484, 0.044419508427381516, -0.013798994943499565, -0.028635799884796143, -0.10357546806335449, -0.03933241590857506, 0.10455001890659332, 0.2664998471736908, -0.07158651947975159, 0.07858521491289139, 0.018268857151269913, -0.0698678269982338, -0.11858959496021271, -0.04378610476851463, 0.13105592131614685, 0.02790982276201248, 0.005543719977140427, -0.16792190074920654, 0.024966703727841377, 0.05390065908432007, -0.01891671121120453, 0.08570022881031036, -0.332704097032547, -0.13784977793693542, 0.10449747741222382, 0.03084203042089939, -0.09058986604213715, -0.17049913108348846, -0.08488649874925613, 0.0027095135301351547, -0.07761450856924057, 0.013845874927937984, 0.011756157502532005, 0.12278129160404205, 0.0009843313600867987, 0.053862862288951874, 0.03562416508793831, -0.04602830484509468, 0.15144740045070648, 0.039887990802526474, 0.032862745225429535, -0.013308539986610413, 0.006057560909539461, -0.03131125494837761, -0.06293518841266632, 0.0660700872540474, -0.09824154525995255, 0.011137272231280804, -0.14364396035671234, -0.01267995499074459, -0.07883813232183456, 0.01885625533759594, -0.05673668533563614, 0.00023565918672829866, -0.010344413109123707, 0.032116856426000595, 0.09784960001707077, 0.013881350867450237, 0.08832640945911407, -0.06591694802045822, 0.09278222173452377, 0.16298694908618927, 0.11822676658630371, 0.023655647411942482, -0.15534822642803192, 0.01118767261505127, 0.021963272243738174, 0.005723385140299797, -0.09930756688117981, 0.06332306563854218, 0.14612187445163727, 0.04474986717104912, 0.15787751972675323, 0.021155381575226784, -0.10940172523260117, -0.01340445876121521, 0.05657130852341652, -0.094312883913517, -0.1442098319530487, -0.0030712883453816175, -0.006585125345736742, -0.13720862567424774, -0.01136010978370905, 0.11093033850193024, -0.009695151820778847, -0.010933837853372097, 0.028465887531638145, 0.07676367461681366, -0.02679833397269249, 0.2322431206703186, 0.022890061140060425, 0.1072256788611412, -0.09862816333770752, 0.07014428079128265, 0.049356963485479355, -0.07164106518030167, 0.053922541439533234, 0.12861204147338867, -0.03427950292825699, -0.02389654330909252, 0.023255927488207817, 0.11174075305461884, 0.06214878708124161, -0.0421031191945076, -0.13529632985591888, -0.13889893889427185, 0.08277104049921036, 0.08432275056838989, 0.03083704598248005, 0.027282044291496277, -0.008413740433752537, 0.022304361686110497, -0.07594148814678192, 0.13951584696769714, 0.14130456745624542, 0.056691378355026245, -0.11064379662275314, 0.08268177509307861, -0.006218964233994484, 0.0021686777472496033, 0.007149994373321533, -0.008011238649487495, -0.10778632014989853, 0.026555173099040985, -0.10433085262775421, 0.007684343960136175, -0.06634923070669174, 0.01536859292536974, 0.033127255737781525, -0.05807272344827652, -0.04126893728971481, 0.028130708262324333, -0.11535592377185822, -0.05406241491436958, -0.02866152487695217, 0.08002467453479767, -0.12268040329217911, -0.01810983568429947, 0.04284881800413132, -0.13598409295082092, 0.11342363804578781, 0.04293788969516754, -0.010275966487824917, -0.00550507428124547, -0.10305380821228027, -0.014275636523962021, 0.02621980756521225, 0.014210829511284828, 0.024354618042707443, -0.229151651263237, -0.009497380815446377, -0.028619101271033287, -0.0013073254376649857, -0.008624991402029991, 0.026842588558793068, -0.1314302384853363, 0.014058292843401432, -0.04213867709040642, -0.055654097348451614, -0.04802204668521881, 0.04381652921438217, 0.06670571118593216, 0.014528483152389526, 0.16294145584106445, -0.07426740974187851, 0.09281470626592636, -0.21221670508384705, -0.0027960599400103092, 0.001689846976660192, -0.05053297430276871, -0.05257152020931244, -0.005679132416844368, 0.10735156387090683, -0.07201151549816132, 0.0736897885799408, -0.027182143181562424, 0.0332387238740921, 0.01940663903951645, -0.057889021933078766, 0.02403273433446884, 0.05405494198203087, 0.09176427870988846, 0.011450247839093208, -0.02729588747024536, 0.05769334360957146, -0.05206817388534546, 0.03114047460258007, 0.06052408367395401, 0.1339629590511322, 0.13190104067325592, 0.07145209610462189, 0.055502790957689285, 0.10307155549526215, -0.13665327429771423, -0.12291905283927917, 0.15284772217273712, -0.06785032898187637, 0.14804880321025848, -0.02438388019800186, 0.2009839415550232, 0.08285267651081085, -0.20002664625644684, 0.09127886593341827, -0.039270855486392975, -0.09637121856212616, -0.09897544980049133, -0.10745395720005035, -0.08333611488342285, -0.14716662466526031, 0.01751581020653248, -0.0950690284371376, 0.08324170857667923, 0.027580825611948967, 0.04766019433736801, 0.026339512318372726, 0.11007364839315414, 0.029417362064123154, -0.00942905806005001, 0.10731200873851776, 0.015805872157216072, -0.02331484481692314, -0.010269073769450188, -0.057194389402866364, 0.04596858099102974, -0.009202132001519203, 0.0723760798573494, -0.015387899242341518, -0.06511266529560089, 0.04612809047102928, -0.018657518550753593, -0.11267267912626266, 0.030197303742170334, -0.03550956770777702, 0.044295504689216614, 0.09735417366027832, 0.052922323346138, -0.0027769175358116627, -0.012242435477674007, 0.17088323831558228, -0.08128952980041504, -0.07209061831235886, -0.13058245182037354, 0.17403405904769897, -0.007115475367754698, -0.0033050929196178913, 0.01693473756313324, -0.0840734988451004, -0.011230146512389183, 0.15025359392166138, 0.14611980319023132, -0.00740245683118701, -0.014705430716276169, 0.010800282470881939, 0.0006451696390286088, -0.0024829371832311153, 0.030756399035453796, 0.10516491532325745, 0.07908362150192261, -0.033066123723983765, 0.003625663463026285, -0.03044547699391842, -0.07479395717382431, -0.04769953712821007, 0.09015580266714096, 0.022617952898144722, -0.0037558069452643394, -0.013564562425017357, 0.1229727566242218, -0.08976138383150101, -0.18122996389865875, -0.003481443738564849, -0.17521394789218903, -0.1897459328174591, -0.03160497546195984, 0.08712006360292435, 0.05133780837059021, 0.044303979724645615, 0.007949157617986202, -0.051930394023656845, 0.12966269254684448, 0.008229522034525871, -0.03720531612634659, -0.08463000506162643, 0.0619136206805706, -0.15265081822872162, 0.17391137778759003, -0.011210743337869644, 0.06469902396202087, 0.12247860431671143, 0.02699039690196514, -0.09433416277170181, 0.040696244686841965, 0.10541443526744843, -0.15046989917755127, 0.05747905373573303, 0.20214535295963287, -0.014818795956671238, 0.13183455169200897, 0.04857923835515976, -0.04781961813569069, -0.0012796216178685427, -0.05115547776222229, -0.015386510640382767, -0.07288754731416702, 0.00021402562560979277, -0.051242031157016754, 0.11685330420732498, 0.2064172923564911, -0.07335717231035233, -0.004300159402191639, -0.04931723698973656, 0.009760569781064987, 0.021351207047700882, 0.11064627766609192, -0.04552316665649414, -0.266695499420166, 0.05245436355471611, -0.010887286625802517, 0.04393012821674347, -0.16261780261993408, -0.09700090438127518, 0.038180045783519745, -0.04112456366419792, -0.06559102982282639, 0.11738674342632294, 0.05846186354756355, 0.047365326434373856, -0.04390159249305725, -0.08001263439655304, -0.01007922738790512, 0.17385458946228027, -0.17300182580947876, -0.0446573905646801 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ur-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.1443 - Wer: 0.5677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.6269 | 15.98 | 400 | 3.3246 | 1.0 | | 3.0546 | 31.98 | 800 | 2.8148 | 0.9963 | | 1.4589 | 47.98 | 1200 | 1.0237 | 0.6584 | | 1.0911 | 63.98 | 1600 | 0.9524 | 0.5966 | | 0.8879 | 79.98 | 2000 | 0.9827 | 0.5822 | | 0.7467 | 95.98 | 2400 | 0.9923 | 0.5840 | | 0.6427 | 111.98 | 2800 | 0.9988 | 0.5714 | | 0.5685 | 127.98 | 3200 | 1.0872 | 0.5807 | | 0.5068 | 143.98 | 3600 | 1.1194 | 0.5822 | | 0.463 | 159.98 | 4000 | 1.1138 | 0.5692 | | 0.4212 | 175.98 | 4400 | 1.1232 | 0.5714 | | 0.4056 | 191.98 | 4800 | 1.1443 | 0.5677 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-ur-cv8 --dataset mozilla-foundation/common_voice_8_0 --config ur --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-ur-cv8" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ur", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "اب نے ٹ پیس ان لیتے ہیں" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 52.146 | 42.376 |
{"language": ["ur"], "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-ur-cv8", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "ur"}, "metrics": [{"type": "wer", "value": 42.376, "name": "Test WER"}, {"type": "cer", "value": 18.18, "name": "Test CER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xls-r-300m-ur-cv8
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "ur", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ur" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ur #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-large-xls-r-300m-ur-cv8 ================================ This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 1.1443 * Wer: 0.5677 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 200 ### Training results ### Framework versions * Transformers 4.16.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ur #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ 99, 143, 4, 35, 36, 8, 15 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ur #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200### Training results### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.11.0#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'### Inference With LM### Eval results on Common Voice 8 \"test\" (WER):" ]
[ -0.10757747292518616, 0.14408108592033386, -0.006464700680226088, 0.058358222246170044, 0.0882740393280983, 0.02091686800122261, 0.11482715606689453, 0.1756567507982254, -0.030490919947624207, 0.12567636370658875, 0.07496508210897446, 0.09425866603851318, 0.07624086737632751, 0.10209965705871582, -0.01845158077776432, -0.2282084971666336, 0.0036660071928054094, -0.05748185142874718, -0.09075962007045746, 0.1095021441578865, 0.09184785187244415, -0.09143803268671036, 0.04797894507646561, 0.004145409911870956, -0.06518387049436569, -0.010324294678866863, -0.038306184113025665, -0.028818927705287933, 0.07784882932901382, 0.03391546756029129, 0.015429848805069923, 0.019552676007151604, 0.07595376670360565, -0.29467344284057617, 0.003403717651963234, 0.06753074377775192, 0.04242760315537453, 0.05656161159276962, 0.11306365579366684, -0.029463117942214012, 0.10565105080604553, -0.06906453520059586, 0.03481170907616615, 0.0698208436369896, -0.08744000643491745, -0.2121034562587738, -0.08654235303401947, 0.03034208156168461, 0.14424413442611694, 0.05952318385243416, -0.03677384927868843, 0.0427345409989357, -0.07240239530801773, 0.09994751214981079, 0.24355973303318024, -0.21140719950199127, -0.05877956375479698, -0.0014602208975702524, 0.02830866165459156, 0.0031171594746410847, -0.11324532330036163, -0.010186218656599522, 0.014204973354935646, 0.004029125440865755, 0.0655580684542656, -0.013807340525090694, 0.04840444028377533, 0.01435869187116623, -0.13624198734760284, -0.05732749029994011, 0.1294671893119812, 0.070633165538311, -0.027128733694553375, -0.12206510454416275, -0.025531353428959846, -0.16623544692993164, -0.03877748176455498, 0.03165440261363983, 0.02001669630408287, -0.03860308602452278, -0.005757217761129141, 0.03651830926537514, -0.04833080247044563, -0.07534590363502502, 0.056173522025346756, 0.12199821323156357, 0.0395657904446125, -0.03443465381860733, 0.02015076018869877, 0.10094667226076126, 0.049440596252679825, -0.175608828663826, -0.020868655294179916, 0.03579539805650711, -0.1372351199388504, -0.006858071777969599, 0.0016044595977291465, 0.02445540763437748, 0.09070781618356705, 0.152878999710083, 0.03087634965777397, 0.09543570131063461, 0.02204941026866436, 0.009270790964365005, -0.04323296993970871, 0.16340267658233643, -0.05399494618177414, -0.11740931123495102, -0.046704087406396866, 0.13715553283691406, -0.006735030561685562, -0.0016193927731364965, -0.048510853201150894, 0.04816232621669769, 0.0963229238986969, 0.08581320196390152, 0.02342338301241398, 0.018432198092341423, -0.08042681217193604, -0.0196117851883173, -0.013109195977449417, -0.14612050354480743, 0.061336684972047806, 0.08659293502569199, -0.0743376761674881, -0.03568415343761444, -0.013306626118719578, -0.008138217963278294, -0.04714992642402649, 0.07096131145954132, -0.05250727757811546, 0.007093525025993586, -0.07482893019914627, -0.08451614528894424, 0.029529664665460587, -0.0280449241399765, -0.012570232152938843, -0.038496095687150955, -0.08566024899482727, -0.08213016390800476, 0.062089696526527405, -0.07904637604951859, -0.050514884293079376, -0.07554460316896439, -0.10092750936746597, 0.04548059031367302, -0.00013566332927439362, 0.1386173516511917, -0.0540221706032753, 0.08572398126125336, 0.029602322727441788, 0.04147988557815552, 0.15445879101753235, 0.060064103454351425, -0.03038240410387516, 0.06862933188676834, -0.14312072098255157, 0.09976058453321457, -0.1363883912563324, 0.05868600308895111, -0.1562924087047577, -0.0838865265250206, 0.03482744097709656, -0.0006896950071677566, 0.08794272691011429, 0.15429902076721191, -0.19150498509407043, -0.06341800838708878, 0.12707003951072693, -0.039615318179130554, -0.09265217185020447, 0.14022009074687958, -0.010737596079707146, -0.03089338168501854, 0.0037031699903309345, 0.17895561456680298, 0.13733498752117157, -0.1084432378411293, 0.0013595864875242114, -0.03721979260444641, 0.09387092292308807, 0.08642715215682983, 0.08500120788812637, -0.06083673983812332, 0.05480077490210533, -0.0018823111895471811, -0.05388493090867996, 0.017012542113661766, -0.06738278269767761, -0.08111342787742615, -0.011540133506059647, -0.05687011778354645, -0.01153893768787384, 0.03925534337759018, -0.022310873493552208, -0.07997782528400421, -0.13348840177059174, -0.03944214805960655, 0.10675643384456635, -0.08264102786779404, 0.007476592902094126, -0.08427475392818451, 0.08793777972459793, -0.006362949497997761, 0.011620293371379375, -0.13074354827404022, -0.022587662562727928, 0.0474935807287693, -0.07952302694320679, 0.0070307874120771885, -0.012337147258222103, 0.05585391819477081, 0.031237032264471054, -0.011392293497920036, -0.05934828519821167, -0.018964996561408043, -0.014547315426170826, -0.05153565853834152, -0.2521437704563141, -0.07011409103870392, -0.019195904955267906, 0.14674384891986847, -0.1973729282617569, 0.010585225187242031, 0.07844589650630951, 0.11126149445772171, 0.013737855479121208, -0.05245937407016754, 0.03857937827706337, 0.021839899942278862, -0.03329439088702202, -0.07288936525583267, 0.010295486077666283, -0.00556570291519165, -0.09051376581192017, -0.005873830057680607, -0.14134526252746582, 0.04899973049759865, 0.06820026785135269, 0.033058784902095795, -0.08026949316263199, -0.03464656323194504, -0.06157492473721504, -0.05270351469516754, -0.03945845365524292, -0.028779860585927963, 0.14625446498394012, 0.03470587357878685, 0.08728715777397156, -0.07778699696063995, -0.07279287278652191, 0.02409191057085991, -0.006431506015360355, -0.006535131949931383, 0.1762990653514862, 0.06250029057264328, -0.03510657325387001, 0.08210310339927673, 0.024081440642476082, -0.043102093040943146, 0.11398568749427795, -0.07338180392980576, -0.08426835387945175, -0.06613121926784515, 0.061554618179798126, 0.02965659834444523, 0.1156754195690155, -0.1771344542503357, -0.009867283515632153, 0.0381828248500824, 0.019341791048645973, 0.018079329282045364, -0.16511039435863495, 0.009339535608887672, 0.03225600719451904, -0.09435827285051346, -0.007399470079690218, 0.01386390533298254, -0.00660604378208518, 0.07819265127182007, -0.00995100662112236, -0.07496369630098343, -0.04061255604028702, -0.05636131763458252, -0.10353086143732071, 0.16467435657978058, -0.08702009171247482, -0.1137501522898674, -0.11868519335985184, -0.01387450285255909, -0.05200164020061493, -0.020888084545731544, 0.044310543686151505, -0.07702162861824036, -0.05176953598856926, -0.08114001154899597, 0.0193652231246233, -0.001527052721939981, 0.021774213761091232, 0.03918728604912758, 0.015923401340842247, 0.06069698929786682, -0.10622148215770721, -0.0004247030010446906, -0.0031856982968747616, -0.006072748452425003, -0.0011044733691960573, 0.05179281160235405, 0.09944064170122147, 0.15650403499603271, 0.061253391206264496, 0.05065315589308739, -0.0027565297205001116, 0.21158263087272644, -0.13504712283611298, 0.022118333727121353, 0.10560714453458786, -0.003451734781265259, 0.055352408438920975, 0.15517808496952057, 0.040212422609329224, -0.09206854552030563, 0.00930482055991888, 0.0595201775431633, -0.008929978124797344, -0.24037876725196838, -0.01704457774758339, -0.0660325437784195, -0.0019732469227164984, 0.07996773719787598, 0.036497507244348526, -0.030918769538402557, 0.009154125116765499, 0.00040887610521167517, -0.0442156046628952, 0.04194730147719383, 0.04970569163560867, 0.0488014854490757, 0.03472685441374779, 0.09294700622558594, -0.020189478993415833, -0.027117295190691948, 0.0271061509847641, 0.010435940697789192, 0.22145697474479675, -0.01842930167913437, 0.20062217116355896, 0.0725182369351387, 0.11192727833986282, -0.038858577609062195, 0.03679270297288895, -0.013532816432416439, 0.008588694036006927, 0.0341382659971714, -0.0646681860089302, -0.022558964788913727, 0.030619265511631966, 0.10804899781942368, 0.02295706793665886, -0.07006178051233292, 0.04992295429110527, 0.06634046137332916, 0.3263765573501587, 0.07757969945669174, -0.23234428465366364, -0.046770885586738586, 0.030839215964078903, -0.07500720024108887, -0.02646399661898613, 0.020461568608880043, 0.121223583817482, -0.08058421313762665, 0.07558898627758026, -0.0463729053735733, 0.08500057458877563, -0.08149150758981705, 0.010170506313443184, 0.08275490999221802, 0.09567577391862869, 0.008643395267426968, 0.07135855406522751, -0.23914983868598938, 0.24792605638504028, 0.00159467663615942, 0.05799005553126335, -0.06605523824691772, 0.06266865134239197, 0.028485551476478577, -0.0458567850291729, 0.11131950467824936, -0.007583832833915949, -0.08361883461475372, -0.14369556307792664, -0.09624607115983963, 0.002627464011311531, 0.12650546431541443, -0.0710148960351944, 0.1276097297668457, -0.04297645390033722, -0.05956451594829559, 0.015508385375142097, -0.0737459808588028, -0.09558546543121338, -0.0866202861070633, 0.06457267701625824, -0.02528884820640087, 0.013640234246850014, -0.06876921653747559, -0.07326298952102661, -0.07692117989063263, 0.1674133986234665, -0.1447107195854187, -0.03124702163040638, -0.12710745632648468, 0.021631285548210144, 0.1687318980693817, -0.0714225247502327, 0.009417256340384483, 0.011897437274456024, 0.12486850470304489, 0.0392010360956192, -0.002499809255823493, 0.10031003504991531, -0.08610022068023682, -0.20680227875709534, -0.04449421167373657, 0.1918099820613861, 0.02290222980082035, 0.05851329490542412, -0.020596938207745552, 0.00862107053399086, -0.019760815426707268, -0.09878826141357422, 0.08756152540445328, 0.02606154978275299, -0.02143782377243042, 0.0508795864880085, -0.03648762404918671, -0.005983872804790735, -0.09507298469543457, -0.044313423335552216, 0.08401773124933243, 0.2726829946041107, -0.07595560699701309, 0.04660160467028618, 0.015364292077720165, -0.07921891659498215, -0.13866767287254333, -0.017189424484968185, 0.10126395523548126, 0.02922866679728031, 0.0017128295730799437, -0.160374715924263, 0.024820268154144287, 0.05098797380924225, -0.019764866679906845, 0.11639932543039322, -0.33960118889808655, -0.12747575342655182, 0.08232567459344864, 0.04845801368355751, -0.07855556905269623, -0.1853754222393036, -0.07932103425264359, -0.00898623839020729, -0.07065945118665695, 0.015035162679851055, 0.0001862603094195947, 0.12178084254264832, -0.004474109038710594, 0.031137023121118546, 0.03199534863233566, -0.0580255500972271, 0.1583709418773651, 0.05225382372736931, 0.043669313192367554, -0.017145399004220963, -0.0022017669398337603, 0.010185386054217815, -0.06924830377101898, 0.05302803963422775, -0.08330613374710083, 0.022344347089529037, -0.16349323093891144, -0.00877483282238245, -0.07230795919895172, 0.013853809796273708, -0.06516898423433304, -0.012764030136168003, -0.022528158500790596, 0.045542825013399124, 0.09700196236371994, 0.018329260870814323, 0.08360325545072556, -0.06241149827837944, 0.07300079613924026, 0.16575653851032257, 0.10132681578397751, 0.01451276708394289, -0.1419866383075714, 0.012139381840825081, 0.030068689957261086, 0.00881699938327074, -0.1281881183385849, 0.06237832084298134, 0.14131057262420654, 0.05326411873102188, 0.1477005034685135, 0.02906077355146408, -0.10004866123199463, -0.009798102080821991, 0.057650644332170486, -0.08642219007015228, -0.14811457693576813, -0.007601221092045307, -0.013263192027807236, -0.14421498775482178, -0.012324814684689045, 0.1110752522945404, -0.004124731756746769, 0.0067032454535365105, 0.022584009915590286, 0.08027875423431396, -0.02531678043305874, 0.22813330590724945, 0.028589636087417603, 0.11212082207202911, -0.09125503152608871, 0.07405366003513336, 0.030414359644055367, -0.05695997551083565, 0.03518490120768547, 0.11373865604400635, -0.04227743297815323, -0.035682644695043564, 0.011713828891515732, 0.10692642629146576, 0.05672736465930939, -0.029477152973413467, -0.14850777387619019, -0.1326638162136078, 0.0846685990691185, 0.055787019431591034, 0.041804272681474686, 0.026714086532592773, -0.00976475141942501, 0.020781705155968666, -0.08361242711544037, 0.1354900300502777, 0.11716112494468689, 0.0525643415749073, -0.11768583208322525, 0.06255132704973221, -0.00949015375226736, 0.0176945049315691, 0.0033565633930265903, 0.007011534180492163, -0.11732476949691772, 0.02857157774269581, -0.08350543677806854, -0.008647048845887184, -0.0611053965985775, 0.009944849647581577, 0.027078205719590187, -0.06438661366701126, -0.05608895421028137, 0.018467212095856667, -0.11246246099472046, -0.05711996927857399, -0.025817980989813805, 0.08410273492336273, -0.11499685049057007, -0.019261149689555168, 0.04369517043232918, -0.14330239593982697, 0.10902296751737595, 0.01919718086719513, 0.005288832820951939, -0.01405448466539383, -0.08871209621429443, 0.0036647010128945112, 0.0180224422365427, 0.018299024552106857, 0.03440456837415695, -0.22296158969402313, 0.00022208812879398465, -0.0423775240778923, 0.00920204445719719, -0.008704772219061852, 0.019810905680060387, -0.13137586414813995, 0.02004496566951275, -0.04393991455435753, -0.058099281042814255, -0.049329955130815506, 0.055352602154016495, 0.06879248470067978, 0.009316395036876202, 0.16743025183677673, -0.05250097066164017, 0.08348938822746277, -0.2164972871541977, 0.00019849547243211418, 0.011982135474681854, -0.046102214604616165, -0.02193743735551834, -0.014371059834957123, 0.10777409374713898, -0.07368101179599762, 0.08813139796257019, -0.014392731711268425, 0.044318705797195435, 0.02653258852660656, -0.0722595825791359, 0.03299187123775482, 0.05538037419319153, 0.08484061062335968, 0.01123817078769207, -0.007621478289365768, 0.059405747801065445, -0.044414911419153214, 0.043790824711322784, 0.05304263159632683, 0.14596202969551086, 0.13379983603954315, 0.07249534875154495, 0.058064550161361694, 0.09381629526615143, -0.14572939276695251, -0.13430200517177582, 0.165110245347023, -0.07892578095197678, 0.14936095476150513, -0.03908616676926613, 0.1800820529460907, 0.10202600806951523, -0.19361726939678192, 0.08665910363197327, -0.04054299369454384, -0.09087002277374268, -0.10118266940116882, -0.09809454530477524, -0.07526426017284393, -0.15049944818019867, 0.017727931961417198, -0.09720492362976074, 0.08065757155418396, 0.03205240145325661, 0.0427926667034626, 0.02372693456709385, 0.09822934120893478, 0.023119531571865082, 0.000766894721891731, 0.09836971014738083, 0.01451166346669197, -0.03402582183480263, -0.016936112195253372, -0.06741315871477127, 0.03374660015106201, -0.026223205029964447, 0.07431352138519287, -0.01223370898514986, -0.0774151161313057, 0.049091171473264694, -0.014932515099644661, -0.09348541498184204, 0.021739933639764786, -0.04184642806649208, 0.034414831548929214, 0.08641866594552994, 0.04718952253460884, -0.007482192013412714, -0.011792146600782871, 0.19234733283519745, -0.08336540311574936, -0.060720618814229965, -0.13474026322364807, 0.14111216366291046, -0.006089285481721163, 0.012969768606126308, 0.006079475861042738, -0.08080574125051498, -0.01978529989719391, 0.18346400558948517, 0.14106327295303345, -0.023343510925769806, -0.0216364786028862, 0.02276957966387272, 0.0013642699923366308, -0.017612086609005928, 0.043601781129837036, 0.10935734212398529, 0.06501543521881104, -0.02946236915886402, -0.01088548731058836, -0.03082779236137867, -0.07403858751058578, -0.04672287777066231, 0.09938789904117584, 0.028427330777049065, 0.011336137540638447, -0.01799163967370987, 0.11535775661468506, -0.0687180906534195, -0.18121853470802307, 0.019795624539256096, -0.16802820563316345, -0.18238703906536102, -0.029298849403858185, 0.08210702985525131, 0.03327011689543724, 0.06248289719223976, -0.0008312232093885541, -0.04979183152318001, 0.13297174870967865, -0.0008111000061035156, -0.044475000351667404, -0.09773227572441101, 0.055469244718551636, -0.14113079011440277, 0.19135235249996185, -0.02733459137380123, 0.03267006203532219, 0.14070332050323486, 0.007566956337541342, -0.1127932146191597, 0.0348251648247242, 0.10454117506742477, -0.1313386857509613, 0.06194941699504852, 0.18650034070014954, -0.022919312119483948, 0.13054773211479187, 0.04937601834535599, -0.04021186754107475, -0.003764211433008313, -0.055646903812885284, -0.01718817465007305, -0.08309563994407654, 0.0031059577595442533, -0.05544744431972504, 0.12314736098051071, 0.20748762786388397, -0.07469107955694199, 0.007837769575417042, -0.04912877455353737, 0.02571818418800831, 0.008650042116641998, 0.11916550993919373, -0.043065592646598816, -0.2626388370990753, 0.04788418859243393, -0.002156444825232029, 0.03214592486619949, -0.17244850099086761, -0.09227835386991501, 0.04611066356301308, -0.04459280148148537, -0.06215761974453926, 0.1210128590464592, 0.0630514919757843, 0.04916921630501747, -0.0525679886341095, -0.13638940453529358, -0.011445970274508, 0.1706196665763855, -0.16308709979057312, -0.05651654675602913 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ur This model is a fine-tuned version of [anuragshas/wav2vec2-large-xls-r-300m-ur](https://huggingface.co/anuragshas/wav2vec2-large-xls-r-300m-ur) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.0508 - Wer: 0.7328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 240 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0719 | 66.67 | 400 | 1.8510 | 0.7432 | | 0.0284 | 133.33 | 800 | 2.0088 | 0.7415 | | 0.014 | 200.0 | 1200 | 2.0508 | 0.7328 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-ur", "results": []}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xls-r-300m-ur
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-large-xls-r-300m-ur ============================ This model is a fine-tuned version of anuragshas/wav2vec2-large-xls-r-300m-ur on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 2.0508 * Wer: 0.7328 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 64 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.12 * num\_epochs: 240 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 240", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 240", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ 65, 145, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 240### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ -0.1430255025625229, 0.10313771665096283, -0.0019136489136144519, 0.0701155811548233, 0.13828518986701965, 0.0176943801343441, 0.11748827993869781, 0.1283492147922516, -0.11486749351024628, 0.07878625392913818, 0.10219380259513855, 0.09410135447978973, 0.03837212547659874, 0.09915472567081451, -0.029828839004039764, -0.2887478470802307, -0.009611048735678196, 0.03523338586091995, -0.12711161375045776, 0.125694140791893, 0.08906815201044083, -0.13095858693122864, 0.050631847232580185, 0.038744889199733734, -0.18093255162239075, 0.00177321070805192, -0.002230173908174038, -0.09319806098937988, 0.1315717101097107, 0.02561854012310505, 0.10244947671890259, 0.021339263767004013, 0.10102376341819763, -0.17652466893196106, 0.007001847960054874, 0.058498844504356384, 0.036224428564310074, 0.10281676054000854, 0.08498384803533554, -0.0009374228538945317, 0.13001343607902527, -0.06665626913309097, 0.06569579988718033, 0.03902803361415863, -0.09268276393413544, -0.28490889072418213, -0.0873311385512352, 0.07578562945127487, 0.08672115206718445, 0.10344186425209045, -0.0140309426933527, 0.10710716247558594, -0.0742780789732933, 0.0905262902379036, 0.2620447874069214, -0.27948519587516785, -0.07241225242614746, -0.022756529971957207, 0.03703627362847328, 0.017718849703669548, -0.12532657384872437, -0.019569428637623787, 0.043479323387145996, 0.03937217965722084, 0.10233756899833679, 0.0022483589127659798, -0.051232222467660904, 0.013467478565871716, -0.13997237384319305, -0.04334649443626404, 0.12962530553340912, 0.045866310596466064, -0.03808450326323509, -0.07363393157720566, -0.05221147462725639, -0.22777676582336426, -0.03668444976210594, 0.0013296814868226647, 0.033188410103321075, -0.07927810400724411, -0.13056515157222748, 0.005133578088134527, -0.08653941005468369, -0.09996411204338074, -0.016185060143470764, 0.198866605758667, 0.04998057335615158, 0.004653219133615494, -0.017259078100323677, 0.11709357053041458, 0.040361832827329636, -0.15476785600185394, 0.020673496648669243, 0.054658908396959305, -0.04800097644329071, -0.0008937862585298717, -0.05248064547777176, -0.029619405046105385, 0.00867290049791336, 0.1395302414894104, -0.07260600477457047, 0.03905700519680977, 0.02415464259684086, 0.02862798050045967, -0.09624107927083969, 0.21412067115306854, -0.08688917011022568, -0.03453144058585167, -0.014763989485800266, 0.09851354360580444, 0.024335989728569984, -0.012395706959068775, -0.09253470599651337, 0.004045130219310522, 0.10959091037511826, 0.03275943547487259, -0.02637622319161892, 0.03362421691417694, -0.03068803809583187, -0.030811680480837822, 0.02574833482503891, -0.10270044952630997, 0.026345016434788704, 0.020289557054638863, -0.09687881916761398, 0.01718558929860592, 0.009106092154979706, 0.0060615395195782185, -0.024271788075566292, 0.15641625225543976, -0.08788266777992249, 0.0014634489780291915, -0.08162752538919449, -0.09560856223106384, 0.021436240524053574, -0.07405019551515579, 0.0010499731870368123, -0.07404778152704239, -0.11458740383386612, -0.023777499794960022, 0.02346990257501602, -0.03924014791846275, -0.08066751807928085, -0.04199250042438507, -0.11124864220619202, 0.04087849706411362, -0.021402765065431595, 0.16444143652915955, -0.051403194665908813, 0.12434171885251999, 0.06514739245176315, 0.05239494889974594, 0.004333093762397766, 0.058653585612773895, -0.06101251393556595, 0.014287125319242477, -0.16280214488506317, 0.037397246807813644, -0.0671551525592804, 0.03265363350510597, -0.09948714822530746, -0.13313736021518707, 0.014024179428815842, -0.006179457530379295, 0.09203996509313583, 0.0985306054353714, -0.15726380050182343, -0.11778269708156586, 0.14347153902053833, -0.08256732672452927, -0.09941092878580093, 0.131003275513649, -0.007705003023147583, -0.04258444532752037, 0.043519631028175354, 0.15424028038978577, 0.05593225359916687, -0.11823870241641998, -0.029444079846143723, -0.03733080253005028, 0.10451710224151611, -0.018732458353042603, 0.09487870335578918, -0.03114345110952854, 0.04872952029109001, 0.017028138041496277, -0.046435773372650146, 0.042472340166568756, -0.10833649337291718, -0.08845525979995728, -0.0406520776450634, -0.10095921158790588, 0.0498579777777195, 0.06796912848949432, 0.05462035536766052, -0.09046047180891037, -0.12578144669532776, 0.04509009048342705, 0.1246824637055397, -0.0796007439494133, 0.030461933463811874, -0.08298313617706299, 0.08581110090017319, -0.04223538935184479, -0.02472800575196743, -0.18908946216106415, -0.000891605915967375, 0.019422205165028572, -0.028306489810347557, 0.02510339394211769, -0.024088595062494278, 0.0720917135477066, 0.068015456199646, -0.0667293518781662, -0.06390045583248138, -0.07980927079916, -0.0204169899225235, -0.08461867272853851, -0.2333867996931076, -0.08373759686946869, -0.007762879598885775, 0.14002180099487305, -0.18228060007095337, 0.014206786639988422, 0.015166372992098331, 0.1319885104894638, 0.03138233721256256, -0.031345680356025696, -0.018726136535406113, 0.09485471993684769, -0.025082148611545563, -0.05279373377561569, 0.02766169235110283, 0.0021918541751801968, -0.09203945845365524, -0.021940531209111214, -0.11251591891050339, 0.15491946041584015, 0.13943533599376678, -0.03223170340061188, -0.07459168881177902, 0.023244718089699745, -0.08656267821788788, -0.051797494292259216, -0.03679075092077255, -0.003468794049695134, 0.1703980416059494, 0.021982019767165184, 0.13826850056648254, -0.0827920064330101, -0.05519290640950203, 0.04204718396067619, 0.007786380592733622, 0.006200646515935659, 0.11273801326751709, 0.08785626292228699, -0.0036983699537813663, 0.12147510796785355, 0.08058816194534302, -0.12289433926343918, 0.15056616067886353, -0.07139269262552261, -0.10378110408782959, -0.023902669548988342, -0.020378615707159042, 0.020104700699448586, 0.14549580216407776, -0.13847798109054565, -0.022736554965376854, 0.02777898870408535, -0.004063621629029512, 0.02525661699473858, -0.22378629446029663, -0.00422125868499279, 0.01608525589108467, -0.0630304291844368, -0.02610471285879612, -0.002175048226490617, 0.01362791657447815, 0.10731100291013718, 0.0009756771614775062, -0.07230562716722488, -0.003050507279112935, 0.0009286392596550286, -0.05848591402173042, 0.19105041027069092, -0.07953371107578278, -0.15250326693058014, -0.14639905095100403, -0.003840862540528178, -0.06186511740088463, -0.009100460447371006, 0.04455901309847832, -0.10588078945875168, -0.027915121987462044, -0.03735165670514107, 0.05686451122164726, -0.030007269233465195, 0.05430154874920845, 0.012759031727910042, 0.013043083250522614, 0.08083555847406387, -0.1205260157585144, 0.02255871146917343, -0.05599571764469147, -0.05635395646095276, 0.004335773177444935, 0.08601804077625275, 0.11381515860557556, 0.16184143722057343, 0.007338874973356724, 0.015548468567430973, -0.03026202879846096, 0.16932499408721924, -0.10600905865430832, -0.04397071525454521, 0.13683278858661652, 0.0008527294266968966, 0.03608664125204086, 0.10521810501813889, 0.07070796191692352, -0.07017906755208969, -0.011907657608389854, 0.04059121757745743, -0.019220983609557152, -0.2405238151550293, -0.04608703777194023, -0.04474532604217529, -0.004966967739164829, 0.09926498681306839, 0.035038407891988754, 0.03671753779053688, 0.03511819615960121, -0.013717873953282833, 0.04175540804862976, -0.04432979226112366, 0.06003948301076889, 0.09991718828678131, 0.050665829330682755, 0.13436496257781982, -0.027825113385915756, -0.05481980741024017, 0.026684002950787544, -0.018350088968873024, 0.21337036788463593, -0.029668135568499565, 0.15638402104377747, 0.042786743491888046, 0.17984677851200104, 0.015666460618376732, 0.08590662479400635, 0.008411807008087635, -0.026088479906320572, 0.026646310463547707, -0.06027120351791382, -0.02922739088535309, 0.009763109497725964, 0.05170738324522972, 0.08514074236154556, -0.12554442882537842, -0.014519833028316498, 0.034689802676439285, 0.33927392959594727, 0.04974743723869324, -0.3184763193130493, -0.11776168644428253, -0.02696377784013748, -0.0635644719004631, -0.03073921799659729, 0.030043654143810272, 0.1143796443939209, -0.09061960875988007, 0.052070051431655884, -0.06865931302309036, 0.0827779546380043, -0.06018872931599617, 0.022977890446782112, 0.09776252508163452, 0.10354331880807877, 0.006199433468282223, 0.05182928591966629, -0.2554526925086975, 0.28974631428718567, 0.005450000986456871, 0.08965322375297546, -0.052514128386974335, 0.02580973692238331, 0.023285377770662308, -0.0023509073071181774, 0.05212026089429855, -0.02703964151442051, -0.017590345814824104, -0.181186243891716, -0.08241279423236847, 0.020959902554750443, 0.12874935567378998, -0.0596219040453434, 0.11875699460506439, -0.024647586047649384, -0.03157695755362511, 0.05369693413376808, -0.08523385226726532, -0.06734427064657211, -0.0845024511218071, 0.020901571959257126, 0.04080598056316376, 0.030630800873041153, -0.09031102061271667, -0.1371113508939743, -0.08457987010478973, 0.1307172328233719, -0.09923464804887772, -0.03541410714387894, -0.1211928203701973, 0.09662708640098572, 0.17102190852165222, -0.070717953145504, 0.05466172844171524, 0.018827980384230614, 0.11817203462123871, 0.024372786283493042, -0.03767077252268791, 0.09016340970993042, -0.07951834052801132, -0.24091403186321259, -0.042771924287080765, 0.1735285073518753, 0.01631646789610386, 0.06712012737989426, -0.037392765283584595, 0.03797583654522896, -0.029670020565390587, -0.07645875215530396, 0.040800657123327255, -0.0012469952926039696, 0.03899762034416199, 0.03300086036324501, -0.02174973301589489, -0.018957719206809998, -0.06687857210636139, -0.03890284523367882, 0.13943250477313995, 0.2540757358074188, -0.09268444031476974, 0.019693441689014435, 0.06736748665571213, -0.037446774542331696, -0.16050472855567932, 0.019256796687841415, 0.11970335245132446, 0.031201915815472603, -0.01242835447192192, -0.19761554896831512, 0.09145405888557434, 0.08809024095535278, -0.03222877159714699, 0.10846340656280518, -0.30354809761047363, -0.1450391560792923, 0.10988569259643555, 0.09732145816087723, 0.008234376087784767, -0.1591678410768509, -0.05509272962808609, -0.014510472305119038, -0.09954161942005157, 0.0883227288722992, -0.04804350808262825, 0.12460599094629288, -0.022306136786937714, 0.08076751232147217, 0.017152944579720497, -0.05809056758880615, 0.12414281815290451, 0.0010012161219492555, 0.05379842221736908, -0.00447270181030035, -0.0019537967164069414, 0.05319485440850258, -0.030928125604987144, 0.016309751197695732, -0.06087614223361015, 0.036037374287843704, -0.08224783092737198, -0.023202599957585335, -0.11025115847587585, 0.04285674914717674, -0.044090837240219116, -0.04543101042509079, -0.015764307230710983, 0.015980858355760574, 0.010116567835211754, -0.018549589440226555, 0.1375727355480194, 0.007020019926130772, 0.16960659623146057, 0.1136048436164856, 0.08039171993732452, -0.02841794490814209, -0.11117304861545563, -0.005468560848385096, -0.023946557193994522, 0.07457927614450455, -0.11726284772157669, 0.009838408790528774, 0.1392662078142166, 0.0774727314710617, 0.10918190330266953, 0.07260729372501373, -0.07122518867254257, 0.012524611316621304, 0.07095465809106827, -0.14452886581420898, -0.0910010039806366, -0.024074802175164223, -0.017058784142136574, -0.13129377365112305, 0.0712641179561615, 0.10718825459480286, -0.0704115629196167, -0.018721239641308784, 0.011415933258831501, 0.00021762697724625468, -0.045400455594062805, 0.24396519362926483, 0.059802472591400146, 0.08026827871799469, -0.11953288316726685, 0.07563675940036774, 0.04405321925878525, -0.14359663426876068, 0.020027024671435356, 0.07371249794960022, -0.05983957275748253, -0.008775644935667515, 0.013005800545215607, 0.08646755665540695, -0.041166771203279495, -0.06656743586063385, -0.15669220685958862, -0.13064338266849518, 0.08443146198987961, 0.14798064529895782, 0.06509225815534592, 0.02908931113779545, -0.05214099586009979, 0.04803256690502167, -0.14079678058624268, 0.10726795345544815, 0.06673253327608109, 0.08091549575328827, -0.15689922869205475, 0.17029984295368195, 0.023935895413160324, 0.0345575176179409, -0.006596750114113092, 0.019609183073043823, -0.09478481858968735, 0.017320241779088974, -0.10959211736917496, -0.03726718947291374, -0.02732883393764496, -0.005113022867590189, -0.00046311880578286946, -0.06463763862848282, -0.0699041485786438, 0.03725941479206085, -0.11631692945957184, -0.036469485610723495, 0.012125696986913681, 0.029512275010347366, -0.12944737076759338, 0.006142112426459789, 0.03559108078479767, -0.10494258999824524, 0.0980156734585762, 0.0865200012922287, 0.029294710606336594, 0.06824296712875366, -0.07183065265417099, -0.017347058281302452, 0.04805862158536911, 0.0017673125257715583, 0.05669211223721504, -0.11597652733325958, -0.00367078953422606, -0.020087210461497307, 0.05821002274751663, 0.0014794028829783201, 0.06351419538259506, -0.14372901618480682, -0.009151746518909931, -0.010686924681067467, -0.044086676090955734, -0.07072142511606216, 0.033732861280441284, 0.0941167026758194, 0.030305784195661545, 0.17339932918548584, -0.0784546434879303, 0.034288689494132996, -0.21985718607902527, 0.013044511899352074, -0.04743547365069389, -0.09544596821069717, -0.10888603329658508, -0.014193523675203323, 0.09100280702114105, -0.06141923740506172, 0.09691236913204193, -0.029233524575829506, 0.09220542013645172, 0.034219469875097275, -0.044727303087711334, -0.018758730962872505, 0.04756888374686241, 0.2134983092546463, 0.04413938149809837, -0.021534012630581856, 0.06383755803108215, 0.01807166449725628, 0.0732528567314148, 0.13500316441059113, 0.1641928255558014, 0.1285676807165146, 0.030132170766592026, 0.09472090750932693, 0.09090780466794968, -0.09640879929065704, -0.17336584627628326, 0.0669543445110321, -0.06381210684776306, 0.12765516340732574, -0.013516922481358051, 0.22368866205215454, 0.10178548842668533, -0.1650693267583847, 0.049573685973882675, -0.04000604897737503, -0.07721564918756485, -0.09914858639240265, -0.005207465961575508, -0.06775680184364319, -0.17300093173980713, 0.02105492167174816, -0.12097836285829544, 0.03900793939828873, 0.08311974257230759, 0.026286916807293892, 0.009229768067598343, 0.15679731965065002, 0.04480776563286781, 0.008852562867105007, 0.09504584968090057, 0.035864125937223434, -0.03132415562868118, -0.06520480662584305, -0.0781654492020607, 0.01854192279279232, -0.017257964238524437, 0.050961580127477646, -0.0627264603972435, -0.1246282160282135, 0.060743771493434906, 0.014266452752053738, -0.0997173935174942, 0.03899473324418068, -0.011108524166047573, 0.09409964829683304, 0.062002040445804596, 0.009694531559944153, 0.006842858158051968, -0.026191098615527153, 0.25200390815734863, -0.11681530624628067, -0.0747145563364029, -0.1227383017539978, 0.24918848276138306, 0.0179207231849432, -0.03200923651456833, 0.039316680282354355, -0.08333232998847961, -0.03956734761595726, 0.19130927324295044, 0.1805884689092636, -0.01991787552833557, -0.022147729992866516, 0.026356443762779236, -0.016247162595391273, -0.06771276891231537, 0.07284779101610184, 0.1393316686153412, 0.11748179793357849, -0.0672231912612915, -0.03846874460577965, -0.05226126313209534, -0.04068809747695923, -0.015155710279941559, 0.08137750625610352, 0.005742533598095179, -0.029792118817567825, -0.03477512300014496, 0.07409818470478058, -0.0584338903427124, -0.1681341677904129, 0.053843576461076736, -0.22450923919677734, -0.18980683386325836, -0.015809962525963783, 0.10916869342327118, 0.023837050423026085, 0.0620420016348362, 0.004792424384504557, -0.02297748252749443, 0.09397339075803757, -0.005550832021981478, -0.06950653344392776, -0.11235301941633224, 0.0949883684515953, -0.09319143742322922, 0.18385165929794312, -0.05129953473806381, 0.07002641260623932, 0.11431825160980225, 0.07402357459068298, -0.08691295236349106, 0.03204638883471489, 0.06834536790847778, -0.1667511910200119, 0.033005114644765854, 0.1959330290555954, -0.027182303369045258, 0.10361621528863907, 0.018787089735269547, -0.1306229680776596, 0.00341538293287158, -0.07962311804294586, -0.035919494926929474, -0.05825630947947502, -0.022399315610527992, -0.04776730388402939, 0.12536916136741638, 0.21370498836040497, -0.05192086845636368, -0.011089588515460491, -0.06315618008375168, 0.017814883962273598, 0.06854065507650375, 0.07798295468091965, -0.03434344381093979, -0.29626092314720154, 0.021716535091400146, 0.009155101142823696, -0.012446005828678608, -0.2540765702724457, -0.07481039315462112, 0.05055376887321472, -0.07091878354549408, -0.08071395754814148, 0.07461689412593842, 0.05926287919282913, 0.045855578035116196, -0.043593864887952805, -0.026802657172083855, -0.05473614111542702, 0.17100466787815094, -0.20732155442237854, -0.07553283125162125 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Dhivehi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dhivehi using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "dv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-dv") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-dv") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Dhivehi test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "dv", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-dv") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-dv") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\،\.\؟\–\'\’]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 55.68 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "dv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Dhivehi", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice dv", "type": "common_voice", "args": "dv"}, "metrics": [{"type": "wer", "value": 55.68, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xlsr-53-dv
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dv", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "dv" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dv #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Dhivehi Fine-tuned facebook/wav2vec2-large-xlsr-53 on Dhivehi using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Dhivehi test data of Common Voice. Test Result: 55.68 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Dhivehi\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Dhivehi using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Dhivehi test data of Common Voice.\n\nTest Result: 55.68 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dv #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Dhivehi\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Dhivehi using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Dhivehi test data of Common Voice.\n\nTest Result: 55.68 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 80, 66, 20, 30, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dv #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Dhivehi\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Dhivehi using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\nThe model can be evaluated as follows on the Dhivehi test data of Common Voice.\n\nTest Result: 55.68 %## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.16175693273544312, 0.02417694590985775, -0.002375354990363121, -0.02769365720450878, 0.07277286052703857, -0.03990280255675316, 0.18423956632614136, 0.09542214870452881, -0.005787815898656845, -0.016645357012748718, 0.03777255117893219, 0.01980850100517273, 0.059402111917734146, 0.08505889773368835, -0.01958378776907921, -0.20978105068206787, 0.007716924883425236, 0.013921432197093964, 0.021558815613389015, 0.11027141660451889, 0.10574742406606674, -0.09635264426469803, 0.0027157110162079334, 0.06642130017280579, -0.14949268102645874, 0.026276201009750366, 0.02354768104851246, -0.09657923877239227, 0.14594855904579163, 0.0583600178360939, 0.0652228370308876, 0.07299790531396866, 0.11110614985227585, -0.20066361129283905, 0.02886774018406868, 0.04364593327045441, 0.03949590399861336, 0.03431348502635956, 0.03519497811794281, 0.013120527379214764, 0.07477588951587677, 0.09574700146913528, -0.025676392018795013, 0.0730326771736145, -0.04710282385349274, -0.21979957818984985, -0.02275465801358223, 0.01585756614804268, 0.10522906482219696, 0.1192345917224884, -0.05879294499754906, 0.0917438492178917, -0.13057927787303925, 0.08858776837587357, 0.08569317311048508, -0.14905713498592377, 0.010268354788422585, 0.11487922072410583, 0.04246846213936806, 0.07435349375009537, -0.06875079870223999, 0.03145863488316536, 0.04891392961144447, 0.03595985472202301, 0.0209964532405138, -0.02994615212082863, -0.15110069513320923, -0.008905733935534954, -0.12462862581014633, -0.02900838851928711, 0.22515934705734253, -0.0025664917193353176, -0.07211781293153763, -0.12221705168485641, -0.03590187802910805, 0.011985533870756626, -0.010729684494435787, -0.08538499474525452, -0.010876073502004147, 0.035466182976961136, -0.017264101654291153, -0.007303252816200256, -0.11652496457099915, -0.15831679105758667, -0.0009087348007597029, 0.050920519977808, 0.02143821306526661, 0.01970057561993599, -0.13414695858955383, 0.08038558810949326, -0.05516178905963898, -0.08008003234863281, -0.016941385343670845, 0.008058087900280952, -0.05170530825853348, 0.015630094334483147, -0.08181429654359818, -0.1805778294801712, 0.035465747117996216, -0.03747856616973877, 0.05293356254696846, 0.023218780755996704, -0.038701917976140976, 0.02911129966378212, 0.051867466419935226, 0.08534210175275803, -0.07962901145219803, -0.0159233920276165, 0.041821371763944626, 0.029763678088784218, -0.03878701478242874, -0.012919751927256584, -0.05784580484032631, -0.030354881659150124, 0.024434296414256096, 0.04702140763401985, -0.0367860272526741, 0.012991176918148994, -0.02986070327460766, -0.05345957353711128, 0.04251013696193695, -0.10368397831916809, -0.0635535791516304, 0.08120523393154144, 0.0030655143782496452, 0.09048789739608765, 0.04854899272322655, 0.05425233766436577, -0.051722146570682526, -0.023939503356814384, 0.013020705431699753, 0.025261761620640755, -0.017815403640270233, -0.10611341893672943, 0.005045476835221052, -0.02591153420507908, -0.009283327497541904, -0.0897175669670105, -0.1325751543045044, -0.05860624462366104, 0.0015187493991106749, 0.03345821052789688, -0.013821649365127087, -0.10115590691566467, -0.0034786721225827932, -0.021539228036999702, -0.052187275141477585, 0.05227215588092804, -0.037424951791763306, 0.08028598874807358, 0.02416132390499115, 0.062267884612083435, 0.0282160434871912, 0.0939699187874794, -0.0603967048227787, -0.029186327010393143, 0.044030796736478806, 0.14124643802642822, -0.03579743951559067, -0.06282288581132889, -0.09495415538549423, -0.07988084852695465, -0.04230789840221405, 0.06123991310596466, 0.056709930300712585, 0.12638314068317413, -0.29498183727264404, -0.08537788689136505, 0.17186865210533142, -0.10665414482355118, -0.034499961882829666, 0.18510107696056366, -0.028385262936353683, 0.1146121397614479, 0.14399364590644836, 0.2071060985326767, 0.10198129713535309, -0.20117634534835815, 0.04321615397930145, 0.026554197072982788, 0.007730554323643446, -0.03376302123069763, 0.062224891036748886, -0.0421430766582489, -0.006044235546141863, 0.03330657258629799, -0.026424409821629524, 0.05159653350710869, -0.03977154940366745, -0.072829969227314, -0.005999257788062096, -0.0949874222278595, 0.0475662425160408, 0.055147022008895874, 0.014583045616745949, -0.007305134553462267, -0.03519126772880554, 0.059698686003685, 0.14321684837341309, -0.14180046319961548, 0.03393379598855972, -0.105522520840168, 0.04385221004486084, -0.11536142230033875, -0.009847869165241718, -0.14073964953422546, 0.17259559035301208, -0.005512997508049011, 0.08727555721998215, 0.03904624655842781, 0.21133995056152344, 0.019599370658397675, 0.009202660992741585, -0.04196680709719658, -0.024729574099183083, 0.002618200145661831, -0.013670696876943111, -0.024980109184980392, -0.10421278327703476, -0.019659601151943207, -0.07560271769762039, 0.09063425660133362, -0.17141227424144745, -0.009917491115629673, 0.046081382781267166, 0.015609617345035076, 0.019606485962867737, -0.009290268644690514, 0.07231982052326202, 0.07439712435007095, 0.0013083117082715034, 0.005065493285655975, 0.03516024351119995, -0.004216572269797325, -0.04250893369317055, 0.10232122242450714, -0.11989551037549973, 0.0005791051662527025, 0.1016671359539032, -0.04674580320715904, 0.007954961620271206, 0.03778858110308647, -0.01975194364786148, -0.024808185175061226, -0.07814832031726837, -0.005498853046447039, 0.23860076069831848, -0.00431561516597867, 0.10917540639638901, -0.0974322259426117, -0.0002470405597705394, 0.026300711557269096, -0.051702238619327545, 0.04346976801753044, 0.04439559206366539, 0.010502830147743225, 0.029178153723478317, 0.026101425290107727, -0.036413758993148804, -0.06311853975057602, 0.24033460021018982, -0.03666131570935249, -0.09142766147851944, 0.01602383889257908, -0.03449093922972679, -0.03569827601313591, 0.10219116508960724, -0.15159904956817627, -0.036262739449739456, 0.041276272386312485, 0.04912780597805977, 0.05049212649464607, -0.14709261059761047, 0.019491443410515785, 0.015271330252289772, -0.12518419325351715, -0.17389893531799316, 0.07021480053663254, -0.053048938512802124, 0.041800569742918015, -0.09989640861749649, -0.04193950444459915, 0.00424059946089983, -0.05185089632868767, -0.16963490843772888, 0.1317911446094513, -0.07541295140981674, -0.21972480416297913, -0.09922152757644653, -0.008118046447634697, -0.004448363091796637, 0.03264550864696503, 0.08339078724384308, -0.13489782810211182, -0.016822071745991707, -0.024817772209644318, 0.10607066750526428, 0.0001479390193708241, -0.01924261823296547, -0.050211746245622635, 0.012016644701361656, 0.06217417120933533, -0.16745072603225708, 0.024597110226750374, -0.06397821009159088, -0.015739435330033302, 0.012085411697626114, -0.001238789758644998, 0.0028494198340922594, 0.17545700073242188, 0.05502267926931381, 0.01793788932263851, -0.022074313834309578, 0.20263263583183289, -0.08094610273838043, -0.021775195375084877, 0.19541063904762268, -0.013436232693493366, -0.026792876422405243, 0.1312023252248764, 0.02821626141667366, -0.08725974708795547, -0.00023778632748872042, -0.011106991209089756, -0.06996551901102066, -0.23998692631721497, -0.10776156932115555, -0.07545282691717148, -0.06713271886110306, -0.024463005363941193, -0.00010797059803735465, 0.07250332832336426, 0.02277463674545288, -0.032270122319459915, -0.022306980565190315, 0.030435848981142044, -0.019785992801189423, 0.11395803838968277, -0.02262244187295437, 0.0964459776878357, -0.04641774296760559, -0.03465567156672478, 0.00834155548363924, 0.0458042174577713, 0.16179579496383667, 0.036656703799963, 0.07864419370889664, 0.08992721885442734, 0.10428492724895477, 0.10198594629764557, 0.08416163921356201, -0.06689437478780746, -0.02413647435605526, 0.004341159947216511, -0.06142006069421768, -0.05318897217512131, 0.05620330199599266, 0.14444740116596222, -0.03556279093027115, -0.03492460772395134, -0.018902448937296867, -0.009132497943937778, 0.22255221009254456, 0.09433379024267197, -0.19873306155204773, -0.07731729745864868, -0.019395234063267708, -0.046164873987436295, 0.0036223470233380795, 0.056633319705724716, 0.14509393274784088, -0.10124145448207855, 0.014745957218110561, -0.0026304719503968954, 0.08401200920343399, -0.03025968372821808, 0.0340786837041378, -0.09446170181035995, 0.031263988465070724, -0.0010616177460178733, 0.08405519276857376, -0.29982706904411316, 0.20242983102798462, 0.016033239662647247, 0.1212940588593483, -0.05552135035395622, -0.004619861952960491, 0.00010420052421977744, 0.05286041647195816, 0.09680728614330292, 0.006090803071856499, 0.06681166589260101, -0.08187425881624222, -0.06869103014469147, 0.05972742661833763, -0.00550069147720933, 0.03854523226618767, 0.03211448714137077, 0.01983882114291191, 0.0010110355215147138, 0.02789083868265152, -0.03231549635529518, -0.16745643317699432, -0.041207440197467804, 0.022210394963622093, 0.13376763463020325, 0.10918407142162323, -0.027367690578103065, -0.08107609301805496, -0.09159838408231735, 0.03236306086182594, -0.0967414602637291, -0.058726705610752106, -0.0636654645204544, -0.029537444934248924, 0.08419715613126755, -0.04668476805090904, 0.0053373780101537704, 0.09090568870306015, 0.10248826444149017, -0.03362508490681648, -0.05434208735823631, 0.04754449054598808, -0.11792310327291489, -0.11921326816082001, -0.03471006080508232, 0.17805343866348267, 0.11325943470001221, 0.07373026013374329, 0.05593649297952652, -0.004444989841431379, -0.003772533731535077, -0.032205354422330856, 0.015728818252682686, 0.13609641790390015, -0.09852267056703568, -0.0053654806688427925, 0.021491315215826035, -0.13446004688739777, -0.10142160952091217, -0.05442585423588753, 0.1480206847190857, 0.10011474788188934, -0.0479523241519928, 0.20779907703399658, 0.22119766473770142, -0.0804613009095192, -0.21576781570911407, -0.02322249300777912, 0.09434066712856293, 0.11940250545740128, -0.02723209746181965, -0.20836827158927917, 0.07951905578374863, -0.034147556871175766, -0.028356920927762985, -0.039547212421894073, -0.26134443283081055, -0.14584657549858093, 0.17152869701385498, -0.016960378736257553, 0.15786728262901306, 0.015340473502874374, -0.024908047169446945, -0.03660375624895096, -0.048882611095905304, 0.035691361874341965, -0.08875586837530136, 0.09556411951780319, 0.0020737918093800545, 0.08615231513977051, 0.045247882604599, -0.01957850530743599, 0.08747554570436478, 0.09705917537212372, 0.010042907670140266, -0.004009980242699385, 0.0682440847158432, 0.041137758642435074, 0.022965332493185997, 0.1243402287364006, -0.0816330760717392, 0.04925686493515968, -0.09084047377109528, -0.0973743349313736, -0.07969946414232254, 0.03770166262984276, 0.01744883507490158, -0.07346523553133011, 0.011400165036320686, -0.04461154714226723, 0.03240751847624779, -0.0038505112752318382, -0.03482362627983093, -0.1131126657128334, 0.03769838437438011, 0.1446886956691742, 0.19640971720218658, -0.054055433720350266, -0.0809101089835167, -0.03236983343958855, -0.032814860343933105, 0.14265935122966766, -0.12785515189170837, 0.03627625107765198, 0.06543920189142227, 0.05997784063220024, 0.13695617020130157, 0.018809616565704346, -0.10590272396802902, 0.07179103046655655, 0.0241104606539011, -0.05777124688029289, -0.1357080191373825, -0.022191163152456284, -0.03374675661325455, -0.03800695016980171, 0.049076370894908905, 0.11674076318740845, -0.08741596341133118, -0.0144589738920331, -0.021796029061079025, 0.023539163172245026, -0.12527810037136078, 0.22931961715221405, 0.040976639837026596, 0.07784653455018997, -0.11589738726615906, 0.021711336448788643, -0.004164688289165497, -0.0462542399764061, 0.03594418242573738, -0.05548999458551407, -0.08245262503623962, -0.05998237431049347, -0.03241163119673729, 0.0815594494342804, 0.066973976790905, -0.11372107267379761, -0.06459582597017288, -0.10979101061820984, 0.012503772042691708, 0.06850665807723999, 0.04961346834897995, 0.035637401044368744, -0.1315823793411255, -0.052131734788417816, -0.11550968885421753, 0.07848489284515381, 0.06556303799152374, -0.012504247017204762, -0.12199568003416061, 0.15320368111133575, 0.05260854586958885, 0.04807219281792641, -0.05108516290783882, -0.07657310366630554, -0.00947050005197525, 0.08452580124139786, -0.1581396460533142, -0.011478138156235218, -0.047850772738456726, 0.008747531101107597, -0.006101880222558975, -0.05574755370616913, -0.006677648518234491, 0.08488019555807114, -0.08983280509710312, 0.0731804147362709, 0.0025255344808101654, 0.061646729707717896, -0.08244331926107407, 0.012417194433510303, 0.005314078647643328, -0.05696441978216171, 0.09324272722005844, 0.11918386071920395, -0.10679672658443451, 0.10496218502521515, -0.1614316701889038, -0.05594898387789726, 0.07528172433376312, 0.08064109086990356, -0.025226987898349762, -0.09918814897537231, 0.02044150047004223, 0.08163375407457352, 0.03205636143684387, -0.01905241049826145, 0.10082826018333435, -0.04593215882778168, -0.008977944031357765, -0.0839981660246849, 0.017680441960692406, -0.047633327543735504, 0.03484693914651871, 0.05387340858578682, 0.15804041922092438, 0.14847201108932495, -0.08936763554811478, 0.0928959995508194, -0.14431995153427124, -0.004984559956938028, -0.0496048741042614, -0.018437853083014488, -0.15875166654586792, -0.07510050386190414, 0.07499736547470093, -0.05729399994015694, 0.11676649749279022, 0.0015805413713678718, -0.00884236115962267, -0.036344047635793686, -0.08067107945680618, 0.027148280292749405, -0.017355073243379593, 0.28200986981391907, 0.041926778852939606, 0.035674504935741425, -0.03674178570508957, -0.006139340344816446, 0.03192022442817688, 0.1773025393486023, -0.012993994168937206, 0.15258336067199707, 0.03640708327293396, 0.06075765937566757, 0.08745111525058746, -0.06514342874288559, -0.024708058685064316, -0.0035749985836446285, -0.11722461879253387, 0.04069824144244194, -0.04820563644170761, 0.12903591990470886, 0.1277204304933548, -0.09709750860929489, 0.07758988440036774, -0.0007525946130044758, -0.08608394116163254, -0.1443929374217987, -0.10795792192220688, -0.059526603668928146, -0.16084596514701843, 0.032247938215732574, -0.10028323531150818, 0.00866568274796009, 0.04461988806724548, 0.04054806008934975, -0.028622258454561234, 0.15281380712985992, 0.017837781459093094, -0.09004569053649902, 0.0689033642411232, -0.07462584227323532, -0.04564438760280609, -0.06684184074401855, 0.04975973814725876, 0.16773612797260284, -0.008773942478001118, 0.044416751712560654, -0.006127006374299526, -0.05855361372232437, 0.027390025556087494, -0.051417019218206406, -0.06865351647138596, -0.005793070886284113, -0.021481899544596672, 0.07163787633180618, 0.18053942918777466, 0.12442722171545029, -0.05628114193677902, 0.010233771055936813, 0.07699675112962723, -0.03680220618844032, -0.1489989012479782, -0.14979764819145203, 0.18634067475795746, 0.029939131811261177, 0.03286042436957359, 0.025335416197776794, -0.04643799364566803, -0.013663902878761292, 0.21164144575595856, 0.2333940863609314, 0.022716613486409187, 0.026406271383166313, -0.02101009152829647, -0.010784738697111607, -0.06931377202272415, 0.07079360634088516, 0.0849086195230484, 0.23106402158737183, -0.01664690114557743, 0.006494596600532532, -0.07472841441631317, -0.09157001972198486, 0.02293066494166851, 0.060180019587278366, -0.04655393958091736, -0.10753485560417175, 0.015549112111330032, 0.1207035481929779, -0.05991000309586525, -0.10929139703512192, -0.0890355259180069, -0.0720275267958641, -0.07752566039562225, -0.02589181438088417, -0.021917246282100677, 0.10359127819538116, -0.008131072856485844, -0.0894344225525856, 0.04737585783004761, 0.2103521227836609, -0.020212162286043167, -0.07381723076105118, -0.033921655267477036, 0.07680626213550568, -0.09391187876462936, -0.017049171030521393, -0.014578321017324924, 0.18380853533744812, 0.010947419330477715, 0.10370714962482452, -0.013121671974658966, 0.14419017732143402, -0.0030206479132175446, -0.07249646633863449, 0.0015898171113803983, 0.15622477233409882, -0.027430221438407898, 0.11380630731582642, 0.018211662769317627, -0.11731377989053726, 0.04002466797828674, -0.09063985198736191, -0.041687242686748505, -0.09358744323253632, 0.06300166994333267, -0.03370640054345131, 0.0871201753616333, 0.05671490356326103, -0.06513175368309021, -0.03814948722720146, -0.05940919741988182, 0.07952933013439178, 0.03318953886628151, -0.05251472070813179, -0.04823002219200134, -0.24191346764564514, -0.0055909366346895695, -0.08557315915822983, -0.014541229233145714, -0.20676814019680023, -0.039291899651288986, 0.0011044034035876393, -0.08503155410289764, 0.01599309965968132, 0.03491472080349922, 0.07565958052873611, 0.01989564299583435, -0.008500659838318825, 0.026933453977108, 0.024629151448607445, 0.10817858576774597, -0.166174054145813, -0.1137155070900917 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Sorbian, Upper Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Sorbian, Upper using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "hsb", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-hsb") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-hsb") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Sorbian, Upper test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "hsb", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-hsb") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-hsb") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\„\–\…\«\»]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 65.05 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "hsb", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Sorbian, Upper", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hsb", "type": "common_voice", "args": "hsb"}, "metrics": [{"type": "wer", "value": 65.05, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xlsr-53-hsb
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "hsb", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "hsb" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hsb #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Sorbian, Upper Fine-tuned facebook/wav2vec2-large-xlsr-53 on Sorbian, Upper using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Sorbian, Upper test data of Common Voice. Test Result: 65.05 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Sorbian, Upper\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Sorbian, Upper using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Sorbian, Upper test data of Common Voice.\n\nTest Result: 65.05 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hsb #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Sorbian, Upper\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Sorbian, Upper using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Sorbian, Upper test data of Common Voice.\n\nTest Result: 65.05 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 82, 69, 20, 32, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hsb #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Sorbian, Upper\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Sorbian, Upper using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\nThe model can be evaluated as follows on the Sorbian, Upper test data of Common Voice.\n\nTest Result: 65.05 %## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.16388091444969177, 0.06452203541994095, -0.0031005863565951586, -0.04436875134706497, 0.07510839402675629, -0.04708290472626686, 0.16945378482341766, 0.09715107828378677, -0.04344925284385681, 0.016287723556160927, 0.003629008075222373, 0.005968957673758268, 0.05897187814116478, 0.10922052711248398, -0.013449369929730892, -0.18017175793647766, 0.015543361194431782, 0.00864274799823761, 0.06678768247365952, 0.09873828291893005, 0.10990000516176224, -0.06052134558558464, -0.006124185398221016, 0.07991807907819748, -0.15716585516929626, 0.019187619909644127, 0.07121127098798752, -0.11127714067697525, 0.14127007126808167, 0.07753755152225494, 0.046684373170137405, 0.06705377250909805, 0.11282763630151749, -0.2167271226644516, 0.025934875011444092, 0.046794719994068146, 0.06512400507926941, 0.059367191046476364, 0.039579324424266815, -0.027946967631578445, 0.06295885145664215, 0.10663014650344849, -0.020464053377509117, 0.08837354183197021, -0.050066299736499786, -0.19775892794132233, -0.025157475844025612, 0.007713876664638519, 0.14007671177387238, 0.08500666171312332, -0.05912763997912407, 0.0761738047003746, -0.11782380938529968, 0.09319161623716354, 0.063376784324646, -0.1655655950307846, 0.014036289416253567, 0.09438028931617737, 0.046564981341362, 0.11039028316736221, -0.08015729486942291, 0.020647745579481125, 0.06245173513889313, 0.002611891133710742, 0.0152291189879179, -0.02581276372075081, -0.1924157738685608, -0.019726110622286797, -0.1334773302078247, -0.023651182651519775, 0.2344440221786499, 0.025253668427467346, -0.09490738064050674, -0.10375023633241653, -0.04564415663480759, 0.009088878519833088, 0.03119739145040512, -0.08385632932186127, -0.014697296544909477, 0.04858919233083725, -0.006883945781737566, -0.058217670768499374, -0.12458641082048416, -0.16553528606891632, -0.0010976254707202315, 0.044105008244514465, 0.026682578027248383, 0.016853364184498787, -0.0953352227807045, 0.07850321382284164, -0.11182527244091034, -0.060296833515167236, 0.012434235773980618, 0.0035018459893763065, -0.1073073297739029, -0.008949508890509605, -0.08135964721441269, -0.136243999004364, 0.06588482856750488, 0.01134808361530304, 0.05267718434333801, 0.021534860134124756, -0.06321520358324051, 0.039360612630844116, 0.05143812671303749, 0.09618805348873138, -0.05388857424259186, -0.008790001273155212, 0.057829346507787704, 0.010792690329253674, -0.03501257672905922, -0.024147851392626762, -0.03960251435637474, -0.03637569397687912, 0.04133055359125137, 0.033799488097429276, -0.021241245791316032, -0.03637002408504486, -0.03353096917271614, -0.02089088410139084, 0.017856519669294357, -0.13014689087867737, -0.019668515771627426, 0.088838130235672, 0.000766246987041086, 0.06791886687278748, 0.02281997725367546, 0.09471405297517776, -0.07914521545171738, 0.027845965698361397, 0.025117255747318268, 0.03569239377975464, 0.005766028538346291, -0.07338149845600128, 0.015802733600139618, -0.0634317621588707, 0.0014534140937030315, -0.06679517030715942, -0.10814103484153748, -0.09745769202709198, -0.0020228552166372538, 0.03364349156618118, -0.02096097357571125, -0.08617735654115677, -0.007087757345288992, -0.009166483767330647, -0.08072319626808167, 0.04957069829106331, -0.05303327739238739, 0.07258699834346771, 0.043588366359472275, 0.03156653419137001, 0.002143162302672863, 0.0715724304318428, -0.09148027002811432, -0.04737533628940582, 0.01960347592830658, 0.1322557032108307, -0.03029077686369419, -0.06705527007579803, -0.080471470952034, -0.059530314058065414, -0.05581167712807655, 0.08302265405654907, 0.03386411815881729, 0.09995215386152267, -0.2596622705459595, -0.09658023715019226, 0.1996585577726364, -0.12948106229305267, 0.003534262767061591, 0.22179244458675385, -0.02542378008365631, 0.09012482315301895, 0.17226561903953552, 0.2479255199432373, 0.0838417261838913, -0.1551523208618164, 0.01400666031986475, 0.009067879058420658, -0.002747100545093417, -0.003785032546147704, 0.08610886335372925, -0.051133058965206146, 0.013587134890258312, 0.024655545130372047, -0.04378264397382736, 0.03481636196374893, -0.016053881496191025, -0.05291523039340973, -0.04089117422699928, -0.07173813879489899, 0.02742081508040428, 0.038376811891794205, -0.009434050880372524, -0.04507838934659958, -0.07642698287963867, 0.09984488040208817, 0.1196557879447937, -0.15493206679821014, 0.049932051450014114, -0.13080675899982452, 0.0537138395011425, -0.10200764983892441, -0.015528660267591476, -0.15630334615707397, 0.1821095198392868, -0.014370914548635483, 0.04736446961760521, 0.06377309560775757, 0.22050140798091888, 0.038237348198890686, 0.039975304156541824, -0.04434674233198166, -0.007701681461185217, 0.019904732704162598, -0.00807536207139492, -0.01115383580327034, -0.11080302298069, -0.02226068824529648, -0.07659568637609482, 0.16993001103401184, -0.19147537648677826, 0.01608358696103096, 0.060034990310668945, 0.06775614619255066, 0.008635896258056164, -0.022622542455792427, 0.062464967370033264, 0.0612700879573822, -0.00757483160123229, 0.013041970320045948, -0.0004024359805043787, 0.011689281091094017, -0.056243978440761566, 0.08415620774030685, -0.14678728580474854, -0.015807144343852997, 0.12544845044612885, -0.003844859777018428, 0.012923668138682842, 0.024511253461241722, -0.019035687670111656, 0.0015465683536604047, -0.08363258093595505, -0.04124864935874939, 0.22795315086841583, -0.005540069658309221, 0.09595844894647598, -0.1119503453373909, 0.021747196093201637, 0.008041631430387497, -0.0948544442653656, 0.06661105155944824, 0.04086169973015785, -0.03532503917813301, 0.014890345744788647, 0.01940794102847576, -0.04558491334319115, -0.09405577182769775, 0.18509723246097565, -0.04408230632543564, -0.10163774341344833, 0.029350658878684044, -0.01717562973499298, -0.029528141021728516, 0.03804049640893936, -0.14199897646903992, -0.022513777017593384, 0.03487972542643547, 0.05591860041022301, 0.0636805072426796, -0.17948997020721436, 0.05007333308458328, 0.00817771628499031, -0.12687283754348755, -0.12762656807899475, 0.03406120836734772, -0.026674378663301468, 0.041381917893886566, -0.12474938482046127, -0.02588021568953991, 0.0040183463133871555, -0.04427245259284973, -0.1709408015012741, 0.11009915918111801, -0.0880047082901001, -0.2061925083398819, -0.18520432710647583, -0.0009781282860785723, -0.020989440381526947, 0.04129650816321373, 0.10032740235328674, -0.10362144559621811, 0.002747984603047371, -0.03172015771269798, 0.10992047190666199, 0.0353253036737442, 0.0037083837669342756, -0.05349249020218849, 0.044403452426195145, 0.08167269825935364, -0.14312605559825897, 0.027264023199677467, -0.054300229996442795, -0.06291691958904266, 0.002362169325351715, 0.004407086409628391, 0.0019801000598818064, 0.16442371904850006, 0.038588423281908035, -0.004967903718352318, -0.011269815266132355, 0.18701596558094025, -0.0748824030160904, -0.03119800239801407, 0.2205503135919571, -0.06699434667825699, -0.028886057436466217, 0.1096145436167717, 0.011077689938247204, -0.06041949242353439, 0.002032680669799447, -0.006431369110941887, -0.0840965062379837, -0.25990206003189087, -0.09052145481109619, -0.05456876382231712, -0.08370149880647659, -0.015712693333625793, 0.026022866368293762, 0.030062463134527206, 0.015872333198785782, -0.056861404329538345, -0.09229514002799988, 0.09037036448717117, -0.02311396412551403, 0.1069234311580658, -0.00982741080224514, 0.0982026755809784, -0.0400363989174366, -0.03297389671206474, 0.037495747208595276, 0.05557896941900253, 0.10641170293092728, 0.05031358823180199, 0.04229153320193291, 0.08423450589179993, 0.09398244321346283, 0.1038174256682396, 0.07077240943908691, -0.03881816938519478, -0.000763666641432792, 0.005832490045577288, -0.07566113024950027, -0.06983882188796997, 0.06676293909549713, 0.13825660943984985, -0.026817742735147476, -0.028635617345571518, -0.017269792035222054, -0.0029643154703080654, 0.17551089823246002, 0.11467071622610092, -0.2268199622631073, -0.07179075479507446, 0.015493386425077915, -0.07486137002706528, -0.014377499930560589, 0.04831235483288765, 0.18638797104358673, -0.10384044796228409, 0.04978838935494423, 0.03506116569042206, 0.0890914797782898, -0.012708877213299274, 0.04299847036600113, -0.1054132804274559, 0.01298047136515379, 0.015281155705451965, 0.09803539514541626, -0.24286550283432007, 0.16640952229499817, 0.010017218999564648, 0.14341497421264648, -0.027876706793904305, 0.013333362527191639, -0.02043243683874607, 0.07741090655326843, 0.0925544798374176, -0.017041411250829697, -0.024953298270702362, -0.08600930869579315, -0.0931209996342659, 0.05942041799426079, -0.008958390913903713, 0.0232407096773386, 0.036121174693107605, 0.004906287416815758, 0.005705179646611214, 0.006060156039893627, -0.08664820343255997, -0.15108853578567505, -0.057261351495981216, -0.0011380291543900967, 0.14510497450828552, 0.14717629551887512, -0.018126605078577995, -0.058768268674612045, -0.06557280570268631, 0.07931270450353622, -0.11481926590204239, -0.026084808632731438, -0.06899939477443695, -0.028795765712857246, 0.12113388627767563, -0.040941376239061356, -0.034705549478530884, 0.09297173470258713, 0.1474589854478836, -0.012475470080971718, -0.03698123246431351, 0.04185698553919792, -0.08876311033964157, -0.1517438441514969, -0.019921526312828064, 0.20949077606201172, 0.08874985575675964, 0.0874224305152893, 0.08473306894302368, 0.022010911256074905, 0.005912761203944683, -0.033066049218177795, 0.055839233100414276, 0.1480252742767334, -0.08951196074485779, 0.004753382410854101, -0.01817844994366169, -0.15287484228610992, -0.10926201939582825, -0.040190163999795914, 0.1266937404870987, 0.11328569054603577, -0.03047538362443447, 0.19483231008052826, 0.24222378432750702, -0.09987423568964005, -0.15307165682315826, -0.02709640935063362, 0.09139309078454971, 0.14366431534290314, -0.015902534127235413, -0.1792280524969101, 0.1266607642173767, 0.025749096646904945, -0.038872819393873215, -0.11991114169359207, -0.20311018824577332, -0.15124911069869995, 0.1390933394432068, -0.06731530278921127, 0.1004883348941803, -0.03478274866938591, -0.03838108107447624, -0.06741786003112793, -0.028463149443268776, 0.06133642792701721, -0.1225416511297226, 0.10931965708732605, 0.03906753286719322, 0.030204283073544502, 0.047382909804582596, -0.013147457502782345, 0.11364546418190002, 0.0868111252784729, -0.02952904999256134, 0.014067846350371838, 0.1029161587357521, 0.05844084173440933, 0.021719668060541153, 0.11806893348693848, -0.0748082771897316, 0.02301223948597908, -0.11760398000478745, -0.09937897324562073, -0.046693380922079086, 0.05901552736759186, 0.02439325675368309, -0.03297916799783707, 0.032375507056713104, -0.07854939252138138, 0.027004359290003777, 0.009112043306231499, -0.03814028948545456, -0.1371595412492752, 0.0921221524477005, 0.1619652509689331, 0.17093922197818756, -0.098739854991436, -0.07927562296390533, -0.016560504212975502, -0.024588551372289658, 0.1058565005660057, -0.09656450152397156, 0.07572145760059357, 0.06289459019899368, 0.037265367805957794, 0.14163479208946228, 0.002632443793118, -0.10550978779792786, 0.08079400658607483, 0.036248959600925446, -0.06617433577775955, -0.105789415538311, -0.0011961419368162751, -0.0209161676466465, -0.049744561314582825, 0.062148742377758026, 0.16248327493667603, -0.06674070656299591, -0.018428733572363853, -0.02705269120633602, 0.056393854320049286, -0.16272681951522827, 0.22091332077980042, 0.022171195596456528, 0.08055414259433746, -0.11978562921285629, -0.012780359946191311, 0.02883310243487358, -0.04084277153015137, 0.03507479652762413, -0.08558660000562668, -0.07832195609807968, -0.029245370998978615, -0.05454922467470169, 0.03071349486708641, 0.04862881824374199, -0.16608428955078125, -0.07122234255075455, -0.10640306770801544, -0.007702999282628298, 0.04324674233794212, 0.04771576449275017, 0.052774250507354736, -0.09560036659240723, -0.0712345615029335, -0.10706961154937744, 0.0374239943921566, 0.0790061354637146, 0.00026853338931687176, -0.1246117576956749, 0.1713716834783554, 0.04001576080918312, 0.014004969969391823, -0.04936036467552185, -0.06895611435174942, -0.027691740542650223, 0.09977002441883087, -0.11930077522993088, 0.01620827615261078, -0.03378956392407417, 0.016779154539108276, 0.01780436746776104, -0.09376917779445648, -0.022409658879041672, 0.06704694032669067, -0.09149912744760513, 0.07558681815862656, -0.015155111439526081, 0.0536554679274559, -0.11490825563669205, 0.0435086265206337, 0.038593143224716187, -0.0784192755818367, 0.07807537913322449, 0.12079868465662003, -0.11763370782136917, 0.129954993724823, -0.20402792096138, -0.10721642524003983, 0.10170898586511612, 0.08514805883169174, -0.04837080091238022, -0.09162373840808868, 0.03450533747673035, 0.11369289457798004, 0.039638932794332504, -0.005219945218414068, 0.10907050967216492, -0.04557614028453827, -0.03612088784575462, -0.07680108398199081, -0.03095785714685917, -0.024554410949349403, 0.018299080431461334, 0.10705406963825226, 0.15731337666511536, 0.1845165640115738, -0.07214714586734772, 0.050022803246974945, -0.1340784877538681, 0.002985479077324271, -0.06193160265684128, -0.027118433266878128, -0.17110835015773773, -0.09279973059892654, 0.07008951902389526, -0.011694636195898056, 0.13018928468227386, 0.0004119507211726159, 0.008587166666984558, -0.0006603974616155028, -0.07766000926494598, 0.02323947101831436, 0.00996082928031683, 0.2545696198940277, 0.059037111699581146, 0.023960798978805542, 0.008589484728872776, -0.016969500109553337, 0.032642100006341934, 0.07175037264823914, 0.002822795184329152, 0.14932776987552643, 0.0015539234736934304, 0.07692857831716537, 0.10155826061964035, -0.04307040199637413, -0.008479120209813118, 0.05205458402633667, -0.12745961546897888, 0.012395784258842468, -0.06103873997926712, 0.13289079070091248, 0.15224435925483704, -0.08375189453363419, 0.046373963356018066, 0.004693818278610706, -0.08714888989925385, -0.21738201379776, -0.08814479410648346, -0.09234225749969482, -0.12801459431648254, 0.00665591936558485, -0.09413633495569229, 0.017651379108428955, 0.09321561455726624, 0.030907509848475456, -0.007822277955710888, 0.09455810487270355, -0.0038033993914723396, -0.07805619388818741, 0.019857823848724365, -0.08578499406576157, -0.0013424183707684278, -0.057554300874471664, 0.008844512514770031, 0.19835416972637177, 0.031027590855956078, 0.07814563810825348, -0.010628078132867813, -0.012338070198893547, 0.046897415071725845, -0.09664463251829147, -0.0438113696873188, -0.0017355283489450812, -0.03552233427762985, 0.08245030045509338, 0.10593869537115097, 0.1442645788192749, -0.08398257941007614, 0.024134162813425064, 0.16918255388736725, -0.04338039085268974, -0.12853777408599854, -0.17992046475410461, 0.1238924190402031, 0.05917026847600937, 0.06080283969640732, 0.011596111580729485, -0.07253585755825043, -0.014186225831508636, 0.1500200629234314, 0.19519026577472687, 0.04229309782385826, 0.02562699466943741, -0.023375287652015686, -0.007955769076943398, -0.07106143981218338, 0.05259895324707031, 0.0793759897351265, 0.20676760375499725, 0.010781961493194103, 0.04442426189780235, -0.037674080580472946, -0.08656536042690277, 0.0002528943296056241, 0.030199259519577026, -0.11456909775733948, -0.09386229515075684, 0.022588206455111504, 0.14303992688655853, -0.01953277178108692, -0.18055546283721924, -0.12496878951787949, -0.07221066951751709, -0.10700391978025436, -0.014853326603770256, 0.04581261798739433, 0.10018830746412277, -0.0036122710444033146, -0.07800238579511642, 0.01308292057365179, 0.15432783961296082, -0.007039891090244055, -0.048991527408361435, -0.031553320586681366, 0.047699231654405594, -0.11533460021018982, 0.005415629129856825, 0.004099003970623016, 0.20226751267910004, 0.005689018871635199, 0.05554281920194626, -0.016849031671881676, 0.1187899187207222, -0.014484276995062828, -0.12098734080791473, 0.03236266225576401, 0.15165556967258453, -0.028150277212262154, 0.12876024842262268, 0.043920498341321945, -0.1073244959115982, 0.027039235457777977, -0.15553389489650726, -0.04419597610831261, -0.09440924227237701, 0.05516098812222481, -0.07608938962221146, 0.0847565308213234, 0.0663088858127594, -0.0849851667881012, -0.013093688525259495, -0.052855752408504486, 0.0860796719789505, 0.041225433349609375, -0.05592305585741997, -0.01103580929338932, -0.2922951579093933, -0.011944906786084175, -0.055721037089824677, -0.004854540340602398, -0.18726925551891327, -0.019347473978996277, -0.0020496321376413107, -0.07051370292901993, -0.004888125695288181, 0.05020416900515556, 0.09678944945335388, 0.01012477744370699, -0.02504108101129532, -0.04967581480741501, 0.04831741750240326, 0.10653223842382431, -0.16303475201129913, -0.11275587230920792 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Interlingua Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Interlingua using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ia", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Interlingua test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ia", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia") model.to("cuda") chars_to_ignore_regex = '[\.\,\!\?\-\"\:\;\'\“\”]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 22.08 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "ia", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Interlingua", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ia", "type": "common_voice", "args": "ia"}, "metrics": [{"type": "wer", "value": 22.08, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xlsr-53-ia
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ia", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ia" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ia #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Interlingua Fine-tuned facebook/wav2vec2-large-xlsr-53 on Interlingua using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Interlingua test data of Common Voice. Test Result: 22.08 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Interlingua\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Interlingua using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Interlingua test data of Common Voice.\n\nTest Result: 22.08 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ia #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Interlingua\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Interlingua using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Interlingua test data of Common Voice.\n\nTest Result: 22.08 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 80, 65, 20, 29, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ia #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Interlingua\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Interlingua using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\nThe model can be evaluated as follows on the Interlingua test data of Common Voice.\n\nTest Result: 22.08 %## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.14575889706611633, 0.01337492000311613, -0.002648536581546068, -0.016223935410380363, 0.06666181981563568, -0.031272340565919876, 0.1859171837568283, 0.09520970284938812, 0.005507904104888439, -0.029721179977059364, 0.027914809063076973, 0.022075528278946877, 0.05327004939317703, 0.06872399151325226, -0.01562855951488018, -0.20376546680927277, 0.00022981023357715458, 0.008494765497744083, 0.07438455522060394, 0.12052503973245621, 0.10402389615774155, -0.06748835742473602, 0.00040862770401872694, 0.09754471480846405, -0.15367797017097473, 0.028960177674889565, 0.034422777593135834, -0.09515146166086197, 0.14406952261924744, 0.08109407126903534, 0.07757055759429932, 0.04722423106431961, 0.08776992559432983, -0.2050832062959671, 0.023911084979772568, 0.044488247483968735, 0.030826032161712646, 0.03346525505185127, 0.0570373572409153, -0.000653308816254139, 0.0717177465558052, 0.09160661697387695, -0.0224239993840456, 0.07406499236822128, -0.07154868543148041, -0.20664730668067932, -0.02036861889064312, 0.014016631059348583, 0.09757410734891891, 0.12376030534505844, -0.06483208388090134, 0.10997547209262848, -0.13749536871910095, 0.09574303776025772, 0.08954798430204391, -0.18966889381408691, 0.00019418008741922677, 0.07303999364376068, 0.046438783407211304, 0.08002878725528717, -0.05676720291376114, 0.030348366126418114, 0.04486910253763199, 0.028426025062799454, -0.003996877931058407, -0.0365038700401783, -0.19160878658294678, -0.01053280383348465, -0.14025089144706726, -0.03717758134007454, 0.2001706063747406, -0.00844627059996128, -0.08437114953994751, -0.1338834911584854, -0.014356388710439205, 0.006567118223756552, -0.013799174688756466, -0.07202533632516861, 0.0005536187090910971, 0.03955206647515297, -0.002854859223589301, -0.031047934666275978, -0.11611312627792358, -0.15404613316059113, -0.031328506767749786, 0.08293760567903519, 0.02371196635067463, 0.03136884421110153, -0.1200486272573471, 0.07368171215057373, -0.07722268998622894, -0.06231648474931717, -0.021999645978212357, 0.0036130815278738737, -0.06967243552207947, 0.02259979024529457, -0.08572519570589066, -0.14310944080352783, 0.021510062739253044, -0.02979392185807228, 0.026645276695489883, 0.025529608130455017, -0.02471807599067688, 0.05944307520985603, 0.0514625646173954, 0.09181375056505203, -0.06167490407824516, -0.021950503811240196, 0.01618788205087185, -0.0029279212467372417, -0.05610838904976845, -0.02610485814511776, -0.06618625670671463, -0.0475919172167778, 0.005922030657529831, 0.045857083052396774, -0.01887999102473259, -0.00039369214209727943, -0.048707541078329086, -0.054436229169368744, -0.004021518398076296, -0.08999591320753098, -0.03799727186560631, 0.06420827656984329, 0.005493600387126207, 0.1169273853302002, 0.04610545188188553, 0.07091652601957321, -0.07048432528972626, -0.048111941665410995, 0.0222933292388916, 0.04336688667535782, -0.032185882329940796, -0.0937580019235611, 0.004678067285567522, -0.018186112865805626, -0.01496335119009018, -0.0943518653512001, -0.12212002277374268, -0.0772290825843811, 0.01813294179737568, 0.01982813887298107, -0.011095335707068443, -0.09887481480836868, 0.007623123470693827, -0.014943458139896393, -0.05968473479151726, 0.07099591940641403, -0.03993070498108864, 0.05285939574241638, 0.010468780994415283, 0.057771723717451096, 0.019773263484239578, 0.08482784777879715, -0.07640178501605988, -0.04180047661066055, 0.06377293914556503, 0.1555662602186203, -0.021986329928040504, -0.0859033614397049, -0.0880938172340393, -0.06986740976572037, -0.06363832205533981, 0.0788586288690567, 0.049920789897441864, 0.1198093369603157, -0.2891855835914612, -0.10015660524368286, 0.20205458998680115, -0.1204306036233902, -0.02729395590722561, 0.2143324911594391, -0.02021297998726368, 0.10839339345693588, 0.13640739023685455, 0.22727778553962708, 0.08806274831295013, -0.19231946766376495, 0.0432777926325798, 0.04819623380899429, -0.007211979012936354, -0.03614005073904991, 0.07116283476352692, -0.033306386321783066, -0.01454179547727108, 0.030352720990777016, -0.030657319352030754, 0.06953345239162445, -0.047946397215127945, -0.06593915075063705, -0.020627006888389587, -0.07969173043966293, 0.052496619522571564, 0.057597242295742035, 0.011927996762096882, -0.013238064013421535, -0.052091944962739944, 0.055091358721256256, 0.11698482185602188, -0.12432818114757538, 0.04585615545511246, -0.10767115652561188, 0.05011045187711716, -0.06934989243745804, -0.024615924805402756, -0.14815199375152588, 0.15847119688987732, -0.019057497382164, 0.07914005219936371, 0.05650690570473671, 0.20226061344146729, 0.012378958985209465, 0.01554177701473236, -0.032848652452230453, -0.008988028392195702, 0.021626563742756844, -0.02700398676097393, -0.046611279249191284, -0.10705084353685379, -0.027022304013371468, -0.07321812212467194, 0.09168338775634766, -0.16941866278648376, -0.010889491066336632, -0.011727039702236652, -0.0027651656419038773, 0.012308184988796711, -0.017791451886296272, 0.0588623508810997, 0.09248601645231247, -0.0014980726409703493, 0.016894174739718437, 0.059491485357284546, 0.0029818026814609766, -0.04630390182137489, 0.1462942361831665, -0.09885772317647934, 0.01074486505240202, 0.09984441101551056, -0.06607753038406372, 0.0012676507467404008, 0.013643044047057629, -0.01522976066917181, -0.02026986889541149, -0.08015591651201248, 0.004444227088242769, 0.3222762942314148, -0.002774478169158101, 0.10541539639234543, -0.1053444966673851, -0.0042242370545864105, 0.01569880172610283, -0.08289080113172531, 0.03994378820061684, 0.07108787447214127, 0.006627315189689398, 0.0016363331815227866, 0.02411029301583767, -0.030411602929234505, -0.06836773455142975, 0.2449643462896347, -0.0283780787140131, -0.09389077126979828, 0.009837868623435497, -0.031123647466301918, -0.030464570969343185, 0.06411653012037277, -0.20773351192474365, -0.03455594182014465, 0.042540885508060455, 0.0657067596912384, 0.07131097465753555, -0.15108542144298553, 0.012635501101613045, 0.01699618063867092, -0.12139246612787247, -0.1705048829317093, 0.06321848183870316, -0.028855295851826668, 0.04176564887166023, -0.10906187444925308, -0.04027470201253891, -0.0031766740139573812, -0.05462278798222542, -0.17484627664089203, 0.13555733859539032, -0.0650961622595787, -0.23557397723197937, -0.13156969845294952, -0.043011538684368134, 0.014327279292047024, 0.009060238488018513, 0.08072972297668457, -0.10989423841238022, -0.004689723253250122, -0.03768175467848778, 0.09954128414392471, -0.004431507550179958, -0.022915849462151527, -0.0568002387881279, 0.015472049824893475, 0.05553710088133812, -0.15600118041038513, 0.02004965767264366, -0.062121015042066574, -0.02261439338326454, 0.010494868271052837, -0.011279665865004063, -0.00046351898345164955, 0.18385091423988342, 0.0434938445687294, 0.015910780057311058, -0.01769844815135002, 0.21886716783046722, -0.08374445140361786, -0.0462619923055172, 0.19492851197719574, -0.017253728583455086, -0.019138481467962265, 0.08944288641214371, 0.034632038325071335, -0.07661183178424835, -0.015691297128796577, -0.012006228789687157, -0.07257229834794998, -0.24566881358623505, -0.11295759677886963, -0.07308665663003922, -0.06094444543123245, -0.035247210413217545, -0.020132869482040405, 0.0490981824696064, 0.013395863585174084, -0.008577845059335232, -0.03689718618988991, 0.02713802270591259, -0.022927969694137573, 0.10887211561203003, -0.023597439751029015, 0.10840385407209396, -0.03978315740823746, -0.033444907516241074, 0.024646515026688576, 0.015316082164645195, 0.15674927830696106, 0.0472203753888607, 0.07364998012781143, 0.09636621922254562, 0.12851235270500183, 0.12037636339664459, 0.09113848954439163, -0.0739983469247818, -0.030409246683120728, -0.00030898183467797935, -0.050003938376903534, -0.04735491797327995, 0.03403117507696152, 0.14287389814853668, -0.04214073345065117, -0.03512118011713028, -0.03212821111083031, -0.008039084263145924, 0.2047692984342575, 0.10474788397550583, -0.1982436180114746, -0.0630606859922409, -0.016775162890553474, -0.07017513364553452, -0.018459748476743698, 0.060269780457019806, 0.17523197829723358, -0.1220284178853035, 0.012070593424141407, -0.0005768610863015056, 0.09551497548818588, -0.029541267082095146, 0.024946222081780434, -0.07943098992109299, 0.0336814783513546, 0.0036035352386534214, 0.09423946589231491, -0.26025643944740295, 0.21165931224822998, 0.014062791131436825, 0.10434728860855103, -0.06227540597319603, -0.006732862442731857, 0.0013833744451403618, 0.07727152854204178, 0.10894712060689926, 0.018302742391824722, 0.03513915464282036, -0.08849751204252243, -0.07845617830753326, 0.051297448575496674, 0.00770434970036149, 0.045355863869190216, 0.040202025324106216, 0.013006645254790783, 0.008402944542467594, 0.022532103583216667, -0.02008432149887085, -0.15599790215492249, -0.0822553038597107, 0.008661293424665928, 0.15497589111328125, 0.099189892411232, -0.01749780960381031, -0.09024932235479355, -0.08340983837842941, 0.07000529021024704, -0.08581138402223587, -0.049934662878513336, -0.06937333941459656, -0.033246610313653946, 0.10779798030853271, -0.049207624047994614, -0.0027844649739563465, 0.08960763365030289, 0.10423687845468521, -0.030841918662190437, -0.05185095593333244, 0.04247107729315758, -0.12977777421474457, -0.0916980654001236, -0.030323626473546028, 0.1633765995502472, 0.1116245836019516, 0.08316707611083984, 0.0625089555978775, -0.004262082744389772, -0.015530955977737904, -0.0476742684841156, 0.01677238941192627, 0.11311520636081696, -0.09509490430355072, 0.009366982616484165, 0.017682231962680817, -0.13278192281723022, -0.09981965273618698, -0.05439062789082527, 0.1820487231016159, 0.08300147205591202, -0.0559690035879612, 0.19146911799907684, 0.20993104577064514, -0.10083691030740738, -0.19859221577644348, -0.03247953578829765, 0.10958857089281082, 0.13026438653469086, -0.0034076322335749865, -0.18663199245929718, 0.0675949901342392, -0.003509771078824997, -0.021085690706968307, -0.019228776916861534, -0.2692415416240692, -0.1431730091571808, 0.15291176736354828, -0.021329211071133614, 0.16749095916748047, 0.012744766660034657, -0.03263326734304428, -0.006668392568826675, -0.008958147838711739, 0.04851728677749634, -0.09649229049682617, 0.11429829895496368, 0.014487707056105137, 0.07810665667057037, 0.04346970468759537, -0.013874277472496033, 0.07996491342782974, 0.08215116709470749, 0.004552672617137432, 0.005705729126930237, 0.07842563837766647, 0.013206294737756252, 0.03148648515343666, 0.11566879600286484, -0.09118042141199112, 0.0394429937005043, -0.1058594360947609, -0.0986519455909729, -0.0784892663359642, 0.05131130665540695, 0.018307451158761978, -0.05217357352375984, 0.02491268329322338, -0.04001057893037796, 0.01309401448816061, -0.0015475881518796086, -0.040830571204423904, -0.11666065454483032, 0.045164305716753006, 0.17317087948322296, 0.19210736453533173, -0.08174705505371094, -0.09282946586608887, -0.03737691417336464, -0.02511221170425415, 0.11942677199840546, -0.08549554646015167, 0.022413427010178566, 0.052329372614622116, 0.05998310074210167, 0.12676562368869781, 0.02235533483326435, -0.09941165894269943, 0.06852869689464569, 0.030300363898277283, -0.05858520790934563, -0.12510620057582855, -0.036480870097875595, -0.026981933042407036, -0.027032408863306046, 0.026377150788903236, 0.11921317130327225, -0.08135102689266205, -0.012704703025519848, -0.029962757602334023, 0.016113342717289925, -0.1221318393945694, 0.20844101905822754, 0.03233320638537407, 0.07186727225780487, -0.11794168502092361, 0.010067305527627468, -0.006256199441850185, -0.03821214661002159, 0.029771771281957626, -0.03629324212670326, -0.062395889312028885, -0.06556357443332672, -0.014851239509880543, 0.09458614885807037, 0.062071558088064194, -0.13472092151641846, -0.04724004492163658, -0.10741837322711945, 0.016310112550854683, 0.0709771066904068, 0.05718426778912544, 0.020584512501955032, -0.12368224561214447, -0.07534470409154892, -0.09096057713031769, 0.0667567029595375, 0.0641094520688057, -0.02585996501147747, -0.10830043256282806, 0.16898438334465027, 0.06696756184101105, 0.03805195167660713, -0.05248042568564415, -0.0844903439283371, -0.01877238042652607, 0.08817350119352341, -0.10469428449869156, -0.001753800199367106, -0.04018252715468407, 0.013134552165865898, -0.007791061885654926, -0.0620148703455925, -0.011807207949459553, 0.06700465828180313, -0.08801037073135376, 0.07113353908061981, -0.002060274826362729, 0.06268317252397537, -0.0702899843454361, 0.029207244515419006, 0.021420331671833992, -0.05374835059046745, 0.08162182569503784, 0.12610693275928497, -0.1010097786784172, 0.11053557693958282, -0.21600374579429626, -0.033683713525533676, 0.06613651663064957, 0.08015484362840652, -0.015760326758027077, -0.10947918891906738, 0.033824872225522995, 0.08145137876272202, 0.053739339113235474, -0.002858762862160802, 0.07734548300504684, -0.04883699491620064, 0.007338494993746281, -0.05147126317024231, -0.01620093174278736, -0.04266112670302391, 0.03072698600590229, 0.05715658888220787, 0.14494919776916504, 0.16587714850902557, -0.08839781582355499, 0.10943735390901566, -0.14043749868869781, 0.010084726847708225, -0.02916686423122883, -0.003339875489473343, -0.10107368975877762, -0.10397569835186005, 0.06546986103057861, -0.02965414524078369, 0.1614917367696762, 0.035337094217538834, 0.021413752809166908, -0.04717492312192917, -0.10102636367082596, 0.027546361088752747, -0.02297656051814556, 0.2358561009168625, 0.052405644208192825, 0.03398382291197777, -0.030885936692357063, 0.0024479064159095287, 0.023768510669469833, 0.15054407715797424, 0.015052341856062412, 0.17242774367332458, 0.0146583067253232, 0.0810428187251091, 0.07594351470470428, -0.05665221065282822, -0.044042546302080154, -0.02495027519762516, -0.11196373403072357, 0.033054742962121964, -0.06864134967327118, 0.17499741911888123, 0.10456525534391403, -0.10974419862031937, 0.08652500808238983, 0.017146002501249313, -0.08139818161725998, -0.17055685818195343, -0.12323129177093506, -0.052345652133226395, -0.16126354038715363, 0.02120247669517994, -0.1035795584321022, 0.045486241579055786, 0.05300239473581314, 0.046103738248348236, -0.019480600953102112, 0.11614229530096054, 0.007153904531151056, -0.09497206658124924, 0.08224568516016006, -0.07917232811450958, -0.012023168615996838, -0.10346083343029022, 0.04833241179585457, 0.1536625325679779, -0.018377572298049927, 0.05511751398444176, -0.0033235885202884674, -0.05734620615839958, 0.030307918787002563, -0.06396852433681488, -0.07507532089948654, -0.01815604791045189, -0.02194816805422306, 0.08922279626131058, 0.13318166136741638, 0.12464964389801025, -0.053841568529605865, -0.002482916694134474, 0.10032046586275101, -0.04016230255365372, -0.14677190780639648, -0.15127860009670258, 0.13003017008304596, 0.000995249138213694, 0.02523600123822689, 0.0073378197848796844, -0.04051467403769493, -0.010569398291409016, 0.2624581754207611, 0.20282979309558868, 0.01819017343223095, 0.020055267959833145, -0.001047025783918798, -0.009479542262852192, -0.04385644197463989, 0.07466231286525726, 0.08570621907711029, 0.2550978362560272, -0.022647593170404434, -0.0009995698928833008, -0.07714462280273438, -0.07831213623285294, 0.02083219774067402, 0.07803326100111008, -0.060186970978975296, -0.10455658286809921, 0.0010630039032548666, 0.12984436750411987, -0.08362291008234024, -0.09212829917669296, -0.07542066276073456, -0.08971436321735382, -0.08224613964557648, -0.026578379794955254, 0.025134453549981117, 0.10375005006790161, 0.02305154874920845, -0.07732756435871124, 0.024194147437810898, 0.15383855998516083, -0.013673893176019192, -0.0853152796626091, -0.05774020776152611, 0.05538495257496834, -0.07052486389875412, 0.004283009096980095, -0.004597546998411417, 0.19609332084655762, 0.014454751275479794, 0.09569596499204636, -0.02116824872791767, 0.12554462254047394, -0.025339672341942787, -0.058107346296310425, 0.010144791565835476, 0.1390143483877182, -0.019371245056390762, 0.10883034020662308, 0.01652943156659603, -0.1364269107580185, 0.06275726854801178, -0.11527149379253387, -0.03989969566464424, -0.08879614621400833, 0.03841102495789528, -0.03756304457783699, 0.08927847445011139, 0.09188855439424515, -0.05138974264264107, -0.04648158699274063, -0.04821896553039551, 0.07811028510332108, 0.01082718838006258, -0.03610672429203987, -0.051765959709882736, -0.2302180826663971, -0.008529710583388805, -0.05174313858151436, -0.02095869742333889, -0.2205324023962021, -0.029409214854240417, 0.0020272191613912582, -0.0960567370057106, 0.009806746616959572, 0.030206581577658653, 0.1148737445473671, 0.012486455962061882, 0.006249657366424799, -0.015297732315957546, 0.04965991526842117, 0.1132112666964531, -0.14177000522613525, -0.0957556813955307 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Odia Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Odia using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "or", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Odia test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "or", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 57.10 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "or", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Odia", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice or", "type": "common_voice", "args": "or"}, "metrics": [{"type": "wer", "value": 57.1, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xlsr-53-odia
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "or", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "or" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #or #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
# Wav2Vec2-Large-XLSR-53-Odia Fine-tuned facebook/wav2vec2-large-xlsr-53 on Odia using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Odia test data of Common Voice. Test Result: 57.10 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Odia\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Odia using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Odia test data of Common Voice.\n\nTest Result: 57.10 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #or #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "# Wav2Vec2-Large-XLSR-53-Odia\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Odia using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Odia test data of Common Voice.\n\nTest Result: 57.10 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 84, 63, 20, 29, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #or #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n# Wav2Vec2-Large-XLSR-53-Odia\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Odia using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\nThe model can be evaluated as follows on the Odia test data of Common Voice.\n\nTest Result: 57.10 %## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.15244583785533905, 0.04627031460404396, -0.002021031454205513, -0.029944201931357384, 0.0675351545214653, -0.04737871140241623, 0.1856345385313034, 0.09810973703861237, -0.03274126723408699, -0.005627760663628578, 0.028766164556145668, -0.012952188029885292, 0.05195757746696472, 0.09644632786512375, -0.042784370481967926, -0.2021886706352234, 0.0004221545241307467, 0.022233495488762856, 0.047466106712818146, 0.11203217506408691, 0.09524896740913391, -0.08260424435138702, -0.004295530263334513, 0.0944327637553215, -0.1352541297674179, 0.03947915509343147, 0.036629579961299896, -0.12193267047405243, 0.13292758166790009, 0.08668539673089981, 0.07234810292720795, 0.06065180152654648, 0.0837620422244072, -0.2016950398683548, 0.025719767436385155, 0.044092532247304916, 0.0351622998714447, 0.03160344064235687, 0.05021699517965317, 0.01055401936173439, 0.06982562690973282, 0.08962973207235336, -0.015674922615289688, 0.07988061010837555, -0.06791109591722488, -0.2245272547006607, -0.005846753250807524, -0.007163770496845245, 0.10248032212257385, 0.1396551877260208, -0.07626841217279434, 0.10144210606813431, -0.13373541831970215, 0.08809852600097656, 0.10761574655771255, -0.1826266050338745, -0.0011039449600502849, 0.08216972649097443, 0.06136683374643326, 0.07876018434762955, -0.0723518505692482, 0.02166564017534256, 0.04788140580058098, 0.029590509831905365, 0.026120096445083618, -0.03425266221165657, -0.1880459040403366, -0.00010007613309426233, -0.13703148066997528, -0.026348093524575233, 0.23424813151359558, 0.013560925610363483, -0.0729905217885971, -0.1427631825208664, -0.01934177242219448, -0.01417718455195427, 0.002521524904295802, -0.060379769653081894, 0.006385788321495056, 0.035755787044763565, -0.0340728759765625, -0.02594149485230446, -0.13051259517669678, -0.12566301226615906, -0.05053010210394859, 0.06075316295027733, 0.0006065491470508277, 0.017034783959388733, -0.11984294652938843, 0.07762641459703445, -0.11044324189424515, -0.07950261980295181, -0.013348229229450226, 0.030740082263946533, -0.07391797006130219, 0.007691407110542059, -0.09660989046096802, -0.16597267985343933, 0.040547046810388565, -0.020217876881361008, 0.04989980533719063, 0.009471716359257698, -0.052351247519254684, 0.050452060997486115, 0.05837259069085121, 0.11837480962276459, -0.06965731084346771, -0.02415957860648632, 0.025750992819666862, 0.011003194376826286, -0.05649354308843613, -0.024390120059251785, -0.06423158198595047, -0.042391810566186905, 0.014047148637473583, 0.03609764575958252, -0.005868761800229549, 0.0055015552788972855, -0.04804464802145958, -0.041428226977586746, -0.012506038881838322, -0.105650395154953, -0.028232643380761147, 0.08062127977609634, -0.00637179845944047, 0.07965423911809921, 0.04564477130770683, 0.07680410891771317, -0.0644221156835556, -0.014307893812656403, 0.013820873573422432, 0.02976008504629135, -0.02141796052455902, -0.09648088365793228, 0.00279177981428802, -0.03564729914069176, 0.0003085699863731861, -0.09093136340379715, -0.0906437560915947, -0.09583095461130142, 0.005555500276386738, 0.03570941090583801, -0.04439829662442207, -0.10112205147743225, -0.02576070837676525, -0.009385504759848118, -0.07345137745141983, 0.06543898582458496, -0.04577773064374924, 0.06763404607772827, 0.031586162745952606, 0.045868370682001114, 0.016769208014011383, 0.09167863428592682, -0.08590857684612274, -0.03781350329518318, 0.0607425794005394, 0.134469136595726, -0.011649921536445618, -0.05347880348563194, -0.08679238706827164, -0.07427962124347687, -0.06293973326683044, 0.06688156723976135, 0.04959562048316002, 0.0994887426495552, -0.2480037957429886, -0.08279934525489807, 0.15036451816558838, -0.10094431787729263, -0.02485642395913601, 0.19703319668769836, -0.01533400546759367, 0.09122388809919357, 0.1256805956363678, 0.2476527988910675, 0.10977989435195923, -0.19625802338123322, 0.027643559500575066, 0.012893247418105602, 0.00027773858164437115, -0.03631306439638138, 0.07730916142463684, -0.04021570459008217, 0.012373542413115501, 0.025834839791059494, -0.028458058834075928, 0.05617658048868179, -0.027947645634412766, -0.06942030787467957, -0.019007744267582893, -0.08135984092950821, 0.05212954431772232, 0.04802396520972252, 0.0073134866543114185, -0.01765470579266548, -0.06432696431875229, 0.06548912823200226, 0.12158399820327759, -0.13778550922870636, 0.0376371406018734, -0.12170173227787018, 0.05343593657016754, -0.1061829924583435, -0.024401405826210976, -0.15037503838539124, 0.13773660361766815, -0.022853484377264977, 0.08569895476102829, 0.036147456616163254, 0.22427307069301605, 0.019775548949837685, -0.00404326431453228, -0.03421451151371002, -0.02516583353281021, -0.0005865339771844447, -0.021258335560560226, -0.03801250830292702, -0.08471361547708511, -0.023523405194282532, -0.07271131128072739, 0.08519187569618225, -0.18644782900810242, -0.0011115047382190824, 0.045840825885534286, 0.0015631041023880243, 0.03278758376836777, -0.009515267796814442, 0.06637142598628998, 0.08609753102064133, 0.0012199500342831016, 0.004270429722964764, 0.033784106373786926, 0.013447294011712074, -0.04665990173816681, 0.13461363315582275, -0.17163719236850739, 0.050784897059202194, 0.11265593022108078, -0.02688473090529442, 0.016664205119013786, 0.03531137481331825, -0.03434966877102852, -0.018140332773327827, -0.09718846529722214, -0.0007976970518939197, 0.3080293536186218, -0.012448671273887157, 0.09068932384252548, -0.10353302955627441, -0.004124265164136887, 0.021021995693445206, -0.06535351276397705, 0.03667223080992699, 0.05759815499186516, 0.002338665770366788, 0.034346625208854675, 0.03531648591160774, -0.02694340981543064, -0.08122773468494415, 0.23993274569511414, -0.03320292383432388, -0.09375521540641785, 0.014174471609294415, -0.043060675263404846, -0.029764266684651375, 0.0772782489657402, -0.1643814891576767, -0.03070986457169056, 0.03762448579072952, 0.05736512690782547, 0.05985475331544876, -0.15754929184913635, 0.028034651651978493, 0.026588793843984604, -0.12361735105514526, -0.1492052674293518, 0.05415555089712143, -0.03137443587183952, 0.03902226686477661, -0.09707564860582352, -0.036032456904649734, 0.007620782125741243, -0.04377839341759682, -0.16606539487838745, 0.1269155740737915, -0.05590314790606499, -0.2074950933456421, -0.12455829977989197, 0.01041344553232193, 0.009924300946295261, 0.029395999386906624, 0.09751828014850616, -0.0835617184638977, -0.014303535223007202, -0.05785644054412842, 0.10202959924936295, 0.005978884641081095, -0.019743602722883224, -0.05355961248278618, 0.024186018854379654, 0.0760354995727539, -0.14757750928401947, 0.015620254911482334, -0.04797929897904396, -0.04803517088294029, 0.003428555326536298, 0.0026784336660057306, 0.009482012130320072, 0.17476466298103333, 0.04046318307518959, 0.007458785083144903, -0.027425389736890793, 0.18147213757038116, -0.10089647769927979, -0.045628685504198074, 0.2006899118423462, -0.016192136332392693, -0.031161611899733543, 0.1279052197933197, 0.016737304627895355, -0.07658597826957703, 0.004502367693930864, 0.009825103916227818, -0.07062874734401703, -0.23983584344387054, -0.1050136461853981, -0.08197131007909775, -0.05200653895735741, -0.012301545590162277, 0.006918723229318857, 0.04944577440619469, 0.020906580612063408, -0.007229275535792112, -0.05347626656293869, 0.03357420861721039, -0.023226432502269745, 0.14363837242126465, -0.00807166937738657, 0.10666308552026749, -0.033829037100076675, -0.04247763752937317, 0.02624751813709736, 0.024996422231197357, 0.1547413319349289, 0.04285145178437233, 0.058962382376194, 0.07704295963048935, 0.10874686390161514, 0.11150764673948288, 0.053282853215932846, -0.04476640000939369, -0.022376464679837227, 0.008918815292418003, -0.05585378780961037, -0.034288108348846436, 0.0539512038230896, 0.1716526746749878, -0.05240009352564812, -0.052254434674978256, -0.059606973081827164, -0.008131029084324837, 0.2252168506383896, 0.10320797562599182, -0.23011505603790283, -0.06352624297142029, -0.02112550288438797, -0.08175403624773026, -0.009304196573793888, 0.06699977815151215, 0.1910221427679062, -0.1138230413198471, 0.0073159378953278065, 0.0042662289924919605, 0.09728140383958817, -0.024576913565397263, 0.032442688941955566, -0.07599674165248871, 0.01907282881438732, -0.01165533997118473, 0.08789486438035965, -0.27136823534965515, 0.19708284735679626, 0.003586202161386609, 0.12008526176214218, -0.04887497052550316, -0.014191698282957077, -0.0016608876176178455, 0.05787646025419235, 0.10124915838241577, -0.0032175309024751186, 0.013645654544234276, -0.08533014357089996, -0.08550269156694412, 0.07039391994476318, -0.02186451107263565, 0.01909555494785309, 0.04414365813136101, 0.008553626015782356, 0.010514783672988415, 0.025910818949341774, -0.0090052904561162, -0.13120873272418976, -0.05549969896674156, 0.0014407472917810082, 0.19097571074962616, 0.1219877302646637, -0.020034709945321083, -0.08481074869632721, -0.06640401482582092, 0.054522108286619186, -0.06639286875724792, -0.045417796820402145, -0.08491125702857971, -0.0333290696144104, 0.1140168085694313, -0.04212086275219917, -0.0030978957656770945, 0.10935984551906586, 0.12308941781520844, -0.026148207485675812, -0.0486779622733593, 0.06735114753246307, -0.10717006772756577, -0.1105620339512825, -0.023572364822030067, 0.16741789877414703, 0.09843458235263824, 0.08501403778791428, 0.05369476228952408, 0.011773692443966866, -0.022055136039853096, -0.03304561227560043, 0.022359367460012436, 0.11602744460105896, -0.07129133492708206, -0.003934893291443586, 0.03673829138278961, -0.15652801096439362, -0.09412316232919693, -0.0481160506606102, 0.1620006263256073, 0.07913584262132645, -0.052835747599601746, 0.18555524945259094, 0.1835131198167801, -0.09421535581350327, -0.19940106570720673, -0.008451094850897789, 0.11602944135665894, 0.142533540725708, 0.017877286300063133, -0.17331399023532867, 0.07671241462230682, -0.016814764589071274, -0.036763064563274384, -0.026846325024962425, -0.2703457772731781, -0.1435384601354599, 0.16774113476276398, -0.04126782715320587, 0.15792427957057953, -0.012876763939857483, -0.014081302098929882, -0.014594024047255516, -0.028000086545944214, 0.0560145378112793, -0.11354480683803558, 0.10961680859327316, 0.025600342079997063, 0.10048383474349976, 0.05400127172470093, -0.022416625171899796, 0.08115484565496445, 0.08001304417848587, 0.0022679169196635485, -0.009941634722054005, 0.06385724246501923, 0.025125132873654366, 0.010797734372317791, 0.11583637446165085, -0.0875532254576683, 0.031660012900829315, -0.1217852234840393, -0.108236163854599, -0.06226152926683426, 0.06868397444486618, 0.029610125347971916, -0.0507856160402298, 0.015265529043972492, -0.03978060558438301, 0.022763226181268692, -0.0012089826632291079, -0.02628348395228386, -0.13997742533683777, 0.052607931196689606, 0.15297669172286987, 0.19823883473873138, -0.04386483505368233, -0.10822376608848572, -0.021009892225265503, -0.019955724477767944, 0.13095669448375702, -0.10956426709890366, 0.038012683391571045, 0.07581444084644318, 0.03857859596610069, 0.1352073848247528, 0.027863427996635437, -0.08744575083255768, 0.08426857739686966, 0.02514275535941124, -0.06528981029987335, -0.09684734046459198, -0.03873913362622261, -0.0344897024333477, -0.054772891104221344, 0.021786898374557495, 0.1315985918045044, -0.0892585813999176, -0.007559188641607761, -0.015186872333288193, 0.025359107181429863, -0.13246439397335052, 0.2129543125629425, 0.024395866319537163, 0.07256674766540527, -0.09430408477783203, -0.0038299215957522392, 0.01799958199262619, -0.0651279166340828, 0.04946579039096832, -0.05502060055732727, -0.055693112313747406, -0.058640334755182266, -0.010702508501708508, 0.07648033648729324, 0.06666862219572067, -0.13481780886650085, -0.059475090354681015, -0.10798486322164536, 0.018268581479787827, 0.06354374438524246, 0.0454523079097271, 0.03125811368227005, -0.10790891200304031, -0.07156093418598175, -0.10364806652069092, 0.05892759934067726, 0.057708416134119034, -0.018261436372995377, -0.11718746274709702, 0.1703345775604248, 0.04949796199798584, 0.03369147330522537, -0.04880877584218979, -0.06883767992258072, -0.03819038346409798, 0.08670031279325485, -0.0832459032535553, 0.007131294347345829, -0.03376944735646248, 0.0215178020298481, 0.0030209815595299006, -0.07668693363666534, -0.03282865881919861, 0.07942204177379608, -0.09306911379098892, 0.06631121039390564, -0.0020395638421177864, 0.06199827790260315, -0.07370112091302872, 0.015177986584603786, 0.01625845581293106, -0.0533730573952198, 0.08318905532360077, 0.1078299805521965, -0.11839296668767929, 0.07964927703142166, -0.19308209419250488, -0.05613645911216736, 0.06588999927043915, 0.07287673652172089, -0.03272443637251854, -0.10827651619911194, 0.03181321546435356, 0.10285099595785141, 0.052482083439826965, -0.016020668670535088, 0.07892908900976181, -0.0696646198630333, -0.01728515513241291, -0.07234252989292145, -0.016110675409436226, -0.039681173861026764, 0.013917985372245312, 0.04294291511178017, 0.15095388889312744, 0.1633806824684143, -0.0881577730178833, 0.10044445097446442, -0.1385081559419632, 0.00531215313822031, -0.035503193736076355, -0.010777972638607025, -0.08958619087934494, -0.08468829840421677, 0.07770968228578568, -0.04238682985305786, 0.13235411047935486, 0.04927347972989082, 0.015742886811494827, -0.023678338155150414, -0.10145871341228485, 0.047234904021024704, -0.010212665423750877, 0.26071417331695557, 0.03793865814805031, 0.021749502047896385, -0.007517586462199688, -0.0050869593396782875, 0.025826752185821533, 0.15000759065151215, 0.009796707890927792, 0.13762198388576508, 0.02058500610291958, 0.07516214996576309, 0.09218999743461609, -0.06163036823272705, -0.05073785036802292, 0.0024044658057391644, -0.12828756868839264, 0.05835771933197975, -0.07261322438716888, 0.14085404574871063, 0.1326269656419754, -0.09360207617282867, 0.08347759395837784, 0.005119910463690758, -0.07540164887905121, -0.16688689589500427, -0.12865407764911652, -0.07433730363845825, -0.16649623215198517, 0.026820193976163864, -0.1000090166926384, 0.024873774498701096, 0.07180074602365494, 0.033502694219350815, -0.018221698701381683, 0.14324340224266052, 0.0059367818757891655, -0.09522421658039093, 0.08058210462331772, -0.08721636980772018, -0.0037235445342957973, -0.10101928561925888, 0.04056936874985695, 0.16876788437366486, 0.0005809171707369387, 0.05729313939809799, -0.007214548531919718, -0.05888865143060684, 0.0346733033657074, -0.07169467210769653, -0.05974110588431358, -0.018547888845205307, -0.0210930947214365, 0.08281257003545761, 0.12199810892343521, 0.12547819316387177, -0.0645822063088417, 0.009680312126874924, 0.13036109507083893, -0.05266358330845833, -0.149215430021286, -0.17157350480556488, 0.10904955118894577, 0.026124760508537292, 0.009033960290253162, 0.0018545391503721476, -0.058674462139606476, -0.0005953318905085325, 0.2228459119796753, 0.2083844542503357, 0.034950803965330124, 0.026455074548721313, -0.009185059927403927, -0.010081111453473568, -0.03852170333266258, 0.06123240664601326, 0.07646413892507553, 0.25907400250434875, -0.01973293535411358, -0.011122983880341053, -0.06356065720319748, -0.06790035963058472, 0.015354864299297333, 0.06340422481298447, -0.06702961772680283, -0.09507665038108826, 0.009134969674050808, 0.12976936995983124, -0.044479213654994965, -0.10332491248846054, -0.08069676160812378, -0.08490993082523346, -0.08458908647298813, -0.02162141725420952, 0.03521665558218956, 0.09546764194965363, 0.014666535891592503, -0.08589082211256027, 0.021421078592538834, 0.14210116863250732, -0.01806446723639965, -0.06991872191429138, -0.021792452782392502, 0.05152342468500137, -0.10117059201002121, 0.0071034422144293785, -0.011659989133477211, 0.16810187697410583, 0.018163951113820076, 0.08719291538000107, -0.018101204186677933, 0.14325737953186035, -0.01843932829797268, -0.08968304842710495, 0.022562842816114426, 0.13111373782157898, -0.03254786133766174, 0.12188699841499329, 0.022905435413122177, -0.12374421209096909, 0.05170386657118797, -0.13959428668022156, -0.004763004835695028, -0.08746891468763351, 0.039640624076128006, -0.04103202000260353, 0.08551262319087982, 0.060599952936172485, -0.06637831777334213, -0.05136902630329132, -0.0438297800719738, 0.07643010467290878, 0.010734086856245995, -0.044682037085294724, -0.038305122405290604, -0.22456477582454681, -0.008776376955211163, -0.05950659513473511, -0.02791055664420128, -0.2271912544965744, -0.023782208561897278, 0.003324788762256503, -0.08817431330680847, 0.0008596532861702144, 0.020264118909835815, 0.10262294113636017, -0.0023797075264155865, -0.024173088371753693, -0.01575026661157608, 0.0478181391954422, 0.1183948963880539, -0.1612883359193802, -0.10646908730268478 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Romansh Sursilv Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Romansh Sursilv using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "rm-sursilv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Romansh Sursilv test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "rm-sursilv", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\„\–\…\«\»]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 25.78 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "rm-sursilv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Romansh Sursilv", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice rm-sursilv", "type": "common_voice", "args": "rm-sursilv"}, "metrics": [{"type": "wer", "value": 25.78, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xlsr-53-rm-sursilv
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "rm-sursilv" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Romansh Sursilv Fine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Sursilv using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Romansh Sursilv test data of Common Voice. Test Result: 25.78 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Romansh Sursilv\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Sursilv using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Romansh Sursilv test data of Common Voice.\n\nTest Result: 25.78 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Romansh Sursilv\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Sursilv using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Romansh Sursilv test data of Common Voice.\n\nTest Result: 25.78 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 78, 69, 20, 31, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Romansh Sursilv\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Sursilv using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\nThe model can be evaluated as follows on the Romansh Sursilv test data of Common Voice.\n\nTest Result: 25.78 %## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.16233162581920624, 0.0732659175992012, -0.0024941933806985617, -0.008846630342304707, 0.08197333663702011, -0.024080824106931686, 0.1904284805059433, 0.10861900448799133, -0.03494419530034065, -0.007029484026134014, 0.04517785459756851, -0.05403323099017143, 0.06866621226072311, 0.08098418265581131, 0.004024519119411707, -0.17879998683929443, 0.010812557302415371, -0.01861214078962803, 0.06821367144584656, 0.11099717020988464, 0.08791235834360123, -0.08990182727575302, 0.016335517168045044, 0.05915601924061775, -0.10752873122692108, 0.046839434653520584, 0.038702305406332016, -0.07615267485380173, 0.15060687065124512, 0.06234367936849594, 0.0499829426407814, 0.05543223023414612, 0.11418788135051727, -0.20554272830486298, 0.02486386150121689, 0.04998897761106491, 0.020850008353590965, 0.014904454350471497, 0.05271260067820549, -0.006493026856333017, 0.08280523121356964, 0.06722404807806015, -0.03857513517141342, 0.0505828894674778, -0.06401985138654709, -0.19745123386383057, -0.04091372713446617, -0.0050915624015033245, 0.033067550510168076, 0.12907041609287262, -0.06343024969100952, 0.12595221400260925, -0.12821555137634277, 0.08918267488479614, 0.11549247056245804, -0.18993718922138214, -0.019021296873688698, 0.06700734794139862, 0.03370446711778641, 0.0812641829252243, -0.04948556050658226, 0.05941788852214813, 0.03483416512608528, 0.022088665515184402, -0.017690030857920647, -0.01308486983180046, -0.19439980387687683, 0.004097333177924156, -0.1313030868768692, -0.056229837238788605, 0.2521927058696747, -0.02770553156733513, -0.07434898614883423, -0.11111655086278915, -0.029094120487570763, 0.01980915665626526, -0.0016689180629327893, -0.056433144956827164, -0.0038677097763866186, 0.04503105953335762, -0.024810481816530228, -0.0292114969342947, -0.11161690205335617, -0.15938757359981537, 0.008032289333641529, 0.06603096425533295, 0.04352083057165146, 0.026472603902220726, -0.10480672121047974, 0.09681975096464157, -0.1414182186126709, -0.0708777979016304, 0.0030424119904637337, 0.021610070019960403, -0.09040650725364685, 0.017111938446760178, -0.08849795162677765, -0.14373479783535004, 0.04772809147834778, 0.035431452095508575, 0.07644857466220856, 0.013455378822982311, -0.04973902180790901, 0.04724033549427986, 0.006893839221447706, 0.10750225931406021, -0.07399572432041168, -0.01857885904610157, 0.024398736655712128, 0.002642863430082798, -0.01930226758122444, 0.0015020330902189016, -0.05616595596075058, -0.06640937179327011, 0.024628419429063797, 0.07684945315122604, -0.02194344624876976, 0.004857283551245928, -0.033781569451093674, -0.021151699125766754, 0.0020570335909724236, -0.10107412934303284, -0.037460118532180786, 0.05425112694501877, -0.008235868997871876, 0.11572176963090897, 0.04200997203588486, 0.045367706567049026, -0.07956992834806442, 0.0029506846331059933, 0.027405107393860817, 0.034423064440488815, -0.015830853953957558, -0.10880999267101288, 0.020438967272639275, -0.05684702843427658, -0.03402017056941986, -0.08833430707454681, -0.1639503836631775, -0.06641720980405807, -0.003921213559806347, 0.011186813935637474, 0.00818572472780943, -0.09006023406982422, -0.002929317532107234, -0.02786828950047493, -0.04217826947569847, 0.06304009258747101, -0.041566140949726105, 0.07162372022867203, 0.019362743943929672, 0.057522427290678024, 0.02653382532298565, 0.07852431386709213, -0.09843987971544266, -0.04545970633625984, 0.09248358756303787, 0.12357553094625473, -0.03232792019844055, -0.06874709576368332, -0.10218052566051483, -0.06039593368768692, -0.08888811618089676, 0.050269924104213715, 0.08941453695297241, 0.1307394951581955, -0.34802165627479553, -0.0739261731505394, 0.22236648201942444, -0.1550380140542984, -0.02946907840669155, 0.22776445746421814, 0.0027043672744184732, 0.08803758770227432, 0.15662306547164917, 0.21628035604953766, 0.0810275673866272, -0.20345482230186462, 0.03430456668138504, 0.004731607623398304, 0.000009555696124152746, -0.014348224736750126, 0.08221261203289032, -0.0490742065012455, 0.028341639786958694, 0.03412901610136032, -0.08418945968151093, 0.052983105182647705, -0.05040353536605835, -0.0819699615240097, -0.042290203273296356, -0.08970919996500015, 0.09114129841327667, 0.04676558077335358, 0.008461767807602882, -0.029629670083522797, -0.06463088095188141, -0.018881557509303093, 0.1326369047164917, -0.1412862092256546, 0.05646015331149101, -0.10564596951007843, 0.0856579914689064, -0.06870099902153015, 0.010198364965617657, -0.13660424947738647, 0.1349964290857315, 0.0066552008502185345, 0.10722500085830688, 0.03711693733930588, 0.16886606812477112, 0.025524690747261047, 0.0023725200444459915, -0.055369630455970764, -0.010694884695112705, 0.01284799911081791, -0.03216307982802391, -0.037998929619789124, -0.10760336369276047, -0.03225897252559662, -0.04925640672445297, 0.08780184388160706, -0.1771903932094574, 0.004556757397949696, 0.05227043852210045, 0.014509780332446098, 0.000490362464915961, -0.019181206822395325, 0.03623506426811218, 0.08462166041135788, 0.001514541101641953, -0.007125833537429571, 0.03923456370830536, -0.0025417462456971407, -0.015018711797893047, 0.1118064820766449, -0.09853915870189667, 0.0025363387539982796, 0.10602208226919174, -0.02374209836125374, -0.005207960028201342, 0.05870853364467621, -0.002670115791261196, -0.028775667771697044, -0.10725262761116028, -0.023983491584658623, 0.2427765429019928, 0.0011770341079682112, 0.1054120883345604, -0.0992058739066124, 0.014506557956337929, 0.029144367203116417, -0.06052158772945404, 0.037881333380937576, 0.07623129338026047, 0.015317988581955433, 0.04482250288128853, 0.028997426852583885, -0.033237896859645844, -0.11510036140680313, 0.20731490850448608, -0.03884895518422127, -0.09848091006278992, 0.020237082615494728, -0.016258204355835915, -0.011174230836331844, 0.06506090611219406, -0.18887890875339508, -0.04139237478375435, 0.02826138399541378, 0.050858333706855774, 0.06103498488664627, -0.15838700532913208, 0.018384519964456558, 0.00689929723739624, -0.14183121919631958, -0.16691258549690247, 0.06413877010345459, -0.06798932701349258, 0.05683625862002373, -0.11964710056781769, -0.013001305982470512, -0.010960151441395283, -0.04902193695306778, -0.17560669779777527, 0.11224415153265, -0.06697884947061539, -0.16141757369041443, -0.13015541434288025, 0.004362260922789574, 0.0064621055498719215, 0.03337665647268295, 0.0908317044377327, -0.109112448990345, -0.010603949427604675, -0.035862602293491364, 0.07319588959217072, -0.018253426998853683, -0.003078829264268279, -0.060122162103652954, 0.019380338490009308, 0.0572674535214901, -0.13285435736179352, 0.014905762858688831, -0.06166182830929756, -0.06031451374292374, 0.004994252696633339, -0.02351277507841587, 0.03575177118182182, 0.14545173943042755, 0.016370199620723724, 0.025551078841090202, -0.02369057387113571, 0.18274334073066711, -0.07199519127607346, -0.03809889405965805, 0.23715640604496002, -0.015915267169475555, -0.022829655557870865, 0.09202977269887924, 0.02560393139719963, -0.06448273360729218, -0.013119188137352467, -0.021265102550387383, -0.0904085785150528, -0.2527765929698944, -0.12842005491256714, -0.07287194579839706, -0.07231145352125168, -0.004321928136050701, 0.00004938506390317343, 0.018769649788737297, 0.01536228321492672, -0.041247498244047165, -0.048914097249507904, 0.058039676398038864, -0.01214800588786602, 0.14965330064296722, -0.000323869549902156, 0.10050028562545776, -0.049845244735479355, -0.026949889957904816, 0.034754086285829544, 0.02365567535161972, 0.1846621036529541, 0.04400986433029175, 0.10693715512752533, 0.09128013998270035, 0.12636864185333252, 0.09755323082208633, 0.0647812932729721, -0.039804838597774506, -0.02494526281952858, 0.015216647647321224, -0.07441017031669617, -0.04841945320367813, 0.04263071343302727, 0.12774419784545898, -0.046281617134809494, -0.027747858315706253, -0.019437024369835854, 0.028410928323864937, 0.21484249830245972, 0.09490801393985748, -0.21803325414657593, -0.07163093239068985, -0.02529098652303219, -0.04497876390814781, 0.02729800157248974, 0.03202657401561737, 0.18134374916553497, -0.12479668110609055, 0.025548774749040604, -0.002541664056479931, 0.09108899533748627, -0.033034343272447586, 0.032239705324172974, -0.07219204306602478, 0.03391573205590248, -0.004319585394114256, 0.10556267201900482, -0.2839242219924927, 0.2274220734834671, 0.014951227232813835, 0.1313999891281128, -0.06308892369270325, -0.0017950866604223847, 0.004653025418519974, 0.07898484915494919, 0.11499053239822388, -0.0001540890516480431, 0.028181837871670723, -0.06214551255106926, -0.06944695115089417, 0.06549456715583801, 0.016296857967972755, 0.03938474506139755, 0.04025137796998024, -0.006292571313679218, 0.011434195563197136, 0.021976623684167862, 0.0339982807636261, -0.1682850420475006, -0.06361452490091324, 0.016935210675001144, 0.17510637640953064, 0.09254147857427597, -0.01800535060465336, -0.10328362882137299, -0.12233088165521622, 0.07393482327461243, -0.08731697499752045, -0.04492931067943573, -0.06304509192705154, -0.0034957490861415863, 0.10683261603116989, -0.05221521481871605, -0.021782930940389633, 0.08855190873146057, 0.1102994903922081, -0.04963267222046852, -0.030674124136567116, 0.0432610847055912, -0.11860545724630356, -0.1444156914949417, -0.03950253874063492, 0.1874355524778366, 0.10104547441005707, 0.07571575045585632, 0.05280742049217224, 0.015460503287613392, -0.016117651015520096, -0.03922605514526367, 0.02336074784398079, 0.12742741405963898, -0.12001632899045944, -0.0021541526075452566, 0.015542812645435333, -0.15159989893436432, -0.09596690535545349, -0.06388247013092041, 0.16539350152015686, 0.08689597249031067, -0.06522218137979507, 0.1845201849937439, 0.19483064115047455, -0.10564533621072769, -0.22973787784576416, -0.023602889850735664, 0.08952425420284271, 0.10565050691366196, 0.0009668687707744539, -0.18702135980129242, 0.051206763833761215, 0.0025034481659531593, -0.023828299716114998, -0.08324310183525085, -0.2874293029308319, -0.1449604481458664, 0.10848113894462585, -0.04496043175458908, 0.1301429271697998, -0.003499915823340416, -0.030637264251708984, -0.04277874529361725, -0.013643876649439335, -0.004056902602314949, -0.11064892262220383, 0.08832698315382004, 0.020915929228067398, 0.058824677020311356, 0.034152500331401825, -0.025346893817186356, 0.09816086292266846, 0.0907876268029213, -0.002974393777549267, 0.009342560544610023, 0.07665300369262695, 0.09613250195980072, 0.02994951792061329, 0.12461257725954056, -0.08663266897201538, 0.04398428648710251, -0.08023710548877716, -0.08782794326543808, -0.061130937188863754, 0.04573258012533188, 0.024157458916306496, -0.02737506665289402, 0.038788292557001114, -0.04848563298583031, 0.01176432240754366, 0.013216841965913773, -0.05911029502749443, -0.10884993523359299, 0.04084927216172218, 0.12833517789840698, 0.18726693093776703, -0.03412856534123421, -0.07198740541934967, -0.017008034512400627, -0.012661239132285118, 0.09993700683116913, -0.07509994506835938, 0.04492460936307907, 0.07413918524980545, 0.05820141360163689, 0.11911934614181519, 0.016842342913150787, -0.10353946685791016, 0.07884630560874939, 0.016590682789683342, -0.08425398170948029, -0.13096089661121368, -0.025557667016983032, -0.03611036017537117, -0.05674399435520172, 0.05753700062632561, 0.1202324703335762, -0.0923689603805542, -0.006202611606568098, -0.03223186731338501, 0.023776469752192497, -0.10991314798593521, 0.26765912771224976, 0.015504051931202412, 0.061558663845062256, -0.12507471442222595, 0.043171077966690063, -0.007365616038441658, -0.02674134075641632, 0.025243140757083893, -0.04830658808350563, -0.10005564242601395, -0.06486223638057709, -0.03845994547009468, 0.05025915801525116, 0.07956390827894211, -0.15251798927783966, -0.05269405245780945, -0.08223777264356613, 0.017839621752500534, 0.024720001965761185, 0.0661718100309372, 0.018424153327941895, -0.13086049258708954, -0.08271891623735428, -0.09024673700332642, 0.06976710259914398, 0.10119599103927612, -0.01763940043747425, -0.08862939476966858, 0.1651044487953186, 0.05898124352097511, 0.014863832853734493, -0.04498928412795067, -0.075935497879982, -0.011475641280412674, 0.1071535125374794, -0.08778101950883865, 0.002912819618359208, -0.04298548400402069, 0.00715399906039238, -0.0014786932151764631, -0.0775298997759819, -0.02022605761885643, 0.08216717094182968, -0.09495950490236282, 0.05917688459157944, -0.016253605484962463, 0.07080402225255966, -0.10145196318626404, 0.03522225841879845, 0.019185932353138924, -0.050654709339141846, 0.09207605570554733, 0.11613650619983673, -0.10221002250909805, 0.12020626664161682, -0.2474808543920517, -0.047450944781303406, 0.044085532426834106, 0.07688497006893158, -0.04962276294827461, -0.07663092762231827, 0.03936097025871277, 0.09877750277519226, 0.02399720810353756, 0.012508577667176723, 0.0921960175037384, -0.04163793846964836, 0.03533271700143814, -0.04182913899421692, -0.0070520322769880295, -0.012715570628643036, 0.04774787276983261, 0.04697558656334877, 0.15934988856315613, 0.14522546529769897, -0.09501700103282928, 0.08568450808525085, -0.1377454698085785, 0.010211307555437088, -0.04459276795387268, -0.023019568994641304, -0.15568232536315918, -0.0736159160733223, 0.08858252316713333, -0.02855784073472023, 0.1363580971956253, 0.03871073201298714, 0.07879946380853653, -0.035357240587472916, -0.02722889743745327, 0.006293743848800659, -0.015008024871349335, 0.2455357164144516, 0.048464395105838776, 0.04571229964494705, -0.05598035454750061, -0.014183493331074715, 0.0035113124176859856, 0.12830086052417755, 0.0223325714468956, 0.1519538313150406, 0.007363669108599424, 0.07354702055454254, 0.079420305788517, -0.05950894579291344, -0.050006624311208725, -0.006633509881794453, -0.1366700828075409, 0.05814849212765694, -0.07562027126550674, 0.18011388182640076, 0.10915547609329224, -0.09155580401420593, 0.054674796760082245, 0.0030296521726995707, -0.07633843272924423, -0.15210534632205963, -0.17576918005943298, -0.060745131224393845, -0.1660785973072052, 0.02606338821351528, -0.09446311742067337, 0.042694900184869766, 0.09158551692962646, 0.03541632369160652, -0.03687480837106705, 0.11292784661054611, 0.019798722118139267, -0.10236922651529312, 0.062223874032497406, -0.08776923269033432, -0.013253968209028244, -0.06738904118537903, 0.02196495421230793, 0.16034634411334991, -0.03006349503993988, 0.06461938470602036, 0.008835862390697002, -0.01999032124876976, 0.003070027567446232, -0.07519208639860153, -0.05554461106657982, -0.015645155683159828, -0.023179689422249794, 0.0667964443564415, 0.11819449812173843, 0.11611849069595337, -0.06031123548746109, 0.01162513718008995, 0.12078768759965897, -0.03499223291873932, -0.1454775482416153, -0.16356606781482697, 0.13205696642398834, 0.027621902525424957, 0.03538825362920761, 0.0031388294883072376, -0.05193565785884857, 0.023530729115009308, 0.2504448890686035, 0.2332506626844406, 0.057385433465242386, 0.03163697198033333, -0.009233788587152958, -0.006162415258586407, -0.019935710355639458, 0.05409958213567734, 0.055950094014406204, 0.18026281893253326, -0.03321587294340134, 0.03313658386468887, -0.07891387492418289, -0.07096734642982483, 0.0013621975667774677, 0.06192568689584732, -0.0843508169054985, -0.10736798495054245, -0.003483691718429327, 0.14440782368183136, -0.01572318933904171, -0.12523676455020905, -0.08218981325626373, -0.10868428647518158, -0.08152849972248077, -0.009390073828399181, 0.014019967056810856, 0.10676687955856323, 0.011370882391929626, -0.09520769864320755, 0.03235989436507225, 0.15580743551254272, -0.005436637904495001, -0.08190342783927917, -0.08574935048818588, 0.06931280344724655, -0.08982119709253311, -0.002428047824651003, -0.029741035774350166, 0.18922878801822662, 0.019839970394968987, 0.10298079252243042, -0.012285859324038029, 0.14303134381771088, -0.013134198263287544, -0.07658567279577255, 0.009430314414203167, 0.11299344152212143, -0.04266898334026337, 0.12232135981321335, 0.03329777345061302, -0.08666134625673294, 0.061377204954624176, -0.08816619217395782, -0.004745778627693653, -0.08405160158872604, 0.06408191472291946, -0.04220094159245491, 0.08716125786304474, 0.06679921597242355, -0.06370070576667786, -0.029702257364988327, -0.056877583265304565, 0.06280972063541412, 0.015931131318211555, -0.014893004670739174, -0.02949291653931141, -0.26032713055610657, -0.004169720225036144, -0.06996166706085205, -0.008245892822742462, -0.16240714490413666, -0.03361903503537178, -0.012307940982282162, -0.07015429437160492, 0.017977198585867882, 0.049830444157123566, 0.10965617746114731, 0.002002844586968422, -0.0045959679409861565, -0.055457014590501785, 0.060738276690244675, 0.10775165259838104, -0.14338204264640808, -0.09205823391675949 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Romansh Vallader Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Romansh Vallader using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "rm-vallader", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-vallader") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-vallader") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Romansh Vallader test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "rm-vallader", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-vallader") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-vallader") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\„\–\…\«\»]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub('’ ',' ',batch["sentence"]) batch["sentence"] = re.sub(' ‘',' ',batch["sentence"]) batch["sentence"] = re.sub('’|‘','\'',batch["sentence"]) batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 32.89 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "rm-vallader", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Romansh Vallader", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice rm-vallader", "type": "common_voice", "args": "rm-vallader"}, "metrics": [{"type": "wer", "value": 32.89, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xlsr-53-rm-vallader
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "rm-vallader" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Romansh Vallader Fine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Vallader using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Romansh Vallader test data of Common Voice. Test Result: 32.89 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Romansh Vallader\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Vallader using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Romansh Vallader test data of Common Voice.\n\nTest Result: 32.89 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Romansh Vallader\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Vallader using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Romansh Vallader test data of Common Voice.\n\nTest Result: 32.89 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 78, 67, 20, 30, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Romansh Vallader\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Vallader using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\nThe model can be evaluated as follows on the Romansh Vallader test data of Common Voice.\n\nTest Result: 32.89 %## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.1597229689359665, 0.041027866303920746, -0.002078109420835972, 0.026504915207624435, 0.09443273395299911, -0.02012704499065876, 0.21224118769168854, 0.10002502799034119, -0.03504389896988869, -0.006141535937786102, 0.05592513456940651, -0.018639639019966125, 0.056049615144729614, 0.06776710599660873, 0.016184361651539803, -0.2254311442375183, -0.004623016808182001, -0.0005525043816305697, 0.09567948430776596, 0.09197176247835159, 0.09486863017082214, -0.08750393986701965, 0.013206284493207932, 0.06454455852508545, -0.09784731268882751, 0.06056563928723335, 0.03450964018702507, -0.08139505982398987, 0.1677100658416748, 0.07210585474967957, 0.04636119306087494, 0.030355310067534447, 0.11906203627586365, -0.19237026572227478, 0.026164786890149117, 0.044302888214588165, 0.020114358514547348, 0.00648669246584177, 0.02581949718296528, -0.00912392046302557, 0.10872261971235275, 0.025565318763256073, -0.014748819172382355, 0.051250480115413666, -0.06239558756351471, -0.2366812825202942, -0.051603175699710846, -0.02433638460934162, 0.04724383354187012, 0.12877075374126434, -0.0526924729347229, 0.1580769419670105, -0.10293712466955185, 0.10164699703454971, 0.12549921870231628, -0.24115145206451416, -0.03987559676170349, 0.058055367320775986, 0.04933455213904381, 0.1316109448671341, -0.053887609392404556, 0.0741061195731163, 0.03331384062767029, 0.04969893395900726, 0.013769273646175861, -0.009334033355116844, -0.19782805442810059, 0.00018017822003457695, -0.13595739006996155, -0.03660361468791962, 0.2541656792163849, -0.0411611944437027, -0.06526403874158859, -0.12763579189777374, -0.02548445574939251, -0.006012238096445799, 0.011287221685051918, -0.06223643943667412, -0.01218237541615963, 0.03495902195572853, 0.02239879034459591, -0.02878890000283718, -0.11713230609893799, -0.14212700724601746, -0.0005833602626807988, 0.06330538541078568, 0.04087277874350548, 0.019472189247608185, -0.13594605028629303, 0.1003635823726654, -0.071219302713871, -0.08283621817827225, 0.028978582471609116, 0.038002341985702515, -0.06757181137800217, 0.014940236695110798, -0.08816990256309509, -0.2095952033996582, 0.031250208616256714, -0.0002832107711583376, 0.06826119124889374, 0.010020842775702477, -0.045874085277318954, 0.04991251975297928, 0.0037910109385848045, 0.13643617928028107, -0.06220163032412529, -0.036714740097522736, 0.04937359318137169, 0.002196617191657424, -0.0022280002012848854, -0.008910810574889183, -0.06876497715711594, -0.07160038501024246, -0.00475301593542099, 0.0781247615814209, -0.030325716361403465, -0.01180450338870287, -0.018298985436558723, -0.008608993142843246, -0.03513364866375923, -0.10478795319795609, -0.02492714487016201, 0.057468995451927185, 0.029390720650553703, 0.16904297471046448, 0.053116071969270706, 0.025166558101773262, -0.07937683910131454, 0.004921148996800184, 0.030258607119321823, 0.019724799320101738, -0.019475242123007774, -0.11776784062385559, 0.03079134412109852, -0.06327752768993378, -0.023380275815725327, -0.08745507150888443, -0.09312250465154648, -0.06466346979141235, 0.006748249754309654, 0.015876274555921555, 0.00218522222712636, -0.09663470834493637, 0.009669341146945953, -0.009386365301907063, -0.02811184525489807, 0.068865567445755, -0.03627485781908035, 0.0631626695394516, 0.01708337664604187, 0.07024288177490234, -0.011909602209925652, 0.07450360804796219, -0.06617236882448196, -0.04214879870414734, 0.1043202131986618, 0.11043405532836914, -0.019431672990322113, -0.05500614643096924, -0.0845220535993576, -0.05795320123434067, -0.046355366706848145, 0.05504104867577553, 0.09502455592155457, 0.10471079498529434, -0.3497263789176941, -0.0640832781791687, 0.24481265246868134, -0.1514572948217392, -0.039704661816358566, 0.2189861387014389, -0.007675104308873415, 0.09946710616350174, 0.17361992597579956, 0.1571081131696701, 0.11744408309459686, -0.2209300547838211, 0.06256360560655594, 0.01368371769785881, 0.006653227377682924, -0.04748757556080818, 0.07056764513254166, -0.03325430676341057, 0.015065383166074753, 0.0464470349252224, -0.08299820870161057, 0.08275940269231796, -0.0443912111222744, -0.07329805195331573, -0.04484889656305313, -0.08067259192466736, 0.046646974980831146, 0.03038395568728447, 0.026918454095721245, -0.025983484461903572, -0.07159102708101273, -0.011875471100211143, 0.10624666512012482, -0.14418163895606995, 0.05266871303319931, -0.08816682547330856, 0.09762926399707794, -0.05993009731173515, 0.0029527698643505573, -0.12365496158599854, 0.12274891883134842, -0.0009174890001304448, 0.0784047394990921, 0.024586830288171768, 0.19483616948127747, 0.025861959904432297, 0.016132252290844917, -0.04699737951159477, 0.011167680844664574, 0.013305963948369026, -0.020219922065734863, -0.05154387280344963, -0.12006369978189468, -0.025949733331799507, -0.06703882664442062, 0.035831090062856674, -0.1411781758069992, 0.0000736375295673497, 0.05881959944963455, 0.017574472352862358, -0.005340976640582085, -0.007301079574972391, 0.02193373069167137, 0.10090681910514832, 0.011447129771113396, -0.012302054092288017, 0.04222499579191208, 0.002054469892755151, -0.01555085089057684, 0.09882910549640656, -0.13474462926387787, -0.010005357675254345, 0.10605943202972412, -0.01023699901998043, 0.010176330804824829, 0.048415809869766235, 0.0015242801746353507, -0.013534448109567165, -0.10361290723085403, -0.02534344233572483, 0.2668340504169464, 0.014243172481656075, 0.10733955353498459, -0.08919396251440048, 0.016602151095867157, 0.04287540167570114, -0.04522227123379707, 0.03287027031183243, 0.07351403683423996, 0.03687264025211334, 0.039774395525455475, 0.009644721634685993, -0.03350302204489708, -0.11500518769025803, 0.21320199966430664, -0.037516821175813675, -0.09532550722360611, 0.004882803186774254, -0.021135009825229645, -0.007255587261170149, 0.08147847652435303, -0.18914823234081268, -0.05179416388273239, 0.015965860337018967, 0.040004268288612366, 0.05136517062783241, -0.15998908877372742, 0.010266401804983616, 0.015962012112140656, -0.10871328413486481, -0.16290447115898132, 0.08444322645664215, -0.06664051115512848, 0.05374722555279732, -0.1112309917807579, -0.01675577089190483, -0.011724106036126614, -0.03999941051006317, -0.16484127938747406, 0.11240651458501816, -0.06501410901546478, -0.1579170674085617, -0.14448752999305725, -0.0019390980014577508, 0.01712796464562416, 0.011403379030525684, 0.0991227999329567, -0.11303607374429703, -0.016666414216160774, -0.02710578963160515, 0.10020943731069565, -0.007588651962578297, 0.005858820863068104, -0.06107172742486, -0.00024115131236612797, 0.057383373379707336, -0.1528312861919403, 0.003079693065956235, -0.058816809207201004, -0.03298955038189888, -0.011973355896770954, -0.0038904889952391386, 0.026458222419023514, 0.12145876884460449, 0.019587602466344833, 0.045071907341480255, -0.022984623908996582, 0.2001536786556244, -0.0579197071492672, -0.026323135942220688, 0.22357235848903656, -0.020094159990549088, -0.01953069493174553, 0.07351605594158173, 0.038837797939777374, -0.07771770656108856, -0.03107835352420807, -0.008691402152180672, -0.10000015795230865, -0.2546522617340088, -0.11445935815572739, -0.08406972140073776, -0.10388742387294769, -0.0030828500166535378, 0.006348040886223316, -0.02509070374071598, 0.017510684207081795, -0.018618935719132423, -0.04033578932285309, 0.01739712990820408, -0.018176477402448654, 0.19552654027938843, -0.015571324154734612, 0.07842735946178436, -0.061851345002651215, -0.02922782301902771, 0.02873941883444786, 0.028518863022327423, 0.1653979867696762, 0.059188082814216614, 0.08745511621236801, 0.09247329831123352, 0.11439984291791916, 0.08066103607416153, 0.09062749147415161, -0.03606933727860451, -0.028195271268486977, 0.016031047329306602, -0.07344164699316025, -0.029075972735881805, 0.03536007180809975, 0.0978134274482727, -0.028591327369213104, -0.045356351882219315, 0.022922858595848083, 0.009394722059369087, 0.2510027587413788, 0.06006341427564621, -0.22678592801094055, -0.05605510249733925, -0.024829216301441193, -0.03582226112484932, 0.005921808537095785, 0.04509685933589935, 0.17326857149600983, -0.10793697088956833, 0.02249085158109665, -0.026012688875198364, 0.08737217634916306, -0.05323558300733566, 0.032259196043014526, -0.059417515993118286, 0.05443516746163368, 0.0083384457975626, 0.09062645584344864, -0.26145288348197937, 0.2372371107339859, 0.010837906040251255, 0.14574293792247772, -0.062348898500204086, 0.010628811083734035, 0.005782528314739466, 0.06219208985567093, 0.11601261794567108, 0.0010782888857647777, 0.04296031966805458, -0.048706237226724625, -0.06781100481748581, 0.07430601865053177, -0.00975126400589943, 0.04290641099214554, 0.04764522239565849, -0.004582896828651428, 0.009399505332112312, 0.022153854370117188, 0.010182753205299377, -0.14250104129314423, -0.09253432601690292, 0.008871727623045444, 0.19977281987667084, 0.06008453667163849, -0.01779865473508835, -0.12332721054553986, -0.1423443704843521, 0.02072300761938095, -0.04095662385225296, -0.044274382293224335, -0.06582648307085037, 0.013087067753076553, 0.10791993886232376, -0.061065834015607834, -0.021373873576521873, 0.07349652796983719, 0.10719704627990723, -0.08199074864387512, -0.020545458421111107, 0.04066527634859085, -0.10562939941883087, -0.11148466914892197, -0.031746767461299896, 0.19532491266727448, 0.11069800704717636, 0.053180448710918427, 0.06428317725658417, 0.0019083552761003375, -0.009725832380354404, -0.05211344733834267, 0.026900405064225197, 0.12395709753036499, -0.16310961544513702, -0.07335295528173447, -0.0031067209783941507, -0.11288250237703323, -0.09222926944494247, -0.04806463420391083, 0.202274352312088, 0.07389627397060394, -0.08610764890909195, 0.17162272334098816, 0.15266506373882294, -0.12164291739463806, -0.17504486441612244, -0.02785695157945156, 0.07872722297906876, 0.12907786667346954, 0.023271329700946808, -0.19086839258670807, 0.06260447949171066, -0.02911398373544216, -0.01489508431404829, -0.06514965742826462, -0.2915838956832886, -0.13180501759052277, 0.12645700573921204, -0.013364781625568867, 0.16121035814285278, 0.006184480618685484, -0.01702073961496353, -0.02135274186730385, -0.013081859797239304, -0.015461353585124016, -0.12191235274076462, 0.09410431981086731, 0.009184733033180237, 0.06284637004137039, 0.03246380761265755, -0.027995090931653976, 0.0932832583785057, 0.06347332149744034, -0.0022567156702280045, 0.00997005496174097, 0.05562443286180496, 0.08689918369054794, 0.023331208154559135, 0.12282086163759232, -0.13117937743663788, 0.027418091893196106, -0.09211232513189316, -0.09846454858779907, -0.06325449049472809, 0.04077368974685669, 0.007497341837733984, -0.027835585176944733, 0.05208855867385864, -0.06507150083780289, 0.030960572883486748, -0.003010178217664361, -0.07559050619602203, -0.09898141771554947, 0.04296388104557991, 0.07613913714885712, 0.17343932390213013, -0.04918282851576805, -0.09491249173879623, -0.015370262786746025, -0.012874851934611797, 0.11566881090402603, -0.07884038239717484, 0.03165370225906372, 0.08262106031179428, 0.041177667677402496, 0.10257069766521454, 0.019066767767071724, -0.09777845442295074, 0.08444082736968994, 0.022005537524819374, -0.07076933234930038, -0.15094506740570068, -0.02898324280977249, -0.037701062858104706, -0.03455031290650368, 0.04120982810854912, 0.13776937127113342, -0.08562412858009338, -0.015160501934587955, -0.03671004995703697, 0.005385715514421463, -0.11619432270526886, 0.216708242893219, 0.0049008559435606, 0.053175728768110275, -0.1116061732172966, 0.017234129831194878, -0.00971804279834032, -0.05123262479901314, 0.036615628749132156, -0.014948111958801746, -0.08642236143350601, -0.055827438831329346, 0.001077128341421485, 0.06197468936443329, 0.05707940086722374, -0.13946828246116638, -0.0718151107430458, -0.11914891004562378, 0.005016457289457321, 0.058058418333530426, 0.06212829425930977, 0.0184677354991436, -0.17253834009170532, -0.08760425448417664, -0.08719287812709808, 0.06622251123189926, 0.08438102155923843, -0.030177759006619453, -0.10091736912727356, 0.17077437043190002, 0.06825028359889984, -0.011417447589337826, -0.03471328690648079, -0.0828590914607048, 0.0023969002068042755, 0.09927309304475784, -0.11405259370803833, -0.008529304526746273, -0.033275049179792404, 0.02171708084642887, -0.0031155957840383053, -0.07367543876171112, -0.01398751512169838, 0.08538196980953217, -0.08777303993701935, 0.05243535339832306, -0.010312802158296108, 0.08858033269643784, -0.08443012088537216, 0.02702605538070202, 0.002449135761708021, -0.050869882106781006, 0.08854340761899948, 0.09784191846847534, -0.1187884658575058, 0.11373982578516006, -0.27446579933166504, -0.028699224814772606, 0.05044984444975853, 0.07560443133115768, -0.03259115293622017, -0.09845064580440521, 0.04956529289484024, 0.0991676077246666, 0.034479450434446335, 0.016374140977859497, 0.06734964996576309, -0.05885384604334831, 0.02952948585152626, -0.002507640980184078, -0.010040026158094406, -0.0037949206307530403, 0.028582831844687462, 0.06350167095661163, 0.1400657743215561, 0.1302478015422821, -0.09828721731901169, 0.10328847169876099, -0.13804511725902557, 0.015636049211025238, -0.04642580822110176, -0.009324794635176659, -0.15704970061779022, -0.09324086457490921, 0.08516933768987656, -0.02674267068505287, 0.13257843255996704, 0.04014253988862038, 0.07067006826400757, -0.03105936013162136, -0.010302829556167126, -0.018556516617536545, -0.022684941068291664, 0.24142558872699738, 0.018585020676255226, 0.05551363155245781, -0.05111018568277359, -0.024534815922379494, 0.003556361421942711, 0.1546766459941864, 0.02327463962137699, 0.13066712021827698, 0.02994300238788128, 0.09265708178281784, 0.11160899698734283, -0.029880890622735023, -0.07385723292827606, -0.037442419677972794, -0.0982937291264534, 0.07530909031629562, -0.08963002264499664, 0.10866802930831909, 0.10900983959436417, -0.07875233888626099, 0.04546311870217323, 0.006675833370536566, -0.07609860599040985, -0.1583710014820099, -0.1495189368724823, -0.05673627182841301, -0.13360825181007385, 0.021770909428596497, -0.08480940014123917, 0.027680089697241783, 0.03836173936724663, 0.03802412003278732, -0.04310302808880806, 0.13498488068580627, 0.05736003816127777, -0.08989479392766953, 0.07248688489198685, -0.06706378608942032, -0.0014834176981821656, -0.09355705976486206, 0.042268816381692886, 0.12343708425760269, -0.04343222454190254, 0.027417168021202087, 0.009608401916921139, -0.022065453231334686, -0.0001268215710297227, -0.088821180164814, -0.05036482587456703, -0.01852400414645672, -0.03277624398469925, 0.06525790691375732, 0.15503646433353424, 0.12282822281122208, -0.06994866579771042, 0.0023800090420991182, 0.07685550302267075, -0.013452483341097832, -0.13491027057170868, -0.16456235945224762, 0.09152856469154358, 0.022849343717098236, 0.02768557146191597, -0.010797911323606968, -0.017334192991256714, 0.009798014536499977, 0.23872148990631104, 0.23842845857143402, 0.08231710642576218, 0.023578796535730362, -0.005897212773561478, -0.0014181267470121384, -0.029459821060299873, 0.06090234965085983, 0.06046488508582115, 0.20695938169956207, -0.042796023190021515, 0.047781992703676224, -0.11674968153238297, -0.06177685782313347, 0.021188586950302124, 0.04437418282032013, -0.07101933658123016, -0.08806135505437851, 0.008595637045800686, 0.14778748154640198, -0.004818026442080736, -0.067156121134758, -0.07606442272663116, -0.11605353653430939, -0.08608774095773697, -0.017910435795783997, 0.02019813284277916, 0.09653449803590775, 0.014409917406737804, -0.09120257943868637, 0.019788166508078575, 0.21290339529514313, -0.017571479082107544, -0.07928138971328735, -0.0934314876794815, 0.06882442533969879, -0.10716794431209564, 0.0016016523586586118, -0.02887670136988163, 0.17071694135665894, 0.03160437196493149, 0.1142755076289177, -0.006329026538878679, 0.1314222365617752, -0.018459104001522064, -0.06426548957824707, 0.002181063173338771, 0.0628233328461647, -0.040131669491529465, 0.13919594883918762, 0.006723940838128328, -0.040432561188936234, 0.07953352481126785, -0.09608880430459976, -0.02497945912182331, -0.06702403724193573, 0.06613342463970184, -0.04322843626141548, 0.09581203013658524, 0.07561373710632324, -0.057921089231967926, -0.05131303891539574, -0.04041368514299393, 0.0694383829832077, 0.025563891977071762, -0.051595933735370636, -0.03409232571721077, -0.24829480051994324, -0.007952039130032063, -0.05864819511771202, -0.01196450088173151, -0.1623772829771042, -0.06235243380069733, -0.012153824791312218, -0.07953879237174988, 0.01097953598946333, 0.02543819695711136, 0.10952028632164001, 0.012211043387651443, -0.009390264749526978, -0.05444170534610748, 0.0410328283905983, 0.1105840653181076, -0.16209325194358826, -0.0914081409573555 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Sakha Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Sakha using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sah", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-sah") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-sah") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Sakha test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "sah", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-sah") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-sah") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\„\–\…\«\»]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 38.04 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "sah", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Sakha", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice sah", "type": "common_voice", "args": "sah"}, "metrics": [{"type": "wer", "value": 38.04, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xlsr-53-sah
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "sah", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "sah" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #sah #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Sakha Fine-tuned facebook/wav2vec2-large-xlsr-53 on Sakha using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Sakha test data of Common Voice. Test Result: 38.04 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Sakha\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Sakha using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Sakha test data of Common Voice.\n\nTest Result: 38.04 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #sah #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Sakha\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Sakha using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Sakha test data of Common Voice.\n\nTest Result: 38.04 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 80, 63, 20, 29, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #sah #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Sakha\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Sakha using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\nThe model can be evaluated as follows on the Sakha test data of Common Voice.\n\nTest Result: 38.04 %## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.14663080871105194, -0.020214613527059555, -0.0020358769688755274, -0.03905520215630531, 0.09952420741319656, -0.047060731798410416, 0.19943295419216156, 0.07287074625492096, 0.01852632500231266, -0.01608305051922798, 0.02875857800245285, 0.011639580130577087, 0.05685831233859062, 0.12504006922245026, 0.005122622940689325, -0.21793684363365173, 0.010277412831783295, -0.011937728151679039, 0.028750477358698845, 0.1183612272143364, 0.1027112752199173, -0.05729283392429352, -0.007951803505420685, 0.09636565297842026, -0.150577113032341, 0.031161120161414146, 0.06862976402044296, -0.13214321434497833, 0.1495974361896515, 0.08226192742586136, 0.07788042724132538, 0.05348564684391022, 0.09677080065011978, -0.1647282987833023, 0.03185897320508957, 0.027233485132455826, 0.05428469553589821, 0.02754407562315464, 0.0328032411634922, -0.009190034121274948, 0.08398916572332382, 0.0917184129357338, -0.04029543697834015, 0.08213446289300919, -0.06184672564268112, -0.17896097898483276, -0.014582731761038303, 0.012127846479415894, 0.12090418487787247, 0.1301329880952835, -0.06847841292619705, 0.06992830336093903, -0.13843339681625366, 0.07741451263427734, 0.07864634692668915, -0.168783038854599, -0.006661434657871723, 0.10664305835962296, 0.024091141298413277, 0.09130537509918213, -0.04916335269808769, 0.05579109489917755, 0.0392175018787384, 0.024337071925401688, 0.04378887265920639, -0.041374463587999344, -0.17929084599018097, -0.004707483574748039, -0.13212311267852783, -0.03550628945231438, 0.20659399032592773, -0.010680644772946835, -0.07803283631801605, -0.14176522195339203, -0.03009069710969925, 0.010960211977362633, -0.017559312283992767, -0.05558844283223152, -0.00283588538877666, 0.02642069198191166, -0.0061969514936208725, -0.030637741088867188, -0.11190897226333618, -0.17599865794181824, -0.005618066992610693, 0.09671538323163986, 0.016913220286369324, 0.0269931610673666, -0.13753418624401093, 0.04805419594049454, -0.11062915623188019, -0.07170592993497849, 0.0033013976644724607, 0.0053590997122228146, -0.09483299404382706, 0.04054299741983414, -0.09060846269130707, -0.20843574404716492, 0.02966614067554474, -0.05925321206450462, 0.030018651857972145, 0.04270332679152489, -0.02578805200755596, 0.04903440549969673, 0.026521293446421623, 0.10639603435993195, -0.0626753717660904, 0.009492394514381886, 0.021385084837675095, 0.026031967252492905, -0.03776784986257553, -0.032431554049253464, -0.05490541085600853, -0.06662868708372116, -0.02761441469192505, 0.028593268245458603, -0.05476049333810806, 0.00666737649589777, -0.026790114119648933, -0.03220023214817047, -0.017651870846748352, -0.10641621053218842, -0.06563618034124374, 0.058279380202293396, 0.026066739112138748, 0.11205677688121796, 0.05694320425391197, 0.047840338200330734, -0.0572962760925293, -0.019045056775212288, 0.018946228548884392, 0.03386986628174782, -0.029137132689356804, -0.057192612439394, -0.012761702761054039, 0.0034696096554398537, -0.02291817031800747, -0.10337785631418228, -0.12761922180652618, -0.07889090478420258, -0.000045433440391207114, 0.03972742706537247, -0.05026284605264664, -0.06201249733567238, -0.015136045403778553, -0.021833321079611778, -0.07413579523563385, 0.06587140262126923, -0.03697628155350685, 0.06416240334510803, 0.04679449647665024, 0.052971240133047104, 0.06101761385798454, 0.08575591444969177, -0.06550299376249313, -0.02734357677400112, -0.0569271557033062, 0.1545880138874054, -0.05809180811047554, -0.06133606284856796, -0.08588206022977829, -0.06760971248149872, -0.07743192464113235, 0.09538302570581436, 0.048190437257289886, 0.10357503592967987, -0.2528035342693329, -0.10416818410158157, 0.21109016239643097, -0.14283686876296997, -0.027832411229610443, 0.20560938119888306, -0.011266825720667839, 0.10270757228136063, 0.1262325793504715, 0.24978189170360565, 0.09553191810846329, -0.15276192128658295, 0.03985030949115753, 0.020223595201969147, 0.019837884232401848, -0.0542452447116375, 0.07746455818414688, -0.04424786940217018, -0.06099126860499382, 0.041956909000873566, -0.09241019189357758, 0.10445409268140793, -0.02219359576702118, -0.06516171246767044, -0.018340200185775757, -0.09796994924545288, 0.07917877286672592, 0.03960398957133293, 0.03840058669447899, -0.002819466171786189, -0.05191038176417351, 0.05072804167866707, 0.13732679188251495, -0.11197223514318466, 0.035089731216430664, -0.11391100287437439, 0.048575688153505325, -0.08054827153682709, -0.009177770465612411, -0.14728350937366486, 0.18374912440776825, -0.03672230616211891, 0.008080106228590012, 0.06761494278907776, 0.1742313951253891, 0.010708208195865154, -0.00032799120526760817, -0.04299482703208923, -0.016989488154649734, 0.010789749212563038, -0.021802131086587906, -0.023312972858548164, -0.09288989007472992, -0.017090389505028725, -0.052160441875457764, 0.13981029391288757, -0.14789333939552307, 0.0032732996623963118, -0.03368925675749779, -0.00828289333730936, -0.008017400279641151, -0.0011728814570233226, 0.09591968357563019, 0.08636430650949478, 0.030639030039310455, 0.030028171837329865, 0.03435041382908821, 0.004903770051896572, -0.07067622244358063, 0.14728441834449768, -0.12681372463703156, -0.01852606050670147, 0.09835665673017502, -0.039268527179956436, -0.005710605997592211, 0.07528798282146454, 0.0015141888288781047, -0.018796004354953766, -0.10848388820886612, -0.0005936281522735953, 0.301090270280838, 0.00903368927538395, 0.10912182182073593, -0.07621415704488754, 0.023313386365771294, 0.026930052787065506, -0.09551944583654404, 0.07201298326253891, 0.04555952921509743, 0.003139757551252842, 0.03718830645084381, 0.02667294628918171, -0.0351945199072361, -0.11455783247947693, 0.22785310447216034, -0.05421736463904381, -0.08277735114097595, 0.03113938681781292, -0.043112192302942276, -0.04801924526691437, 0.07000041753053665, -0.13704918324947357, -0.06177419424057007, 0.038739126175642014, 0.05217824503779411, 0.04977188631892204, -0.1287684291601181, 0.020022405311465263, 0.01329098455607891, -0.11743170022964478, -0.161586195230484, 0.07455726712942123, -0.051707182079553604, 0.0366520993411541, -0.09434133768081665, -0.03230801597237587, -0.003024461679160595, -0.042024292051792145, -0.16383463144302368, 0.13581515848636627, -0.04547371715307236, -0.20045305788516998, -0.13641522824764252, 0.023395491763949394, 0.0005593686364591122, 0.019260572269558907, 0.08739934861660004, -0.13545645773410797, -0.005627841223031282, -0.008159955032169819, 0.09705612063407898, 0.02550049126148224, -0.035031985491514206, -0.03805878013372421, -0.019467126578092575, 0.08232906460762024, -0.1269800364971161, 0.01179414801299572, -0.053742196410894394, -0.022607382386922836, 0.006083282176405191, -0.004069024231284857, -0.005519406404346228, 0.18644265830516815, 0.041941363364458084, 0.011451355181634426, -0.02464466542005539, 0.16226457059383392, -0.07865706086158752, -0.02993103861808777, 0.24581418931484222, -0.011475715786218643, -0.024406036362051964, 0.10077648609876633, 0.018410760909318924, -0.055244605988264084, -0.01230610255151987, -0.009905822575092316, -0.10241130739450455, -0.2505033612251282, -0.1115759015083313, -0.07033949345350266, -0.05014519765973091, -0.052041806280612946, -0.006259530317038298, 0.04240356385707855, 0.05003704875707626, 0.0034669346641749144, -0.06817397475242615, 0.03738967329263687, -0.02106150984764099, 0.134211465716362, -0.01213062647730112, 0.11854950338602066, -0.06063663586974144, -0.02193518355488777, 0.006807313300669193, 0.011552561074495316, 0.1154288724064827, 0.04355437308549881, 0.07506286352872849, 0.09979785233736038, 0.09487469494342804, 0.13803067803382874, 0.049302566796541214, -0.04318298026919365, -0.026569686830043793, -0.001725200330838561, -0.04814601317048073, -0.09907485544681549, 0.05938010290265083, 0.0858900398015976, -0.03408847376704216, -0.030589478090405464, -0.00015043151506688446, 0.009221869520843029, 0.21879786252975464, 0.06725040823221207, -0.19199977815151215, -0.10230771452188492, -0.006453943904489279, -0.07506053149700165, 0.00011038941011065617, 0.07537993043661118, 0.13673584163188934, -0.12954208254814148, 0.023692594841122627, -0.00646292744204402, 0.09190613776445389, 0.01550962682813406, 0.040738169103860855, -0.10615641623735428, 0.03671450912952423, -0.00011751458805520087, 0.07708165794610977, -0.2755826711654663, 0.21089161932468414, -0.001059772097505629, 0.10475508868694305, -0.034977950155735016, 0.003884349251165986, 0.03376604616641998, 0.08006937056779861, 0.1059660017490387, 0.022560682147741318, -0.04321765899658203, -0.055164635181427, -0.039836376905441284, 0.07064909487962723, -0.041161488741636276, 0.02050829865038395, 0.018281592056155205, -0.0041303448379039764, 0.003768410999327898, 0.005538685712963343, -0.012358671985566616, -0.11720315366983414, -0.03270873427391052, 0.0039443387649953365, 0.16247281432151794, 0.1268092542886734, -0.03751996532082558, -0.07310925424098969, -0.09076443314552307, 0.016966290771961212, -0.03875388205051422, -0.06707917153835297, -0.07120629400014877, -0.05074935778975487, 0.09040401130914688, -0.06349306553602219, 0.005208911839872599, 0.09554684907197952, 0.11040738224983215, -0.02236776053905487, -0.04625461623072624, 0.041962865740060806, -0.11386117339134216, -0.10230956226587296, 0.0010561288800090551, 0.16265550255775452, 0.10091113299131393, 0.08034657686948776, 0.04515986517071724, 0.010169683024287224, 0.0011984173906967044, -0.036640048027038574, 0.013789328746497631, 0.1504143625497818, -0.10901595652103424, 0.01663614623248577, 0.04002801328897476, -0.18100780248641968, -0.0991879403591156, -0.057687908411026, 0.15083882212638855, 0.06349298357963562, -0.057698093354701996, 0.1987062692642212, 0.24459241330623627, -0.0808449536561966, -0.20476196706295013, -0.037595394998788834, 0.10032521188259125, 0.1366541087627411, 0.027137691155076027, -0.201624795794487, 0.09680783748626709, -0.026926390826702118, -0.051732517778873444, -0.13847100734710693, -0.25723353028297424, -0.14094582200050354, 0.17951087653636932, -0.03413049131631851, 0.1850268542766571, -0.012734195217490196, -0.03110230155289173, -0.029332371428608894, -0.0158014427870512, -0.01468019187450409, -0.11792352050542831, 0.10718641430139542, 0.025807637721300125, 0.13635221123695374, 0.04767641797661781, -0.022831851616501808, 0.08809611201286316, 0.0968543291091919, -0.02034536376595497, 0.008546695113182068, 0.0974707305431366, 0.0022400273010134697, 0.0156471598893404, 0.125130295753479, -0.10009726881980896, 0.052737101912498474, -0.10748646408319473, -0.09973954409360886, -0.0915611982345581, 0.05504899471998215, 0.0475119985640049, -0.04951361194252968, 0.03475513309240341, -0.046455807983875275, 0.014965137466788292, -0.0050763534381985664, -0.040635980665683746, -0.15236417949199677, 0.09354255348443985, 0.13711701333522797, 0.19279639422893524, -0.01935652829706669, -0.10995146632194519, -0.03693787381052971, -0.03405090421438217, 0.12473345547914505, -0.16276273131370544, 0.036495573818683624, 0.036074768751859665, 0.05653732642531395, 0.11293254792690277, 0.013426239602267742, -0.09117120504379272, 0.08426293730735779, 0.02351006120443344, -0.0447111576795578, -0.1283455640077591, -0.022383445873856544, 0.006283354014158249, -0.0365942157804966, 0.03259596601128578, 0.11832106113433838, -0.09930719435214996, -0.027021577581763268, -0.017692439258098602, 0.016657434403896332, -0.1336720734834671, 0.20776569843292236, 0.022426022216677666, 0.08118556439876556, -0.10563261061906815, 0.006753826979547739, -0.012421919032931328, -0.04545425623655319, 0.03603256866335869, -0.018619321286678314, -0.08431500196456909, -0.0688251480460167, -0.037917610257864, 0.07382870465517044, 0.029923392459750175, -0.1216718778014183, -0.05200579762458801, -0.1271282583475113, -0.011741460300981998, 0.0813705325126648, 0.04932554066181183, -0.011752449907362461, -0.11561623215675354, -0.051844727247953415, -0.09493532031774521, 0.053480908274650574, 0.07179772108793259, -0.0026138003449887037, -0.12868048250675201, 0.15310098230838776, 0.06319990009069443, 0.06787378340959549, -0.05460105836391449, -0.05729803442955017, -0.01842600665986538, 0.10023852437734604, -0.1466529667377472, -0.004075993318110704, -0.0549839586019516, -0.0009188064141198993, -0.005354746710509062, -0.07536354660987854, -0.00601242994889617, 0.07905831933021545, -0.09922966361045837, 0.08428478240966797, -0.0011977177346125245, 0.08700931072235107, -0.06292149424552917, 0.04544954001903534, 0.029124952852725983, -0.048122186213731766, 0.07868237793445587, 0.15023790299892426, -0.10417111217975616, 0.1330726593732834, -0.16569268703460693, -0.040954187512397766, 0.05545439571142197, 0.05198930948972702, -0.03947458043694496, -0.10689783841371536, 0.04279882460832596, 0.06750845909118652, 0.05047157034277916, -0.016608908772468567, 0.07572908699512482, -0.04709513485431671, 0.02699318528175354, -0.04939977452158928, 0.02637392468750477, -0.0525403693318367, 0.014240778051316738, 0.07376040518283844, 0.17551931738853455, 0.1313313990831375, -0.10807303339242935, 0.09811031818389893, -0.12279325723648071, 0.01396252866834402, -0.06580150127410889, -0.020142413675785065, -0.13990366458892822, -0.12083215266466141, 0.06354337185621262, -0.06312888860702515, 0.11831258982419968, 0.03617202863097191, 0.029551483690738678, -0.02310313656926155, -0.08809015899896622, 0.06676188111305237, -0.011636864393949509, 0.24381454288959503, 0.04292190074920654, 0.04261215031147003, -0.003242444945499301, -0.00705878296867013, -0.010514441877603531, 0.14856170117855072, -0.016988754272460938, 0.16688098013401031, -0.023729246109724045, 0.06704477965831757, 0.0770714208483696, -0.04733968898653984, -0.05174391716718674, -0.018886245787143707, -0.15956051647663116, 0.020563818514347076, -0.07074739038944244, 0.15885205566883087, 0.13982905447483063, -0.08316226303577423, 0.10229813307523727, -0.02005845308303833, -0.0774228572845459, -0.16376329958438873, -0.11075834184885025, -0.051602765917778015, -0.1706830859184265, 0.030161594972014427, -0.0707172304391861, 0.015773937106132507, 0.12996183335781097, 0.019697705283761024, -0.003896973794326186, 0.1781659871339798, 0.010640079155564308, -0.09261389076709747, 0.06317223608493805, -0.08523501455783844, -0.017742671072483063, -0.09832411259412766, 0.037700653076171875, 0.1849227398633957, 0.008903048001229763, 0.04675471782684326, -0.017877988517284393, -0.07225847989320755, 0.030153317376971245, -0.06538897007703781, -0.06496316194534302, -0.015223825350403786, -0.02126169763505459, 0.09902623295783997, 0.10892143100500107, 0.10870381444692612, -0.07440602779388428, -0.00003617290349211544, 0.14798444509506226, -0.06026599556207657, -0.14654026925563812, -0.16222167015075684, 0.17375892400741577, 0.009779759682714939, 0.005258411634713411, -0.012233353219926357, -0.02717767283320427, -0.013733026571571827, 0.22734875977039337, 0.20100422203540802, 0.03570704907178879, 0.03159042447805405, -0.04228132218122482, -0.008683017455041409, -0.06046343222260475, 0.08106841892004013, 0.06650474667549133, 0.22800616919994354, -0.012673651799559593, 0.05031949281692505, -0.07638842612504959, -0.10110502690076828, 0.009581421501934528, 0.08452144265174866, -0.07609719038009644, -0.10848192870616913, 0.02889254316687584, 0.1394658088684082, -0.0721374899148941, -0.12241315096616745, -0.10177662968635559, -0.06465873122215271, -0.0786762684583664, -0.02574727311730385, 0.015215088613331318, 0.12650586664676666, 0.002777125919237733, -0.08747819066047668, 0.03202320262789726, 0.15245841443538666, -0.002071842784062028, -0.03842100501060486, -0.04172690957784653, 0.064410001039505, -0.05894507095217705, -0.022435689345002174, 0.008956512436270714, 0.15580321848392487, 0.00485320994630456, 0.08431997895240784, -0.012373629957437515, 0.16121579706668854, -0.02382557839155197, -0.09080309420824051, 0.008551583625376225, 0.1588054746389389, -0.03173896670341492, 0.12067116796970367, 0.00788700208067894, -0.1454918384552002, 0.04411781579256058, -0.1267414689064026, -0.03458799421787262, -0.07817868143320084, 0.051055483520030975, -0.04769982397556305, 0.09228348731994629, 0.06628871709108353, -0.061542827636003494, -0.05700675770640373, -0.06189851835370064, 0.07876908034086227, 0.027540884912014008, -0.06217978522181511, -0.046335119754076004, -0.23502786457538605, -0.017897894605994225, -0.07508093863725662, -0.01794542372226715, -0.23337794840335846, -0.01966175250709057, -0.01628970168530941, -0.06199974566698074, 0.026028083637356758, 0.024930784478783607, 0.11087971925735474, 0.014617213979363441, 0.0038103372789919376, 0.0020409333519637585, 0.043992768973112106, 0.13451960682868958, -0.16541877388954163, -0.11414444446563721 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Telugu Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Telugu using the [OpenSLR SLR66](http://openslr.org/66/) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import pandas as pd # Evaluation notebook contains the procedure to download the data df = pd.read_csv("/content/te/test.tsv", sep="\t") df["path"] = "/content/te/clips/" + df["path"] test_dataset = Dataset.from_pandas(df) processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation ```python import torch import torchaudio from datasets import Dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re from sklearn.model_selection import train_test_split import pandas as pd # Evaluation notebook contains the procedure to download the data df = pd.read_csv("/content/te/test.tsv", sep="\t") df["path"] = "/content/te/clips/" + df["path"] test_dataset = Dataset.from_pandas(df) wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\_\;\:\"\“\%\‘\”\।\’\'\&]' resampler = torchaudio.transforms.Resample(48_000, 16_000) def normalizer(text): # Use your custom normalizer text = text.replace("\\n","\n") text = ' '.join(text.split()) text = re.sub(r'''([a-z]+)''','',text,flags=re.IGNORECASE) text = re.sub(r'''%'''," శాతం ", text) text = re.sub(r'''(/|-|_)'''," ", text) text = re.sub("ై","ై", text) text = text.strip() return text def speech_file_to_array_fn(batch): batch["sentence"] = normalizer(batch["sentence"]) batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()+ " " speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 44.98% ## Training 70% of the OpenSLR Telugu dataset was used for training. Train Split of annotations is [here](https://www.dropbox.com/s/xqc0wtour7f9h4c/train.tsv) Test Split of annotations is [here](https://www.dropbox.com/s/qw1uy63oj4qdiu4/test.tsv) Training Data Preparation notebook can be found [here](https://colab.research.google.com/drive/1_VR1QtY9qoiabyXBdJcOI29-xIKGdIzU?usp=sharing) Training notebook can be found[here](https://colab.research.google.com/drive/14N-j4m0Ng_oktPEBN5wiUhDDbyrKYt8I?usp=sharing) Evaluation notebook is [here](https://colab.research.google.com/drive/1SLEvbTWBwecIRTNqpQ0fFTqmr1-7MnSI?usp=sharing)
{"language": "te", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["openslr"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Telugu", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR te", "type": "openslr", "args": "te"}, "metrics": [{"type": "wer", "value": 44.98, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xlsr-53-telugu
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "te", "dataset:openslr", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "te" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #te #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
# Wav2Vec2-Large-XLSR-53-Telugu Fine-tuned facebook/wav2vec2-large-xlsr-53 on Telugu using the OpenSLR SLR66 dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation Test Result: 44.98% ## Training 70% of the OpenSLR Telugu dataset was used for training. Train Split of annotations is here Test Split of annotations is here Training Data Preparation notebook can be found here Training notebook can be foundhere Evaluation notebook is here
[ "# Wav2Vec2-Large-XLSR-53-Telugu\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Telugu using the OpenSLR SLR66 dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\n\nTest Result: 44.98%", "## Training\n70% of the OpenSLR Telugu dataset was used for training.\n\nTrain Split of annotations is here\n\nTest Split of annotations is here\n\nTraining Data Preparation notebook can be found here\n\nTraining notebook can be foundhere\n\nEvaluation notebook is here" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #te #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "# Wav2Vec2-Large-XLSR-53-Telugu\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Telugu using the OpenSLR SLR66 dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\n\nTest Result: 44.98%", "## Training\n70% of the OpenSLR Telugu dataset was used for training.\n\nTrain Split of annotations is here\n\nTest Split of annotations is here\n\nTraining Data Preparation notebook can be found here\n\nTraining notebook can be foundhere\n\nEvaluation notebook is here" ]
[ 82, 67, 20, 9, 52 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #te #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n# Wav2Vec2-Large-XLSR-53-Telugu\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Telugu using the OpenSLR SLR66 dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\n\n\nTest Result: 44.98%## Training\n70% of the OpenSLR Telugu dataset was used for training.\n\nTrain Split of annotations is here\n\nTest Split of annotations is here\n\nTraining Data Preparation notebook can be found here\n\nTraining notebook can be foundhere\n\nEvaluation notebook is here" ]
[ -0.16720885038375854, 0.04552572965621948, 0.0014215491246432066, 0.053019311279058456, 0.09556087106466293, -0.05716618523001671, 0.16100214421749115, 0.12254591286182404, -0.07651954889297485, -0.03564898297190666, -0.016900423914194107, 0.025599956512451172, 0.07854192703962326, 0.13892509043216705, 0.007638723589479923, -0.23878218233585358, -0.024222156032919884, 0.007127443328499794, -0.024695493280887604, 0.1046723946928978, 0.12000772356987, -0.0781315267086029, -0.02886742353439331, 0.07355272024869919, -0.17076411843299866, 0.04214906319975853, -0.03868305683135986, -0.11915426701307297, 0.11763881146907806, 0.04654920473694801, 0.05988435074687004, 0.04635760188102722, 0.0727512389421463, -0.139530211687088, 0.04606202617287636, 0.032461896538734436, 0.04048275202512741, 0.028242412954568863, 0.06937582045793533, -0.0005976263200864196, 0.0610945038497448, 0.0603661835193634, -0.0022363592870533466, 0.09770939499139786, -0.07391564548015594, -0.2991240918636322, -0.037347953766584396, -0.010394277051091194, 0.06316148489713669, 0.17033414542675018, -0.06447160989046097, 0.1557631641626358, -0.09899581223726273, 0.08496104180812836, 0.09936005622148514, -0.21708281338214874, -0.04060472920536995, 0.05132047459483147, 0.04313165694475174, 0.0765838772058487, -0.09822319447994232, 0.0004877750761806965, 0.036487627774477005, 0.01330997608602047, 0.03516010940074921, -0.017627138644456863, -0.2739216089248657, 0.006423088256269693, -0.10865575820207596, 0.03502625226974487, 0.2759912610054016, -0.01960255764424801, -0.04536837711930275, -0.10463225841522217, 0.0021291375160217285, -0.01235488522797823, 0.006483644247055054, 0.0015760835958644748, -0.012492740526795387, 0.03872796520590782, 0.00007077925693010911, -0.06389618664979935, -0.15017636120319366, -0.07178551703691483, 0.028089238330721855, 0.019304804503917694, 0.006412763614207506, -0.007469288073480129, -0.11198990046977997, 0.08102167397737503, -0.030766278505325317, -0.08181803673505783, -0.020430883392691612, -0.009329008869826794, -0.09525908529758453, -0.004499775357544422, -0.08808670938014984, -0.21153908967971802, -0.03231172263622284, 0.005568333435803652, 0.06311964988708496, 0.03383868187665939, -0.03156363591551781, 0.05490018427371979, 0.025260239839553833, 0.09292937070131302, -0.0341578908264637, -0.04516468942165375, 0.03799913451075554, 0.010414354503154755, -0.0027456977404654026, -0.007041464559733868, -0.05247025936841965, -0.11806590110063553, -0.00032275941339321434, 0.04649798944592476, -0.026144538074731827, 0.03995370492339134, -0.0430239737033844, -0.04357820376753807, -0.006278742104768753, -0.10781510174274445, -0.012332228012382984, 0.04461681470274925, -0.03664795309305191, 0.001797748962417245, 0.06106797605752945, 0.038367900997400284, -0.07084350287914276, -0.06793604046106339, -0.022510051727294922, 0.06830891966819763, -0.08307728171348572, -0.060868944972753525, 0.007915399968624115, 0.0031260792165994644, -0.018664073199033737, -0.09581071138381958, -0.18652129173278809, -0.0518653430044651, -0.0023516155779361725, -0.013499578461050987, 0.005503159482032061, -0.0741892009973526, 0.00415393291041255, -0.030627988278865814, -0.04606380686163902, 0.10895828157663345, -0.03480752184987068, 0.07221569865942001, 0.04635443910956383, 0.07299888879060745, -0.01104632206261158, 0.09198224544525146, -0.04686054587364197, -0.06049466133117676, 0.03871752694249153, 0.07490681111812592, -0.09235912561416626, 0.04065223038196564, -0.08107641339302063, -0.041500307619571686, -0.105528824031353, 0.06491792947053909, 0.07418076694011688, 0.08498351275920868, -0.27899783849716187, -0.046187542378902435, 0.14978346228599548, -0.1320556402206421, -0.05824780464172363, 0.1355232149362564, -0.009003271348774433, 0.18516971170902252, 0.03810465708374977, 0.2424689084291458, 0.12264369428157806, -0.1251879185438156, -0.01063087210059166, 0.017042579129338264, -0.02617095224559307, -0.11930082738399506, 0.06459489464759827, -0.002192136598750949, 0.03055676259100437, 0.05102166905999184, 0.09090230613946915, 0.05957730486989021, -0.004674872383475304, -0.07672654092311859, -0.049866821616888046, -0.07158639281988144, -0.007891467772424221, 0.04420599713921547, 0.08415208756923676, -0.06454604119062424, -0.06474048644304276, 0.08953120559453964, 0.14078259468078613, -0.06357187032699585, 0.02412821166217327, -0.10360196232795715, 0.07358692586421967, -0.015881678089499474, -0.030886808410286903, -0.1695495992898941, 0.1395106464624405, -0.004692580550909042, 0.055712852627038956, 0.04982641711831093, 0.17271392047405243, 0.03493696451187134, -0.002839710796251893, -0.02902400866150856, 0.0007995254709385335, 0.00030837682425044477, 0.012670455500483513, -0.06561882793903351, -0.0699971467256546, 0.020365122705698013, -0.060002245008945465, 0.15006408095359802, -0.208571195602417, 0.04251554608345032, 0.133071631193161, 0.05598115175962448, 0.05002698674798012, -0.0462321862578392, 0.1033882200717926, 0.07558026909828186, -0.00791817158460617, -0.0235074982047081, 0.06136664003133774, 0.06947002559900284, 0.0469786562025547, 0.052295561879873276, -0.09205468744039536, -0.038809411227703094, 0.11465444415807724, -0.04541245847940445, -0.060785215348005295, -0.03018062561750412, -0.039502210915088654, -0.027485745027661324, -0.09279540926218033, 0.022772368043661118, 0.18991719186306, -0.0212419256567955, 0.14138977229595184, -0.04394901916384697, -0.026166260242462158, -0.02171100303530693, -0.05991550162434578, 0.026648083701729774, 0.044260770082473755, 0.041819386184215546, -0.007333493325859308, 0.06774032860994339, 0.01375378854572773, -0.0762077048420906, 0.159233957529068, -0.02390100061893463, -0.08445919305086136, 0.005814943928271532, -0.01707981899380684, -0.00476950453594327, 0.08752947300672531, -0.1982087343931198, 0.0019029052928090096, 0.023900231346488, 0.03569495305418968, 0.08423236012458801, -0.14402219653129578, -0.002448650076985359, 0.018320303410291672, -0.03754290193319321, -0.11724284291267395, 0.09683048725128174, -0.03210676461458206, 0.03705976903438568, -0.09441877901554108, 0.060196928679943085, -0.005424202885478735, -0.028763992711901665, -0.11687492579221725, 0.12455598264932632, -0.12827463448047638, -0.2774476408958435, -0.1694091558456421, 0.020150521770119667, 0.0857527107000351, -0.02158738672733307, 0.1236165314912796, -0.10160480439662933, -0.04797329008579254, -0.0449579693377018, 0.07154618948698044, 0.008842109702527523, -0.030662942677736282, 0.00541777303442359, 0.06586908549070358, 0.07233106344938278, -0.1419118195772171, 0.05202305689454079, 0.02926572784781456, -0.028518972918391228, 0.051533281803131104, -0.010902468115091324, -0.02768927998840809, 0.0822204202413559, 0.0024974080733954906, 0.020834030583500862, -0.016327930614352226, 0.1746569275856018, -0.08369291573762894, 0.016327006742358208, 0.17263993620872498, 0.007890350185334682, -0.014295827597379684, 0.0993524044752121, 0.009336531162261963, -0.07383333891630173, 0.023470399901270866, -0.01367128174751997, -0.035154081881046295, -0.26752033829689026, -0.06924662739038467, -0.06916353106498718, -0.020825745537877083, -0.038736119866371155, 0.03235780820250511, 0.038085535168647766, 0.04128752648830414, 0.02825181372463703, -0.01234013494104147, 0.0029859752394258976, 0.009696384891867638, 0.15881037712097168, -0.03173769265413284, 0.0689387172460556, -0.08785218745470047, 0.04972267150878906, 0.07311376929283142, 0.04290223866701126, 0.1701703816652298, -0.018784454092383385, 0.11556251347064972, 0.05297386273741722, 0.1053943857550621, 0.11341647803783417, 0.02318553999066353, -0.021322032436728477, -0.030343789607286453, 0.001374171581119299, -0.026702264323830605, -0.015095367096364498, 0.06471183896064758, 0.0610559917986393, -0.04101110249757767, -0.050279401242733, -0.09268371760845184, 0.03894520550966263, 0.15843357145786285, 0.08421970158815384, -0.17941632866859436, -0.10433498024940491, -0.007784239016473293, -0.06213116645812988, -0.039408136159181595, 0.04042894393205643, 0.1573004126548767, -0.102115198969841, -0.030614323914051056, -0.010097207501530647, 0.07583360373973846, -0.036829039454460144, -0.011341994628310204, -0.07277753204107285, 0.028487829491496086, -0.01918732561171055, 0.09168383479118347, -0.1961694359779358, 0.19930626451969147, 0.01889882981777191, 0.09576162695884705, -0.006087443791329861, -0.006076558027416468, 0.028804192319512367, 0.06689684838056564, 0.08620757609605789, -0.013815236277878284, -0.06383813172578812, -0.0687214583158493, -0.0750967413187027, 0.007481712847948074, -0.009842809289693832, 0.09356949478387833, 0.029718251898884773, -0.03907018527388573, 0.024650100618600845, 0.020136944949626923, -0.08289454132318497, -0.156342014670372, -0.10430383682250977, 0.029240205883979797, 0.13781806826591492, 0.08968581259250641, -0.07909788191318512, -0.10844849050045013, -0.07048764824867249, 0.14846636354923248, -0.021200237795710564, -0.019169464707374573, -0.09829378128051758, 0.05698495730757713, 0.04626630246639252, -0.040142253041267395, 0.01650603674352169, 0.07590051740407944, 0.1062619611620903, 0.006738157942891121, -0.0012468136847019196, 0.05722834914922714, -0.07490909844636917, -0.04030079022049904, -0.04580838233232498, 0.09242729842662811, 0.045917853713035583, 0.026732392609119415, 0.033302802592515945, 0.00300995004363358, -0.029493672773241997, -0.00722054298967123, 0.027939654886722565, 0.14996615052223206, -0.037812091410160065, -0.03110184706747532, -0.07328387349843979, -0.19983471930027008, -0.03171378746628761, -0.11668086796998978, 0.21214742958545685, 0.14700967073440552, -0.07320789247751236, 0.15074975788593292, 0.12141191214323044, -0.08080069720745087, -0.23232530057430267, 0.09170617163181305, 0.057448286563158035, 0.10474404692649841, 0.08077883720397949, -0.2169790118932724, 0.04970567300915718, 0.0456739105284214, -0.02955050580203533, 0.029178928583860397, -0.23121775686740875, -0.11945343762636185, 0.1107884868979454, 0.046383004635572433, 0.11835747957229614, -0.04043782874941826, -0.035357002168893814, 0.006240661721676588, -0.03163626790046692, -0.03506143018603325, -0.10616115480661392, 0.13589344918727875, 0.0000013746793001701008, 0.023201895877718925, 0.030854592099785805, -0.05388224497437477, 0.07467299699783325, -0.009504441171884537, 0.003420507302507758, -0.057237088680267334, 0.07546847313642502, 0.03247825428843498, 0.0033911392092704773, 0.08400703221559525, -0.04957260936498642, 0.04285475239157677, -0.14076390862464905, -0.08897913992404938, -0.008904863148927689, 0.0939965769648552, 0.013953305780887604, -0.047753896564245224, 0.019715307280421257, 0.05132240429520607, -0.019452329725027084, -0.03548216074705124, -0.09948120266199112, -0.09622351825237274, 0.03337371349334717, 0.17427925765514374, 0.14831213653087616, 0.05317428708076477, -0.0120261050760746, -0.02004668116569519, -0.026455983519554138, 0.06798579543828964, -0.11816181987524033, -0.00439602043479681, 0.03901371359825134, 0.028349721804261208, 0.11832936853170395, 0.0024352045729756355, -0.09254140406847, 0.09610332548618317, 0.10715873539447784, -0.019700132310390472, -0.09486302733421326, -0.06246580928564072, 0.06503640115261078, -0.011892604641616344, 0.012084712274372578, 0.10204070806503296, -0.07936912029981613, -0.027193643152713776, 0.011892768554389477, 0.0024038448464125395, -0.05324115976691246, 0.13690611720085144, 0.030973520129919052, 0.049218568950891495, -0.036539651453495026, 0.07330503314733505, 0.03657791018486023, -0.05189836025238037, 0.03299194574356079, 0.0786944255232811, -0.10862071067094803, -0.1021677702665329, 0.027149444445967674, 0.0013733680825680494, 0.11614114791154861, -0.07152248173952103, -0.06106289476156235, -0.03574246168136597, -0.012155482545495033, 0.12394401431083679, 0.05031629651784897, -0.015927011147141457, -0.08501944690942764, -0.017830993980169296, -0.07781090587377548, 0.0786733478307724, 0.04375670477747917, 0.0009473064565099776, -0.0855112224817276, 0.1672765165567398, 0.03683827444911003, -0.005744400434195995, -0.031930241733789444, -0.08342740684747696, -0.034990616142749786, 0.025629661977291107, -0.13415418565273285, -0.045437756925821304, -0.05674605071544647, -0.0034916060976684093, -0.009505004622042179, -0.07241741567850113, 0.013237682171165943, 0.07819633930921555, -0.08233039081096649, 0.03801649063825607, -0.02681240811944008, 0.09297949820756912, -0.07693634927272797, -0.005421899259090424, 0.056802984327077866, -0.04255023971199989, 0.0780450701713562, 0.10262050479650497, -0.08494146913290024, 0.08987433463335037, -0.13547922670841217, -0.05072100833058357, 0.012194805778563023, 0.06990252435207367, 0.031909286975860596, -0.10796564817428589, 0.033202189952135086, 0.025079144164919853, 0.08633426576852798, -0.002432367065921426, 0.13160043954849243, -0.07138172537088394, -0.022354017943143845, -0.07654738426208496, -0.014333362691104412, -0.06120641529560089, 0.03310644254088402, 0.04830073565244675, 0.1217481717467308, 0.13811711966991425, -0.09578180313110352, 0.07093121111392975, -0.10864509642124176, 0.026252517476677895, -0.041422322392463684, -0.04914971441030502, -0.07362382113933563, -0.07535164803266525, 0.06469018012285233, -0.04988134279847145, 0.08022366464138031, 0.022335132583975792, -0.05489867925643921, 0.015979962423443794, -0.22203785181045532, -0.006397333461791277, -0.014494822360575199, 0.2568746507167816, 0.058838531374931335, 0.03521505370736122, -0.004286184906959534, 0.014154210686683655, 0.0186032485216856, 0.10094935446977615, 0.019986052066087723, 0.18008968234062195, -0.12644916772842407, 0.06203019246459007, 0.03362543508410454, -0.08595921099185944, -0.09872962534427643, 0.027812547981739044, -0.12054312974214554, 0.0289426539093256, -0.13577218353748322, 0.16633930802345276, 0.13923080265522003, -0.06638412177562714, 0.05921443551778793, -0.036036524921655655, -0.09056354314088821, -0.10691201686859131, -0.08456052094697952, -0.07714786380529404, -0.15194550156593323, 0.027817923575639725, -0.0717090517282486, 0.04218320548534393, 0.0005055537912994623, 0.07138419896364212, -0.011153781786561012, 0.20343191921710968, 0.02061723917722702, -0.0281387846916914, 0.04441400244832039, -0.08660247176885605, -0.0385512113571167, -0.17674435675144196, 0.031148921698331833, 0.03414902836084366, 0.014313294552266598, 0.018308747559785843, 0.008646183647215366, -0.09607204794883728, -0.010617204010486603, -0.05463503673672676, -0.03862328827381134, -0.028738223016262054, 0.0124238021671772, 0.02303924225270748, 0.10657632350921631, 0.1274121105670929, -0.058790337294340134, 0.012489963322877884, 0.22732405364513397, -0.05472801253199577, -0.13443325459957123, -0.1444406509399414, 0.08319748193025589, 0.030588047578930855, -0.03025810979306698, 0.005296378396451473, -0.052176181226968765, 0.019632982090115547, 0.2629421055316925, 0.16951735317707062, 0.012850707396864891, 0.042311228811740875, 0.010174200870096684, -0.010579808615148067, -0.07876639068126678, 0.10155850648880005, 0.1054338812828064, 0.13321374356746674, -0.03872699663043022, -0.03867834806442261, -0.06408257782459259, -0.06540800631046295, -0.05676857754588127, 0.04419541731476784, -0.07371595501899719, -0.05482414737343788, -0.01953902840614319, 0.1477941870689392, -0.023603137582540512, -0.14217132329940796, -0.09789887070655823, -0.047328535467386246, -0.12367967516183853, -0.005961921531707048, 0.013219122774899006, 0.04294172674417496, -0.0008006620337255299, -0.053757425397634506, 0.03674345836043358, 0.15860815346240997, -0.0002647709916345775, -0.025351570919156075, -0.04149385914206505, 0.08904966711997986, -0.16039860248565674, 0.04065166413784027, -0.047676682472229004, 0.09609998017549515, 0.04470442607998848, 0.08329740166664124, -0.05767542123794556, 0.14918152987957, -0.0035255495458841324, -0.04317719489336014, 0.01141970232129097, 0.11876174807548523, -0.049885138869285583, 0.14471179246902466, 0.016819972544908524, -0.059667475521564484, 0.07891944795846939, -0.11361512541770935, -0.008960926905274391, -0.08171966671943665, 0.06607579439878464, -0.029748957604169846, 0.11752412468194962, 0.12106098979711533, -0.09601033478975296, -0.07829926162958145, -0.03817540034651756, 0.004011277109384537, 0.012630571611225605, -0.05947086587548256, -0.04245764762163162, -0.21851970255374908, -0.013456009328365326, -0.06579481810331345, 0.036685407161712646, -0.21327714622020721, -0.059649448841810226, -0.012404640205204487, -0.07848107069730759, -0.013781176880002022, 0.0869288221001625, 0.13569942116737366, 0.01466367021203041, -0.015994984656572342, 0.039388108998537064, 0.01916368119418621, 0.11909066140651703, -0.15730640292167664, -0.12401440739631653 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Vietnamese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Vietnamese using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "vi", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-vietnamese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Vietnamese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "vi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-vietnamese") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 66.78 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "vi", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Vietnamese", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice vi", "type": "common_voice", "args": "vi"}, "metrics": [{"type": "wer", "value": 66.78, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xlsr-53-vietnamese
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "vi", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "vi" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #vi #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Vietnamese Fine-tuned facebook/wav2vec2-large-xlsr-53 on Vietnamese using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Vietnamese test data of Common Voice. Test Result: 66.78 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Vietnamese\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Vietnamese using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Vietnamese test data of Common Voice.\n\nTest Result: 66.78 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #vi #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Vietnamese\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Vietnamese using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Vietnamese test data of Common Voice.\n\nTest Result: 66.78 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 80, 65, 20, 29, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #vi #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Vietnamese\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Vietnamese using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\nThe model can be evaluated as follows on the Vietnamese test data of Common Voice.\n\nTest Result: 66.78 %## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.1114252433180809, 0.05609160661697388, -0.0020430528093129396, -0.037966400384902954, 0.07581824064254761, -0.08668576925992966, 0.15414440631866455, 0.1046571284532547, -0.018076468259096146, -0.022855544462800026, 0.029498454183340073, 0.001037940732203424, 0.05758604779839516, 0.07643257081508636, -0.0018036251422017813, -0.23137569427490234, 0.031805671751499176, 0.05452987924218178, 0.06665428727865219, 0.11227262765169144, 0.08607033640146255, -0.07549356669187546, 0.05000454932451248, 0.11994326114654541, -0.11051476746797562, 0.054013464599847794, 0.0005853540496900678, -0.11033247411251068, 0.12960532307624817, 0.0474981926381588, 0.05089239031076431, 0.04578736796975136, 0.08507879823446274, -0.18950888514518738, 0.016035811975598335, 0.0504513643682003, 0.02464768849313259, 0.013874679803848267, 0.03325602784752846, 0.03845468536019325, 0.16626080870628357, 0.06246841698884964, -0.010804915800690651, 0.05787482485175133, -0.057064495980739594, -0.23782698810100555, -0.023312920704483986, -0.008652816526591778, 0.133214071393013, 0.1285363733768463, -0.07106626778841019, 0.13095685839653015, -0.17286573350429535, 0.07263735681772232, 0.07660655677318573, -0.17879560589790344, 0.0004277811967767775, 0.09599780291318893, 0.08200771361589432, 0.05312013998627663, -0.08199943602085114, 0.030662324279546738, 0.05386527627706528, 0.04237642139196396, -0.008256726898252964, -0.055669087916612625, -0.19304139912128448, -0.002258959459140897, -0.12756621837615967, -0.01333511434495449, 0.21461477875709534, 0.014656096696853638, -0.06823141127824783, -0.12120533734560013, -0.019534951075911522, -0.039562489837408066, -0.018351569771766663, -0.11294551193714142, 0.023592261597514153, 0.04384544864296913, 0.042064081877470016, -0.03266453742980957, -0.10724564641714096, -0.14620615541934967, -0.007675677537918091, -0.05745718255639076, 0.020224031060934067, 0.007186142262071371, -0.13259649276733398, 0.045108769088983536, -0.12956055998802185, -0.04389719292521477, -0.020607557147741318, 0.026650618761777878, -0.06902318447828293, 0.02723337896168232, -0.033865973353385925, -0.1274121105670929, 0.014975599944591522, -0.07865039259195328, 0.026735592633485794, 0.04165087267756462, -0.07770150154829025, 0.049552980810403824, 0.024510851129889488, 0.1380443572998047, -0.10345546901226044, 0.017013536766171455, -0.006264431867748499, 0.004068558569997549, -0.06840066611766815, -0.003365768352523446, -0.07867086678743362, -0.03792045637965202, 0.013995730318129063, 0.00732994731515646, -0.07350751012563705, 0.0062909857369959354, -0.04299232363700867, -0.052239805459976196, 0.08256343752145767, -0.06087016686797142, -0.04000604897737503, 0.05853097885847092, 0.010366824455559254, 0.16615410149097443, 0.08342845737934113, 0.08641064167022705, -0.06441409140825272, -0.023432090878486633, 0.027148393914103508, 0.04649297520518303, -0.02261260524392128, -0.09306856244802475, 0.006971045397222042, -0.040695011615753174, -0.031074801459908485, -0.04052709415555, -0.11629225313663483, -0.07397075742483139, 0.009545057080686092, 0.024999773129820824, -0.025495415553450584, -0.11200251430273056, -0.035812705755233765, -0.04356705769896507, -0.019383400678634644, 0.07234262675046921, -0.02179512195289135, 0.05523538216948509, 0.00712399510666728, 0.08167506754398346, 0.022093217819929123, 0.10266797989606857, -0.07425820827484131, -0.022332578897476196, -0.0025232050102204084, 0.13659854233264923, -0.01899143122136593, -0.07475518435239792, -0.07622089236974716, -0.097711481153965, -0.049678921699523926, 0.05205150321125984, 0.024331776425242424, 0.07561767101287842, -0.28459420800209045, -0.08160080760717392, 0.18093465268611908, -0.12314730137586594, -0.015632931143045425, 0.22598126530647278, -0.004388090223073959, 0.09561053663492203, 0.11252299696207047, 0.22147585451602936, 0.1040073037147522, -0.22315572202205658, 0.07548707723617554, 0.03146876022219658, -0.007800054736435413, -0.04328230023384094, 0.07830537110567093, -0.026462364941835403, -0.038968268781900406, 0.03437171131372452, -0.05523611977696419, 0.0454181507229805, -0.04988310858607292, -0.06583300232887268, -0.00836124550551176, -0.09500282257795334, 0.08647362142801285, 0.05626997351646423, 0.029987281188368797, 0.005613433662801981, -0.03410990163683891, 0.07803071290254593, 0.12942896783351898, -0.10812915861606598, 0.02083810791373253, -0.12903980910778046, 0.03599129244685173, -0.07236862927675247, -0.021885370835661888, -0.11196814477443695, 0.21851614117622375, 0.010248934850096703, 0.08572597801685333, 0.028827141970396042, 0.19557072222232819, 0.0002978170814458281, 0.029687274247407913, -0.04306695610284805, -0.0029098745435476303, 0.015517204999923706, -0.006450507324188948, -0.028204819187521935, -0.0722518116235733, -0.002507197204977274, -0.05548573657870293, 0.05384679511189461, -0.20951546728610992, -0.0347004309296608, 0.04700100049376488, -0.003964725881814957, 0.013749522157013416, 0.007284657098352909, 0.07524510473012924, 0.10627184808254242, 0.014875630848109722, 0.029532968997955322, 0.04450998082756996, -0.002209064783528447, -0.00702692149206996, 0.15925852954387665, -0.1059713363647461, -0.008229663595557213, 0.09910018742084503, -0.042544808238744736, -0.006943418178707361, 0.04979013651609421, -0.014743765816092491, -0.035751163959503174, -0.09970827400684357, 0.04428050294518471, 0.26574692130088806, -0.009618373587727547, 0.14365415275096893, -0.10964522510766983, 0.021087616682052612, 0.04216698929667473, -0.06816063076257706, 0.04725855588912964, 0.08633383363485336, 0.04063615947961807, 0.007099908776581287, 0.046369753777980804, -0.047528062015771866, -0.0688905417919159, 0.23144926130771637, -0.019332677125930786, -0.06354205310344696, -0.0012133027194067836, 0.02073843590915203, -0.03673585504293442, 0.07013411074876785, -0.23260338604450226, -0.016720706596970558, 0.027474215254187584, 0.06895053386688232, 0.04415401816368103, -0.1667248159646988, 0.005922309122979641, -0.00228683790192008, -0.13322649896144867, -0.1397334784269333, 0.09241421520709991, -0.016526948660612106, 0.03804188594222069, -0.09345024824142456, -0.026129277423024178, -0.015236588194966316, -0.047701530158519745, -0.1627940833568573, 0.13194988667964935, -0.07227104157209396, -0.27357226610183716, -0.09472832828760147, -0.03164784610271454, 0.007738121785223484, 0.009222020395100117, 0.07720958441495895, -0.1697424352169037, -0.02119969204068184, -0.028019296005368233, 0.04235644266009331, 0.017918379977345467, -0.03583251312375069, -0.04022505134344101, 0.028747815638780594, 0.051291801035404205, -0.11156751960515976, 0.00013761621084995568, -0.08990170061588287, -0.04556041210889816, -0.006734214257448912, -0.05555468425154686, -0.03682565689086914, 0.16776196658611298, 0.01678897999227047, 0.01808750443160534, -0.0025023657362908125, 0.1760178953409195, -0.08128059655427933, -0.0228068046271801, 0.2042907327413559, 0.03308610990643501, -0.002934261690825224, 0.09058429300785065, 0.01098156813532114, -0.0765647292137146, 0.028539378196001053, 0.03257974237203598, -0.08061612397432327, -0.21542994678020477, -0.12189752608537674, -0.0771002322435379, -0.05586329475045204, -0.02209748886525631, 0.006214868277311325, 0.07787040621042252, 0.01375084649771452, 0.015489021316170692, 0.020648036152124405, 0.02649267204105854, -0.041350800544023514, 0.14019601047039032, -0.022594867274165154, 0.07104368507862091, -0.06796238571405411, -0.03746456280350685, 0.03359465301036835, 0.03513197973370552, 0.14069779217243195, 0.062435027211904526, 0.038490451872348785, 0.12162744998931885, 0.15431343019008636, 0.13222016394138336, 0.04853017255663872, -0.11427710205316544, -0.03253018856048584, -0.010972593910992146, -0.07877662032842636, 0.009726549498736858, 0.05305146425962448, 0.1261233389377594, -0.0476602241396904, -0.024365240707993507, 0.014312292449176311, -0.0063037509098649025, 0.22160688042640686, 0.0802990272641182, -0.18720807135105133, -0.03253532201051712, -0.02740192413330078, -0.02409677393734455, 0.008589680306613445, 0.07730940729379654, 0.1888771504163742, -0.15784482657909393, 0.046021636575460434, 0.011597628705203533, 0.09121830761432648, -0.013037349097430706, 0.03325623273849487, -0.059137456119060516, 0.003549209563061595, 0.028214851394295692, 0.08720922470092773, -0.2703288495540619, 0.2190844714641571, -0.01563393510878086, 0.06612388044595718, -0.0669654980301857, -0.020180044695734978, -0.0019799680449068546, 0.09551560878753662, 0.13017408549785614, 0.03146897628903389, 0.058738648891448975, -0.07429497689008713, -0.08122839033603668, 0.05102497711777687, -0.04297671094536781, 0.08761228621006012, -0.010559983551502228, 0.013812641613185406, -0.02831423282623291, 0.0034634724725037813, -0.04366561397910118, -0.12099223583936691, -0.03493546321988106, -0.011267028748989105, 0.15497848391532898, 0.10231118649244308, -0.005462266970425844, -0.08238536864519119, -0.07493717968463898, 0.09699947386980057, -0.06272891163825989, -0.015666581690311432, -0.03800215199589729, -0.0773061141371727, 0.10813742876052856, -0.03309336677193642, 0.0023820437490940094, 0.05864030495285988, 0.10040141642093658, -0.016526905819773674, -0.016540123149752617, 0.07486369460821152, -0.10457824170589447, -0.11280030012130737, -0.018175886943936348, 0.15713731944561005, 0.11019521206617355, 0.06319759786128998, 0.06930571049451828, -0.008311355486512184, 0.0036361010279506445, -0.06812795996665955, -0.033402763307094574, 0.14554141461849213, -0.09748408943414688, -0.0017096323426812887, -0.009491345845162868, -0.16591009497642517, -0.08584868162870407, -0.08326727151870728, 0.13354776799678802, 0.08284930139780045, -0.06268997490406036, 0.22710832953453064, 0.21732456982135773, -0.09711142629384995, -0.180171400308609, -0.02722773887217045, 0.10267925262451172, 0.11115389317274094, -0.006486088968813419, -0.17589963972568512, 0.06527968496084213, -0.011844871565699577, -0.02832944504916668, -0.10221127420663834, -0.27779334783554077, -0.16424691677093506, 0.15357883274555206, -0.03221328184008598, 0.14392264187335968, 0.021661579608917236, -0.02639591693878174, -0.014830521307885647, -0.02250431664288044, 0.09401523321866989, -0.06279108673334122, 0.08526583015918732, 0.017875347286462784, 0.06539516896009445, 0.0396457277238369, -0.0047919861972332, 0.10285888612270355, 0.08307253569364548, 0.0002179094881284982, -0.0015408290782943368, 0.028123576194047928, 0.018572380766272545, 0.04277162626385689, 0.15356753766536713, -0.05448434129357338, 0.0352570116519928, -0.13297785818576813, -0.09320968389511108, -0.1003267765045166, 0.006780774332582951, 0.02856454811990261, -0.03906470909714699, 0.006533891893923283, -0.013384082354605198, 0.017896533012390137, 0.008869683369994164, -0.06350371986627579, -0.09626226872205734, 0.028496267274022102, 0.16368131339550018, 0.1754484623670578, -0.05898410081863403, -0.05000939965248108, -0.028462931513786316, -0.0014256710419431329, 0.13157619535923004, -0.09657188504934311, 0.033875856548547745, 0.06605052947998047, 0.045448411256074905, 0.15857456624507904, -0.0017347338143736124, -0.09462040662765503, 0.0796322375535965, 0.026303166523575783, -0.05335678532719612, -0.1440018117427826, -0.031734615564346313, 0.010615129955112934, 0.02516697533428669, 0.009997322224080563, 0.055408354848623276, -0.10607331991195679, -0.022091761231422424, -0.014776612631976604, 0.022906716912984848, -0.12878507375717163, 0.1617821604013443, -0.0033509996719658375, 0.08593525737524033, -0.10995426028966904, 0.01948409341275692, 0.041073136031627655, -0.09048692882061005, 0.0379914827644825, 0.01627230830490589, -0.08297988027334213, -0.048544544726610184, 0.014855182729661465, 0.12851884961128235, 0.08655869215726852, -0.1454603672027588, -0.02931891195476055, -0.10627629607915878, 0.025452565401792526, 0.10015011578798294, 0.07274626940488815, 0.026706328615546227, -0.11620231717824936, -0.10120463371276855, -0.10818605124950409, 0.04662413150072098, 0.07836868613958359, -0.04340745881199837, -0.11256664991378784, 0.07441163808107376, 0.11486614495515823, 0.1037769764661789, -0.05152424797415733, -0.10308096557855606, -0.027811286970973015, 0.08472567051649094, -0.10927551984786987, 0.03500596433877945, -0.050687599927186966, 0.004753113258630037, -0.018336625769734383, -0.08792822062969208, -0.02349156327545643, 0.0686962828040123, -0.09441661834716797, 0.09209493547677994, 0.004751857835799456, 0.07361326366662979, -0.08428732305765152, 0.01844744384288788, 0.06398861110210419, -0.03624281659722328, 0.0662277489900589, 0.07063516229391098, -0.11582392454147339, 0.09777814149856567, -0.18983806669712067, -0.061639755964279175, 0.1006203219294548, 0.07409536093473434, -0.0027031260542571545, -0.11645746976137161, 0.03908642753958702, 0.09431178122758865, 0.09643889963626862, -0.017734359949827194, 0.11840180307626724, -0.07263237237930298, -0.05048811808228493, -0.08884621411561966, -0.041843052953481674, -0.032766904681921005, 0.04190424829721451, 0.04263262078166008, 0.12998554110527039, 0.12135419994592667, -0.10150129348039627, 0.08253657817840576, -0.11266271024942398, -0.012729840353131294, -0.07538696378469467, -0.01762459985911846, -0.1057404950261116, -0.07775373756885529, 0.05435893312096596, -0.015937326475977898, 0.14208568632602692, 0.03151640295982361, 0.04402399808168411, -0.03107120655477047, -0.09374237805604935, -0.025649700313806534, -0.008792294189333916, 0.2226640284061432, 0.04281344264745712, 0.041130583733320236, -0.020113345235586166, 0.0023148979526013136, -0.017076898366212845, 0.20063208043575287, -0.02498524822294712, 0.15175719559192657, 0.00483528571203351, 0.04929061606526375, 0.07633720338344574, -0.023639241233468056, -0.06714978814125061, 0.029319999739527702, -0.18284033238887787, 0.05230487138032913, -0.10041274130344391, 0.13721652328968048, 0.10390110313892365, -0.11827065050601959, 0.11404378712177277, 0.013769901357591152, -0.0983930453658104, -0.1666048765182495, -0.16408702731132507, -0.07337754219770432, -0.19485078752040863, 0.015149692073464394, -0.06928764283657074, 0.0659552663564682, 0.04232475534081459, 0.08752357214689255, -0.03814927488565445, 0.1463927924633026, -0.03246748819947243, -0.08104819059371948, 0.06635263562202454, -0.08812516182661057, -0.007778864353895187, -0.10336380451917648, 0.08972229063510895, 0.18385326862335205, -0.020972592756152153, 0.04393840208649635, 0.012481310404837132, -0.06525552272796631, 0.033201124519109726, -0.04939660802483559, -0.04294872656464577, -0.012119943276047707, -0.057591915130615234, 0.07397160679101944, 0.10992361605167389, 0.12496514618396759, -0.06440398842096329, 0.011669496074318886, 0.09755367040634155, -0.04247864708304405, -0.16094815731048584, -0.1733635514974594, 0.18318529427051544, 0.003748884191736579, 0.014789508655667305, 0.002686138032004237, 0.007851018570363522, -0.04020484909415245, 0.2825332283973694, 0.18324927985668182, 0.059563614428043365, 0.012826792895793915, -0.029786676168441772, -0.005901603493839502, -0.048689913004636765, 0.034100450575351715, 0.11386211216449738, 0.25146931409835815, -0.03594476357102394, -0.009292087517678738, -0.10207930952310562, -0.09511157125234604, 0.0021017794497311115, 0.011546476744115353, -0.011822310276329517, -0.0885186716914177, 0.006961950566619635, 0.12794771790504456, -0.08269244432449341, -0.04384868964552879, -0.07361382991075516, -0.11277551203966141, -0.09129603207111359, -0.021338189020752907, 0.010098461993038654, 0.12366598844528198, -0.035816412419080734, -0.07941066473722458, 0.023716086521744728, 0.16693784296512604, -0.00869529414921999, -0.07424300909042358, -0.0690951943397522, 0.061985697597265244, -0.06259357184171677, -0.0019082570215687156, 0.00015548350347671658, 0.14287817478179932, -0.0028697282541543245, 0.09470538049936295, -0.005948425270617008, 0.14739985764026642, -0.03776947408914566, -0.04769185557961464, -0.01156795583665371, 0.11805087327957153, -0.025735987350344658, 0.13217996060848236, -0.01920563355088234, -0.1134713739156723, 0.05648990347981453, -0.1599419265985489, -0.004886130336672068, -0.06939271092414856, 0.07645191252231598, -0.04673000052571297, 0.07969128340482712, 0.08436287939548492, -0.05261359363794327, -0.017997117713093758, -0.06884175539016724, 0.09227371215820312, -0.032701823860406876, -0.11301802843809128, -0.04129788279533386, -0.22161373496055603, 0.027931496500968933, -0.05310283973813057, -0.005926064681261778, -0.22467835247516632, -0.035297978669404984, -0.012028783559799194, -0.07324603945016861, 0.005950221326202154, 0.016210509464144707, 0.06027805432677269, 0.04335206001996994, -0.02177397720515728, -0.06581316143274307, 0.027470489963889122, 0.10712505131959915, -0.13764086365699768, -0.11751430481672287 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Assamese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Assamese using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "as", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-as") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-as") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Assamese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "as", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-as") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-as") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\”\\়\\।]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub('’ ',' ',batch["sentence"]) batch["sentence"] = re.sub(' ‘',' ',batch["sentence"]) batch["sentence"] = re.sub('’|‘','\'',batch["sentence"]) batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 69.63 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "as", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Assamese", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice as", "type": "common_voice", "args": "as"}, "metrics": [{"type": "wer", "value": 69.63, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-large-xlsr-as
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "as", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "as" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #as #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Assamese Fine-tuned facebook/wav2vec2-large-xlsr-53 on Assamese using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Assamese test data of Common Voice. Test Result: 69.63 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Assamese\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Assamese using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Assamese test data of Common Voice.\n\nTest Result: 69.63 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #as #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Assamese\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Assamese using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Assamese test data of Common Voice.\n\nTest Result: 69.63 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 80, 65, 20, 30, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #as #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Assamese\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Assamese using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\nThe model can be evaluated as follows on the Assamese test data of Common Voice.\n\nTest Result: 69.63 %## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.1528865098953247, 0.020260432735085487, -0.0017886146670207381, -0.005690727848559618, 0.08979082852602005, -0.057358674705028534, 0.1790434718132019, 0.07189574837684631, -0.03507162258028984, -0.017394760623574257, 0.05292031913995743, -0.009757526218891144, 0.06373300403356552, 0.0515424981713295, -0.015378850512206554, -0.2178380787372589, -0.01432091649621725, 0.016820687800645828, 0.06228099763393402, 0.1262441873550415, 0.11585337668657303, -0.08664283901453018, -0.0007018813630566001, 0.1104540005326271, -0.14766906201839447, 0.03620205819606781, 0.02603572979569435, -0.12277321517467499, 0.12568987905979156, 0.07152490317821503, 0.079363152384758, 0.05288267880678177, 0.07152804732322693, -0.19412142038345337, 0.023359470069408417, 0.016635311767458916, 0.05234520137310028, 0.017490554600954056, 0.028045671060681343, 0.017408546060323715, -0.007232074625790119, 0.14135144650936127, -0.025943923741579056, 0.08287325501441956, -0.06332875043153763, -0.17109714448451996, -0.015722285956144333, 0.01635301113128662, 0.11816159635782242, 0.13702431321144104, -0.0687611773610115, 0.04557722434401512, -0.14763323962688446, 0.07327130436897278, 0.07240466773509979, -0.14189279079437256, 0.007416407577693462, 0.024919122457504272, 0.01751246303319931, 0.11938255280256271, -0.046566810458898544, 0.02522088587284088, 0.04313522204756737, 0.026541385799646378, 0.009311980567872524, -0.03486761823296547, -0.16820521652698517, -0.011741985566914082, -0.10090058296918869, -0.013385290279984474, 0.22505955398082733, -0.0008768679108470678, -0.08077634871006012, -0.12408826500177383, 0.006731460336595774, -0.0303454902023077, -0.012429463677108288, -0.06403519213199615, 0.0007599001401104033, 0.042389094829559326, 0.005185065325349569, -0.019017523154616356, -0.1314234733581543, -0.12248200923204422, -0.00015247921692207456, 0.046990033239126205, 0.005101483315229416, 0.023190641775727272, -0.14180652797222137, 0.040284596383571625, -0.08530206233263016, -0.07211856544017792, -0.02116214670240879, 0.03144606202840805, -0.07402253150939941, 0.05345472693443298, -0.0780114084482193, -0.18749664723873138, 0.02555232122540474, -0.056327689439058304, 0.05231170356273651, 0.0422687754034996, -0.02080175280570984, 0.05770977959036827, 0.036131639033555984, 0.12957896292209625, -0.04217536002397537, -0.00727463373914361, 0.0252279881387949, 0.01083722710609436, -0.04176942631602287, -0.04057322442531586, -0.0666130930185318, -0.026793697848916054, 0.016990533098578453, 0.047429557889699936, -0.06327628344297409, -0.031842220574617386, -0.04461776465177536, -0.060855623334646225, 0.02481052652001381, -0.1108313798904419, -0.06256694346666336, 0.056080058217048645, 0.03040575049817562, 0.10642775148153305, 0.042367011308670044, 0.07294642180204391, -0.04795949161052704, -0.01940869726240635, -0.003588175866752863, 0.03673647716641426, -0.011781281791627407, -0.05781007185578346, -0.017149854451417923, -0.12075792998075485, -0.0057595269754529, -0.10663400590419769, -0.11602967232465744, -0.06798261404037476, -0.007676869630813599, 0.04180121794342995, -0.0392058789730072, -0.08792048692703247, 0.009436379186809063, -0.003867949591949582, -0.08324064314365387, 0.06053158640861511, -0.033702053129673004, 0.053295619785785675, 0.037664175033569336, 0.033557746559381485, 0.04093535989522934, 0.10534372925758362, -0.06876421719789505, -0.02663162723183632, 0.0367388017475605, 0.1646232306957245, -0.01970057189464569, -0.015283148735761642, -0.08515842258930206, -0.06195169314742088, -0.04425406828522682, 0.05043192580342293, 0.05689665302634239, 0.11074375361204147, -0.2667922377586365, -0.10453736782073975, 0.17295053601264954, -0.11830927431583405, -0.039814021438360214, 0.20478495955467224, -0.03327362611889839, 0.10067959129810333, 0.13096687197685242, 0.21378949284553528, 0.0937143936753273, -0.15249976515769958, 0.04967048391699791, -0.020021051168441772, 0.01931128092110157, -0.05299922823905945, 0.06885231286287308, -0.05606035143136978, -0.05698729678988457, 0.04088254272937775, -0.047541335225105286, 0.06382954865694046, -0.031987689435482025, -0.07366833090782166, -0.01776810921728611, -0.09820881485939026, 0.024805823341012, 0.04396974667906761, 0.024864139035344124, -0.02851978875696659, -0.04267467185854912, 0.051805224269628525, 0.11248105019330978, -0.12917551398277283, 0.04214855656027794, -0.1378500610589981, 0.0548013299703598, -0.11675289273262024, -0.03610771894454956, -0.13476315140724182, 0.18936549127101898, 0.00036417884984984994, 0.10085548460483551, 0.0754648745059967, 0.1325220763683319, 0.015298238955438137, -0.0035351887345314026, -0.027378467842936516, -0.02106180042028427, 0.007186553906649351, -0.026441438123583794, -0.04788468778133392, -0.07725110650062561, 0.010705976746976376, -0.06310664117336273, 0.12584301829338074, -0.15145304799079895, -0.017632056027650833, -0.013771915808320045, -0.004045529291033745, 0.011285022832453251, -0.011547939851880074, 0.057723261415958405, 0.08269187808036804, 0.002647163812071085, 0.021064069122076035, 0.03189460188150406, 0.017246339470148087, -0.0936114564538002, 0.17622153460979462, -0.12398022413253784, -0.014538658782839775, 0.07833771407604218, -0.05838409438729286, 0.007342614233493805, 0.0031336757820099592, -0.01487428043037653, -0.02707335725426674, -0.07530653476715088, 0.01631791517138481, 0.37442147731781006, -0.012888775207102299, 0.12664268910884857, -0.1101643443107605, 0.02023315615952015, 0.03659552335739136, -0.07234515994787216, 0.04354606568813324, 0.05300574377179146, 0.004612714983522892, 0.015523376874625683, 0.0336417481303215, -0.029779275879263878, -0.07455863058567047, 0.23311685025691986, -0.02822546288371086, -0.09706805646419525, 0.006779889110475779, -0.04827474057674408, -0.03497973829507828, 0.06499073654413223, -0.1869633048772812, -0.05180186778306961, 0.03460775315761566, 0.04840761795639992, 0.05776555836200714, -0.14660879969596863, 0.00980275496840477, 0.03120821714401245, -0.09896446019411087, -0.12933935225009918, 0.044391077011823654, -0.05630970746278763, 0.029315372928977013, -0.100652776658535, -0.02381516806781292, 0.01588483527302742, -0.027376355603337288, -0.17276768386363983, 0.1379462331533432, -0.06444849073886871, -0.2973591089248657, -0.136410653591156, -0.007979482412338257, 0.0322263166308403, 0.015058694407343864, 0.09193520992994308, -0.1565529704093933, -0.02323203906416893, -0.06045759469270706, 0.0415896438062191, 0.00032015712349675596, -0.002555272076278925, -0.054611336439847946, -0.007460849359631538, 0.06904413551092148, -0.1373969167470932, 0.016503024846315384, -0.06337348371744156, -0.012854835949838161, 0.00496655935421586, 0.0034506837837398052, -0.0030886793974786997, 0.20735274255275726, 0.03683307394385338, 0.011948945000767708, -0.004347220994532108, 0.16855975985527039, -0.08935487270355225, -0.028707070276141167, 0.1962030827999115, -0.027907798066735268, -0.016012340784072876, 0.10729584842920303, 0.01692749373614788, -0.057549264281988144, 0.004783019423484802, 0.013515224680304527, -0.08078311383724213, -0.26025891304016113, -0.08394558727741241, -0.07371428608894348, -0.09176217019557953, -0.02870308980345726, 0.01812869682908058, 0.08674918115139008, 0.04993211477994919, 0.00784691795706749, -0.06008899211883545, 0.007110745180398226, -0.030764872208237648, 0.08808586001396179, -0.01657198928296566, 0.12005404382944107, -0.05161192640662193, -0.03253816440701485, 0.011515569873154163, 0.017878880724310875, 0.19709312915802002, 0.0700986236333847, 0.0986996442079544, 0.114571712911129, 0.10489597171545029, 0.14963188767433167, 0.03024984709918499, -0.073182612657547, -0.024903979152441025, -0.0028110432904213667, -0.04895278438925743, -0.05308323726058006, 0.06556874513626099, 0.15194976329803467, -0.03702573850750923, -0.026340443640947342, -0.01259987149387598, -0.005768688395619392, 0.24797143042087555, 0.07176461815834045, -0.20004872977733612, -0.09308810532093048, -0.004781767725944519, -0.06277171522378922, -0.001199413905851543, 0.06604160368442535, 0.1419733315706253, -0.08132798969745636, 0.0036296152975410223, 0.0023908622097223997, 0.11118023842573166, -0.014376522973179817, -0.0013689928455278277, -0.10322113335132599, 0.020130015909671783, -0.0056926957331597805, 0.07689058035612106, -0.26443377137184143, 0.20203056931495667, 0.01356145367026329, 0.10647766292095184, -0.04057657718658447, -0.004244635812938213, 0.012138518504798412, 0.05307544395327568, 0.09264413267374039, 0.02366260252892971, 0.010297437198460102, -0.06683086603879929, -0.11444800347089767, 0.06964027136564255, -0.00023712844995316118, 0.05401415750384331, 0.02654625102877617, 0.017234282568097115, 0.014758662320673466, 0.020978469401597977, -0.07723776251077652, -0.17221485078334808, -0.06548171490430832, 0.018091492354869843, 0.18203264474868774, 0.06919482350349426, -0.0167482178658247, -0.09231200069189072, -0.08180221915245056, 0.04830740764737129, -0.09796277433633804, -0.07119333744049072, -0.06700127571821213, -0.07148703187704086, 0.11418471485376358, -0.058140821754932404, 0.02361345663666725, 0.0773995891213417, 0.11218070238828659, -0.01776326447725296, -0.01222969964146614, 0.04325694218277931, -0.1089300811290741, -0.10120904445648193, -0.04174872860312462, 0.1651785671710968, 0.12777146697044373, 0.06855551898479462, 0.0530751533806324, 0.004054194316267967, -0.009056267328560352, -0.04768858850002289, 0.017634019255638123, 0.11742134392261505, -0.12092505395412445, 0.027150265872478485, 0.016526680439710617, -0.14025773108005524, -0.12084311246871948, -0.07511624693870544, 0.16712656617164612, 0.05812883749604225, -0.05644240975379944, 0.2017536461353302, 0.2473340481519699, -0.10563679784536362, -0.16658423840999603, -0.021964024752378464, 0.10801014304161072, 0.13811931014060974, -0.01486497838050127, -0.19174300134181976, 0.09225322306156158, 0.0018171954434365034, -0.03729700669646263, -0.023167917504906654, -0.23994985222816467, -0.15069307386875153, 0.17027004063129425, -0.03059273585677147, 0.15327130258083344, -0.018790416419506073, -0.047634322196245193, -0.028024567291140556, 0.007858602330088615, 0.03042682074010372, -0.04461739584803581, 0.11904428899288177, 0.0039715226739645, 0.08526802808046341, 0.04061787202954292, -0.03371887281537056, 0.09062547981739044, 0.09107239544391632, -0.012055574916303158, -0.009519191458821297, 0.0659397691488266, 0.007086535915732384, 0.031740717589855194, 0.11934150010347366, -0.08823739737272263, 0.05283531919121742, -0.10516543686389923, -0.10581111162900925, -0.06721147894859314, 0.0419272854924202, 0.02623843029141426, -0.04907679557800293, 0.012464240193367004, -0.03607174754142761, 0.024726415053009987, 0.014783157967031002, -0.039324723184108734, -0.13739825785160065, 0.015996627509593964, 0.12580128014087677, 0.1790490597486496, -0.0976584404706955, -0.11534920334815979, -0.0693245604634285, -0.02883782796561718, 0.11484652757644653, -0.14314688742160797, 0.045930612832307816, 0.05925402417778969, 0.048719875514507294, 0.17527706921100616, 0.01138302031904459, -0.08396743983030319, 0.11915318667888641, 0.04002327099442482, -0.02877998910844326, -0.10603334754705429, -0.05143396556377411, -0.01259009912610054, -0.03257916867733002, 0.026020098477602005, 0.11210227757692337, -0.0931219756603241, -0.011579860933125019, -0.0401751846075058, 0.03317514806985855, -0.1123485118150711, 0.1978043168783188, 0.04761297255754471, 0.057245347648859024, -0.0995187982916832, 0.027860935777425766, 0.015961239114403725, -0.04375043138861656, 0.03932415693998337, -0.021111009642481804, -0.05365142971277237, -0.04403000697493553, -0.07731115818023682, 0.0667734295129776, 0.030540764331817627, -0.13932864367961884, -0.07248762995004654, -0.1107562929391861, 0.018460504710674286, 0.050475768744945526, 0.024532822892069817, 0.006458446383476257, -0.12168329209089279, -0.07306098192930222, -0.09173773229122162, 0.05970705673098564, 0.08282693475484848, -0.006975740194320679, -0.11059314012527466, 0.12394474446773529, 0.10690449923276901, 0.05954694002866745, -0.04143563285470009, -0.10069718956947327, 0.02284405566751957, 0.09286488592624664, -0.10252116620540619, 0.037389375269412994, -0.028239091858267784, 0.008077112026512623, -0.0100192716345191, -0.07788123935461044, -0.03130508214235306, 0.08048994839191437, -0.07969357818365097, 0.07779571413993835, 0.0046715582720935345, 0.06986957788467407, -0.0519782230257988, -0.0010471359128132463, 0.0479152649641037, -0.04196701943874359, 0.08874505013227463, 0.11150168627500534, -0.13419830799102783, 0.0978405624628067, -0.19579622149467468, -0.02785567194223404, 0.0715692937374115, 0.07291348278522491, -0.025155695155262947, -0.12879064679145813, 0.041453178972005844, 0.08584504574537277, 0.0513407401740551, -0.0290467981249094, 0.07417825609445572, -0.06681197881698608, -0.03767896071076393, -0.06581057608127594, -0.013424582779407501, -0.05401257053017616, 0.009044907055795193, 0.0562409870326519, 0.14870725572109222, 0.14591214060783386, -0.08626382797956467, 0.11037477850914001, -0.12415945529937744, 0.015128097496926785, -0.05822628736495972, -0.01056626532226801, -0.141254261136055, -0.08011167496442795, 0.05015005171298981, -0.05960975959897041, 0.15654559433460236, 0.005455750040709972, 0.009170631878077984, -0.027676241472363472, -0.09360373020172119, 0.050505660474300385, -0.01453846599906683, 0.2792084515094757, 0.04977536201477051, 0.017079250887036324, -0.006767837796360254, -0.009533442556858063, 0.01566295139491558, 0.16601724922657013, -0.03606346994638443, 0.15834903717041016, 0.01609359122812748, 0.0899529755115509, 0.0815599262714386, -0.04207992926239967, -0.012771053239703178, -0.0013391587417572737, -0.1528712511062622, 0.035770535469055176, -0.022754602134227753, 0.19559957087039948, 0.16971029341220856, -0.0909537598490715, 0.09562081098556519, 0.015123049728572369, -0.10440236330032349, -0.13906624913215637, -0.09519307315349579, -0.08050616830587387, -0.1169448271393776, 0.023922031745314598, -0.09566369652748108, 0.016438553109765053, 0.09229305386543274, 0.04027017951011658, -0.03853776678442955, 0.13845224678516388, 0.05037877708673477, -0.07731943577528, 0.0936097651720047, -0.0853651687502861, -0.0030367490835487843, -0.08606201410293579, 0.02346675843000412, 0.17897294461727142, 0.004039281513541937, 0.035353757441043854, -0.00701440405100584, -0.04384344071149826, 0.037633802741765976, -0.04707203060388565, -0.0681428611278534, -0.013034391216933727, -0.0348830446600914, 0.08834930509328842, 0.12938182055950165, 0.11558081954717636, -0.04551037400960922, 0.004511467646807432, 0.06079765409231186, -0.0211170744150877, -0.10571524500846863, -0.1452852338552475, 0.11291768401861191, 0.021224096417427063, -0.00005983981827739626, 0.01240194495767355, -0.03560919314622879, 0.0032607833854854107, 0.24494518339633942, 0.1929761916399002, 0.013829121366143227, 0.02469283901154995, -0.04692947119474411, -0.009000616148114204, -0.05146024376153946, 0.08116765320301056, 0.05932862311601639, 0.2263362854719162, -0.005631448235362768, 0.009079650975763798, -0.10831484198570251, -0.08132946491241455, 0.0064275749027729034, 0.06159081310033798, -0.05229870602488518, -0.079600490629673, 0.00745621370151639, 0.13824914395809174, -0.07599670439958572, -0.06086757779121399, -0.07574959844350815, -0.08906073123216629, -0.105278879404068, -0.027948100119829178, -0.0019826788920909166, 0.10388290137052536, -0.005552858114242554, -0.07016020268201828, 0.04220694676041603, 0.15495385229587555, 0.0013359930599108338, -0.07216008007526398, -0.046930644661188126, 0.06437757611274719, -0.07567022740840912, 0.035795051604509354, 0.006431409623473883, 0.15758350491523743, 0.019990630447864532, 0.12352640181779861, -0.015155293978750706, 0.1664123833179474, -0.01580808311700821, -0.05213727802038193, 0.02685542404651642, 0.1411142647266388, -0.010789183899760246, 0.10707572102546692, 0.019708141684532166, -0.08805841207504272, 0.06020065024495125, -0.1401873230934143, -0.030366964638233185, -0.0934026837348938, 0.05027956888079643, -0.04602816328406334, 0.08591405302286148, 0.05045216903090477, -0.06168360263109207, -0.09128052741289139, -0.05484192445874214, 0.06029944494366646, 0.006322074681520462, -0.07285039871931076, -0.04287486523389816, -0.24580247700214386, 0.005419491790235043, -0.002226631622761488, -0.008115067146718502, -0.2617309093475342, -0.01891142688691616, -0.00029221110162325203, -0.09329834580421448, 0.037887636572122574, 0.03203235939145088, 0.08594132214784622, 0.034781452268362045, -0.007252182811498642, 0.007204648107290268, 0.04082803800702095, 0.10686931014060974, -0.15164650976657867, -0.1070776879787445 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.6780 - Wer: 0.3670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.514 | 2.07 | 400 | 1.4589 | 0.8531 | | 1.4289 | 4.15 | 800 | 0.8940 | 0.6475 | | 1.276 | 6.22 | 1200 | 0.7743 | 0.6089 | | 1.2213 | 8.29 | 1600 | 0.6919 | 0.4973 | | 1.1522 | 10.36 | 2000 | 0.6635 | 0.4588 | | 1.0914 | 12.44 | 2400 | 0.6839 | 0.4586 | | 1.0499 | 14.51 | 2800 | 0.7151 | 0.4467 | | 1.0238 | 16.58 | 3200 | 0.6824 | 0.4436 | | 0.9963 | 18.65 | 3600 | 0.6872 | 0.4437 | | 0.9728 | 20.73 | 4000 | 0.7047 | 0.4244 | | 0.9373 | 22.8 | 4400 | 0.6569 | 0.4189 | | 0.9028 | 24.87 | 4800 | 0.6623 | 0.4094 | | 0.8759 | 26.94 | 5200 | 0.6723 | 0.4152 | | 0.8824 | 29.02 | 5600 | 0.6467 | 0.4017 | | 0.8371 | 31.09 | 6000 | 0.6911 | 0.4080 | | 0.8205 | 33.16 | 6400 | 0.7145 | 0.4063 | | 0.7837 | 35.23 | 6800 | 0.7037 | 0.3930 | | 0.7708 | 37.31 | 7200 | 0.6925 | 0.3840 | | 0.7359 | 39.38 | 7600 | 0.7034 | 0.3829 | | 0.7153 | 41.45 | 8000 | 0.7030 | 0.3794 | | 0.7127 | 43.52 | 8400 | 0.6823 | 0.3761 | | 0.6884 | 45.6 | 8800 | 0.6854 | 0.3711 | | 0.6835 | 47.67 | 9200 | 0.6723 | 0.3665 | | 0.6703 | 49.74 | 9600 | 0.6773 | 0.3668 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
automatic-speech-recognition
anuragshas/wav2vec2-xls-r-1b-hi-cv8
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hi", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "hi" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #hi #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - HI dataset. It achieves the following results on the evaluation set: * Loss: 0.6780 * Wer: 0.3670 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 16 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1500 * num\_epochs: 50.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #hi #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ 79, 160, 4, 39 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #hi #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ -0.12581504881381989, 0.14905059337615967, -0.003934110514819622, 0.027692783623933792, 0.10925710201263428, 0.00827640201896429, 0.09612789005041122, 0.14952579140663147, -0.06800848245620728, 0.12426180392503738, 0.09360598027706146, 0.0914701446890831, 0.10014741867780685, 0.1452479064464569, -0.017437748610973358, -0.2655702531337738, 0.03411179035902023, -0.03401593118906021, -0.09617383778095245, 0.09846083074808121, 0.08823911845684052, -0.10713690519332886, 0.03694476559758186, 0.01118109654635191, -0.09319514036178589, -0.01701459474861622, -0.039509501308202744, -0.05962064862251282, 0.08587362617254257, 0.05197112262248993, 0.03511153161525726, 0.028677335008978844, 0.0717841237783432, -0.27888762950897217, 0.00935172475874424, 0.061223942786455154, 0.03710348159074783, 0.05555365979671478, 0.10353883355855942, -0.006810595281422138, 0.10032983869314194, -0.08222223818302155, 0.033733949065208435, 0.05504303798079491, -0.08175729215145111, -0.26845699548721313, -0.10299486666917801, 0.014164460822939873, 0.12938176095485687, 0.0905122235417366, -0.040858250111341476, 0.043630316853523254, -0.04855421185493469, 0.07684806734323502, 0.23515523970127106, -0.2293991595506668, -0.06157630681991577, -0.017677387222647667, 0.03625115379691124, 0.03484153375029564, -0.10228870809078217, 0.008522499352693558, 0.030953917652368546, 0.01066527795046568, 0.07502961158752441, 0.017668886110186577, 0.07458353787660599, 0.00424508610740304, -0.1302337795495987, -0.05087660998106003, 0.146489217877388, 0.09462551027536392, -0.01824060268700123, -0.11358329653739929, -0.02533036284148693, -0.1700238734483719, -0.05062482878565788, 0.009484353475272655, 0.022608252242207527, -0.025082336738705635, -0.06840257346630096, 0.017336638644337654, -0.03604864701628685, -0.05795776844024658, 0.030423803254961967, 0.12616893649101257, 0.039468903094530106, -0.04305490851402283, 0.025570353493094444, 0.06303299963474274, 0.06311339884996414, -0.15923640131950378, -0.018997708335518837, 0.04364264756441116, -0.09239739179611206, -0.0016307441983371973, -0.021089239045977592, 0.02019280567765236, 0.0655391737818718, 0.12718138098716736, 0.015441779047250748, 0.09439007937908173, 0.007363465614616871, 0.006135901436209679, -0.0655495896935463, 0.1441919356584549, -0.07838049530982971, -0.12607057392597198, -0.03200290724635124, 0.10354776680469513, 0.025290491059422493, -0.02882816456258297, -0.08662065863609314, 0.0319378562271595, 0.10140345245599747, 0.05023004859685898, 0.016413697972893715, 0.0058157965540885925, -0.07448060065507889, -0.028420135378837585, 0.0010833953274413943, -0.11569973826408386, 0.05312207341194153, 0.04119520261883736, -0.05853760242462158, 0.01597541943192482, -0.03985518962144852, 0.030007224529981613, -0.03939478099346161, 0.08848990499973297, -0.05202032998204231, -0.011624563485383987, -0.06721510738134384, -0.09571133553981781, 0.03969340771436691, -0.04937057942152023, 0.0001256803807336837, -0.06975574046373367, -0.07911141961812973, -0.07076894491910934, 0.04728969931602478, -0.06802212446928024, -0.06908112019300461, -0.10039342194795609, -0.0784250944852829, 0.06948903948068619, -0.02504405379295349, 0.1456148624420166, -0.06442836672067642, 0.09157911688089371, 0.010858055204153061, 0.06082522124052048, 0.07267927378416061, 0.07130599766969681, -0.013464485295116901, 0.04257640615105629, -0.1387316882610321, 0.10447097569704056, -0.10356266051530838, 0.05452712997794151, -0.14753331243991852, -0.0851534754037857, -0.003502574283629656, -0.004514055326581001, 0.11199415475130081, 0.12963594496250153, -0.1753421127796173, -0.09776894003152847, 0.14452378451824188, -0.05272311344742775, -0.09668293595314026, 0.1428692638874054, -0.006008296739310026, -0.05441448837518692, 0.03547825291752815, 0.19063593447208405, 0.10712683945894241, -0.09997307509183884, -0.022873716428875923, -0.05933411791920662, 0.133822500705719, 0.028267258778214455, 0.1073017418384552, -0.06406284868717194, 0.015566526912152767, -0.00451172050088644, -0.006486411672085524, 0.07742992043495178, -0.08180268108844757, -0.07147642225027084, -0.00976675283163786, -0.07451014220714569, -0.008743446320295334, 0.0458659827709198, 0.008457114920020103, -0.0930481031537056, -0.11895338445901871, -0.028147900477051735, 0.11125416308641434, -0.10361798852682114, 0.028691349551081657, -0.08711935579776764, 0.09659415483474731, -0.03124961070716381, 0.005002248100936413, -0.13877259194850922, 0.02308833785355091, 0.04254821315407753, -0.039972156286239624, -0.005438150838017464, -0.06130080670118332, 0.055491864681243896, 0.03490818664431572, -0.03337996080517769, -0.06126442179083824, -0.032790444791316986, -0.0005042622215114534, -0.052727241069078445, -0.24441006779670715, -0.055412717163562775, -0.023308025673031807, 0.1656447798013687, -0.15925295650959015, -0.010501056909561157, 0.04185132682323456, 0.14472590386867523, 0.024176910519599915, -0.0582449808716774, 0.01110982894897461, 0.06738446652889252, -0.03367409482598305, -0.07736597955226898, 0.025458097457885742, 0.011654617264866829, -0.10835547000169754, 0.017315154895186424, -0.11591049283742905, 0.07070028781890869, 0.11165636777877808, 0.02058008313179016, -0.043016038835048676, -0.05995895341038704, -0.03897559642791748, -0.043356191366910934, -0.032971229404211044, -0.003057964611798525, 0.1369948387145996, 0.011403273791074753, 0.09487702697515488, -0.07771925628185272, -0.02727639116346836, 0.048679959028959274, 0.026347298175096512, -0.03451219201087952, 0.13731756806373596, 0.07559805363416672, -0.03930789604783058, 0.10726011544466019, 0.07299815118312836, -0.02467450313270092, 0.14038507640361786, -0.06593499332666397, -0.08881551772356033, -0.04092011600732803, 0.014086165465414524, 0.02276713401079178, 0.10213962942361832, -0.18744419515132904, -0.024348191916942596, 0.02674541249871254, 0.03342365846037865, 0.01710008829832077, -0.1622191220521927, 0.009328161366283894, 0.04089365154504776, -0.07606382668018341, -0.004771600477397442, -0.0040010311640799046, -0.029408326372504234, 0.0795903131365776, 0.024032708257436752, -0.07207445055246353, -0.032772406935691833, -0.03953678160905838, -0.09414177387952805, 0.15023884177207947, -0.12607114017009735, -0.14197255671024323, -0.10368593037128448, -0.05342302843928337, -0.03148120269179344, -0.005179875995963812, 0.05516936257481575, -0.10692816227674484, -0.042845096439123154, -0.06649941205978394, 0.01694362238049507, -0.062228865921497345, 0.043400369584560394, 0.054233454167842865, -0.0021113366819918156, 0.03170151263475418, -0.08420497924089432, 0.009142422117292881, -0.004707103129476309, 0.017538055777549744, -0.011176797561347485, 0.00770838325843215, 0.11346650123596191, 0.15857148170471191, 0.06759239733219147, 0.04499517008662224, -0.03705725073814392, 0.18755197525024414, -0.12895949184894562, -0.0037214860785752535, 0.10580220073461533, 0.03864862397313118, 0.038294509053230286, 0.15653222799301147, 0.03166833519935608, -0.09483618289232254, 0.01828158088028431, 0.022870054468512535, -0.012471123598515987, -0.2180265635251999, -0.04515431448817253, -0.08286940306425095, -0.03253341093659401, 0.09380245953798294, 0.022449851036071777, -0.008951438590884209, 0.018277423456311226, -0.027007564902305603, 0.01016679685562849, 0.02555617317557335, 0.051561757922172546, 0.07750115543603897, 0.04613948240876198, 0.10901237279176712, -0.017140069976449013, -0.00979834608733654, 0.03887724131345749, -0.012035186402499676, 0.24092617630958557, 0.01923581212759018, 0.20016001164913177, 0.038417719304561615, 0.15878379344940186, -0.002503807656466961, 0.03237353637814522, 0.023386338725686073, 0.0028687529265880585, 0.011424405500292778, -0.05902785807847977, -0.050325751304626465, 0.04089159891009331, 0.1360708475112915, 0.01704351231455803, -0.11478762328624725, 0.029007719829678535, 0.028506232425570488, 0.34717974066734314, 0.09608349204063416, -0.27406349778175354, -0.06824000924825668, 0.0191474799066782, -0.05574844405055046, -0.03666860982775688, 0.03990606591105461, 0.11294405162334442, -0.05628609284758568, 0.09118422865867615, -0.038143355399370193, 0.08938492089509964, -0.0818822905421257, -0.003534322138875723, 0.05240721255540848, 0.0909726470708847, 0.0011048214510083199, 0.05530429631471634, -0.2738761007785797, 0.260628879070282, -0.002648521913215518, 0.0855729877948761, -0.05257410556077957, 0.04174289107322693, 0.03655915707349777, -0.022254731506109238, 0.07876192778348923, 0.0014175742398947477, -0.14045684039592743, -0.13431952893733978, -0.11124680936336517, 0.010178442113101482, 0.1212388277053833, -0.057480502873659134, 0.1081179827451706, -0.04002949595451355, -0.03939030319452286, 0.029323343187570572, -0.04458753764629364, -0.11911781877279282, -0.11971033364534378, 0.030961735174059868, 0.04661884158849716, 0.08807901293039322, -0.07610861212015152, -0.09256012737751007, -0.06989738345146179, 0.1508016139268875, -0.10219478607177734, -0.010548204183578491, -0.1310572773218155, 0.07404955476522446, 0.1349087506532669, -0.06499839574098587, 0.044327571988105774, 0.0127911027520895, 0.1282724142074585, 0.020412368699908257, -0.015840675681829453, 0.11317571252584457, -0.08234748989343643, -0.1797455996274948, -0.06833518296480179, 0.15930980443954468, 0.025264844298362732, 0.06331528723239899, -0.017142338678240776, 0.0263588298112154, -0.00842652190476656, -0.06959303468465805, 0.09400750696659088, 0.08359963446855545, 0.027967305853962898, 0.06107066199183464, 0.0016361629823222756, -0.01607203297317028, -0.0890718400478363, -0.08616652339696884, 0.12648113071918488, 0.2677333354949951, -0.07711860537528992, 0.04703358933329582, 0.053465280681848526, -0.05788277089595795, -0.15420259535312653, -0.012736290693283081, 0.11134079098701477, 0.04733389988541603, -0.0376502200961113, -0.2108263522386551, -0.0006320054526440799, 0.063303641974926, -0.022663865238428116, 0.06593220680952072, -0.33349668979644775, -0.12967857718467712, 0.07851514965295792, 0.07014768570661545, 0.00714392215013504, -0.16012786328792572, -0.07754949480295181, -0.04184558615088463, -0.09456895291805267, 0.033734191209077835, -0.0030628249514847994, 0.11965636163949966, 0.014246608130633831, 0.004541939124464989, 0.013677691109478474, -0.044735830277204514, 0.1585366576910019, 0.0061348057352006435, 0.02365930564701557, -0.015890855342149734, 0.04529735445976257, -0.026218852028250694, -0.06556408107280731, -0.010625110939145088, -0.06813202798366547, 0.029315387830138206, -0.1343410760164261, -0.030884165316820145, -0.06788114458322525, 0.013533449731767178, -0.029590468853712082, -0.021956050768494606, -0.0430942103266716, 0.04137898609042168, 0.10177896171808243, 0.012882595881819725, 0.13064973056316376, -0.04947438836097717, 0.11410167813301086, 0.09359904378652573, 0.09355408698320389, -0.036297962069511414, -0.0717088058590889, -0.010303293354809284, -0.01888788305222988, 0.04197824373841286, -0.11486804485321045, 0.031623173505067825, 0.1363300383090973, 0.03831484541296959, 0.14396920800209045, 0.04875745624303818, -0.09008568525314331, 0.022545771673321724, 0.063722625374794, -0.07212533056735992, -0.16667766869068146, -0.0278361514210701, 0.027663148939609528, -0.10807929188013077, -0.00984340813010931, 0.10665763169527054, -0.0251329243183136, -0.002307885093614459, 0.0048207491636276245, 0.04735575616359711, -0.024159038439393044, 0.2160431444644928, 0.009318406693637371, 0.0753873735666275, -0.10549835860729218, 0.08869287371635437, 0.050432778894901276, -0.14446869492530823, 0.059088513255119324, 0.07245544344186783, -0.06070573627948761, -0.014247660525143147, 0.017245395109057426, 0.09767017513513565, 0.04305466637015343, -0.06269815564155579, -0.10803069174289703, -0.14664693176746368, 0.1092926636338234, 0.050661347806453705, 0.02365150675177574, 0.015152832493185997, -0.015506035648286343, 0.019198812544345856, -0.09293124824762344, 0.09845227748155594, 0.0827622264623642, 0.0519576370716095, -0.1299198865890503, 0.07509087026119232, 0.007079576142132282, -0.00024699512869119644, -0.00018132540571969002, -0.01102518755942583, -0.09840351343154907, 0.023129234090447426, -0.12364227324724197, -0.00980220828205347, -0.08728724718093872, -0.007719465531408787, 0.01384106557816267, -0.06430460512638092, -0.06624289602041245, 0.01715121418237686, -0.10637122392654419, -0.06040092185139656, -0.031787920743227005, 0.06747683137655258, -0.09262665361166, -0.014303470961749554, 0.025680290535092354, -0.12747949361801147, 0.09722111374139786, 0.04737047106027603, 0.027910172939300537, 0.002261996502056718, -0.07180466502904892, -0.016093095764517784, 0.03203333169221878, 0.0073216878809034824, 0.035256218165159225, -0.2019205093383789, -0.008542400784790516, -0.00834133941680193, 0.005911712069064379, -0.013630809262394905, 0.041906263679265976, -0.1113128811120987, -0.025089949369430542, -0.05428434535861015, -0.03409541770815849, -0.04685330390930176, 0.06985504180192947, 0.1004861369729042, 0.016336074098944664, 0.1508035808801651, -0.07607194036245346, 0.047731418162584305, -0.20187368988990784, 0.01232083234935999, -0.03323311358690262, -0.06440754979848862, -0.05168928578495979, -0.027506927028298378, 0.10014837235212326, -0.05022364482283592, 0.07227945327758789, -0.045320894569158554, 0.05545607581734657, 0.027002064511179924, -0.10943286865949631, 0.01692396216094494, 0.050389278680086136, 0.19154568016529083, 0.05965016037225723, -0.021036595106124878, 0.08124502748250961, 0.004013242665678263, 0.08446609228849411, 0.17888487875461578, 0.12371518462896347, 0.14327850937843323, 0.10241007059812546, 0.10841245949268341, 0.06264303624629974, -0.14294815063476562, -0.14689625799655914, 0.15865196287631989, -0.06991815567016602, 0.15442143380641937, -0.0042677102610468864, 0.17906172573566437, 0.10398240387439728, -0.19822414219379425, 0.050952110439538956, -0.03647950664162636, -0.07540193945169449, -0.10499171167612076, -0.07856034487485886, -0.08974621444940567, -0.19734086096286774, 0.010872294194996357, -0.10841754823923111, 0.06447672843933105, 0.03479371219873428, 0.04562890902161598, 0.03926800936460495, 0.0652977004647255, 0.04513201862573624, -0.010583343915641308, 0.12224241346120834, 0.004384253174066544, -0.03943861648440361, -0.04778779670596123, -0.12330316007137299, 0.05095669627189636, -0.04303640127182007, 0.0748099610209465, -0.01737038791179657, -0.11030595749616623, 0.08083135634660721, 0.018894385546445847, -0.10703282058238983, 0.026478959247469902, -0.026489300653338432, 0.05355824902653694, 0.12077385187149048, 0.04599975794553757, -0.01346792932599783, 0.004659808240830898, 0.20342841744422913, -0.0935494601726532, -0.03769427165389061, -0.1385430544614792, 0.16725599765777588, 0.006327938288450241, 0.015545872040092945, 0.022354794666171074, -0.08143932372331619, -0.026106655597686768, 0.16423948109149933, 0.12874431908130646, -0.017451297491788864, -0.034201931208372116, 0.02590087242424488, -0.010588441044092178, -0.04148639366030693, 0.07197766751050949, 0.1246812716126442, 0.0398096963763237, -0.03708750754594803, -0.025761863216757774, -0.05016811564564705, -0.06788484752178192, -0.02771211601793766, 0.07126988470554352, 0.008796901442110538, -0.024275582283735275, -0.0035039950162172318, 0.11834751814603806, -0.05732842534780502, -0.1426493525505066, 0.05211793631315231, -0.18205153942108154, -0.1829376220703125, -0.026342177763581276, 0.055856913328170776, 0.054158151149749756, 0.05021965503692627, 0.0026170266792178154, -0.017858756706118584, 0.1333499699831009, 0.006475887261331081, -0.05468737334012985, -0.10582215338945389, 0.061342500150203705, -0.10951730608940125, 0.16212047636508942, -0.03883736580610275, 0.011556899175047874, 0.13232235610485077, 0.08549455553293228, -0.09539875388145447, 0.03418298810720444, 0.08547583967447281, -0.09866963326931, 0.06572014838457108, 0.17176000773906708, -0.04584519937634468, 0.15161144733428955, 0.06051815673708916, -0.06280618906021118, 0.022671755403280258, -0.08830307424068451, -0.029095035046339035, -0.05641356483101845, 0.007540278136730194, -0.05458102375268936, 0.14192405343055725, 0.16128596663475037, -0.07245856523513794, -0.016836371272802353, -0.02598516270518303, 0.013203429989516735, 0.014974771998822689, 0.14247030019760132, -0.03662915527820587, -0.2756684124469757, 0.013248711824417114, -0.0014249883824959397, 0.03514883294701576, -0.2033657282590866, -0.07109708338975906, 0.014132922515273094, -0.053082894533872604, -0.06812240183353424, 0.12493054568767548, 0.05524551123380661, 0.028439387679100037, -0.07684466987848282, -0.12213516235351562, -0.01863153465092182, 0.18384167551994324, -0.1643519401550293, -0.06306464970111847 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-1B - Hindi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.6921 - Wer: 0.3547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.0674 | 2.07 | 400 | 1.3411 | 0.8835 | | 1.324 | 4.15 | 800 | 0.9311 | 0.7142 | | 1.2023 | 6.22 | 1200 | 0.8060 | 0.6170 | | 1.1573 | 8.29 | 1600 | 0.7415 | 0.4972 | | 1.1117 | 10.36 | 2000 | 0.7248 | 0.4588 | | 1.0672 | 12.44 | 2400 | 0.6729 | 0.4350 | | 1.0336 | 14.51 | 2800 | 0.7117 | 0.4346 | | 1.0025 | 16.58 | 3200 | 0.7019 | 0.4272 | | 0.9578 | 18.65 | 3600 | 0.6792 | 0.4118 | | 0.9272 | 20.73 | 4000 | 0.6863 | 0.4156 | | 0.9321 | 22.8 | 4400 | 0.6535 | 0.3972 | | 0.8802 | 24.87 | 4800 | 0.6766 | 0.3906 | | 0.844 | 26.94 | 5200 | 0.6782 | 0.3949 | | 0.8387 | 29.02 | 5600 | 0.6916 | 0.3921 | | 0.8042 | 31.09 | 6000 | 0.6806 | 0.3797 | | 0.793 | 33.16 | 6400 | 0.7120 | 0.3831 | | 0.7567 | 35.23 | 6800 | 0.6862 | 0.3808 | | 0.7463 | 37.31 | 7200 | 0.6893 | 0.3709 | | 0.7053 | 39.38 | 7600 | 0.7096 | 0.3701 | | 0.6906 | 41.45 | 8000 | 0.6921 | 0.3676 | | 0.6891 | 43.52 | 8400 | 0.7167 | 0.3663 | | 0.658 | 45.6 | 8800 | 0.6833 | 0.3580 | | 0.6576 | 47.67 | 9200 | 0.6914 | 0.3569 | | 0.6358 | 49.74 | 9600 | 0.6922 | 0.3551 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-1b-hi-with-lm --dataset mozilla-foundation/common_voice_8_0 --config hi --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-1b-hi-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "hi", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "तुम्हारे पास तीन महीने बचे हैं" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 26.209 | 15.899 |
{"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "XLS-R-1B - Hindi", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "hi"}, "metrics": [{"type": "wer", "value": 15.899, "name": "Test WER"}, {"type": "cer", "value": 5.83, "name": "Test CER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-xls-r-1b-hi-with-lm
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "hi", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "hi" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #hi #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
XLS-R-1B - Hindi ================ This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - HI dataset. It achieves the following results on the evaluation set: * Loss: 0.6921 * Wer: 0.3547 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 16 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1500 * num\_epochs: 50.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.0.dev0 * Pytorch 1.10.1+cu102 * Datasets 1.17.1.dev0 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #hi #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ 115, 160, 4, 41, 36, 8, 15 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #hi #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'### Inference With LM### Eval results on Common Voice 8 \"test\" (WER):" ]
[ -0.11647762358188629, 0.11110296845436096, -0.006923345848917961, 0.034047938883304596, 0.09928243607282639, 0.02202165313065052, 0.09480245411396027, 0.15545539557933807, -0.060491133481264114, 0.11799735575914383, 0.06128925457596779, 0.07180213183164597, 0.08363039791584015, 0.07988263666629791, -0.015501366928219795, -0.261199414730072, 0.017859619110822678, -0.05098573490977287, -0.10831557959318161, 0.10183307528495789, 0.1041400283575058, -0.09117501229047775, 0.02301456220448017, 0.011693247593939304, -0.05534813553094864, 0.0032506275456398726, -0.04843370243906975, -0.03854483738541603, 0.07240414619445801, 0.043465353548526764, 0.032242294400930405, 0.039313264191150665, 0.07212073355913162, -0.28213733434677124, 0.008361371234059334, 0.06818490475416183, 0.035288628190755844, 0.05075554922223091, 0.13146652281284332, -0.015571888536214828, 0.10911215841770172, -0.07055559754371643, 0.027710044756531715, 0.07006652653217316, -0.09858459234237671, -0.24161306023597717, -0.09080450981855392, 0.03206489607691765, 0.14063866436481476, 0.0823233351111412, -0.04733194783329964, 0.023710984736680984, -0.09653705358505249, 0.0901661142706871, 0.2166670560836792, -0.20294521749019623, -0.06978266686201096, -0.021449146792292595, 0.043808672577142715, 0.0066373529843986034, -0.10768360644578934, -0.010494884103536606, 0.010401592589914799, 0.015944750979542732, 0.05689998343586922, 0.0028659470845013857, 0.023947857320308685, 0.0082553057000041, -0.13465768098831177, -0.06045537814497948, 0.11751498281955719, 0.08152364939451218, -0.02391749806702137, -0.10779877752065659, -0.0019828493241220713, -0.17210830748081207, -0.038107823580503464, 0.02508772350847721, 0.014411249198019505, -0.032916534692049026, -0.010374133475124836, 0.04423966258764267, -0.04327473044395447, -0.07510995119810104, 0.06734825670719147, 0.10656572133302689, 0.05088093876838684, -0.05363153666257858, 0.020566755905747414, 0.09236497431993484, 0.0628383532166481, -0.17884580790996552, -0.03943093121051788, 0.03309369459748268, -0.12569129467010498, -0.013705002143979073, -0.02359125018119812, 0.007837231270968914, 0.08054941147565842, 0.15493011474609375, -0.01667224057018757, 0.096016064286232, 0.00751467514783144, 0.0106339817866683, -0.06439631432294846, 0.15262678265571594, -0.07058734446763992, -0.08256474137306213, -0.05359964817762375, 0.12712569534778595, -0.025495214387774467, -0.0035534861963242292, -0.04053448885679245, 0.023907095193862915, 0.10581803321838379, 0.07386089116334915, 0.006365598179399967, 0.02092876471579075, -0.0744224265217781, -0.015834569931030273, -0.011130208149552345, -0.14136290550231934, 0.051878783851861954, 0.08540559560060501, -0.07258440554141998, -0.018083950504660606, -0.01654413342475891, 0.0005420800880528986, -0.05932315066456795, 0.08479722589254379, -0.03385292738676071, -0.002378486329689622, -0.0798955038189888, -0.08965600281953812, 0.04248184710741043, -0.024650540202856064, -0.005340518895536661, -0.051340874284505844, -0.07085785269737244, -0.08740025758743286, 0.048799820244312286, -0.07077101618051529, -0.0576806515455246, -0.06760768592357635, -0.10347606986761093, 0.043039288371801376, -0.01959429308772087, 0.17339642345905304, -0.04821953549981117, 0.07579614222049713, 0.03886047378182411, 0.0357997789978981, 0.14743591845035553, 0.06915412843227386, -0.00979479681700468, 0.06767749786376953, -0.11852330714464188, 0.10880259424448013, -0.12957918643951416, 0.05358633026480675, -0.14459629356861115, -0.10384159535169601, 0.0018503571627661586, 0.0037678293883800507, 0.10866637527942657, 0.14189332723617554, -0.15879733860492706, -0.07265021651983261, 0.13507460057735443, -0.04225463047623634, -0.0879383310675621, 0.13404375314712524, -0.00501563074067235, -0.05469875410199165, 0.009165181778371334, 0.1648467630147934, 0.1483316719532013, -0.08845855295658112, -0.0034220486413687468, -0.06294505298137665, 0.11060217767953873, 0.10090433806180954, 0.09949095547199249, -0.05260999873280525, 0.04370517283678055, -0.0014537777751684189, -0.04027233645319939, 0.040160611271858215, -0.0792226642370224, -0.07907677441835403, -0.00032812292920425534, -0.061753012239933014, 0.007646523416042328, 0.056490615010261536, -0.01194713357836008, -0.08259012550115585, -0.14607161283493042, -0.013259642757475376, 0.0998392328619957, -0.08203838765621185, 0.010059148073196411, -0.0951838418841362, 0.06889910250902176, 0.009776161052286625, 0.010460028424859047, -0.1464136838912964, -0.009339631535112858, 0.03345361351966858, -0.057516228407621384, 0.010743601247668266, -0.03354448452591896, 0.06663545221090317, 0.03500281274318695, -0.024537069723010063, -0.0691337138414383, -0.05132218077778816, -0.000957897980697453, -0.03846295177936554, -0.23286959528923035, -0.08878638595342636, -0.014671297743916512, 0.16723552346229553, -0.20024539530277252, 0.011847707442939281, 0.07875996083021164, 0.13034652173519135, 0.0004152171895839274, -0.0410451702773571, 0.027237797155976295, 0.04980245232582092, -0.02093580923974514, -0.06599194556474686, 0.01481319684535265, -0.002472040941938758, -0.08035305142402649, 0.004002427216619253, -0.11733344197273254, 0.04807571694254875, 0.07104503363370895, -0.006064616143703461, -0.07761926203966141, -0.024873604997992516, -0.05835062265396118, -0.053928349167108536, -0.027408210560679436, -0.030727539211511612, 0.16439662873744965, 0.02636038511991501, 0.09232380986213684, -0.07019060105085373, -0.052269354462623596, 0.02534809522330761, 0.015799498185515404, -0.0070631252601742744, 0.17365948855876923, 0.04281000792980194, -0.02798451855778694, 0.08460505306720734, 0.022823728621006012, -0.055311620235443115, 0.12297601252794266, -0.08424200117588043, -0.09398337453603745, -0.04978204146027565, 0.046271707862615585, 0.039141107350587845, 0.08731885999441147, -0.18637016415596008, -0.010262965224683285, 0.029275694862008095, 0.020066341385245323, 0.027684299275279045, -0.16486364603042603, 0.005620242562144995, 0.0377538688480854, -0.08656872808933258, -0.008486640639603138, 0.015557992272078991, -0.0035978262312710285, 0.07106947898864746, 0.0038053945172578096, -0.07150530070066452, -0.04084936901926994, -0.06280015408992767, -0.09725449979305267, 0.15856751799583435, -0.08743088692426682, -0.12921321392059326, -0.11667412519454956, -0.0033594712149351835, -0.02236935868859291, -0.024123279377818108, 0.04777410626411438, -0.0951492190361023, -0.04363385960459709, -0.07283996045589447, 0.010916763916611671, -0.018340446054935455, 0.009761841036379337, 0.03373793140053749, 0.011088619939982891, 0.07344081997871399, -0.09584421664476395, 0.012899907305836678, 0.005115651059895754, -0.029327286407351494, -0.0029734105337411165, 0.027349799871444702, 0.09363618493080139, 0.1557529866695404, 0.058000851422548294, 0.04936061426997185, -0.010215147398412228, 0.1985761970281601, -0.1401386857032776, 0.006212166510522366, 0.11974051594734192, 0.0036830510944128036, 0.04089096933603287, 0.14109618961811066, 0.03600287809967995, -0.0756692886352539, 0.013519384898245335, 0.04809551313519478, -0.0025474121794104576, -0.25276148319244385, -0.018201295286417007, -0.07771214097738266, -0.019221680238842964, 0.08462589979171753, 0.0350445993244648, 0.0053499191999435425, 0.00844530202448368, -0.024970319122076035, -0.04388945922255516, 0.06178152188658714, 0.043984659016132355, 0.06607785075902939, 0.038927093148231506, 0.0930766612291336, -0.01591932587325573, -0.026424212381243706, 0.011233486235141754, -0.008812782354652882, 0.21036764979362488, -0.0029292376711964607, 0.19361454248428345, 0.06802715361118317, 0.12897635996341705, -0.024600980803370476, 0.03210270404815674, -0.00497515220195055, 0.003604692639783025, 0.04271433874964714, -0.061871856451034546, -0.013695143163204193, 0.026401212438941002, 0.1175965890288353, 0.017747322097420692, -0.09250850230455399, 0.006718344520777464, 0.04458778724074364, 0.3370321989059448, 0.08257509022951126, -0.24631856381893158, -0.06331708282232285, 0.013699449598789215, -0.07173454016447067, -0.029990138486027718, 0.019631536677479744, 0.11336640268564224, -0.07872918993234634, 0.0803058072924614, -0.04084627702832222, 0.09625759720802307, -0.04639337211847305, 0.016283947974443436, 0.09539805352687836, 0.10080847889184952, 0.015049793757498264, 0.07409783452749252, -0.2627180218696594, 0.234893336892128, -0.01822741888463497, 0.06906187534332275, -0.04959675297141075, 0.057489026337862015, 0.03961324691772461, -0.028483020141720772, 0.08527370542287827, -0.006029720418155193, -0.09775390475988388, -0.13907983899116516, -0.07970892637968063, 0.005104864947497845, 0.1244339719414711, -0.06493892520666122, 0.12383944541215897, -0.03941692039370537, -0.054195377975702286, 0.02536998875439167, -0.035974808037281036, -0.12826970219612122, -0.08608845621347427, 0.060877725481987, -0.00844448059797287, 0.08387000113725662, -0.08212588727474213, -0.08221045881509781, -0.1021670252084732, 0.1531876027584076, -0.14597657322883606, -0.02044171653687954, -0.1316269040107727, 0.05117063969373703, 0.16382409632205963, -0.06340215355157852, 0.018246451392769814, 0.027996163815259933, 0.13666723668575287, 0.04132372513413429, 0.002748785074800253, 0.09739097207784653, -0.077512726187706, -0.21256113052368164, -0.037155866622924805, 0.1829882711172104, 0.022702883929014206, 0.06771624833345413, -0.014963651075959206, 0.014758342877030373, -0.005939824506640434, -0.0782305896282196, 0.08576299250125885, 0.02640390954911709, -0.003877979703247547, 0.06771010160446167, -0.03463493287563324, -0.0016528385458514094, -0.09789476543664932, -0.0529034286737442, 0.08484657853841782, 0.23678049445152283, -0.07243049889802933, 0.028968332335352898, 0.0023553436622023582, -0.0761498212814331, -0.15143004059791565, -0.009028592146933079, 0.12991254031658173, 0.04662467911839485, -0.00613498454913497, -0.18605975806713104, 0.004156759474426508, 0.060525406152009964, -0.014199813827872276, 0.08616559952497482, -0.33119329810142517, -0.12784834206104279, 0.07765407115221024, 0.048174045979976654, -0.10048414021730423, -0.18027746677398682, -0.07616501301527023, -0.015995802357792854, -0.08487933874130249, 0.009133781306445599, -0.02596924640238285, 0.11052098870277405, 0.010915243998169899, 0.002356699900701642, 0.027419958263635635, -0.04800541698932648, 0.16561275720596313, 0.027381010353565216, 0.04003608971834183, -0.01711115427315235, 0.021241167560219765, 0.014356784522533417, -0.06582298129796982, 0.025438182055950165, -0.08078301697969437, 0.017318084836006165, -0.15481950342655182, -0.018759259954094887, -0.08876743912696838, 0.012922627851366997, -0.06310369819402695, 0.0021924974862486124, -0.01147044450044632, 0.05974915623664856, 0.09756194055080414, 0.03131881728768349, 0.09663305431604385, -0.0817272886633873, 0.12000973522663116, 0.16387711465358734, 0.11881626397371292, 0.0346781387925148, -0.11286625266075134, 0.0065210130997002125, 0.0274571031332016, 0.020836759358644485, -0.11011964827775955, 0.053559496998786926, 0.1477217674255371, 0.04371440410614014, 0.14814245700836182, 0.03865966573357582, -0.10275976359844208, -0.00979517586529255, 0.06396012008190155, -0.061040472239255905, -0.15165230631828308, -0.025674523785710335, 0.01518646813929081, -0.1253003478050232, -0.02646065503358841, 0.10709124803543091, -0.02756846509873867, 0.0021430475171655416, 0.02504311315715313, 0.0653160810470581, -0.04519207030534744, 0.22819483280181885, 0.02328546531498432, 0.11477954685688019, -0.082282654941082, 0.06434325128793716, 0.05239809304475784, -0.08450532704591751, 0.036486752331256866, 0.12499581277370453, -0.03430072218179703, -0.04100104048848152, 0.0008081356645561755, 0.07766479253768921, 0.07895767688751221, -0.05328414961695671, -0.12857817113399506, -0.16024120151996613, 0.09764266014099121, 0.05606260150671005, 0.023146426305174828, 0.021346522495150566, 0.005821682047098875, 0.025137515738606453, -0.0843423381447792, 0.12348805367946625, 0.10365880280733109, 0.05863189697265625, -0.114360012114048, 0.09766152501106262, -0.0019310207571834326, 0.01166612096130848, 0.008421674370765686, -0.010813776403665543, -0.10600307583808899, 0.04005070775747299, -0.14169257879257202, -0.004651534836739302, -0.05244933068752289, 0.0001900489442050457, 0.019338039681315422, -0.05902847275137901, -0.05386154726147652, 0.028730805963277817, -0.11084499955177307, -0.05528993159532547, -0.03239773213863373, 0.08571421355009079, -0.09532357007265091, -0.01659972220659256, 0.04090670868754387, -0.14417831599712372, 0.09313816577196121, 0.024660412222146988, 0.003611529478803277, 0.0007911360589787364, -0.0885658785700798, -0.01617063209414482, 0.0016462508356198668, 0.017738938331604004, 0.02295679785311222, -0.21649210155010223, 0.0025029487442225218, -0.03504330292344093, 0.0001308078208239749, -0.01875961385667324, -0.006154153496026993, -0.11901108920574188, 0.009579923003911972, -0.033963337540626526, -0.04671879857778549, -0.04685882478952408, 0.06257182359695435, 0.06764866411685944, 0.015316043049097061, 0.15262065827846527, -0.06689246743917465, 0.08623069524765015, -0.22349222004413605, 0.005585895851254463, -0.0060888067819178104, -0.051538702100515366, -0.024722278118133545, -0.02170197293162346, 0.11136071383953094, -0.06730424612760544, 0.06858479231595993, -0.02558407001197338, 0.05024787038564682, 0.029297469183802605, -0.11233416199684143, 0.024789800867438316, 0.07084046304225922, 0.12070348113775253, 0.030358608812093735, -0.01908240094780922, 0.05994490161538124, -0.043166857212781906, 0.035077523440122604, 0.09600260108709335, 0.14119966328144073, 0.16741468012332916, 0.0847867801785469, 0.06297095865011215, 0.10641064494848251, -0.14922918379306793, -0.10400957614183426, 0.1522679328918457, -0.06324773281812668, 0.1421859711408615, -0.03978312015533447, 0.15864653885364532, 0.10524784028530121, -0.20306512713432312, 0.09025786817073822, -0.059550583362579346, -0.08631882816553116, -0.08555137366056442, -0.09123209863901138, -0.07244787365198135, -0.15670588612556458, 0.017945509403944016, -0.09925758093595505, 0.07354458421468735, 0.04879934713244438, 0.04775020480155945, 0.021313905715942383, 0.09657827019691467, 0.051745809614658356, -0.007025516126304865, 0.12385986000299454, -0.005004288163036108, -0.01619274541735649, -0.02959013544023037, -0.0809750184416771, 0.05477948486804962, -0.024782981723546982, 0.0681968405842781, -0.01758175529539585, -0.09653957933187485, 0.0445031002163887, 0.01304691657423973, -0.10389399528503418, 0.03725782781839371, -0.035755813121795654, 0.044772762805223465, 0.10020934045314789, 0.04224482178688049, -0.010042982175946236, -0.006538036745041609, 0.17798547446727753, -0.07744908332824707, -0.06721528619527817, -0.13270384073257446, 0.16285602748394012, 0.01033739186823368, 0.007652033120393753, 0.020321257412433624, -0.07395162433385849, -0.015460502356290817, 0.16563084721565247, 0.13051657378673553, -0.02113177441060543, -0.01957862079143524, 0.021576229482889175, 0.0005060231196694076, -0.01823762059211731, 0.053973693400621414, 0.1156570091843605, 0.04928091540932655, -0.027558736503124237, 0.0032240834552794695, -0.02258364111185074, -0.073183573782444, -0.034395020455121994, 0.08182282745838165, 0.025052424520254135, -0.0018695570761337876, -0.008876234292984009, 0.12905268371105194, -0.08525194972753525, -0.17129109799861908, 0.0378132127225399, -0.16359177231788635, -0.19029048085212708, -0.05124805122613907, 0.06074310466647148, 0.04918394237756729, 0.06518236547708511, -0.00042001742986030877, -0.048280440270900726, 0.11825579404830933, 0.0093064671382308, -0.005786054767668247, -0.0926087275147438, 0.06837614625692368, -0.13425278663635254, 0.17195387184619904, -0.03575555607676506, 0.04076836258172989, 0.13347174227237701, 0.02748221904039383, -0.09970042109489441, 0.0237639881670475, 0.10155518352985382, -0.1376573145389557, 0.057490572333335876, 0.19100916385650635, -0.028994984924793243, 0.12743046879768372, 0.04106254130601883, -0.06962849199771881, 0.010425216518342495, -0.054869066923856735, -0.019304467365145683, -0.07416830211877823, 0.009569709189236164, -0.04734070599079132, 0.11946567893028259, 0.21823418140411377, -0.07731697708368301, -0.00774413300678134, -0.0449831448495388, 0.013776847161352634, 0.00392957404255867, 0.14441797137260437, -0.04609157145023346, -0.25919151306152344, 0.037962719798088074, -0.011308208107948303, 0.042222268879413605, -0.18306802213191986, -0.08088912814855576, 0.04073181375861168, -0.0564042329788208, -0.055761147290468216, 0.12383685261011124, 0.07873521745204926, 0.04676463454961777, -0.05240265280008316, -0.1271238476037979, -0.018489427864551544, 0.18991026282310486, -0.16693902015686035, -0.054538339376449585 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-hi-cv7 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.5878 - Wer: 0.3419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.9859 | 2.72 | 400 | 1.1663 | 0.7948 | | 1.2969 | 5.44 | 800 | 0.7725 | 0.6562 | | 1.1954 | 8.16 | 1200 | 0.5940 | 0.4904 | | 1.164 | 10.88 | 1600 | 0.5338 | 0.4316 | | 1.1464 | 13.6 | 2000 | 0.5432 | 0.4226 | | 1.1553 | 16.33 | 2400 | 0.5471 | 0.4260 | | 1.0985 | 19.05 | 2800 | 0.5290 | 0.4076 | | 1.0421 | 21.77 | 3200 | 0.5672 | 0.4181 | | 0.9831 | 24.49 | 3600 | 0.5741 | 0.4141 | | 0.9827 | 27.21 | 4000 | 0.5754 | 0.4179 | | 0.9669 | 29.93 | 4400 | 0.5310 | 0.3889 | | 0.9496 | 32.65 | 4800 | 0.5649 | 0.4062 | | 0.9112 | 35.37 | 5200 | 0.5738 | 0.3926 | | 0.8838 | 38.1 | 5600 | 0.5232 | 0.3768 | | 0.8666 | 40.81 | 6000 | 0.5510 | 0.3852 | | 0.8366 | 43.54 | 6400 | 0.5436 | 0.3837 | | 0.7957 | 46.26 | 6800 | 0.5337 | 0.3775 | | 0.7834 | 48.98 | 7200 | 0.5611 | 0.3844 | | 0.7685 | 51.7 | 7600 | 0.5710 | 0.4008 | | 0.7431 | 54.42 | 8000 | 0.5636 | 0.3726 | | 0.7353 | 57.14 | 8400 | 0.5937 | 0.3836 | | 0.7001 | 59.86 | 8800 | 0.5815 | 0.3858 | | 0.6799 | 62.58 | 9200 | 0.5862 | 0.3696 | | 0.6459 | 65.31 | 9600 | 0.6181 | 0.3762 | | 0.6121 | 68.03 | 10000 | 0.5637 | 0.3590 | | 0.5942 | 70.75 | 10400 | 0.6374 | 0.3882 | | 0.5769 | 73.47 | 10800 | 0.6015 | 0.3640 | | 0.5689 | 76.19 | 11200 | 0.5669 | 0.3508 | | 0.5461 | 78.91 | 11600 | 0.5967 | 0.3621 | | 0.5286 | 81.63 | 12000 | 0.5840 | 0.3605 | | 0.5057 | 84.35 | 12400 | 0.5848 | 0.3489 | | 0.482 | 87.07 | 12800 | 0.5860 | 0.3488 | | 0.4655 | 89.79 | 13200 | 0.5780 | 0.3453 | | 0.4523 | 92.52 | 13600 | 0.6150 | 0.3532 | | 0.4422 | 95.24 | 14000 | 0.5930 | 0.3452 | | 0.4436 | 97.96 | 14400 | 0.5867 | 0.3428 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-1b-hi --dataset mozilla-foundation/common_voice_7_0 --config hi --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-1b-hi" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "hi", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "तुम्हारे पास तीन महीने बचे हैं" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 28.942 | 18.504 |
{"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-xls-r-1b-hi-cv7", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "hi"}, "metrics": [{"type": "wer", "value": 18.504, "name": "Test WER"}, {"type": "cer", "value": 6.655, "name": "Test CER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-xls-r-1b-hi
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "hi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "hi" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_7_0 #robust-speech-event #hi #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-xls-r-1b-hi-cv7 ======================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON\_VOICE\_7\_0 - HI dataset. It achieves the following results on the evaluation set: * Loss: 0.5878 * Wer: 0.3419 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 16 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 2000 * num\_epochs: 100.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.0.dev0 * Pytorch 1.10.1+cu102 * Datasets 1.17.1.dev0 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_7\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 7 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 100.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 7 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_7_0 #robust-speech-event #hi #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 100.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 7 \"test\" (WER):" ]
[ 111, 160, 4, 41, 36, 8, 15 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_7_0 #robust-speech-event #hi #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 100.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'### Inference With LM### Eval results on Common Voice 7 \"test\" (WER):" ]
[ -0.1261293888092041, 0.11707478761672974, -0.00637839874252677, 0.038008321076631546, 0.10004960000514984, 0.02172403782606125, 0.10867225378751755, 0.1630273163318634, -0.05854635685682297, 0.10391257703304291, 0.053083181381225586, 0.0864708349108696, 0.0786508247256279, 0.07813471555709839, -0.013902106322348118, -0.2805381119251251, 0.015009494498372078, -0.034140463918447495, -0.08211314678192139, 0.1171901673078537, 0.10099446773529053, -0.08742373436689377, 0.01674528419971466, 0.026938753202557564, -0.06142932549118996, -0.0015686945989727974, -0.04313536733388901, -0.04438157007098198, 0.07972133159637451, 0.038540054112672806, 0.04020345211029053, 0.042247168719768524, 0.06289159506559372, -0.26748159527778625, 0.008732558228075504, 0.0664428249001503, 0.03934742137789726, 0.0570002943277359, 0.13942942023277283, -0.033931881189346313, 0.11373703926801682, -0.043317414820194244, 0.03231315687298775, 0.07440999150276184, -0.08761142939329147, -0.2582537829875946, -0.09351903945207596, 0.056034933775663376, 0.14285072684288025, 0.0878838300704956, -0.04724782332777977, 0.03547852858901024, -0.10683480650186539, 0.10267411172389984, 0.23489180207252502, -0.213027685880661, -0.06407120078802109, -0.024112313985824585, 0.04216775670647621, -0.004550404846668243, -0.10413547605276108, -0.028612563386559486, 0.0026251468807458878, 0.013369954191148281, 0.053916025906801224, -0.001685835886746645, -0.0006531492690555751, -0.000045469601900549605, -0.14288921654224396, -0.06477085500955582, 0.1158900111913681, 0.06904205679893494, -0.0240163616836071, -0.1181468516588211, -0.010837242007255554, -0.20394837856292725, -0.04173742234706879, 0.026583323255181313, 0.010882367379963398, -0.038448285311460495, -0.01946749910712242, 0.03853416442871094, -0.048904795199632645, -0.08322750777006149, 0.056701574474573135, 0.11872829496860504, 0.06117679178714752, -0.0486878827214241, 0.017269717529416084, 0.11975359916687012, 0.046578794717788696, -0.17438672482967377, -0.03987828642129898, 0.0392581969499588, -0.12300504744052887, -0.007215464487671852, -0.01866338402032852, -0.005588276777416468, 0.06859903782606125, 0.1577158272266388, -0.024938318878412247, 0.08929499983787537, 0.00851595588028431, 0.018663275986909866, -0.06814061850309372, 0.17320692539215088, -0.07639003545045853, -0.06724586337804794, -0.04348163306713104, 0.13178040087223053, -0.019505124539136887, 0.000983086065389216, -0.04572254791855812, 0.0251929871737957, 0.11997153609991074, 0.08026225864887238, 0.014331341721117496, 0.02817048877477646, -0.06873904168605804, -0.02697279304265976, 0.011460752226412296, -0.13857042789459229, 0.04324786365032196, 0.08520667254924774, -0.08444982767105103, -0.018632326275110245, -0.007020824588835239, 0.0007887910469435155, -0.06353524327278137, 0.10245954245328903, -0.039658863097429276, 0.007512690033763647, -0.08190778642892838, -0.08806615322828293, 0.040830712765455246, -0.018009496852755547, -0.017504248768091202, -0.042960673570632935, -0.08936504274606705, -0.08220844715833664, 0.03888843208551407, -0.059855904430150986, -0.06700392067432404, -0.0640224739909172, -0.10482525825500488, 0.03874046355485916, -0.024779515340924263, 0.15908920764923096, -0.05678331479430199, 0.08985074609518051, 0.037264853715896606, 0.025147899985313416, 0.1491752564907074, 0.07194546610116959, -0.030969340354204178, 0.06223113462328911, -0.13992682099342346, 0.11762254685163498, -0.12799975275993347, 0.04354667663574219, -0.12984535098075867, -0.11679089069366455, 0.0029178657568991184, -0.004005243070423603, 0.09494990855455399, 0.13959619402885437, -0.15602420270442963, -0.08424464613199234, 0.14971159398555756, -0.05068488046526909, -0.08093827962875366, 0.13862080872058868, -0.0028650725726038218, -0.05275808647274971, 0.016551148146390915, 0.176937073469162, 0.1623377501964569, -0.0903322622179985, 0.0013336723204702139, -0.05576314777135849, 0.09444048255681992, 0.08914504945278168, 0.09556885063648224, -0.0533997043967247, 0.04674949124455452, 0.00603087805211544, -0.04669070988893509, 0.044437311589717865, -0.08020885288715363, -0.07615390419960022, -0.0019782709423452616, -0.06297822296619415, 0.019194655120372772, 0.06327956169843674, -0.009825803339481354, -0.08159905672073364, -0.153669074177742, -0.009882042184472084, 0.11316145956516266, -0.08461141586303711, 0.01312922965735197, -0.09501196444034576, 0.08213382959365845, 0.012666295282542706, 0.003873721696436405, -0.16111120581626892, -0.017987897619605064, 0.0419025681912899, -0.07348006963729858, 0.017921147868037224, -0.03477170690894127, 0.05967191606760025, 0.03378340229392052, -0.02964983880519867, -0.08034002780914307, -0.039708830416202545, -0.018061945214867592, -0.03687554597854614, -0.2210928201675415, -0.09380663931369781, -0.008675708435475826, 0.17979906499385834, -0.1799650490283966, 0.01870371215045452, 0.06976305693387985, 0.12326733767986298, 0.000006482929165940732, -0.042889829725027084, 0.03423911705613136, 0.05874870717525482, -0.017209503799676895, -0.058775659650564194, 0.02245517447590828, 0.00372649566270411, -0.07850735634565353, 0.007644413039088249, -0.12482515722513199, 0.04984306916594505, 0.0723346546292305, 0.009845531545579433, -0.08189862966537476, -0.024918505921959877, -0.0685657188296318, -0.05872292444109917, -0.025103673338890076, -0.023271847516298294, 0.18007732927799225, 0.03299267962574959, 0.10251761972904205, -0.08002364635467529, -0.060808390378952026, 0.013929907232522964, 0.009985877200961113, 0.006765172351151705, 0.16717679798603058, 0.03804576024413109, -0.02519233152270317, 0.09201294183731079, -0.017130671069025993, -0.0728345513343811, 0.14052081108093262, -0.08361857384443283, -0.09240073710680008, -0.043982598930597305, 0.05673642084002495, 0.03355257213115692, 0.08196477591991425, -0.1969560980796814, -0.003609142266213894, 0.03468422591686249, 0.014853236265480518, 0.03381756693124771, -0.18321779370307922, 0.004826354794204235, 0.02782776951789856, -0.09336750954389572, -0.011089800857007504, 0.028788050636649132, 0.011332951486110687, 0.07606659829616547, -0.003307875245809555, -0.08263479173183441, -0.03955909609794617, -0.05968111753463745, -0.10070302337408066, 0.16921895742416382, -0.08074967563152313, -0.15134736895561218, -0.12881454825401306, -0.017103271558880806, -0.0451081246137619, -0.029228273779153824, 0.05631472170352936, -0.0838775709271431, -0.036262642592191696, -0.07040036469697952, 0.018602605909109116, -0.009454983286559582, 0.0011657841969281435, -0.0006276954081840813, 0.00780128687620163, 0.07307452708482742, -0.10885711014270782, 0.013057938776910305, -0.006637414917349815, -0.03634590283036232, 0.0005475946818478405, 0.03844403475522995, 0.08518277853727341, 0.18591386079788208, 0.06208715960383415, 0.05011671036481857, -0.016540082171559334, 0.19232116639614105, -0.14184758067131042, -0.0034241736866533756, 0.12591983377933502, -0.0008561916183680296, 0.04852011799812317, 0.14644268155097961, 0.03907868266105652, -0.064580038189888, 0.003316447837278247, 0.05345558747649193, -0.002928201574832201, -0.2564150094985962, -0.028108619153499603, -0.07464661449193954, -0.005915592424571514, 0.0726311057806015, 0.03902025148272514, 0.03980952873826027, 0.009396156296133995, -0.03420140966773033, -0.059001486748456955, 0.0644293874502182, 0.048000581562519073, 0.07678564637899399, 0.036406729370355606, 0.10605219751596451, -0.01815151982009411, -0.030215714126825333, 0.006100092548877001, -0.00817917287349701, 0.21555468440055847, -0.01951454021036625, 0.1880548894405365, 0.07730648666620255, 0.14485542476177216, -0.005117911845445633, 0.03221764788031578, -0.01353844441473484, 0.006925211753696203, 0.05373992770910263, -0.060169536620378494, -0.013592417351901531, 0.011919303797185421, 0.11502823233604431, 0.026914061978459358, -0.0908270850777626, -0.014596809633076191, 0.04032832756638527, 0.36336156725883484, 0.07631389051675797, -0.25802159309387207, -0.07211195677518845, 0.0015605274820700288, -0.08426724374294281, -0.03183078393340111, 0.015538671985268593, 0.09248729795217514, -0.0985705778002739, 0.0794735997915268, -0.04992802441120148, 0.09606362879276276, -0.06661295890808105, 0.006779099814593792, 0.10187800973653793, 0.09995125234127045, 0.01825002208352089, 0.07590239495038986, -0.23766623437404633, 0.24341097474098206, -0.019978133961558342, 0.062038175761699677, -0.045057475566864014, 0.061009377241134644, 0.04347332939505577, -0.013713536784052849, 0.08155589550733566, -0.012538379989564419, -0.0380215123295784, -0.14898914098739624, -0.08865857869386673, -0.006978804245591164, 0.11715047061443329, -0.06575583666563034, 0.12044893205165863, -0.036068305373191833, -0.059942636638879776, 0.01841248758137226, -0.06041033938527107, -0.1136835515499115, -0.07936941832304001, 0.06939256936311722, -0.0022077863104641438, 0.0906635969877243, -0.08469048887491226, -0.09518757462501526, -0.09337178617715836, 0.16222767531871796, -0.13773389160633087, -0.04277826473116875, -0.12070275843143463, 0.0374053493142128, 0.17182718217372894, -0.06987971812486649, 0.022201647982001305, 0.014381947927176952, 0.13562120497226715, 0.04252851381897926, -0.0019387712236493826, 0.08830856531858444, -0.07389946281909943, -0.21840323507785797, -0.029710719361901283, 0.20766957104206085, 0.0210868027061224, 0.06949100643396378, -0.02629946731030941, 0.008834782987833023, -0.005669636186212301, -0.0756130963563919, 0.058275461196899414, 0.024420328438282013, -0.010032642632722855, 0.0716601088643074, -0.03767796978354454, -0.015601718798279762, -0.11125055700540543, -0.0394965298473835, 0.09937019646167755, 0.23065632581710815, -0.07315453886985779, 0.037672076374292374, 0.011599074117839336, -0.06776012480258942, -0.14715568721294403, -0.01112213172018528, 0.143909752368927, 0.03475426882505417, -0.022328605875372887, -0.1866733878850937, 0.004607328213751316, 0.06885860860347748, -0.020147064700722694, 0.10200227051973343, -0.35638731718063354, -0.13367073237895966, 0.08581183105707169, 0.04401353374123573, -0.10742741078138351, -0.17463842034339905, -0.08087731897830963, -0.0001803580962587148, -0.08407757431268692, 0.01134869921952486, 0.0004910766147077084, 0.12098187208175659, 0.004021850414574146, 0.0196810495108366, 0.029869481921195984, -0.048542387783527374, 0.15251962840557098, 0.030929800122976303, 0.03933292254805565, -0.013460684567689896, 0.02190445363521576, 0.017553282901644707, -0.0614926815032959, 0.04131700098514557, -0.06822652369737625, 0.01762021891772747, -0.15293613076210022, -0.023167122155427933, -0.10375689715147018, 0.021178942173719406, -0.057475220412015915, 0.0002135486574843526, -0.016858944669365883, 0.050091564655303955, 0.08194240927696228, 0.026251230388879776, 0.09544848650693893, -0.08265107870101929, 0.12843601405620575, 0.1590811312198639, 0.11433945596218109, 0.013843463733792305, -0.1499493271112442, -0.005555939394980669, 0.02466689608991146, 0.01972898095846176, -0.10094240307807922, 0.04461102932691574, 0.14342878758907318, 0.050904855132102966, 0.14958351850509644, 0.03906533494591713, -0.1039426401257515, -0.004677079617977142, 0.0578923225402832, -0.07317349314689636, -0.14533951878547668, -0.031188521534204483, -0.002703820588067174, -0.1270124763250351, -0.009121943265199661, 0.09630788117647171, -0.024654820561408997, -0.006462517194449902, 0.029949726536870003, 0.054720908403396606, -0.04007642716169357, 0.23055902123451233, 0.019088273867964745, 0.11656099557876587, -0.09507651627063751, 0.059587977826595306, 0.05499579757452011, -0.08425729721784592, 0.017040474340319633, 0.1308424323797226, -0.04397771134972572, -0.04093456640839577, -0.019497869536280632, 0.07665888220071793, 0.06451909989118576, -0.054475799202919006, -0.1346447765827179, -0.1525888890028, 0.09331482648849487, 0.0752546563744545, 0.029394686222076416, 0.02346086874604225, -0.004610549192875624, 0.02556937374174595, -0.0896996483206749, 0.12817105650901794, 0.11549761146306992, 0.06124730780720711, -0.12090793997049332, 0.10864308476448059, 0.01643792726099491, 0.02134622260928154, 0.011245446279644966, -0.02404003217816353, -0.09091512113809586, 0.04479698836803436, -0.13188061118125916, -0.017430560663342476, -0.052636198699474335, 0.002862381050363183, 0.014588752761483192, -0.056792423129081726, -0.05328189209103584, 0.036057643592357635, -0.11906153708696365, -0.054584212601184845, -0.031080398708581924, 0.07711243629455566, -0.1018141582608223, -0.008971065282821655, 0.04295332357287407, -0.13879691064357758, 0.10161301493644714, 0.046074479818344116, -0.001666210824623704, 0.00586398970335722, -0.07890846580266953, -0.02107171341776848, 0.01601671800017357, 0.01984858512878418, 0.021095359697937965, -0.21078015863895416, 0.012027274817228317, -0.028564002364873886, -0.003028491046279669, -0.014298975467681885, 0.006229595746845007, -0.131602481007576, 0.007746330462396145, -0.022139495238661766, -0.04414639249444008, -0.051813747733831406, 0.058042194694280624, 0.07337643206119537, 0.0234531257301569, 0.15982972085475922, -0.06492874026298523, 0.09068673849105835, -0.22773408889770508, 0.0009790081530809402, -0.005537423305213451, -0.05753077194094658, -0.03008902445435524, -0.016001004725694656, 0.10723717510700226, -0.06285800039768219, 0.0714832991361618, -0.017180008813738823, 0.05622877925634384, 0.022521477192640305, -0.08680613338947296, 0.05102775618433952, 0.06491982936859131, 0.10942203551530838, 0.026971066370606422, -0.019915558397769928, 0.07617708295583725, -0.03990177437663078, 0.027913188561797142, 0.07235430926084518, 0.14155972003936768, 0.14573156833648682, 0.08005262911319733, 0.05272864177823067, 0.10919545590877533, -0.13622888922691345, -0.12022079527378082, 0.11807336658239365, -0.06669013202190399, 0.14402681589126587, -0.035977624356746674, 0.1934157758951187, 0.10568560659885406, -0.19067765772342682, 0.10623956471681595, -0.0381670817732811, -0.08725760132074356, -0.0884300246834755, -0.1027771383523941, -0.06759189814329147, -0.166054829955101, 0.018682066351175308, -0.09785163402557373, 0.0654999166727066, 0.04933418333530426, 0.04360009729862213, 0.014551151543855667, 0.11301320046186447, 0.04039294272661209, -0.017035167664289474, 0.11923598498106003, -0.0018144057830795646, -0.01673227734863758, -0.036548126488924026, -0.07194402068853378, 0.059901464730501175, -0.025563854724168777, 0.07071024179458618, -0.021230418235063553, -0.09902848303318024, 0.048499833792448044, 0.001712856930680573, -0.10094700008630753, 0.03699998930096626, -0.03054680861532688, 0.056118108332157135, 0.10352456569671631, 0.04025917127728462, -0.003994214814156294, -0.009511752054095268, 0.18853797018527985, -0.07802432030439377, -0.07799796760082245, -0.12983882427215576, 0.19439451396465302, 0.006534167565405369, -0.00820245873183012, 0.028260517865419388, -0.07374241203069687, -0.02152557298541069, 0.18094956874847412, 0.1445324867963791, -0.0041080620139837265, -0.020157720893621445, 0.022077854722738266, -0.003723687259480357, -0.02277051843702793, 0.05254369601607323, 0.12611675262451172, 0.0919649675488472, -0.026513051241636276, 0.005545536521822214, -0.024545952677726746, -0.07031707465648651, -0.03433309867978096, 0.0896398201584816, 0.01947048120200634, -0.008317526429891586, -0.017346732318401337, 0.12954829633235931, -0.10071618854999542, -0.15447036921977997, 0.03219841048121452, -0.16502203047275543, -0.19649304449558258, -0.04767460748553276, 0.07154404371976852, 0.04106166958808899, 0.06278639286756516, 0.005002337042242289, -0.049775391817092896, 0.1257769614458084, 0.005562067497521639, -0.019254550337791443, -0.11105631291866302, 0.06610177457332611, -0.1377331167459488, 0.17794077098369598, -0.03453165292739868, 0.05355637148022652, 0.1316116899251938, 0.02929413877427578, -0.09658455103635788, 0.03774302080273628, 0.09804505109786987, -0.15835827589035034, 0.05382581427693367, 0.19918552041053772, -0.017295299097895622, 0.1224069595336914, 0.029024209827184677, -0.07509126514196396, 0.015419253148138523, -0.07294028997421265, -0.014791717752814293, -0.0853281319141388, 0.00794987753033638, -0.04747932031750679, 0.11090364307165146, 0.22488273680210114, -0.07088860124349594, -0.00869623851031065, -0.05607958883047104, 0.00019757906557060778, 0.017283644527196884, 0.12665244936943054, -0.041867971420288086, -0.2751823365688324, 0.043902330100536346, -0.016708407551050186, 0.03570779412984848, -0.19519861042499542, -0.08061248064041138, 0.0442165732383728, -0.06761720776557922, -0.055950865149497986, 0.11426270753145218, 0.055953964591026306, 0.04906381294131279, -0.04167528077960014, -0.10338317602872849, -0.021553777158260345, 0.1897404044866562, -0.1833736002445221, -0.055102188140153885 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Latvian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - LV dataset. It achieves the following results on the evaluation set: - Loss: 0.1660 - Wer: 0.1705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.489 | 2.56 | 400 | 3.3590 | 1.0 | | 2.9903 | 5.13 | 800 | 2.9704 | 1.0001 | | 1.6712 | 7.69 | 1200 | 0.6179 | 0.6566 | | 1.2635 | 10.26 | 1600 | 0.3176 | 0.4531 | | 1.0819 | 12.82 | 2000 | 0.2517 | 0.3508 | | 1.0136 | 15.38 | 2400 | 0.2257 | 0.3124 | | 0.9625 | 17.95 | 2800 | 0.1975 | 0.2311 | | 0.901 | 20.51 | 3200 | 0.1986 | 0.2097 | | 0.8842 | 23.08 | 3600 | 0.1904 | 0.2039 | | 0.8542 | 25.64 | 4000 | 0.1847 | 0.1981 | | 0.8244 | 28.21 | 4400 | 0.1805 | 0.1847 | | 0.7689 | 30.77 | 4800 | 0.1736 | 0.1832 | | 0.7825 | 33.33 | 5200 | 0.1698 | 0.1821 | | 0.7817 | 35.9 | 5600 | 0.1758 | 0.1803 | | 0.7488 | 38.46 | 6000 | 0.1663 | 0.1760 | | 0.7171 | 41.03 | 6400 | 0.1636 | 0.1721 | | 0.7222 | 43.59 | 6800 | 0.1663 | 0.1729 | | 0.7156 | 46.15 | 7200 | 0.1633 | 0.1715 | | 0.7121 | 48.72 | 7600 | 0.1666 | 0.1718 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config lv --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config lv --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "lv", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "domāju ka viņam viss labi" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 16.997 | 9.633 |
{"language": ["lv"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Latvian", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "lv"}, "metrics": [{"type": "wer", "value": 9.633, "name": "Test WER"}, {"type": "cer", "value": 2.614, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "lv"}, "metrics": [{"type": "wer", "value": 36.11, "name": "Test WER"}, {"type": "cer", "value": 14.244, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "lv"}, "metrics": [{"type": "wer", "value": 44.12, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "lv", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "lv" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #lv #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
XLS-R-300M - Latvian ==================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - LV dataset. It achieves the following results on the evaluation set: * Loss: 0.1660 * Wer: 0.1705 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 50.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' 2. To evaluate on 'speech-recognition-community-v2/dev\_data' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #lv #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ 111, 132, 4, 39, 60, 8, 15 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #lv #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'### Inference With LM### Eval results on Common Voice 8 \"test\" (WER):" ]
[ -0.10391377657651901, 0.13912668824195862, -0.006456209812313318, 0.013675927184522152, 0.10876055806875229, 0.03072018176317215, 0.10691812634468079, 0.16422303020954132, -0.035633061081171036, 0.13999101519584656, 0.05331495404243469, 0.10876161605119705, 0.09155011177062988, 0.08730428665876389, -0.03089730255305767, -0.20925195515155792, 0.03905564546585083, -0.07134860008955002, -0.06900003552436829, 0.10152678936719894, 0.09289854764938354, -0.08219046145677567, 0.027111846953630447, -0.010704039596021175, -0.05134036764502525, -0.010895626619458199, -0.0345572791993618, -0.04242913797497749, 0.06091396510601044, 0.02936439774930477, 0.018507562577724457, 0.02874908037483692, 0.05396563187241554, -0.3103705644607544, -0.0009230549912899733, 0.0826307088136673, 0.02642812952399254, 0.039236217737197876, 0.09980002045631409, -0.022720031440258026, 0.09878475219011307, -0.0978572741150856, 0.035972803831100464, 0.08075336366891861, -0.07644232362508774, -0.23109783232212067, -0.1119566485285759, 0.029638933017849922, 0.15198267996311188, 0.07746351510286331, -0.04799271002411842, 0.039864055812358856, -0.09251124411821365, 0.09214358776807785, 0.21083563566207886, -0.20663462579250336, -0.0430779792368412, -0.00048734177835285664, 0.023948363959789276, 0.028770025819540024, -0.08737828582525253, -0.008183895610272884, 0.010360083542764187, -0.0004718817654065788, 0.037257637828588486, -0.004571273922920227, 0.04572850093245506, -0.002880141604691744, -0.1435059756040573, -0.08033968508243561, 0.1505349576473236, 0.06596720963716507, -0.03735719248652458, -0.11564286798238754, -0.009562620893120766, -0.17003251612186432, -0.04301426559686661, 0.01401333324611187, 0.015133447013795376, -0.02384375035762787, -0.004703011363744736, 0.03050404042005539, -0.05350946635007858, -0.0701645016670227, 0.06313338130712509, 0.10948244482278824, 0.048537325114011765, -0.04522351175546646, 0.012446999549865723, 0.08445297181606293, 0.03344869241118431, -0.1575969159603119, -0.054165925830602646, 0.03801339492201805, -0.14097632467746735, -0.00653488514944911, -0.024656808003783226, 0.01043062936514616, 0.09642372280359268, 0.18295784294605255, 0.025251608341932297, 0.09881237894296646, -0.013699071481823921, 0.010799816809594631, -0.04821638762950897, 0.15388479828834534, -0.03390715271234512, -0.0937059298157692, -0.032831449061632156, 0.11848894506692886, 0.000022307885956251994, -0.010887865908443928, -0.030349256470799446, 0.03223327547311783, 0.11713044345378876, 0.10537172108888626, 0.030684469267725945, 0.007344780024141073, -0.08383367210626602, -0.017464779317378998, -0.0292363204061985, -0.15268878638744354, 0.06318383663892746, 0.08177470415830612, -0.04459558054804802, -0.013176298700273037, -0.021470490843057632, 0.013774278573691845, -0.068308986723423, 0.08837021887302399, -0.04211626201868057, -0.0007619297248311341, -0.07231424748897552, -0.1017327681183815, 0.05895713344216347, -0.01934843510389328, -0.03537578508257866, -0.05112489312887192, -0.0704849362373352, -0.09154777228832245, 0.03961142525076866, -0.05598200485110283, -0.0457826666533947, -0.08213172107934952, -0.10095583647489548, 0.046848002821207047, -0.013336405158042908, 0.1451364904642105, -0.059028368443250656, 0.08443352580070496, 0.01875353418290615, 0.040967848151922226, 0.13671644032001495, 0.06693416088819504, -0.014445235021412373, 0.06147490069270134, -0.12047093361616135, 0.12220112979412079, -0.1404944360256195, 0.04826454073190689, -0.16097970306873322, -0.08045017719268799, 0.013948481529951096, -0.0008475296781398356, 0.09211350232362747, 0.148232102394104, -0.1896667629480362, -0.06767138838768005, 0.15701909363269806, -0.05467658489942551, -0.08639664202928543, 0.14069078862667084, 0.007295295596122742, -0.047856226563453674, 0.025542650371789932, 0.1567143052816391, 0.139495849609375, -0.10648949444293976, -0.03241991996765137, -0.06820392608642578, 0.07702242583036423, 0.06123879924416542, 0.1027650460600853, -0.07657156884670258, 0.031330399215221405, -0.005915681831538677, -0.057007718831300735, 0.0047063822858035564, -0.06341921538114548, -0.07806053012609482, -0.007500824052840471, -0.0392598882317543, -0.01877477765083313, 0.021672694012522697, -0.03931213170289993, -0.08950971066951752, -0.1258188635110855, -0.05226731300354004, 0.10493703931570053, -0.08586651086807251, 0.029520850628614426, -0.09608886390924454, 0.07598210871219635, 0.006190015003085136, 0.030581548810005188, -0.1428961604833603, -0.03458261117339134, 0.049414508044719696, -0.07180767506361008, -0.0014401815133169293, -0.0352923758327961, 0.030746841803193092, 0.015887342393398285, -0.002482715994119644, -0.050163786858320236, -0.03982856497168541, -0.011434521526098251, -0.04698684439063072, -0.21680545806884766, -0.06358243525028229, -0.02239883504807949, 0.19548803567886353, -0.18211862444877625, 0.01938360370695591, 0.10698229819536209, 0.10057148337364197, 0.0044569941237568855, -0.049313709139823914, 0.016449235379695892, 0.05241376906633377, -0.020822718739509583, -0.058043550699949265, 0.01098608411848545, -0.009019557386636734, -0.08571898937225342, -0.009880231693387032, -0.14157377183437347, 0.0027804789133369923, 0.08092731982469559, 0.040397271513938904, -0.05060029402375221, -0.03807852789759636, -0.06101485341787338, -0.04251348227262497, -0.05759148672223091, -0.055856265127658844, 0.09572383016347885, 0.048348743468523026, 0.07967792451381683, -0.06816711276769638, -0.0601959265768528, 0.028418486937880516, 0.006141502410173416, -0.018527209758758545, 0.157769113779068, 0.06448587775230408, -0.04378844425082207, 0.08192519098520279, 0.024524161592125893, -0.040621448308229446, 0.09629132598638535, -0.0649096891283989, -0.09333053976297379, -0.05240043252706528, 0.07291698455810547, 0.04296213388442993, 0.07213981449604034, -0.19351357221603394, -0.013064800761640072, 0.03944388031959534, 0.0352800227701664, 0.01871238835155964, -0.17023803293704987, 0.024862315505743027, 0.02449508011341095, -0.09217581152915955, -0.028662187978625298, 0.023665161803364754, -0.00007116390770534053, 0.07419929653406143, 0.0064421528950333595, -0.04945236071944237, -0.03686907887458801, -0.06886351108551025, -0.12888656556606293, 0.14892643690109253, -0.1028691977262497, -0.14669398963451385, -0.11317360401153564, -0.03587041795253754, -0.03809204325079918, -0.030989062041044235, 0.07149975746870041, -0.09846872091293335, -0.06534843146800995, -0.08022112399339676, -0.012190314941108227, -0.021255994215607643, 0.015356327407062054, 0.047121889889240265, 0.020240435376763344, 0.045272037386894226, -0.10933947563171387, -0.0108535410836339, -0.00371982017531991, -0.02272190898656845, -0.0016209396999329329, 0.04795489460229874, 0.09054625034332275, 0.15807951986789703, 0.06571561098098755, 0.06463569402694702, -0.016287654638290405, 0.21780619025230408, -0.12059319019317627, -0.005048835184425116, 0.10448199510574341, 0.007480723317712545, 0.06458143144845963, 0.15920786559581757, 0.02444886602461338, -0.08646336197853088, 0.021775726228952408, 0.05772239714860916, -0.008031479083001614, -0.2621605694293976, -0.033955663442611694, -0.08097570389509201, -0.01409087423235178, 0.07647491246461868, 0.04158225655555725, 0.014638804830610752, -0.003143277484923601, -0.02693040296435356, -0.02179892733693123, 0.05808131769299507, 0.06347918510437012, 0.08850441128015518, 0.03426259756088257, 0.08742155134677887, -0.02438449114561081, 0.0010468193795531988, 0.02004396729171276, -0.002810909179970622, 0.23477715253829956, 0.019378110766410828, 0.1974148154258728, 0.08097191900014877, 0.13006751239299774, -0.025248493999242783, 0.03658613562583923, -0.005020443815737963, 0.024139052256941795, 0.04111531749367714, -0.0702553242444992, -0.04726218804717064, 0.03805428370833397, 0.13272890448570251, -0.01046313438564539, -0.08148147165775299, 0.031151432543992996, 0.05367143452167511, 0.3172183036804199, 0.08522675931453705, -0.22513443231582642, -0.03954223170876503, 0.030291389673948288, -0.06649942696094513, -0.01698463410139084, 0.006597487721592188, 0.10167098790407181, -0.08214248716831207, 0.07033322006464005, -0.04157978668808937, 0.0928562730550766, -0.07425717264413834, 0.0015709513099864125, 0.06276760995388031, 0.10810280591249466, 0.01780865341424942, 0.0656711682677269, -0.2607796788215637, 0.21454380452632904, -0.0014679066371172667, 0.07750944048166275, -0.0720440074801445, 0.059014059603214264, 0.02636127360165119, -0.05799476057291031, 0.09924202412366867, 0.0017789943376556039, -0.10643654316663742, -0.1499384641647339, -0.10383681207895279, 0.003106988500803709, 0.13904111087322235, -0.06489338725805283, 0.13281042873859406, -0.041691869497299194, -0.060274139046669006, 0.009401465766131878, -0.010587993077933788, -0.13927893340587616, -0.09448752552270889, 0.08097171783447266, 0.025431152433156967, 0.07534123957157135, -0.07799766957759857, -0.07124211639165878, -0.062015000730752945, 0.14906135201454163, -0.1556006819009781, -0.02708418294787407, -0.12828519940376282, 0.044403400272130966, 0.1540723443031311, -0.06880935281515121, 0.020298369228839874, 0.012893165461719036, 0.1263405978679657, 0.03345726802945137, 0.0034912005066871643, 0.07943558692932129, -0.08484265953302383, -0.19631798565387726, -0.039766617119312286, 0.20122560858726501, 0.009991965256631374, 0.06283524632453918, -0.0069358679465949535, 0.008665908128023148, 0.006843362934887409, -0.09288003295660019, 0.08650419116020203, 0.07830871641635895, -0.0013814634876325727, 0.08230616897344589, -0.05382402986288071, -0.04318849369883537, -0.11643778532743454, -0.05641956999897957, 0.1183607205748558, 0.2525661587715149, -0.05715460702776909, 0.04291515797376633, 0.028036106377840042, -0.07038429379463196, -0.13982592523097992, -0.02335427701473236, 0.10638993978500366, 0.02588425576686859, -0.02027205377817154, -0.16902334988117218, -0.0026314177084714174, 0.07833243906497955, -0.012796892784535885, 0.10745593160390854, -0.3431907594203949, -0.13003034889698029, 0.05661401525139809, 0.055086590349674225, -0.03180495649576187, -0.17754264175891876, -0.09661474823951721, -0.029232386499643326, -0.08715134114027023, 0.05897074192762375, -0.018597256392240524, 0.12364116311073303, 0.0173557810485363, 0.011383069679141045, 0.023453401401638985, -0.05573587492108345, 0.14902140200138092, 0.061016593128442764, 0.010056738741695881, -0.016588885337114334, 0.01588296703994274, 0.02573580853641033, -0.0722271278500557, 0.04881584271788597, -0.0745045617222786, 0.014546768739819527, -0.14852546155452728, -0.018305398523807526, -0.07145076990127563, -0.0019468374084681273, -0.06506434828042984, 0.0023065987043082714, -0.022356266155838966, 0.0416003093123436, 0.11842487007379532, 0.012810993008315563, 0.07347823679447174, -0.052205536514520645, 0.07542065531015396, 0.13241223990917206, 0.10965365171432495, 0.014152517542243004, -0.12238802015781403, 0.0034373984672129154, 0.009994860738515854, 0.015119875781238079, -0.10508591681718826, 0.055844224989414215, 0.12699469923973083, 0.041392769664525986, 0.16530722379684448, 0.03693074733018875, -0.10730244964361191, -0.00836984347552061, 0.06672999262809753, -0.054998621344566345, -0.18257977068424225, -0.005039681680500507, 0.013813579455018044, -0.13309872150421143, -0.015094020403921604, 0.11705081164836884, -0.01247962936758995, 0.006029326934367418, 0.01802198961377144, 0.07517296075820923, -0.03225770220160484, 0.2247816026210785, 0.011440552771091461, 0.1161198616027832, -0.0897572934627533, 0.07803584635257721, 0.045352451503276825, -0.08792594075202942, 0.04322132095694542, 0.11811517179012299, -0.05552151799201965, -0.03589560464024544, -0.035722944885492325, 0.06478077173233032, 0.07661335915327072, -0.04876355454325676, -0.10246941447257996, -0.12987923622131348, 0.09759537875652313, 0.03194919228553772, 0.021512670442461967, 0.038597945123910904, -0.00124570622574538, 0.02076707035303116, -0.08915136009454727, 0.11541789770126343, 0.09619289636611938, 0.04219676926732063, -0.10381962358951569, 0.06423917412757874, 0.004677704069763422, 0.0077987671829760075, 0.01639642007648945, -0.01843404956161976, -0.10096097737550735, 0.03679228946566582, -0.0857514962553978, -0.011211608536541462, -0.07623744755983353, -0.012394817546010017, 0.03281193971633911, -0.06041457876563072, -0.053226400166749954, 0.029851097613573074, -0.10726810991764069, -0.0845322459936142, -0.04916048049926758, 0.09497324377298355, -0.12126199901103973, -0.006927268113940954, 0.03786772862076759, -0.1538427472114563, 0.10361631959676743, 0.04066373035311699, -0.0026313187554478645, 0.0004254514933563769, -0.0821591168642044, -0.02446109429001808, 0.0289579089730978, 0.024151315912604332, 0.03384535014629364, -0.2318524420261383, -0.00015331752365455031, -0.0161654781550169, 0.0033496893011033535, -0.0016525221290066838, 0.021978456526994705, -0.12273546308279037, -0.004495235159993172, -0.04919895529747009, -0.04845228046178818, -0.04596787318587303, 0.04254427179694176, 0.0829884260892868, 0.013942424207925797, 0.17169569432735443, -0.05093163996934891, 0.08469972759485245, -0.19795839488506317, 0.0010400095488876104, 0.0030187577940523624, -0.03323134034872055, -0.008074876852333546, -0.021433372050523758, 0.10639520734548569, -0.05964916944503784, 0.05228133127093315, -0.03990710526704788, 0.051110751926898956, 0.029125792905688286, -0.0683191791176796, 0.013249666430056095, 0.04361477866768837, 0.13626667857170105, 0.059267327189445496, -0.01709289848804474, 0.05639387294650078, -0.056443192064762115, 0.04963461682200432, 0.046383410692214966, 0.162531778216362, 0.15272323787212372, 0.12638312578201294, 0.07462156563997269, 0.08421018719673157, -0.14107853174209595, -0.1300603300333023, 0.16115127503871918, -0.08315525949001312, 0.14244423806667328, -0.044848743826150894, 0.1724959760904312, 0.10476161539554596, -0.19430094957351685, 0.08170773833990097, -0.027293231338262558, -0.08146364241838455, -0.09925247728824615, -0.1103590652346611, -0.07848185300827026, -0.1392667442560196, 0.013047424145042896, -0.09787576645612717, 0.08247143030166626, 0.026583299040794373, 0.044789157807826996, 0.036423709243535995, 0.07718682289123535, 0.014662106521427631, -0.014999808743596077, 0.11284272372722626, -0.011356860399246216, -0.02114225924015045, 0.00281250081025064, -0.07448923587799072, 0.0542621836066246, -0.022789767012000084, 0.10469892621040344, 0.01897648349404335, -0.08503115177154541, 0.05935186520218849, -0.010698551312088966, -0.10108023881912231, 0.028985723853111267, -0.027815764769911766, 0.02970709651708603, 0.11385449022054672, 0.05728960409760475, -0.016777079552412033, 0.007375587243586779, 0.16871538758277893, -0.07227195054292679, -0.07568361610174179, -0.13960787653923035, 0.12764334678649902, 0.02812172658741474, 0.01458886731415987, 0.016054626554250717, -0.09530660510063171, -0.030088093131780624, 0.17026151716709137, 0.11159203201532364, 0.0012474145041778684, -0.01868831366300583, 0.03548791632056236, -0.003575468435883522, -0.0282943956553936, 0.06709492206573486, 0.11467850208282471, 0.09891559928655624, -0.016351481899619102, 0.01337203849107027, -0.021944092586636543, -0.08309707790613174, -0.04313097894191742, 0.07795941829681396, 0.005854628514498472, -0.00968336034566164, -0.006798222661018372, 0.13187378644943237, -0.05291076749563217, -0.15739116072654724, 0.022306788712739944, -0.1393662691116333, -0.1774263083934784, -0.018901139497756958, 0.08604847639799118, 0.04156315699219704, 0.060427162796258926, 0.0018489948706701398, -0.047294292598962784, 0.15447469055652618, -0.007660249248147011, -0.03051901049911976, -0.09663227945566177, 0.055902350693941116, -0.08119722455739975, 0.1682800054550171, -0.0220944844186306, 0.06133463233709335, 0.1447814255952835, 0.031318988651037216, -0.11541078239679337, 0.049351099878549576, 0.09599405527114868, -0.13158604502677917, 0.0602627694606781, 0.18785981833934784, -0.036394719034433365, 0.12062587589025497, 0.05122370272874832, -0.07525861263275146, 0.006659861654043198, -0.017531316727399826, -0.002012707060202956, -0.08588900417089462, -0.0016449685208499432, -0.06878705322742462, 0.11113028973340988, 0.1895512491464615, -0.07428430020809174, 0.014177409000694752, -0.04389408975839615, 0.012696108780801296, -0.005607361905276775, 0.12581953406333923, -0.0473795011639595, -0.2679659426212311, 0.04808185622096062, -0.0011036962969228625, 0.03728329390287399, -0.17319442331790924, -0.08513985574245453, 0.04078676924109459, -0.04058181494474411, -0.07077351957559586, 0.11623349785804749, 0.06021178513765335, 0.03125835210084915, -0.048160966485738754, -0.20396146178245544, -0.007480072323232889, 0.19517748057842255, -0.16745519638061523, -0.05961376801133156 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. It achieves the following results on the evaluation set: - Loss: 0.6693 - Wer: 0.5921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 500.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 4.9504 | 18.18 | 400 | 4.6730 | 1.0 | | 3.3766 | 36.36 | 800 | 3.3464 | 1.0 | | 3.1128 | 54.55 | 1200 | 3.0177 | 0.9980 | | 1.7966 | 72.73 | 1600 | 0.8733 | 0.8039 | | 1.4085 | 90.91 | 2000 | 0.5555 | 0.6458 | | 1.1731 | 109.09 | 2400 | 0.4930 | 0.6438 | | 1.0271 | 127.27 | 2800 | 0.4780 | 0.6093 | | 0.9045 | 145.45 | 3200 | 0.4647 | 0.6578 | | 0.807 | 163.64 | 3600 | 0.4505 | 0.5925 | | 0.741 | 181.82 | 4000 | 0.4746 | 0.6025 | | 0.6706 | 200.0 | 4400 | 0.5004 | 0.5844 | | 0.6186 | 218.18 | 4800 | 0.4984 | 0.5997 | | 0.5508 | 236.36 | 5200 | 0.5298 | 0.5636 | | 0.5123 | 254.55 | 5600 | 0.5410 | 0.5110 | | 0.4623 | 272.73 | 6000 | 0.5591 | 0.5383 | | 0.4281 | 290.91 | 6400 | 0.5775 | 0.5600 | | 0.4045 | 309.09 | 6800 | 0.5924 | 0.5580 | | 0.3651 | 327.27 | 7200 | 0.5671 | 0.5684 | | 0.343 | 345.45 | 7600 | 0.6083 | 0.5945 | | 0.3085 | 363.64 | 8000 | 0.6243 | 0.5728 | | 0.2941 | 381.82 | 8400 | 0.6245 | 0.5580 | | 0.2735 | 400.0 | 8800 | 0.6458 | 0.5804 | | 0.262 | 418.18 | 9200 | 0.6566 | 0.5824 | | 0.2578 | 436.36 | 9600 | 0.6558 | 0.5965 | | 0.2388 | 454.55 | 10000 | 0.6598 | 0.5993 | | 0.2328 | 472.73 | 10400 | 0.6700 | 0.6041 | | 0.2286 | 490.91 | 10800 | 0.6684 | 0.5957 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["mr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
automatic-speech-recognition
anuragshas/wav2vec2-xls-r-300m-mr-cv8-with-lm
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "mr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "mr" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #mr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - MR dataset. It achieves the following results on the evaluation set: * Loss: 0.6693 * Wer: 0.5921 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 2000 * num\_epochs: 500.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.4.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 500.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #mr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 500.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ 79, 132, 4, 39 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #mr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 500.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ -0.1374078392982483, 0.10635945945978165, -0.0019521026406437159, 0.0285965483635664, 0.12841875851154327, 0.0039905160665512085, 0.132563516497612, 0.12138203531503677, -0.10641589015722275, 0.06969692558050156, 0.09619876742362976, 0.07843878865242004, 0.060520563274621964, 0.08692926168441772, -0.03461374714970589, -0.28180304169654846, 0.032457731664180756, 0.021529855206608772, -0.10286250710487366, 0.10708678513765335, 0.11792846024036407, -0.10285685211420059, 0.052158910781145096, 0.05362135171890259, -0.160005122423172, -0.005288897547870874, 0.012198120355606079, -0.09555735439062119, 0.10250097513198853, 0.05285231024026871, 0.0638347938656807, 0.013092027977108955, 0.07420288771390915, -0.20306923985481262, 0.011975443921983242, 0.0599934458732605, 0.047473255544900894, 0.08398228883743286, 0.07592979818582535, 0.019790727645158768, 0.08400598913431168, -0.0298011414706707, 0.05234043672680855, 0.0758572369813919, -0.08225447684526443, -0.3128928542137146, -0.10021181404590607, 0.04834394156932831, 0.10265492647886276, 0.0986623540520668, -0.014470580033957958, 0.09976406395435333, -0.010968451388180256, 0.08593288064002991, 0.2136974334716797, -0.22893235087394714, -0.07916762679815292, -0.06419909745454788, 0.07467735558748245, 0.024103285744786263, -0.096588134765625, 0.0015018690610304475, 0.039297521114349365, 0.0378381609916687, 0.08432476222515106, 0.007166651077568531, 0.00384057080373168, -0.014676198363304138, -0.12515310943126678, -0.05282540246844292, 0.22343961894512177, 0.07327276468276978, -0.0597100630402565, -0.07268965989351273, -0.046297840774059296, -0.14728158712387085, -0.04093305766582489, 0.008999625220894814, 0.017745153978466988, -0.047412190586328506, -0.11142446100711823, -0.03740575909614563, -0.0685930848121643, -0.11117734014987946, 0.009031863883137703, 0.25837671756744385, 0.027426516637206078, -0.010356694459915161, -0.027008339762687683, 0.07800160348415375, 0.05663801357150078, -0.1671724021434784, -0.03682975098490715, 0.04183993488550186, -0.02123948000371456, -0.0033676079474389553, -0.061575617641210556, -0.03655771166086197, 0.02696939744055271, 0.15558376908302307, -0.020761482417583466, 0.061498552560806274, -0.011870546266436577, 0.014530329965054989, -0.10196919739246368, 0.20667175948619843, -0.05335956811904907, -0.03213707357645035, 0.020943310111761093, 0.09448257833719254, 0.051519691944122314, -0.022589877247810364, -0.09610144793987274, 0.017930738627910614, 0.11041678488254547, 0.0436495803296566, 0.00779005978256464, 0.02305668033659458, -0.03958277776837349, -0.03368692100048065, 0.03479835391044617, -0.10206576436758041, 0.013467369601130486, 0.020454728975892067, -0.07813680917024612, 0.011883703991770744, -0.0005032587214373052, 0.027666624635457993, -0.017560888081789017, 0.07039741426706314, -0.08170519024133682, -0.020649785175919533, -0.08453010767698288, -0.10371211171150208, 0.039809223264455795, 0.010176155716180801, 0.008836223743855953, -0.10738715529441833, -0.12159761786460876, -0.020001458004117012, 0.0214113537222147, -0.021074173972010612, -0.07425060123205185, -0.04108273610472679, -0.10758813470602036, 0.05759759619832039, -0.026249725371599197, 0.12566855549812317, -0.0485253669321537, 0.10131949186325073, 0.09574855864048004, 0.027592912316322327, -0.016784384846687317, 0.05535194277763367, -0.03652443364262581, 0.03902947157621384, -0.13259483873844147, 0.058154717087745667, -0.0922047346830368, 0.05114838108420372, -0.11195828020572662, -0.11376442760229111, 0.029155582189559937, -0.011349678970873356, 0.09991607069969177, 0.11014019697904587, -0.11015456914901733, -0.1054079681634903, 0.10375633090734482, -0.08036722242832184, -0.14651253819465637, 0.12255000323057175, 0.015106980688869953, -0.03774314746260643, 0.05297103524208069, 0.14492473006248474, 0.12099569290876389, -0.11375364661216736, -0.022818440571427345, -0.04611954092979431, 0.13643191754817963, -0.01582639105618, 0.12346531450748444, -0.028453638777136803, -0.009980454109609127, 0.020005691796541214, -0.06359663605690002, 0.07069635391235352, -0.091573566198349, -0.07416162639856339, -0.04068610817193985, -0.09860889613628387, 0.012434791773557663, 0.04133731126785278, 0.03142380714416504, -0.09889952093362808, -0.11594777554273605, 0.06145012006163597, 0.13717253506183624, -0.0889219269156456, 0.02919754572212696, -0.1106688380241394, 0.08360610902309418, -0.06361737847328186, -0.012099146842956543, -0.15782777965068817, -0.0327296108007431, 0.033967651426792145, -0.05316495895385742, 0.014683635905385017, -0.09059474617242813, 0.05978511646389961, 0.06732731312513351, -0.04915124177932739, -0.07098227739334106, -0.09749963879585266, -0.00531968055292964, -0.04399346187710762, -0.18980750441551208, -0.09900473803281784, -0.01599450595676899, 0.16438111662864685, -0.13262812793254852, 0.0157588142901659, 0.036869265139102936, 0.13929109275341034, 0.028963087126612663, -0.04174196720123291, -0.00480475090444088, 0.06792233884334564, -0.038097623735666275, -0.059535447508096695, 0.01317017525434494, 0.03676951304078102, -0.11067545413970947, 0.013010688126087189, -0.13337039947509766, 0.14264114201068878, 0.12548348307609558, -0.028781075030565262, -0.01740546151995659, 0.02509978786110878, -0.06071784719824791, -0.041902583092451096, -0.017740698531270027, -0.04990650713443756, 0.10954299569129944, 0.014460373669862747, 0.13249868154525757, -0.09187081456184387, -0.03785533085465431, 0.04438517987728119, 0.005067803896963596, -0.03199554234743118, 0.07982565462589264, 0.039619263261556625, -0.03088853694498539, 0.10547612607479095, 0.06789594888687134, -0.09782356023788452, 0.15586940944194794, -0.07415106892585754, -0.0727810189127922, -0.03829609602689743, -0.019698243588209152, 0.03421896696090698, 0.12477108836174011, -0.1581445187330246, -0.023093249648809433, 0.03145575523376465, 0.008568057790398598, 0.022376451641321182, -0.19736142456531525, 0.011588575318455696, 0.03002483770251274, -0.06846597790718079, -0.05751464515924454, 0.023738591000437737, -0.02536955662071705, 0.07490906119346619, 0.022260122001171112, -0.047053005546331406, 0.007177104242146015, -0.01569000817835331, -0.07920287549495697, 0.1673690378665924, -0.12212757766246796, -0.14950692653656006, -0.19072279334068298, -0.03313637524843216, -0.0940871387720108, 0.013451557606458664, 0.0496918149292469, -0.09178555756807327, -0.041905809193849564, -0.03865601494908333, 0.05326852202415466, -0.06361017376184464, 0.03446223586797714, 0.04712600260972977, -0.00306497048586607, 0.08181305229663849, -0.11941257119178772, 0.012892399914562702, 0.00689241848886013, -0.011960992589592934, -0.038951992988586426, 0.029431961476802826, 0.12090481072664261, 0.14109797775745392, 0.04030592367053032, 0.02773931249976158, -0.023288315162062645, 0.22186577320098877, -0.11785109341144562, -0.03646469861268997, 0.18415555357933044, 0.021988095715641975, 0.027009736746549606, 0.08610687404870987, 0.05332859605550766, -0.0795694887638092, 0.012368299067020416, 0.004839551169425249, -0.01878073252737522, -0.22713541984558105, -0.038387641310691833, -0.07416077703237534, -0.031140051782131195, 0.06558627635240555, 0.027293726801872253, 0.055593010038137436, 0.039267417043447495, -0.04629585146903992, 0.04262063652276993, -0.00017710775136947632, 0.09382087737321854, 0.16065528988838196, 0.05232934281229973, 0.12129984050989151, -0.023979097604751587, -0.016850536689162254, 0.027892474085092545, -0.00847607757896185, 0.1818619668483734, 0.03060176409780979, 0.2038903832435608, 0.035658009350299835, 0.1385471373796463, 0.007575454190373421, 0.07101678848266602, 0.038327571004629135, 0.003302318509668112, 0.027843719348311424, -0.06399600207805634, -0.06011063605546951, 0.018501564860343933, 0.053985126316547394, 0.08011631667613983, -0.11873994022607803, -0.010933002457022667, 0.006305191665887833, 0.365062952041626, 0.044860467314720154, -0.3267408311367035, -0.1401442289352417, 0.011657803319394588, -0.06567636132240295, -0.05661609768867493, 0.028025345876812935, 0.09421537816524506, -0.07154473662376404, 0.08308722078800201, -0.05471965670585632, 0.09623212367296219, -0.041421785950660706, 0.014390604570508003, 0.07285550981760025, 0.11804406344890594, 0.013577943667769432, 0.05458715558052063, -0.2573055624961853, 0.2490013986825943, 0.012361306697130203, 0.11143679171800613, -0.03959351405501366, 0.04038676619529724, 0.034509483724832535, 0.02172243222594261, 0.02840248867869377, -0.015522205270826817, -0.06942916661500931, -0.1599467694759369, -0.060954634100198746, 0.023003332316875458, 0.12561582028865814, -0.04595169052481651, 0.11822736263275146, -0.0559251643717289, -0.03041674755513668, 0.05940253660082817, -0.05404095724225044, -0.12832577526569366, -0.0743756964802742, 0.0473247729241848, 0.08985735476016998, 0.10533754527568817, -0.1045038029551506, -0.10336292535066605, -0.021836090832948685, 0.1008857861161232, -0.10985355079174042, -0.03386209160089493, -0.1267385482788086, 0.04163143038749695, 0.14882951974868774, -0.0665111169219017, 0.05179956927895546, -0.0029171970672905445, 0.18304350972175598, 0.031212102621793747, -0.03160056099295616, 0.07880990952253342, -0.09883623570203781, -0.22133539617061615, -0.02799869142472744, 0.17602041363716125, -0.009253987111151218, 0.05862575024366379, -0.009133515879511833, 0.03799271211028099, -0.03992224857211113, -0.07078490406274796, 0.04157208278775215, 0.016648566350340843, 0.005829975008964539, 0.03306523710489273, 0.0025356959085911512, 0.021989144384860992, -0.07545002549886703, -0.0531829334795475, 0.11200685799121857, 0.2506886422634125, -0.05496538430452347, -0.02752469666302204, 0.06634368002414703, -0.044100306928157806, -0.13893604278564453, 0.0016485612140968442, 0.10628888756036758, 0.026427417993545532, -0.05933848023414612, -0.20719096064567566, 0.038013000041246414, 0.058503031730651855, -0.04673299565911293, 0.10140705853700638, -0.26625970005989075, -0.1488686501979828, 0.09463487565517426, 0.09182922542095184, 0.02896372228860855, -0.15614841878414154, -0.07800526171922684, -0.07868087291717529, -0.12643977999687195, 0.08932171016931534, -0.04524274170398712, 0.11874101310968399, 0.003610949032008648, 0.07579763978719711, 0.007466702722012997, -0.042352113872766495, 0.16861358284950256, -0.01199780311435461, 0.02925441414117813, -0.0050536757335066795, 0.045742712914943695, 0.07026010006666183, -0.04622872918844223, 0.020859260112047195, -0.05140898376703262, 0.04464289918541908, -0.11031400412321091, -0.030156554654240608, -0.09484533965587616, 0.03213983029127121, -0.026792360469698906, -0.02464972995221615, -0.015269177965819836, 0.010999870486557484, 0.024701260030269623, -0.002303801942616701, 0.18897296488285065, -0.02202635258436203, 0.16704191267490387, 0.12939484417438507, 0.1219918429851532, -0.048100247979164124, -0.06770507991313934, -0.002442800672724843, -0.0416230782866478, 0.07902422547340393, -0.11144684255123138, 0.026935353875160217, 0.10108565539121628, 0.06080593913793564, 0.11693728715181351, 0.06514190882444382, -0.08639447391033173, 0.03595990315079689, 0.06762652099132538, -0.10872960090637207, -0.14770913124084473, -0.06326956301927567, 0.05946989730000496, -0.13221102952957153, 0.05173289775848389, 0.1347375512123108, -0.07268063724040985, -0.004633292555809021, 0.014147192239761353, 0.002387113170698285, -0.054304979741573334, 0.22002418339252472, 0.06917150318622589, 0.08220964670181274, -0.10747802257537842, 0.09315326809883118, 0.03121342323720455, -0.09851735830307007, 0.018632806837558746, 0.05804150179028511, -0.05155766382813454, -0.015972401946783066, -0.04138481244444847, 0.05024176463484764, -0.05074261873960495, -0.0906432643532753, -0.1599389910697937, -0.14477597177028656, 0.07883882522583008, 0.12739214301109314, 0.03793839365243912, 0.025174930691719055, -0.04402445629239082, 0.059196583926677704, -0.11680293083190918, 0.09491229057312012, 0.05266037583351135, 0.08392274379730225, -0.16491027176380157, 0.12284685671329498, 0.013102952390909195, 0.03586433827877045, -0.0062032425776124, -0.009943423792719841, -0.07390999048948288, 0.028882306069135666, -0.16884055733680725, -0.03315211087465286, -0.03443385660648346, 0.001720466068945825, 0.002970050787553191, -0.08262521028518677, -0.0943712368607521, 0.05291485786437988, -0.11207480728626251, -0.055801764130592346, 0.0010938576888293028, 0.03743194788694382, -0.1114102452993393, 0.006724537815898657, 0.053574420511722565, -0.13384193181991577, 0.07761941850185394, 0.0771164745092392, 0.01940322294831276, 0.05704449862241745, -0.025368621572852135, -0.025516770780086517, 0.0376666896045208, 0.016287632286548615, 0.030394800007343292, -0.15433113276958466, -0.00720871752128005, 0.009373115375638008, 0.048706695437431335, -0.016046596691012383, 0.07904775440692902, -0.11151369661092758, -0.04594668373465538, 0.0002965392777696252, -0.01950896345078945, -0.06301222741603851, 0.04014421999454498, 0.11002722382545471, 0.038224752992391586, 0.17050446569919586, -0.06804956495761871, 0.010893546976149082, -0.20467087626457214, 0.03396041318774223, -0.041153162717819214, -0.12568803131580353, -0.09452248364686966, -0.009397026151418686, 0.08406782895326614, -0.047783009707927704, 0.0625406950712204, -0.06917137652635574, 0.12514503300189972, 0.05123074725270271, -0.020942717790603638, 0.0031001640018075705, 0.04326944798231125, 0.2363070249557495, 0.06230638548731804, -0.006264698691666126, 0.0974469780921936, -0.0018677444895729423, 0.0842076987028122, 0.11630311608314514, 0.11415031552314758, 0.11859948188066483, 0.03911333903670311, 0.12470690906047821, 0.10638934373855591, -0.06602159142494202, -0.16024793684482574, 0.03209976479411125, -0.020443718880414963, 0.14566290378570557, -0.0009706660639494658, 0.19018036127090454, 0.12198138236999512, -0.1560467928647995, 0.03646819293498993, -0.036813560873270035, -0.05865022912621498, -0.10695961117744446, -0.025337660685181618, -0.07757073640823364, -0.18546774983406067, 0.012226752936840057, -0.1259460747241974, 0.0438610278069973, 0.05043075978755951, 0.01774834468960762, 0.009692582301795483, 0.1314122974872589, 0.03747842460870743, -0.025994649156928062, 0.1034729927778244, -0.01506231352686882, -0.042700715363025665, -0.04479613155126572, -0.12530893087387085, 0.062334828078746796, -0.015311755239963531, 0.06823082268238068, -0.026095787063241005, -0.1285925805568695, 0.06131909787654877, 0.009317848831415176, -0.12453026324510574, 0.03292761743068695, 0.008457259275019169, 0.07090214639902115, 0.06981637328863144, 0.006961405277252197, 0.00174599455203861, 0.010280783288180828, 0.23770494759082794, -0.11538925021886826, -0.05574250593781471, -0.134104385972023, 0.19254164397716522, 0.0016025813529267907, -0.02007421851158142, 0.030100733041763306, -0.07830290496349335, -0.05660254508256912, 0.1688218116760254, 0.11315694451332092, -0.009138093329966068, -0.03772657364606857, 0.007287457585334778, -0.015968890860676765, -0.07452119141817093, 0.08924766629934311, 0.11827065050601959, 0.03812924772500992, -0.029749542474746704, -0.015085671097040176, -0.048815611749887466, -0.04143870994448662, -0.008382000029087067, 0.08387937396764755, -0.025657257065176964, -0.043854497373104095, -0.014200765639543533, 0.09748215973377228, -0.05718688666820526, -0.13233017921447754, -0.000705945654772222, -0.15846088528633118, -0.16644640266895294, -0.03166554123163223, 0.06627737730741501, 0.0346902534365654, 0.05775948986411095, 0.0017162497388198972, -0.005621765740215778, 0.12806567549705505, -0.003574459347873926, -0.04667269438505173, -0.13790756464004517, 0.11419017612934113, -0.09660355746746063, 0.19227741658687592, -0.04963860660791397, 0.05270991101861, 0.11965072900056839, 0.05590265989303589, -0.10580642521381378, 0.04881083220243454, 0.07889648526906967, -0.15176907181739807, 0.048246219754219055, 0.2014714628458023, -0.039029914885759354, 0.15206746757030487, 0.005622704513370991, -0.12342319637537003, -0.008315456099808216, -0.04452240467071533, -0.03777681291103363, -0.057428404688835144, -0.028004519641399384, -0.07008805125951767, 0.12378256022930145, 0.1686963587999344, -0.08169179409742355, -0.041002873331308365, -0.048472702503204346, 0.033443063497543335, 0.07535579800605774, 0.08219971507787704, -0.03204331919550896, -0.30682340264320374, -0.014780952595174313, 0.005271106958389282, -0.008084312081336975, -0.250659316778183, -0.06742215156555176, 0.02674231491982937, -0.05911828577518463, -0.03397563472390175, 0.07878153026103973, 0.06449443846940994, 0.013010498136281967, -0.06335625052452087, -0.0698302686214447, -0.04893628507852554, 0.17608626186847687, -0.18431387841701508, -0.07321549952030182 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Maltese This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset. It achieves the following results on the evaluation set: - Loss: 0.1895 - Wer: 0.1984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4219 | 3.6 | 400 | 3.3127 | 1.0 | | 3.0399 | 7.21 | 800 | 3.0330 | 1.0 | | 1.5756 | 10.81 | 1200 | 0.6108 | 0.5724 | | 1.0995 | 14.41 | 1600 | 0.3091 | 0.3154 | | 0.9639 | 18.02 | 2000 | 0.2596 | 0.2841 | | 0.9032 | 21.62 | 2400 | 0.2270 | 0.2514 | | 0.8145 | 25.23 | 2800 | 0.2172 | 0.2483 | | 0.7845 | 28.83 | 3200 | 0.2084 | 0.2333 | | 0.7694 | 32.43 | 3600 | 0.1974 | 0.2234 | | 0.7333 | 36.04 | 4000 | 0.2020 | 0.2185 | | 0.693 | 39.64 | 4400 | 0.1947 | 0.2148 | | 0.6802 | 43.24 | 4800 | 0.1960 | 0.2102 | | 0.667 | 46.85 | 5200 | 0.1904 | 0.2072 | | 0.6486 | 50.45 | 5600 | 0.1881 | 0.2009 | | 0.6339 | 54.05 | 6000 | 0.1877 | 0.1989 | | 0.6254 | 57.66 | 6400 | 0.1893 | 0.2003 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config mt --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "mt", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "għadu jilagħbu ċirku tant bilfondi" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 19.853 | 15.967 |
{"language": ["mt"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "XLS-R-300M - Maltese", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "mt"}, "metrics": [{"type": "wer", "value": 15.967, "name": "Test WER"}, {"type": "cer", "value": 3.657, "name": "Test CER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "mt", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "mt" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #mt #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
XLS-R-300M - Maltese ==================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - MT dataset. It achieves the following results on the evaluation set: * Loss: 0.1895 * Wer: 0.1984 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 60.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 60.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #mt #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 60.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ 112, 132, 4, 39, 36, 8, 15 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #mt #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 60.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'### Inference With LM### Eval results on Common Voice 8 \"test\" (WER):" ]
[ -0.11140481382608414, 0.15088018774986267, -0.005492306314408779, 0.005817790050059557, 0.11444887518882751, 0.0268270131200552, 0.10468676686286926, 0.16268710792064667, -0.03993390500545502, 0.14059849083423615, 0.057842206209897995, 0.09728330373764038, 0.08932921290397644, 0.09629189968109131, -0.025106102228164673, -0.21539297699928284, 0.04015640541911125, -0.07608690112829208, -0.07120906561613083, 0.10687907785177231, 0.08945783972740173, -0.07931998372077942, 0.0271969772875309, 0.00022622969117946923, -0.05981539189815521, -0.009023871272802353, -0.03927797079086304, -0.04743518680334091, 0.061275746673345566, 0.022115493193268776, 0.014486763626337051, 0.024416647851467133, 0.045202527195215225, -0.29961442947387695, -0.0007118710782378912, 0.0812050849199295, 0.035883188247680664, 0.04000787064433098, 0.10713709890842438, -0.01680816523730755, 0.10069181025028229, -0.08538556098937988, 0.029363613575696945, 0.08251479268074036, -0.07448174059391022, -0.21020913124084473, -0.11510570347309113, 0.024578023701906204, 0.14108194410800934, 0.08750210702419281, -0.052418436855077744, 0.04958343133330345, -0.09519820660352707, 0.08968134224414825, 0.20289212465286255, -0.2003454715013504, -0.046888720244169235, -0.0038886945694684982, 0.03233608230948448, 0.036705225706100464, -0.08664771169424057, -0.011180282570421696, 0.022752005606889725, -0.0044044870883226395, 0.02666579745709896, 0.0042321034707129, 0.04251345619559288, -0.007724987342953682, -0.14743340015411377, -0.07440491765737534, 0.1617491990327835, 0.07718785107135773, -0.037020351737737656, -0.11165598034858704, -0.005633344408124685, -0.17305892705917358, -0.031261418014764786, 0.017759134992957115, 0.011122962459921837, -0.02121773175895214, -0.025143010541796684, 0.04362872987985611, -0.046253617852926254, -0.07386207580566406, 0.06513410061597824, 0.11478560417890549, 0.047136809676885605, -0.047274164855480194, 0.0042315078899264336, 0.08109884709119797, 0.016831200569868088, -0.16110672056674957, -0.0519627146422863, 0.038093451410532, -0.12873685359954834, -0.008018005639314651, -0.02524104155600071, 0.009758289903402328, 0.10294728726148605, 0.17626060545444489, 0.031004514545202255, 0.10239267349243164, -0.00042118760757148266, 0.008013085462152958, -0.0419514998793602, 0.16148759424686432, -0.03946077823638916, -0.10710613429546356, -0.03634294122457504, 0.1198238953948021, -0.0034907290246337652, -0.010542025789618492, -0.026366310194134712, 0.034784846007823944, 0.11566207557916641, 0.09926997870206833, 0.02748449705541134, 0.005523372441530228, -0.07973459362983704, -0.018105898052453995, -0.021442966535687447, -0.1519620567560196, 0.06156044825911522, 0.07924707978963852, -0.052832912653684616, -0.0015491839731112123, -0.02796018496155739, 0.013333331793546677, -0.05960948392748833, 0.08958669006824493, -0.048614077270030975, -0.006725444924086332, -0.07829505205154419, -0.09773537516593933, 0.06638935208320618, -0.021789425984025, -0.028047336265444756, -0.04604726657271385, -0.06937551498413086, -0.09893845021724701, 0.029033752158284187, -0.05198053643107414, -0.05460681766271591, -0.08166830986738205, -0.10352682322263718, 0.047371361404657364, -0.015161843970417976, 0.14455826580524445, -0.061796724796295166, 0.0836581364274025, 0.024136807769536972, 0.03617590665817261, 0.13621076941490173, 0.07244966179132462, -0.018061567097902298, 0.06085054203867912, -0.12059634923934937, 0.12046527117490768, -0.14450758695602417, 0.05344449356198311, -0.15600037574768066, -0.08513811975717545, -0.005212522577494383, -0.006582863628864288, 0.09591059386730194, 0.1504056304693222, -0.18157905340194702, -0.07698922604322433, 0.15364645421504974, -0.05505870655179024, -0.08586610853672028, 0.14081627130508423, 0.011515497229993343, -0.05181027948856354, 0.028013383969664574, 0.1686936318874359, 0.1375257968902588, -0.09924126416444778, -0.03365033119916916, -0.07205234467983246, 0.08097482472658157, 0.05973151698708534, 0.10872837901115417, -0.08372187614440918, 0.021076971665024757, -0.0055707222782075405, -0.04844408482313156, 0.014289012178778648, -0.06986928731203079, -0.07583031803369522, -0.007739703170955181, -0.04584015905857086, -0.02502426505088806, 0.02804933860898018, -0.039762407541275024, -0.10393636673688889, -0.12238448113203049, -0.0422709584236145, 0.1119188517332077, -0.08768488466739655, 0.019740933552384377, -0.09298522770404816, 0.06408374756574631, -0.0010087772971019149, 0.02392912469804287, -0.14108212292194366, -0.03285881504416466, 0.05322008207440376, -0.08047997951507568, -0.000955620314925909, -0.047349732369184494, 0.03225065395236015, 0.01220018696039915, 0.001979000400751829, -0.0468762032687664, -0.04590963199734688, -0.010214662179350853, -0.04716567322611809, -0.21904373168945312, -0.06467235088348389, -0.024327388033270836, 0.2063726782798767, -0.17892394959926605, 0.01633499190211296, 0.10327215492725372, 0.0905270129442215, -0.0006793091306462884, -0.0611121766269207, 0.025399839505553246, 0.056727442890405655, -0.01952923834323883, -0.06452508270740509, 0.0022521757055073977, -0.0014417655766010284, -0.09128279983997345, -0.008928588591516018, -0.14828090369701385, 0.0110542681068182, 0.08300243318080902, 0.04710732027888298, -0.049126140773296356, -0.02001781389117241, -0.060661301016807556, -0.05174684897065163, -0.05997515469789505, -0.05136727914214134, 0.09773989021778107, 0.04319708049297333, 0.07572417706251144, -0.07121862471103668, -0.057782337069511414, 0.02894418314099312, 0.011546292342245579, -0.016525378450751305, 0.15694069862365723, 0.06939847022294998, -0.04884583130478859, 0.08962737768888474, 0.027241777628660202, -0.04487604275345802, 0.11360540986061096, -0.06758089363574982, -0.09915641695261002, -0.043134208768606186, 0.06355199962854385, 0.036477379500865936, 0.07289061695337296, -0.20882411301136017, -0.014260774478316307, 0.03455767780542374, 0.040496181696653366, 0.030220771208405495, -0.1725790798664093, 0.022851819172501564, 0.025898117572069168, -0.09370916336774826, -0.0462542399764061, 0.020327625796198845, -0.00533160800114274, 0.06994877010583878, 0.0064466861076653, -0.0461762435734272, -0.03900780528783798, -0.06418296694755554, -0.13487155735492706, 0.14981360733509064, -0.10114672780036926, -0.14204896986484528, -0.11777859181165695, -0.015789039433002472, -0.036901332437992096, -0.031123636290431023, 0.07017219066619873, -0.10552071034908295, -0.061783310025930405, -0.07631466537714005, -0.020094873383641243, -0.030098536983132362, 0.010897479020059109, 0.05622478947043419, 0.013103648088872433, 0.05400354042649269, -0.1147531047463417, -0.007466660812497139, -0.0019244947470724583, -0.021814435720443726, -0.007894274778664112, 0.03420845791697502, 0.09734980762004852, 0.16938768327236176, 0.0636766254901886, 0.06217914819717407, -0.01195567473769188, 0.21864911913871765, -0.12921155989170074, -0.012918191030621529, 0.0999268889427185, 0.009074652567505836, 0.060031671077013016, 0.14593638479709625, 0.02382637932896614, -0.08574643731117249, 0.026142820715904236, 0.05834748595952988, -0.012838369235396385, -0.27235502004623413, -0.03342109173536301, -0.08186142146587372, -0.021764853969216347, 0.06791152060031891, 0.044517483562231064, 0.02128966711461544, 0.0024211483541876078, -0.027990242466330528, -0.036633316427469254, 0.051849767565727234, 0.05962030589580536, 0.07492367923259735, 0.03999967500567436, 0.08746429532766342, -0.028087828308343887, 0.0014714800054207444, 0.018812574446201324, -0.009525435045361519, 0.22875669598579407, 0.0368259958922863, 0.1967921108007431, 0.07619643211364746, 0.1389254480600357, -0.021232381463050842, 0.034126438200473785, 0.008696884848177433, 0.02205183357000351, 0.03994593024253845, -0.06990594416856766, -0.049523092806339264, 0.03289075568318367, 0.1322944015264511, -0.0032117159571498632, -0.08628159016370773, 0.03569180518388748, 0.050229646265506744, 0.31766462326049805, 0.08385089039802551, -0.2388414591550827, -0.04547802731394768, 0.0199990663677454, -0.0754709243774414, -0.013826326467096806, 0.013857622630894184, 0.10966756194829941, -0.0884479433298111, 0.07897510379552841, -0.03838604688644409, 0.10119730234146118, -0.06141297519207001, 0.001621035858988762, 0.07186222821474075, 0.10936353355646133, 0.014346172101795673, 0.06829971820116043, -0.24989847838878632, 0.2169586420059204, -0.004740098956972361, 0.08450040221214294, -0.06820689141750336, 0.05567804351449013, 0.03813289850950241, -0.06289985775947571, 0.08405814319849014, 0.005245990119874477, -0.11070403456687927, -0.13893790543079376, -0.10972785204648972, 0.006717415060847998, 0.139048233628273, -0.059340886771678925, 0.12875288724899292, -0.039879050105810165, -0.05601193383336067, 0.014314808882772923, -0.013485128059983253, -0.14340724050998688, -0.0831136703491211, 0.07410003989934921, 0.038247041404247284, 0.08086352050304413, -0.07509128749370575, -0.0778864249587059, -0.07315270602703094, 0.1491919904947281, -0.1451890468597412, -0.02486347407102585, -0.1268608719110489, 0.039395321160554886, 0.1634335219860077, -0.06624989211559296, 0.02139985002577305, 0.017379026859998703, 0.12861847877502441, 0.04005659371614456, 0.004295865073800087, 0.08048581331968307, -0.087620809674263, -0.19739174842834473, -0.037884876132011414, 0.20015451312065125, 0.013898602686822414, 0.06560704112052917, -0.012389189563691616, 0.008889790624380112, 0.00455221813172102, -0.09245447814464569, 0.08625564724206924, 0.07972496747970581, -0.011087290942668915, 0.0878162607550621, -0.03642670810222626, -0.027871133759617805, -0.1223563477396965, -0.0630408525466919, 0.11365782469511032, 0.24541538953781128, -0.050409168004989624, 0.03087189793586731, 0.03024688921868801, -0.07030756771564484, -0.13585945963859558, -0.006569866556674242, 0.11292161047458649, 0.030550358816981316, -0.023662490770220757, -0.1746913641691208, 0.0009808916365727782, 0.09125164151191711, -0.018115274608135223, 0.10430720448493958, -0.3441424071788788, -0.12930269539356232, 0.05056008696556091, 0.042548153549432755, -0.0278435368090868, -0.17782865464687347, -0.09477496147155762, -0.025332210585474968, -0.0926356241106987, 0.03797256574034691, -0.010328901931643486, 0.125417098402977, 0.025038637220859528, 0.02168797142803669, 0.021137569099664688, -0.05821581557393074, 0.14978653192520142, 0.06666652113199234, 0.00761050172150135, -0.011821994557976723, 0.021207790821790695, 0.01733788102865219, -0.06619139015674591, 0.04925459995865822, -0.0722821056842804, 0.015938322991132736, -0.14478471875190735, -0.017345435917377472, -0.07368368655443192, -0.0005257194861769676, -0.05674326419830322, 0.011364322155714035, -0.021022796630859375, 0.03643117845058441, 0.11056302487850189, 0.017511950805783272, 0.07314345985651016, -0.05192239582538605, 0.08199214190244675, 0.11828571557998657, 0.11420028656721115, 0.010807931423187256, -0.12835422158241272, 0.004454882349818945, 0.010317507199943066, 0.023156551644206047, -0.09866666793823242, 0.053378716111183167, 0.12591499090194702, 0.048538703471422195, 0.16094709932804108, 0.03700048103928566, -0.11002574861049652, -0.005195626523345709, 0.06672796607017517, -0.054364364594221115, -0.17483052611351013, -0.010037689469754696, 0.010390111245214939, -0.13238345086574554, -0.011128092184662819, 0.10583283007144928, -0.01608595997095108, 0.006056283134967089, 0.011310422793030739, 0.07209612429141998, -0.0393822081387043, 0.23569947481155396, 0.015108645893633366, 0.11255912482738495, -0.09598832577466965, 0.08744461089372635, 0.043216221034526825, -0.09961491078138351, 0.052307598292827606, 0.11182785034179688, -0.05116865038871765, -0.02425849810242653, -0.02855890803039074, 0.06478552520275116, 0.07662289589643478, -0.059533145278692245, -0.10252460092306137, -0.12593135237693787, 0.09685377776622772, 0.03557800501585007, 0.02439643256366253, 0.041724007576704025, 0.0018662314396351576, 0.024113522842526436, -0.09794506430625916, 0.10689172148704529, 0.1056620329618454, 0.0453127957880497, -0.1163736879825592, 0.06211400032043457, 0.007035901304334402, -0.0007680854178033769, 0.01493143942207098, -0.02170577645301819, -0.09829892963171005, 0.035198189318180084, -0.07301638275384903, -0.01115954015403986, -0.08306308090686798, -0.01422171201556921, 0.034061580896377563, -0.06404468417167664, -0.06342138350009918, 0.03262358158826828, -0.11165159940719604, -0.08545897901058197, -0.04728447273373604, 0.09598828852176666, -0.11349675059318542, 0.005336688365787268, 0.04482654482126236, -0.15146327018737793, 0.09627661108970642, 0.055531445890665054, -0.0017569948686286807, -0.005451646167784929, -0.07921446114778519, -0.03271477669477463, 0.034391336143016815, 0.021737074479460716, 0.025784015655517578, -0.23205924034118652, 0.0028980302158743143, -0.010693546384572983, 0.012473690323531628, -0.005766689777374268, 0.016358494758605957, -0.12656746804714203, -0.013757536187767982, -0.047024499624967575, -0.052513573318719864, -0.04400916025042534, 0.03564664348959923, 0.09115377813577652, 0.010217760689556599, 0.17294828593730927, -0.054998546838760376, 0.07795330882072449, -0.20212239027023315, 0.0019630773458629847, -0.0013255761004984379, -0.03617189824581146, -0.02339160442352295, -0.009237729012966156, 0.10927131026983261, -0.05582752078771591, 0.057686448097229004, -0.040516555309295654, 0.04148152843117714, 0.026622695848345757, -0.07370463013648987, 0.022051973268389702, 0.04124879091978073, 0.15467065572738647, 0.06005113944411278, -0.022206831723451614, 0.060836173593997955, -0.055028628557920456, 0.05096713826060295, 0.04151691123843193, 0.16220496594905853, 0.1588181108236313, 0.11671381443738937, 0.08348134905099869, 0.08792752772569656, -0.1387200504541397, -0.12699384987354279, 0.14789824187755585, -0.08211401849985123, 0.1448119729757309, -0.03226142376661301, 0.1677766740322113, 0.1063687726855278, -0.1910133808851242, 0.08084079623222351, -0.03633710741996765, -0.0786510482430458, -0.1058942973613739, -0.09880632907152176, -0.0824991911649704, -0.14969998598098755, 0.019139980897307396, -0.10053777694702148, 0.08574412018060684, 0.035852521657943726, 0.04441479593515396, 0.030590493232011795, 0.09031906723976135, 0.008650165982544422, -0.01990595832467079, 0.113880954682827, -0.014872054569423199, -0.021057581529021263, -0.0042512258514761925, -0.07907672226428986, 0.06939097493886948, -0.01964482292532921, 0.11598610132932663, 0.011352802626788616, -0.09099441766738892, 0.06578454375267029, -0.006768448278307915, -0.10387292504310608, 0.026135645806789398, -0.030351413413882256, 0.03852183371782303, 0.10285354405641556, 0.052931223064661026, -0.014354540035128593, 0.008738341741263866, 0.16237115859985352, -0.07550489902496338, -0.06799923628568649, -0.14204612374305725, 0.14226627349853516, 0.023805392906069756, 0.007769363932311535, 0.015201840549707413, -0.09462489187717438, -0.02521958015859127, 0.16887950897216797, 0.11876239627599716, 0.00908670574426651, -0.029603775590658188, 0.02647557482123375, -0.006066079717129469, -0.02920684963464737, 0.0696289986371994, 0.10800124704837799, 0.08645041286945343, -0.01056372094899416, 0.017105471342802048, -0.026909152045845985, -0.08639092743396759, -0.04038460925221443, 0.06909220665693283, 0.008144284598529339, -0.022257087752223015, -0.008372892625629902, 0.14098316431045532, -0.05245949700474739, -0.14975294470787048, 0.012423363514244556, -0.13974790275096893, -0.18542185425758362, -0.021483633667230606, 0.0885767862200737, 0.051860615611076355, 0.06124157831072807, 0.000006746005510649411, -0.043475646525621414, 0.14276711642742157, -0.006033157929778099, -0.03334978595376015, -0.10182072967290878, 0.050786107778549194, -0.08470398932695389, 0.16600263118743896, -0.019615445286035538, 0.06615342199802399, 0.14182493090629578, 0.033690113574266434, -0.11362612992525101, 0.05288456007838249, 0.0952351987361908, -0.1365385204553604, 0.05832631140947342, 0.18844743072986603, -0.03519010916352272, 0.11916875094175339, 0.0516684465110302, -0.07609492540359497, -0.0008023905684240162, -0.03219393268227577, 0.005798512138426304, -0.0914454385638237, -0.0017072748159989715, -0.06691183149814606, 0.12252546101808548, 0.19260737299919128, -0.07997464388608932, 0.013357598334550858, -0.03988146409392357, 0.01321222074329853, -0.001316038891673088, 0.12641765177249908, -0.048540256917476654, -0.2802991569042206, 0.038914795964956284, -0.023314964026212692, 0.029950251802802086, -0.1725258231163025, -0.07946409285068512, 0.03444299474358559, -0.045057810842990875, -0.06355202943086624, 0.11062520742416382, 0.05786670744419098, 0.029981188476085663, -0.04959830641746521, -0.20278236269950867, -0.009030099026858807, 0.19861386716365814, -0.17532847821712494, -0.06187820807099342 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set: - Loss: 0.6864 - Wer: 0.6707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 4.3322 | 14.81 | 400 | 3.7450 | 1.0 | | 3.2662 | 29.63 | 800 | 3.2571 | 0.9996 | | 1.6408 | 44.44 | 1200 | 0.9098 | 0.8162 | | 1.2289 | 59.26 | 1600 | 0.6757 | 0.7099 | | 1.0551 | 74.07 | 2000 | 0.6417 | 0.7044 | | 0.966 | 88.89 | 2400 | 0.6365 | 0.6789 | | 0.8713 | 103.7 | 2800 | 0.6617 | 0.6954 | | 0.8055 | 118.52 | 3200 | 0.6371 | 0.6762 | | 0.7489 | 133.33 | 3600 | 0.6798 | 0.6911 | | 0.7073 | 148.15 | 4000 | 0.6567 | 0.6731 | | 0.6609 | 162.96 | 4400 | 0.6742 | 0.6840 | | 0.6435 | 177.78 | 4800 | 0.6862 | 0.6633 | | 0.6282 | 192.59 | 5200 | 0.6865 | 0.6731 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["pa-IN"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
automatic-speech-recognition
anuragshas/wav2vec2-xls-r-300m-pa-IN-cv8-with-lm
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "pa-IN" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - PA-IN dataset. It achieves the following results on the evaluation set: * Loss: 0.6864 * Wer: 0.6707 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 200.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.4.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ 77, 132, 4, 39 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ -0.1335745006799698, 0.10796721279621124, -0.0030623185448348522, 0.03545884042978287, 0.13365134596824646, 0.004435485228896141, 0.13398398458957672, 0.12598882615566254, -0.09671462327241898, 0.0747636929154396, 0.08902042359113693, 0.08861565589904785, 0.06498333066701889, 0.08687300235033035, -0.03067796118557453, -0.2816574275493622, 0.027376608923077583, 0.028234845027327538, -0.08136443048715591, 0.10815354436635971, 0.10784285515546799, -0.1034279614686966, 0.044221699237823486, 0.04978732392191887, -0.14742141962051392, -0.004323868080973625, 0.011378699913620949, -0.10226870328187943, 0.11189893633127213, 0.04863549768924713, 0.07084333896636963, 0.011061795987188816, 0.0699269026517868, -0.1972302496433258, 0.0106540871784091, 0.06424489617347717, 0.04291870817542076, 0.08246980607509613, 0.08177702128887177, 0.015641750767827034, 0.0855894386768341, -0.04196351766586304, 0.05253959074616432, 0.06697476655244827, -0.08412321656942368, -0.3217664062976837, -0.0913664698600769, 0.050505757331848145, 0.09647254645824432, 0.10471885651350021, -0.013401351869106293, 0.09474150836467743, -0.015609586611390114, 0.09427913278341293, 0.22856177389621735, -0.22625572979450226, -0.0674121230840683, -0.08235952258110046, 0.06363128870725632, 0.024847256019711494, -0.08787462115287781, -0.0076136281713843346, 0.02923240140080452, 0.042403802275657654, 0.09001397341489792, -0.0002756953763309866, -0.027483565732836723, -0.023802535608410835, -0.13172222673892975, -0.05545930936932564, 0.19221541285514832, 0.052027806639671326, -0.05143420025706291, -0.06895698606967926, -0.05790906399488449, -0.1537460833787918, -0.04241080582141876, 0.019850268959999084, 0.014384588226675987, -0.04857519641518593, -0.08614300191402435, -0.02890878915786743, -0.06922730058431625, -0.09959831088781357, 0.0015899193240329623, 0.24197058379650116, 0.03872526064515114, -0.004425980616360903, -0.03179611265659332, 0.07525452971458435, 0.04047015309333801, -0.16995978355407715, -0.019078580662608147, 0.046272311359643936, -0.016586419194936752, 0.008729463443160057, -0.049750134348869324, -0.03330487757921219, 0.029669519513845444, 0.14983350038528442, -0.04127504676580429, 0.06678510457277298, -0.015386316925287247, 0.020031653344631195, -0.09744452685117722, 0.20680922269821167, -0.04827548563480377, -0.026448504999279976, 0.025103090330958366, 0.09498883038759232, 0.058705128729343414, -0.03051641210913658, -0.09334976971149445, 0.007636439520865679, 0.10906697809696198, 0.04830489307641983, 0.009584801271557808, 0.02082420140504837, -0.03920383378863335, -0.029409848153591156, 0.03918232396245003, -0.11222377419471741, 0.019798407331109047, 0.02727239951491356, -0.06632985174655914, 0.023820258677005768, 0.008892802521586418, 0.014671257697045803, -0.04218660667538643, 0.08033491671085358, -0.07201582193374634, -0.013038765639066696, -0.07762573659420013, -0.1079406812787056, 0.04031304642558098, -0.023681845515966415, 0.009267685934901237, -0.10489007830619812, -0.11288216710090637, -0.019564254209399223, 0.01998981274664402, -0.024921318516135216, -0.07595144212245941, -0.03574571758508682, -0.11175577342510223, 0.06066899374127388, -0.03246685117483139, 0.11871296912431717, -0.053961317986249924, 0.10588907450437546, 0.08704586327075958, 0.03427701070904732, -0.014703826047480106, 0.05928527191281319, -0.043378185480833054, 0.03493395075201988, -0.14576782286167145, 0.05898534879088402, -0.09252326935529709, 0.03925875946879387, -0.10354214906692505, -0.1129261925816536, 0.035674192011356354, -0.00980329792946577, 0.11117593944072723, 0.10600952804088593, -0.11385331302881241, -0.11006560176610947, 0.11954513192176819, -0.08915519714355469, -0.12638956308364868, 0.13372154533863068, 0.017431700602173805, -0.049599360674619675, 0.05162001773715019, 0.16442586481571198, 0.1254298835992813, -0.11461400240659714, -0.024042190983891487, -0.04280905798077583, 0.12097335606813431, -0.02357618510723114, 0.1065865308046341, -0.034447379410266876, 0.005885795224457979, 0.01409881841391325, -0.04178153723478317, 0.07204916328191757, -0.08760350942611694, -0.07239360362291336, -0.04463639855384827, -0.08572256565093994, 0.014326839707791805, 0.04774687439203262, 0.015205045230686665, -0.09741416573524475, -0.12035279721021652, 0.04952065646648407, 0.12965044379234314, -0.0899435356259346, 0.03986981138586998, -0.10215731710195541, 0.09016898274421692, -0.050130002200603485, -0.007435384672135115, -0.16675812005996704, -0.021763358265161514, 0.03591843694448471, -0.05431874468922615, 0.01473027840256691, -0.1005791649222374, 0.05379912629723549, 0.06784633547067642, -0.03695155680179596, -0.07483533769845963, -0.08591065555810928, -0.0077935135923326015, -0.05457768961787224, -0.19883762300014496, -0.09030596911907196, -0.014853551983833313, 0.13985000550746918, -0.12347602099180222, 0.017222678288817406, 0.03656340762972832, 0.12897588312625885, 0.020223986357450485, -0.03433990105986595, -0.0022990526631474495, 0.08180727064609528, -0.03233757242560387, -0.05819442868232727, 0.019136052578687668, 0.029767535626888275, -0.09390062838792801, 0.023915475234389305, -0.14257073402404785, 0.1335005760192871, 0.12785151600837708, -0.027054104954004288, -0.016171269118785858, 0.03237713873386383, -0.05579492449760437, -0.04623553529381752, -0.018297864124178886, -0.04349803179502487, 0.1329522728919983, 0.01491062343120575, 0.13377591967582703, -0.08954848349094391, -0.03197059780359268, 0.048007093369960785, 0.0014466444263234735, -0.018591873347759247, 0.08857881277799606, 0.05831049382686615, -0.025219637900590897, 0.10789936780929565, 0.06655491143465042, -0.10267467796802521, 0.1591702103614807, -0.07816119492053986, -0.07690102607011795, -0.0306655615568161, -0.025251712650060654, 0.03031351789832115, 0.12327047437429428, -0.17833665013313293, -0.02437560446560383, 0.035383038222789764, 0.006806207820773125, 0.021098271012306213, -0.20728573203086853, 0.017137689515948296, 0.025603704154491425, -0.07307703793048859, -0.06126776337623596, 0.018849171698093414, -0.008609580807387829, 0.07882575690746307, 0.011439156718552113, -0.0654059574007988, 0.0033774180337786674, -0.015139526687562466, -0.07690981030464172, 0.16667497158050537, -0.1202651709318161, -0.15925338864326477, -0.1802888661623001, -0.040051065385341644, -0.07387405633926392, 0.007416946347802877, 0.06273387372493744, -0.08714406192302704, -0.04780382290482521, -0.03918968886137009, 0.052523087710142136, -0.04930104315280914, 0.04090742766857147, 0.038060083985328674, -0.011992629617452621, 0.07545816898345947, -0.11965248733758926, 0.004381199833005667, -0.0004428733664099127, -0.01162682007998228, -0.0285855270922184, 0.045556459575891495, 0.11270657926797867, 0.15138594806194305, 0.035998180508613586, 0.01857915334403515, -0.02654011733829975, 0.21228449046611786, -0.11819636821746826, -0.027063071727752686, 0.18649430572986603, 0.010981596074998379, 0.04417708143591881, 0.09264271706342697, 0.056302644312381744, -0.07086681574583054, 0.0015053643146529794, 0.00912229623645544, -0.025065049529075623, -0.23541481792926788, -0.04151366651058197, -0.0716521292924881, -0.013088349252939224, 0.06874574720859528, 0.02756459452211857, 0.04437169432640076, 0.036301903426647186, -0.04250568151473999, 0.039291657507419586, -0.0012181057827547193, 0.08732608705759048, 0.1716306507587433, 0.04927496239542961, 0.12338811159133911, -0.028744133189320564, -0.018476486206054688, 0.0283191055059433, -0.013619551435112953, 0.19269825518131256, 0.020229820162057877, 0.20411467552185059, 0.035088710486888885, 0.14811810851097107, 0.012198980897665024, 0.07356711477041245, 0.025969108566641808, 0.009025268256664276, 0.0274828989058733, -0.06222657486796379, -0.056119173765182495, 0.00723256915807724, 0.04466521739959717, 0.07112006843090057, -0.11856362968683243, -0.004474347457289696, 0.0071374401450157166, 0.3605150282382965, 0.04332846403121948, -0.3183424174785614, -0.1295240819454193, 0.004939128644764423, -0.07071900367736816, -0.06147652119398117, 0.031157881021499634, 0.09584265947341919, -0.07176688313484192, 0.07873979955911636, -0.05220310762524605, 0.09559410065412521, -0.052680954337120056, 0.01623116433620453, 0.07023829221725464, 0.1207171082496643, 0.014464532025158405, 0.05011361464858055, -0.24986539781093597, 0.24896669387817383, 0.01294083520770073, 0.10251561552286148, -0.04831275716423988, 0.04413191229104996, 0.028739240020513535, 0.019934363663196564, 0.025029871612787247, -0.017456848174333572, -0.05594240501523018, -0.16286063194274902, -0.07389958947896957, 0.020397573709487915, 0.1205051988363266, -0.02480465918779373, 0.11698299646377563, -0.05136614292860031, -0.032018210738897324, 0.05334758386015892, -0.07050812989473343, -0.10920627415180206, -0.0799020305275917, 0.045985087752342224, 0.10014388710260391, 0.08242034912109375, -0.09679925441741943, -0.10779471695423126, -0.027475841343402863, 0.09695813059806824, -0.1093132272362709, -0.049948547035455704, -0.1202823594212532, 0.028105437755584717, 0.15053528547286987, -0.07323823869228363, 0.06104325130581856, -0.0017120350385084748, 0.15842896699905396, 0.024486815556883812, -0.038477398455142975, 0.08889001607894897, -0.09922461211681366, -0.21356773376464844, -0.030375780537724495, 0.18827345967292786, -0.007838675752282143, 0.05813094601035118, -0.02010090835392475, 0.03191184997558594, -0.036483388394117355, -0.06579741090536118, 0.04186629876494408, 0.023616690188646317, 0.004894969519227743, 0.03168367221951485, 0.0018184661166742444, 0.00785356666892767, -0.08177302032709122, -0.05170243978500366, 0.1179157942533493, 0.23233731091022491, -0.05549762770533562, 0.0011843364918604493, 0.07517348974943161, -0.049624159932136536, -0.14941789209842682, -0.012722685001790524, 0.1085098460316658, 0.021997099742293358, -0.06004998832941055, -0.2107112854719162, 0.03472311794757843, 0.05859653279185295, -0.04089272767305374, 0.11001818627119064, -0.29033613204956055, -0.14463457465171814, 0.10269539058208466, 0.08283348381519318, 0.03314382582902908, -0.16000407934188843, -0.07393541187047958, -0.06230895593762398, -0.11921848356723785, 0.08879929035902023, -0.059529490768909454, 0.12353145331144333, 0.0003319708921480924, 0.07727126032114029, 0.009112018160521984, -0.046123258769512177, 0.15394611656665802, -0.014614315703511238, 0.02864680252969265, -0.015258989296853542, 0.04395056143403053, 0.06709963828325272, -0.0422099307179451, 0.02755190245807171, -0.053826410323381424, 0.040560707449913025, -0.10774024575948715, -0.02989114262163639, -0.09986361116170883, 0.030538499355316162, -0.026232384145259857, -0.020304419100284576, -0.011027871631085873, -0.0046763732098042965, 0.02726687118411064, -0.002981573808938265, 0.18084432184696198, -0.011899354867637157, 0.15007524192333221, 0.13903342187404633, 0.11553605645895004, -0.055221110582351685, -0.08941406011581421, -0.007307001855224371, -0.042367495596408844, 0.08112972229719162, -0.10854335874319077, 0.030162764713168144, 0.10531460493803024, 0.05856364220380783, 0.10822561383247375, 0.0641244426369667, -0.08894473314285278, 0.02598373405635357, 0.061371952295303345, -0.11635925620794296, -0.14201928675174713, -0.05033520981669426, 0.050987593829631805, -0.11916123330593109, 0.055465102195739746, 0.13782387971878052, -0.06637641042470932, -0.010319037362933159, 0.015305249951779842, 0.007652108557522297, -0.05062423273921013, 0.2274724841117859, 0.05805191397666931, 0.08273427188396454, -0.11382143199443817, 0.0916675254702568, 0.04028002917766571, -0.10814615339040756, 0.032383132725954056, 0.08540799468755722, -0.057889264076948166, -0.01883787102997303, -0.035455286502838135, 0.050995469093322754, -0.04601661115884781, -0.09365084767341614, -0.15266217291355133, -0.14551794528961182, 0.08391566574573517, 0.14420302212238312, 0.033397335559129715, 0.01788719743490219, -0.04737946018576622, 0.053264062851667404, -0.12248274683952332, 0.09829185158014297, 0.052462682127952576, 0.0825849249958992, -0.15946367383003235, 0.12898874282836914, 0.021051418036222458, 0.039952442049980164, -0.005078259855508804, -0.005644295830279589, -0.0776180550456047, 0.03181328624486923, -0.16332250833511353, -0.023293672129511833, -0.02916102483868599, -0.00036968549829907715, 0.001675007282756269, -0.07757959514856339, -0.08030113577842712, 0.05723750963807106, -0.10426478832960129, -0.053395699709653854, -0.0034728737082332373, 0.03356039896607399, -0.1179966852068901, -0.000882621097844094, 0.047299761325120926, -0.12673984467983246, 0.08583451807498932, 0.08536797016859055, 0.013134168460965157, 0.05553000047802925, -0.0303491298109293, -0.02865116111934185, 0.04905838146805763, 0.017505358904600143, 0.03361927717924118, -0.15576587617397308, -0.007484036032110453, 0.0027228102553635836, 0.03831152245402336, -0.01482666376978159, 0.08242785185575485, -0.11837751418352127, -0.026725776493549347, 0.0010272301733493805, -0.026455769315361977, -0.05997028201818466, 0.03932857885956764, 0.1025678813457489, 0.03249423950910568, 0.16934078931808472, -0.07700394093990326, 0.02776254527270794, -0.1996377855539322, 0.03161737322807312, -0.04446026310324669, -0.12064898014068604, -0.08291736990213394, -0.011879943311214447, 0.08739736676216125, -0.05315670371055603, 0.061540231108665466, -0.052463021129369736, 0.11876492202281952, 0.04433399811387062, -0.030095450580120087, -0.010163344442844391, 0.03966652601957321, 0.22090712189674377, 0.05882486328482628, -0.016041245311498642, 0.08936472982168198, -0.007006077561527491, 0.08652524650096893, 0.12487170100212097, 0.11490127444267273, 0.11106054484844208, 0.0636286586523056, 0.11721888184547424, 0.10870427638292313, -0.07212647795677185, -0.17944137752056122, 0.020345915108919144, -0.028371509164571762, 0.14602532982826233, -0.004299139138311148, 0.2047538161277771, 0.12081461399793625, -0.1409768909215927, 0.04940374568104744, -0.031083157286047935, -0.06400123983621597, -0.11286429315805435, -0.03523979336023331, -0.07096275687217712, -0.17070350050926208, 0.0049325549043715, -0.12037155777215958, 0.054424870759248734, 0.05805767700076103, 0.016639305278658867, 0.009893118403851986, 0.13723787665367126, 0.06159709393978119, -0.027695972472429276, 0.1030396819114685, -0.0019225069554522634, -0.03838130831718445, -0.0422048345208168, -0.11418324708938599, 0.054322514683008194, -0.013350519351661205, 0.062153223901987076, -0.017559748142957687, -0.12163086235523224, 0.067941814661026, 0.00808835867792368, -0.11909335851669312, 0.035939041525125504, 0.004630837589502335, 0.06956008076667786, 0.08147738128900528, 0.014561864547431469, 0.0009530486422590911, 0.0060663167387247086, 0.22935518622398376, -0.11155696958303452, -0.07122159004211426, -0.11771188676357269, 0.21016308665275574, 0.0017201079754158854, -0.02642299421131611, 0.031475670635700226, -0.07641920447349548, -0.058867115527391434, 0.17225974798202515, 0.12307064980268478, -0.0015971306711435318, -0.028929468244314194, 0.004636226687580347, -0.01317250169813633, -0.07088100910186768, 0.09150364249944687, 0.13680759072303772, 0.06539875268936157, -0.033361922949552536, -0.016274215653538704, -0.05232592299580574, -0.03275831788778305, -0.03326934948563576, 0.07945148646831512, -0.022251222282648087, -0.04198124259710312, -0.013462298549711704, 0.08515613526105881, -0.05930950120091438, -0.13507460057735443, -0.005262914579361677, -0.16639646887779236, -0.16692772507667542, -0.02886279858648777, 0.07979067414999008, 0.0414390005171299, 0.05833986774086952, 0.002616708166897297, -0.00874865148216486, 0.13225670158863068, -0.0013467700919136405, -0.05723949894309044, -0.12322011590003967, 0.09974747896194458, -0.11747557669878006, 0.18354317545890808, -0.04447920247912407, 0.06337424367666245, 0.11519928276538849, 0.06876189261674881, -0.10444498807191849, 0.04948458448052406, 0.07909107953310013, -0.1504998356103897, 0.03924231231212616, 0.19447386264801025, -0.036491554230451584, 0.1317342221736908, 0.009121960960328579, -0.11690068989992142, -0.014954814687371254, -0.04106120020151138, -0.03145353123545647, -0.051828473806381226, -0.03608289361000061, -0.06808080524206161, 0.11987577378749847, 0.1638822853565216, -0.07498133182525635, -0.041838593780994415, -0.05203299596905708, 0.01643221639096737, 0.07244564592838287, 0.06868356466293335, -0.03634560853242874, -0.2946893572807312, -0.0017831885488703847, 0.006678336299955845, 0.004062369000166655, -0.23970194160938263, -0.06410940736532211, 0.025697115808725357, -0.05965402349829674, -0.062226034700870514, 0.07161751389503479, 0.04993699491024017, 0.017364930361509323, -0.059271518141031265, -0.062381960451602936, -0.04748386889696121, 0.18128502368927002, -0.1930537223815918, -0.07300852239131927 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Slovak This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SK dataset. It achieves the following results on the evaluation set: - Loss: 0.3067 - Wer: 0.2678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.175 | 2.41 | 400 | 4.6909 | 1.0 | | 3.3785 | 4.82 | 800 | 3.3080 | 1.0 | | 2.6964 | 7.23 | 1200 | 2.0651 | 1.1055 | | 1.3008 | 9.64 | 1600 | 0.5845 | 0.6207 | | 1.1185 | 12.05 | 2000 | 0.4195 | 0.4193 | | 1.0252 | 14.46 | 2400 | 0.3824 | 0.3570 | | 0.935 | 16.87 | 2800 | 0.3693 | 0.3462 | | 0.8818 | 19.28 | 3200 | 0.3587 | 0.3318 | | 0.8534 | 21.69 | 3600 | 0.3420 | 0.3180 | | 0.8137 | 24.1 | 4000 | 0.3426 | 0.3130 | | 0.7968 | 26.51 | 4400 | 0.3349 | 0.3102 | | 0.7558 | 28.92 | 4800 | 0.3216 | 0.3019 | | 0.7313 | 31.33 | 5200 | 0.3451 | 0.3060 | | 0.7358 | 33.73 | 5600 | 0.3272 | 0.2967 | | 0.718 | 36.14 | 6000 | 0.3315 | 0.2882 | | 0.6991 | 38.55 | 6400 | 0.3299 | 0.2830 | | 0.6529 | 40.96 | 6800 | 0.3140 | 0.2836 | | 0.6225 | 43.37 | 7200 | 0.3128 | 0.2751 | | 0.633 | 45.78 | 7600 | 0.3211 | 0.2774 | | 0.5876 | 48.19 | 8000 | 0.3162 | 0.2764 | | 0.588 | 50.6 | 8400 | 0.3082 | 0.2722 | | 0.5915 | 53.01 | 8800 | 0.3120 | 0.2681 | | 0.5798 | 55.42 | 9200 | 0.3133 | 0.2709 | | 0.5736 | 57.83 | 9600 | 0.3086 | 0.2676 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sk --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sk --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sk", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 26.707 | 18.609 |
{"language": ["sk"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Slovak", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "sk"}, "metrics": [{"type": "wer", "value": 18.609, "name": "Test WER"}, {"type": "cer", "value": 5.488, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "sk"}, "metrics": [{"type": "wer", "value": 40.548, "name": "Test WER"}, {"type": "cer", "value": 17.733, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "sk"}, "metrics": [{"type": "wer", "value": 44.1, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sk", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "sk" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #sk #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
XLS-R-300M - Slovak =================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - SK dataset. It achieves the following results on the evaluation set: * Loss: 0.3067 * Wer: 0.2678 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1500 * num\_epochs: 60.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.4.dev0 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' 2. To evaluate on 'speech-recognition-community-v2/dev\_data' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 60.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #sk #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 60.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ 111, 132, 4, 39, 60, 8, 15 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #sk #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 60.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'### Inference With LM### Eval results on Common Voice 8 \"test\" (WER):" ]
[ -0.10816436260938644, 0.14327478408813477, -0.006550380494445562, 0.021264344453811646, 0.10753609985113144, 0.033748965710401535, 0.10501787066459656, 0.16457761824131012, -0.03809376806020737, 0.14146360754966736, 0.05372905358672142, 0.1040072962641716, 0.08695638924837112, 0.09018045663833618, -0.035453490912914276, -0.20592732727527618, 0.037694986909627914, -0.07138730585575104, -0.08748101443052292, 0.10155938565731049, 0.09052729606628418, -0.08268935978412628, 0.029947755858302116, -0.0071204109117388725, -0.06036657467484474, -0.0129569536074996, -0.03128877282142639, -0.04126257821917534, 0.06070004031062126, 0.038380324840545654, 0.024432050064206123, 0.030596911907196045, 0.04879746213555336, -0.30875521898269653, 0.002407362684607506, 0.07618803530931473, 0.02372489683330059, 0.04262789338827133, 0.0999661460518837, -0.027194540947675705, 0.09961491823196411, -0.09208155423402786, 0.04370609670877457, 0.08230654895305634, -0.08162329345941544, -0.22675003111362457, -0.10839734226465225, 0.03410034254193306, 0.15300138294696808, 0.07891538739204407, -0.046323154121637344, 0.03510568290948868, -0.09189128875732422, 0.08985871821641922, 0.19411879777908325, -0.2079850733280182, -0.04827577993273735, -0.0003654724278021604, 0.014361345209181309, 0.0329640693962574, -0.0917782187461853, -0.011177482083439827, 0.005616811104118824, 0.008345787413418293, 0.04320913925766945, -0.00426848791539669, 0.05082527548074722, 0.007256554439663887, -0.14690318703651428, -0.07987884432077408, 0.1398775279521942, 0.06429778784513474, -0.03875588998198509, -0.1181548610329628, -0.010603467933833599, -0.16874264180660248, -0.04580536112189293, 0.009772700257599354, 0.01272146962583065, -0.023879803717136383, -0.004481592681258917, 0.027567824348807335, -0.05785878375172615, -0.07128416001796722, 0.06210998073220253, 0.11944152414798737, 0.047177258878946304, -0.04293948784470558, 0.01575058326125145, 0.08253896236419678, 0.0357646718621254, -0.15523967146873474, -0.052039217203855515, 0.03648992255330086, -0.1421133279800415, -0.011224043555557728, -0.026916945353150368, -0.003796699456870556, 0.09099997580051422, 0.1922444850206375, 0.004273276310414076, 0.10271056741476059, -0.015690598636865616, 0.008182784542441368, -0.04769013449549675, 0.1477481722831726, -0.0328923724591732, -0.07937254756689072, -0.03750275820493698, 0.12157992273569107, -0.00416428642347455, -0.013518569059669971, -0.030926862731575966, 0.03462269902229309, 0.11110994964838028, 0.09818670153617859, 0.026343513280153275, 0.006740346550941467, -0.08464431762695312, -0.024821976199746132, -0.003301840741187334, -0.14937949180603027, 0.05896289646625519, 0.08043275028467178, -0.043272923678159714, -0.026654241606593132, -0.013125159777700901, 0.016913918778300285, -0.06197226792573929, 0.10004189610481262, -0.04803766682744026, 0.0005628169164992869, -0.06298015266656876, -0.09850164502859116, 0.05633768066763878, -0.008471948094666004, -0.03549797087907791, -0.05404195934534073, -0.0714525356888771, -0.08991280943155289, 0.04384739324450493, -0.05993727967143059, -0.05128102749586105, -0.077788345515728, -0.09876342117786407, 0.05178862810134888, -0.009632746689021587, 0.13240478932857513, -0.05809900164604187, 0.08615018427371979, 0.021486185491085052, 0.03651779890060425, 0.13136205077171326, 0.06615882366895676, -0.014798221178352833, 0.05945996195077896, -0.1439119428396225, 0.12663845717906952, -0.14205357432365417, 0.04647337645292282, -0.1616877168416977, -0.08379259705543518, 0.010610071010887623, 0.0007814185810275376, 0.0896858498454094, 0.15059223771095276, -0.18375034630298615, -0.07106097787618637, 0.15234586596488953, -0.06314761936664581, -0.09050066024065018, 0.14485478401184082, 0.0009181774221360683, -0.05019361153244972, 0.016723796725273132, 0.16690179705619812, 0.13568270206451416, -0.11434166133403778, -0.02921033836901188, -0.06833788007497787, 0.07372939586639404, 0.061571624130010605, 0.10824616253376007, -0.07849162817001343, 0.02436196617782116, -0.0072389086708426476, -0.06087744981050491, 0.013130285777151585, -0.0619468055665493, -0.08233392238616943, -0.0027487012557685375, -0.044860560446977615, -0.01461096853017807, 0.020227007567882538, -0.0315081812441349, -0.08491268008947372, -0.1281798779964447, -0.03477273881435394, 0.10435285419225693, -0.08359707146883011, 0.028776023536920547, -0.09638708084821701, 0.07143282145261765, 0.001706954906694591, 0.02755332551896572, -0.14827625453472137, -0.032846275717020035, 0.043634865432977676, -0.07301952689886093, 0.005743789952248335, -0.04691905900835991, 0.03680165484547615, 0.02120579406619072, -0.0096511859446764, -0.0504433810710907, -0.03931586816906929, -0.010035013779997826, -0.04718510061502457, -0.2206137776374817, -0.0632183700799942, -0.018734579905867577, 0.20476050674915314, -0.1884951889514923, 0.025540851056575775, 0.10875961184501648, 0.10128825902938843, 0.004889394622296095, -0.050680097192525864, 0.019203737378120422, 0.055589400231838226, -0.019109230488538742, -0.05334543436765671, 0.013769385404884815, -0.005584393627941608, -0.08685839176177979, -0.014959841966629028, -0.14196133613586426, 0.011277157813310623, 0.08086689561605453, 0.04284222796559334, -0.058227844536304474, -0.04529241845011711, -0.06004621833562851, -0.04529089853167534, -0.05077647045254707, -0.05053858831524849, 0.09673311561346054, 0.05054429545998573, 0.08453728258609772, -0.06578255444765091, -0.05473250523209572, 0.029321908950805664, 0.007658248767256737, -0.019226737320423126, 0.15665464103221893, 0.06207229942083359, -0.034486860036849976, 0.08363959193229675, 0.02177361771464348, -0.035625241696834564, 0.09870035201311111, -0.06528646498918533, -0.0889657512307167, -0.05750727280974388, 0.07406267523765564, 0.04612693563103676, 0.07342776656150818, -0.18157371878623962, -0.006638627033680677, 0.03739531710743904, 0.03590543940663338, 0.021397367119789124, -0.16651083528995514, 0.01977030374109745, 0.026757633313536644, -0.0893736407160759, -0.024848952889442444, 0.024871056899428368, -0.001334444503299892, 0.07124034315347672, 0.010537118650972843, -0.03874645009636879, -0.032457590103149414, -0.0638633444905281, -0.1262868046760559, 0.1525879055261612, -0.11059807986021042, -0.149014413356781, -0.12845420837402344, -0.03304881602525711, -0.041166502982378006, -0.02962169237434864, 0.07211969792842865, -0.10172028094530106, -0.06138105317950249, -0.07701926678419113, -0.007342191878706217, -0.02058780938386917, 0.013247580267488956, 0.041953589767217636, 0.01243077777326107, 0.05156407505273819, -0.10851060599088669, -0.009506098926067352, -0.001032804837450385, -0.014631201513111591, 0.0024404539726674557, 0.05494895577430725, 0.09633778780698776, 0.1609879732131958, 0.06407611072063446, 0.06155324727296829, -0.017850419506430626, 0.23349536955356598, -0.11767903715372086, -0.007549519184976816, 0.10439223051071167, -0.003061117837205529, 0.0657535046339035, 0.16136518120765686, 0.031545694917440414, -0.08594508469104767, 0.020625095814466476, 0.0575895793735981, -0.006644223816692829, -0.26059800386428833, -0.03649888187646866, -0.07769251614809036, -0.008826623670756817, 0.07771729677915573, 0.04463962838053703, 0.021507548168301582, -0.005066693760454655, -0.021060163155198097, -0.02595360577106476, 0.05352550745010376, 0.0664062425494194, 0.10351042449474335, 0.03862554207444191, 0.08732975274324417, -0.022236844524741173, 0.0014448725851252675, 0.023969324305653572, -0.0031589537393301725, 0.21753862500190735, 0.013040355406701565, 0.1990502029657364, 0.07902435213327408, 0.13334976136684418, -0.019236022606492043, 0.02899564616382122, -0.005133918486535549, 0.022634893655776978, 0.042574137449264526, -0.07077261060476303, -0.05174574628472328, 0.04110604152083397, 0.12413066625595093, -0.012260224670171738, -0.08275388926267624, 0.03288546949625015, 0.05613727122545242, 0.3131828010082245, 0.07207076251506805, -0.2218226194381714, -0.05345100164413452, 0.026433059945702553, -0.06390084326267242, -0.016941452398896217, 0.005232612136751413, 0.10449367761611938, -0.08244550228118896, 0.07046663016080856, -0.04830936715006828, 0.09122247993946075, -0.060802049934864044, 0.004666280001401901, 0.06830503046512604, 0.10642354935407639, 0.014100651256740093, 0.05944746732711792, -0.2569601535797119, 0.21149951219558716, 0.0013232867931947112, 0.07286082208156586, -0.06453953683376312, 0.05929094925522804, 0.02828568033874035, -0.05436704307794571, 0.10094287246465683, 0.0024163208436220884, -0.106058768928051, -0.1571177989244461, -0.10575320571660995, 0.004114694893360138, 0.13244162499904633, -0.07236441224813461, 0.13089841604232788, -0.03514096140861511, -0.06059068813920021, 0.011616511270403862, -0.015124783851206303, -0.12843693792819977, -0.10203547775745392, 0.07773193717002869, 0.014208239503204823, 0.06962697952985764, -0.07847968488931656, -0.06983061879873276, -0.07098998129367828, 0.14797040820121765, -0.15246354043483734, -0.029291031882166862, -0.13369613885879517, 0.047165557742118835, 0.15124405920505524, -0.0729864165186882, 0.022827399894595146, 0.013799956999719143, 0.12387953698635101, 0.029985032975673676, 0.0012838520342484117, 0.08120469003915787, -0.08271746337413788, -0.19283808767795563, -0.03673076629638672, 0.19592833518981934, 0.014716166071593761, 0.06307054311037064, -0.016038108617067337, 0.012393888086080551, 0.007141581270843744, -0.09529489278793335, 0.08479674905538559, 0.06277093291282654, -0.003525978419929743, 0.08062152564525604, -0.045123763382434845, -0.04975654557347298, -0.11440484970808029, -0.054194752126932144, 0.11592364311218262, 0.26200589537620544, -0.06257636845111847, 0.04802659526467323, 0.02909206412732601, -0.06474192440509796, -0.137605682015419, -0.02197316288948059, 0.10841626673936844, 0.02243478037416935, -0.009625466540455818, -0.1750539094209671, 0.007246070541441441, 0.08150516450405121, -0.01278693601489067, 0.09310393035411835, -0.3320632874965668, -0.13152970373630524, 0.05496344342827797, 0.0595041923224926, -0.03587374836206436, -0.18135838210582733, -0.0985599160194397, -0.01698523387312889, -0.10319369286298752, 0.058545731008052826, -0.009209003299474716, 0.11454447358846664, 0.014709352515637875, 0.012130853720009327, 0.026070835068821907, -0.05525944009423256, 0.15290160477161407, 0.06058332324028015, 0.015740487724542618, -0.01192319393157959, 0.015034565702080727, 0.01419105101376772, -0.07306040823459625, 0.04944799095392227, -0.0732470452785492, 0.015983622521162033, -0.1485210508108139, -0.018647339195013046, -0.07162842899560928, -0.005523011088371277, -0.06555898487567902, 0.002226337557658553, -0.018535839393734932, 0.045428093522787094, 0.1142764687538147, 0.010568839497864246, 0.07688872516155243, -0.054673708975315094, 0.08970732241868973, 0.14455963671207428, 0.10378355532884598, 0.016782676801085472, -0.12681865692138672, 0.0038943334948271513, 0.005540103651583195, 0.01407761313021183, -0.11763733625411987, 0.05738762766122818, 0.131135493516922, 0.04005621373653412, 0.17050954699516296, 0.033973000943660736, -0.10294412076473236, -0.008692803792655468, 0.06789946556091309, -0.06310620903968811, -0.18545885384082794, -0.009927625767886639, 0.01002264954149723, -0.13870196044445038, -0.02443672902882099, 0.11847161501646042, -0.010928497649729252, 0.004652355331927538, 0.021368995308876038, 0.07172197103500366, -0.02984839864075184, 0.22151808440685272, 0.01360998023301363, 0.11620011180639267, -0.09128235280513763, 0.07537858188152313, 0.05284871160984039, -0.09826038777828217, 0.04457027092576027, 0.11567378044128418, -0.058044709265232086, -0.03536754101514816, -0.03997305780649185, 0.07220520824193954, 0.06326816231012344, -0.045785386115312576, -0.10389959812164307, -0.12735405564308167, 0.09708499908447266, 0.041866764426231384, 0.025284942239522934, 0.0367511622607708, -0.0040650032460689545, 0.027506127953529358, -0.08803647011518478, 0.11868035048246384, 0.09331773966550827, 0.04231937974691391, -0.10541820526123047, 0.06918070465326309, 0.0012736094649881124, 0.009326508268713951, 0.016501672565937042, -0.017220035195350647, -0.10349385440349579, 0.029718317091464996, -0.09264562278985977, -0.009793462231755257, -0.07750190049409866, -0.007210155017673969, 0.03297162428498268, -0.057922229170799255, -0.050031647086143494, 0.027666324749588966, -0.10916905105113983, -0.08139587193727493, -0.04442775249481201, 0.09518006443977356, -0.12410333007574081, -0.005819373764097691, 0.038663387298583984, -0.15043756365776062, 0.10506666451692581, 0.04707428067922592, 0.00016773975221440196, 0.003339825663715601, -0.06957631558179855, -0.021149441599845886, 0.02646719664335251, 0.020490199327468872, 0.03370840102434158, -0.22181910276412964, -0.0022512830328196287, -0.02119392342865467, -0.0007120250375010073, 0.0016746275359764695, 0.02938251942396164, -0.12224320322275162, 0.006320587825030088, -0.041635096073150635, -0.04710322991013527, -0.05057869851589203, 0.041883692145347595, 0.08470463752746582, 0.01585778407752514, 0.16744065284729004, -0.05414751172065735, 0.08223110437393188, -0.2017214149236679, -0.0010455991141498089, -0.0007701926515437663, -0.03281401842832565, -0.02023538015782833, -0.022842885926365852, 0.10117791593074799, -0.05899190902709961, 0.04860169440507889, -0.042666275054216385, 0.052337512373924255, 0.03216153755784035, -0.06628577411174774, 0.007617639843374491, 0.04174492880702019, 0.12908339500427246, 0.05709667131304741, -0.0217500701546669, 0.0641937181353569, -0.05355435237288475, 0.04339519515633583, 0.04762847349047661, 0.15689565241336823, 0.1563979834318161, 0.11502739042043686, 0.06737256795167923, 0.08423880487680435, -0.1360078752040863, -0.1336330622434616, 0.15986000001430511, -0.08729101717472076, 0.13545894622802734, -0.04257786646485329, 0.17170438170433044, 0.09973152726888657, -0.1995689570903778, 0.08314643055200577, -0.027655430138111115, -0.08402961492538452, -0.09867813438177109, -0.09774906188249588, -0.07344091683626175, -0.14321839809417725, 0.01039990782737732, -0.099359892308712, 0.07842270284891129, 0.03028123825788498, 0.04532089829444885, 0.03867927938699722, 0.08727312833070755, 0.01051965169608593, -0.008965798653662205, 0.10389368236064911, -0.011455697007477283, -0.023121438920497894, 0.000536169798579067, -0.06827841699123383, 0.05831511691212654, -0.016338353976607323, 0.10309188067913055, 0.012321466580033302, -0.07847832143306732, 0.061947427690029144, -0.014256919734179974, -0.1043781116604805, 0.03199608251452446, -0.023046059533953667, 0.02786368317902088, 0.11659480631351471, 0.05584218353033066, -0.012984583154320717, 0.005316238384693861, 0.17668268084526062, -0.07131258398294449, -0.07235424220561981, -0.14766095578670502, 0.1387258619070053, 0.02730604261159897, 0.014720150269567966, 0.015946120023727417, -0.09581752121448517, -0.02938438579440117, 0.16587696969509125, 0.11201494932174683, -0.006373344920575619, -0.015406789258122444, 0.04058556631207466, -0.0018294805195182562, -0.024939222261309624, 0.061008721590042114, 0.11126931011676788, 0.09720081090927124, -0.01750904694199562, 0.010278945788741112, -0.024146005511283875, -0.08265513926744461, -0.032447218894958496, 0.06908907741308212, 0.009265080094337463, -0.009301096200942993, -0.0026308775413781404, 0.12788806855678558, -0.05888160318136215, -0.164398193359375, 0.018615281209349632, -0.14700646698474884, -0.1775747537612915, -0.021583670750260353, 0.07998920977115631, 0.03807784989476204, 0.05571558326482773, 0.003172246739268303, -0.050455242395401, 0.15749762952327728, -0.00744128692895174, -0.026474684476852417, -0.094009630382061, 0.06474854052066803, -0.07511577010154724, 0.1641688346862793, -0.01957014389336109, 0.0582951083779335, 0.14437608420848846, 0.037935417145490646, -0.11176495254039764, 0.0452752560377121, 0.09406735748052597, -0.13029424846172333, 0.05256699398159981, 0.18788690865039825, -0.03318806737661362, 0.12678217887878418, 0.05006913095712662, -0.08795417100191116, 0.003052614163607359, -0.02574169635772705, -0.00849533174186945, -0.07885801047086716, -0.003241542959585786, -0.06616959720849991, 0.11149086803197861, 0.19350150227546692, -0.06923193484544754, 0.013010171242058277, -0.03944816067814827, 0.01570386439561844, -0.0001942736707860604, 0.1370452493429184, -0.04827200621366501, -0.269437700510025, 0.052666399627923965, -0.010455157607793808, 0.03410736843943596, -0.1860520839691162, -0.09021252393722534, 0.0419577993452549, -0.03060043603181839, -0.0645819902420044, 0.12126751244068146, 0.06364982575178146, 0.03490952402353287, -0.04762066900730133, -0.18192724883556366, -0.011323394253849983, 0.19586871564388275, -0.1587725728750229, -0.056833695620298386 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Slovenian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2578 - Wer: 0.2273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1829 | 4.88 | 400 | 3.1228 | 1.0 | | 2.8675 | 9.76 | 800 | 2.8616 | 0.9993 | | 1.583 | 14.63 | 1200 | 0.6392 | 0.6239 | | 1.1959 | 19.51 | 1600 | 0.3602 | 0.3651 | | 1.0276 | 24.39 | 2000 | 0.3021 | 0.2981 | | 0.9671 | 29.27 | 2400 | 0.2872 | 0.2739 | | 0.873 | 34.15 | 2800 | 0.2593 | 0.2459 | | 0.8513 | 39.02 | 3200 | 0.2617 | 0.2473 | | 0.8132 | 43.9 | 3600 | 0.2548 | 0.2426 | | 0.7935 | 48.78 | 4000 | 0.2637 | 0.2353 | | 0.7565 | 53.66 | 4400 | 0.2629 | 0.2322 | | 0.7359 | 58.54 | 4800 | 0.2579 | 0.2253 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sl", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "zmago je divje od letel s helikopterjem visoko vzrak" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 19.938 | 12.736 |
{"language": ["sl"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Slovenian", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "sl"}, "metrics": [{"type": "wer", "value": 12.736, "name": "Test WER"}, {"type": "cer", "value": 3.605, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "sl"}, "metrics": [{"type": "wer", "value": 45.587, "name": "Test WER"}, {"type": "cer", "value": 20.886, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "sl"}, "metrics": [{"type": "wer", "value": 45.42, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "sl" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #sl #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
XLS-R-300M - Slovenian ====================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - SL dataset. It achieves the following results on the evaluation set: * Loss: 0.2578 * Wer: 0.2273 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 60.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' 2. To evaluate on 'speech-recognition-community-v2/dev\_data' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 60.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #sl #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 60.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ 111, 132, 4, 39, 60, 8, 15 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #sl #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 60.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'### Inference With LM### Eval results on Common Voice 8 \"test\" (WER):" ]
[ -0.10429129749536514, 0.14857910573482513, -0.0063051762990653515, 0.02102547511458397, 0.10683080554008484, 0.030841441825032234, 0.10758494585752487, 0.16390392184257507, -0.036446504294872284, 0.14295056462287903, 0.056946150958538055, 0.10918714106082916, 0.08740437030792236, 0.09282730519771576, -0.03130931779742241, -0.21205128729343414, 0.03941049054265022, -0.0695280134677887, -0.07229981571435928, 0.10237176716327667, 0.08948121964931488, -0.08400921523571014, 0.028834648430347443, -0.011142304167151451, -0.05768518149852753, -0.011506600305438042, -0.03146427869796753, -0.043801844120025635, 0.06333949416875839, 0.029082929715514183, 0.0226435624063015, 0.02764551341533661, 0.05839928239583969, -0.30659785866737366, -0.0013251530472189188, 0.07829150557518005, 0.02682526223361492, 0.04130570590496063, 0.09629282355308533, -0.027261069044470787, 0.10387521237134933, -0.09604962915182114, 0.04560982435941696, 0.07859121263027191, -0.08272922784090042, -0.23475492000579834, -0.10921657830476761, 0.031639739871025085, 0.15367259085178375, 0.08067169785499573, -0.04874849691987038, 0.04102169722318649, -0.09239660203456879, 0.08999123424291611, 0.19304949045181274, -0.21015861630439758, -0.042453646659851074, -0.0008110199123620987, 0.023306600749492645, 0.03233073279261589, -0.09062023460865021, -0.013679440133273602, 0.006719143595546484, 0.005012013018131256, 0.04344206303358078, -0.003764516906812787, 0.045020632445812225, 0.0025107511319220066, -0.14501622319221497, -0.07951024919748306, 0.1404840350151062, 0.06524043530225754, -0.03934873268008232, -0.12126807123422623, -0.01126482430845499, -0.1777336299419403, -0.042441386729478836, 0.009573247283697128, 0.0153468893840909, -0.024289213120937347, -0.01168715301901102, 0.03073745220899582, -0.05626250430941582, -0.07197536528110504, 0.06021725386381149, 0.11208751797676086, 0.04651838168501854, -0.04261460527777672, 0.014323854818940163, 0.08746377378702164, 0.02990584634244442, -0.15541641414165497, -0.051331404596567154, 0.0392395444214344, -0.14134222269058228, -0.008117906749248505, -0.02564724162220955, 0.007522217463701963, 0.08953472971916199, 0.1918727606534958, 0.017253397032618523, 0.10375645011663437, -0.011929702945053577, 0.008667855523526669, -0.047266583889722824, 0.15356230735778809, -0.02916746959090233, -0.09203165024518967, -0.03874152898788452, 0.12043420970439911, -0.00047722013550810516, -0.012700691819190979, -0.03247345983982086, 0.03337806090712547, 0.11243660002946854, 0.09764082729816437, 0.026815008372068405, 0.009385796263813972, -0.08549288660287857, -0.017572544515132904, -0.019482165575027466, -0.15050923824310303, 0.06260369718074799, 0.07932382076978683, -0.047248631715774536, -0.018903831019997597, -0.01758691295981407, 0.01565510593354702, -0.06371215730905533, 0.09587932378053665, -0.0474855937063694, -0.0012296142522245646, -0.06880491971969604, -0.09956303983926773, 0.05721307173371315, -0.02090407907962799, -0.03598856180906296, -0.04956590756773949, -0.07323917746543884, -0.0918993353843689, 0.04062280058860779, -0.05517937242984772, -0.0475638210773468, -0.0855892151594162, -0.09871082007884979, 0.04909048229455948, -0.011380873620510101, 0.1347873955965042, -0.05898825451731682, 0.08548971265554428, 0.02058268152177334, 0.04035584256052971, 0.12636925280094147, 0.06496783345937729, -0.018574871122837067, 0.06138220429420471, -0.13072341680526733, 0.12306823581457138, -0.13829734921455383, 0.0461643822491169, -0.16206537187099457, -0.08343177288770676, 0.011916408315300941, 0.0003772734198719263, 0.09213080257177353, 0.1473417580127716, -0.19152720272541046, -0.06865799427032471, 0.1585642248392105, -0.05744457617402077, -0.08317197114229202, 0.1424427628517151, 0.0009529680828563869, -0.04914671927690506, 0.025592315942049026, 0.16534428298473358, 0.1317819058895111, -0.10564735531806946, -0.03237728402018547, -0.06791027635335922, 0.07310830056667328, 0.05949140340089798, 0.10454278439283371, -0.07877711206674576, 0.03243603929877281, -0.005542123690247536, -0.05421256646513939, 0.00257835048250854, -0.0605902336537838, -0.07918746024370193, -0.003511768067255616, -0.039400018751621246, -0.016184944659471512, 0.020278947427868843, -0.03658482804894447, -0.0877716988325119, -0.12876659631729126, -0.04095309227705002, 0.10315688699483871, -0.08588523417711258, 0.029156018048524857, -0.09734099358320236, 0.07217586040496826, 0.008071843534708023, 0.02688576839864254, -0.1476711481809616, -0.033012229949235916, 0.04631395637989044, -0.07261212915182114, 0.005066387355327606, -0.04277893155813217, 0.03480183333158493, 0.020798038691282272, -0.0046487851068377495, -0.0505993627011776, -0.04033692553639412, -0.01076615322381258, -0.04980788007378578, -0.21595552563667297, -0.06469141691923141, -0.02348119392991066, 0.20540586113929749, -0.19263510406017303, 0.0231939647346735, 0.10925095528364182, 0.09798552095890045, 0.004672004841268063, -0.05331943929195404, 0.01408584974706173, 0.055167026817798615, -0.020588787272572517, -0.05720064043998718, 0.012051442638039589, -0.008515968918800354, -0.09335964173078537, -0.018449805676937103, -0.15109749138355255, 0.0030311206355690956, 0.08317702263593674, 0.04340154677629471, -0.05882711708545685, -0.04268420487642288, -0.060565799474716187, -0.043273668736219406, -0.05340481922030449, -0.05313059687614441, 0.10263504087924957, 0.05124886706471443, 0.08228778839111328, -0.0653812363743782, -0.05919835716485977, 0.02732820436358452, 0.006022376473993063, -0.017207982018589973, 0.1562020480632782, 0.06121309846639633, -0.03921987861394882, 0.08513253927230835, 0.027297858148813248, -0.03867622837424278, 0.09754586219787598, -0.06441433727741241, -0.09140681475400925, -0.05909351259469986, 0.0712788850069046, 0.04219185560941696, 0.07195557653903961, -0.18474340438842773, -0.011190366931259632, 0.03713184967637062, 0.036780983209609985, 0.01930556260049343, -0.17198747396469116, 0.02366054430603981, 0.024757463485002518, -0.0886794850230217, -0.03055562637746334, 0.019766880199313164, -0.0003957872686441988, 0.07295819371938705, 0.011450580321252346, -0.043908100575208664, -0.033461298793554306, -0.06428631395101547, -0.1258462369441986, 0.1545393019914627, -0.10555421561002731, -0.14237649738788605, -0.12111245840787888, -0.03491585701704025, -0.0351390577852726, -0.027173887938261032, 0.06881709396839142, -0.09828893095254898, -0.0625256896018982, -0.08115997910499573, -0.01062022801488638, -0.02406829036772251, 0.011935041286051273, 0.042385756969451904, 0.015864796936511993, 0.047295067459344864, -0.10913338512182236, -0.013468149118125439, -0.0024399796966463327, -0.020231788977980614, 0.0007661849376745522, 0.05413364619016647, 0.09072214365005493, 0.15983161330223083, 0.0625406876206398, 0.06267113238573074, -0.017586296424269676, 0.22145476937294006, -0.11804406344890594, -0.0052515314891934395, 0.1025959849357605, -0.001795428921468556, 0.06670839339494705, 0.15899188816547394, 0.0280145313590765, -0.08870507031679153, 0.021370045840740204, 0.05583812668919563, -0.009085210971534252, -0.25794288516044617, -0.03365662321448326, -0.07616128772497177, -0.008166322484612465, 0.08109628409147263, 0.04187212884426117, 0.013108506798744202, -0.0012404834851622581, -0.019696727395057678, -0.021316103637218475, 0.05511164292693138, 0.0676111951470375, 0.09464136511087418, 0.035094909369945526, 0.08843401074409485, -0.02332509122788906, -0.0030861159320920706, 0.02170545607805252, -0.005610177293419838, 0.22085556387901306, 0.018784476444125175, 0.19824329018592834, 0.07789793610572815, 0.13383744657039642, -0.022017039358615875, 0.03435712680220604, 0.0005355622852221131, 0.02275739796459675, 0.039444614201784134, -0.06980791687965393, -0.051450952887535095, 0.0400916151702404, 0.1280640810728073, -0.011874104849994183, -0.08090876787900925, 0.02773372270166874, 0.051970645785331726, 0.30764058232307434, 0.08359412848949432, -0.2376822978258133, -0.04640978202223778, 0.03012857213616371, -0.06599748134613037, -0.01941000111401081, 0.006641177460551262, 0.10140924155712128, -0.08524250984191895, 0.07098058611154556, -0.044618766754865646, 0.08953149616718292, -0.071226567029953, 0.004259323701262474, 0.0646761953830719, 0.10290440171957016, 0.01632804609835148, 0.060702335089445114, -0.252523809671402, 0.2127349078655243, -0.0013755043037235737, 0.07500682026147842, -0.069740891456604, 0.05938192829489708, 0.024284007027745247, -0.0631137415766716, 0.1026214137673378, 0.00004374502532300539, -0.11234039813280106, -0.1599346101284027, -0.10455041378736496, 0.0031022406183183193, 0.13959184288978577, -0.072114959359169, 0.13751806318759918, -0.03735814243555069, -0.05734533071517944, 0.011041907593607903, -0.015766369178891182, -0.12588943541049957, -0.10084360092878342, 0.07545692473649979, 0.0232180617749691, 0.07611540704965591, -0.07626654952764511, -0.06784316152334213, -0.06264309585094452, 0.14751888811588287, -0.15705455839633942, -0.02696244791150093, -0.13128797709941864, 0.04926592484116554, 0.15543238818645477, -0.07004068791866302, 0.022099975496530533, 0.01591564156115055, 0.12088997662067413, 0.03292805701494217, 0.0026931348256766796, 0.08152779191732407, -0.07935583591461182, -0.19768795371055603, -0.03845161572098732, 0.20010073482990265, 0.016318481415510178, 0.0632096603512764, -0.011526728980243206, 0.014400461688637733, 0.0067327553406357765, -0.09425251930952072, 0.08448279649019241, 0.07494183629751205, 0.0023620042484253645, 0.08057244122028351, -0.047037139534950256, -0.046890683472156525, -0.11225142329931259, -0.050047989934682846, 0.1212184950709343, 0.2601091265678406, -0.06082411855459213, 0.045477643609046936, 0.03149885684251785, -0.06688907742500305, -0.13696949183940887, -0.02126213349401951, 0.10699723660945892, 0.025701817125082016, -0.014170807786285877, -0.17049802839756012, 0.007630861829966307, 0.082243412733078, -0.011624343693256378, 0.10042472928762436, -0.3380735516548157, -0.1305507868528366, 0.05643325299024582, 0.05566902086138725, -0.03441784903407097, -0.1748083233833313, -0.09675872325897217, -0.027046332135796547, -0.09126903116703033, 0.06360379606485367, -0.013764475472271442, 0.12006320059299469, 0.016431637108325958, 0.019591744989156723, 0.02689298428595066, -0.056502293795347214, 0.1488185077905655, 0.06245231255888939, 0.016509689390659332, -0.017558759078383446, 0.01001790165901184, 0.022980231791734695, -0.07212022691965103, 0.05297354236245155, -0.0748441070318222, 0.013103517703711987, -0.14901509881019592, -0.021159393712878227, -0.07028692215681076, -0.004348617047071457, -0.06598110496997833, 0.00010320015280740336, -0.020443560555577278, 0.04263864830136299, 0.115170918405056, 0.007335060741752386, 0.07084253430366516, -0.05108487606048584, 0.0852155089378357, 0.13834281265735626, 0.10757777839899063, 0.0260535329580307, -0.12352078408002853, 0.006268983706831932, 0.006569421850144863, 0.013127229176461697, -0.11119237542152405, 0.05242108553647995, 0.13315708935260773, 0.04159124568104744, 0.1683841347694397, 0.03849947452545166, -0.10533389449119568, -0.00715535506606102, 0.06675992161035538, -0.06052550673484802, -0.1834857165813446, -0.002920177299529314, 0.008101237006485462, -0.1376754641532898, -0.017421701923012733, 0.11785197257995605, -0.013495951890945435, 0.005560860503464937, 0.020091982558369637, 0.07194197922945023, -0.03436797857284546, 0.22239594161510468, 0.011556736193597317, 0.11443406343460083, -0.09091104567050934, 0.07745809853076935, 0.050067540258169174, -0.1003558561205864, 0.045405689626932144, 0.11582186818122864, -0.05734613165259361, -0.03317731246352196, -0.037881214171648026, 0.06794513761997223, 0.07196113467216492, -0.04615253955125809, -0.10217740386724472, -0.12794898450374603, 0.09866642951965332, 0.038615066558122635, 0.02387979067862034, 0.0396692268550396, -0.007445765659213066, 0.026117319241166115, -0.09102857857942581, 0.11350978165864944, 0.09756641089916229, 0.042175330221652985, -0.10353944450616837, 0.0756344273686409, 0.00099472445435822, 0.004011479672044516, 0.017165588214993477, -0.017781058326363564, -0.10433676838874817, 0.03293865919113159, -0.08112660050392151, -0.0111826341599226, -0.07683613896369934, -0.011427353136241436, 0.032942600548267365, -0.05557640269398689, -0.048384714871644974, 0.02527177706360817, -0.10870774835348129, -0.08434157818555832, -0.04520639404654503, 0.09296756237745285, -0.12255945056676865, -0.005071296822279692, 0.03739431872963905, -0.1515577733516693, 0.10540050268173218, 0.04720894247293472, -0.0014387447154149413, 0.0029209048952907324, -0.06932516396045685, -0.020493939518928528, 0.02891373634338379, 0.02155129425227642, 0.03318643942475319, -0.22245149314403534, -0.004150026477873325, -0.021144554018974304, 0.004975985735654831, 0.0012676625046879053, 0.027640454471111298, -0.12397237122058868, -0.0010904341470450163, -0.04258965700864792, -0.05263889953494072, -0.05218777060508728, 0.040452808141708374, 0.08183790743350983, 0.01622755639255047, 0.1743580400943756, -0.052059151232242584, 0.0838434174656868, -0.19925685226917267, -0.001515882438980043, 0.002112935297191143, -0.03284914791584015, -0.01673860475420952, -0.023681985214352608, 0.10481173545122147, -0.05962108075618744, 0.050144366919994354, -0.042839985340833664, 0.04911070689558983, 0.02819185145199299, -0.06654169410467148, 0.00808958150446415, 0.042012158781290054, 0.1375758945941925, 0.05948888510465622, -0.024861736223101616, 0.05869013071060181, -0.05489484965801239, 0.04517757520079613, 0.04744337871670723, 0.1574297845363617, 0.15613602101802826, 0.11848297715187073, 0.07139106839895248, 0.08180369436740875, -0.13352271914482117, -0.1351545751094818, 0.15962353348731995, -0.08797409385442734, 0.13660144805908203, -0.045824967324733734, 0.17997658252716064, 0.09503283351659775, -0.1957043707370758, 0.08223598450422287, -0.02783525176346302, -0.08563238382339478, -0.09947473555803299, -0.11006861180067062, -0.07680804282426834, -0.1342494934797287, 0.011692930944263935, -0.09702637791633606, 0.0828934758901596, 0.03161045163869858, 0.04482657462358475, 0.03762475401163101, 0.08577261120080948, 0.004756670445203781, -0.01353373657912016, 0.10736224800348282, -0.007755878381431103, -0.022056441754102707, 0.001706167939119041, -0.07030981034040451, 0.05471855401992798, -0.020095087587833405, 0.10597237199544907, 0.014916623011231422, -0.08056856691837311, 0.05814697593450546, -0.013305909931659698, -0.10115420073270798, 0.029617641121149063, -0.02343195304274559, 0.031134584918618202, 0.10891272872686386, 0.05548064783215523, -0.01819278672337532, 0.004211283288896084, 0.1732279509305954, -0.07665588706731796, -0.07681949436664581, -0.14035718142986298, 0.14444401860237122, 0.028913438320159912, 0.012644129805266857, 0.014894294552505016, -0.09681714326143265, -0.026864664629101753, 0.16150538623332977, 0.11395753920078278, -0.002652339171618223, -0.017225494608283043, 0.03750298172235489, -0.0027955984696745872, -0.025860948488116264, 0.06571502238512039, 0.1092100664973259, 0.099685437977314, -0.01712265983223915, 0.013176634907722473, -0.02262900210916996, -0.08232980966567993, -0.036697592586278915, 0.07670193910598755, 0.006158898584544659, -0.009343872778117657, -0.007848436012864113, 0.1295013576745987, -0.057237785309553146, -0.15860582888126373, 0.020758718252182007, -0.1460404247045517, -0.17733973264694214, -0.01793219894170761, 0.08420738577842712, 0.04009260609745979, 0.05882451310753822, 0.004136965610086918, -0.046797242015600204, 0.15169520676136017, -0.007263448555022478, -0.03221540525555611, -0.08906012773513794, 0.05868200585246086, -0.07467444241046906, 0.16822326183319092, -0.02096613124012947, 0.06461440026760101, 0.14522124826908112, 0.03479413688182831, -0.11157319694757462, 0.052584029734134674, 0.0932168960571289, -0.12779821455478668, 0.056149814277887344, 0.18480651080608368, -0.03374595195055008, 0.12237044423818588, 0.049140579998493195, -0.08514156192541122, 0.006958144251257181, -0.020490769296884537, -0.007763300556689501, -0.085255466401577, -0.005284252110868692, -0.06590769439935684, 0.11578258872032166, 0.1923215687274933, -0.0718257874250412, 0.013961474411189556, -0.04183464124798775, 0.013192116282880306, -0.0017750466940924525, 0.12499840557575226, -0.04721459746360779, -0.2692827582359314, 0.0471382699906826, -0.004513251595199108, 0.03358667343854904, -0.18185119330883026, -0.08740387111902237, 0.04235456883907318, -0.03602873533964157, -0.06776857376098633, 0.11812150478363037, 0.05931228771805763, 0.03432207554578781, -0.048220571130514145, -0.19276490807533264, -0.009274511598050594, 0.1980644166469574, -0.16472530364990234, -0.06047298014163971 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Punjabi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Punjabi using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pa-IN", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-pa-in") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-pa-in") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Punjabi test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pa-IN", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-pa-in") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-pa-in") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\।\’\'\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 58.05 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "pa-IN", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Punjabi", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice pa-IN", "type": "common_voice", "args": "pa-IN"}, "metrics": [{"type": "wer", "value": 58.05, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-xlsr-53-pa-in
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "pa-IN" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
# Wav2Vec2-Large-XLSR-53-Punjabi Fine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Punjabi test data of Common Voice. Test Result: 58.05 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Punjabi\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Punjabi test data of Common Voice.\n\nTest Result: 58.05 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "# Wav2Vec2-Large-XLSR-53-Punjabi\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Punjabi test data of Common Voice.\n\nTest Result: 58.05 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 82, 62, 20, 28, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n# Wav2Vec2-Large-XLSR-53-Punjabi\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\nThe model can be evaluated as follows on the Punjabi test data of Common Voice.\n\nTest Result: 58.05 %## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.14348715543746948, 0.032597169280052185, -0.0012996835866943002, -0.018268929794430733, 0.06371895223855972, -0.06871356815099716, 0.15803135931491852, 0.09872307628393173, -0.003570184577256441, 0.001289453823119402, 0.02561793103814125, 0.05266820639371872, 0.055067479610443115, 0.09576582163572311, -0.0031315514352172613, -0.23100867867469788, 0.01082946453243494, 0.03128526359796524, 0.09213034808635712, 0.1310037523508072, 0.11224423348903656, -0.07579927146434784, -0.023420751094818115, 0.10658352822065353, -0.17365969717502594, 0.03587770462036133, 0.01908642239868641, -0.11059118062257767, 0.1228962168097496, 0.05070509389042854, 0.06941352784633636, 0.05752990022301674, 0.08607275038957596, -0.19666628539562225, 0.030514657497406006, 0.020075051113963127, 0.04300302267074585, 0.02399340271949768, 0.07683337479829788, 0.03472163900732994, 0.08389709889888763, 0.11636638641357422, -0.029636181890964508, 0.0631304532289505, -0.044108156114816666, -0.2077936977148056, -0.004218338523060083, 0.06639803946018219, 0.08683360368013382, 0.11573009938001633, -0.06914237886667252, 0.10330207645893097, -0.12546111643314362, 0.09748297929763794, 0.07233957201242447, -0.19544529914855957, 0.01029939390718937, 0.09214453399181366, 0.08442573994398117, 0.1088918074965477, -0.07532685995101929, 0.007009814027696848, 0.0458793081343174, 0.021457655355334282, 0.006753746885806322, -0.04286328703165054, -0.19520162045955658, -0.014023437164723873, -0.12128166109323502, -0.020162906497716904, 0.20083357393741608, -0.026589790359139442, -0.06759972870349884, -0.12761861085891724, -0.032348375767469406, 0.009430747479200363, -0.014541168697178364, -0.07493226230144501, -0.006371071096509695, 0.04893213510513306, 0.016164759173989296, -0.006502415519207716, -0.10977654159069061, -0.12219534814357758, -0.002647342160344124, 0.09013603627681732, 0.04023924097418785, 0.011883583851158619, -0.1376417875289917, 0.03966910019516945, -0.09452622383832932, -0.060835856944322586, -0.01525146421045065, 0.03671140968799591, -0.046734519302845, 0.022749392315745354, -0.08597937226295471, -0.1555587500333786, 0.013604387640953064, -0.06462401896715164, 0.01443217322230339, 0.041011445224285126, -0.03923213481903076, 0.0621979646384716, 0.06045800447463989, 0.08950908482074738, -0.06983378529548645, 0.009872366674244404, 0.0249323733150959, 0.01315996889024973, -0.027590395882725716, -0.021206151694059372, -0.04777337983250618, -0.054709628224372864, 0.019731463864445686, 0.033791687339544296, -0.061962250620126724, 0.017403583973646164, -0.022413523867726326, -0.029711144044995308, 0.046986937522888184, -0.10137911140918732, -0.04688400775194168, 0.0597391352057457, 0.02868558093905449, 0.10668159276247025, 0.03931337594985962, 0.054029062390327454, -0.06351693719625473, -0.08810533583164215, -0.005370737053453922, 0.05905533954501152, -0.03146098926663399, -0.08708707988262177, -0.01133604533970356, 0.014890152029693127, -0.02498440258204937, -0.09890224784612656, -0.12106876820325851, -0.05367996543645859, -0.011201686225831509, 0.021278033033013344, -0.056908730417490005, -0.08219444006681442, -0.00755461398512125, -0.020762097090482712, -0.08581894636154175, 0.0737437754869461, -0.04021752253174782, 0.08958954364061356, 0.026682782918214798, 0.06706792116165161, 0.0529031865298748, 0.10124187916517258, -0.060990866273641586, -0.026162199676036835, 0.012777113355696201, 0.12799464166164398, -0.039180006831884384, -0.0788356214761734, -0.09109363704919815, -0.08200880885124207, -0.021673621609807014, 0.0758894681930542, 0.03003341145813465, 0.0705118253827095, -0.2485702633857727, -0.07708514481782913, 0.1714557558298111, -0.1327388733625412, -0.012120205909013748, 0.18783621490001678, -0.00968489795923233, 0.12965184450149536, 0.0993376150727272, 0.2650530934333801, 0.1243874803185463, -0.16348512470722198, 0.047770533710718155, 0.03556006774306297, 0.0025352572556585073, -0.056172315031290054, 0.04958876967430115, -0.051550958305597305, -0.03879197686910629, 0.03762548789381981, -0.05310651287436485, 0.057213325053453445, -0.0542605035007, -0.044256433844566345, -0.022056961432099342, -0.10243427753448486, 0.06770633161067963, 0.04732265695929527, 0.0318598710000515, -0.004542505368590355, -0.02704709582030773, 0.08446741849184036, 0.13666406273841858, -0.12747631967067719, 0.058794159442186356, -0.11698269844055176, 0.0824868232011795, -0.1345033347606659, -0.03291066363453865, -0.151510551571846, 0.20294089615345, 0.006211681291460991, 0.043911632150411606, 0.030507676303386688, 0.20748892426490784, 0.005205946043133736, 0.0034230072051286697, -0.04052921384572983, -0.01332249864935875, 0.039949774742126465, -0.00476405443623662, -0.07319483906030655, -0.08002275973558426, -0.036420147866010666, -0.07106941193342209, 0.06270620971918106, -0.1598445028066635, -0.016744140535593033, -0.0209759883582592, 0.009469615295529366, -0.005222288891673088, -0.009312677197158337, 0.08950013667345047, 0.09187910705804825, 0.0186730045825243, 0.027765363454818726, 0.04830078035593033, 0.012773574329912663, -0.028697801753878593, 0.1775376945734024, -0.143255814909935, 0.0030376531649380922, 0.07354975491762161, -0.10815446823835373, 0.006456329021602869, 0.03783487528562546, -0.021950548514723778, -0.027173491194844246, -0.05949879810214043, -0.004173582419753075, 0.2842361330986023, -0.03104187361896038, 0.13125678896903992, -0.09894341230392456, -0.007862798869609833, 0.008585735224187374, -0.08488026261329651, 0.03488331288099289, 0.05570501461625099, 0.0064293392933905125, 0.05511121451854706, 0.04669579118490219, -0.03875363990664482, -0.0671577975153923, 0.21442170441150665, -0.015937425196170807, -0.08747701346874237, 0.026139188557863235, -0.020751794800162315, -0.06860748678445816, 0.04051189124584198, -0.1588265746831894, -0.05835069715976715, 0.04783734679222107, 0.05170207470655441, 0.06453549116849899, -0.1338997334241867, 0.01932390406727791, 0.01016935147345066, -0.11074048280715942, -0.1638239324092865, 0.08928994089365005, -0.03800733759999275, 0.04914965108036995, -0.11542041599750519, -0.02391582913696766, 0.026250451803207397, -0.03415898233652115, -0.18043255805969238, 0.12180225551128387, -0.07053636759519577, -0.21627341210842133, -0.11422127485275269, -0.017781106755137444, 0.03836023062467575, 0.010572940111160278, 0.08501338958740234, -0.12786023318767548, -0.03194202482700348, -0.05044148489832878, 0.08778572827577591, -0.0005400269292294979, -0.03402696177363396, -0.08957646042108536, -0.0354112945497036, 0.0757339671254158, -0.1605217456817627, 0.021398909389972687, -0.036435194313526154, -0.0338299386203289, 0.019688712432980537, -0.0035095911007374525, -0.020515145733952522, 0.16565531492233276, 0.015667902305722237, 0.0048436508513987064, -0.013691440224647522, 0.17512807250022888, -0.06810592114925385, -0.015400970354676247, 0.21385470032691956, -0.0029977718368172646, -0.017011096701025963, 0.1149207130074501, 0.009984544478356838, -0.060174740850925446, -0.013125533238053322, -0.015104173682630062, -0.06139819324016571, -0.2203853726387024, -0.1159021183848381, -0.07331152260303497, -0.08969201892614365, -0.037054263055324554, 0.010380858555436134, 0.04094201698899269, 0.029626203700900078, -0.0036072498187422752, -0.06571869552135468, -0.0015283600660040975, -0.021389907225966454, 0.10916195809841156, -0.0215601809322834, 0.11203130334615707, -0.05712497606873512, -0.005418787710368633, -0.00405884487554431, 0.05581730604171753, 0.15322302281856537, 0.05930479243397713, 0.051456600427627563, 0.11367160081863403, 0.16260972619056702, 0.1489957571029663, 0.0366312637925148, -0.07508198916912079, -0.03337430581450462, 0.015743792057037354, -0.03346015512943268, -0.05798790976405144, 0.03856464847922325, 0.15566067397594452, -0.030312437564134598, -0.02959461510181427, -0.08473827689886093, -0.009976875968277454, 0.18794403970241547, 0.06620129197835922, -0.17722702026367188, -0.06829030066728592, -0.01616445556282997, -0.1133507490158081, -0.013590413145720959, 0.07216870784759521, 0.15943244099617004, -0.10434161871671677, -0.011751419864594936, 0.003076887922361493, 0.08742876350879669, -0.012197410687804222, 0.024480927735567093, -0.10745353251695633, 0.002483492949977517, 0.0057220845483243465, 0.07757353782653809, -0.2567991018295288, 0.2286316156387329, 0.009695768356323242, 0.0959949865937233, -0.03490524739027023, -0.017439143732190132, -0.004195182118564844, 0.06495501846075058, 0.06914330273866653, 0.014125138521194458, 0.041783884167671204, -0.10782001167535782, -0.04544855281710625, 0.05952644720673561, -0.018845880404114723, 0.07713828980922699, 0.03875213861465454, 0.006230614148080349, 0.01738310046494007, 0.010240338742733002, -0.022892305627465248, -0.13697375357151031, -0.03305305913090706, 0.021616853773593903, 0.14884231984615326, 0.10299708694219589, -0.030679702758789062, -0.09712082892656326, -0.1726420521736145, 0.0297554899007082, -0.0768786072731018, -0.08696462959051132, -0.05215636268258095, -0.06016596406698227, 0.08917152136564255, -0.050974566489458084, 0.011250076815485954, 0.08936882764101028, 0.09801585227251053, -0.024676870554685593, -0.03242988884449005, 0.025493962690234184, -0.09493984282016754, -0.09616348147392273, -0.010762391611933708, 0.16265906393527985, 0.10982728749513626, 0.06340143829584122, 0.06200609728693962, 0.0026593846268951893, -0.022832421585917473, -0.03527344390749931, -0.013108436018228531, 0.08210069686174393, -0.10495256632566452, -0.0019626514986157417, 0.010578968562185764, -0.14453718066215515, -0.07134471088647842, -0.07520217448472977, 0.14056269824504852, 0.06796663999557495, -0.03828583285212517, 0.195578932762146, 0.2437615990638733, -0.09708336740732193, -0.18621964752674103, -0.048040952533483505, 0.08321470767259598, 0.11368396878242493, 0.016002777963876724, -0.1468195915222168, 0.0828719511628151, -0.007042820565402508, -0.03541379049420357, -0.08587910979986191, -0.2674781084060669, -0.13876065611839294, 0.1701032966375351, -0.007260170299559832, 0.15229134261608124, -0.02659609727561474, -0.04394512251019478, 0.004985107108950615, -0.01785067282617092, -0.003571008797734976, -0.08280547708272934, 0.10293560475111008, 0.000498770852573216, 0.1547836810350418, 0.0468796044588089, -0.021875469014048576, 0.08471528440713882, 0.09334934502840042, -0.012527313083410263, -0.025620386004447937, 0.07911313325166702, 0.01218464132398367, 0.050945062190294266, 0.1266048550605774, -0.0836053341627121, 0.03969144448637962, -0.1373668760061264, -0.08720656484365463, -0.0927296057343483, 0.03232324495911598, 0.02053534798324108, -0.04709627851843834, 0.016511183232069016, -0.03788740187883377, 0.03520650789141655, 0.004291067365556955, -0.060947664082050323, -0.13985194265842438, 0.10882215201854706, 0.16779734194278717, 0.1853833645582199, -0.03970853611826897, -0.09769053012132645, -0.052971940487623215, -0.03228094428777695, 0.13284386694431305, -0.1164364293217659, 0.018653981387615204, 0.05063627287745476, 0.0494094155728817, 0.135138601064682, 0.0018371808109804988, -0.054160501807928085, 0.10701758414506912, 0.018367089331150055, -0.010232750326395035, -0.1388937085866928, 0.01448269747197628, 0.004530324600636959, -0.029479246586561203, 0.013480530120432377, 0.09704108536243439, -0.10779929906129837, -0.030697021633386612, -0.024993248283863068, 0.026423271745443344, -0.12276513874530792, 0.20491814613342285, 0.0504424087703228, 0.07013718038797379, -0.10639522224664688, 0.0014749558176845312, 0.0007985991542227566, -0.03764783591032028, 0.021990269422531128, -0.03169015422463417, -0.08047231286764145, -0.07572358846664429, -0.031760551035404205, 0.055468108505010605, 0.04121597856283188, -0.1122724786400795, -0.03442716225981712, -0.10719899088144302, 0.015443786978721619, 0.06919276714324951, 0.029373882338404655, 0.0035849171690642834, -0.1300908327102661, -0.05602050945162773, -0.10003664344549179, 0.05249706655740738, 0.05853041261434555, -0.009375115856528282, -0.09647458046674728, 0.19787026941776276, 0.05535686016082764, 0.06618405878543854, -0.05916617810726166, -0.07082032412290573, -0.006676316261291504, 0.08542165905237198, -0.12652327120304108, 0.003131301375105977, -0.06847456097602844, 0.0006655383622273803, -0.010767257772386074, -0.07362400740385056, -0.006421965546905994, 0.07590299844741821, -0.09461496025323868, 0.0751270204782486, 0.029844112694263458, 0.08586236089468002, -0.052333008497953415, 0.026867952197790146, 0.039436545222997665, -0.025467684492468834, 0.08033139258623123, 0.10942518711090088, -0.1363057792186737, 0.10997767001390457, -0.17675766348838806, -0.04028872400522232, 0.03724163770675659, 0.07251982390880585, -0.018469057977199554, -0.09115048497915268, 0.029523100703954697, 0.09809761494398117, 0.040831249207258224, -0.0038306841161102057, 0.12238410860300064, -0.06220075860619545, 0.013044832274317741, -0.11004715412855148, 0.017433449625968933, -0.060786761343479156, 0.03178033232688904, 0.036832742393016815, 0.138312429189682, 0.13564826548099518, -0.11599297821521759, 0.06439360976219177, -0.11871954053640366, 0.010499781928956509, -0.03910960257053375, -0.01733025163412094, -0.11106511950492859, -0.08168329298496246, 0.05732966214418411, -0.05444670096039772, 0.15231697261333466, -0.0004003295034635812, -0.0044321403838694096, -0.02312603034079075, -0.08372872322797775, 0.032745327800512314, -0.03237023577094078, 0.2865004539489746, 0.04065795987844467, 0.04700227081775665, -0.004842322785407305, -0.004786364268511534, -0.01553365308791399, 0.1261482834815979, -0.052531931549310684, 0.18947532773017883, -0.016940895467996597, 0.061579134315252304, 0.06474842131137848, -0.08454154431819916, -0.04897318407893181, -0.026759356260299683, -0.14764542877674103, 0.035903725773096085, -0.05770062282681465, 0.17214460670948029, 0.16993184387683868, -0.08016093075275421, 0.10017556697130203, 0.010326545685529709, -0.08111926913261414, -0.11779163777828217, -0.10788972675800323, -0.06211542710661888, -0.15477415919303894, 0.030229980126023293, -0.08583580702543259, 0.03764968737959862, 0.10630416125059128, 0.03311163932085037, -0.019597092643380165, 0.1513165384531021, 0.01765788160264492, -0.10486822575330734, 0.04416865110397339, -0.09231311082839966, 0.020351385697722435, -0.13463981449604034, 0.019574066624045372, 0.16325005888938904, 0.002189534017816186, 0.05202839896082878, 0.0058891670778393745, -0.05363988131284714, 0.013008798472583294, -0.09150455892086029, -0.05929781496524811, -0.009986605495214462, -0.017244910821318626, 0.0769922211766243, 0.15954288840293884, 0.10613580793142319, -0.06137235835194588, -0.01657533086836338, 0.0712442472577095, -0.02284800261259079, -0.12931261956691742, -0.12411972135305405, 0.1698453426361084, 0.031021570786833763, 0.006575748324394226, 0.02449677884578705, -0.018214449286460876, -0.02484181337058544, 0.22777961194515228, 0.19467084109783173, 0.018692193552851677, 0.03691445663571358, -0.0227435864508152, -0.013659022748470306, -0.05080892890691757, 0.08230852335691452, 0.08523260802030563, 0.214151531457901, -0.025650832802057266, 0.004945642314851284, -0.1046433076262474, -0.0599609799683094, -0.022867893800139427, 0.06589411199092865, -0.07520269602537155, -0.1044173389673233, 0.003682684851810336, 0.1253838688135147, -0.06545492261648178, -0.07531992346048355, -0.10760807991027832, -0.057914867997169495, -0.09046377241611481, -0.013431437313556671, -0.010487663559615612, 0.10271617025136948, -0.021597612649202347, -0.07346070557832718, 0.055459775030612946, 0.1582893282175064, -0.002849745564162731, -0.0260392464697361, -0.043487101793289185, 0.08067238330841064, -0.07808816432952881, -0.0028071205597370863, 0.004335709847509861, 0.18772810697555542, 0.010444859974086285, 0.11009722948074341, -0.008973183110356331, 0.18251089751720428, 0.002533776219934225, -0.08922341465950012, 0.011488205753266811, 0.15059198439121246, 0.0032203691080212593, 0.12045937031507492, 0.010360954329371452, -0.10585398972034454, 0.0370626337826252, -0.13965648412704468, -0.009137840941548347, -0.0840679407119751, 0.04629591479897499, -0.019404398277401924, 0.09449398517608643, 0.049077510833740234, -0.06003270298242569, -0.07209460437297821, -0.059381600469350815, 0.051249273121356964, -0.0022130545694381, -0.07153857499361038, -0.05673452466726303, -0.2630535960197449, 0.0004216382803861052, -0.09808336198329926, -0.02303890697658062, -0.21049554646015167, -0.02930804342031479, -0.015154431574046612, -0.07954688370227814, 0.01352872047573328, 0.036162424832582474, 0.0881948247551918, 0.021821895614266396, 0.008362905122339725, -0.022356942296028137, 0.03800266981124878, 0.1283496618270874, -0.17182055115699768, -0.0991690531373024 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-rm-vallader-with-lm This model is a fine-tuned version of [anuragshas/wav2vec2-large-xlsr-53-rm-vallader](https://huggingface.co/anuragshas/wav2vec2-large-xlsr-53-rm-vallader) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4552 - Wer: 0.3206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.112 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2379 | 3.12 | 100 | 0.4041 | 0.3396 | | 0.103 | 6.25 | 200 | 0.4400 | 0.3337 | | 0.0664 | 9.38 | 300 | 0.4239 | 0.3315 | | 0.0578 | 12.5 | 400 | 0.4303 | 0.3267 | | 0.0446 | 15.62 | 500 | 0.4575 | 0.3274 | | 0.041 | 18.75 | 600 | 0.4451 | 0.3223 | | 0.0402 | 21.88 | 700 | 0.4507 | 0.3206 | | 0.0374 | 25.0 | 800 | 0.4649 | 0.3208 | | 0.0371 | 28.12 | 900 | 0.4552 | 0.3206 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xlsr-53-rm-vallader-with-lm", "results": []}]}
automatic-speech-recognition
anuragshas/wav2vec2-xlsr-53-rm-vallader-with-lm
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-xlsr-53-rm-vallader-with-lm ==================================== This model is a fine-tuned version of anuragshas/wav2vec2-large-xlsr-53-rm-vallader on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.4552 * Wer: 0.3206 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.112 * num\_epochs: 30 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.112\n* num\\_epochs: 30", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.112\n* num\\_epochs: 30", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ 65, 145, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.112\n* num\\_epochs: 30### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ -0.1425461620092392, 0.10209082067012787, -0.0021139297168701887, 0.06789661943912506, 0.13499626517295837, 0.01641153357923031, 0.12181458622217178, 0.12922941148281097, -0.11033757030963898, 0.08026584982872009, 0.10184770822525024, 0.09544564038515091, 0.03812205046415329, 0.10113634169101715, -0.030435891821980476, -0.28985798358917236, -0.007294026203453541, 0.03396369516849518, -0.12629255652427673, 0.12609177827835083, 0.09097573906183243, -0.12954792380332947, 0.04946264624595642, 0.039182260632514954, -0.17665618658065796, -0.0005755992024205625, -0.0012399291153997183, -0.09367380291223526, 0.13177677989006042, 0.025699757039546967, 0.10169562697410583, 0.022808928042650223, 0.10101406276226044, -0.18079335987567902, 0.00716287549585104, 0.05758645012974739, 0.035312578082084656, 0.10203724354505539, 0.08619845658540726, -0.004172263666987419, 0.13113808631896973, -0.06550730019807816, 0.06502778083086014, 0.04001684486865997, -0.09285108745098114, -0.2824729084968567, -0.08680913597345352, 0.0819351002573967, 0.08892440795898438, 0.1014404296875, -0.013483239337801933, 0.10644277930259705, -0.07647814601659775, 0.09118065237998962, 0.26675283908843994, -0.27937281131744385, -0.07106150686740875, -0.0210383590310812, 0.037314511835575104, 0.014814935624599457, -0.12352457642555237, -0.02137742005288601, 0.04212958738207817, 0.03883785381913185, 0.10073137283325195, 0.001269679982215166, -0.04760028421878815, 0.011664153076708317, -0.1409321427345276, -0.04636412113904953, 0.12776251137256622, 0.04451853036880493, -0.039729367941617966, -0.0749029740691185, -0.053031690418720245, -0.22489191591739655, -0.035866156220436096, 0.0009233571472577751, 0.03042607381939888, -0.07704547792673111, -0.12851941585540771, 0.005774674471467733, -0.08675272017717361, -0.10246725380420685, -0.013456516899168491, 0.2038225680589676, 0.05088334530591965, 0.004688617307692766, -0.02079569362103939, 0.11896748840808868, 0.040534213185310364, -0.15569236874580383, 0.018948664888739586, 0.05424141138792038, -0.04733693227171898, -0.0007779102888889611, -0.05144490301609039, -0.03294842317700386, 0.00786240678280592, 0.1423882246017456, -0.06867542117834091, 0.03674599900841713, 0.024315379559993744, 0.030623963102698326, -0.0949840247631073, 0.21335899829864502, -0.08552659302949905, -0.03279823809862137, -0.016809778288006783, 0.09755702316761017, 0.026966769248247147, -0.012903195805847645, -0.0918956845998764, 0.0030672522261738777, 0.1100609302520752, 0.03483567014336586, -0.02262263558804989, 0.03150958567857742, -0.03214055299758911, -0.03163047134876251, 0.027076423168182373, -0.10290909558534622, 0.025965582579374313, 0.021916121244430542, -0.09754128754138947, 0.018005792051553726, 0.010357017628848553, 0.007222272921353579, -0.025434842333197594, 0.1575477570295334, -0.08707519620656967, 0.0028590557631105185, -0.0786978155374527, -0.09521510452032089, 0.023940233513712883, -0.07280623912811279, 0.0009545851498842239, -0.07453653216362, -0.11588646471500397, -0.021936530247330666, 0.024434268474578857, -0.037994228303432465, -0.08103464543819427, -0.04317009076476097, -0.11104876548051834, 0.04138266295194626, -0.022076841443777084, 0.15807729959487915, -0.05086855962872505, 0.12562036514282227, 0.06309574842453003, 0.05310046672821045, 0.005774590652436018, 0.05892647057771683, -0.06211244687438011, 0.01552885863929987, -0.1628558188676834, 0.03892676532268524, -0.06726814806461334, 0.029993992298841476, -0.10123099386692047, -0.1337135136127472, 0.013924985192716122, -0.006570213008671999, 0.09249109774827957, 0.10028762370347977, -0.15741044282913208, -0.11849329620599747, 0.14908894896507263, -0.08620920032262802, -0.09932682663202286, 0.1306876838207245, -0.006739520467817783, -0.040868017822504044, 0.0422053225338459, 0.15330320596694946, 0.06146205589175224, -0.11887858808040619, -0.03086935356259346, -0.03568890690803528, 0.10377376526594162, -0.020619381219148636, 0.09774316847324371, -0.03125930204987526, 0.051856447011232376, 0.016169780865311623, -0.04654698818922043, 0.04265645891427994, -0.1091674417257309, -0.08916604518890381, -0.03977474197745323, -0.09933565557003021, 0.05116807296872139, 0.06687762588262558, 0.054545145481824875, -0.0886678472161293, -0.1259784996509552, 0.04527202621102333, 0.12587636709213257, -0.07909443974494934, 0.032651446759700775, -0.08332044631242752, 0.08576321601867676, -0.04237111657857895, -0.02442268654704094, -0.19087950885295868, -0.0006575818406417966, 0.02033984661102295, -0.031643711030483246, 0.025102820247411728, -0.02392820455133915, 0.07137062400579453, 0.0665663629770279, -0.06450917571783066, -0.06498310714960098, -0.08049925416707993, -0.021856103092432022, -0.08386591821908951, -0.2327786237001419, -0.08503670990467072, -0.009434509091079235, 0.13534489274024963, -0.1777954399585724, 0.01575196534395218, 0.016968250274658203, 0.13190993666648865, 0.03187211975455284, -0.032930511981248856, -0.019177492707967758, 0.09409180283546448, -0.0270091500133276, -0.05208880826830864, 0.02785428613424301, 0.0018833965295925736, -0.09294459968805313, -0.018278131261467934, -0.11426613479852676, 0.1511766016483307, 0.13775750994682312, -0.03004208393394947, -0.07288099080324173, 0.021847128868103027, -0.08673349022865295, -0.0511440634727478, -0.037155453115701675, -0.0013967478880658746, 0.1679374724626541, 0.024239571765065193, 0.1369398683309555, -0.08284557610750198, -0.05567321926355362, 0.04222375899553299, 0.005155615974217653, 0.004128645174205303, 0.11222542822360992, 0.08771402388811111, -0.0029936188366264105, 0.12176170200109482, 0.0810345783829689, -0.12047196179628372, 0.14731140434741974, -0.07126898318529129, -0.10465185344219208, -0.026401907205581665, -0.017974188551306725, 0.021084778010845184, 0.143166184425354, -0.1371237188577652, -0.0218557920306921, 0.028329839929938316, -0.001805784646421671, 0.024924401193857193, -0.22499336302280426, -0.004899582825601101, 0.01724744401872158, -0.06459569185972214, -0.029286595061421394, -0.0008671906543895602, 0.013306322507560253, 0.10676375776529312, 0.0005647827056236565, -0.07331303507089615, -0.003991627134382725, -0.0004269756027497351, -0.0609283372759819, 0.19121865928173065, -0.07734087854623795, -0.15183870494365692, -0.14884519577026367, -0.0051346877589821815, -0.061542823910713196, -0.008711098693311214, 0.0474795326590538, -0.1025402843952179, -0.02698965184390545, -0.03643769025802612, 0.05857178196310997, -0.02767910249531269, 0.05372651666402817, 0.014936057850718498, 0.013044648803770542, 0.07920191437005997, -0.12136224657297134, 0.02097952924668789, -0.05467197671532631, -0.052663758397102356, 0.004988310392946005, 0.08568300306797028, 0.11186566948890686, 0.16462770104408264, 0.007429806981235743, 0.016489848494529724, -0.031041894108057022, 0.16758905351161957, -0.10448574274778366, -0.044803865253925323, 0.13978877663612366, 0.00020874662732239813, 0.03855287283658981, 0.10683023929595947, 0.06955414265394211, -0.06844811141490936, -0.012196452356874943, 0.039850782603025436, -0.020283637568354607, -0.24214355647563934, -0.048145841807127, -0.043881479650735855, -0.0009141602786257863, 0.10002298653125763, 0.03453338146209717, 0.03725586086511612, 0.03544628247618675, -0.015162699855864048, 0.04096556082367897, -0.04132866486907005, 0.06139008700847626, 0.09621429443359375, 0.051088377833366394, 0.1334472894668579, -0.028075354173779488, -0.053519200533628464, 0.026030296459794044, -0.019056934863328934, 0.20889273285865784, -0.02971438504755497, 0.15458665788173676, 0.04318097606301308, 0.1767600029706955, 0.015252356417477131, 0.08698002249002457, 0.010290011763572693, -0.025095336139202118, 0.026657691225409508, -0.06110718473792076, -0.03114878572523594, 0.011473181657493114, 0.05369500443339348, 0.08579575270414352, -0.1279795914888382, -0.009680927731096745, 0.03433946520090103, 0.34376683831214905, 0.05363425239920616, -0.31406134366989136, -0.1191687136888504, -0.026530735194683075, -0.06391344964504242, -0.028918370604515076, 0.03141196444630623, 0.11334654688835144, -0.0912969633936882, 0.052101802080869675, -0.06936030834913254, 0.082575224339962, -0.058508168905973434, 0.022240985184907913, 0.09300278127193451, 0.09920769929885864, 0.007557015400379896, 0.0519079752266407, -0.25635138154029846, 0.2916725277900696, 0.0044969613663852215, 0.08758603036403656, -0.0521327368915081, 0.02632923424243927, 0.022349081933498383, -0.004366385284811258, 0.05502723902463913, -0.026309048756957054, -0.014921761117875576, -0.1808752864599228, -0.08608655631542206, 0.018556656315922737, 0.13051412999629974, -0.06119133159518242, 0.11956887692213058, -0.026236727833747864, -0.03088712878525257, 0.05358066409826279, -0.08167622238397598, -0.06571865826845169, -0.08259912580251694, 0.023197023198008537, 0.03971206396818161, 0.030579019337892532, -0.09225235879421234, -0.13696862757205963, -0.08355537801980972, 0.13229115307331085, -0.10114038735628128, -0.035316839814186096, -0.12039358168840408, 0.09585283696651459, 0.16975587606430054, -0.07468528300523758, 0.053497690707445145, 0.017863212153315544, 0.11848820000886917, 0.021457882598042488, -0.03874494880437851, 0.08942252397537231, -0.07953005284070969, -0.24028462171554565, -0.04177755489945412, 0.17625543475151062, 0.015638327226042747, 0.06868395954370499, -0.03709237650036812, 0.03595985099673271, -0.027898559346795082, -0.07621607929468155, 0.03950439766049385, 0.0012828354956582189, 0.036300722509622574, 0.035358864814043045, -0.01953004114329815, -0.019879702478647232, -0.06803151965141296, -0.037930168211460114, 0.14306895434856415, 0.25812020897865295, -0.09312139451503754, 0.022027991712093353, 0.06732096523046494, -0.037340763956308365, -0.16340985894203186, 0.013804771937429905, 0.11885426938533783, 0.029849277809262276, -0.010743802413344383, -0.19491325318813324, 0.08782053738832474, 0.08641016483306885, -0.03272394463419914, 0.10206393897533417, -0.3090014159679413, -0.1451958417892456, 0.11171474307775497, 0.09607718139886856, 0.009317656978964806, -0.15930381417274475, -0.05689389631152153, -0.012735524214804173, -0.10565976053476334, 0.0893925130367279, -0.041751787066459656, 0.12435450404882431, -0.02247565984725952, 0.07800491899251938, 0.01829013042151928, -0.05869164690375328, 0.1241101548075676, 0.0025815237313508987, 0.05233710631728172, -0.004909811541438103, -0.006835710257291794, 0.05201689526438713, -0.03257473185658455, 0.018411967903375626, -0.0597783662378788, 0.03658498451113701, -0.08060725033283234, -0.022774094715714455, -0.1097259521484375, 0.0413680300116539, -0.04384254291653633, -0.046164192259311676, -0.01660379208624363, 0.016046056523919106, 0.012490132823586464, -0.017917491495609283, 0.14344938099384308, 0.007355326786637306, 0.17072045803070068, 0.11362279206514359, 0.08093864470720291, -0.025546234101057053, -0.11175508052110672, -0.00956160482019186, -0.02430896647274494, 0.07393277436494827, -0.12073679268360138, 0.012719598598778248, 0.1395503133535385, 0.079571932554245, 0.1110369935631752, 0.07213345170021057, -0.07219117879867554, 0.013640710152685642, 0.07094970345497131, -0.14236198365688324, -0.09497054666280746, -0.02530207484960556, -0.013586965389549732, -0.13235099613666534, 0.07196362316608429, 0.10821680724620819, -0.07030227780342102, -0.01910383813083172, 0.011291099712252617, 0.0010674508521333337, -0.04603377357125282, 0.24256472289562225, 0.05892918258905411, 0.0816178098320961, -0.11892950534820557, 0.07662089914083481, 0.04393935948610306, -0.1423557996749878, 0.01992996782064438, 0.07333649694919586, -0.05759292468428612, -0.009406052529811859, 0.014743577688932419, 0.08155027776956558, -0.04295109957456589, -0.064984530210495, -0.157034233212471, -0.13050688803195953, 0.08500274270772934, 0.1520197093486786, 0.06579859554767609, 0.03108217939734459, -0.05276580527424812, 0.04840182512998581, -0.1388225257396698, 0.10775185376405716, 0.069329634308815, 0.07933036983013153, -0.15859703719615936, 0.17374646663665771, 0.022950896993279457, 0.036869462579488754, -0.005359143018722534, 0.01686915010213852, -0.09500173479318619, 0.018054837360978127, -0.11217498034238815, -0.035852354019880295, -0.03095352277159691, -0.005096007604151964, -0.0005774250021204352, -0.06443526595830917, -0.06815038621425629, 0.03666723892092705, -0.11647938936948776, -0.03688203915953636, 0.008329958654940128, 0.029918482527136803, -0.1320343315601349, 0.006072492804378271, 0.0354929193854332, -0.10407929122447968, 0.09871348738670349, 0.08732568472623825, 0.029232200235128403, 0.0683663934469223, -0.07360448688268661, -0.016779063269495964, 0.05044853687286377, 0.0016764722531661391, 0.055217523127794266, -0.11666596680879593, -0.004032369703054428, -0.02062881551682949, 0.05567106232047081, 0.0017160526476800442, 0.062311168760061264, -0.14348076283931732, -0.007720551453530788, -0.012193245813250542, -0.0457177571952343, -0.0712449699640274, 0.033887382596731186, 0.09361325204372406, 0.030752327293157578, 0.17309878766536713, -0.07756826281547546, 0.03788592666387558, -0.2191273421049118, 0.01373359002172947, -0.04808182269334793, -0.09205757826566696, -0.10944484174251556, -0.015052342787384987, 0.0879940614104271, -0.059756506234407425, 0.091079942882061, -0.030158238485455513, 0.09057281166315079, 0.03370252996683121, -0.04483247548341751, -0.018166739493608475, 0.04723631218075752, 0.21186532080173492, 0.04460055008530617, -0.021381987258791924, 0.06312786787748337, 0.01758543774485588, 0.07443218678236008, 0.13224419951438904, 0.16699577867984772, 0.12771224975585938, 0.030377265065908432, 0.09642142057418823, 0.0899091511964798, -0.09630095213651657, -0.1767856627702713, 0.05985574051737785, -0.06244153156876564, 0.12386918067932129, -0.010747452266514301, 0.22441014647483826, 0.10160726308822632, -0.16640140116214752, 0.050541508942842484, -0.03680618479847908, -0.07564573734998703, -0.10217209905385971, -0.008942069485783577, -0.06636641919612885, -0.17081066966056824, 0.020030608400702477, -0.12044123560190201, 0.039532218128442764, 0.08036026358604431, 0.025858713313937187, 0.010490712709724903, 0.15467151999473572, 0.03870734944939613, 0.00871891900897026, 0.09340779483318329, 0.03537846729159355, -0.031235825270414352, -0.06577131897211075, -0.07643653452396393, 0.018924526870250702, -0.01685560867190361, 0.05082152411341667, -0.061170466244220734, -0.1228109821677208, 0.06081869453191757, 0.012344326823949814, -0.10032900422811508, 0.039087727665901184, -0.011865147389471531, 0.09532689303159714, 0.06450267136096954, 0.01057931873947382, 0.00783687736839056, -0.025233466178178787, 0.2515604496002197, -0.11712466925382614, -0.07787478715181351, -0.12346234172582626, 0.2554333806037903, 0.018161796033382416, -0.03022359125316143, 0.03943725675344467, -0.08393720537424088, -0.04197491332888603, 0.18756872415542603, 0.17910511791706085, -0.017658820375800133, -0.019756373018026352, 0.027638768777251244, -0.015920307487249374, -0.06632756441831589, 0.07034572213888168, 0.13910946249961853, 0.12276731431484222, -0.0667039230465889, -0.03553761541843414, -0.05138201266527176, -0.041001904755830765, -0.013861318118870258, 0.08229070156812668, 0.004398362245410681, -0.03064046800136566, -0.03481864556670189, 0.07468212395906448, -0.06070888787508011, -0.162210151553154, 0.05205436795949936, -0.22632557153701782, -0.18789462745189667, -0.015230557881295681, 0.1070193275809288, 0.024926960468292236, 0.06343477964401245, 0.004817890003323555, -0.024470927193760872, 0.094630666077137, -0.00327615556307137, -0.0722217857837677, -0.1092250645160675, 0.09408427029848099, -0.09247012436389923, 0.18384307622909546, -0.05085491016507149, 0.06962370127439499, 0.11419111490249634, 0.07448815554380417, -0.08710632473230362, 0.031077614054083824, 0.06898244470357895, -0.16435804963111877, 0.03070784918963909, 0.19549578428268433, -0.028511155396699905, 0.104544997215271, 0.019855357706546783, -0.1334671825170517, 0.0027621902991086245, -0.07539721578359604, -0.03660504147410393, -0.05824713408946991, -0.022952528670430183, -0.04601331800222397, 0.12476713955402374, 0.2103336602449417, -0.053114376962184906, -0.012660945765674114, -0.06091906875371933, 0.018461573868989944, 0.06711041927337646, 0.0813993513584137, -0.03344989940524101, -0.29351913928985596, 0.022807760164141655, 0.0024019493721425533, -0.009756791405379772, -0.2549464702606201, -0.07659605145454407, 0.0514465793967247, -0.07105281949043274, -0.08294085413217545, 0.07540753483772278, 0.05879165232181549, 0.04448840394616127, -0.04297179728746414, -0.03026481345295906, -0.05471920967102051, 0.17181792855262756, -0.20653711259365082, -0.07548081874847412 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Tamil Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ta", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Tamil test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ta", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\।\’\']' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 71.87 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "ta", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Tamil", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ta", "type": "common_voice", "args": "ta"}, "metrics": [{"type": "wer", "value": 71.87, "name": "Test WER"}]}]}]}
automatic-speech-recognition
anuragshas/wav2vec2-xlsr-53-tamil
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ta", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ta" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ta #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Tamil Fine-tuned facebook/wav2vec2-large-xlsr-53 on Tamil using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Tamil test data of Common Voice. Test Result: 71.87 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Tamil\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Tamil using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Tamil test data of Common Voice.\n\nTest Result: 71.87 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ta #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Tamil\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Tamil using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Tamil test data of Common Voice.\n\nTest Result: 71.87 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ 80, 61, 20, 28, 23 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ta #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Tamil\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Tamil using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\nThe model can be used directly (without a language model) as follows:## Evaluation\nThe model can be evaluated as follows on the Tamil test data of Common Voice.\n\nTest Result: 71.87 %## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ -0.13683108985424042, -0.0014030971797183156, -0.0022794066462665796, -0.018839672207832336, 0.11203114688396454, -0.05953948199748993, 0.13181789219379425, 0.09365323930978775, 0.004586796276271343, -0.0064373137429356575, -0.005860212258994579, 0.03541452810168266, 0.06532036513090134, 0.09760569036006927, -0.0013513392768800259, -0.25343769788742065, 0.0016396832652390003, 0.03379352018237114, 0.08206304907798767, 0.1235998198390007, 0.09226307272911072, -0.0692664310336113, -0.016293207183480263, 0.09293853491544724, -0.0965287983417511, 0.03183084353804588, 0.03596360608935356, -0.11250181496143341, 0.13413609564304352, 0.026121526956558228, 0.05961143970489502, 0.05040543153882027, 0.09958965331315994, -0.1644856035709381, 0.030130768194794655, 0.017324596643447876, 0.0686030164361, 0.0031736702658236027, 0.06298849731683731, 0.04359852895140648, 0.14502374827861786, 0.12062502652406693, -0.004599190782755613, 0.06111779436469078, -0.03396366909146309, -0.1672152727842331, -0.012137779034674168, -0.01202766690403223, 0.11845237016677856, 0.1564628779888153, -0.07974499464035034, 0.16258881986141205, -0.09115580469369888, 0.10742346197366714, 0.061431050300598145, -0.21030643582344055, -0.004326554015278816, 0.10581942647695541, 0.08600956946611404, 0.11098930239677429, -0.05055819824337959, 0.023235609754920006, 0.023050552234053612, 0.06159290298819542, 0.022731591016054153, -0.02855013683438301, -0.1647547334432602, -0.02185613103210926, -0.1336946338415146, 0.029562506824731827, 0.1860332041978836, -0.04845026507973671, -0.05871817469596863, -0.09930547326803207, -0.04670459404587746, -0.04410635679960251, -0.008663319982588291, -0.0939851626753807, -0.007941355928778648, 0.05073465406894684, 0.04872165620326996, -0.007504342123866081, -0.10728265345096588, -0.11168906092643738, 0.011306782253086567, 0.04560432210564613, 0.038102198392152786, 0.01323096826672554, -0.147343710064888, 0.036708153784275055, -0.07542934268712997, -0.05365820974111557, -0.022558122873306274, 0.04326242953538895, -0.07396894693374634, 0.023776886984705925, -0.0696081668138504, -0.21437163650989532, -0.005009644664824009, -0.09212592989206314, 0.0139533169567585, 0.019131362438201904, -0.034199681133031845, 0.03971180319786072, 0.02045554295182228, 0.14917390048503876, -0.12022900581359863, 0.021634541451931, 0.06025693938136101, 0.009813862852752209, 0.005264671519398689, -0.031848564743995667, -0.04424306005239487, -0.074107825756073, 0.048756085336208344, 0.05451245605945587, -0.09244870394468307, 0.023201117292046547, -0.03135491907596588, -0.062347978353500366, 0.009761953726410866, -0.11088692396879196, -0.05255439877510071, 0.025566518306732178, 0.023860333487391472, 0.14055104553699493, 0.06389623880386353, 0.04159769415855408, -0.07202479988336563, -0.06418013572692871, -0.01952475495636463, 0.061728913336992264, -0.04730299487709999, -0.09792063385248184, -0.007425509858876467, -0.07719751447439194, -0.045178163796663284, -0.08691719174385071, -0.11025464534759521, -0.045547980815172195, -0.04542486369609833, 0.01080416887998581, -0.061475805938243866, -0.08551828563213348, -0.01122299674898386, -0.05229257419705391, -0.0619572289288044, 0.003499247133731842, -0.01657850854098797, 0.06563619524240494, 0.05042481794953346, 0.07700373977422714, 0.06119101122021675, 0.08940116316080093, -0.07706980407238007, -0.02028944157063961, 0.0419907346367836, 0.1173333004117012, -0.048687729984521866, -0.040855467319488525, -0.06804010272026062, -0.07599293440580368, -0.0312635563313961, 0.04563865438103676, 0.05770878121256828, 0.07903420180082321, -0.2609935700893402, -0.07846125215291977, 0.17273004353046417, -0.15047994256019592, -0.06915107369422913, 0.18702296912670135, 0.019466234371066093, 0.12514044344425201, 0.11140063405036926, 0.18848565220832825, 0.09101487696170807, -0.1500273197889328, 0.03264422342181206, -0.0055735413916409016, -0.012625996954739094, -0.06340209394693375, 0.06412875652313232, -0.01411503180861473, 0.0009703113464638591, 0.033390242606401443, -0.04778125137090683, 0.06654791533946991, -0.0562482587993145, -0.052216675132513046, -0.022634224966168404, -0.10186148434877396, 0.039739225059747696, 0.02987046167254448, 0.043815840035676956, 0.009670971892774105, -0.03265023231506348, 0.032980818301439285, 0.13778044283390045, -0.1335466355085373, 0.06319133192300797, -0.18355382978916168, 0.10041740536689758, -0.11312341690063477, -0.008709256537258625, -0.15510015189647675, 0.1567341536283493, 0.027474334463477135, 0.048495713621377945, 0.07113269716501236, 0.1229533776640892, 0.005661144852638245, 0.006682342384010553, -0.030872540548443794, -0.007441870868206024, 0.04883310943841934, -0.011516260914504528, -0.05481262877583504, -0.056562718003988266, -0.015658259391784668, -0.05012836307287216, 0.09239320456981659, -0.15746857225894928, 0.002408981788903475, 0.0379861518740654, 0.013880467042326927, 0.008603652007877827, -0.01745561696588993, 0.10761580616235733, 0.1092633605003357, 0.027936195954680443, -0.008017068728804588, 0.043207526206970215, 0.005421589128673077, -0.05577680841088295, 0.1309550255537033, -0.13912363350391388, 0.02479199878871441, 0.058169953525066376, -0.06324388086795807, 0.015195813030004501, 0.13710837066173553, 0.0013149076839908957, -0.0271807461977005, -0.07723718881607056, 0.04467124119400978, 0.2853994369506836, 0.03458894044160843, 0.1288330852985382, -0.06479047983884811, 0.03564830124378204, 0.029799165204167366, -0.08698859810829163, 0.060325752943754196, 0.025373315438628197, 0.0825042873620987, -0.0003547036030795425, 0.007127450313419104, -0.0948771983385086, -0.1145441085100174, 0.1884090155363083, -0.016970030963420868, -0.08313722163438797, 0.019571324810385704, -0.06961407512426376, -0.03495657444000244, 0.011524020694196224, -0.20739367604255676, -0.03932122513651848, 0.025624867528676987, 0.03363616764545441, 0.07296542078256607, -0.13173629343509674, 0.011819738894701004, 0.01762435957789421, -0.0864248052239418, -0.17561961710453033, 0.1263493150472641, -0.057508401572704315, 0.028836717829108238, -0.1185443103313446, -0.029820019379258156, -0.010007491335272789, -0.02780057303607464, -0.18632692098617554, 0.12178774923086166, -0.060750000178813934, -0.2893664836883545, -0.14767125248908997, -0.005119198467582464, 0.03218608722090721, -0.016213124617934227, 0.06458975374698639, -0.13525541126728058, -0.04934512451291084, -0.03670278191566467, 0.09417178481817245, 0.016161249950528145, -0.031941015273332596, -0.07209982722997665, -0.024670425802469254, 0.05602904409170151, -0.1532149314880371, 0.019746985286474228, -0.027000470086932182, -0.11470814794301987, 0.025806279852986336, -0.028230955824255943, -0.02316362038254738, 0.20675261318683624, -0.0034994904417544603, 0.031617987900972366, 0.004690973088145256, 0.17159414291381836, -0.08230514824390411, -0.005803709849715233, 0.23404954373836517, 0.025808190926909447, -0.019157137721776962, 0.11409742385149002, 0.009272300638258457, -0.06414733082056046, -0.0004583722329698503, -0.01314836647361517, -0.054443005472421646, -0.2660786211490631, -0.11295751482248306, -0.04979412630200386, -0.046704307198524475, -0.07663249224424362, -0.0050147227011621, 0.06774124503135681, 0.02881319262087345, 0.013594428077340126, -0.06787806004285812, 0.027029410004615784, -0.012840262614190578, 0.15030086040496826, -0.009465482085943222, 0.11415495723485947, -0.053701527416706085, 0.0072649745270609856, -0.004404204431921244, 0.005348522216081619, 0.173641636967659, 0.06764663010835648, 0.06665457040071487, 0.09063002467155457, 0.1310199797153473, 0.14716720581054688, 0.06554314494132996, -0.0944184958934784, -0.022910218685865402, 0.02598363347351551, -0.02396318130195141, -0.04085927456617355, 0.02490311488509178, 0.12416787445545197, -0.047642406076192856, -0.0007025547092780471, 0.01679091714322567, -0.012651802971959114, 0.18980184197425842, 0.04865100607275963, -0.1855185627937317, -0.08607765287160873, -0.023568926379084587, -0.08382979780435562, -0.010025404393672943, 0.055534202605485916, 0.11671288311481476, -0.11377031356096268, 0.022625088691711426, -0.02548392117023468, 0.09243910014629364, -0.008687026798725128, 0.022354653105139732, -0.09872637689113617, 0.012128658592700958, 0.01746375486254692, 0.07663380354642868, -0.19528953731060028, 0.22319111227989197, 0.001500260317698121, 0.09006913006305695, 0.005651824176311493, -0.015192379243671894, 0.006023071706295013, 0.1837533712387085, 0.06032523885369301, 0.015367774292826653, 0.11620836704969406, -0.1175750344991684, -0.04173756018280983, 0.06373513489961624, -0.024801580235362053, 0.06762432307004929, 0.07434501498937607, -0.002695006551221013, 0.009401122108101845, 0.003024621633812785, -0.0312237236648798, -0.11470299959182739, -0.011629151180386543, 0.05478320270776749, 0.1478794366121292, 0.11906364560127258, -0.03882673755288124, -0.13872183859348297, -0.13473758101463318, 0.05132179334759712, -0.07042280584573746, -0.06639166921377182, -0.025652777403593063, -0.03553717955946922, 0.10743765532970428, -0.07148418575525284, -0.0026651760563254356, 0.08625751733779907, 0.11709053814411163, -0.02145061455667019, 0.014517088420689106, 0.044742703437805176, -0.05998053774237633, -0.0767943486571312, 0.016681276261806488, 0.14300808310508728, 0.07486965507268906, 0.0475071482360363, 0.044157758355140686, 0.010198107920587063, 0.016675982624292374, -0.02673620916903019, -0.024942981079220772, 0.15837924182415009, -0.19016166031360626, -0.005315739195793867, 0.00644331332296133, -0.1601622998714447, -0.13392291963100433, -0.0876941978931427, 0.14705152809619904, 0.04274974390864372, -0.04001741483807564, 0.1673707664012909, 0.19268274307250977, -0.10120856761932373, -0.16723592579364777, -0.04419723153114319, 0.07528351992368698, 0.14198310673236847, 0.02207370661199093, -0.16756397485733032, 0.08938587456941605, -0.02332185208797455, -0.03745908662676811, -0.10752199590206146, -0.21349787712097168, -0.15068629384040833, 0.14040294289588928, 0.013295101001858711, 0.1253080517053604, -0.0064650168642401695, -0.017542921006679535, -0.004380916245281696, -0.004017574246972799, -0.039080534130334854, -0.05220092833042145, 0.10614525526762009, 0.006693424191325903, 0.12245859205722809, 0.045413825660943985, -0.00994962640106678, 0.06854739040136337, 0.05403020977973938, -0.03030463308095932, 0.005031053442507982, 0.04388713464140892, 0.04872221499681473, 0.0661206841468811, 0.16861790418624878, -0.023009277880191803, 0.021867208182811737, -0.06935832649469376, -0.11365693807601929, -0.07027743756771088, 0.02590242773294449, 0.0627126470208168, -0.032750122249126434, 0.03449484705924988, -0.01729380525648594, -0.0015417429385706782, 0.0007080947398208082, -0.0822802260518074, -0.1351974457502365, 0.05925166606903076, 0.13094119727611542, 0.22736306488513947, -0.11011975258588791, -0.054314397275447845, -0.05428393557667732, -0.021012399345636368, 0.09492971003055573, -0.05050636827945709, 0.006745901890099049, 0.05499011650681496, 0.041026074439287186, 0.13478730618953705, 0.0039052350912243128, -0.08833831548690796, 0.09948316961526871, 0.03033612109720707, 0.033263884484767914, -0.18480800092220306, -0.019420791417360306, 0.008257091045379639, -0.025400618091225624, 0.06619628518819809, 0.1016104444861412, -0.1218661442399025, -0.039735130965709686, -0.025634316727519035, 0.030122937634587288, -0.11874998360872269, 0.2040126770734787, 0.0036880020052194595, 0.07066990435123444, -0.09598848968744278, -0.00589530635625124, 0.01601092331111431, -0.05514775589108467, -0.0004850503464695066, 0.02612113207578659, -0.1112636998295784, -0.07146397233009338, -0.057421986013650894, 0.05042143166065216, 0.05480167269706726, -0.09191560745239258, -0.06347645819187164, -0.09105661511421204, -0.00796461571007967, 0.13380520045757294, 0.0460897721350193, 0.026491643860936165, -0.18876567482948303, -0.07285386323928833, -0.09943308681249619, 0.05242007225751877, 0.10969807952642441, -0.021905843168497086, -0.16268855333328247, 0.19585293531417847, 0.107972152531147, 0.05167469382286072, -0.055392391979694366, -0.09419811517000198, 0.06800075620412827, 0.083897665143013, -0.08449050039052963, -0.003887460334226489, -0.05162707343697548, -0.00529870530590415, -0.007172783371061087, -0.08342602849006653, -0.020577706396579742, 0.07540042698383331, -0.08101619780063629, 0.07024974375963211, -0.020299874246120453, 0.07683058828115463, -0.04134539142251015, 0.013898571953177452, 0.05580466240644455, -0.03836066275835037, 0.0839836448431015, 0.09839232265949249, -0.13102276623249054, 0.14036819338798523, -0.13844335079193115, -0.034648552536964417, 0.05371176823973656, 0.0876953974366188, -0.014601261354982853, -0.14325396716594696, 0.03642963245511055, 0.09047503769397736, 0.05205822363495827, 0.005986224394291639, 0.08800279349088669, -0.048815712332725525, -0.029466887935996056, -0.09610196202993393, 0.010979048907756805, -0.04363046586513519, 0.013579042628407478, 0.01423650048673153, 0.1632242351770401, 0.1649336963891983, -0.10494094341993332, 0.09685233235359192, -0.11839855462312698, 0.025323908776044846, -0.08092803508043289, 0.0005949651822447777, -0.1381264328956604, -0.08650536835193634, 0.06841418147087097, -0.060292474925518036, 0.10296724736690521, 0.019331185147166252, 0.04348950833082199, -0.030633410438895226, -0.05539290979504585, 0.007949214428663254, -0.033613305538892746, 0.24786487221717834, 0.08763235807418823, 0.052068326622247696, 0.006371634546667337, -0.028636327013373375, -0.03965594992041588, 0.1381172239780426, -0.06431202590465546, 0.09974998235702515, -0.01520769577473402, 0.055842019617557526, 0.1026586964726448, -0.02560505084693432, -0.07434624433517456, -0.06554821878671646, -0.16804878413677216, 0.005942033138126135, -0.051696259528398514, 0.2140641212463379, 0.19282211363315582, -0.05732208490371704, 0.09316500276327133, -0.0017765137599781156, -0.10020814836025238, -0.14929510653018951, -0.13314343988895416, -0.08744124323129654, -0.16123118996620178, 0.03968190774321556, -0.0913890153169632, 0.01840740628540516, 0.06124081835150719, 0.0590798482298851, -0.042984627187252045, 0.1911187767982483, -0.0018377790693193674, -0.08765114098787308, 0.047454867511987686, -0.08071426302194595, -0.01991564966738224, -0.0897335335612297, 0.07066577672958374, 0.1173480674624443, -0.0014087761519476771, 0.060164857655763626, -0.005892920307815075, -0.08184915781021118, 0.013802849687635899, -0.07247965037822723, -0.07317192852497101, -0.017617572098970413, -0.03585582226514816, 0.03612138330936432, 0.13963459432125092, 0.0978754386305809, -0.06085708364844322, -0.009071853943169117, 0.09332114458084106, -0.02979878894984722, -0.1696639358997345, -0.14468792080879211, 0.21121692657470703, 0.05048613250255585, -0.0009650111896917224, 0.02367248199880123, -0.0082174651324749, -0.024713370949029922, 0.2292081117630005, 0.1784186065196991, 0.041402943432331085, 0.020325804129242897, -0.01219349168241024, -0.0073009985499084, -0.09613929688930511, 0.05939911678433418, 0.07154576480388641, 0.20700007677078247, -0.03622926026582718, 0.035999178886413574, -0.14611542224884033, -0.06869539618492126, -0.013159545138478279, -0.018932009115815163, -0.03533526137471199, -0.05682438239455223, -0.008819087408483028, 0.1532035619020462, -0.0780554711818695, -0.037360209971666336, -0.15601208806037903, -0.07871013134717941, -0.08791247010231018, -0.04439915716648102, -0.016490228474140167, 0.0749407634139061, 0.014688435941934586, -0.06663665920495987, 0.038184940814971924, 0.17406705021858215, 0.022400878369808197, -0.04515616223216057, -0.031909309327602386, 0.1095864549279213, -0.09016063064336777, -0.059865787625312805, -0.006308102514594793, 0.17277956008911133, 0.0026516770012676716, 0.12253082543611526, 0.013892574235796928, 0.2159270942211151, -0.03894372284412384, -0.026456810534000397, 0.0033521754667162895, 0.1618874967098236, -0.018385689705610275, 0.11799405515193939, -0.005974540952593088, -0.12729699909687042, 0.050198063254356384, -0.16082382202148438, -0.009085720404982567, -0.06515182554721832, 0.06446874886751175, -0.024092959240078926, 0.0759284719824791, 0.07837095856666565, -0.06641337275505066, -0.06784628331661224, -0.05852567031979561, 0.03491251543164253, 0.004095715936273336, -0.0712934285402298, -0.0458805188536644, -0.2601090669631958, -0.012688851915299892, -0.13082681596279144, -0.012714201584458351, -0.19341036677360535, -0.031100792810320854, -0.0017426650738343596, -0.08202963322401047, -0.003957531880587339, 0.0498199425637722, 0.07377403229475021, 0.022245384752750397, 0.008505858480930328, -0.013124825432896614, 0.06665685027837753, 0.12788249552249908, -0.20681491494178772, -0.12563861906528473 ]
null
null
transformers
# Chandler DialoGPT Model
{"tags": ["conversational"]}
text-generation
anweasha/DialoGPT-small-Chandler
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Chandler DialoGPT Model
[ "# Chandler DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Chandler DialoGPT Model" ]
[ 51, 8 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Chandler DialoGPT Model" ]
[ -0.044611480087041855, 0.0315445177257061, -0.005560820922255516, 0.04228443279862404, 0.12489386647939682, 0.00493934890255332, 0.13434600830078125, 0.1338980793952942, -0.02929154597222805, -0.05327439308166504, 0.14371798932552338, 0.18761952221393585, -0.01019383780658245, 0.0793662965297699, -0.10539109259843826, -0.29441753029823303, 0.018846698105335236, 0.0468362495303154, 0.07384052872657776, 0.12702129781246185, 0.07680533826351166, -0.049259983003139496, 0.09140196442604065, 0.025264369323849678, -0.14971868693828583, -0.020758705213665962, 0.03576388955116272, -0.12877678871154785, 0.10609127581119537, 0.06340096145868301, 0.03559238091111183, 0.02441822923719883, -0.047318778932094574, -0.15745189785957336, 0.03196026757359505, -0.006451561581343412, -0.02037309668958187, 0.05627863109111786, 0.04568229988217354, -0.0922778844833374, 0.09218551963567734, 0.09571465104818344, 0.015516651794314384, 0.04508548974990845, -0.160503089427948, -0.05096049979329109, -0.01312166266143322, 0.07191362977027893, 0.06908290088176727, 0.11428551375865936, -0.04206296429038048, 0.09154810756444931, -0.07859750837087631, 0.11826197803020477, 0.12923605740070343, -0.3523136377334595, -0.026157565414905548, 0.10238205641508102, 0.009264817461371422, 0.05047241970896721, -0.0488852933049202, 0.0765325054526329, 0.005785932298749685, -0.00428801542147994, -0.033610980957746506, -0.08051761984825134, -0.11491749435663223, 0.009757678024470806, -0.09534357488155365, -0.027092615142464638, 0.27930402755737305, -0.046633146703243256, 0.054819803684949875, -0.08465726673603058, -0.09756878763437271, -0.02016308531165123, -0.04534795507788658, -0.02034779265522957, -0.07117890566587448, 0.06532187759876251, -0.0033597052097320557, -0.08562711626291275, -0.12049531191587448, -0.02846037968993187, -0.183100625872612, 0.18328815698623657, 0.03912739455699921, 0.054469507187604904, -0.2354099452495575, 0.11332835257053375, 0.02211632952094078, -0.09558473527431488, 0.002810858655720949, -0.11014363169670105, 0.012991856783628464, 0.025595787912607193, -0.03230883553624153, 0.01376393623650074, 0.04787176102399826, 0.12540724873542786, 0.015433629974722862, 0.038148894906044006, -0.03160388767719269, 0.050533369183540344, 0.02588603086769581, 0.09583059698343277, 0.03338782861828804, -0.10680670291185379, 0.0059699974954128265, -0.10323040187358856, -0.007243498228490353, -0.06517516076564789, -0.17545896768569946, -0.03875653073191643, 0.0532958097755909, 0.04888966679573059, 0.062111251056194305, 0.12273696064949036, -0.017127444967627525, -0.06775972992181778, 0.03319169208407402, -0.010403350926935673, -0.02056162804365158, 0.008737103082239628, -0.019183320924639702, 0.16922956705093384, 0.032695669680833817, 0.03323302045464516, -0.1131381019949913, 0.01812756061553955, -0.03520306199789047, 0.004695463925600052, -0.008013002574443817, -0.038754161447286606, -0.013410542160272598, -0.01447074580937624, 0.008215186186134815, -0.1534334123134613, -0.17147643864154816, 0.0033550236839801073, -0.005128337536007166, -0.05216587334871292, -0.08310703188180923, -0.10234798491001129, -0.02175336889922619, 0.04204048961400986, -0.06932944059371948, 0.011479453183710575, -0.05803582817316055, 0.06917276978492737, -0.03256935998797417, 0.09940222650766373, -0.0848747119307518, 0.08098890632390976, -0.07494769245386124, -0.022285645827651024, -0.10211723297834396, 0.13528595864772797, 0.021724138408899307, 0.0662761852145195, -0.028380136936903, -0.033989641815423965, -0.10954859107732773, 0.040269311517477036, -0.04869022220373154, 0.25374266505241394, -0.08330520242452621, -0.08909041434526443, 0.24897409975528717, -0.04955193027853966, -0.12115153670310974, 0.13589468598365784, -0.021974658593535423, 0.08434942364692688, 0.12698224186897278, 0.19792398810386658, 0.021974846720695496, 0.0036410056054592133, 0.08756887167692184, 0.10722936689853668, -0.10194451361894608, -0.014422794803977013, 0.01533852331340313, -0.03338419646024704, -0.08254923671483994, 0.03769031912088394, 0.0643942579627037, 0.04265284165740013, -0.057624995708465576, -0.025920571759343147, -0.005952124949544668, -0.0074908840470016, 0.1203804612159729, -0.040005072951316833, 0.1376066356897354, -0.034105073660612106, -0.05474892631173134, -0.04524580016732216, 0.006195399444550276, -0.032368797808885574, 0.049741555005311966, -0.0702342838048935, 0.07747253775596619, 0.002022132044658065, 0.05984021723270416, -0.13942348957061768, -0.06451957672834396, -0.040202271193265915, 0.19491137564182281, 0.053494423627853394, 0.0755859911441803, 0.0619724877178669, -0.03287003934383392, -0.01820644922554493, 0.021185822784900665, 0.18779590725898743, -0.01426000241190195, -0.09912917762994766, -0.10162957012653351, 0.06582698971033096, -0.04756476357579231, 0.1517457216978073, -0.08715691417455673, 0.011004955507814884, -0.008733727969229221, 0.08700469881296158, -0.003958455286920071, 0.027883809059858322, -0.008115815930068493, -0.024761684238910675, -0.049306243658065796, 0.007202398497611284, 0.10100432485342026, -0.015586268156766891, -0.09965263307094574, 0.20961566269397736, -0.15640957653522491, 0.13544824719429016, 0.19292491674423218, -0.2811583876609802, -0.00031768163898959756, -0.15844494104385376, -0.028797848150134087, 0.008116680197417736, 0.05240119621157646, -0.035995058715343475, 0.2573416233062744, -0.020202742889523506, 0.16311879456043243, -0.035251978784799576, -0.0404314324259758, -0.0381833054125309, -0.06104670837521553, 0.021205706521868706, 0.08837462961673737, 0.05742167308926582, -0.17101414501667023, 0.14822545647621155, 0.1164931207895279, 0.0805538222193718, 0.16094693541526794, 0.03994326665997505, -0.00003210940121789463, 0.05313803628087044, 0.008873874321579933, -0.03646830841898918, -0.05761640891432762, -0.2704146206378937, -0.05290856957435608, 0.08310755342245102, 0.0363050252199173, 0.1003812775015831, -0.1252482384443283, -0.029439350590109825, 0.006730454508215189, -0.017115630209445953, -0.008278305642306805, 0.09207688271999359, 0.036479540169239044, 0.10850713402032852, -0.014431359246373177, -0.05513739958405495, 0.07706630975008011, 0.009020415134727955, -0.07790632545948029, 0.16846665740013123, -0.1182202696800232, -0.31556594371795654, -0.12196700274944305, -0.19279833137989044, -0.07274352014064789, 0.03769182041287422, 0.10042703151702881, -0.11265192180871964, -0.006832989398390055, -0.008100583218038082, 0.10278134047985077, -0.10690686106681824, 0.02011384256184101, -0.06254259496927261, -0.01152465958148241, -0.13403725624084473, -0.09206237643957138, -0.05641068145632744, -0.07317224889993668, -0.04284730926156044, 0.11868790537118912, -0.1569552719593048, 0.02409280464053154, 0.2190261334180832, 0.06253133714199066, 0.06461415439844131, -0.04358236491680145, 0.1851961612701416, -0.1076943501830101, -0.007826779969036579, 0.20348581671714783, -0.04429755359888077, 0.05622606351971626, 0.09994857758283615, -0.00897175446152687, -0.08196565508842468, 0.028696401044726372, -0.0382319912314415, -0.08107434958219528, -0.22552567720413208, -0.12762558460235596, -0.12754274904727936, 0.10638629645109177, 0.046774741262197495, 0.03528175503015518, 0.1606324464082718, 0.06326503306627274, -0.026072977110743523, -0.005901490803807974, 0.07847917824983597, 0.08405118435621262, 0.303406298160553, -0.07001807540655136, 0.1664048135280609, -0.00932023860514164, -0.1340690553188324, 0.058715566992759705, 0.07030719518661499, 0.1510382443666458, 0.052679963409900665, 0.04339192435145378, 0.01134695578366518, 0.0909958928823471, 0.1346767693758011, 0.06370080262422562, 0.046675506979227066, -0.028594909235835075, -0.029491383582353592, -0.0311463363468647, -0.043132223188877106, 0.05555414780974388, 0.08958519995212555, -0.1605996936559677, -0.02584683708846569, -0.0269499309360981, 0.05564658343791962, 0.04765012860298157, 0.08731298893690109, -0.19182005524635315, -0.011031215079128742, 0.06286640465259552, -0.042528942227363586, -0.10383396595716476, 0.08845986425876617, -0.003212686162441969, -0.15143680572509766, 0.04774240404367447, -0.01445833221077919, 0.11859295517206192, -0.10980881750583649, 0.07269527018070221, -0.10590273141860962, -0.06606465578079224, 0.007279694080352783, 0.08078320324420929, -0.2616187334060669, 0.1984798163175583, -0.004450215958058834, -0.06063593178987503, -0.12612178921699524, -0.009497003629803658, 0.04355406016111374, 0.0845070332288742, 0.11920888721942902, -0.019637489691376686, 0.0460757277905941, 0.002372296527028084, -0.05416495352983475, 0.014498633332550526, 0.12449967861175537, -0.03240517899394035, -0.008027579635381699, -0.03579777851700783, -0.00930437259376049, 0.001862571807578206, -0.029450079426169395, 0.015358386561274529, -0.18453431129455566, 0.056158144026994705, 0.06637227535247803, 0.0437210276722908, 0.030345305800437927, -0.03634258732199669, -0.09173119813203812, 0.18710990250110626, 0.0494980625808239, -0.09402863681316376, -0.0901416763663292, -0.05234992876648903, 0.056546565145254135, -0.06378169357776642, 0.033980172127485275, -0.042306799441576004, 0.0001941994996741414, -0.04916508123278618, -0.1961570382118225, 0.12928855419158936, -0.09581227600574493, -0.05223754793405533, -0.026610692963004112, 0.2242550402879715, -0.020361395552754402, 0.022509267553687096, 0.04203411191701889, 0.016004087403416634, -0.12018481642007828, -0.10155246406793594, -0.012000172398984432, 0.030777113512158394, -0.03462472930550575, 0.07417196035385132, -0.003241183701902628, -0.05924694240093231, -0.07763101905584335, 0.01348524633795023, 0.32158100605010986, 0.13365311920642853, -0.0591418482363224, 0.1638583242893219, 0.05693988874554634, -0.05493360385298729, -0.2669195830821991, -0.0708758607506752, -0.0799207091331482, -0.05543573945760727, -0.06615447998046875, -0.14378178119659424, 0.10937413573265076, -0.009857891127467155, -0.017948942258954048, 0.12052147090435028, -0.28885525465011597, -0.11492717266082764, 0.19389860332012177, -0.01558854803442955, 0.3999457359313965, -0.09522289782762527, -0.09088258445262909, -0.03366932272911072, -0.1651950627565384, 0.14081460237503052, -0.04367240145802498, 0.1301562786102295, -0.013303065672516823, 0.1287260800600052, 0.05159417912364006, -0.0003438885323703289, 0.08449380844831467, 0.06636849045753479, -0.05567344278097153, -0.08971109986305237, -0.04504431411623955, 0.01718764379620552, 0.026899509131908417, 0.026476731523871422, -0.03595877066254616, 0.021528474986553192, -0.13449092209339142, -0.059636227786540985, -0.08769020438194275, 0.02024969831109047, 0.017231756821274757, -0.06862757354974747, 0.002774191787466407, -0.059770915657281876, 0.012105441652238369, 0.018200673162937164, 0.12667253613471985, -0.09409339725971222, 0.13496261835098267, 0.16400444507598877, 0.13608130812644958, -0.13370312750339508, -0.052003178745508194, -0.058955635875463486, -0.054508011788129807, 0.0554894283413887, -0.09160999953746796, 0.006243130192160606, 0.10636885464191437, -0.016866065561771393, 0.07510410249233246, 0.11031540483236313, 0.017621271312236786, 0.00868665985763073, 0.07702646404504776, -0.2188398241996765, -0.1174205020070076, -0.07860799878835678, -0.06412634998559952, 0.06859022378921509, 0.10496335476636887, 0.20258629322052002, -0.012743251398205757, -0.012743153609335423, 0.002598022110760212, 0.012502240017056465, -0.04723316431045532, 0.08894800394773483, 0.00466972915455699, 0.014052937738597393, -0.15358248353004456, 0.051575351506471634, -0.0011544539593160152, -0.04956921190023422, -0.0005615788977593184, 0.14326389133930206, -0.1012938916683197, -0.1160774752497673, -0.12009799480438232, 0.10033223032951355, -0.13429564237594604, -0.008974811062216759, -0.03277602046728134, -0.1691877543926239, 0.06553567945957184, 0.05062214285135269, 0.06185992434620857, 0.06775997579097748, -0.11132416874170303, -0.0181229617446661, -0.022584842517971992, -0.002656108234077692, 0.05910104140639305, 0.0005184608162380755, -0.056554216891527176, 0.07047811895608902, -0.023784292861819267, 0.11139021813869476, -0.08770079910755157, -0.11063696444034576, -0.12926334142684937, 0.05249744653701782, -0.09572409838438034, -0.08283285796642303, -0.1116529032588005, -0.023893125355243683, -0.009792041033506393, -0.01396164670586586, -0.03579282388091087, -0.03295738995075226, -0.09940018504858017, 0.03490971773862839, -0.026487130671739578, 0.01901520974934101, -0.07139107584953308, 0.01997843198478222, 0.04767464101314545, -0.03971276804804802, 0.15123727917671204, 0.15079237520694733, -0.12583628296852112, 0.09245774149894714, -0.09738273173570633, -0.09092724323272705, 0.0971439927816391, 0.03067500703036785, 0.0638575553894043, 0.05795152857899666, -0.00032441920484416187, 0.05534588173031807, 0.047813817858695984, 0.06039471551775932, 0.06882839649915695, -0.08676242083311081, 0.01480532344430685, -0.0540461540222168, -0.12818533182144165, -0.04614298790693283, -0.03413337469100952, 0.02511375956237316, 0.04254793003201485, 0.09089814126491547, -0.04587898775935173, 0.09289617091417313, -0.07087661325931549, 0.029757708311080933, 0.020734550431370735, -0.17742618918418884, 0.0732092335820198, -0.09779876470565796, 0.0622728057205677, 0.0190610121935606, 0.21492142975330353, 0.005269190762192011, 0.004683709237724543, 0.021344734355807304, 0.09942890703678131, 0.012581584975123405, -0.009869284927845001, 0.16815268993377686, 0.11447896808385849, -0.06242408975958824, -0.06979253888130188, 0.10934986174106598, 0.05783287435770035, 0.08360836654901505, 0.16267715394496918, 0.012538542971014977, -0.01613072119653225, 0.09784863889217377, 0.018187368288636208, 0.028353719040751457, -0.14646485447883606, -0.13578684628009796, -0.03923896700143814, 0.07514055073261261, -0.06215899437665939, 0.07973640412092209, 0.12291044741868973, -0.03746381029486656, 0.024005182087421417, -0.0048560816794633865, -0.07901354134082794, -0.1763230413198471, -0.16644328832626343, -0.06785402446985245, -0.15568985044956207, -0.007718607317656279, -0.11617154628038406, 0.030993683263659477, 0.05343346670269966, 0.0926101878285408, -0.05637567117810249, 0.10951068252325058, 0.008539235219359398, -0.10561323910951614, 0.10526464879512787, -0.042120449244976044, 0.1025790423154831, -0.06441912055015564, -0.019157998263835907, -0.092731773853302, 0.023332273587584496, 0.0077583398669958115, 0.029159214347600937, -0.06540998816490173, 0.017564401030540466, -0.10133769363164902, -0.08657243847846985, -0.05907424911856651, 0.07037096470594406, 0.017433352768421173, 0.18092939257621765, 0.02407417632639408, -0.0194387249648571, 0.0178558100014925, 0.24188029766082764, -0.09222125262022018, -0.10204783082008362, -0.06521913409233093, 0.19523414969444275, 0.018387172371149063, 0.07553433626890182, -0.010158064775168896, 0.004680496174842119, -0.08493339270353317, 0.33828359842300415, 0.3367950916290283, -0.1136968582868576, 0.018909847363829613, 0.027877477928996086, 0.03654034063220024, 0.12092599272727966, 0.10351867973804474, 0.11359760910272598, 0.3200874328613281, -0.04729609563946724, -0.0156509168446064, 0.004282835870981216, -0.03336801752448082, -0.06214703619480133, 0.06873303651809692, 0.059900954365730286, -0.07270722836256027, -0.024241827428340912, 0.12416277080774307, -0.2837981581687927, 0.10216391831636429, -0.10516249388456345, -0.2107369303703308, -0.09147375077009201, -0.01112385094165802, 0.12979647517204285, 0.04399798810482025, 0.11365175247192383, -0.010368969291448593, -0.06290490925312042, 0.04411688074469566, 0.02763933688402176, -0.1964484602212906, -0.012060758657753468, 0.09311288595199585, -0.093468576669693, -0.0325593426823616, -0.019545340910553932, 0.06533273309469223, 0.07886842638254166, 0.07800756394863129, -0.027054885402321815, 0.032749924808740616, -0.009513240307569504, -0.07609941810369492, 0.04101184383034706, 0.03461175411939621, 0.016977816820144653, -0.05129995942115784, 0.07697918266057968, -0.1704806238412857, 0.04773106053471565, 0.04289218410849571, -0.012256895191967487, -0.032709673047065735, -0.0060662077739834785, -0.07677378505468369, 0.07602009922266006, 0.0970601737499237, -0.01117134653031826, -0.016566166654229164, -0.008560718037188053, -0.047214165329933167, -0.029667895287275314, -0.10194850713014603, -0.10045070946216583, -0.14634522795677185, -0.12050911784172058, 0.053291454911231995, -0.0038993400521576405, -0.14648106694221497, -0.004286912735551596, -0.12329182028770447, 0.042498670518398285, -0.1233072578907013, 0.08571377396583557, 0.11258093267679214, 0.006503931246697903, 0.0033957541454583406, -0.02402549609541893, 0.036028873175382614, 0.09566349536180496, -0.1392456293106079, -0.07957390695810318 ]
null
null
transformers
# Jake Peralta DialoGPT Model
{"tags": ["conversational"]}
text-generation
anweasha/DialoGPT-small-Jake
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Jake Peralta DialoGPT Model
[ "# Jake Peralta DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Jake Peralta DialoGPT Model" ]
[ 51, 10 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Jake Peralta DialoGPT Model" ]
[ -0.04435775801539421, 0.10074503719806671, -0.006036684848368168, 0.022257352247834206, 0.152704656124115, -0.012472658418118954, 0.13179905712604523, 0.11126446723937988, -0.029823295772075653, -0.01581176370382309, 0.11510863900184631, 0.15242095291614532, -0.009319973178207874, 0.11822344362735748, -0.03599002584815025, -0.3162708282470703, 0.04646337777376175, 0.039816055446863174, 0.06181862950325012, 0.1348995715379715, 0.1058356985449791, -0.04752204567193985, 0.08078497648239136, 0.006181383039802313, -0.14632008969783783, 0.0030598577577620745, 0.0008718766621313989, -0.12453705817461014, 0.11685765534639359, 0.03486902639269829, 0.03979117423295975, 0.015947509557008743, -0.04904618114233017, -0.09449630230665207, 0.041690800338983536, 0.015343447215855122, -0.017792945727705956, 0.04376312345266342, 0.0466567687690258, -0.1131218820810318, 0.12208832800388336, 0.13404840230941772, 0.012477995827794075, 0.03979599475860596, -0.16477926075458527, -0.015537216328084469, 0.0357736311852932, 0.08187495917081833, 0.0355033352971077, 0.11586049199104309, -0.050720151513814926, 0.08849368989467621, -0.05685622990131378, 0.10338741540908813, 0.07408708333969116, -0.32645171880722046, -0.025875627994537354, 0.06626874208450317, 0.048293568193912506, 0.07410163432359695, -0.04600326344370842, 0.04853307083249092, 0.04116653650999069, -0.0066285585053265095, -0.035219624638557434, -0.060268864035606384, -0.03754863515496254, -0.014996259473264217, -0.08788279443979263, -0.005091026425361633, 0.2676098048686981, -0.042135871946811676, 0.05745282024145126, -0.06492020189762115, -0.10344988107681274, -0.051290363073349, -0.02722117491066456, -0.034676991403102875, -0.07665758579969406, 0.06904321163892746, 0.01045945007354021, -0.09267357736825943, -0.11852282285690308, -0.035712774842977524, -0.20658181607723236, 0.12255024909973145, 0.038720592856407166, 0.01458317507058382, -0.20594581961631775, 0.10302793234586716, -0.014462782070040703, -0.10662362724542618, 0.03382233530282974, -0.10836269706487656, 0.0013543644454330206, 0.013682367280125618, -0.03111894242465496, -0.03922111541032791, 0.05745963379740715, 0.11771456897258759, 0.055028293281793594, 0.013149979524314404, -0.026365799829363823, 0.0730072408914566, 0.06033029779791832, 0.08142753690481186, -0.022031748667359352, -0.02369893342256546, 0.036389388144016266, -0.08183564245700836, -0.01655171439051628, -0.06978954374790192, -0.15472647547721863, -0.000268933130428195, 0.10332430154085159, 0.051279257982969284, 0.05119691044092178, 0.10581370443105698, -0.0026446001138538122, -0.05870293080806732, -0.015601491555571556, -0.040060870349407196, -0.02455832250416279, 0.0025612851604819298, -0.0032685832120478153, 0.2040477991104126, 0.0019481825875118375, 0.046732816845178604, -0.11415590345859528, 0.024069078266620636, -0.0598028302192688, -0.009615613147616386, -0.033134981989860535, -0.05579976364970207, 0.002378244651481509, -0.02907923236489296, 0.016886208206415176, -0.16324862837791443, -0.15973368287086487, -0.02189335785806179, -0.006146594882011414, -0.05376993492245674, -0.13130809366703033, -0.10499627143144608, 0.018845096230506897, 0.02590101771056652, -0.08790682256221771, -0.05419108644127846, -0.06087346747517586, 0.08515758812427521, -0.044037144631147385, 0.08406329154968262, -0.058955054730176926, 0.083060622215271, -0.1030513122677803, -0.017880626022815704, -0.06975290179252625, 0.10765687376260757, 0.020579390227794647, 0.08596176654100418, -0.040214262902736664, -0.01600634679198265, -0.11463800817728043, 0.07214268296957016, -0.05989469215273857, 0.2259237915277481, -0.10684523731470108, -0.12085330486297607, 0.29210859537124634, -0.08583198487758636, -0.10378976911306381, 0.11583149433135986, 0.0017582396976649761, 0.13578495383262634, 0.14233285188674927, 0.224404975771904, 0.0156236682087183, 0.019813524559140205, 0.0899195447564125, 0.08866415917873383, -0.061770953238010406, 0.01281268335878849, 0.023814715445041656, -0.04128511995077133, -0.06972901523113251, 0.025097010657191277, 0.08278599381446838, 0.0606156587600708, -0.058969203382730484, -0.016299141570925713, 0.013859054073691368, -0.01359628140926361, 0.06576985120773315, -0.032050855457782745, 0.12952721118927002, -0.043053559958934784, -0.06379003822803497, -0.029565664008259773, 0.011785217560827732, -0.065589040517807, 0.044534116983413696, -0.0876682698726654, 0.06803250312805176, 0.0052107516676187515, 0.06074824556708336, -0.1437876671552658, -0.04229278489947319, -0.04602107033133507, 0.1573033481836319, 0.04159506410360336, 0.13337597250938416, 0.05817347764968872, -0.031995583325624466, 0.006912254728376865, 0.024969028308987617, 0.14889003336429596, -0.0082295136526227, -0.053172480314970016, -0.1085173711180687, 0.10184405744075775, -0.06634853780269623, 0.11558708548545837, -0.019166359677910805, 0.006157773546874523, 0.005186096765100956, 0.10681483149528503, -0.023560496047139168, 0.008778240531682968, 0.00015186500968411565, -0.007473255041986704, -0.04743967577815056, -0.0042275963351130486, 0.10716518759727478, -0.007447513286024332, -0.04843037575483322, 0.23343433439731598, -0.19185799360275269, 0.13577476143836975, 0.20748375356197357, -0.18784312903881073, -0.0008705251384526491, -0.0975300520658493, -0.017128445208072662, 0.011303894221782684, 0.09397817403078079, -0.03490038216114044, 0.29388633370399475, 0.010693949647247791, 0.1774347722530365, -0.034938205033540726, -0.012782501056790352, -0.031145883724093437, -0.054140813648700714, 0.01629927009344101, 0.11624221503734589, 0.09110414981842041, -0.121970996260643, 0.17918488383293152, 0.09975297749042511, 0.05542416498064995, 0.16810379922389984, 0.02251567132771015, 0.00009086355566978455, 0.08280372619628906, 0.014793410897254944, -0.03429514169692993, -0.08323831856250763, -0.29936471581459045, -0.047687433660030365, 0.07160880416631699, 0.0515553280711174, 0.11348779499530792, -0.08770250529050827, -0.028143908828496933, 0.011669803410768509, 0.002018128288909793, 0.04676385596394539, 0.11795173585414886, 0.01486015971750021, 0.113967165350914, -0.014225331135094166, -0.08501633256673813, 0.052552882581949234, 0.027409793809056282, -0.08249939233064651, 0.17540498077869415, -0.11488254368305206, -0.345975399017334, -0.0938151478767395, -0.18306660652160645, -0.06088755279779434, 0.05689682438969612, 0.09538368880748749, -0.10973715782165527, -0.017185306176543236, -0.001720996806398034, 0.11723792552947998, -0.11609867960214615, -0.01098270807415247, 0.0059149363078176975, 0.0002753314620349556, -0.10942386835813522, -0.08879172056913376, -0.040721140801906586, -0.01652318239212036, -0.10640072822570801, 0.1045001894235611, -0.1429070085287094, 0.036958832293748856, 0.22653722763061523, 0.06309238821268082, 0.05693550407886505, -0.029450545087456703, 0.21379126608371735, -0.09955635666847229, -0.028974827378988266, 0.21217858791351318, -0.027205444872379303, 0.05100888013839722, 0.12670494616031647, -0.027058131992816925, -0.05495714768767357, 0.01757294498383999, -0.009670952335000038, -0.06370310485363007, -0.19603155553340912, -0.14385323226451874, -0.0913911908864975, 0.10178691893815994, 0.06977051496505737, 0.06485529989004135, 0.09779969602823257, 0.0650988221168518, -0.04285437613725662, -0.015773095190525055, 0.053497377783060074, 0.0908626914024353, 0.2201681286096573, -0.0947350412607193, 0.14695589244365692, 0.0021268019918352365, -0.14215099811553955, 0.0778208076953888, 0.06305930763483047, 0.05641854554414749, 0.08067656308412552, 0.05282357335090637, 0.00981181114912033, 0.03833291307091713, 0.13427942991256714, 0.08942823112010956, 0.00024836111697368324, -0.032725490629673004, -0.030369220301508904, -0.04163840413093567, -0.04474955052137375, 0.04481154680252075, 0.017796680331230164, -0.1594836413860321, -0.041543181985616684, -0.033235013484954834, 0.06580016762018204, 0.036092884838581085, 0.07380115240812302, -0.17160046100616455, -0.010333886370062828, 0.06728747487068176, -0.040840666741132736, -0.13689105212688446, 0.09837529063224792, -0.007227983325719833, -0.13668452203273773, 0.04072868824005127, -0.014367565512657166, 0.12917226552963257, -0.14026428759098053, 0.08443387597799301, -0.14240983128547668, -0.0634114146232605, 0.0048116096295416355, 0.13076524436473846, -0.2685244083404541, 0.1872185617685318, -0.02515050768852234, -0.06705530732870102, -0.09522940218448639, -0.01835273765027523, -0.010479886084794998, 0.12391293048858643, 0.14442826807498932, -0.015247977338731289, 0.05118775740265846, -0.023902829736471176, -0.09049826115369797, 0.02740493230521679, 0.09641704708337784, -0.06252101063728333, -0.013078836724162102, -0.02616073004901409, 0.014347352087497711, -0.040214333683252335, -0.04330388456583023, 0.003946044947952032, -0.19523502886295319, 0.07869336009025574, 0.029092222452163696, 0.1595369130373001, 0.02799542061984539, -0.05262013152241707, -0.13210727274417877, 0.24038664996623993, -0.053836919367313385, -0.09778984636068344, -0.0705677792429924, -0.06022337079048157, 0.0548638217151165, -0.055388059467077255, 0.02329353429377079, -0.06960736960172653, 0.0484386645257473, -0.0974574014544487, -0.16906125843524933, 0.10740157961845398, -0.08564798533916473, -0.024330798536539078, -0.018550578504800797, 0.21395094692707062, -0.01727689430117607, 0.027568303048610687, 0.045977212488651276, -0.004488824401050806, -0.15288808941841125, -0.09814723581075668, -0.026566870510578156, 0.042267270386219025, -0.003953354898840189, -0.011776473373174667, -0.03358545899391174, -0.01486437488347292, -0.044631507247686386, -0.008327830582857132, 0.34172841906547546, 0.12592612206935883, -0.019162321463227272, 0.17810994386672974, 0.10614761710166931, -0.0707237720489502, -0.2693096101284027, -0.11195169389247894, -0.07045042514801025, -0.021859239786863327, -0.09030841290950775, -0.18859823048114777, 0.047705914825201035, 0.01760043203830719, -0.0010497223120182753, 0.08577580749988556, -0.28958961367607117, -0.10902799665927887, 0.16351191699504852, -0.04784826934337616, 0.3802168369293213, -0.08665582537651062, -0.0709085687994957, -0.07869534939527512, -0.11941523104906082, 0.1085163801908493, -0.018970755860209465, 0.11875146627426147, 0.011721772141754627, 0.1524769365787506, 0.054616779088974, 0.0022678892128169537, 0.09599840641021729, 0.01210940070450306, -0.07491724193096161, -0.09767215698957443, -0.038123372942209244, -0.0017138933762907982, 0.03440311551094055, 0.0278956089168787, -0.06270837038755417, 0.009695997461676598, -0.15289407968521118, -0.07606969773769379, -0.08377140015363693, 0.02264917455613613, 0.033116210252046585, -0.06329464167356491, 0.013391544111073017, -0.03655398264527321, 0.0023743046913295984, 0.009410320781171322, 0.12276606261730194, -0.12761911749839783, 0.16610068082809448, 0.07325664907693863, 0.11821018904447556, -0.16223031282424927, -0.0944085493683815, -0.06072155758738518, -0.0453018918633461, 0.06770866364240646, -0.08948961645364761, 0.019747966900467873, 0.11647000163793564, -0.04705950617790222, 0.07052718102931976, 0.07897138595581055, -0.035853344947099686, 0.03313736245036125, 0.09700436145067215, -0.2641875147819519, -0.03794306889176369, -0.07210258394479752, 0.0412587895989418, 0.09637228399515152, 0.09417504072189331, 0.2118683159351349, -0.01631404645740986, -0.030234603211283684, 0.007086018566042185, 0.012311252765357494, -0.020170526579022408, 0.07535520195960999, -0.005250764545053244, 0.018136218190193176, -0.15085692703723907, 0.0553247332572937, 0.03075684793293476, -0.0897415429353714, 0.028247755020856857, 0.13432730734348297, -0.09132591634988785, -0.11628293246030807, -0.059124719351530075, 0.13242438435554504, -0.08130361884832382, -0.012456790544092655, -0.04924453794956207, -0.1295788586139679, 0.0530255064368248, 0.089618980884552, 0.043586354702711105, 0.057373493909835815, -0.0985780879855156, -0.050731807947158813, -0.025807587429881096, -0.019214801490306854, 0.06564631313085556, -0.027476368471980095, -0.06968723982572556, 0.08708492666482925, -0.021673299372196198, 0.10439968854188919, -0.08966639637947083, -0.11833132803440094, -0.13985612988471985, 0.0525471568107605, -0.0591479130089283, -0.09285679459571838, -0.1113705039024353, -0.04570828750729561, -0.0067962948232889175, -0.0084922444075346, -0.03404887393116951, -0.04850262403488159, -0.11221480369567871, 0.025591887533664703, -0.058364588767290115, 0.008552604354918003, -0.06758470833301544, 0.04661157727241516, 0.05324074625968933, -0.023141833022236824, 0.15469634532928467, 0.098708875477314, -0.10987141728401184, 0.08003338426351547, -0.15046723186969757, -0.07099180668592453, 0.10484108328819275, 0.01942344941198826, 0.040305569767951965, 0.057905323803424835, 0.002526715165004134, 0.05196322128176689, 0.028248706832528114, 0.0536360964179039, 0.050582773983478546, -0.09196445345878601, 0.024083269760012627, 0.030461376532912254, -0.12109792232513428, -0.025966349989175797, -0.030293798074126244, 0.029786383733153343, 0.03884236887097359, 0.06981091946363449, -0.059767186641693115, 0.11514803767204285, -0.0466596744954586, 0.03030444122850895, 0.022631265223026276, -0.15896794199943542, 0.04764001816511154, -0.09934429079294205, 0.053224168717861176, 0.026210231706500053, 0.20985902845859528, 0.035814397037029266, 0.043033305555582047, 0.026537250727415085, 0.05103953555226326, 0.05230884253978729, 0.014140933752059937, 0.20825955271720886, 0.12921370565891266, -0.020948177203536034, -0.07880320399999619, 0.10131645947694778, 0.03760868310928345, 0.05353381484746933, 0.0935433954000473, -0.03347703441977501, -0.02682548761367798, 0.0744442418217659, 0.003896318841725588, 0.028872201219201088, -0.10888093709945679, -0.14390943944454193, 0.0007487190305255353, 0.04847091808915138, -0.06332357972860336, 0.09611501544713974, 0.14178191125392914, -0.01426622737199068, 0.013938750140368938, -0.012648975476622581, -0.07487248629331589, -0.17520922422409058, -0.2213379591703415, -0.07973896712064743, -0.15721319615840912, 0.011609392240643501, -0.12790384888648987, 0.02997223474085331, 0.025989677757024765, 0.09414137154817581, -0.0761977955698967, 0.07993821054697037, 0.05158160999417305, -0.14856508374214172, 0.08676789700984955, -0.025484878569841385, 0.11023082584142685, -0.07653568685054779, -0.012832175940275192, -0.07757210731506348, 0.04797428101301193, 0.011050413362681866, 0.056855328381061554, -0.02579871565103531, 0.003984866198152304, -0.11280887573957443, -0.08672761172056198, -0.05125120282173157, 0.056222137063741684, -0.0011640969896689057, 0.1610822081565857, 0.0001560803793836385, -0.0409267321228981, 0.004587939474731684, 0.2307887077331543, -0.05111171677708626, -0.07428339868783951, -0.05420301854610443, 0.2000967562198639, 0.016246680170297623, 0.11203265190124512, -0.0331123061478138, -0.004949966445565224, -0.10029498487710953, 0.34274935722351074, 0.27672505378723145, -0.11189538985490799, 0.011819014325737953, -0.007257799152284861, 0.04413798451423645, 0.11138887703418732, 0.08715317398309708, 0.10265423357486725, 0.2620438039302826, -0.07053885608911514, -0.0060815163888037205, -0.009722430258989334, -0.03512663394212723, -0.09391244500875473, 0.06088734045624733, 0.06003719940781593, -0.047286443412303925, -0.03993447497487068, 0.12221977859735489, -0.23651184141635895, 0.08740990608930588, -0.13008594512939453, -0.1826431304216385, -0.10786063969135284, -0.007145125884562731, 0.15604186058044434, 0.0313565619289875, 0.09146793186664581, 0.004786222707480192, -0.06810595840215683, 0.041653767228126526, 0.03551708906888962, -0.17261344194412231, -0.05906739458441734, 0.06735648959875107, -0.03678015619516373, -0.053451139479875565, -0.024488922208547592, 0.053187910467386246, 0.05532997474074364, 0.045163873583078384, -0.015624198131263256, 0.04697529226541519, -0.008769490756094456, -0.08461930602788925, 0.02942221611738205, 0.041279278695583344, 0.01006544753909111, -0.05849310755729675, 0.08388513326644897, -0.11971810460090637, 0.029145020991563797, -0.01429548766463995, -0.016409652307629585, -0.01828876882791519, 0.04340159147977829, -0.07660356909036636, 0.07415907829999924, 0.07990466803312302, -0.01717621646821499, -0.03590443730354309, -0.03251148760318756, -0.0003779857652261853, -0.03784489259123802, -0.08668532967567444, -0.08606117963790894, -0.18709315359592438, -0.1384880542755127, 0.059746842831373215, 0.019599365070462227, -0.1732022911310196, 0.01883520744740963, -0.11442305147647858, 0.06191252917051315, -0.12914656102657318, 0.10274934023618698, 0.04020173102617264, 0.014300674200057983, -0.0036855419166386127, 0.03970247134566307, 0.05538804829120636, 0.07224631309509277, -0.1507878452539444, -0.08111724257469177 ]
null
null
transformers
## [google/t5-v1_1-small](google/t5-v1_1-small) model ### pretrained on [anzorq/kbd-ru-1.67M-temp](https://huggingface.co/datasets/anzorq/kbd-ru-1.67M-temp) ### fine-tuned on **17753** Russian-Kabardian word/sentence pairs kbd text uses custom latin script for optimization reasons. Translation input should start with '**ru->kbd:** '. **Tokenizer**: T5 sentencepiece, char, cased.
{"language": ["ru", "kbd"], "tags": ["translation"], "datasets": ["anzorq/kbd-ru-1.67M-temp", "17753 Russian-Kabardian pairs of text"], "widget": [{"text": "ru->kbd: \u042f \u0438\u0434\u0443 \u0434\u043e\u043c\u043e\u0439.", "example_title": "\u042f \u0438\u0434\u0443 \u0434\u043e\u043c\u043e\u0439."}, {"text": "ru->kbd: \u0414\u0435\u0442\u0438 \u0438\u0433\u0440\u0430\u044e\u0442 \u0432\u043e \u0434\u0432\u043e\u0440\u0435.", "example_title": "\u0414\u0435\u0442\u0438 \u0438\u0433\u0440\u0430\u044e\u0442 \u0432\u043e \u0434\u0432\u043e\u0440\u0435."}, {"text": "ru->kbd: \u0421\u043a\u043e\u043b\u044c\u043a\u043e \u0442\u0435\u0431\u0435 \u043b\u0435\u0442?", "example_title": "\u0421\u043a\u043e\u043b\u044c\u043a\u043e \u0442\u0435\u0431\u0435 \u043b\u0435\u0442?"}]}
translation
anzorq/t5-v1_1-small-ru_kbd-cased
[ "transformers", "pytorch", "t5", "text2text-generation", "translation", "ru", "kbd", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ru", "kbd" ]
TAGS #transformers #pytorch #t5 #text2text-generation #translation #ru #kbd #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
## google/t5-v1_1-small model ### pretrained on anzorq/kbd-ru-1.67M-temp ### fine-tuned on 17753 Russian-Kabardian word/sentence pairs kbd text uses custom latin script for optimization reasons. Translation input should start with 'ru->kbd: '. Tokenizer: T5 sentencepiece, char, cased.
[ "## google/t5-v1_1-small model", "### pretrained on anzorq/kbd-ru-1.67M-temp", "### fine-tuned on 17753 Russian-Kabardian word/sentence pairs\n\nkbd text uses custom latin script for optimization reasons.\n\nTranslation input should start with 'ru->kbd: '.\n\nTokenizer: T5 sentencepiece, char, cased." ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #translation #ru #kbd #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## google/t5-v1_1-small model", "### pretrained on anzorq/kbd-ru-1.67M-temp", "### fine-tuned on 17753 Russian-Kabardian word/sentence pairs\n\nkbd text uses custom latin script for optimization reasons.\n\nTranslation input should start with 'ru->kbd: '.\n\nTokenizer: T5 sentencepiece, char, cased." ]
[ 56, 12, 20, 60 ]
[ "passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #translation #ru #kbd #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## google/t5-v1_1-small model### pretrained on anzorq/kbd-ru-1.67M-temp### fine-tuned on 17753 Russian-Kabardian word/sentence pairs\n\nkbd text uses custom latin script for optimization reasons.\n\nTranslation input should start with 'ru->kbd: '.\n\nTokenizer: T5 sentencepiece, char, cased." ]
[ 0.020580818876624107, -0.19382397830486298, -0.005650755949318409, 0.04392087459564209, 0.13688334822654724, -0.0043128253892064095, 0.10679453611373901, 0.0825551226735115, 0.00048636834253557026, 0.006226568948477507, 0.13136571645736694, 0.03532499447464943, 0.02958713471889496, 0.11793962121009827, -0.014639523811638355, -0.28023895621299744, 0.019654031842947006, 0.008002961054444313, 0.1104743480682373, 0.11812248080968857, 0.07909541577100754, -0.021983889862895012, 0.07969624549150467, -0.0123136593028903, -0.10858447849750519, 0.0856982171535492, 0.06296654045581818, -0.07054515182971954, 0.07416142523288727, 0.09568998962640762, 0.05187186226248741, 0.04276371747255325, -0.03328445553779602, -0.1412700116634369, 0.02680410072207451, 0.0025149518623948097, -0.07256900519132614, -0.011051023378968239, 0.03534417971968651, -0.05756702274084091, 0.18426337838172913, -0.13136373460292816, -0.09002309292554855, 0.008286419324576855, -0.10143022239208221, -0.03560778126120567, 0.00558296637609601, 0.09941606223583221, 0.005386168137192726, 0.06371554732322693, -0.053214624524116516, 0.09924263507127762, -0.1283290684223175, 0.1345890760421753, 0.1549927294254303, -0.41163596510887146, -0.029248058795928955, 0.046696629375219345, 0.03073502518236637, 0.13156980276107788, -0.014253098517656326, 0.05018266662955284, -0.015495074912905693, -0.03510406240820885, -0.0204957015812397, -0.10280215740203857, -0.12271416932344437, -0.029805170372128487, -0.10895019769668579, -0.008243936114013195, 0.21924223005771637, -0.052915021777153015, 0.04340438172221184, -0.015029232949018478, -0.07022362947463989, -0.08975791931152344, -0.013020604848861694, -0.04614692181348801, -0.07075510174036026, 0.02330974116921425, 0.06912478059530258, -0.05069199576973915, -0.13915032148361206, -0.02696552686393261, -0.1815701723098755, 0.2143745869398117, 0.06400229781866074, 0.01735016517341137, -0.12779203057289124, 0.08498687297105789, -0.11915609985589981, -0.0986289381980896, 0.04227830097079277, -0.09654713422060013, 0.03587382286787033, 0.04908346012234688, -0.045767903327941895, -0.0781310498714447, 0.06796545535326004, 0.014061948284506798, -0.03697074204683304, 0.06432394683361053, 0.015336934477090836, 0.06849642097949982, -0.0420963279902935, 0.15693993866443634, 0.0007119402871467173, -0.008413378149271011, 0.09841541945934296, -0.06388547271490097, 0.014749052003026009, 0.0013161158422008157, -0.1813642829656601, -0.18935516476631165, 0.08443041145801544, 0.08868619054555893, -0.029243798926472664, 0.13729581236839294, 0.015403522178530693, -0.014324809424579144, 0.02340097352862358, -0.08780945092439651, -0.018466858193278313, 0.0054352120496332645, 0.015903951600193977, 0.07099599391222, -0.0069526792503893375, -0.005735252518206835, -0.14997395873069763, 0.0365896038711071, -0.019051382318139076, 0.01700141839683056, 0.0105242058634758, -0.10291392356157303, -0.0182481836527586, -0.13480158150196075, 0.0003767683228943497, -0.21886184811592102, -0.02882678434252739, -0.014710325747728348, -0.05360459163784981, -0.032853156328201294, 0.013762028887867928, -0.04343234375119209, -0.016455557197332382, 0.035002339631319046, -0.050010234117507935, -0.02790265716612339, -0.05107298493385315, 0.05711939558386803, 0.0382489413022995, 0.09651697427034378, -0.11745236814022064, 0.03973526507616043, -0.14165747165679932, -0.03184877708554268, -0.1563214510679245, 0.142724871635437, -0.02031487226486206, -0.03786144778132439, -0.09784804284572601, -0.014566819183528423, -0.16248314082622528, 0.034199826419353485, 0.022358832880854607, 0.13825172185897827, -0.1595577746629715, -0.06906922906637192, 0.23543314635753632, -0.019908519461750984, -0.05357527360320091, 0.12951689958572388, 0.0150505555793643, 0.13549543917179108, 0.11100945621728897, 0.220611572265625, 0.1100539118051529, -0.036343369632959366, 0.009861809201538563, 0.03947822004556656, -0.07861953973770142, -0.040932413190603256, 0.010535057634115219, 0.01604536361992359, -0.07898867875337601, 0.055215023458004, -0.07971451431512833, 0.052607081830501556, 0.005935085937380791, 0.003066631266847253, -0.03652270510792732, 0.051371462643146515, 0.060038674622774124, -0.023142963647842407, 0.07834993302822113, -0.04965668544173241, -0.09012315422296524, -0.09109413623809814, -0.03607344627380371, 0.011399748735129833, 0.10922644287347794, -0.06498434394598007, 0.06768858432769775, 0.025856604799628258, 0.09191589057445526, -0.13541512191295624, -0.018547363579273224, 0.03285709023475647, 0.12209329009056091, 0.09844881296157837, 0.021693384274840355, 0.02835698053240776, -0.05870939418673515, -0.07593369483947754, 0.00738221500068903, 0.10836916416883469, -0.006189670413732529, -0.07972261309623718, -0.1146964356303215, 0.094658263027668, -0.0013166473945602775, -0.09406574815511703, 0.04378078132867813, -0.006251566577702761, 0.1034553125500679, 0.07212165743112564, -0.038287241011857986, 0.09667907655239105, -0.042096126824617386, 0.0654311329126358, -0.00015764609270263463, 0.044878989458084106, 0.08539460599422455, -0.029193274676799774, -0.10254476964473724, 0.2400142401456833, -0.12779219448566437, -0.04741958528757095, 0.12049504369497299, -0.012139393948018551, -0.036841001361608505, -0.0864751935005188, 0.004475365858525038, -0.014745119027793407, 0.10957332700490952, -0.02891446463763714, 0.22686737775802612, 0.010986988432705402, 0.11828195303678513, -0.10275514423847198, -0.014940574765205383, 0.0010921717621386051, -0.06416568160057068, 0.005613979883491993, 0.13173039257526398, -0.013356323353946209, -0.26604774594306946, 0.07395613193511963, 0.1297476440668106, -0.025727100670337677, 0.26769229769706726, -0.0004880797932855785, -0.04022564738988876, 0.012190615758299828, 0.06344147026538849, -0.017975300550460815, -0.04583100974559784, -0.0766119733452797, -0.05666027218103409, 0.026706866919994354, 0.037537023425102234, 0.07087016105651855, -0.07246395945549011, 0.02018115669488907, -0.033038780093193054, -0.03876283019781113, -0.020648563280701637, 0.14199298620224, 0.03189241886138916, 0.12549139559268951, 0.034521281719207764, 0.00763337779790163, 0.023722408339381218, 0.017855897545814514, -0.09263564646244049, 0.16742821037769318, -0.110709048807621, -0.28369805216789246, -0.14323008060455322, -0.024051018059253693, -0.06583401560783386, -0.004564653616398573, 0.1269015222787857, -0.14416497945785522, 0.0011459111701697111, -0.018284814432263374, 0.14174340665340424, -0.0045937965624034405, -0.018568692728877068, -0.14927320182323456, 0.013505017384886742, -0.09219812601804733, -0.055639754980802536, -0.052522968500852585, -0.03170207515358925, -0.036468204110860825, 0.10510284453630447, -0.1522698849439621, 0.05576997250318527, 0.12783345580101013, -0.03834176063537598, 0.027089141309261322, -0.09414868801832199, 0.13599443435668945, -0.04297977313399315, 0.05569864809513092, 0.09674638509750366, -0.005477121099829674, 0.061613209545612335, 0.18012824654579163, -0.042476050555706024, 0.008081055246293545, 0.05871104076504707, -0.016979435458779335, -0.042000435292720795, -0.201902836561203, -0.055059146136045456, -0.11574001610279083, 0.04701675847172737, -0.0159138273447752, 0.02401944249868393, -0.012175919488072395, 0.04431367665529251, -0.05832719802856445, 0.07844606786966324, 0.027720555663108826, 0.12062691897153854, 0.27361011505126953, 0.0231810100376606, 0.12013201415538788, -0.0474807471036911, -0.07954701781272888, 0.07719554007053375, 0.015199413523077965, 0.08269388228654861, -0.02660216949880123, 0.14524969458580017, 0.03841273486614227, 0.1452166587114334, 0.11121539026498795, 0.014704041182994843, 0.03767411410808563, 0.014256324619054794, -0.002990767592564225, -0.055813923478126526, -0.032906100153923035, 0.03321390226483345, 0.01749461516737938, -0.10461801290512085, -0.018373560160398483, 0.09756407141685486, 0.0939958244562149, 0.13318264484405518, 0.012685870751738548, -0.12453597784042358, -0.07054786384105682, 0.015839336439967155, -0.010474232956767082, -0.10555430501699448, 0.06156450882554054, 0.022676944732666016, -0.09463280439376831, 0.026030581444501877, -0.005215485114604235, 0.0873880535364151, 0.03083350509405136, 0.07180239260196686, -0.09963725507259369, 0.016275392845273018, -0.0016935316380113363, 0.09897971153259277, -0.32139426469802856, 0.18475164473056793, 0.0331573523581028, -0.015723761171102524, -0.07856588065624237, -0.028552420437335968, 0.011946395970880985, 0.08453228324651718, 0.085330069065094, 0.015232225880026817, -0.040787409991025925, -0.08341943472623825, -0.03377258777618408, 0.03500797972083092, 0.16012486815452576, -0.04624927416443825, 0.060210391879081726, -0.07302739471197128, -0.005820733029395342, -0.031087884679436684, 0.04920603707432747, -0.13159000873565674, -0.10102362185716629, 0.042022455483675, 0.12109386175870895, -0.0024547369685024023, 0.031927429139614105, -0.038795631378889084, 0.015522144734859467, 0.05784055218100548, -0.05918131396174431, -0.09705287963151932, -0.05630570650100708, -0.01101790089160204, 0.07214683294296265, -0.15520283579826355, 0.008030393160879612, -0.10319477319717407, -0.04640314355492592, -0.042072590440511703, -0.138922318816185, 0.1078571155667305, -0.05404503643512726, -0.06757130473852158, 0.007233664859086275, 0.1944812685251236, -0.04039497673511505, 0.02397039905190468, 0.011429539881646633, 0.009730442427098751, -0.06128702312707901, -0.046494416892528534, -0.010598619468510151, -0.07889558374881744, 0.013093521818518639, 0.05940067395567894, -0.16487370431423187, -0.08869805186986923, -0.13093580305576324, -0.04731620475649834, 0.20686836540699005, 0.1473015546798706, -0.07019250839948654, 0.12444078177213669, 0.09203268587589264, -0.05649971589446068, -0.2537078559398651, -0.12665016949176788, 0.058010172098875046, 0.03511263057589531, -0.02407519519329071, -0.11148751527070999, -0.012688877992331982, -0.0655435100197792, 0.024928946048021317, 0.04767443239688873, -0.1970728188753128, -0.1458750218153, 0.12492559105157852, -0.026277365162968636, 0.30361077189445496, -0.10959842801094055, -0.07582391053438187, -0.036105938255786896, -0.060109302401542664, 0.0414695106446743, -0.02195843495428562, 0.11001493781805038, -0.039522744715213776, 0.07634858042001724, 0.025282621383666992, 0.048043932765722275, 0.036601435393095016, -0.00901146698743105, -0.043632280081510544, -0.0911015048623085, -0.13334503769874573, 0.0726238265633583, -0.03668690472841263, 0.048856377601623535, -0.07344836741685867, 0.042637571692466736, -0.06829187273979187, -0.057205379009246826, -0.1034383550286293, 0.02803010866045952, 0.0029297724831849337, -0.029189005494117737, -0.062215011566877365, -0.03703439235687256, 0.02064533531665802, -0.021916376426815987, 0.10265122354030609, -0.09521365165710449, 0.001378569402731955, 0.1497931033372879, 0.10739120841026306, 0.09628228098154068, 0.0772755965590477, -0.018630273640155792, -0.036976467818021774, 0.08442527800798416, -0.06954243034124374, 0.047721441835165024, 0.10877528041601181, -0.06132727861404419, 0.022539397701621056, 0.010964203625917435, -0.057921942323446274, -0.018253907561302185, 0.10220491141080856, -0.16434267163276672, -0.08125181496143341, -0.08023614436388016, -0.08946878463029861, 0.09061632305383682, 0.008631418459117413, 0.1449585258960724, -0.07725462317466736, -0.06728985160589218, 0.012134878896176815, 0.001833285903558135, -0.009922951459884644, 0.0714995339512825, 0.029665237292647362, 0.012973261997103691, -0.07519283890724182, 0.05929911136627197, 0.030995499342679977, -0.024206766858696938, 0.06370355188846588, 0.15539616346359253, -0.16944053769111633, -0.08536331355571747, 0.05711919069290161, 0.0908469557762146, -0.09445106983184814, -0.05347966402769089, -0.0581686906516552, -0.09297146648168564, 0.029796410351991653, 0.20283235609531403, 0.028426341712474823, 0.0005250964313745499, -0.045325182378292084, -0.004611944314092398, 0.023567818105220795, 0.08936028182506561, 0.06378774344921112, 0.0021783343981951475, -0.055065613240003586, 0.026160378009080887, -0.038993556052446365, 0.1388150006532669, -0.06522610783576965, 0.012199925258755684, -0.10271322727203369, -0.00979213509708643, -0.18229776620864868, 0.04636189714074135, -0.016897043213248253, -0.033009547740221024, -0.027324901893734932, -0.05235149711370468, -0.05452137812972069, 0.008009695447981358, -0.08301344513893127, 0.0227284524589777, -0.07823885232210159, 0.08584484457969666, -0.017184805124998093, -0.015185055322945118, 0.04515450447797775, 0.01223088800907135, 0.0904059112071991, 0.11072497069835663, -0.06392668187618256, 0.1554211974143982, -0.04184374958276749, 0.0377022959291935, 0.05569486692547798, 0.02761908248066902, -0.010236856527626514, 0.007376363500952721, 0.012808757834136486, 0.04095317795872688, 0.06522028893232346, 0.00710807740688324, 0.1273949295282364, -0.08604852110147476, -0.0019192659528926015, -0.07497604936361313, -0.0670345351099968, -0.04124156013131142, 0.047499943524599075, 0.00536373583599925, 0.09313569962978363, 0.09530720859766006, -0.14588139951229095, 0.03667520359158516, -0.015950245782732964, 0.015233492478728294, 0.0042472295463085175, -0.1317048966884613, -0.09966711699962616, -0.12145745754241943, 0.040915507823228836, 0.016354257240891457, 0.10940337926149368, 0.06774042546749115, -0.0014299523318186402, -0.005925753619521856, -0.0038048196583986282, -0.019641350954771042, -0.025621211156249046, 0.13883942365646362, 0.02699963189661503, -0.05938654765486717, -0.09365227818489075, 0.045052431523799896, -0.006709341891109943, 0.0661952942609787, 0.20054879784584045, 0.05049974098801613, 0.0878400132060051, 0.140827476978302, 0.014721420593559742, -0.001765857683494687, 0.06096869334578514, -0.11084804683923721, -0.11064660549163818, 0.004659187979996204, -0.06666082888841629, 0.12357848137617111, 0.17622646689414978, -0.04286467656493187, 0.0459580160677433, -0.04087885841727257, -0.06867731362581253, -0.14073362946510315, -0.20910510420799255, -0.08094365149736404, -0.11121808737516403, -0.028325507417321205, -0.0929783433675766, -0.010175487026572227, -0.08036542683839798, 0.044809870421886444, -0.05639227479696274, 0.20382235944271088, 0.012557797133922577, -0.21504369378089905, 0.16881228983402252, -0.024567995220422745, 0.06271790713071823, 0.08452356606721878, -0.0076378812082111835, 0.008614708669483662, -0.09040716290473938, 0.0017319758189842105, 0.07074470818042755, -0.03303726390004158, -0.03687753528356552, -0.11679640412330627, -0.07093261927366257, -0.04724506661295891, 0.10182448476552963, 0.029361797496676445, 0.1393391638994217, 0.055931128561496735, -0.04628777131438255, 0.00341225229203701, 0.15974107384681702, 0.037126898765563965, -0.0817800834774971, -0.0024521909654140472, 0.15697623789310455, 0.04392571002244949, 0.05931590870022774, -0.05012648180127144, -0.067751444876194, -0.028113769367337227, 0.25331780314445496, 0.18174080550670624, -0.0122688552364707, 0.033125560730695724, 0.009418105706572533, 0.05742916092276573, 0.14647667109966278, 0.15339010953903198, 0.06687198579311371, 0.18156296014785767, -0.031480398029088974, 0.0013204709393903613, -0.045648686587810516, 0.022065017372369766, -0.08156386017799377, 0.07149173319339752, 0.05565224960446358, -0.1111438125371933, -0.06397222727537155, 0.08144412189722061, -0.15427826344966888, -0.02002202346920967, -0.027813119813799858, -0.11011095345020294, -0.053603749722242355, -0.04872329160571098, 0.08342161029577255, 0.08293100446462631, 0.09276911616325378, -0.022890115156769753, -0.022542398422956467, 0.01148850005120039, 0.04244987666606903, -0.1384844034910202, 0.017558248713612556, 0.03460662439465523, -0.0637807846069336, -0.08215046674013138, -0.043350789695978165, 0.1861320286989212, 0.06704612821340561, 0.0569303072988987, -0.012581270188093185, 0.12979769706726074, -0.004174250178039074, 0.022325588390231133, 0.05524645000696182, 0.025497490540146828, 0.02463800460100174, -0.11349236965179443, 0.09179103374481201, -0.04580190032720566, 0.08188943564891815, 0.07486332207918167, 0.0075872596353292465, -0.09967966377735138, 0.11776312440633774, -0.13494327664375305, 0.06919125467538834, 0.15414641797542572, -0.0019373091636225581, -0.04036552459001541, -0.08506408333778381, -0.05974713712930679, 0.03209272027015686, 0.018083710223436356, -0.035082101821899414, -0.05685034394264221, -0.034391749650239944, 0.12356173247098923, 0.06345319002866745, -0.17382663488388062, 0.02072233334183693, -0.11136265099048615, 0.05677969753742218, -0.14262987673282623, 0.16453389823436737, 0.012351587414741516, 0.009897802025079727, 0.026682624593377113, -0.2567093074321747, 0.03998394310474396, 0.08532904833555222, -0.14212359488010406, -0.08166433870792389 ]
null
null
transformers
# BERT L-10 H-512 fine-tuned on MLM (CORD-19 2020/06/16) BERT model with [10 Transformer layers and hidden embedding of size 512](https://huggingface.co/google/bert_uncased_L-10_H-512_A-8), referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16). ## Training the model ```bash python run_language_modeling.py --model_type bert --model_name_or_path google/bert_uncased_L-10_H-512_A-8 --do_train --train_data_file {cord19-200616-dataset} --mlm --mlm_probability 0.2 --line_by_line --block_size 512 --per_device_train_batch_size 10 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616
{}
fill-mask
aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "arxiv:1908.08962", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1908.08962" ]
[]
TAGS #transformers #pytorch #jax #bert #fill-mask #arxiv-1908.08962 #autotrain_compatible #endpoints_compatible #region-us
# BERT L-10 H-512 fine-tuned on MLM (CORD-19 2020/06/16) BERT model with 10 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16). ## Training the model '''bash python run_language_modeling.py --model_type bert --model_name_or_path google/bert_uncased_L-10_H-512_A-8 --do_train --train_data_file {cord19-200616-dataset} --mlm --mlm_probability 0.2 --line_by_line --block_size 512 --per_device_train_batch_size 10 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616
[ "# BERT L-10 H-512 fine-tuned on MLM (CORD-19 2020/06/16)\n\nBERT model with 10 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).", "## Training the model\n\n'''bash\npython run_language_modeling.py\n --model_type bert\n --model_name_or_path google/bert_uncased_L-10_H-512_A-8\n --do_train\n --train_data_file {cord19-200616-dataset}\n --mlm\n --mlm_probability 0.2\n --line_by_line\n --block_size 512\n --per_device_train_batch_size 10\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616" ]
[ "TAGS\n#transformers #pytorch #jax #bert #fill-mask #arxiv-1908.08962 #autotrain_compatible #endpoints_compatible #region-us \n", "# BERT L-10 H-512 fine-tuned on MLM (CORD-19 2020/06/16)\n\nBERT model with 10 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).", "## Training the model\n\n'''bash\npython run_language_modeling.py\n --model_type bert\n --model_name_or_path google/bert_uncased_L-10_H-512_A-8\n --do_train\n --train_data_file {cord19-200616-dataset}\n --mlm\n --mlm_probability 0.2\n --line_by_line\n --block_size 512\n --per_device_train_batch_size 10\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616" ]
[ 48, 85, 149 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #fill-mask #arxiv-1908.08962 #autotrain_compatible #endpoints_compatible #region-us \n# BERT L-10 H-512 fine-tuned on MLM (CORD-19 2020/06/16)\n\nBERT model with 10 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).## Training the model\n\n'''bash\npython run_language_modeling.py\n --model_type bert\n --model_name_or_path google/bert_uncased_L-10_H-512_A-8\n --do_train\n --train_data_file {cord19-200616-dataset}\n --mlm\n --mlm_probability 0.2\n --line_by_line\n --block_size 512\n --per_device_train_batch_size 10\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616" ]
[ -0.14001089334487915, 0.11857099831104279, -0.002892516553401947, 0.10868430882692337, 0.10566886514425278, 0.024618390947580338, 0.09136108309030533, 0.1261557936668396, 0.003371910657733679, 0.10068278014659882, 0.11190195381641388, 0.057829469442367554, 0.04026234522461891, 0.07623106241226196, -0.029260365292429924, -0.21276773512363434, 0.0005424523842521012, -0.008845311589539051, -0.06833469122648239, 0.07558410614728928, 0.060702674090862274, -0.08649804443120956, 0.10305684804916382, -0.018117163330316544, -0.056534018367528915, 0.00763167068362236, -0.0051231300458312035, -0.05589877441525459, 0.04850902408361435, 0.007491139229387045, 0.10807866603136063, -0.019068308174610138, 0.06180848926305771, -0.1137113943696022, 0.013625022955238819, 0.06473226100206375, 0.018269484862685204, 0.1359601616859436, 0.05404338240623474, 0.015389075502753258, -0.006397376302629709, -0.09959922730922699, 0.06397685408592224, 0.07820265740156174, -0.06508266925811768, -0.08930031210184097, -0.07187549024820328, 0.023146124556660652, 0.07373613119125366, 0.07445744425058365, -0.02042256109416485, 0.050607189536094666, -0.07517994195222855, 0.03406786173582077, 0.18130259215831757, -0.23813921213150024, -0.025745414197444916, 0.09943390637636185, 0.03635089471936226, 0.017306126654148102, -0.07616813480854034, -0.02841019071638584, 0.04143794998526573, 0.03813788294792175, 0.10155384242534637, -0.01252987701445818, 0.03764830157160759, 0.036774128675460815, -0.11629265546798706, 0.020927878096699715, 0.1197182908654213, 0.05551862716674805, -0.03472265973687172, -0.12595398724079132, -0.07177980244159698, -0.08749289065599442, -0.04095035418868065, 0.032227929681539536, 0.027362117543816566, -0.017589742317795753, -0.03893565759062767, -0.04284549131989479, -0.04237275943160057, -0.11932100355625153, -0.009826302528381348, 0.1153445914387703, 0.05418761447072029, -0.00591496005654335, -0.04085572063922882, 0.09988948702812195, -0.07185181230306625, -0.10862386226654053, 0.007215621881186962, -0.029035424813628197, -0.006614685524255037, 0.029512612149119377, -0.008576562628149986, -0.05896824970841408, 0.0056822937913239, 0.0639655590057373, 0.006978818215429783, 0.0658966675400734, 0.028079714626073837, 0.024548888206481934, -0.037282563745975494, 0.11549750715494156, -0.12304437905550003, 0.0018074645195156336, 0.023962490260601044, 0.1436508148908615, 0.013752510771155357, -0.008283576928079128, -0.06552670150995255, -0.018287282437086105, 0.01265624538064003, 0.03886904567480087, -0.01810809038579464, 0.10045308619737625, -0.08156134188175201, -0.023434238508343697, 0.013657392002642155, -0.1715717613697052, 0.01717931404709816, 0.03181766718626022, -0.08472543209791183, -0.02434631437063217, 0.06602824479341507, -0.029145879670977592, -0.08385859429836273, 0.07425691187381744, -0.09744046628475189, -0.050776928663253784, -0.11029022186994553, -0.14006121456623077, 0.010955119505524635, -0.05601365119218826, -0.007156172767281532, -0.0800279974937439, -0.1743408590555191, 0.009877791628241539, 0.05166056379675865, -0.04724655672907829, 0.028383009135723114, -0.04948928952217102, -0.10555689036846161, 0.02407531812787056, 0.014296644367277622, 0.08255105465650558, -0.05134987086057663, 0.0776076540350914, 0.047269295901060104, 0.04560093581676483, 0.02743145450949669, 0.03093992918729782, 0.011534194462001324, 0.058473434299230576, -0.11922582238912582, 0.10107449442148209, -0.12271542102098465, 0.029517754912376404, -0.13551968336105347, -0.09695389121770859, -0.01862892135977745, 0.047523126006126404, 0.10918663442134857, 0.141045480966568, -0.21435193717479706, -0.01735527813434601, 0.16021355986595154, 0.012705431319773197, -0.0682399719953537, 0.10165457427501678, -0.0530242919921875, 0.015217236243188381, 0.06311642378568649, 0.07915406674146652, 0.10833165049552917, -0.14402537047863007, -0.07378825545310974, 0.06721995025873184, 0.03692743554711342, 0.007952382788062096, 0.10026956349611282, -0.0356055349111557, -0.05506978556513786, 0.038405921310186386, -0.05293590947985649, -0.011794572696089745, -0.0330086275935173, -0.0510544553399086, -0.024072401225566864, -0.07543688267469406, 0.10118623077869415, -0.03344030678272247, 0.02488727681338787, -0.0740661472082138, -0.1574336737394333, 0.06512656807899475, 0.13724076747894287, -0.06474803388118744, -0.013992915861308575, -0.11706758290529251, 0.09091629832983017, -0.06901787221431732, -0.0009003916056826711, -0.14157827198505402, -0.0002675292198546231, 0.012427371926605701, -0.05518442764878273, 0.03057100623846054, -0.0071973600424826145, 0.0623076893389225, 0.07689952105283737, -0.029390526935458183, -0.029714884236454964, -0.0631582960486412, -0.008986302651464939, -0.07266771048307419, -0.08968625217676163, -0.058748356997966766, -0.005317301489412785, 0.05554307997226715, -0.1670788824558258, 0.06849956512451172, 0.055312830954790115, 0.07702624797821045, 0.027554873377084732, -0.01871403120458126, 0.022513819858431816, -0.01806754618883133, 0.030962690711021423, -0.05985834822058678, 0.043473053723573685, -0.0005929216858930886, -0.038995079696178436, -0.07301121950149536, -0.18614019453525543, -0.033457834273576736, 0.12660151720046997, 0.036521684378385544, -0.057521335780620575, 0.023423485457897186, -0.030081184580922127, -0.0008617140119895339, -0.03313121199607849, -0.085279680788517, 0.23731888830661774, 0.04116779938340187, 0.17151424288749695, -0.1153472438454628, -0.05362313240766525, 0.015118240378797054, 0.00836386438459158, 0.011891253292560577, 0.11721554398536682, 0.05886642634868622, -0.022974302992224693, 0.03584964945912361, 0.10651969164609909, -0.09164375066757202, 0.16480176150798798, -0.036165058612823486, -0.07441704720258713, -0.04902884364128113, 0.014004334807395935, 0.0025793458335101604, 0.10750045627355576, -0.061107560992240906, -0.004982348065823317, 0.0378456711769104, 0.007443008478730917, 0.041119519621133804, -0.15630003809928894, 0.029756231233477592, 0.030060136690735817, -0.02887413464486599, -0.061110448092222214, 0.00926111824810505, 0.0006174533045850694, 0.07277218997478485, 0.025358255952596664, -0.024276427924633026, 0.018558776006102562, -0.03423250839114189, -0.08506070077419281, 0.18961435556411743, -0.1319625973701477, -0.1584189087152481, -0.15938186645507812, -0.04895269498229027, -0.04029671475291252, -0.004761185962706804, -0.017151039093732834, -0.11883348226547241, -0.08142565935850143, -0.1035730168223381, 0.10981098562479019, -0.0033819505479186773, -0.04848266392946243, 0.024380873888731003, 0.04898316040635109, 0.09915493428707123, -0.16801728308200836, 0.0076020220294594765, 0.010018753819167614, -0.04930127039551735, -0.02697901241481304, 0.04583415761590004, 0.020465251058340073, 0.07824116945266724, -0.014000683091580868, 0.022435704246163368, 0.008269119076430798, 0.17453289031982422, -0.009369904175400734, 0.008183284662663937, 0.1377689093351364, -0.02146904543042183, 0.05380303040146828, 0.1195613220334053, 0.06859444081783295, -0.06265484541654587, 0.014661570079624653, 0.053620174527168274, 0.014496889896690845, -0.24765455722808838, -0.05130863934755325, -0.0448182038962841, 0.09251807630062103, 0.13887104392051697, 0.01923241652548313, -0.12154742330312729, 0.06867197155952454, -0.0004215673543512821, 0.07186956703662872, 0.0049248551949858665, 0.07146838307380676, 0.03223951533436775, -0.029839741066098213, 0.06311720609664917, -0.01026204414665699, 0.0025173595640808344, 0.07332726567983627, 0.021609550341963768, 0.10603346675634384, -0.08052351325750351, 0.18126316368579865, 0.03673660755157471, 0.13156303763389587, 0.03577899932861328, 0.0821736752986908, -0.06198528781533241, 0.010706610046327114, 0.014470113441348076, -0.08711257576942444, -0.03753340616822243, 0.010157196782529354, -0.022349011152982712, 0.06138485297560692, -0.11318786442279816, 0.07791676372289658, 0.017950013279914856, 0.12028481066226959, 0.09712057560682297, -0.29162168502807617, -0.0584648959338665, 0.02689153142273426, -0.013872724026441574, -0.1289001703262329, 0.0653950646519661, 0.12005528807640076, -0.06374168395996094, -0.026225175708532333, -0.05897483602166176, 0.08697272837162018, -0.04846565052866936, 0.028731176629662514, 0.04274876043200493, 0.2070780247449875, -0.00028841712628491223, 0.0993645191192627, -0.12118810415267944, 0.15565796196460724, 0.043350305408239365, 0.06641330569982529, -0.028455179184675217, 0.05206330120563507, 0.041350141167640686, -0.06311479210853577, 0.09577008336782455, -0.0075489794835448265, 0.09399746358394623, -0.14612215757369995, -0.14209489524364471, 0.03329502046108246, 0.08499284088611603, -0.0858692079782486, 0.046841755509376526, -0.04377219080924988, -0.02765601873397827, 0.052956949919462204, -0.06939957290887833, -0.1211719736456871, -0.13241292536258698, 0.01771395094692707, -0.007315517868846655, 0.014692419208586216, -0.08560539036989212, -0.07088136672973633, -0.09030979126691818, 0.16802802681922913, -0.07508402317762375, -0.05127383768558502, -0.10275596380233765, 0.05773762986063957, 0.12180547416210175, -0.0678587332367897, 0.04151856154203415, -0.011136275716125965, 0.1266944408416748, 0.006721006240695715, -0.08191710710525513, 0.10837450623512268, -0.046320635825395584, -0.08865365386009216, -0.050215791910886765, 0.16770698130130768, -0.0016565413679927588, 0.05932936072349548, -0.03216418996453285, -0.0013746493496000767, -0.008394028060138226, -0.07487569004297256, -0.018041269853711128, 0.11849017441272736, 0.2084624320268631, 0.0743512436747551, -0.15797285735607147, -0.002835739403963089, 0.009027298539876938, 0.05554618313908577, 0.15146581828594208, 0.2065494954586029, -0.06816403567790985, 0.03378244861960411, 0.1326921433210373, -0.007039870135486126, -0.236494779586792, 0.016463784500956535, 0.07793132215738297, 0.06020043045282364, -0.03186752274632454, -0.2093483954668045, 0.07758738100528717, 0.05107114091515541, 0.006218003109097481, 0.00016120211512316018, -0.2420935034751892, -0.12567590177059174, 0.1486232876777649, 0.09156443178653717, 0.023654872551560402, -0.06616324931383133, -0.04611518979072571, -0.0964609906077385, -0.14506573975086212, 0.12106651812791824, -0.11616094410419464, 0.09803414344787598, 0.0006010427605360746, 0.05594027414917946, 0.04381623864173889, -0.06770621240139008, 0.1473584920167923, -0.04629329964518547, 0.04921724274754524, -0.051103778183460236, -0.10874856263399124, -0.011635939590632915, -0.09817299246788025, 0.12312217056751251, -0.1234053373336792, 0.13337965309619904, -0.13185420632362366, -0.014776836149394512, -0.011899879202246666, -0.0031297688838094473, -0.03937307000160217, -0.04088278114795685, -0.04593097046017647, 0.0381455272436142, 0.03863954544067383, -0.022241003811359406, -0.013125075958669186, 0.0032862452790141106, -0.034298911690711975, 0.05965080484747887, 0.13079272210597992, -0.030141377821564674, -0.12591111660003662, 0.016999101266264915, 0.0006193603621795774, 0.08632133156061172, -0.2064932882785797, 0.037897203117609024, 0.10067027062177658, 0.027289848774671555, 0.14954054355621338, 0.0417976938188076, -0.06172230839729309, -0.021715182811021805, 0.03612056002020836, -0.13943180441856384, -0.0698789730668068, -0.08064746856689453, 0.06190258637070656, -0.20208071172237396, -0.02565465122461319, 0.10930812358856201, -0.05324724316596985, -0.012285607866942883, 0.03780612722039223, 0.03200560063123703, -0.05008287355303764, 0.13395218551158905, 0.08199143409729004, 0.07587816566228867, -0.08987946063280106, 0.09738857299089432, 0.032055992633104324, 0.010775728151202202, 0.047505028545856476, 0.07855179905891418, -0.08680079132318497, -0.036973997950553894, 0.05441061779856682, 0.21756133437156677, 0.09742502868175507, -0.010032465681433678, -0.06433998048305511, -0.07591473311185837, 0.05019215866923332, 0.08885227143764496, 0.04603860154747963, 0.0005222744075581431, -0.0732923224568367, -0.007159275468438864, -0.08078933507204056, 0.12205293774604797, 0.04869922250509262, 0.015193521976470947, -0.13496147096157074, 0.10496655106544495, -0.009337018243968487, 0.020676668733358383, -0.0020326077938079834, 0.028477542102336884, -0.10931381583213806, -0.0391663983464241, -0.17677021026611328, 0.05953993275761604, 0.023210886865854263, 0.008534127846360207, -0.01507766917347908, 0.02692955546081066, -0.013191386125981808, 0.010441668331623077, -0.07330822199583054, -0.06128312647342682, 0.011301667429506779, 0.04986223950982094, -0.09408104419708252, 0.028117556124925613, 0.04874451085925102, -0.08617796003818512, 0.06846334785223007, 0.00961842481046915, -0.0045920973643660545, 0.044662393629550934, -0.04147570952773094, -0.07261766493320465, 0.0015717254718765616, 0.042283959686756134, 0.0493742972612381, -0.09628544747829437, 0.008218487724661827, -0.06469156593084335, 0.009828243404626846, -0.03374464809894562, 0.05307045206427574, -0.10111396759748459, -0.003941346425563097, -0.010199974291026592, 0.019069669768214226, -0.09919606149196625, 0.06135870888829231, 0.0720733255147934, 0.06744404137134552, 0.13542822003364563, -0.03596944361925125, 0.027631431818008423, -0.17894242703914642, -0.0033050074707716703, 0.010068240575492382, -0.07438193261623383, -0.045126207172870636, -0.020152149721980095, 0.08424753695726395, -0.08947553485631943, 0.0606798380613327, 0.018201541155576706, -0.08274462819099426, 0.007961850613355637, 0.020419755950570107, 0.018362320959568024, 0.03909463435411453, 0.21065795421600342, 0.007352935150265694, 0.01542474515736103, 0.004468679428100586, 0.014985796995460987, 0.08486399054527283, 0.05377505347132683, 0.0824885368347168, 0.15479062497615814, -0.01025872491300106, 0.058721497654914856, 0.07502423226833344, -0.07113265246152878, -0.08728282153606415, 0.14055049419403076, -0.06845570355653763, 0.07933129370212555, -0.07764118909835815, 0.18311765789985657, 0.04826967790722847, -0.13416022062301636, 0.0692950114607811, -0.03412959724664688, -0.13824288547039032, -0.11636989563703537, -0.14340487122535706, -0.07309658825397491, -0.0790405347943306, 0.004784325137734413, -0.12473885715007782, -0.015464508906006813, 0.11251090466976166, 0.025410544127225876, 0.02215077355504036, 0.18071183562278748, -0.139509916305542, -0.04011279717087746, 0.067000612616539, 0.026337282732129097, -0.018073394894599915, -0.05443166568875313, -0.05592993646860123, 0.06577527523040771, 0.023914974182844162, 0.08045431971549988, -0.02085542120039463, 0.0006862395093776286, 0.023635979741811752, -0.00385438185185194, -0.08302242308855057, -0.020730838179588318, -0.012991714291274548, 0.03533465415239334, 0.13504044711589813, 0.04057461768388748, -0.030456479638814926, -0.018635427579283714, 0.2111814320087433, -0.07331995666027069, -0.05687613785266876, -0.15734900534152985, 0.08531235158443451, -0.012327631935477257, -0.002734578913077712, 0.037810999900102615, -0.12711884081363678, -0.03462345525622368, 0.22892865538597107, 0.21862265467643738, -0.07880708575248718, -0.0028341261204332113, 0.0358508862555027, -0.007784618996083736, -0.06226632744073868, 0.08765730261802673, 0.06617577373981476, 0.06140873208642006, -0.02460457943379879, -0.016263745725154877, 0.015118037350475788, -0.061405327171087265, -0.034983571618795395, 0.1055787205696106, 0.006104874890297651, -0.03257982060313225, -0.033772505819797516, 0.023445485159754753, 0.021682457998394966, -0.19878233969211578, -0.055209871381521225, -0.12011270970106125, -0.13495659828186035, -0.04801183193922043, 0.06491991877555847, 0.019052496179938316, 0.06616399437189102, -0.041189372539520264, 0.0027067067567259073, 0.11242445558309555, -0.023591361939907074, -0.06963551789522171, -0.07467281818389893, 0.05395805835723877, -0.022768428549170494, 0.18569441139698029, 0.025706414133310318, 0.06233032047748566, 0.1205620989203453, -0.020364264026284218, -0.09117787331342697, 0.051179684698581696, 0.06429502367973328, -0.07831469178199768, 0.004458037670701742, 0.15347862243652344, -0.05176929011940956, 0.05179743468761444, 0.00968649797141552, -0.08018361777067184, -0.03684202954173088, -0.0612463653087616, -0.09196025878190994, -0.10598782449960709, 0.014534842222929, -0.08285506814718246, 0.1253119558095932, 0.1973535567522049, -0.04144396260380745, -0.052354246377944946, -0.05418217182159424, 0.06274367868900299, 0.00222736201249063, -0.03397485613822937, 0.025491563603281975, -0.1680046170949936, -0.006000901572406292, 0.02599833533167839, 0.02067619375884533, -0.2988927364349365, -0.04715210571885109, 0.033796049654483795, -0.01592988893389702, -0.08060166239738464, 0.09976471215486526, 0.10236954689025879, 0.05438646674156189, -0.03271719813346863, -0.035107627511024475, -0.0365075059235096, 0.1005454882979393, -0.133823424577713, -0.0927138477563858 ]
null
null
transformers
# BERT L-10 H-512 CORD-19 (2020/06/16) fine-tuned on SQuAD v2.0 BERT model with [10 Transformer layers and hidden embedding of size 512](https://huggingface.co/google/bert_uncased_L-10_H-512_A-8), referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), [fine-tuned for MLM](https://huggingface.co/aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616) on CORD-19 dataset (as released on 2020/06/16) and fine-tuned for QA on SQuAD v2.0. ## Training the model ```bash python run_squad.py --model_type bert --model_name_or_path aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616 --train_file 'train-v2.0.json' --predict_file 'dev-v2.0.json' --do_train --do_eval --do_lower_case --version_2_with_negative --max_seq_length 384 --per_gpu_train_batch_size 10 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616_squad2
{"datasets": ["squad_v2"]}
question-answering
aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2
[ "transformers", "pytorch", "jax", "bert", "question-answering", "dataset:squad_v2", "arxiv:1908.08962", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1908.08962" ]
[]
TAGS #transformers #pytorch #jax #bert #question-answering #dataset-squad_v2 #arxiv-1908.08962 #endpoints_compatible #region-us
# BERT L-10 H-512 CORD-19 (2020/06/16) fine-tuned on SQuAD v2.0 BERT model with 10 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16) and fine-tuned for QA on SQuAD v2.0. ## Training the model '''bash python run_squad.py --model_type bert --model_name_or_path aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616 --train_file 'train-v2.0.json' --predict_file 'dev-v2.0.json' --do_train --do_eval --do_lower_case --version_2_with_negative --max_seq_length 384 --per_gpu_train_batch_size 10 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616_squad2
[ "# BERT L-10 H-512 CORD-19 (2020/06/16) fine-tuned on SQuAD v2.0\n\nBERT model with 10 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16) and fine-tuned for QA on SQuAD v2.0.", "## Training the model\n\n'''bash\npython run_squad.py\n --model_type bert\n --model_name_or_path aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616\n --train_file 'train-v2.0.json'\n --predict_file 'dev-v2.0.json'\n --do_train\n --do_eval\n --do_lower_case\n --version_2_with_negative\n --max_seq_length 384\n --per_gpu_train_batch_size 10\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616_squad2" ]
[ "TAGS\n#transformers #pytorch #jax #bert #question-answering #dataset-squad_v2 #arxiv-1908.08962 #endpoints_compatible #region-us \n", "# BERT L-10 H-512 CORD-19 (2020/06/16) fine-tuned on SQuAD v2.0\n\nBERT model with 10 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16) and fine-tuned for QA on SQuAD v2.0.", "## Training the model\n\n'''bash\npython run_squad.py\n --model_type bert\n --model_name_or_path aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616\n --train_file 'train-v2.0.json'\n --predict_file 'dev-v2.0.json'\n --do_train\n --do_eval\n --do_lower_case\n --version_2_with_negative\n --max_seq_length 384\n --per_gpu_train_batch_size 10\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616_squad2" ]
[ 50, 103, 180 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #question-answering #dataset-squad_v2 #arxiv-1908.08962 #endpoints_compatible #region-us \n# BERT L-10 H-512 CORD-19 (2020/06/16) fine-tuned on SQuAD v2.0\n\nBERT model with 10 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16) and fine-tuned for QA on SQuAD v2.0.## Training the model\n\n'''bash\npython run_squad.py\n --model_type bert\n --model_name_or_path aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616\n --train_file 'train-v2.0.json'\n --predict_file 'dev-v2.0.json'\n --do_train\n --do_eval\n --do_lower_case\n --version_2_with_negative\n --max_seq_length 384\n --per_gpu_train_batch_size 10\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616_squad2" ]
[ -0.11253336817026138, 0.11946509778499603, -0.005505832843482494, 0.09330683201551437, 0.07550659775733948, 0.04791435971856117, 0.050228532403707504, 0.152336984872818, -0.04327462986111641, 0.12243083864450455, 0.08253675699234009, 0.06403162330389023, 0.06471733003854752, 0.0725138932466507, -0.03624800220131874, -0.17683923244476318, 0.007780756335705519, -0.005072448868304491, -0.0619918555021286, 0.05844641104340553, 0.07691135257482529, -0.10078421235084534, 0.07437069714069366, -0.00191836419980973, -0.025624066591262817, 0.00408436544239521, -0.0070548877120018005, -0.05221337452530861, 0.035921793431043625, 0.04561350867152214, 0.07429639250040054, 0.023551542311906815, 0.0684397742152214, -0.17985643446445465, 0.013346010819077492, 0.0702727735042572, 0.011077217757701874, 0.10069750994443893, 0.09362027794122696, 0.04352143406867981, 0.003852688707411289, -0.06501629948616028, 0.05687227100133896, 0.05539967492222786, -0.07247202098369598, -0.1356019526720047, -0.09270311146974564, 0.04304775223135948, 0.10487135499715805, 0.05593934282660484, -0.025036433711647987, 0.03755481168627739, -0.10094831883907318, 0.036582544445991516, 0.17425961792469025, -0.2698690891265869, -0.02766599878668785, 0.04570626839995384, 0.003979029133915901, 0.01983245648443699, -0.11533921957015991, -0.07838896661996841, 0.04645020142197609, 0.016857875511050224, 0.053969450294971466, -0.012513764202594757, 0.009032835252583027, 0.02461269125342369, -0.1383982002735138, -0.010474247857928276, 0.10940201580524445, 0.06309588253498077, -0.053388532251119614, -0.11535980552434921, -0.07508539408445358, -0.13648812472820282, -0.016053849831223488, -0.03682585433125496, 0.01998472400009632, -0.0010487567633390427, 0.004692539107054472, -0.02300235442817211, -0.07761215418577194, -0.09630712121725082, -0.007148020900785923, 0.04250854253768921, 0.07566235959529877, 0.0023167915642261505, -0.031341418623924255, 0.10942711681127548, -0.06661258637905121, -0.1059752032160759, -0.031510382890701294, -0.03851248323917389, -0.06972668319940567, -0.00045197500730864704, 0.0076215448789298534, -0.02904844656586647, 0.014292997308075428, 0.1659569889307022, 0.0015649943379685283, 0.0756228044629097, 0.006029827520251274, -0.009573974646627903, -0.038530077785253525, 0.14902527630329132, -0.07117098569869995, -0.005280744284391403, 0.01728016883134842, 0.13220641016960144, 0.004164249170571566, -0.0011646909406408668, -0.03354824334383011, -0.03918665647506714, 0.02932690642774105, 0.04137507081031799, -0.02038954198360443, 0.05243019387125969, -0.07439975440502167, -0.03989102318882942, 0.08368818461894989, -0.13569007813930511, 0.013666482642292976, 0.06358150392770767, -0.07814336568117142, 0.010786755941808224, 0.009099587798118591, 0.0019997144117951393, -0.08580705523490906, 0.08346465229988098, -0.07093074172735214, -0.05732264369726181, -0.05459652468562126, -0.1046890839934349, 0.02464327961206436, -0.05107320845127106, 0.011737647466361523, -0.10012004524469376, -0.12068355828523636, -0.002116855001077056, 0.01762886717915535, -0.051590997725725174, 0.0018476282712072134, -0.037952546030282974, -0.10904373228549957, 0.04709958657622337, -0.012654812075197697, 0.06900566071271896, -0.06343096494674683, 0.07019809633493423, 0.04885498061776161, 0.030412521213293076, 0.08841601759195328, 0.019168658182024956, -0.01699409820139408, 0.044026363641023636, -0.06578488647937775, 0.11390591412782669, -0.10877519845962524, -0.039783310145139694, -0.16472598910331726, -0.08770990371704102, 0.010211859829723835, -0.002058971207588911, 0.10191091150045395, 0.13344250619411469, -0.16405104100704193, -0.008653589524328709, 0.12808530032634735, -0.016948694363236427, -0.06873452663421631, 0.12234392017126083, -0.028566788882017136, -0.04488995671272278, 0.04466767981648445, 0.12004775553941727, 0.12795709073543549, -0.18177823722362518, -0.10169973969459534, 0.08058493584394455, 0.03707220032811165, 0.06040206179022789, 0.12962955236434937, -0.0268890131264925, 0.03661319613456726, 0.007997212000191212, -0.07376696914434433, -0.010147696360945702, -0.02928776480257511, -0.07538820058107376, -0.019288374111056328, -0.0649195984005928, 0.11637935042381287, -0.02273235097527504, 0.020123062655329704, -0.04853348433971405, -0.15032510459423065, -0.012858336791396141, 0.15911760926246643, -0.06086230278015137, 0.010808352380990982, -0.1329205483198166, 0.07158791273832321, -0.07681863754987717, 0.008799262344837189, -0.10506878048181534, -0.04015898331999779, 0.044081393629312515, -0.05546814575791359, -0.022908665239810944, 0.058874424546957016, 0.056251898407936096, 0.0689106434583664, -0.026589035987854004, -0.07651537656784058, -0.09206031262874603, -0.03034602478146553, -0.08787161111831665, -0.065988689661026, -0.05395112931728363, -0.01644287072122097, 0.06574860215187073, -0.1854064017534256, 0.04886477813124657, 0.08083165436983109, 0.07774016261100769, 0.0389438197016716, -0.012068545445799828, 0.01888766512274742, -0.028438890352845192, 0.019282547757029533, -0.05652419850230217, 0.01993885636329651, -0.008934836834669113, -0.059918854385614395, -0.07306603342294693, -0.15739066898822784, 0.01415274664759636, 0.09277426451444626, 0.057755131274461746, -0.035914719104766846, -0.006139660254120827, -0.047502219676971436, -0.006774399895220995, -0.035931091755628586, -0.0488588809967041, 0.19302482903003693, 0.040867555886507034, 0.13484638929367065, -0.0940486490726471, -0.0514073520898819, 0.01456223614513874, 0.008756269700825214, 0.013736976310610771, 0.1317053586244583, 0.03150225058197975, -0.03333146870136261, 0.01655399240553379, 0.13399219512939453, -0.05735800415277481, 0.0938076600432396, -0.05876375362277031, -0.11043530702590942, -0.039792902767658234, 0.04809064790606499, 0.012843435630202293, 0.05481279641389847, -0.04204675182700157, 0.047447558492422104, 0.03606543317437172, 0.047421302646398544, 0.008768677711486816, -0.15163777768611908, 0.02222185581922531, 0.031251296401023865, -0.05843646824359894, -0.02343636006116867, 0.021921003237366676, -0.010778825730085373, 0.06620083749294281, 0.0282980315387249, 0.015530578792095184, 0.015973977744579315, -0.030498072504997253, -0.08826308697462082, 0.1792241930961609, -0.11068794131278992, -0.11687075346708298, -0.1377045065164566, -0.012422885745763779, -0.03688662499189377, -0.00668104225769639, 0.02686387486755848, -0.14362289011478424, -0.08400087803602219, -0.07464290410280228, 0.1227266788482666, -0.005862843245267868, -0.015919379889965057, 0.0351237878203392, 0.028267526999115944, 0.10432900488376617, -0.15001867711544037, 0.027831340208649635, -0.018328117206692696, -0.10806739330291748, -0.04050406441092491, 0.07325929403305054, 0.0399446077644825, 0.06885524094104767, 0.00875406339764595, 0.008870854042470455, -0.0115915946662426, 0.24655097723007202, -0.04203405603766441, 0.003084372030571103, 0.19194038212299347, -0.034732598811388016, 0.042643871158361435, 0.10400724411010742, 0.035704392939805984, -0.05672244727611542, 0.007194987498223782, 0.08187374472618103, 0.013443327508866787, -0.2717972993850708, -0.0009869234636425972, -0.04110061749815941, 0.07551346719264984, 0.12613274157047272, 0.029963281005620956, -0.10894152522087097, 0.06724830716848373, -0.027828486636281013, 0.05777641013264656, 0.02143469639122486, 0.05986465886235237, 0.06338111311197281, 0.030196018517017365, 0.07170295715332031, -0.02546006627380848, 0.020209407433867455, 0.07224491983652115, 0.09337525814771652, 0.10205525159835815, -0.10637912154197693, 0.17656688392162323, 0.04338068142533302, 0.16776327788829803, 0.019649898633360863, 0.021778644993901253, -0.06936801224946976, 0.009563090279698372, 0.009034311398863792, -0.061530519276857376, -0.06508974730968475, 0.025307774543762207, 0.009196160361170769, 0.04028591886162758, -0.11333051323890686, 0.08608769625425339, 0.04455813020467758, 0.14577101171016693, 0.08599448204040527, -0.20757077634334564, -0.09142786264419556, 0.05296273157000542, -0.024553395807743073, -0.05723017454147339, 0.07660319656133652, 0.11495224386453629, -0.0768580511212349, -0.015220241621136665, -0.04357282817363739, 0.08485519886016846, -0.09631817042827606, 0.0311040710657835, 0.05380593240261078, 0.1484401822090149, 0.03401152417063713, 0.07702112942934036, -0.158003568649292, 0.08625482022762299, 0.037664130330085754, 0.09742605686187744, -0.005168580450117588, 0.06656336784362793, 0.01758531667292118, -0.044556453824043274, 0.12265576422214508, -0.02966902032494545, 0.05045277997851372, -0.16759978234767914, -0.1226646825671196, 0.03276420757174492, 0.06376218795776367, -0.059304919093847275, 0.05533221736550331, -0.05736175552010536, -0.009874008595943451, 0.03387818485498428, -0.011919759213924408, -0.10209477692842484, -0.12209576368331909, 0.03897183761000633, -0.038241833448410034, 0.020876813679933548, -0.061532072722911835, -0.048156749457120895, -0.11855748295783997, 0.1052330955862999, -0.1859142780303955, -0.04866348206996918, -0.09993468225002289, 0.06494170427322388, 0.11491920799016953, -0.09571424126625061, 0.010998532176017761, 0.02194538712501526, 0.12443559616804123, 0.02572791464626789, -0.07336852699518204, 0.07286376506090164, -0.06639425456523895, -0.17468447983264923, -0.02272474206984043, 0.1284351944923401, -0.008354737423360348, 0.05776692181825638, -0.015231378376483917, -0.012712289579212666, -0.0010093929013237357, -0.09377128630876541, 0.04581465944647789, 0.09797293692827225, 0.12317381799221039, 0.011450673453509808, -0.09283090382814407, -0.006584757007658482, -0.016602136194705963, 0.047660041600465775, 0.12873272597789764, 0.2489716112613678, -0.07397842407226562, 0.05879223719239235, 0.1305023729801178, -0.035883817821741104, -0.19814512133598328, 0.014361194334924221, 0.09855443984270096, 0.027183646336197853, -0.05190989375114441, -0.18518927693367004, 0.08402422815561295, 0.11567430943250656, 0.001512658316642046, -0.03644491359591484, -0.2891072928905487, -0.1212892159819603, 0.10800063610076904, 0.06560884416103363, -0.02960710972547531, -0.09599753469228745, -0.04651656001806259, -0.037405457347631454, -0.18200527131557465, 0.07956109941005707, -0.10832767188549042, 0.08296585828065872, -0.0012627359246835113, -0.01975332200527191, 0.03843468427658081, -0.043083276599645615, 0.14305870234966278, 0.0063123274594545364, 0.03127061948180199, -0.026083579286932945, -0.04264260455965996, -0.015679584816098213, -0.08042742311954498, 0.08710408955812454, -0.03361048921942711, 0.10266187787055969, -0.15838977694511414, -0.016912464052438736, -0.009836451150476933, -0.02474585734307766, -0.048238884657621384, -0.05550820007920265, -0.04803105816245079, 0.028116751462221146, 0.09432089328765869, -0.02017790637910366, 0.043595097959041595, 0.005879094358533621, -0.02493215538561344, 0.07352837175130844, 0.1189507246017456, 0.03217139095067978, -0.18802128732204437, 0.002218300709500909, 0.005194257479161024, 0.08859141170978546, -0.17609816789627075, 0.06355021893978119, 0.11454720050096512, -0.009471002966165543, 0.1366482973098755, 0.034379251301288605, -0.03870486468076706, 0.039277493953704834, 0.009455898776650429, -0.10081322491168976, -0.10479672253131866, -0.043569013476371765, 0.019213587045669556, -0.171766996383667, 0.018015369772911072, 0.13739603757858276, -0.017232565209269524, -0.022979630157351494, 0.029341813176870346, 0.06328234076499939, -0.03715752810239792, 0.14782299101352692, 0.057691674679517746, 0.07181059569120407, -0.08219391107559204, 0.10661949217319489, 0.059757012873888016, -0.06720282137393951, 0.056185536086559296, 0.08147720247507095, -0.08127490431070328, -0.04406880587339401, -0.00024512922391295433, 0.12258228659629822, 0.051941193640232086, -0.006633206736296415, -0.039851900190114975, -0.07024470716714859, 0.06863925606012344, 0.007466228678822517, 0.019792962819337845, 0.0038838612381368876, -0.05655520036816597, 0.01236420962959528, -0.0917920470237732, 0.1132797971367836, 0.030164681375026703, 0.027331018820405006, -0.13916762173175812, 0.06757785379886627, -0.030709678307175636, 0.04484539106488228, 0.012068395502865314, 0.025779927149415016, -0.10596124082803726, -0.023395569995045662, -0.13873817026615143, 0.0802418515086174, 0.0019277348183095455, 0.03800838068127632, -0.022569231688976288, 0.010796356946229935, -0.021893572062253952, 0.030827147886157036, -0.06824307143688202, -0.05522449314594269, -0.007891770452260971, 0.07238835841417313, -0.12772274017333984, 0.022452864795923233, 0.02490655891597271, -0.10604115575551987, 0.10281569510698318, 0.003288081381469965, 0.012932145036756992, 0.04888333007693291, -0.01832025870680809, -0.06199631467461586, 0.0029754575807601213, 0.05917605385184288, 0.02545660361647606, -0.06850198656320572, 0.027638260275125504, -0.06438913941383362, -0.05120279639959335, -0.037407830357551575, 0.05012008175253868, -0.09605133533477783, -0.020478377118706703, -0.0416695736348629, 0.003322785487398505, -0.1127193346619606, 0.056938041001558304, 0.07704924046993256, 0.040383730083703995, 0.13552838563919067, -0.03208518028259277, 0.033089037984609604, -0.16920338571071625, -0.02172607183456421, 0.03920319676399231, -0.055112093687057495, -0.0732346624135971, -0.04068097099661827, 0.08974658697843552, -0.08689039200544357, 0.00258373050019145, -0.028420068323612213, -0.03211474418640137, 0.028264906257390976, -0.039183784276247025, 0.026911301538348198, 0.04948103800415993, 0.17969989776611328, 0.0353897325694561, -0.005131411831825972, 0.0018054343527182937, -0.012787398882210255, 0.06979887932538986, 0.08085804432630539, 0.09987886250019073, 0.15700863301753998, 0.02085297182202339, 0.06965366750955582, 0.014964616857469082, -0.11819084733724594, -0.11594677716493607, 0.17315255105495453, -0.11181960999965668, 0.0701352208852768, -0.04970289394259453, 0.10530608147382736, 0.0846748799085617, -0.14690695703029633, 0.03330977261066437, -0.048371534794569016, -0.11479748785495758, -0.13238029181957245, -0.08412376791238785, -0.08490270376205444, -0.08175285905599594, 0.02063598670065403, -0.13647979497909546, 0.017899546772241592, 0.07920718193054199, 0.03669474273920059, 0.018627338111400604, 0.13721789419651031, -0.0473848320543766, -0.03005627915263176, 0.05111628770828247, 0.037132419645786285, -0.006933166645467281, -0.009137646295130253, -0.03743884339928627, 0.10648901015520096, 0.0025405411142855883, 0.09524356573820114, -0.03079647198319435, 0.020210057497024536, 0.017054978758096695, -0.015699192881584167, -0.06599362939596176, 0.0025593002792447805, 0.009803916327655315, 0.03217250108718872, 0.13893115520477295, 0.06241126358509064, -0.0025583102833479643, -0.02274443209171295, 0.19861941039562225, -0.049012329429388046, -0.02319221943616867, -0.1783655881881714, 0.042217954993247986, 0.02487010508775711, 0.04592800885438919, 0.055790290236473083, -0.12844008207321167, -0.039416804909706116, 0.17861247062683105, 0.1423274129629135, -0.0837501809000969, -0.015803800895810127, 0.05719617009162903, -0.005784393288195133, -0.049806758761405945, 0.10005486011505127, 0.07738982141017914, 0.08737031370401382, -0.04589048773050308, 0.0018945675110444427, 0.03139805793762207, -0.051043491810560226, 0.001985386945307255, 0.1639283150434494, -0.026349524036049843, 0.008879534900188446, -0.03337990492582321, 0.008167707361280918, 0.014557518064975739, -0.18321393430233002, -0.022733744233846664, -0.10327970236539841, -0.1446961909532547, -0.02366097830235958, 0.07201047986745834, 0.02108984999358654, 0.05048412084579468, -0.02811087667942047, -0.025576820597052574, 0.1296606808900833, -0.01668720506131649, -0.027360500767827034, -0.04641355946660042, 0.05957827344536781, 0.012554577551782131, 0.18675097823143005, 0.038398150354623795, 0.05745553597807884, 0.12202230095863342, -0.011064649559557438, -0.12188253551721573, 0.03994031623005867, 0.08916781842708588, -0.10945912450551987, -0.005513296462595463, 0.14284946024417877, -0.044842109084129333, 0.10941843688488007, 0.05188991501927376, -0.13172078132629395, -0.03470000624656677, -0.011600303463637829, -0.07897903025150299, -0.08786018192768097, 0.015898382291197777, -0.08172307163476944, 0.1270570307970047, 0.17990067601203918, -0.038258373737335205, -0.03490625321865082, -0.035730645060539246, 0.07417692989110947, -0.011930649168789387, 0.051358114928007126, 0.045410335063934326, -0.14612437784671783, 0.026478294283151627, 0.023696202784776688, 0.06306996941566467, -0.1950761079788208, -0.0590609535574913, 0.056235432624816895, -0.01208247896283865, -0.08943961560726166, 0.11383242905139923, 0.057790230959653854, 0.02391011081635952, -0.03638874739408493, -0.0747215673327446, -0.04217865318059921, 0.08217302709817886, -0.10093358159065247, -0.09191698580980301 ]
null
null
transformers
# BERT L-2 H-512 fine-tuned on MLM (CORD-19 2020/06/16) BERT model with [2 Transformer layers and hidden embedding of size 512](https://huggingface.co/google/bert_uncased_L-2_H-512_A-8), referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16). ## Training the model ```bash python run_language_modeling.py --model_type bert --model_name_or_path google/bert_uncased_L-2_H-512_A-8 --do_train --train_data_file {cord19-200616-dataset} --mlm --mlm_probability 0.2 --line_by_line --block_size 512 --per_device_train_batch_size 20 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-2_H-512_A-8_cord19-200616
{}
fill-mask
aodiniz/bert_uncased_L-2_H-512_A-8_cord19-200616
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "arxiv:1908.08962", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1908.08962" ]
[]
TAGS #transformers #pytorch #jax #bert #fill-mask #arxiv-1908.08962 #autotrain_compatible #endpoints_compatible #region-us
# BERT L-2 H-512 fine-tuned on MLM (CORD-19 2020/06/16) BERT model with 2 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16). ## Training the model '''bash python run_language_modeling.py --model_type bert --model_name_or_path google/bert_uncased_L-2_H-512_A-8 --do_train --train_data_file {cord19-200616-dataset} --mlm --mlm_probability 0.2 --line_by_line --block_size 512 --per_device_train_batch_size 20 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-2_H-512_A-8_cord19-200616
[ "# BERT L-2 H-512 fine-tuned on MLM (CORD-19 2020/06/16)\n\nBERT model with 2 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).", "## Training the model\n\n'''bash\npython run_language_modeling.py\n --model_type bert\n --model_name_or_path google/bert_uncased_L-2_H-512_A-8\n --do_train\n --train_data_file {cord19-200616-dataset}\n --mlm\n --mlm_probability 0.2\n --line_by_line\n --block_size 512\n --per_device_train_batch_size 20\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-2_H-512_A-8_cord19-200616" ]
[ "TAGS\n#transformers #pytorch #jax #bert #fill-mask #arxiv-1908.08962 #autotrain_compatible #endpoints_compatible #region-us \n", "# BERT L-2 H-512 fine-tuned on MLM (CORD-19 2020/06/16)\n\nBERT model with 2 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).", "## Training the model\n\n'''bash\npython run_language_modeling.py\n --model_type bert\n --model_name_or_path google/bert_uncased_L-2_H-512_A-8\n --do_train\n --train_data_file {cord19-200616-dataset}\n --mlm\n --mlm_probability 0.2\n --line_by_line\n --block_size 512\n --per_device_train_batch_size 20\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-2_H-512_A-8_cord19-200616" ]
[ 48, 85, 149 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #fill-mask #arxiv-1908.08962 #autotrain_compatible #endpoints_compatible #region-us \n# BERT L-2 H-512 fine-tuned on MLM (CORD-19 2020/06/16)\n\nBERT model with 2 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).## Training the model\n\n'''bash\npython run_language_modeling.py\n --model_type bert\n --model_name_or_path google/bert_uncased_L-2_H-512_A-8\n --do_train\n --train_data_file {cord19-200616-dataset}\n --mlm\n --mlm_probability 0.2\n --line_by_line\n --block_size 512\n --per_device_train_batch_size 20\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-2_H-512_A-8_cord19-200616" ]
[ -0.13583415746688843, 0.12481004744768143, -0.003204968059435487, 0.1101379245519638, 0.10248786211013794, 0.025878550484776497, 0.09186132252216339, 0.12901149690151215, 0.00333899213001132, 0.09914079308509827, 0.11231445521116257, 0.049642447382211685, 0.03918243572115898, 0.07716801762580872, -0.028164537623524666, -0.21557371318340302, -0.002088623121380806, -0.014738201163709164, -0.07563430815935135, 0.07467413693666458, 0.06124060973525047, -0.08313829451799393, 0.10274384915828705, -0.01889125257730484, -0.059155866503715515, 0.009269816800951958, -0.0025860334280878305, -0.0537908673286438, 0.04795508459210396, 0.01097195129841566, 0.10868536680936813, -0.014744678512215614, 0.06389050930738449, -0.11831074953079224, 0.012821430340409279, 0.06299019604921341, 0.01738748326897621, 0.1354656219482422, 0.05499819666147232, 0.016623476520180702, -0.0026723055634647608, -0.0976061150431633, 0.06032037362456322, 0.07772772014141083, -0.06349018961191177, -0.09201645106077194, -0.07063453644514084, 0.026141563430428505, 0.07474364340305328, 0.0703175738453865, -0.01749364659190178, 0.04560570791363716, -0.07565603405237198, 0.03131432086229324, 0.1766156405210495, -0.24122002720832825, -0.026905708014965057, 0.0934600979089737, 0.02794639579951763, 0.018887247890233994, -0.07167327404022217, -0.02591039054095745, 0.038001175969839096, 0.03892359882593155, 0.09788448363542557, -0.013447617180645466, 0.0331655815243721, 0.037802763283252716, -0.1143224760890007, 0.017241794615983963, 0.11570120602846146, 0.051821596920490265, -0.035979095846414566, -0.1212380975484848, -0.07265985757112503, -0.07803983986377716, -0.037794630974531174, 0.030665792524814606, 0.028249965980648994, -0.013794568367302418, -0.04136867821216583, -0.04971662536263466, -0.04717892408370972, -0.12146008014678955, -0.011882705613970757, 0.11782927066087723, 0.05285046249628067, -0.0000755309229134582, -0.03941868990659714, 0.10379825532436371, -0.06732666492462158, -0.10645166784524918, 0.005783720873296261, -0.028194177895784378, -0.006137872580438852, 0.032015733420848846, -0.007602642755955458, -0.05696265399456024, 0.00663049565628171, 0.05538705363869667, -0.0016290564090013504, 0.06360139697790146, 0.024739934131503105, 0.028243564069271088, -0.03600025177001953, 0.1093875989317894, -0.11799543350934982, 0.009716447442770004, 0.023878304287791252, 0.14185689389705658, 0.016889283433556557, -0.010515916161239147, -0.06762447953224182, -0.018487250432372093, 0.011819141916930676, 0.042263247072696686, -0.017341015860438347, 0.09161190688610077, -0.0847269743680954, -0.02345998026430607, 0.005421321373432875, -0.16985847055912018, 0.01983683742582798, 0.03436571732163429, -0.08046907186508179, -0.02800467237830162, 0.06925196945667267, -0.02707008458673954, -0.08317945897579193, 0.07038819789886475, -0.09247378259897232, -0.04704374074935913, -0.10661336034536362, -0.13409437239170074, 0.011863959021866322, -0.04175983741879463, -0.009834605269134045, -0.083884596824646, -0.1680612862110138, 0.01615998148918152, 0.05539563670754433, -0.05361992493271828, 0.023417171090841293, -0.04583087936043739, -0.10193626582622528, 0.02623879723250866, 0.012051817961037159, 0.08232416212558746, -0.05091742426156998, 0.07897741347551346, 0.04643796756863594, 0.0448981374502182, 0.027441605925559998, 0.028161238878965378, 0.014371147379279137, 0.06094999611377716, -0.11930925399065018, 0.10215133428573608, -0.11923518031835556, 0.018181264400482178, -0.13760894536972046, -0.09573844075202942, -0.015069634653627872, 0.046291790902614594, 0.10734865814447403, 0.14160802960395813, -0.21132035553455353, -0.018298296257853508, 0.15978847444057465, 0.0062238909304142, -0.06654123961925507, 0.1050117239356041, -0.051057275384664536, 0.018410127609968185, 0.057441357523202896, 0.07700115442276001, 0.10854251682758331, -0.142869770526886, -0.06713464111089706, 0.07209688425064087, 0.03934243693947792, 0.008844917640089989, 0.10398661345243454, -0.03558257967233658, -0.06139855086803436, 0.03624727949500084, -0.06003810465335846, -0.011195163242518902, -0.03529251739382744, -0.05403748154640198, -0.02235497161746025, -0.07473825663328171, 0.10332378000020981, -0.036537054926157, 0.027836592867970467, -0.07184603810310364, -0.15608778595924377, 0.06472524255514145, 0.13822442293167114, -0.06362738460302353, -0.01042461208999157, -0.11777755618095398, 0.08906809240579605, -0.0676957368850708, -0.0014610541984438896, -0.13834591209888458, -0.003458339488133788, 0.012497451156377792, -0.051906611770391464, 0.02908279001712799, -0.004570350516587496, 0.06089332699775696, 0.07961317896842957, -0.030997589230537415, -0.02867177315056324, -0.0671297162771225, -0.00957968644797802, -0.07183752954006195, -0.09110277891159058, -0.058057453483343124, -0.005356397945433855, 0.060004670172929764, -0.16583262383937836, 0.06546701490879059, 0.059690576046705246, 0.07925695180892944, 0.029320457950234413, -0.016823865473270416, 0.020236805081367493, -0.019785253331065178, 0.03125054016709328, -0.056684281677007675, 0.04477028548717499, 0.0027834195643663406, -0.04033609479665756, -0.06667263805866241, -0.1768808215856552, -0.02589751034975052, 0.12218472361564636, 0.035067226737737656, -0.055644672363996506, 0.019304698333144188, -0.030550643801689148, -0.0030911292415112257, -0.03865671902894974, -0.08376201242208481, 0.2410011738538742, 0.04276520758867264, 0.17111901938915253, -0.1136729046702385, -0.05050250142812729, 0.013372940942645073, 0.0035728083457797766, 0.009191341698169708, 0.11556708067655563, 0.062312789261341095, -0.030023206025362015, 0.03419000282883644, 0.10677054524421692, -0.09352797269821167, 0.16566647589206696, -0.0344858318567276, -0.07363100349903107, -0.052465543150901794, 0.01855601742863655, 0.0032001431100070477, 0.10588604211807251, -0.0553712397813797, -0.0010155788622796535, 0.037334442138671875, 0.007962239906191826, 0.041465505957603455, -0.1589074283838272, 0.02810727432370186, 0.029463090002536774, -0.03416343405842781, -0.05794154480099678, 0.007719813380390406, 0.0022787784691900015, 0.07394011318683624, 0.026639439165592194, -0.023678889498114586, 0.022393587976694107, -0.03482532873749733, -0.08797042071819305, 0.1866481900215149, -0.1303892880678177, -0.16424763202667236, -0.16253796219825745, -0.044711992144584656, -0.03928869590163231, -0.004952197894454002, -0.016670241951942444, -0.1150154322385788, -0.07936256378889084, -0.10476776212453842, 0.11275112628936768, -0.005401694215834141, -0.04603938013315201, 0.025217771530151367, 0.05169220268726349, 0.10307127237319946, -0.16497285664081573, 0.007517853751778603, 0.010929722338914871, -0.05362483486533165, -0.022754240781068802, 0.04779082536697388, 0.016008496284484863, 0.07538613677024841, -0.01263710018247366, 0.023271532729268074, 0.010685751214623451, 0.17139963805675507, -0.004442570731043816, 0.00581922335550189, 0.1368807852268219, -0.024523098021745682, 0.054840851575136185, 0.11945627629756927, 0.06822774559259415, -0.06109379231929779, 0.015459541231393814, 0.05300833657383919, 0.01300758309662342, -0.24490149319171906, -0.05250879377126694, -0.04361956939101219, 0.09498777985572815, 0.13876976072788239, 0.019710227847099304, -0.13819673657417297, 0.06462541222572327, 0.0025895743165165186, 0.06834551692008972, 0.005516779609024525, 0.06955339014530182, 0.0340782105922699, -0.030593587085604668, 0.06197145953774452, -0.008409608155488968, 0.0023384273517876863, 0.07880639284849167, 0.02334226667881012, 0.10217105597257614, -0.08440299332141876, 0.17526698112487793, 0.036180898547172546, 0.1337444931268692, 0.036675721406936646, 0.07662943005561829, -0.060398168861866, 0.013789908960461617, 0.013222658075392246, -0.08634346723556519, -0.04209199920296669, 0.01598966307938099, -0.01644844561815262, 0.05757344514131546, -0.11591754108667374, 0.086703822016716, 0.017951972782611847, 0.1272590011358261, 0.0996994897723198, -0.2839791774749756, -0.05806087702512741, 0.03206359222531319, -0.014386976137757301, -0.12590292096138, 0.06543312966823578, 0.13232925534248352, -0.06527633219957352, -0.030557313933968544, -0.05785828456282616, 0.08344433456659317, -0.050284456461668015, 0.025897931307554245, 0.04103279113769531, 0.2016068398952484, 0.004140408709645271, 0.10080839693546295, -0.11168216168880463, 0.15707990527153015, 0.042691100388765335, 0.06085757166147232, -0.02621324732899666, 0.053381774574518204, 0.03965477645397186, -0.06189904734492302, 0.09610860794782639, -0.003424538066610694, 0.08679462224245071, -0.1444515734910965, -0.14469829201698303, 0.03494855761528015, 0.08379191160202026, -0.09051089733839035, 0.04418448358774185, -0.04499855265021324, -0.02610686793923378, 0.05127428472042084, -0.06448791921138763, -0.11768049746751785, -0.13090655207633972, 0.01958882249891758, -0.009184070862829685, 0.011796044185757637, -0.09009812772274017, -0.07303977012634277, -0.07268565148115158, 0.17812837660312653, -0.07525961846113205, -0.05239833891391754, -0.10157912224531174, 0.06053740531206131, 0.11868792772293091, -0.06950701773166656, 0.03609630838036537, -0.009087073616683483, 0.13122564554214478, 0.005299942102283239, -0.08150897920131683, 0.10966537147760391, -0.04729630425572395, -0.09276214987039566, -0.05019129812717438, 0.1687544733285904, -0.0014396858168765903, 0.06031041592359543, -0.0314476452767849, -0.0037833000533282757, -0.004150988534092903, -0.07499197870492935, -0.012561536394059658, 0.12194410711526871, 0.20799949765205383, 0.07254455238580704, -0.157052680850029, 0.007328531704843044, 0.013939887285232544, 0.05231722816824913, 0.15737475454807281, 0.2141282707452774, -0.0704946294426918, 0.041531000286340714, 0.13244451582431793, -0.0072144498117268085, -0.23938032984733582, 0.008865307085216045, 0.08168584853410721, 0.060047879815101624, -0.028134947642683983, -0.2126035988330841, 0.07455545663833618, 0.04990413412451744, 0.001785497646778822, -0.005110558122396469, -0.24313890933990479, -0.12403608113527298, 0.14436198770999908, 0.09114381670951843, 0.030671747401356697, -0.06334774196147919, -0.047469161450862885, -0.09315499663352966, -0.14315833151340485, 0.1213546097278595, -0.11839569360017776, 0.09635599702596664, 0.0005135839455761015, 0.06087362393736839, 0.04442795366048813, -0.06495489180088043, 0.15222086012363434, -0.05320413410663605, 0.04247507080435753, -0.049729250371456146, -0.10453172028064728, -0.02193332277238369, -0.10087423771619797, 0.11955786496400833, -0.12485570460557938, 0.13497421145439148, -0.13465207815170288, -0.015269091352820396, -0.011265546083450317, -0.003980709705501795, -0.040077488869428635, -0.04155419021844864, -0.04363938421010971, 0.03880798816680908, 0.038441091775894165, -0.02134377881884575, -0.01585804857313633, 0.0037604342214763165, -0.03791619837284088, 0.07778146862983704, 0.12918029725551605, -0.026835834607481956, -0.12347067892551422, 0.013442662544548512, -0.0009620294440537691, 0.08743569254875183, -0.20422209799289703, 0.04307965189218521, 0.09761499613523483, 0.0253487229347229, 0.14835511147975922, 0.041758667677640915, -0.06304249912500381, -0.018735403195023537, 0.03757476061582565, -0.14246205985546112, -0.0725470781326294, -0.08315031230449677, 0.07019488513469696, -0.2032366693019867, -0.033601608127355576, 0.11797436326742172, -0.05248211696743965, -0.0120242265984416, 0.03938122093677521, 0.035994745790958405, -0.053243037313222885, 0.12886732816696167, 0.07732012122869492, 0.07683775573968887, -0.08603575825691223, 0.0974133089184761, 0.03024180978536606, 0.015569307841360569, 0.04728574678301811, 0.07990345358848572, -0.08290755748748779, -0.03788299486041069, 0.0527067631483078, 0.21490691602230072, 0.09298780560493469, -0.01053033396601677, -0.0622258186340332, -0.07666522264480591, 0.047193340957164764, 0.08016122132539749, 0.04609471186995506, 0.0011849083239212632, -0.07431158423423767, -0.008697157725691795, -0.07589465379714966, 0.1226775273680687, 0.05094790458679199, 0.012362836860120296, -0.13604523241519928, 0.10538668185472488, -0.010957401245832443, 0.027034148573875427, -0.0038596095982939005, 0.027275854721665382, -0.11101510375738144, -0.03791644051671028, -0.18190978467464447, 0.06426016241312027, 0.02673223242163658, 0.00825965404510498, -0.012304809875786304, 0.024222245439887047, -0.015552690252661705, 0.012199528515338898, -0.07463991641998291, -0.0598825179040432, 0.00671363202854991, 0.05082857236266136, -0.09400616586208344, 0.024708110839128494, 0.05252740532159805, -0.08885545283555984, 0.07258903980255127, 0.011568509973585606, -0.00405165646225214, 0.04549265652894974, -0.03519533574581146, -0.07463020831346512, 0.002233775332570076, 0.041860852390527725, 0.04915815591812134, -0.10179633647203445, 0.006116244941949844, -0.06399521231651306, 0.007539717480540276, -0.032819733023643494, 0.06470833718776703, -0.10014645010232925, -0.002507091499865055, -0.0136100547388196, 0.011322096921503544, -0.09783916175365448, 0.05966578796505928, 0.07115022093057632, 0.0743410587310791, 0.13410404324531555, -0.040632616728544235, 0.029091406613588333, -0.17741693556308746, -0.0015760587994009256, 0.011468160897493362, -0.06573782116174698, -0.043547891080379486, -0.021401094272732735, 0.0808996632695198, -0.09029173105955124, 0.057752348482608795, 0.01755417510867119, -0.08651521056890488, 0.009076750837266445, 0.00696561299264431, 0.023224715143442154, 0.03894376754760742, 0.2052902728319168, 0.008527280762791634, 0.017436789348721504, 0.004454934969544411, 0.010058291256427765, 0.08646746724843979, 0.055608030408620834, 0.08911293745040894, 0.15159550309181213, -0.006501072086393833, 0.05986381694674492, 0.07672487944364548, -0.07124044001102448, -0.09352705627679825, 0.1384853571653366, -0.06803031265735626, 0.07748984545469284, -0.07904281467199326, 0.17726944386959076, 0.05104786902666092, -0.1374245285987854, 0.06394226104021072, -0.03559484705328941, -0.13851647078990936, -0.12065858393907547, -0.13819992542266846, -0.07610422372817993, -0.08265171945095062, 0.003735718782991171, -0.12272664159536362, -0.015833204612135887, 0.10817842185497284, 0.02399369515478611, 0.025586456060409546, 0.16978347301483154, -0.13645391166210175, -0.03863251581788063, 0.06429033726453781, 0.026986973360180855, -0.013618072494864464, -0.04923868179321289, -0.05869192257523537, 0.06353001296520233, 0.029934095218777657, 0.07905922085046768, -0.016349736601114273, 0.003674807958304882, 0.023022828623652458, -0.005750520620495081, -0.08408614993095398, -0.02382740192115307, -0.014049038290977478, 0.03558211401104927, 0.13234160840511322, 0.04245983809232712, -0.030659805983304977, -0.016789274290204048, 0.21217916905879974, -0.07549354434013367, -0.053546372801065445, -0.15884189307689667, 0.09485426545143127, -0.01939869485795498, 0.0004799621528945863, 0.040022555738687515, -0.12586218118667603, -0.043280620127916336, 0.21992510557174683, 0.2195841521024704, -0.08748789131641388, -0.00021503174502868205, 0.034481558948755264, -0.007194112986326218, -0.06000484153628349, 0.09040699154138565, 0.06370802223682404, 0.06897459924221039, -0.028163736686110497, -0.018615391105413437, 0.013068403117358685, -0.059404272586107254, -0.03614024817943573, 0.10984142869710922, 0.0019839510787278414, -0.028283724561333656, -0.03830372542142868, 0.0212797150015831, 0.01956695131957531, -0.19510102272033691, -0.05145348981022835, -0.11944617331027985, -0.13628236949443817, -0.04343397542834282, 0.06542517244815826, 0.01284435112029314, 0.0685376524925232, -0.045982375741004944, 0.0020819103810936213, 0.11465136706829071, -0.024268170818686485, -0.0712977796792984, -0.07064495980739594, 0.057343512773513794, -0.0175523329526186, 0.18689069151878357, 0.027165621519088745, 0.06473042815923691, 0.11780622601509094, -0.01905667968094349, -0.0919656828045845, 0.04905524104833603, 0.06516256928443909, -0.08128238469362259, -0.0002531473583076149, 0.1564732789993286, -0.05644961819052696, 0.05827485769987106, 0.014883441850543022, -0.08032483607530594, -0.043538615107536316, -0.06220279261469841, -0.09214600175619125, -0.10460419207811356, 0.00866923201829195, -0.08668237179517746, 0.12154937535524368, 0.19561387598514557, -0.04112865403294563, -0.05183195322751999, -0.051721539348363876, 0.06803656369447708, -0.0001520299556432292, -0.028493991121649742, 0.028853297233581543, -0.16679753363132477, -0.007155533879995346, 0.03183654323220253, 0.022505007684230804, -0.30216485261917114, -0.050831567496061325, 0.03575865551829338, -0.011519327759742737, -0.08042073249816895, 0.10526152700185776, 0.09936182200908661, 0.05068723484873772, -0.03263251483440399, -0.042700763791799545, -0.03766782209277153, 0.09616202861070633, -0.13153259456157684, -0.09335394203662872 ]
null
null
transformers
# BERT L-4 H-256 fine-tuned on MLM (CORD-19 2020/06/16) BERT model with [4 Transformer layers and hidden embedding of size 256](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4), referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16). ## Training the model ```bash python run_language_modeling.py --model_type bert --model_name_or_path google/bert_uncased_L-4_H-256_A-4 --do_train --train_data_file {cord19-200616-dataset} --mlm --mlm_probability 0.2 --line_by_line --block_size 256 --per_device_train_batch_size 20 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-4_H-256_A-4_cord19-200616
{}
fill-mask
aodiniz/bert_uncased_L-4_H-256_A-4_cord19-200616
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "arxiv:1908.08962", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1908.08962" ]
[]
TAGS #transformers #pytorch #jax #bert #fill-mask #arxiv-1908.08962 #autotrain_compatible #endpoints_compatible #region-us
# BERT L-4 H-256 fine-tuned on MLM (CORD-19 2020/06/16) BERT model with 4 Transformer layers and hidden embedding of size 256, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16). ## Training the model '''bash python run_language_modeling.py --model_type bert --model_name_or_path google/bert_uncased_L-4_H-256_A-4 --do_train --train_data_file {cord19-200616-dataset} --mlm --mlm_probability 0.2 --line_by_line --block_size 256 --per_device_train_batch_size 20 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-4_H-256_A-4_cord19-200616
[ "# BERT L-4 H-256 fine-tuned on MLM (CORD-19 2020/06/16)\n\nBERT model with 4 Transformer layers and hidden embedding of size 256, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).", "## Training the model\n\n'''bash\npython run_language_modeling.py\n --model_type bert\n --model_name_or_path google/bert_uncased_L-4_H-256_A-4\n --do_train\n --train_data_file {cord19-200616-dataset}\n --mlm\n --mlm_probability 0.2\n --line_by_line\n --block_size 256\n --per_device_train_batch_size 20\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-4_H-256_A-4_cord19-200616" ]
[ "TAGS\n#transformers #pytorch #jax #bert #fill-mask #arxiv-1908.08962 #autotrain_compatible #endpoints_compatible #region-us \n", "# BERT L-4 H-256 fine-tuned on MLM (CORD-19 2020/06/16)\n\nBERT model with 4 Transformer layers and hidden embedding of size 256, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).", "## Training the model\n\n'''bash\npython run_language_modeling.py\n --model_type bert\n --model_name_or_path google/bert_uncased_L-4_H-256_A-4\n --do_train\n --train_data_file {cord19-200616-dataset}\n --mlm\n --mlm_probability 0.2\n --line_by_line\n --block_size 256\n --per_device_train_batch_size 20\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-4_H-256_A-4_cord19-200616" ]
[ 48, 85, 149 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #fill-mask #arxiv-1908.08962 #autotrain_compatible #endpoints_compatible #region-us \n# BERT L-4 H-256 fine-tuned on MLM (CORD-19 2020/06/16)\n\nBERT model with 4 Transformer layers and hidden embedding of size 256, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).## Training the model\n\n'''bash\npython run_language_modeling.py\n --model_type bert\n --model_name_or_path google/bert_uncased_L-4_H-256_A-4\n --do_train\n --train_data_file {cord19-200616-dataset}\n --mlm\n --mlm_probability 0.2\n --line_by_line\n --block_size 256\n --per_device_train_batch_size 20\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-4_H-256_A-4_cord19-200616" ]
[ -0.1302972435951233, 0.1396423876285553, -0.0028933510184288025, 0.11229585856199265, 0.10809233784675598, 0.0222039632499218, 0.08523204177618027, 0.11657939106225967, -0.008649494498968124, 0.10235613584518433, 0.11648563295602798, 0.04351815581321716, 0.02734452486038208, 0.06963896751403809, -0.015421717427670956, -0.21351991593837738, -0.005683594848960638, -0.009783309884369373, -0.09127354621887207, 0.07217182219028473, 0.054681867361068726, -0.08768068253993988, 0.1053682416677475, -0.019580287858843803, -0.0654342770576477, 0.010931563563644886, -0.009152492508292198, -0.06019464135169983, 0.049570392817258835, 0.011006085202097893, 0.10019239038228989, -0.015681399032473564, 0.05760733783245087, -0.10324277728796005, 0.011593395844101906, 0.06293146312236786, 0.020957572385668755, 0.12924610078334808, 0.0447678342461586, 0.01514076441526413, 0.009636073373258114, -0.10535012185573578, 0.05504971742630005, 0.07002821564674377, -0.05832460895180702, -0.09391334652900696, -0.05854567512869835, 0.010792692191898823, 0.05678435415029526, 0.08268586546182632, -0.02326551266014576, 0.045244891196489334, -0.07266353815793991, 0.026215773075819016, 0.15396557748317719, -0.25307515263557434, -0.029531558975577354, 0.079549141228199, 0.011997940018773079, 0.013743188232183456, -0.07095371931791306, -0.021715566515922546, 0.038314782083034515, 0.05006314814090729, 0.11876081675291061, -0.015691379085183144, 0.02476983331143856, 0.038410548120737076, -0.11275868862867355, 0.02578166127204895, 0.12657226622104645, 0.05335775390267372, -0.03183390200138092, -0.12040580064058304, -0.06435304880142212, -0.05792573094367981, -0.03712669387459755, 0.03776085749268532, 0.02990981750190258, -0.024503391236066818, -0.06234618276357651, -0.041794177144765854, -0.0475456640124321, -0.10466828942298889, -0.009624951519072056, 0.12870433926582336, 0.05816393718123436, -0.004594389349222183, -0.02406131476163864, 0.09514616429805756, -0.04302956908941269, -0.10762177407741547, 0.017682237550616264, -0.03287621587514877, 0.010792912915349007, 0.04073651134967804, -0.01756499893963337, -0.04487045481801033, 0.01583063043653965, 0.028570646420121193, -0.02680070698261261, 0.06751934438943863, 0.029377272352576256, 0.013990537263453007, -0.04294871166348457, 0.1033184826374054, -0.11911263316869736, 0.018439197912812233, 0.02824709564447403, 0.14346058666706085, 0.02143074758350849, -0.008447145111858845, -0.06628991663455963, -0.004048953298479319, 0.00262457225471735, 0.03856619819998741, -0.03282231464982033, 0.09815779328346252, -0.07735476642847061, -0.021932272240519524, 0.004122644197195768, -0.1685703843832016, 0.009146984666585922, 0.03079756535589695, -0.07902436703443527, -0.040378160774707794, 0.06273992359638214, -0.03639928624033928, -0.09072910249233246, 0.06643373519182205, -0.09791748970746994, -0.05466452240943909, -0.0973711609840393, -0.1283656507730484, 0.011817383579909801, -0.040700703859329224, -0.002381287282332778, -0.0875861793756485, -0.1416839212179184, 0.020144034177064896, 0.052265509963035583, -0.05456419289112091, 0.013596614822745323, -0.040162861347198486, -0.09828784316778183, 0.02920195274055004, 0.01195289846509695, 0.07216770201921463, -0.05446532741189003, 0.07188498228788376, 0.05701199173927307, 0.045467309653759, 0.03914111852645874, 0.027642441913485527, 0.007188544608652592, 0.05668012052774429, -0.13007168471813202, 0.10237952321767807, -0.11898257583379745, 0.02523408830165863, -0.1341732293367386, -0.10520384460687637, -0.012243136763572693, 0.04809778556227684, 0.1040865033864975, 0.1417515128850937, -0.18708327412605286, -0.02223438210785389, 0.16907593607902527, 0.01681414246559143, -0.0652618482708931, 0.10656242072582245, -0.05366279184818268, -0.003065889235585928, 0.06267023086547852, 0.07742909342050552, 0.09294068813323975, -0.13418278098106384, -0.07768002897500992, 0.07917903363704681, 0.04784335568547249, 0.005310480482876301, 0.10332382470369339, -0.03295736759901047, -0.08181014657020569, 0.040258537977933884, -0.05798562988638878, -0.004237127490341663, -0.03399036079645157, -0.051983028650283813, -0.02151079848408699, -0.07584010064601898, 0.11227992177009583, -0.033183347433805466, 0.028790021315217018, -0.08705995231866837, -0.16535133123397827, 0.06126099452376366, 0.13839039206504822, -0.07375703752040863, -0.01865454576909542, -0.11903179436922073, 0.08106439560651779, -0.07083707302808762, 0.004670934751629829, -0.13361641764640808, -0.0157818291336298, 0.011254558339715004, -0.04020492732524872, 0.03896170109510422, -0.011616348288953304, 0.055528149008750916, 0.08810728043317795, -0.03824141249060631, -0.03024846501648426, -0.06097133085131645, -0.008636968210339546, -0.061420854181051254, -0.10003865510225296, -0.05372019112110138, 0.00010985556582454592, 0.0738152265548706, -0.17070640623569489, 0.05437617003917694, 0.0542801134288311, 0.08365222066640854, 0.020095963031053543, -0.006725201848894358, 0.027516363188624382, -0.014036648906767368, 0.04274377599358559, -0.05524316802620888, 0.04609164968132973, 0.012678470462560654, -0.03870522230863571, -0.05599120259284973, -0.17292727530002594, -0.016629546880722046, 0.13315775990486145, 0.027643829584121704, -0.04793272539973259, 0.0366368293762207, -0.027675146237015724, -0.003949276637285948, -0.02970016561448574, -0.07374384254217148, 0.24038651585578918, 0.03317119553685188, 0.17500413954257965, -0.11620361357927322, -0.04888834431767464, 0.018665222451090813, 0.0022766096517443657, 0.011302175931632519, 0.12307041138410568, 0.035514529794454575, -0.04074842855334282, 0.027481190860271454, 0.10257485508918762, -0.09226594120264053, 0.16715887188911438, -0.03920726850628853, -0.0686219185590744, -0.053505171090364456, 0.01222066767513752, -0.0010215522488579154, 0.10374781489372253, -0.05516367405653, -0.009687221609055996, 0.030011741444468498, 0.00002599432264105417, 0.04132732003927231, -0.14975398778915405, 0.03059113398194313, 0.027762804180383682, -0.030389731749892235, -0.04584568366408348, 0.012552193365991116, -0.002288538496941328, 0.06953232735395432, 0.032636553049087524, -0.019084621220827103, 0.0254043061286211, -0.031224330887198448, -0.08386464416980743, 0.19481225311756134, -0.135700523853302, -0.1785019487142563, -0.1584475040435791, -0.0559525229036808, -0.051172297447919846, -0.006844999268651009, -0.02065705507993698, -0.13119098544120789, -0.07708260416984558, -0.10016652941703796, 0.1151527613401413, -0.014617566019296646, -0.04770440235733986, 0.027801837772130966, 0.04742632433772087, 0.11388080567121506, -0.1570023149251938, 0.006533463019877672, 0.013495461083948612, -0.04450630396604538, -0.02261323854327202, 0.05584074929356575, 0.022510914131999016, 0.06954406201839447, -0.012549417093396187, 0.021638214588165283, 0.013299173675477505, 0.18076097965240479, 0.0018442171858623624, -0.004476927686482668, 0.1338731348514557, -0.027180587872862816, 0.049439240247011185, 0.10235272347927094, 0.07407251745462418, -0.05621626228094101, 0.01822376810014248, 0.059197258204221725, 0.011661822907626629, -0.24308495223522186, -0.062138475477695465, -0.04039258137345314, 0.08200421929359436, 0.14052921533584595, 0.01941234990954399, -0.13651438057422638, 0.06253580749034882, 0.008329717442393303, 0.07755830138921738, -0.015621096827089787, 0.06136801838874817, 0.06524493545293808, -0.027271782979369164, 0.06437183916568756, -0.01785050332546234, -0.009204220026731491, 0.07684292644262314, 0.01414224598556757, 0.10832707583904266, -0.09826313704252243, 0.17165426909923553, 0.04440148547291756, 0.14007189869880676, 0.03435754030942917, 0.06706517189741135, -0.059154901653528214, 0.012220794335007668, 0.016800206154584885, -0.0928928330540657, -0.03692588210105896, 0.013101806864142418, -0.02941400371491909, 0.052447233349084854, -0.12597084045410156, 0.10008779168128967, 0.01626751944422722, 0.1353018432855606, 0.09779747575521469, -0.2979651391506195, -0.06855139881372452, 0.0303950197994709, -0.007910915650427341, -0.12253303080797195, 0.07463482767343521, 0.14061978459358215, -0.05941678583621979, -0.026940278708934784, -0.05621170252561569, 0.07369758188724518, -0.061668168753385544, 0.035160209983587265, 0.05963749438524246, 0.2147417962551117, 0.007213436998426914, 0.10537717491388321, -0.09416641294956207, 0.15291725099086761, 0.04386991634964943, 0.06328371167182922, -0.029831886291503906, 0.04706815257668495, 0.04493720084428787, -0.06514668464660645, 0.10209350287914276, -0.002567716408520937, 0.07296799123287201, -0.14713861048221588, -0.1338174194097519, 0.044130466878414154, 0.08426541835069656, -0.08021806925535202, 0.04826713353395462, -0.038109149783849716, -0.031772274523973465, 0.052218951284885406, -0.06313609331846237, -0.11812987923622131, -0.13854388892650604, 0.011356252245604992, 0.004170258063822985, -0.0041030882857739925, -0.08736727386713028, -0.07402299344539642, -0.07107357680797577, 0.1643008589744568, -0.042663417756557465, -0.05848744511604309, -0.09371718019247055, 0.06125045567750931, 0.1253720074892044, -0.06968916207551956, 0.03718386963009834, -0.011369463987648487, 0.12709395587444305, 0.018441038206219673, -0.08748248219490051, 0.10311713814735413, -0.05221214517951012, -0.07924021780490875, -0.0397283174097538, 0.1717081218957901, 0.0027863127179443836, 0.05614953115582466, -0.03584684804081917, -0.000023297887310036458, -0.0018581830663606524, -0.07664819061756134, -0.005955434404313564, 0.08481956273317337, 0.2295285016298294, 0.0607108473777771, -0.1625526398420334, 0.03135935217142105, 0.01640993356704712, 0.05363692715764046, 0.1577150821685791, 0.18658097088336945, -0.07221578806638718, 0.026951853185892105, 0.14413362741470337, -0.005648968741297722, -0.23815569281578064, 0.01176236942410469, 0.07073847204446793, 0.06351355463266373, -0.04376406967639923, -0.23423638939857483, 0.09458830207586288, 0.03583921492099762, 0.008759540505707264, -0.009024567902088165, -0.22724826633930206, -0.11810385435819626, 0.1519959568977356, 0.08838281780481339, 0.029668685048818588, -0.058675166219472885, -0.049113158136606216, -0.09515558928251266, -0.12152449041604996, 0.12087900936603546, -0.1511538177728653, 0.0974670872092247, 0.001994397956877947, 0.05345643684267998, 0.04152170196175575, -0.05948776379227638, 0.14521625638008118, -0.054032329469919205, 0.036798033863306046, -0.04893270507454872, -0.08710635453462601, -0.02090405859053135, -0.09460213780403137, 0.12360924482345581, -0.13792498409748077, 0.13919243216514587, -0.12934567034244537, -0.018608154729008675, -0.020527416840195656, -0.010384665802121162, -0.03831469640135765, -0.037566300481557846, -0.036820605397224426, 0.04287803918123245, 0.04171024635434151, -0.023844702169299126, -0.040758997201919556, 0.006455230060964823, -0.03285980224609375, 0.06930230557918549, 0.12761850655078888, -0.028501175343990326, -0.12467700988054276, 0.023643512278795242, -0.0026243587490171194, 0.08461769670248032, -0.2086152881383896, 0.035486944019794464, 0.09709000587463379, 0.01804836466908455, 0.13492627441883087, 0.03662274032831192, -0.05903741717338562, -0.026571154594421387, 0.04305862635374069, -0.1506722867488861, -0.07306814938783646, -0.09446989744901657, 0.0537790022790432, -0.19836848974227905, -0.028655441477894783, 0.11935371905565262, -0.0541514977812767, -0.010160105302929878, 0.03457995876669884, 0.024893352761864662, -0.05179595202207565, 0.12390615046024323, 0.08137001842260361, 0.07558882236480713, -0.09172362089157104, 0.10122919827699661, 0.0349138081073761, 0.004507105797529221, 0.05509263649582863, 0.08599777519702911, -0.09247497469186783, -0.0406469851732254, 0.042016539722681046, 0.20776323974132538, 0.10057386755943298, -0.022030584514141083, -0.0672692134976387, -0.08926397562026978, 0.05057763308286667, 0.06551608443260193, 0.04302775859832764, -0.006191425956785679, -0.07621089369058609, -0.012107383459806442, -0.08426330238580704, 0.1290288120508194, 0.04514288902282715, 0.007948584854602814, -0.1364925503730774, 0.09610293805599213, -0.008442679420113564, 0.03638644516468048, -0.002342682331800461, 0.026291942223906517, -0.10980095714330673, -0.03955920785665512, -0.19645799696445465, 0.060341525822877884, 0.0221426822245121, 0.0076352437026798725, -0.020139645785093307, 0.037971269339323044, -0.017313826829195023, 0.01683223620057106, -0.06896045804023743, -0.05848144739866257, 0.01535244844853878, 0.061203062534332275, -0.09025540202856064, 0.02761886455118656, 0.043032873421907425, -0.08918531239032745, 0.07752085477113724, 0.014047707431018353, -0.00821760669350624, 0.04687286168336868, 0.017209848389029503, -0.07353852689266205, -0.00003094145722570829, 0.0386943519115448, 0.049395572394132614, -0.10644746571779251, 0.008894459344446659, -0.06488464027643204, 0.008062554523348808, -0.03436075896024704, 0.06198035180568695, -0.09708546847105026, -0.0038771475665271282, -0.009499282576143742, 0.019387278705835342, -0.09883034974336624, 0.06602977961301804, 0.07594995945692062, 0.06291359663009644, 0.12966009974479675, -0.048527635633945465, 0.019704831764101982, -0.17737773060798645, -0.005756096448749304, 0.009244484826922417, -0.07919715344905853, -0.061055075377225876, -0.018131496384739876, 0.08499232679605484, -0.09719832986593246, 0.06441506743431091, 0.013660200871527195, -0.06974010169506073, 0.009196392260491848, 0.01534140482544899, 0.01593651808798313, 0.04479027912020683, 0.19507034122943878, -0.0023711761459708214, 0.005408680997788906, 0.006348638329654932, 0.006639393977820873, 0.08082454651594162, 0.0645662173628807, 0.08078441023826599, 0.1552574336528778, 0.035390011966228485, 0.059458278119564056, 0.08547244220972061, -0.06828202307224274, -0.10874683409929276, 0.15576134622097015, -0.06459725648164749, 0.09342611581087112, -0.07388793677091599, 0.1589878648519516, 0.041313476860523224, -0.12876398861408234, 0.06333719938993454, -0.05165288969874382, -0.14119310677051544, -0.11192499846220016, -0.12980954349040985, -0.07642146199941635, -0.08630480617284775, 0.0017812334699556231, -0.12978769838809967, -0.02762121707201004, 0.1140219122171402, 0.022862914949655533, 0.016095025464892387, 0.19106702506542206, -0.1187232956290245, -0.037989091128110886, 0.07289297133684158, 0.027282124385237694, -0.012425780296325684, -0.0341058075428009, -0.048659030348062515, 0.05863422155380249, 0.031827911734580994, 0.07368110865354538, -0.02315276488661766, 0.0010038312757387757, 0.03679148480296135, -0.004833613522350788, -0.07876120507717133, -0.017406780272722244, -0.00644273217767477, 0.04786953330039978, 0.1299738734960556, 0.03985492140054703, -0.044891465455293655, -0.019689900800585747, 0.2062777280807495, -0.07702068984508514, -0.04640137776732445, -0.1579224020242691, 0.08912140130996704, -0.024328341707587242, -0.004299027379602194, 0.046247564256191254, -0.11748051643371582, -0.044613905251026154, 0.22504235804080963, 0.2283668965101242, -0.08972538262605667, -0.004198837094008923, 0.03327767550945282, -0.010513749904930592, -0.0664747878909111, 0.10174766927957535, 0.06754975020885468, 0.07754907757043839, -0.03395861014723778, -0.03551970794796944, 0.004899511579424143, -0.053775910288095474, -0.039829324930906296, 0.1109519824385643, 0.012984744273126125, -0.0300911832600832, -0.02766820788383484, 0.013437905348837376, 0.007967331446707249, -0.18473070859909058, -0.05578426644206047, -0.1151832565665245, -0.13827496767044067, -0.04812701791524887, 0.046004414558410645, 0.01646910235285759, 0.0697513148188591, -0.04665128141641617, -0.0005449925665743649, 0.11735973507165909, -0.021999264135956764, -0.06513461470603943, -0.06618811190128326, 0.06222685053944588, 0.011822785250842571, 0.17860561609268188, 0.024353206157684326, 0.07675614953041077, 0.120355986058712, -0.016668876633048058, -0.0963427871465683, 0.04351702332496643, 0.06489621102809906, -0.08359390497207642, 0.0038061037193983793, 0.14162775874137878, -0.05093594267964363, 0.05639009177684784, 0.015226289629936218, -0.06246773526072502, -0.04458274319767952, -0.049178220331668854, -0.08582819998264313, -0.10646963119506836, 0.0014046255964785814, -0.0968867614865303, 0.12350934743881226, 0.20975930988788605, -0.04075637832283974, -0.05857253819704056, -0.043949659913778305, 0.06589000672101974, 0.006140504963696003, -0.03520333766937256, 0.031733520328998566, -0.1651710420846939, -0.00797074381262064, 0.03591472655534744, 0.02331053838133812, -0.33054161071777344, -0.052835818380117416, 0.05007932335138321, -0.006184388417750597, -0.0775129571557045, 0.10785344988107681, 0.0983189195394516, 0.056709568947553635, -0.03723730519413948, -0.0149815259501338, -0.042016610503196716, 0.08846406638622284, -0.13475868105888367, -0.098039910197258 ]
null
null
null
# Building a HuggingFace Transformer NLP Model ## Running this Repo
{}
null
aogara/slai_transformer
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
# Building a HuggingFace Transformer NLP Model ## Running this Repo
[ "# Building a HuggingFace Transformer NLP Model", "## Running this Repo" ]
[ "TAGS\n#region-us \n", "# Building a HuggingFace Transformer NLP Model", "## Running this Repo" ]
[ 6, 12, 6 ]
[ "passage: TAGS\n#region-us \n# Building a HuggingFace Transformer NLP Model## Running this Repo" ]
[ 0.013473309576511383, 0.007143898401409388, -0.0070312353782355785, 0.0072982278652489185, 0.09502169489860535, 0.030234765261411667, 0.15399576723575592, 0.00707502756267786, 0.08923710882663727, -0.021858079358935356, 0.125832661986351, 0.035284075886011124, 0.0003995946899522096, 0.11205364018678665, 0.08965606987476349, -0.30130746960639954, 0.03540896624326706, 0.11103807389736176, -0.08661165833473206, 0.0629960373044014, -0.010237868875265121, 0.003545509884133935, 0.07908032089471817, -0.05375229939818382, -0.23715493083000183, 0.03840523213148117, -0.023968413472175598, 0.039515286684036255, 0.1353388875722885, 0.05072801560163498, 0.14331071078777313, -0.024374065920710564, -0.019494084641337395, -0.1426045298576355, 0.04084983095526695, -0.03034089505672455, -0.06554938852787018, 0.06511066854000092, 0.02937389723956585, 0.03820110112428665, 0.17727170884609222, 0.06542357802391052, -0.02130444347858429, 0.06564270704984665, -0.18094602227210999, -0.11552120000123978, -0.0025493570137768984, 0.0463034063577652, -0.008033199235796928, 0.049378760159015656, 0.022409196943044662, 0.2161124050617218, -0.08409614861011505, 0.067006416618824, 0.0771532952785492, -0.16250313818454742, -0.0344679057598114, 0.09557097405195236, 0.11218036711215973, -0.06338707357645035, 0.006658024620264769, 0.07692379504442215, 0.09285050630569458, 0.007837180979549885, -0.08859159797430038, -0.03726447746157646, 0.05311322212219238, 0.036942437291145325, -0.1229608952999115, -0.07543952763080597, 0.19395127892494202, -0.0024702241644263268, 0.009084976278245449, 0.06154194474220276, -0.055664628744125366, -0.018269576132297516, 0.03142961114645004, 0.03672683238983154, -0.024672064930200577, 0.042571913450956345, -0.16345901787281036, -0.07842167466878891, -0.08689980953931808, -0.09025195240974426, -0.13590727746486664, 0.29054221510887146, -0.03219959884881973, 0.08200465142726898, -0.22753804922103882, 0.09204704314470291, -0.10120527446269989, -0.039010632783174515, 0.08100885897874832, -0.11265874654054642, 0.051688820123672485, 0.03581944853067398, -0.011239370331168175, 0.11872564256191254, 0.09203621745109558, 0.2030462771654129, 0.022272832691669464, -0.027356015518307686, -0.0220077782869339, 0.1063024178147316, 0.01884508691728115, 0.11561685055494308, 0.02890179120004177, 0.0217076875269413, -0.026409544050693512, -0.053144101053476334, 0.057416435331106186, -0.06174170598387718, -0.09033229947090149, 0.025304235517978668, -0.13119615614414215, 0.061312444508075714, 0.06474192440509796, 0.028399590402841568, -0.03316935896873474, 0.008427665568888187, 0.03582858294248581, 0.030310198664665222, -0.006731821224093437, -0.02386830933392048, 0.029559187591075897, 0.05467979237437248, 0.057557813823223114, -0.0326700434088707, 0.06063365191221237, 0.0009305600542575121, -0.1110854297876358, -0.04189807549118996, -0.10082167387008667, 0.014087510295212269, 0.02747793309390545, -0.020882269367575645, 0.10981319844722748, -0.16535113751888275, -0.07636234909296036, 0.03232085332274437, -0.018924765288829803, -0.02456486225128174, -0.038640499114990234, -0.031743649393320084, -0.005675869062542915, -0.02820809744298458, -0.024979904294013977, -0.0633293092250824, -0.016203302890062332, 0.06417502462863922, 0.10696940869092941, 0.09019292145967484, -0.1254958063364029, -0.003030248684808612, -0.13479043543338776, 0.06396478414535522, -0.08677902072668076, -0.03339865431189537, -0.033421315252780914, 0.18359194695949554, 0.07326673716306686, 0.034058716148138046, -0.1297081857919693, 0.0893428772687912, 0.021426156163215637, 0.20906266570091248, -0.08831083029508591, -0.1579626500606537, 0.2270640879869461, -0.1326751559972763, -0.13597849011421204, 0.0751834586262703, 0.05329834297299385, 0.11970324069261551, -0.00397910550236702, 0.14125597476959229, -0.07207030057907104, -0.06155918538570404, -0.044787660241127014, 0.10708243399858475, -0.23038128018379211, -0.09853583574295044, -0.0007009357213973999, 0.06615914404392242, -0.2864525318145752, -0.012454628013074398, -0.04790675267577171, 0.18717177212238312, -0.13401852548122406, -0.0033613613341003656, -0.021076727658510208, -0.0453069768846035, 0.009926609694957733, 0.029179513454437256, 0.0003377553657628596, -0.01917034201323986, -0.020488042384386063, 0.018138960003852844, 0.0999973937869072, 0.053500086069107056, 0.013350212946534157, -0.0645214170217514, 0.010926483199000359, -0.060967303812503815, -0.0066178482957184315, -0.08543386310338974, -0.14086289703845978, -0.019183017313480377, -0.04024418815970421, 0.11485078930854797, 0.13155053555965424, 0.11857737600803375, 0.03909948095679283, 0.05742591992020607, -0.040775611996650696, -0.028988845646381378, -0.0049042124301195145, 0.0672808438539505, -0.10163360089063644, 0.021697714924812317, -0.11979732662439346, 0.06987566500902176, 0.020593466237187386, 0.03447599336504936, -0.09627728909254074, 0.11577089130878448, 0.017738977447152138, 0.01334161777049303, -0.03627151623368263, 0.03164772689342499, 0.019281499087810516, -0.02626483514904976, 0.10537385940551758, -0.006466351915150881, -0.10420312732458115, 0.13968700170516968, -0.12834127247333527, 0.050975628197193146, 0.17505469918251038, -0.17577582597732544, 0.0053305672481656075, -0.03665734827518463, -0.08672572672367096, 0.01322330441325903, 0.08341138064861298, -0.0019420436583459377, 0.041969459503889084, -0.0010868434328585863, 0.07696942985057831, 0.048537395894527435, -0.0027136565186083317, -0.04034492000937462, -0.07471000403165817, -0.08688534796237946, 0.07303918898105621, 0.13935932517051697, -0.05540856719017029, 0.11242863535881042, 0.1705750972032547, -0.017086759209632874, 0.1958504319190979, -0.025360552594065666, -0.012002523988485336, -0.07415294647216797, 0.033615581691265106, 0.017382023856043816, 0.08061189204454422, -0.13949920237064362, -0.05726214498281479, 0.02900039404630661, -0.0684419646859169, 0.1168651282787323, -0.10894695669412613, -0.10825561732053757, -0.01428770087659359, 0.024751821532845497, -0.10253864526748657, 0.06811091303825378, -0.07788866013288498, 0.01720687560737133, -0.003772030584514141, -0.10344693809747696, 0.08119629323482513, 0.011478795669972897, 0.015290025621652603, 0.07733520865440369, -0.044060491025447845, -0.1993630826473236, -0.2675066292285919, -0.11081057786941528, -0.06132359057664871, 0.018718520179390907, 0.00483891274780035, -0.14901615679264069, -0.018397724255919456, 0.0777381882071495, 0.17040526866912842, -0.030595455318689346, -0.0070402720011770725, -0.05666515603661537, 0.08045309782028198, -0.0371202751994133, -0.1354885697364807, -0.009577653370797634, -0.056415531784296036, -0.05426979064941406, 0.11788170039653778, -0.1370246857404709, 0.09234466403722763, 0.14614719152450562, 0.07412878423929214, 0.046647749841213226, 0.0380597785115242, 0.052729591727256775, -0.09942684322595596, -0.09045025706291199, 0.15890611708164215, 0.001944348681718111, 0.044488683342933655, 0.10549654066562653, 0.08296360075473785, -0.09332283586263657, 0.032208237797021866, -0.062329407781362534, -0.1676768958568573, -0.06586223840713501, -0.07517461478710175, -0.05936042219400406, 0.2496587485074997, 0.018692992627620697, 0.03779022395610809, 0.11882290244102478, 0.08560524880886078, 0.06821901351213455, -0.00040087001980282366, -0.07949194312095642, 0.06593222916126251, 0.0002911954070441425, -0.12194826453924179, 0.02278583124279976, -0.08151451498270035, -0.19696161150932312, 0.05690108239650726, 0.028225688263773918, 0.12897974252700806, 0.11692523211240768, -0.011409987695515156, 0.05631571635603905, 0.019095011055469513, 0.15319867432117462, 0.20498809218406677, 0.0751958042383194, -0.09087564051151276, -0.02432793378829956, -0.0028157001361250877, -0.05381076782941818, 0.03895682841539383, 0.09159721434116364, -0.019122350960969925, 0.00673465384170413, -0.12346281111240387, -0.027940120548009872, 0.03594636172056198, 0.10312654078006744, -0.18441829085350037, 0.05961661785840988, 0.05974762886762619, 0.06898307800292969, -0.0737520083785057, 0.045268189162015915, 0.013475378043949604, -0.0016393184196203947, -0.03147915005683899, 0.014663306064903736, 0.10140920430421829, -0.007054105866700411, 0.06622330844402313, -0.09272994101047516, 0.08767961710691452, -0.011125442571938038, 0.03805183619260788, -0.11203538626432419, 0.22980614006519318, -0.016187282279133797, -0.02173934318125248, 0.02481755241751671, -0.06146765500307083, 0.09077750891447067, 0.13419276475906372, 0.08355393260717392, 0.03109939768910408, -0.05656806379556656, -0.16482320427894592, -0.11051705479621887, 0.029834631830453873, 0.050711534917354584, -0.05458657443523407, -0.013797791674733162, -0.013936501927673817, 0.0025904024951159954, -0.0022382447496056557, 0.15780481696128845, 0.014866350218653679, -0.0466129444539547, -0.05107938125729561, -0.011104810051620007, 0.06877302378416061, -0.004244247917085886, 0.014805356971919537, 0.0927286297082901, 0.06892210245132446, 0.17460885643959045, 0.05757453665137291, -0.06373805552721024, -0.09862446784973145, 0.11689739674329758, -0.01933097653090954, -0.01612715795636177, -0.06862962990999222, -0.05005853623151779, -0.0771411880850792, -0.14381827414035797, 0.0874907374382019, -0.07828934490680695, 0.04300837591290474, -0.015195846557617188, 0.12223189324140549, -0.005137080326676369, 0.03868287429213524, -0.04635540395975113, -0.010066852904856205, -0.06829427182674408, -0.08227851986885071, 0.11854160577058792, 0.05003030598163605, -0.14958210289478302, 0.10133606940507889, -0.006758445408195257, 0.1633194237947464, -0.03213087096810341, 0.029635794460773468, 0.11936286091804504, 0.3388214707374573, 0.017024850472807884, -0.0035084127448499203, 0.24382098019123077, -0.029838701710104942, -0.28441017866134644, -0.1616794317960739, -0.13971562683582306, 0.01695583388209343, 0.047087643295526505, -0.11698203533887863, 0.09852349013090134, 0.03855254873633385, 0.004888833500444889, 0.059255167841911316, -0.10458972305059433, -0.014942503534257412, 0.20726566016674042, 0.010074939578771591, 0.5200842618942261, -0.10847090184688568, -0.04992446303367615, -0.04737718403339386, -0.1614120453596115, 0.19644513726234436, -0.16454792022705078, 0.08908198773860931, -0.040152885019779205, 0.08819271624088287, 0.0382501557469368, -0.034050263464450836, 0.1646961271762848, -0.07283013314008713, 0.05940718203783035, -0.10704832524061203, -0.1093960702419281, -0.037841927260160446, -0.004363789688795805, 0.04980170726776123, 0.03536558151245117, -0.04688612371683121, -0.1074891984462738, -0.013908387161791325, -0.10847966372966766, 0.09804104268550873, 0.002979323733597994, -0.0676451176404953, 0.022583818063139915, -0.020443441346287727, -0.1463133543729782, 0.0436786450445652, 0.14387311041355133, -0.05009932816028595, 0.14221669733524323, 0.13371160626411438, 0.09042304009199142, -0.059952519834041595, -0.008072618395090103, -0.023577408865094185, -0.1059599369764328, 0.09640941023826599, -0.07070057839155197, -0.006882248446345329, 0.07114110141992569, 0.03229476511478424, -0.01945672184228897, 0.1296880543231964, -0.08975772559642792, -0.03850804269313812, 0.16130302846431732, -0.11112237721681595, -0.1309032440185547, -0.08884904533624649, 0.00890359003096819, 0.08350738883018494, 0.09216322004795074, 0.11461012810468674, -0.009620812721550465, 0.02062073163688183, 0.017467033118009567, -0.05322107672691345, -0.14580920338630676, -0.033970363438129425, 0.08164535462856293, 0.024509815499186516, -0.08805205672979355, 0.06591346859931946, -0.053900398313999176, -0.07995160669088364, -0.06973810493946075, 0.16712017357349396, 0.008694560267031193, -0.0881895124912262, -0.10874150693416595, 0.2505693733692169, -0.21396495401859283, -0.05064479261636734, -0.06962298601865768, -0.1262490600347519, 0.01053585670888424, 0.06824438273906708, 0.037752244621515274, 0.06524841487407684, -0.03159106522798538, 0.07051727920770645, -0.12449760735034943, -0.04700344428420067, -0.030006125569343567, 0.04442339017987251, -0.07109028846025467, 0.06381718069314957, 0.014775426127016544, 0.134973406791687, -0.12205109000205994, -0.08139834553003311, -0.2096596658229828, 0.05943679064512253, -0.06545720249414444, -0.15047654509544373, -0.03733183443546295, -0.06274731457233429, 0.051513999700546265, -0.01252944115549326, -0.09283950179815292, -0.05411548539996147, -0.1155780628323555, 0.04331206530332565, 0.038703206926584244, -0.05665877088904381, 0.016214800998568535, 0.012328111566603184, 0.15364350378513336, -0.07288026064634323, 0.04547418653964996, 0.10818369686603546, 0.018338870257139206, 0.08306817710399628, -0.07582731544971466, -0.0975026786327362, 0.08664432168006897, -0.05437614023685455, 0.04828573763370514, 0.07899069786071777, -0.056447479873895645, -0.04494690150022507, -0.010934893041849136, 0.027035314589738846, 0.027013035491108894, -0.029281044378876686, 0.0946148931980133, 0.058966320008039474, -0.15586033463478088, -0.06747250258922577, -0.08429808169603348, 0.0682833269238472, 0.1164487823843956, 0.016988631337881088, 0.021587172523140907, 0.05213956907391548, -0.059275493025779724, 0.043638356029987335, -0.0009921214077621698, -0.0920550525188446, 0.18140338361263275, -0.04470067098736763, 0.005089788697659969, 0.04250900819897652, 0.19920296967029572, -0.08717267215251923, -0.06752292811870575, -0.027556298300623894, 0.18577246367931366, -0.0006164846708998084, -0.05778563395142555, 0.1423584520816803, 0.12401222437620163, 0.022707361727952957, -0.12672342360019684, 0.129730224609375, -0.019684623926877975, -0.13002389669418335, 0.06359220296144485, -0.09354375302791595, 0.006958474405109882, 0.10246248543262482, 0.10743165761232376, 0.056675031781196594, 0.0011852486059069633, -0.09039675444364548, 0.04822813719511032, -0.03781730309128761, -0.011422157287597656, 0.13563692569732666, 0.18105289340019226, 0.06460720300674438, 0.04805958271026611, 0.04313831776380539, -0.013018669560551643, -0.14447419345378876, -0.05697193369269371, -0.012633156962692738, -0.15023992955684662, 0.04937959462404251, -0.009169328957796097, -0.09928125888109207, 0.09641775488853455, -0.01006836723536253, -0.006673278287053108, 0.07923700660467148, 0.01333026122301817, -0.002064507920295, 0.01157980877906084, -0.06554709374904633, -0.01934894546866417, -0.06671055406332016, -0.012354501523077488, -0.07975944876670837, 0.0034099838230758905, -0.04934896156191826, 0.00005735251397709362, -0.05289667472243309, 0.051146622747182846, -0.03289005532860756, -0.0928380936384201, -0.09357743710279465, 0.026913749054074287, -0.033559538424015045, 0.04248906672000885, -0.051326457411050797, -0.011873052455484867, 0.02716277353465557, 0.06964842230081558, -0.04511361941695213, -0.052529290318489075, -0.033227626234292984, 0.1957830935716629, -0.1522030234336853, 0.08954480290412903, -0.09929025918245316, -0.014090820215642452, -0.1367579847574234, 0.22140489518642426, 0.22123484313488007, -0.07246565073728561, 0.020845560356974602, 0.03915974497795105, 0.03463876619935036, -0.08333735913038254, 0.11699242144823074, 0.08533380925655365, 0.23124109208583832, -0.11800574511289597, -0.0057122912257909775, -0.026888610795140266, -0.010866009630262852, -0.009422282688319683, -0.07842685282230377, 0.08077988028526306, -0.05261831358075142, -0.07852934300899506, 0.03991157189011574, -0.24591998755931854, 0.13040877878665924, 0.05211104080080986, -0.13160650432109833, 0.008251585066318512, -0.06004827469587326, 0.14241768419742584, 0.04655798152089119, 0.18763059377670288, -0.05716920644044876, -0.05358101427555084, 0.036242175847291946, -0.0011935881339013577, -0.29105237126350403, -0.05894295498728752, 0.054615311324596405, -0.007832877337932587, 0.06843753904104233, -0.053504157811403275, -0.006990525405853987, 0.056181900203228, -0.038314495235681534, -0.04183096066117287, 0.07588478922843933, -0.029905619099736214, -0.15179653465747833, -0.13853342831134796, 0.0865853875875473, -0.027051826938986778, -0.09998724609613419, -0.016762780025601387, -0.1603148877620697, 0.013752024620771408, 0.1123107522726059, -0.00784268882125616, -0.03401191532611847, 0.0017532811034470797, -0.07797713577747345, 0.1093943789601326, 0.10418055206537247, 0.03599613532423973, -0.027899324893951416, -0.029421571642160416, 0.049994781613349915, 0.06531666964292526, -0.03347017616033554, -0.05891566723585129, 0.02683359384536743, -0.062301795929670334, 0.07324828952550888, -0.09533996134996414, -0.17941531538963318, -0.03639236092567444, -0.16037997603416443, -0.010836980305612087, -0.06128809228539467, -0.014206948690116405, 0.11362329870462418, 0.036523446440696716, 0.03213827684521675, -0.17215906083583832, 0.07396464049816132, 0.043303489685058594, -0.07331052422523499, -0.10448521375656128 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-new-model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["xsum"], "model-index": [{"name": "my-new-model", "results": []}]}
question-answering
aozorahime/my-new-model
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-xsum #license-apache-2.0 #endpoints_compatible #region-us
# my-new-model This model is a fine-tuned version of bert-base-uncased on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
[ "# my-new-model\n\nThis model is a fine-tuned version of bert-base-uncased on the xsum dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.12.3\n- Pytorch 1.9.1\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-xsum #license-apache-2.0 #endpoints_compatible #region-us \n", "# my-new-model\n\nThis model is a fine-tuned version of bert-base-uncased on the xsum dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.12.3\n- Pytorch 1.9.1\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ 50, 31, 6, 12, 8, 3, 103, 31 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-xsum #license-apache-2.0 #endpoints_compatible #region-us \n# my-new-model\n\nThis model is a fine-tuned version of bert-base-uncased on the xsum dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.12.3\n- Pytorch 1.9.1\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ -0.09891290962696075, 0.10254285484552383, -0.0018051326042041183, 0.0431886725127697, 0.15423913300037384, 0.010519375093281269, 0.11267352104187012, 0.10221970081329346, -0.10001213848590851, 0.051547303795814514, 0.0668063536286354, 0.017969004809856415, 0.03957400470972061, 0.10238628834486008, -0.02563609555363655, -0.28760382533073425, 0.049761589616537094, 0.05145692825317383, -0.09075868874788284, 0.08857235312461853, 0.1226598471403122, -0.10879462957382202, 0.06416782736778259, 0.05640702322125435, -0.17868368327617645, 0.034831054508686066, -0.02288104221224785, -0.10058104991912842, 0.08531512320041656, 0.01825530268251896, 0.09888921678066254, -0.0011057668598368764, 0.08698811382055283, -0.17761319875717163, 0.005350941326469183, 0.07235324382781982, 0.044590964913368225, 0.09768624603748322, 0.06166394054889679, 0.028112033382058144, 0.1209796741604805, -0.07380741089582443, 0.10303620994091034, 0.04472401365637779, -0.06497729569673538, -0.2515811622142792, -0.07949283719062805, 0.10437655448913574, 0.09363597631454468, 0.1044890359044075, 0.014404548332095146, 0.16394227743148804, -0.10007093846797943, 0.04207579419016838, 0.18808382749557495, -0.2638053596019745, -0.06591273099184036, -0.01018149871379137, 0.06900124996900558, 0.033007122576236725, -0.08906252682209015, -0.038403984159231186, 0.04203362017869949, 0.04447680339217186, 0.09914290904998779, -0.004361680243164301, -0.04567999765276909, -0.006351039279252291, -0.14592967927455902, -0.02954990603029728, 0.23333777487277985, 0.05610150098800659, -0.07405943423509598, -0.06419030576944351, -0.037916187196969986, -0.05422542244195938, -0.033454008400440216, -0.031300630420446396, 0.026521943509578705, -0.04585674777626991, -0.07579949498176575, -0.06751276552677155, -0.07458575069904327, -0.07013369351625443, -0.017312992364168167, 0.19071471691131592, 0.06931131333112717, 0.027762506157159805, -0.0634879320859909, 0.08310606330633163, -0.031342703849077225, -0.10818573087453842, -0.025230806320905685, -0.030455462634563446, -0.0420977845788002, -0.044546905905008316, -0.06869397312402725, -0.021375682204961777, 0.0005001795361749828, 0.17342865467071533, -0.06716454774141312, 0.04690618813037872, 0.0035974581260234118, 0.01017021480947733, 0.001831849804148078, 0.15333731472492218, -0.06337304413318634, 0.04230932518839836, 0.015006124041974545, 0.07049164921045303, 0.012782210484147072, -0.005517934914678335, -0.08188552409410477, -0.013931840658187866, 0.08644571155309677, 0.04970772936940193, -0.026698710396885872, 0.020545197650790215, -0.01783636584877968, -0.06375223398208618, 0.022538671270012856, -0.10847842693328857, 0.03700968250632286, -0.006458066403865814, -0.08662127703428268, 0.05043866112828255, 0.008927247487008572, 0.007022703532129526, -0.06223614141345024, 0.050571639090776443, -0.10758291184902191, -0.01588311232626438, -0.1095099076628685, -0.08143515139818192, 0.029150066897273064, -0.047589611262083054, 0.01694893278181553, -0.09703216701745987, -0.16114327311515808, 0.007523477077484131, 0.034529589116573334, -0.03455810621380806, -0.08010351657867432, 0.00434564333409071, -0.05702786147594452, 0.016391772776842117, -0.031379036605358124, 0.13266195356845856, -0.03384651243686676, 0.06529580801725388, 0.03762243315577507, -0.00370168499648571, -0.026858918368816376, 0.06149215251207352, -0.09396111220121384, 0.038836922496557236, -0.12323927134275436, 0.037890221923589706, -0.10886765271425247, 0.02170157991349697, -0.11379928141832352, -0.12274348735809326, 0.04274873435497284, -0.012028837576508522, 0.08165288716554642, 0.09474760293960571, -0.06801031529903412, -0.05388748273253441, 0.09150400757789612, -0.09158619493246078, -0.10942619293928146, 0.09811969846487045, -0.02659623511135578, 0.00349589460529387, 0.04696258530020714, 0.12119050323963165, 0.10105428099632263, -0.11642878502607346, -0.018568826839327812, 0.014619443565607071, 0.07690689712762833, -0.04806183651089668, 0.09355731308460236, 0.0038951695896685123, -0.06623023003339767, 0.03538160398602486, -0.07790350914001465, 0.03522571548819542, -0.08655688911676407, -0.0763847604393959, -0.06625593453645706, -0.07750391215085983, 0.03672937676310539, 0.02945915423333645, 0.05387938395142555, -0.07430389523506165, -0.12034602463245392, 0.1583671271800995, 0.14294025301933289, -0.050568558275699615, 0.0170676838606596, -0.09594658762216568, 0.073050357401371, -0.07108574360609055, -0.012274108827114105, -0.19951893389225006, -0.11396446079015732, 0.0447223000228405, -0.07879357039928436, 0.030015578493475914, -0.0075803520157933235, 0.04401613026857376, 0.06422333419322968, -0.04169708862900734, -0.050202760845422745, -0.13064374029636383, -0.006999222561717033, -0.09141963720321655, -0.16494645178318024, -0.0947709009051323, -0.028371380642056465, 0.12326493859291077, -0.16981497406959534, 0.022458193823695183, -0.018554339185357094, 0.1347496062517166, 0.008553088642656803, -0.020904215052723885, -0.014511904679238796, 0.06632692366838455, -0.016473522409796715, -0.06290389597415924, 0.03684104233980179, 0.03183196485042572, -0.0889986902475357, -0.03250150755047798, -0.10661258548498154, 0.11144666373729706, 0.09762676805257797, 0.010789555497467518, -0.032161884009838104, -0.03717772290110588, -0.08105553686618805, -0.04306333139538765, -0.054502200335264206, -0.003946657758206129, 0.17183652520179749, 0.008246483281254768, 0.13209767639636993, -0.08070633560419083, -0.042924948036670685, 0.022685790434479713, -0.010616089217364788, -0.03929498419165611, 0.05089815706014633, 0.08297628909349442, -0.07162746787071228, 0.10126785188913345, 0.12446822971105576, -0.10158740729093552, 0.10553188621997833, -0.07626539468765259, -0.10865115374326706, -0.016231853514909744, -0.01900663785636425, -0.00871462281793356, 0.1306341588497162, -0.15017828345298767, 0.008956411853432655, 0.05395010486245155, 0.024037117138504982, 0.06261882930994034, -0.1647036075592041, 0.010330187156796455, 0.010820857249200344, -0.005314046982675791, -0.07124648243188858, -0.007986243814229965, 0.03902418911457062, 0.08074802905321121, 0.03390884026885033, -0.008137410506606102, 0.04481995478272438, 0.015571288764476776, -0.07384362071752548, 0.20051708817481995, -0.13037700951099396, -0.1514166295528412, -0.1553313136100769, 0.011187885887920856, -0.09081382304430008, -0.031832944601774216, 0.029821062460541725, -0.07641957700252533, -0.06415115296840668, -0.05696600675582886, 0.029731417074799538, -0.09579633921384811, 0.004413241986185312, 0.03995160758495331, 0.01525011844933033, 0.10333777219057083, -0.13376882672309875, 0.01258599478751421, -0.006509530823677778, -0.08995196968317032, -0.007284580264240503, 0.04890323057770729, 0.10598458349704742, 0.10873281955718994, -0.017422441393136978, 0.01901986449956894, -0.03530074656009674, 0.20604027807712555, -0.050319790840148926, -0.046031031757593155, 0.17204758524894714, 0.030037499964237213, 0.05938703939318657, 0.06980789452791214, 0.045244403183460236, -0.057704467326402664, 0.023670895025134087, 0.05013154819607735, -0.006938570644706488, -0.2547397315502167, -0.046933144330978394, -0.033979885280132294, -0.06295368075370789, 0.11111771315336227, 0.04772258549928665, 0.01944783329963684, 0.0891784131526947, -0.040565259754657745, 0.05808514729142189, -0.05632855370640755, 0.11703816056251526, 0.14453323185443878, 0.037578318268060684, 0.1072225421667099, -0.02384479157626629, -0.03580082952976227, 0.06577488034963608, 0.005920561030507088, 0.25257551670074463, -0.015027984045445919, 0.081993468105793, 0.042903557419776917, 0.15740545094013214, 0.007451792247593403, 0.07283157110214233, 0.010185631923377514, 0.0029262083116918802, 0.004709264729171991, -0.05409374460577965, -0.026094015687704086, 0.014861758798360825, 0.0004913780721835792, 0.07931690663099289, -0.1447625756263733, -0.008799221366643906, -0.009209346026182175, 0.2994346618652344, 0.007137936539947987, -0.2982103228569031, -0.11401497572660446, 0.013866334222257137, -0.04524208977818489, -0.10066728293895721, 0.02475772425532341, 0.0686512440443039, -0.1336568295955658, 0.03887258470058441, -0.05746803060173988, 0.10909893363714218, 0.014043610543012619, -0.0015117910224944353, 0.0432250089943409, 0.16043686866760254, 0.011604535393416882, 0.1153707504272461, -0.24638675153255463, 0.20234373211860657, 0.0163833349943161, 0.10318323224782944, -0.05890897661447525, 0.045305147767066956, 0.006984700448811054, 0.07211963087320328, 0.05303872004151344, -0.005705042742192745, -0.04546412080526352, -0.1647844910621643, -0.08018285781145096, 0.052042748779058456, 0.08438931405544281, -0.010561550967395306, 0.09989709407091141, -0.045236267149448395, 0.02871733158826828, 0.049725789576768875, -0.04555206745862961, -0.1950235515832901, -0.1288309395313263, 0.02753295935690403, 0.026755526661872864, 0.013638678938150406, -0.11537271738052368, -0.11743050068616867, -0.0017047249712049961, 0.15013666450977325, 0.0044723618775606155, -0.054677803069353104, -0.1478642225265503, 0.07670710980892181, 0.141878142952919, -0.06437338888645172, 0.019166629761457443, -0.014726932160556316, 0.17520257830619812, 0.023050449788570404, -0.1095166802406311, 0.06686816364526749, -0.0917128399014473, -0.15349708497524261, -0.02094525471329689, 0.12554234266281128, 0.03726648539304733, 0.046457041054964066, -0.006189865525811911, 0.006355279590934515, -0.026519201695919037, -0.09327788650989532, -0.0062557305209338665, 0.06368157267570496, 0.06419336050748825, 0.07700219005346298, -0.093257836997509, 0.04536823183298111, -0.020486218854784966, 0.0030258626211434603, 0.12648427486419678, 0.1884065717458725, -0.06444674730300903, 0.048070721328258514, 0.11480412632226944, -0.07561328262090683, -0.17098353803157806, 0.056096263229846954, 0.11039359122514725, 0.009950672276318073, 0.003201174782589078, -0.2327761948108673, 0.13290727138519287, 0.11712579429149628, -0.028225112706422806, 0.025604868307709694, -0.277815043926239, -0.09997391700744629, 0.12862306833267212, 0.11836841702461243, 0.07024358212947845, -0.1443548947572708, -0.035217881202697754, -0.042300738394260406, -0.12576201558113098, 0.1437273770570755, -0.11218694597482681, 0.09034282714128494, -0.03395659103989601, 0.10836204886436462, 0.022546488791704178, -0.043155573308467865, 0.15632110834121704, 0.00237217266112566, 0.06847941875457764, -0.026781070977449417, 0.061851195991039276, 0.14158771932125092, -0.05738929659128189, 0.07498802989721298, -0.010315615683794022, 0.055270612239837646, -0.1682072877883911, -0.024625547230243683, -0.07702076435089111, 0.08133291453123093, -0.04736432060599327, -0.05238452926278114, -0.027764014899730682, 0.030228212475776672, 0.035546042025089264, -0.031513456255197525, 0.140287384390831, 0.058338090777397156, 0.12123917788267136, 0.08183931559324265, 0.114674873650074, -0.05378507077693939, -0.1348981410264969, -0.006912593264132738, -0.03460980951786041, 0.0991777554154396, -0.10544751584529877, 0.024808557704091072, 0.11203271150588989, 0.03780239075422287, 0.11112352460622787, 0.060369014739990234, -0.07175298035144806, 0.007533477619290352, 0.031509678810834885, -0.10366509109735489, -0.1609097272157669, -0.054834019392728806, 0.09551718086004257, -0.16137108206748962, 0.0576210543513298, 0.09997425973415375, -0.08475416153669357, -0.02727820910513401, -0.0045553226955235004, -0.006198869552463293, -0.02275841496884823, 0.16225624084472656, 0.061181534081697464, 0.06846167147159576, -0.09462332725524902, 0.13846707344055176, 0.07858964055776596, -0.12293002754449844, 0.049583278596401215, 0.04262644797563553, -0.06743182986974716, -0.02899206057190895, 0.0338277667760849, 0.11838001012802124, -0.09548303484916687, -0.081100232899189, -0.09873969852924347, -0.13469499349594116, 0.0667387992143631, 0.07441151142120361, 0.055075258016586304, -0.022866161540150642, -0.049439627677202225, 0.04381101578474045, -0.15475118160247803, 0.08362185209989548, 0.0311740655452013, 0.09273254126310349, -0.1633981615304947, 0.09197114408016205, 0.014928564429283142, 0.07400843501091003, -0.016176367178559303, -0.02154768444597721, -0.10142410546541214, -0.006534785497933626, -0.1966232806444168, -0.02482447773218155, -0.055466458201408386, 0.0074666282162070274, -0.010664233937859535, -0.050780072808265686, -0.06477416306734085, 0.07000411301851273, -0.08635256439447403, -0.04601897671818733, 0.027481572702527046, 0.052827730774879456, -0.11981784552335739, 0.013733688741922379, 0.03091273084282875, -0.10473337769508362, 0.07443436980247498, 0.08118920028209686, 0.03343819081783295, 0.04576778784394264, -0.03697749227285385, -0.037044260650873184, 0.014894449152052402, 0.04090799018740654, 0.07244786620140076, -0.11203762143850327, 0.008296560496091843, 0.0029258178547024727, 0.043420419096946716, -0.0026154876686632633, 0.044265005737543106, -0.13496632874011993, -0.06917041540145874, -0.0135478675365448, -0.048159126192331314, -0.07861271500587463, 0.03181052953004837, 0.09888577461242676, 0.0501408688724041, 0.1763531118631363, -0.05620577186346054, 0.016022583469748497, -0.17425982654094696, 0.0009611943387426436, -0.03803199157118797, -0.039770547300577164, -0.05249080806970596, -0.021114327013492584, 0.05364832654595375, -0.05570381134748459, 0.1354835033416748, -0.03688256815075874, 0.12202706187963486, 0.04498790577054024, -0.05327347666025162, 0.02575475163757801, 0.015950676053762436, 0.2583365738391876, 0.07515028119087219, -0.0005599646246992052, 0.10829632729291916, 0.0032319084275513887, 0.05980697646737099, 0.10450270771980286, 0.13971877098083496, 0.12058962136507034, -0.008585470728576183, 0.087958425283432, 0.08626555651426315, -0.07209859043359756, -0.1347237080335617, 0.055256038904190063, 0.030475376173853874, 0.11054900288581848, -0.02704920619726181, 0.19759896397590637, 0.12128539383411407, -0.14180436730384827, 0.04566314443945885, -0.03229604288935661, -0.08616858720779419, -0.10792479664087296, -0.05357789620757103, -0.07099387794733047, -0.1584710329771042, 0.009842950850725174, -0.14899015426635742, -0.004559037741273642, 0.06302370876073837, 0.0008484940626658499, -0.00434849364683032, 0.11635316908359528, -0.008027118630707264, -0.005101361311972141, 0.06478177011013031, -0.011719397269189358, -0.007882144302129745, -0.024382496252655983, -0.05738165229558945, 0.048920899629592896, -0.005296010058373213, 0.07151956111192703, -0.03146445378661156, -0.02603301964700222, 0.0481342114508152, -0.009140518493950367, -0.07166456431150436, 0.020729463547468185, 0.002832187106832862, 0.03506606072187424, 0.05254625156521797, 0.01974877342581749, -0.015265361405909061, -0.044578298926353455, 0.27586498856544495, -0.0910399779677391, -0.056649237871170044, -0.14259642362594604, 0.2586115300655365, 0.0411333367228508, -0.03934000805020332, 0.0839158371090889, -0.08621398359537125, -0.052393317222595215, 0.1546122431755066, 0.12161113321781158, -0.018799643963575363, -0.033656567335128784, -0.003019244410097599, -0.03079642727971077, -0.08964505791664124, 0.13372331857681274, 0.1227479949593544, 0.03899795934557915, -0.05988446623086929, -0.001868930528871715, -0.04033491015434265, -0.013283957727253437, -0.11059771478176117, 0.07447414845228195, 0.02620142698287964, -0.03164377436041832, -0.029144197702407837, 0.05182802304625511, -0.016622677445411682, -0.10360149294137955, -0.018682124093174934, -0.09000585973262787, -0.17367637157440186, -0.046858880668878555, 0.05028602108359337, -0.00291279680095613, 0.06750920414924622, -0.02171497233211994, 0.0006152403075248003, 0.15263210237026215, -0.00627749552950263, -0.06740708649158478, -0.12884382903575897, 0.1502847820520401, -0.024082940071821213, 0.22147884964942932, 0.004276524763554335, 0.0697602704167366, 0.11312340199947357, 0.023358909413218498, -0.16329218447208405, 0.020970752462744713, 0.062473636120557785, -0.10353817790746689, 0.03379309922456741, 0.1587049514055252, -0.030603455379605293, 0.09763529896736145, 0.004483464639633894, -0.1358039379119873, -0.04129571095108986, -0.08075428009033203, -0.013577514328062534, -0.05788463354110718, 0.00217809877358377, -0.08013537526130676, 0.13098470866680145, 0.19123998284339905, -0.05622227117419243, -0.04963607341051102, -0.08929917961359024, 0.05060715228319168, 0.05803519859910011, 0.07425335794687271, -0.0062856245785951614, -0.2050168365240097, 0.00012990320101380348, 0.04237224534153938, 0.010694364085793495, -0.2583938539028168, -0.06413166224956512, 0.04407605156302452, -0.04642738401889801, -0.054366402328014374, 0.08253920823335648, 0.07441803067922592, 0.03560208901762962, -0.05759838968515396, -0.09237872064113617, -0.08585802465677261, 0.14169584214687347, -0.1511925756931305, -0.04910542070865631 ]
null
null
transformers
# Aladdin Bot
{"tags": ["conversational"]}
text-generation
aplnestrella/Aladdin-Bot
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Aladdin Bot
[ "# Aladdin Bot" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Aladdin Bot" ]
[ 51, 4 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Aladdin Bot" ]
[ 0.03243407607078552, 0.000021639516489813104, -0.00728259515017271, 0.06692399829626083, 0.15213626623153687, -0.00957894790917635, 0.23337796330451965, 0.12555500864982605, 0.019445504993200302, -0.06532620638608932, 0.1016397476196289, 0.15122202038764954, 0.061493340879678726, 0.0628434270620346, -0.016163965687155724, -0.2498691976070404, 0.05290469154715538, 0.04765111207962036, -0.027462486177682877, 0.13394342362880707, 0.0924372598528862, -0.006718708202242851, 0.09748352319002151, 0.008774857968091965, -0.16664548218250275, 0.01766454428434372, 0.011518123559653759, -0.15260952711105347, 0.12254969030618668, 0.08695031702518463, 0.07122154533863068, 0.004269007593393326, -0.03036060370504856, -0.1057964637875557, 0.04485193267464638, -0.02661418356001377, -0.03694780915975571, 0.006907603703439236, 0.026566000655293465, -0.09650032967329025, 0.13984154164791107, 0.12651190161705017, 0.01563459448516369, 0.07022468745708466, -0.12682947516441345, 0.039753858000040054, 0.017058996483683586, 0.06110960617661476, 0.11148946732282639, 0.09561353176832199, -0.017211956903338432, 0.09072429686784744, -0.05819253623485565, 0.10743677616119385, 0.11698240786790848, -0.35691457986831665, -0.04918570816516876, 0.0703040137887001, 0.07317676395177841, 0.07267177850008011, -0.09925977885723114, 0.07055322825908661, -0.0031248843297362328, 0.006373957265168428, 0.015765942633152008, -0.12081485986709595, -0.1110428050160408, -0.01955210417509079, -0.03160875290632248, -0.0017452300526201725, 0.21861891448497772, -0.04654191806912422, 0.03489900752902031, -0.020169749855995178, -0.04591589421033859, -0.011677958071231842, -0.04188370332121849, 0.02496904507279396, -0.07423131167888641, 0.057142145931720734, 0.02993314526975155, -0.09002865105867386, -0.12164599448442459, -0.021411623805761337, -0.1461789906024933, 0.11474994570016861, 0.03695235028862953, 0.04363267868757248, -0.24722687900066376, 0.02945740334689617, 0.0947413221001625, -0.11187099665403366, 0.0267143864184618, -0.07459341734647751, 0.022926146164536476, 0.020819857716560364, -0.00851572584360838, -0.03389840945601463, 0.04337175190448761, 0.11132711917161942, 0.009319460950791836, 0.09133675694465637, -0.061073046177625656, 0.10941292345523834, 0.02693076618015766, 0.0786091759800911, -0.007771820295602083, -0.020544907078146935, 0.08831814676523209, -0.03866364061832428, 0.0403556227684021, -0.08837446570396423, -0.16841743886470795, 0.022848980501294136, 0.003520771861076355, 0.03156028315424919, -0.00791848823428154, 0.12779223918914795, -0.024226302281022072, 0.0011426301207393408, 0.0227451641112566, -0.0713086798787117, -0.02073603682219982, 0.022842317819595337, -0.06304028630256653, 0.02775687165558338, 0.030858589336276054, 0.013492245227098465, -0.10426368564367294, 0.011339805088937283, -0.06556406617164612, 0.05328410863876343, -0.0001875594025477767, -0.024102069437503815, 0.018193919211626053, 0.015698671340942383, 0.004059535451233387, -0.16921554505825043, -0.09199301153421402, 0.033721908926963806, -0.008922317996621132, -0.05354253947734833, -0.07788923382759094, -0.07108201086521149, -0.014458373188972473, 0.054671257734298706, -0.05301748961210251, -0.05900529399514198, -0.04938751831650734, 0.1231975257396698, 0.0002296627644682303, 0.14015205204486847, -0.08238469809293747, 0.06717688590288162, -0.07977043837308884, -0.0035284084733575583, -0.11168783903121948, 0.10120423883199692, -0.013245423324406147, 0.13845549523830414, -0.009250990115106106, -0.0030412860214710236, -0.0022255824878811836, 0.04008101299405098, -0.0551266148686409, 0.20508576929569244, -0.13064926862716675, -0.13789887726306915, 0.268130362033844, -0.030827118083834648, -0.2230224907398224, 0.1273289918899536, -0.000011769896445912309, 0.04544593766331673, 0.07015015184879303, 0.17250970005989075, -0.08037054538726807, 0.05560284107923508, 0.054403651505708694, 0.11341545730829239, -0.019039172679185867, 0.024561259895563126, 0.029510995373129845, 0.0724603682756424, -0.0455925427377224, 0.01590551994740963, 0.18273398280143738, 0.13363121449947357, -0.023011203855276108, -0.038199737668037415, 0.043302156031131744, -0.016418669372797012, 0.0614398755133152, -0.0179470032453537, 0.15411266684532166, -0.0418732613325119, -0.05308276414871216, -0.10019678622484207, 0.011216388083994389, 0.005299997515976429, 0.06530468910932541, -0.12105629593133926, 0.06850013881921768, 0.06734120845794678, 0.07816102355718613, -0.13455496728420258, -0.0014509992906823754, -0.05474252998828888, 0.0647750273346901, 0.07916371524333954, 0.013455200009047985, 0.029704291373491287, 0.0005192511598579586, -0.018929164856672287, 0.043626707047224045, 0.132109597325325, -0.01225607842206955, -0.06098340451717377, -0.11100620776414871, 0.11033175885677338, -0.04498758167028427, 0.12819428741931915, -0.008922307752072811, 0.040028322488069534, 0.00826721265912056, 0.1136159747838974, -0.027022218331694603, 0.026251796633005142, 0.03876622021198273, 0.004477831069380045, -0.0899946466088295, -0.04163726046681404, 0.07452385872602463, -0.009501681663095951, -0.15228582918643951, 0.19830112159252167, -0.20978714525699615, 0.1551739126443863, 0.20195648074150085, -0.23774705827236176, -0.016603250056505203, 0.024992847815155983, -0.01043656561523676, 0.002472394611686468, 0.1060509905219078, 0.03888043761253357, 0.17767184972763062, 0.021000202745199203, 0.22675403952598572, -0.015805957838892937, -0.004322053398936987, -0.03242973983287811, -0.08608277887105942, -0.011223340407013893, 0.08093731850385666, 0.12744134664535522, -0.1372309923171997, 0.1947421431541443, 0.15835325419902802, 0.036750391125679016, 0.2046203315258026, 0.07381671667098999, 0.049015145748853683, 0.08149289339780807, -0.030167341232299805, -0.04390855133533478, -0.027576614171266556, -0.26865798234939575, -0.047864463180303574, 0.038791876286268234, -0.049133867025375366, 0.05117245391011238, -0.09937577694654465, -0.060565583407878876, -0.031954534351825714, 0.017588213086128235, 0.0028486894443631172, 0.08514714986085892, 0.030119629576802254, 0.1701793521642685, 0.005074227228760719, -0.09557577222585678, 0.04934128001332283, 0.011468697339296341, -0.08026450872421265, 0.1689828783273697, -0.12673017382621765, -0.4258863925933838, -0.06527898460626602, -0.21053126454353333, -0.08916758745908737, 0.05808761715888977, 0.10769058763980865, -0.1439976841211319, 0.012366266921162605, 0.005270803347229958, 0.07101380079984665, -0.08745928853750229, 0.0012131535913795233, 0.01916838437318802, 0.0016383593901991844, -0.09066736698150635, -0.07678520679473877, -0.04727843776345253, -0.00009179468906950206, -0.12603269517421722, 0.16528312861919403, -0.1183319091796875, 0.0039810664020478725, 0.16775302588939667, 0.03916139900684357, 0.05090755596756935, -0.060812100768089294, 0.2212531715631485, -0.12638725340366364, 0.017858847975730896, 0.13056546449661255, -0.021125314757227898, 0.05612275004386902, 0.17195871472358704, 0.012071080505847931, -0.10435162484645844, 0.018818791955709457, -0.01207304373383522, -0.06471285969018936, -0.1672912836074829, -0.05128121376037598, -0.1284535825252533, 0.10953263193368912, 0.019332269206643105, 0.06951957195997238, 0.08744554966688156, 0.05321107804775238, -0.05288533866405487, 0.10597015917301178, 0.05563877522945404, 0.06479669362306595, 0.2045837640762329, -0.028043895959854126, 0.12211371213197708, -0.04065495729446411, -0.12000162154436111, 0.04864664375782013, 0.060000717639923096, 0.011868664994835854, 0.0663963183760643, 0.0126329455524683, -0.021664300933480263, 0.031179042533040047, 0.12457367777824402, 0.04456816613674164, 0.03577124699950218, -0.035047635436058044, -0.03406280651688576, -0.009562775492668152, -0.130459725856781, 0.05707879737019539, 0.021039392799139023, -0.15187042951583862, 0.01616428606212139, 0.02323991246521473, 0.08537538349628448, 0.04660702869296074, 0.01563543640077114, -0.17491793632507324, -0.020145492628216743, 0.10831935703754425, -0.027740478515625, -0.1334967315196991, 0.09163691848516464, -0.009562394581735134, -0.16541226208209991, 0.10700083523988724, -0.024428073316812515, 0.1091926321387291, -0.04394406080245972, 0.07732163369655609, -0.09901333600282669, -0.18485529720783234, 0.00766295101493597, 0.09612075984477997, -0.38588106632232666, 0.14855441451072693, -0.0059148650616407394, -0.05538864806294441, -0.06321947276592255, 0.0037180609069764614, 0.04468758776783943, 0.10215681791305542, 0.12741725146770477, 0.00013688358012586832, 0.0803956687450409, -0.18240930140018463, -0.054097458720207214, 0.04262901470065117, 0.08649098128080368, -0.0458553172647953, -0.025053666904568672, -0.01764053851366043, 0.007663626689463854, -0.0769505649805069, -0.008623939007520676, 0.015122197568416595, -0.19127823412418365, 0.11841011792421341, 0.03980402275919914, 0.06960686296224594, 0.008780216798186302, -0.026761164888739586, -0.01281428150832653, 0.18779779970645905, -0.07612934708595276, -0.12078684568405151, -0.06716711074113846, -0.016121791675686836, -0.01785164698958397, -0.0735326036810875, 0.002271049190312624, -0.11426741629838943, 0.021489592269062996, -0.10436588525772095, -0.1609496921300888, 0.09620053321123123, -0.05875973775982857, -0.006028206553310156, -0.026951272040605545, 0.14660872519016266, -0.053308211266994476, 0.06589344888925552, 0.0255772452801466, -0.03908020630478859, -0.07394690066576004, -0.0799272358417511, 0.0054723178036510944, -0.0572156123816967, -0.06680281460285187, -0.031953778117895126, -0.011832368560135365, -0.05358956381678581, -0.11227399855852127, -0.046480514109134674, 0.29821527004241943, 0.1868896335363388, 0.00805188249796629, 0.1663476973772049, 0.0900452509522438, -0.029930567368865013, -0.25716134905815125, -0.175254687666893, -0.1079254150390625, -0.046478744596242905, -0.07220868021249771, -0.2292962521314621, 0.017511900514364243, -0.10843773186206818, -0.01059598196297884, 0.09957863390445709, -0.265788197517395, -0.11170767992734909, 0.20072096586227417, -0.006167161278426647, 0.3892832100391388, -0.16636130213737488, -0.03649231046438217, -0.06909564137458801, -0.07411271333694458, 0.12933433055877686, 0.07117795199155807, 0.13847430050373077, -0.04111747443675995, 0.18293772637844086, 0.012680799700319767, 0.03624395653605461, 0.068659707903862, -0.015455365180969238, -0.050911713391542435, -0.1145886555314064, -0.06352460384368896, -0.01079098042100668, 0.030587224289774895, -0.03672579675912857, -0.09797748923301697, -0.04414442181587219, -0.17056086659431458, -0.01645548827946186, -0.07259179651737213, 0.020779743790626526, 0.030259516090154648, -0.04124659672379494, -0.01295030489563942, -0.01775387115776539, -0.013597154058516026, 0.027991440147161484, 0.18150636553764343, -0.043287359178066254, 0.1742011308670044, 0.02431008778512478, 0.08100015670061111, -0.17284512519836426, 0.060965362936258316, -0.04781986400485039, -0.015477021224796772, 0.07038820534944534, -0.15387465059757233, 0.014222756959497929, 0.08479619771242142, -0.04357128590345383, 0.1067517027258873, 0.08393752574920654, 0.02519105188548565, 0.06459605693817139, 0.16290442645549774, -0.21499286592006683, -0.0670604407787323, -0.02875501848757267, 0.11616478860378265, 0.12784002721309662, 0.0022346104960888624, 0.15619869530200958, -0.032740622758865356, -0.06666148453950882, 0.010681657120585442, 0.02402949146926403, -0.008511344902217388, 0.04734830930829048, -0.037163589149713516, 0.02781090885400772, -0.14368455111980438, 0.09026860445737839, 0.03801341354846954, -0.1557031124830246, 0.05174240842461586, 0.21992863714694977, -0.11249441653490067, -0.11000873148441315, -0.09498535096645355, 0.07573597878217697, -0.10232709348201752, 0.027865178883075714, -0.032937679439783096, -0.14221404492855072, 0.018086643889546394, 0.12440360337495804, 0.026917632669210434, 0.06331939250230789, -0.07222729176282883, -0.027236737310886383, 0.01925749145448208, 0.002803887240588665, 0.02674179896712303, -0.02655913680791855, -0.03184782341122627, 0.03129572048783302, 0.019741959869861603, 0.18500357866287231, -0.08244449645280838, -0.1089986190199852, -0.12917660176753998, 0.054291173815727234, -0.14318901300430298, -0.057769112288951874, -0.11673539131879807, -0.027171187102794647, -0.022182201966643333, -0.047591809183359146, -0.06577682495117188, -0.09809824079275131, -0.10338776558637619, 0.0068886736407876015, -0.06465700268745422, 0.026853768154978752, -0.12631885707378387, 0.011329136788845062, 0.11597243696451187, -0.05438593029975891, 0.16958047449588776, 0.17149806022644043, -0.10563112050294876, 0.08502273261547089, -0.1473504900932312, -0.11299342662096024, 0.07225281000137329, 0.011402432806789875, 0.04624446853995323, 0.12390163540840149, 0.014747824519872665, 0.01786835491657257, 0.05333774909377098, 0.059360675513744354, 0.06769594550132751, -0.07654081284999847, -0.008715818636119366, -0.045314278453588486, -0.0854983702301979, -0.03230653703212738, -0.012059845961630344, 0.06623809039592743, 0.009407350793480873, 0.05816361680626869, -0.055675216019153595, 0.08417366445064545, -0.026932889595627785, 0.030689913779497147, 0.021680884063243866, -0.16238011419773102, -0.006857534404844046, -0.1295361965894699, 0.027514806017279625, -0.024722188711166382, 0.15247005224227905, 0.04296011105179787, 0.006967922672629356, 0.06414750963449478, 0.1171678751707077, -0.022582413628697395, -0.0023292554542422295, 0.05774206295609474, 0.1154438853263855, -0.0675843358039856, -0.031119277700781822, 0.026757122948765755, 0.07008391618728638, 0.07562127709388733, 0.0937512218952179, -0.028302617371082306, -0.04073963686823845, 0.05934188887476921, -0.058753613382577896, 0.023251622915267944, -0.08683300763368607, -0.12230753153562546, -0.054312337189912796, 0.025848396122455597, -0.050373777747154236, 0.09078274667263031, 0.19534547626972198, 0.03001718968153, 0.0057357908226549625, -0.08093973249197006, -0.062064457684755325, -0.13381250202655792, -0.06581059843301773, -0.04808777570724487, -0.0763494148850441, 0.03235112503170967, -0.08067352324724197, 0.05420713499188423, 0.05999305844306946, 0.09942309558391571, -0.058052148669958115, 0.14475655555725098, 0.05807025730609894, -0.10767266899347305, 0.07280439883470535, -0.002969359513372183, 0.03315140679478645, -0.03655875101685524, 0.02014821395277977, -0.06987880170345306, 0.019993526861071587, 0.04377894103527069, 0.0854121744632721, -0.06533212959766388, 0.06746973842382431, -0.18154747784137726, -0.1098192036151886, -0.059395771473646164, 0.03631339967250824, -0.051388949155807495, 0.13146202266216278, 0.008540050126612186, 0.02352604828774929, 0.004056752659380436, 0.2725054919719696, -0.026150483638048172, -0.022047383710741997, -0.03064841404557228, 0.14349085092544556, -0.022776959463953972, 0.03541009873151779, -0.06773095577955246, 0.04262269288301468, -0.14489620923995972, 0.3413310647010803, 0.24778419733047485, -0.1709856241941452, -0.014107874594628811, -0.059266071766614914, 0.071696937084198, 0.058107879012823105, 0.09247202426195145, 0.1360362470149994, 0.24102802574634552, -0.12432587891817093, -0.016417693346738815, -0.05260203406214714, -0.04663021117448807, -0.07500207424163818, 0.08358201384544373, 0.08846033364534378, -0.0064638652838766575, -0.07850957661867142, 0.06233717501163483, -0.2709263265132904, 0.05577068030834198, -0.12287355214357376, -0.1709645837545395, -0.03737100958824158, 0.024436039850115776, 0.08884715288877487, 0.06009827181696892, 0.07239589095115662, 0.038585808128118515, -0.07405420392751694, 0.008073944598436356, 0.030815623700618744, -0.18785469233989716, -0.01435408927500248, 0.0991932824254036, -0.12031781673431396, 0.06093217432498932, -0.024113425984978676, 0.02606036886572838, 0.04472466558218002, 0.09042179584503174, 0.01061752624809742, 0.041321318596601486, 0.02977737970650196, 0.04681635648012161, -0.029170997440814972, 0.13605453073978424, 0.02793808840215206, -0.05501317232847214, 0.08998849242925644, 0.00018030707724392414, 0.039701174944639206, -0.07082700729370117, 0.00521848862990737, 0.04420536011457443, 0.03875603899359703, -0.05680922046303749, 0.037449613213539124, 0.09941021353006363, -0.04150751605629921, 0.007235556375235319, -0.04244238883256912, -0.07784814387559891, -0.026562638580799103, -0.14921198785305023, -0.13686156272888184, -0.1639532893896103, -0.10263901203870773, -0.03853241354227066, 0.017362121492624283, -0.1755923181772232, 0.026260217651724815, -0.13203272223472595, 0.08070380985736847, -0.1467827707529068, 0.11416751891374588, 0.04853696748614311, 0.033156268298625946, -0.03397738188505173, -0.08807019889354706, 0.05975784733891487, 0.07428047060966492, -0.10753463208675385, -0.10723346471786499 ]
null
null
transformers
## DALL·E mini - Generate images from text <img style="text-align:center; display:block;" src="https://raw.githubusercontent.com/borisdayma/dalle-mini/main/img/logo.png" width="200"> * [Technical Report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) * [Demo](https://huggingface.co/spaces/flax-community/dalle-mini) ### Model Description This is an attempt to replicate OpenAI's [DALL·E](https://openai.com/blog/dall-e/), a model capable of generating arbitrary images from a text prompt that describes the desired result. ![DALL·E mini demo screenshot](img/demo_screenshot.png) This model's architecture is a simplification of the original, and leverages previous open source efforts and available pre-trained models. Results have lower quality than OpenAI's, but the model can be trained and used on less demanding hardware. Our training was performed on a single TPU v3-8 for a few days. ### Components of the Architecture The system relies on the Flax/JAX infrastructure, which are ideal for TPU training. TPUs are not required, both Flax and JAX run very efficiently on GPU backends. The main components of the architecture include: * An encoder, based on [BART](https://arxiv.org/abs/1910.13461). The encoder transforms a sequence of input text tokens to a sequence of image tokens. The input tokens are extracted from the text prompt by using the model's tokenizer. The image tokens are a fixed-length sequence, and they represent indices in a VQGAN-based pre-trained codebook. * A decoder, which converts the image tokens to image pixels. As mentioned above, the decoder is based on a [VQGAN model](https://compvis.github.io/taming-transformers/). The model definition we use for the encoder can be downloaded from our [Github repo](https://github.com/borisdayma/dalle-mini). The encoder is represented by the class `CustomFlaxBartForConditionalGeneration`. To use the decoder, you need to follow the instructions in our accompanying VQGAN model in the hub, [flax-community/vqgan_f16_16384](https://huggingface.co/flax-community/vqgan_f16_16384). ### How to Use The easiest way to get familiar with the code and the models is to follow the inference notebook we provide in our [github repo](https://github.com/borisdayma/dalle-mini/blob/main/dev/inference/inference_pipeline.ipynb). For your convenience, you can open it in Google Colaboratory: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/dev/inference/inference_pipeline.ipynb) If you just want to test the trained model and see what it comes up with, please visit [our demo](https://huggingface.co/spaces/flax-community/dalle-mini), available in 🤗 Spaces. ### Additional Details Our [report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) contains more details about how the model was trained and shows many examples that demonstrate its capabilities.
{"language": ["en"], "pipeline_tag": "text-to-image", "inference": false}
text-to-image
apol/dalle-mini
[ "transformers", "jax", "bart", "text2text-generation", "text-to-image", "en", "arxiv:1910.13461", "autotrain_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "1910.13461" ]
[ "en" ]
TAGS #transformers #jax #bart #text2text-generation #text-to-image #en #arxiv-1910.13461 #autotrain_compatible #region-us
## DALL·E mini - Generate images from text <img style="text-align:center; display:block;" src="URL width="200"> * Technical Report * Demo ### Model Description This is an attempt to replicate OpenAI's DALL·E, a model capable of generating arbitrary images from a text prompt that describes the desired result. !DALL·E mini demo screenshot This model's architecture is a simplification of the original, and leverages previous open source efforts and available pre-trained models. Results have lower quality than OpenAI's, but the model can be trained and used on less demanding hardware. Our training was performed on a single TPU v3-8 for a few days. ### Components of the Architecture The system relies on the Flax/JAX infrastructure, which are ideal for TPU training. TPUs are not required, both Flax and JAX run very efficiently on GPU backends. The main components of the architecture include: * An encoder, based on BART. The encoder transforms a sequence of input text tokens to a sequence of image tokens. The input tokens are extracted from the text prompt by using the model's tokenizer. The image tokens are a fixed-length sequence, and they represent indices in a VQGAN-based pre-trained codebook. * A decoder, which converts the image tokens to image pixels. As mentioned above, the decoder is based on a VQGAN model. The model definition we use for the encoder can be downloaded from our Github repo. The encoder is represented by the class 'CustomFlaxBartForConditionalGeneration'. To use the decoder, you need to follow the instructions in our accompanying VQGAN model in the hub, flax-community/vqgan_f16_16384. ### How to Use The easiest way to get familiar with the code and the models is to follow the inference notebook we provide in our github repo. For your convenience, you can open it in Google Colaboratory: ![Open In Colab](URL If you just want to test the trained model and see what it comes up with, please visit our demo, available in Spaces. ### Additional Details Our report contains more details about how the model was trained and shows many examples that demonstrate its capabilities.
[ "## DALL·E mini - Generate images from text\n\n<img style=\"text-align:center; display:block;\" src=\"URL width=\"200\">\n\n* Technical Report\n* Demo", "### Model Description\n\nThis is an attempt to replicate OpenAI's DALL·E, a model capable of generating arbitrary images from a text prompt that describes the desired result. \n\n!DALL·E mini demo screenshot\n\nThis model's architecture is a simplification of the original, and leverages previous open source efforts and available pre-trained models. Results have lower quality than OpenAI's, but the model can be trained and used on less demanding hardware. Our training was performed on a single TPU v3-8 for a few days.", "### Components of the Architecture\n\nThe system relies on the Flax/JAX infrastructure, which are ideal for TPU training. TPUs are not required, both Flax and JAX run very efficiently on GPU backends.\n\nThe main components of the architecture include:\n\n* An encoder, based on BART. The encoder transforms a sequence of input text tokens to a sequence of image tokens. The input tokens are extracted from the text prompt by using the model's tokenizer. The image tokens are a fixed-length sequence, and they represent indices in a VQGAN-based pre-trained codebook.\n\n* A decoder, which converts the image tokens to image pixels. As mentioned above, the decoder is based on a VQGAN model.\n\nThe model definition we use for the encoder can be downloaded from our Github repo. The encoder is represented by the class 'CustomFlaxBartForConditionalGeneration'.\n\nTo use the decoder, you need to follow the instructions in our accompanying VQGAN model in the hub, flax-community/vqgan_f16_16384.", "### How to Use\n\nThe easiest way to get familiar with the code and the models is to follow the inference notebook we provide in our github repo. For your convenience, you can open it in Google Colaboratory: ![Open In Colab](URL\n\nIf you just want to test the trained model and see what it comes up with, please visit our demo, available in Spaces.", "### Additional Details\n\nOur report contains more details about how the model was trained and shows many examples that demonstrate its capabilities." ]
[ "TAGS\n#transformers #jax #bart #text2text-generation #text-to-image #en #arxiv-1910.13461 #autotrain_compatible #region-us \n", "## DALL·E mini - Generate images from text\n\n<img style=\"text-align:center; display:block;\" src=\"URL width=\"200\">\n\n* Technical Report\n* Demo", "### Model Description\n\nThis is an attempt to replicate OpenAI's DALL·E, a model capable of generating arbitrary images from a text prompt that describes the desired result. \n\n!DALL·E mini demo screenshot\n\nThis model's architecture is a simplification of the original, and leverages previous open source efforts and available pre-trained models. Results have lower quality than OpenAI's, but the model can be trained and used on less demanding hardware. Our training was performed on a single TPU v3-8 for a few days.", "### Components of the Architecture\n\nThe system relies on the Flax/JAX infrastructure, which are ideal for TPU training. TPUs are not required, both Flax and JAX run very efficiently on GPU backends.\n\nThe main components of the architecture include:\n\n* An encoder, based on BART. The encoder transforms a sequence of input text tokens to a sequence of image tokens. The input tokens are extracted from the text prompt by using the model's tokenizer. The image tokens are a fixed-length sequence, and they represent indices in a VQGAN-based pre-trained codebook.\n\n* A decoder, which converts the image tokens to image pixels. As mentioned above, the decoder is based on a VQGAN model.\n\nThe model definition we use for the encoder can be downloaded from our Github repo. The encoder is represented by the class 'CustomFlaxBartForConditionalGeneration'.\n\nTo use the decoder, you need to follow the instructions in our accompanying VQGAN model in the hub, flax-community/vqgan_f16_16384.", "### How to Use\n\nThe easiest way to get familiar with the code and the models is to follow the inference notebook we provide in our github repo. For your convenience, you can open it in Google Colaboratory: ![Open In Colab](URL\n\nIf you just want to test the trained model and see what it comes up with, please visit our demo, available in Spaces.", "### Additional Details\n\nOur report contains more details about how the model was trained and shows many examples that demonstrate its capabilities." ]
[ 46, 43, 120, 279, 86, 31 ]
[ "passage: TAGS\n#transformers #jax #bart #text2text-generation #text-to-image #en #arxiv-1910.13461 #autotrain_compatible #region-us \n## DALL·E mini - Generate images from text\n\n<img style=\"text-align:center; display:block;\" src=\"URL width=\"200\">\n\n* Technical Report\n* Demo### Model Description\n\nThis is an attempt to replicate OpenAI's DALL·E, a model capable of generating arbitrary images from a text prompt that describes the desired result. \n\n!DALL·E mini demo screenshot\n\nThis model's architecture is a simplification of the original, and leverages previous open source efforts and available pre-trained models. Results have lower quality than OpenAI's, but the model can be trained and used on less demanding hardware. Our training was performed on a single TPU v3-8 for a few days.### Components of the Architecture\n\nThe system relies on the Flax/JAX infrastructure, which are ideal for TPU training. TPUs are not required, both Flax and JAX run very efficiently on GPU backends.\n\nThe main components of the architecture include:\n\n* An encoder, based on BART. The encoder transforms a sequence of input text tokens to a sequence of image tokens. The input tokens are extracted from the text prompt by using the model's tokenizer. The image tokens are a fixed-length sequence, and they represent indices in a VQGAN-based pre-trained codebook.\n\n* A decoder, which converts the image tokens to image pixels. As mentioned above, the decoder is based on a VQGAN model.\n\nThe model definition we use for the encoder can be downloaded from our Github repo. The encoder is represented by the class 'CustomFlaxBartForConditionalGeneration'.\n\nTo use the decoder, you need to follow the instructions in our accompanying VQGAN model in the hub, flax-community/vqgan_f16_16384." ]
[ -0.02174929529428482, 0.031683605164289474, -0.00529139582067728, 0.07105603814125061, 0.09070825576782227, 0.030046479776501656, 0.0735895112156868, 0.08795987069606781, 0.01608821004629135, 0.013488806784152985, -0.015224938280880451, -0.01842145249247551, 0.11462429165840149, 0.10609126091003418, 0.05189385637640953, -0.17952491343021393, 0.01292166393250227, 0.011347256600856781, -0.058654166758060455, 0.006100224796682596, 0.11010002344846725, -0.08608183264732361, 0.11164270341396332, 0.038546252995729446, -0.1289261281490326, 0.057400643825531006, 0.010091505013406277, 0.002501765266060829, 0.08285549283027649, 0.12766389548778534, 0.07032963633537292, -0.03243566304445267, 0.09454739838838577, -0.13445818424224854, 0.014800739474594593, 0.12433914095163345, 0.0009162178030237556, 0.05580322816967964, 0.05439826101064682, 0.11991842091083527, 0.1360030174255371, -0.02021924778819084, -0.01492709293961525, 0.04198627918958664, -0.057042162865400314, -0.07862286269664764, -0.035192232578992844, 0.025303475558757782, 0.09968401491641998, 0.04366109520196915, 0.02311684377491474, 0.021162066608667374, 0.020214330404996872, 0.08990985155105591, 0.010620745830237865, -0.11006725579500198, -0.05410155653953552, 0.0609334371984005, 0.043349023908376694, 0.10603173822164536, -0.028336340561509132, -0.027626002207398415, 0.0008243746706284583, 0.02250245399773121, 0.1439686119556427, -0.03500914201140404, -0.05841200798749924, -0.04035390913486481, -0.07586383074522018, -0.030771424993872643, 0.13323566317558289, -0.03014061599969864, -0.05242236703634262, -0.08607279509305954, -0.06692342460155487, 0.0008171920198947191, 0.015850776806473732, -0.08992710709571838, 0.011922857724130154, 0.05114194005727768, 0.12135942280292511, -0.14774924516677856, -0.11026091128587723, -0.07442141324281693, -0.01986619271337986, 0.0223833117634058, 0.053024645894765854, 0.061937566846609116, -0.1166624128818512, 0.12565478682518005, 0.013158236630260944, -0.0780845507979393, -0.007855609059333801, -0.09062448143959045, -0.08183824270963669, -0.00638179574161768, -0.011181360110640526, -0.17482879757881165, -0.03902505710721016, 0.07909443229436874, -0.07719717174768448, 0.034419529139995575, 0.03302628919482231, -0.009614041075110435, 0.034645069390535355, 0.17975275218486786, -0.03817314654588699, -0.009187999181449413, 0.03871685266494751, -0.008244873955845833, -0.007438746280968189, -0.0248190239071846, -0.09414471685886383, 0.01944197528064251, -0.01789283938705921, 0.005401941481977701, -0.052116427570581436, -0.007668026722967625, 0.010037009604275227, -0.03977962210774422, 0.21666797995567322, -0.03467511385679245, 0.05349475145339966, -0.0022759835701435804, -0.02528582513332367, 0.08351217955350876, 0.05616849288344383, -0.03864740952849388, -0.12643861770629883, -0.06550770252943039, -0.07413061708211899, -0.045342326164245605, -0.1057683676481247, -0.11128424853086472, -0.03347034752368927, -0.1238558366894722, 0.034716859459877014, -0.11024009436368942, -0.12299569696187973, -0.01877637207508087, 0.059277329593896866, -0.05823800340294838, 0.023248935118317604, 0.029680026695132256, -0.011965596117079258, -0.05782664567232132, 0.039438892155885696, 0.03493662551045418, -0.0020841246005147696, -0.029940960928797722, -0.01159313041716814, 0.003653064137324691, -0.07929067313671112, 0.031249793246388435, -0.05000610277056694, 0.025423040613532066, -0.1350487619638443, 0.04744720831513405, -0.006979892961680889, 0.028680549934506416, -0.02710953913629055, -0.010043234564363956, 0.03286980837583542, 0.029093245044350624, 0.06213290989398956, 0.0730452686548233, -0.1381547600030899, 0.017187168821692467, 0.09838267415761948, -0.13163676857948303, -0.057534318417310715, 0.09257800877094269, -0.02176075056195259, 0.11740370839834213, 0.1054166778922081, 0.039329905062913895, 0.1278112828731537, -0.09612686932086945, -0.024162795394659042, 0.03282177075743675, 0.012788625434041023, -0.010364703834056854, 0.00835097674280405, 0.06981240957975388, 0.024847520515322685, 0.03303515911102295, -0.019364502280950546, 0.03603078052401543, 0.015756094828248024, -0.027919145300984383, -0.033355824649333954, -0.022717243060469627, -0.15471157431602478, -0.0035379044711589813, 0.011452442035079002, 0.049070339649915695, -0.07619238644838333, -0.07167544960975647, 0.08878549188375473, -0.08411681652069092, 0.008256036788225174, -0.07800974696874619, -0.023119626566767693, -0.03566231206059456, 0.026194773614406586, -0.08410575985908508, 0.01333869993686676, 0.09724445641040802, -0.1598757803440094, 0.02046571858227253, 0.06865523755550385, 0.039994172751903534, 0.054580237716436386, 0.048035502433776855, 0.0075971819460392, -0.04683702066540718, 0.010303852148354053, -0.04588712751865387, -0.10089610517024994, -0.08723721653223038, -0.0484953448176384, 0.05781383812427521, -0.136228546500206, 0.02094878815114498, 0.0012423940934240818, 0.0865456685423851, 0.05773172900080681, -0.01110175158828497, -0.027275927364826202, -0.016182811930775642, -0.045483365654945374, -0.050509821623563766, -0.03788821026682854, 0.047032903879880905, -0.003832810092717409, 0.045926306396722794, -0.09249110519886017, -0.12350168824195862, 0.009625233709812164, 0.02614603564143181, 0.007907040417194366, 0.020427590236067772, -0.015389356762170792, -0.03664388135075569, 0.02335534244775772, -0.07723438739776611, 0.16861116886138916, 0.024596720933914185, 0.09805899113416672, -0.05285632982850075, -0.028932899236679077, 0.046488676220178604, -0.009649252519011497, -0.01561092957854271, 0.008705934509634972, 0.12910553812980652, -0.0709746703505516, 0.0002399134391453117, -0.025694865733385086, 0.0017821891233325005, 0.12097351998090744, 0.015481443144381046, -0.04998486861586571, -0.03450711444020271, -0.0724555179476738, -0.014029121026396751, 0.1603771299123764, -0.08269310742616653, -0.029631104320287704, 0.012195762246847153, -0.015700368210673332, 0.07543916255235672, -0.10503994673490524, 0.09006235748529434, 0.06999923288822174, -0.02032588981091976, 0.05966009199619293, -0.029425745829939842, -0.06946109235286713, 0.04879772663116455, -0.028240710496902466, 0.04382810741662979, -0.034499526023864746, -0.0439172200858593, -0.08031930774450302, 0.11959488689899445, -0.11347314715385437, -0.19882917404174805, -0.1611989587545395, 0.007274684030562639, -0.032600224018096924, -0.004490896128118038, -0.009012719616293907, -0.05306713283061981, -0.10440661013126373, -0.1087043434381485, -0.005191835109144449, -0.028819825500249863, -0.04479512199759483, -0.02912524901330471, -0.003878646297380328, 0.0048644631169736385, -0.14785586297512054, -0.011223932728171349, 0.030846048146486282, -0.048900507390499115, 0.004544798284769058, -0.00932607613503933, 0.09605033695697784, 0.07986090332269669, 0.012234721332788467, -0.0029520399402827024, -0.02242082729935646, 0.193093940615654, -0.03714007884263992, 0.17477917671203613, 0.18883082270622253, -0.03551705554127693, 0.027591388672590256, 0.06472758203744888, 0.01133288349956274, -0.036822766065597534, 0.0001038394111674279, -0.026808321475982666, -0.0498659573495388, -0.15543371438980103, -0.007072277832776308, -0.06231844425201416, -0.05690261721611023, 0.06637618690729141, 0.03943328186869621, 0.035018179565668106, 0.07767383754253387, -0.030180398374795914, 0.11435016244649887, -0.017356740310788155, 0.03973989933729172, 0.047623906284570694, 0.012806575745344162, 0.02186211198568344, -0.054334044456481934, 0.022039208561182022, 0.11681138724088669, 0.1485835313796997, 0.1511610746383667, -0.08703260868787766, 0.1585029661655426, 0.03706255555152893, 0.0045259492471814156, -0.015906691551208496, 0.09332376718521118, -0.0674503967165947, 0.045555341988801956, -0.03882625326514244, -0.042678628116846085, -0.03222307190299034, 0.07919973134994507, -0.11358223855495453, -0.020821889862418175, -0.03574031963944435, 0.07795581221580505, 0.02101009525358677, 0.16617269814014435, -0.014155282638967037, -0.15387354791164398, -0.08295409381389618, 0.0539989098906517, 0.028296038508415222, -0.11979205161333084, -0.011620456352829933, 0.16282351315021515, -0.02782478742301464, -0.06696400791406631, 0.0009046571794897318, 0.0928502306342125, -0.0901297777891159, 0.0120400944724679, 0.0647590309381485, 0.16533203423023224, 0.032440293580293655, 0.06281933933496475, -0.17537307739257812, -0.011210001073777676, 0.0098953852429986, 0.14455977082252502, -0.10687684267759323, 0.09516765922307968, 0.0063932063058018684, 0.049592193216085434, 0.08661507070064545, 0.015058198943734169, -0.04909296706318855, -0.09543482214212418, -0.039550717920064926, 0.05919177830219269, 0.0020244810730218887, -0.02670258656144142, 0.09578590840101242, -0.03793633356690407, 0.02641327865421772, -0.0017569585470482707, -0.08742097020149231, -0.10129772126674652, -0.15601873397827148, 0.043709658086299896, -0.0032789914403110743, -0.054591260850429535, -0.045760415494441986, 0.036910928785800934, 0.00008810442523099482, 0.05409977212548256, -0.10301197320222855, -0.07277776300907135, -0.12214814871549606, -0.024179501459002495, 0.06808991730213165, -0.0438520722091198, 0.05134642869234085, -0.01638743281364441, 0.1425303816795349, -0.00015402618737425655, -0.12198484688997269, 0.012244599871337414, -0.13135628402233124, -0.05582614988088608, -0.04800936579704285, -0.03381165862083435, 0.07755552232265472, -0.02072107419371605, 0.04530835896730423, -0.028986576944589615, -0.09567832201719284, -0.1095980778336525, -0.031584158539772034, 0.07140004634857178, -0.052944112569093704, 0.015416857786476612, -0.0735870972275734, -0.03134789317846298, -0.030799537897109985, -0.0015370544278994203, -0.06301362067461014, 0.14374835789203644, -0.057332463562488556, 0.04701279103755951, 0.09912201017141342, -0.1152368038892746, -0.13993807137012482, -0.014512483030557632, 0.01478015910834074, 0.06656656414270401, 0.009899911470711231, -0.21611279249191284, 0.090678371489048, -0.006357310805469751, 0.002590958494693041, 0.04334171116352081, -0.18642161786556244, -0.0481419712305069, 0.05215819925069809, 0.10955166071653366, 0.027270613238215446, -0.0667753741145134, 0.021313372999429703, -0.0015039525460451841, -0.0787416622042656, 0.08007141202688217, -0.10122501850128174, 0.022639330476522446, -0.013969279825687408, -0.05566931143403053, 0.03428564965724945, -0.019794071093201637, 0.07592067867517471, -0.036532312631607056, 0.09222813695669174, 0.005134333856403828, 0.056724052876234055, 0.13679534196853638, -0.051486484706401825, 0.11733715981245041, -0.05531633645296097, 0.07683954387903214, -0.1226721853017807, -0.03895870968699455, 0.006016406696289778, 0.010412782430648804, -0.04197920858860016, -0.0738268792629242, -0.07059290260076523, 0.056761302053928375, 0.06474461406469345, 0.0017685566563159227, -0.008492417633533478, 0.019849715754389763, -0.016379356384277344, 0.2439393401145935, 0.028532706201076508, -0.03731853887438774, 0.029062194749712944, 0.022124692797660828, 0.01461414061486721, 0.11849530041217804, -0.047950465232133865, 0.05549117177724838, 0.09099394828081131, -0.0404077023267746, 0.08639664947986603, 0.00947948731482029, -0.11985106021165848, -0.0006302467663772404, 0.04518542438745499, -0.10497959703207016, -0.09029201418161392, -0.0597568117082119, -0.0002901765692513436, -0.01056456658989191, 0.03953922912478447, 0.1588161140680313, -0.05520591139793396, 0.0031299639958888292, -0.012605590745806694, 0.05670848861336708, 0.0019757812842726707, 0.08143975585699081, 0.01164978090673685, -0.03464873135089874, -0.036366019397974014, 0.09255947917699814, 0.08406032621860504, -0.05517459660768509, 0.03942295163869858, 0.0702633485198021, -0.08962148427963257, -0.04473801702260971, -0.03135906532406807, 0.088379867374897, -0.03851139917969704, -0.08886139839887619, -0.08458498120307922, -0.11683384329080582, -0.012483831495046616, -0.00729001872241497, -0.008799921721220016, 0.02485646679997444, -0.07887185364961624, 0.05169336870312691, -0.12729798257350922, 0.12931738793849945, -0.02430945821106434, 0.023740515112876892, -0.10677387565374374, 0.04316167160868645, 0.026423126459121704, 0.04410049319267273, -0.0279330275952816, -0.0067020985297858715, -0.07708680629730225, -0.02528250589966774, -0.18256781995296478, 0.006861382629722357, -0.01315238606184721, -0.019628139212727547, 0.013202314265072346, 0.020287415012717247, -0.02695394679903984, 0.06350550055503845, 0.00025423034094274044, 0.0003317391674499959, -0.02741299755871296, 0.08110269159078598, -0.06208338961005211, -0.003840447636321187, -0.005140617489814758, -0.08200345933437347, 0.07322151213884354, -0.02393675036728382, -0.03951092064380646, 0.006396466866135597, -0.03829498589038849, 0.0927475094795227, -0.02804562635719776, 0.07806403934955597, 0.002243245020508766, -0.04315086826682091, 0.01402019988745451, 0.008376263082027435, -0.09144409745931625, -0.09388941526412964, 0.03256233036518097, -0.011187414638698101, 0.04128142073750496, 0.01592053659260273, 0.028468286618590355, -0.034913722425699234, 0.09264304488897324, 0.08092384785413742, 0.03436272218823433, 0.06072147935628891, 0.003659166395664215, 0.0041298712603747845, -0.1600819230079651, -0.019984394311904907, 0.05156179144978523, 0.021178102120757103, -0.029740935191512108, -0.11581849306821823, 0.02191336452960968, -0.03039303608238697, 0.2032114714384079, 0.04776861146092415, 0.01853443682193756, -0.025812877342104912, -0.057456228882074356, -0.08878674358129501, 0.01001113373786211, 0.11691807210445404, -0.012033410370349884, 0.01959819346666336, -0.03910528123378754, -0.0056588537991046906, 0.013374045491218567, 0.09190855920314789, 0.10245030373334885, -0.01859918050467968, 0.050413358956575394, 0.08787158131599426, 0.04293568432331085, -0.022369252517819405, -0.04615754261612892, 0.07143118977546692, -0.04043479636311531, 0.06107841432094574, -0.05971318855881691, 0.008820421062409878, 0.1117551401257515, -0.09832573682069778, 0.07080559432506561, 0.02980051375925541, -0.05123237892985344, -0.03560224920511246, -0.13920491933822632, -0.021177999675273895, -0.07194328308105469, -0.054512783885002136, -0.11351814866065979, 0.011989368125796318, -0.05957666039466858, -0.003331143409013748, -0.0708007961511612, 0.11103394627571106, 0.03936083987355232, -0.03919830173254013, 0.026582418009638786, 0.03072301857173443, 0.022994020953774452, 0.024471398442983627, 0.029603097587823868, 0.043486952781677246, 0.08248373866081238, 0.06734182685613632, 0.01836986653506756, 0.06802066415548325, 0.017649689689278603, 0.03546758368611336, -0.02262418530881405, -0.013125168159604073, -0.053375013172626495, -0.10019388049840927, 0.11440758407115936, 0.020751653239130974, -0.021923629567027092, 0.010509752668440342, 0.0967123880982399, -0.039363566786050797, -0.007146894466131926, -0.11831054836511612, 0.09857609122991562, 0.02831663377583027, 0.013209842145442963, 0.05655556172132492, -0.08438397943973541, -0.033196453005075455, 0.17407023906707764, 0.0742919072508812, -0.08635886013507843, -0.03469976782798767, 0.032813917845487595, -0.00384428258985281, -0.08861301839351654, 0.177265465259552, -0.003798976307734847, 0.1899878829717636, 0.008659602142870426, 0.10821305960416794, -0.0013094429159536958, -0.03705742582678795, -0.005909512750804424, 0.04703328013420105, 0.009802526794373989, -0.0034587348345667124, -0.006585936993360519, 0.005772183649241924, -0.030492696911096573, -0.1860368698835373, 0.04496316611766815, -0.016844989731907845, -0.025453567504882812, -0.0026821421924978495, 0.03898172825574875, -0.04453466460108757, 0.03911428898572922, -0.046551935374736786, 0.009284842759370804, 0.30326545238494873, -0.028786487877368927, -0.0002267320523969829, -0.006969851907342672, 0.07538627833127975, -0.11211449652910233, 0.18927250802516937, -0.013835038989782333, 0.008967333473265171, 0.04694199189543724, 0.005383014678955078, -0.13183069229125977, 0.022378696128726006, -0.03695414587855339, -0.05753282085061073, -0.02054019272327423, 0.03980857878923416, -0.030634721741080284, 0.03488811478018761, 0.02530447579920292, 0.005118786357343197, 0.02343723736703396, 0.027185045182704926, -0.0438387356698513, -0.029224826022982597, -0.017270317301154137, -0.09563277661800385, 0.1636940836906433, 0.12091850489377975, -0.0013906208332628012, 0.014973283745348454, -0.04402337595820427, 0.06774239242076874, 0.029950933530926704, 0.19495469331741333, 0.023066150024533272, -0.07672616094350815, -0.0018272234592586756, 0.007925145328044891, 0.0651373639702797, -0.10724522918462753, -0.03478435054421425, -0.0314297191798687, -0.04369082674384117, -0.02752254717051983, 0.0898529514670372, 0.1311442106962204, 0.07533253729343414, -0.06851518899202347, 0.09260624647140503, -0.057106126099824905, 0.044661033898591995, -0.07298406213521957, -0.08561761677265167 ]
null
null
null
hello
{}
null
apoorvumang/kgt5-test
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
hello
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
This is a t5-small model trained from scratch on WikiKG90Mv2 dataset. Please see https://github.com/apoorvumang/kgt5/ for more details on the method. This model was trained on the tail entity prediction task ie. given subject entity and relation, predict the object entity. Input should be provided in the form of "\<entity text\>| \<relation text\>". We used the raw text title and descriptions to get entity and relation textual representations. These raw texts were obtained from ogb dataset itself (dataset/wikikg90m-v2/mapping/entity.csv and relation.csv). Entity representation was set to the title, and description was used to disambiguate if 2 entities had the same title. If still no disambiguation was possible, we used the wikidata ID (eg. Q123456). We trained the model on WikiKG90Mv2 for approx 1.5 epochs on 4x1080Ti GPUs. The training time for 1 epoch was approx 5.5 days. To evaluate the model, we sample 300 times from the decoder for each input (s,r) pair. We then remove predictions which do not map back to a valid entity, and then rank the predictions by their log probabilities. Filtering was performed subsequently. We achieve 0.22 validation MRR (the full leaderboard is here https://ogb.stanford.edu/docs/lsc/leaderboards/#wikikg90mv2) You can try the following code in an ipython notebook to evaluate the pre-trained model. The full procedure of mapping entity to ids, filtering etc. is not included here for sake of simplicity but can be provided on request if needed. Please contact Apoorv ([email protected]) for clarifications/details. --------- ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("apoorvumang/kgt5-wikikg90mv2") model = AutoModelForSeq2SeqLM.from_pretrained("apoorvumang/kgt5-wikikg90mv2") ``` ``` import torch def getScores(ids, scores, pad_token_id): """get sequence scores from model.generate output""" scores = torch.stack(scores, dim=1) log_probs = torch.log_softmax(scores, dim=2) # remove start token ids = ids[:,1:] # gather needed probs x = ids.unsqueeze(-1).expand(log_probs.shape) needed_logits = torch.gather(log_probs, 2, x) final_logits = needed_logits[:, :, 0] padded_mask = (ids == pad_token_id) final_logits[padded_mask] = 0 final_scores = final_logits.sum(dim=-1) return final_scores.cpu().detach().numpy() def topkSample(input, model, tokenizer, num_samples=5, num_beams=1, max_output_length=30): tokenized = tokenizer(input, return_tensors="pt") out = model.generate(**tokenized, do_sample=True, num_return_sequences = num_samples, num_beams = num_beams, eos_token_id = tokenizer.eos_token_id, pad_token_id = tokenizer.pad_token_id, output_scores = True, return_dict_in_generate=True, max_length=max_output_length,) out_tokens = out.sequences out_str = tokenizer.batch_decode(out_tokens, skip_special_tokens=True) out_scores = getScores(out_tokens, out.scores, tokenizer.pad_token_id) pair_list = [(x[0], x[1]) for x in zip(out_str, out_scores)] sorted_pair_list = sorted(pair_list, key=lambda x:x[1], reverse=True) return sorted_pair_list def greedyPredict(input, model, tokenizer): input_ids = tokenizer([input], return_tensors="pt").input_ids out_tokens = model.generate(input_ids) out_str = tokenizer.batch_decode(out_tokens, skip_special_tokens=True) return out_str[0] ``` ``` # an example from validation set that the model predicts correctly # you can try your own examples here. what's your noble title? input = "Sophie Valdemarsdottir| noble title" out = topkSample(input, model, tokenizer, num_samples=5) out ``` You can further load the list of entity aliases, then filter only those predictions which are valid entities then create a reverse mapping from alias -> integer id to get final predictions in required format. However, loading these aliases in memory as a dictionary requires a lot of RAM + you need to download the aliases file (made available here https://storage.googleapis.com/kgt5-wikikg90mv2/ent_alias_list.pickle) (relation file: https://storage.googleapis.com/kgt5-wikikg90mv2/rel_alias_list.pickle) The submitted validation/test results for were obtained by sampling 300 times for each input, then applying above procedure, followed by filtering known entities. The final MRR can vary slightly due to this sampling nature (we found that although beam search gives deterministic output, the results are inferior to sampling large number of times). ``` # download valid.txt. you can also try same url with test.txt. however test does not contain the correct tails !wget https://storage.googleapis.com/kgt5-wikikg90mv2/valid.txt ``` ``` fname = 'valid.txt' valid_lines = [] f = open(fname) for line in f: valid_lines.append(line.rstrip()) f.close() print(valid_lines[0]) ``` ``` from tqdm.auto import tqdm # try unfiltered hits@k. this is approximation since model can sample same seq multiple times # you should run this on gpu if you want to evaluate on all points with 300 samples each k = 1 count_at_k = 0 max_predictions = k max_points = 1000 for line in tqdm(valid_lines[:max_points]): input, target = line.split('\t') model_output = topkSample(input, model, tokenizer, num_samples=max_predictions) prediction_strings = [x[0] for x in model_output] if target in prediction_strings: count_at_k += 1 print('Hits at {0} unfiltered: {1}'.format(k, count_at_k/max_points)) ```
{"license": "mit", "widget": [{"text": "Apoorv Umang Saxena| family name", "example_title": "Family name prediction"}, {"text": "Apoorv Saxena| country", "example_title": "Country prediction"}, {"text": "World War 2| followed by", "example_title": "followed by"}]}
text2text-generation
apoorvumang/kgt5-wikikg90mv2
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tf #t5 #text2text-generation #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
This is a t5-small model trained from scratch on WikiKG90Mv2 dataset. Please see URL for more details on the method. This model was trained on the tail entity prediction task ie. given subject entity and relation, predict the object entity. Input should be provided in the form of "\<entity text\>| \<relation text\>". We used the raw text title and descriptions to get entity and relation textual representations. These raw texts were obtained from ogb dataset itself (dataset/wikikg90m-v2/mapping/URL and URL). Entity representation was set to the title, and description was used to disambiguate if 2 entities had the same title. If still no disambiguation was possible, we used the wikidata ID (eg. Q123456). We trained the model on WikiKG90Mv2 for approx 1.5 epochs on 4x1080Ti GPUs. The training time for 1 epoch was approx 5.5 days. To evaluate the model, we sample 300 times from the decoder for each input (s,r) pair. We then remove predictions which do not map back to a valid entity, and then rank the predictions by their log probabilities. Filtering was performed subsequently. We achieve 0.22 validation MRR (the full leaderboard is here URL You can try the following code in an ipython notebook to evaluate the pre-trained model. The full procedure of mapping entity to ids, filtering etc. is not included here for sake of simplicity but can be provided on request if needed. Please contact Apoorv (apoorvumang@URL) for clarifications/details. --------- You can further load the list of entity aliases, then filter only those predictions which are valid entities then create a reverse mapping from alias -> integer id to get final predictions in required format. However, loading these aliases in memory as a dictionary requires a lot of RAM + you need to download the aliases file (made available here URL (relation file: URL The submitted validation/test results for were obtained by sampling 300 times for each input, then applying above procedure, followed by filtering known entities. The final MRR can vary slightly due to this sampling nature (we found that although beam search gives deterministic output, the results are inferior to sampling large number of times).
[]
[ "TAGS\n#transformers #pytorch #tf #t5 #text2text-generation #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 56 ]
[ "passage: TAGS\n#transformers #pytorch #tf #t5 #text2text-generation #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.010400908999145031, 0.030327240005135536, -0.005618195049464703, 0.038645707070827484, 0.14778487384319305, 0.024248642846941948, 0.15961895883083344, 0.14133785665035248, -0.011818120256066322, -0.059390369802713394, 0.13366489112377167, 0.23089699447155, 0.007583661936223507, 0.07121007889509201, -0.09568629413843155, -0.25710058212280273, 0.033028725534677505, 0.06743486225605011, 0.021591806784272194, 0.1207289919257164, 0.1015511080622673, -0.036579713225364685, 0.09400439262390137, -0.022736165672540665, -0.16881726682186127, 0.035969119518995285, 0.07726415991783142, -0.13076528906822205, 0.12795425951480865, 0.07151467353105545, 0.0706375315785408, 0.08211265504360199, -0.029585719108581543, -0.1197257936000824, 0.023396320641040802, 0.014435168355703354, -0.10374955832958221, 0.06444274634122849, 0.11291953176259995, -0.04454924911260605, 0.16197100281715393, 0.08684632182121277, -0.021068492904305458, 0.08300434798002243, -0.13671883940696716, -0.05939897149801254, -0.05603726580739021, 0.07527060806751251, 0.05484833940863609, 0.07927528768777847, 0.019192568957805634, 0.13888368010520935, -0.07351943105459213, 0.1146133616566658, 0.12993298470973969, -0.3674393594264984, 0.015446045435965061, 0.08125357329845428, 0.06020224094390869, 0.04111756384372711, -0.027324270457029343, 0.05174962058663368, 0.04898485168814659, 0.02728346176445484, 0.049616698175668716, -0.08038555830717087, -0.12992750108242035, 0.047101475298404694, -0.07893506437540054, -0.06356924027204514, 0.2358061820268631, -0.04660964012145996, 0.027520179748535156, -0.0204460509121418, -0.09524895250797272, -0.03710542619228363, 0.0066903806291520596, 0.0005931849009357393, -0.03096538782119751, 0.08331397920846939, 0.02135743759572506, -0.06664540618658066, -0.1460975706577301, -0.01516916137188673, -0.20698100328445435, 0.08419211208820343, 0.010577467270195484, 0.05976402387022972, -0.20168955624103546, 0.09773848950862885, 0.03381146490573883, -0.09874244779348373, 0.021026980131864548, -0.08033237606287003, 0.0530795194208622, -0.024766409769654274, -0.05143652856349945, -0.08845679461956024, 0.06919810175895691, 0.1450580656528473, -0.02018275111913681, -0.00527442479506135, -0.09371627122163773, 0.09627054631710052, -0.011579813435673714, 0.043491180986166, 0.00547531433403492, 0.004193686414510012, 0.061188243329524994, -0.14518293738365173, -0.0013208419550210238, -0.048872996121644974, -0.18200036883354187, -0.059769049286842346, 0.042724769562482834, 0.09719907492399216, 0.01711413450539112, 0.09855630993843079, -0.025288229808211327, -0.01701083406805992, 0.07007258385419846, -0.07246914505958557, -0.019327200949192047, -0.002194150583818555, 0.02371346950531006, 0.10351449996232986, 0.0387425422668457, 0.00494269048795104, -0.13325008749961853, 0.06392340362071991, -0.07529893517494202, -0.03093566931784153, -0.0176913570612669, -0.0715644583106041, 0.05734272301197052, -0.1141379326581955, 0.016190724447369576, -0.17351391911506653, -0.18522216379642487, 0.04077652841806412, 0.019887162372469902, -0.024783186614513397, -0.05961276590824127, 0.0019211582839488983, -0.057216860353946686, 0.03374217078089714, -0.07581625133752823, 0.009048227220773697, -0.05486573278903961, 0.11557752639055252, -0.07560385763645172, 0.030965346843004227, -0.1768040806055069, 0.07262719422578812, -0.125581756234169, -0.025136105716228485, -0.03239711374044418, 0.033603694289922714, 0.00965122226625681, 0.1116521805524826, -0.039587412029504776, -0.04899122565984726, -0.04370981827378273, 0.030037103220820427, -0.037949252873659134, 0.16890570521354675, -0.11255815625190735, -0.08541524410247803, 0.20706135034561157, -0.11086109280586243, -0.2008030265569687, 0.07709459960460663, 0.01013500988483429, 0.0776555985212326, 0.08499190211296082, 0.18138065934181213, 0.06290482729673386, -0.05328071117401123, 0.09534000605344772, 0.12149759382009506, -0.1187533438205719, -0.1451372504234314, 0.026577258482575417, -0.03082885779440403, -0.10573317110538483, 0.034201350063085556, 0.03422963619232178, 0.07680460065603256, -0.03920114412903786, -0.03932051360607147, -0.0494161993265152, -0.004555493593215942, 0.049948085099458694, -0.0011641195742413402, 0.10668271034955978, -0.06128877401351929, -0.013547565788030624, 0.044043317437171936, -0.031710393726825714, -0.007264792453497648, 0.04655448719859123, -0.04715730994939804, 0.10840078443288803, 0.02221592329442501, 0.03871484473347664, -0.15146499872207642, -0.061904069036245346, -0.005645389202982187, 0.1227952316403389, 0.025874223560094833, 0.11137690395116806, 0.027458855882287025, -0.010664556175470352, -0.022433316335082054, 0.0008893950725905597, 0.13977749645709991, 0.011990252882242203, -0.04680490121245384, -0.09371480345726013, 0.039856500923633575, -0.04271066188812256, -0.04274376481771469, -0.06241343542933464, 0.024221500381827354, 0.062386978417634964, 0.09842299669981003, -0.0026752492412924767, 0.07525410503149033, -0.03790257126092911, 0.01100082602351904, -0.08951202034950256, -0.003793126903474331, 0.11490074545145035, 0.025126071646809578, -0.06864841282367706, 0.24196578562259674, -0.15623220801353455, 0.24114659428596497, 0.20108459889888763, -0.22048184275627136, -0.00719950208440423, -0.07420898973941803, -0.0421326570212841, 0.006143852137029171, 0.0596345029771328, -0.03073939122259617, 0.04854210838675499, -0.005075455643236637, 0.19629999995231628, -0.08465110510587692, -0.06466507166624069, 0.004562768619507551, -0.03855902701616287, -0.01539834775030613, 0.04779201000928879, 0.1420099139213562, -0.2199341207742691, 0.17850859463214874, 0.23711927235126495, 0.05994483456015587, 0.19056592881679535, -0.05297784507274628, -0.03129832074046135, 0.04813560098409653, 0.007187758106738329, -0.011280511505901814, -0.06055564060807228, -0.13704481720924377, 0.010414674878120422, 0.08554119616746902, 0.025774115696549416, 0.07905352115631104, -0.131109818816185, -0.05173128470778465, -0.008696871809661388, -0.03847317025065422, -0.03326883167028427, 0.10674235224723816, 0.04537918418645859, 0.14052584767341614, -0.044455137103796005, -0.04719926789402962, 0.13954859972000122, 0.018781283870339394, -0.13523152470588684, 0.1865098774433136, -0.13269372284412384, -0.2689357101917267, -0.1680755615234375, -0.14702051877975464, -0.02824341505765915, 0.03086218796670437, 0.133157879114151, -0.03279132768511772, -0.025315312668681145, -0.026836466044187546, 0.02376645803451538, -0.07843390852212906, 0.01617494784295559, -0.09393084049224854, 0.05689031258225441, -0.06109718605875969, -0.11262251436710358, -0.057729486376047134, 0.01025623083114624, -0.07554700970649719, 0.141845241189003, -0.11268868297338486, 0.057002369314432144, 0.17264147102832794, -0.025087842717766762, 0.043959882110357285, -0.08289745450019836, 0.17435091733932495, -0.041871242225170135, 0.03644343093037605, 0.229295551776886, -0.030965859070420265, 0.07467816025018692, 0.12638960778713226, 0.013323010876774788, -0.06558438390493393, 0.029549220576882362, -0.048272550106048584, -0.09200919419527054, -0.2796465754508972, -0.08485864847898483, -0.12342948466539383, 0.09493411332368851, 0.055454690009355545, 0.07365357130765915, 0.18461720645427704, 0.0659307986497879, -0.026611756533384323, 0.03294788673520088, 0.0352121964097023, 0.09338559955358505, 0.24226857721805573, 0.0005982090951874852, 0.12002527713775635, -0.0907125398516655, -0.07560344785451889, 0.11104778200387955, 0.05689411237835884, 0.1380208134651184, 0.07002466171979904, 0.07903736084699631, 0.05648213252425194, 0.10008437931537628, 0.11149659752845764, 0.1578504741191864, 0.030876176431775093, -0.000020617246264009736, -0.03939064219594002, -0.04867153614759445, 0.007282386999577284, 0.04077799618244171, -0.03183300048112869, -0.14927572011947632, -0.07737739384174347, -0.0973675549030304, 0.04800199717283249, 0.13619865477085114, 0.0482996366918087, -0.21420921385288239, 0.025159407407045364, 0.05019208416342735, -0.029815593734383583, -0.0869293361902237, 0.08573560416698456, -0.0016460627084597945, -0.12551520764827728, 0.09950688481330872, -0.05349922552704811, 0.11487841606140137, 0.032480284571647644, 0.07798460125923157, 0.011679619550704956, -0.09430275112390518, 0.019180575385689735, 0.1161191537976265, -0.3638226091861725, 0.2176336646080017, -0.004299261141568422, -0.04182686656713486, -0.09542817622423172, -0.0034446383360773325, 0.0005269189714454114, 0.14870630204677582, 0.11943205446004868, -0.005180983804166317, -0.03656614571809769, -0.05283769220113754, 0.022529279813170433, 0.021913601085543633, 0.10644181072711945, -0.019992860034108162, -0.007384238764643669, -0.06571807712316513, -0.0031978958286345005, 0.006435716524720192, 0.033300671726465225, -0.022558053955435753, -0.1479572355747223, 0.06166790798306465, 0.020484501495957375, 0.060447752475738525, -0.008195136673748493, -0.025373172014951706, -0.09502323716878891, 0.17279210686683655, -0.10644697397947311, -0.10776477307081223, -0.1359422653913498, -0.08587075024843216, 0.03303546458482742, -0.06787935644388199, 0.056986816227436066, -0.0756676197052002, 0.004353662952780724, -0.07320882380008698, -0.2491040825843811, 0.1142483577132225, -0.08468849956989288, -0.06666645407676697, -0.03526065871119499, 0.17432934045791626, -0.10780558735132217, 0.011499040760099888, 0.04198432341217995, -0.0018220607889816165, -0.062122050672769547, -0.092263363301754, -0.015203078277409077, -0.06613647192716599, 0.04779784753918648, -0.03333862125873566, -0.11249491572380066, -0.0289743784815073, -0.014883605763316154, -0.028142698109149933, 0.2790724039077759, 0.16298332810401917, -0.06369508057832718, 0.19883881509304047, 0.12317054718732834, -0.10875054448843002, -0.2914796471595764, -0.10152175277471542, -0.11425692588090897, -0.058898720890283585, 0.016417307779192924, -0.15694072842597961, 0.054097771644592285, 0.019061021506786346, -0.012805704027414322, 0.12434317171573639, -0.249245747923851, -0.10220198333263397, 0.13389526307582855, 0.027799135074019432, 0.27985697984695435, -0.13964363932609558, -0.09994731098413467, -0.039618346840143204, -0.17528410255908966, 0.21726824343204498, -0.07144275307655334, 0.08699654042720795, -0.03840286657214165, 0.07318214327096939, 0.02331792749464512, -0.03762156888842583, 0.040996141731739044, 0.01128156017512083, 0.04441430792212486, -0.12198595702648163, -0.024042898789048195, 0.11168624460697174, 0.005297151394188404, 0.0637705996632576, -0.10623957961797714, 0.04365249350667, -0.09084102511405945, -0.03271590173244476, -0.09357552230358124, 0.07571247220039368, -0.0010277569526806474, -0.09210102260112762, -0.006822858937084675, -0.04304858297109604, 0.015904925763607025, -0.04386959224939346, 0.18430320918560028, -0.027440091595053673, 0.1613653302192688, 0.18290382623672485, 0.1274365782737732, -0.12628880143165588, 0.028552083298563957, -0.09379295259714127, -0.08350693434476852, 0.054892443120479584, -0.10759372264146805, 0.03150700405240059, 0.11849368363618851, -0.025619393214583397, 0.08158595114946365, 0.10762469470500946, 0.0053189038299024105, -0.02861594781279564, 0.13994278013706207, -0.21912488341331482, -0.03212627023458481, -0.08297178894281387, -0.02981582097709179, 0.07408997416496277, 0.05760315805673599, 0.1667449176311493, -0.010729295201599598, -0.014610202983021736, 0.009393781423568726, -0.0047876606695353985, -0.06268644332885742, 0.043045926839113235, 0.0293030496686697, 0.012462055310606956, -0.1284341961145401, 0.09157611429691315, 0.02953341417014599, -0.0953683853149414, 0.0061553772538900375, 0.16665291786193848, -0.13646426796913147, -0.1199454739689827, -0.011245685629546642, 0.08294264227151871, -0.20670506358146667, -0.03916628286242485, -0.04569830000400543, -0.14499416947364807, 0.09112944453954697, 0.2110103964805603, 0.0409313403069973, 0.1100572720170021, -0.04282877594232559, -0.060482367873191833, -0.023703021928668022, 0.008345178328454494, -0.05585635453462601, 0.033509429544210434, -0.09977351129055023, 0.11568174511194229, -0.024602392688393593, 0.12802253663539886, -0.07691213488578796, -0.031751848757267, -0.13846005499362946, 0.01815444976091385, -0.13628746569156647, -0.03462497144937515, -0.07147474586963654, -0.042573414742946625, -0.004395403899252415, -0.0189741812646389, -0.04895327612757683, -0.019831962883472443, -0.11818289756774902, 0.014571699313819408, -0.018436431884765625, 0.0707891508936882, -0.09568431973457336, -0.015372022986412048, 0.048218030482530594, -0.023110736161470413, 0.12384765595197678, 0.07535143196582794, -0.11460145562887192, 0.11703387647867203, -0.17924611270427704, -0.07929440587759018, 0.09314094483852386, 0.022003769874572754, 0.033739857375621796, 0.06678267568349838, 0.025464288890361786, 0.09565230458974838, -0.01380913145840168, 0.04849580302834511, -0.025279002264142036, -0.13537056744098663, -0.007838325574994087, -0.03395137935876846, -0.12341073155403137, -0.05784644931554794, -0.033660005778074265, 0.05114578455686569, 0.0029290751554071903, 0.14896175265312195, -0.05179247632622719, 0.0753285363316536, -0.09274496883153915, 0.0062860711477696896, 0.01422881055623293, -0.14944453537464142, -0.11611710488796234, -0.08705127239227295, -0.00723585719242692, -0.000707013881765306, 0.2100067138671875, 0.047704700380563736, -0.03727366775274277, 0.05010445788502693, 0.0803009644150734, 0.014942214824259281, -0.003418553387746215, 0.2868421971797943, 0.04953340068459511, -0.03402232751250267, -0.13065895438194275, 0.049880869686603546, -0.029003385454416275, -0.030639592558145523, 0.17966292798519135, 0.055457644164562225, -0.06197310984134674, 0.07022786140441895, 0.049444522708654404, 0.010007078759372234, -0.08252488076686859, -0.15061989426612854, 0.04782331734895706, 0.09217233955860138, -0.029668016359210014, 0.09610818326473236, 0.18208535015583038, -0.05392603948712349, 0.03561517223715782, -0.0029833675362169743, -0.03875579684972763, -0.17567971348762512, -0.18872787058353424, -0.062173031270504, -0.0994025394320488, 0.01834859699010849, -0.08753403276205063, 0.0754406526684761, 0.04557480290532112, 0.07566115260124207, -0.08074881881475449, 0.03012710064649582, 0.02179568260908127, -0.11582353711128235, 0.06483571976423264, -0.02569747157394886, 0.05691526085138321, -0.05119806155562401, -0.013239623978734016, -0.06691212207078934, -0.0227663554251194, -0.041307881474494934, 0.052486784756183624, -0.000504806637763977, 0.021834203973412514, -0.14895935356616974, -0.07907760888338089, -0.014520417898893356, 0.05745677277445793, -0.013035708107054234, 0.15633606910705566, 0.010867889970541, -0.015952402725815773, 0.05161011591553688, 0.1790798008441925, -0.06035992130637169, -0.13009387254714966, -0.01958288997411728, 0.24928845465183258, 0.06460783630609512, 0.07127625495195389, 0.020546454936265945, 0.0007426023366861045, -0.056697335094213486, 0.3224284052848816, 0.2972385287284851, -0.047523658722639084, 0.01980678178369999, 0.004891893360763788, 0.02848607674241066, 0.12411483377218246, 0.18672749400138855, 0.0684453696012497, 0.25167930126190186, -0.054805222898721695, -0.0008410413865931332, -0.03337394818663597, 0.023292144760489464, -0.09549257904291153, 0.14042766392230988, 0.030990850180387497, -0.09906206279993057, 0.0011220300802960992, 0.10242535173892975, -0.20011860132217407, 0.10835469514131546, -0.06855195015668869, -0.1056647077202797, -0.024343622848391533, -0.012998586520552635, 0.10175330191850662, -0.0004780044255312532, 0.05250420421361923, -0.030540207400918007, -0.050433799624443054, 0.05701101943850517, 0.018861759454011917, -0.2413271963596344, 0.024031009525060654, 0.06466919928789139, -0.10091456770896912, 0.0205613411962986, -0.01431333739310503, 0.07010407000780106, 0.07148387283086777, 0.07711625844240189, -0.05866909772157669, 0.08574520796537399, 0.013701244257390499, -0.01871314086019993, 0.039073046296834946, -0.02740251086652279, 0.019353341311216354, -0.08846577256917953, 0.032806362956762314, -0.11477576196193695, 0.04752068966627121, 0.008882478810846806, -0.055589158087968826, -0.029798349365592003, 0.011081325821578503, -0.05416538938879967, 0.06530793756246567, 0.07470475882291794, -0.015573441982269287, -0.00723332678899169, -0.10244368016719818, -0.02811812423169613, 0.042270228266716, -0.16011832654476166, -0.05166933313012123, -0.06645841151475906, -0.076084665954113, 0.0929279625415802, 0.0018609067192301154, -0.21268977224826813, 0.013191210106015205, -0.1193525493144989, 0.029662128537893295, -0.22521032392978668, 0.08891984820365906, 0.10301489382982254, 0.008610409684479237, 0.014246947132050991, -0.02936064451932907, 0.026570552960038185, 0.0696641057729721, -0.11519238352775574, -0.06799925863742828 ]
null
null
null
1
{}
null
app-test-user/test-tensorboard
[ "tensorboard", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #tensorboard #region-us
1
[]
[ "TAGS\n#tensorboard #region-us \n" ]
[ 10 ]
[ "passage: TAGS\n#tensorboard #region-us \n" ]
[ 0.006534305866807699, 0.040082383900880814, -0.009093299508094788, -0.008539018221199512, 0.0775318369269371, 0.03559385612607002, 0.13800844550132751, 0.0633106678724289, 0.24619461596012115, 0.053988438099622726, 0.16592620313167572, 0.061295218765735626, -0.033082760870456696, -0.09275762736797333, 0.0019954948220402002, -0.24875524640083313, -0.017190655693411827, 0.0222176443785429, -0.08897604048252106, 0.03018813394010067, -0.09696152061223984, -0.11958344280719757, 0.0063727120868861675, -0.06779000908136368, -0.12876015901565552, 0.10196448862552643, 0.05243263393640518, -0.016738098114728928, 0.10779542475938797, 0.003737490391358733, 0.2274874895811081, 0.039320170879364014, -0.10886677354574203, -0.11122076958417892, 0.04605049639940262, 0.020880023017525673, -0.1199897974729538, 0.06093762442469597, 0.10028446465730667, -0.07296576350927353, -0.08250174671411514, 0.05501723289489746, 0.0024101075250655413, 0.01748649962246418, -0.20268984138965607, -0.04973244294524193, -0.06384602934122086, -0.10129387676715851, 0.03687706217169762, 0.002544021001085639, -0.006732790730893612, 0.16736938059329987, -0.13431771099567413, 0.03194912150502205, 0.12027584761381149, -0.3891479969024658, 0.004831512924283743, 0.25729992985725403, 0.062398020178079605, 0.16237030923366547, -0.06207888945937157, 0.11647333204746246, 0.06223743036389351, -0.0372677743434906, -0.010793986730277538, -0.0860324576497078, -0.0134416613727808, 0.13656353950500488, -0.0992596298456192, 0.010151981376111507, 0.16808846592903137, -0.007409875281155109, 0.08775166422128677, 0.10316295176744461, -0.09438575059175491, -0.09470876306295395, 0.05297732725739479, -0.028867973014712334, 0.010549216531217098, 0.10153214633464813, 0.07364087551832199, -0.15527833998203278, -0.16690029203891754, 0.017301948741078377, -0.2492087185382843, 0.16391491889953613, -0.029064442962408066, 0.09715521335601807, -0.2366093546152115, -0.004513080697506666, -0.17467094957828522, -0.02737189643085003, 0.11374334990978241, -0.039747267961502075, -0.0560590960085392, -0.009355051442980766, -0.023107007145881653, -0.2604934573173523, 0.09106821566820145, 0.006501164752990007, 0.017551714554429054, 0.0967627540230751, -0.058897826820611954, 0.17515255510807037, 0.01934587024152279, 0.10916710644960403, 0.042747627943754196, 0.06371613591909409, -0.01483276579529047, -0.11632966250181198, 0.04595458135008812, -0.10044647753238678, -0.1764654964208603, 0.00488180061802268, -0.03902721405029297, 0.07065213471651077, -0.011064891703426838, -0.06043834239244461, -0.05692503601312637, 0.038319941610097885, -0.03820028901100159, -0.029242465272545815, 0.03474550321698189, -0.01922685280442238, 0.03722156956791878, 0.09039126336574554, -0.09299355000257492, -0.023605596274137497, 0.09000182151794434, 0.0805899053812027, -0.13292676210403442, 0.005910138599574566, -0.09631680697202682, -0.020702853798866272, 0.08199933916330338, -0.2154531031847, 0.013668173924088478, -0.0901302918791771, -0.028829973191022873, 0.017273731529712677, 0.03700585290789604, -0.050351981073617935, 0.15120579302310944, 0.02488921582698822, 0.007136741187423468, 0.017314443364739418, -0.03396094590425491, -0.09684359282255173, -0.04611826688051224, 0.019119465723633766, -0.06857654452323914, 0.0940660685300827, -0.20151877403259277, 0.014020966365933418, -0.045337218791246414, 0.10880597680807114, -0.19163331389427185, -0.038327693939208984, -0.08018021285533905, 0.12477368116378784, 0.014924260787665844, 0.07737784087657928, -0.24104569852352142, 0.024682575836777687, 0.021142926067113876, 0.10906314849853516, -0.21569545567035675, -0.09515051543712616, 0.17103171348571777, -0.07748881727457047, -0.06575267761945724, 0.09529823064804077, -0.0071313041262328625, -0.0059824129566550255, 0.019351733848452568, 0.4640624523162842, -0.04613873362541199, -0.09412027150392532, 0.061130642890930176, 0.1470334678888321, -0.13006140291690826, -0.17436769604682922, 0.002574512967839837, -0.09879869967699051, -0.060220204293727875, -0.01074350904673338, 0.16528618335723877, 0.06612241268157959, -0.056118451058864594, 0.0036165399942547083, 0.035037774592638016, -0.006802915129810572, 0.1320066750049591, 0.09333138912916183, 0.16147242486476898, -0.08355621248483658, 0.03908928856253624, 0.09178625047206879, -0.0378684476017952, 0.04662730172276497, 0.02733496204018593, -0.036234620958566666, 0.1591699868440628, -0.14644141495227814, -0.014790006913244724, -0.17186471819877625, -0.24140551686286926, 0.026623079553246498, 0.004069615621119738, 0.07785973697900772, 0.2129012644290924, 0.144130676984787, -0.08816449344158173, -0.012039556168019772, 0.04673686623573303, 0.08228056132793427, 0.028907516971230507, -0.06073082610964775, -0.07915239781141281, 0.09059498459100723, -0.126937597990036, -0.11751066893339157, -0.17272667586803436, 0.02603067271411419, 0.1707337200641632, 0.0026946559082716703, 0.09990855306386948, -0.01345545332878828, 0.00767552712932229, 0.004900574684143066, 0.01618284359574318, -0.007279687561094761, 0.0670071691274643, -0.03823050856590271, -0.12483922392129898, 0.09316583722829819, -0.12221335619688034, 0.19972530007362366, 0.15858328342437744, -0.1818452626466751, 0.006076057441532612, -0.08268936723470688, 0.005037080030888319, -0.017202559858560562, 0.07732049375772476, -0.01259735506027937, 0.04409071430563927, 0.0076699513010680676, 0.027103567495942116, 0.005676160100847483, 0.0031201732344925404, -0.024541517719626427, -0.04467027261853218, -0.10407831519842148, 0.09488637000322342, 0.18285910785198212, -0.07667400687932968, 0.14565077424049377, 0.3194742202758789, -0.037658147513866425, 0.243926003575325, -0.044235710054636, -0.040325827896595, -0.0035806619562208652, 0.01663234643638134, 0.0030329942237585783, 0.1472717523574829, -0.21030889451503754, -0.04524451121687889, 0.006807155907154083, -0.02152351476252079, 0.10580825060606003, -0.1721770018339157, -0.07431776076555252, -0.04492230340838432, 0.027951331809163094, 0.019052904099225998, 0.06744155287742615, -0.03777891770005226, 0.03921189159154892, 0.04400498792529106, -0.0700550302863121, 0.0836176946759224, -0.019940676167607307, -0.030445000156760216, 0.11028234660625458, -0.10444431751966476, -0.14896880090236664, -0.14283819496631622, -0.006238630972802639, -0.020885249599814415, 0.01706763170659542, -0.027181608602404594, -0.13327232003211975, 0.029786938801407814, 0.04076489806175232, 0.07693277299404144, -0.12285503000020981, 0.05448165163397789, -0.0461324080824852, 0.028856927528977394, -0.12792721390724182, -0.03312709555029869, -0.035204388201236725, -0.13709917664527893, 0.0022407269570976496, 0.07620684057474136, -0.12048324197530746, 0.09188514947891235, 0.27380040287971497, 0.04448940232396126, 0.06134362891316414, -0.032678768038749695, 0.02956867590546608, -0.09890352934598923, -0.007705071475356817, 0.02162044867873192, -0.07093516737222672, 0.062233779579401016, 0.11935889720916748, 0.09269148856401443, -0.10527072846889496, -0.04987248033285141, 0.034401196986436844, -0.1883547604084015, -0.25223538279533386, -0.013318047858774662, -0.10664031654596329, 0.12765152752399445, -0.010244959965348244, 0.08595813065767288, 0.0968375951051712, 0.03425378352403641, 0.19851519167423248, -0.06700027734041214, -0.051622986793518066, -0.02809843420982361, 0.08555478602647781, -0.057794809341430664, 0.039914410561323166, -0.08637060225009918, -0.06656038016080856, 0.0951273962855339, 0.17627309262752533, 0.18293945491313934, 0.2262241542339325, 0.12174708396196365, 0.05237455293536186, 0.07176508009433746, 0.16263093054294586, 0.04854431748390198, 0.009847785346210003, -0.08180344849824905, 0.003412329126149416, -0.012104667723178864, 0.048380542546510696, 0.04426087811589241, 0.17464037239551544, -0.19392864406108856, 0.07483029365539551, -0.1622130125761032, 0.08953690528869629, -0.034756071865558624, 0.10043641179800034, -0.09362896531820297, 0.06334324181079865, 0.09393108636140823, 0.06349558383226395, 0.021082786843180656, 0.1126493290066719, 0.14653423428535461, 0.009260405786335468, -0.0002819515357259661, -0.04511117935180664, 0.04465794190764427, -0.06152704730629921, 0.04610077664256096, -0.08046658337116241, -0.09758474677801132, -0.014994517900049686, 0.006666599772870541, -0.10874383896589279, 0.2857326567173004, 0.02909725345671177, -0.10487885028123856, -0.007926207035779953, -0.0647149607539177, 0.03559763357043266, 0.12385048717260361, 0.12570184469223022, 0.026917073875665665, -0.12048140913248062, -0.02957685850560665, -0.04124798625707626, -0.002007595496252179, 0.1673530638217926, -0.035056523978710175, -0.12182541936635971, 0.04882395267486572, 0.025706930086016655, 0.005599671509116888, 0.05435368791222572, 0.044002898037433624, -0.090218186378479, -0.002929751295596361, 0.027573231607675552, -0.2637743651866913, 0.03755902871489525, -0.02500910870730877, -0.10820615291595459, 0.14254985749721527, -0.03448507562279701, 0.043258000165224075, -0.08007816225290298, -0.1022154912352562, 0.07443202286958694, -0.05512619763612747, 0.017121823504567146, -0.053266968578100204, -0.0823264792561531, -0.10395817458629608, -0.18965312838554382, 0.18064510822296143, -0.0017855956684798002, 0.11902352422475815, -0.10145214945077896, 0.14987261593341827, -0.038852643221616745, 0.06894510239362717, -0.04297667741775513, 0.035979658365249634, 0.017632311210036278, -0.07902280986309052, 0.16651985049247742, -0.07523375749588013, 0.004555414896458387, -0.011774768121540546, 0.0038204749580472708, 0.0699034109711647, 0.07120711356401443, 0.02326379157602787, 0.23549024760723114, 0.29437851905822754, -0.07385604828596115, 0.11396823823451996, 0.20734500885009766, -0.05291252210736275, -0.30148735642433167, 0.10052309185266495, -0.20030371844768524, -0.04426584765315056, 0.09160439670085907, -0.18596161901950836, 0.13254234194755554, 0.11458098888397217, -0.07521940022706985, 0.3238363265991211, -0.2565675675868988, -0.06857524812221527, 0.13920506834983826, 0.05302320793271065, 0.5374566912651062, -0.19167585670948029, -0.14127697050571442, 0.04441896080970764, 0.013318231329321861, 0.12890884280204773, -0.16842475533485413, 0.0728289932012558, 0.014546197839081287, 0.01566125638782978, 0.03629394993185997, -0.06888817250728607, 0.16679249703884125, -0.014936079271137714, 0.07837609946727753, -0.052132926881313324, -0.2210337370634079, 0.12277866899967194, -0.04610269144177437, -0.08079098165035248, 0.08026248216629028, -0.08035223186016083, -0.060518406331539154, 0.01706060767173767, -0.04668021202087402, 0.07656943798065186, 0.06021571159362793, -0.08627637475728989, -0.08714277297258377, 0.003907916601747274, -0.14477157592773438, 0.009725140407681465, 0.40106749534606934, -0.04313361644744873, 0.14455673098564148, 0.13014432787895203, -0.007941126823425293, -0.10473056882619858, 0.0027659651823341846, -0.02052965760231018, -0.047221653163433075, 0.10192827135324478, -0.16705648601055145, 0.014505027793347836, 0.14206208288669586, -0.006061878055334091, 0.03216275945305824, 0.09032479673624039, -0.0998530238866806, 0.04135839268565178, 0.13470561802387238, -0.2372065931558609, -0.2276301085948944, 0.019489768892526627, -0.1661357432603836, 0.14527848362922668, 0.13003119826316833, 0.10338665544986725, 0.10191649943590164, 0.05746182054281235, 0.05109937861561775, -0.0356719084084034, -0.03869183734059334, -0.025615138933062553, 0.1204795390367508, 0.00017679110169410706, -0.04285447672009468, 0.171995609998703, 0.08510071039199829, -0.21411463618278503, -0.02836952544748783, 0.16565562784671783, -0.0385296605527401, -0.10193949192762375, -0.11772961169481277, 0.17325401306152344, -0.011026784777641296, -0.037115562707185745, -0.02811659686267376, -0.007137268781661987, -0.01016274094581604, 0.2518148124217987, 0.0386812798678875, 0.038403142243623734, -0.0008132343064062297, 0.016317283734679222, 0.08361152559518814, -0.05280783772468567, -0.1497855931520462, 0.02281280979514122, -0.08427359908819199, -0.1410912722349167, -0.017312582582235336, 0.11129982769489288, -0.11773894727230072, -0.10161316394805908, -0.2491796314716339, 0.05327007547020912, -0.0910675898194313, -0.05487034097313881, -0.044580671936273575, -0.08928315341472626, 0.03381570056080818, -0.02812962420284748, -0.07149658352136612, -0.07236111164093018, -0.1551908254623413, 0.06809859722852707, 0.04554399102926254, 0.011201856657862663, -0.06434933096170425, -0.03963441029191017, 0.08687692135572433, 0.025220230221748352, 0.12771764397621155, 0.082013800740242, 0.04152253642678261, 0.18243716657161713, -0.1501743495464325, -0.01761900819838047, 0.10919995605945587, -0.01925143040716648, 0.09462504088878632, 0.19312314689159393, -0.06751598417758942, -0.03679061681032181, 0.0510183647274971, 0.07104808837175369, -0.059433627873659134, -0.060671303421258926, 0.03877999633550644, -0.06834893673658371, -0.2284054011106491, -0.009992959909141064, -0.06539954990148544, 0.09991227090358734, 0.058634016662836075, -0.00027098399004898965, 0.020929796621203423, 0.06235665827989578, -0.008794697932898998, 0.02410396933555603, 0.04511919245123863, -0.11267971992492676, 0.14046703279018402, 0.0027178891468793154, -0.0252967718988657, -0.0649188905954361, 0.27104905247688293, 0.005602406803518534, -0.07680805772542953, 0.01836322620511055, 0.05288991332054138, 0.004493705928325653, 0.0449032187461853, 0.11125405132770538, 0.06976531445980072, -0.09063713997602463, -0.13550062477588654, 0.10190224647521973, 0.022734636440873146, 0.07267526537179947, 0.1796099692583084, 0.0359480194747448, -0.12333399057388306, 0.1269669383764267, 0.05699457600712776, 0.03636976331472397, -0.046730343252420425, 0.03961396589875221, -0.03227224200963974, 0.05634014680981636, 0.01666443422436714, 0.05149773880839348, 0.19840560853481293, 0.0055618309415876865, 0.04533267021179199, -0.053552042692899704, -0.036609239876270294, -0.15399031341075897, -0.20292934775352478, -0.006851530633866787, -0.08021155744791031, 0.04627020284533501, 0.0034772257786244154, -0.0693468302488327, 0.1849307119846344, 0.07155299931764603, -0.011455461382865906, 0.173631951212883, 0.013396657072007656, -0.015936201438307762, 0.011102026328444481, 0.024454845115542412, -0.024571284651756287, -0.07362693548202515, -0.046804286539554596, -0.11532551050186157, -0.06637564301490784, -0.13220487534999847, 0.00648867804557085, 0.006814941763877869, -0.061106301844120026, -0.10313733667135239, -0.07081706076860428, -0.05106806755065918, 0.08828683197498322, -0.06221487745642662, 0.04690957069396973, 0.013155735097825527, -0.0325162373483181, 0.004265311639755964, 0.13354544341564178, -0.04418211802840233, 0.19520826637744904, 0.01733444817364216, 0.057325683534145355, -0.08655567467212677, 0.14671412110328674, -0.11510784924030304, -0.04702206328511238, -0.049668941646814346, 0.21314097940921783, 0.2697785198688507, -0.10950656235218048, 0.029643947258591652, 0.05186738818883896, 0.04509321227669716, 0.021570339798927307, 0.13584278523921967, -0.022682486101984978, 0.22315897047519684, -0.07343065738677979, -0.08755403012037277, 0.0019292806973680854, 0.000021470044885063544, -0.059498004615306854, 0.10911418497562408, 0.10399774461984634, 0.014686492271721363, -0.15425388514995575, 0.12033320963382721, -0.19316740334033966, 0.041566263884305954, 0.11095796525478363, -0.2682863473892212, -0.08381310850381851, -0.009971278719604015, 0.15978001058101654, -0.14378440380096436, 0.13917388021945953, -0.08626604080200195, -0.15523628890514374, -0.2506062388420105, 0.02322297915816307, -0.3218576908111572, -0.032319702208042145, 0.04714911803603172, 0.04720594361424446, 0.14400415122509003, -0.04924777150154114, -0.03366464748978615, 0.0530356727540493, 0.058395866304636, 0.020577644929289818, -0.0020431592129170895, 0.05586469918489456, -0.031111473217606544, -0.21589411795139313, 0.005784761626273394, 0.01558147557079792, -0.1156139224767685, 0.125509113073349, -0.010575098916888237, 0.010035510174930096, -0.09306186437606812, -0.08910681307315826, -0.00035987369483336806, 0.0038179580587893724, -0.1274755746126175, 0.043872538954019547, 0.0076584769412875175, 0.0704798549413681, -0.014906637370586395, -0.01729007065296173, -0.06253746151924133, 0.0846986249089241, -0.05800727754831314, -0.15307888388633728, 0.07692579180002213, -0.046785108745098114, 0.1000940129160881, -0.029083101078867912, -0.18937113881111145, -0.0031897935550659895, -0.049009356647729874, 0.11895490437746048, -0.11694790422916412, -0.011713004671037197, 0.14187675714492798, 0.016867628321051598, -0.016983844339847565, -0.24412201344966888, 0.06687481701374054, -0.03824077174067497, -0.08858684450387955, -0.06839192658662796 ]
null
null
transformers
# DialoGPT-medium-simpsons This is a version of [DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) fine-tuned on The Simpsons scripts.
{"tags": ["conversational"]}
text-generation
arampacha/DialoGPT-medium-simpsons
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# DialoGPT-medium-simpsons This is a version of DialoGPT-medium fine-tuned on The Simpsons scripts.
[ "# DialoGPT-medium-simpsons\n\nThis is a version of DialoGPT-medium fine-tuned on The Simpsons scripts." ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# DialoGPT-medium-simpsons\n\nThis is a version of DialoGPT-medium fine-tuned on The Simpsons scripts." ]
[ 55, 35 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# DialoGPT-medium-simpsons\n\nThis is a version of DialoGPT-medium fine-tuned on The Simpsons scripts." ]
[ 0.03159426152706146, -0.007857142947614193, -0.0052665905095636845, 0.001265264581888914, 0.14387908577919006, 0.05930405482649803, 0.12986093759536743, 0.1544528305530548, -0.06198405101895332, -0.056023284792900085, 0.08727718144655228, 0.10909537225961685, 0.0013077766634523869, 0.0810343325138092, -0.01732805371284485, -0.35024890303611755, 0.03850138559937477, 0.05049142614006996, 0.04988817125558853, 0.12569041550159454, 0.0862487405538559, 0.011219204403460026, 0.017794596031308174, 0.043236084282398224, -0.2707901895046234, -0.002058143960312009, 0.09432031959295273, -0.11202963441610336, 0.09513868391513824, 0.08781851083040237, 0.055747140198946, 0.004170849919319153, -0.05315735936164856, -0.054315101355314255, 0.04158063605427742, -0.0017027170397341251, -0.0066938940435647964, 0.037933241575956345, -0.018624700605869293, -0.004055751953274012, 0.229192852973938, 0.1061856672167778, -0.02455776371061802, 0.04470429569482803, -0.11801082640886307, -0.1252926141023636, 0.013901710510253906, 0.05547273904085159, 0.07222025096416473, 0.08979161083698273, -0.04431440308690071, 0.11111466586589813, -0.11652360111474991, 0.06691848486661911, 0.18494857847690582, -0.37164947390556335, -0.04150458425283432, 0.10906179994344711, 0.06625813990831375, -0.08673818409442902, -0.06732816994190216, 0.09270158410072327, -0.02270546182990074, -0.02473641186952591, -0.054226092994213104, -0.08552578836679459, -0.06289535015821457, -0.04228302836418152, -0.0905374065041542, -0.009923038072884083, 0.21568416059017181, -0.0037013862747699022, 0.020357392728328705, -0.11618097126483917, 0.0058840615674853325, -0.026653936132788658, -0.046020545065402985, -0.0414879247546196, -0.11135580390691757, 0.030312519520521164, -0.07054881006479263, -0.09899713844060898, -0.15548600256443024, -0.05013072118163109, -0.1408192217350006, 0.2856535017490387, 0.03603363409638405, 0.040814872831106186, -0.20746515691280365, 0.09610395133495331, -0.029649624601006508, -0.08208867907524109, 0.06748522073030472, -0.06526171416044235, 0.04259685426950455, 0.04957650974392891, -0.11344980448484421, -0.03140377625823021, 0.06894387304782867, 0.1686123162508011, 0.11315786093473434, -0.005590121727436781, -0.04499038681387901, 0.08023609220981598, 0.03977898508310318, 0.09042153507471085, 0.01342477835714817, -0.05212869867682457, 0.04462195560336113, -0.05821184813976288, 0.05196128040552139, -0.07040314376354218, -0.19996927678585052, -0.008411794900894165, -0.003945683594793081, 0.020673876628279686, 0.03788350149989128, 0.15417394042015076, 0.014233903959393501, -0.03326096385717392, 0.13873137533664703, -0.06663165986537933, 0.010488157160580158, -0.01963798515498638, 0.022624880075454712, 0.15406012535095215, -0.035204801708459854, 0.01591317541897297, -0.0884731337428093, 0.05735335499048233, -0.01611408032476902, 0.025836827233433723, -0.014983798377215862, -0.04338628053665161, -0.004912008531391621, 0.04259651154279709, -0.0038366171065717936, -0.171845942735672, -0.015430808067321777, 0.0345102958381176, -0.04128960520029068, -0.05128977820277214, -0.06674077361822128, -0.030074147507548332, -0.054435886442661285, 0.09643442928791046, -0.03514734283089638, -0.013012557290494442, -0.012141947634518147, 0.09248965978622437, -0.0005967772449366748, 0.10670198500156403, -0.11838503926992416, 0.05939081311225891, -0.05841665714979172, -0.0402035117149353, -0.2078721821308136, 0.02196660451591015, 0.0386246033012867, -0.04877414181828499, 0.014636663720011711, -0.04242387041449547, -0.15547214448451996, 0.07775894552469254, -0.053245190531015396, 0.1694265455007553, -0.13329429924488068, -0.0758170336484909, 0.24751675128936768, -0.06815150380134583, -0.021810399368405342, 0.16098354756832123, 0.019492750987410545, 0.05994967371225357, 0.0720609799027443, 0.2513923943042755, 0.02783956006169319, -0.018118610605597496, 0.08021479845046997, 0.0965467244386673, -0.09495100378990173, 0.09789586812257767, 0.02768215537071228, 0.0010729610221460462, -0.06552744656801224, 0.04823346808552742, 0.03197816386818886, 0.11614535748958588, -0.009695593267679214, 0.015292402356863022, -0.005158798303455114, 0.02427958883345127, 0.18158358335494995, -0.03976869210600853, 0.09863893687725067, -0.06319298595190048, -0.11405088752508163, 0.02629510872066021, 0.026710432022809982, 0.007304959464818239, 0.07004796713590622, -0.07372082769870758, 0.009455015882849693, 0.0900978147983551, 0.055698517709970474, -0.13013425469398499, 0.0012363638961687684, -0.07979236543178558, 0.2275015264749527, 0.08589144051074982, 0.09092602878808975, 0.044938862323760986, -0.1170586422085762, -0.0349104106426239, 0.08970234543085098, 0.088900625705719, 0.0057019698433578014, 0.03223617374897003, -0.0642850399017334, 0.06130369007587433, -0.051566388458013535, 0.11961299926042557, 0.061095621436834335, 0.02252967096865177, -0.04157402738928795, 0.1590949147939682, -0.03427686542272568, -0.0018194470321759582, 0.024224795401096344, -0.04042988643050194, -0.049835480749607086, -0.002704452723264694, 0.03607746213674545, 0.033947668969631195, -0.07725431770086288, 0.2451559156179428, -0.22395853698253632, 0.14107467234134674, 0.22273170948028564, -0.18370303511619568, -0.06266653537750244, -0.04661419615149498, 0.023860884830355644, 0.007893349044024944, 0.02408383972942829, -0.13824333250522614, 0.12979410588741302, -0.06360967457294464, 0.14342957735061646, 0.003646606346592307, -0.018677404150366783, -0.046215616166591644, -0.05706516280770302, -0.016997303813695908, 0.005423982162028551, 0.12509647011756897, -0.08557630330324173, 0.13807886838912964, 0.1540471762418747, 0.06731218844652176, 0.2408272624015808, 0.0407322458922863, 0.004831074271351099, 0.008846299722790718, -0.03885547071695328, -0.020968150347471237, -0.06235470622777939, -0.23737263679504395, -0.050090618431568146, 0.07573912292718887, 0.023741435259580612, 0.04679398983716965, -0.11055449396371841, -0.08130253106355667, 0.003545790910720825, -0.013802946545183659, 0.046051785349845886, 0.15321533381938934, 0.04159615561366081, 0.11497262120246887, 0.00984635017812252, -0.06621654331684113, 0.07996722310781479, 0.0014488096348941326, -0.04492073878645897, 0.08675254881381989, -0.14015232026576996, -0.38086479902267456, -0.13053904473781586, -0.07837949693202972, -0.037081945687532425, 0.01044392865151167, 0.14559108018875122, -0.09393729269504547, 0.01968061551451683, -0.027509232982993126, 0.1320650279521942, -0.12879662215709686, 0.03698485344648361, -0.05785426124930382, -0.06881292164325714, -0.12710417807102203, -0.10051915794610977, -0.04891437292098999, -0.047815944999456406, -0.09405455738306046, 0.09524920582771301, -0.051331114023923874, 0.019729888066649437, 0.2247273325920105, 0.018731819465756416, 0.058849480003118515, -0.10539139807224274, 0.17795409262180328, -0.13145162165164948, 0.032989807426929474, 0.18359744548797607, -0.07168471813201904, -0.017734330147504807, 0.08603028208017349, 0.02373521216213703, -0.0350152850151062, 0.041113950312137604, -0.040227919816970825, -0.09411437809467316, -0.07515010237693787, -0.051787301898002625, -0.11373429745435715, 0.09797727316617966, 0.010813061147928238, 0.04956064000725746, 0.11265923827886581, -0.0025057694874703884, -0.060964081436395645, 0.011723557487130165, 0.05321836099028587, 0.044232483953237534, 0.3539104461669922, -0.04352186247706413, 0.15561923384666443, -0.016771225258708, -0.1276782900094986, 0.02531886287033558, 0.05678165704011917, 0.03719038516283035, 0.10272298008203506, 0.09027869999408722, 0.0032220506109297276, 0.0010633683996275067, 0.11425691097974777, -0.0035039326176047325, 0.047651611268520355, -0.06404732912778854, -0.022461680695414543, -0.0262789074331522, -0.04190636798739433, 0.005336516536772251, 0.04614068940281868, -0.1553228497505188, 0.019315868616104126, -0.042039379477500916, 0.07717376202344894, -0.015348637476563454, 0.0023485333658754826, -0.05146418884396553, -0.0009245327091775835, -0.009471824392676353, -0.03172798827290535, -0.05278211832046509, 0.06824346631765366, 0.09087793529033661, -0.10015059262514114, -0.013993890956044197, 0.012327943928539753, 0.04948176071047783, 0.012120614759624004, 0.07194232195615768, -0.09442424029111862, -0.06717905402183533, 0.00870593823492527, 0.06703472137451172, -0.2463250309228897, 0.0993674024939537, -0.015403227880597115, -0.0012546840589493513, -0.06625181436538696, -0.03688180446624756, 0.05737071484327316, 0.04486070200800896, 0.06317155808210373, 0.011254562065005302, -0.06603986024856567, -0.045242927968502045, -0.05380094423890114, 0.0012915286934003234, 0.13185350596904755, -0.012104837223887444, -0.04791836068034172, -0.08493471890687943, -0.015710821375250816, 0.032029639929533005, 0.09023428708314896, -0.014086617156863213, -0.17910602688789368, 0.12184777110815048, 0.18453368544578552, -0.004960233811289072, 0.02776291035115719, -0.05492926016449928, -0.08208757638931274, 0.18536639213562012, 0.04624006524682045, -0.06959544867277145, -0.07689817994832993, -0.01248163916170597, 0.018079865723848343, -0.04492189362645149, 0.04042831435799599, -0.02658885531127453, 0.06219911947846413, -0.05489085242152214, -0.1772594451904297, 0.11571203172206879, -0.0643574669957161, -0.08205417543649673, -0.022055238485336304, 0.20544135570526123, -0.043340906500816345, 0.09589850902557373, 0.06298422813415527, 0.02850901335477829, -0.030562013387680054, -0.09935390204191208, -0.012765606865286827, 0.0038050024304538965, -0.03180699050426483, -0.05325186625123024, -0.009665158577263355, -0.038424547761678696, -0.05425921827554703, -0.015644539147615433, 0.3339548110961914, 0.11718356609344482, -0.11812033504247665, 0.08751832693815231, -0.039668381214141846, -0.021282901987433434, -0.21671046316623688, -0.09715741872787476, -0.07730688154697418, -0.033479295670986176, -0.024883607402443886, -0.1191108450293541, 0.0829351544380188, 0.040576834231615067, -0.036460135132074356, 0.15274295210838318, -0.32277458906173706, -0.14597515761852264, 0.17864388227462769, -0.05056796595454216, 0.3286101520061493, -0.16018369793891907, -0.04588651284575462, 0.0071703107096254826, -0.19329504668712616, 0.16427791118621826, -0.009762933477759361, 0.1387585997581482, -0.004978014621883631, 0.1365828663110733, 0.017232276499271393, 0.012260274961590767, 0.03763990476727486, 0.03537622466683388, -0.06206393241882324, -0.07662602514028549, -0.13029851019382477, -0.06410038471221924, 0.012896002270281315, 0.09138898551464081, -0.1291487216949463, -0.054860085248947144, -0.1433481127023697, -0.043349701911211014, -0.13166868686676025, 0.047728098928928375, -0.013323948718607426, -0.046716898679733276, -0.03782251477241516, -0.048582274466753006, -0.06004229933023453, 0.005324583034962416, 0.06662163138389587, -0.1479138731956482, 0.16991601884365082, 0.030359143391251564, 0.05738718435168266, -0.09356697648763657, -0.06953009963035583, -0.039209067821502686, -0.06457311660051346, 0.06980433315038681, -0.04128704592585564, -0.00031161695369519293, 0.050781842321157455, 0.01732456684112549, 0.11202549189329147, 0.07351667433977127, 0.0016935765743255615, 0.0307158250361681, 0.1237616315484047, -0.16561083495616913, -0.055941835045814514, -0.05599389225244522, 0.08884859085083008, 0.11163591593503952, 0.02894751913845539, 0.1700805127620697, -0.0262224730104208, -0.05568612739443779, 0.035567231476306915, -0.016664743423461914, 0.0003183991357218474, -0.001995439175516367, 0.03461068868637085, 0.0381498783826828, -0.11632972210645676, 0.005121368449181318, 0.0024872443173080683, -0.11831187456846237, 0.08560884743928909, 0.1538143903017044, -0.06327487528324127, -0.12468070536851883, -0.14669989049434662, -0.028368234634399414, -0.030608616769313812, -0.009669654071331024, -0.04800555482506752, -0.11941798031330109, 0.03803332895040512, 0.05486727133393288, 0.03690504655241966, 0.044920869171619415, -0.06484547257423401, 0.019070366397500038, -0.04302762448787689, -0.018744712695479393, 0.026111610233783722, 0.05418815091252327, 0.010570550337433815, 0.15063919126987457, 0.0238910261541605, 0.0545944981276989, -0.09006386250257492, -0.09794007241725922, -0.10268031805753708, -0.00742408586665988, -0.009997398592531681, -0.07501745969057083, -0.12348946183919907, -0.048594895750284195, 0.05668094381690025, -0.015944717451930046, -0.03271479904651642, 0.004175493028014898, -0.09287551790475845, -0.032488733530044556, -0.05980038270354271, -0.06281685084104538, -0.08882232755422592, 0.04610266536474228, 0.05339933931827545, -0.032931044697761536, 0.07467164099216461, 0.13475528359413147, -0.09845318645238876, 0.09660272300243378, -0.10008124262094498, -0.13821350038051605, 0.06510747969150543, -0.011086743324995041, 0.02086850255727768, 0.10065054148435593, 0.009850057773292065, 0.05876491591334343, 0.10347366333007812, 0.049818966537714005, 0.0876702144742012, -0.10537068545818329, 0.0333983488380909, -0.01225526537746191, -0.07301590591669083, -0.04373548924922943, -0.08570726960897446, 0.08338874578475952, 0.003719086991623044, 0.06247954070568085, -0.05817283317446709, 0.05947847664356232, -0.06260550022125244, 0.026984643191099167, -0.030719105154275894, -0.1363757997751236, 0.057361435145139694, -0.042797576636075974, 0.025743640959262848, 0.02620537206530571, 0.14651386439800262, 0.05132579430937767, -0.07220982760190964, 0.04183666408061981, 0.022870494052767754, 0.01162636000663042, -0.03671063110232353, 0.09897099435329437, 0.06567451357841492, -0.11109945923089981, -0.11402633041143417, 0.05673756077885628, 0.07361418008804321, 0.007262684404850006, 0.16226811707019806, -0.011084206402301788, -0.011828756891191006, 0.0671200230717659, -0.008893615566194057, 0.025665562599897385, -0.1905973106622696, -0.1687120944261551, -0.0615897998213768, 0.1119823083281517, -0.05988478660583496, 0.09798945486545563, 0.16267406940460205, 0.01942135952413082, 0.00913257896900177, -0.11850205063819885, 0.00462558725848794, -0.12069883942604065, -0.17094546556472778, -0.025416746735572815, -0.20893123745918274, -0.026128381490707397, -0.05808842554688454, 0.041171349585056305, 0.0447310134768486, 0.0754498541355133, -0.021933680400252342, 0.14539748430252075, -0.0042032524943351746, -0.09220125526189804, 0.10120868682861328, -0.05483408272266388, 0.05737512558698654, -0.06146653741598129, 0.0005322127253748477, -0.0051628896035254, 0.003908427432179451, 0.08056186139583588, 0.04365108534693718, -0.045882467180490494, -0.046129610389471054, -0.1654968559741974, -0.08852235972881317, -0.04052260145545006, 0.06503116339445114, 0.07495806366205215, 0.17967455089092255, 0.06574133783578873, 0.005974783096462488, -0.016157975420355797, 0.18973565101623535, -0.02435889095067978, -0.11433646082878113, -0.0830375924706459, 0.11072487384080887, 0.008561520837247372, 0.006306306459009647, -0.10739659518003464, -0.040221475064754486, -0.1068262979388237, 0.2799336910247803, 0.29517629742622375, -0.042851705104112625, 0.029339276254177094, -0.0018565068021416664, 0.039278097450733185, 0.06652113050222397, 0.16848158836364746, 0.13462130725383759, 0.26107257604599, -0.008344202302396297, -0.0979142114520073, -0.015023007988929749, -0.06081857904791832, -0.03598567470908165, -0.020189298316836357, 0.04358945041894913, -0.07481083273887634, -0.0036774449981749058, 0.07236845791339874, -0.16021278500556946, 0.027056457474827766, -0.15808412432670593, -0.1636388748884201, -0.03963647782802582, 0.01747496798634529, 0.12474186718463898, 0.01829719915986061, 0.12431545555591583, 0.014032289385795593, -0.008817515335977077, 0.037821076810359955, 0.01786409318447113, -0.1522456705570221, 0.021010158583521843, 0.0584956631064415, -0.13265173137187958, 0.005785368848592043, 0.00005065126606496051, 0.05742533504962921, 0.05515994504094124, 0.12189967930316925, -0.006564759183675051, 0.06497154384851456, -0.0017111472552642226, -0.014148200862109661, 0.014325611293315887, 0.13577331602573395, 0.008729156106710434, -0.06817536801099777, 0.06886245310306549, -0.10699884593486786, 0.05799049884080887, -0.032185185700654984, 0.026136159896850586, -0.06436916440725327, 0.047309957444667816, -0.08881256729364395, 0.1022334173321724, 0.12692421674728394, -0.01616082526743412, -0.04222564026713371, 0.03564850240945816, -0.04873483628034592, 0.025686321780085564, -0.04924183338880539, -0.11966890841722488, -0.15110483765602112, -0.10557050257921219, 0.05373958498239517, 0.000926103035453707, -0.14460931718349457, 0.004549428354948759, -0.11822465062141418, 0.011435422115027905, -0.08178597688674927, 0.044119615107774734, 0.05396717041730881, 0.01472296193242073, -0.008938363753259182, -0.07946302741765976, 0.07084079086780548, 0.09001760929822922, -0.18080902099609375, -0.06048384681344032 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Chech Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cs", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-czech") model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-czech") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Czech test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "cs", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-czech") model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-czech") model.to("cuda") chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", '«', '»', '—', '…', '(', ')', '*', '”', '“'] chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays # Note: this models is trained ignoring accents on letters as below def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().strip() batch["sentence"] = re.sub(re.compile('[äá]'), 'a', batch['sentence']) batch["sentence"] = re.sub(re.compile('[öó]'), 'o', batch['sentence']) batch["sentence"] = re.sub(re.compile('[èé]'), 'e', batch['sentence']) batch["sentence"] = re.sub(re.compile("[ïí]"), 'i', batch['sentence']) batch["sentence"] = re.sub(re.compile("[üů]"), 'u', batch['sentence']) batch['sentence'] = re.sub(' ', ' ', batch['sentence']) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 24.56 ## Training The Common Voice `train`, `validation`. The script used for training will be available [here](https://github.com/arampacha/hf-sprint-xlsr) soon.
{"language": "cs", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "metrics": "wer", "dataset": "common_voice", "model-index": [{"name": "Czech XLSR Wav2Vec2 Large 53", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice cs", "type": "common_voice", "args": "cs"}, "metrics": [{"type": "wer", "value": 24.56, "name": "Test WER"}]}]}]}
automatic-speech-recognition
arampacha/wav2vec2-large-xlsr-czech
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "cs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "cs" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cs #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Chech Fine-tuned facebook/wav2vec2-large-xlsr-53 on Czech using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Czech test data of Common Voice. Test Result: 24.56 ## Training The Common Voice 'train', 'validation'. The script used for training will be available here soon.
[ "# Wav2Vec2-Large-XLSR-53-Chech\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Czech using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Czech test data of Common Voice.\n\n\n\n\nTest Result: 24.56", "## Training\n\nThe Common Voice 'train', 'validation'.\n\nThe script used for training will be available here soon." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cs #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Chech\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Czech using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Czech test data of Common Voice.\n\n\n\n\nTest Result: 24.56", "## Training\n\nThe Common Voice 'train', 'validation'.\n\nThe script used for training will be available here soon." ]
[ 71, 64, 20, 26, 27 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cs #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Chech\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Czech using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Czech test data of Common Voice.\n\n\n\n\nTest Result: 24.56## Training\n\nThe Common Voice 'train', 'validation'.\n\nThe script used for training will be available here soon." ]
[ -0.17848896980285645, -0.015683816745877266, -0.0008451314060948789, -0.028655830770730972, 0.11681173741817474, -0.028369205072522163, 0.1355915367603302, 0.07454129308462143, 0.060524024069309235, 0.022581806406378746, 0.08583618700504303, 0.026863839477300644, 0.00040422790334559977, 0.12149392813444138, 0.032267890870571136, -0.20088855922222137, 0.0581476092338562, -0.008140289224684238, 0.07384449988603592, 0.09465772658586502, 0.10068083554506302, -0.05153806880116463, -0.039253801107406616, 0.12341354787349701, -0.12844106554985046, 0.010238049551844597, 0.050343580543994904, -0.10468073189258575, 0.14360879361629486, 0.06478472054004669, 0.028315788134932518, 0.04211888834834099, 0.08499967306852341, -0.14045342803001404, 0.014548517763614655, -0.02590501867234707, -0.028043055906891823, 0.007840855978429317, 0.050079524517059326, -0.041444920003414154, 0.21574819087982178, 0.0011752384016290307, -0.04167682304978371, 0.05371973663568497, -0.019666137173771858, -0.20685343444347382, 0.007593276910483837, -0.03179626911878586, 0.12039104849100113, 0.1511010229587555, -0.06544064730405807, 0.12458624690771103, -0.11433949321508408, 0.10226714611053467, 0.023414399474859238, -0.2591198980808258, 0.0023020138032734394, 0.0713588073849678, 0.07045220583677292, 0.09536199271678925, -0.028904061764478683, 0.08521232008934021, 0.0449938103556633, 0.012587839737534523, 0.05138256773352623, -0.020355969667434692, -0.1291847825050354, -0.013785460032522678, -0.18433021008968353, -0.035171203315258026, 0.16915716230869293, -0.03462742641568184, -0.056558601558208466, -0.13508495688438416, 0.0272687841206789, -0.004022391512989998, -0.0275941900908947, -0.034428223967552185, -0.010311882011592388, 0.010934359394013882, 0.03670024126768112, -0.052159085869789124, -0.09765267372131348, -0.14184433221817017, 0.04678831622004509, 0.11899203062057495, 0.0015708098653703928, 0.02854808233678341, -0.07861797511577606, 0.025470422580838203, -0.054433200508356094, -0.0382835790514946, -0.037711963057518005, 0.03939443454146385, -0.10753609240055084, 0.009895674884319305, -0.1396101415157318, -0.08916258811950684, 0.04658322408795357, -0.036718662828207016, 0.10848807543516159, 0.030528998002409935, 0.03533849120140076, 0.05132607743144035, 0.0201950091868639, 0.1769939661026001, -0.06699877232313156, 0.012841718271374702, -0.00044921517837792635, -0.054557304829359055, -0.018957920372486115, -0.02566542476415634, -0.1603611409664154, -0.13207587599754333, 0.03595795854926109, 0.07427959889173508, -0.08132576942443848, 0.032011132687330246, 0.015936966985464096, -0.01065350603312254, 0.06833377480506897, -0.058704257011413574, -0.01533173955976963, 0.07044247537851334, -0.010866908356547356, 0.16023346781730652, 0.005736339371651411, 0.014020772650837898, -0.11063018441200256, 0.006579498760402203, 0.022326895967125893, 0.05983685702085495, -0.05534972622990608, -0.13660478591918945, 0.02442767843604088, -0.03878021612763405, 0.005238346755504608, -0.10014716535806656, -0.002438995521515608, -0.07040564715862274, -0.010433231480419636, 0.03741197660565376, 0.006650492083281279, -0.13362085819244385, -0.04258700832724571, 0.011250942014157772, -0.046253859996795654, 0.0180519949644804, -0.04532180726528168, 0.02188107743859291, -0.017331499606370926, 0.06183696165680885, -0.025083143264055252, 0.035968709737062454, -0.0810275748372078, -0.07334185391664505, 0.011384719051420689, 0.09770244359970093, -0.08388666808605194, -0.06002294272184372, -0.04724748432636261, -0.06890405714511871, 0.010458729229867458, 0.08295713365077972, 0.04425271600484848, 0.09821701049804688, -0.22011521458625793, -0.07768943905830383, 0.2007523775100708, -0.11482332646846771, -0.05230856314301491, 0.19328579306602478, 0.02857843041419983, 0.03271223604679108, 0.12604594230651855, 0.180109441280365, 0.16581064462661743, -0.24888648092746735, 0.029990890994668007, 0.057709719985723495, -0.04807395860552788, -0.12247465550899506, 0.07637699693441391, -0.023041315376758575, 0.009791133925318718, 0.0421566404402256, -0.13837142288684845, 0.08292218297719955, -0.01577671803534031, -0.04849068447947502, -0.014176031574606895, -0.08650128543376923, 0.03778738155961037, -0.005444323178380728, 0.03903532773256302, -0.04538571089506149, -0.0777144506573677, 0.04431203752756119, 0.10593730956315994, -0.11082988977432251, 0.07109970599412918, -0.12173604220151901, 0.08698996901512146, -0.09805813431739807, 0.006037360988557339, -0.14359112083911896, 0.14440889656543732, -0.0049626389518380165, -0.009136887267231941, 0.032835979014635086, 0.1608683168888092, 0.011812250129878521, -0.012919188477098942, -0.01453650277107954, 0.01657090336084366, 0.030509578064084053, -0.02149074897170067, -0.033127717673778534, -0.0820331946015358, -0.041291244328022, -0.0714285671710968, 0.1280451864004135, -0.07213487476110458, -0.014238882809877396, 0.04036053642630577, -0.03873787075281143, -0.0701984167098999, 0.018729113042354584, 0.01566820964217186, 0.10658556967973709, 0.021036969497799873, 0.025299284607172012, 0.07036179304122925, 0.04225412756204605, -0.0880042314529419, 0.13669537007808685, -0.13226212561130524, -0.0745764747262001, 0.12311059236526489, -0.022670334205031395, -0.0044318740256130695, 0.022580495104193687, -0.002677913522347808, 0.025394290685653687, -0.020163754001259804, -0.018742084503173828, 0.262639582157135, -0.013185851275920868, 0.08370914310216904, -0.0603383406996727, 0.01263588946312666, 0.05917693302035332, -0.08437185734510422, 0.002038949402049184, 0.04566173255443573, 0.07031025737524033, 0.021867673844099045, 0.0034612531308084726, -0.07514646649360657, -0.1434701532125473, 0.19452185928821564, -0.008224247954785824, -0.12528939545154572, 0.027637002989649773, -0.03629805147647858, 0.007280174642801285, 0.12371477484703064, -0.18156090378761292, -0.08126818388700485, 0.03548523783683777, 0.039350539445877075, 0.09045686572790146, -0.10369571298360825, 0.03716687858104706, 0.006907486356794834, -0.1433439999818802, -0.1889336109161377, 0.08337484300136566, -0.0972723513841629, 0.0336008183658123, -0.06450239568948746, -0.0531775988638401, -0.001828666660003364, -0.0332174189388752, -0.18321581184864044, 0.11278603225946426, -0.10769007354974747, -0.2348777800798416, -0.17929697036743164, 0.0457257479429245, 0.027720842510461807, 0.041293952614068985, 0.08621867001056671, -0.12390446662902832, -0.026999881491065025, 0.014742609113454819, 0.07657910138368607, -0.013056674040853977, -0.03179499879479408, -0.039795882999897, 0.01007271558046341, 0.0401805080473423, -0.11206483840942383, 0.001935821259394288, -0.03540944308042526, -0.026573901996016502, -0.0031489282846450806, -0.032373636960983276, 0.07134215533733368, 0.1598919779062271, 0.0013538607163354754, 0.034353144466876984, -0.027580657973885536, 0.14111728966236115, -0.09389194846153259, -0.048853494226932526, 0.16406923532485962, -0.022088853642344475, -0.06362801045179367, 0.014964209869503975, -0.0007367233629338443, -0.04985799640417099, -0.009651179425418377, -0.06106366962194443, -0.09976576268672943, -0.17906856536865234, -0.19303642213344574, -0.08779595047235489, -0.043043408542871475, -0.03717997670173645, -0.020475931465625763, 0.04620867595076561, 0.009937076829373837, -0.03377709537744522, -0.1514575332403183, 0.005630252417176962, 0.01744457706809044, 0.1538819968700409, 0.009874401614069939, 0.08065668493509293, -0.0595175065100193, 0.000843761779833585, 0.000771392835304141, -0.019160093739628792, 0.09995004534721375, 0.0699298083782196, 0.1488865166902542, 0.048665206879377365, 0.1368773728609085, 0.08830000460147858, 0.10531680285930634, -0.027408983558416367, 0.006607913412153721, 0.04303024336695671, -0.05522814393043518, -0.04166561737656593, 0.033386725932359695, 0.10328754037618637, -0.11345735937356949, -0.08770650625228882, -0.004010492470115423, 0.040141936391592026, 0.1564708948135376, 0.06099221482872963, -0.17835813760757446, -0.12205831706523895, -0.058967433869838715, -0.03167401999235153, -0.015760105103254318, 0.035098545253276825, 0.10818570852279663, -0.12360577285289764, 0.038707803934812546, 0.017447201535105705, 0.0793650671839714, 0.06872552633285522, 0.04218989238142967, -0.046925030648708344, 0.022558681666851044, 0.027214709669351578, 0.12066304683685303, -0.2943657338619232, 0.2051534205675125, 0.004762193188071251, 0.1228560283780098, -0.10207267850637436, -0.00026124404394067824, 0.01155080646276474, 0.08602799475193024, 0.1146930456161499, 0.014795711264014244, -0.012705190107226372, -0.009401332587003708, -0.06877122819423676, 0.07595434784889221, 0.0002744477824307978, 0.039757873862981796, 0.06008681282401085, -0.004375113639980555, -0.022398153319954872, 0.007688730955123901, -0.05150260031223297, -0.053901251405477524, -0.09310582280158997, 0.009678089059889317, 0.1577443927526474, 0.035749178379774094, 0.02381834387779236, -0.10428525507450104, -0.14006611704826355, 0.055299900472164154, -0.06807311624288559, -0.03572186827659607, -0.07456238567829132, -0.0334964320063591, 0.11270575225353241, -0.0801391750574112, 0.03847147524356842, 0.08370399475097656, 0.15853822231292725, -0.035645920783281326, -0.03643890470266342, 0.04378644749522209, -0.11876548826694489, -0.05229215696454048, 0.049900852143764496, 0.1476018875837326, 0.08853952586650848, 0.07593178749084473, 0.0529136136174202, 0.03690502792596817, -0.008172784000635147, -0.04496457427740097, -0.006039096508175135, 0.07481755316257477, -0.137423574924469, -0.0366060696542263, -0.007557700853794813, -0.145205557346344, -0.11251699924468994, -0.03513098508119583, 0.1574721783399582, 0.07836424559354782, -0.10746947675943375, 0.18291565775871277, 0.14866648614406586, -0.06123143061995506, -0.2288551926612854, 0.004195087123662233, 0.09387113153934479, 0.16570617258548737, -0.07099199295043945, -0.16001591086387634, 0.053956039249897, -0.033891696482896805, -0.04908659681677818, -0.05756969004869461, -0.17562001943588257, -0.14621807634830475, 0.14112472534179688, -0.03980898857116699, 0.13269300758838654, 0.0263370294123888, 0.006482473574578762, -0.04182911291718483, 0.023611564189195633, -0.026863643899559975, -0.08372586965560913, 0.08272943645715714, 0.0527757853269577, 0.06944534182548523, 0.06148942559957504, -0.027510374784469604, 0.11004044115543365, 0.07823888212442398, -0.06212713569402695, 0.003195896977558732, 0.07882922887802124, 0.022634893655776978, 0.0075395056046545506, 0.15560965240001678, -0.14661827683448792, 0.04103325307369232, -0.05547236651182175, -0.11110015958547592, -0.07850831747055054, 0.09216367453336716, 0.010657965205609798, -0.013294560834765434, 0.02209441363811493, -0.03724409639835358, 0.022801827639341354, -0.00972477812319994, -0.05539388954639435, -0.14395646750926971, -0.03594614937901497, 0.0852816179394722, 0.21806709468364716, -0.04291258379817009, 0.006012601777911186, 0.028785670176148415, -0.03625062108039856, 0.12931303679943085, -0.008612147532403469, 0.021531708538532257, 0.06646490097045898, 0.03359922021627426, 0.05439494550228119, 0.0011569923954084516, -0.07191107422113419, 0.04012182354927063, 0.031675029546022415, -0.06063218042254448, -0.07743049412965775, 0.0015757723012939095, -0.03083065338432789, 0.009612289257347584, 0.03506019338965416, 0.12404396384954453, -0.094101682305336, -0.015169626101851463, -0.0579879991710186, -0.023221466690301895, -0.12976431846618652, 0.17666581273078918, 0.0005055056535638869, 0.06282909214496613, -0.10508931428194046, -0.02635834738612175, -0.05412470921874046, -0.0938863530755043, 0.05689074471592903, -0.05875395983457565, -0.11313382536172867, -0.07437975704669952, 0.05092552676796913, 0.09425725042819977, -0.049418505281209946, -0.14691384136676788, -0.06684763729572296, -0.08537491410970688, 0.0012793909991160035, 0.16088014841079712, 0.10075905174016953, -0.013143057934939861, -0.12883196771144867, -0.028697971254587173, -0.13404682278633118, 0.04317694529891014, 0.046715039759874344, -0.05589478462934494, -0.08762308210134506, 0.2236272245645523, 0.039011429995298386, 0.01700252667069435, -0.06199201941490173, -0.030223336070775986, 0.0007816986762918532, 0.06536252051591873, -0.14305876195430756, -0.017470739781856537, -0.04941825568675995, -0.003719503292813897, 0.010213770903646946, -0.06426335871219635, -0.009516839869320393, 0.08050192892551422, -0.09273497015237808, 0.05510348081588745, -0.04595699906349182, 0.029385924339294434, -0.04625355824828148, 0.05330144241452217, -0.005513641983270645, -0.05031058192253113, 0.07782676070928574, 0.1969105452299118, -0.07534318417310715, 0.17347697913646698, -0.19177989661693573, 0.011731804348528385, 0.0606868751347065, 0.0819907933473587, 0.005748342256993055, -0.07626083493232727, 0.04436860978603363, 0.11746856570243835, 0.06216884031891823, 0.004009997006505728, 0.06753359735012054, -0.0027734802570194006, 0.009272821247577667, -0.030182696878910065, 0.005475564859807491, -0.024293001741170883, 0.05462167412042618, 0.07766179740428925, 0.14662322402000427, 0.17353346943855286, -0.10842102766036987, 0.08565285801887512, -0.03204985707998276, 0.02157154679298401, -0.0742570012807846, 0.015260872431099415, -0.1713215857744217, -0.08521953225135803, 0.08258681744337082, -0.02227178029716015, 0.1357409656047821, 0.007791523821651936, 0.12298615276813507, -0.00995211023837328, -0.06366970390081406, 0.06742388010025024, 0.005792443640530109, 0.2541362941265106, 0.04360196739435196, 0.04721047729253769, -0.028460349887609482, 0.03604593127965927, -0.001839919132180512, 0.06810660660266876, 0.0008368039270862937, 0.1104283407330513, 0.027592049911618233, 0.12799116969108582, 0.12072284519672394, -0.05629623308777809, -0.04048779606819153, -0.12914711236953735, -0.14360161125659943, 0.020255841314792633, -0.0607270710170269, 0.20588411390781403, 0.12035668641328812, -0.09179999679327011, 0.07953216135501862, -0.0027945064939558506, -0.09292219579219818, -0.1475886106491089, -0.09363231807947159, -0.04534098133444786, -0.16305376589298248, 0.012230584397912025, -0.08687393367290497, 0.006363235879689455, -0.007939763367176056, 0.040181610733270645, -0.03990868851542473, 0.18822816014289856, -0.03214084357023239, -0.07582484930753708, 0.08132539689540863, -0.08182980865240097, 0.019473601132631302, -0.04558433219790459, 0.010073230601847172, 0.1294623762369156, -0.015584755688905716, 0.0655585303902626, 0.00008910395263228565, -0.06655821949243546, -0.0021258429624140263, -0.06488610059022903, -0.04807816073298454, -0.002820137422531843, -0.015427788719534874, 0.1077798381447792, 0.18077564239501953, 0.1011795848608017, -0.09248172491788864, -0.026319049298763275, 0.11087118089199066, -0.03979407995939255, -0.15305033326148987, -0.16205830872058868, 0.14256688952445984, 0.011631225235760212, 0.048969704657793045, -0.042696863412857056, 0.008544259704649448, -0.022092966362833977, 0.25670748949050903, 0.18420766294002533, 0.05879506096243858, 0.006290126591920853, -0.05112834647297859, -0.0004651553463190794, 0.021033596247434616, 0.07830174267292023, 0.038810767233371735, 0.23108617961406708, 0.005648798309266567, -0.009469899348914623, -0.10291151702404022, -0.0312562920153141, -0.002457819879055023, 0.014364110305905342, -0.0905832052230835, -0.13861709833145142, 0.010841652750968933, 0.13833744823932648, -0.06648451834917068, -0.05144009366631508, -0.1442507654428482, -0.019864501431584358, -0.06984280794858932, 0.02557583525776863, 0.0372881256043911, 0.11206407845020294, 0.09127450734376907, -0.0792911946773529, 0.010008464567363262, 0.13121330738067627, -0.010791931301355362, -0.042580217123031616, -0.05924829840660095, 0.0387352891266346, -0.129054993391037, 0.005174733232706785, 0.00047069232095964253, 0.1657256931066513, 0.04429154098033905, 0.12700694799423218, -0.012389695271849632, 0.13018189370632172, -0.03192105144262314, -0.1110977828502655, 0.10214813798666, 0.088203065097332, -0.07566423714160919, 0.07055997103452682, 0.022517096251249313, -0.16127590835094452, 0.09045399725437164, -0.09428834170103073, 0.005051358137279749, -0.04080691561102867, 0.10201618820428848, -0.05788751691579819, 0.07587496191263199, 0.12427378445863724, -0.07337726652622223, -0.06991078704595566, -0.02641540952026844, 0.06450801342725754, 0.021018659695982933, -0.0396789088845253, -0.03704481199383736, -0.24632181227207184, -0.022620877251029015, -0.1410718858242035, -0.0781625434756279, -0.1678238809108734, -0.009309723973274231, -0.037010617554187775, -0.06603184342384338, 0.02927561290562153, 0.011040900833904743, 0.025147706270217896, -0.0026181149296462536, 0.003806253196671605, 0.09222503751516342, 0.08035282790660858, 0.1306082010269165, -0.17545819282531738, -0.13897603750228882 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Ukrainian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Ukrainian using the [Common Voice](https://huggingface.co/datasets/common_voice) and sample of [M-AILABS Ukrainian Corpus](https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/) datasets. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "uk", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian") model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Ukrainian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "uk", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian") model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian") model.to("cuda") chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", '«', '»', '—', '…', '(', ')', '*', '”', '“'] chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays and normalize charecters def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(re.compile("['`]"), '’', batch['sentence']) batch["sentence"] = re.sub(re.compile(chars_to_ignore_regex), '', batch["sentence"]).lower().strip() batch["sentence"] = re.sub(re.compile('i'), 'і', batch['sentence']) batch["sentence"] = re.sub(re.compile('o'), 'о', batch['sentence']) batch["sentence"] = re.sub(re.compile('a'), 'а', batch['sentence']) batch["sentence"] = re.sub(re.compile('ы'), 'и', batch['sentence']) batch["sentence"] = re.sub(re.compile("–"), '', batch['sentence']) batch['sentence'] = re.sub(' ', ' ', batch['sentence']) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 29.89 ## Training The Common Voice `train`, `validation` and the M-AILABS Ukrainian corpus. The script used for training will be available [here](https://github.com/arampacha/hf-sprint-xlsr) soon.
{"language": "uk", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "metrics": "wer", "dataset": "common_voice", "model-index": [{"name": "Ukrainian XLSR Wav2Vec2 Large 53", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice uk", "type": "common_voice", "args": "uk"}, "metrics": [{"type": "wer", "value": 29.89, "name": "Test WER"}]}]}]}
automatic-speech-recognition
arampacha/wav2vec2-large-xlsr-ukrainian
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "uk", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "uk" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #uk #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Ukrainian Fine-tuned facebook/wav2vec2-large-xlsr-53 on Ukrainian using the Common Voice and sample of M-AILABS Ukrainian Corpus datasets. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Ukrainian test data of Common Voice. Test Result: 29.89 ## Training The Common Voice 'train', 'validation' and the M-AILABS Ukrainian corpus. The script used for training will be available here soon.
[ "# Wav2Vec2-Large-XLSR-53-Ukrainian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Ukrainian using the Common Voice and sample of M-AILABS Ukrainian Corpus datasets.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Ukrainian test data of Common Voice.\n\n\n\nTest Result: 29.89", "## Training\n\nThe Common Voice 'train', 'validation' and the M-AILABS Ukrainian corpus.\n\nThe script used for training will be available here soon." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #uk #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Ukrainian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Ukrainian using the Common Voice and sample of M-AILABS Ukrainian Corpus datasets.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Ukrainian test data of Common Voice.\n\n\n\nTest Result: 29.89", "## Training\n\nThe Common Voice 'train', 'validation' and the M-AILABS Ukrainian corpus.\n\nThe script used for training will be available here soon." ]
[ 71, 79, 20, 27, 37 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #uk #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Ukrainian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Ukrainian using the Common Voice and sample of M-AILABS Ukrainian Corpus datasets.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Ukrainian test data of Common Voice.\n\n\n\nTest Result: 29.89## Training\n\nThe Common Voice 'train', 'validation' and the M-AILABS Ukrainian corpus.\n\nThe script used for training will be available here soon." ]
[ -0.15776360034942627, 0.006267589516937733, -0.005296268500387669, -0.06046145409345627, 0.1178831160068512, -0.046480920165777206, 0.19585223495960236, 0.09804362803697586, 0.06975635141134262, 0.0013508818810805678, 0.014821887947618961, -0.018387436866760254, 0.046648234128952026, 0.0914294645190239, 0.07922690361738205, -0.18634770810604095, 0.027446327731013298, -0.04284267500042915, 0.010611564852297306, 0.04945977032184601, 0.1417289674282074, -0.034917283803224564, -0.05509968474507332, 0.04903339967131615, -0.06897290050983429, 0.06670450419187546, 0.06534191966056824, -0.14189626276493073, 0.08188819885253906, 0.0402543731033802, 0.021068427711725235, -0.0013659622054547071, 0.054464418441057205, -0.1917840838432312, 0.029190881177783012, 0.0017981318524107337, 0.019416632130742073, 0.012355761602520943, 0.1153002455830574, -0.03897811472415924, 0.2529103755950928, -0.028929581865668297, -0.05949172377586365, 0.07391858100891113, -0.04699695110321045, -0.20140045881271362, -0.020422937348484993, 0.06770258396863937, 0.09830433875322342, 0.18861457705497742, -0.07197090238332748, 0.15131638944149017, -0.01100863330066204, 0.08544323593378067, 0.09922490268945694, -0.13438284397125244, 0.024113252758979797, 0.01851225085556507, 0.01084807887673378, 0.10247673839330673, -0.019137142226099968, 0.0481693297624588, -0.02757945843040943, -0.009387131780385971, -0.034781813621520996, 0.005226167384535074, -0.16755886375904083, -0.01934942416846752, -0.16226531565189362, -0.07215693593025208, 0.24834875762462616, -0.0432572178542614, -0.01898411475121975, -0.08941875398159027, 0.040269043296575546, 0.03526250645518303, -0.038884855806827545, -0.01070675253868103, -0.025600168853998184, -0.007437422405928373, 0.01920267939567566, -0.09512705355882645, -0.12782129645347595, -0.07803253829479218, 0.010245459154248238, 0.20594894886016846, 0.033584095537662506, 0.04105981066823006, -0.08136333525180817, 0.02816057577729225, -0.06330585479736328, -0.04258555546402931, 0.007211907766759396, 0.06976932287216187, -0.1020982563495636, 0.007228748872876167, -0.08817888796329498, -0.13388413190841675, 0.06852046400308609, -0.04926661401987076, -0.03531908616423607, -0.009819223545491695, 0.0718081071972847, 0.07213158905506134, -0.009493274614214897, 0.046415142714977264, -0.05608111247420311, 0.04840530827641487, -0.009214334189891815, -0.04784427955746651, -0.029412904754281044, 0.030582979321479797, -0.08940888196229935, -0.1204533725976944, 0.012664970010519028, 0.09833717346191406, -0.020671293139457703, -0.02811632864177227, 0.013106542639434338, -0.04849463701248169, 0.029011033475399017, -0.11900308728218079, -0.044963642954826355, 0.026710594072937965, -0.052177973091602325, 0.07338664680719376, 0.022259002551436424, 0.03125176951289177, -0.1566023826599121, -0.03498552367091179, 0.06326945126056671, 0.08756820112466812, -0.02212345600128174, -0.08789659291505814, 0.03158501908183098, 0.029535261914134026, -0.004755796864628792, -0.1241544559597969, -0.043050624430179596, -0.059489645063877106, -0.017756786197423935, 0.029185473918914795, 0.05181580036878586, -0.055046044290065765, -0.03113286755979061, -0.029548082500696182, -0.04699549451470375, 0.08506873995065689, -0.06213017925620079, 0.05620856583118439, 0.014086209237575531, 0.05973722040653229, 0.028057103976607323, 0.06637226045131683, -0.08072900772094727, -0.1352311372756958, 0.000584190827794373, 0.09167647361755371, -0.05694509670138359, -0.059953443706035614, -0.06559061259031296, -0.0212248582392931, -0.005363290663808584, 0.07681430876255035, 0.04849746823310852, 0.08235753327608109, -0.13356252014636993, -0.09054930508136749, 0.1866965889930725, -0.12171512842178345, -0.017877044156193733, 0.1827511042356491, 0.0225814376026392, 0.015176893211901188, 0.14468532800674438, 0.19843310117721558, 0.1290784329175949, -0.23083458840847015, 0.008021097630262375, -0.015336166135966778, -0.07736534625291824, -0.11689215153455734, 0.14461566507816315, -0.04494737088680267, 0.043497972190380096, 0.039834726601839066, -0.11373231559991837, 0.07703596353530884, -0.02049744315445423, -0.08399409055709839, -0.0014431874733418226, -0.0660814568400383, -0.05656055361032486, 0.025541676208376884, 0.008217710070312023, -0.09749439358711243, -0.06184237450361252, 0.00967884436249733, 0.13341274857521057, -0.053083185106515884, 0.0762234777212143, -0.11338561028242111, 0.027495166286826134, -0.025460589677095413, 0.03083708882331848, -0.16111886501312256, 0.17347672581672668, -0.03972742334008217, -0.02446945384144783, 0.13058854639530182, 0.06530481576919556, -0.007508109323680401, 0.02877148799598217, -0.040065474808216095, 0.022367188706994057, 0.03479958325624466, -0.05858486890792847, -0.05865807831287384, -0.12442409247159958, 0.01964203640818596, -0.035969145596027374, 0.024694154039025307, -0.06762687861919403, -0.010316180065274239, -0.03592122718691826, 0.03952876478433609, -0.02468048594892025, 0.009766076691448689, 0.04143848270177841, 0.08624988049268723, -0.00978069193661213, 0.04967126250267029, 0.07833734899759293, -0.012372056022286415, -0.03662918135523796, 0.14938701689243317, -0.13995695114135742, -0.07695930451154709, 0.1378079354763031, 0.018871905282139778, 0.003544757142663002, -0.0007836798904463649, -0.005408806726336479, 0.0077619291841983795, -0.007517009507864714, -0.010824953205883503, 0.2240859568119049, -0.01325990166515112, 0.08418222516775131, -0.05626502260565758, 0.0010328004136681557, 0.03202475607395172, -0.0994655042886734, -0.05077280476689339, 0.0677236020565033, -0.04755181446671486, -0.014153962954878807, -0.003318479750305414, -0.10578753799200058, -0.07482120394706726, 0.2820279598236084, -0.03391198068857193, -0.14015528559684753, 0.018204720690846443, -0.030596377328038216, 0.0333053395152092, 0.1424700766801834, -0.18367530405521393, -0.06881942600011826, 0.046872131526470184, 0.03831809014081955, 0.09322924166917801, -0.11571135371923447, 0.011321920901536942, -0.023451989516615868, -0.16414965689182281, -0.13796815276145935, 0.06459319591522217, -0.04977914318442345, 0.07692617923021317, -0.09092768281698227, 0.03362679481506348, -0.07047152519226074, -0.09157656878232956, -0.16800662875175476, 0.0711217075586319, -0.10629294067621231, -0.18611042201519012, -0.20483370125293732, 0.026366764679551125, 0.03184495493769646, 0.041119009256362915, 0.09693723917007446, -0.14855337142944336, 0.00500560412183404, 0.0008371190051548183, 0.18434184789657593, -0.0052228160202503204, -0.03980904817581177, -0.04475874453783035, 0.13265030086040497, 0.061664700508117676, -0.10379643738269806, 0.003608301980420947, -0.05378216505050659, -0.009555850178003311, 0.02175051160156727, -0.017381910234689713, 0.04732668399810791, 0.10649137198925018, -0.040144264698028564, 0.020370693877339363, -0.033364858478307724, 0.07376579940319061, -0.12556196749210358, -0.06575217843055725, 0.20688410103321075, 0.05731230601668358, -0.054640211164951324, 0.04327605292201042, -0.0064735934138298035, -0.013731728307902813, 0.038692034780979156, -0.06018359586596489, -0.07017495483160019, -0.2532497048377991, -0.19902412593364716, -0.055763766169548035, -0.08023882657289505, -0.03874773904681206, -0.020323170349001884, -0.02920859307050705, -0.0009262891835533082, -0.12897460162639618, -0.15230673551559448, 0.07194960117340088, 0.02540980838239193, 0.07642599195241928, 0.04671715945005417, 0.05609406158328056, -0.06929755955934525, -0.004833289887756109, 0.07296916097402573, -0.0011013606563210487, 0.1835925132036209, 0.046195078641176224, 0.08515465259552002, 0.07657437771558762, 0.11209052801132202, 0.04131621494889259, 0.05244337022304535, 0.039934441447257996, 0.02662048302590847, 0.041836366057395935, -0.10287519544363022, 0.046066779643297195, 0.029297519475221634, 0.11090230941772461, -0.0834452286362648, -0.08522073179483414, 0.008965646848082542, 0.026408573612570763, 0.13763926923274994, 0.07325691729784012, -0.13751503825187683, -0.13796205818653107, -0.016901792958378792, -0.0670270249247551, 0.025566160678863525, 0.023106878623366356, 0.06390751898288727, -0.11189690977334976, 0.04203749820590019, 0.027794305235147476, 0.08681308478116989, 0.04755415767431259, 0.039399653673172, -0.06320643424987793, 0.06526874750852585, 0.007886727340519428, 0.14406456053256989, -0.29406991600990295, 0.27995678782463074, 0.007868963293731213, 0.16102050244808197, -0.06630636751651764, -0.017451444640755653, 0.06731636077165604, -0.03615785017609596, 0.08627086877822876, 0.012489506043493748, -0.09365266561508179, -0.14534756541252136, -0.0924074724316597, 0.04454211890697479, 0.033465128391981125, 0.027302509173750877, 0.10410669445991516, -0.000673870847094804, 0.008940457366406918, -0.018777349963784218, -0.05484715849161148, -0.19392085075378418, -0.09174651652574539, 0.008778066374361515, 0.16735130548477173, 0.06001322716474533, -0.011276155710220337, -0.09586554765701294, -0.054353829473257065, -0.043573569506406784, -0.10783085227012634, -0.09519185870885849, -0.06272842735052109, 0.007516541983932257, 0.11463575810194016, -0.10018879920244217, -0.06389468908309937, 0.08020901679992676, 0.16381429135799408, -0.0687062218785286, -0.0594276525080204, 0.032480638474226, -0.10139944404363632, -0.08847366273403168, 0.01674356311559677, 0.1906803995370865, 0.1294541358947754, 0.08026258647441864, 0.008191751316189766, 0.0429498590528965, 0.008134633302688599, -0.01011374406516552, 0.030333539471030235, -0.0054391114972531796, -0.02558000199496746, 0.11745096743106842, -0.05975718051195145, -0.270566463470459, -0.21187163889408112, -0.1271631121635437, 0.11561143398284912, 0.13884282112121582, -0.06618881225585938, 0.164091095328331, 0.18329143524169922, -0.095295250415802, -0.22283633053302765, -0.04409962520003319, 0.10477030277252197, 0.12260285019874573, -0.031808823347091675, -0.2081717848777771, 0.027252336964011192, -0.009620082564651966, -0.03054378367960453, -0.03659828007221222, -0.22048111259937286, -0.1835755854845047, 0.12630674242973328, -0.0062720621936023235, 0.04972216114401817, -0.02773442678153515, 0.009954087436199188, -0.059954915195703506, 0.053377825766801834, -0.007888132706284523, -0.07889826595783234, 0.1149214580655098, 0.023474151268601418, 0.08674803376197815, 0.052591606974601746, -0.0073617505840957165, 0.10181873291730881, 0.08574347198009491, -0.017506277188658714, -0.02884368598461151, 0.10376480221748352, 0.11054746061563492, 0.005434185266494751, 0.17858988046646118, -0.011115806177258492, 0.013045480474829674, -0.14086423814296722, -0.08403318375349045, -0.07111234217882156, 0.07833847403526306, 0.021007992327213287, -0.008540326729416847, -0.011343605816364288, 0.0014562857104465365, -0.006564402487128973, -0.027594424784183502, 0.045481059700250626, -0.06806018948554993, 0.03769144415855408, 0.055035993456840515, 0.15509045124053955, 0.00002878298437281046, -0.0394119918346405, 0.0196754839271307, -0.022812839597463608, 0.09196105599403381, -0.008507657796144485, -0.02036784030497074, 0.03802783787250519, 0.023605747148394585, 0.025280488654971123, -0.03547196090221405, -0.13878564536571503, 0.06391440331935883, 0.06487483531236649, -0.05690985918045044, -0.08539991825819016, -0.03450584411621094, 0.04807453975081444, 0.027763521298766136, -0.003236830933019519, 0.08875581622123718, -0.10417801141738892, 0.0035553404595702887, -0.041528813540935516, -0.008181232027709484, -0.10288949310779572, 0.2159554362297058, 0.0346069373190403, 0.0632588118314743, -0.08693066239356995, 0.09724755585193634, 0.01907411217689514, -0.09767995774745941, 0.045454222708940506, 0.03908146545290947, -0.09904477000236511, -0.08274795860052109, 0.01850605197250843, 0.09141900390386581, -0.07992346584796906, -0.15123315155506134, -0.06967175751924515, -0.06764055043458939, 0.03892822191119194, 0.041881024837493896, 0.0845513716340065, -0.07839394360780716, -0.060836587101221085, -0.017762871459126472, -0.10203345865011215, 0.1046948954463005, 0.11558143049478531, -0.06849659234285355, -0.0507044643163681, 0.2063080370426178, 0.040706466883420944, 0.014090792275965214, -0.048261214047670364, -0.059731774032115936, 0.019870521500706673, 0.10248596221208572, -0.1383647322654724, -0.004272621124982834, -0.1092151626944542, -0.03888487443327904, -0.016230667009949684, -0.0968344658613205, -0.010453679598867893, 0.10401347279548645, -0.05384264513850212, 0.036582328379154205, -0.08558869361877441, 0.07384486496448517, -0.0724950060248375, 0.021401934325695038, -0.029223604127764702, -0.021738778799772263, 0.08173394203186035, 0.19333596527576447, -0.06966492533683777, 0.15529677271842957, -0.12980559468269348, -0.0184987373650074, 0.021352525800466537, 0.08043450862169266, -0.03715825453400612, -0.11294069141149521, 0.04467989131808281, 0.09261903911828995, 0.12429675459861755, 0.00891275517642498, 0.10532421618700027, -0.04946776106953621, -0.024517696350812912, -0.06900317221879959, 0.03957298398017883, -0.04021892696619034, 0.09214714914560318, 0.060815420001745224, 0.10669904202222824, 0.2227116972208023, -0.16303768754005432, 0.06714002043008804, -0.06629082560539246, 0.034590303897857666, -0.0665336549282074, -0.017863493412733078, -0.16437575221061707, -0.029530523344874382, 0.07649146020412445, -0.04444529861211777, 0.12629900872707367, 0.04853987321257591, 0.13280242681503296, 0.07253489643335342, -0.0665230005979538, 0.0164823979139328, 0.004947919398546219, 0.19050820171833038, 0.0761466696858406, 0.020861685276031494, -0.034475695341825485, 0.0383606031537056, 0.029948381707072258, 0.03355317935347557, 0.015638135373592377, 0.20894144475460052, 0.13159389793872833, 0.11348937451839447, 0.09464441239833832, -0.058901481330394745, -0.04086488112807274, -0.10881729423999786, -0.09455233067274094, -0.017684364691376686, -0.04106561467051506, 0.13301871716976166, 0.22108210623264313, -0.14126333594322205, 0.092890165746212, 0.012471672147512436, -0.08180024474859238, -0.10743492096662521, -0.14943015575408936, -0.027305161580443382, -0.09216401726007462, -0.009327852167189121, -0.09551672637462616, 0.008792865090072155, 0.05202634260058403, 0.05700662359595299, -0.05662411078810692, 0.11813456565141678, 0.00837018620222807, -0.1181112602353096, 0.09670372307300568, -0.07642240077257156, 0.04827120527625084, -0.005367566365748644, 0.034205351024866104, 0.17016315460205078, -0.08196072280406952, 0.0717615857720375, 0.07180175185203552, -0.09260497987270355, 0.018059350550174713, -0.07945790141820908, -0.09267923980951309, 0.020262112841010094, -0.006637652404606342, 0.13937675952911377, 0.19343486428260803, 0.09924758225679398, -0.07254671305418015, 0.004918200429528952, 0.17974428832530975, -0.0026802702341228724, -0.16076116263866425, -0.07039370387792587, 0.15011727809906006, 0.0506361685693264, 0.014975656755268574, -0.01824374869465828, -0.043625541031360626, -0.08067835867404938, 0.22186845541000366, 0.23034529387950897, 0.08812279999256134, 0.00808790698647499, -0.04147079959511757, 0.0022764832247048616, -0.011291585862636566, 0.09807610511779785, 0.038222577422857285, 0.2136271893978119, 0.026527604088187218, 0.021038172766566277, -0.11200734972953796, -0.014453374780714512, -0.09108832478523254, 0.01566910557448864, -0.06531193852424622, -0.11578090488910675, 0.03491413593292236, 0.14233426749706268, -0.05804026126861572, -0.14767412841320038, -0.15721407532691956, -0.031066281720995903, -0.07369492202997208, 0.018316563218832016, 0.05918911099433899, 0.154801145195961, 0.05569016933441162, -0.03449402004480362, 0.056552499532699585, 0.024968033656477928, 0.02009214460849762, -0.09216540306806564, -0.07394566386938095, 0.030151864513754845, -0.04231121763586998, 0.01947270892560482, -0.005576144903898239, 0.20812244713306427, -0.006012342404574156, 0.06103702262043953, -0.04146184027194977, 0.14449913799762726, -0.01666058413684368, -0.025462985038757324, 0.10418716073036194, 0.13968485593795776, -0.04995633661746979, 0.06581319868564606, 0.08122552931308746, -0.10471519827842712, 0.030804932117462158, -0.08727781474590302, 0.009635024704039097, -0.06812892854213715, 0.12179134786128998, -0.08015530556440353, 0.04109546169638634, 0.12290873378515244, -0.04506431519985199, -0.04464085400104523, -0.03587232902646065, 0.034539077430963516, 0.08230326324701309, -0.0016748362686485052, -0.01791713386774063, -0.21957212686538696, -0.03806929662823677, -0.1425921469926834, -0.0009761675028130412, -0.22679853439331055, -0.013117263093590736, -0.026433173567056656, -0.070423923432827, 0.022297613322734833, 0.07626691460609436, 0.11547207087278366, 0.02367766574025154, -0.0004149387532379478, -0.05962133780121803, 0.10177673399448395, 0.10923019051551819, -0.19941668212413788, -0.14124727249145508 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HY-AM dataset. It achieves the following results on the evaluation set: - Loss: **0.4521** - Wer: **0.5141** - Cer: **0.1100** - Wer+LM: **0.2756** - Cer+LM: **0.0866** ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: tristage - lr_scheduler_ratios: [0.1, 0.4, 0.5] - training_steps: 1400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 6.1298 | 19.87 | 100 | 3.1204 | 1.0 | 1.0 | | 2.7269 | 39.87 | 200 | 0.6200 | 0.7592 | 0.1755 | | 1.4643 | 59.87 | 300 | 0.4796 | 0.5921 | 0.1277 | | 1.1242 | 79.87 | 400 | 0.4637 | 0.5359 | 0.1145 | | 0.9592 | 99.87 | 500 | 0.4521 | 0.5141 | 0.1100 | | 0.8704 | 119.87 | 600 | 0.4736 | 0.4914 | 0.1045 | | 0.7908 | 139.87 | 700 | 0.5394 | 0.5250 | 0.1124 | | 0.7049 | 159.87 | 800 | 0.4822 | 0.4754 | 0.0985 | | 0.6299 | 179.87 | 900 | 0.4890 | 0.4809 | 0.1028 | | 0.5832 | 199.87 | 1000 | 0.5233 | 0.4813 | 0.1028 | | 0.5145 | 219.87 | 1100 | 0.5350 | 0.4781 | 0.0994 | | 0.4604 | 239.87 | 1200 | 0.5223 | 0.4715 | 0.0984 | | 0.4226 | 259.87 | 1300 | 0.5167 | 0.4625 | 0.0953 | | 0.3946 | 279.87 | 1400 | 0.5248 | 0.4614 | 0.0950 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["hy"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hy", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-xls-r-1b-hy-cv", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hy-AM", "type": "mozilla-foundation/common_voice_8_0", "args": "hy-AM"}, "metrics": [{"type": "wer", "value": 0.2755659640905542, "name": "WER LM"}, {"type": "cer", "value": 0.08659585230146687, "name": "CER LM"}]}]}]}
automatic-speech-recognition
arampacha/wav2vec2-xls-r-1b-hy-cv
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hy", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "hy" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hy #hf-asr-leaderboard #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - HY-AM dataset. It achieves the following results on the evaluation set: * Loss: 0.4521 * Wer: 0.5141 * Cer: 0.1100 * Wer+LM: 0.2756 * Cer+LM: 0.0866 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 8e-05 * train\_batch\_size: 16 * eval\_batch\_size: 64 * seed: 42 * gradient\_accumulation\_steps: 8 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 * lr\_scheduler\_type: tristage * lr\_scheduler\_ratios: [0.1, 0.4, 0.5] * training\_steps: 1400 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: tristage\n* lr\\_scheduler\\_ratios: [0.1, 0.4, 0.5]\n* training\\_steps: 1400\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hy #hf-asr-leaderboard #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: tristage\n* lr\\_scheduler\\_ratios: [0.1, 0.4, 0.5]\n* training\\_steps: 1400\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ 115, 162, 4, 39 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hy #hf-asr-leaderboard #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: tristage\n* lr\\_scheduler\\_ratios: [0.1, 0.4, 0.5]\n* training\\_steps: 1400\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ -0.12427755445241928, 0.0939052551984787, -0.006090680602937937, 0.04269460588693619, 0.1118260994553566, 0.019063856452703476, 0.09133483469486237, 0.16858915984630585, -0.08584283292293549, 0.09327121078968048, 0.06354662775993347, 0.06338301301002502, 0.08293169736862183, 0.0890369638800621, -0.016006357967853546, -0.28210166096687317, 0.015954555943608284, -0.017542613670229912, -0.11869984865188599, 0.08891072869300842, 0.10079743713140488, -0.09753147512674332, 0.021654359996318817, 0.020064741373062134, -0.07069739699363708, 0.016169417649507523, -0.030920611694455147, -0.046904485672712326, 0.09025036543607712, 0.039545994251966476, 0.05398952215909958, 0.035757288336753845, 0.0913311317563057, -0.24100971221923828, 0.008491283282637596, 0.07774943113327026, 0.036802228540182114, 0.06379572302103043, 0.10419979691505432, 0.008325825445353985, 0.10396881401538849, -0.06328445672988892, 0.037663549184799194, 0.057431962341070175, -0.09658979624509811, -0.271047979593277, -0.0941615179181099, 0.033576417714357376, 0.12622302770614624, 0.08239316195249557, -0.02820943109691143, 0.02745162695646286, -0.08289185166358948, 0.08399564027786255, 0.2231408804655075, -0.18670888245105743, -0.06501288712024689, -0.022709187120199203, 0.03179818019270897, 0.03039398603141308, -0.10017214715480804, -0.020692121237516403, 0.016863994300365448, 0.01903500221669674, 0.09011241048574448, 0.014956815168261528, 0.018440838903188705, 0.003888859413564205, -0.12973593175411224, -0.05937604233622551, 0.12075234949588776, 0.0682104229927063, 0.0026314666029065847, -0.09983506053686142, -0.030732527375221252, -0.17690899968147278, -0.05043875798583031, 0.038152143359184265, 0.01812787726521492, -0.0417998768389225, -0.0126902861520648, 0.021498242393136024, -0.05108681693673134, -0.07912731170654297, 0.07132575660943985, 0.08781229704618454, 0.05556125566363335, -0.03221923112869263, -0.004542355425655842, 0.11091461777687073, 0.065055251121521, -0.17349284887313843, -0.021393505856394768, 0.043010082095861435, -0.10892385989427567, 0.0010842380579560995, -0.006770037580281496, 0.004895061254501343, 0.04521822929382324, 0.1095847487449646, -0.031158773228526115, 0.09701484441757202, -0.0012355365324765444, 0.0204470157623291, -0.08883070200681686, 0.1632547378540039, -0.07121371477842331, -0.04950492084026337, -0.034253574907779694, 0.13761043548583984, -0.004645611625164747, -0.010269686579704285, -0.07016249746084213, 0.02512456104159355, 0.10103625804185867, 0.05041653290390968, -0.011497916653752327, 0.025902055203914642, -0.06183028221130371, -0.026945916935801506, 0.012899118475615978, -0.1372157484292984, 0.0369432270526886, 0.06206503510475159, -0.08387308567762375, -0.007253972813487053, -0.005976811051368713, 0.0019166928250342607, -0.0550093799829483, 0.08093607425689697, -0.042536985129117966, 0.00029809746774844825, -0.08879666030406952, -0.08829426765441895, 0.037039101123809814, -0.04325659200549126, -0.005985306575894356, -0.04951179027557373, -0.1163831576704979, -0.06467978656291962, 0.04667314514517784, -0.07702868431806564, -0.07085946202278137, -0.06337481737136841, -0.09538348764181137, 0.05541537329554558, -0.026449380442500114, 0.16322560608386993, -0.05475806072354317, 0.08254005014896393, 0.03393308445811272, 0.04096435010433197, 0.09612661600112915, 0.07359568774700165, -0.010662099346518517, 0.06313726305961609, -0.1405111402273178, 0.10273145884275436, -0.12095066159963608, 0.06123458594083786, -0.11673369258642197, -0.10818707942962646, -0.009046551771461964, -0.002864454174414277, 0.10416844487190247, 0.11586907505989075, -0.16780516505241394, -0.08904467523097992, 0.15130172669887543, -0.05607721209526062, -0.07438182830810547, 0.1165318489074707, -0.011908363550901413, -0.04398170858621597, 0.01953248679637909, 0.1730402708053589, 0.14986030757427216, -0.09527826309204102, 0.016865933313965797, -0.04546995833516121, 0.1197376698255539, 0.05079503357410431, 0.07438185811042786, -0.029484476894140244, 0.06142827123403549, 0.00881196465343237, -0.03248262405395508, 0.056688226759433746, -0.06753692775964737, -0.08114583790302277, -0.020837603136897087, -0.06532017141580582, -0.0015074852854013443, 0.07190243154764175, 0.019193602725863457, -0.06689407676458359, -0.12942779064178467, 0.02735961601138115, 0.1125175878405571, -0.10078930109739304, 0.021054282784461975, -0.08053971827030182, 0.06832332164049149, 0.00438154861330986, -0.001350183505564928, -0.1445036083459854, -0.009453793056309223, 0.03147585317492485, -0.059243373572826385, 0.003652272280305624, 0.011788986623287201, 0.07125360518693924, 0.03232793137431145, -0.04198283329606056, -0.07458676397800446, -0.05871176719665527, -0.00011696536967065185, -0.0400458499789238, -0.23051026463508606, -0.08248307555913925, -0.014220372773706913, 0.17306146025657654, -0.20904728770256042, 0.015212017111480236, 0.06619422137737274, 0.15089166164398193, 0.010858429595828056, -0.036246441304683685, 0.015237818472087383, 0.05367046967148781, -0.01827302761375904, -0.07732795923948288, 0.028652919456362724, 0.004347709473222494, -0.08677201718091965, 0.015593177638947964, -0.11677703261375427, 0.06374956667423248, 0.07815703749656677, 0.005772389471530914, -0.05452448129653931, -0.022903725504875183, -0.05770895257592201, -0.06800311803817749, -0.015160233713686466, -0.027784453704953194, 0.16641102731227875, 0.017771262675523758, 0.12368144094944, -0.07981064915657043, -0.06138351559638977, 0.03718657046556473, 0.025003934279084206, -0.0035817790776491165, 0.15236356854438782, 0.04420220106840134, -0.02903871051967144, 0.08602770417928696, 0.015828615054488182, -0.06346423923969269, 0.1743442416191101, -0.09119007736444473, -0.09868215769529343, -0.01716403104364872, 0.024255676195025444, 0.02628013677895069, 0.11981078237295151, -0.1812785416841507, -0.0218184944242239, 0.01858450286090374, 0.023609621450304985, 0.0328652523458004, -0.1887000948190689, 0.0012512542307376862, 0.025354541838169098, -0.08998025208711624, -0.00031162131926976144, -0.0008834355394355953, 0.004940717946738005, 0.08432219177484512, 0.00001436694037693087, -0.08689940720796585, -0.02714413031935692, -0.05157559737563133, -0.08301777392625809, 0.15244176983833313, -0.09380070120096207, -0.14794787764549255, -0.11726126074790955, -0.009084525518119335, -0.009873701259493828, -0.028178304433822632, 0.029159951955080032, -0.10003190487623215, -0.034829724580049515, -0.0673515573143959, 0.006061581429094076, -0.036820974200963974, 0.002868061186745763, 0.04369853436946869, 0.011783384718000889, 0.09090837091207504, -0.10619243234395981, 0.015380465425550938, -0.010339058004319668, -0.03219359368085861, -0.0007238106918521225, 0.019206684082746506, 0.07678007334470749, 0.169521763920784, 0.050157755613327026, 0.04929763451218605, -0.026778694242239, 0.17216818034648895, -0.13390988111495972, 0.016429923474788666, 0.10998284071683884, 0.014575950801372528, 0.050440024584531784, 0.14978571236133575, 0.0477755181491375, -0.06019238010048866, 0.0012892753584310412, 0.04429750144481659, -0.01528983935713768, -0.23215363919734955, -0.02742796577513218, -0.07363506406545639, -0.03319711983203888, 0.09658600389957428, 0.039696719497442245, 0.018366456031799316, 0.00005204170520300977, -0.03302760422229767, -0.011955822817981243, 0.04855704680085182, 0.03782828152179718, 0.0863262265920639, 0.03645562753081322, 0.10352332890033722, -0.011742858216166496, -0.02807375229895115, 0.016269933432340622, 0.008991967886686325, 0.22157296538352966, -0.02892261929810047, 0.18481537699699402, 0.04471772164106369, 0.14871682226657867, -0.007617776282131672, 0.040159981697797775, -0.010374471545219421, -0.0023470676969736814, 0.03612107038497925, -0.05317104980349541, -0.0035358748864382505, 0.030346041545271873, 0.08484356105327606, 0.0267690047621727, -0.08772283792495728, 0.00525940116494894, 0.0221974216401577, 0.34678858518600464, 0.08828438818454742, -0.26657506823539734, -0.06031836196780205, 0.013789191842079163, -0.06590532511472702, -0.04349708557128906, 0.030301431193947792, 0.11349459737539291, -0.06751727312803268, 0.08509498834609985, -0.055385757237672806, 0.089631088078022, -0.05455131456255913, 0.0053183576092123985, 0.1082429364323616, 0.09633317589759827, 0.018511340022087097, 0.07410018146038055, -0.26257774233818054, 0.254835307598114, -0.015897957608103752, 0.07685662806034088, -0.04195287078619003, 0.05157855898141861, 0.038880135864019394, -0.01629853993654251, 0.05959901586174965, -0.000832303601782769, -0.09697984904050827, -0.15836863219738007, -0.08185790479183197, 0.003950163256376982, 0.10021112859249115, -0.03772158548235893, 0.11108353734016418, -0.039833784103393555, -0.04576384648680687, 0.041269540786743164, -0.0865369662642479, -0.10907593369483948, -0.09775959700345993, 0.06185263767838478, 0.02056354098021984, 0.0636260136961937, -0.09643708914518356, -0.09491226822137833, -0.07999344170093536, 0.12985862791538239, -0.13015925884246826, -0.037455786019563675, -0.12824814021587372, 0.0708722248673439, 0.15484873950481415, -0.0566333569586277, 0.03445250913500786, 0.030499041080474854, 0.1398320198059082, 0.04223266616463661, -0.022494401782751083, 0.09183944761753082, -0.07296284288167953, -0.20923738181591034, -0.04089600220322609, 0.18153803050518036, 0.02826220728456974, 0.06568118184804916, -0.019502589479088783, 0.021497994661331177, -0.0026388452388346195, -0.06613267213106155, 0.0716826468706131, 0.037770263850688934, 0.010502178221940994, 0.04647652804851532, -0.032727327197790146, 0.008888958021998405, -0.07592103630304337, -0.05215034633874893, 0.0846184641122818, 0.220145583152771, -0.08303173631429672, 0.0555797703564167, 0.008081483654677868, -0.07351398468017578, -0.15801219642162323, -0.0010347218485549092, 0.1378587931394577, 0.04219023138284683, -0.02500452846288681, -0.20940223336219788, 0.010812508873641491, 0.06576083600521088, -0.02410825714468956, 0.08192180842161179, -0.3294132351875305, -0.1315716952085495, 0.08501777052879333, 0.05198867246508598, -0.051000241190195084, -0.1573473960161209, -0.06352255493402481, -0.017869433388113976, -0.08000636845827103, 0.01871299371123314, -0.041631922125816345, 0.10964901000261307, -0.0066445451229810715, 0.034796323627233505, 0.01714266650378704, -0.04731770604848862, 0.14553169906139374, 0.004124350845813751, 0.04475286975502968, -0.012976973317563534, 0.029819203540682793, 0.043952248990535736, -0.07653908431529999, 0.014153852127492428, -0.06015513464808464, 0.024939144030213356, -0.16027921438217163, -0.013095431961119175, -0.10926070064306259, 0.013078280724585056, -0.05229179933667183, -0.007826797664165497, -0.009535610675811768, 0.046869225800037384, 0.08563907444477081, 0.01544385775923729, 0.11888004094362259, -0.06455127894878387, 0.1281200349330902, 0.13030123710632324, 0.11430901288986206, -0.010863910429179668, -0.10533503443002701, -0.011424044147133827, 0.02333919145166874, 0.03489202260971069, -0.11937589198350906, 0.05193379148840904, 0.14552044868469238, 0.04543711990118027, 0.14267586171627045, 0.049998171627521515, -0.0969337671995163, 0.0029618770349770784, 0.062000155448913574, -0.07110091298818588, -0.12938259541988373, -0.034990157932043076, 0.03513525426387787, -0.11431051045656204, -0.004123305901885033, 0.1107051894068718, -0.04176819697022438, -0.0008470499305985868, 0.027545081451535225, 0.05067853257060051, -0.03916669264435768, 0.2285563349723816, 0.036912526935338974, 0.1065237894654274, -0.09549364447593689, 0.07007729262113571, 0.047814540565013885, -0.09729386866092682, 0.039130136370658875, 0.11728198826313019, -0.042392272502183914, -0.02201247215270996, -0.0008455913048237562, 0.08456411212682724, 0.06351599097251892, -0.06431879103183746, -0.1316094547510147, -0.1552603840827942, 0.09188529849052429, 0.07336612045764923, 0.018033722415566444, 0.025630773976445198, -0.023742949590086937, 0.022174794226884842, -0.08940200507640839, 0.1129605770111084, 0.08945969492197037, 0.062238290905952454, -0.139412060379982, 0.09635881334543228, 0.011673462577164173, 0.017853233963251114, 0.000636336684692651, -0.010540028102695942, -0.09067437797784805, 0.038146909326314926, -0.14725326001644135, -0.0037394315004348755, -0.03616557642817497, -0.00370038696564734, 0.003302735975012183, -0.05375266820192337, -0.04899568855762482, 0.03789370134472847, -0.11258723586797714, -0.03532642871141434, -0.03256019577383995, 0.06292106956243515, -0.08820997923612595, -0.0190016757696867, 0.02447211742401123, -0.12984181940555573, 0.09083595871925354, 0.038077954202890396, 0.005873409099876881, 0.024842604994773865, -0.07005634158849716, -0.01988549903035164, 0.022912079468369484, 0.014208811335265636, 0.039023689925670624, -0.1712116152048111, -0.0078035565093159676, -0.02709650807082653, 0.006975966971367598, -0.022641487419605255, -0.02822175808250904, -0.11285112798213959, 0.002540471265092492, -0.025897875428199768, -0.05119723081588745, -0.049670591950416565, 0.08022627234458923, 0.06847603619098663, 0.02444440871477127, 0.13985668122768402, -0.07743444293737411, 0.05760384351015091, -0.23474670946598053, 0.003457912476733327, -0.006158597767353058, -0.0680709183216095, -0.03983532264828682, -0.01853162981569767, 0.10631440579891205, -0.06463269889354706, 0.08557843416929245, -0.011890599504113197, 0.041785117238759995, 0.030606012791395187, -0.12046115100383759, 0.01270665880292654, 0.06245391443371773, 0.15551944077014923, 0.03516354039311409, -0.010904740542173386, 0.08454372733831406, -0.03723059222102165, 0.04435863345861435, 0.14716219902038574, 0.13280686736106873, 0.14590255916118622, 0.07906398177146912, 0.06815560162067413, 0.10393235087394714, -0.1409611850976944, -0.12673427164554596, 0.15932334959506989, -0.07037817686796188, 0.16040784120559692, -0.038333773612976074, 0.1821133941411972, 0.11010782420635223, -0.19037151336669922, 0.07529858499765396, -0.06085701286792755, -0.09714054316282272, -0.09247695654630661, -0.09311293810606003, -0.06851307302713394, -0.1820891946554184, 0.015181967988610268, -0.10262501984834671, 0.06919052451848984, 0.06729584187269211, 0.044964633882045746, 0.022953737527132034, 0.09962145984172821, 0.10422250628471375, 0.0009416003013029695, 0.12058069556951523, 0.015386868268251419, -0.011890360154211521, -0.04742356017231941, -0.08900164067745209, 0.04958676919341087, -0.0197613388299942, 0.05250335484743118, -0.03614071384072304, -0.08736360818147659, 0.044924698770046234, 0.023935561999678612, -0.09771819412708282, 0.03834432736039162, -0.025146739557385445, 0.04982453212141991, 0.0750877782702446, 0.03874474763870239, -0.00459198048338294, -0.017996832728385925, 0.20223622024059296, -0.08949066698551178, -0.063667893409729, -0.12218151986598969, 0.19631440937519073, 0.0013391656102612615, -0.011636501178145409, 0.03276378661394119, -0.07133762538433075, -0.013250700198113918, 0.1653054803609848, 0.1389540433883667, -0.016808917745947838, -0.022754939272999763, 0.0014737537130713463, -0.006577038671821356, -0.038521554321050644, 0.07706204801797867, 0.12295152992010117, 0.042744461447000504, -0.03472135588526726, -0.022848263382911682, -0.017477067187428474, -0.06717660278081894, -0.03478020429611206, 0.07467587292194366, 0.01679156720638275, 0.0022287066094577312, -0.022155046463012695, 0.09735467284917831, -0.057303328067064285, -0.16520576179027557, 0.02555495873093605, -0.17313508689403534, -0.18776936829090118, -0.0440969280898571, 0.07019203156232834, 0.03092268481850624, 0.0479498952627182, -0.011268357746303082, -0.028714671730995178, 0.12208735197782516, -0.003975246101617813, -0.02316964417695999, -0.097613625228405, 0.07585020363330841, -0.15180958807468414, 0.1696641743183136, -0.05271312594413757, 0.022608360275626183, 0.11047610640525818, 0.0457429364323616, -0.0856669545173645, 0.016538793221116066, 0.08794564008712769, -0.1320473849773407, 0.024862099438905716, 0.2104412317276001, -0.029698222875595093, 0.11250841617584229, 0.0338912233710289, -0.10041273385286331, 0.005073286592960358, -0.06349322199821472, -0.04541231691837311, -0.0574926882982254, -0.007132974453270435, -0.03225793316960335, 0.13597463071346283, 0.2111182063817978, -0.06721193343400955, -0.013973135501146317, -0.057866036891937256, -0.0031532160937786102, 0.008734145201742649, 0.1325763463973999, -0.03591368347406387, -0.2584979832172394, 0.021345701068639755, 0.005150961223989725, 0.02121759206056595, -0.18953078985214233, -0.07972577214241028, 0.04182957857847214, -0.06567570567131042, -0.056121163070201874, 0.12528708577156067, 0.059611670672893524, 0.05695352330803871, -0.04999281466007233, -0.08612818270921707, -0.034803926944732666, 0.18193493783473969, -0.17832013964653015, -0.04747173562645912 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/HY/NOIZY_STUDENT_4/ - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.1693 - Wer: 0.2373 - Cer: 0.0429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 842 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.255 | 7.24 | 500 | 0.2978 | 0.4294 | 0.0758 | | 1.0058 | 14.49 | 1000 | 0.1883 | 0.2838 | 0.0483 | | 0.9371 | 21.73 | 1500 | 0.1813 | 0.2627 | 0.0457 | | 0.8999 | 28.98 | 2000 | 0.1693 | 0.2373 | 0.0429 | | 0.8814 | 36.23 | 2500 | 0.1760 | 0.2420 | 0.0435 | | 0.8364 | 43.47 | 3000 | 0.1765 | 0.2416 | 0.0419 | | 0.8019 | 50.72 | 3500 | 0.1758 | 0.2311 | 0.0398 | | 0.7665 | 57.96 | 4000 | 0.1745 | 0.2240 | 0.0399 | | 0.7376 | 65.22 | 4500 | 0.1717 | 0.2190 | 0.0385 | | 0.716 | 72.46 | 5000 | 0.1700 | 0.2147 | 0.0382 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["hy"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hy", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-1b-hy-cv", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hy-AM", "type": "mozilla-foundation/common_voice_8_0", "args": "hy-AM"}, "metrics": [{"type": "wer", "value": 10.811865729898516, "name": "WER LM"}, {"type": "cer", "value": 2.2205361659079412, "name": "CER LM"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "hy"}, "metrics": [{"type": "wer", "value": 18.219363037089988, "name": "Test WER"}, {"type": "cer", "value": 7.075988867335752, "name": "Test CER"}]}]}]}
automatic-speech-recognition
arampacha/wav2vec2-xls-r-1b-hy
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hy", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "hy" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #hy #mozilla-foundation/common_voice_8_0 #robust-speech-event #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the /WORKSPACE/DATA/HY/NOIZY\_STUDENT\_4/ - NA dataset. It achieves the following results on the evaluation set: * Loss: 0.1693 * Wer: 0.2373 * Cer: 0.0429 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 16 * eval\_batch\_size: 64 * seed: 842 * gradient\_accumulation\_steps: 8 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 5000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2 * Datasets 1.18.4.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 842\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #hy #mozilla-foundation/common_voice_8_0 #robust-speech-event #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 842\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ 105, 160, 4, 36 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #hy #mozilla-foundation/common_voice_8_0 #robust-speech-event #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 842\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ -0.1434638351202011, 0.09852688014507294, -0.004679653327912092, 0.03766827657818794, 0.10030479729175568, 0.016110572963953018, 0.10541713237762451, 0.1671248972415924, -0.08230260014533997, 0.11081942915916443, 0.06990891695022583, 0.04980700463056564, 0.0996708944439888, 0.13196101784706116, -0.01826825551688671, -0.28081831336021423, 0.011402809992432594, -0.03825055807828903, -0.1539580225944519, 0.08440636843442917, 0.11002512276172638, -0.11155758798122406, 0.045309290289878845, 0.02683108299970627, -0.09073536843061447, -0.011957494542002678, -0.038113515824079514, -0.043131910264492035, 0.08187972754240036, 0.05374014377593994, 0.04626227170228958, 0.048580102622509, 0.08911038935184479, -0.24880139529705048, 0.011120989918708801, 0.07384567707777023, 0.04197954013943672, 0.057604238390922546, 0.10199425369501114, -0.0037121016066521406, 0.078047014772892, -0.08282328397035599, 0.02791704796254635, 0.0762677863240242, -0.09833908081054688, -0.2705111801624298, -0.09680956602096558, 0.026272745802998543, 0.1266476809978485, 0.08074744790792465, -0.027711302042007446, 0.04227343574166298, -0.05222892761230469, 0.07582627981901169, 0.22049619257450104, -0.18935926258563995, -0.08326633274555206, -0.0035050564911216497, 0.03760523721575737, 0.04318533465266228, -0.1133350059390068, 0.006599128246307373, 0.021761804819107056, 0.005254611372947693, 0.07829804718494415, -0.005702258087694645, 0.013379101641476154, -0.0031449550297111273, -0.1156492829322815, -0.045711301267147064, 0.17417041957378387, 0.07709482312202454, -0.013435562141239643, -0.09382922947406769, -0.015880264341831207, -0.16266342997550964, -0.05863003432750702, 0.030344298109412193, 0.03567899018526077, -0.04282926395535469, -0.056563764810562134, 0.0019036601297557354, -0.07002056390047073, -0.06747056543827057, 0.07389809191226959, 0.09239406883716583, 0.02126440405845642, -0.02374456077814102, 0.004536068066954613, 0.09163835644721985, 0.051814865320920944, -0.18338210880756378, -0.036450013518333435, 0.037586670368909836, -0.10318466275930405, -0.011294622905552387, -0.02279847487807274, 0.02369001880288124, 0.07868406176567078, 0.11103249341249466, -0.045060545206069946, 0.0941072553396225, 0.00786259863525629, 0.013269761577248573, -0.07684551924467087, 0.17364713549613953, -0.06626632064580917, -0.08847702294588089, -0.0300239659845829, 0.12416357547044754, 0.0038164034485816956, -0.016615169122815132, -0.0826253890991211, 0.03886227682232857, 0.08500289916992188, 0.05581004545092583, -0.0019252730999141932, 0.01883213222026825, -0.05709267780184746, -0.034541551023721695, 0.013841748237609863, -0.11882998049259186, 0.036015745252370834, 0.06585680693387985, -0.08331407606601715, -0.013076207600533962, -0.022423306480050087, 0.0218166783452034, -0.03913753107190132, 0.055744536221027374, -0.06737551838159561, -0.008341418579220772, -0.0766061544418335, -0.0850885733962059, 0.04507589712738991, -0.04040658473968506, -0.0099493358284235, -0.05098805949091911, -0.09568775445222855, -0.07539181411266327, 0.04574953392148018, -0.06536858528852463, -0.07089191675186157, -0.07360456138849258, -0.09163781255483627, 0.05723007768392563, -0.010401641950011253, 0.16493664681911469, -0.05956413596868515, 0.06354891508817673, 0.024400748312473297, 0.03834353759884834, 0.07847907394170761, 0.06333330273628235, -0.013136949390172958, 0.06453061103820801, -0.14201393723487854, 0.0946984514594078, -0.12603680789470673, 0.08264070004224777, -0.1300261914730072, -0.09890559315681458, 0.007321733515709639, -0.01022983156144619, 0.08357347548007965, 0.13254497945308685, -0.14765973389148712, -0.09486202150583267, 0.1468455195426941, -0.050932396203279495, -0.10202368348836899, 0.11703329533338547, -0.0033069017808884382, -0.03417785465717316, 0.02400387078523636, 0.1597096472978592, 0.16331882774829865, -0.09899590164422989, 0.0011724847136065364, -0.02589328959584236, 0.14495068788528442, 0.047763891518116, 0.0943416953086853, -0.05341647192835808, 0.06072709709405899, 0.009219036437571049, -0.030755111947655678, 0.03439590334892273, -0.07568395137786865, -0.09141682833433151, -0.012012904509902, -0.08272489160299301, -0.021955057978630066, 0.06123891472816467, 0.019813720136880875, -0.06959588080644608, -0.12356552481651306, -0.024753907695412636, 0.11963925510644913, -0.09661176800727844, 0.012310127727687359, -0.07958008348941803, 0.061231911182403564, 0.013898874633014202, -0.00046087970258668065, -0.1342993676662445, -0.040283456444740295, 0.042106665670871735, -0.05535224452614784, 0.01581438072025776, -0.013673298060894012, 0.06301459670066833, 0.03925593942403793, -0.03836717829108238, -0.054101068526506424, -0.035899270325899124, -0.011916205286979675, -0.038991089910268784, -0.25081491470336914, -0.07717915624380112, -0.012146182358264923, 0.2388271689414978, -0.19044335186481476, 0.016127362847328186, 0.09166386723518372, 0.14276885986328125, 0.023378191515803337, -0.03919180855154991, 0.022778887301683426, 0.05255955830216408, -0.023799818009138107, -0.08466842025518417, 0.026777105405926704, 0.012045955285429955, -0.1004621833562851, 0.01990704983472824, -0.14952035248279572, 0.05367278307676315, 0.08634896576404572, 0.00944034568965435, -0.04274242743849754, -0.0633355975151062, -0.05476773902773857, -0.053742773830890656, -0.00823409017175436, -0.024155043065547943, 0.12652628123760223, 0.004164456389844418, 0.11047512292861938, -0.08863577246665955, -0.05752190575003624, 0.05148845538496971, 0.020224185660481453, -0.0030468616168946028, 0.12217827886343002, 0.042633626610040665, -0.05147154629230499, 0.09967994689941406, 0.019230924546718597, -0.070327028632164, 0.1807510256767273, -0.08834615349769592, -0.079119972884655, -0.03414349630475044, 0.02527805231511593, 0.038479872047901154, 0.13406313955783844, -0.1896083950996399, -0.028231337666511536, 0.026569988578557968, 0.005680459551513195, 0.023809071630239487, -0.17405496537685394, 0.013762986287474632, 0.021795984357595444, -0.08620142191648483, 0.008659778162837029, -0.003444054163992405, -0.015791555866599083, 0.07320933043956757, 0.010253294371068478, -0.05917242914438248, -0.03847184777259827, -0.05316125974059105, -0.08630690723657608, 0.1798337996006012, -0.11119531840085983, -0.1485888957977295, -0.12718795239925385, -0.0031926450319588184, -0.036943137645721436, -0.006736040115356445, 0.026981422677636147, -0.09138429909944534, -0.031253840774297714, -0.061185065656900406, 0.008621650747954845, -0.03360738232731819, 0.02629556506872177, 0.021870622411370277, 0.020123209804296494, 0.07697562873363495, -0.10630639642477036, 0.008036289364099503, 0.0016975820763036609, -0.03576924651861191, -0.008040225133299828, 0.0017486907308921218, 0.09827319532632828, 0.16970132291316986, 0.06450731307268143, 0.04407515376806259, -0.03525836393237114, 0.17605702579021454, -0.15604853630065918, 0.020812280476093292, 0.10568246990442276, 0.028672432526946068, 0.0459270179271698, 0.14956369996070862, 0.045155271887779236, -0.06100444495677948, -0.005582957062870264, 0.04123914986848831, -0.019423341378569603, -0.22032210230827332, -0.03494122996926308, -0.08670110255479813, -0.008237162604928017, 0.09825461357831955, 0.028203321620821953, 0.05225208401679993, 0.02567727491259575, -0.05304230749607086, -0.002608934883028269, 0.05922764167189598, 0.04678105190396309, 0.08269844949245453, 0.05489792302250862, 0.11514323204755783, -0.008537298999726772, -0.016878534108400345, 0.03143313527107239, 0.012735358439385891, 0.22803102433681488, -0.006279184482991695, 0.2247353047132492, 0.04771135747432709, 0.1325940042734146, -0.014338560402393341, 0.04138569533824921, 0.014153098687529564, -0.0034992077853530645, 0.03296823427081108, -0.06941476464271545, -0.0026311015244573355, 0.042968831956386566, 0.1108015850186348, 0.016884172335267067, -0.10029599815607071, 0.030773000791668892, 0.03300132974982262, 0.36079490184783936, 0.09202424436807632, -0.28512564301490784, -0.07696851342916489, 0.023813001811504364, -0.04299582168459892, -0.035669904202222824, 0.01896650344133377, 0.12082715332508087, -0.07936441898345947, 0.10893824696540833, -0.04617549479007721, 0.08920278400182724, -0.04450611770153046, 0.003950899932533503, 0.09065373986959457, 0.10046933591365814, 0.0037815384566783905, 0.0669165775179863, -0.23868170380592346, 0.2625313103199005, 0.002890021540224552, 0.07091252505779266, -0.05033383145928383, 0.05905895680189133, 0.0494389533996582, 0.026582401245832443, 0.06733270734548569, -0.003891187720000744, -0.10029177367687225, -0.1537724733352661, -0.07873241603374481, 0.01439722627401352, 0.12327782064676285, -0.07132737338542938, 0.11676107347011566, -0.036855313926935196, -0.051742199808359146, 0.03423584625124931, -0.06483597308397293, -0.10730177164077759, -0.11175159364938736, 0.06610386818647385, 0.02458869107067585, 0.06669733673334122, -0.09790560603141785, -0.08325608819723129, -0.04112325608730316, 0.13929857313632965, -0.13136231899261475, -0.03445257991552353, -0.1402706354856491, 0.07724297791719437, 0.152301624417305, -0.06014985963702202, 0.03448672220110893, 0.0022647827863693237, 0.16524925827980042, 0.02824966236948967, -0.009664393030107021, 0.0900501012802124, -0.0857432410120964, -0.22443094849586487, -0.04519372060894966, 0.18266835808753967, 0.015007728710770607, 0.062485214322805405, -0.01124507188796997, 0.02309398539364338, -0.012669484131038189, -0.07762333750724792, 0.07362078130245209, 0.04120134562253952, 0.0012315536150708795, 0.035769566893577576, -0.013785927556455135, 0.012512004934251308, -0.07676780223846436, -0.044673092663288116, 0.07259073108434677, 0.24437330663204193, -0.08186271041631699, 0.03496386855840683, 0.03746527433395386, -0.06602154672145844, -0.16450433433055878, 0.004831571131944656, 0.13294903934001923, 0.04096704348921776, -0.059189487248659134, -0.21057064831256866, 0.030112791806459427, 0.07392032444477081, -0.03146631643176079, 0.09929317981004715, -0.2989424467086792, -0.14224688708782196, 0.07807290554046631, 0.024865029379725456, -0.051459845155477524, -0.17944279313087463, -0.07425934076309204, -0.04117797687649727, -0.06240667775273323, 0.036281704902648926, -0.0712890475988388, 0.11406788229942322, 0.010063519701361656, 0.014138291589915752, 0.014918620698153973, -0.04068118706345558, 0.1652427762746811, 0.012097838334739208, 0.03412700071930885, -0.010126697830855846, 0.01768883876502514, 0.0701041892170906, -0.07735703140497208, 0.003334855893626809, -0.08553874492645264, 0.02512732893228531, -0.1433316171169281, -0.016530003398656845, -0.09422279894351959, 0.03721780702471733, -0.04912671074271202, -0.015842773020267487, -0.02805027924478054, 0.04747826233506203, 0.07426933199167252, 0.019803833216428757, 0.1334332525730133, -0.06925112754106522, 0.13984185457229614, 0.1740381419658661, 0.1315242350101471, -0.03323863819241524, -0.07709977775812149, -0.0035302459727972746, 0.0005495482473634183, 0.040030770003795624, -0.12219162285327911, 0.04532356932759285, 0.13331010937690735, 0.049874551594257355, 0.1366877406835556, 0.045681972056627274, -0.0902126207947731, 0.009615682065486908, 0.06945938616991043, -0.06948772817850113, -0.1515524983406067, -0.045036040246486664, 0.040039096027612686, -0.14152999222278595, 0.004935596603900194, 0.13084718585014343, -0.02698122337460518, 0.004760495387017727, 0.015544173307716846, 0.044956643134355545, -0.031379468739032745, 0.23764923214912415, 0.03749070316553116, 0.11200064420700073, -0.1065690740942955, 0.07339151948690414, 0.05478104203939438, -0.0968947634100914, 0.026192976161837578, 0.116379514336586, -0.05809444561600685, -0.030544079840183258, 0.007287926506251097, 0.07816367596387863, 0.022447960451245308, -0.06569815427064896, -0.13277524709701538, -0.16386102139949799, 0.08467555046081543, 0.09850740432739258, 0.024989137426018715, 0.027645554393529892, -0.0016819180455058813, 0.02956526167690754, -0.08616651594638824, 0.11867571622133255, 0.06355088204145432, 0.06570510566234589, -0.12410937249660492, 0.10676801204681396, 0.004241108428686857, 0.014347271993756294, 0.0025695941876620054, -0.01582970842719078, -0.09649285674095154, 0.013598832301795483, -0.14720889925956726, 0.00025976781034842134, -0.043753042817115784, -0.0064514377154409885, 0.015594713389873505, -0.05849772319197655, -0.0702938660979271, 0.03479684516787529, -0.11072739213705063, -0.04850132390856743, -0.04784074053168297, 0.06986724585294724, -0.09165284782648087, -0.015712764114141464, 0.02555128000676632, -0.12991583347320557, 0.09521900862455368, 0.03190533444285393, 0.017659902572631836, 0.013827579095959663, -0.056096483021974564, -0.011455812491476536, 0.020668871700763702, 0.01657341793179512, 0.04536694660782814, -0.15964284539222717, -0.014187868684530258, -0.032010164111852646, 0.01212838850915432, -0.01963018998503685, -0.0008759806514717638, -0.09881283342838287, 0.00673302449285984, -0.0241148229688406, -0.04761679098010063, -0.04976093769073486, 0.08247511833906174, 0.08139174431562424, 0.011696962639689445, 0.1347992867231369, -0.06559736281633377, 0.050248369574546814, -0.23703396320343018, 0.010247956030070782, -0.007157167419791222, -0.0780760645866394, -0.05328528955578804, -0.02809854969382286, 0.1116262823343277, -0.06808994710445404, 0.07283676415681839, -0.02545105665922165, 0.08213022351264954, 0.03035188652575016, -0.0989292562007904, 0.02961554192006588, 0.07540426403284073, 0.15510791540145874, 0.059943169355392456, -0.012408869341015816, 0.09549017995595932, -0.021707996726036072, 0.06364184617996216, 0.11983811855316162, 0.15741321444511414, 0.11273334920406342, 0.0755431056022644, 0.0878913551568985, 0.12112260609865189, -0.14753380417823792, -0.1215226948261261, 0.1474733203649521, -0.07234405726194382, 0.15771937370300293, -0.03765936940908432, 0.14815232157707214, 0.12902148067951202, -0.2091788649559021, 0.05837518721818924, -0.06136950105428696, -0.09226392209529877, -0.10163760185241699, -0.07999011129140854, -0.08497712016105652, -0.19403214752674103, -0.00010363636101828888, -0.11871440708637238, 0.06198754534125328, 0.0525643490254879, 0.04575567692518234, 0.03088219277560711, 0.106958769261837, 0.05434843897819519, -0.012449057772755623, 0.11997342109680176, 0.008990486152470112, -0.008280893787741661, -0.046666115522384644, -0.1134718731045723, 0.04663864150643349, -0.03469742834568024, 0.05308575555682182, -0.0435158871114254, -0.07928844541311264, 0.05912112072110176, 0.01739160157740116, -0.10309003293514252, 0.039258699864149094, -0.029057009145617485, 0.041737187653779984, 0.05854100361466408, 0.02109660394489765, -0.0016469163820147514, 0.0004610166943166405, 0.196833997964859, -0.09319163113832474, -0.06192312389612198, -0.14387498795986176, 0.18913796544075012, -0.013205314055085182, -0.007237720303237438, 0.029548322781920433, -0.07058010995388031, -0.025138065218925476, 0.16962023079395294, 0.16564112901687622, -0.02111954055726528, -0.01810391992330551, 0.013831461779773235, -0.010104672983288765, -0.043801724910736084, 0.07457730174064636, 0.10118354856967926, 0.04203405603766441, -0.03725631162524223, -0.011973402462899685, 0.008601353503763676, -0.0696575716137886, -0.04409048333764076, 0.08555280417203903, 0.015803994610905647, -0.0003803216095548123, -0.007613527588546276, 0.10905198007822037, -0.055270615965127945, -0.13974903523921967, 0.05074899271130562, -0.19225531816482544, -0.18596018850803375, -0.045442234724760056, 0.03403913974761963, 0.037332698702812195, 0.06015399843454361, -0.007886109873652458, -0.04492468759417534, 0.11819642037153244, 0.001143686124123633, -0.04388512670993805, -0.12398932874202728, 0.0927494466304779, -0.1638180911540985, 0.17508482933044434, -0.06418107450008392, 0.011279101483523846, 0.12332817167043686, 0.036110568791627884, -0.08401050418615341, 0.002771839266642928, 0.10419648140668869, -0.135173499584198, 0.03697434067726135, 0.1944488286972046, -0.04526545852422714, 0.14022240042686462, 0.044908978044986725, -0.09268227219581604, 0.0011293701827526093, -0.06081671640276909, -0.024140363559126854, -0.055880531668663025, -0.010546079836785793, -0.05231711268424988, 0.12999141216278076, 0.19931696355342865, -0.07124780118465424, -0.023435786366462708, -0.0342617891728878, 0.012451414950191975, 0.033641841262578964, 0.12633919715881348, -0.05108014866709709, -0.27580738067626953, 0.021915357559919357, -0.012527677230536938, 0.02048170380294323, -0.18165524303913116, -0.06431867182254791, 0.03163076937198639, -0.04757586494088173, -0.0359361469745636, 0.13253267109394073, 0.05928732454776764, 0.02923201210796833, -0.057196103036403656, -0.09981603175401688, -0.03168006241321564, 0.17638635635375977, -0.17928661406040192, -0.057442113757133484 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-ka This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/KA/NOIZY_STUDENT_2/ - KA dataset. It achieves the following results on the evaluation set: - Loss: 0.1022 - Wer: 0.1527 - Cer: 0.0221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.2839 | 6.45 | 400 | 0.2229 | 0.3609 | 0.0557 | | 0.9775 | 12.9 | 800 | 0.1271 | 0.2202 | 0.0317 | | 0.9045 | 19.35 | 1200 | 0.1268 | 0.2030 | 0.0294 | | 0.8652 | 25.8 | 1600 | 0.1211 | 0.1940 | 0.0287 | | 0.8505 | 32.26 | 2000 | 0.1192 | 0.1912 | 0.0276 | | 0.8168 | 38.7 | 2400 | 0.1086 | 0.1763 | 0.0260 | | 0.7737 | 45.16 | 2800 | 0.1098 | 0.1753 | 0.0256 | | 0.744 | 51.61 | 3200 | 0.1054 | 0.1646 | 0.0239 | | 0.7114 | 58.06 | 3600 | 0.1034 | 0.1573 | 0.0228 | | 0.6773 | 64.51 | 4000 | 0.1022 | 0.1527 | 0.0221 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["ka"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-1b-ka", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ka", "type": "mozilla-foundation/common_voice_8_0", "args": "ka"}, "metrics": [{"type": "wer", "value": 7.39778066580026, "name": "WER LM"}, {"type": "cer", "value": 1.1882089427096434, "name": "CER LM"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "ka"}, "metrics": [{"type": "wer", "value": 22.61, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "ka"}, "metrics": [{"type": "wer", "value": 21.58, "name": "Test WER"}]}]}]}
automatic-speech-recognition
arampacha/wav2vec2-xls-r-1b-ka
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "ka", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ka" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ka #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-xls-r-1b-ka ==================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the /WORKSPACE/DATA/KA/NOIZY\_STUDENT\_2/ - KA dataset. It achieves the following results on the evaluation set: * Loss: 0.1022 * Wer: 0.1527 * Cer: 0.0221 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7e-05 * train\_batch\_size: 16 * eval\_batch\_size: 64 * seed: 42 * gradient\_accumulation\_steps: 8 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 4000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2 * Datasets 1.18.4.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ka #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ 105, 159, 4, 36 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ka #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ -0.13129888474941254, 0.09767179191112518, -0.004943055100739002, 0.042217664420604706, 0.09875945746898651, 0.017679782584309578, 0.11430191993713379, 0.15731622278690338, -0.07356996834278107, 0.11729719489812851, 0.07281719893217087, 0.05303691327571869, 0.08814992755651474, 0.13446082174777985, -0.01632075197994709, -0.3024098873138428, 0.019482340663671494, -0.028705276548862457, -0.14517590403556824, 0.09228334575891495, 0.10089357197284698, -0.10628414899110794, 0.040006231516599655, 0.016004016622900963, -0.08970198035240173, -0.019279006868600845, -0.029835831373929977, -0.05807797983288765, 0.086299829185009, 0.046632200479507446, 0.05425049364566803, 0.03878777474164963, 0.09190044552087784, -0.25113046169281006, 0.011053838767111301, 0.06866590678691864, 0.045098334550857544, 0.06541627645492554, 0.10229918360710144, 0.014986147172749043, 0.08731617778539658, -0.06972675025463104, 0.04661351814866066, 0.06601416319608688, -0.10365816205739975, -0.2620413899421692, -0.08617112040519714, 0.052533216774463654, 0.12820349633693695, 0.07660509645938873, -0.026016199961304665, 0.04518193379044533, -0.04767357185482979, 0.0883309617638588, 0.18547898530960083, -0.2117059975862503, -0.08542585372924805, -0.006830040831118822, 0.04321742057800293, 0.05634019151329994, -0.11039537936449051, -0.0025775707326829433, 0.00572313042357564, 0.014963162131607533, 0.077931247651577, -0.011947275139391422, 0.0023940729442983866, -0.01905369572341442, -0.12010326236486435, -0.04606602340936661, 0.15942473709583282, 0.07656237483024597, -0.014863919466733932, -0.10694181174039841, -0.020565228536725044, -0.1720321923494339, -0.05882417783141136, 0.006693657021969557, 0.03173941746354103, -0.03815920650959015, -0.05970442667603493, -0.00300900312140584, -0.06321320682764053, -0.073719322681427, 0.06691082566976547, 0.1083504781126976, 0.02545800432562828, -0.02773427963256836, 0.010849160142242908, 0.08555051684379578, 0.03088279440999031, -0.17797249555587769, -0.026702843606472015, 0.036032743752002716, -0.0972188264131546, -0.017188651487231255, -0.013730518519878387, 0.02573230303823948, 0.06030040979385376, 0.12893584370613098, -0.04540136829018593, 0.09556102007627487, 0.00251385779120028, 0.013446657918393612, -0.09045001119375229, 0.19647350907325745, -0.051382776349782944, -0.09246064722537994, -0.0330108217895031, 0.13084611296653748, 0.0040629832074046135, -0.009226208552718163, -0.08539796620607376, 0.027582233771681786, 0.08041160553693771, 0.05655491352081299, -0.007295053917914629, 0.028303081169724464, -0.05155566707253456, -0.03622468560934067, 0.03736826777458191, -0.11055392771959305, 0.040140870958566666, 0.05953044444322586, -0.07050617784261703, -0.00209529185667634, -0.010456482879817486, 0.011511930264532566, -0.03896559774875641, 0.056367162615060806, -0.060488246381282806, -0.012168426997959614, -0.07018956542015076, -0.08494289964437485, 0.04160119965672493, -0.05583677068352699, -0.005626798141747713, -0.0558261014521122, -0.09504289925098419, -0.07143731415271759, 0.03750523179769516, -0.06122991070151329, -0.08506113290786743, -0.06646891683340073, -0.09669836610555649, 0.058706868439912796, -0.018377752974629402, 0.14915460348129272, -0.05541693791747093, 0.06556089222431183, 0.030612073838710785, 0.033388156443834305, 0.0753558874130249, 0.06353280693292618, -0.019940396770834923, 0.06286950409412384, -0.17611098289489746, 0.09631611406803131, -0.11952096223831177, 0.05662520229816437, -0.13002347946166992, -0.09600388258695602, -0.004979385528713465, -0.0035148842725902796, 0.07695602625608444, 0.12098155170679092, -0.1429179459810257, -0.09564471989870071, 0.1557115912437439, -0.0628344789147377, -0.09538161009550095, 0.11429047584533691, 0.0008051714976318181, -0.039403509348630905, 0.02384641207754612, 0.16561686992645264, 0.16821254789829254, -0.097071573138237, 0.00006296753417700529, -0.028242675587534904, 0.14075584709644318, 0.05244908854365349, 0.0899721160531044, -0.05419676750898361, 0.06348136067390442, 0.00876276008784771, -0.036870408803224564, 0.04395585134625435, -0.06567629426717758, -0.07915320992469788, -0.013187547214329243, -0.08042997121810913, -0.011261646635830402, 0.05981522053480148, 0.01865517906844616, -0.06695656478404999, -0.13102389872074127, -0.015693936496973038, 0.11639845371246338, -0.10002429038286209, 0.01271553710103035, -0.07559996843338013, 0.051793769001960754, 0.00529644126072526, 0.0020994527731090784, -0.14800207316875458, -0.04200204461812973, 0.05111508443951607, -0.04881450906395912, 0.02867218665778637, -0.012956229969859123, 0.06971563398838043, 0.04339388757944107, -0.043984249234199524, -0.06207269802689552, -0.037578560411930084, -0.013063455931842327, -0.050753120332956314, -0.23010024428367615, -0.07443253695964813, -0.02099839597940445, 0.2083967924118042, -0.20018212497234344, 0.014902175404131413, 0.06460493057966232, 0.13246223330497742, 0.03383253887295723, -0.04455010965466499, 0.020706402137875557, 0.06076109781861305, -0.019682830199599266, -0.08452722430229187, 0.02386804111301899, 0.005113156046718359, -0.10092088580131531, 0.02122754603624344, -0.16754500567913055, 0.059518203139305115, 0.08430551737546921, 0.014250884763896465, -0.06209452077746391, -0.05061258375644684, -0.051325973123311996, -0.05285773053765297, 0.003512180410325527, -0.015334432944655418, 0.15776918828487396, 0.015704164281487465, 0.11199602484703064, -0.0728212222456932, -0.04421132057905197, 0.04579920694231987, 0.024647003039717674, 0.0024615107104182243, 0.12423622608184814, 0.035394251346588135, -0.029822085052728653, 0.09993721544742584, 0.036012567579746246, -0.06283245235681534, 0.15614593029022217, -0.09079970419406891, -0.08281189203262329, -0.03130301460623741, 0.020982010290026665, 0.037194088101387024, 0.1130816861987114, -0.17169681191444397, -0.02427798882126808, 0.0258353129029274, 0.013520471751689911, 0.014116368256509304, -0.16679486632347107, 0.017645299434661865, 0.02840466983616352, -0.0908006802201271, 0.01743088848888874, -0.007553095929324627, -0.008711185306310654, 0.07086759805679321, 0.010772335343062878, -0.07009384036064148, -0.0368163026869297, -0.041600074619054794, -0.0773264467716217, 0.17538896203041077, -0.10232561826705933, -0.15186049044132233, -0.14009489119052887, 0.003543819533661008, -0.026789281517267227, 0.0011412021704018116, 0.022523989900946617, -0.0827789455652237, -0.03693216294050217, -0.05968455970287323, 0.024601003155112267, -0.025112271308898926, 0.021232519298791885, 0.019004719331860542, 0.008317581377923489, 0.0820636972784996, -0.09770648926496506, 0.013297717086970806, 0.0035286250058561563, -0.04975372925400734, -0.012102682143449783, 0.009919775649905205, 0.0898691937327385, 0.1764133870601654, 0.06308655440807343, 0.029915064573287964, -0.03672587871551514, 0.1661725789308548, -0.15562348067760468, 0.0241613257676363, 0.12113354355096817, 0.007231971714645624, 0.03737345337867737, 0.14583544433116913, 0.041579995304346085, -0.05596933886408806, -0.006234299391508102, 0.03386741504073143, -0.016500554978847504, -0.21856963634490967, -0.034441087394952774, -0.07546074688434601, 0.007548486348241568, 0.1054760292172432, 0.03095986880362034, 0.05002580210566521, 0.03763556480407715, -0.041981033980846405, 0.0002913936332333833, 0.06202247738838196, 0.05541323870420456, 0.10832659155130386, 0.04724234715104103, 0.11823362112045288, -0.009512518532574177, -0.026859669014811516, 0.02895706705749035, 0.017417730763554573, 0.2077503502368927, 0.011334863491356373, 0.2197204828262329, 0.028864778578281403, 0.11571541428565979, -0.005564616993069649, 0.04378870129585266, 0.0248404648154974, -0.004648216534405947, 0.03059861809015274, -0.06191443279385567, -0.012971843592822552, 0.034315261989831924, 0.11206190288066864, 0.016765549778938293, -0.0945238322019577, 0.028255494311451912, 0.02743571065366268, 0.35865384340286255, 0.08329983800649643, -0.2843531370162964, -0.09048371016979218, 0.017177129164338112, -0.0651644915342331, -0.04432574659585953, 0.028610844165086746, 0.12343405187129974, -0.08433444052934647, 0.09617340564727783, -0.05178777873516083, 0.09040408581495285, -0.05981195345520973, 0.008216011337935925, 0.09668634086847305, 0.09266364574432373, 0.015426256693899632, 0.05285094678401947, -0.22345547378063202, 0.2565514147281647, 0.000819993088953197, 0.06626058369874954, -0.04113622382283211, 0.059953413903713226, 0.03889991343021393, 0.017259197309613228, 0.0708559975028038, -0.0160718634724617, -0.1099809855222702, -0.17099054157733917, -0.09538587927818298, 0.009602389298379421, 0.1281188577413559, -0.07214841991662979, 0.11927354335784912, -0.03682776540517807, -0.05169438570737839, 0.03767198324203491, -0.09057716280221939, -0.09829415380954742, -0.10362157225608826, 0.04921245947480202, 0.03662421181797981, 0.06362573802471161, -0.08759351819753647, -0.07920524477958679, -0.05020708963274956, 0.13339996337890625, -0.14096271991729736, -0.024696217849850655, -0.13594786822795868, 0.06163632497191429, 0.16514664888381958, -0.06574080139398575, 0.03761792555451393, 0.000634689349681139, 0.15380018949508667, 0.03023158758878708, -0.009523275308310986, 0.09163954854011536, -0.08195097744464874, -0.23089776933193207, -0.03828607499599457, 0.18404826521873474, 0.011218010447919369, 0.06800809502601624, -0.01536612119525671, 0.03736620768904686, 0.0005934509099461138, -0.07425855845212936, 0.06124885380268097, 0.024728672578930855, -0.0035209055058658123, 0.041122715920209885, -0.020079413428902626, 0.01388662587851286, -0.07749390602111816, -0.027377285063266754, 0.08260273933410645, 0.24439920485019684, -0.0895756334066391, 0.03226982057094574, 0.03311808779835701, -0.06547562777996063, -0.15966400504112244, -0.00026040725060738623, 0.1391715556383133, 0.03550871089100838, -0.0379454605281353, -0.21713261306285858, 0.040170732885599136, 0.07565929740667343, -0.031577300280332565, 0.10098356008529663, -0.2851484417915344, -0.14235632121562958, 0.09592021256685257, 0.022362222895026207, -0.06976931542158127, -0.17877674102783203, -0.07349471002817154, -0.01995546743273735, -0.05280435457825661, 0.03542908653616905, -0.048050377517938614, 0.11917980760335922, 0.005805862136185169, 0.023835230618715286, 0.022970333695411682, -0.037361450493335724, 0.1546434462070465, 0.011308913119137287, 0.036295969039201736, -0.009344707243144512, 0.010996920056641102, 0.04294455423951149, -0.0755813866853714, 0.011304382234811783, -0.07743534445762634, 0.01967705599963665, -0.1391608715057373, -0.02018718793988228, -0.08984244614839554, 0.026663724333047867, -0.04140635207295418, -0.012605306692421436, -0.021955745294690132, 0.04354586452245712, 0.06014348939061165, 0.019644660875201225, 0.1513846218585968, -0.06808505207300186, 0.14523471891880035, 0.181778684258461, 0.12384116649627686, 0.012234479188919067, -0.0888160914182663, -0.006201294716447592, -0.00903288647532463, 0.034209705889225006, -0.11085465550422668, 0.03853752464056015, 0.13378122448921204, 0.036564379930496216, 0.13704514503479004, 0.041384100914001465, -0.07805662602186203, 0.00972745195031166, 0.06263294070959091, -0.07222223281860352, -0.1511644572019577, -0.03210805729031563, 0.02294315956532955, -0.1433226466178894, -0.004548217169940472, 0.13747483491897583, -0.0333743542432785, 0.0043158158659935, 0.01881638914346695, 0.04094870761036873, -0.03485117852687836, 0.23027479648590088, 0.03541212156414986, 0.1039995402097702, -0.09594514966011047, 0.07959787547588348, 0.05821347236633301, -0.11075425148010254, 0.02717851847410202, 0.11304785311222076, -0.05471639707684517, -0.025662198662757874, 0.012613958679139614, 0.06618817895650864, 0.022753233090043068, -0.06027517840266228, -0.12024927139282227, -0.16040411591529846, 0.08049511164426804, 0.10910606384277344, 0.020113861188292503, 0.029311152175068855, -0.01822855696082115, 0.045872416347265244, -0.09532160311937332, 0.11641354113817215, 0.06167362630367279, 0.07038489729166031, -0.136611208319664, 0.1154639944434166, 0.003834022907540202, 0.005149240605533123, -0.0007179188542068005, -0.009704750031232834, -0.09646894782781601, 0.007394568528980017, -0.1347157210111618, 0.002789281541481614, -0.03565428406000137, -0.003352977568283677, 0.014181542210280895, -0.05562951788306236, -0.06290063261985779, 0.02607533149421215, -0.10845208913087845, -0.044322747737169266, -0.04414529353380203, 0.06886262446641922, -0.09211043268442154, -0.013135330751538277, 0.028542175889015198, -0.12321408838033676, 0.09674978256225586, 0.03641939535737038, 0.020116591826081276, 0.020634474232792854, -0.054327305406332016, 0.0009843145962804556, 0.03258697688579559, 0.01788530871272087, 0.03307056054472923, -0.15258529782295227, -0.0064018238335847855, -0.03766198083758354, 0.013056832365691662, -0.013522481545805931, 0.011460448615252972, -0.10747180134057999, 0.00887297373265028, -0.027687812224030495, -0.0549217127263546, -0.05709395185112953, 0.07458194345235825, 0.07470912486314774, 0.014580446295440197, 0.13656581938266754, -0.0774790421128273, 0.05580112338066101, -0.2383316457271576, 0.013963967561721802, -0.01139655988663435, -0.07958357781171799, -0.05051323026418686, -0.026326345279812813, 0.10702057182788849, -0.06168345361948013, 0.07328952103853226, -0.033765457570552826, 0.08575385063886642, 0.029094692319631577, -0.10925078392028809, 0.020817499607801437, 0.0703076720237732, 0.14777134358882904, 0.06912942975759506, -0.024989858269691467, 0.09122531116008759, -0.017456278204917908, 0.05808861553668976, 0.1130296066403389, 0.15155398845672607, 0.12082257866859436, 0.04107270389795303, 0.08852757513523102, 0.11858086287975311, -0.13609729707241058, -0.1166759580373764, 0.1271669715642929, -0.07652854174375534, 0.148737370967865, -0.0395379438996315, 0.16727939248085022, 0.10553845018148422, -0.2049868255853653, 0.05884387344121933, -0.05941024422645569, -0.08835005015134811, -0.11063840985298157, -0.06975884735584259, -0.08402490615844727, -0.18212401866912842, 0.0030268076807260513, -0.11612409353256226, 0.05657380446791649, 0.05109606683254242, 0.04021759703755379, 0.031275853514671326, 0.11788170039653778, 0.03494344279170036, -0.0013667717576026917, 0.12327571958303452, 0.01796291582286358, -0.0008159377030096948, -0.056478019803762436, -0.10352711379528046, 0.04655372351408005, -0.02449083887040615, 0.05905606225132942, -0.043091095983982086, -0.08112110942602158, 0.05770864710211754, 0.008682183921337128, -0.10041540861129761, 0.03814826160669327, -0.017721038311719894, 0.0419185534119606, 0.06886427104473114, 0.016700826585292816, -0.010591046884655952, -0.008834383450448513, 0.20257523655891418, -0.09792176634073257, -0.05943385511636734, -0.1378217190504074, 0.20163114368915558, -0.02052575722336769, -0.006775329355150461, 0.021167490631341934, -0.06040744483470917, -0.02692422643303871, 0.16119232773780823, 0.16097718477249146, -0.023919282481074333, -0.018817780539393425, 0.02149740606546402, -0.008879286237061024, -0.039251163601875305, 0.07794659584760666, 0.10630548000335693, 0.05089486017823219, -0.03261744603514671, -0.017113232985138893, 0.016675826162099838, -0.06539091467857361, -0.03644714504480362, 0.07310140132904053, 0.012423193082213402, 0.0024249020498245955, -0.017333976924419403, 0.1044156551361084, -0.06870271265506744, -0.13032075762748718, 0.04678400605916977, -0.19442994892597198, -0.1849101185798645, -0.04188847914338112, 0.03268332779407501, 0.037918251007795334, 0.05565668269991875, -0.002755343448370695, -0.050790559500455856, 0.1101423054933548, -0.004503464791923761, -0.03566692769527435, -0.10950299352407455, 0.08307821303606033, -0.14373637735843658, 0.17663776874542236, -0.0563928447663784, 0.021604569628834724, 0.11459950357675552, 0.036405887454748154, -0.08497681468725204, 0.01136641763150692, 0.09403260052204132, -0.13921506702899933, 0.03559302166104317, 0.19535674154758453, -0.04748355969786644, 0.14244265854358673, 0.04782099276781082, -0.1008741706609726, 0.0029635753016918898, -0.06932801008224487, -0.04316646233201027, -0.05801524966955185, -0.01963280327618122, -0.04843268170952797, 0.14034415781497955, 0.20861627161502838, -0.06616077572107315, -0.028698431327939034, -0.03419353812932968, 0.011134025640785694, 0.04354235157370567, 0.1319754421710968, -0.05169886723160744, -0.2637244462966919, 0.015589863993227482, -0.016198256984353065, 0.01937495358288288, -0.19157595932483673, -0.07309085875749588, 0.024242043495178223, -0.04273870214819908, -0.04913197457790375, 0.12722118198871613, 0.046633824706077576, 0.03672968968749046, -0.05561384931206703, -0.09549032896757126, -0.024593481793999672, 0.1842077225446701, -0.1904916763305664, -0.05833807215094566 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UK dataset. It achieves the following results on the evaluation set: - Loss: 0.1747 - Wer: 0.2107 - Cer: 0.0408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.3719 | 4.35 | 500 | 0.3389 | 0.4236 | 0.0833 | | 1.1361 | 8.7 | 1000 | 0.2309 | 0.3162 | 0.0630 | | 1.0517 | 13.04 | 1500 | 0.2166 | 0.3056 | 0.0597 | | 1.0118 | 17.39 | 2000 | 0.2141 | 0.2784 | 0.0557 | | 0.9922 | 21.74 | 2500 | 0.2231 | 0.2941 | 0.0594 | | 0.9929 | 26.09 | 3000 | 0.2171 | 0.2892 | 0.0587 | | 0.9485 | 30.43 | 3500 | 0.2236 | 0.2956 | 0.0599 | | 0.9573 | 34.78 | 4000 | 0.2314 | 0.3043 | 0.0616 | | 0.9195 | 39.13 | 4500 | 0.2169 | 0.2812 | 0.0580 | | 0.8915 | 43.48 | 5000 | 0.2109 | 0.2780 | 0.0560 | | 0.8449 | 47.83 | 5500 | 0.2050 | 0.2534 | 0.0514 | | 0.8028 | 52.17 | 6000 | 0.2032 | 0.2456 | 0.0492 | | 0.7881 | 56.52 | 6500 | 0.1890 | 0.2380 | 0.0469 | | 0.7423 | 60.87 | 7000 | 0.1816 | 0.2245 | 0.0442 | | 0.7248 | 65.22 | 7500 | 0.1789 | 0.2165 | 0.0422 | | 0.6993 | 69.57 | 8000 | 0.1747 | 0.2107 | 0.0408 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["uk"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-xls-r-1b-hy-cv", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice uk", "type": "mozilla-foundation/common_voice_8_0", "args": "uk"}, "metrics": [{"type": "wer", "value": 12.246920571994902, "name": "WER LM"}, {"type": "cer", "value": 2.513653497966816, "name": "CER LM"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "uk"}, "metrics": [{"type": "wer", "value": 46.56, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "uk"}, "metrics": [{"type": "wer", "value": 35.98, "name": "Test WER"}]}]}]}
automatic-speech-recognition
arampacha/wav2vec2-xls-r-1b-uk-cv
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "uk", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "uk" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #uk #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - UK dataset. It achieves the following results on the evaluation set: * Loss: 0.1747 * Wer: 0.2107 * Cer: 0.0408 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 8e-05 * train\_batch\_size: 16 * eval\_batch\_size: 64 * seed: 42 * gradient\_accumulation\_steps: 8 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 8000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 8000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #uk #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 8000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ 119, 159, 4, 39 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #uk #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 8000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ -0.11287152767181396, 0.08894600719213486, -0.006536797620356083, 0.042657461017370224, 0.10231440514326096, 0.025525910779833794, 0.10657408833503723, 0.1442563384771347, -0.07836417108774185, 0.10270284861326218, 0.06819736957550049, 0.06527378410100937, 0.08784760534763336, 0.07675649225711823, -0.011193470098078251, -0.2899024784564972, 0.015107767656445503, -0.028182953596115112, -0.14307674765586853, 0.09193523228168488, 0.10955445468425751, -0.1025102436542511, 0.020584257319569588, 0.022700130939483643, -0.08703663945198059, 0.0017928642919287086, -0.04007508233189583, -0.04427443817257881, 0.09560501575469971, 0.05303272604942322, 0.06831750273704529, 0.05037649720907211, 0.09629832208156586, -0.26409992575645447, 0.00935029610991478, 0.0696716159582138, 0.026458963751792908, 0.06107846274971962, 0.10647746920585632, -0.0000790173071436584, 0.09299544245004654, -0.05020768567919731, 0.05091800168156624, 0.04768363758921623, -0.10957830399274826, -0.26694580912590027, -0.08605864644050598, 0.02589433081448078, 0.12773185968399048, 0.08316586166620255, -0.03031160496175289, 0.015541134402155876, -0.08851604163646698, 0.07317305356264114, 0.2334606796503067, -0.1931820511817932, -0.07353422790765762, -0.013207163661718369, 0.051532451063394547, 0.03520398959517479, -0.10920580476522446, -0.022988172248005867, 0.019995208829641342, 0.009153836406767368, 0.07688011229038239, 0.028168020769953728, 0.011917044408619404, 0.003924323711544275, -0.1338149905204773, -0.05536581948399544, 0.11868671327829361, 0.06443832069635391, -0.00502421148121357, -0.08711039274930954, -0.02594166062772274, -0.16426071524620056, -0.038281504064798355, 0.021507252007722855, 0.028865298256278038, -0.022435162216424942, -0.021622847765684128, 0.01958080381155014, -0.06081537902355194, -0.07347918301820755, 0.05735982954502106, 0.12248855829238892, 0.04439390078186989, -0.02732580527663231, -0.008008787408471107, 0.10921720415353775, 0.08003146201372147, -0.18355096876621246, -0.02192297950387001, 0.04900839924812317, -0.1049000546336174, -0.012273651547729969, -0.026048870757222176, 0.029774393886327744, 0.03607166185975075, 0.13461242616176605, -0.015399415045976639, 0.07359331846237183, 0.004461138509213924, 0.03256994113326073, -0.08035562932491302, 0.1641128659248352, -0.06384850293397903, -0.054030776023864746, -0.04777761921286583, 0.131422221660614, -0.01954086869955063, -0.0169222392141819, -0.06757135689258575, 0.015668949112296104, 0.07329759001731873, 0.046910904347896576, -0.007078018505126238, 0.01783212088048458, -0.07448935508728027, -0.012727036140859127, -0.0011811290169134736, -0.12955839931964874, 0.03691355139017105, 0.06689321249723434, -0.08368780463933945, 0.0032491108868271112, -0.014894641935825348, 0.025137290358543396, -0.029035281389951706, 0.08659734576940536, -0.04379316046833992, -0.008360516279935837, -0.0897396057844162, -0.07978666573762894, 0.04720386117696762, -0.04936220124363899, 0.011330364271998405, -0.04615653306245804, -0.10707700252532959, -0.06855998188257217, 0.05542941763997078, -0.06904811412096024, -0.06700093299150467, -0.0714094415307045, -0.09222537279129028, 0.055768534541130066, -0.02519247867166996, 0.18013188242912292, -0.0457204133272171, 0.0805160328745842, 0.022275423631072044, 0.05036485567688942, 0.10802292078733444, 0.0686998963356018, -0.01227409578859806, 0.055124372243881226, -0.11280693858861923, 0.09255573153495789, -0.10143136233091354, 0.04101121425628662, -0.1174754798412323, -0.09279080480337143, -0.014597885310649872, 0.004281016532331705, 0.09528008848428726, 0.11168623715639114, -0.1675700694322586, -0.08960927277803421, 0.14758117496967316, -0.062211230397224426, -0.0832529366016388, 0.13014008104801178, -0.018681231886148453, -0.03956806659698486, 0.012832853943109512, 0.14101098477840424, 0.13037413358688354, -0.08577407151460648, 0.014198141172528267, -0.056944429874420166, 0.12422258406877518, 0.07815810292959213, 0.1047946959733963, -0.0335928276181221, 0.07016990333795547, -0.006582578178495169, -0.043319255113601685, 0.048466507345438004, -0.08008521050214767, -0.08672147989273071, -0.006775887217372656, -0.06312176585197449, 0.014693201519548893, 0.06279847025871277, 0.013181845657527447, -0.07223435491323471, -0.1433374434709549, 0.006194457411766052, 0.10315112769603729, -0.09559247642755508, 0.023857243359088898, -0.08523081243038177, 0.06084732711315155, 0.008320416323840618, -0.0068380264565348625, -0.1457684487104416, -0.0288636963814497, 0.02523934468626976, -0.04396553337574005, -0.003967066295444965, 0.019643116742372513, 0.06476763635873795, 0.04877566546201706, -0.03399733826518059, -0.05854678153991699, -0.0743594691157341, -0.012307877652347088, -0.04972197487950325, -0.23852364718914032, -0.07704376429319382, -0.025800462812185287, 0.1660250425338745, -0.2030135542154312, 0.015457541681826115, 0.060924921184778214, 0.14971494674682617, 0.016490604728460312, -0.03683633357286453, -0.011427660472691059, 0.048545658588409424, -0.030436955392360687, -0.07106593251228333, 0.01670183055102825, -0.00258255610242486, -0.08404110372066498, 0.0338774174451828, -0.13495856523513794, 0.07893956452608109, 0.08899933099746704, -0.01365626510232687, -0.04941895976662636, -0.026412278413772583, -0.06095946580171585, -0.04767797514796257, -0.022707071155309677, -0.0236363522708416, 0.18348947167396545, 0.005424567963927984, 0.10853227227926254, -0.0861620306968689, -0.07078523188829422, 0.03253060579299927, 0.01637374609708786, -0.008897594176232815, 0.14408975839614868, 0.05781105160713196, -0.02539590187370777, 0.09439667314291, 0.046171873807907104, -0.059984996914863586, 0.1632576286792755, -0.07539855688810349, -0.09243687987327576, -0.03385305404663086, 0.008174081332981586, 0.024271728470921516, 0.11486544460058212, -0.18078218400478363, -0.014177118428051472, 0.020701052621006966, 0.023932909592986107, 0.03221287205815315, -0.19415389001369476, -0.009905043989419937, 0.0521482452750206, -0.0829290896654129, -0.01630781963467598, -0.0050524878315627575, -0.0090687470510602, 0.08624883741140366, 0.006527132820338011, -0.08845407515764236, -0.02948857843875885, -0.053416043519973755, -0.09157425910234451, 0.1562768667936325, -0.09006337076425552, -0.1140102669596672, -0.11906467378139496, -0.018768135458230972, 0.0177470613270998, -0.008534570224583149, 0.02981271781027317, -0.10540831834077835, -0.034901510924100876, -0.06234363466501236, 0.029342398047447205, -0.05100695416331291, 0.013492568396031857, 0.05474121868610382, 0.00968250073492527, 0.05075869336724281, -0.09410136193037033, 0.018816178664565086, -0.017272505909204483, -0.029952272772789, -0.006759701296687126, 0.005423002410680056, 0.07699637860059738, 0.17008042335510254, 0.04019561782479286, 0.03792627528309822, -0.028350748121738434, 0.1706862449645996, -0.14050514996051788, 0.00813156645745039, 0.1255398988723755, -0.0013969031861051917, 0.042392753064632416, 0.14509320259094238, 0.04420551657676697, -0.07032604515552521, 0.008757397532463074, 0.028905827552080154, -0.021825382485985756, -0.2548688054084778, -0.01444312185049057, -0.07434731721878052, -0.03658831864595413, 0.0906480923295021, 0.028804093599319458, 0.017198674380779266, 0.020902520045638084, -0.03841761499643326, -0.020505350083112717, 0.07097113877534866, 0.03902328386902809, 0.059709660708904266, 0.04160449281334877, 0.10367313772439957, -0.006397439166903496, -0.027688050642609596, 0.013749039731919765, -0.0014035613276064396, 0.21792949736118317, -0.001842616475187242, 0.17026446759700775, 0.04610365629196167, 0.12595431506633759, -0.0058830357156693935, 0.04358592629432678, 0.0014714142307639122, -0.00593223050236702, 0.02136571891605854, -0.044898416846990585, -0.013641615398228168, 0.03735104575753212, 0.10002047568559647, 0.015060081146657467, -0.10292764008045197, 0.014544935896992683, 0.01577574573457241, 0.3247906565666199, 0.07789727300405502, -0.27113065123558044, -0.06008739396929741, 0.017869727686047554, -0.056266531348228455, -0.024425411596894264, 0.028372541069984436, 0.12065885215997696, -0.06355762481689453, 0.06665406376123428, -0.040296804159879684, 0.09210743755102158, -0.04494309425354004, 0.0018669688142836094, 0.10011305660009384, 0.08502213656902313, 0.013869604095816612, 0.06383811682462692, -0.245321124792099, 0.2603475749492645, -0.01960901729762554, 0.07490123808383942, -0.043755967170000076, 0.054129138588905334, 0.02773752063512802, -0.01265022438019514, 0.0663706511259079, -0.00853618886321783, -0.12505567073822021, -0.15205518901348114, -0.08077029883861542, 0.009694200940430164, 0.12174808233976364, -0.08267221599817276, 0.1140604168176651, -0.04017222672700882, -0.03450744226574898, 0.05325978621840477, -0.05005881190299988, -0.1030086800456047, -0.10954941064119339, 0.04637087509036064, 0.0028718477115035057, 0.0630594789981842, -0.094316765666008, -0.10201065987348557, -0.07892510294914246, 0.1355145275592804, -0.13699579238891602, -0.015183670446276665, -0.13702431321144104, 0.07528803497552872, 0.1542586386203766, -0.05539511889219284, 0.025881575420498848, 0.03578239306807518, 0.15546497702598572, 0.018306776881217957, -0.007581531535834074, 0.10234194993972778, -0.08450474590063095, -0.22610534727573395, -0.06074434146285057, 0.17277109622955322, 0.04033093899488449, 0.07187379896640778, -0.00983620248734951, 0.028119541704654694, -0.013530935160815716, -0.06101804971694946, 0.07976505160331726, 0.05434694141149521, 0.01193958055227995, 0.03731699660420418, -0.02699636109173298, 0.019715825095772743, -0.07033241540193558, -0.0564706064760685, 0.08265243470668793, 0.24675238132476807, -0.08206326514482498, 0.039990875869989395, 0.017967713996767998, -0.07660553604364395, -0.15071649849414825, -0.0012739298399537802, 0.13561750948429108, 0.05123412609100342, -0.02797551266849041, -0.20235282182693481, 0.00751950778067112, 0.06650526076555252, -0.02177593670785427, 0.052578963339328766, -0.328224241733551, -0.13257361948490143, 0.07639885693788528, 0.04844626039266586, -0.030922455713152885, -0.15017327666282654, -0.052124470472335815, -0.020719071850180626, -0.09827467054128647, 0.03850284963846207, -0.03278606757521629, 0.10365717858076096, 0.007229195442050695, 0.008503149263560772, 0.015230952762067318, -0.049126431345939636, 0.16053950786590576, 0.0209296103566885, 0.042196642607450485, -0.010152042843401432, 0.012847699224948883, 0.0394308939576149, -0.06319998949766159, -0.010245164856314659, -0.05899611860513687, 0.019015124067664146, -0.1469191014766693, -0.03264915198087692, -0.08870567381381989, 0.00487403804436326, -0.05898769199848175, -0.012916415929794312, -0.022680196911096573, 0.047714147716760635, 0.09239652752876282, 0.024938320741057396, 0.10929714888334274, -0.06485331058502197, 0.1294662207365036, 0.12447339296340942, 0.12463875114917755, 0.025504138320684433, -0.08877932280302048, -0.006615190766751766, 0.018139801919460297, 0.04402440786361694, -0.12303481996059418, 0.040606774389743805, 0.14650419354438782, 0.0373694933950901, 0.1381808966398239, 0.062452636659145355, -0.09625744074583054, 0.008672085590660572, 0.06255503743886948, -0.05969646945595741, -0.12822748720645905, -0.021361878141760826, 0.03928050398826599, -0.11756111681461334, -0.029763324186205864, 0.11241963505744934, -0.03844379261136055, 0.0020789781119674444, 0.016517186537384987, 0.044596899300813675, -0.036139413714408875, 0.22334875166416168, 0.028137877583503723, 0.1017051562666893, -0.08136850595474243, 0.06911574304103851, 0.053912680596113205, -0.093205526471138, 0.027235737070441246, 0.09327203780412674, -0.03795073553919792, -0.02485341764986515, 0.009621462784707546, 0.07343299686908722, 0.03209810331463814, -0.054821234196424484, -0.12840473651885986, -0.15814964473247528, 0.0949237123131752, 0.08484403789043427, 0.021974844858050346, 0.034626543521881104, -0.012091397307813168, 0.04137737676501274, -0.08113586902618408, 0.10391887277364731, 0.08328497409820557, 0.0625900998711586, -0.10772296786308289, 0.10631298273801804, 0.00982136931270361, 0.005730051547288895, 0.0012782472185790539, 0.0019514750456437469, -0.08689390867948532, 0.03498828783631325, -0.11881466209888458, -0.003909815102815628, -0.028197292238473892, -0.01249607466161251, 0.0068596405908465385, -0.07140714675188065, -0.05761098861694336, 0.023093758150935173, -0.10989580303430557, -0.03114202246069908, -0.03756024315953255, 0.06023327261209488, -0.09505403786897659, -0.02371894009411335, 0.04617646709084511, -0.1370040774345398, 0.09662521630525589, 0.031739626079797745, 0.023536693304777145, 0.01805504970252514, -0.08914372324943542, -0.010624686256051064, 0.011430392973124981, 0.021807760000228882, 0.02948462776839733, -0.17049062252044678, -0.002431808738037944, -0.03420232981443405, 0.003064769087359309, -0.02152320370078087, -0.02552221156656742, -0.10801083594560623, 0.018902838230133057, -0.02272649109363556, -0.07423096150159836, -0.04193410277366638, 0.06098880246281624, 0.07323160767555237, 0.019003190100193024, 0.14183196425437927, -0.06639817357063293, 0.07842059433460236, -0.23466233909130096, 0.014431154355406761, 0.0015986555954441428, -0.05039623752236366, -0.033195704221725464, -0.021334059536457062, 0.09782706946134567, -0.07256706058979034, 0.08471453189849854, -0.015552903525531292, 0.03671837970614433, 0.035666290670633316, -0.11842844635248184, 0.03850226849317551, 0.07467195391654968, 0.14681895077228546, 0.058510128408670425, -0.012740901671350002, 0.07073140889406204, -0.038931284099817276, 0.05765845254063606, 0.10087795555591583, 0.14905992150306702, 0.14805404841899872, 0.10041027516126633, 0.07857590168714523, 0.11273916065692902, -0.1447608470916748, -0.1214446872472763, 0.15019161999225616, -0.06563443690538406, 0.11965537071228027, -0.026391467079520226, 0.18031200766563416, 0.13177403807640076, -0.2029045671224594, 0.06141616404056549, -0.04688519984483719, -0.07843106985092163, -0.10725563764572144, -0.07496929913759232, -0.07397545129060745, -0.16227415204048157, 0.024114491418004036, -0.10726961493492126, 0.06243327260017395, 0.0775551125407219, 0.045611388981342316, 0.03338787332177162, 0.07500968128442764, 0.08519138395786285, 0.006016593426465988, 0.10076771676540375, 0.017046473920345306, 0.004302981309592724, -0.06559208035469055, -0.10735004395246506, 0.0529712475836277, -0.019710009917616844, 0.0512053444981575, -0.03753818944096565, -0.08696483820676804, 0.04761703684926033, 0.030086472630500793, -0.09846193343400955, 0.037039775401353836, -0.032842960208654404, 0.05907592549920082, 0.05602419748902321, 0.03112044744193554, 0.01022290624678135, -0.008426395244896412, 0.1933576911687851, -0.07165227830410004, -0.0460604652762413, -0.12740597128868103, 0.16449393332004547, 0.009784102439880371, 0.014393601566553116, 0.03557032719254494, -0.0679916962981224, -0.026934856548905373, 0.1503354012966156, 0.1370329111814499, -0.03589024394750595, -0.021596696227788925, 0.030875306576490402, -0.004777638241648674, -0.026261739432811737, 0.06159253790974617, 0.12269667536020279, 0.04976048320531845, -0.046840254217386246, -0.03293999657034874, -0.02070126123726368, -0.055088091641664505, -0.010232338681817055, 0.08344356715679169, 0.011408013291656971, -0.001587252481840551, -0.025584474205970764, 0.09962217509746552, -0.05350901186466217, -0.15616366267204285, 0.047861989587545395, -0.18407487869262695, -0.1843661367893219, -0.03508878871798515, 0.06600753962993622, 0.029931310564279556, 0.06977608799934387, -0.004374620504677296, -0.059799984097480774, 0.10303271561861038, 0.0058956146240234375, -0.03530766814947128, -0.08307377249002457, 0.07812289148569107, -0.12617138028144836, 0.19338944554328918, -0.05453641340136528, 0.03821592777967453, 0.11409658938646317, 0.05107336491346359, -0.07970772683620453, 0.00004009394979220815, 0.09078706055879593, -0.11876244843006134, 0.02646598219871521, 0.1911218762397766, -0.04257607087492943, 0.12052428722381592, 0.0589265376329422, -0.1021142527461052, 0.025078440085053444, -0.06091391295194626, -0.04743087664246559, -0.05546562746167183, -0.00009923785546561703, -0.038864683359861374, 0.12850545346736908, 0.20355959236621857, -0.06402895599603653, -0.018707316368818283, -0.03206009417772293, 0.009103575721383095, 0.011186896823346615, 0.15491150319576263, -0.032283682376146317, -0.2555520236492157, 0.02048519253730774, -0.009798398241400719, 0.016063669696450233, -0.17817926406860352, -0.09017035365104675, 0.03932870179414749, -0.0673617273569107, -0.05996786803007126, 0.10826525092124939, 0.07349609583616257, 0.049592792987823486, -0.05991261824965477, -0.111496701836586, -0.029404090717434883, 0.17511415481567383, -0.16959112882614136, -0.053162820637226105 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/UK/COMPOSED_DATASET/ - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.1092 - Wer: 0.1752 - Cer: 0.0323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 12000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 1.7005 | 1.61 | 500 | 0.4082 | 0.5584 | 0.1164 | | 1.1555 | 3.22 | 1000 | 0.2020 | 0.2953 | 0.0557 | | 1.0927 | 4.82 | 1500 | 0.1708 | 0.2584 | 0.0480 | | 1.0707 | 6.43 | 2000 | 0.1563 | 0.2405 | 0.0450 | | 1.0728 | 8.04 | 2500 | 0.1620 | 0.2442 | 0.0463 | | 1.0268 | 9.65 | 3000 | 0.1588 | 0.2378 | 0.0458 | | 1.0328 | 11.25 | 3500 | 0.1466 | 0.2352 | 0.0442 | | 1.0249 | 12.86 | 4000 | 0.1552 | 0.2341 | 0.0449 | | 1.016 | 14.47 | 4500 | 0.1602 | 0.2435 | 0.0473 | | 1.0164 | 16.08 | 5000 | 0.1491 | 0.2337 | 0.0444 | | 0.9935 | 17.68 | 5500 | 0.1539 | 0.2373 | 0.0458 | | 0.9626 | 19.29 | 6000 | 0.1458 | 0.2305 | 0.0434 | | 0.9505 | 20.9 | 6500 | 0.1368 | 0.2157 | 0.0407 | | 0.9389 | 22.51 | 7000 | 0.1437 | 0.2231 | 0.0426 | | 0.9129 | 24.12 | 7500 | 0.1313 | 0.2076 | 0.0394 | | 0.9118 | 25.72 | 8000 | 0.1292 | 0.2040 | 0.0384 | | 0.8848 | 27.33 | 8500 | 0.1299 | 0.2028 | 0.0384 | | 0.8667 | 28.94 | 9000 | 0.1228 | 0.1945 | 0.0367 | | 0.8641 | 30.55 | 9500 | 0.1223 | 0.1939 | 0.0364 | | 0.8516 | 32.15 | 10000 | 0.1184 | 0.1876 | 0.0349 | | 0.8379 | 33.76 | 10500 | 0.1137 | 0.1821 | 0.0338 | | 0.8235 | 35.37 | 11000 | 0.1127 | 0.1779 | 0.0331 | | 0.8112 | 36.98 | 11500 | 0.1103 | 0.1766 | 0.0327 | | 0.8069 | 38.59 | 12000 | 0.1092 | 0.1752 | 0.0323 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["uk"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-1b-hy", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice uk", "type": "mozilla-foundation/common_voice_8_0", "args": "uk"}, "metrics": [{"type": "wer", "value": 10.406342913776015, "name": "WER LM"}, {"type": "cer", "value": 2.0387492208601703, "name": "CER LM"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "uk"}, "metrics": [{"type": "wer", "value": 40.57, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "uk"}, "metrics": [{"type": "wer", "value": 28.95, "name": "Test WER"}]}]}]}
automatic-speech-recognition
arampacha/wav2vec2-xls-r-1b-uk
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "uk", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "uk" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #uk #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the /WORKSPACE/DATA/UK/COMPOSED\_DATASET/ - NA dataset. It achieves the following results on the evaluation set: * Loss: 0.1092 * Wer: 0.1752 * Cer: 0.0323 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 16 * eval\_batch\_size: 64 * seed: 42 * gradient\_accumulation\_steps: 8 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 12000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2 * Datasets 1.18.4.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 12000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #uk #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 12000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ 109, 160, 4, 36 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #uk #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 12000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ -0.13464748859405518, 0.09752877056598663, -0.004913621582090855, 0.05576420575380325, 0.09661780297756195, 0.0188152939081192, 0.1052614077925682, 0.1574903428554535, -0.09406475722789764, 0.11446955800056458, 0.08079302310943604, 0.05070704221725464, 0.09059906750917435, 0.12384342402219772, -0.012790446169674397, -0.29758837819099426, 0.01800215058028698, -0.033166032284498215, -0.14046244323253632, 0.09673725068569183, 0.10836353152990341, -0.1071801483631134, 0.03655014932155609, 0.01897318661212921, -0.08842969685792923, -0.012777798809111118, -0.048387836664915085, -0.047506775707006454, 0.0834476426243782, 0.048411983996629715, 0.06669137626886368, 0.03869909793138504, 0.08864111453294754, -0.2523813545703888, 0.008226106874644756, 0.06808452308177948, 0.0391814224421978, 0.0621577687561512, 0.10496653616428375, -0.0034422026947140694, 0.09123250097036362, -0.06499312818050385, 0.04785918444395065, 0.056429073214530945, -0.11603844165802002, -0.2471543848514557, -0.07989203929901123, 0.04121444746851921, 0.12306129932403564, 0.0869145542383194, -0.03391613811254501, 0.04084044322371483, -0.07583095878362656, 0.08649816364049911, 0.20438122749328613, -0.21118201315402985, -0.07847009599208832, 0.006993492133915424, 0.050890419632196426, 0.056591738015413284, -0.11762852966785431, -0.018150221556425095, 0.01224011741578579, 0.012721856124699116, 0.06913328170776367, 0.004349933005869389, 0.002373995492234826, -0.0006808101898059249, -0.12495078891515732, -0.06443032622337341, 0.15003852546215057, 0.07884005457162857, -0.007869732566177845, -0.11091255396604538, -0.012881222181022167, -0.19367636740207672, -0.05587103217840195, 0.02410997450351715, 0.027296189218759537, -0.024177081882953644, -0.054136913269758224, 0.023706266656517982, -0.07182351499795914, -0.06798238307237625, 0.06531082838773727, 0.06753874570131302, 0.022916138172149658, -0.028125541284680367, 0.005080772563815117, 0.10167965292930603, 0.03806939721107483, -0.17631499469280243, -0.025945089757442474, 0.03460679203271866, -0.11169029027223587, -0.017505912110209465, -0.014122474007308483, 0.03239666670560837, 0.05203210934996605, 0.11678589135408401, -0.0431516095995903, 0.08948051184415817, 0.0028708348982036114, 0.025347433984279633, -0.07400046288967133, 0.17898954451084137, -0.0627046599984169, -0.08415592461824417, -0.0564396008849144, 0.13564719259738922, -0.020034238696098328, -0.011048798449337482, -0.07484303414821625, 0.02701149694621563, 0.09304620325565338, 0.052463598549366, -0.0068327621556818485, 0.03167763352394104, -0.07149814814329147, -0.020729893818497658, 0.03536728397011757, -0.11536752432584763, 0.04904915392398834, 0.06789769232273102, -0.07704684883356094, -0.017692599445581436, -0.005668906960636377, 0.01585632748901844, -0.03767473250627518, 0.06372535973787308, -0.056202732026576996, -0.010001345537602901, -0.07883760333061218, -0.08656927943229675, 0.04472416266798973, -0.05367041751742363, -0.004888435825705528, -0.04947253689169884, -0.10427245497703552, -0.07822786271572113, 0.045398980379104614, -0.06712939590215683, -0.07668742537498474, -0.07886812090873718, -0.101485975086689, 0.05463090538978577, -0.018050700426101685, 0.1781056821346283, -0.0591132715344429, 0.07504604011774063, 0.016877569258213043, 0.04154001548886299, 0.08952201157808304, 0.06929832696914673, -0.024337826296687126, 0.058014221489429474, -0.14599820971488953, 0.10923829674720764, -0.11688816547393799, 0.06193193420767784, -0.12735062837600708, -0.09917949140071869, -0.022070618346333504, 0.0020426874980330467, 0.08085019886493683, 0.1176953911781311, -0.17933955788612366, -0.08710453659296036, 0.16391777992248535, -0.052309054881334305, -0.08643278479576111, 0.11699756234884262, -0.015457423403859138, -0.03226780146360397, 0.020238524302840233, 0.15674042701721191, 0.15667447447776794, -0.09284418821334839, 0.0021735941991209984, -0.034621402621269226, 0.11880656331777573, 0.05567306652665138, 0.08804652094841003, -0.05175773799419403, 0.07033620774745941, 0.0042985714972019196, -0.01140230055898428, 0.04025541618466377, -0.0743548795580864, -0.08898667991161346, -0.011119276285171509, -0.07633259147405624, -0.014841101132333279, 0.06784574687480927, 0.01842772588133812, -0.07397980242967606, -0.13574056327342987, -0.01772163435816765, 0.10568269342184067, -0.09308288246393204, 0.01419094204902649, -0.08009751886129379, 0.05248973146080971, 0.00658664433285594, -0.003033735090866685, -0.15667735040187836, -0.02899753861129284, 0.03777462989091873, -0.034646421670913696, 0.015411075204610825, 0.01043606922030449, 0.07620465010404587, 0.03470844402909279, -0.03945554420351982, -0.06139165163040161, -0.030215952545404434, -0.00928036030381918, -0.05933062359690666, -0.23641014099121094, -0.07217429578304291, -0.02799343504011631, 0.2111338973045349, -0.2185785174369812, 0.014700173400342464, 0.07384047657251358, 0.13056695461273193, 0.030230127274990082, -0.04758407548069954, 0.01886618696153164, 0.05707140266895294, -0.0238651055842638, -0.08244746178388596, 0.02305443398654461, 0.00771362753584981, -0.09019811451435089, 0.020288385450839996, -0.15964500606060028, 0.051343102008104324, 0.09418008476495743, 0.00797924492508173, -0.06896153092384338, -0.053068291395902634, -0.06165335327386856, -0.05001115798950195, -0.006443747319281101, -0.013612937182188034, 0.15047936141490936, 0.014025717042386532, 0.11067160218954086, -0.0771046131849289, -0.0582236684858799, 0.039731092751026154, 0.02220097742974758, -0.00331153254956007, 0.14842736721038818, 0.03332405164837837, -0.04231123998761177, 0.10176531225442886, 0.03262767195701599, -0.060960568487644196, 0.1609712392091751, -0.08892940729856491, -0.09646129608154297, -0.02948150783777237, 0.030057517811655998, 0.03835618123412132, 0.1130625382065773, -0.18232199549674988, -0.017306046560406685, 0.02889505960047245, 0.021903369575738907, 0.023076174780726433, -0.18069571256637573, 0.007320324890315533, 0.03304740786552429, -0.08919341117143631, 0.0037543885409832, -0.01381490658968687, -0.00047480850480496883, 0.07774752378463745, 0.0031374110840260983, -0.0838032141327858, -0.032215941697359085, -0.04475272074341774, -0.08475638180971146, 0.17324073612689972, -0.09774652868509293, -0.14763644337654114, -0.12650704383850098, 0.001002618344500661, -0.004916358273476362, -0.0008381257066503167, 0.028635717928409576, -0.0883232057094574, -0.03571111336350441, -0.07870551198720932, 0.0015387985622510314, -0.03907841071486473, 0.02064322493970394, 0.012116105295717716, 0.017407815903425217, 0.07639272511005402, -0.10412920266389847, 0.01724068447947502, -0.0005573098314926028, -0.03559477999806404, 0.00799525436013937, 0.0004953544703312218, 0.08785519003868103, 0.17661280930042267, 0.054731015115976334, 0.03971157595515251, -0.03379777446389198, 0.18019971251487732, -0.1533825546503067, 0.01479419320821762, 0.08340074121952057, 0.00908035971224308, 0.04177836328744888, 0.15397290885448456, 0.03773556649684906, -0.0679578110575676, -0.0015069765504449606, 0.03675233572721481, -0.021228676661849022, -0.2236713021993637, -0.028151849284768105, -0.08037069439888, 0.0007012055139057338, 0.10900503396987915, 0.03635350242257118, 0.03942649066448212, 0.02559315599501133, -0.026227809488773346, -0.01541365496814251, 0.06823714077472687, 0.04275936633348465, 0.058752864599227905, 0.044129710644483566, 0.11523228883743286, -0.017516443505883217, -0.02878444455564022, 0.025660010054707527, 0.005523717030882835, 0.21703335642814636, -0.0007305651088245213, 0.19903822243213654, 0.04015573114156723, 0.1313985288143158, 0.00608258368447423, 0.053149618208408356, 0.012542287819087505, -0.008670537732541561, 0.025128109380602837, -0.05428491532802582, -0.01318560354411602, 0.039143647998571396, 0.12886057794094086, 0.004853100515902042, -0.09778225421905518, 0.011964607983827591, 0.02362458035349846, 0.34205362200737, 0.09372895210981369, -0.2953726649284363, -0.07327882945537567, 0.01735055446624756, -0.062030129134655, -0.045601993799209595, 0.025822538882493973, 0.1162465363740921, -0.0817766860127449, 0.08200091123580933, -0.04653465747833252, 0.09277556836605072, -0.062114305794239044, 0.0021449143532663584, 0.08631545305252075, 0.07483137398958206, 0.0056817554868757725, 0.06451091170310974, -0.24696509540081024, 0.27196431159973145, -0.005069155246019363, 0.06629237532615662, -0.046362634748220444, 0.05336323752999306, 0.028707128018140793, 0.0001331724924966693, 0.07646223902702332, -0.012597634457051754, -0.10961513966321945, -0.16783034801483154, -0.09389213472604752, 0.005556873977184296, 0.12043958157300949, -0.06571044027805328, 0.1166062280535698, -0.029205938801169395, -0.04525039717555046, 0.04514734074473381, -0.07958788424730301, -0.09921956807374954, -0.12322571128606796, 0.041505493223667145, 0.02758467011153698, 0.07002066820859909, -0.08870209008455276, -0.08145572990179062, -0.06654728204011917, 0.14532582461833954, -0.12165113538503647, -0.01640941947698593, -0.14016889035701752, 0.07477269321680069, 0.1679227501153946, -0.05420361086726189, 0.028165485709905624, 0.008638841100037098, 0.14772145450115204, 0.031200675293803215, 0.005585398990660906, 0.09954191744327545, -0.0753469169139862, -0.2202923446893692, -0.04704386368393898, 0.18034180998802185, 0.03325565531849861, 0.07330526411533356, -0.0144979702308774, 0.03188387677073479, -0.014390701428055763, -0.06658443063497543, 0.0772717073559761, 0.0361485555768013, 0.002943933941423893, 0.04428400844335556, -0.011814314872026443, 0.006484086159616709, -0.0643114298582077, -0.03249373659491539, 0.09565272927284241, 0.2433660328388214, -0.08540410548448563, 0.03845437616109848, 0.030676495283842087, -0.06228926032781601, -0.15557484328746796, 0.008308161981403828, 0.13369201123714447, 0.045430988073349, -0.04077405855059624, -0.19681432843208313, 0.01953922025859356, 0.06730476766824722, -0.024021044373512268, 0.07617692649364471, -0.3079565167427063, -0.13418440520763397, 0.0986110121011734, 0.019871968775987625, -0.06627479195594788, -0.1693369448184967, -0.06429044157266617, -0.016898537054657936, -0.07030756771564484, 0.03568795695900917, -0.041590698063373566, 0.11931135505437851, 0.010203281417489052, 0.02242138981819153, 0.01836100034415722, -0.0434846431016922, 0.1545202136039734, 0.020826216787099838, 0.045957036316394806, -0.012369866482913494, 0.016198232769966125, 0.043782930821180344, -0.07469382137060165, 0.010974266566336155, -0.07143156975507736, 0.0170602984726429, -0.15700754523277283, -0.022649161517620087, -0.08937416225671768, 0.02262760140001774, -0.04866603761911392, -0.00871992763131857, -0.025874411687254906, 0.049018342047929764, 0.07370227575302124, 0.0219207014888525, 0.1178009882569313, -0.07054812461137772, 0.128097802400589, 0.15919671952724457, 0.12832002341747284, 0.008358174003660679, -0.08903065323829651, -0.004315221682190895, 0.0061074490658938885, 0.035264890640974045, -0.1138325035572052, 0.038852352648973465, 0.13847847282886505, 0.03128296136856079, 0.14735117554664612, 0.05153900757431984, -0.08883465826511383, 0.006364181637763977, 0.06812191009521484, -0.06961990892887115, -0.1363694965839386, -0.01776873879134655, 0.022621409967541695, -0.1410120129585266, -0.024150405079126358, 0.11734543740749359, -0.027594855055212975, 0.008467699401080608, 0.0190613754093647, 0.044517092406749725, -0.03939442336559296, 0.2307373285293579, 0.03333486244082451, 0.10294298827648163, -0.09603467583656311, 0.06860128045082092, 0.061531681567430496, -0.1086975634098053, 0.03171779587864876, 0.11018897593021393, -0.051529232412576675, -0.028803331777453423, 0.019292939454317093, 0.09028184413909912, 0.03724104166030884, -0.058024391531944275, -0.10573610663414001, -0.15265502035617828, 0.09795908629894257, 0.07898754626512527, 0.021489741280674934, 0.037031181156635284, -0.015985550358891487, 0.03755713999271393, -0.09097771346569061, 0.11070699244737625, 0.08669465780258179, 0.0672476589679718, -0.11944862455129623, 0.11299861967563629, -0.0007839135942049325, -0.006426837760955095, 0.004547785501927137, -0.010186013765633106, -0.09801149368286133, 0.023727910593152046, -0.12381144613027573, -0.0001286296028411016, -0.03779219090938568, -0.00418355967849493, 0.014859066344797611, -0.057104792445898056, -0.05390850454568863, 0.01444499846547842, -0.11414399743080139, -0.044430553913116455, -0.041539859026670456, 0.07361209392547607, -0.10065016895532608, -0.015679774805903435, 0.033121638000011444, -0.12258517742156982, 0.09378242492675781, 0.03591978922486305, 0.009415736421942711, 0.008480047807097435, -0.07752402871847153, -0.008786498568952084, 0.03179065138101578, 0.012040114030241966, 0.04351654648780823, -0.15233534574508667, -0.007020722609013319, -0.028378594666719437, 0.013082791119813919, -0.009965993463993073, -0.009509234689176083, -0.10799290239810944, 0.01951693370938301, -0.02527463249862194, -0.06250280886888504, -0.05339917540550232, 0.0757482498884201, 0.08241693675518036, 0.014626854099333286, 0.14863525331020355, -0.07109655439853668, 0.06022787094116211, -0.23908673226833344, 0.009924260899424553, -0.002666323445737362, -0.060489341616630554, -0.035798080265522, -0.027737019583582878, 0.11043597757816315, -0.07014092803001404, 0.08460060507059097, -0.017171915620565414, 0.05247313529253006, 0.026674536988139153, -0.11563804745674133, 0.03721649572253227, 0.07558023929595947, 0.1471175104379654, 0.067363440990448, -0.025160133838653564, 0.09483717381954193, -0.020360836759209633, 0.059470344334840775, 0.117717444896698, 0.1561950296163559, 0.1292179673910141, 0.05812647566199303, 0.08703053742647171, 0.10095056891441345, -0.1456758826971054, -0.11043189465999603, 0.1490439772605896, -0.07984055578708649, 0.13905414938926697, -0.04275386035442352, 0.17969901859760284, 0.11170554906129837, -0.20801201462745667, 0.06487113982439041, -0.0626252293586731, -0.09587206691503525, -0.09881126135587692, -0.08190186321735382, -0.08552799373865128, -0.17188391089439392, 0.011267447844147682, -0.1117674931883812, 0.06732591986656189, 0.0649227499961853, 0.04650487005710602, 0.038593098521232605, 0.09949936717748642, 0.053827133029699326, 0.013970906846225262, 0.1097385361790657, 0.011691139079630375, 0.007140045985579491, -0.064603790640831, -0.09782724827528, 0.04647703096270561, -0.02697625383734703, 0.057304203510284424, -0.0378512479364872, -0.08077486604452133, 0.05995791405439377, 0.01521162036806345, -0.09915133565664291, 0.03155320882797241, -0.024877378717064857, 0.04269961267709732, 0.07206912338733673, 0.03202955797314644, -0.005664890632033348, -0.008548840880393982, 0.19347862899303436, -0.08932018280029297, -0.07004687935113907, -0.14246614277362823, 0.174964040517807, -0.016141245141625404, -0.0015136526199057698, 0.018392235040664673, -0.06845465302467346, -0.01529741007834673, 0.16766802966594696, 0.175308957695961, -0.029553508386015892, -0.01475059986114502, 0.021440304815769196, -0.007766416762024164, -0.0323077067732811, 0.06635407358407974, 0.11420182138681412, 0.05562322959303856, -0.04926075041294098, -0.02133476734161377, -0.001203815103508532, -0.06919983774423599, -0.02991621382534504, 0.0855817124247551, 0.0205819234251976, 0.002529134275391698, -0.025806032121181488, 0.10542039573192596, -0.07405555993318558, -0.1428915113210678, 0.038658201694488525, -0.18295982480049133, -0.18077343702316284, -0.04082515835762024, 0.044252172112464905, 0.03615059331059456, 0.057124797254800797, -0.008478991687297821, -0.05203587934374809, 0.09664862602949142, -0.006721113342791796, -0.04257335141301155, -0.10356198996305466, 0.0748317688703537, -0.13979066908359528, 0.1775413155555725, -0.0544792115688324, 0.017455432564020157, 0.12527187168598175, 0.041294705122709274, -0.08606752753257751, 0.0045340172946453094, 0.09257213771343231, -0.11420220136642456, 0.03602687269449234, 0.1880549192428589, -0.040676865726709366, 0.13084743916988373, 0.052712101489305496, -0.0946599692106247, 0.017128484323620796, -0.08151216059923172, -0.028726112097501755, -0.06822001934051514, -0.02151348441839218, -0.0343477688729763, 0.13511629402637482, 0.20849184691905975, -0.06309661269187927, -0.019100109115242958, -0.03618742525577545, 0.006140972021967173, 0.019788259640336037, 0.1269010454416275, -0.05324844643473625, -0.25916680693626404, 0.015971556305885315, 0.0008971959468908608, 0.019653746858239174, -0.18853667378425598, -0.08155748248100281, 0.033383674919605255, -0.0542759895324707, -0.0466635562479496, 0.12897460162639618, 0.05890697240829468, 0.04698454216122627, -0.05656189098954201, -0.07988396286964417, -0.02514641359448433, 0.18327824771404266, -0.1766946166753769, -0.05705359950661659 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HY-AM dataset. It achieves the following results on the evaluation set: - Loss: 0.5891 - Wer: 0.6569 **Note**: If you aim for best performance use [this model](https://huggingface.co/arampacha/wav2vec2-xls-r-300m-hy). It is trained using noizy student procedure and achieves considerably better results. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 9.167 | 16.67 | 100 | 3.5599 | 1.0 | | 3.2645 | 33.33 | 200 | 3.1771 | 1.0 | | 3.1509 | 50.0 | 300 | 3.1321 | 1.0 | | 3.0757 | 66.67 | 400 | 2.8594 | 1.0 | | 2.5274 | 83.33 | 500 | 1.5286 | 0.9797 | | 1.6826 | 100.0 | 600 | 0.8058 | 0.7974 | | 1.2868 | 116.67 | 700 | 0.6713 | 0.7279 | | 1.1262 | 133.33 | 800 | 0.6308 | 0.7034 | | 1.0408 | 150.0 | 900 | 0.6056 | 0.6745 | | 0.9617 | 166.67 | 1000 | 0.5891 | 0.6569 | | 0.9196 | 183.33 | 1100 | 0.5913 | 0.6432 | | 0.8853 | 200.0 | 1200 | 0.5924 | 0.6347 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["hy-AM"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hy"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
automatic-speech-recognition
arampacha/wav2vec2-xls-r-300m-hy-cv
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hy", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "hy-AM" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #hy #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - HY-AM dataset. It achieves the following results on the evaluation set: * Loss: 0.5891 * Wer: 0.6569 Note: If you aim for best performance use this model. It is trained using noizy student procedure and achieves considerably better results. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 1200 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 1200\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #hy #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 1200\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ 83, 157, 4, 39 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #hy #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 1200\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ -0.13575373589992523, 0.13489344716072083, -0.003951790276914835, 0.04049893468618393, 0.10317390412092209, 0.012720158323645592, 0.08469774574041367, 0.17779508233070374, -0.07519304007291794, 0.10888035595417023, 0.09518972039222717, 0.094859778881073, 0.08609843999147415, 0.13181012868881226, -0.01539403386414051, -0.29416850209236145, 0.011679910123348236, -0.02198682352900505, -0.11645516008138657, 0.10230311751365662, 0.09743358194828033, -0.10587601363658905, 0.01310394611209631, 0.004120827652513981, -0.08485067635774612, -0.027073441073298454, -0.02984905242919922, -0.06492035835981369, 0.10895069688558578, 0.02472391538321972, 0.0348307304084301, 0.04656223580241203, 0.0899452343583107, -0.2687889635562897, 0.009426403790712357, 0.05874527245759964, 0.054578930139541626, 0.06502405554056168, 0.09150172770023346, -0.007253650110214949, 0.08296086639165878, -0.07658328860998154, 0.04718497395515442, 0.05381903052330017, -0.07761272042989731, -0.29662802815437317, -0.09101193398237228, 0.020794594660401344, 0.13677076995372772, 0.08407928049564362, -0.034060198813676834, 0.02222621999680996, -0.0601707398891449, 0.07672242075204849, 0.2374035269021988, -0.2213583141565323, -0.061144713312387466, -0.00004371038812678307, 0.04186028614640236, 0.04325960576534271, -0.10935427248477936, 0.003507286310195923, 0.01858058013021946, 0.01723242923617363, 0.10258040577173233, 0.01338978298008442, 0.06193872541189194, 0.008287162519991398, -0.13042402267456055, -0.058470938354730606, 0.13018307089805603, 0.07595887780189514, -0.021902786567807198, -0.12348413467407227, -0.018338752910494804, -0.19569064676761627, -0.05683065205812454, 0.021541357040405273, 0.015077619813382626, -0.03268744423985481, -0.08328289538621902, 0.0015469867503270507, -0.04689629375934601, -0.08466359227895737, 0.05834339186549187, 0.12459395825862885, 0.04228607192635536, -0.04668065533041954, 0.03713906928896904, 0.10740586370229721, 0.07032611221075058, -0.15929566323757172, -0.009214088320732117, 0.05299737676978111, -0.10852757841348648, 0.0028878364246338606, -0.028051741421222687, 0.01852988451719284, 0.04881038889288902, 0.12458813190460205, 0.019244136288762093, 0.09604071825742722, 0.022785883396863937, 0.01758439652621746, -0.08522535860538483, 0.1587226688861847, -0.0663926899433136, -0.0993337631225586, -0.030082987621426582, 0.12725841999053955, 0.009477524086833, -0.028112124651670456, -0.08469478785991669, 0.022713208571076393, 0.11651451885700226, 0.062443722039461136, -0.001240274403244257, 0.013897733762860298, -0.07853632420301437, -0.030023621395230293, -0.004798500798642635, -0.11910227686166763, 0.042562685906887054, 0.04306282848119736, -0.06427076458930969, -0.027911745011806488, -0.022692451253533363, 0.019092561677098274, -0.036531001329422, 0.08335395902395248, -0.04109941050410271, -0.013828402385115623, -0.07037720829248428, -0.07872550189495087, 0.02789423242211342, -0.061426371335983276, -0.003847990185022354, -0.05055543780326843, -0.08617056906223297, -0.06591004133224487, 0.06209249049425125, -0.07380747050046921, -0.08253125101327896, -0.09863109886646271, -0.0797831118106842, 0.057245273143053055, -0.023511245846748352, 0.1824045330286026, -0.05395050719380379, 0.113685742020607, -0.0046986485831439495, 0.06742452830076218, 0.09558002650737762, 0.0812636986374855, 0.0027557197026908398, 0.05011225864291191, -0.16428536176681519, 0.12401412427425385, -0.116362564265728, 0.03839047625660896, -0.15501143038272858, -0.08952013403177261, 0.006237383466213942, -0.004923656117171049, 0.10177603363990784, 0.12979188561439514, -0.18648841977119446, -0.0898076593875885, 0.14823755621910095, -0.04184655472636223, -0.06404440850019455, 0.1394416242837906, -0.024429798126220703, -0.02265441045165062, 0.020382259041070938, 0.20320764183998108, 0.11978932470083237, -0.0870015099644661, 0.014862829819321632, -0.04152267798781395, 0.12642283737659454, 0.03216705843806267, 0.10181178897619247, -0.06042204052209854, 0.031645167618989944, -0.003497662488371134, -0.04281450808048248, 0.05829712748527527, -0.07459705322980881, -0.07754985243082047, -0.00976464431732893, -0.07702409476041794, 0.02305592969059944, 0.05410468950867653, 0.013619794510304928, -0.07802785187959671, -0.13461847603321075, -0.028081178665161133, 0.12193962186574936, -0.11916738003492355, 0.031834498047828674, -0.08123824000358582, 0.07557957619428635, -0.017011363059282303, -0.001369228819385171, -0.1492718607187271, 0.03536546602845192, 0.04421704262495041, -0.029368015006184578, -0.0015863942680880427, -0.023518389090895653, 0.061563972383737564, 0.025092607364058495, -0.04734296724200249, -0.07210893929004669, -0.03939102590084076, -0.0008327299146912992, -0.055790409445762634, -0.2352338284254074, -0.07149459421634674, -0.030474424362182617, 0.20019866526126862, -0.18269787728786469, 0.008471707813441753, 0.06429171562194824, 0.12475983798503876, 0.024630814790725708, -0.05297219008207321, 0.025450613349676132, 0.053348153829574585, -0.01828848198056221, -0.09115596860647202, 0.0372980497777462, 0.014833446592092514, -0.12172836810350418, 0.008965754881501198, -0.09946669638156891, 0.04619818553328514, 0.09234561026096344, 0.02857230044901371, -0.06314744800329208, -0.0698571652173996, -0.0491892546415329, -0.04930855706334114, -0.030105628073215485, 0.0016105091199278831, 0.17212291061878204, 0.02664080262184143, 0.09920524805784225, -0.08298380672931671, -0.046690069139003754, 0.045142579823732376, 0.0193096362054348, -0.010188894346356392, 0.14035017788410187, 0.05706861987709999, -0.02540677785873413, 0.08291208744049072, 0.05368845909833908, -0.0484803132712841, 0.14403051137924194, -0.07933511584997177, -0.094664566218853, -0.030423929914832115, 0.032483361661434174, 0.03205665573477745, 0.11620251834392548, -0.1855476051568985, -0.029297109693288803, 0.026250846683979034, 0.025256549939513206, 0.012385282665491104, -0.19128042459487915, -0.00150122563354671, 0.035646215081214905, -0.0880323275923729, 0.0011536362580955029, -0.0077489945106208324, -0.025741904973983765, 0.07505903393030167, 0.021248893812298775, -0.08286413550376892, -0.010045863687992096, -0.043147459626197815, -0.08728936314582825, 0.15873754024505615, -0.10769130289554596, -0.1425202339887619, -0.10619176924228668, -0.042174458503723145, -0.011096905916929245, -0.008968941867351532, 0.04408881440758705, -0.1021571010351181, -0.02207253687083721, -0.05720922350883484, 0.014385613612830639, -0.05353774502873421, 0.04595043882727623, 0.026018083095550537, 0.010520301759243011, 0.04942050203680992, -0.08554673939943314, 0.01696513406932354, -0.01397081557661295, -0.0160401351749897, 0.009287139400839806, 0.0051417360082268715, 0.09149080514907837, 0.18692487478256226, 0.056916508823633194, 0.049683213233947754, -0.04395446181297302, 0.15131093561649323, -0.14505231380462646, 0.020339010283350945, 0.10856783390045166, 0.022971006110310555, 0.045757636427879333, 0.15161050856113434, 0.03526092320680618, -0.0865897387266159, 0.01744747906923294, 0.01671784371137619, -0.019497694447636604, -0.22407887876033783, -0.034401845186948776, -0.06817939877510071, -0.028144923970103264, 0.10608990490436554, 0.02970488741993904, 0.0017290068790316582, 0.01855907030403614, -0.007363513577729464, -0.007394266780465841, 0.038906410336494446, 0.04934591427445412, 0.06769000738859177, 0.03834781050682068, 0.10753990709781647, -0.005824729800224304, -0.010647588409483433, 0.028344284743070602, 0.021560808643698692, 0.25980862975120544, -0.012793513014912605, 0.21201038360595703, 0.04190276935696602, 0.16586460173130035, 0.0008626745548099279, 0.04174859821796417, 0.005260249134153128, -0.0016546695260331035, 0.007400859147310257, -0.049201034009456635, -0.045748934149742126, 0.028820961713790894, 0.12158279120922089, 0.009763535112142563, -0.10934506356716156, 0.02711525373160839, 0.016148589551448822, 0.37185734510421753, 0.09838273376226425, -0.26401227712631226, -0.07260358333587646, 0.013822484761476517, -0.07179706543684006, -0.03852006047964096, 0.038134824484586716, 0.12440939247608185, -0.07018417119979858, 0.06664736568927765, -0.061877280473709106, 0.07381488382816315, -0.10152199864387512, -0.0014759795740246773, 0.07065188139677048, 0.08250079303979874, 0.004766743630170822, 0.06397140026092529, -0.2711087465286255, 0.26620495319366455, -0.010407112538814545, 0.07913629710674286, -0.06449760496616364, 0.04049468785524368, 0.03999984264373779, -0.026204457506537437, 0.09615211933851242, -0.004689086228609085, -0.10868066549301147, -0.14213477075099945, -0.10736124217510223, 0.003520670346915722, 0.11594101786613464, -0.07699772715568542, 0.10319315642118454, -0.04155321419239044, -0.04274454712867737, 0.03229275718331337, -0.0859750434756279, -0.07398266345262527, -0.11694511026144028, 0.03585202246904373, 0.022198831662535667, 0.08434700220823288, -0.0954451933503151, -0.0948440283536911, -0.05025868117809296, 0.14819620549678802, -0.09954576194286346, -0.02326475828886032, -0.1378391832113266, 0.07697319239377975, 0.14834800362586975, -0.0612742118537426, 0.05498791113495827, 0.019824529066681862, 0.13179168105125427, 0.018222754821181297, 0.005335815250873566, 0.10685894638299942, -0.07560385018587112, -0.20081540942192078, -0.06324395537376404, 0.18243470788002014, 0.022373871877789497, 0.07624903321266174, -0.0197877436876297, 0.02206258848309517, -0.006739938631653786, -0.07363951206207275, 0.08990081399679184, 0.042680613696575165, 0.017524613067507744, 0.031218411400914192, -0.013487434014678001, 0.008150555193424225, -0.08855491876602173, -0.07803581655025482, 0.12651710212230682, 0.25584855675697327, -0.09476917237043381, 0.06353624910116196, 0.04932231083512306, -0.04323260486125946, -0.1730722039937973, -0.017131254076957703, 0.12750905752182007, 0.045361388474702835, -0.027602998539805412, -0.2182091921567917, -0.0041346121579408646, 0.058109838515520096, -0.03155265375971794, 0.07754559069871902, -0.33840492367744446, -0.12909777462482452, 0.0791461318731308, 0.07302149385213852, -0.01609092578291893, -0.14661750197410583, -0.07652943581342697, -0.009314251132309437, -0.05289012938737869, 0.015909940004348755, -0.0030430927872657776, 0.13438764214515686, 0.013608227483928204, 0.01956380158662796, 0.017971381545066833, -0.04993033781647682, 0.13885881006717682, 0.013312818482518196, 0.022861000150442123, -0.0058908239006996155, 0.021624930202960968, -0.0048636216670274734, -0.07431910187005997, -0.006462855264544487, -0.06261937320232391, 0.033266931772232056, -0.1480216383934021, -0.03382125496864319, -0.08484413474798203, 0.006513088010251522, -0.04007277637720108, -0.036817505955696106, -0.02642226591706276, 0.05008316785097122, 0.08542005717754364, 0.010581454262137413, 0.10628112405538559, -0.06069042161107063, 0.09781362116336823, 0.12109467387199402, 0.10616998374462128, -0.018083803355693817, -0.08962709456682205, -0.012945402413606644, -0.014522688463330269, 0.03441677242517471, -0.14296583831310272, 0.034224655479192734, 0.12763383984565735, 0.04886675998568535, 0.14338211715221405, 0.050119634717702866, -0.08962561935186386, 0.01977735199034214, 0.054997093975543976, -0.06580054759979248, -0.16182631254196167, -0.025797462090849876, 0.03766821697354317, -0.11452966183423996, 0.005975918844342232, 0.10339758545160294, -0.020467199385166168, -0.008881310001015663, 0.01766243763267994, 0.03957275301218033, -0.026834219694137573, 0.22069108486175537, 0.029611218720674515, 0.09630900621414185, -0.1051248088479042, 0.08664241433143616, 0.05265399068593979, -0.12484389543533325, 0.04488782212138176, 0.08052749186754227, -0.07578469812870026, -0.016810638830065727, 0.011575986631214619, 0.07540225237607956, 0.06529313325881958, -0.04733525961637497, -0.11724212020635605, -0.14544276893138885, 0.09972304105758667, 0.030699104070663452, 0.031087417155504227, 0.02058248221874237, -0.038672469556331635, 0.02128949947655201, -0.10628736764192581, 0.11032287776470184, 0.08914152532815933, 0.051690518856048584, -0.1246226504445076, 0.09441307932138443, 0.015175594948232174, 0.015817848965525627, -0.004249784629791975, -0.014108099043369293, -0.0804811343550682, 0.032745786011219025, -0.10131408274173737, -0.01746591366827488, -0.06140759214758873, -0.005116734653711319, 0.0055594677105546, -0.06302286684513092, -0.03969714418053627, 0.022880813106894493, -0.11480844020843506, -0.05297357961535454, -0.03831813856959343, 0.06012076511979103, -0.07546766847372055, -0.0252958033233881, 0.02418089658021927, -0.13518019020557404, 0.11667833477258682, 0.03212551772594452, 0.023106373846530914, 0.008761417120695114, -0.037701476365327835, -0.013226042501628399, 0.02390669845044613, -0.003724646056070924, 0.03272350877523422, -0.20165279507637024, -0.011873875744640827, -0.03282427787780762, 0.005231996066868305, -0.013219338841736317, 0.021232597529888153, -0.119097501039505, 0.005521663464605808, -0.06070385128259659, -0.0397692546248436, -0.060182973742485046, 0.08069317042827606, 0.08595056086778641, 0.02497284859418869, 0.1490039825439453, -0.07513992488384247, 0.05435429885983467, -0.2095922976732254, 0.008830023929476738, -0.030264152213931084, -0.06769783049821854, -0.06948412209749222, -0.03017912432551384, 0.10175332427024841, -0.05469662323594093, 0.05346585810184479, -0.0495951808989048, 0.04864208400249481, 0.020835891366004944, -0.11573538184165955, 0.021298479288816452, 0.05270576477050781, 0.18753230571746826, 0.05237001180648804, -0.017392881214618683, 0.09240081161260605, -0.0035352902486920357, 0.0639820396900177, 0.17550957202911377, 0.11541077494621277, 0.1422833502292633, 0.10779861360788345, 0.08701572567224503, 0.05713529884815216, -0.13799525797367096, -0.16454599797725677, 0.20569904148578644, -0.05947298929095268, 0.1410360187292099, -0.017318015918135643, 0.2046537846326828, 0.10160098224878311, -0.20642584562301636, 0.05811591446399689, -0.02433517388999462, -0.08834704011678696, -0.0936424508690834, -0.09364981949329376, -0.08108382672071457, -0.19265714287757874, 0.0022982305381447077, -0.08966035395860672, 0.05691983923316002, 0.04635122790932655, 0.04519125074148178, 0.04368910938501358, 0.0859518051147461, 0.06253638863563538, -0.002308832947164774, 0.1385669857263565, 0.013849295675754547, -0.026552489027380943, -0.0529642291367054, -0.1173277497291565, 0.03931094706058502, -0.036368682980537415, 0.06745696812868118, -0.03484653681516647, -0.10314271599054337, 0.05524042993783951, 0.028250837698578835, -0.1044948622584343, 0.026814734563231468, -0.023650528863072395, 0.05958840250968933, 0.11760836094617844, 0.0430731438100338, -0.018258903175592422, -0.000379907462047413, 0.21902018785476685, -0.09697792679071426, -0.060749247670173645, -0.1343778371810913, 0.19151583313941956, -0.001984617905691266, 0.0031104586087167263, 0.03176266700029373, -0.07876434177160263, -0.015444745309650898, 0.17193502187728882, 0.13725142180919647, -0.02065030112862587, -0.026808500289916992, 0.03988698124885559, -0.01329406350851059, -0.046474918723106384, 0.07653159648180008, 0.12337619811296463, 0.029968710616230965, -0.04966103658080101, -0.03412759676575661, -0.02827928029000759, -0.07329662144184113, -0.03753138333559036, 0.08490876108407974, 0.014477520249783993, -0.007638133130967617, -0.01415115687996149, 0.1111222356557846, -0.05019927769899368, -0.17949840426445007, 0.042823318392038345, -0.18541863560676575, -0.19634844362735748, -0.02988502010703087, 0.04183125123381615, 0.03547096252441406, 0.05587819591164589, 0.003957771230489016, -0.010143499821424484, 0.1294259876012802, 0.002469330094754696, -0.03527314215898514, -0.08090342581272125, 0.08017656952142715, -0.10677051544189453, 0.1684529334306717, -0.05097804591059685, 0.003279461059719324, 0.12598860263824463, 0.0672384575009346, -0.09415215253829956, 0.03849842771887779, 0.09117941558361053, -0.10070553421974182, 0.05932565778493881, 0.1950235515832901, -0.04151323437690735, 0.13661397993564606, 0.04599369317293167, -0.08263380080461502, 0.022059373557567596, -0.09994503855705261, -0.04031822830438614, -0.06519123911857605, -0.0029286339413374662, -0.03786676004528999, 0.13335639238357544, 0.17756235599517822, -0.07505808770656586, -0.009444964118301868, -0.043840691447257996, 0.0010814918205142021, 0.027438687160611153, 0.13588209450244904, -0.039283979684114456, -0.2603992223739624, 0.012934190221130848, 0.005935043562203646, 0.01997014507651329, -0.20629219710826874, -0.07815347611904144, 0.027378346771001816, -0.05770828574895859, -0.069269098341465, 0.1276051104068756, 0.043894410133361816, 0.04060007259249687, -0.057017214596271515, -0.0907888263463974, -0.03499605506658554, 0.1767970770597458, -0.18869677186012268, -0.04507880657911301 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the /WORKSPACE/DATA/HY/NOIZY_STUDENT_3/ - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.2293 - Wer: 0.3333 - Cer: 0.0602 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 842 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 3.1471 | 7.02 | 400 | 3.1599 | 1.0 | 1.0 | | 1.8691 | 14.04 | 800 | 0.7674 | 0.7361 | 0.1686 | | 1.3227 | 21.05 | 1200 | 0.3849 | 0.5336 | 0.1007 | | 1.163 | 28.07 | 1600 | 0.3015 | 0.4559 | 0.0823 | | 1.0768 | 35.09 | 2000 | 0.2721 | 0.4032 | 0.0728 | | 1.0224 | 42.11 | 2400 | 0.2586 | 0.3825 | 0.0691 | | 0.9817 | 49.12 | 2800 | 0.2458 | 0.3653 | 0.0653 | | 0.941 | 56.14 | 3200 | 0.2306 | 0.3388 | 0.0605 | | 0.9235 | 63.16 | 3600 | 0.2315 | 0.3380 | 0.0615 | | 0.9141 | 70.18 | 4000 | 0.2293 | 0.3333 | 0.0602 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["hy"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hy", "hf-asr-leaderboard"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-hy", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hy-AM", "type": "mozilla-foundation/common_voice_8_0", "args": "hy-AM"}, "metrics": [{"type": "wer", "value": 13.192818110850899, "name": "WER LM"}, {"type": "cer", "value": 2.787051087506323, "name": "CER LM"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "hy"}, "metrics": [{"type": "wer", "value": 22.246048764990867, "name": "Test WER"}, {"type": "cer", "value": 7.59406739840239, "name": "Test CER"}]}]}]}
automatic-speech-recognition
arampacha/wav2vec2-xls-r-300m-hy
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hy", "hf-asr-leaderboard", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "hy" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hy #hf-asr-leaderboard #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the /WORKSPACE/DATA/HY/NOIZY\_STUDENT\_3/ - NA dataset. It achieves the following results on the evaluation set: * Loss: 0.2293 * Wer: 0.3333 * Cer: 0.0602 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 842 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 4000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2 * Datasets 1.18.4.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 842\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hy #hf-asr-leaderboard #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 842\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ 105, 160, 4, 36 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hy #hf-asr-leaderboard #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 842\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ -0.13624855875968933, 0.11401476711034775, -0.004548346623778343, 0.047640252858400345, 0.09465013444423676, 0.019716165959835052, 0.10843633860349655, 0.16496054828166962, -0.08179760724306107, 0.11530119925737381, 0.0775846540927887, 0.05104159563779831, 0.09048489481210709, 0.1386871337890625, -0.01884542405605316, -0.294019877910614, 0.013939252123236656, -0.03197392821311951, -0.15412430465221405, 0.09099990129470825, 0.10632628947496414, -0.10883110016584396, 0.04884026572108269, 0.018977267667651176, -0.0923549234867096, -0.01591443084180355, -0.03467801585793495, -0.0499299094080925, 0.08698409050703049, 0.04843415319919586, 0.058315426111221313, 0.039776962250471115, 0.09446712583303452, -0.24844595789909363, 0.008373246528208256, 0.07148099690675735, 0.04298616200685501, 0.0691480040550232, 0.0977102518081665, 0.0012020524591207504, 0.08033253252506256, -0.07781720906496048, 0.04704414680600166, 0.06659932434558868, -0.10600749403238297, -0.2697301506996155, -0.09303431957960129, 0.041291724890470505, 0.12163984775543213, 0.078150674700737, -0.025549884885549545, 0.05292559415102005, -0.04207974672317505, 0.08357442915439606, 0.19415156543254852, -0.20476186275482178, -0.0822044238448143, -0.002939165337011218, 0.039249155670404434, 0.051954444497823715, -0.10696610063314438, -0.0030359067022800446, 0.011479852721095085, 0.013498526997864246, 0.07576708495616913, -0.007594859693199396, -0.00549000408500433, -0.0049596684984862804, -0.1191912591457367, -0.05002022162079811, 0.17129062116146088, 0.07801870256662369, -0.0138959726318717, -0.10242152959108353, -0.02180691435933113, -0.1765316277742386, -0.05801225081086159, 0.013208895921707153, 0.036365728825330734, -0.03661259636282921, -0.07146081328392029, 0.0034108224790543318, -0.07063552737236023, -0.06955133378505707, 0.06377892941236496, 0.08706258237361908, 0.02158643677830696, -0.01763617992401123, 0.006151922512799501, 0.0894644483923912, 0.029385343194007874, -0.17825697362422943, -0.031832512468099594, 0.031183987855911255, -0.10061965882778168, -0.018316514790058136, -0.016830390319228172, 0.031524658203125, 0.06924877315759659, 0.13340437412261963, -0.05749473720788956, 0.09569322317838669, 0.006652785465121269, 0.011150787584483624, -0.07847059518098831, 0.186466246843338, -0.05329484865069389, -0.09226445853710175, -0.03481895104050636, 0.1211172565817833, 0.0038636329118162394, -0.010275132954120636, -0.08295715600252151, 0.03567672520875931, 0.08410127460956573, 0.05321910232305527, -0.00148605031426996, 0.023192401975393295, -0.05325605720281601, -0.032851673662662506, 0.04696366935968399, -0.10947602242231369, 0.040352996438741684, 0.05864020809531212, -0.07556957006454468, -0.013898082077503204, -0.008911211043596268, 0.017931701615452766, -0.03150572255253792, 0.05343247205018997, -0.06574006378650665, -0.01711682230234146, -0.07345575094223022, -0.0900777280330658, 0.04269707202911377, -0.0437743179500103, -0.00677886139601469, -0.05492309853434563, -0.10249977558851242, -0.07355692237615585, 0.04130930453538895, -0.06647051870822906, -0.07806982100009918, -0.06602923572063446, -0.09303595870733261, 0.05966620147228241, -0.012299914844334126, 0.1548236459493637, -0.059826772660017014, 0.06251300871372223, 0.026307910680770874, 0.03590238839387894, 0.07047687470912933, 0.06044662371277809, -0.02443920262157917, 0.06442674994468689, -0.15943126380443573, 0.0966477170586586, -0.11906670778989792, 0.06684674322605133, -0.1360425353050232, -0.09727837145328522, 0.0005900777177885175, -0.007416951935738325, 0.07566476613283157, 0.12600623071193695, -0.15365947782993317, -0.09142273664474487, 0.15919317305088043, -0.059341441839933395, -0.10387847572565079, 0.11051905900239944, -0.007195781916379929, -0.040287140756845474, 0.02513735368847847, 0.15989002585411072, 0.16127482056617737, -0.0975758358836174, -0.0015272980090230703, -0.025380939245224, 0.13770875334739685, 0.04883105680346489, 0.09222062677145004, -0.05783946067094803, 0.06132805719971657, 0.007795330602675676, -0.03300941735506058, 0.033290889114141464, -0.07146593928337097, -0.08449260145425797, -0.01420231070369482, -0.0809674859046936, -0.02229340374469757, 0.05860858038067818, 0.022965528070926666, -0.07153640687465668, -0.13024544715881348, -0.014381648041307926, 0.11915502697229385, -0.09842123091220856, 0.011631373316049576, -0.07543817162513733, 0.047953952103853226, 0.010899335145950317, -0.002736369613558054, -0.14601226150989532, -0.04941461980342865, 0.0479474700987339, -0.049582865089178085, 0.0194474458694458, -0.010273398831486702, 0.07025159150362015, 0.04350519925355911, -0.04213297739624977, -0.053161703050136566, -0.028881488367915154, -0.01139350701123476, -0.046270180493593216, -0.2406480461359024, -0.07475478202104568, -0.021285392343997955, 0.22933855652809143, -0.2011171579360962, 0.01460307091474533, 0.07302111387252808, 0.13668695092201233, 0.03352474793791771, -0.0460963249206543, 0.01719357632100582, 0.05521578714251518, -0.023475700989365578, -0.08721121400594711, 0.02109731175005436, 0.008292355574667454, -0.09966953098773956, 0.01208378653973341, -0.1629454791545868, 0.0528436042368412, 0.08778314292430878, 0.0179360993206501, -0.06360584497451782, -0.06265391409397125, -0.055749304592609406, -0.051039330661296844, -0.0022922735661268234, -0.02074921689927578, 0.13550950586795807, 0.012666561640799046, 0.1110735833644867, -0.0739070475101471, -0.05534582585096359, 0.04238700121641159, 0.023326335474848747, 0.000751475163269788, 0.12360893934965134, 0.03643936291337013, -0.04585019499063492, 0.10150288790464401, 0.029666109010577202, -0.06223684921860695, 0.1582353264093399, -0.08840566128492355, -0.08110594004392624, -0.03445904701948166, 0.019987372681498528, 0.04118037596344948, 0.119597889482975, -0.16764461994171143, -0.022017261013388634, 0.030296795070171356, 0.009742164984345436, 0.01815706118941307, -0.16683006286621094, 0.015929387882351875, 0.027512043714523315, -0.08533183485269547, 0.011550451628863811, -0.012361162342131138, -0.010540804825723171, 0.0712428092956543, 0.012494316324591637, -0.05989418923854828, -0.03716035932302475, -0.042530253529548645, -0.0842442512512207, 0.1849018782377243, -0.11076974123716354, -0.14539813995361328, -0.13861188292503357, -0.0005656261346302927, -0.02270815335214138, 0.0018306357087567449, 0.023899836465716362, -0.08434164524078369, -0.03965277597308159, -0.06691189110279083, 0.015175977721810341, -0.032089706510305405, 0.02322288602590561, 0.01511821337044239, 0.015552685596048832, 0.08280815929174423, -0.10669218748807907, 0.010338659398257732, 0.0036952223163098097, -0.040539130568504333, -0.0034935770090669394, 0.006739750970155001, 0.09170443564653397, 0.17169885337352753, 0.06485366821289062, 0.034867387264966965, -0.03562092408537865, 0.17882436513900757, -0.15020257234573364, 0.024059249088168144, 0.10398975014686584, 0.012077494524419308, 0.03988323733210564, 0.14608602225780487, 0.04548793286085129, -0.06111147999763489, -0.002532507758587599, 0.03649907559156418, -0.02040005475282669, -0.2171994000673294, -0.03670595958828926, -0.07713524997234344, 0.005637588445097208, 0.10956552624702454, 0.03241077437996864, 0.052892591804265976, 0.0337025411427021, -0.04217059910297394, -0.0021112633403390646, 0.056209854781627655, 0.05552014708518982, 0.10310361534357071, 0.051588740199804306, 0.11890069395303726, -0.012288213707506657, -0.02325858734548092, 0.03533044084906578, 0.015702934935688972, 0.21394823491573334, 0.0049704499542713165, 0.22304224967956543, 0.035106636583805084, 0.12467068433761597, -0.007806859444826841, 0.04618329554796219, 0.02314024232327938, -0.003308576066046953, 0.028679266571998596, -0.06611838191747665, -0.005336153786629438, 0.044299960136413574, 0.10364199429750443, 0.010593377985060215, -0.08876065164804459, 0.025930073112249374, 0.02930358238518238, 0.3517150282859802, 0.0922221913933754, -0.30141764879226685, -0.08803185820579529, 0.02618550695478916, -0.05220205709338188, -0.04113680124282837, 0.020199593156576157, 0.11623081564903259, -0.08371243625879288, 0.10422194004058838, -0.04873332753777504, 0.09083466976881027, -0.057186562567949295, 0.0032322960905730724, 0.09332774579524994, 0.0920005515217781, 0.009257993660867214, 0.05591832846403122, -0.2164098173379898, 0.2593427896499634, 0.0028102672658860683, 0.06121450290083885, -0.04456891492009163, 0.06270217150449753, 0.035259488970041275, 0.018236735835671425, 0.07249081879854202, -0.012637286446988583, -0.11340415477752686, -0.16436423361301422, -0.09239983558654785, 0.013699959963560104, 0.12162531167268753, -0.07621430605649948, 0.11993157118558884, -0.03353071212768555, -0.05304213985800743, 0.04067554697394371, -0.08066519349813461, -0.09841907024383545, -0.11314846575260162, 0.049538835883140564, 0.02475268580019474, 0.06300856173038483, -0.09028062224388123, -0.07843741029500961, -0.04515747353434563, 0.1420123130083084, -0.13567984104156494, -0.03271472081542015, -0.14028126001358032, 0.07729114592075348, 0.16832295060157776, -0.06298039853572845, 0.03984064981341362, 0.0006172377616167068, 0.1555550992488861, 0.031505994498729706, -0.012362040579319, 0.0948299691081047, -0.08417273312807083, -0.22979594767093658, -0.04500002786517143, 0.17705921828746796, 0.020358193665742874, 0.06744788587093353, -0.016445215791463852, 0.04077303782105446, -0.010443872772157192, -0.07815591990947723, 0.06871594488620758, 0.03287281468510628, 0.006693792063742876, 0.03192959353327751, -0.013932774774730206, 0.014587046578526497, -0.06737100332975388, -0.03179922699928284, 0.08269178867340088, 0.25067245960235596, -0.09160688519477844, 0.03591739013791084, 0.03261983394622803, -0.06003319472074509, -0.1551147848367691, 0.005533577408641577, 0.1346411257982254, 0.033650822937488556, -0.04488856717944145, -0.2143993377685547, 0.04556627571582794, 0.07959973067045212, -0.03170741721987724, 0.09822921454906464, -0.2829616665840149, -0.14364422857761383, 0.09296319633722305, 0.01735169067978859, -0.06946375966072083, -0.1786300539970398, -0.07586589455604553, -0.029165202751755714, -0.0705404281616211, 0.04653770476579666, -0.05727563053369522, 0.10945306718349457, 0.007309831213206053, 0.022912880405783653, 0.019073309376835823, -0.039304282516241074, 0.1614658683538437, 0.014712408185005188, 0.038678910583257675, -0.007872864603996277, 0.01056809350848198, 0.05465856194496155, -0.07537715137004852, 0.010833453387022018, -0.07408521324396133, 0.0249454565346241, -0.13989168405532837, -0.019276101142168045, -0.08811675757169724, 0.03279297426342964, -0.04455585032701492, -0.018243715167045593, -0.028329741209745407, 0.04266886040568352, 0.062240470200777054, 0.012302367947995663, 0.14518272876739502, -0.06162027642130852, 0.1423981934785843, 0.18166707456111908, 0.1193956732749939, 0.000027552488973014988, -0.07546248286962509, 0.001274952432140708, -0.010607102885842323, 0.03199295327067375, -0.11950566619634628, 0.03882303833961487, 0.13238848745822906, 0.04011565074324608, 0.13815350830554962, 0.04441692307591438, -0.08271055668592453, 0.008703834377229214, 0.06670110672712326, -0.07452527433633804, -0.14219534397125244, -0.030697030946612358, 0.02473767101764679, -0.14830486476421356, -0.0036271526478230953, 0.13471569120883942, -0.02720423974096775, 0.0029188855551183224, 0.01605675369501114, 0.043286651372909546, -0.032973527908325195, 0.2324695885181427, 0.04095907509326935, 0.10408605635166168, -0.10365857183933258, 0.07586342096328735, 0.05899318680167198, -0.10714347660541534, 0.027723446488380432, 0.11203784495592117, -0.05969472602009773, -0.023975586518645287, 0.013407393358647823, 0.07525008916854858, 0.004497086629271507, -0.06196688488125801, -0.12142132967710495, -0.1555837094783783, 0.08533924072980881, 0.10119066387414932, 0.022504249587655067, 0.03453439474105835, -0.009858333505690098, 0.04030589386820793, -0.09187289327383041, 0.1143825575709343, 0.06497321277856827, 0.07048188149929047, -0.12447299063205719, 0.11217308789491653, -0.0023848700802773237, 0.0010375130223110318, 0.0012427116744220257, -0.008482025004923344, -0.09800254553556442, 0.005402314011007547, -0.1396234929561615, 0.002863864181563258, -0.04108966886997223, -0.0049734218046069145, 0.016400931403040886, -0.05647934600710869, -0.06561413407325745, 0.02709485962986946, -0.10986492037773132, -0.0489288792014122, -0.04644589498639107, 0.06802059710025787, -0.10284250229597092, -0.011828468181192875, 0.030512729659676552, -0.12458803504705429, 0.09670117497444153, 0.037617750465869904, 0.022399425506591797, 0.016655661165714264, -0.049887362867593765, -0.00505285756662488, 0.03090463951230049, 0.014774591661989689, 0.04118673875927925, -0.15653648972511292, -0.012570997700095177, -0.03597651422023773, 0.0088356863707304, -0.013241040520370007, 0.012429969385266304, -0.10280393064022064, 0.010965107940137386, -0.024117596447467804, -0.05336882174015045, -0.05678883194923401, 0.07330510765314102, 0.08012767881155014, 0.014521070756018162, 0.13388387858867645, -0.07172228395938873, 0.04920421913266182, -0.24053065478801727, 0.010049022734165192, -0.009575958363711834, -0.07622788101434708, -0.053933266550302505, -0.021033674478530884, 0.10989735275506973, -0.06173449382185936, 0.08621817082166672, -0.03366202861070633, 0.0830930545926094, 0.03158009797334671, -0.0954107865691185, 0.02668815106153488, 0.07283979654312134, 0.15568406879901886, 0.06700979173183441, -0.023710619658231735, 0.08875338733196259, -0.01648753136396408, 0.06298989802598953, 0.10605327785015106, 0.15621712803840637, 0.11885061860084534, 0.04693407937884331, 0.0818023830652237, 0.11339589953422546, -0.1423138678073883, -0.11664893478155136, 0.13247859477996826, -0.07227752357721329, 0.1491357982158661, -0.038938336074352264, 0.15900766849517822, 0.10721952468156815, -0.2110278308391571, 0.0545085147023201, -0.061467647552490234, -0.09118782728910446, -0.10861223191022873, -0.06509757786989212, -0.08845210075378418, -0.18570485711097717, 0.0008300304762087762, -0.12135805934667587, 0.060526806861162186, 0.05684851482510567, 0.04138195514678955, 0.035081733018159866, 0.10790537297725677, 0.041170403361320496, -0.0020849339198321104, 0.10802080482244492, 0.019353464245796204, -0.0029640146531164646, -0.04864395409822464, -0.1024249941110611, 0.04445338994264603, -0.021468510851264, 0.05724674090743065, -0.04363619536161423, -0.0704517737030983, 0.06155738979578018, 0.011132240295410156, -0.10251572728157043, 0.032509464770555496, -0.017047448083758354, 0.03556136414408684, 0.057920996099710464, 0.02066658064723015, -0.0039062004070729017, -0.005035900045186281, 0.20793789625167847, -0.09972178190946579, -0.06635209172964096, -0.14698132872581482, 0.198362797498703, -0.018240569159388542, -0.005232516676187515, 0.028361311182379723, -0.06928498297929764, -0.023875458166003227, 0.1570502668619156, 0.17622238397598267, -0.019858576357364655, -0.017367227002978325, 0.021233001723885536, -0.010739355348050594, -0.03866930305957794, 0.07288255542516708, 0.10075940191745758, 0.055614639073610306, -0.040457528084516525, -0.019613130018115044, 0.015736844390630722, -0.06572429090738297, -0.03702489659190178, 0.08108346164226532, 0.01631229557096958, -0.0011426149867475033, -0.013224371708929539, 0.10658024251461029, -0.061021462082862854, -0.13578885793685913, 0.04990838095545769, -0.19633540511131287, -0.18538807332515717, -0.0397353433072567, 0.029983041808009148, 0.03386848419904709, 0.05663871765136719, -0.005051047075539827, -0.049193523824214935, 0.12057634443044662, -0.0037175586912781, -0.05032714083790779, -0.11724892258644104, 0.08878134191036224, -0.14757046103477478, 0.17824871838092804, -0.05863461643457413, 0.020472681149840355, 0.12070515006780624, 0.03321068361401558, -0.08721528947353363, 0.007150130346417427, 0.09807626157999039, -0.1321704387664795, 0.03658950328826904, 0.18592378497123718, -0.04758140444755554, 0.1440466195344925, 0.04988456144928932, -0.10060948878526688, 0.0011452613398432732, -0.06436234712600708, -0.035624049603939056, -0.061669204384088516, -0.024293283000588417, -0.0494375005364418, 0.13889440894126892, 0.2035183310508728, -0.06886390596628189, -0.02191285789012909, -0.03304708003997803, 0.015737781301140785, 0.042651690542697906, 0.126248300075531, -0.05144456773996353, -0.26630592346191406, 0.020159173756837845, -0.008074783720076084, 0.01839042454957962, -0.1922827810049057, -0.07418207824230194, 0.026975398883223534, -0.041508082300424576, -0.039328236132860184, 0.13204897940158844, 0.05200789123773575, 0.03564373403787613, -0.05669204145669937, -0.079336017370224, -0.026743605732917786, 0.17840693891048431, -0.18320584297180176, -0.060019638389348984 ]
null
null
transformers
--- datasets: - squad widget: - text: "Which name is also used to describe the Amazon rainforest in English?" context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species." - text: "How many square kilometers of rainforest is covered in the basin?" context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species."
{}
question-answering
aravind-812/roberta-train-json
[ "transformers", "pytorch", "jax", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #roberta #question-answering #endpoints_compatible #region-us
--- datasets: - squad widget: - text: "Which name is also used to describe the Amazon rainforest in English?" context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species." - text: "How many square kilometers of rainforest is covered in the basin?" context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species."
[]
[ "TAGS\n#transformers #pytorch #jax #roberta #question-answering #endpoints_compatible #region-us \n" ]
[ 33 ]
[ "passage: TAGS\n#transformers #pytorch #jax #roberta #question-answering #endpoints_compatible #region-us \n" ]
[ -0.020764736458659172, 0.01961023174226284, -0.010791548527777195, -0.007276155054569244, 0.08957497030496597, 0.028539909049868584, 0.022440236061811447, 0.10318277031183243, 0.09738119691610336, 0.004166853614151478, 0.17602722346782684, 0.23654963076114655, -0.05737054720520973, -0.05537321791052818, -0.08501704782247543, -0.20344415307044983, 0.034290581941604614, 0.07460986077785492, -0.03984908014535904, 0.1323043256998062, 0.055912308394908905, -0.12090059369802475, 0.046618569642305374, -0.02472815290093422, -0.09361791610717773, 0.052862007170915604, 0.008213457651436329, -0.05916151404380798, 0.12564034759998322, 0.0118644330650568, 0.15327170491218567, 0.041701678186655045, -0.11686354875564575, -0.17408387362957, 0.05060852691531181, -0.02321775257587433, -0.05716175585985184, 0.03500483185052872, 0.033279843628406525, -0.11941194534301758, 0.019148414954543114, 0.0718604326248169, 0.008592159487307072, 0.06325527280569077, -0.2020985335111618, -0.1822252720594406, -0.06838498264551163, 0.017078561708331108, 0.06750181317329407, 0.08316085487604141, -0.022363808006048203, 0.18111053109169006, -0.16704052686691284, 0.08658511191606522, 0.1814393252134323, -0.3028716742992401, -0.025909388437867165, 0.07791043817996979, 0.11505873501300812, 0.06271645426750183, -0.016823846846818924, 0.07187379151582718, 0.03863447904586792, 0.015232869423925877, -0.08752299845218658, -0.12215379625558853, -0.07630965113639832, 0.09036257117986679, -0.07969453930854797, -0.09280030429363251, 0.23503027856349945, 0.009875967167317867, 0.03854978457093239, 0.03856739401817322, -0.08365172147750854, 0.0015113684348762035, 0.02180657535791397, -0.03856024518609047, -0.029915183782577515, 0.04971330612897873, 0.005404586438089609, -0.03855803236365318, -0.10425177216529846, 0.019803037866950035, -0.21496669948101044, 0.22759385406970978, 0.02714472822844982, 0.09062093496322632, -0.2393241822719574, 0.049738600850105286, -0.020745526999235153, -0.07918302714824677, 0.002756396308541298, -0.08263976871967316, -0.0020329179242253304, -0.0014644080074504018, -0.051215820014476776, 0.042542099952697754, 0.07131442427635193, 0.19896280765533447, 0.02261265367269516, 0.0231400765478611, 0.024748921394348145, 0.09659721702337265, 0.05768512934446335, 0.09228293597698212, -0.02296619676053524, 0.0041454085148870945, -0.005117831286042929, -0.11919496208429337, -0.01803724654018879, -0.03676409274339676, -0.08711154013872147, -0.05444178730249405, -0.00905407965183258, 0.1454620659351349, 0.10929393768310547, -0.005028031300753355, -0.07021140307188034, -0.002077713143080473, -0.04557899013161659, -0.02006034553050995, -0.027720896527171135, -0.03040854074060917, 0.029260318726301193, 0.1721429079771042, -0.07436476647853851, 0.04167190194129944, -0.013513856567442417, 0.0642976462841034, -0.07927416265010834, -0.0343143604695797, -0.023783626034855843, 0.006130971480160952, 0.0699862390756607, -0.11909998953342438, 0.09235494583845139, -0.1261984407901764, -0.06717577576637268, 0.008239922113716602, 0.045363254845142365, -0.01409397553652525, -0.003664319636300206, 0.004755525384098291, -0.034542858600616455, -0.03956288844347, -0.048255302011966705, -0.023143142461776733, -0.05566376447677612, 0.11430896073579788, 0.039912305772304535, 0.05772212892770767, -0.04441726952791214, 0.0453539676964283, -0.08430330455303192, 0.05102309212088585, -0.07702958583831787, -0.03412111848592758, 0.005205295514315367, 0.16750752925872803, -0.01350058801472187, -0.05380373075604439, -0.10949444025754929, 0.03090004250407219, -0.06055610254406929, 0.1871393769979477, -0.013674082234501839, -0.06598338484764099, 0.21298567950725555, -0.03949926048517227, -0.22605489194393158, 0.07734446227550507, 0.006676843855530024, 0.015816308557987213, 0.07064644992351532, 0.17505620419979095, -0.027114136144518852, -0.08377992361783981, 0.06703782081604004, 0.09074418246746063, -0.1477142870426178, -0.07583872973918915, 0.05775616690516472, -0.0588579997420311, -0.09247890114784241, 0.026952123269438744, 0.03474992886185646, 0.05114384740591049, -0.0922393649816513, -0.04386601969599724, -0.015290370211005211, -0.0017682829638943076, 0.03719266504049301, 0.07490076869726181, 0.045991264283657074, -0.0828562080860138, 0.0007644754950888455, -0.08639374375343323, -0.009163327515125275, 0.06766004115343094, 0.020808512344956398, -0.07403245568275452, 0.13537628948688507, -0.12246942520141602, 0.008217085152864456, -0.20696979761123657, -0.09736818820238113, -0.035763926804065704, 0.11071699857711792, -0.008318805135786533, 0.21949028968811035, 0.08633019775152206, -0.15427689254283905, -0.022295106202363968, -0.024589180946350098, 0.09850239008665085, 0.004486300051212311, -0.010239955969154835, -0.07137835770845413, 0.052954770624637604, -0.07909728586673737, -0.07162167876958847, -0.02751961536705494, -0.02152078226208687, 0.07488460093736649, 0.10982264578342438, -0.0007445816299878061, 0.05139731988310814, -0.0015630907146260142, 0.037622082978487015, -0.00520124938338995, 0.03214215487241745, 0.09658495336771011, -0.0455324724316597, -0.06236215680837631, 0.11369359493255615, -0.06781546026468277, 0.3021377921104431, 0.1724594682455063, -0.2954479455947876, 0.004905192647129297, -0.0005469819298014045, -0.043335847556591034, 0.020345650613307953, 0.0799308493733406, 0.027209656313061714, 0.08154506236314774, 0.02279004268348217, 0.0787823274731636, -0.043303679674863815, -0.06296732276678085, -0.011655271984636784, -0.0616653673350811, -0.035520847886800766, 0.11295445263385773, 0.07091022282838821, -0.19860105216503143, 0.1492786705493927, 0.2943289279937744, 0.042056310921907425, 0.08543748408555984, -0.05395924672484398, -0.0360594280064106, -0.0064434572122991085, 0.023977819830179214, -0.044834788888692856, 0.0575965940952301, -0.21770402789115906, -0.004221691284328699, 0.07257774472236633, -0.008594638668000698, 0.06384819000959396, -0.12650756537914276, -0.10615872591733932, 0.006197641137987375, 0.03748665750026703, -0.0760338082909584, 0.12897208333015442, 0.03682927042245865, 0.09472763538360596, 0.03703536093235016, -0.01896151341497898, 0.10102079808712006, -0.009145846590399742, -0.04793278127908707, 0.148935467004776, -0.08764054626226425, -0.23469123244285583, -0.03274642303586006, -0.09092171490192413, 0.028841177001595497, -0.003613400273025036, 0.06772568076848984, -0.09622729569673538, -0.008362352848052979, 0.1120765432715416, 0.039967864751815796, -0.19442859292030334, 0.00464168656617403, -0.046538837254047394, 0.07214164733886719, -0.0955968052148819, -0.040477655827999115, -0.06156347319483757, -0.06728000193834305, -0.06014839932322502, 0.11035246402025223, -0.10330045968294144, 0.10606490075588226, 0.09626391530036926, 0.05433058738708496, 0.06315874308347702, -0.011728383600711823, 0.2175217717885971, -0.13635745644569397, -0.04200872406363487, 0.18945087492465973, -0.025169914588332176, 0.09554766863584518, 0.15341344475746155, 0.024773484095931053, -0.07697732746601105, -0.006401990540325642, -0.03367644548416138, -0.07195653766393661, -0.25300222635269165, -0.0336080826818943, -0.1317436844110489, 0.052306801080703735, -0.007495288737118244, 0.026541193947196007, 0.13510015606880188, 0.08897539228200912, 0.01854069158434868, -0.13094620406627655, -0.044999394565820694, 0.06767261028289795, 0.2330804318189621, -0.05231485143303871, 0.08436768501996994, -0.060196198523044586, -0.121989905834198, 0.046509042382240295, 0.081588514149189, 0.1365339159965515, 0.13456954061985016, -0.0030554274562746286, 0.09407562762498856, 0.17613235116004944, 0.13829034566879272, 0.06411093473434448, -0.0030833384953439236, -0.0750943273305893, -0.025805950164794922, 0.010541236959397793, -0.05198174715042114, 0.026340758427977562, 0.16037002205848694, -0.10352399200201035, -0.026685398072004318, -0.1894531399011612, 0.07315010577440262, 0.0672268345952034, 0.05891250818967819, -0.0843222439289093, 0.03853391855955124, 0.08976762741804123, -0.018895326182246208, -0.0499417670071125, 0.07946397364139557, -0.018033701926469803, -0.16003616154193878, 0.018559863790869713, -0.04379931464791298, 0.1372683346271515, 0.031225033104419708, 0.07289943844079971, -0.09392006695270538, -0.1320929080247879, 0.054336220026016235, 0.09680154174566269, -0.2714919149875641, 0.2979058027267456, 0.010481705889105797, -0.0869201123714447, -0.06080344691872597, -0.04859201982617378, -0.036281000822782516, 0.12169506400823593, 0.1805344820022583, 0.011572160758078098, -0.056642211973667145, -0.03901322931051254, 0.08413422852754593, 0.05441849306225777, 0.1305391937494278, -0.04382450506091118, -0.01264440268278122, -0.01837112568318844, 0.02011200040578842, -0.038663625717163086, 0.04889755696058273, 0.06084476783871651, -0.1108851209282875, 0.04799014702439308, -0.04187225177884102, 0.011454029940068722, -0.004483891651034355, 0.005168136674910784, -0.03681991621851921, 0.11803090572357178, -0.034253235906362534, -0.047268096357584, -0.08282068371772766, -0.1322200447320938, 0.13897787034511566, -0.09425705671310425, 0.02235536277294159, -0.09061553329229355, -0.07869812846183777, -0.06757305562496185, -0.12765507400035858, 0.13097386062145233, -0.10279438644647598, -0.005648984108120203, -0.04643775522708893, 0.18785695731639862, -0.0746481642127037, 0.017388321459293365, -0.0009128750534728169, 0.053779128938913345, -0.16620074212551117, -0.08486082404851913, 0.033808186650276184, -0.10076703131198883, 0.07161131501197815, 0.058197058737277985, 0.009906512685120106, 0.09580618143081665, -0.008122728206217289, -0.004090220667421818, 0.19751504063606262, 0.24379189312458038, -0.04098149761557579, 0.09425117075443268, 0.1574190855026245, -0.007514298893511295, -0.24383117258548737, -0.06348484754562378, -0.15920332074165344, -0.06579046696424484, 0.003590884618461132, -0.08624562621116638, 0.09944099932909012, 0.02431620843708515, -0.04622792452573776, 0.09255626797676086, -0.25259488821029663, -0.023172345012426376, 0.13142921030521393, -0.0076072909869253635, 0.5028795003890991, -0.13192684948444366, -0.0813179686665535, 0.030327770859003067, -0.2478410303592682, 0.0762200579047203, 0.02224806323647499, 0.04143235459923744, -0.039488255977630615, 0.08109046518802643, 0.03704897314310074, -0.0746385008096695, 0.15071919560432434, -0.017582552507519722, 0.012000137008726597, -0.07021203637123108, -0.13829073309898376, 0.0692637488245964, 0.017659444361925125, -0.03714917227625847, 0.03515888378024101, 0.04152056947350502, -0.16394294798374176, -0.015243095345795155, -0.13685184717178345, 0.055781520903110504, 0.014486709609627724, -0.04303085803985596, -0.03771449625492096, -0.019120845943689346, -0.01983542926609516, -0.004262825008481741, 0.2776806354522705, -0.0607423335313797, 0.19549520313739777, -0.04786691814661026, 0.13222838938236237, -0.1607922911643982, -0.09484338015317917, -0.05675845593214035, -0.052377693355083466, 0.06999379396438599, -0.06665780395269394, 0.03691823035478592, 0.16513662040233612, -0.0075075579807162285, 0.016338057816028595, 0.0943584218621254, 0.011650747619569302, -0.010236154310405254, 0.10675828158855438, -0.2010224610567093, -0.14111113548278809, -0.01988077163696289, -0.023796236142516136, 0.05910836160182953, 0.07490081340074539, 0.05228854715824127, 0.10444092005491257, -0.04573218896985054, 0.012057805433869362, -0.0341825857758522, -0.0615251325070858, -0.02220766805112362, 0.1034143716096878, 0.03120085969567299, -0.10668440908193588, 0.05766346678137779, -0.011280323378741741, -0.24287669360637665, -0.043256986886262894, 0.10909031331539154, -0.08981604129076004, -0.10206161439418793, -0.09676352143287659, 0.0491475947201252, -0.166581392288208, -0.005604840815067291, -0.0497390478849411, -0.09960873425006866, 0.05245533585548401, 0.2267705500125885, 0.08582396060228348, 0.06080421060323715, 0.017108121886849403, -0.03960411995649338, 0.027672825381159782, -0.02523025870323181, -0.02932330034673214, -0.016977185383439064, -0.07933106273412704, -0.10022778064012527, -0.010537462309002876, 0.20104962587356567, -0.07411596924066544, -0.07946030795574188, -0.1659814864397049, 0.09785813093185425, -0.12149212509393692, -0.12046615779399872, -0.12499627470970154, -0.08136206865310669, 0.002371361944824457, -0.12973026931285858, -0.046438220888376236, -0.03855244815349579, -0.12921418249607086, 0.07226940989494324, 0.06428318470716476, 0.012280351482331753, -0.06626791507005692, -0.054242875427007675, 0.16733774542808533, -0.026504816487431526, 0.09010526537895203, 0.14838741719722748, -0.08243750035762787, 0.09731560945510864, -0.10693705081939697, -0.1315368413925171, 0.05170515924692154, 0.011642059311270714, 0.05943248048424721, 0.034163448959589005, -0.0029062472749501467, 0.05955899879336357, 0.048485733568668365, 0.08402123302221298, -0.08799217641353607, -0.11261888593435287, 0.018388524651527405, 0.05015111714601517, -0.19485872983932495, -0.029843639582395554, -0.09907194972038269, 0.1203363686800003, 0.0004649812763091177, 0.09007208049297333, 0.030026638880372047, 0.12774862349033356, -0.05711160972714424, 0.021872514858841896, -0.013658031821250916, -0.15394547581672668, 0.019358651712536812, -0.06486314535140991, 0.008180299773812294, -0.025288954377174377, 0.24045340716838837, -0.09197000414133072, 0.06217047944664955, 0.05162407085299492, 0.058479372411966324, 0.04751307889819145, 0.008445111103355885, 0.18269987404346466, 0.09222535043954849, -0.06454727798700333, -0.07570473849773407, 0.08938800543546677, -0.05100926011800766, -0.074056476354599, 0.12448746711015701, 0.15716853737831116, 0.12027066200971603, 0.0478706955909729, 0.0016460064798593521, 0.05697200819849968, 0.011483953334391117, -0.21792130172252655, 0.03530324622988701, -0.016048423945903778, 0.015018912963569164, 0.08485496044158936, 0.19854196906089783, -0.011169644072651863, 0.0479406863451004, -0.055824872106313705, -0.0007418889435939491, -0.14642541110515594, -0.06397774815559387, -0.059497009962797165, -0.07250252366065979, 0.04904801398515701, -0.09644749015569687, -0.008551058359444141, 0.11571028083562851, 0.05495648831129074, -0.06069279462099075, 0.08475339412689209, 0.09721504896879196, -0.06794722378253937, 0.01432267390191555, 0.006370881572365761, 0.08349635452032089, 0.03649425506591797, 0.04918183758854866, -0.12418810278177261, -0.0940849706530571, -0.06072999909520149, 0.03249484300613403, -0.13237567245960236, -0.046343397349119186, -0.15584324300289154, -0.10703645646572113, -0.051301080733537674, 0.10950037091970444, -0.02912118285894394, 0.13950477540493011, -0.02222617343068123, 0.037925977259874344, 0.018658539280295372, 0.24650532007217407, -0.05998064950108528, -0.018176263198256493, -0.0350148007273674, 0.16993817687034607, 0.023281896486878395, 0.08454954624176025, -0.0033347811549901962, 0.027580000460147858, -0.03287581354379654, 0.31801170110702515, 0.22296082973480225, -0.06439770758152008, 0.042398542165756226, 0.05710572004318237, 0.04185853898525238, 0.08801392465829849, -0.003839813405647874, 0.09943368285894394, 0.27158209681510925, -0.11271157115697861, -0.009221675805747509, -0.026267530396580696, 0.021876543760299683, -0.04127422720193863, 0.03549040108919144, 0.06168491765856743, -0.05824999511241913, -0.05333608388900757, 0.12458038330078125, -0.15442508459091187, 0.11596741527318954, 0.05861674249172211, -0.21143366396427155, -0.0693858414888382, -0.03635558485984802, 0.15511281788349152, -0.0057012238539755344, 0.11665001511573792, -0.035942405462265015, -0.12757587432861328, 0.012561650946736336, 0.057440198957920074, -0.23118849098682404, -0.10241464525461197, 0.15595342218875885, 0.043267905712127686, -0.009196724742650986, -0.02350461669266224, 0.026662252843379974, 0.09518370777368546, 0.011068393476307392, -0.050810229033231735, 0.005546593107283115, 0.0895325317978859, -0.08883298188447952, -0.10321615636348724, -0.005332686938345432, 0.06529538333415985, -0.10149944573640823, 0.09617508947849274, -0.1316470503807068, 0.044280149042606354, -0.04111987352371216, -0.0041619762778282166, -0.04155515134334564, 0.08947503566741943, -0.06439544260501862, 0.025832384824752808, 0.06653797626495361, -0.010252204723656178, -0.0259067602455616, -0.031160809099674225, -0.004354055039584637, 0.06913192570209503, -0.05023598670959473, -0.14811062812805176, 0.019722528755664825, -0.07064778357744217, 0.09203974157571793, -0.037189822643995285, -0.10869020968675613, -0.031760405749082565, -0.02257516048848629, 0.03180760145187378, -0.08358912914991379, 0.016418717801570892, 0.051939912140369415, 0.04715248569846153, 0.027382029220461845, -0.07958980649709702, 0.041527025401592255, 0.055377695709466934, -0.12906725704669952, -0.047657232731580734 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "results", "results": []}]}
text2text-generation
arawat/pegasus-custom-xsum
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #pegasus #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
# results This model is a fine-tuned version of google/pegasus-large on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0 - Datasets 1.15.1 - Tokenizers 0.10.3
[ "# results\n\nThis model is a fine-tuned version of google/pegasus-large on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #pegasus #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "# results\n\nThis model is a fine-tuned version of google/pegasus-large on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ 47, 28, 6, 12, 8, 3, 105, 4, 30 ]
[ "passage: TAGS\n#transformers #pytorch #pegasus #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n# results\n\nThis model is a fine-tuned version of google/pegasus-large on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 1### Training results### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ -0.10768193006515503, 0.10255664587020874, -0.001930752070620656, 0.0864313393831253, 0.1583857238292694, 0.01620582677423954, 0.12821058928966522, 0.12650321424007416, -0.10428367555141449, 0.054952021688222885, 0.09751760214567184, 0.011659989133477211, 0.04254121705889702, 0.1406572312116623, -0.003898421535268426, -0.3113534152507782, -0.006257752422243357, 0.01339851226657629, -0.11642816662788391, 0.11259278655052185, 0.11199280619621277, -0.09192828088998795, 0.08916052430868149, 0.029750585556030273, -0.16321703791618347, 0.028656240552663803, -0.023130692541599274, -0.08103398233652115, 0.1027936339378357, 0.021650612354278564, 0.08219865709543228, 0.0020547606982290745, 0.10630148649215698, -0.16901269555091858, 0.0006406510947272182, 0.07092252373695374, 0.04655945673584938, 0.10540500283241272, 0.04278159886598587, -0.010865308344364166, 0.11330869793891907, -0.11457665264606476, 0.0710529163479805, 0.04660222306847572, -0.0829506367444992, -0.21875794231891632, -0.06305696815252304, 0.09999138116836548, 0.06272734701633453, 0.10614607483148575, -0.001016463153064251, 0.1227886751294136, -0.09683595597743988, 0.060183778405189514, 0.24575956165790558, -0.2713291347026825, -0.0749230831861496, 0.021035412326455116, 0.055244896560907364, 0.034365277737379074, -0.08971337229013443, 0.0019148389110341668, 0.05756683647632599, 0.040342312306165695, 0.08019163459539413, -0.0026330819819122553, -0.03956300765275955, -0.007780811283737421, -0.11258137971162796, -0.03650103136897087, 0.20908965170383453, 0.04084989055991173, -0.05046641081571579, -0.10628657788038254, -0.06576108932495117, -0.11739522218704224, -0.010244423523545265, -0.026867209002375603, 0.0484599694609642, -0.05577315762639046, -0.0783357173204422, -0.08084411174058914, -0.07881226390600204, -0.07609211653470993, -0.018313027918338776, 0.16262663900852203, 0.051355160772800446, 0.027836494147777557, -0.07186290621757507, 0.12606287002563477, 0.012729519046843052, -0.12134963274002075, -0.014002223499119282, -0.013567239977419376, -0.016679957509040833, -0.0338699109852314, -0.051394350826740265, -0.0019998890347778797, 0.0025343564338982105, 0.15774737298488617, -0.10362613946199417, 0.049474120140075684, 0.06392376869916916, 0.01203595194965601, -0.018222693353891373, 0.1847992092370987, -0.06621848791837692, -0.006873709615319967, 0.03211016207933426, 0.09261495620012283, 0.03295315057039261, -0.0025051573757082224, -0.10332918912172318, -0.06058761849999428, 0.07615868747234344, 0.06473162025213242, -0.028338147327303886, 0.03528263047337532, -0.027989305555820465, -0.03835310786962509, 0.011608299799263477, -0.11072777956724167, 0.03716824948787689, -0.013628322631120682, -0.1222195252776146, 0.014779066666960716, 0.03519199788570404, -0.00853228010237217, -0.059410423040390015, 0.07661157846450806, -0.10159220546483994, 0.006903405766934156, -0.09241281449794769, -0.04808993265032768, 0.014220130629837513, -0.04976407811045647, -0.005427492316812277, -0.08528536558151245, -0.18347185850143433, -0.024016546085476875, 0.03410513326525688, -0.060169097036123276, -0.07983522117137909, -0.03346826881170273, -0.07024522870779037, 0.013295422308146954, -0.013372411020100117, 0.11990036070346832, -0.034496650099754333, 0.09276160597801208, 0.0745050311088562, 0.04584883898496628, -0.00152268644887954, 0.0458952970802784, -0.10656362026929855, 0.04131416976451874, -0.14668723940849304, 0.0886356458067894, -0.06511256843805313, 0.0348939523100853, -0.10309828072786331, -0.12821361422538757, -0.014682266861200333, -0.007832138799130917, 0.0800083801150322, 0.16441504657268524, -0.10078324377536774, -0.07136652618646622, 0.14520755410194397, -0.058251846581697464, -0.11309591680765152, 0.10390445590019226, -0.007997723296284676, 0.04013199359178543, 0.06474771350622177, 0.1245187297463417, 0.08904381096363068, -0.112340047955513, -0.020920945331454277, 0.02535826712846756, 0.05993059277534485, -0.02880391664803028, 0.07026470452547073, -0.012192579917609692, 0.013192607089877129, 0.04400346055626869, -0.038167279213666916, 0.016760781407356262, -0.0993192195892334, -0.07738497853279114, -0.06326580792665482, -0.08807425945997238, 0.06697876751422882, 0.03794688731431961, 0.0804474875330925, -0.07933872938156128, -0.11979488283395767, 0.0884142816066742, 0.10992468893527985, -0.04343753680586815, 0.02044825628399849, -0.0657050684094429, 0.06775182485580444, -0.02956916019320488, -0.0007601258694194257, -0.1926836222410202, -0.12833160161972046, 0.03537340089678764, -0.07367373257875443, 0.04704844951629639, -0.0436718612909317, 0.07204944640398026, 0.05802705138921738, -0.060211699455976486, -0.02254030480980873, -0.10901685804128647, -0.04351404309272766, -0.10700920969247818, -0.14026090502738953, -0.055138345807790756, 0.0005026075523346663, 0.1492888629436493, -0.18511857092380524, 0.03028446063399315, -0.015537089668214321, 0.14804598689079285, 0.02175845578312874, -0.03422018885612488, 0.0031915251165628433, 0.040866605937480927, -0.025698846206068993, -0.08646427094936371, 0.046623386442661285, -0.005475509911775589, -0.08465296030044556, -0.043965477496385574, -0.10341958701610565, 0.10506845265626907, 0.09794290363788605, 0.017518918961286545, -0.0840364322066307, -0.018007351085543633, -0.09234410524368286, -0.029545828700065613, -0.0847737118601799, -0.00033740344224497676, 0.18573619425296783, 0.01453301589936018, 0.15016096830368042, -0.07568494230508804, -0.06533067673444748, 0.021564295515418053, -0.019465727731585503, -0.017814092338085175, 0.0809941440820694, 0.07728184759616852, -0.012206023558974266, 0.09519685804843903, 0.07913386076688766, -0.08703596889972687, 0.14565519988536835, -0.05009159818291664, -0.08450841903686523, -0.009948036633431911, -0.008534584194421768, -0.01496520172804594, 0.10793954879045486, -0.11051616072654724, -0.019007433205842972, 0.030427923426032066, 0.019227033481001854, 0.05854175612330437, -0.18350635468959808, -0.002911067334935069, 0.013324316591024399, -0.045079831033945084, -0.06564103811979294, 0.008929003961384296, 0.016178950667381287, 0.089363232254982, 0.04062474146485329, 0.013975678943097591, 0.036583397537469864, 0.016827644780278206, -0.06528622657060623, 0.1895867884159088, -0.08571799099445343, -0.17311780154705048, -0.1728411465883255, 0.10020900517702103, -0.09581045806407928, -0.007972311228513718, 0.021400772035121918, -0.09221796691417694, -0.030253540724515915, -0.05722040683031082, 0.056369565427303314, -0.047873493283987045, 0.014107784256339073, 0.02088594250380993, 0.034593213349580765, 0.09436029940843582, -0.12467347830533981, 0.006622293498367071, -0.018461434170603752, -0.09301166236400604, -0.022433454170823097, 0.02545136958360672, 0.09559246897697449, 0.10119739919900894, -0.02594594843685627, 0.03403206914663315, -0.031200869008898735, 0.2407054752111435, -0.0901850089430809, -0.01880030333995819, 0.16618521511554718, 0.07105689495801926, 0.04692012816667557, 0.06944482773542404, 0.03938879817724228, -0.0946590006351471, 0.034398071467876434, 0.05929409712553024, -0.022362112998962402, -0.2513471245765686, -0.03057706728577614, -0.02684718370437622, -0.028993669897317886, 0.10381368547677994, 0.04597907140851021, 0.0067717586643993855, 0.0730423629283905, -0.033031295984983444, 0.10589881241321564, -0.03831097111105919, 0.0764613151550293, 0.15108288824558258, 0.04321853816509247, 0.086808942258358, -0.038498520851135254, -0.058945395052433014, 0.06779233366250992, 0.0003156001039315015, 0.23340027034282684, -0.04611644893884659, 0.12393734604120255, 0.0012714348267763853, 0.1327466368675232, -0.013005265966057777, 0.0616852268576622, 0.03399215266108513, -0.004861669614911079, 0.014760688878595829, -0.05268120765686035, -0.043330926448106766, 0.021487534046173096, 0.016143133863806725, 0.07307911664247513, -0.13457174599170685, 0.03206280246376991, 0.025345757603645325, 0.30747655034065247, 0.018108807504177094, -0.32364019751548767, -0.12528516352176666, 0.005391266196966171, -0.033334825187921524, -0.07143374532461166, 0.03725501149892807, 0.10921213775873184, -0.14298205077648163, 0.05302971974015236, -0.061720870435237885, 0.0998283326625824, -0.05153386667370796, 0.007225592155009508, 0.05289454758167267, 0.14521296322345734, -0.0005480245454236865, 0.10150349885225296, -0.22509051859378815, 0.21433380246162415, 0.011214208789169788, 0.10138773918151855, -0.059542443603277206, 0.03119436651468277, 0.013540449552237988, 0.09696993976831436, 0.08119035512208939, -0.008955310098826885, 0.01811923459172249, -0.15272405743598938, -0.09415112435817719, 0.037033166736364365, 0.12891492247581482, -0.06384080648422241, 0.0913667231798172, -0.058119021356105804, 0.0013771853409707546, 0.023333683609962463, -0.0553673580288887, -0.14317648112773895, -0.10284154862165451, 0.0052930633537471294, 0.023058271035552025, 0.010686744935810566, -0.08081148564815521, -0.12101852148771286, 0.014175062999129295, 0.13297927379608154, -0.019336149096488953, -0.07373686879873276, -0.14008206129074097, 0.07957886159420013, 0.14578227698802948, -0.07371098548173904, 0.013190137222409248, -0.008817988447844982, 0.14017353951931, 0.034709371626377106, -0.08185581862926483, 0.08120183646678925, -0.06868777424097061, -0.20172901451587677, -0.03410860151052475, 0.161660298705101, 0.010957377962768078, 0.04165991395711899, -0.027567006647586823, 0.007006854750216007, -0.02922080270946026, -0.09715204685926437, 0.02546720579266548, 0.05065407231450081, 0.04010697454214096, 0.059658851474523544, -0.05979130417108536, 0.08263727277517319, -0.018512871116399765, 0.0005822870880365372, 0.11169270426034927, 0.20503681898117065, -0.08080019801855087, 0.04192642122507095, 0.07231063395738602, -0.05650263652205467, -0.1856130212545395, 0.05025826394557953, 0.12158067524433136, 0.027146922424435616, -0.004083997569978237, -0.22075025737285614, 0.10689794272184372, 0.11584353446960449, -0.03394215181469917, 0.1114419624209404, -0.3159691095352173, -0.13808122277259827, 0.05825888738036156, 0.08602608740329742, 0.07294861972332001, -0.14052143692970276, -0.046721842139959335, -0.05359378084540367, -0.10782184451818466, 0.10353930294513702, -0.07783333957195282, 0.12572404742240906, -0.030493514612317085, 0.13037899136543274, 0.023464644327759743, -0.0341334193944931, 0.130390927195549, 0.007226831279695034, 0.06703303754329681, -0.040189944207668304, 0.018642934039235115, 0.10268168151378632, -0.06440477818250656, 0.08942143619060516, -0.022758247330784798, 0.07673559337854385, -0.11890773475170135, -0.02816096693277359, -0.0856502503156662, 0.09406422823667526, -0.04695117846131325, -0.046158939599990845, -0.04141087085008621, 0.020054684951901436, 0.008901425637304783, -0.02530566416680813, 0.118484728038311, 0.0419490672647953, 0.0947776585817337, 0.08545947074890137, 0.11155527085065842, -0.04328470304608345, -0.11613469570875168, 0.010465849190950394, -0.019160157069563866, 0.08175656199455261, -0.1596432328224182, 0.009847075678408146, 0.12461753934621811, 0.048077210783958435, 0.09937809407711029, 0.06167525425553322, -0.05756712704896927, 0.008842435665428638, 0.0566733255982399, -0.12784533202648163, -0.1726851910352707, -0.06870774924755096, -0.07330968976020813, -0.14790210127830505, 0.07051882892847061, 0.09657055884599686, -0.09142961353063583, -0.02460664138197899, -0.015034735202789307, -0.007980220019817352, -0.01791110448539257, 0.1788003295660019, 0.06578503549098969, 0.062169212847948074, -0.09551707655191422, 0.14258529245853424, 0.06027313321828842, -0.08445224910974503, 0.04570842161774635, 0.10738993436098099, -0.07497638463973999, -0.01046668365597725, 0.02900022827088833, 0.09210033714771271, -0.06655899435281754, -0.0474674366414547, -0.13308565318584442, -0.1006784588098526, 0.04883969947695732, 0.06279561668634415, 0.061194900423288345, -0.0006974851130507886, -0.03577270731329918, 0.049088165163993835, -0.1577606052160263, 0.0935346856713295, 0.044059671461582184, 0.07710296660661697, -0.17141680419445038, 0.12165125459432602, 0.013983710668981075, 0.06555331498384476, -0.02664170414209366, 0.002414283575490117, -0.0977896898984909, -0.00919429026544094, -0.13933458924293518, -0.04222056642174721, -0.01571749895811081, 0.005394052714109421, -0.020378921180963516, -0.047747522592544556, -0.05736205354332924, 0.05414651334285736, -0.08559346199035645, -0.05923475697636604, 0.009794323705136776, 0.04236621409654617, -0.1341705322265625, 0.022285036742687225, 0.033454425632953644, -0.09390177577733994, 0.09895610064268112, 0.08290209621191025, 0.018019357696175575, 0.03627622872591019, -0.06137821823358536, -0.015787139534950256, 0.018021538853645325, 0.008229113183915615, 0.06516044586896896, -0.07509081810712814, 0.0072676860727369785, -0.020765801891684532, 0.08275312185287476, 0.010188856162130833, 0.03639591857790947, -0.14483524858951569, -0.0416717529296875, -0.024496369063854218, -0.04721282422542572, -0.06858904659748077, 0.04295991733670235, 0.08007492870092392, 0.03334406018257141, 0.16963428258895874, -0.07962437719106674, 0.027799753472208977, -0.19792179763317108, -0.010517927818000317, -0.018471036106348038, -0.0498841293156147, -0.08426462113857269, -0.03217034786939621, 0.08343126624822617, -0.04523083195090294, 0.12744395434856415, 0.021825937554240227, 0.13719114661216736, 0.03706014156341553, -0.020543154329061508, -0.021846061572432518, 0.012893029488623142, 0.16288401186466217, 0.06544607132673264, -0.007789145689457655, 0.08883363008499146, 0.02595275640487671, 0.08139794319868088, 0.08047538995742798, 0.18578274548053741, 0.062117449939250946, -0.06453625112771988, 0.10824713855981827, 0.0735476016998291, -0.06575874239206314, -0.1755184829235077, 0.046551186591386795, -0.013844129629433155, 0.108962282538414, -0.059197526425123215, 0.12327553331851959, 0.10635662078857422, -0.12800225615501404, 0.0460333526134491, -0.0595669224858284, -0.09640178084373474, -0.1337069272994995, -0.04507746174931526, -0.07152346521615982, -0.1708763837814331, 0.025795692577958107, -0.1228930801153183, 0.004332482814788818, 0.06777943670749664, -0.0019154173787683249, -0.02688046172261238, 0.17916740477085114, -0.0142283383756876, -0.014250402338802814, 0.0847112238407135, 0.009701384231448174, -0.007027924060821533, -0.04322374239563942, -0.07666226476430893, 0.01712741144001484, -0.013810094445943832, 0.06943636387586594, -0.0357467457652092, -0.07437626272439957, 0.01897893100976944, -0.01631287671625614, -0.06563659012317657, 0.009310000576078892, 0.04135962203145027, 0.035536568611860275, -0.0026483091060072184, 0.020181981846690178, -0.024945637211203575, -0.048381321132183075, 0.3092706501483917, -0.09974448382854462, -0.057729557156562805, -0.13719160854816437, 0.2536170780658722, 0.03429959714412689, -0.02316032163798809, 0.04922895506024361, -0.11259625107049942, -0.05504090338945389, 0.18715330958366394, 0.16765418648719788, -0.0452093742787838, -0.039187077432870865, -0.012431868351995945, -0.017400827258825302, -0.03993970528244972, 0.12772488594055176, 0.11739187687635422, 0.07952164858579636, -0.05561472475528717, 0.004885469563305378, -0.001559445750899613, -0.028887979686260223, -0.09268981963396072, 0.12203005701303482, 0.0007698424160480499, 0.0007510788273066282, -0.05686928704380989, 0.06298898905515671, -0.05183308571577072, -0.12813562154769897, 0.03431938216090202, -0.17291031777858734, -0.15924234688282013, -0.03935715928673744, 0.033847589045763016, 0.006331704091280699, 0.09583676606416702, 0.0028755604289472103, -0.010471010580658913, 0.13286279141902924, -0.020913593471050262, -0.10445601493120193, -0.1032860055565834, 0.094036765396595, -0.07956025749444962, 0.2286798506975174, -0.011616408824920654, 0.049571022391319275, 0.10002729296684265, 0.004414504859596491, -0.14334863424301147, 0.012648923322558403, 0.056451935321092606, -0.04941144585609436, 0.025618771091103554, 0.1453191637992859, -0.021126562729477882, 0.03740962967276573, 0.013303464278578758, -0.10776004940271378, -0.026465393602848053, -0.045680806040763855, -0.0015065676998347044, -0.10314226895570755, -0.008201539516448975, -0.06838175654411316, 0.1301484853029251, 0.2217681109905243, -0.04982033371925354, -0.018457839265465736, -0.08609393984079361, 0.03584863990545273, 0.06603137403726578, 0.06170469895005226, -0.01943378336727619, -0.21238279342651367, -0.013863402418792248, 0.0541209802031517, -0.006757398601621389, -0.24890072643756866, -0.05655276030302048, 0.023950058966875076, -0.04097266495227814, -0.04817638173699379, 0.08881955593824387, 0.06893295794725418, 0.04170047119259834, -0.0368507020175457, -0.07571765035390854, -0.058810632675886154, 0.1556384116411209, -0.17293938994407654, -0.06456080079078674 ]
null
null
transformers
#HourAI bot based on DialoGPT
{"tags": ["conversational"]}
text-generation
archmagos/HourAI
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #safetensors #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#HourAI bot based on DialoGPT
[]
[ "TAGS\n#transformers #pytorch #safetensors #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 56 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.028994612395763397, 0.03717942163348198, -0.007205516565591097, 0.004361928440630436, 0.14950066804885864, -0.013941794633865356, 0.11986828595399857, 0.1182805597782135, -0.03048190474510193, -0.010174466297030449, 0.14877668023109436, 0.1851094663143158, -0.013957205228507519, 0.09307502955198288, -0.09557180106639862, -0.2245006561279297, 0.08883897960186005, 0.027438592165708542, 0.035971157252788544, 0.1274057924747467, 0.08356550335884094, -0.06823034584522247, 0.06669498234987259, -0.03636123612523079, -0.12532266974449158, 0.0028578240890055895, 0.05958588048815727, -0.1302003562450409, 0.12235744297504425, 0.03003060445189476, 0.10374733805656433, 0.043939314782619476, -0.07261740416288376, -0.15499833226203918, 0.03386516869068146, 0.03463131934404373, -0.06291534006595612, 0.046142611652612686, 0.07618991285562515, -0.093361496925354, 0.06937185674905777, 0.06204131990671158, -0.012534034438431263, 0.05895763263106346, -0.15713968873023987, -0.04276531934738159, -0.014816577546298504, 0.013026992790400982, 0.07869639992713928, 0.10855725407600403, -0.03201347962021828, 0.14759007096290588, -0.0851001888513565, 0.12150996178388596, 0.1239863857626915, -0.32539400458335876, -0.0010325099574401975, 0.07500352710485458, 0.042798060923814774, 0.0700213834643364, -0.04765492305159569, 0.051571447402238846, 0.031836334615945816, 0.004194476641714573, 0.014558027498424053, -0.05954115092754364, -0.12596048414707184, 0.018643176183104515, -0.09720765799283981, -0.06140025332570076, 0.20382985472679138, -0.0590277723968029, 0.051872193813323975, -0.07813733071088791, -0.12088852375745773, -0.029457518830895424, -0.018522758036851883, -0.0014233867404982448, -0.07191982120275497, 0.0697530135512352, 0.008914402686059475, -0.048782069236040115, -0.14170318841934204, -0.03263361006975174, -0.16206398606300354, 0.18776893615722656, 0.03174376115202904, 0.04489494860172272, -0.19151368737220764, 0.09325390309095383, 0.040709663182497025, -0.10056023299694061, 0.030602479353547096, -0.10420837253332138, 0.0518723800778389, 0.013859134167432785, -0.03356955200433731, -0.07820286601781845, 0.12177305668592453, 0.10705813020467758, -0.08302552998065948, 0.029910054057836533, -0.0518684946000576, 0.07312697917222977, 0.02555178292095661, 0.06321559846401215, 0.0005397886270657182, 0.009785126894712448, 0.06927945464849472, -0.08632822334766388, 0.029176287353038788, -0.06690286844968796, -0.12896926701068878, -0.0064486730843782425, 0.09108948707580566, 0.11376697570085526, 0.012237145565450191, 0.12357603758573532, -0.043104153126478195, 0.01189747080206871, 0.06860891729593277, -0.06891996413469315, -0.022417569532990456, 0.03244988992810249, 0.03606780990958214, 0.06666674464941025, -0.006634891033172607, 0.02604227140545845, -0.13079532980918884, 0.04091726988554001, -0.0643448606133461, -0.01847873069345951, -0.02537871152162552, -0.054979365319013596, 0.021013228222727776, -0.05385638400912285, 0.0016376969870179892, -0.17925472557544708, -0.15229609608650208, 0.01025520171970129, -0.02450299635529518, -0.01414579525589943, -0.04215415567159653, -0.05549995228648186, -0.038427844643592834, 0.025479240342974663, -0.07407741248607635, -0.0541660450398922, -0.06597121059894562, 0.11745881289243698, -0.03170236200094223, 0.0638091042637825, -0.09621044993400574, 0.055343348532915115, -0.1376529037952423, -0.010226898826658726, -0.07068921625614166, 0.06311444938182831, -0.015582656487822533, 0.11676833033561707, 0.0014907608274370432, -0.023834871128201485, -0.0757647231221199, 0.05509824678301811, -0.025720594450831413, 0.22712132334709167, -0.06154930591583252, -0.09178899973630905, 0.31081268191337585, -0.11809492111206055, -0.15338093042373657, 0.13023294508457184, 0.011604922823607922, 0.019147438928484917, 0.12250597029924393, 0.20399682223796844, 0.008194107562303543, -0.010573046281933784, 0.0578976534307003, 0.09868865460157394, -0.12109559029340744, -0.03384355455636978, 0.0019291907083243132, -0.027920013293623924, -0.13384109735488892, 0.045637402683496475, 0.08118539303541183, 0.06196809560060501, -0.05529056116938591, -0.03310706093907356, -0.032375507056713104, -0.007541123311966658, 0.09128022193908691, 0.0010877466993406415, 0.08752452582120895, -0.08452648669481277, -0.04017898812890053, -0.05404124781489372, -0.005262788850814104, -0.04702545702457428, 0.018141234293580055, -0.06270471960306168, 0.11833393573760986, -0.0026014288887381554, 0.06254255026578903, -0.14835688471794128, -0.11584768444299698, -0.009780634194612503, 0.12789341807365417, -0.01780831813812256, 0.04813294857740402, 0.06763497740030289, 0.00098732253536582, -0.0011714716674759984, -0.03454669937491417, 0.17249971628189087, -0.012706821784377098, -0.05934740975499153, -0.06328863650560379, 0.09847947955131531, -0.06798075139522552, 0.05744375288486481, -0.07993299514055252, 0.025816364213824272, 0.06514972448348999, 0.09963318705558777, 0.008724996820092201, 0.028547506779432297, -0.0013018660247325897, 0.004906942136585712, -0.05867992341518402, -0.00611899746581912, 0.10396798700094223, 0.011229002848267555, -0.0740957260131836, 0.20066019892692566, -0.21398082375526428, 0.24392159283161163, 0.19056081771850586, -0.24192918837070465, 0.00981980562210083, -0.09797576069831848, -0.035239703953266144, 0.0204030629247427, 0.04077638313174248, -0.043731484562158585, 0.11199628561735153, -0.00907069444656372, 0.18191012740135193, -0.0733426883816719, -0.04988950863480568, -0.0024024536833167076, -0.06362885236740112, -0.006515666376799345, 0.08168808370828629, 0.0420350655913353, -0.14488229155540466, 0.19209423661231995, 0.1648620218038559, 0.03738253936171532, 0.18765953183174133, -0.007599308155477047, -0.0005212257383391261, 0.08825082331895828, 0.056330155581235886, -0.0332566499710083, -0.0683663859963417, -0.20980527997016907, -0.015365404076874256, 0.0680062547326088, 0.0452900193631649, 0.10409069806337357, -0.1285317838191986, -0.0476088747382164, -0.02153710089623928, -0.03222563490271568, 0.021310606971383095, 0.07516232877969742, 0.04943285137414932, 0.1463354378938675, -0.03315149247646332, -0.029199428856372833, 0.10530391335487366, 0.0018139067105948925, -0.10505969077348709, 0.21006526052951813, -0.12959107756614685, -0.38478371500968933, -0.12295942008495331, -0.12465260177850723, -0.05466725677251816, 0.05989878252148628, 0.11986995488405228, -0.12428545951843262, -0.026873940601944923, -0.027530189603567123, 0.06363729387521744, -0.03752683103084564, 0.01928102970123291, -0.062066853046417236, 0.0373716838657856, -0.06338763982057571, -0.10153484344482422, -0.04917367920279503, -0.029283059760928154, -0.10798602551221848, 0.16745351254940033, -0.07413849234580994, 0.05456981807947159, 0.18967147171497345, 0.024961886927485466, 0.03510000556707382, -0.053832922130823135, 0.1711120754480362, -0.08332394063472748, -0.019603034481406212, 0.19940707087516785, -0.057942941784858704, 0.08007334917783737, 0.12594826519489288, -0.015241099521517754, -0.0892653539776802, 0.050643131136894226, -0.033212289214134216, -0.08026967942714691, -0.23528216779232025, -0.13507108390331268, -0.08512603491544724, 0.11327257007360458, 0.018413247540593147, 0.06799782812595367, 0.1529865264892578, 0.07597990334033966, -0.0492875799536705, -0.044824402779340744, 0.0672951489686966, 0.07731044292449951, 0.1831343173980713, -0.048216793686151505, 0.14399567246437073, -0.04114715754985809, -0.15805895626544952, 0.07400382310152054, 0.04073971137404442, 0.10478080809116364, 0.037516117095947266, 0.039527639746665955, 0.02364072948694229, 0.09820537269115448, 0.13571609556674957, 0.11845608055591583, 0.007558451034128666, -0.039035581052303314, -0.016731536015868187, -0.03634432330727577, -0.0670543760061264, 0.011746753938496113, -0.010773980990052223, -0.12803319096565247, -0.06190115585923195, -0.06618185341358185, 0.11947073042392731, 0.082245372235775, 0.054481759667396545, -0.21059565246105194, -0.009993447922170162, 0.09027878940105438, -0.019997427240014076, -0.12006835639476776, 0.10920628160238266, 0.04952099546790123, -0.12109538167715073, 0.03819160908460617, -0.04868942126631737, 0.09576742351055145, -0.06145532801747322, 0.0944039523601532, -0.09457848221063614, -0.06062381714582443, 0.002222648821771145, 0.11850869655609131, -0.2925296127796173, 0.2048967033624649, -0.00892670638859272, -0.025700481608510017, -0.1052609458565712, -0.000636346114333719, 0.002383036306127906, 0.0990152508020401, 0.13844019174575806, -0.013388436287641525, -0.018852530047297478, -0.07502689957618713, -0.04686504229903221, 0.043244775384664536, 0.12532752752304077, -0.015467319637537003, -0.00834830105304718, -0.04835360869765282, -0.0023646291811019182, -0.018859002739191055, -0.09980562329292297, -0.006937874481081963, -0.16253407299518585, 0.06168588250875473, 0.0530114583671093, 0.10794179141521454, -0.013860982842743397, -0.00854520220309496, -0.11860840767621994, 0.22573307156562805, -0.07790760695934296, -0.10792146623134613, -0.09785399585962296, -0.06658799201250076, 0.020297683775424957, -0.06326670944690704, 0.04842204228043556, -0.07062158733606339, 0.04524936527013779, -0.06655782461166382, -0.18382880091667175, 0.11711519211530685, -0.10763727873563766, -0.07890895754098892, -0.021923266351222992, 0.22087989747524261, -0.049244802445173264, -0.01755031757056713, 0.03608519211411476, 0.016882948577404022, -0.09164203703403473, -0.10763014107942581, 0.019699513912200928, -0.017170218750834465, 0.06290043145418167, 0.04854103550314903, -0.05951589718461037, -0.09417112171649933, -0.04073793813586235, -0.006547942757606506, 0.32037001848220825, 0.19119004905223846, -0.04242495819926262, 0.1651287078857422, 0.16958652436733246, -0.05205022543668747, -0.3448276221752167, -0.10939286649227142, -0.12942685186862946, -0.06017755717039108, -0.0542730912566185, -0.13424967229366302, 0.07734859734773636, 0.03176725283265114, -0.02984931506216526, 0.11289031058549881, -0.2495477944612503, -0.0830443948507309, 0.1708361953496933, 0.02978249453008175, 0.36560356616973877, -0.15687896311283112, -0.10042843967676163, -0.04485407844185829, -0.11313583701848984, 0.1638716757297516, -0.10624252259731293, 0.08359898626804352, 0.0005173089448362589, 0.07685405761003494, 0.05813150852918625, -0.05476165935397148, 0.08167819678783417, -0.027241511270403862, 0.009587266482412815, -0.11564526706933975, -0.02990633435547352, 0.03377249091863632, 0.011620084755122662, 0.03751041740179062, -0.062149230390787125, 0.04695598781108856, -0.06142954155802727, -0.0440547950565815, -0.08005185425281525, 0.05958639085292816, 0.029754646122455597, -0.06617877632379532, 0.0050559998489916325, -0.065475232899189, -0.00020704269991256297, 0.016612045466899872, 0.2049017995595932, -0.06282583624124527, 0.19598184525966644, 0.12754030525684357, 0.13884544372558594, -0.14263051748275757, 0.04750414565205574, -0.05133480206131935, -0.06960497051477432, 0.0812823697924614, -0.06672589480876923, 0.06808197498321533, 0.09437867254018784, -0.03965180739760399, 0.0742703527212143, 0.10401890426874161, 0.014220776036381721, -0.0025037124287337065, 0.12674778699874878, -0.2911945581436157, -0.06027824059128761, -0.05841008946299553, 0.0267078448086977, 0.0765918642282486, 0.12912607192993164, 0.18127864599227905, 0.01996750570833683, -0.03108501434326172, -0.018294807523489, 0.03991484269499779, -0.027562161907553673, 0.06695644557476044, 0.004677923396229744, 0.029333269223570824, -0.1450662910938263, 0.08025793731212616, 0.00001413424797647167, -0.1466224044561386, 0.024967879056930542, 0.14475053548812866, -0.13803942501544952, -0.13489209115505219, -0.04678435996174812, 0.09309624135494232, -0.05887448415160179, -0.04888263717293739, -0.04676072299480438, -0.15312238037586212, 0.055112265050411224, 0.14994119107723236, 0.052975382655858994, 0.10418030619621277, -0.017471758648753166, -0.017556704580783844, -0.048256851732730865, 0.017785103991627693, -0.0009936511050909758, 0.0022541533689945936, -0.09053029865026474, 0.0744970515370369, -0.01958519034087658, 0.10916736721992493, -0.09695246815681458, -0.06790593266487122, -0.17211103439331055, 0.03275161236524582, -0.09633186459541321, -0.05772961676120758, -0.09038986265659332, -0.03978794440627098, -0.010782967321574688, -0.014750530011951923, -0.025427671149373055, -0.043428484350442886, -0.09523502737283707, 0.04417814314365387, -0.03300096467137337, 0.007264059968292713, -0.10051228106021881, 0.00016086101823020726, 0.07025935500860214, -0.03757777437567711, 0.16884271800518036, 0.13381977379322052, -0.10865480452775955, 0.1102571040391922, -0.21270614862442017, -0.07441695034503937, 0.12528401613235474, -0.006233865395188332, 0.015086804516613483, 0.07555849105119705, 0.017773650586605072, 0.09126552194356918, 0.00828908197581768, 0.05829174071550369, 0.03726828843355179, -0.11326239258050919, 0.07704365253448486, -0.01599319651722908, -0.1294003278017044, -0.04773728922009468, -0.0730040892958641, 0.02420450933277607, -0.010505115613341331, 0.12641505897045135, -0.07865285873413086, 0.0906529352068901, -0.06671575456857681, 0.024498600512742996, 0.026367289945483208, -0.1884288191795349, -0.08302449434995651, -0.04471737518906593, 0.044647034257650375, 0.006506338249891996, 0.23851554095745087, 0.0235122200101614, -0.010749533772468567, 0.034232404083013535, 0.05822164937853813, 0.059870053082704544, 0.025883706286549568, 0.19520971179008484, 0.08231765776872635, -0.072471983730793, -0.11401300132274628, 0.03745274990797043, 0.01811346225440502, -0.060790419578552246, 0.12814179062843323, 0.036005791276693344, -0.027478119358420372, 0.07087187469005585, -0.01174217090010643, 0.015425745397806168, -0.0816754475235939, -0.14454202353954315, -0.05953683704137802, 0.03253600746393204, -0.02498267963528633, 0.1120469719171524, 0.1812705099582672, -0.0013609747402369976, 0.015817290171980858, -0.03041967749595642, -0.05926791578531265, -0.1756991595029831, -0.14313766360282898, -0.08775309473276138, -0.12457139790058136, 0.014500590041279793, -0.12164600193500519, 0.025044914335012436, 0.053533174097537994, 0.06415745615959167, -0.06100451946258545, 0.14366786181926727, 0.07371728122234344, -0.08218565583229065, 0.058793265372514725, -0.02419847622513771, 0.07684588432312012, 0.01638939045369625, -0.03992878273129463, -0.07652272284030914, 0.011380000039935112, 0.005251304712146521, 0.062121931463479996, -0.03596027195453644, 0.03569943830370903, -0.1459643691778183, -0.08668382465839386, -0.03907736763358116, 0.0812806636095047, -0.044997770339250565, 0.13921087980270386, 0.018269622698426247, -0.027931133285164833, 0.05132003873586655, 0.2326163798570633, -0.06087464466691017, -0.09179307520389557, -0.04085228219628334, 0.22599206864833832, 0.022856563329696655, 0.12190650403499603, -0.009267003275454044, -0.016304370015859604, -0.05399281904101372, 0.34328603744506836, 0.2938794195652008, -0.07042541354894638, 0.038264770060777664, -0.023749660700559616, 0.036720097064971924, 0.09899816662073135, 0.12958809733390808, 0.11624071002006531, 0.3169666826725006, -0.06609135121107101, -0.021776242181658745, -0.0068347458727657795, -0.0052537512965500355, -0.11657443642616272, 0.08425644785165787, 0.025790410116314888, -0.043594297021627426, -0.04758237302303314, 0.09097945690155029, -0.22038395702838898, 0.11581593006849289, -0.13331608474254608, -0.15514566004276276, -0.04885316640138626, 0.0155342323705554, 0.13479961454868317, -0.0050827935338020325, 0.08605613559484482, -0.0002486487210262567, -0.09584292024374008, 0.03018942102789879, 0.021486632525920868, -0.18027843534946442, 0.01188130583614111, 0.03497105464339256, -0.05494539812207222, 0.05150381475687027, -0.010404348373413086, 0.059441130608320236, 0.07335782796144485, 0.027757329866290092, -0.03716479241847992, 0.0907382071018219, 0.0018811057088896632, -0.07033063471317291, 0.024655047804117203, 0.03311711549758911, 0.023353727534413338, -0.08417163044214249, 0.06316978484392166, -0.15417876839637756, 0.04319261014461517, -0.0027546107303351164, -0.0546049028635025, -0.015047412365674973, 0.028999146074056625, -0.052553869783878326, 0.04826204851269722, 0.060669150203466415, -0.015072288922965527, 0.01514197327196598, -0.05358981341123581, -0.006741818506270647, -0.03718702495098114, -0.08331039547920227, -0.05798166245222092, -0.1719702184200287, -0.08313801884651184, 0.12965653836727142, 0.002070409944280982, -0.22290737926959991, 0.026626020669937134, -0.10338432341814041, 0.07114361226558685, -0.19193696975708008, 0.06663238257169724, 0.08630798757076263, 0.018926870077848434, -0.002647911896929145, -0.011747708544135094, 0.04613884165883064, 0.10495155304670334, -0.07489542663097382, -0.0890762060880661 ]
null
null
transformers
#Mini-Me
{"tags": ["conversational"]}
text-generation
ardatasc/miniMe-version1
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Mini-Me
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-dataset_20-input_64 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4335 - Bleu: 8.6652 - Gen Len: 18.2596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6351 | 1.0 | 7629 | 1.4335 | 8.6652 | 18.2596 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "metrics": ["bleu"], "model-index": [{"name": "t5-small-finetuned-en-to-ro-dataset_20-input_64", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16", "type": "wmt16", "args": "ro-en"}, "metrics": [{"type": "bleu", "value": 8.6652, "name": "Bleu"}]}]}]}
text2text-generation
aretw0/t5-small-finetuned-en-to-ro-dataset_20-input_64
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-en-to-ro-dataset\_20-input\_64 ================================================= This model is a fine-tuned version of t5-small on the wmt16 dataset. It achieves the following results on the evaluation set: * Loss: 1.4335 * Bleu: 8.6652 * Gen Len: 18.2596 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 78, 113, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.10917399078607559, 0.11471432447433472, -0.0027396257501095533, 0.09895854443311691, 0.10955965518951416, -0.0001069965583155863, 0.16124649345874786, 0.16258057951927185, -0.10628575086593628, 0.053479187190532684, 0.1450633406639099, 0.1308496743440628, 0.051844220608472824, 0.1639290302991867, -0.0668860450387001, -0.24423490464687347, 0.04065472632646561, 0.056784600019454956, -0.011823700740933418, 0.1331363320350647, 0.08877413719892502, -0.12101919949054718, 0.09074299782514572, 0.031635139137506485, -0.18749457597732544, -0.020282115787267685, 0.002061503706499934, -0.0736994668841362, 0.11226610839366913, 0.02977660670876503, 0.0911487564444542, 0.038374725729227066, 0.049766991287469864, -0.16297008097171783, 0.010093905963003635, 0.05474463477730751, 0.008931340649724007, 0.1072186529636383, 0.05765332654118538, -0.008725910447537899, 0.08835668116807938, -0.06456660479307175, 0.06411945819854736, 0.019242841750383377, -0.12956532835960388, -0.2625778913497925, -0.10905735194683075, 0.050317149609327316, 0.07186374813318253, 0.0861460417509079, -0.006633952260017395, 0.18090227246284485, -0.02800736017525196, 0.1068313792347908, 0.2432011365890503, -0.29884496331214905, -0.053969480097293854, -0.014459454454481602, 0.04446632042527199, 0.07036794722080231, -0.07821860909461975, -0.03485395759344101, 0.025422576814889908, 0.04641352593898773, 0.14936189353466034, -0.013171754777431488, -0.024672530591487885, -0.013022727333009243, -0.1324913501739502, -0.07593471556901932, 0.171248659491539, 0.03810932859778404, -0.04172251746058464, -0.0791015475988388, -0.077671580016613, -0.1780117154121399, -0.045623596757650375, 0.010163996368646622, 0.03260093927383423, -0.03613753989338875, -0.090866319835186, -0.011963759548962116, -0.08345898240804672, -0.03971271589398384, -0.0400259830057621, 0.12204766273498535, 0.039326511323451996, 0.021013403311371803, -0.0648568645119667, 0.08251743018627167, -0.02115466259419918, -0.17048144340515137, -0.002365675289183855, 0.014742737635970116, 0.012092333287000656, -0.0362180694937706, -0.03975226357579231, -0.12854725122451782, 0.0013694885419681668, 0.1508413404226303, -0.08570656180381775, 0.07209396362304688, -0.021052835509181023, 0.03757272660732269, -0.0712432935833931, 0.1862633228302002, -0.02531667985022068, 0.01199100911617279, 0.014259738847613335, 0.08283204585313797, 0.053004778921604156, -0.03595377132296562, -0.11852851510047913, 0.03560039773583412, 0.11873334646224976, 0.01798361726105213, -0.026281235739588737, 0.05671486258506775, -0.04950146749615669, -0.033470869064331055, 0.06428056955337524, -0.0985192358493805, 0.026263179257512093, -0.014385460875928402, -0.06137974187731743, -0.016946153715252876, 0.014305219054222107, 0.010318907909095287, -0.03901536390185356, 0.0866943746805191, -0.09499428421258926, 0.01481225248426199, -0.07909353822469711, -0.13312721252441406, 0.032194834202528, -0.08567824959754944, 0.004750316496938467, -0.08903170377016068, -0.15488608181476593, -0.010155879892408848, 0.059911105781793594, -0.04203338921070099, -0.060760945081710815, -0.04690389707684517, -0.08462844043970108, 0.05228358507156372, -0.017197903245687485, 0.09407021850347519, -0.06994345039129257, 0.09313524514436722, 0.04367922991514206, 0.0699872076511383, -0.03805668279528618, 0.046048570424318314, -0.09221658110618591, 0.046713024377822876, -0.20324106514453888, 0.05810253322124481, -0.043135568499565125, 0.08136440813541412, -0.10855108499526978, -0.0986681804060936, 0.03332415595650673, -0.0287183690816164, 0.10098884999752045, 0.10032692551612854, -0.1712362915277481, -0.0714666098356247, 0.19620312750339508, -0.08605452626943588, -0.13960541784763336, 0.13542011380195618, -0.04866115376353264, 0.015205718576908112, 0.05108737573027611, 0.2256919890642166, 0.06009798124432564, -0.09466048330068588, -0.014539822936058044, -0.043245840817689896, 0.0728016197681427, -0.07243970781564713, 0.08524001389741898, 0.005715298466384411, 0.06257703900337219, 0.007864327169954777, 0.006257898174226284, 0.033685676753520966, -0.08180579543113708, -0.08341662585735321, -0.05262620374560356, -0.07464150339365005, 0.018977873027324677, 0.043067850172519684, 0.06436768174171448, -0.12520940601825714, -0.10918889939785004, 0.046763889491558075, 0.08006852120161057, -0.08530648052692413, 0.051584817469120026, -0.09699808061122894, 0.1122535690665245, -0.08021575212478638, -0.00659157196059823, -0.18090251088142395, -0.024141639471054077, 0.03383353725075722, 0.0010654424550011754, 0.013559523038566113, -0.04356803372502327, 0.06793972849845886, 0.07252488285303116, -0.04066728800535202, -0.03788644075393677, -0.02443225122988224, -0.001314831548370421, -0.11854644119739532, -0.1943080872297287, -0.048003263771533966, -0.03863260895013809, 0.10233265906572342, -0.15729813277721405, 0.03872581943869591, 0.056178245693445206, 0.10972263664007187, 0.042117565870285034, -0.031345024704933167, -0.003357804147526622, 0.06802110373973846, -0.04786115139722824, -0.06688948720693588, 0.06229365989565849, 0.026483003050088882, -0.09326101094484329, 0.010820088908076286, -0.158180832862854, 0.1622932404279709, 0.1346219778060913, 0.004879570100456476, -0.0541812963783741, -0.019613012671470642, -0.05237652361392975, -0.02854287065565586, -0.028418002650141716, 0.016172830015420914, 0.1588008552789688, 0.025985952466726303, 0.15797199308872223, -0.10222776979207993, -0.05566391348838806, 0.0499078594148159, -0.03026086650788784, -0.011345218867063522, 0.11625569313764572, 0.039288707077503204, -0.1284365952014923, 0.14239320158958435, 0.13931645452976227, -0.042383112013339996, 0.13660340011119843, -0.06493972986936569, -0.07175718992948532, -0.04036037623882294, -0.013231067918241024, 0.03097875416278839, 0.10596074908971786, -0.1082935631275177, -0.015777455642819405, 0.04346192255616188, 0.031063292175531387, 0.0076416125521063805, -0.19079066812992096, -0.006651147734373808, 0.041639961302280426, -0.04832824692130089, -0.05512874573469162, -0.00769960880279541, 0.004110692068934441, 0.09769129753112793, 0.014726448804140091, -0.053582966327667236, 0.032937273383140564, 0.011940195225179195, -0.07119324058294296, 0.18894925713539124, -0.09939312934875488, -0.16942797601222992, -0.12950117886066437, -0.10203353315591812, -0.05805894732475281, -0.005371432285755873, 0.07649076730012894, -0.08027179539203644, -0.04708235338330269, -0.10186446458101273, -0.027952581644058228, -0.008628503419458866, 0.020371589809656143, 0.04548691213130951, -0.020337754860520363, 0.06656253337860107, -0.11115580052137375, -0.02909284643828869, -0.014477659948170185, 0.023933380842208862, 0.0658642128109932, 0.009455622173845768, 0.11307885497808456, 0.13176853954792023, -0.016606198623776436, 0.04228051379323006, -0.038424860686063766, 0.24758224189281464, -0.07065451145172119, -0.013800577260553837, 0.13955159485340118, -0.018120357766747475, 0.09214428067207336, 0.12466620653867722, 0.05316920951008797, -0.08791717886924744, -0.0027621444314718246, -0.001604850753210485, -0.04535123333334923, -0.21868807077407837, -0.015303969383239746, -0.05466558784246445, 0.001744882669299841, 0.10508858412504196, 0.021423574537038803, 0.03096095658838749, 0.05431736260652542, 0.012180328369140625, 0.05940742418169975, -0.021445728838443756, 0.10620433837175369, 0.12473221868276596, 0.060851361602544785, 0.14198057353496552, -0.05322448909282684, -0.029268380254507065, 0.044931281358003616, 0.021764623001217842, 0.2137097716331482, -0.008698340505361557, 0.21417513489723206, 0.04102635011076927, 0.15865211188793182, 0.02834424562752247, 0.07572963833808899, -0.024131296202540398, -0.008849830366671085, -0.017770491540431976, -0.04835456237196922, -0.04220596328377724, 0.017860157415270805, -0.05530538037419319, 0.03240496665239334, -0.11530701071023941, 0.019909173250198364, 0.04589752107858658, 0.29963046312332153, 0.04798771068453789, -0.3718622028827667, -0.11109720170497894, 0.0094932671636343, -0.04341591149568558, -0.04128250107169151, 0.0008628775249235332, 0.09455103427171707, -0.08159216493368149, 0.06703955680131912, -0.08436376601457596, 0.11149004846811295, -0.06510557234287262, 0.03551100939512253, 0.04669375345110893, 0.08505182713270187, -0.012717513367533684, 0.05641089752316475, -0.28100720047950745, 0.2738114297389984, 0.026290807873010635, 0.06374993175268173, -0.07667809724807739, 0.012611317448318005, 0.006969583220779896, 0.03766192868351936, 0.05853402242064476, -0.005911902990192175, -0.10967565327882767, -0.16153457760810852, -0.1041492447257042, 0.011242196895182133, 0.07969959080219269, 0.0035379109904170036, 0.12099135667085648, -0.016085704788565636, -0.0014859960647299886, 0.04691782966256142, -0.006847220938652754, -0.033275824040174484, -0.11474140733480453, 0.029838385060429573, 0.03969845548272133, -0.032073017209768295, -0.07454714924097061, -0.10639364272356033, -0.054155658930540085, 0.15956473350524902, 0.02727699838578701, -0.07064219564199448, -0.1298806518316269, 0.04128815978765488, 0.08371434360742569, -0.09511010348796844, 0.023329902440309525, -0.013915752992033958, 0.12196256965398788, -0.007698898669332266, -0.07569239288568497, 0.11352983862161636, -0.05473337322473526, -0.16862133145332336, -0.05112864449620247, 0.12031980603933334, 0.008478439413011074, 0.06110162287950516, -0.010009197518229485, 0.04102516546845436, -0.03768019378185272, -0.06940557807683945, 0.034696925431489944, -0.004047933965921402, 0.09349345415830612, -0.044153280556201935, -0.003014791291207075, 0.028921516612172127, -0.07135061919689178, -0.03159482404589653, 0.1824987530708313, 0.2620856761932373, -0.08438511192798615, 0.06301905959844589, 0.04395594820380211, -0.05072613060474396, -0.15080669522285461, 0.008553997613489628, 0.0609603077173233, 0.005049607250839472, 0.0060432893224060535, -0.17499805986881256, 0.03296128660440445, 0.08296515792608261, -0.01535357628017664, 0.07664306461811066, -0.3164437413215637, -0.12653249502182007, 0.08367202430963516, 0.12841640412807465, 0.09094066917896271, -0.15086670219898224, -0.0497749038040638, -0.028958914801478386, -0.15875592827796936, 0.137518048286438, -0.0920708104968071, 0.11437015235424042, -0.03256872668862343, 0.1096072793006897, 0.012829836457967758, -0.0646963119506836, 0.11883208155632019, -0.005842664744704962, 0.07460785657167435, -0.06354458630084991, 0.023073723539710045, 0.09836554527282715, -0.08192788809537888, 0.04517729952931404, -0.10450837016105652, 0.038500525057315826, -0.1263103038072586, -0.016559315845370293, -0.06823816150426865, 0.0007465110975317657, -0.03655963018536568, -0.038469184190034866, -0.03676806017756462, 0.010679833590984344, 0.07058195024728775, -0.0253180842846632, 0.1829911172389984, 0.02113182656466961, 0.14056538045406342, 0.15983447432518005, 0.09267670661211014, -0.11937794834375381, -0.06294651329517365, -0.0052627376280725, -0.03338058292865753, 0.043614864349365234, -0.16437797248363495, 0.03173253685235977, 0.1364196389913559, 0.007336901500821114, 0.12597544491291046, 0.06369921565055847, -0.0650341808795929, 0.023672858253121376, 0.05299321189522743, -0.1716981828212738, -0.10725577175617218, -0.0063964324072003365, 0.04852115735411644, -0.1315886229276657, 0.033887263387441635, 0.12701596319675446, -0.05631670355796814, -0.023221826180815697, 0.004589783493429422, 0.01895914413034916, -0.014277997426688671, 0.1820504516363144, 0.035505592823028564, 0.06981107592582703, -0.1099390760064125, 0.07826583087444305, 0.061465419828891754, -0.10313957929611206, 0.050818558782339096, 0.10245969891548157, -0.0971931740641594, -0.028247613459825516, 0.036512572318315506, 0.17040444910526276, -0.06097490340471268, -0.04745258390903473, -0.15727758407592773, -0.1188703179359436, 0.0949232429265976, 0.17090941965579987, 0.06709177792072296, 0.008168856613337994, -0.039086952805519104, -0.015391355380415916, -0.12216324359178543, 0.1019618809223175, 0.05355535075068474, 0.0792258083820343, -0.12606219947338104, 0.11375851184129715, -0.012528096325695515, 0.04522998631000519, -0.006996932905167341, 0.015794357284903526, -0.10961584746837616, 0.005936841946095228, -0.13510942459106445, 0.004436931572854519, -0.047851987183094025, -0.0004405204963404685, -0.0263049453496933, -0.040917716920375824, -0.057577889412641525, 0.017344828695058823, -0.11474660038948059, -0.03428823500871658, 0.013691357336938381, 0.02553664892911911, -0.1210864931344986, -0.022359712049365044, 0.018432727083563805, -0.08651149272918701, 0.08237779140472412, 0.04350263625383377, -0.004744785837829113, 0.02384069934487343, -0.024593310430645943, 0.0023693498224020004, 0.04206053540110588, 0.008600871078670025, 0.0749109536409378, -0.1182522103190422, -0.01614619605243206, 0.006687935907393694, 0.018271127715706825, 0.027700547128915787, 0.11897240579128265, -0.11851169168949127, -0.003569161519408226, 0.002949648769572377, -0.06171497330069542, -0.07331183552742004, 0.06945384293794632, 0.09609014540910721, 0.019843291491270065, 0.18782134354114532, -0.0701877698302269, 0.03631741181015968, -0.2041826695203781, -0.0004824092611670494, 0.011069185100495815, -0.1444322168827057, -0.0686158686876297, -0.04079968109726906, 0.06533107161521912, -0.07331144064664841, 0.10990822315216064, 0.00029397057369351387, 0.029118673875927925, 0.041680943220853806, -0.024232879281044006, -0.023682642728090286, 0.009833776392042637, 0.17776265740394592, 0.02087424322962761, -0.03993479162454605, 0.08008939027786255, 0.021948911249637604, 0.08164765685796738, 0.1351768523454666, 0.19295553863048553, 0.12377285957336426, 0.05742652714252472, 0.09562498331069946, 0.0246766097843647, -0.028312064707279205, -0.18750935792922974, 0.04608301818370819, -0.03345264121890068, 0.14469313621520996, -0.0036162484902888536, 0.19875183701515198, 0.12363523989915848, -0.1616145372390747, 0.049789298325777054, -0.042546529322862625, -0.08770232647657394, -0.10374753177165985, -0.10902634263038635, -0.08727183192968369, -0.13637308776378632, -0.006051057018339634, -0.12545187771320343, 0.04457848146557808, 0.06355591863393784, 0.01382653508335352, -0.006067642010748386, 0.1218736544251442, 0.03791828826069832, 0.01333939004689455, 0.057010456919670105, -0.0005080885021016002, -0.040598683059215546, -0.04785794019699097, -0.06846243888139725, 0.01792242005467415, 0.0008599443244747818, 0.05296821519732475, -0.009698429144918919, -0.012721187435090542, 0.041002094745635986, -0.024327702820301056, -0.12153244018554688, 0.007053912151604891, 0.028403956443071365, 0.07168569415807724, 0.04125894606113434, 0.011225602589547634, 0.006194763816893101, -0.015729404985904694, 0.20045487582683563, -0.07241246104240417, -0.058644987642765045, -0.11636999249458313, 0.235474094748497, 0.01072970312088728, -0.049952827394008636, 0.03867815434932709, -0.06700122356414795, -0.0035528417211025953, 0.203794464468956, 0.1763950139284134, -0.04246234521269798, -0.013220349326729774, -0.01708497293293476, -0.008600465953350067, -0.02101289853453636, 0.10620400309562683, 0.12142284214496613, 0.023890454322099686, -0.07888230681419373, -0.026393845677375793, -0.06630735844373703, -0.0199846550822258, -0.04438477009534836, 0.07920759916305542, 0.022992458194494247, -0.004345722496509552, -0.035063277930021286, 0.054386038333177567, -0.053618792444467545, -0.05333730950951576, 0.005299953278154135, -0.21374726295471191, -0.1652282476425171, 0.0011250237002968788, 0.07984796911478043, -0.010978286154568195, 0.05968651920557022, -0.005668939091265202, 0.011672243475914001, 0.08514123409986496, -0.015483490191400051, -0.07583421468734741, -0.07210621982812881, 0.10283120721578598, -0.1565060317516327, 0.179169699549675, -0.03168606758117676, 0.03672231733798981, 0.14063027501106262, 0.04921741038560867, -0.11283878982067108, 0.05979303643107414, 0.04866620525717735, -0.040907539427280426, 0.010315114632248878, 0.12839774787425995, -0.025993308052420616, 0.07548055052757263, 0.04117988795042038, -0.11852877587080002, -0.009816375561058521, -0.07926999032497406, -0.01329423114657402, -0.020900364965200424, -0.04580537602305412, -0.04396604001522064, 0.13080313801765442, 0.1953880935907364, -0.046875834465026855, -0.010142689570784569, -0.06230320408940315, 0.014063090085983276, 0.06366412341594696, -0.011526157148182392, -0.057635754346847534, -0.2592150568962097, 0.0015044639585539699, 0.0800754725933075, -0.0048964377492666245, -0.2722071707248688, -0.09105357527732849, -0.0024159944150596857, -0.05014897882938385, -0.10266423225402832, 0.09415236860513687, 0.08769173920154572, 0.047062430530786514, -0.06798126548528671, 0.0034771731588989496, -0.07054917514324188, 0.1582612246274948, -0.1364070177078247, -0.06375838816165924 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-dataset_20 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4052 - Bleu: 7.3293 - Gen Len: 18.2556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6029 | 1.0 | 7629 | 1.4052 | 7.3293 | 18.2556 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "metrics": ["bleu"], "model-index": [{"name": "t5-small-finetuned-en-to-ro-dataset_20", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16", "type": "wmt16", "args": "ro-en"}, "metrics": [{"type": "bleu", "value": 7.3293, "name": "Bleu"}]}]}]}
text2text-generation
aretw0/t5-small-finetuned-en-to-ro-dataset_20
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-en-to-ro-dataset\_20 ======================================= This model is a fine-tuned version of t5-small on the wmt16 dataset. It achieves the following results on the evaluation set: * Loss: 1.4052 * Bleu: 7.3293 * Gen Len: 18.2556 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 78, 113, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.10917399078607559, 0.11471432447433472, -0.0027396257501095533, 0.09895854443311691, 0.10955965518951416, -0.0001069965583155863, 0.16124649345874786, 0.16258057951927185, -0.10628575086593628, 0.053479187190532684, 0.1450633406639099, 0.1308496743440628, 0.051844220608472824, 0.1639290302991867, -0.0668860450387001, -0.24423490464687347, 0.04065472632646561, 0.056784600019454956, -0.011823700740933418, 0.1331363320350647, 0.08877413719892502, -0.12101919949054718, 0.09074299782514572, 0.031635139137506485, -0.18749457597732544, -0.020282115787267685, 0.002061503706499934, -0.0736994668841362, 0.11226610839366913, 0.02977660670876503, 0.0911487564444542, 0.038374725729227066, 0.049766991287469864, -0.16297008097171783, 0.010093905963003635, 0.05474463477730751, 0.008931340649724007, 0.1072186529636383, 0.05765332654118538, -0.008725910447537899, 0.08835668116807938, -0.06456660479307175, 0.06411945819854736, 0.019242841750383377, -0.12956532835960388, -0.2625778913497925, -0.10905735194683075, 0.050317149609327316, 0.07186374813318253, 0.0861460417509079, -0.006633952260017395, 0.18090227246284485, -0.02800736017525196, 0.1068313792347908, 0.2432011365890503, -0.29884496331214905, -0.053969480097293854, -0.014459454454481602, 0.04446632042527199, 0.07036794722080231, -0.07821860909461975, -0.03485395759344101, 0.025422576814889908, 0.04641352593898773, 0.14936189353466034, -0.013171754777431488, -0.024672530591487885, -0.013022727333009243, -0.1324913501739502, -0.07593471556901932, 0.171248659491539, 0.03810932859778404, -0.04172251746058464, -0.0791015475988388, -0.077671580016613, -0.1780117154121399, -0.045623596757650375, 0.010163996368646622, 0.03260093927383423, -0.03613753989338875, -0.090866319835186, -0.011963759548962116, -0.08345898240804672, -0.03971271589398384, -0.0400259830057621, 0.12204766273498535, 0.039326511323451996, 0.021013403311371803, -0.0648568645119667, 0.08251743018627167, -0.02115466259419918, -0.17048144340515137, -0.002365675289183855, 0.014742737635970116, 0.012092333287000656, -0.0362180694937706, -0.03975226357579231, -0.12854725122451782, 0.0013694885419681668, 0.1508413404226303, -0.08570656180381775, 0.07209396362304688, -0.021052835509181023, 0.03757272660732269, -0.0712432935833931, 0.1862633228302002, -0.02531667985022068, 0.01199100911617279, 0.014259738847613335, 0.08283204585313797, 0.053004778921604156, -0.03595377132296562, -0.11852851510047913, 0.03560039773583412, 0.11873334646224976, 0.01798361726105213, -0.026281235739588737, 0.05671486258506775, -0.04950146749615669, -0.033470869064331055, 0.06428056955337524, -0.0985192358493805, 0.026263179257512093, -0.014385460875928402, -0.06137974187731743, -0.016946153715252876, 0.014305219054222107, 0.010318907909095287, -0.03901536390185356, 0.0866943746805191, -0.09499428421258926, 0.01481225248426199, -0.07909353822469711, -0.13312721252441406, 0.032194834202528, -0.08567824959754944, 0.004750316496938467, -0.08903170377016068, -0.15488608181476593, -0.010155879892408848, 0.059911105781793594, -0.04203338921070099, -0.060760945081710815, -0.04690389707684517, -0.08462844043970108, 0.05228358507156372, -0.017197903245687485, 0.09407021850347519, -0.06994345039129257, 0.09313524514436722, 0.04367922991514206, 0.0699872076511383, -0.03805668279528618, 0.046048570424318314, -0.09221658110618591, 0.046713024377822876, -0.20324106514453888, 0.05810253322124481, -0.043135568499565125, 0.08136440813541412, -0.10855108499526978, -0.0986681804060936, 0.03332415595650673, -0.0287183690816164, 0.10098884999752045, 0.10032692551612854, -0.1712362915277481, -0.0714666098356247, 0.19620312750339508, -0.08605452626943588, -0.13960541784763336, 0.13542011380195618, -0.04866115376353264, 0.015205718576908112, 0.05108737573027611, 0.2256919890642166, 0.06009798124432564, -0.09466048330068588, -0.014539822936058044, -0.043245840817689896, 0.0728016197681427, -0.07243970781564713, 0.08524001389741898, 0.005715298466384411, 0.06257703900337219, 0.007864327169954777, 0.006257898174226284, 0.033685676753520966, -0.08180579543113708, -0.08341662585735321, -0.05262620374560356, -0.07464150339365005, 0.018977873027324677, 0.043067850172519684, 0.06436768174171448, -0.12520940601825714, -0.10918889939785004, 0.046763889491558075, 0.08006852120161057, -0.08530648052692413, 0.051584817469120026, -0.09699808061122894, 0.1122535690665245, -0.08021575212478638, -0.00659157196059823, -0.18090251088142395, -0.024141639471054077, 0.03383353725075722, 0.0010654424550011754, 0.013559523038566113, -0.04356803372502327, 0.06793972849845886, 0.07252488285303116, -0.04066728800535202, -0.03788644075393677, -0.02443225122988224, -0.001314831548370421, -0.11854644119739532, -0.1943080872297287, -0.048003263771533966, -0.03863260895013809, 0.10233265906572342, -0.15729813277721405, 0.03872581943869591, 0.056178245693445206, 0.10972263664007187, 0.042117565870285034, -0.031345024704933167, -0.003357804147526622, 0.06802110373973846, -0.04786115139722824, -0.06688948720693588, 0.06229365989565849, 0.026483003050088882, -0.09326101094484329, 0.010820088908076286, -0.158180832862854, 0.1622932404279709, 0.1346219778060913, 0.004879570100456476, -0.0541812963783741, -0.019613012671470642, -0.05237652361392975, -0.02854287065565586, -0.028418002650141716, 0.016172830015420914, 0.1588008552789688, 0.025985952466726303, 0.15797199308872223, -0.10222776979207993, -0.05566391348838806, 0.0499078594148159, -0.03026086650788784, -0.011345218867063522, 0.11625569313764572, 0.039288707077503204, -0.1284365952014923, 0.14239320158958435, 0.13931645452976227, -0.042383112013339996, 0.13660340011119843, -0.06493972986936569, -0.07175718992948532, -0.04036037623882294, -0.013231067918241024, 0.03097875416278839, 0.10596074908971786, -0.1082935631275177, -0.015777455642819405, 0.04346192255616188, 0.031063292175531387, 0.0076416125521063805, -0.19079066812992096, -0.006651147734373808, 0.041639961302280426, -0.04832824692130089, -0.05512874573469162, -0.00769960880279541, 0.004110692068934441, 0.09769129753112793, 0.014726448804140091, -0.053582966327667236, 0.032937273383140564, 0.011940195225179195, -0.07119324058294296, 0.18894925713539124, -0.09939312934875488, -0.16942797601222992, -0.12950117886066437, -0.10203353315591812, -0.05805894732475281, -0.005371432285755873, 0.07649076730012894, -0.08027179539203644, -0.04708235338330269, -0.10186446458101273, -0.027952581644058228, -0.008628503419458866, 0.020371589809656143, 0.04548691213130951, -0.020337754860520363, 0.06656253337860107, -0.11115580052137375, -0.02909284643828869, -0.014477659948170185, 0.023933380842208862, 0.0658642128109932, 0.009455622173845768, 0.11307885497808456, 0.13176853954792023, -0.016606198623776436, 0.04228051379323006, -0.038424860686063766, 0.24758224189281464, -0.07065451145172119, -0.013800577260553837, 0.13955159485340118, -0.018120357766747475, 0.09214428067207336, 0.12466620653867722, 0.05316920951008797, -0.08791717886924744, -0.0027621444314718246, -0.001604850753210485, -0.04535123333334923, -0.21868807077407837, -0.015303969383239746, -0.05466558784246445, 0.001744882669299841, 0.10508858412504196, 0.021423574537038803, 0.03096095658838749, 0.05431736260652542, 0.012180328369140625, 0.05940742418169975, -0.021445728838443756, 0.10620433837175369, 0.12473221868276596, 0.060851361602544785, 0.14198057353496552, -0.05322448909282684, -0.029268380254507065, 0.044931281358003616, 0.021764623001217842, 0.2137097716331482, -0.008698340505361557, 0.21417513489723206, 0.04102635011076927, 0.15865211188793182, 0.02834424562752247, 0.07572963833808899, -0.024131296202540398, -0.008849830366671085, -0.017770491540431976, -0.04835456237196922, -0.04220596328377724, 0.017860157415270805, -0.05530538037419319, 0.03240496665239334, -0.11530701071023941, 0.019909173250198364, 0.04589752107858658, 0.29963046312332153, 0.04798771068453789, -0.3718622028827667, -0.11109720170497894, 0.0094932671636343, -0.04341591149568558, -0.04128250107169151, 0.0008628775249235332, 0.09455103427171707, -0.08159216493368149, 0.06703955680131912, -0.08436376601457596, 0.11149004846811295, -0.06510557234287262, 0.03551100939512253, 0.04669375345110893, 0.08505182713270187, -0.012717513367533684, 0.05641089752316475, -0.28100720047950745, 0.2738114297389984, 0.026290807873010635, 0.06374993175268173, -0.07667809724807739, 0.012611317448318005, 0.006969583220779896, 0.03766192868351936, 0.05853402242064476, -0.005911902990192175, -0.10967565327882767, -0.16153457760810852, -0.1041492447257042, 0.011242196895182133, 0.07969959080219269, 0.0035379109904170036, 0.12099135667085648, -0.016085704788565636, -0.0014859960647299886, 0.04691782966256142, -0.006847220938652754, -0.033275824040174484, -0.11474140733480453, 0.029838385060429573, 0.03969845548272133, -0.032073017209768295, -0.07454714924097061, -0.10639364272356033, -0.054155658930540085, 0.15956473350524902, 0.02727699838578701, -0.07064219564199448, -0.1298806518316269, 0.04128815978765488, 0.08371434360742569, -0.09511010348796844, 0.023329902440309525, -0.013915752992033958, 0.12196256965398788, -0.007698898669332266, -0.07569239288568497, 0.11352983862161636, -0.05473337322473526, -0.16862133145332336, -0.05112864449620247, 0.12031980603933334, 0.008478439413011074, 0.06110162287950516, -0.010009197518229485, 0.04102516546845436, -0.03768019378185272, -0.06940557807683945, 0.034696925431489944, -0.004047933965921402, 0.09349345415830612, -0.044153280556201935, -0.003014791291207075, 0.028921516612172127, -0.07135061919689178, -0.03159482404589653, 0.1824987530708313, 0.2620856761932373, -0.08438511192798615, 0.06301905959844589, 0.04395594820380211, -0.05072613060474396, -0.15080669522285461, 0.008553997613489628, 0.0609603077173233, 0.005049607250839472, 0.0060432893224060535, -0.17499805986881256, 0.03296128660440445, 0.08296515792608261, -0.01535357628017664, 0.07664306461811066, -0.3164437413215637, -0.12653249502182007, 0.08367202430963516, 0.12841640412807465, 0.09094066917896271, -0.15086670219898224, -0.0497749038040638, -0.028958914801478386, -0.15875592827796936, 0.137518048286438, -0.0920708104968071, 0.11437015235424042, -0.03256872668862343, 0.1096072793006897, 0.012829836457967758, -0.0646963119506836, 0.11883208155632019, -0.005842664744704962, 0.07460785657167435, -0.06354458630084991, 0.023073723539710045, 0.09836554527282715, -0.08192788809537888, 0.04517729952931404, -0.10450837016105652, 0.038500525057315826, -0.1263103038072586, -0.016559315845370293, -0.06823816150426865, 0.0007465110975317657, -0.03655963018536568, -0.038469184190034866, -0.03676806017756462, 0.010679833590984344, 0.07058195024728775, -0.0253180842846632, 0.1829911172389984, 0.02113182656466961, 0.14056538045406342, 0.15983447432518005, 0.09267670661211014, -0.11937794834375381, -0.06294651329517365, -0.0052627376280725, -0.03338058292865753, 0.043614864349365234, -0.16437797248363495, 0.03173253685235977, 0.1364196389913559, 0.007336901500821114, 0.12597544491291046, 0.06369921565055847, -0.0650341808795929, 0.023672858253121376, 0.05299321189522743, -0.1716981828212738, -0.10725577175617218, -0.0063964324072003365, 0.04852115735411644, -0.1315886229276657, 0.033887263387441635, 0.12701596319675446, -0.05631670355796814, -0.023221826180815697, 0.004589783493429422, 0.01895914413034916, -0.014277997426688671, 0.1820504516363144, 0.035505592823028564, 0.06981107592582703, -0.1099390760064125, 0.07826583087444305, 0.061465419828891754, -0.10313957929611206, 0.050818558782339096, 0.10245969891548157, -0.0971931740641594, -0.028247613459825516, 0.036512572318315506, 0.17040444910526276, -0.06097490340471268, -0.04745258390903473, -0.15727758407592773, -0.1188703179359436, 0.0949232429265976, 0.17090941965579987, 0.06709177792072296, 0.008168856613337994, -0.039086952805519104, -0.015391355380415916, -0.12216324359178543, 0.1019618809223175, 0.05355535075068474, 0.0792258083820343, -0.12606219947338104, 0.11375851184129715, -0.012528096325695515, 0.04522998631000519, -0.006996932905167341, 0.015794357284903526, -0.10961584746837616, 0.005936841946095228, -0.13510942459106445, 0.004436931572854519, -0.047851987183094025, -0.0004405204963404685, -0.0263049453496933, -0.040917716920375824, -0.057577889412641525, 0.017344828695058823, -0.11474660038948059, -0.03428823500871658, 0.013691357336938381, 0.02553664892911911, -0.1210864931344986, -0.022359712049365044, 0.018432727083563805, -0.08651149272918701, 0.08237779140472412, 0.04350263625383377, -0.004744785837829113, 0.02384069934487343, -0.024593310430645943, 0.0023693498224020004, 0.04206053540110588, 0.008600871078670025, 0.0749109536409378, -0.1182522103190422, -0.01614619605243206, 0.006687935907393694, 0.018271127715706825, 0.027700547128915787, 0.11897240579128265, -0.11851169168949127, -0.003569161519408226, 0.002949648769572377, -0.06171497330069542, -0.07331183552742004, 0.06945384293794632, 0.09609014540910721, 0.019843291491270065, 0.18782134354114532, -0.0701877698302269, 0.03631741181015968, -0.2041826695203781, -0.0004824092611670494, 0.011069185100495815, -0.1444322168827057, -0.0686158686876297, -0.04079968109726906, 0.06533107161521912, -0.07331144064664841, 0.10990822315216064, 0.00029397057369351387, 0.029118673875927925, 0.041680943220853806, -0.024232879281044006, -0.023682642728090286, 0.009833776392042637, 0.17776265740394592, 0.02087424322962761, -0.03993479162454605, 0.08008939027786255, 0.021948911249637604, 0.08164765685796738, 0.1351768523454666, 0.19295553863048553, 0.12377285957336426, 0.05742652714252472, 0.09562498331069946, 0.0246766097843647, -0.028312064707279205, -0.18750935792922974, 0.04608301818370819, -0.03345264121890068, 0.14469313621520996, -0.0036162484902888536, 0.19875183701515198, 0.12363523989915848, -0.1616145372390747, 0.049789298325777054, -0.042546529322862625, -0.08770232647657394, -0.10374753177165985, -0.10902634263038635, -0.08727183192968369, -0.13637308776378632, -0.006051057018339634, -0.12545187771320343, 0.04457848146557808, 0.06355591863393784, 0.01382653508335352, -0.006067642010748386, 0.1218736544251442, 0.03791828826069832, 0.01333939004689455, 0.057010456919670105, -0.0005080885021016002, -0.040598683059215546, -0.04785794019699097, -0.06846243888139725, 0.01792242005467415, 0.0008599443244747818, 0.05296821519732475, -0.009698429144918919, -0.012721187435090542, 0.041002094745635986, -0.024327702820301056, -0.12153244018554688, 0.007053912151604891, 0.028403956443071365, 0.07168569415807724, 0.04125894606113434, 0.011225602589547634, 0.006194763816893101, -0.015729404985904694, 0.20045487582683563, -0.07241246104240417, -0.058644987642765045, -0.11636999249458313, 0.235474094748497, 0.01072970312088728, -0.049952827394008636, 0.03867815434932709, -0.06700122356414795, -0.0035528417211025953, 0.203794464468956, 0.1763950139284134, -0.04246234521269798, -0.013220349326729774, -0.01708497293293476, -0.008600465953350067, -0.02101289853453636, 0.10620400309562683, 0.12142284214496613, 0.023890454322099686, -0.07888230681419373, -0.026393845677375793, -0.06630735844373703, -0.0199846550822258, -0.04438477009534836, 0.07920759916305542, 0.022992458194494247, -0.004345722496509552, -0.035063277930021286, 0.054386038333177567, -0.053618792444467545, -0.05333730950951576, 0.005299953278154135, -0.21374726295471191, -0.1652282476425171, 0.0011250237002968788, 0.07984796911478043, -0.010978286154568195, 0.05968651920557022, -0.005668939091265202, 0.011672243475914001, 0.08514123409986496, -0.015483490191400051, -0.07583421468734741, -0.07210621982812881, 0.10283120721578598, -0.1565060317516327, 0.179169699549675, -0.03168606758117676, 0.03672231733798981, 0.14063027501106262, 0.04921741038560867, -0.11283878982067108, 0.05979303643107414, 0.04866620525717735, -0.040907539427280426, 0.010315114632248878, 0.12839774787425995, -0.025993308052420616, 0.07548055052757263, 0.04117988795042038, -0.11852877587080002, -0.009816375561058521, -0.07926999032497406, -0.01329423114657402, -0.020900364965200424, -0.04580537602305412, -0.04396604001522064, 0.13080313801765442, 0.1953880935907364, -0.046875834465026855, -0.010142689570784569, -0.06230320408940315, 0.014063090085983276, 0.06366412341594696, -0.011526157148182392, -0.057635754346847534, -0.2592150568962097, 0.0015044639585539699, 0.0800754725933075, -0.0048964377492666245, -0.2722071707248688, -0.09105357527732849, -0.0024159944150596857, -0.05014897882938385, -0.10266423225402832, 0.09415236860513687, 0.08769173920154572, 0.047062430530786514, -0.06798126548528671, 0.0034771731588989496, -0.07054917514324188, 0.1582612246274948, -0.1364070177078247, -0.06375838816165924 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-epoch.04375 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4137 - Bleu: 7.3292 - Gen Len: 18.2541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.04375 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6211 | 0.04 | 1669 | 1.4137 | 7.3292 | 18.2541 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "metrics": ["bleu"], "model-index": [{"name": "t5-small-finetuned-en-to-ro-epoch.04375", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16", "type": "wmt16", "args": "ro-en"}, "metrics": [{"type": "bleu", "value": 7.3292, "name": "Bleu"}]}]}]}
text2text-generation
aretw0/t5-small-finetuned-en-to-ro-epoch.04375
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-en-to-ro-epoch.04375 ======================================= This model is a fine-tuned version of t5-small on the wmt16 dataset. It achieves the following results on the evaluation set: * Loss: 1.4137 * Bleu: 7.3292 * Gen Len: 18.2541 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 0.04375 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 0.04375\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 0.04375\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 78, 115, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 0.04375\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.11355859786272049, 0.11958212405443192, -0.0023930994793772697, 0.1040293425321579, 0.11815237998962402, 0.010798321105539799, 0.1583251953125, 0.15422649681568146, -0.08017300814390182, 0.06317495554685593, 0.13834717869758606, 0.1232457160949707, 0.050300292670726776, 0.17082752287387848, -0.06465116888284683, -0.24050045013427734, 0.03651871904730797, 0.048516660928726196, -0.020013654604554176, 0.1320967823266983, 0.09104315936565399, -0.12213777005672455, 0.09467452764511108, 0.019153105095028877, -0.18992695212364197, -0.03160153701901436, -0.003368685720488429, -0.07167211920022964, 0.11814610660076141, 0.025275450199842453, 0.09340940415859222, 0.03243903070688248, 0.06150004267692566, -0.16184045374393463, 0.006510847248136997, 0.04869823530316353, 0.01387608889490366, 0.10837285965681076, 0.05989711731672287, -0.006729405373334885, 0.06522372364997864, -0.06819675117731094, 0.06319751590490341, 0.016524381935596466, -0.1260031759738922, -0.2310812771320343, -0.10681989789009094, 0.040963370352983475, 0.07158489525318146, 0.08653455972671509, -0.008987713605165482, 0.1603829562664032, -0.02444065362215042, 0.09677935391664505, 0.23465989530086517, -0.29246383905410767, -0.05660133436322212, 0.006722402758896351, 0.042621489614248276, 0.0699041411280632, -0.08816970884799957, -0.03215586021542549, 0.02979852817952633, 0.04542522132396698, 0.14898699522018433, -0.010475261136889458, -0.043272897601127625, -0.015804782509803772, -0.13280920684337616, -0.06628220528364182, 0.17782992124557495, 0.045591387897729874, -0.03991793096065521, -0.07616721093654633, -0.07260129600763321, -0.18563634157180786, -0.046174515038728714, 0.013543419539928436, 0.03126811981201172, -0.03580594062805176, -0.0915488749742508, -0.0026069441810250282, -0.08445821702480316, -0.04495169222354889, -0.042746733874082565, 0.10879508405923843, 0.0313115119934082, 0.015266726724803448, -0.052077945321798325, 0.08842860162258148, -0.021066593006253242, -0.1667962521314621, 0.0021105504129081964, 0.015133997425436974, -0.0012951118405908346, -0.03777805715799332, -0.038460202515125275, -0.11467035859823227, 0.006052929442375898, 0.142485573887825, -0.05564317852258682, 0.0644029900431633, -0.023434733971953392, 0.033077407628297806, -0.06480270624160767, 0.18186743557453156, -0.04076176509261131, -0.011809883639216423, 0.01038049440830946, 0.08130677789449692, 0.040586262941360474, -0.03503059968352318, -0.11181511729955673, 0.02609829418361187, 0.12543101608753204, 0.017108213156461716, -0.020487692207098007, 0.059271860867738724, -0.052163708955049515, -0.03357844427227974, 0.04944296553730965, -0.09536384791135788, 0.026181433349847794, -0.015157248824834824, -0.06480032950639725, -0.015978366136550903, 0.0131592508405447, 0.017938872799277306, -0.02744029276072979, 0.10054382681846619, -0.10235165059566498, 0.010000696405768394, -0.07515110820531845, -0.1285393238067627, 0.03577732667326927, -0.09070876240730286, 0.0033132461830973625, -0.08687542378902435, -0.16116873919963837, -0.012056716717779636, 0.05472317710518837, -0.05003323405981064, -0.06247127428650856, -0.05492504686117172, -0.07828879356384277, 0.05564979091286659, -0.019117387011647224, 0.11163051426410675, -0.06798958033323288, 0.09549763798713684, 0.035293448716402054, 0.07010388374328613, -0.04475926607847214, 0.05006000027060509, -0.08994928002357483, 0.043300725519657135, -0.17937125265598297, 0.060543086379766464, -0.04930565506219864, 0.07861688733100891, -0.11376793682575226, -0.09156212955713272, 0.02369965985417366, -0.0350431427359581, 0.09872924536466599, 0.10338041931390762, -0.17450521886348724, -0.06287068128585815, 0.1867213249206543, -0.0720563605427742, -0.1456490457057953, 0.12943045794963837, -0.04990687593817711, 0.02415744960308075, 0.05205373466014862, 0.21149466931819916, 0.05087153613567352, -0.0956619530916214, -0.02689063921570778, -0.04323284327983856, 0.07875283062458038, -0.0717400535941124, 0.0898963063955307, 0.0024840328842401505, 0.04745776578783989, 0.011255783960223198, -0.004472443833947182, 0.0372447669506073, -0.08730441331863403, -0.08348362147808075, -0.049417462199926376, -0.07876156270503998, 0.031851425766944885, 0.03984181955456734, 0.061837468296289444, -0.11128418147563934, -0.1022668331861496, 0.04979128763079643, 0.08042041212320328, -0.08251916617155075, 0.04001077637076378, -0.08567553758621216, 0.10192827880382538, -0.09212177991867065, -0.013103016652166843, -0.18283092975616455, -0.047361329197883606, 0.034826867282390594, 0.003341177711263299, 0.015306833200156689, -0.04680808261036873, 0.06808830052614212, 0.06499762088060379, -0.039170730859041214, -0.028319137170910835, -0.025407863780856133, 0.0007770478841848671, -0.12280026078224182, -0.19127199053764343, -0.05346057564020157, -0.03563142567873001, 0.12225419282913208, -0.15869565308094025, 0.02976405993103981, 0.042201098054647446, 0.11153491586446762, 0.036737602204084396, -0.03308021277189255, -0.005272602662444115, 0.06475970894098282, -0.04929840564727783, -0.0684426799416542, 0.059037499129772186, 0.025359049439430237, -0.08998667448759079, 0.002762942109256983, -0.14825865626335144, 0.1438782811164856, 0.13584768772125244, 0.0034240458626300097, -0.052714940160512924, -0.01959381252527237, -0.0500941276550293, -0.036068178713321686, -0.04011284187436104, 0.005405508913099766, 0.13689717650413513, 0.03052263893187046, 0.1496427208185196, -0.0945003554224968, -0.05132037028670311, 0.05130838230252266, -0.025266965851187706, -0.011248418129980564, 0.10615134239196777, 0.05566892772912979, -0.11741115152835846, 0.14262962341308594, 0.12900525331497192, -0.0404241569340229, 0.12840217351913452, -0.05328826233744621, -0.0784698873758316, -0.04013068228960037, -0.01672384701669216, 0.02747323550283909, 0.10872180014848709, -0.11625301092863083, -0.010264373384416103, 0.04829234629869461, 0.03548213094472885, 0.0092500951141119, -0.18316613137722015, -0.00823232252150774, 0.03243944048881531, -0.0468301996588707, -0.04823724180459976, -0.006613355595618486, 0.007521874271333218, 0.09986700862646103, 0.021024109795689583, -0.05582885816693306, 0.03387114778161049, 0.008931626565754414, -0.07309086620807648, 0.1909974217414856, -0.09300456196069717, -0.17221203446388245, -0.13131359219551086, -0.11801553517580032, -0.06040910258889198, -0.005481838248670101, 0.0678437203168869, -0.07215547561645508, -0.04819080978631973, -0.09418012201786041, -0.013871944509446621, -0.0028785024769604206, 0.028172116726636887, 0.044998250901699066, -0.01743847317993641, 0.0630635917186737, -0.10616989433765411, -0.02115694060921669, -0.013767201453447342, 0.01726076938211918, 0.060211844742298126, 0.012064685113728046, 0.11723420023918152, 0.13522818684577942, -0.014232723973691463, 0.039410222321748734, -0.03332284092903137, 0.24811135232448578, -0.06922721117734909, -0.011142836883664131, 0.12225017696619034, -0.01659628562629223, 0.0840102881193161, 0.13667342066764832, 0.05544067174196243, -0.09188167750835419, 0.006023782305419445, 0.006875304970890284, -0.042325686663389206, -0.21911200881004333, -0.029189929366111755, -0.05669541656970978, 0.006195904221385717, 0.11490573734045029, 0.022671131417155266, 0.033251918852329254, 0.06201527267694473, 0.019244100898504257, 0.07461458444595337, -0.02725265733897686, 0.10007045418024063, 0.11611834168434143, 0.06553144007921219, 0.1372271031141281, -0.04598550125956535, -0.030874591320753098, 0.04764347895979881, 0.02086843177676201, 0.22114747762680054, -0.009621597826480865, 0.21171505749225616, 0.036077920347452164, 0.16897477209568024, 0.02638561837375164, 0.08625417947769165, -0.01897333562374115, -0.004323026165366173, -0.015549756586551666, -0.04979574680328369, -0.036689773201942444, 0.016183925792574883, -0.05049306899309158, 0.03102521412074566, -0.11072900891304016, 0.017136594280600548, 0.040665946900844574, 0.2922331392765045, 0.05991999804973602, -0.3796832263469696, -0.099941186606884, 0.00936948973685503, -0.034618694335222244, -0.05121445283293724, -0.002254410879686475, 0.0919533371925354, -0.08696664869785309, 0.0625242292881012, -0.09059104323387146, 0.10705885291099548, -0.06686428189277649, 0.02653522789478302, 0.06072887033224106, 0.07862139493227005, -0.01315079815685749, 0.05873566120862961, -0.2714354693889618, 0.2708241641521454, 0.020589355379343033, 0.061776161193847656, -0.08137200027704239, 0.005636055022478104, 0.0074731106869876385, 0.01825842820107937, 0.06340247392654419, -0.006854855455458164, -0.08368667215108871, -0.17174586653709412, -0.12001801282167435, 0.014257790520787239, 0.07617869973182678, -0.01302404422312975, 0.1239224299788475, -0.019452815875411034, -0.005756574682891369, 0.04897213727235794, -0.009293818846344948, -0.04036080837249756, -0.1128280758857727, 0.031674500554800034, 0.05185230076313019, -0.008346393704414368, -0.06713912636041641, -0.11029820889234543, -0.05445243418216705, 0.1501310020685196, 0.02481834962964058, -0.06413266062736511, -0.13171526789665222, 0.05746673420071602, 0.10475429892539978, -0.09048894047737122, 0.03393774852156639, -0.009547033347189426, 0.126980260014534, 0.004900746513158083, -0.07398231327533722, 0.11293869465589523, -0.052952494472265244, -0.16821935772895813, -0.053792208433151245, 0.11976167559623718, 0.012132932431995869, 0.05952225625514984, -0.009092921391129494, 0.04226871579885483, -0.039022259414196014, -0.07217884808778763, 0.031124072149395943, -0.007862350903451443, 0.0825687050819397, -0.02663568966090679, -0.00806246418505907, 0.01888084225356579, -0.06549306213855743, -0.03509395942091942, 0.1815294325351715, 0.24905210733413696, -0.08473746478557587, 0.05192600190639496, 0.050658147782087326, -0.05163729190826416, -0.15683613717556, 0.011868045665323734, 0.06621856987476349, 0.010980636812746525, 0.010266393423080444, -0.17213602364063263, 0.052555616945028305, 0.08760328590869904, -0.016028014943003654, 0.08157668262720108, -0.3189579248428345, -0.12661029398441315, 0.08494748175144196, 0.12316451966762543, 0.08470682799816132, -0.14481963217258453, -0.0548611618578434, -0.029310937970876694, -0.18377764523029327, 0.14643824100494385, -0.08600377291440964, 0.11865594238042831, -0.02965812012553215, 0.11535800993442535, 0.012232834473252296, -0.0631503164768219, 0.1206752210855484, 0.012882517650723457, 0.06703266501426697, -0.060016047209501266, 0.007336034439504147, 0.08994569629430771, -0.0767509937286377, 0.04987044259905815, -0.08889004588127136, 0.03883007913827896, -0.11798302084207535, -0.022114021703600883, -0.06859361380338669, 0.003855534130707383, -0.0357355996966362, -0.04347724840044975, -0.03269967809319496, 0.016271645203232765, 0.06640343368053436, -0.0223140399903059, 0.16543981432914734, 0.029443275183439255, 0.1269184648990631, 0.14008978009223938, 0.08957357704639435, -0.10299289971590042, -0.06762203574180603, -0.008774915710091591, -0.03643949329853058, 0.03733901306986809, -0.15185758471488953, 0.03276469558477402, 0.14201439917087555, 0.013629766181111336, 0.12801159918308258, 0.06475044041872025, -0.05828506126999855, 0.02618413046002388, 0.05684224143624306, -0.16756795346736908, -0.100833959877491, -0.0032512047328054905, 0.03227411210536957, -0.1469936966896057, 0.02874886617064476, 0.12933269143104553, -0.05742533504962921, -0.020191915333271027, 0.0033861601259559393, 0.019877366721630096, -0.01540873758494854, 0.18858546018600464, 0.033898405730724335, 0.06564212590456009, -0.11204169690608978, 0.08276304602622986, 0.06747778505086899, -0.08927860856056213, 0.04129114747047424, 0.09228876233100891, -0.1029621809720993, -0.023300189524888992, 0.034449253231287, 0.16137585043907166, -0.07116690278053284, -0.04056088253855705, -0.1413366198539734, -0.1165371760725975, 0.08786714822053909, 0.15373119711875916, 0.06393774598836899, 0.019149206578731537, -0.039493318647146225, -0.01977277360856533, -0.12410688400268555, 0.10395337641239166, 0.06394508481025696, 0.08401879668235779, -0.1304488480091095, 0.10596706718206406, -0.017551258206367493, 0.04189940169453621, -0.010298742912709713, 0.01766875945031643, -0.09916811436414719, 0.0019209044985473156, -0.13042236864566803, 0.006089781876653433, -0.04974374175071716, -0.005874950438737869, -0.025454668328166008, -0.0528869703412056, -0.058166615664958954, 0.010086584836244583, -0.10746932774782181, -0.04232603684067726, 0.009993440471589565, 0.032577190548181534, -0.12327051162719727, -0.024928690865635872, 0.02365809865295887, -0.08685895800590515, 0.08659003674983978, 0.045526232570409775, 0.0014488522429019213, 0.027117125689983368, -0.03967024013400078, 0.00006699459481751546, 0.041361916810274124, 0.006427070125937462, 0.08191590011119843, -0.1217736229300499, -0.018828995525836945, 0.0022792441304773092, 0.030080316588282585, 0.027637023478746414, 0.1110617071390152, -0.1279003918170929, -0.010041756555438042, -0.010892345570027828, -0.04919762909412384, -0.06882838159799576, 0.060185596346855164, 0.09945149719715118, 0.02776062861084938, 0.1835012584924698, -0.06561058014631271, 0.037394750863313675, -0.20622768998146057, 0.002993351314216852, -0.0011730830883607268, -0.133240208029747, -0.07803074270486832, -0.03874173387885094, 0.06750990450382233, -0.0692550539970398, 0.11213170737028122, -0.0035708786454051733, 0.02791186235845089, 0.03734240680932999, -0.014628678560256958, -0.025196511298418045, 0.0145424110814929, 0.19330348074436188, 0.02918301708996296, -0.039665911346673965, 0.08041960746049881, 0.02896883897483349, 0.08159024268388748, 0.13510730862617493, 0.1954859346151352, 0.12110599875450134, 0.06280635297298431, 0.09211201965808868, 0.03420737013220787, -0.03940824791789055, -0.18469306826591492, 0.054757021367549896, -0.04155857861042023, 0.13909243047237396, -0.005903243087232113, 0.20773659646511078, 0.09876284003257751, -0.16491828858852386, 0.040423694998025894, -0.044926419854164124, -0.09190638363361359, -0.09496520459651947, -0.0935189500451088, -0.092229925096035, -0.1307905912399292, -0.008212622255086899, -0.12765835225582123, 0.04065374284982681, 0.08634558320045471, 0.015318790450692177, -0.0037932416889816523, 0.12670078873634338, 0.03117521107196808, 0.012896411120891571, 0.06335438787937164, 0.00456209946423769, -0.036491718143224716, -0.05482082813978195, -0.06939190626144409, 0.007319287396967411, 0.012494721449911594, 0.05522109195590019, -0.016116151586174965, -0.01898176595568657, 0.04616585001349449, -0.016131563112139702, -0.124698705971241, 0.005807411856949329, 0.023478250950574875, 0.06707320362329483, 0.03788590803742409, 0.014469899237155914, 0.010933966375887394, -0.01505101565271616, 0.2079307734966278, -0.06920082867145538, -0.05443746596574783, -0.12037938088178635, 0.19105473160743713, 0.005988679360598326, -0.04752713814377785, 0.04116789996623993, -0.07221537083387375, -0.004322097171097994, 0.20141533017158508, 0.16932359337806702, -0.05159028619527817, -0.019066764041781425, -0.007202158682048321, -0.00985703058540821, -0.019405130296945572, 0.10643720626831055, 0.1116190031170845, 0.03515028581023216, -0.08650477230548859, -0.022858794778585434, -0.06282459199428558, -0.023016301915049553, -0.03636128082871437, 0.06888212263584137, 0.017581112682819366, -0.0020123652648180723, -0.04233195632696152, 0.06278015673160553, -0.05678728595376015, -0.0615081787109375, 0.0008597575360909104, -0.21028612554073334, -0.17672351002693176, -0.005713292863219976, 0.07036618888378143, -0.009041359648108482, 0.05422920733690262, -0.008421286940574646, 0.015030512586236, 0.09325800091028214, -0.018722768872976303, -0.07280950248241425, -0.07238148897886276, 0.09424009174108505, -0.12002142518758774, 0.19202202558517456, -0.03247294947504997, 0.04042331501841545, 0.1366526186466217, 0.05252491682767868, -0.12277553975582123, 0.04703446105122566, 0.052849188446998596, -0.029776589944958687, 0.02724810130894184, 0.12321457266807556, -0.02910946123301983, 0.07820749282836914, 0.04058581963181496, -0.1178467869758606, -0.009153495542705059, -0.07047828286886215, -0.009843683801591396, -0.032664645463228226, -0.05128484219312668, -0.04129713028669357, 0.13865798711776733, 0.19200558960437775, -0.05519097298383713, -0.013641832396388054, -0.05785542353987694, 0.013670593500137329, 0.054490551352500916, 0.008246279321610928, -0.05697433650493622, -0.2601149380207062, -0.0015703224344179034, 0.08015796542167664, -0.002090942580252886, -0.2723597288131714, -0.08915103226900101, 0.0004461705684661865, -0.0533473826944828, -0.09769853204488754, 0.10214319080114365, 0.0868101418018341, 0.043332163244485855, -0.06575698405504227, 0.0034831915982067585, -0.07298175990581512, 0.15983952581882477, -0.1447276920080185, -0.07470156252384186 ]
null
null
transformers
hello
{}
feature-extraction
argv947059/example-based-ner-bert
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us
hello
[]
[ "TAGS\n#transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us \n" ]
[ 32 ]
[ "passage: TAGS\n#transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us \n" ]
[ -0.052963756024837494, -0.0036861018743366003, -0.009317236952483654, 0.014060239307582378, 0.1265685260295868, 0.04055891931056976, 0.012158291414380074, 0.09425005316734314, 0.07149101793766022, -0.016153931617736816, 0.11511608213186264, 0.23898901045322418, -0.028362810611724854, 0.026604674756526947, -0.05170471966266632, -0.2719436585903168, 0.06598348915576935, 0.09840699285268784, -0.038225941359996796, 0.0970769077539444, 0.0554196834564209, -0.10502330213785172, 0.06711741536855698, -0.013328155502676964, -0.15120553970336914, 0.05215353146195412, 0.03010397218167782, -0.07699708640575409, 0.10851556807756424, 0.015515191480517387, 0.15853559970855713, 0.011645578779280186, -0.09041590243577957, -0.160604789853096, 0.03134223073720932, -0.017968304455280304, -0.06257034838199615, 0.03479667380452156, 0.0707094818353653, -0.09866075217723846, 0.031214237213134766, 0.10099188983440399, 0.020305143669247627, 0.0224761925637722, -0.16484229266643524, -0.19813960790634155, -0.04946230351924896, 0.05015429109334946, 0.02250281721353531, 0.08229392021894455, 0.018286142498254776, 0.13435232639312744, -0.15313594043254852, 0.08182822167873383, 0.21016328036785126, -0.2993359863758087, -0.009734644554555416, 0.0593695230782032, 0.1350070834159851, 0.019440416246652603, -0.032571692019701004, 0.03773166611790657, -0.006441458128392696, 0.022168122231960297, 0.023778874427080154, -0.10345342755317688, -0.04922936111688614, 0.06903901696205139, -0.09044501185417175, -0.07425874471664429, 0.21812093257904053, -0.018261190503835678, 0.05052957311272621, 0.024539193138480186, -0.08425062149763107, -0.06177361682057381, -0.040308937430381775, -0.02324654348194599, -0.014144795015454292, 0.05733082816004753, 0.006142587400972843, -0.02140374295413494, -0.10499297082424164, 0.01677618734538555, -0.17896869778633118, 0.19923429191112518, 0.013208188116550446, 0.08352150768041611, -0.21237951517105103, 0.0449824184179306, -0.06849394738674164, -0.09766314178705215, 0.030032433569431305, -0.0852053165435791, 0.04761315509676933, 0.004622476641088724, -0.06118087098002434, 0.012963674031198025, 0.04501301050186157, 0.1278681606054306, 0.014213649556040764, 0.029509782791137695, 0.0212479867041111, 0.10761474072933197, 0.027579398825764656, 0.12123031169176102, 0.02797030657529831, -0.03111332282423973, 0.025293005630373955, -0.10117059201002121, -0.03267378360033035, -0.05524241179227829, -0.12406694889068604, -0.029093708842992783, 0.05186808109283447, 0.07624085992574692, 0.03110049106180668, 0.0058425357565283775, -0.09648735821247101, -0.022560784593224525, 0.048836782574653625, -0.0633535087108612, 0.01324373297393322, -0.01158793643116951, 0.048493556678295135, 0.16013619303703308, -0.03490329533815384, -0.01864147186279297, -0.022512229159474373, 0.08027350902557373, -0.08937931060791016, 0.012826178222894669, -0.052831489592790604, -0.05256495252251625, 0.036838091909885406, -0.13647215068340302, 0.06195525452494621, -0.1411474496126175, -0.09831726551055908, 0.03724878653883934, 0.06510140001773834, 0.0028400777373462915, 0.011090216226875782, -0.0028051785193383694, -0.02199988067150116, 0.008028601296246052, -0.06167469918727875, -0.0816744863986969, -0.059597406536340714, 0.1003911942243576, -0.005042034666985273, 0.06295882910490036, -0.09823295474052429, 0.08133041858673096, -0.09697461873292923, 0.030901752412319183, -0.15964384377002716, -0.01432819850742817, -0.01723836548626423, 0.17763751745224, -0.00034126266837120056, -0.0548611618578434, -0.1117730438709259, 0.05009101331233978, -0.04932554066181183, 0.1541672796010971, -0.08066514879465103, -0.13397589325904846, 0.21098418533802032, -0.10251977294683456, -0.1840919852256775, 0.061645857989788055, -0.00545533886179328, 0.0011149892816320062, 0.07106424123048782, 0.203650563955307, 0.07746961712837219, -0.060603056102991104, 0.08728695660829544, 0.13636207580566406, -0.10702621191740036, -0.12712803483009338, 0.03748749569058418, -0.02914872020483017, -0.07186932861804962, 0.04315415397286415, 0.021652160212397575, 0.09422970563173294, -0.07124552875757217, -0.038790617138147354, -0.012978962622582912, -0.010238992050290108, 0.06346900761127472, 0.06290382891893387, 0.10297422111034393, -0.046184465289115906, -0.0026994396466761827, 0.008307021111249924, -0.009622191078960896, 0.01653190515935421, 0.03997422009706497, -0.060205742716789246, 0.17742055654525757, -0.07573379576206207, 0.0052375528030097485, -0.23334336280822754, -0.07036417722702026, 0.010943070985376835, 0.06390442699193954, -0.04700079187750816, 0.1549825817346573, 0.09247895330190659, -0.07577121257781982, 0.012680678628385067, -0.03353114426136017, 0.08304725587368011, 0.02012883499264717, -0.03484402596950531, -0.0750569999217987, -0.009526349604129791, -0.07900413125753403, -0.08899429440498352, -0.026323657482862473, -0.01098543033003807, 0.07709052413702011, 0.09981118887662888, 0.020864687860012054, 0.017583217471837997, -0.06752119958400726, 0.05020664259791374, -0.02576756849884987, 0.0177655890583992, 0.0949443057179451, -0.01739528775215149, -0.04540245607495308, 0.15520338714122772, -0.09017010033130646, 0.36493057012557983, 0.19001640379428864, -0.3118160367012024, 0.0143634844571352, -0.017740126699209213, -0.00546584976837039, 0.03116120956838131, 0.09335438162088394, -0.022324539721012115, 0.0862930566072464, 0.014072950929403305, 0.13336621224880219, -0.03602796047925949, -0.04512658715248108, 0.00488016102463007, -0.030854322016239166, -0.057892415672540665, 0.06719741225242615, 0.07318726181983948, -0.15898650884628296, 0.1664324402809143, 0.2892304062843323, 0.024658242240548134, 0.13439251482486725, -0.050064556300640106, -0.028527043759822845, 0.01088089868426323, -0.004020090214908123, -0.04241277277469635, 0.05857431888580322, -0.2635689377784729, -0.06348064541816711, 0.05880957841873169, 0.011391952633857727, 0.07413619756698608, -0.12690965831279755, -0.0547051876783371, 0.03168385848402977, 0.03254729136824608, -0.08504929393529892, 0.06544449925422668, 0.044477373361587524, 0.06054355204105377, 0.014742519706487656, -0.07364493608474731, 0.09875046461820602, 0.0067468550987541676, -0.04165760800242424, 0.16546687483787537, -0.1195327416062355, -0.26084214448928833, -0.10503862798213959, -0.15248729288578033, 0.024808121845126152, 0.007801828905940056, 0.08723878115415573, -0.0696033239364624, -0.018955839797854424, 0.07113382965326309, 0.0272858627140522, -0.15711280703544617, 0.0252254419028759, -0.07713302969932556, 0.03579463064670563, -0.07968100905418396, -0.0684952661395073, -0.07613936811685562, -0.06434401124715805, -0.009333625435829163, 0.08535612374544144, -0.11190655827522278, 0.09602662175893784, 0.11701052635908127, 0.03214438632130623, 0.08658012002706528, -0.006250035483390093, 0.18954986333847046, -0.05687757954001427, -0.07587884366512299, 0.19472064077854156, -0.03688417375087738, 0.08600619435310364, 0.09849857538938522, 0.05287953093647957, -0.06082279980182648, -0.04936293885111809, -0.06025570631027222, -0.09542788565158844, -0.16916604340076447, -0.06522456556558609, -0.1508832424879074, 0.020152684301137924, 0.029854416847229004, 0.037862420082092285, 0.10091149806976318, 0.06081030145287514, 0.05603417381644249, -0.03332297131419182, -0.02884560078382492, 0.03904317319393158, 0.18016357719898224, -0.02138795331120491, 0.09862849861383438, -0.02871086820960045, -0.10660931468009949, 0.058421771973371506, 0.032121144235134125, 0.20918923616409302, 0.11231514811515808, 0.037705160677433014, 0.05080387368798256, 0.19513967633247375, 0.14172111451625824, 0.14885953068733215, -0.027547087520360947, -0.0424746498465538, -0.020660579204559326, -0.006827371194958687, -0.056708768010139465, 0.022592194378376007, 0.17596647143363953, -0.09328009188175201, -0.07799528539180756, -0.21095149219036102, 0.0602993369102478, 0.0701967179775238, 0.030279070138931274, -0.19828727841377258, 0.019662387669086456, 0.07570156455039978, -0.0017542234854772687, -0.05226362124085426, 0.0724397599697113, -0.02223113924264908, -0.12630979716777802, 0.0342094711959362, -0.06242687255144119, 0.11481078714132309, -0.007219333667308092, 0.07287821173667908, -0.023485491052269936, -0.1197328194975853, 0.06598693877458572, 0.06315088272094727, -0.2035032957792282, 0.265704482793808, -0.006578056141734123, -0.05729619786143303, -0.03779337555170059, 0.004988834261894226, 0.016682634130120277, 0.15234172344207764, 0.13822756707668304, 0.02424781396985054, -0.0657852366566658, -0.14051759243011475, 0.046606600284576416, 0.03090650588274002, 0.12475515902042389, -0.070212721824646, -0.015670286491513252, -0.023392077535390854, -0.01504120696336031, -0.021317463368177414, 0.0625319704413414, 0.06776363402605057, -0.15063032507896423, 0.05838163197040558, -0.056513711810112, 0.03976921737194061, -0.010568802244961262, -0.016193414106965065, -0.04077047109603882, 0.15405818819999695, -0.03783063217997551, -0.03903694450855255, -0.098985455930233, -0.11961425840854645, 0.11263576149940491, -0.08763912320137024, 0.08025027066469193, -0.06742454320192337, -0.025876687839627266, -0.06425515562295914, -0.19912926852703094, 0.137502059340477, -0.10783692449331284, 0.054419536143541336, -0.06186164915561676, 0.17661862075328827, -0.061372656375169754, 0.01232277974486351, 0.022339118644595146, 0.026846999302506447, -0.12461834400892258, -0.07176445424556732, -0.00021531556558329612, -0.020146500319242477, 0.03834713250398636, 0.03682788088917732, -0.05799354612827301, 0.04448740556836128, -0.004165316000580788, 0.05304564908146858, 0.23484887182712555, 0.16569161415100098, -0.054744821041822433, 0.12290453910827637, 0.13697096705436707, -0.0373862199485302, -0.26884889602661133, -0.07450263947248459, -0.12268921732902527, -0.037436116486787796, 0.015440378338098526, -0.12973135709762573, 0.12852080166339874, 0.026052117347717285, -0.017302265390753746, 0.12126334756612778, -0.24278470873832703, -0.054412320256233215, 0.1429450511932373, 0.019859960302710533, 0.4446322023868561, -0.12276434898376465, -0.08678081631660461, 0.016029899939894676, -0.24718843400478363, 0.1013478934764862, 0.03782957047224045, 0.05960741266608238, -0.022589823231101036, 0.031811367720365524, 0.03418872132897377, -0.06166786700487137, 0.11188843846321106, 0.016796844080090523, 0.043888166546821594, -0.054036349058151245, -0.13559308648109436, 0.06865550577640533, -0.01695988141000271, -0.02015555649995804, 0.030521400272846222, 0.006575232371687889, -0.16412822902202606, -0.020895149558782578, -0.12829890847206116, 0.06838260591030121, 0.024225331842899323, -0.0330156646668911, 0.014284659177064896, -0.025629930198192596, -0.0020842088852077723, 0.019318141043186188, 0.28556373715400696, -0.023091532289981842, 0.15915152430534363, 0.0036703497171401978, 0.05212036892771721, -0.20219330489635468, -0.17958396673202515, -0.0687621608376503, -0.04871116578578949, 0.09693709760904312, -0.051237091422080994, 0.049753233790397644, 0.13456004858016968, -0.008942127227783203, 0.030212610960006714, 0.1281672716140747, 0.006242772564291954, -0.019622227177023888, 0.12672145664691925, -0.19614574313163757, -0.02772924117743969, -0.05233310908079147, -0.049490299075841904, 0.08346356451511383, 0.05978552997112274, 0.07819730043411255, 0.050845369696617126, -0.031043145805597305, -0.02332441322505474, -0.02988717332482338, -0.07948853820562363, 0.026934944093227386, 0.03525209054350853, 0.040102314203977585, -0.1379339098930359, 0.02906956896185875, -0.010940386913716793, -0.27159202098846436, -0.05059085786342621, 0.10220116376876831, -0.10801422595977783, -0.10470584034919739, -0.0646820217370987, 0.13403543829917908, -0.13819628953933716, -0.011767823249101639, -0.0421360582113266, -0.12104002386331558, 0.05875451862812042, 0.20137184858322144, 0.10027112066745758, 0.10308783501386642, -0.03936046361923218, -0.0006528248195536435, 0.01760394312441349, -0.03376733511686325, 0.009661308489739895, 0.01645725406706333, -0.11603355407714844, -0.03374771401286125, -0.006667631212621927, 0.15351681411266327, -0.07948599010705948, -0.06356992572546005, -0.15109962224960327, 0.06373295187950134, -0.03385986015200615, -0.09342114627361298, -0.1244155541062355, -0.05954677611589432, 0.020039744675159454, -0.05939866974949837, -0.04189888387918472, -0.028911501169204712, -0.14287447929382324, 0.03040890209376812, 0.015848716720938683, 0.0038695666007697582, -0.05576401948928833, -0.03524982929229736, 0.11663132160902023, -0.06516677141189575, 0.07124289870262146, 0.1888193041086197, -0.05122585594654083, 0.13516193628311157, -0.11158259958028793, -0.15316110849380493, 0.09748540073633194, 0.02599414438009262, 0.07872241735458374, 0.07292717695236206, 0.02696787379682064, 0.05939493700861931, 0.001954560400918126, 0.03438263386487961, -0.03973422944545746, -0.13351686298847198, -0.023773811757564545, 0.02769111841917038, -0.18662898242473602, -0.029900524765253067, -0.0607491061091423, 0.14990295469760895, 0.014299839735031128, 0.11870045214891434, 0.012899700552225113, 0.10260415077209473, -0.05637417361140251, 0.001854541595093906, -0.004377702716737986, -0.19066840410232544, 0.001040599774569273, -0.07924193888902664, 0.0054010325111448765, -0.01029987633228302, 0.23242269456386566, 0.001893453299999237, 0.04246624931693077, 0.021678172051906586, 0.02238643169403076, 0.06013426557183266, 0.03037826158106327, 0.24299314618110657, 0.11352360248565674, -0.05275481194257736, -0.07847755402326584, 0.10017896443605423, 0.0099342605099082, 0.013257299549877644, 0.10118678957223892, 0.12967033684253693, 0.04960792139172554, 0.102946437895298, 0.047170236706733704, 0.05124982073903084, -0.10055673867464066, -0.2252604216337204, 0.020131826400756836, 0.0763651505112648, 0.02886216901242733, 0.09756013751029968, 0.14686918258666992, -0.027980821207165718, 0.08679910749197006, -0.024855410680174828, -0.025126246735453606, -0.13922882080078125, -0.050710372626781464, -0.05487101525068283, -0.12127167731523514, 0.0038119384553283453, -0.07388770580291748, 0.00872061774134636, 0.13778604567050934, 0.019346702843904495, -0.02416999451816082, 0.10666673630475998, 0.06476649641990662, -0.06081261858344078, 0.06429800391197205, -0.016318149864673615, -0.0035494028124958277, 0.030923180282115936, 0.0068810684606432915, -0.11447969079017639, -0.09393544495105743, -0.05622541904449463, 0.014824923127889633, -0.0998360812664032, 0.00777388783171773, -0.1129651591181755, -0.1317947506904602, -0.037622228264808655, 0.03216177970170975, -0.07305324822664261, 0.09837225079536438, -0.007971052080392838, 0.0029706419445574284, 0.0089488560333848, 0.17413225769996643, -0.0752522423863411, 0.010291093029081821, -0.014209666289389133, 0.20998892188072205, 0.08818451315164566, 0.10622511804103851, -0.00010614687198540196, 0.027271725237369537, -0.04751461744308472, 0.2810079753398895, 0.25682657957077026, -0.03268571197986603, 0.04118233174085617, 0.08400323987007141, 0.0352952741086483, 0.07457773387432098, 0.08635538071393967, 0.09502308815717697, 0.3094768822193146, -0.08893507719039917, -0.01832873374223709, -0.045276056975126266, -0.007693660911172628, -0.08922053873538971, 0.022008083760738373, 0.090583436191082, -0.051739878952503204, -0.059487778693437576, 0.09710941463708878, -0.1514272689819336, 0.12403640151023865, 0.10022277384996414, -0.2248581200838089, -0.05263209715485573, -0.0753798633813858, 0.17728450894355774, 0.005827738903462887, 0.11856024712324142, -0.04088432341814041, -0.1279212087392807, 0.05804216116666794, 0.041939619928598404, -0.2674042284488678, -0.10722674429416656, 0.11922934651374817, 0.007283462211489677, 0.011069725267589092, -0.03636489063501358, -0.007730226498097181, 0.06680086255073547, 0.08091744780540466, -0.004777153488248587, 0.003635617671534419, 0.034582268446683884, -0.08894816040992737, -0.09114518761634827, 0.02295706979930401, 0.01569727063179016, -0.06678148359060287, 0.03557940572500229, -0.15736618638038635, 0.038901135325431824, -0.06494641304016113, -0.04504818096756935, 0.00997934676706791, -0.0023578645195811987, -0.04645739495754242, 0.03953973203897476, 0.0798637866973877, 0.02510100044310093, -0.04636509716510773, -0.0499950535595417, -0.005103605799376965, 0.09507005661725998, -0.04521242901682854, -0.1744234263896942, -0.0458562895655632, -0.0892651304602623, 0.0930018275976181, -0.050208285450935364, -0.08868695795536041, -0.049340106546878815, -0.034710593521595, 0.05042168125510216, -0.12623053789138794, 0.04210792854428291, 0.05483612045645714, 0.04378687962889671, 0.013884893618524075, -0.05358581990003586, 0.05241890624165535, 0.07315762341022491, -0.1212339773774147, -0.07481653988361359 ]
null
null
transformers
# citizenlab/distilbert-base-multilingual-cased-toxicity This is multilingual Distil-Bert model sequence classifier trained based on [JIGSAW Toxic Comment Classification Challenge](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge) dataset. ## How to use it ```python from transformers import pipeline model_path = "citizenlab/distilbert-base-multilingual-cased-toxicity" toxicity_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path) toxicity_classifier("this is a lovely message") > [{'label': 'not_toxic', 'score': 0.9954179525375366}] toxicity_classifier("you are an idiot and you and your family should go back to your country") > [{'label': 'toxic', 'score': 0.9948776960372925}] ``` ## Evaluation ### Accuracy ``` Accuracy Score = 0.9425 F1 Score (Micro) = 0.9450549450549449 F1 Score (Macro) = 0.8491432341169309 ```
{"language": ["en", "nl", "fr", "pt", "it", "es", "de", "da", "pl", "af"], "datasets": ["jigsaw_toxicity_pred"], "metrics": ["F1 Accuracy"], "pipeline_type": "text-classification", "widget": [{"text": "this is a lovely message", "example_title": "Example 1", "multi_class": false}, {"text": "you are an idiot and you and your family should go back to your country", "example_title": "Example 2", "multi_class": false}]}
text-classification
citizenlab/distilbert-base-multilingual-cased-toxicity
[ "transformers", "pytorch", "distilbert", "text-classification", "en", "nl", "fr", "pt", "it", "es", "de", "da", "pl", "af", "dataset:jigsaw_toxicity_pred", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en", "nl", "fr", "pt", "it", "es", "de", "da", "pl", "af" ]
TAGS #transformers #pytorch #distilbert #text-classification #en #nl #fr #pt #it #es #de #da #pl #af #dataset-jigsaw_toxicity_pred #autotrain_compatible #endpoints_compatible #has_space #region-us
# citizenlab/distilbert-base-multilingual-cased-toxicity This is multilingual Distil-Bert model sequence classifier trained based on JIGSAW Toxic Comment Classification Challenge dataset. ## How to use it ## Evaluation ### Accuracy
[ "# citizenlab/distilbert-base-multilingual-cased-toxicity\n\nThis is multilingual Distil-Bert model sequence classifier trained based on JIGSAW Toxic Comment Classification Challenge dataset.", "## How to use it", "## Evaluation", "### Accuracy" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #en #nl #fr #pt #it #es #de #da #pl #af #dataset-jigsaw_toxicity_pred #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# citizenlab/distilbert-base-multilingual-cased-toxicity\n\nThis is multilingual Distil-Bert model sequence classifier trained based on JIGSAW Toxic Comment Classification Challenge dataset.", "## How to use it", "## Evaluation", "### Accuracy" ]
[ 74, 52, 5, 3, 5 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #text-classification #en #nl #fr #pt #it #es #de #da #pl #af #dataset-jigsaw_toxicity_pred #autotrain_compatible #endpoints_compatible #has_space #region-us \n# citizenlab/distilbert-base-multilingual-cased-toxicity\n\nThis is multilingual Distil-Bert model sequence classifier trained based on JIGSAW Toxic Comment Classification Challenge dataset.## How to use it## Evaluation### Accuracy" ]
[ -0.043528445065021515, 0.09250355511903763, -0.00605350686237216, 0.05706646665930748, 0.11232677102088928, 0.03769741952419281, 0.07030988484621048, 0.127118319272995, 0.0418175533413887, 0.062368765473365784, 0.11451038718223572, 0.19328391551971436, -0.03375384956598282, 0.13624882698059082, -0.11040008813142776, -0.16614916920661926, 0.04011867567896843, 0.03409992903470993, -0.038486093282699585, 0.1528759002685547, 0.12635745108127594, -0.07688909769058228, 0.08313240110874176, 0.003144853748381138, -0.13726887106895447, 0.005049902480095625, 0.049904823303222656, -0.08187147974967957, 0.1128949299454689, 0.018652549013495445, 0.06994432210922241, 0.04357485473155975, 0.013436508364975452, -0.05361512303352356, 0.043405428528785706, 0.011019106023013592, -0.023635709658265114, 0.09615162014961243, 0.0467621386051178, -0.10125169157981873, 0.04673018306493759, -0.04147644713521004, 0.00033408869057893753, 0.07327248901128769, -0.11214591562747955, -0.12336321920156479, 0.014073840342462063, 0.0608084611594677, 0.09977792203426361, 0.07076668739318848, -0.06641456484794617, 0.2065630704164505, -0.10359713435173035, 0.08566208928823471, 0.08372620493173599, -0.15521949529647827, -0.0621367022395134, 0.1221812441945076, 0.05138850212097168, -0.05207397788763046, -0.11085835099220276, 0.06888309866189957, 0.08328752964735031, 0.009358728304505348, -0.021597053855657578, -0.10175877064466476, 0.06958801299333572, -0.03245548903942108, -0.11547286063432693, 0.06802341341972351, 0.25042492151260376, 0.012322496622800827, -0.035422489047050476, -0.02861137129366398, -0.07401954382658005, 0.03027915209531784, -0.005405585281550884, -0.09461882710456848, -0.05274384468793869, -0.0012332192854955792, 0.06055168807506561, 0.05185063183307648, -0.09503497928380966, -0.0655379667878151, -0.08677449822425842, 0.2093360424041748, -0.006899920757859945, 0.01888774149119854, -0.08589217811822891, 0.016178270801901817, 0.03585006296634674, -0.034792132675647736, 0.0075468155555427074, -0.08925023674964905, -0.08009564131498337, -0.04228615388274193, 0.03192906454205513, -0.04606155306100845, 0.14275795221328735, 0.03741423785686493, 0.017528025433421135, 0.00983482412993908, -0.07655572891235352, 0.027933547273278236, 0.1072576567530632, 0.02343890070915222, -0.07723092287778854, 0.003848128020763397, 0.004067258909344673, 0.03406296297907829, -0.00527500594034791, 0.013997743837535381, -0.10429544746875763, -0.006819150410592556, 0.07767654210329056, 0.07854840904474258, 0.03452686220407486, 0.09619973599910736, -0.10972489416599274, -0.040787287056446075, 0.04970012605190277, -0.019288692623376846, 0.01910029910504818, 0.08239210397005081, -0.01288505271077156, 0.1332799345254898, -0.008001443929970264, -0.02262195199728012, -0.031994499266147614, 0.10667815804481506, -0.09586458653211594, 0.048721618950366974, -0.038148775696754456, -0.14531384408473969, 0.004273376427590847, 0.011258864775300026, -0.01412432361394167, -0.1341790407896042, -0.04761962592601776, -0.057334668934345245, -0.029213229194283485, -0.02669401280581951, -0.04267965257167816, -0.07119866460561752, -0.008554059080779552, 0.029697230085730553, -0.008220139890909195, -0.08489831537008286, -0.06704182177782059, 0.07652787864208221, -0.05021810159087181, 0.1100989580154419, -0.05753537639975548, 0.014910359866917133, -0.09779756516218185, 0.014913320541381836, -0.0018933042883872986, 0.040188729763031006, -0.03264002874493599, 0.06453700363636017, -0.10530348867177963, -0.09066721796989441, -0.05046504735946655, -0.03748893737792969, -0.025511937215924263, 0.2786920368671417, -0.1890868991613388, -0.057560332119464874, 0.10200924426317215, -0.09120836108922958, -0.07233189046382904, 0.12215718626976013, -0.009852448478341103, 0.0742698535323143, 0.09478498250246048, 0.09065379947423935, 0.015256843529641628, -0.12539619207382202, -0.0274106003344059, 0.07341151684522629, -0.12016990780830383, 0.09901254624128342, 0.07445652037858963, -0.021006720140576363, -0.1335662603378296, -0.024039635434746742, 0.016092417761683464, 0.05792074650526047, -0.05518263950943947, -0.07857408374547958, 0.008253088220953941, -0.02814675122499466, 0.1719864457845688, -0.013909018598496914, 0.013278343714773655, -0.06869872659444809, -0.044749483466148376, -0.07886406779289246, 0.11067693680524826, 0.006796380039304495, 0.012276173569262028, -0.11331183463335037, 0.05974673479795456, -0.000489444995764643, 0.013423214666545391, -0.16109532117843628, 0.05920200049877167, -0.008125567808747292, 0.04908845201134682, -0.014184241183102131, 0.014508298598229885, 0.02815546654164791, -0.03794277831912041, 0.00046372247743420303, -0.02998293749988079, 0.08504340052604675, 0.014745897613465786, -0.057163987308740616, -0.22088027000427246, 0.07960247993469238, -0.053775276988744736, 0.11355217546224594, -0.14150801301002502, 0.011471141129732132, 0.14525778591632843, 0.012348685413599014, -0.0504927895963192, 0.04795350134372711, 0.0873265340924263, -0.029413461685180664, -0.07156390696763992, -0.02613399177789688, 0.07703577727079391, -0.032013989984989166, -0.13178563117980957, 0.012052539736032486, -0.04509010165929794, 0.10607855021953583, 0.13394120335578918, -0.11543754488229752, -0.05093778669834137, 0.0010581074748188257, -0.03898351266980171, 0.01395238097757101, -0.041574474424123764, -0.03446828946471214, 0.054959557950496674, 0.008257296867668629, 0.04765591770410538, -0.011405437253415585, 0.0009824116714298725, -0.019102975726127625, -0.05428929254412651, -0.08495309948921204, 0.0923810601234436, -0.09495782852172852, -0.2304447740316391, 0.13243073225021362, 0.14591825008392334, -0.030627144500613213, 0.03998911753296852, 0.07160717248916626, 0.018240321427583694, -0.034474536776542664, 0.02091037482023239, -0.0047934390604496, 0.0835907906293869, -0.19641759991645813, 0.021069863811135292, 0.052891943603754044, -0.019748806953430176, -0.03577010706067085, -0.06087464839220047, -0.02368423342704773, -0.06476098299026489, -0.0006382266874425113, -0.05799869820475578, 0.0672387182712555, 0.044279489666223526, 0.1631140261888504, 0.026762207970023155, -0.06187523156404495, 0.05628681182861328, -0.0011692643165588379, -0.12125638127326965, 0.21530920267105103, -0.1487833708524704, -0.46264225244522095, -0.012051824480295181, -0.0812527984380722, -0.043387386947870255, 0.04732518643140793, 0.04401584342122078, -0.2027997225522995, -0.039681628346443176, 0.06756913661956787, 0.14199502766132355, -0.05060163512825966, 0.02921256795525551, 0.008387435227632523, 0.02129986882209778, 0.027291584759950638, -0.081594318151474, -0.014541532844305038, -0.05738738551735878, 0.012007498182356358, 0.15476413071155548, -0.10083118081092834, 0.08186998218297958, 0.1539110541343689, 0.0035090541932731867, 0.018622752279043198, -0.038251638412475586, 0.24245613813400269, -0.10273264348506927, 0.022640759125351906, 0.1511968970298767, -0.08704277873039246, 0.02065870724618435, 0.06021866574883461, 0.0336318165063858, -0.05889369919896126, 0.062380749732255936, 0.03491417318582535, -0.009794958867132664, -0.18209682404994965, -0.14897850155830383, -0.02265326865017414, 0.022390564903616905, 0.06837394088506699, 0.08659330010414124, 0.03117714636027813, 0.09835194051265717, 0.013879839330911636, -0.0123372133821249, 0.029397746548056602, 0.06689531356096268, 0.06722009181976318, -0.07614520937204361, 0.12435559183359146, -0.011380602605640888, -0.15145975351333618, 0.10994479805231094, -0.02121341973543167, 0.02900088205933571, 0.09648209810256958, 0.002369083696976304, 0.0915786400437355, 0.06093719229102135, 0.11061582714319229, 0.09348423033952713, 0.004756214562803507, -0.03538636490702629, -0.00004600609463523142, -0.07727092504501343, -0.02225426584482193, 0.027086008340120316, 0.09447696805000305, 0.05924151837825775, 0.03379352390766144, -0.01850433275103569, 0.19159343838691711, 0.03263777121901512, 0.06279769539833069, -0.17468489706516266, -0.031116021797060966, 0.06382198631763458, 0.08884226530790329, -0.08658260107040405, 0.06385013461112976, 0.0012282505631446838, -0.11560903489589691, 0.0938519835472107, -0.08995132893323898, 0.12291985005140305, -0.04216917231678963, 0.06902191787958145, -0.05967095121741295, -0.08430895209312439, -0.031274132430553436, 0.1299951672554016, -0.42963525652885437, 0.12778645753860474, 0.026451485231518745, -0.0430547334253788, -0.10742390900850296, -0.013782340101897717, 0.07786539196968079, 0.2211105078458786, 0.25387996435165405, 0.03675992414355278, 0.13307052850723267, -0.09539797157049179, -0.10871532559394836, -0.025205904617905617, 0.06354884803295135, 0.03267926350235939, 0.0311077069491148, 0.010307109914720058, 0.013241667300462723, -0.02222348004579544, -0.0012151665287092328, -0.16307903826236725, -0.05445285141468048, 0.09739396721124649, 0.0415516123175621, 0.05157420039176941, -0.02740294672548771, -0.11592774838209152, -0.08509065210819244, 0.2300994098186493, -0.17416152358055115, -0.058672111481428146, -0.1428634226322174, 0.08596132695674896, 0.04430980235338211, -0.0708949863910675, -0.08176197856664658, -0.040907710790634155, 0.07507048547267914, -0.058886680752038956, -0.08823218196630478, 0.13315711915493011, -0.1096397340297699, -0.08726296573877335, -0.04724337160587311, 0.14509589970111847, 0.07447236776351929, 0.09342743456363678, 0.05193211883306503, -0.009350506588816643, -0.08223876357078552, -0.1299595683813095, 0.037782084196805954, -0.08047953248023987, -0.00172094174195081, 0.12595145404338837, -0.10174320638179779, -0.23301908373832703, -0.10309113562107086, 0.03632010519504547, 0.19585350155830383, 0.1717841923236847, -0.046953070908784866, 0.06408100575208664, 0.07991191744804382, -0.0785544216632843, -0.29737982153892517, 0.0749068409204483, -0.02379334717988968, 0.018902983516454697, -0.09031957387924194, -0.10811646282672882, 0.07207205146551132, 0.06888636946678162, -0.04303641617298126, 0.027794741094112396, -0.20055614411830902, -0.06950575113296509, 0.24881291389465332, 0.02047686092555523, 0.22736771404743195, -0.13523359596729279, -0.04878922179341316, -0.0920863002538681, -0.032086070626974106, 0.18153592944145203, -0.09849514067173004, 0.05238146707415581, -0.010919596068561077, -0.02091616950929165, 0.06975754350423813, -0.01624867133796215, 0.17558491230010986, 0.054385438561439514, 0.05891459435224533, -0.021521344780921936, -0.24752670526504517, 0.11680556833744049, 0.048827048391103745, 0.07258763909339905, 0.0849921703338623, 0.026413224637508392, -0.07750071585178375, -0.02493695728480816, -0.09602823853492737, 0.10788794606924057, -0.03170889616012573, -0.09800568968057632, -0.10026037693023682, 0.06741385161876678, 0.002669372595846653, -0.0063644880428910255, 0.18854524195194244, -0.07531179487705231, 0.08301125466823578, 0.036559928208589554, 0.17425505816936493, 0.0365273542702198, -0.074544258415699, 0.06800805032253265, -0.03068501502275467, 0.07783935219049454, -0.055430974811315536, 0.0805586501955986, 0.12938132882118225, 0.01159287802875042, 0.1327192187309265, 0.08833202719688416, -0.04867517575621605, -0.00493353046476841, 0.11609277129173279, -0.18206097185611725, -0.020502354949712753, -0.050831131637096405, -0.09963265806436539, -0.05153648555278778, 0.04451889544725418, 0.11827479302883148, 0.0068493615835905075, -0.02012653648853302, 0.022953765466809273, 0.029105596244335175, -0.05130840092897415, 0.15877018868923187, 0.06095835939049721, 0.060197003185749054, -0.12086566537618637, 0.047615908086299896, 0.07346811890602112, -0.05927183851599693, -0.025731544941663742, 0.03512268513441086, -0.12090619653463364, -0.07911115139722824, -0.057099759578704834, 0.1508275717496872, 0.03656313568353653, -0.04710344970226288, -0.10098935663700104, -0.17067550122737885, 0.03375108540058136, 0.09988303482532501, 0.13045579195022583, 0.09024626761674881, -0.0674382895231247, -0.07378754019737244, -0.05311398208141327, 0.06746315211057663, 0.002184771467000246, -0.0006019394495524466, -0.10825330764055252, 0.1415976583957672, -0.007799665909260511, 0.18281322717666626, -0.106662318110466, -0.05386640131473541, -0.1896752119064331, 0.004072589799761772, -0.032953083515167236, 0.03116178885102272, -0.10430464148521423, -0.030047684907913208, 0.004410986322909594, -0.04119578003883362, -0.009221401065587997, 0.00511989975348115, -0.059765227138996124, 0.040852755308151245, 0.029939450323581696, 0.05903373658657074, -0.08739764988422394, -0.07407001405954361, 0.062721848487854, -0.008793327957391739, 0.1399203985929489, 0.0883619636297226, -0.0999896451830864, 0.008838468231260777, -0.15228645503520966, -0.003978121094405651, 0.15210884809494019, 0.029275663197040558, 0.02650274708867073, -0.1768425852060318, 0.025017080828547478, 0.019473407417535782, 0.061545927077531815, 0.08872876316308975, 0.1423572599887848, -0.03766702115535736, 0.013558068312704563, -0.09680065512657166, -0.07961385697126389, 0.00008756426541367546, -0.01167035847902298, 0.04515831917524338, 0.028426233679056168, 0.15715579688549042, -0.046462271362543106, 0.0487116277217865, -0.06596537679433823, 0.030973054468631744, -0.034930188208818436, -0.10550550371408463, -0.15538813173770905, -0.015075634233653545, 0.055406179279088974, -0.028251584619283676, 0.15632006525993347, 0.009013648144900799, -0.040815286338329315, 0.05763040482997894, 0.10689164698123932, -0.01699090376496315, -0.019698308780789375, 0.07194598764181137, 0.009368807077407837, -0.047426193952560425, 0.01292494684457779, 0.016381047666072845, 0.02769475057721138, 0.023260854184627533, 0.07351010292768478, 0.05991201847791672, 0.08597829937934875, 0.03305250406265259, -0.028759555891156197, -0.05092475563287735, -0.00947593990713358, -0.05121524631977081, -0.03955696150660515, -0.029337313026189804, 0.014126411639153957, 0.06882098317146301, 0.10301748663187027, -0.07133636623620987, 0.04105246439576149, -0.05392911657691002, -0.10404029488563538, -0.18844859302043915, -0.10471644997596741, -0.08531004935503006, -0.03930225223302841, -0.020445197820663452, -0.13488835096359253, -0.03164878860116005, 0.0029973951168358326, 0.05570230260491371, -0.049137458205223083, 0.14265038073062897, -0.12103026360273361, -0.08822795003652573, 0.13841329514980316, -0.014521660283207893, 0.03608177229762077, -0.049249209463596344, 0.047408539801836014, 0.002850794931873679, -0.03004796989262104, 0.0354013592004776, -0.007149302400648594, 0.04909814894199371, 0.0031833986286073923, -0.14088302850723267, -0.10730977356433868, -0.016800709068775177, 0.043905891478061676, 0.03624577075242996, 0.18820852041244507, 0.03867929056286812, -0.01569940336048603, -0.0038877849001437426, 0.1525755524635315, -0.038312580436468124, 0.016025515273213387, -0.09096596390008926, 0.14798910915851593, -0.0435212105512619, 0.06613113731145859, 0.01907716877758503, -0.014906700700521469, -0.00426823366433382, 0.23204940557479858, 0.1993902027606964, -0.10466143488883972, 0.04365159943699837, -0.029214050620794296, 0.03870566934347153, 0.09939407557249069, 0.027534743770956993, 0.10314741730690002, 0.0560845285654068, -0.08708135783672333, 0.02280750498175621, -0.06593271344900131, -0.009381345473229885, -0.047609783709049225, 0.007752171717584133, 0.08181726187467575, 0.0051834541372954845, -0.08003370463848114, 0.11223414540290833, -0.11249341070652008, 0.05678668990731239, -0.02677987329661846, -0.11696913838386536, -0.1571592390537262, -0.0020071077160537243, -0.08061223477125168, 0.04333208501338959, 0.059667110443115234, -0.009219865314662457, 0.0010097979102283716, 0.06698373705148697, 0.02161877602338791, -0.15748056769371033, -0.0900769904255867, 0.08507439494132996, -0.04806409776210785, 0.08569414168596268, 0.02899637445807457, 0.08862114697694778, 0.09070495516061783, -0.07303782552480698, -0.08842470496892929, 0.07885873317718506, -0.04394180700182915, -0.034270770847797394, 0.0450163297355175, 0.01649663597345352, 0.05289585888385773, 0.08738591521978378, 0.0969754159450531, -0.0961088091135025, 0.011518843472003937, 0.016107643023133278, -0.07174818217754364, -0.11932305246591568, 0.1478569358587265, -0.10100726783275604, 0.04872005432844162, 0.1340559720993042, -0.04361606761813164, -0.03082970529794693, -0.033828288316726685, 0.030741354450583458, -0.006400391925126314, 0.007876347750425339, -0.04291346296668053, -0.1812306046485901, -0.005871286615729332, -0.09502407163381577, 0.028228752315044403, -0.16893887519836426, -0.046060748398303986, -0.11822514981031418, 0.009457445703446865, -0.06335680186748505, 0.07760293781757355, -0.10029575973749161, 0.016541579738259315, -0.014985884539783001, -0.12199696898460388, 0.03732510283589363, 0.08904744684696198, -0.11331432312726974, -0.07170100510120392 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7751 - Accuracy: 0.9113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.315 | 1.0 | 318 | 3.3087 | 0.74 | | 2.6371 | 2.0 | 636 | 1.8833 | 0.8381 | | 1.5388 | 3.0 | 954 | 1.1547 | 0.8929 | | 1.0076 | 4.0 | 1272 | 0.8590 | 0.9071 | | 0.79 | 5.0 | 1590 | 0.7751 | 0.9113 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.7.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["clinc_oos"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-clinc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "clinc_oos", "type": "clinc_oos", "args": "plus"}, "metrics": [{"type": "accuracy", "value": 0.9112903225806451, "name": "Accuracy"}]}]}]}
text-classification
arianpasquali/distilbert-base-uncased-finetuned-clinc
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-clinc ======================================= This model is a fine-tuned version of distilbert-base-uncased on the clinc\_oos dataset. It achieves the following results on the evaluation set: * Loss: 0.7751 * Accuracy: 0.9113 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 48 * eval\_batch\_size: 48 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.7.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.7.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.7.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 70, 98, 4, 30 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.7.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.09138041734695435, 0.0805753543972969, -0.0028635701164603233, 0.12939096987247467, 0.15003494918346405, 0.0272093303501606, 0.13568271696567535, 0.11968731135129929, -0.07655467092990875, 0.01936168596148491, 0.1025620698928833, 0.15764380991458893, 0.03176047280430794, 0.11379195004701614, -0.07844956964254379, -0.24371878802776337, -0.006638345308601856, 0.040245186537504196, -0.0705924779176712, 0.1290901154279709, 0.09970040619373322, -0.11111009120941162, 0.09125328809022903, 0.0019949653651565313, -0.152124285697937, 0.007769706193357706, -0.00004554802944767289, -0.06793411076068878, 0.12266729027032852, 0.025695746764540672, 0.10015777498483658, 0.01285749301314354, 0.07834247499704361, -0.19562390446662903, 0.00940155889838934, 0.04212658479809761, -0.01596742868423462, 0.07860515266656876, 0.03740369528532028, 0.0042329044081270695, 0.13370776176452637, -0.08553262054920197, 0.05662371218204498, 0.017439553514122963, -0.11930418759584427, -0.21764163672924042, -0.06304466724395752, 0.0259014293551445, 0.08345761895179749, 0.11432687938213348, -0.004964624997228384, 0.13548564910888672, -0.10576966404914856, 0.09410818666219711, 0.2126169055700302, -0.24987336993217468, -0.06655324995517731, 0.03920959308743477, 0.024015409871935844, 0.0813831090927124, -0.10797538608312607, -0.04847992584109306, 0.03484122082591057, 0.0430210679769516, 0.11798095703125, -0.03878393769264221, -0.06779082119464874, 0.018200578168034554, -0.13906684517860413, -0.03387003391981125, 0.19263555109500885, 0.0645078793168068, -0.033311259001493454, -0.0308873001486063, -0.060808878391981125, -0.14734148979187012, -0.02731049805879593, -0.005395612213760614, 0.06829450279474258, -0.02376134693622589, -0.04111864045262337, 0.00013071736611891538, -0.10866199433803558, -0.04122856631875038, -0.08249568939208984, 0.13417157530784607, 0.025773191824555397, 0.009029910899698734, -0.026454882696270943, 0.1027301549911499, 0.003652178682386875, -0.1236182451248169, 0.0032138805836439133, 0.03993876650929451, 0.029039761051535606, -0.03377452865242958, -0.060852110385894775, -0.03831104934215546, 0.033112458884716034, 0.11120054870843887, -0.03858617693185806, 0.035291511565446854, 0.026304353028535843, 0.04535882920026779, -0.07453900575637817, 0.1838371455669403, -0.0042487322352826595, -0.01624676212668419, 0.012468709610402584, 0.06413116306066513, 0.013484232127666473, -0.018481070175766945, -0.11837615072727203, 0.03205317258834839, 0.09370193630456924, -0.0037362920120358467, -0.05781980976462364, 0.0539930984377861, -0.07557294517755508, -0.03265449404716492, -0.019680969417095184, -0.10540199279785156, 0.044291868805885315, 0.004516812041401863, -0.09010756015777588, -0.02156106010079384, 0.027906043455004692, 0.0379977710545063, -0.03698251396417618, 0.09952842444181442, -0.08508068323135376, 0.033168815076351166, -0.08488542586565018, -0.08539974689483643, 0.008650947362184525, -0.10112956166267395, 0.03673205524682999, -0.09297113120555878, -0.17763182520866394, -0.035069093108177185, 0.06399715691804886, -0.00939642358571291, -0.0764317438006401, -0.08146112412214279, -0.06763873249292374, 0.005417556036263704, -0.005328122526407242, 0.10832824558019638, -0.0670398399233818, 0.10051046311855316, 0.03287584334611893, 0.045526280999183655, -0.07190293073654175, 0.05836682766675949, -0.1300978809595108, 0.013440989889204502, -0.11953581869602203, 0.03460210561752319, -0.02912457473576069, 0.06803678721189499, -0.06042545288801193, -0.1024242639541626, 0.01708337478339672, -0.0018071929225698113, 0.0458897203207016, 0.08322227746248245, -0.15967488288879395, -0.07766646146774292, 0.12280578911304474, -0.06160468980669975, -0.12048491090536118, 0.1212378665804863, -0.059183068573474884, 0.03640870004892349, 0.05840636417269707, 0.18058381974697113, 0.06337533891201019, -0.06723523139953613, 0.01873442903161049, -0.010065575130283833, 0.0754593014717102, -0.05319252982735634, 0.09928726404905319, 0.009331961162388325, 0.014551841653883457, 0.029731445014476776, -0.03699113056063652, 0.02831087075173855, -0.08045557141304016, -0.10642652213573456, -0.04232000187039375, -0.08492571115493774, 0.024975188076496124, 0.07237349450588226, 0.06601578742265701, -0.10883358120918274, -0.06983937323093414, 0.026106707751750946, 0.08973378688097, -0.05606304854154587, 0.02011694945394993, -0.06786616891622543, 0.08158467710018158, -0.030806565657258034, -0.01417283434420824, -0.1684342920780182, -0.010276706889271736, 0.01476363092660904, 0.008755004033446312, 0.029413266107439995, 0.03907253220677376, 0.06269369274377823, 0.0693918764591217, -0.03699866682291031, -0.024323882535099983, -0.043219443410634995, -0.002666828688234091, -0.11158555001020432, -0.1934543251991272, -0.024845773354172707, -0.020113319158554077, 0.1601647436618805, -0.2229793518781662, 0.05032581835985184, -0.0034734560176730156, 0.08104207366704941, 0.014351666904985905, -0.00861679669469595, -0.055948350578546524, 0.0783609002828598, -0.04562331736087799, -0.05057571455836296, 0.07197672873735428, 0.014401257038116455, -0.09887449443340302, -0.08540119230747223, -0.10181254148483276, 0.20228588581085205, 0.13523894548416138, -0.10563614219427109, -0.045815709978342056, -0.01556231826543808, -0.07541853934526443, -0.02810012362897396, -0.05129619687795639, 0.04018574208021164, 0.20527848601341248, -0.021164244040846825, 0.13223430514335632, -0.07652727514505386, -0.03223755955696106, 0.023059172555804253, -0.05025073140859604, 0.008856070227921009, 0.13914839923381805, 0.11014259606599808, -0.09420570731163025, 0.15698878467082977, 0.1691674441099167, -0.0755954384803772, 0.12973907589912415, -0.04742017388343811, -0.05505235493183136, -0.029616190120577812, -0.026151981204748154, -0.01248571090400219, 0.08783125132322311, -0.16944481432437897, 0.012471129186451435, 0.018955066800117493, 0.015332058072090149, 0.01617797091603279, -0.22060835361480713, -0.03633292019367218, 0.04989897087216377, -0.030726471915841103, -0.031014766544103622, -0.023952294141054153, 0.005629970226436853, 0.09882442653179169, -0.012041806243360043, -0.1110035851597786, 0.05716637521982193, 0.0019096829928457737, -0.06994529813528061, 0.20532062649726868, -0.07991626858711243, -0.1669243574142456, -0.12246154993772507, -0.062291450798511505, -0.07827311754226685, 0.013519013300538063, 0.07287314534187317, -0.07165572792291641, -0.031024837866425514, -0.08897244930267334, 0.022916574031114578, 0.003586068982258439, 0.025875844061374664, 0.03193225339055061, 0.013513456098735332, 0.06959434598684311, -0.1006019338965416, -0.03548674285411835, -0.043558910489082336, -0.06811831146478653, 0.04083035886287689, 0.02907492220401764, 0.11593692749738693, 0.12282074242830276, -0.017757505178451538, 0.0052284179255366325, -0.006445193197578192, 0.2188936173915863, -0.06538786739110947, -0.03767562657594681, 0.13506849110126495, -0.008490603417158127, 0.049359746277332306, 0.10544552654027939, 0.06410159915685654, -0.08354206383228302, 0.002667500637471676, 0.03824783116579056, -0.031214412301778793, -0.22852708399295807, -0.03807375580072403, -0.061770547181367874, -0.0026551245246082544, 0.09277717024087906, 0.03765948861837387, 0.05425923317670822, 0.0678682029247284, 0.04744759574532509, 0.09855607897043228, -0.02257356606423855, 0.05111444368958473, 0.1256592720746994, 0.05198384448885918, 0.1076817587018013, -0.02002089098095894, -0.06468695402145386, 0.04761088639497757, -0.013859082944691181, 0.20548518002033234, 0.019321952015161514, 0.12158339470624924, 0.04487380385398865, 0.16067519783973694, -0.025608684867620468, 0.06624076515436172, 0.003261699341237545, -0.01850913278758526, -0.022449037060141563, -0.03203939273953438, -0.03517113998532295, 0.032895442098379135, -0.04401647299528122, 0.07510165125131607, -0.13952386379241943, 0.020221827551722527, 0.05564289540052414, 0.24364475905895233, 0.005812858231365681, -0.3302593231201172, -0.07775919139385223, 0.01652088761329651, -0.04157378524541855, -0.023758435621857643, 0.044077400118112564, 0.07778344303369522, -0.08811014145612717, 0.02548827789723873, -0.048633966594934464, 0.10228454321622849, -0.056084033101797104, 0.05172562226653099, 0.07232960313558578, 0.08953598141670227, 0.013801504857838154, 0.09524087607860565, -0.3063105344772339, 0.257615864276886, -0.005452238954603672, 0.06926773488521576, -0.08372007310390472, 0.004010161384940147, 0.02735704556107521, 0.06631467491388321, 0.07542572915554047, -0.010026910342276096, -0.01949060522019863, -0.18119101226329803, -0.06964803487062454, 0.03670208528637886, 0.0672854334115982, -0.08252174407243729, 0.08539514243602753, -0.034309305250644684, 0.011084061115980148, 0.057016003876924515, -0.0009222693624906242, -0.04478457570075989, -0.09057004749774933, 0.0047212871722877026, 0.0563017912209034, -0.02832445502281189, -0.06813856959342957, -0.10386946052312851, -0.10620477795600891, 0.15005309879779816, -0.014608322642743587, -0.028952764347195625, -0.1040809229016304, 0.08074650913476944, 0.06834498792886734, -0.07890157401561737, 0.005493413656949997, 0.012706833891570568, 0.06603964418172836, 0.03564617782831192, -0.0701473206281662, 0.11375871300697327, -0.0633968710899353, -0.16838675737380981, -0.06253721565008163, 0.11978419870138168, 0.03195018321275711, 0.07264921069145203, -0.01310057658702135, 0.006398954428732395, -0.04820280522108078, -0.07766451686620712, 0.026482023298740387, -0.002049738774076104, 0.07207487523555756, 0.0338967964053154, -0.04401716962456703, 0.006689238827675581, -0.07655426859855652, -0.047813981771469116, 0.1702144294977188, 0.23477478325366974, -0.06755532324314117, 0.02530568465590477, 0.03148984536528587, -0.08048218488693237, -0.14990460872650146, 0.01977430284023285, 0.03818182274699211, 0.014516953378915787, 0.035591769963502884, -0.16418346762657166, 0.1259060502052307, 0.11164569854736328, -0.008119086734950542, 0.11676328629255295, -0.33048009872436523, -0.1156536340713501, 0.13647739589214325, 0.13495180010795593, 0.15046323835849762, -0.14858724176883698, -0.008772564120590687, -0.02127898670732975, -0.13238732516765594, 0.12384499609470367, -0.09748832136392593, 0.11656691879034042, -0.03729773312807083, 0.08544103801250458, 0.012981198728084564, -0.04858189821243286, 0.13387809693813324, 0.027929922565817833, 0.09668140858411789, -0.0891759991645813, -0.03658219054341316, 0.03610789403319359, -0.03315548226237297, 0.011328941211104393, -0.10117870569229126, 0.02600053697824478, -0.12073266506195068, -0.03016655519604683, -0.06185861676931381, 0.03402210399508476, -0.042123906314373016, -0.058065228164196014, -0.026115383952856064, 0.03271622583270073, 0.0689224898815155, 0.0009181797504425049, 0.16149505972862244, 0.033018309623003006, 0.14010249078273773, 0.10872470587491989, 0.0747959315776825, -0.07064488530158997, -0.07420412451028824, -0.03313163295388222, 0.0009204995003528893, 0.05026875436306, -0.11466356366872787, 0.022794274613261223, 0.16031284630298615, 0.011153800413012505, 0.15814706683158875, 0.09086782485246658, -0.00456122774630785, 0.004688995890319347, 0.047746866941452026, -0.17170289158821106, -0.07839952409267426, -0.028609467670321465, -0.04824419692158699, -0.11799491941928864, 0.052338071167469025, 0.10723426192998886, -0.07279065251350403, -0.00502513162791729, -0.0075942096300423145, 0.04029371216893196, -0.07215652614831924, 0.17291119694709778, 0.04173655062913895, 0.04940951243042946, -0.09325510263442993, 0.07401158660650253, 0.07456694543361664, -0.07701466977596283, 0.0008211841923184693, 0.06657659262418747, -0.06998362392187119, -0.046833720058202744, 0.07540878653526306, 0.1959739774465561, -0.04829135164618492, -0.06125994771718979, -0.16086845099925995, -0.13316765427589417, 0.0826062336564064, 0.12619538605213165, 0.11337549239397049, 0.01468501053750515, -0.06088395044207573, -0.011933774687349796, -0.11358354240655899, 0.08061899989843369, 0.05107147991657257, 0.06027902662754059, -0.14503636956214905, 0.10368268936872482, -0.00803628284484148, 0.03713759034872055, -0.011185670271515846, 0.015229119919240475, -0.11059186607599258, 0.009911098517477512, -0.08136764913797379, -0.01440772321075201, -0.019227415323257446, 0.024735944345593452, 0.008570403791964054, -0.07486236840486526, -0.05627976730465889, 0.021135935559868813, -0.11222108453512192, -0.02972632832825184, 0.037513185292482376, 0.06982113420963287, -0.10221957415342331, -0.056716278195381165, 0.024479243904352188, -0.06676405668258667, 0.06275201588869095, 0.061960022896528244, 0.002516824286431074, 0.025019239634275436, -0.15362516045570374, 0.03095293790102005, 0.05329974368214607, 0.03270817920565605, 0.06129838898777962, -0.09503205865621567, -0.00919845886528492, 0.021575745195150375, 0.0269145630300045, 0.01561509259045124, 0.08325794339179993, -0.14407804608345032, -0.016161618754267693, -0.022633908316493034, -0.113322414457798, -0.05917361378669739, 0.013924959115684032, 0.09666340053081512, 0.023074597120285034, 0.21381042897701263, -0.058116670697927475, 0.05853710323572159, -0.2076190859079361, 0.006651587318629026, 0.010066579096019268, -0.10631588101387024, -0.10321011394262314, -0.07968917489051819, 0.058745965361595154, -0.05610688403248787, 0.13649579882621765, 0.04805351421236992, 0.06526324898004532, 0.020273346453905106, -0.021262837573885918, 0.029343055561184883, 0.015521637164056301, 0.18684589862823486, 0.03724370896816254, -0.040960561484098434, 0.07919855415821075, 0.016703173518180847, 0.11161557585000992, 0.10727938264608383, 0.19505074620246887, 0.13095954060554504, 0.005727855954319239, 0.09860370308160782, 0.041322723031044006, -0.04261166974902153, -0.16598188877105713, 0.04708090424537659, -0.010842010378837585, 0.1053398922085762, -0.03109952248632908, 0.18934711813926697, 0.05366265028715134, -0.16455040872097015, 0.03181226924061775, -0.0609547384083271, -0.0822053924202919, -0.1061236634850502, -0.06070522218942642, -0.09377767890691757, -0.13932274281978607, -0.0013744333991780877, -0.11516912281513214, 0.01813335344195366, 0.09314875304698944, 0.003703972790390253, -0.02999083139002323, 0.1436864584684372, -0.0007016521412879229, 0.030763693153858185, 0.06311448663473129, -0.013636979274451733, -0.04229075834155083, -0.11183398962020874, -0.08885687589645386, -0.028294241055846214, -0.02697620913386345, 0.02423437498509884, -0.06069353222846985, -0.03208727762103081, 0.02641758881509304, -0.03216124698519707, -0.09518595039844513, 0.007488463073968887, -0.00716990465298295, 0.05117865279316902, 0.050729911774396896, 0.0176183320581913, 0.02120930328965187, 0.008617808111011982, 0.21589164435863495, -0.06918572634458542, -0.06362909078598022, -0.0979401022195816, 0.19417332112789154, 0.03967155143618584, -0.03929399326443672, 0.046784624457359314, -0.07154209166765213, -0.004279704764485359, 0.21986497938632965, 0.19108986854553223, -0.07771185040473938, -0.009312240406870842, 0.010671033523976803, -0.005507312715053558, -0.014733809977769852, 0.09155414253473282, 0.1304141730070114, 0.03928708657622337, -0.09262542426586151, -0.042104434221982956, -0.061453741043806076, 0.002514971187338233, -0.035834673792123795, 0.054342735558748245, 0.04158032685518265, 0.01402977854013443, -0.02849416248500347, 0.044021181762218475, -0.06971363723278046, -0.09259422868490219, 0.06720462441444397, -0.214630126953125, -0.1521640568971634, -0.032324858009815216, 0.11940078437328339, 0.004842227324843407, 0.06404096633195877, -0.02574492059648037, -0.01525439228862524, 0.07242799550294876, -0.01510231476277113, -0.09351157397031784, -0.06724538654088974, 0.09838158637285233, -0.10707185417413712, 0.2149675339460373, -0.04865894094109535, 0.08043201267719269, 0.11384329944849014, 0.0669390857219696, -0.05725216493010521, 0.0632365271449089, 0.041711077094078064, -0.03977005183696747, 0.03177797049283981, 0.07317148894071579, -0.03564782813191414, 0.08167179673910141, 0.054301630705595016, -0.11165003478527069, 0.008863674476742744, -0.05003153532743454, -0.04483479633927345, -0.0249751228839159, -0.029451614245772362, -0.07548936456441879, 0.12181548774242401, 0.20842774212360382, -0.03103221021592617, -0.020288696512579918, -0.07178337126970291, 0.03904557600617409, 0.05135827884078026, -0.0031759419944137335, -0.056065041571855545, -0.20147526264190674, 0.0005199115839786828, 0.0507674440741539, -0.016872117295861244, -0.23222646117210388, -0.09912046045064926, -0.003989826887845993, -0.07950137555599213, -0.10785648971796036, 0.04982390254735947, 0.08939054608345032, 0.0371047779917717, -0.07409662008285522, -0.051582928746938705, -0.07553485780954361, 0.1490384340286255, -0.137285515666008, -0.07560700178146362 ]
null
null
transformers
# citizenlab/twitter-xlm-roberta-base-sentiment-finetunned This is multilingual XLM-Roberta model sequence classifier fine tunned and based on [Cardiff NLP Group](cardiffnlp/twitter-roberta-base-sentiment) sentiment classification model. ## How to use it ```python from transformers import pipeline model_path = "citizenlab/twitter-xlm-roberta-base-sentiment-finetunned" sentiment_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path) sentiment_classifier("this is a lovely message") > [{'label': 'Positive', 'score': 0.9918450713157654}] sentiment_classifier("you are an idiot and you and your family should go back to your country") > [{'label': 'Negative', 'score': 0.9849833846092224}] ``` ## Evaluation ``` precision recall f1-score support Negative 0.57 0.14 0.23 28 Neutral 0.78 0.94 0.86 132 Positive 0.89 0.80 0.85 51 accuracy 0.80 211 macro avg 0.75 0.63 0.64 211 weighted avg 0.78 0.80 0.77 211 ```
{"language": ["en", "nl", "fr", "pt", "it", "es", "de", "da", "pl", "af"], "datasets": ["jigsaw_toxicity_pred"], "metrics": ["F1 Accuracy"], "pipeline_type": "text-classification", "widget": [{"text": "this is a lovely message", "example_title": "Example 1", "multi_class": false}, {"text": "you are an idiot and you and your family should go back to your country", "example_title": "Example 2", "multi_class": false}]}
text-classification
citizenlab/twitter-xlm-roberta-base-sentiment-finetunned
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "en", "nl", "fr", "pt", "it", "es", "de", "da", "pl", "af", "dataset:jigsaw_toxicity_pred", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en", "nl", "fr", "pt", "it", "es", "de", "da", "pl", "af" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #en #nl #fr #pt #it #es #de #da #pl #af #dataset-jigsaw_toxicity_pred #autotrain_compatible #endpoints_compatible #has_space #region-us
# citizenlab/twitter-xlm-roberta-base-sentiment-finetunned This is multilingual XLM-Roberta model sequence classifier fine tunned and based on Cardiff NLP Group sentiment classification model. ## How to use it ## Evaluation
[ "# citizenlab/twitter-xlm-roberta-base-sentiment-finetunned\n\nThis is multilingual XLM-Roberta model sequence classifier fine tunned and based on Cardiff NLP Group sentiment classification model.", "## How to use it", "## Evaluation" ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #en #nl #fr #pt #it #es #de #da #pl #af #dataset-jigsaw_toxicity_pred #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# citizenlab/twitter-xlm-roberta-base-sentiment-finetunned\n\nThis is multilingual XLM-Roberta model sequence classifier fine tunned and based on Cardiff NLP Group sentiment classification model.", "## How to use it", "## Evaluation" ]
[ 76, 52, 5, 3 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #en #nl #fr #pt #it #es #de #da #pl #af #dataset-jigsaw_toxicity_pred #autotrain_compatible #endpoints_compatible #has_space #region-us \n# citizenlab/twitter-xlm-roberta-base-sentiment-finetunned\n\nThis is multilingual XLM-Roberta model sequence classifier fine tunned and based on Cardiff NLP Group sentiment classification model.## How to use it## Evaluation" ]
[ -0.07355473190546036, 0.09789261966943741, -0.004880743566900492, 0.07343786954879761, 0.10009933263063431, 0.03665481135249138, 0.04076831415295601, 0.1267467588186264, 0.06555552035570145, 0.08058282732963562, 0.09387864917516708, 0.15701965987682343, -0.027439160272479057, 0.07825560867786407, -0.11642365902662277, -0.22030822932720184, 0.022944042459130287, 0.03503154218196869, -0.04024698585271835, 0.15522290766239166, 0.11863904446363449, -0.0791923999786377, 0.1223057359457016, -0.007335760165005922, -0.1125413030385971, 0.026401596143841743, 0.0327923484146595, -0.06605958193540573, 0.1251624971628189, 0.06991368532180786, 0.05415892228484154, 0.06645414233207703, 0.020458433777093887, -0.09224328398704529, 0.05780697613954544, -0.004318479914218187, -0.061447594314813614, 0.09381797164678574, 0.06395004689693451, -0.13898883759975433, 0.15945976972579956, -0.023767024278640747, 0.003960215486586094, 0.0507182702422142, -0.1143740564584732, -0.10106083005666733, 0.0002490808838047087, 0.07461346685886383, 0.0380137674510479, 0.05550893396139145, -0.06624121963977814, 0.21726752817630768, -0.1628420352935791, 0.07070889323949814, 0.11833659559488297, -0.10107364505529404, -0.04601924121379852, 0.11475519090890884, 0.07134070992469788, 0.00868235807865858, -0.08944462239742279, 0.08838943392038345, 0.0542939193546772, 0.0016719111008569598, -0.02855333499610424, -0.08998166024684906, 0.032947659492492676, 0.009881802834570408, -0.10673356056213379, 0.0508287288248539, 0.27736717462539673, 0.04509453848004341, -0.013084739446640015, -0.011446642689406872, -0.06921160966157913, 0.008814836852252483, 0.023925909772515297, -0.09516818076372147, -0.03900548443198204, 0.007003914099186659, 0.017411526292562485, 0.06881660223007202, -0.07549148052930832, 0.01089942641556263, -0.17318706214427948, 0.2565314471721649, -0.02490047924220562, 0.02654421702027321, -0.06429409235715866, 0.04445617273449898, -0.0070789884775877, -0.018797099590301514, -0.0036567721981555223, -0.06628189235925674, -0.027482567355036736, -0.03175743669271469, 0.008934089913964272, 0.03682093322277069, 0.08865317702293396, 0.01429720688611269, 0.02783251740038395, -0.0011965497396886349, -0.015992892906069756, 0.03709576651453972, 0.17880934476852417, 0.059782177209854126, -0.09990211576223373, -0.05456594005227089, 0.010656501166522503, 0.016748277470469475, -0.009630405344069004, 0.010709799826145172, -0.12284601479768753, -0.008919542655348778, 0.021971948444843292, 0.06804971396923065, 0.03403453156352043, 0.1405096799135208, -0.09842011332511902, -0.05225122347474098, 0.01046613696962595, -0.017236370593309402, 0.07546259462833405, 0.06902982294559479, -0.05410664901137352, 0.17366532981395721, -0.025433573871850967, -0.021395642310380936, -0.014933931641280651, 0.04434815049171448, -0.05358649790287018, 0.011249052360653877, -0.0347776934504509, -0.13252606987953186, 0.030050039291381836, -0.0015209594275802374, 0.005530071910470724, -0.15625810623168945, -0.1062157154083252, -0.05896591767668724, -0.03338911756873131, -0.05644087865948677, -0.05899394303560257, -0.10165071487426758, 0.01215664204210043, 0.03705652058124542, -0.016138633713126183, -0.0790756344795227, -0.057403698563575745, 0.07028412818908691, -0.014944193884730339, 0.10176635533571243, -0.09795556217432022, 0.04038158431649208, -0.13387030363082886, 0.00836128368973732, 0.004057518672198057, 0.04608410224318504, -0.007337486371397972, 0.06652597337961197, -0.057078663259744644, -0.06849053502082825, -0.037341151386499405, 0.02076598070561886, -0.07242433726787567, 0.18148642778396606, -0.13770543038845062, -0.09331386536359787, 0.012110639363527298, -0.07758685201406479, -0.04301004856824875, 0.11883034557104111, -0.023997146636247635, 0.09913644194602966, 0.09286338090896606, 0.07117757946252823, 0.06470644474029541, -0.09901223331689835, -0.05475170537829399, 0.06349717080593109, -0.1467125117778778, 0.02480502612888813, 0.04859127849340439, 0.054039616137742996, -0.11762861162424088, 0.02271655574440956, -0.05522095039486885, 0.07584881782531738, -0.05064533278346062, -0.06292858719825745, 0.005260436329990625, -0.008161996491253376, 0.1141897514462471, 0.02389952912926674, 0.008270573802292347, -0.084539495408535, -0.0548550970852375, -0.1120811402797699, 0.12204272300004959, -0.003713166108354926, 0.009877029806375504, -0.10143649578094482, 0.124942347407341, -0.005304789170622826, 0.004812205675989389, -0.1545138657093048, 0.0462774820625782, -0.020136501640081406, 0.07172729820013046, 0.02464182674884796, 0.11848737299442291, -0.0007192945922724903, -0.06751653552055359, -0.02344108559191227, -0.018262427300214767, 0.10761834681034088, -0.015239033848047256, -0.036306533962488174, -0.25340282917022705, 0.07194072753190994, -0.0666041150689125, 0.06324002146720886, -0.16628381609916687, 0.004566605668514967, 0.151316300034523, 0.03568893298506737, -0.06619523465633392, 0.09117943048477173, 0.028626035898923874, 0.018588054925203323, -0.11097630858421326, 0.00879274494946003, 0.10042901337146759, -0.05139584466814995, -0.09898063540458679, 0.06784085184335709, -0.10450784862041473, 0.09314601868391037, 0.16275587677955627, -0.12580564618110657, -0.04163386672735214, 0.018018407747149467, -0.0349917896091938, 0.056095611304044724, -0.07536032795906067, 0.021531667560338974, 0.09710856527090073, -0.04156454652547836, 0.07406596839427948, -0.038653429597616196, -0.02546161413192749, -0.01586642675101757, -0.03857618570327759, -0.09740667045116425, 0.13208889961242676, 0.03736297786235809, -0.18234467506408691, 0.15076914429664612, 0.12338146567344666, -0.00583491800352931, 0.06707996129989624, 0.07362239807844162, 0.0487096831202507, -0.05980098247528076, -0.030050626024603844, -0.03685876354575157, 0.07541104406118393, -0.12029492110013962, -0.007860536687076092, 0.03768705204129219, -0.025301726534962654, -0.02588345855474472, -0.08894701302051544, -0.0364471934735775, -0.014183253049850464, -0.008780230768024921, -0.060107432305812836, 0.0705183893442154, 0.04266003146767616, 0.15105539560317993, -0.011468876153230667, -0.09490357339382172, 0.0546356700360775, 0.005468455608934164, -0.12470093369483948, 0.1629210114479065, -0.12270425260066986, -0.3988935947418213, -0.0019868649542331696, -0.08959189057350159, -0.05576683580875397, 0.0198503490537405, 0.009747808799147606, -0.1415432095527649, -0.0434085875749588, 0.0020824335515499115, 0.15718260407447815, -0.09316366165876389, 0.025176797062158585, -0.06248662248253822, 0.03623546287417412, -0.010408061556518078, -0.0721147432923317, -0.006394932512193918, -0.06754341721534729, 0.02667437121272087, 0.11078871786594391, -0.10208254307508469, 0.08483728766441345, 0.18061767518520355, -0.013087787665426731, 0.03163199871778488, -0.052201271057128906, 0.1949097067117691, -0.10812436044216156, 0.016643362119793892, 0.04591584578156471, -0.020301764830946922, 0.012840821407735348, 0.13593606650829315, 0.02698153629899025, -0.06430580466985703, 0.019249293953180313, 0.020489389076828957, -0.04340844601392746, -0.1564473807811737, -0.16104042530059814, -0.03861279785633087, 0.0637635812163353, 0.05481071397662163, 0.10756722837686539, 0.05609078332781792, 0.09809548407793045, 0.025066383183002472, -0.061653461307287216, -0.0755973607301712, 0.052474360913038254, 0.14666511118412018, -0.061533331871032715, 0.10801738500595093, -0.031113160774111748, -0.11809401214122772, 0.12672150135040283, -0.01816261000931263, 0.015597722493112087, 0.05002490431070328, -0.01999969407916069, 0.050477784126996994, 0.1207447350025177, 0.13111665844917297, 0.04202566668391228, -0.0031003993935883045, -0.04259849712252617, -0.029309310019016266, -0.03207335248589516, 0.0003610870335251093, 0.022527102380990982, 0.13863638043403625, 0.06872311979532242, -0.03884119912981987, -0.09859420359134674, 0.14818422496318817, 0.010589439421892166, 0.027223657816648483, -0.19725143909454346, 0.0038279027212411165, 0.06455715745687485, 0.04945920407772064, -0.025801051408052444, 0.03741633892059326, -0.000017205593394464813, -0.09805861115455627, 0.09402047097682953, -0.030582968145608902, 0.10814865678548813, -0.06804399192333221, 0.04653623327612877, -0.04956313595175743, -0.009669827297329903, -0.01905916817486286, 0.09673884510993958, -0.2604445219039917, 0.21382196247577667, 0.022958287969231606, -0.05292888358235359, -0.06766956299543381, -0.049291256815195084, 0.056770067662000656, 0.26977017521858215, 0.165667325258255, 0.04768870025873184, -0.039878420531749725, -0.11700894683599472, -0.04704606533050537, 0.030254559591412544, 0.0523039773106575, 0.009765112772583961, 0.06493844836950302, 0.006204685661941767, 0.020107116550207138, 0.010288308374583721, -0.006283747032284737, -0.06509356200695038, -0.07059929519891739, 0.06520508974790573, 0.09216282516717911, 0.004165992606431246, 0.01713692396879196, -0.1149783730506897, -0.14282694458961487, 0.21079187095165253, -0.13443855941295624, -0.0015691830776631832, -0.15171070396900177, 0.11300501972436905, -0.019088583067059517, -0.07552608102560043, -0.13132119178771973, -0.029208136722445488, 0.033477991819381714, -0.048582956194877625, -0.13645531237125397, 0.12047374248504639, -0.08607643097639084, -0.1138215959072113, -0.06127497926354408, 0.13422968983650208, 0.08774668723344803, 0.07123999297618866, 0.021803203970193863, 0.012590802274644375, -0.07622789591550827, -0.115386962890625, 0.054687898606061935, 0.02261560969054699, -0.08352608978748322, 0.11198017746210098, -0.03351380676031113, -0.14176081120967865, -0.04168866574764252, -0.008531567640602589, 0.1617411971092224, 0.16692890226840973, -0.07255853712558746, 0.0859956368803978, 0.08823705464601517, -0.09417928755283356, -0.28535667061805725, 0.07409226894378662, -0.0640290305018425, 0.04138707369565964, -0.040066905319690704, -0.07854340225458145, 0.10213004052639008, 0.07603662461042404, -0.008595321327447891, -0.03001234494149685, -0.1930365115404129, -0.05413983762264252, 0.21434977650642395, 0.004187411163002253, 0.2941633462905884, -0.0971251130104065, -0.02980509027838707, -0.0450822114944458, 0.018994243815541267, 0.19458627700805664, -0.07367004454135895, 0.07390318810939789, -0.043165747076272964, 0.10187133401632309, 0.05109141767024994, 0.023368852213025093, 0.19097380340099335, 0.03008381463587284, 0.06639508157968521, -0.05670465528964996, -0.2288731336593628, 0.10354635864496231, 0.03898244351148605, 0.0431082621216774, -0.02074149064719677, -0.010722873732447624, -0.08382531255483627, -0.037667080760002136, -0.1222972720861435, 0.10112233459949493, -0.01321469061076641, -0.061211418360471725, -0.16755016148090363, 0.07256904244422913, 0.03758528456091881, -0.04667286574840546, 0.10116482526063919, -0.10489724576473236, 0.04304271936416626, 0.07388606667518616, 0.20131029188632965, 0.049140769988298416, -0.07435419410467148, 0.05950272083282471, -0.04548732936382294, 0.08613614737987518, -0.10334978252649307, 0.03395470231771469, 0.13976828753948212, 0.005701761692762375, 0.12592573463916779, 0.0892087072134018, -0.03861873969435692, -0.0007554561598226428, 0.12021889537572861, -0.13819947838783264, -0.08419858664274216, -0.052348632365465164, -0.14339463412761688, -0.06924214214086533, -0.007758093532174826, 0.11189687997102737, -0.014372402802109718, -0.013683692552149296, 0.030340194702148438, -0.011326359584927559, -0.022015666589140892, 0.11499980092048645, 0.052847471088171005, 0.00873649027198553, -0.1130627915263176, 0.02713322453200817, 0.06118357926607132, -0.11265899240970612, -0.01913224160671234, 0.08255436271429062, -0.09830677509307861, -0.09226690232753754, -0.03758983686566353, 0.18394654989242554, -0.09426058828830719, -0.06435871869325638, -0.1107681468129158, -0.19471018016338348, 0.07194848358631134, 0.15258020162582397, 0.1036747470498085, 0.06693826615810394, -0.09504200518131256, -0.0517951101064682, -0.06772882491350174, 0.04732099547982216, 0.03605465590953827, -0.016093982383608818, -0.12396653741598129, 0.09930691123008728, 0.00014846383419353515, 0.13382408022880554, -0.09659866243600845, -0.08423008024692535, -0.1432492882013321, -0.007024284452199936, -0.038689859211444855, -0.0035649826750159264, -0.11180653423070908, -0.02248840592801571, 0.02893766202032566, -0.05110087990760803, -0.03848489001393318, -0.02763495035469532, -0.07234108448028564, 0.05199798196554184, 0.03422526270151138, 0.056919582188129425, -0.046810299158096313, -0.0626421794295311, 0.06038922443985939, 0.024036483839154243, 0.11590965837240219, 0.07008764892816544, -0.08130921423435211, -0.010246471501886845, -0.24107705056667328, -0.0037307185120880604, 0.14264695346355438, 0.023912038654088974, 0.06671419739723206, -0.14048326015472412, 0.014556527137756348, 0.05107332020998001, 0.06909632682800293, 0.09084457904100418, 0.10148601979017258, -0.04754927381873131, 0.11420674622058868, -0.020133089274168015, -0.10685563087463379, -0.04398595914244652, 0.005135164130479097, 0.0073863971047103405, 0.03676755726337433, 0.15029634535312653, -0.0735020637512207, 0.022129463031888008, -0.07786760479211807, 0.03925400972366333, -0.030761826783418655, -0.10865642130374908, -0.1777285486459732, -0.029239902272820473, 0.04332805052399635, -0.029156019911170006, 0.2148451805114746, 0.08230935037136078, -0.10811838507652283, 0.04147826135158539, 0.14191769063472748, 0.012197999283671379, -0.02109965868294239, 0.0665895864367485, 0.03114617057144642, -0.0415240116417408, 0.0315546989440918, 0.05364081636071205, 0.02695104479789734, 0.01386828813701868, 0.09806391596794128, 0.034411270171403885, 0.18255719542503357, 0.0466749370098114, -0.000722017080988735, -0.03773844614624977, 0.04240093007683754, -0.04733574390411377, -0.0825078934431076, 0.0013499214546754956, -0.0061407433822751045, 0.09443031251430511, 0.1078026294708252, -0.03494451195001602, 0.059826306998729706, -0.036642447113990784, -0.06999993324279785, -0.18911780416965485, -0.22660097479820251, -0.10347491502761841, -0.11520174890756607, -0.02471086196601391, -0.13091804087162018, -0.031870435923337936, -0.06778175383806229, 0.06254561245441437, -0.06683332473039627, -0.017265021800994873, -0.09180936962366104, -0.08923530578613281, 0.11526410281658173, -0.017915841192007065, 0.03985939919948578, -0.09651991724967957, 0.05837034806609154, -0.044451288878917694, -0.015991276130080223, 0.01711033657193184, 0.008115936070680618, 0.02011827379465103, 0.0056763640604913235, -0.15633966028690338, -0.08976205438375473, -0.025197237730026245, 0.032131992280483246, 0.023455535992980003, 0.1292855441570282, 0.028075838461518288, -0.01833927072584629, 0.0012358390958979726, 0.1515517234802246, -0.021603934466838837, 0.047748345881700516, -0.06880171597003937, 0.13873493671417236, -0.0656609982252121, 0.05179920047521591, 0.017087219282984734, -0.023172438144683838, -0.013643622398376465, 0.24995717406272888, 0.30255842208862305, -0.07670634984970093, 0.048360832035541534, -0.08468369394540787, 0.03988352417945862, 0.10284733027219772, -0.01194666512310505, 0.1017809510231018, 0.1006510928273201, -0.09215588122606277, -0.006847034674137831, -0.07011069357395172, 0.015511100180447102, 0.012984472326934338, -0.0038671090733259916, 0.09742942452430725, -0.016347547993063927, -0.10898389667272568, 0.0714397132396698, -0.1079372763633728, 0.10655979067087173, 0.05662048980593681, -0.13064537942409515, -0.1264023780822754, -0.01450398564338684, -0.05916629731655121, 0.09690476208925247, 0.0571432039141655, -0.046208109706640244, -0.03422797843813896, 0.07426980882883072, 0.013810195028781891, -0.2681475877761841, -0.07483840733766556, 0.13028095662593842, -0.06015380844473839, 0.03962317481637001, -0.025568155571818352, 0.03813006356358528, 0.1204998642206192, -0.04540976881980896, -0.07427392899990082, 0.06492545455694199, -0.022379707545042038, -0.044194623827934265, 0.047902002930641174, 0.022677643224596977, 0.0738506019115448, 0.10667458176612854, 0.0999726876616478, -0.08540104329586029, 0.05482148379087448, -0.00712290033698082, -0.07815404236316681, -0.12743525207042694, 0.11601484566926956, -0.06594635546207428, 0.062281783670186996, 0.12409310787916183, -0.009104955941438675, -0.03628288581967354, -0.050842609256505966, -0.004416741896420717, -0.03463469818234444, 0.013115550391376019, 0.010044099763035774, -0.1316518634557724, -0.034468043595552444, 0.015875408425927162, 0.02473510429263115, -0.17521928250789642, -0.06451153755187988, -0.12345300614833832, -0.025054823607206345, -0.018124623224139214, 0.0854664146900177, -0.030607707798480988, 0.03598397225141525, -0.015312272123992443, -0.13997547328472137, 0.05644383281469345, 0.10097890347242355, -0.09110696613788605, -0.05480612441897392 ]
null
null
transformers
# Rick DialoGPT Model
{"tags": ["conversational"]}
text-generation
arifbhrn/DialogGPT-small-Rickk
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Rick DialoGPT Model
[ "# Rick DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Rick DialoGPT Model" ]
[ 51, 7 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Rick DialoGPT Model" ]
[ -0.027243174612522125, 0.09208611398935318, -0.005486058536916971, 0.01197603065520525, 0.13312271237373352, -0.0006643096567131579, 0.14875547587871552, 0.13561291992664337, -0.012389403767883778, -0.048079900443553925, 0.13848258554935455, 0.20838283002376556, -0.007769247982650995, 0.06212212145328522, -0.07722679525613785, -0.3253750503063202, 0.05440690368413925, 0.05986349284648895, -0.02559526450932026, 0.11941008269786835, 0.10155656188726425, -0.034638021141290665, 0.07502283155918121, 0.008745936676859856, -0.1460564285516739, 0.011253442615270615, 0.020986590534448624, -0.11265120655298233, 0.11301227658987045, 0.0699501633644104, 0.03311868757009506, 0.044131726026535034, -0.04560676962137222, -0.12763948738574982, 0.04502782225608826, 0.00030866602901369333, -0.04332113638520241, 0.05997459217905998, 0.016281595453619957, -0.09000954777002335, 0.11693226546049118, 0.12603440880775452, -0.01263172086328268, 0.041781701147556305, -0.1548357903957367, -0.004369331523776054, -0.01233562733978033, 0.06789606809616089, 0.06087101250886917, 0.10755407065153122, -0.04065045714378357, 0.11729123443365097, -0.06241777911782265, 0.11526333540678024, 0.1129850223660469, -0.291816771030426, -0.016308816149830818, 0.14326390624046326, 0.043570004403591156, 0.04201141744852066, -0.04241296648979187, 0.09895236790180206, 0.01734745316207409, -0.009189855307340622, -0.04667704179883003, -0.07920589298009872, -0.0809992179274559, 0.022899743169546127, -0.08393258601427078, -0.009693359956145287, 0.24909301102161407, -0.033697742968797684, 0.07867740839719772, -0.07909003645181656, -0.08747624605894089, -0.011933685280382633, -0.03604159876704216, -0.03430533409118652, -0.10349667817354202, 0.07883962988853455, -0.03785189241170883, -0.09532928466796875, -0.11454451829195023, -0.029063701629638672, -0.16551746428012848, 0.1769428551197052, 0.028738701716065407, 0.03337583318352699, -0.22648879885673523, 0.09508261829614639, -0.012410550378262997, -0.09879330545663834, 0.018604513257741928, -0.08811058849096298, 0.012304049916565418, 0.017966609448194504, -0.025972042232751846, -0.002111254259943962, 0.08367783576250076, 0.11593183130025864, 0.01627914048731327, 0.018418017774820328, -0.01303142961114645, 0.05024925619363785, 0.039101485162973404, 0.07016518712043762, -0.018131986260414124, -0.026958800852298737, 0.025394905358552933, -0.09519384801387787, -0.01311302836984396, -0.06533002108335495, -0.19878731667995453, -0.008748088963329792, 0.05362382158637047, 0.059645626693964005, 0.040223345160484314, 0.1349429488182068, 0.005914759822189808, -0.04811347648501396, 0.041568055748939514, -0.017372997477650642, -0.016568226739764214, 0.013325352221727371, 0.004558354616165161, 0.14832930266857147, 0.012210249900817871, 0.05107790604233742, -0.11448643356561661, 0.0074756252579391, -0.04443434625864029, -0.019875049591064453, -0.033431850373744965, -0.05190093815326691, -0.010580608621239662, -0.024629589170217514, 0.015543424524366856, -0.1382266879081726, -0.1671048104763031, -0.0113193579018116, -0.006982414051890373, -0.04376089945435524, -0.11932645738124847, -0.1048901304602623, -0.03145192563533783, 0.04379252344369888, -0.060927584767341614, -0.0003760824038181454, -0.04660411551594734, 0.09378229826688766, -0.03543102741241455, 0.07682112604379654, -0.10023638606071472, 0.0828537717461586, -0.07001189142465591, -0.04422231763601303, -0.0734889879822731, 0.13164658844470978, 0.014363138936460018, 0.05487450957298279, -0.031934577971696854, -0.01827416382730007, -0.10224048048257828, 0.07911752909421921, -0.04339373856782913, 0.23623128235340118, -0.09449771791696548, -0.10362883657217026, 0.26979705691337585, -0.053989510983228683, -0.1375254988670349, 0.10795111209154129, -0.015854641795158386, 0.11475867033004761, 0.12686948478221893, 0.18240338563919067, 0.06434911489486694, 0.007867260836064816, 0.07431085407733917, 0.11333738267421722, -0.0774611383676529, -0.018117602914571762, 0.014873803593218327, -0.020292608067393303, -0.07848027348518372, 0.023533256724476814, 0.07671299576759338, 0.05307117849588394, -0.05429181456565857, -0.015286878682672977, 0.00432937266305089, 0.004517627414315939, 0.05698307976126671, -0.02530503273010254, 0.12313884496688843, -0.029461434110999107, -0.07295558601617813, -0.029503753408789635, 0.027530280873179436, -0.05828499048948288, 0.03278997913002968, -0.08230485767126083, 0.03637091815471649, -0.014406797476112843, 0.07024850696325302, -0.16572508215904236, -0.09323301911354065, -0.05250932276248932, 0.1899155229330063, 0.06807822734117508, 0.11413464695215225, 0.05567482113838196, -0.06841246038675308, -0.0038719952572137117, 0.018287649378180504, 0.1991138458251953, -0.01677977479994297, -0.07748494297266006, -0.09769339859485626, 0.10122697055339813, -0.07130109518766403, 0.06141059845685959, -0.050490207970142365, 0.017946461215615273, 0.020556224510073662, 0.1050461083650589, -0.03456922993063927, 0.039413414895534515, 0.011159577406942844, -0.034563858062028885, -0.06218598783016205, -0.004433273337781429, 0.09716981649398804, 0.0021626276429742575, -0.10631977766752243, 0.24286337196826935, -0.19168923795223236, 0.12176351994276047, 0.17641966044902802, -0.19923987984657288, -0.0002552573860157281, -0.11963175982236862, -0.026344671845436096, 0.011637656949460506, 0.037626978009939194, -0.042151857167482376, 0.24314165115356445, -0.00910688005387783, 0.16631373763084412, -0.03389734402298927, -0.04332707077264786, -0.041059546172618866, -0.046011339873075485, 0.010055569931864738, 0.11430004984140396, 0.1047205775976181, -0.17159950733184814, 0.17967921495437622, 0.05867021903395653, 0.05177219957113266, 0.16841758787631989, 0.018001655116677284, 0.021052619442343712, 0.06948674470186234, -0.003431870136409998, -0.03584783151745796, -0.07413756102323532, -0.2106374204158783, -0.023212855681777, 0.0793403834104538, 0.048357341438531876, 0.1068209707736969, -0.1037900522351265, -0.03368109092116356, -0.010547412559390068, -0.021230356767773628, 0.03035620041191578, 0.14086326956748962, 0.013085569255053997, 0.1286563277244568, -0.024180158972740173, -0.06866493821144104, 0.06965550780296326, 0.014881031587719917, -0.08571527898311615, 0.19352088868618011, -0.10702410340309143, -0.34334462881088257, -0.10363983362913132, -0.18596062064170837, -0.056601256132125854, 0.04553624242544174, 0.11461924016475677, -0.14119702577590942, -0.020731983706355095, 0.006813736632466316, 0.06912991404533386, -0.11165751516819, 0.01017086487263441, -0.03630850836634636, -0.017619650810956955, -0.13406261801719666, -0.1034051924943924, -0.05356309190392494, -0.044913630932569504, -0.05510649085044861, 0.12040390819311142, -0.15435875952243805, 0.020806124433875084, 0.23555229604244232, 0.06075655668973923, 0.07018083333969116, -0.03907359018921852, 0.17685799300670624, -0.1052674949169159, 0.011976814828813076, 0.2128676474094391, -0.03831172361969948, 0.06525631994009018, 0.11611197143793106, -0.01394710224121809, -0.0662488266825676, 0.036592915654182434, -0.009823341853916645, -0.07247381657361984, -0.21345274150371552, -0.1158827692270279, -0.1087421104311943, 0.054685093462467194, 0.04713849350810051, 0.050020426511764526, 0.1613347977399826, 0.07427749037742615, -0.04962149262428284, -0.0022197163198143244, 0.06106492131948471, 0.0832381621003151, 0.2504972517490387, -0.06253999471664429, 0.1427627056837082, -0.025090228766202927, -0.16789253056049347, 0.06259234994649887, 0.0661388710141182, 0.09291604906320572, 0.06118352338671684, 0.10224727541208267, 0.005179570056498051, 0.009344357997179031, 0.12825439870357513, 0.07115643471479416, 0.008030776865780354, -0.03595518320798874, -0.039997417479753494, -0.03642706945538521, -0.013250070624053478, 0.032193150371313095, 0.046790316700935364, -0.16567666828632355, -0.021018991246819496, 0.009807335212826729, 0.05824935808777809, 0.02185324765741825, 0.08615364134311676, -0.18498282134532928, -0.016169089823961258, 0.06576614826917648, -0.011832303367555141, -0.11644340306520462, 0.08480028808116913, 0.0007836486911401153, -0.1121063381433487, 0.03723234683275223, -0.027525627985596657, 0.13150714337825775, -0.08457524329423904, 0.0741792693734169, -0.12022519111633301, -0.0374552421271801, -0.010245736688375473, 0.12193918228149414, -0.29501426219940186, 0.19123348593711853, -0.009575535543262959, -0.04439779743552208, -0.1071409061551094, -0.015645509585738182, 0.02963484264910221, 0.10361164063215256, 0.11110331863164902, -0.020523378625512123, -0.02764100395143032, 0.06007368490099907, -0.07205203175544739, 0.0399978905916214, 0.09906689822673798, -0.06730470806360245, -0.013155711814761162, -0.052545808255672455, 0.00039069546619430184, 0.010376452468335629, -0.10966821759939194, 0.022783124819397926, -0.19194799661636353, 0.08703918755054474, 0.08162695169448853, 0.09630028903484344, 0.037212129682302475, -0.029887177050113678, -0.07769683748483658, 0.2589099109172821, 0.009560960344970226, -0.10013746470212936, -0.10953836888074875, 0.008171502500772476, 0.04785030707716942, -0.07699282467365265, -0.016966527327895164, -0.0694924145936966, 0.04450516775250435, -0.06552471220493317, -0.18611730635166168, 0.11722762882709503, -0.09691806137561798, -0.03250948712229729, -0.036249466240406036, 0.21333028376102448, -0.03155504912137985, 0.017869247123599052, 0.04537748545408249, -0.00578570831567049, -0.11741422116756439, -0.10654788464307785, 0.0012778750387951732, -0.004119161982089281, 0.016931969672441483, 0.023226622492074966, -0.03199922665953636, -0.009455137886106968, -0.06797713041305542, -0.014383019879460335, 0.3228513300418854, 0.12615877389907837, -0.042267147451639175, 0.15242800116539001, 0.09877358376979828, -0.06251336634159088, -0.2941497564315796, -0.11165541410446167, -0.07421603053808212, -0.05438753217458725, -0.09733224660158157, -0.18137554824352264, 0.08739634603261948, -0.05383281409740448, -0.013516134582459927, 0.09413999319076538, -0.25194358825683594, -0.10185287892818451, 0.2005643993616104, -0.03753361105918884, 0.4304826855659485, -0.11250142753124237, -0.07815388590097427, -0.04850279167294502, -0.14005880057811737, 0.19035954773426056, 0.004324326757341623, 0.10461755096912384, -0.0006430890643969178, 0.19764995574951172, 0.05591731518507004, -0.0006032987730577588, 0.07056128233671188, 0.01866593211889267, -0.057801030576229095, -0.09095179289579391, -0.0913778692483902, -0.0337459035217762, 0.010270410217344761, 0.0292131919413805, -0.07448325306177139, 0.04388400912284851, -0.13094636797904968, -0.05198022723197937, -0.08626694977283478, 0.038746368139982224, 0.027130719274282455, -0.06653520464897156, -0.0030553280375897884, -0.04914497584104538, 0.0004573945188894868, 0.007742773275822401, 0.21047258377075195, -0.10902713984251022, 0.1467881053686142, 0.028732312843203545, 0.1500566452741623, -0.09794784337282181, -0.04768699035048485, -0.06421241164207458, -0.05478411167860031, 0.07145597785711288, -0.12202182412147522, 0.03240978345274925, 0.1044924184679985, -0.026888413354754448, 0.08732181787490845, 0.1105954647064209, -0.010995322838425636, 0.005803761538118124, 0.08983830362558365, -0.241703063249588, -0.06713853776454926, -0.08410414308309555, 0.05373041704297066, 0.05893997475504875, 0.10275863856077194, 0.20927143096923828, 0.007167487405240536, -0.031165437772870064, 0.021489497274160385, 0.027375908568501472, -0.017840299755334854, 0.05977841466665268, 0.010519524104893208, 0.030491052195429802, -0.14741286635398865, 0.043485816568136215, -0.013757874257862568, -0.09077676385641098, 0.02600322663784027, 0.14754873514175415, -0.10901660472154617, -0.12182232737541199, -0.03921690955758095, 0.13600249588489532, -0.14775370061397552, -0.009947444312274456, -0.0477454848587513, -0.12692049145698547, 0.06857728958129883, 0.1067143976688385, 0.0457911379635334, 0.04121949151158333, -0.09239879250526428, -0.027268609032034874, -0.0535728819668293, 0.00003198942795279436, 0.028995376080274582, -0.0204177163541317, -0.05248761177062988, 0.040780652314424515, -0.03588524088263512, 0.12051229178905487, -0.08552545309066772, -0.10064204037189484, -0.16698434948921204, 0.03528384119272232, -0.07174701243638992, -0.08977310359477997, -0.0871967226266861, -0.03724304214119911, 0.006766482722014189, -0.0405125692486763, -0.02825779654085636, -0.03461418300867081, -0.1126255914568901, 0.03079685941338539, -0.04579872637987137, 0.003088617930188775, -0.07116411626338959, 0.029772473499178886, 0.0525958277285099, -0.029091687873005867, 0.149556964635849, 0.14025014638900757, -0.11192594468593597, 0.09547203034162521, -0.1507159322500229, -0.07066365331411362, 0.09605675935745239, 0.018403515219688416, 0.04981891065835953, 0.05175008252263069, 0.009065150283277035, 0.051755502820014954, 0.06169715151190758, 0.04307684674859047, 0.0153890922665596, -0.07590135186910629, 0.06697173416614532, -0.06090308725833893, -0.10307016223669052, -0.05066140368580818, -0.003966273739933968, 0.015159476548433304, 0.07283487915992737, 0.10097057372331619, -0.056661296635866165, 0.09506311267614365, -0.05649305135011673, 0.04625694453716278, 0.024318000301718712, -0.17797043919563293, 0.03397766128182411, -0.08718447387218475, 0.05030312016606331, 0.010050542652606964, 0.1727033108472824, 0.02054430916905403, -0.019508427008986473, 0.02473587542772293, 0.0719463899731636, 0.04261681064963341, -0.013226886279881, 0.19012948870658875, 0.10657399147748947, -0.03943915665149689, -0.0805516242980957, 0.09759991616010666, 0.04438556358218193, 0.04173632711172104, 0.14543114602565765, -0.05563090741634369, -0.03441290557384491, 0.081944540143013, -0.0026839920319616795, 0.010976077988743782, -0.09896437078714371, -0.13543705642223358, -0.026787811890244484, 0.036508288234472275, -0.03667739778757095, 0.10571453720331192, 0.15851758420467377, -0.005720720160752535, 0.01726081222295761, -0.01855739764869213, -0.05729815363883972, -0.1993623524904251, -0.19528920948505402, -0.083323635160923, -0.13647840917110443, 0.0050200955010950565, -0.13574683666229248, 0.04266147315502167, 0.026296362280845642, 0.09698255360126495, -0.04634363576769829, 0.050944969058036804, 0.03791060671210289, -0.11099781841039658, 0.058360110968351364, -0.043620482087135315, 0.09173028916120529, -0.03267880156636238, 0.014702340587973595, -0.060175783932209015, 0.035412851721048355, 0.016039982438087463, 0.041373249143362045, -0.02921622060239315, 0.019025372341275215, -0.12458328902721405, -0.08709227293729782, -0.06697598844766617, 0.06596853584051132, 0.006195025984197855, 0.16954803466796875, 0.019531596451997757, -0.027915386483073235, 0.028833186253905296, 0.23899038136005402, -0.07318265736103058, -0.09635625779628754, -0.06982157379388809, 0.21012257039546967, -0.009315763600170612, 0.08784335851669312, -0.03747710958123207, 0.009438461624085903, -0.08562079071998596, 0.3506644368171692, 0.29213622212409973, -0.09391074627637863, 0.010968702845275402, -0.0027621579356491566, 0.04181644320487976, 0.12788556516170502, 0.09239348024129868, 0.10824161767959595, 0.29070642590522766, -0.06708572804927826, -0.03647898510098457, -0.006994254421442747, -0.0254643727093935, -0.055716969072818756, 0.0551714263856411, 0.05315792188048363, -0.06511329114437103, -0.01592782698571682, 0.11738577485084534, -0.2489209920167923, 0.0614120177924633, -0.15840938687324524, -0.16190756857395172, -0.07126864790916443, -0.0001230158086400479, 0.0958227664232254, 0.01604771800339222, 0.09578458964824677, -0.011418631300330162, -0.06834693253040314, 0.04414822906255722, 0.020037546753883362, -0.20774760842323303, 0.009963343851268291, 0.06968449801206589, -0.051950447261333466, -0.05526239052414894, -0.017540784552693367, 0.07181108742952347, 0.0862373560667038, 0.031932324171066284, -0.021655123680830002, 0.04088883846998215, -0.011214682832360268, -0.07533704489469528, 0.03916772082448006, 0.027806051075458527, 0.005651058629155159, -0.08518505096435547, 0.07656224071979523, -0.16369622945785522, 0.03412613272666931, -0.0035786160733550787, -0.048953261226415634, -0.014727948233485222, 0.030175231397151947, -0.061420172452926636, 0.08509553223848343, 0.0839199498295784, -0.0171944722533226, -0.016525855287909508, -0.0222842525690794, -0.012990890070796013, -0.020874707028269768, -0.0818524956703186, -0.09698375314474106, -0.15574125945568085, -0.1261346936225891, 0.08575325459241867, -0.00355695397593081, -0.19997835159301758, 0.028783639892935753, -0.12125882506370544, 0.04249454662203789, -0.12142720073461533, 0.09701541811227798, 0.0825105607509613, 0.02303435280919075, -0.0030652873683720827, 0.006164520047605038, 0.03737448528409004, 0.07968182861804962, -0.13731823861598969, -0.08554888516664505 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-Bengali Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) Bengali using a subset of 40,000 utterances from [Bengali ASR training data set containing ~196K utterances](https://www.openslr.org/53/). Tested WER using ~4200 held out from training. When using this model, make sure that your speech input is sampled at 16kHz. Train Script can be Found at : train.py Data Prep Notebook : https://colab.research.google.com/drive/1JMlZPU-DrezXjZ2t7sOVqn7CJjZhdK2q?usp=sharing Inference Notebook : https://colab.research.google.com/drive/1uKC2cK9JfUPDTUHbrNdOYqKtNozhxqgZ?usp=sharing ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali") model = Wav2Vec2ForCTC.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali") # model = model.to("cuda") resampler = torchaudio.transforms.Resample(TEST_AUDIO_SR, 16_000) def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch) speech = resampler(speech_array).squeeze().numpy() return speech speech_array = speech_file_to_array_fn("test_file.wav") inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values).logits predicted_ids = torch.argmax(logits, dim=-1) preds = processor.batch_decode(predicted_ids)[0] print(preds.replace("[PAD]","")) ``` **Test Result**: WER on ~4200 utterance : 32.45 %
{"language": "Bengali", "license": "cc-by-sa-4.0", "tags": ["bn", "audio", "automatic-speech-recognition", "speech"], "datasets": ["OpenSLR"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Bengali by Arijit", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR", "type": "OpenSLR", "args": "ben"}, "metrics": [{"type": "wer", "value": 32.45, "name": "Test WER"}]}]}]}
automatic-speech-recognition
arijitx/wav2vec2-large-xlsr-bengali
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "bn", "audio", "speech", "dataset:OpenSLR", "license:cc-by-sa-4.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "Bengali" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #bn #audio #speech #dataset-OpenSLR #license-cc-by-sa-4.0 #model-index #endpoints_compatible #has_space #region-us
# Wav2Vec2-Large-XLSR-Bengali Fine-tuned facebook/wav2vec2-large-xlsr-53 Bengali using a subset of 40,000 utterances from Bengali ASR training data set containing ~196K utterances. Tested WER using ~4200 held out from training. When using this model, make sure that your speech input is sampled at 16kHz. Train Script can be Found at : URL Data Prep Notebook : URL Inference Notebook : URL ## Usage The model can be used directly (without a language model) as follows: Test Result: WER on ~4200 utterance : 32.45 %
[ "# Wav2Vec2-Large-XLSR-Bengali\nFine-tuned facebook/wav2vec2-large-xlsr-53 Bengali using a subset of 40,000 utterances from Bengali ASR training data set containing ~196K utterances. Tested WER using ~4200 held out from training.\nWhen using this model, make sure that your speech input is sampled at 16kHz.\nTrain Script can be Found at : URL \n\n Data Prep Notebook : URL\n Inference Notebook : URL", "## Usage\n\nThe model can be used directly (without a language model) as follows:\n\nTest Result: WER on ~4200 utterance : 32.45 %" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #bn #audio #speech #dataset-OpenSLR #license-cc-by-sa-4.0 #model-index #endpoints_compatible #has_space #region-us \n", "# Wav2Vec2-Large-XLSR-Bengali\nFine-tuned facebook/wav2vec2-large-xlsr-53 Bengali using a subset of 40,000 utterances from Bengali ASR training data set containing ~196K utterances. Tested WER using ~4200 held out from training.\nWhen using this model, make sure that your speech input is sampled at 16kHz.\nTrain Script can be Found at : URL \n\n Data Prep Notebook : URL\n Inference Notebook : URL", "## Usage\n\nThe model can be used directly (without a language model) as follows:\n\nTest Result: WER on ~4200 utterance : 32.45 %" ]
[ 74, 114, 36 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #bn #audio #speech #dataset-OpenSLR #license-cc-by-sa-4.0 #model-index #endpoints_compatible #has_space #region-us \n# Wav2Vec2-Large-XLSR-Bengali\nFine-tuned facebook/wav2vec2-large-xlsr-53 Bengali using a subset of 40,000 utterances from Bengali ASR training data set containing ~196K utterances. Tested WER using ~4200 held out from training.\nWhen using this model, make sure that your speech input is sampled at 16kHz.\nTrain Script can be Found at : URL \n\n Data Prep Notebook : URL\n Inference Notebook : URL## Usage\n\nThe model can be used directly (without a language model) as follows:\n\nTest Result: WER on ~4200 utterance : 32.45 %" ]
[ -0.13055333495140076, 0.007073352579027414, -0.0013982966775074601, -0.02121923677623272, 0.050784774124622345, -0.11456571519374847, 0.03947533294558525, 0.10132066905498505, 0.027107207104563713, 0.045785240828990936, 0.060035862028598785, -0.01502678357064724, 0.057756680995225906, 0.04654005542397499, -0.01670774817466736, -0.15445354580879211, 0.022169774398207664, -0.0362653024494648, 0.024901343509554863, 0.12792639434337616, 0.10071717202663422, -0.0704227015376091, 0.024289090186357498, 0.07979766279459, -0.18329927325248718, 0.08688563853502274, 0.005829208064824343, -0.09211906045675278, 0.02658487856388092, 0.050007786601781845, 0.07941678911447525, 0.02095150388777256, 0.03080977313220501, -0.1520494818687439, 0.020597387105226517, 0.004211168736219406, 0.06108492612838745, -0.019157864153385162, -0.006803283002227545, -0.02317039668560028, 0.11589298397302628, 0.04302570968866348, -0.053202465176582336, 0.0713476687669754, -0.06767775863409042, -0.16531427204608917, 0.002225018572062254, 0.06410042941570282, -0.00732810702174902, 0.08218129724264145, -0.08000411093235016, 0.08332618325948715, -0.1294124275445938, 0.09977378696203232, 0.09145910292863846, -0.18899452686309814, 0.0063917553052306175, -0.029747823253273964, 0.10038083791732788, 0.1479785442352295, -0.119044229388237, -0.02452012710273266, 0.0992557629942894, -0.003231079550459981, -0.022492341697216034, -0.05344761908054352, -0.12554241716861725, 0.03332212567329407, -0.11203319579362869, 0.050662897527217865, 0.20886075496673584, -0.008380332961678505, -0.08630846440792084, -0.05295401066541672, 0.006972361356019974, -0.06757885962724686, 0.03527620807290077, -0.0016016406007111073, -0.05116117745637894, 0.03487410023808479, -0.04278095066547394, 0.016864441335201263, -0.1251630038022995, -0.1145927831530571, 0.02702920138835907, 0.1425989419221878, 0.031096309423446655, 0.04638185724616051, -0.10642673075199127, -0.01006176508963108, -0.06502196937799454, -0.09818258881568909, -0.03645304590463638, -0.05321641266345978, -0.06400469690561295, 0.06209913641214371, -0.07948160916566849, -0.13313283026218414, 0.03729763999581337, 0.0009899704018607736, -0.047241151332855225, 0.026490669697523117, 0.013889329507946968, 0.040624912828207016, 0.03126496076583862, 0.14225943386554718, -0.07393516600131989, -0.03677629679441452, -0.01603713631629944, 0.08035090565681458, 0.004692383576184511, -0.022820452228188515, -0.006979936733841896, -0.04687732458114624, -0.00030151387909427285, 0.00897607859224081, -0.12632043659687042, -0.0031677153892815113, -0.036389365792274475, -0.017814602702856064, 0.009588055312633514, -0.13809847831726074, -0.0012756312498822808, 0.05591430142521858, 0.007686915807425976, 0.16085219383239746, 0.052134349942207336, -0.0107421288266778, -0.09620073437690735, -0.1348605453968048, -0.01982410065829754, 0.025082236155867577, -0.06161472946405411, -0.11144597828388214, -0.00408019358292222, -0.0003062434552703053, -0.026749784126877785, -0.11266539990901947, -0.10548175871372223, -0.05232661962509155, -0.032040808349847794, -0.04838890582323074, 0.053245093673467636, -0.07939745485782623, -0.024771125987172127, 0.026791289448738098, -0.06599900871515274, -0.05080186203122139, -0.023072030395269394, 0.12324411422014236, 0.12401216477155685, 0.1280389130115509, -0.013116836547851562, 0.09832794219255447, -0.03991275653243065, -0.030207637697458267, 0.016467910259962082, 0.15035156905651093, -0.08443886041641235, 0.005344409495592117, -0.09821967780590057, -0.08560681343078613, -0.09727604687213898, 0.07177650183439255, 0.08939766138792038, 0.04500994458794594, -0.1824435442686081, -0.07514358311891556, 0.24563707411289215, -0.12215587496757507, 0.04093258082866669, 0.23575972020626068, 0.008213726803660393, 0.05234629660844803, 0.10930216312408447, 0.2687015235424042, 0.07807142287492752, -0.15769441425800323, 0.043851133435964584, 0.04393591731786728, 0.011495580896735191, -0.031157977879047394, 0.10018840432167053, -0.06570147722959518, -0.012320135720074177, 0.005189007148146629, 0.12187566608190536, 0.0619644932448864, -0.035180963575839996, -0.06207067891955376, -0.019320698454976082, -0.08137321472167969, 0.028203416615724564, 0.019897842779755592, 0.017459673807024956, -0.09897582978010178, -0.07363517582416534, 0.05237564072012901, 0.15382806956768036, -0.15141792595386505, 0.02944433130323887, -0.17148993909358978, 0.10634161531925201, -0.11632420867681503, 0.00770803727209568, -0.12702307105064392, 0.2869667708873749, 0.01901083253324032, 0.020530516281723976, 0.09790269285440445, 0.11601575464010239, 0.06788196414709091, 0.006605502683669329, 0.030223743990063667, 0.019952578470110893, 0.05783436447381973, 0.000641770544461906, -0.049925245344638824, -0.08926251530647278, 0.005928428377956152, -0.09348150342702866, -0.010175415314733982, -0.19746312499046326, -0.015685640275478363, 0.08057320863008499, -0.026614664122462273, 0.004752026405185461, -0.03796694800257683, 0.09719988703727722, 0.07238293439149857, 0.03309791162610054, 0.032971229404211044, 0.012375347316265106, 0.03188223019242287, -0.03908485174179077, 0.16303156316280365, -0.08462658524513245, 0.0300175528973341, 0.08711227029561996, -0.03946933522820473, -0.01090624462813139, -0.0018050771905109286, 0.005039606709033251, -0.04104994237422943, -0.004198242910206318, -0.09494458884000778, 0.2147415578365326, -0.009262396953999996, 0.14105536043643951, -0.10447531193494797, 0.0101970499381423, 0.030036471784114838, -0.09719470143318176, 0.08142620325088501, 0.11366363614797592, -0.12105081975460052, -0.09866368025541306, 0.038337722420692444, 0.0031014862470328808, -0.14877106249332428, 0.2359522581100464, -0.044854916632175446, -0.11008966714143753, 0.013984547927975655, 0.03311780095100403, -0.07984103262424469, 0.06438526511192322, -0.2307763248682022, -0.10913147777318954, 0.023365309461951256, -0.008585252799093723, 0.039063699543476105, -0.1280614137649536, 0.04470209777355194, 0.019470319151878357, -0.09279102087020874, -0.18739290535449982, 0.07730555534362793, -0.06689825654029846, 0.010822011157870293, -0.09784622490406036, -0.041889287531375885, -0.01655963435769081, -0.05540395900607109, -0.13997569680213928, 0.09909745305776596, -0.0640689954161644, -0.18964163959026337, -0.1705697774887085, -0.02270573191344738, 0.06397820264101028, 0.007923428900539875, 0.0805756151676178, -0.18090510368347168, -0.04762769863009453, -0.026725096628069878, 0.02675861492753029, 0.014683282002806664, -0.025025544688105583, 0.041710030287504196, -0.05536887049674988, 0.03526589646935463, -0.1566346287727356, 0.010346938855946064, 0.0003076246357522905, 0.02968059852719307, 0.0663246363401413, -0.05395671725273132, 0.03347428888082504, 0.16732662916183472, -0.04387934133410454, 0.009917843155562878, 0.021895812824368477, 0.13296541571617126, -0.02588581293821335, -0.00750328041613102, 0.12084294110536575, -0.01980363205075264, 0.02080165408551693, 0.0698947086930275, 0.0082088066264987, -0.01658022403717041, 0.022603055462241173, -0.04101700335741043, -0.011476093903183937, -0.22533971071243286, -0.01941094733774662, -0.05498505383729935, -0.05514007806777954, -0.010382085107266903, -0.009200435131788254, 0.007674564141780138, 0.01578470878303051, 0.01707768253982067, -0.008677017875015736, -0.013759779743850231, 0.012690211646258831, 0.06071482226252556, -0.030416997149586678, 0.09760110080242157, -0.09646051377058029, -0.04574549198150635, 0.04635204002261162, 0.03184191510081291, 0.1277046799659729, 0.07250722497701645, 0.1794360727071762, 0.05480215325951576, 0.11099208146333694, 0.15216857194900513, 0.04938170686364174, -0.09414555877447128, -0.0009330805623903871, -0.011186128482222557, -0.0879707857966423, -0.07462973892688751, 0.09598108381032944, 0.15703053772449493, 0.01042288076132536, -0.016701171174645424, -0.07165928184986115, 0.055594515055418015, 0.15644380450248718, 0.09311120212078094, -0.20225472748279572, -0.08057089895009995, 0.008290857076644897, -0.08975318819284439, -0.01841546595096588, 0.07443369925022125, 0.20844766497612, -0.010130632668733597, -0.026604054495692253, 0.006822698283940554, 0.07605220377445221, 0.04850305989384651, 0.04625009000301361, -0.09483836591243744, 0.09639576077461243, -0.030664538964629173, 0.06539827585220337, -0.203178271651268, 0.15527260303497314, 0.027264123782515526, 0.08592724800109863, -0.014535779133439064, -0.04265972226858139, 0.001737551181577146, -0.09438639879226685, 0.06319260597229004, 0.01606925204396248, 0.026169579476118088, -0.09996089339256287, -0.08340509235858917, 0.044224951416254044, 0.06952785700559616, 0.19379635155200958, 0.07496996223926544, -0.011791149154305458, -0.004331006668508053, 0.023674223572015762, -0.08713705092668533, -0.12223615497350693, -0.035986993461847305, -0.007533743046224117, 0.192122220993042, 0.06851057708263397, -0.02887275442481041, -0.06338638067245483, -0.10737158358097076, 0.10218966007232666, -0.13801833987236023, -0.09687474370002747, -0.00589448818936944, -0.031532224267721176, 0.09806773066520691, -0.03137080743908882, -0.016365420073270798, 0.053983256220817566, 0.02228899486362934, 0.023375339806079865, 0.008338251151144505, 0.013825210742652416, -0.03236531466245651, -0.039312694221735, -0.011199667118489742, 0.13115380704402924, 0.05024024471640587, 0.035239558666944504, 0.02069541998207569, -0.061530787497758865, -0.05611444637179375, -0.09147078543901443, 0.008450769819319248, 0.08985384553670883, -0.10096316784620285, 0.04911128804087639, -0.0335063561797142, -0.15546023845672607, -0.09523187577724457, -0.05369080603122711, 0.12148815393447876, 0.07430122047662735, -0.04018402472138405, 0.11383546143770218, 0.3740083873271942, -0.03539353236556053, -0.17060384154319763, -0.08234773576259613, 0.034470923244953156, 0.16920220851898193, -0.1423746794462204, -0.11962607502937317, 0.03325563669204712, 0.007386837620288134, -0.01580703817307949, -0.024992095306515694, -0.19553853571414948, -0.12035942822694778, 0.1718517243862152, -0.026292158290743828, 0.23840685188770294, -0.1365167200565338, -0.09358299523591995, -0.03254100680351257, -0.010938367806375027, -0.008052583783864975, -0.14062079787254333, 0.11892593652009964, -0.02397291734814644, 0.10062413662672043, 0.04011665657162666, -0.029041515663266182, 0.08594164997339249, 0.03246527537703514, -0.012196102179586887, -0.011847855523228645, 0.06289689987897873, 0.006765355821698904, 0.046706557273864746, 0.16228750348091125, -0.16193555295467377, 0.04590967670083046, -0.13723009824752808, -0.07597796618938446, -0.0690196081995964, 0.00041787020745687187, 0.06600011140108109, -0.022701304405927658, 0.013531563803553581, -0.030849266797304153, -0.003433533711358905, 0.015138416551053524, -0.11157035827636719, -0.13766823709011078, -0.00781718548387289, 0.18141284584999084, 0.16054703295230865, -0.00638445233926177, -0.0327192097902298, -0.014342129230499268, -0.038264691829681396, 0.1462247222661972, -0.15548688173294067, -0.0032856417819857597, 0.047455836087465286, 0.09244810044765472, 0.1398247629404068, -0.01097012497484684, -0.13889852166175842, 0.09258691221475601, 0.09444737434387207, 0.011576642282307148, 0.02449207939207554, -0.022615429013967514, 0.016102660447359085, -0.021398497745394707, 0.02959485538303852, 0.07302311807870865, -0.12070721387863159, -0.005050648469477892, -0.05250994488596916, 0.007008288986980915, -0.14358088374137878, 0.23722833395004272, 0.12949199974536896, 0.0653754472732544, -0.08944298326969147, 0.0934905931353569, 0.005114423111081123, -0.035136811435222626, 0.07637173682451248, 0.0747893899679184, -0.054603997617959976, -0.05651555582880974, -0.10185268521308899, 0.003240307793021202, 0.014912014827132225, -0.1160680279135704, 0.018147198483347893, -0.06124996021389961, -0.011394914239645004, 0.1684918999671936, 0.015509888529777527, 0.026273652911186218, -0.09930039942264557, -0.008500275202095509, -0.06835994869470596, 0.08805574476718903, 0.110697902739048, -0.03770192712545395, -0.0836978331208229, 0.06768365204334259, 0.014214209280908108, 0.02954007498919964, -0.0565183199942112, -0.06656300276517868, -0.08041687309741974, 0.0648370012640953, -0.2050246298313141, 0.032884012907743454, -0.027350397780537605, -0.006781571079045534, -0.0039940280839800835, -0.04724512994289398, 0.01018618792295456, 0.062402013689279556, -0.06535401195287704, 0.07588090747594833, 0.0075710490345954895, 0.0387716218829155, -0.09805873036384583, 0.01440817303955555, 0.06130940467119217, -0.03990856185555458, 0.03248697146773338, 0.13719165325164795, -0.17547453939914703, 0.05963972210884094, -0.14351628720760345, -0.020128609612584114, 0.07637619227170944, 0.043471623212099075, -0.0001664224109845236, -0.08246961236000061, 0.044047001749277115, 0.08802998065948486, 0.10501578450202942, -0.031712133437395096, 0.12189395725727081, -0.03872758895158768, 0.01667020656168461, -0.1285654902458191, 0.004054216202348471, -0.07895160466432571, 0.030369652435183525, 0.04854551702737808, 0.14091232419013977, 0.11933649331331253, -0.11707004904747009, -0.01106481347233057, -0.0713529959321022, 0.03379819169640541, -0.014506946317851543, -0.026864388957619667, -0.10082688927650452, -0.037432216107845306, 0.05932968109846115, -0.07223400473594666, 0.12107744812965393, -0.07524332404136658, -0.11436726152896881, -0.049087394028902054, -0.2145567685365677, -0.07225365936756134, -0.02464636042714119, 0.28282639384269714, 0.07248634099960327, -0.0059495531022548676, -0.10641714930534363, -0.03700340539216995, 0.04566456377506256, 0.11817953735589981, -0.0624258890748024, 0.25509369373321533, 0.01711452193558216, 0.12489845603704453, 0.05041556805372238, -0.0763980969786644, 0.008263858035206795, 0.03140720725059509, -0.10226284712553024, 0.018849344924092293, -0.08281389623880386, 0.19316315650939941, 0.2461908757686615, -0.03908562660217285, 0.040209703147411346, -0.014523123390972614, -0.09847134351730347, -0.09750060737133026, -0.056224942207336426, -0.07105879485607147, -0.10403648018836975, 0.036262840032577515, -0.09421051293611526, 0.0899273231625557, -0.05562978982925415, 0.05493079870939255, -0.04129841551184654, 0.1605985313653946, 0.038178008049726486, -0.11218330264091492, 0.12332702428102493, -0.07862182706594467, -0.0026387202087789774, 0.038741979748010635, 0.041713327169418335, 0.21382185816764832, 0.011725623160600662, 0.07726075500249863, 0.08279953896999359, -0.03244337439537048, 0.026087472215294838, -0.07865850627422333, -0.04533649981021881, -0.03284793347120285, 0.02450554445385933, 0.06808129698038101, 0.1324738711118698, 0.1328907459974289, -0.10543806105852127, -0.006324473302811384, -0.0073750196024775505, -0.08148160576820374, -0.13162140548229218, -0.11820206046104431, 0.24044111371040344, 0.022181788459420204, 0.06297709792852402, -0.03885611519217491, -0.09073101729154587, 0.017934609204530716, 0.21918298304080963, 0.09402187168598175, -0.009122442454099655, 0.023967402055859566, -0.052393630146980286, -0.0003545843355823308, -0.11999520659446716, 0.08635647594928741, 0.0988045409321785, 0.18511638045310974, 0.02503124438226223, 0.029374955222010612, -0.04479930177330971, -0.10050389915704727, -0.06457966566085815, 0.02013995312154293, -0.04561297595500946, -0.0773373395204544, -0.02696421556174755, 0.07395418733358383, -0.08158378303050995, -0.07102212309837341, -0.11739035695791245, 0.01534106396138668, -0.061245501041412354, -0.003662173170596361, -0.053350143134593964, 0.1094171479344368, -0.010846798308193684, -0.07171638309955597, 0.0331854522228241, 0.055309802293777466, 0.0009321566321887076, -0.03553782403469086, 0.027262259274721146, 0.05778944492340088, -0.04309516400098801, -0.11209995299577713, 0.033166591078042984, 0.22892828285694122, 0.03340970352292061, 0.09515056014060974, 0.005218392703682184, 0.20116554200649261, -0.03672130033373833, -0.08358576148748398, -0.02745101787149906, 0.19362911581993103, 0.02627662941813469, 0.11305182427167892, 0.008895526640117168, 0.0468628965318203, -0.02081253007054329, -0.08620655536651611, 0.01058973465114832, -0.16271016001701355, -0.017498157918453217, -0.017217392101883888, 0.09682147204875946, 0.07930146157741547, -0.05257477983832359, -0.04024692252278328, -0.0435635931789875, 0.06278590857982635, 0.011826368980109692, -0.09563130140304565, -0.057876065373420715, -0.18962974846363068, -0.007914414629340172, -0.01137780211865902, 0.06721680611371994, -0.2761361300945282, 0.008369345217943192, -0.025685971602797508, 0.01943403109908104, 0.03650734946131706, 0.09340441226959229, 0.0750681683421135, 0.10214073956012726, 0.018840238451957703, -0.1203235387802124, 0.03973044827580452, 0.09946739673614502, -0.19165164232254028, -0.11492186784744263 ]
null
null
transformers
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the OPENSLR_SLR53 - bengali dataset. It achieves the following results on the evaluation set. Without language model : - WER: 0.21726385291857586 - CER: 0.04725010353701041 With 5 gram language model trained on 30M sentences randomly chosen from [AI4Bharat IndicCorp](https://indicnlp.ai4bharat.org/corpora/) dataset : - WER: 0.15322879016421437 - CER: 0.03413696666806267 Note : 5% of a total 10935 samples have been used for evaluation. Evaluation set has 10935 examples which was not part of training training was done on first 95% and eval was done on last 5%. Training was stopped after 180k steps. Output predictions are available under files section. ### Training hyperparameters The following hyperparameters were used during training: - dataset_name="openslr" - model_name_or_path="facebook/wav2vec2-xls-r-300m" - dataset_config_name="SLR53" - output_dir="./wav2vec2-xls-r-300m-bengali" - overwrite_output_dir - num_train_epochs="50" - per_device_train_batch_size="32" - per_device_eval_batch_size="32" - gradient_accumulation_steps="1" - learning_rate="7.5e-5" - warmup_steps="2000" - length_column_name="input_length" - evaluation_strategy="steps" - text_column_name="sentence" - chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – - save_steps="2000" - eval_steps="3000" - logging_steps="100" - layerdrop="0.0" - activation_dropout="0.1" - save_total_limit="3" - freeze_feature_encoder - feat_proj_dropout="0.0" - mask_time_prob="0.75" - mask_time_length="10" - mask_feature_prob="0.25" - mask_feature_length="64" - preprocessing_num_workers 32 ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 Notes - Training and eval code modified from : https://github.com/huggingface/transformers/tree/master/examples/research_projects/robust-speech-event. - Bengali speech data was not available from common voice or librispeech multilingual datasets, so OpenSLR53 has been used. - Minimum audio duration of 0.5s has been used to filter the training data which excluded may be 10-20 samples. - OpenSLR53 transcripts are *not* part of LM training and LM used to evaluate.
{"language": ["bn"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "bn", "hf-asr-leaderboard", "openslr_SLR53", "robust-speech-event"], "datasets": ["openslr", "SLR53", "AI4Bharat/IndicCorp"], "metrics": ["wer", "cer"], "model-index": [{"name": "arijitx/wav2vec2-xls-r-300m-bengali", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Open SLR", "type": "openslr", "args": "SLR53"}, "metrics": [{"type": "wer", "value": 0.21726385291857586, "name": "Test WER"}, {"type": "cer", "value": 0.04725010353701041, "name": "Test CER"}, {"type": "wer", "value": 0.15322879016421437, "name": "Test WER with lm"}, {"type": "cer", "value": 0.03413696666806267, "name": "Test CER with lm"}]}]}]}
automatic-speech-recognition
arijitx/wav2vec2-xls-r-300m-bengali
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "bn", "hf-asr-leaderboard", "openslr_SLR53", "robust-speech-event", "dataset:openslr", "dataset:SLR53", "dataset:AI4Bharat/IndicCorp", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "bn" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #bn #hf-asr-leaderboard #openslr_SLR53 #robust-speech-event #dataset-openslr #dataset-SLR53 #dataset-AI4Bharat/IndicCorp #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the OPENSLR_SLR53 - bengali dataset. It achieves the following results on the evaluation set. Without language model : - WER: 0.21726385291857586 - CER: 0.04725010353701041 With 5 gram language model trained on 30M sentences randomly chosen from AI4Bharat IndicCorp dataset : - WER: 0.15322879016421437 - CER: 0.03413696666806267 Note : 5% of a total 10935 samples have been used for evaluation. Evaluation set has 10935 examples which was not part of training training was done on first 95% and eval was done on last 5%. Training was stopped after 180k steps. Output predictions are available under files section. ### Training hyperparameters The following hyperparameters were used during training: - dataset_name="openslr" - model_name_or_path="facebook/wav2vec2-xls-r-300m" - dataset_config_name="SLR53" - output_dir="./wav2vec2-xls-r-300m-bengali" - overwrite_output_dir - num_train_epochs="50" - per_device_train_batch_size="32" - per_device_eval_batch_size="32" - gradient_accumulation_steps="1" - learning_rate="7.5e-5" - warmup_steps="2000" - length_column_name="input_length" - evaluation_strategy="steps" - text_column_name="sentence" - chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – - save_steps="2000" - eval_steps="3000" - logging_steps="100" - layerdrop="0.0" - activation_dropout="0.1" - save_total_limit="3" - freeze_feature_encoder - feat_proj_dropout="0.0" - mask_time_prob="0.75" - mask_time_length="10" - mask_feature_prob="0.25" - mask_feature_length="64" - preprocessing_num_workers 32 ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 Notes - Training and eval code modified from : URL - Bengali speech data was not available from common voice or librispeech multilingual datasets, so OpenSLR53 has been used. - Minimum audio duration of 0.5s has been used to filter the training data which excluded may be 10-20 samples. - OpenSLR53 transcripts are *not* part of LM training and LM used to evaluate.
[ "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n\n- dataset_name=\"openslr\" \t\n- model_name_or_path=\"facebook/wav2vec2-xls-r-300m\" \t\n- dataset_config_name=\"SLR53\" \t\n- output_dir=\"./wav2vec2-xls-r-300m-bengali\" \t\n- overwrite_output_dir \t\n- num_train_epochs=\"50\" \t\n- per_device_train_batch_size=\"32\" \t\n- per_device_eval_batch_size=\"32\" \t\n- gradient_accumulation_steps=\"1\" \t\n- learning_rate=\"7.5e-5\" \t\n- warmup_steps=\"2000\" \t\n- length_column_name=\"input_length\" \t\n- evaluation_strategy=\"steps\" \t\n- text_column_name=\"sentence\" \t\n- chars_to_ignore , ? . ! \\- \\; \\: \\\" “ % ‘ ” � — ’ … – \t\n- save_steps=\"2000\" \t\n- eval_steps=\"3000\" \t\n- logging_steps=\"100\" \t\n- layerdrop=\"0.0\" \t\n- activation_dropout=\"0.1\" \t\n- save_total_limit=\"3\" \t\n- freeze_feature_encoder \t\n- feat_proj_dropout=\"0.0\" \t\n- mask_time_prob=\"0.75\" \t\n- mask_time_length=\"10\" \t\n- mask_feature_prob=\"0.25\" \t\n- mask_feature_length=\"64\" \n- preprocessing_num_workers 32", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.1.dev0\n- Tokenizers 0.11.0\n\nNotes\n- Training and eval code modified from : URL \n- Bengali speech data was not available from common voice or librispeech multilingual datasets, so OpenSLR53 has been used.\n- Minimum audio duration of 0.5s has been used to filter the training data which excluded may be 10-20 samples.\n- OpenSLR53 transcripts are *not* part of LM training and LM used to evaluate." ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #bn #hf-asr-leaderboard #openslr_SLR53 #robust-speech-event #dataset-openslr #dataset-SLR53 #dataset-AI4Bharat/IndicCorp #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n\n- dataset_name=\"openslr\" \t\n- model_name_or_path=\"facebook/wav2vec2-xls-r-300m\" \t\n- dataset_config_name=\"SLR53\" \t\n- output_dir=\"./wav2vec2-xls-r-300m-bengali\" \t\n- overwrite_output_dir \t\n- num_train_epochs=\"50\" \t\n- per_device_train_batch_size=\"32\" \t\n- per_device_eval_batch_size=\"32\" \t\n- gradient_accumulation_steps=\"1\" \t\n- learning_rate=\"7.5e-5\" \t\n- warmup_steps=\"2000\" \t\n- length_column_name=\"input_length\" \t\n- evaluation_strategy=\"steps\" \t\n- text_column_name=\"sentence\" \t\n- chars_to_ignore , ? . ! \\- \\; \\: \\\" “ % ‘ ” � — ’ … – \t\n- save_steps=\"2000\" \t\n- eval_steps=\"3000\" \t\n- logging_steps=\"100\" \t\n- layerdrop=\"0.0\" \t\n- activation_dropout=\"0.1\" \t\n- save_total_limit=\"3\" \t\n- freeze_feature_encoder \t\n- feat_proj_dropout=\"0.0\" \t\n- mask_time_prob=\"0.75\" \t\n- mask_time_length=\"10\" \t\n- mask_feature_prob=\"0.25\" \t\n- mask_feature_length=\"64\" \n- preprocessing_num_workers 32", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.1.dev0\n- Tokenizers 0.11.0\n\nNotes\n- Training and eval code modified from : URL \n- Bengali speech data was not available from common voice or librispeech multilingual datasets, so OpenSLR53 has been used.\n- Minimum audio duration of 0.5s has been used to filter the training data which excluded may be 10-20 samples.\n- OpenSLR53 transcripts are *not* part of LM training and LM used to evaluate." ]
[ 109, 363, 134 ]
[ "passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #bn #hf-asr-leaderboard #openslr_SLR53 #robust-speech-event #dataset-openslr #dataset-SLR53 #dataset-AI4Bharat/IndicCorp #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\nThe following hyperparameters were used during training:\n\n- dataset_name=\"openslr\" \t\n- model_name_or_path=\"facebook/wav2vec2-xls-r-300m\" \t\n- dataset_config_name=\"SLR53\" \t\n- output_dir=\"./wav2vec2-xls-r-300m-bengali\" \t\n- overwrite_output_dir \t\n- num_train_epochs=\"50\" \t\n- per_device_train_batch_size=\"32\" \t\n- per_device_eval_batch_size=\"32\" \t\n- gradient_accumulation_steps=\"1\" \t\n- learning_rate=\"7.5e-5\" \t\n- warmup_steps=\"2000\" \t\n- length_column_name=\"input_length\" \t\n- evaluation_strategy=\"steps\" \t\n- text_column_name=\"sentence\" \t\n- chars_to_ignore , ? . ! \\- \\; \\: \\\" “ % ‘ ” � — ’ … – \t\n- save_steps=\"2000\" \t\n- eval_steps=\"3000\" \t\n- logging_steps=\"100\" \t\n- layerdrop=\"0.0\" \t\n- activation_dropout=\"0.1\" \t\n- save_total_limit=\"3\" \t\n- freeze_feature_encoder \t\n- feat_proj_dropout=\"0.0\" \t\n- mask_time_prob=\"0.75\" \t\n- mask_time_length=\"10\" \t\n- mask_feature_prob=\"0.25\" \t\n- mask_feature_length=\"64\" \n- preprocessing_num_workers 32" ]
[ -0.0884750634431839, 0.11381330341100693, -0.007034501992166042, 0.0594245120882988, 0.06869327276945114, 0.05305963754653931, 0.08970417827367783, 0.12424473464488983, -0.011083393357694149, 0.17234788835048676, 0.12613993883132935, 0.08813050389289856, 0.06922250986099243, 0.19656985998153687, -0.041648633778095245, -0.15450261533260345, 0.0460488498210907, -0.10292384773492813, -0.020532432943582535, 0.09577188640832901, 0.049025487154722214, -0.07489459961652756, 0.04925985261797905, 0.014914370141923428, -0.028064411133527756, -0.0364886038005352, -0.04740716516971588, -0.07413487136363983, 0.05332391336560249, 0.01633555255830288, 0.022438911721110344, 0.022387918084859848, 0.0570991113781929, -0.2260928452014923, -0.0075847995467484, 0.10702041536569595, 0.019527919590473175, 0.08859451860189438, 0.13037574291229248, -0.034128911793231964, 0.09556510299444199, -0.14604035019874573, 0.07363606244325638, 0.045323245227336884, -0.103227898478508, -0.22402580082416534, -0.09636000543832779, 0.084141306579113, 0.09627122431993484, 0.09510460495948792, -0.026055457070469856, 0.07196256518363953, -0.11303193867206573, 0.060495276004076004, 0.15337519347667694, -0.18509776890277863, -0.03878747671842575, -0.051738034933805466, 0.024128548800945282, -0.03846385329961777, -0.07952301949262619, -0.05402924120426178, -0.021543122828006744, -0.0017646915512159467, 0.055579643696546555, 0.006746532861143351, 0.07418567687273026, -0.011184817180037498, -0.10743866115808487, -0.0346083864569664, 0.06761875748634338, 0.0869782418012619, -0.0159193966537714, -0.15312744677066803, -0.0414712056517601, -0.11967039853334427, -0.0006921858876012266, -0.0012530520325526595, -0.0076974378898739815, -0.0535832978785038, -0.005829489324241877, 0.06687623262405396, -0.018273917958140373, -0.07283646613359451, 0.031873274594545364, 0.09327492862939835, 0.022568153217434883, -0.005245709791779518, 0.008279831148684025, 0.06749531626701355, 0.09046807885169983, -0.14889872074127197, -0.025875888764858246, -0.013311668299138546, -0.17124849557876587, 0.01226100791245699, 0.0058416929095983505, 0.0026339394971728325, 0.09085001051425934, 0.168653666973114, 0.0066648549400269985, 0.11990220099687576, 0.0183720625936985, 4.6381430252040445e-7, -0.016563158482313156, 0.10167711973190308, -0.11539354920387268, -0.15108586847782135, -0.05138713866472244, 0.09867659956216812, 0.016344353556632996, -0.023190835490822792, 0.0008937682723626494, -0.01740211620926857, 0.04607689753174782, 0.020832527428865433, 0.06288919597864151, 0.06915763765573502, -0.1003924161195755, -0.01638108119368553, 0.053478024899959564, -0.16601328551769257, 0.03357812389731407, 0.08959757536649704, -0.1040496975183487, 0.0087785879150033, 0.03877582773566246, -0.05579404905438423, -0.09466290473937988, 0.15251365303993225, -0.04315166175365448, -0.0374218188226223, -0.06689231097698212, -0.09288860112428665, 0.010926258750259876, -0.06538297981023788, -0.055654045194387436, -0.015295901335775852, -0.09728758782148361, -0.08957333117723465, 0.0950302705168724, -0.08386575430631638, 0.005014475435018539, -0.05894162505865097, -0.09849045425653458, 0.08925125747919083, -0.03496282175183296, 0.08115537464618683, -0.08379798382520676, 0.0371168851852417, -0.012081163935363293, 0.07960616052150726, 0.12725043296813965, 0.03142864257097244, -0.016067950055003166, 0.05622225999832153, -0.14973482489585876, 0.135163351893425, -0.08295256644487381, 0.022088179364800453, -0.1534847617149353, -0.06596943736076355, -0.004002314992249012, -0.008716988377273083, 0.09803960472345352, 0.1390356868505478, -0.16188257932662964, -0.043811749666929245, 0.16389626264572144, -0.01254641730338335, -0.08173684030771255, 0.10851050913333893, -0.017181532457470894, -0.07977668195962906, 0.0006264974363148212, 0.11816897988319397, 0.06368443369865417, -0.10112214088439941, 0.00586550310254097, 0.0026871170848608017, -0.016783343628048897, 0.059990186244249344, 0.054361965507268906, -0.09351567178964615, 0.09931226074695587, -0.00038172717904672027, -0.02561994083225727, 0.006172848865389824, -0.043310098350048065, -0.0450361929833889, 0.009411794133484364, -0.026478735730051994, 0.019796820357441902, -0.02976299449801445, -0.02983217127621174, -0.06417927891016006, -0.17595402896404266, -0.04977710172533989, 0.08507315069437027, -0.0456521138548851, 0.006309766788035631, -0.12655124068260193, 0.002909794682636857, 0.08722492307424545, 0.020301131531596184, -0.15779340267181396, -0.047415006905794144, -0.016475461423397064, -0.09682091325521469, -0.007715429645031691, -0.0133781423792243, 0.057366594672203064, 0.012488683685660362, 0.04611142724752426, -0.043046433478593826, 0.012082148343324661, -0.023302683606743813, -0.01271361019462347, -0.22457192838191986, -0.053743503987789154, -0.0016749897040426731, 0.16667352616786957, -0.15810121595859528, 0.0076230550184845924, 0.027643002569675446, 0.12635661661624908, -0.011970862746238708, -0.063300721347332, 0.02121216431260109, 0.0032527251169085503, 0.020257355645298958, -0.07529556751251221, -0.007086570840328932, -0.007338422350585461, -0.105765700340271, -0.004490445833653212, -0.18428462743759155, -0.019925858825445175, 0.07210255414247513, 0.04670320078730583, -0.1118101254105568, 0.024279450997710228, -0.025805488228797913, -0.06388073414564133, 0.004018033854663372, -0.01541561633348465, 0.1345599740743637, 0.10339637100696564, 0.0827738493680954, -0.02530427649617195, -0.0534355491399765, -0.002685775514692068, 0.007299405988305807, 0.011719011701643467, 0.13668125867843628, -0.023967847228050232, -0.03512434661388397, 0.03523654863238335, 0.006891324184834957, -0.025782160460948944, 0.10025869309902191, -0.026994287967681885, -0.08502824604511261, -0.04714943468570709, 0.05875535309314728, 0.019989483058452606, 0.03614191338419914, -0.12400802969932556, 0.04080559313297272, 0.05461496859788895, 0.01912618614733219, -0.012991317547857761, -0.09517738968133926, 0.0295773446559906, 0.023876311257481575, -0.05731664225459099, -0.03654803708195686, -0.002049438888207078, 0.042038604617118835, 0.048360489308834076, 0.053375132381916046, -0.047987937927246094, 0.013715174980461597, -0.08038259297609329, -0.08945842832326889, 0.17622999846935272, -0.09749500453472137, -0.14591683447360992, -0.10105568915605545, -0.06837626546621323, -0.023983631283044815, -0.05092952400445938, 0.011203078553080559, -0.08334455639123917, -0.1050216481089592, -0.05455516651272774, 0.04726748913526535, 0.018320752307772636, -0.0194815956056118, 0.08351175487041473, 0.0031285525765269995, 0.09571892023086548, -0.08781155198812485, 0.013651530258357525, -0.03262525051832199, 0.029100891202688217, 0.010309486649930477, 0.09639326483011246, 0.027836807072162628, 0.106312096118927, 0.043121088296175, 0.039633605629205704, 0.018124865368008614, 0.17326650023460388, -0.08659561723470688, 0.02126818336546421, 0.14810696244239807, -0.04427073150873184, 0.0832623839378357, 0.13948741555213928, 0.014448978938162327, -0.0660344585776329, 0.02804141864180565, 0.05907195806503296, 0.000884378154296428, -0.2355414777994156, -0.05259208381175995, -0.05133936554193497, 0.01875241845846176, 0.09572399407625198, 0.013576393015682697, -0.06659992784261703, 0.012519010342657566, -0.011400226503610611, -0.040814921259880066, 0.029319997876882553, 0.035485684871673584, 0.07646188884973526, 0.06234430521726608, 0.0928524062037468, 0.00759353069588542, 0.0288664773106575, 0.04469411447644234, -0.07406657189130783, 0.10396988689899445, -0.0621517151594162, 0.17697681486606598, 0.03970349580049515, 0.12524256110191345, -0.02954583801329136, 0.02878003567457199, 0.00132144580129534, 0.016283772885799408, 0.057981546968221664, -0.0856810212135315, -0.08663901686668396, 0.032127495855093, 0.030981482937932014, 0.002438880270346999, -0.031042007729411125, 0.11848558485507965, 0.06116091459989548, 0.2510513961315155, 0.09745194017887115, -0.29890432953834534, -0.029482493177056313, -0.045279208570718765, -0.024180732667446136, -0.07939234375953674, -0.005688745994120836, 0.09496733546257019, -0.11093372106552124, 0.07683596014976501, -0.050802528858184814, 0.07949178665876389, -0.1127443015575409, 0.02045360580086708, 0.10082181543111801, 0.17552584409713745, 0.01241853553801775, 0.015416950918734074, -0.11721346527338028, 0.17386983335018158, -0.0072145406156778336, 0.07565168291330338, -0.0509573258459568, 0.07900577783584595, 0.014297880232334137, -0.08407902717590332, 0.12655378878116608, -0.02029220201075077, -0.05121348053216934, -0.07475876808166504, -0.13574296236038208, -0.0065988521091639996, 0.12396898120641708, -0.018363725394010544, 0.08588044345378876, -0.02230064570903778, -0.04525870457291603, 0.02269837073981762, -0.005955546163022518, -0.10687268525362015, -0.10650065541267395, 0.05261357128620148, -0.007404720410704613, 0.03924349695444107, -0.04649199917912483, -0.022664176300168037, -0.07825355976819992, 0.17925705015659332, -0.16814641654491425, -0.05694495141506195, -0.13851012289524078, 0.03146178647875786, 0.16549457609653473, -0.06375469267368317, 0.026960017159581184, -0.0069963340647518635, 0.059092819690704346, 0.06222180649638176, -0.04736237972974777, 0.12171227484941483, -0.07653989642858505, -0.14644405245780945, -0.07228359580039978, 0.12307684868574142, 0.06088375300168991, 0.013020613230764866, -0.03187413886189461, 0.017805779352784157, -0.0227451641112566, -0.10182302445173264, 0.04448315128684044, 0.04444243386387825, 0.053026556968688965, 0.06178769841790199, -0.026632089167833328, -0.04936337098479271, -0.010113010182976723, 0.011567744426429272, 0.07672911137342453, 0.2525970935821533, -0.07742816209793091, 0.07781072705984116, 0.06856872141361237, 0.0019715020898729563, -0.1787818819284439, 0.02800150401890278, 0.1363595873117447, 0.0402001291513443, -0.010108903050422668, -0.16482040286064148, 0.09747453778982162, 0.11899244040250778, 0.004583518952131271, 0.04358561709523201, -0.2797001004219055, -0.13969062268733978, 0.10517636686563492, 0.015187639743089676, -0.14071936905384064, -0.1045590192079544, -0.059733737260103226, -0.09990110993385315, -0.1286124587059021, 0.023614663630723953, -0.010669874958693981, 0.07276342064142227, -0.004655301105231047, -0.013331729918718338, 0.03333865478634834, -0.06762004643678665, 0.11426375806331635, 0.029158418998122215, 0.054502684623003006, -0.07068105041980743, 0.08367977291345596, -0.0027359388768672943, -0.09599435329437256, 0.08441705256700516, -0.10379964113235474, 0.050637565553188324, -0.11980178207159042, -0.003810817375779152, -0.06368812918663025, 0.00785263441503048, -0.04341582953929901, -0.019239533692598343, 0.003881666576489806, 0.02868877537548542, 0.10559657216072083, -0.010288933292031288, 0.022999925538897514, -0.038923583924770355, 0.018446534872055054, 0.13701383769512177, 0.09634450823068619, 0.011687173508107662, -0.13760079443454742, 0.02046331577003002, 0.03818269819021225, 0.020120570436120033, -0.10790310055017471, 0.03384384140372276, 0.10204266011714935, 0.03561447188258171, 0.11622750014066696, 0.02857748605310917, -0.06456660479307175, -0.04189370945096016, 0.07310839742422104, -0.09765497595071793, -0.08396763354539871, 0.05286732316017151, -0.06721001863479614, -0.14133991301059723, -0.05475761368870735, 0.10524468123912811, 0.0415201261639595, 0.03292999044060707, 0.020870734006166458, 0.06396500766277313, -0.04241872951388359, 0.19918471574783325, 0.007938191294670105, 0.10963012278079987, -0.09092497825622559, 0.07770396023988724, 0.058197032660245895, -0.025339912623167038, 0.05881800130009651, 0.15116189420223236, -0.09034644067287445, 0.0004541625967249274, 0.00771821616217494, 0.07780761271715164, 0.0792274922132492, -0.024272477254271507, -0.035581715404987335, -0.09134593605995178, 0.08260233700275421, 0.079293392598629, -0.00308180321007967, 0.027363203465938568, 0.006324893329292536, -0.018434926867485046, -0.06924609839916229, 0.07533162087202072, 0.08753079921007156, 0.01959107257425785, -0.06297118216753006, 0.11850205063819885, -0.012255442328751087, -0.017544938251376152, 0.011255268007516861, 0.0014854090986773372, -0.14341187477111816, 0.021020065993070602, -0.11111241579055786, 0.015133497305214405, -0.06275700032711029, -0.013130264356732368, 0.008421237580478191, 0.028817128390073776, -0.0044661108404397964, 0.013100420124828815, -0.06081846356391907, -0.10969068109989166, -0.002729048952460289, 0.0646052435040474, -0.16381172835826874, 0.012355245649814606, 0.01238888781517744, -0.1347973495721817, 0.10312455147504807, 0.05972345173358917, -0.004641686100512743, -0.038424331694841385, -0.14166273176670074, -0.044471774250268936, 0.003485295921564102, 0.027942903339862823, 0.07448263466358185, -0.149294912815094, 0.008261051028966904, -0.06189494952559471, -0.05043119564652443, -0.006326981354504824, 0.01315050758421421, -0.13231432437896729, 0.05628326162695885, -0.04874619096517563, -0.010090390220284462, -0.0732063353061676, 0.05086042732000351, 0.077338308095932, 0.028090419247746468, 0.14482364058494568, -0.03797487914562225, 0.05767826363444328, -0.16632089018821716, -0.0408756285905838, 0.03778361529111862, 0.012477453798055649, 0.032134685665369034, 0.007233727723360062, 0.14881891012191772, -0.06537345051765442, 0.0405861996114254, -0.009516888298094273, -0.05508539825677872, 0.0327707976102829, -0.05646074190735817, -0.03497600555419922, 0.03140752390027046, 0.05048651993274689, 0.03244476765394211, -0.01206944789737463, 0.09828809648752213, -0.04497409611940384, 0.026385297998785973, 0.03489146754145622, 0.19402086734771729, 0.18508380651474, 0.06785136461257935, 0.057888977229595184, 0.0694599375128746, -0.1420658379793167, -0.10755633562803268, 0.18486051261425018, -0.11492689698934555, 0.15399272739887238, -0.05977673456072807, 0.07344058901071548, 0.0380532369017601, -0.1368536502122879, 0.040450919419527054, -0.032099708914756775, -0.09823736548423767, -0.10382301360368729, -0.09047155827283859, -0.051593948155641556, -0.10236746817827225, 0.02894308604300022, -0.06841811537742615, 0.06558981537818909, 0.11823968589305878, 0.0525067038834095, 0.03667366877198219, 0.11466523259878159, -0.039537958800792694, -0.03694840148091316, 0.08517801016569138, 0.03468979522585869, -0.03867892175912857, 0.010262108407914639, -0.058918096125125885, 0.02552945353090763, 0.023840731009840965, 0.0926855206489563, -0.011311146430671215, -0.022671928629279137, 0.07185029238462448, -0.02278570458292961, -0.09739013761281967, 0.041284456849098206, 0.00820437166839838, 0.011285186745226383, 0.11921238899230957, 0.06893470138311386, 0.003896945621818304, -0.049725379794836044, 0.18420396745204926, -0.09563086926937103, -0.08011072874069214, -0.1543472409248352, 0.07368741184473038, 0.026912730187177658, 0.0035758865997195244, -0.012144812382757664, -0.11545224487781525, -0.04912111535668373, 0.12044861167669296, 0.1419697403907776, -0.09627041965723038, -0.009949141182005405, 0.013699637725949287, -0.0008408782887272537, -0.05221853405237198, 0.0922383964061737, 0.07352136820554733, 0.09910990297794342, 0.00979191716760397, 0.039314161986112595, -0.0014859494986012578, -0.0901695191860199, -0.03538031503558159, 0.04746396839618683, 0.006663063075393438, 0.005788757931441069, -0.024768386036157608, 0.07420932501554489, -0.07161068171262741, -0.18958692252635956, 0.059743937104940414, -0.10408954322338104, -0.18344493210315704, -0.022589610889554024, 0.041876863688230515, 0.011669496074318886, 0.08299045264720917, 0.029580069705843925, -0.04673662781715393, 0.11192584782838821, -0.019146108999848366, -0.017882006242871284, -0.10772727429866791, 0.0010357340797781944, -0.02492430806159973, 0.17805913090705872, 0.01435285434126854, 0.07606931030750275, 0.1187983825802803, 0.040168337523937225, -0.10912945121526718, 0.020452693104743958, 0.07977496832609177, -0.1167905330657959, 0.04242195934057236, 0.11680317670106888, -0.037989284843206406, 0.12684349715709686, 0.07131895422935486, -0.08831030875444412, -0.01927899196743965, -0.02240198291838169, 0.0016968001145869493, -0.10998072475194931, -0.018751468509435654, -0.024470029398798943, 0.15022771060466766, 0.24162977933883667, -0.03631650283932686, -0.004504488315433264, -0.030469201505184174, 0.01998419314622879, -0.03892744332551956, 0.06693556904792786, -0.049123965203762054, -0.20315927267074585, 0.08186258375644684, 0.024958673864603043, 0.07047704607248306, -0.13765586912631989, -0.08149177581071854, 0.03760666772723198, -0.035555399954319, -0.019406937062740326, 0.09932437539100647, 0.0017630788497626781, 0.055277224630117416, -0.03415892645716667, -0.04366578534245491, 0.03246645629405975, 0.14767158031463623, -0.1317664235830307, -0.07286105304956436 ]