sha
null | last_modified
null | library_name
stringclasses 154
values | text
stringlengths 1
900k
| metadata
stringlengths 2
348k
| pipeline_tag
stringclasses 45
values | id
stringlengths 5
122
| tags
listlengths 1
1.84k
| created_at
stringlengths 25
25
| arxiv
listlengths 0
201
| languages
listlengths 0
1.83k
| tags_str
stringlengths 17
9.34k
| text_str
stringlengths 0
389k
| text_lists
listlengths 0
722
| processed_texts
listlengths 1
723
| tokens_length
listlengths 1
723
| input_texts
listlengths 1
61
| embeddings
listlengths 768
768
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-conll2003")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-conll2003")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-conll2003
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-fin")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-fin")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-fin
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
adapter-transformers
|
# Adapter `asahi417/tner-xlm-roberta-large-multiconer-mix-adapter` for xlm-roberta-large
An [adapter](https://adapterhub.ml) for the `xlm-roberta-large` model that was trained on the [named-entity-recognition/multiconer](https://adapterhub.ml/explore/named-entity-recognition/multiconer/) dataset and includes a prediction head for tagging.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("xlm-roberta-large")
adapter_name = model.load_adapter("asahi417/tner-xlm-roberta-large-multiconer-mix-adapter", source="hf", set_active=True)
```
## Architecture & Training
<!-- Add some description here -->
## Evaluation results
<!-- Add some description here -->
## Citation
<!-- Add some description here -->
|
{"tags": ["adapter-transformers", "adapterhub:named-entity-recognition/multiconer", "xlm-roberta"], "datasets": ["multiconer"]}
| null |
asahi417/tner-xlm-roberta-large-multiconer-mix-adapter
|
[
"adapter-transformers",
"xlm-roberta",
"adapterhub:named-entity-recognition/multiconer",
"dataset:multiconer",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#adapter-transformers #xlm-roberta #adapterhub-named-entity-recognition/multiconer #dataset-multiconer #region-us
|
# Adapter 'asahi417/tner-xlm-roberta-large-multiconer-mix-adapter' for xlm-roberta-large
An adapter for the 'xlm-roberta-large' model that was trained on the named-entity-recognition/multiconer dataset and includes a prediction head for tagging.
This adapter was created for usage with the adapter-transformers library.
## Usage
First, install 'adapter-transformers':
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_
Now, the adapter can be loaded and activated like this:
## Architecture & Training
## Evaluation results
|
[
"# Adapter 'asahi417/tner-xlm-roberta-large-multiconer-mix-adapter' for xlm-roberta-large\n\nAn adapter for the 'xlm-roberta-large' model that was trained on the named-entity-recognition/multiconer dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.",
"## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:",
"## Architecture & Training",
"## Evaluation results"
] |
[
"TAGS\n#adapter-transformers #xlm-roberta #adapterhub-named-entity-recognition/multiconer #dataset-multiconer #region-us \n",
"# Adapter 'asahi417/tner-xlm-roberta-large-multiconer-mix-adapter' for xlm-roberta-large\n\nAn adapter for the 'xlm-roberta-large' model that was trained on the named-entity-recognition/multiconer dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.",
"## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:",
"## Architecture & Training",
"## Evaluation results"
] |
[
41,
98,
57,
5,
4
] |
[
"passage: TAGS\n#adapter-transformers #xlm-roberta #adapterhub-named-entity-recognition/multiconer #dataset-multiconer #region-us \n# Adapter 'asahi417/tner-xlm-roberta-large-multiconer-mix-adapter' for xlm-roberta-large\n\nAn adapter for the 'xlm-roberta-large' model that was trained on the named-entity-recognition/multiconer dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training## Evaluation results"
] |
[
-0.03713633865118027,
-0.18036825954914093,
-0.0037449391093105078,
0.01595446839928627,
0.19721150398254395,
0.07321681827306747,
0.23113885521888733,
0.0065004341304302216,
0.14696530997753143,
-0.02449907176196575,
-0.006660723127424717,
0.14752820134162903,
0.01027460116893053,
0.05168689042329788,
-0.017848744988441467,
-0.04259978607296944,
0.02393982745707035,
0.08036919683218002,
-0.10023670643568039,
0.0687832310795784,
0.10136087238788605,
-0.07792434096336365,
0.12929709255695343,
0.037185125052928925,
-0.19935259222984314,
0.06021077185869217,
0.10220394283533096,
-0.117594413459301,
0.0746515616774559,
0.06455550342798233,
0.1724998503923416,
0.030697334557771683,
0.016281109303236008,
-0.10017838329076767,
0.009988403879106045,
0.04441998526453972,
0.014767314307391644,
0.039464447647333145,
-0.028270605951547623,
-0.01231780368834734,
-0.03602851182222366,
-0.005109386518597603,
0.07203974574804306,
0.05309020355343819,
-0.04015938192605972,
-0.24356436729431152,
-0.011119973845779896,
0.094853475689888,
0.017540963366627693,
0.04299155995249748,
0.05674132704734802,
0.0662771537899971,
0.04167896881699562,
0.06155440956354141,
0.21145641803741455,
-0.2382434457540512,
-0.008754916489124298,
0.07830866426229477,
0.1380891054868698,
0.11824572086334229,
0.010404260829091072,
0.06501632183790207,
0.014974486082792282,
0.06261647492647171,
0.11229251325130463,
-0.09405585378408432,
0.09233292937278748,
0.05209954455494881,
-0.1397773027420044,
0.023753894492983818,
0.27011242508888245,
-0.06623156368732452,
-0.09127804636955261,
-0.07855553925037384,
0.0005993579397909343,
0.07028365880250931,
0.014644055627286434,
-0.08912191540002823,
-0.016220247372984886,
-0.014129651710391045,
-0.02202458679676056,
-0.1427711397409439,
-0.05118417739868164,
-0.09486018121242523,
-0.17027626931667328,
0.43655046820640564,
-0.029407450929284096,
0.08413207530975342,
-0.07289143651723862,
0.019321465864777565,
0.05911962315440178,
-0.03325260058045387,
-0.034771621227264404,
-0.055653855204582214,
-0.09523050487041473,
0.018994279205799103,
-0.029322568327188492,
-0.21691790223121643,
0.07143227756023407,
0.09902980178594589,
0.08839420229196548,
0.0351717509329319,
-0.0629437267780304,
0.07587190717458725,
0.010372328571975231,
0.22767528891563416,
-0.04302496463060379,
0.005811561830341816,
-0.005208857823163271,
-0.02043827436864376,
-0.017420748248696327,
-0.07344484329223633,
-0.150608092546463,
-0.020174385979771614,
0.001556009636260569,
0.05113210156559944,
-0.008310024626553059,
0.12617701292037964,
-0.002364416141062975,
-0.09077416360378265,
0.010479318909347057,
-0.11863640695810318,
0.02994687110185623,
-0.016561778262257576,
0.001529726549051702,
0.16587239503860474,
0.06931257247924805,
-0.06891520321369171,
0.032614272087812424,
-0.00016012675769161433,
-0.05535760894417763,
-0.018992897123098373,
-0.07734014093875885,
-0.17872315645217896,
-0.003719510044902563,
-0.08644719421863556,
0.010091928765177727,
-0.19773249328136444,
-0.06703631579875946,
-0.010141966864466667,
0.07747805863618851,
0.018724387511610985,
0.08842239528894424,
0.07236499339342117,
0.028298087418079376,
0.023190604522824287,
-0.02195446379482746,
-0.056748177856206894,
-0.0032292427495121956,
0.04973512142896652,
0.04734306037425995,
0.07275019586086273,
-0.11677846312522888,
0.06524237245321274,
-0.0197440292686224,
0.05385253578424454,
-0.14103327691555023,
0.06475755572319031,
-0.07997538149356842,
0.00992347951978445,
-0.0686013475060463,
0.04252386465668678,
0.052449196577072144,
0.10554609447717667,
-0.001998053165152669,
-0.02861742302775383,
-0.04707774519920349,
-0.0774051770567894,
0.05719874054193497,
-0.18647615611553192,
-0.1561826914548874,
-0.01707655005156994,
-0.004991659428924322,
0.14516857266426086,
0.0489066019654274,
0.046916570514440536,
0.11928331851959229,
-0.09504333883523941,
-0.024845445528626442,
0.06415549665689468,
-0.17853988707065582,
-0.12078791111707687,
0.04892057925462723,
0.12521690130233765,
-0.23460550606250763,
0.04697923734784126,
-0.10625642538070679,
0.0906008630990982,
-0.010178380645811558,
-0.02452932484447956,
-0.05357370153069496,
-0.054737336933612823,
0.014118135906755924,
-0.05175906419754028,
-0.029000161215662956,
0.033049508929252625,
-0.07679647207260132,
0.205465167760849,
0.08065509796142578,
-0.05756467208266258,
0.007514223922044039,
-0.1538354754447937,
0.04639972373843193,
-0.1862865835428238,
0.03291105106472969,
-0.1657765656709671,
-0.020263703539967537,
0.016333285719156265,
0.052896223962306976,
0.04776142165064812,
0.10217636823654175,
0.07198449224233627,
-0.04113539680838585,
0.024712324142456055,
-0.017772508785128593,
0.04111308977007866,
0.03346510976552963,
0.013414530083537102,
-0.0920911356806755,
-0.0815201848745346,
-0.07626141607761383,
-0.0011185193434357643,
-0.08023818582296371,
0.04954073205590248,
-0.048135675489902496,
-0.025768766179680824,
0.04543304815888405,
0.04174831509590149,
-0.06200307235121727,
0.028459085151553154,
-0.04747062921524048,
-0.012772375717759132,
0.028949454426765442,
0.010933137498795986,
-0.10911133885383606,
0.1674221009016037,
-0.16788630187511444,
0.08316642791032791,
0.1116667091846466,
-0.02612508088350296,
-0.0386175736784935,
0.01786205731332302,
0.03290008753538132,
-0.03906779736280441,
0.04390827193856239,
-0.0743161141872406,
0.1321181058883667,
-0.0032934709452092648,
0.07585495710372925,
-0.02934793010354042,
0.03184588998556137,
0.04137042164802551,
-0.04769983887672424,
-0.06068149209022522,
-0.0005668101366609335,
0.0777042955160141,
-0.1201222687959671,
0.055873073637485504,
0.1853255182504654,
-0.0843643844127655,
0.07096807658672333,
-0.04163234308362007,
-0.02074659988284111,
-0.0798870399594307,
-0.0815381184220314,
0.06047077476978302,
0.05599715933203697,
-0.002296895021572709,
-0.024153126403689384,
0.06288695335388184,
-0.02503088116645813,
0.03192669153213501,
-0.07201453298330307,
0.03588969260454178,
0.05531097948551178,
-0.015503780916333199,
0.06084463372826576,
0.02898325026035309,
0.011755074374377728,
0.053024761378765106,
-0.00996621698141098,
0.007268108893185854,
0.0879630297422409,
0.006665289867669344,
-0.04878360033035278,
0.11480999737977982,
-0.0823931097984314,
-0.2577489912509918,
-0.2220080941915512,
-0.2061125785112381,
-0.0634453296661377,
-0.006089759524911642,
0.013571462593972683,
-0.04878449812531471,
-0.050378359854221344,
-0.008936014026403427,
0.18196046352386475,
-0.06744342297315598,
0.036391690373420715,
0.041820358484983444,
-0.0015737416688352823,
0.06224726140499115,
-0.11593431979417801,
-0.012642936781048775,
0.012938654981553555,
-0.12791268527507782,
0.04381575062870979,
0.008655175566673279,
0.07666502147912979,
0.14958427846431732,
-0.01790722832083702,
0.01773465797305107,
0.020951703190803528,
0.004127135965973139,
-0.044426485896110535,
-0.022544683888554573,
0.1623353809118271,
-0.07520221173763275,
-0.007321612909436226,
0.041164666414260864,
0.043865304440259933,
-0.016933389008045197,
-0.018893955275416374,
-0.01477475930005312,
-0.11529705673456192,
-0.19963014125823975,
-0.018228642642498016,
-0.007153462152928114,
-0.010154686868190765,
0.07602890580892563,
0.06011538580060005,
0.06378404051065445,
0.09003005176782608,
0.09582297503948212,
0.006292803678661585,
-0.04572765901684761,
0.02262691780924797,
0.17644768953323364,
0.00022814857948105782,
0.08809763193130493,
-0.09639991819858551,
0.00702183460816741,
0.08222515881061554,
0.061727333813905716,
0.1903640627861023,
0.05645476654171944,
0.06163039430975914,
0.10058068484067917,
-0.1555468589067459,
0.07598789036273956,
0.178113654255867,
-0.045492954552173615,
-0.012683267705142498,
0.017583470791578293,
-0.021499374881386757,
0.010367832146584988,
0.02102484554052353,
0.012110180221498013,
0.008348222821950912,
-0.002561295637860894,
0.0256060604006052,
0.05842726677656174,
0.09253090620040894,
-0.0991046279668808,
-0.20740273594856262,
-0.044256649911403656,
-0.017491884529590607,
-0.05611079931259155,
-0.013279621489346027,
0.0014195017283782363,
0.10404428094625473,
-0.05520337447524071,
0.044214870780706406,
-0.027492400258779526,
0.08224409818649292,
-0.10426951199769974,
-0.01916075125336647,
0.09844058752059937,
0.14530804753303528,
0.038149937987327576,
0.025735577568411827,
-0.2628806233406067,
0.05992085486650467,
0.0366317443549633,
-0.00616327952593565,
-0.07636331021785736,
0.032521702349185944,
0.010340886190533638,
0.1327686607837677,
-0.007006688974797726,
0.0007792863179929554,
-0.16609978675842285,
-0.18093091249465942,
-0.003977186046540737,
0.05229979008436203,
0.04388212412595749,
-0.04699093848466873,
0.08911342173814774,
-0.07078945636749268,
0.029452631250023842,
0.043580375611782074,
0.004047379828989506,
-0.04610692709684372,
-0.19265183806419373,
0.014907972887158394,
0.14515727758407593,
-0.060112256556749344,
-0.05059186369180679,
-0.03675379231572151,
0.010019269771873951,
0.14642930030822754,
-0.04846217483282089,
-0.024409586563706398,
-0.14539453387260437,
-0.045207440853118896,
0.07178192585706711,
-0.04726936295628548,
0.036387037485837936,
-0.006186334416270256,
0.032321177423000336,
-0.03626533970236778,
-0.1702619045972824,
0.06700007617473602,
-0.05460604652762413,
0.036865100264549255,
-0.0034719682298600674,
-0.0038985018618404865,
0.027184609323740005,
0.01771489717066288,
-0.005812323652207851,
-0.04266403242945671,
0.044205907732248306,
-0.06186231970787048,
0.008078849874436855,
0.12575273215770721,
-0.10668788105249405,
0.08635130524635315,
-0.09359829127788544,
-0.024743132293224335,
-0.01601882092654705,
-0.013701984658837318,
0.13753663003444672,
0.006075193639844656,
-0.06854907423257828,
0.09182315319776535,
0.03863126412034035,
-0.08045703917741776,
-0.23208126425743103,
-0.05919790267944336,
-0.02305976115167141,
0.03757220879197121,
0.003923654090613127,
-0.19821345806121826,
0.20240958034992218,
0.03009391948580742,
0.0059453025460243225,
0.10755530744791031,
-0.13800135254859924,
-0.04217291250824928,
0.12322184443473816,
0.04084981232881546,
0.20146214962005615,
-0.10261790454387665,
-0.05383972451090813,
-0.036528583616018295,
-0.14083944261074066,
0.12727396190166473,
-0.06426044553518295,
0.11946005374193192,
-0.04964336380362511,
0.058314986526966095,
0.012118279933929443,
-0.013930791057646275,
0.1294585019350052,
-0.02295968309044838,
0.06403445452451706,
-0.06245771422982216,
-0.08228476345539093,
0.13071413338184357,
-0.03447964787483215,
0.07396656274795532,
-0.15642210841178894,
-0.009170612320303917,
0.0030974678229540586,
-0.10914689302444458,
-0.023951096460223198,
0.08974240720272064,
0.04152608662843704,
-0.0556052103638649,
-0.01904183067381382,
-0.01922611892223358,
-0.08463568985462189,
-0.05639925226569176,
0.013536283746361732,
-0.07026122510433197,
0.02069610171020031,
0.1071418896317482,
0.07841894775629044,
-0.01668083667755127,
-0.13206638395786285,
-0.03494245558977127,
-0.04092644900083542,
0.1753728836774826,
-0.08976060152053833,
0.10420045256614685,
0.019720716401934624,
-0.04122770205140114,
0.12377830594778061,
0.07804529368877411,
-0.06271171569824219,
0.006390795577317476,
0.09817592054605484,
-0.006063646636903286,
-0.05206543579697609,
0.0002497911045793444,
0.032812051475048065,
-0.053402528166770935,
0.08954625576734543,
0.21596568822860718,
0.03188465163111687,
-0.005745001137256622,
-0.0030571799725294113,
-0.015889663249254227,
-0.12642037868499756,
0.06912804394960403,
0.057283882051706314,
0.04671536386013031,
-0.05671902373433113,
0.014643792994320393,
0.050506770610809326,
-0.005416422616690397,
0.027543770149350166,
-0.027113165706396103,
-0.05638120323419571,
-0.06201131269335747,
-0.016750488430261612,
0.1753772348165512,
-0.146003857254982,
-0.14861711859703064,
-0.03401239216327667,
-0.16206642985343933,
0.0271719079464674,
0.16306382417678833,
0.051689814776182175,
0.04110293462872505,
-0.020770367234945297,
-0.007777327671647072,
-0.08444427698850632,
0.021630220115184784,
-0.06614226847887039,
0.0622078999876976,
-0.1959192156791687,
-0.007441021502017975,
0.04052712768316269,
0.12589998543262482,
-0.07431980967521667,
-0.019831931218504906,
-0.1618686467409134,
-0.0035104965791106224,
-0.2296692579984665,
0.02449079416692257,
-0.04148087278008461,
-0.0002292135322932154,
0.10720738023519516,
-0.03942341357469559,
-0.11254202574491501,
0.04906056448817253,
-0.06495948880910873,
-0.011424759402871132,
0.06774210184812546,
0.05851564183831215,
-0.03934764862060547,
-0.06557618081569672,
-0.002528382698073983,
-0.03912683203816414,
0.0481104776263237,
0.07803424447774887,
-0.061182454228401184,
0.02010458894073963,
-0.0933036282658577,
0.0012245152611285448,
0.03377186506986618,
0.05597398802638054,
0.015283243730664253,
-0.06737206131219864,
0.06201061233878136,
0.046126969158649445,
0.011667855083942413,
0.0226889718323946,
0.1280316710472107,
-0.04131534323096275,
0.06817926466464996,
-0.13489224016666412,
-0.0011311739217489958,
-0.059990692883729935,
0.013974248431622982,
0.13471122086048126,
0.14969855546951294,
0.12612298130989075,
-0.08034750074148178,
0.058098047971725464,
-0.08193491399288177,
0.03791044279932976,
-0.020123228430747986,
-0.07886670529842377,
0.15052355825901031,
-0.09486941248178482,
-0.014324952848255634,
0.001378675107844174,
0.3154752254486084,
0.021725643426179886,
-0.10221050679683685,
0.010566821321845055,
0.004590379074215889,
-0.011547110974788666,
-0.016565486788749695,
0.2314518839120865,
0.016080569475889206,
0.05839812383055687,
0.03150317072868347,
0.07673455029726028,
0.040954239666461945,
0.11379485577344894,
0.053466953337192535,
0.17488312721252441,
-0.030796365812420845,
0.06206956133246422,
0.13594764471054077,
-0.022536208853125572,
0.009772093035280704,
-0.013411913067102432,
-0.16067004203796387,
0.03612205758690834,
-0.02075405977666378,
0.1319272369146347,
0.10667654871940613,
0.04549495503306389,
0.06149805709719658,
0.053585559129714966,
0.00016502589278388768,
-0.10805390030145645,
-0.08677500486373901,
-0.09165025502443314,
-0.1762341856956482,
-0.04198763146996498,
-0.017995893955230713,
-0.0905693918466568,
0.13576462864875793,
-0.017410743981599808,
0.028061801567673683,
0.13429145514965057,
-0.036436550319194794,
-0.0037121721543371677,
0.010735825635492802,
-0.06812230497598648,
-0.07370536029338837,
-0.05282298102974892,
0.045498233288526535,
0.0050316909328103065,
0.05506734922528267,
0.014082749374210835,
0.03345067426562309,
-0.003469084855169058,
0.0890706405043602,
-0.08272451907396317,
-0.11610183864831924,
-0.06757039576768875,
-0.026303986087441444,
-0.04688830301165581,
0.044424377381801605,
-0.0005324988742358983,
-0.06091652810573578,
-0.03297388553619385,
0.06922870874404907,
-0.02198236994445324,
-0.15326392650604248,
-0.12723271548748016,
0.10278695821762085,
-0.08276702463626862,
-0.002201033988967538,
-0.07797834277153015,
-0.015499304980039597,
-0.09110800921916962,
0.18934598565101624,
0.21758851408958435,
-0.020682213827967644,
0.04924988001585007,
-0.002946255961433053,
0.010928761214017868,
-0.05815839767456055,
0.12697149813175201,
-0.003978751599788666,
0.11222535371780396,
0.0387473925948143,
-0.10177421569824219,
-0.09173891693353653,
0.013626129366457462,
0.026121089234948158,
0.03804125264286995,
0.015219762921333313,
-0.03978857025504112,
-0.03274301439523697,
0.019994348287582397,
-0.01952306739985943,
-0.06989121437072754,
0.09138569980859756,
0.03698576241731644,
-0.0288635715842247,
-0.0779278576374054,
0.08098766207695007,
-0.05361384153366089,
0.01536672841757536,
-0.030472148209810257,
-0.029837533831596375,
0.032386742532253265,
0.00857818964868784,
-0.18201816082000732,
0.05451389402151108,
0.12436072528362274,
-0.016515301540493965,
0.13894563913345337,
-0.023976435884833336,
0.04217694699764252,
0.061388883739709854,
0.047274842858314514,
-0.05724611505866051,
0.06828691065311432,
-0.047397248446941376,
-0.1117727980017662,
0.01940007507801056,
0.01809004135429859,
-0.055773306638002396,
0.11233052611351013,
0.017915209755301476,
-0.11219873279333115,
0.007700660265982151,
-0.03269924968481064,
-0.06983254104852676,
-0.03754565119743347,
-0.0958070382475853,
-0.07455860078334808,
0.1504133641719818,
0.11644385755062103,
0.027740681543946266,
-0.07011426240205765,
-0.05677834898233414,
0.08078809082508087,
0.04197545349597931,
0.06603590399026871,
-0.05371769517660141,
-0.13287675380706787,
-0.036124907433986664,
-0.08167562633752823,
0.02680639922618866,
-0.2908438444137573,
-0.04976822808384895,
0.005566806066781282,
-0.04979422315955162,
-0.055785972625017166,
0.030218474566936493,
0.18737083673477173,
0.08943086117506027,
-0.046857450157403946,
-0.09584714472293854,
0.028189608827233315,
0.08572763949632645,
-0.17853857576847076,
-0.04464859887957573
] |
null | null |
adapter-transformers
|
# Adapter `asahi417/tner-xlm-roberta-large-multiconer-multi-adapter` for xlm-roberta-large
An [adapter](https://adapterhub.ml) for the `xlm-roberta-large` model that was trained on the [named-entity-recognition/multiconer](https://adapterhub.ml/explore/named-entity-recognition/multiconer/) dataset and includes a prediction head for tagging.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("xlm-roberta-large")
adapter_name = model.load_adapter("asahi417/tner-xlm-roberta-large-multiconer-multi-adapter", source="hf", set_active=True)
```
## Architecture & Training
<!-- Add some description here -->
## Evaluation results
<!-- Add some description here -->
## Citation
<!-- Add some description here -->
|
{"tags": ["adapter-transformers", "adapterhub:named-entity-recognition/multiconer", "xlm-roberta"], "datasets": ["multiconer"]}
| null |
asahi417/tner-xlm-roberta-large-multiconer-multi-adapter
|
[
"adapter-transformers",
"xlm-roberta",
"adapterhub:named-entity-recognition/multiconer",
"dataset:multiconer",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#adapter-transformers #xlm-roberta #adapterhub-named-entity-recognition/multiconer #dataset-multiconer #region-us
|
# Adapter 'asahi417/tner-xlm-roberta-large-multiconer-multi-adapter' for xlm-roberta-large
An adapter for the 'xlm-roberta-large' model that was trained on the named-entity-recognition/multiconer dataset and includes a prediction head for tagging.
This adapter was created for usage with the adapter-transformers library.
## Usage
First, install 'adapter-transformers':
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_
Now, the adapter can be loaded and activated like this:
## Architecture & Training
## Evaluation results
|
[
"# Adapter 'asahi417/tner-xlm-roberta-large-multiconer-multi-adapter' for xlm-roberta-large\n\nAn adapter for the 'xlm-roberta-large' model that was trained on the named-entity-recognition/multiconer dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.",
"## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:",
"## Architecture & Training",
"## Evaluation results"
] |
[
"TAGS\n#adapter-transformers #xlm-roberta #adapterhub-named-entity-recognition/multiconer #dataset-multiconer #region-us \n",
"# Adapter 'asahi417/tner-xlm-roberta-large-multiconer-multi-adapter' for xlm-roberta-large\n\nAn adapter for the 'xlm-roberta-large' model that was trained on the named-entity-recognition/multiconer dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.",
"## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:",
"## Architecture & Training",
"## Evaluation results"
] |
[
41,
98,
57,
5,
4
] |
[
"passage: TAGS\n#adapter-transformers #xlm-roberta #adapterhub-named-entity-recognition/multiconer #dataset-multiconer #region-us \n# Adapter 'asahi417/tner-xlm-roberta-large-multiconer-multi-adapter' for xlm-roberta-large\n\nAn adapter for the 'xlm-roberta-large' model that was trained on the named-entity-recognition/multiconer dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training## Evaluation results"
] |
[
-0.03541717305779457,
-0.17938120663166046,
-0.003912674728780985,
0.01700916327536106,
0.19869740307331085,
0.06969933211803436,
0.2373734414577484,
0.0041177417151629925,
0.14511734247207642,
-0.022393593564629555,
-0.0042104823514819145,
0.1494714468717575,
0.0078043765388429165,
0.04793470352888107,
-0.01298510655760765,
-0.04564664885401726,
0.02489527501165867,
0.07787419110536575,
-0.09079021215438843,
0.06742209196090698,
0.09826342761516571,
-0.07725655287504196,
0.13009002804756165,
0.03665770962834358,
-0.20058421790599823,
0.05861082673072815,
0.10276804864406586,
-0.11953037977218628,
0.07665377855300903,
0.060020118951797485,
0.169803187251091,
0.031081650406122208,
0.018075376749038696,
-0.10055268555879593,
0.007612613961100578,
0.04638288915157318,
0.014487072825431824,
0.03713495656847954,
-0.02816818095743656,
-0.01140617299824953,
-0.03433111310005188,
-0.002551443176344037,
0.07677058130502701,
0.0515938401222229,
-0.04000668600201607,
-0.23746705055236816,
-0.008525768294930458,
0.09195508807897568,
0.015332781709730625,
0.044480424374341965,
0.05788272246718407,
0.06540971994400024,
0.04051553085446358,
0.061614491045475006,
0.2072223573923111,
-0.24228031933307648,
-0.010127286426723003,
0.08063310384750366,
0.13657733798027039,
0.11854059249162674,
0.008671849966049194,
0.06701226532459259,
0.014034321531653404,
0.06667018681764603,
0.11125895380973816,
-0.09393934160470963,
0.09450393915176392,
0.050041645765304565,
-0.13935425877571106,
0.022719502449035645,
0.27011528611183167,
-0.06746033579111099,
-0.09404035657644272,
-0.07743163406848907,
0.003512253751978278,
0.07624568790197372,
0.014028106816112995,
-0.08546526730060577,
-0.014721687883138657,
-0.015762466937303543,
-0.024703282862901688,
-0.14313100278377533,
-0.05235270410776138,
-0.0941128358244896,
-0.17016030848026276,
0.433185875415802,
-0.028505174443125725,
0.08534614741802216,
-0.07277890294790268,
0.0202006958425045,
0.05197212100028992,
-0.030666200444102287,
-0.034774210304021835,
-0.05802033469080925,
-0.09449990838766098,
0.020494146272540092,
-0.028513005003333092,
-0.21111838519573212,
0.07245893776416779,
0.10271743685007095,
0.09562017023563385,
0.03378816694021225,
-0.06955285370349884,
0.07453133165836334,
0.010180334560573101,
0.22865748405456543,
-0.04388200491666794,
0.01065284013748169,
-0.006796718575060368,
-0.01965475268661976,
-0.016695858910679817,
-0.0753730982542038,
-0.15015451610088348,
-0.015464015305042267,
0.0028364984318614006,
0.0533321276307106,
-0.005892164073884487,
0.12627992033958435,
0.001000246498733759,
-0.09096374362707138,
0.008220707066357136,
-0.1194731667637825,
0.029166091233491898,
-0.019678795710206032,
0.005392860155552626,
0.17473183572292328,
0.06568383425474167,
-0.07077500224113464,
0.030819429084658623,
0.00012919383880216628,
-0.05800598859786987,
-0.01677693985402584,
-0.07633648067712784,
-0.17661112546920776,
-0.0018790399190038443,
-0.08946031332015991,
0.010979930870234966,
-0.19671319425106049,
-0.06691088527441025,
-0.010281638242304325,
0.0774165466427803,
0.015444230288267136,
0.08725208789110184,
0.07355551421642303,
0.023544762283563614,
0.023139121010899544,
-0.022381583228707314,
-0.05797538161277771,
-0.002322229789569974,
0.04905792325735092,
0.04804862663149834,
0.07227455824613571,
-0.11315945535898209,
0.06366310268640518,
-0.01873556151986122,
0.05340323969721794,
-0.13924892246723175,
0.061817318201065063,
-0.08137582242488861,
0.011877186596393585,
-0.06359406560659409,
0.04145535081624985,
0.04962017014622688,
0.1082385703921318,
-0.0038193881046026945,
-0.030404219403862953,
-0.04161011055111885,
-0.07570204883813858,
0.06153932213783264,
-0.18614628911018372,
-0.1543308049440384,
-0.019267668947577477,
-0.003352879546582699,
0.14151866734027863,
0.050436656922101974,
0.05029916763305664,
0.11039648950099945,
-0.09984761476516724,
-0.023118071258068085,
0.0675339475274086,
-0.18100322782993317,
-0.12114106118679047,
0.049733132123947144,
0.12447873502969742,
-0.22733958065509796,
0.04726477339863777,
-0.10641667246818542,
0.08362274616956711,
-0.011678858660161495,
-0.023081423714756966,
-0.0532093420624733,
-0.05440270155668259,
0.005281698424369097,
-0.052288856357336044,
-0.029563145712018013,
0.03175031393766403,
-0.07633437216281891,
0.20825016498565674,
0.07983147352933884,
-0.05749884992837906,
0.009021979756653309,
-0.1547417938709259,
0.040991127490997314,
-0.18726739287376404,
0.03476126864552498,
-0.16698524355888367,
-0.026564041152596474,
0.017707500606775284,
0.05355173721909523,
0.04717334359884262,
0.1030622124671936,
0.06996464729309082,
-0.03863700479269028,
0.02636493369936943,
-0.017122551798820496,
0.03843396529555321,
0.03319105878472328,
0.014780696481466293,
-0.0932563915848732,
-0.08099524676799774,
-0.07829418778419495,
-0.005681279581040144,
-0.08042824268341064,
0.051763664931058884,
-0.045642394572496414,
-0.02965480647981167,
0.04391518607735634,
0.04234540835022926,
-0.06290385127067566,
0.028930194675922394,
-0.04694953188300133,
-0.015344941057264805,
0.029581082984805107,
0.011964530684053898,
-0.10214068740606308,
0.16973033547401428,
-0.16884483397006989,
0.08978700637817383,
0.11231377720832825,
-0.02959948033094406,
-0.03654816746711731,
0.029646238312125206,
0.03178565949201584,
-0.03967203572392464,
0.04132332280278206,
-0.07704254239797592,
0.1260652244091034,
-0.0035013973247259855,
0.07516005635261536,
-0.029636044055223465,
0.034836702048778534,
0.042355652898550034,
-0.050298359245061874,
-0.06106060370802879,
0.001120668021030724,
0.08040177077054977,
-0.11811178922653198,
0.05547141656279564,
0.18231220543384552,
-0.08320750296115875,
0.06933781504631042,
-0.04213115572929382,
-0.022131603211164474,
-0.07985031604766846,
-0.07975803315639496,
0.06239040568470955,
0.059022724628448486,
-0.0014582931762561202,
-0.02730722911655903,
0.06190080568194389,
-0.02242538146674633,
0.031105440109968185,
-0.07345922291278839,
0.03358535096049309,
0.05271720141172409,
-0.015363401733338833,
0.06007929891347885,
0.027227943763136864,
0.009694176726043224,
0.05496150255203247,
-0.011500304564833641,
0.006856994703412056,
0.08782289922237396,
0.007266233675181866,
-0.04675639048218727,
0.11650997400283813,
-0.07782281190156937,
-0.25542035698890686,
-0.22107404470443726,
-0.21087239682674408,
-0.06608332693576813,
-0.0043120551854372025,
0.01331175584346056,
-0.04639474302530289,
-0.04946955293416977,
-0.010346243157982826,
0.18069875240325928,
-0.07179760187864304,
0.03488060086965561,
0.04495870694518089,
0.0013418961316347122,
0.06318353116512299,
-0.11525498330593109,
-0.014339241199195385,
0.012594162486493587,
-0.13362917304039001,
0.0431717112660408,
0.01188398152589798,
0.0775294154882431,
0.1474575251340866,
-0.012495866045355797,
0.01654045470058918,
0.02432391606271267,
-0.0020365614909678698,
-0.04206707701086998,
-0.025440918281674385,
0.1640692800283432,
-0.0706128403544426,
-0.006517954636365175,
0.036759477108716965,
0.04727742448449135,
-0.0206771157681942,
-0.020015273243188858,
-0.009504498913884163,
-0.11946995556354523,
-0.1977512240409851,
-0.016052167862653732,
-0.004871634766459465,
-0.0011133829830214381,
0.0768326073884964,
0.06172797456383705,
0.0658961832523346,
0.08722285181283951,
0.09865788370370865,
0.009522134438157082,
-0.04428039863705635,
0.025302013382315636,
0.17534001171588898,
-0.0026366524398326874,
0.0903739482164383,
-0.0974067822098732,
0.0061559840105473995,
0.0825679823756218,
0.061651576310396194,
0.1902788132429123,
0.05584564432501793,
0.05436334386467934,
0.1044943556189537,
-0.16321086883544922,
0.07380779087543488,
0.17864859104156494,
-0.04437177628278732,
-0.015007397159934044,
0.01840050518512726,
-0.01977902092039585,
0.01423950307071209,
0.019031736999750137,
0.009252868592739105,
0.0027412076015025377,
-0.0012056330451741815,
0.024560710415244102,
0.0602104514837265,
0.08776430785655975,
-0.09739231318235397,
-0.20523779094219208,
-0.04307558387517929,
-0.019070832058787346,
-0.06198345497250557,
-0.012806996703147888,
0.0036521530710160732,
0.10539782047271729,
-0.05995045229792595,
0.04309769347310066,
-0.02599109150469303,
0.08094622939825058,
-0.10787435621023178,
-0.01510359812527895,
0.09984761476516724,
0.14460580050945282,
0.03829267621040344,
0.025522707030177116,
-0.2673972547054291,
0.058238957077264786,
0.03597719594836235,
-0.005867486819624901,
-0.07718338072299957,
0.032082248479127884,
0.009591342881321907,
0.13382039964199066,
-0.004119759425520897,
-0.00026850137510336936,
-0.16224947571754456,
-0.1787637621164322,
-0.006538936402648687,
0.052000995725393295,
0.04758357256650925,
-0.04997970536351204,
0.08922815322875977,
-0.06840691715478897,
0.029977811500430107,
0.042210280895233154,
-0.0015507654752582312,
-0.044624559581279755,
-0.19219672679901123,
0.01683223992586136,
0.13924208283424377,
-0.0685453787446022,
-0.04904612898826599,
-0.037500087171792984,
0.009686566889286041,
0.14247268438339233,
-0.04651106521487236,
-0.02362474612891674,
-0.14625932276248932,
-0.04536823555827141,
0.06952081620693207,
-0.04534659907221794,
0.03722461313009262,
-0.006523096468299627,
0.029362455010414124,
-0.03357440605759621,
-0.16932055354118347,
0.06453961133956909,
-0.05601167306303978,
0.036042243242263794,
-0.001674639293923974,
-0.0016185521380975842,
0.024595094844698906,
0.015549690462648869,
-0.008007767610251904,
-0.044956181198358536,
0.0463557094335556,
-0.0648084506392479,
0.009682935662567616,
0.1262264996767044,
-0.1063762977719307,
0.08074178546667099,
-0.09726234525442123,
-0.015097134746611118,
-0.01558317244052887,
-0.012545574456453323,
0.13430023193359375,
0.006675809621810913,
-0.06524999439716339,
0.09215819835662842,
0.039645299315452576,
-0.08047442883253098,
-0.23456142842769623,
-0.06309299916028976,
-0.02610096149146557,
0.03611219301819801,
0.005468988325446844,
-0.20065100491046906,
0.20750907063484192,
0.03227100521326065,
0.004774286411702633,
0.10927250981330872,
-0.13529136776924133,
-0.039801038801670074,
0.1177498996257782,
0.04164173826575279,
0.1994045376777649,
-0.10420121252536774,
-0.05451555922627449,
-0.03664896637201309,
-0.140177384018898,
0.13009053468704224,
-0.06725052744150162,
0.12089409679174423,
-0.04882543534040451,
0.0577566921710968,
0.011469232849776745,
-0.014243565499782562,
0.13051265478134155,
-0.017291739583015442,
0.06386110931634903,
-0.06436076760292053,
-0.08014237880706787,
0.13808847963809967,
-0.03292469307780266,
0.07674701511859894,
-0.1535232961177826,
-0.010755658149719238,
0.005828820168972015,
-0.11097994446754456,
-0.026934409514069557,
0.0872657373547554,
0.038749393075704575,
-0.055876847356557846,
-0.013635627925395966,
-0.01928400993347168,
-0.0863276794552803,
-0.056905340403318405,
0.010847984813153744,
-0.06959035992622375,
0.013228395953774452,
0.10565310716629028,
0.07826361805200577,
-0.01572357304394245,
-0.1315300166606903,
-0.04054228216409683,
-0.042017944157123566,
0.17223496735095978,
-0.09287558495998383,
0.1040492132306099,
0.01821388676762581,
-0.041413791477680206,
0.11968310177326202,
0.07822828739881516,
-0.06436233967542648,
0.004729630425572395,
0.0980844795703888,
-0.007070260122418404,
-0.049238428473472595,
0.002806589938700199,
0.03464376553893089,
-0.049691230058670044,
0.09847308695316315,
0.2191098928451538,
0.03412153944373131,
-0.004311725031584501,
-0.004511450883001089,
-0.014859503135085106,
-0.1264352649450302,
0.06728747487068176,
0.05817596986889839,
0.04672839120030403,
-0.056293096393346786,
0.017199644818902016,
0.04749254882335663,
-0.002646018285304308,
0.02701757848262787,
-0.026945071294903755,
-0.05693381652235985,
-0.06347975134849548,
-0.021835265681147575,
0.17016099393367767,
-0.14915628731250763,
-0.14801865816116333,
-0.031575437635183334,
-0.1607903242111206,
0.028952706605196,
0.16320477426052094,
0.05137715861201286,
0.044044379144907,
-0.023185374215245247,
-0.006951128598302603,
-0.08740796148777008,
0.019690105691552162,
-0.07106886059045792,
0.061818648129701614,
-0.19820944964885712,
-0.01153207290917635,
0.04298284277319908,
0.12718257308006287,
-0.0744519978761673,
-0.019913043826818466,
-0.1616993099451065,
-0.0030974261462688446,
-0.22129832208156586,
0.021073022857308388,
-0.041394758969545364,
-0.00003638897032942623,
0.10949736833572388,
-0.04033905640244484,
-0.11359341442584991,
0.048331938683986664,
-0.06496323645114899,
-0.01238181721419096,
0.06711702793836594,
0.059187520295381546,
-0.03870280832052231,
-0.064934141933918,
-0.004776214249432087,
-0.04277469217777252,
0.048701997846364975,
0.07869875431060791,
-0.060631029307842255,
0.022553935647010803,
-0.08803664147853851,
0.006180863827466965,
0.030848201364278793,
0.05414698272943497,
0.01561304647475481,
-0.06025585159659386,
0.06026673689484596,
0.04675070196390152,
0.013034959323704243,
0.02441067434847355,
0.12545162439346313,
-0.04131600633263588,
0.07063840329647064,
-0.13211925327777863,
-0.006404631771147251,
-0.06009555235505104,
0.013625544495880604,
0.13378460705280304,
0.1484753042459488,
0.12345196306705475,
-0.07864448428153992,
0.05873539671301842,
-0.08126090466976166,
0.03747712820768356,
-0.018865805119276047,
-0.07873877882957458,
0.15845704078674316,
-0.094509556889534,
-0.013974679633975029,
0.0007401921320706606,
0.3206633925437927,
0.019070161506533623,
-0.09573224931955338,
0.009828541427850723,
0.00548534607514739,
-0.011689228937029839,
-0.014842414297163486,
0.22834160923957825,
0.014941745437681675,
0.05883674696087837,
0.029259666800498962,
0.07293762266635895,
0.041345614939928055,
0.11303623765707016,
0.053421083837747574,
0.17652851343154907,
-0.0296320840716362,
0.06185547634959221,
0.14123237133026123,
-0.020010903477668762,
0.00173556141089648,
-0.01497810147702694,
-0.16327537596225739,
0.03507991507649422,
-0.022995414212346077,
0.12745490670204163,
0.10683466494083405,
0.0494537390768528,
0.05901025980710983,
0.055863719433546066,
0.00022327214537654072,
-0.10744024068117142,
-0.09290604293346405,
-0.09009643644094467,
-0.17250287532806396,
-0.0400233119726181,
-0.019396012648940086,
-0.08787799626588821,
0.14829090237617493,
-0.014568718150258064,
0.028005655854940414,
0.1368286907672882,
-0.03775063902139664,
-0.001993260346353054,
0.012285840697586536,
-0.06810299307107925,
-0.07372584939002991,
-0.04783008247613907,
0.048794224858284,
-0.0013076637405902147,
0.0578857846558094,
0.014233550988137722,
0.03104347176849842,
-0.001389318029396236,
0.08849023282527924,
-0.08378533273935318,
-0.11442305147647858,
-0.0663972869515419,
-0.02965136058628559,
-0.04730625078082085,
0.04172123968601227,
-0.0011762784561142325,
-0.06620915234088898,
-0.03204142674803734,
0.07238327711820602,
-0.02196650393307209,
-0.15496361255645752,
-0.12810854613780975,
0.10630069673061371,
-0.08162186294794083,
-0.001699382090009749,
-0.08219049870967865,
-0.013039400801062584,
-0.0923834815621376,
0.19076067209243774,
0.21492940187454224,
-0.022741157561540604,
0.04763593152165413,
-0.0017174440436065197,
0.009754495695233345,
-0.057320721447467804,
0.12756094336509705,
-0.006759525276720524,
0.1118629202246666,
0.039371103048324585,
-0.10499055683612823,
-0.09112891554832458,
0.015099162235856056,
0.02332279086112976,
0.03887071833014488,
0.016121767461299896,
-0.03860156610608101,
-0.03535871580243111,
0.020449619740247726,
-0.018482306972146034,
-0.06766576319932938,
0.09425044804811478,
0.03997236490249634,
-0.02962382696568966,
-0.07526712119579315,
0.0813126415014267,
-0.056553903967142105,
0.017384985461831093,
-0.030753938481211662,
-0.030163371935486794,
0.02765660732984543,
0.009459336288273335,
-0.17934124171733856,
0.05814266949892044,
0.1227380707859993,
-0.012473782524466515,
0.14220185577869415,
-0.025032520294189453,
0.0404127761721611,
0.062356747686862946,
0.04467805102467537,
-0.05659898370504379,
0.07175921648740768,
-0.048251181840896606,
-0.11038573831319809,
0.017412658780813217,
0.020281506702303886,
-0.0554942712187767,
0.1113477274775505,
0.017536573112010956,
-0.11433888971805573,
0.005901903845369816,
-0.025348806753754616,
-0.06824366003274918,
-0.03701445460319519,
-0.0979771614074707,
-0.07700935751199722,
0.14896386861801147,
0.1151852235198021,
0.027678176760673523,
-0.07144930213689804,
-0.055955786257982254,
0.0827675610780716,
0.03953048586845398,
0.061876729130744934,
-0.05407389625906944,
-0.13441422581672668,
-0.03409944102168083,
-0.0894632413983345,
0.025940505787730217,
-0.2887326776981354,
-0.050666410475969315,
0.012257110327482224,
-0.04758603125810623,
-0.06124686449766159,
0.027872497215867043,
0.18729346990585327,
0.08891391009092331,
-0.048225097358226776,
-0.09367028623819351,
0.02782254107296467,
0.08707074075937271,
-0.17780277132987976,
-0.04620032384991646
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-ontonotes5")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-ontonotes5")
```
|
{}
|
token-classification
|
asahi417/tner-xlm-roberta-large-ontonotes5
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-ar")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-ar")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-panx-dataset-ar
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-en")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-en")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-panx-dataset-en
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-es")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-es")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-panx-dataset-es
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-ja")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-ja")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-panx-dataset-ja
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-ko")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-ko")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-panx-dataset-ko
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-ru")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-ru")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-panx-dataset-ru
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-all-english")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-all-english")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-uncased-all-english
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-bc5cdr")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-bc5cdr")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-uncased-bc5cdr
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-bionlp2004")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-bionlp2004")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-uncased-bionlp2004
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-conll2003")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-conll2003")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-uncased-conll2003
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-fin")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-fin")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-uncased-fin
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-mit-movie-trivia")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-mit-movie-trivia")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-uncased-mit-movie-trivia
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-mit-restaurant")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-mit-restaurant")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-uncased-mit-restaurant
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-ontonotes5")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-ontonotes5")
```
|
{}
|
token-classification
|
asahi417/tner-xlm-roberta-large-uncased-ontonotes5
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-panx-dataset-en")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-panx-dataset-en")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-uncased-panx-dataset-en
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-wnut2017")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-wnut2017")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-uncased-wnut2017
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-wnut2017")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-wnut2017")
```
|
{}
|
token-classification
|
tner/xlm-roberta-large-wnut2017
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
# XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at TNER repository.
## Usage
|
[
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.",
"## Usage"
] |
[
41,
33,
3
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa for NER\nXLM-RoBERTa finetuned on NER. Check more detail at TNER repository.## Usage"
] |
[
0.003289028536528349,
0.07888621836900711,
-0.006081474479287863,
0.03552989661693573,
0.14206738770008087,
0.013860287144780159,
0.03766065835952759,
0.03991563618183136,
-0.08517812937498093,
0.04118155315518379,
0.07588246464729309,
0.21902568638324738,
-0.07341038435697556,
0.06011303514242172,
-0.07662231475114822,
-0.17321693897247314,
0.005439311265945435,
0.05066078528761864,
-0.0010814277920871973,
0.09667061269283295,
0.058413129299879074,
-0.06038260459899902,
0.07317746430635452,
0.043902184814214706,
-0.15997615456581116,
0.07303990423679352,
0.07305026054382324,
-0.07133368402719498,
0.0432269461452961,
0.0462200827896595,
0.15711967647075653,
0.053943466395139694,
0.00017849562573246658,
-0.14551816880702972,
0.04896517097949982,
-0.002687775297090411,
-0.06355168670415878,
0.08640090376138687,
0.05044586583971977,
-0.09612691402435303,
0.1761658489704132,
0.016461197286844254,
0.02253158576786518,
0.043712157756090164,
-0.085299052298069,
-0.017333559691905975,
-0.0652138963341713,
0.1384463608264923,
-0.0020436125341802835,
0.04196026548743248,
0.026436204090714455,
0.24599938094615936,
-0.12329883128404617,
0.08748561888933182,
0.23218677937984467,
-0.2239467054605484,
-0.04796064272522926,
0.06957133114337921,
0.027715858072042465,
0.06841650605201721,
0.003096900414675474,
0.05200006440281868,
0.06901968270540237,
-0.0031550265848636627,
0.020530039444565773,
-0.07269036024808884,
-0.1681835949420929,
0.04497598484158516,
-0.14789684116840363,
0.018470779061317444,
0.060349032282829285,
0.009906004182994366,
0.039448127150535583,
0.07542434334754944,
-0.05105974152684212,
-0.10646378993988037,
-0.04575754702091217,
-0.09069839119911194,
-0.04299302399158478,
-0.08245459198951721,
-0.03330890089273453,
-0.06460728496313095,
-0.03468429297208786,
-0.03730015456676483,
-0.192500501871109,
0.24960650503635406,
0.030843615531921387,
0.01442938856780529,
-0.12560716271400452,
-0.01353937666863203,
-0.07920759171247482,
-0.03454761207103729,
-0.014316076412796974,
-0.04940476641058922,
-0.03462471440434456,
-0.041281674057245255,
-0.04201526939868927,
0.028178462758660316,
0.09841978549957275,
0.2255057543516159,
0.13477757573127747,
0.0425117202103138,
0.021136876195669174,
0.04108254611492157,
-0.021639807149767876,
0.08700787276029587,
-0.030201461166143417,
-0.05528021976351738,
0.14148177206516266,
-0.09763789921998978,
0.0091481264680624,
-0.031117267906665802,
-0.13298365473747253,
-0.06695947051048279,
0.053246963769197464,
0.0761711373925209,
0.03734854236245155,
0.08058809489011765,
0.01423803623765707,
-0.059119731187820435,
0.1794310361146927,
-0.07104325294494629,
0.049407731741666794,
-0.0013798216823488474,
0.04256655275821686,
0.09069482237100601,
-0.02527543716132641,
-0.0027257483452558517,
0.006279710680246353,
0.034812092781066895,
-0.09935682266950607,
-0.043127693235874176,
-0.037054773420095444,
-0.10737902671098709,
0.05695067346096039,
-0.06856461614370346,
0.0031506172381341457,
-0.23873396217823029,
-0.0706828236579895,
0.022920120507478714,
0.020730746909976006,
0.0050235893577337265,
-0.05138227343559265,
-0.012187357060611248,
-0.00732475146651268,
0.030553463846445084,
-0.03478788584470749,
-0.061011429876089096,
0.00444518867880106,
0.022722642868757248,
0.04137091338634491,
0.05049489066004753,
-0.062087543308734894,
0.014976107515394688,
-0.07107585668563843,
-0.004080235026776791,
-0.03971031308174133,
-0.013926065526902676,
-0.11027941107749939,
0.0471174381673336,
-0.07646916806697845,
-0.07709629833698273,
-0.12097251415252686,
-0.02447572536766529,
0.005751088261604309,
0.0324179008603096,
-0.06688906252384186,
-0.14856892824172974,
0.021438561379909515,
-0.08633197098970413,
-0.04107862710952759,
0.08757086098194122,
0.008587690070271492,
-0.05683707445859909,
0.03012724407017231,
0.14007507264614105,
0.2432764619588852,
-0.09275954216718674,
-0.012131537310779095,
0.04180968180298805,
-0.1373172402381897,
-0.17150181531906128,
-0.02404898777604103,
0.1135176420211792,
-0.10332200676202774,
0.05009658262133598,
-0.0449526309967041,
0.09700530022382736,
-0.03909601271152496,
-0.05624604970216751,
-0.030143624171614647,
0.0007223660359159112,
0.08709753304719925,
0.010194506496191025,
0.056794412434101105,
-0.012871501967310905,
0.00042175393900834024,
0.11589621007442474,
0.056960221379995346,
0.010890684090554714,
0.055038366466760635,
-0.08177220821380615,
0.14374081790447235,
-0.10726288706064224,
0.013030581176280975,
-0.16018033027648926,
-0.08496222645044327,
-0.01851828210055828,
-0.12985317409038544,
0.1313144564628601,
0.09467193484306335,
0.052861329168081284,
-0.03404253348708153,
-0.028582293540239334,
0.01783793792128563,
0.05331825464963913,
0.04083585739135742,
0.0007089106366038322,
-0.09991589933633804,
0.061666280031204224,
-0.04470502957701683,
-0.06208955869078636,
-0.1503213346004486,
0.0026342018973082304,
-0.014043162576854229,
0.08008532226085663,
0.01078354474157095,
0.044271185994148254,
-0.049278464168310165,
0.08360279351472855,
-0.09030057489871979,
0.01928619295358658,
0.06258520483970642,
-0.01442626491189003,
-0.08205699920654297,
0.08085257560014725,
-0.07949931174516678,
0.146861270070076,
0.13068991899490356,
-0.12426234781742096,
-0.03851095214486122,
0.043038755655288696,
-0.017093047499656677,
-0.001436163205653429,
0.05908988043665886,
0.0612429641187191,
0.10192254930734634,
-0.0075190626084804535,
0.1028328612446785,
-0.0284759271889925,
-0.06973796337842941,
0.07377377897500992,
-0.07386866956949234,
-0.06108097359538078,
0.11343465000391006,
0.2046499252319336,
-0.21522186696529388,
0.10552290081977844,
0.11865178495645523,
-0.18322253227233887,
0.06707890331745148,
0.053549185395240784,
-0.0006522408802993596,
0.0034686559811234474,
-0.04976693540811539,
0.0678732618689537,
-0.04613197222352028,
0.04490261524915695,
0.023155970498919487,
0.06452228128910065,
0.02895987406373024,
0.07552145421504974,
-0.09551621973514557,
-0.011779322288930416,
0.008396889083087444,
0.0038234060630202293,
-0.08161599189043045,
0.13136814534664154,
-0.00994911976158619,
0.07096874713897705,
-0.01655307412147522,
-0.05323893204331398,
0.02605600096285343,
0.047615960240364075,
-0.07681521773338318,
0.12423792481422424,
-0.10763874650001526,
-0.18802031874656677,
-0.17885960638523102,
-0.12956474721431732,
-0.11383716017007828,
-0.024920348078012466,
0.010742469690740108,
-0.13093982636928558,
-0.01340178120881319,
0.03372756019234657,
-0.04854271933436394,
-0.06005169823765755,
0.018533332273364067,
-0.06343065947294235,
0.031100086867809296,
0.017442822456359863,
-0.06636367738246918,
-0.006285320036113262,
-0.07082878798246384,
-0.06799576431512833,
0.07967149466276169,
-0.04036581143736839,
0.19393181800842285,
0.18626728653907776,
-0.07064767181873322,
0.027609674260020256,
0.01824001781642437,
0.16745728254318237,
-0.032062966376543045,
-0.026487935334444046,
0.16373717784881592,
0.019190775230526924,
0.05479419603943825,
0.08089429885149002,
0.028761152178049088,
0.02129274606704712,
-0.027850927785038948,
0.017829464748501778,
-0.09771450608968735,
-0.22044381499290466,
-0.08526971936225891,
-0.1520020216703415,
-0.043122548609972,
0.01702073961496353,
0.06193794310092926,
0.15819258987903595,
0.012198111973702908,
0.06494657695293427,
0.024513643234968185,
-0.02595973014831543,
0.10180854797363281,
0.24858158826828003,
0.06729419529438019,
0.08822711557149887,
-0.05593815818428993,
-0.12374816089868546,
0.07306492328643799,
0.05332392454147339,
0.1934259533882141,
0.09942668676376343,
0.09753626585006714,
0.057003580033779144,
0.048101600259542465,
0.17752115428447723,
0.06899083405733109,
-0.03439635410904884,
-0.05049258843064308,
0.013433961197733879,
-0.01249784417450428,
0.03387833386659622,
-0.0016137018101289868,
0.035498373210430145,
-0.10278116911649704,
0.0728076621890068,
-0.09108459204435349,
0.06412702053785324,
-0.06972509622573853,
-0.020490802824497223,
-0.23314356803894043,
0.029680874198675156,
-0.003927094861865044,
0.011430327780544758,
0.02565462701022625,
0.0060218265280127525,
-0.06216791272163391,
-0.03365303948521614,
0.10633771866559982,
-0.0573430173099041,
0.09317810088396072,
0.029630396515130997,
0.00207578600384295,
-0.048153866082429886,
0.16866444051265717,
0.03507606312632561,
0.08344986289739609,
-0.1460033357143402,
0.1945846527814865,
0.007004293147474527,
-0.031036116182804108,
0.04153667017817497,
-0.0796571671962738,
0.0028826005291193724,
0.14660076797008514,
0.040915269404649734,
0.02714083343744278,
-0.17080670595169067,
-0.1255003809928894,
-0.04554203525185585,
0.0550619401037693,
0.080301433801651,
0.03875713422894478,
0.0337483175098896,
-0.04569868743419647,
-0.036953262984752655,
0.02527075633406639,
0.03004295937716961,
-0.10312774777412415,
-0.19030390679836273,
0.03206122666597366,
0.05129341408610344,
-0.16489318013191223,
0.03370355814695358,
-0.08297648280858994,
-0.13546979427337646,
0.24688832461833954,
-0.11379839479923248,
0.05485904961824417,
-0.12777288258075714,
-0.017972281202673912,
0.0836879312992096,
-0.17279434204101562,
0.02134544588625431,
-0.05973318591713905,
0.09006188809871674,
-0.04372558370232582,
-0.22621208429336548,
0.021117666736245155,
-0.09713618457317352,
0.00040040447493083775,
-0.006860139314085245,
0.03604012727737427,
-0.040347736328840256,
0.05074547976255417,
-0.0154619961977005,
0.037589311599731445,
-0.023358650505542755,
-0.10525496304035187,
-0.023514367640018463,
0.08622890710830688,
-0.043347060680389404,
-0.02625471167266369,
-0.09867627173662186,
-0.05001095309853554,
-0.04921915382146835,
0.028962694108486176,
0.21550418436527252,
0.1293199360370636,
-0.08561567217111588,
0.10118934512138367,
0.10299686342477798,
-0.05334513261914253,
-0.2867765724658966,
-0.045265279710292816,
0.00932373572140932,
-0.0479944571852684,
0.016073092818260193,
-0.046401746571063995,
0.12578962743282318,
0.10033085197210312,
-0.0034777307882905006,
0.049746252596378326,
-0.05544639751315117,
-0.11032413691282272,
0.08421633392572403,
0.060097578912973404,
0.2800736725330353,
-0.02159220725297928,
-0.03547210991382599,
-0.03516441583633423,
-0.09221801161766052,
0.14351947605609894,
0.002262585796415806,
0.08280018717050552,
-0.047636713832616806,
0.09796063601970673,
0.008308115415275097,
-0.04293251410126686,
0.03721034154295921,
-0.014733677729964256,
0.032850589603185654,
-0.010834149084985256,
-0.1574329435825348,
-0.026902692392468452,
-0.026047026738524437,
-0.06260761618614197,
-0.02143997885286808,
0.04851209372282028,
0.08811670541763306,
-0.05612137168645859,
-0.08716197311878204,
0.13558897376060486,
0.04319697991013527,
-0.018277399241924286,
-0.04829716682434082,
-0.00019992006127722561,
-0.006912854500114918,
-0.039826009422540665,
0.2349671870470047,
-0.0599391795694828,
0.11123815178871155,
0.06831106543540955,
0.09065917879343033,
-0.028031235560774803,
-0.00543183321133256,
-0.05187970772385597,
-0.07161350548267365,
0.07088790088891983,
-0.03955424204468727,
0.050186291337013245,
0.12437167018651962,
0.03315076231956482,
0.03959677368402481,
0.06163690239191055,
0.02461291290819645,
-0.035769298672676086,
0.1541839838027954,
-0.09721402078866959,
-0.01688731089234352,
-0.02798815816640854,
-0.16457048058509827,
0.016782747581601143,
0.09929101914167404,
0.10174241662025452,
-0.06275022029876709,
-0.032948169857263565,
0.033088427037000656,
-0.03170841932296753,
-0.04872364178299904,
0.09917334467172623,
0.12665867805480957,
0.023874009028077126,
-0.10578019171953201,
-0.0826113373041153,
0.06940988451242447,
-0.013100577518343925,
-0.025323737412691116,
0.01840493083000183,
-0.10072320699691772,
-0.08216746896505356,
0.033693648874759674,
0.18345315754413605,
-0.20503520965576172,
-0.024283725768327713,
-0.07435718178749084,
-0.012521067634224892,
0.05050726607441902,
0.177557110786438,
0.06937054544687271,
-0.017909502610564232,
-0.0695573017001152,
0.011100193485617638,
-0.09155179560184479,
0.036432016640901566,
-0.02550864778459072,
0.11514582484960556,
-0.21320289373397827,
0.005653982516378164,
0.013745357282459736,
0.10954421758651733,
-0.07535896450281143,
0.014965388923883438,
-0.10006248950958252,
-0.010537592694163322,
-0.00552751449868083,
-0.026402873918414116,
-0.06431473046541214,
0.036139585077762604,
0.0016023381613194942,
-0.03852039948105812,
-0.12516628205776215,
0.02422315441071987,
-0.08127996325492859,
0.01322990097105503,
-0.010344427078962326,
0.030843334272503853,
-0.026126015931367874,
0.02180038020014763,
0.09149546921253204,
-0.00859751459211111,
0.012274615466594696,
0.07059759646654129,
0.0005492331692948937,
0.14657548069953918,
-0.19406521320343018,
-0.08699746429920197,
0.09566036611795425,
0.12341132760047913,
0.06385457515716553,
0.00782838836312294,
0.06112855672836304,
0.06915385276079178,
0.0433267280459404,
0.009335007518529892,
-0.0760384351015091,
-0.09998037666082382,
0.037983670830726624,
-0.13085009157657623,
-0.1583942025899887,
-0.052160345017910004,
-0.03381388261914253,
0.02818211168050766,
0.07490576803684235,
0.15532247722148895,
-0.06301799416542053,
0.03950142860412598,
-0.0530218631029129,
-0.014055208303034306,
0.003539926139637828,
-0.16165800392627716,
-0.1040080338716507,
-0.04486878961324692,
0.014008441008627415,
0.013926138170063496,
0.1887282133102417,
0.0264689140021801,
-0.09307661652565002,
0.012232765555381775,
-0.023025311529636383,
-0.03529161214828491,
-0.057169582694768906,
0.1316571831703186,
0.13329462707042694,
-0.016133084893226624,
-0.04602989926934242,
0.03719233721494675,
-0.021153632551431656,
-0.04214594140648842,
0.16803540289402008,
0.13266655802726746,
-0.12903374433517456,
-0.0016879008617252111,
0.10840648412704468,
-0.021527189761400223,
-0.015194421634078026,
-0.03667256608605385,
-0.13754625618457794,
0.07669463753700256,
0.05289885029196739,
0.0817393884062767,
0.25263160467147827,
-0.05124993994832039,
0.01805347017943859,
0.029945112764835358,
-0.041503146290779114,
-0.20855431258678436,
-0.22164469957351685,
-0.1636083722114563,
-0.14104872941970825,
0.043814901262521744,
-0.0570879727602005,
-0.0130655812099576,
-0.11000512540340424,
0.022426389157772064,
-0.0074761551804840565,
-0.001529043074697256,
0.033442843705415726,
-0.03860286995768547,
-0.05186771601438522,
-0.05204097926616669,
-0.0581730455160141,
0.038660530000925064,
0.02330828458070755,
-0.0015867996262386441,
-0.049093473702669144,
0.037594154477119446,
-0.011572889052331448,
0.020564327016472816,
0.05689740926027298,
-0.11247596144676208,
-0.07169300317764282,
-0.04838899150490761,
0.03792228549718857,
-0.015721751376986504,
0.02818664163351059,
0.02802598476409912,
-0.0416889488697052,
0.010500938631594181,
0.07608276605606079,
0.010796435177326202,
-0.11542173475027084,
-0.0480533093214035,
0.3071701228618622,
0.0969318151473999,
0.09987732023000717,
-0.033666957169771194,
-0.007245687302201986,
-0.056552764028310776,
0.3067088723182678,
0.2387523353099823,
0.023923365399241447,
0.02082403190433979,
0.008552857674658298,
0.026722416281700134,
0.034160833805799484,
0.08900392055511475,
0.06532324105501175,
0.26466378569602966,
0.01925402507185936,
-0.14873331785202026,
-0.08897396922111511,
0.06803518533706665,
-0.05366956815123558,
0.06785416603088379,
0.06574329733848572,
-0.0847594290971756,
-0.05636998638510704,
0.0429915152490139,
-0.11013634502887726,
0.02079697698354721,
0.014867831952869892,
-0.08437507599592209,
-0.11225368827581406,
-0.015975024551153183,
0.12619704008102417,
-0.033238284289836884,
0.043522659689188004,
-0.0597127303481102,
-0.10760653764009476,
-0.09815087914466858,
0.007375508546829224,
-0.178144633769989,
0.014548620209097862,
0.08137399703264236,
0.13289496302604675,
0.018523219972848892,
-0.015684526413679123,
0.056838251650333405,
0.09361761063337326,
0.02948528714478016,
-0.054516665637493134,
0.1413286030292511,
-0.024651620537042618,
-0.1467868536710739,
0.06457607448101044,
0.04657136648893356,
-0.015391997061669827,
-0.10477887094020844,
0.057170569896698,
-0.09901900589466095,
0.014938797801733017,
-0.06459534168243408,
-0.014744740910828114,
-0.024169830605387688,
0.07826871424913406,
-0.03948674723505974,
0.10257376730442047,
0.09059031307697296,
0.0193665511906147,
-0.000012981024156033527,
-0.09051522612571716,
0.009107721969485283,
0.05953976511955261,
0.08040659874677658,
-0.06216486543416977,
-0.1041659489274025,
-0.06075410544872284,
-0.024240201339125633,
-0.004253624472767115,
-0.140977144241333,
-0.014712204225361347,
-0.07045236974954605,
0.014454224146902561,
-0.05603759363293648,
0.094093918800354,
0.11990483105182648,
0.022234847769141197,
0.022558659315109253,
-0.13958631455898285,
0.021810097619891167,
0.04013752564787865,
-0.12100198864936829,
-0.029249075800180435
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4500
- Wer: 0.3391
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.5329 | 4.0 | 500 | 1.5741 | 1.0400 |
| 0.6432 | 8.0 | 1000 | 0.4571 | 0.4418 |
| 0.2214 | 12.0 | 1500 | 0.4381 | 0.3823 |
| 0.1294 | 16.0 | 2000 | 0.4706 | 0.3911 |
| 0.0868 | 20.0 | 2500 | 0.5252 | 0.3662 |
| 0.0616 | 24.0 | 3000 | 0.4828 | 0.3458 |
| 0.0461 | 28.0 | 3500 | 0.4500 | 0.3391 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-demo-colab", "results": []}]}
|
automatic-speech-recognition
|
asakawa/wav2vec2-base-demo-colab
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
|
wav2vec2-base-demo-colab
========================
This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4500
* Wer: 0.3391
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 32
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 1000
* num\_epochs: 30
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.10.0+cu111
* Datasets 1.14.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] |
[
56,
130,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3"
] |
[
-0.11001329869031906,
0.10182571411132812,
-0.0033098524436354637,
0.06210232898592949,
0.10741185396909714,
-0.02009257860481739,
0.12881368398666382,
0.15094104409217834,
-0.09326200932264328,
0.07533517479896545,
0.12672939896583557,
0.14818891882896423,
0.0413888618350029,
0.14509864151477814,
-0.05016576498746872,
-0.28251171112060547,
0.04617306590080261,
0.0364464670419693,
-0.01213957741856575,
0.12671460211277008,
0.08318619430065155,
-0.12506313621997833,
0.059161778539419174,
0.036197345703840256,
-0.1605929285287857,
-0.004378183279186487,
-0.0034153498709201813,
-0.10580043494701385,
0.12286894023418427,
0.006301425397396088,
0.07088050246238708,
0.04911627992987633,
0.06582555919885635,
-0.21680723130702972,
0.006794361397624016,
0.045095231384038925,
0.028837522491812706,
0.07617338746786118,
0.057125069200992584,
-0.030081337317824364,
0.1041196957230568,
-0.07628540694713593,
0.07879897207021713,
0.03728504106402397,
-0.10501067340373993,
-0.2944563925266266,
-0.0865357518196106,
0.04651870205998421,
0.06663355231285095,
0.0882689356803894,
-0.011816935613751411,
0.14172059297561646,
-0.05266236886382103,
0.10898884385824203,
0.2790658175945282,
-0.31693458557128906,
-0.044125791639089584,
-0.041972775012254715,
0.055893681943416595,
0.06165863946080208,
-0.1011449322104454,
-0.015478948131203651,
0.016606323421001434,
0.044138774275779724,
0.13942427933216095,
-0.015661122277379036,
-0.05932937562465668,
-0.006840428337454796,
-0.14827486872673035,
-0.05971655622124672,
0.11623179912567139,
0.022848019376397133,
-0.041665688157081604,
-0.09676644206047058,
-0.05644090473651886,
-0.2130504697561264,
-0.0677371695637703,
-0.016309702768921852,
0.04426638036966324,
-0.04262211546301842,
-0.10493776202201843,
-0.01382332481443882,
-0.06748916953802109,
-0.07418474555015564,
-0.042757753282785416,
0.19236722588539124,
0.0567302480340004,
-0.0005796320619992912,
-0.039163827896118164,
0.07619228214025497,
-0.022993221879005432,
-0.1380838006734848,
-0.02474251575767994,
0.03813285008072853,
-0.017952602356672287,
-0.014297805726528168,
-0.04376997798681259,
-0.05807135999202728,
0.021018365398049355,
0.15983843803405762,
-0.1047891154885292,
0.09511762857437134,
-0.022340307012200356,
0.03968718647956848,
-0.10379299521446228,
0.20807139575481415,
-0.04217563197016716,
0.016687758266925812,
-0.007840156555175781,
0.05511631444096565,
0.03066355735063553,
-0.026318605989217758,
-0.09449745714664459,
0.028401918709278107,
0.1205730065703392,
0.045474518090486526,
-0.048423901200294495,
0.06491062790155411,
-0.03200084716081619,
-0.00918513536453247,
0.001574812806211412,
-0.11231201887130737,
0.03656335920095444,
0.018651988357305527,
-0.06587469577789307,
0.005631884094327688,
0.01632874645292759,
0.005997245665639639,
-0.054714567959308624,
0.08254970610141754,
-0.06257381290197372,
0.03308691084384918,
-0.05664055794477463,
-0.12557737529277802,
0.02442372590303421,
-0.11579189449548721,
-0.003987512551248074,
-0.10019838809967041,
-0.09885061532258987,
-0.010967482812702656,
0.036134134978055954,
-0.03812209144234657,
-0.02597016468644142,
-0.07914965599775314,
-0.09063296020030975,
0.04600222781300545,
-0.034619204699993134,
0.07119205594062805,
-0.07424740493297577,
0.09412277489900589,
0.03462674841284752,
0.08892946690320969,
-0.01908031851053238,
0.06018264591693878,
-0.07018223404884338,
0.026463527232408524,
-0.19982019066810608,
0.07623585313558578,
-0.08622954785823822,
0.05535869672894478,
-0.12442599982023239,
-0.11472245305776596,
0.02110935188829899,
-0.007661312352865934,
0.09930796176195145,
0.09754657000303268,
-0.16974231600761414,
-0.09006167203187943,
0.20923393964767456,
-0.08223554491996765,
-0.08354063332080841,
0.12441112846136093,
-0.024982554838061333,
-0.00001746667840052396,
0.057071033865213394,
0.2574861943721771,
0.04661405459046364,
-0.12580691277980804,
0.006123882718384266,
-0.040149759501218796,
0.04201539233326912,
-0.03681860491633415,
0.05807390809059143,
-0.027969978749752045,
0.06807049363851547,
0.018063480034470558,
-0.004019848071038723,
0.037016820162534714,
-0.08742247521877289,
-0.07656554132699966,
-0.0453321635723114,
-0.0786321833729744,
0.031328003853559494,
0.030665185302495956,
0.06479591131210327,
-0.11660721898078918,
-0.10816610604524612,
0.038278914988040924,
0.08252875506877899,
-0.10410869121551514,
0.0727924108505249,
-0.12213654071092606,
0.08509286493062973,
-0.017640426754951477,
-0.004433434456586838,
-0.19157922267913818,
0.03655379265546799,
0.03707845136523247,
-0.028362788259983063,
0.041823361068964005,
-0.06504393368959427,
0.07747120410203934,
0.045559417456388474,
-0.027016019448637962,
-0.04626975581049919,
-0.00935397855937481,
0.009345989674329758,
-0.0902477577328682,
-0.20742997527122498,
-0.037322185933589935,
-0.03700974956154823,
0.08041063696146011,
-0.1374455839395523,
0.03371679410338402,
0.07952403277158737,
0.0927121564745903,
0.03320920839905739,
-0.03072446398437023,
-0.001919315429404378,
0.08978035300970078,
-0.020509811118245125,
-0.06394141167402267,
0.05797302722930908,
0.02049727737903595,
-0.08743591606616974,
0.039884719997644424,
-0.1479189693927765,
0.12703897058963776,
0.1486283242702484,
-0.014617124572396278,
-0.06477111577987671,
0.0012916276464238763,
-0.04725499078631401,
-0.03414393961429596,
-0.003890229854732752,
0.03460654243826866,
0.21668584644794464,
0.012430061586201191,
0.14422285556793213,
-0.08962459117174149,
-0.041147470474243164,
0.0503079928457737,
-0.0218299999833107,
-0.004910492338240147,
0.11459992825984955,
0.04271899163722992,
-0.05336550995707512,
0.11737614870071411,
0.09181030094623566,
-0.08000584691762924,
0.12053009867668152,
-0.060183022171258926,
-0.07515659928321838,
-0.020656919106841087,
0.0045709507539868355,
0.02315361239016056,
0.09963139146566391,
-0.16271275281906128,
-0.04018360376358032,
0.026713628321886063,
0.025852354243397713,
0.020821627229452133,
-0.20890559256076813,
0.016889702528715134,
0.028561795130372047,
-0.08669332414865494,
-0.04470476508140564,
0.003279664320871234,
0.013270042836666107,
0.09515856951475143,
0.012512494809925556,
-0.09351973980665207,
0.011388848535716534,
0.00480106333270669,
-0.07225245237350464,
0.17369778454303741,
-0.11719924211502075,
-0.17678719758987427,
-0.10675711184740067,
-0.09184694290161133,
-0.041420936584472656,
-0.002312696073204279,
0.08841399848461151,
-0.09255148470401764,
-0.039077386260032654,
-0.08220217376947403,
-0.015113062225282192,
-0.02517179772257805,
0.04351978376507759,
0.03158868849277496,
-0.011298253200948238,
0.06614530831575394,
-0.11626507341861725,
-0.021204207092523575,
-0.040665168315172195,
-0.0015491476515308022,
0.053452786058187485,
0.04043683409690857,
0.10853692889213562,
0.15697027742862701,
-0.012629513628780842,
0.0509147047996521,
-0.0454166904091835,
0.18741202354431152,
-0.075465127825737,
-0.03672509267926216,
0.11257649213075638,
-0.005813829135149717,
0.06805524230003357,
0.11482375115156174,
0.04786094278097153,
-0.09793643653392792,
-0.014797127805650234,
0.0034915688447654247,
-0.04510996863245964,
-0.2146754264831543,
-0.0364653617143631,
-0.044126030057668686,
-0.0026330435648560524,
0.10704156756401062,
0.040186163038015366,
0.03803572803735733,
0.02205970697104931,
0.03219310939311981,
0.0079676927998662,
0.00003123574788332917,
0.09599551558494568,
0.1320398896932602,
0.039720792323350906,
0.1331765353679657,
-0.03939269110560417,
-0.03665650635957718,
0.030698349699378014,
0.004136329051107168,
0.23162123560905457,
0.019459465518593788,
0.19103704392910004,
0.05538180470466614,
0.17851130664348602,
0.04352813586592674,
0.06643311679363251,
-0.0022885752841830254,
-0.010529084131121635,
0.01125906128436327,
-0.052633289247751236,
-0.04012298583984375,
0.024053720757365227,
0.023449832573533058,
0.00999311450868845,
-0.11488919705152512,
-0.011553280055522919,
0.04658404737710953,
0.3522787392139435,
0.02857084758579731,
-0.3403303027153015,
-0.09230126440525055,
-0.013340868055820465,
-0.08417142927646637,
-0.0321367047727108,
0.04555932432413101,
0.08981858938932419,
-0.07930896431207657,
0.06535167247056961,
-0.06285246461629868,
0.09004396200180054,
-0.06511448323726654,
0.03453698754310608,
0.03729327768087387,
0.0734705850481987,
0.004337041173130274,
0.032666049897670746,
-0.2895656228065491,
0.28005650639533997,
0.006323046516627073,
0.07702495902776718,
-0.0606362521648407,
0.007466489914804697,
0.025540119037032127,
0.021646011620759964,
0.08598458021879196,
-0.02561558224260807,
-0.12019171565771103,
-0.17090678215026855,
-0.09376376122236252,
0.012404785491526127,
0.12958794832229614,
0.013754653744399548,
0.1113671138882637,
-0.010768466629087925,
-0.0171161200851202,
0.04877419397234917,
-0.09901254624128342,
-0.06457982957363129,
-0.0921631008386612,
0.01127923559397459,
0.087298683822155,
0.036240074783563614,
-0.07220982760190964,
-0.10253704339265823,
-0.0871080607175827,
0.14969882369041443,
-0.052956294268369675,
-0.042668215930461884,
-0.11871471256017685,
0.009949298575520515,
0.10881883651018143,
-0.0790463238954544,
0.061538513749837875,
0.009395688772201538,
0.10632539540529251,
0.012545671314001083,
-0.06784054636955261,
0.11860106885433197,
-0.0626729279756546,
-0.16598093509674072,
-0.027616383507847786,
0.14537139236927032,
0.028326276689767838,
0.059413548558950424,
-0.008104194886982441,
0.038091812282800674,
-0.021754492074251175,
-0.07665625959634781,
0.041041046380996704,
0.026881620287895203,
0.04433389753103256,
-0.013652061112225056,
-0.020171763375401497,
-0.006439966149628162,
-0.09029284119606018,
-0.01718144863843918,
0.20646388828754425,
0.23981356620788574,
-0.09736672043800354,
0.09303269535303116,
0.07062308490276337,
-0.042451728135347366,
-0.17312142252922058,
-0.003926996607333422,
0.06409710645675659,
0.0005684866337105632,
-0.027241677045822144,
-0.1955910623073578,
0.02365311048924923,
0.06830760836601257,
-0.02067539095878601,
0.08572369068861008,
-0.3157382905483246,
-0.14053481817245483,
0.13606123626232147,
0.11162334680557251,
0.0626862496137619,
-0.14486302435398102,
-0.05627938732504845,
-0.011491513811051846,
-0.10175207257270813,
0.09314391762018204,
-0.07740993797779083,
0.1354200392961502,
-0.023642148822546005,
0.09360382705926895,
0.011345678940415382,
-0.05722994729876518,
0.10746560245752335,
0.012380349449813366,
0.059392042458057404,
-0.04533274471759796,
0.01896866410970688,
0.04880818352103233,
-0.0633159801363945,
0.05474061146378517,
-0.0800507441163063,
0.029133431613445282,
-0.07805148512125015,
-0.031823571771383286,
-0.08465559035539627,
0.01449185237288475,
-0.008235512301325798,
-0.03165729343891144,
-0.03802936151623726,
-0.0003254461335018277,
0.06157943233847618,
-0.010506946593523026,
0.15584821999073029,
-0.027037331834435463,
0.1249849945306778,
0.16195185482501984,
0.10120515525341034,
-0.10608018934726715,
-0.07687176764011383,
0.006649630144238472,
-0.0346934050321579,
0.05735791102051735,
-0.11978064477443695,
0.03750069811940193,
0.135202094912529,
0.031862154603004456,
0.12164907157421112,
0.06902731209993362,
-0.0650295838713646,
0.03440215066075325,
0.04237372800707817,
-0.13948602974414825,
-0.12896917760372162,
0.01343025453388691,
0.022138278931379318,
-0.07160976529121399,
0.0757601410150528,
0.11801299452781677,
-0.05594000965356827,
-0.01335049606859684,
-0.002495702588930726,
0.013058413751423359,
-0.042157288640737534,
0.19386830925941467,
0.035731155425310135,
0.06011226773262024,
-0.1252942681312561,
0.08204957097768784,
0.039479389786720276,
-0.13555783033370972,
0.060595378279685974,
0.10222604870796204,
-0.09597912430763245,
-0.02771461196243763,
0.026340002194046974,
0.11338016390800476,
-0.028693638741970062,
-0.07547122240066528,
-0.14217916131019592,
-0.14288952946662903,
0.10954221338033676,
0.20493881404399872,
0.05582099035382271,
0.01744120568037033,
-0.05939653888344765,
0.016486523672938347,
-0.12006111443042755,
0.06855805218219757,
0.03975682333111763,
0.06055052950978279,
-0.12898527085781097,
0.1475844830274582,
0.016997292637825012,
0.04071325436234474,
-0.015224376693367958,
-0.01139322854578495,
-0.10848323255777359,
0.03887241333723068,
-0.13043701648712158,
0.005633558612316847,
-0.06429102271795273,
0.0007887766696512699,
0.004127804655581713,
-0.04999146610498428,
-0.06471088528633118,
0.03552922606468201,
-0.1197967529296875,
-0.023272033780813217,
0.0017319697653874755,
0.036388326436281204,
-0.12862840294837952,
-0.008680346421897411,
0.014370153658092022,
-0.09377165138721466,
0.09821530431509018,
0.08893457055091858,
-0.03306882083415985,
0.05147812142968178,
-0.055188145488500595,
-0.027208302170038223,
0.07901773601770401,
-0.00634970935061574,
0.05193322151899338,
-0.13036666810512543,
-0.01923888735473156,
0.011814353987574577,
0.034985896199941635,
0.02399440109729767,
0.11340542137622833,
-0.1149873360991478,
0.0007434532162733376,
-0.027117682620882988,
-0.0491352342069149,
-0.06894377619028091,
0.05015883594751358,
0.10947626084089279,
0.02798554301261902,
0.16339537501335144,
-0.09247218817472458,
0.02607033960521221,
-0.16559910774230957,
0.006735698785632849,
-0.016547786071896553,
-0.12292402237653732,
-0.05062737688422203,
-0.03187550604343414,
0.07868065685033798,
-0.06406395137310028,
0.12813574075698853,
-0.030096912756562233,
0.024581369012594223,
0.03716454654932022,
-0.07786332070827484,
-0.058091823011636734,
0.04002609848976135,
0.20552384853363037,
0.04066883400082588,
-0.043280135840177536,
0.07526648044586182,
0.020453128963708878,
0.08175309002399445,
0.1292378455400467,
0.17241333425045013,
0.1591494381427765,
0.0663313940167427,
0.11866791546344757,
0.05421700328588486,
-0.05225960165262222,
-0.1753614842891693,
0.09430333971977234,
-0.06128307431936264,
0.1311020702123642,
-0.013677774928510189,
0.2406282275915146,
0.12071293592453003,
-0.15273654460906982,
0.06656738370656967,
-0.017881665378808975,
-0.08900968730449677,
-0.11621125042438507,
-0.06277042627334595,
-0.08716017752885818,
-0.1777968406677246,
0.008663887158036232,
-0.10227465629577637,
0.06379310041666031,
0.044653940945863724,
0.036050692200660706,
0.016720062121748924,
0.13878411054611206,
0.012984678149223328,
0.0009148727986030281,
0.09317521750926971,
-0.0033199654426425695,
-0.05644699186086655,
-0.07328421622514725,
-0.08595821261405945,
0.03673538938164711,
-0.012305019423365593,
0.05797416344285011,
-0.003404301591217518,
-0.06843270361423492,
0.04848683997988701,
-0.03913002088665962,
-0.09564520418643951,
0.022730907425284386,
0.02156614325940609,
0.07117100059986115,
0.04896920546889305,
0.03404252976179123,
-0.042011041194200516,
-0.0031397328712046146,
0.19562529027462006,
-0.09482485800981522,
-0.09246838092803955,
-0.11000171303749084,
0.2530248761177063,
0.0398617684841156,
-0.016055136919021606,
0.021912118420004845,
-0.06044745445251465,
-0.03201860561966896,
0.21254992485046387,
0.17128664255142212,
-0.01164740975946188,
0.00363704445771873,
-0.015374076552689075,
-0.0065941233187913895,
-0.03718515858054161,
0.0797106996178627,
0.1466483771800995,
0.060827527195215225,
-0.0624854750931263,
-0.052636370062828064,
-0.05136054754257202,
-0.03253038227558136,
-0.06587615609169006,
0.07618381828069687,
0.0028102912474423647,
-0.025507044047117233,
-0.04544805362820625,
0.06192293018102646,
-0.09208813309669495,
-0.08562067896127701,
0.026840243488550186,
-0.19557389616966248,
-0.1499285250902176,
0.007789668161422014,
0.07247596234083176,
0.011540783569216728,
0.03540840744972229,
0.0025527779944241047,
-0.010551287792623043,
0.08466826379299164,
-0.002800866961479187,
-0.07962691783905029,
-0.06648262590169907,
0.08394525200128555,
-0.1367587298154831,
0.16644689440727234,
-0.04186899960041046,
0.046676669269800186,
0.1225520670413971,
0.08930030465126038,
-0.08216338604688644,
0.0853004977107048,
0.04045350104570389,
-0.1073111891746521,
0.021179908886551857,
0.15559351444244385,
-0.033910222351551056,
0.09416922181844711,
0.03047567792236805,
-0.11312630027532578,
0.013155275955796242,
-0.08949488401412964,
-0.03886978700757027,
-0.03946749120950699,
-0.052481915801763535,
-0.04435348883271217,
0.10893417149782181,
0.1625213623046875,
-0.04385014995932579,
0.005092669744044542,
-0.05187000706791878,
0.01195506937801838,
0.04941793158650398,
-0.0015405149897560477,
-0.06026536598801613,
-0.2781532406806946,
0.01088305376470089,
0.03874203935265541,
0.0022282644640654325,
-0.2585787773132324,
-0.09614872932434082,
0.014339987188577652,
-0.04212426766753197,
-0.08692289888858795,
0.08587118983268738,
0.07460380345582962,
0.045576777309179306,
-0.052309539169073105,
-0.05781073495745659,
-0.03481768071651459,
0.18869954347610474,
-0.1749751716852188,
-0.06020970270037651
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2207
- Accuracy: 0.924
- F1: 0.9244
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.7914 | 1.0 | 250 | 0.3032 | 0.905 | 0.9030 |
| 0.2379 | 2.0 | 500 | 0.2207 | 0.924 | 0.9244 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.924, "name": "Accuracy"}, {"type": "f1", "value": 0.9244145121183605, "name": "F1"}]}]}]}
|
text-classification
|
asalics/distilbert-base-uncased-finetuned-emotion
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased-finetuned-emotion
=========================================
This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2207
* Accuracy: 0.924
* F1: 0.9244
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.10.0+cu111
* Datasets 1.16.1
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
67,
98,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
-0.10365526378154755,
0.11108539253473282,
-0.0026109113823622465,
0.1317654550075531,
0.16546793282032013,
0.045472968369722366,
0.1148209348320961,
0.12493137270212173,
-0.08185860514640808,
0.032128069549798965,
0.10837704688310623,
0.1617085337638855,
0.02285127155482769,
0.09674810618162155,
-0.05789001286029816,
-0.2760312557220459,
-0.013312868773937225,
0.05033736675977707,
-0.015638014301657677,
0.13228055834770203,
0.09348677843809128,
-0.12362140417098999,
0.09650623053312302,
0.003427819348871708,
-0.17494015395641327,
0.003667527576908469,
0.0020847665145993233,
-0.04351482167840004,
0.1478479653596878,
0.0203389972448349,
0.10677221417427063,
0.008356831967830658,
0.08522238582372665,
-0.2250649482011795,
0.018061498180031776,
0.03874968737363815,
0.0002561478759162128,
0.08761061728000641,
0.03720410540699959,
-0.015301057137548923,
0.15303263068199158,
-0.06405466049909592,
0.05445051193237305,
0.021798426285386086,
-0.11284452676773071,
-0.2199874073266983,
-0.08077996224164963,
0.041833750903606415,
0.06329819560050964,
0.11930888146162033,
-0.019842874258756638,
0.12837383151054382,
-0.09601787477731705,
0.09610112756490707,
0.23596636950969696,
-0.2448965162038803,
-0.06858085840940475,
0.020751558244228363,
0.014530576765537262,
0.043537914752960205,
-0.11989867687225342,
-0.039740413427352905,
0.050211407244205475,
0.05117671564221382,
0.11863920837640762,
-0.03312069922685623,
-0.0999940037727356,
0.00910378061234951,
-0.12911130487918854,
-0.04672069475054741,
0.16751150786876678,
0.0594206377863884,
-0.02597641386091709,
-0.05425291508436203,
-0.056162502616643906,
-0.1675000786781311,
-0.031035728752613068,
-0.016450364142656326,
0.054442595690488815,
-0.01592334546148777,
-0.06372737884521484,
0.010441784746944904,
-0.12011896073818207,
-0.04583032429218292,
-0.06421378999948502,
0.10641534626483917,
0.021976949647068977,
0.006818883586674929,
-0.017207900062203407,
0.10352788120508194,
0.0009800537955015898,
-0.12149646133184433,
0.0210917666554451,
0.02099326066672802,
0.026333261281251907,
-0.03047778643667698,
-0.06905151158571243,
-0.055389244109392166,
-0.004919437691569328,
0.10190358012914658,
-0.06666407734155655,
0.045935261994600296,
0.04524286091327667,
0.037766341120004654,
-0.06852026283740997,
0.19527418911457062,
-0.03294919803738594,
-0.03212658688426018,
-0.012501158751547337,
0.06016761064529419,
0.020768651738762856,
-0.006436762399971485,
-0.12171690911054611,
0.02350432053208351,
0.08950570225715637,
-0.00007678163092350587,
-0.09379716217517853,
0.08152900636196136,
-0.07605183124542236,
-0.01949211396276951,
-0.021253660321235657,
-0.0765935555100441,
0.028752928599715233,
0.02075762115418911,
-0.07241667807102203,
0.0030450790654867887,
0.030792895704507828,
0.008529079146683216,
-0.015946075320243835,
0.0917603150010109,
-0.0787631943821907,
0.025490665808320045,
-0.0946962907910347,
-0.1045740470290184,
0.02897842787206173,
-0.09482478350400925,
0.033921513706445694,
-0.09247273951768875,
-0.19394199550151825,
-0.024185366928577423,
0.0686044692993164,
-0.021704984828829765,
-0.0471469946205616,
-0.07331191003322601,
-0.06313978135585785,
0.01850917749106884,
-0.002557029016315937,
0.09711819887161255,
-0.06576484441757202,
0.09101833403110504,
0.027181919664144516,
0.08311154693365097,
-0.031909260898828506,
0.056395988911390305,
-0.11463139951229095,
0.004114741925150156,
-0.13587668538093567,
0.049997471272945404,
-0.047578345984220505,
0.07202952355146408,
-0.06358253955841064,
-0.11173929274082184,
0.015572934411466122,
-0.006378253921866417,
0.06443363428115845,
0.10948903113603592,
-0.19403833150863647,
-0.09464851766824722,
0.16610102355480194,
-0.07067948579788208,
-0.10680301487445831,
0.12891265749931335,
-0.06742480397224426,
0.06976816058158875,
0.06998448073863983,
0.17836694419384003,
0.05879383906722069,
-0.07357979565858841,
-0.016340071335434914,
0.011599463410675526,
0.050163306295871735,
-0.031123390421271324,
0.052572306245565414,
0.02624650113284588,
0.03453371301293373,
0.03880535066127777,
-0.01196232344955206,
0.07060033828020096,
-0.09326792508363724,
-0.10062386095523834,
-0.03427024930715561,
-0.09134482592344284,
0.04848787933588028,
0.09255674481391907,
0.06272212415933609,
-0.10717325657606125,
-0.073724165558815,
0.028808284550905228,
0.09422781318426132,
-0.06488901376724243,
0.028829196467995644,
-0.0596344880759716,
0.0622246228158474,
0.0027249802369624376,
-0.015573904849588871,
-0.17582817375659943,
0.013070456683635712,
0.006194745190441608,
0.027181124314665794,
0.006623989902436733,
0.03696899861097336,
0.06610392779111862,
0.04349454119801521,
-0.05583404377102852,
-0.024697057902812958,
-0.04591572657227516,
-0.002911053132265806,
-0.11217767000198364,
-0.222952201962471,
-0.01753520965576172,
-0.024884168058633804,
0.17654204368591309,
-0.21061822772026062,
0.04510215297341347,
-0.006178705487400293,
0.055832020938396454,
0.014611254446208477,
-0.01919422671198845,
-0.033304933458566666,
0.06556599587202072,
-0.054479777812957764,
-0.042237140238285065,
0.07778333127498627,
0.01036946102976799,
-0.08646371960639954,
-0.037160664796829224,
-0.10661646723747253,
0.14299476146697998,
0.13010098040103912,
-0.11318360269069672,
-0.07107231020927429,
-0.016780277714133263,
-0.06628571450710297,
-0.01899905502796173,
-0.03863293677568436,
0.03865957632660866,
0.19597330689430237,
-0.007075474597513676,
0.13832490146160126,
-0.06229453533887863,
-0.02452687919139862,
0.02397817187011242,
-0.04459702596068382,
0.005227315239608288,
0.13486889004707336,
0.12143418937921524,
-0.06046079099178314,
0.15041641891002655,
0.13522854447364807,
-0.08931641280651093,
0.16353555023670197,
-0.03590400516986847,
-0.05880224332213402,
-0.025102846324443817,
-0.04856446385383606,
-0.018963899463415146,
0.10565771162509918,
-0.18460632860660553,
-0.011765911243855953,
0.02307305857539177,
0.0011658030562102795,
0.006093000527471304,
-0.2260960191488266,
-0.05179370567202568,
0.04856545850634575,
-0.04331237077713013,
-0.006302523892372847,
-0.010050495155155659,
0.00567513657733798,
0.1050773411989212,
-0.0037724007852375507,
-0.08540020883083344,
0.030277138575911522,
-0.001458055805414915,
-0.08583482354879379,
0.20442630350589752,
-0.0918363556265831,
-0.17275619506835938,
-0.1108991801738739,
-0.07250522077083588,
-0.047569986432790756,
0.00643935427069664,
0.07166393846273422,
-0.11759302020072937,
-0.019171783700585365,
-0.07828955352306366,
0.0264158733189106,
0.011945844627916813,
0.020029593259096146,
0.028738269582390785,
-0.0024876517709344625,
0.047073788940906525,
-0.10855920612812042,
-0.019495608285069466,
-0.06457715481519699,
-0.04853179305791855,
0.054971616715192795,
0.019171450287103653,
0.11925762891769409,
0.16973093152046204,
-0.005927021149545908,
0.011735835112631321,
-0.03866672143340111,
0.22641333937644958,
-0.072452612221241,
-0.019722480326890945,
0.13654112815856934,
-0.012618577107787132,
0.05264660716056824,
0.11521118134260178,
0.06805716454982758,
-0.09154286980628967,
0.014333990402519703,
0.04578052833676338,
-0.037165895104408264,
-0.22064699232578278,
-0.04134365916252136,
-0.04843695089221001,
0.025485754013061523,
0.06965936720371246,
0.021163061261177063,
0.0463443286716938,
0.07631208002567291,
0.04127596318721771,
0.04955020546913147,
-0.04838881269097328,
0.05194804072380066,
0.1304904669523239,
0.018573161214590073,
0.10156048089265823,
-0.03687027096748352,
-0.05285428836941719,
0.05776938423514366,
-0.019366687163710594,
0.21297587454319,
0.001861072494648397,
0.14540186524391174,
0.05809827521443367,
0.16863800585269928,
-0.03068048506975174,
0.07258651405572891,
-0.014496046118438244,
-0.04065464809536934,
-0.03182343393564224,
-0.028970252722501755,
-0.06382753700017929,
0.03464755788445473,
-0.05723574012517929,
0.08380259573459625,
-0.13994887471199036,
0.01241863239556551,
0.06259757280349731,
0.2786177396774292,
0.027485299855470657,
-0.31776177883148193,
-0.11263156682252884,
0.005084906704723835,
-0.03786880522966385,
-0.005435932893306017,
0.02235650084912777,
0.09276892989873886,
-0.09591041505336761,
0.0349600613117218,
-0.06057644262909889,
0.08381333947181702,
-0.07126171886920929,
0.06418641656637192,
0.046352777630090714,
0.0721132755279541,
0.010117967613041401,
0.0875658169388771,
-0.2863155007362366,
0.26768237352371216,
-0.010248835198581219,
0.05953718349337578,
-0.08695551007986069,
-0.0006002221489325166,
0.06266553699970245,
0.06651800870895386,
0.06717213243246078,
-0.007731396239250898,
0.0020543483551591635,
-0.182090163230896,
-0.03915363922715187,
0.029793573543429375,
0.06323503702878952,
-0.03606581315398216,
0.08719656616449356,
-0.02526232600212097,
0.008744700811803341,
0.07756873965263367,
0.03433313965797424,
-0.04849676042795181,
-0.10168127715587616,
-0.010243501514196396,
0.033136118203401566,
-0.053475815802812576,
-0.05309470370411873,
-0.128390833735466,
-0.10907188057899475,
0.14396999776363373,
-0.003665628144517541,
-0.023246966302394867,
-0.10303903371095657,
0.0824100524187088,
0.04088747873902321,
-0.088455930352211,
0.027437539771199226,
0.009255582466721535,
0.08022436499595642,
0.020462913438677788,
-0.06966151297092438,
0.106208935379982,
-0.07627078890800476,
-0.1729302853345871,
-0.06904780864715576,
0.09420742839574814,
0.05349254980683327,
0.07726606726646423,
-0.0060472674667835236,
-0.010492062196135521,
-0.04896660894155502,
-0.08469203859567642,
0.03883951157331467,
0.030602402985095978,
0.060137249529361725,
0.015432341024279594,
-0.05169805884361267,
0.006301424000412226,
-0.07002141326665878,
-0.037205908447504044,
0.19957755506038666,
0.23401984572410583,
-0.088113933801651,
0.030145883560180664,
0.032210662961006165,
-0.0741310715675354,
-0.1937704235315323,
0.04973391443490982,
0.059615232050418854,
0.009831813164055347,
0.041455693542957306,
-0.19466006755828857,
0.12152144312858582,
0.08430802822113037,
-0.01133981067687273,
0.09791947156190872,
-0.30057990550994873,
-0.11297563463449478,
0.13992652297019958,
0.1440286636352539,
0.12114910036325455,
-0.14069239795207977,
-0.002414488699287176,
-0.030839765444397926,
-0.12448009848594666,
0.11540801078081131,
-0.08373696357011795,
0.1239585131406784,
-0.024087201803922653,
0.11903462558984756,
0.008925092406570911,
-0.046338435262441635,
0.11534544825553894,
0.021625714376568794,
0.09919611364603043,
-0.07103241235017776,
-0.0303041934967041,
0.022858066484332085,
-0.040134724229574203,
0.02944108098745346,
-0.09900438040494919,
0.017833665013313293,
-0.11792459338903427,
-0.03237378969788551,
-0.08853314816951752,
0.03513661399483681,
-0.040174245834350586,
-0.07397525757551193,
-0.050041165202856064,
0.02816113457083702,
0.07622185349464417,
-0.004667900502681732,
0.08376561850309372,
0.01950220949947834,
0.11442000418901443,
0.09925757348537445,
0.09666679054498672,
-0.05519923195242882,
-0.07141568511724472,
-0.022381464019417763,
-0.009976433590054512,
0.048478029668331146,
-0.14822426438331604,
0.01608099974691868,
0.13894839584827423,
0.019480889663100243,
0.1673259288072586,
0.08592981100082397,
-0.0385739766061306,
0.017456399276852608,
0.06034190207719803,
-0.1507411003112793,
-0.08740292489528656,
-0.02028888277709484,
-0.07070736587047577,
-0.12298166751861572,
0.031328827142715454,
0.08302098512649536,
-0.07266725599765778,
-0.00016929450794123113,
-0.015392606146633625,
0.01725717820227146,
-0.04057107865810394,
0.16434220969676971,
0.048006441444158554,
0.029739059507846832,
-0.10324610769748688,
0.07677920162677765,
0.02069034054875374,
-0.10905935615301132,
0.029330000281333923,
0.07366786152124405,
-0.07665736973285675,
-0.05674770846962929,
0.06659182161092758,
0.21424585580825806,
-0.060438938438892365,
-0.049563173204660416,
-0.1491101235151291,
-0.12783226370811462,
0.08513522893190384,
0.1479852944612503,
0.1134083941578865,
0.008781511336565018,
-0.08621153980493546,
0.024828435853123665,
-0.11682089418172836,
0.08967143297195435,
0.05856127291917801,
0.04151647537946701,
-0.13298381865024567,
0.12173733115196228,
0.00987596157938242,
0.04105108231306076,
-0.020841378718614578,
0.010980355553328991,
-0.09201997518539429,
0.008116669952869415,
-0.11870959401130676,
-0.027281617745757103,
-0.04016470909118652,
0.011824891902506351,
0.0021165378857403994,
-0.04331228882074356,
-0.0449797622859478,
0.003677732776850462,
-0.11604902893304825,
-0.015674734488129616,
0.03586804121732712,
0.07664954662322998,
-0.113495834171772,
-0.03808976709842682,
0.028106754645705223,
-0.06515103578567505,
0.09211961925029755,
0.06284593045711517,
0.013682783581316471,
0.05738198012113571,
-0.16451308131217957,
0.02591823786497116,
0.09183235466480255,
0.015367215499281883,
0.05428994446992874,
-0.08173952251672745,
-0.01165669783949852,
-0.010551336221396923,
0.039947234094142914,
0.016846122220158577,
0.08105680346488953,
-0.12655404210090637,
0.018837958574295044,
0.005064732860773802,
-0.08740627020597458,
-0.06847129762172699,
0.03200390934944153,
0.08091627061367035,
0.009806549176573753,
0.19735103845596313,
-0.07809913903474808,
0.046744346618652344,
-0.21774250268936157,
0.007651552092283964,
0.00039223834755830467,
-0.10069233924150467,
-0.12886367738246918,
-0.07508815824985504,
0.05666074901819229,
-0.05609523504972458,
0.1320609599351883,
0.04614754393696785,
0.009946395643055439,
0.010845249518752098,
-0.009018459357321262,
0.023153048008680344,
0.003420208115130663,
0.18353857100009918,
0.035507675260305405,
-0.05026087164878845,
0.06071584299206734,
0.05424007400870323,
0.11871401220560074,
0.12723422050476074,
0.19787128269672394,
0.1401710957288742,
0.025031769648194313,
0.10930082201957703,
0.03284158185124397,
-0.03587397560477257,
-0.14979085326194763,
0.030222611501812935,
-0.0520317442715168,
0.11461912095546722,
-0.017922502011060715,
0.24583737552165985,
0.06318626552820206,
-0.15751786530017853,
0.0627346932888031,
-0.0622653029859066,
-0.080485038459301,
-0.10323148965835571,
-0.062278345227241516,
-0.07988351583480835,
-0.14291183650493622,
0.0025185495615005493,
-0.1344880908727646,
0.005178164690732956,
0.0950811505317688,
0.010578589513897896,
-0.041072338819503784,
0.13897496461868286,
0.01453063078224659,
0.020731834694743156,
0.08987818658351898,
0.008688630536198616,
-0.06495719403028488,
-0.13327042758464813,
-0.0563986711204052,
-0.012872141785919666,
-0.01658868044614792,
0.040306270122528076,
-0.050967987626791,
-0.06254465132951736,
0.0255191158503294,
-0.017901567742228508,
-0.1019640564918518,
0.008450163528323174,
0.00674017146229744,
0.06198660656809807,
0.045322615653276443,
0.0007392247207462788,
0.02236340567469597,
0.0022965685930103064,
0.19070175290107727,
-0.07466679811477661,
-0.02867077849805355,
-0.10520850121974945,
0.22406406700611115,
0.02177613228559494,
-0.014602554962038994,
0.03250817582011223,
-0.0718652755022049,
-0.005044568330049515,
0.24970677495002747,
0.20883415639400482,
-0.08701977133750916,
-0.005430365912616253,
0.0030840749386698008,
0.002857531188055873,
-0.046956535428762436,
0.0954923927783966,
0.15175102651119232,
0.02246778830885887,
-0.09816353768110275,
-0.02384945936501026,
-0.058102697134017944,
-0.023486129939556122,
-0.016953278332948685,
0.05730053782463074,
0.062264759093523026,
0.012224104255437851,
-0.04443337395787239,
0.050532374531030655,
-0.08826623111963272,
-0.10048242658376694,
0.07598186284303665,
-0.21897344291210175,
-0.15388427674770355,
-0.017186596989631653,
0.09836289286613464,
0.028858967125415802,
0.07270942628383636,
-0.017048347741365433,
-0.0037730636540800333,
0.1151106208562851,
-0.02014276571571827,
-0.11828415095806122,
-0.07104312628507614,
0.09810949116945267,
-0.13000449538230896,
0.20294146239757538,
-0.06483820080757141,
0.0402655303478241,
0.12451666593551636,
0.07169801741838455,
-0.05337971821427345,
0.07340917736291885,
0.048565737903118134,
-0.055177778005599976,
0.006028510630130768,
0.10180963575839996,
-0.0313725620508194,
0.07693233340978622,
0.04867885634303093,
-0.15307050943374634,
0.025778576731681824,
-0.0403456836938858,
-0.06710763275623322,
-0.04520198702812195,
-0.00809670053422451,
-0.06513381749391556,
0.12103945016860962,
0.22164419293403625,
-0.02433830127120018,
-0.002707727486267686,
-0.07023309171199799,
0.006103829480707645,
0.04813467711210251,
0.00954868271946907,
-0.05603432282805443,
-0.20643669366836548,
0.012327268719673157,
0.06683766096830368,
-0.013608798384666443,
-0.2591656446456909,
-0.10369356721639633,
0.0030699747148901224,
-0.06895381212234497,
-0.09046507626771927,
0.061003975570201874,
0.06755086034536362,
0.059811607003211975,
-0.04745471104979515,
-0.05766627937555313,
-0.06149698793888092,
0.1691356599330902,
-0.13927510380744934,
-0.08477252721786499
] |
null | null |
transformers
|
This model was created using xlm-roberta-base bodel and fine-tuned it using CoNLL 2003 dataset. On top of the trained model, we trained it again using a Sinhala NER data that was also formatted to the CoNLL format.
|
{}
|
token-classification
|
asanka25/xlm-roberta-base-finetuned-conll03-english-finetuned-sinhala
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us
|
This model was created using xlm-roberta-base bodel and fine-tuned it using CoNLL 2003 dataset. On top of the trained model, we trained it again using a Sinhala NER data that was also formatted to the CoNLL format.
|
[] |
[
"TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
41
] |
[
"passage: TAGS\n#transformers #pytorch #xlm-roberta #token-classification #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
-0.06594415009021759,
0.06579701602458954,
-0.008269324898719788,
0.028152303770184517,
0.1823667287826538,
0.026786452159285545,
0.0532236248254776,
0.10648511350154877,
0.05440129339694977,
-0.0257882047444582,
0.09261292219161987,
0.2757376432418823,
-0.030524838715791702,
0.11106956005096436,
-0.1144023984670639,
-0.25962334871292114,
0.05722196400165558,
0.07649660855531693,
-0.06184881180524826,
0.09886224567890167,
0.090131014585495,
-0.0968412533402443,
0.08195152133703232,
-0.034674499183893204,
-0.16514168679714203,
0.03253087028861046,
0.05420870706439018,
-0.12140917032957077,
0.09109526872634888,
0.04186512902379036,
0.16851340234279633,
0.03727531060576439,
-0.04274548962712288,
-0.13325373828411102,
0.028809718787670135,
0.008808806538581848,
-0.06662672758102417,
0.057496484369039536,
0.08175146579742432,
-0.10323705524206161,
-0.021931078284978867,
0.044119711965322495,
0.017183953896164894,
0.05036875978112221,
-0.11724649369716644,
-0.13306951522827148,
-0.041853491216897964,
0.028661012649536133,
0.07191982120275497,
0.03904880955815315,
0.03504690155386925,
0.22054171562194824,
-0.13447947800159454,
0.11918432265520096,
0.1355287730693817,
-0.28800109028816223,
-0.007096895016729832,
0.13194772601127625,
0.04759062081575394,
0.02197219245135784,
-0.0217294842004776,
0.054006725549697876,
0.027435580268502235,
0.010075327008962631,
0.023745475336909294,
-0.09717141091823578,
-0.07736695557832718,
0.04261845722794533,
-0.09259895980358124,
-0.02157929725944996,
0.19581061601638794,
-0.044707559049129486,
0.04558301344513893,
0.0007234328077174723,
-0.08900415897369385,
-0.06792248785495758,
-0.01819709502160549,
0.0032929307781159878,
-0.020909633487462997,
0.027826976031064987,
0.030142657458782196,
0.03446267545223236,
-0.08087948709726334,
0.016457317396998405,
-0.2186610996723175,
0.27336710691452026,
0.020739605650305748,
0.06540519744157791,
-0.16227871179580688,
0.054575081914663315,
0.02840181440114975,
-0.08283907920122147,
0.017691191285848618,
-0.09233873337507248,
-0.026151595637202263,
-0.037451960146427155,
-0.02967776730656624,
0.02337917499244213,
0.09007449448108673,
0.14249590039253235,
0.0627044066786766,
0.04577019438147545,
-0.004120104946196079,
0.07649367302656174,
0.042577579617500305,
0.13667477667331696,
-0.0006373497890308499,
-0.04034028202295303,
0.06534110754728317,
-0.1306433528661728,
-0.018541472032666206,
-0.05390043929219246,
-0.13817261159420013,
-0.034584350883960724,
0.06658864766359329,
0.12386737763881683,
0.012515788897871971,
0.06859411299228668,
-0.055802106857299805,
-0.05476854741573334,
0.08835334330797195,
-0.08174718916416168,
0.038893960416316986,
0.0019786350894719362,
0.010733404196798801,
0.10560133308172226,
-0.036068327724933624,
0.004186296369880438,
-0.048136498779058456,
0.1012118011713028,
-0.05881470441818237,
0.01569749414920807,
-0.041788604110479355,
-0.0959017425775528,
0.02684023603796959,
-0.13879632949829102,
0.04704366251826286,
-0.1709216684103012,
-0.07731710374355316,
0.01599392108619213,
0.02018195204436779,
0.011356856673955917,
-0.033165283501148224,
0.013667972758412361,
0.00015574361896142364,
0.005080338101834059,
-0.050921279937028885,
-0.04812603071331978,
-0.05584864690899849,
0.07105953246355057,
-0.01746208593249321,
0.05545645207166672,
-0.08660992234945297,
0.07323393225669861,
-0.09143397212028503,
0.01863204874098301,
-0.12646165490150452,
0.013443984091281891,
-0.08398354798555374,
0.16389742493629456,
-0.004641342908143997,
-0.06883639097213745,
-0.0074082533828914165,
0.028253231197595596,
-0.06508567929267883,
0.09204013645648956,
-0.07027515023946762,
-0.11233507096767426,
0.16086852550506592,
-0.0946124941110611,
-0.12045268714427948,
0.05899759754538536,
-0.00786794163286686,
-0.027350060641765594,
0.05896087363362312,
0.12420942634344101,
0.12389443814754486,
-0.026204464957118034,
0.0700303167104721,
0.09441059827804565,
-0.1484701782464981,
-0.15086501836776733,
0.007788807153701782,
0.02592715434730053,
-0.13778211176395416,
0.06161767989397049,
0.014866258017718792,
0.06709884852170944,
-0.06678586453199387,
-0.04030092805624008,
-0.030790435150265694,
-0.014089728705585003,
0.07165396213531494,
0.05055609345436096,
0.10046961903572083,
-0.061153434216976166,
0.02247622236609459,
0.02722105197608471,
0.02555019035935402,
0.02697722055017948,
0.007040441036224365,
-0.08942100405693054,
0.1283491998910904,
-0.06840840727090836,
0.007769940886646509,
-0.19827678799629211,
-0.10539664328098297,
0.023947320878505707,
0.06603540480136871,
-0.02367924526333809,
0.13885684311389923,
0.04529554396867752,
-0.03817475214600563,
0.017411600798368454,
-0.03776862844824791,
0.17451006174087524,
0.03454144671559334,
-0.06629224121570587,
-0.08057810366153717,
0.020933834835886955,
-0.07745521515607834,
-0.01760891266167164,
-0.04793218895792961,
0.011242636479437351,
0.04904290288686752,
0.11692254990339279,
0.01935664564371109,
0.08335153758525848,
-0.02667691744863987,
0.0735023096203804,
-0.08097440004348755,
0.005778353661298752,
0.10068123787641525,
-0.008309696801006794,
-0.05588511750102043,
0.14212165772914886,
-0.14267519116401672,
0.35555535554885864,
0.19045163691043854,
-0.26666349172592163,
0.005882608704268932,
-0.023532485589385033,
-0.01180335134267807,
0.012185447849333286,
0.039442673325538635,
0.05146078020334244,
0.043159034103155136,
-0.01333591714501381,
0.17223070561885834,
-0.024029657244682312,
-0.046288587152957916,
0.018420515581965446,
-0.059366799890995026,
-0.03578442335128784,
0.08561506867408752,
0.12267179787158966,
-0.19677956402301788,
0.1690288931131363,
0.19135847687721252,
0.012736777774989605,
0.07883068919181824,
-0.016168592497706413,
0.03599263355135918,
0.022190986201167107,
-0.05062059685587883,
-0.006429753266274929,
-0.01729212887585163,
-0.1177624836564064,
-0.03326643258333206,
0.08262120932340622,
0.02135348506271839,
0.052731387317180634,
-0.1260802447795868,
-0.03595796972513199,
0.019308073446154594,
0.032953277230262756,
-0.0250422153621912,
0.10001104325056076,
0.0619889460504055,
0.0904712975025177,
-0.018823623657226562,
-0.11424865573644638,
0.09642932564020157,
0.004408304579555988,
-0.07530900835990906,
0.1651168018579483,
-0.13714450597763062,
-0.31544244289398193,
-0.1298077404499054,
-0.19806049764156342,
-0.04772220179438591,
0.03219052031636238,
0.059768810868263245,
-0.09250348061323166,
-0.06790163367986679,
0.0638992190361023,
-0.02265666238963604,
-0.08016563206911087,
0.06607898324728012,
-0.06934038549661636,
0.0734206959605217,
-0.0396408811211586,
-0.06545503437519073,
-0.06788845360279083,
-0.04608701169490814,
-0.02711361274123192,
0.14216598868370056,
-0.08087329566478729,
0.08486240357160568,
0.18275290727615356,
-0.017088690772652626,
0.06149761378765106,
-0.016822155565023422,
0.15075461566448212,
-0.05732664093375206,
-0.01732936128973961,
0.17232009768486023,
-0.04760542884469032,
0.07703904807567596,
0.14405539631843567,
0.03899569436907768,
-0.05703882500529289,
-0.013618513941764832,
-0.037833891808986664,
-0.10598094016313553,
-0.20309299230575562,
-0.13838927447795868,
-0.12091074883937836,
0.016722921282052994,
0.04072510078549385,
0.07746125012636185,
0.15821948647499084,
0.08532296866178513,
0.043690331280231476,
0.005023243837058544,
-0.06908971816301346,
0.06724617630243301,
0.1939915120601654,
0.017790069803595543,
0.14097391068935394,
-0.06296262890100479,
-0.11917588114738464,
0.07078041881322861,
0.07106328755617142,
0.17104566097259521,
0.10778600722551346,
0.00009923511242959648,
0.028851112350821495,
0.13607606291770935,
0.18355445563793182,
0.1141991913318634,
0.02156214602291584,
-0.03645102679729462,
0.0026107165031135082,
0.012248510494828224,
-0.02587265893816948,
0.006083667278289795,
0.1051805168390274,
-0.1075592041015625,
-0.06433065980672836,
-0.11287210136651993,
0.07888828963041306,
0.09885822236537933,
0.017458973452448845,
-0.20253825187683105,
0.0294549148529768,
0.07460668683052063,
-0.020351169630885124,
-0.05369509756565094,
0.046372830867767334,
-0.07317976653575897,
-0.1421678364276886,
0.07042156159877777,
-0.060281600803136826,
0.1179676279425621,
-0.053395360708236694,
0.049572959542274475,
0.012092018499970436,
-0.05086648091673851,
0.03967174515128136,
0.08312245458364487,
-0.22358372807502747,
0.23870056867599487,
0.009983132593333721,
-0.06799405068159103,
-0.07098134607076645,
-0.002904179273173213,
0.045185644179582596,
0.20102445781230927,
0.06811343133449554,
0.015605672262609005,
-0.156897634267807,
-0.2166767120361328,
-0.020442483946681023,
0.019326116889715195,
0.0884186178445816,
-0.02621096558868885,
0.005785697605460882,
-0.039668284356594086,
-0.03139420971274376,
-0.019845398142933846,
-0.05856107175350189,
0.03403714671730995,
-0.12760283052921295,
0.06692074984312057,
0.03404467552900314,
0.0009794776560738683,
0.010124345310032368,
-0.05259861797094345,
-0.16639111936092377,
0.23418018221855164,
-0.09087648242712021,
-0.06368160992860794,
-0.12257098406553268,
-0.10095032304525375,
0.06031397730112076,
-0.09631345421075821,
0.0719224065542221,
-0.08035016804933548,
0.025572124868631363,
-0.027434341609477997,
-0.2074553668498993,
0.12672187387943268,
-0.11746624857187271,
-0.020464163273572922,
-0.05695674195885658,
0.1393175572156906,
-0.09371626377105713,
0.02058534137904644,
0.018723737448453903,
0.01968119479715824,
-0.07115285098552704,
-0.09279098361730576,
0.015843192115426064,
0.01866055838763714,
0.026309175416827202,
0.06214399263262749,
-0.06461936980485916,
-0.03224768117070198,
-0.02299855276942253,
0.029539315029978752,
0.24006779491901398,
0.17252209782600403,
-0.09620944410562515,
0.12829235196113586,
0.08759865164756775,
-0.06313671171665192,
-0.3071341812610626,
-0.05707968771457672,
-0.11644481867551804,
-0.03381400555372238,
-0.0259842611849308,
-0.12031794339418411,
0.1480729579925537,
0.03389699012041092,
-0.026499731466174126,
0.11293201148509979,
-0.1781003773212433,
-0.07415725290775299,
0.1853412687778473,
0.00695289159193635,
0.36743828654289246,
-0.08715956658124924,
-0.07871688902378082,
-0.018455661833286285,
-0.13109520077705383,
0.11233382672071457,
0.033442169427871704,
0.08222359418869019,
-0.04064049571752548,
0.041489239782094955,
0.03533392399549484,
-0.054543398320674896,
0.11051563918590546,
0.02705240249633789,
0.06367708742618561,
-0.08378378301858902,
-0.12833689153194427,
0.015092830173671246,
-0.02629130706191063,
-0.006121259182691574,
0.027214741334319115,
0.02439841255545616,
-0.12577268481254578,
-0.021954689174890518,
-0.0645778477191925,
0.08831536769866943,
0.04413076862692833,
-0.044902801513671875,
-0.014643104746937752,
-0.023741954937577248,
-0.009945611469447613,
-0.010816263034939766,
0.22543850541114807,
-0.010999174788594246,
0.1291036307811737,
0.10550887137651443,
0.09659023582935333,
-0.16374491155147552,
-0.04290042445063591,
-0.07511656731367111,
-0.05181599035859108,
0.09337389469146729,
-0.0332048162817955,
0.08312830328941345,
0.14593687653541565,
-0.039036184549331665,
0.04556059464812279,
0.11102838814258575,
0.06358464807271957,
-0.026789283379912376,
0.13806135952472687,
-0.18180285394191742,
0.005395503714680672,
-0.033119361847639084,
-0.048233762383461,
0.08497463166713715,
0.1110377311706543,
0.10474774241447449,
0.04601091891527176,
-0.043019700795412064,
0.0002391020389040932,
-0.008531634695827961,
-0.031035270541906357,
0.08986330032348633,
0.07869280129671097,
0.04305646941065788,
-0.1526264250278473,
0.035938527435064316,
0.03231394663453102,
-0.11713939160108566,
-0.0494028739631176,
0.09540256857872009,
-0.14360658824443817,
-0.11784028261899948,
-0.008504520170390606,
0.12471111118793488,
-0.16264814138412476,
-0.04740264639258385,
-0.08535861223936081,
-0.1393696814775467,
0.0706866905093193,
0.17745111882686615,
0.12498282641172409,
0.08971184492111206,
-0.03814864531159401,
-0.04769764468073845,
-0.034757617861032486,
-0.013073287904262543,
0.008909586817026138,
0.06474773585796356,
-0.18216310441493988,
0.0465196929872036,
-0.005532780662178993,
0.1729632019996643,
-0.09288067370653152,
-0.07142161577939987,
-0.14898525178432465,
0.04118560254573822,
-0.0905773937702179,
-0.049276456236839294,
-0.08783875405788422,
-0.014404450543224812,
0.023225896060466766,
-0.06974002718925476,
-0.05422128736972809,
-0.01796574890613556,
-0.12141501158475876,
0.04572247341275215,
0.00539396470412612,
0.029858499765396118,
-0.027074582874774933,
-0.053684063255786896,
0.07703366875648499,
-0.030674457550048828,
0.08060213923454285,
0.10436421632766724,
-0.05900276079773903,
0.06811138242483139,
-0.10846792161464691,
-0.12434055656194687,
0.12909957766532898,
0.04556982219219208,
0.11211734265089035,
0.006320529617369175,
0.051263775676488876,
0.08417770266532898,
0.0029798417817801237,
0.05085311084985733,
0.025790689513087273,
-0.1276518851518631,
0.02803291752934456,
-0.059993140399456024,
-0.15305832028388977,
-0.03630566596984863,
-0.06427276134490967,
0.12515641748905182,
0.015852637588977814,
0.1446835994720459,
-0.016345402225852013,
0.1014028936624527,
-0.06725776940584183,
-0.006812944542616606,
-0.03471086919307709,
-0.20226362347602844,
-0.05701350048184395,
-0.04118531942367554,
0.019971808418631554,
0.0031895230058580637,
0.266615092754364,
0.062296003103256226,
0.02399471029639244,
0.032418590039014816,
0.06493636220693588,
0.02078123763203621,
0.03447871282696724,
0.1624256670475006,
0.09896449744701385,
-0.021460890769958496,
-0.037127863615751266,
0.07745862752199173,
0.011054273694753647,
-0.04887795075774193,
0.10970061272382736,
0.07435639947652817,
0.013295496813952923,
0.05059480667114258,
0.025790667161345482,
0.0015075156698003411,
-0.138536736369133,
-0.15503500401973724,
-0.06730801612138748,
0.07038995623588562,
0.03314385935664177,
0.01620982401072979,
0.1214909553527832,
-0.02961432747542858,
0.05063152313232422,
-0.021700311452150345,
-0.029664674773812294,
-0.19541972875595093,
-0.11027467250823975,
-0.11207028478384018,
-0.1055791825056076,
0.0006423991871997714,
-0.04991956427693367,
-0.024787308648228645,
0.07044096291065216,
0.03626486659049988,
-0.030659247189760208,
0.035035762935876846,
0.00802543479949236,
-0.01685239002108574,
0.021065466105937958,
-0.021020643413066864,
-0.004225592594593763,
0.005978227127343416,
0.0027521175798028708,
-0.14127996563911438,
-0.03056429512798786,
-0.03979181870818138,
0.006120685022324324,
-0.060655251145362854,
0.0316198393702507,
-0.1295430064201355,
-0.11189401149749756,
-0.026580704376101494,
0.029599379748106003,
-0.06101987510919571,
0.08539173752069473,
0.007625602185726166,
0.018776552751660347,
0.027209287509322166,
0.13745960593223572,
-0.05632110312581062,
-0.0568000003695488,
-0.05294721573591232,
0.2433921843767166,
0.05958603695034981,
0.09882952272891998,
0.005216225050389767,
0.022837331518530846,
-0.06556003540754318,
0.2824142873287201,
0.2931625247001648,
-0.033963773399591446,
0.05501392111182213,
0.008934195153415203,
0.012462864629924297,
0.07646311819553375,
0.13098014891147614,
0.08614344894886017,
0.25829803943634033,
-0.06642000377178192,
-0.061435800045728683,
-0.052256762981414795,
-0.0041558146476745605,
-0.11507222801446915,
0.043056510388851166,
0.049802832305431366,
-0.04164694622159004,
-0.050602879375219345,
0.07780545204877853,
-0.15479028224945068,
0.1736251413822174,
0.06765162944793701,
-0.16477251052856445,
-0.07690417021512985,
-0.016912288963794708,
0.1185225397348404,
-0.007798331324011087,
0.060221631079912186,
-0.046727705746889114,
-0.10075247287750244,
0.05025443062186241,
0.009117336012423038,
-0.22656811773777008,
-0.04318917170166969,
0.08768793195486069,
0.0029479663353413343,
0.02477658912539482,
-0.03104684129357338,
0.052182093262672424,
0.07866723090410233,
0.0689690038561821,
-0.05178528279066086,
0.039578720927238464,
0.0013638248201459646,
-0.08768682181835175,
0.016657419502735138,
0.01197765115648508,
0.013488114811480045,
-0.05915012210607529,
0.03730734810233116,
-0.1290246546268463,
0.04666309431195259,
-0.11321080476045609,
-0.041120465844869614,
-0.011940729804337025,
0.012230872176587582,
-0.02982972003519535,
0.06401031464338303,
0.07992494106292725,
0.00497400714084506,
-0.023102108389139175,
-0.05715629830956459,
-0.017664385959506035,
0.029888365417718887,
-0.09218072891235352,
-0.13592740893363953,
-0.09520053118467331,
-0.047924816608428955,
0.07646281272172928,
-0.0060812984593212605,
-0.07754489034414291,
-0.03958911448717117,
-0.10862573236227036,
0.007577886804938316,
-0.135760098695755,
0.0690557137131691,
0.06442782282829285,
0.038385942578315735,
-0.010056296363472939,
-0.04505123570561409,
0.023202668875455856,
0.060196224600076675,
-0.11882089078426361,
-0.08654019236564636
] |
null | null |
sentence-transformers
|
# recobo/agri-sentence-transformer
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search.
This model was built using [recobo/agriculture-bert-uncased](https://huggingface.co/recobo/agriculture-bert-uncased), which is a BERT model trained on 6.5 million passages from the agricultural domain. Hence, this model is expected to perform well on sentence similarity tasks specifically for agricultural text data.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["A man is eating food.", "A man is eating a piece of bread"]
model = SentenceTransformer('recobo/agri-sentence-transformer')
embeddings = model.encode(sentences)
print(embeddings)
|
{"language": "english", "tags": ["sentence-transformers", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity"}
|
sentence-similarity
|
asanwari/agriculture-sentence-transformer
|
[
"sentence-transformers",
"sentence-similarity",
"transformers",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"english"
] |
TAGS
#sentence-transformers #sentence-similarity #transformers #endpoints_compatible #region-us
|
# recobo/agri-sentence-transformer
This is a sentence-transformers model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search.
This model was built using recobo/agriculture-bert-uncased, which is a BERT model trained on 6.5 million passages from the agricultural domain. Hence, this model is expected to perform well on sentence similarity tasks specifically for agricultural text data.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
Then you can use the model like this:
'''python
from sentence_transformers import SentenceTransformer
sentences = ["A man is eating food.", "A man is eating a piece of bread"]
model = SentenceTransformer('recobo/agri-sentence-transformer')
embeddings = URL(sentences)
print(embeddings)
|
[
"# recobo/agri-sentence-transformer\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search.\nThis model was built using recobo/agriculture-bert-uncased, which is a BERT model trained on 6.5 million passages from the agricultural domain. Hence, this model is expected to perform well on sentence similarity tasks specifically for agricultural text data.",
"## Usage (Sentence-Transformers)\nUsing this model becomes easy when you have sentence-transformers installed:\n\nThen you can use the model like this:\n'''python\nfrom sentence_transformers import SentenceTransformer\nsentences = [\"A man is eating food.\", \"A man is eating a piece of bread\"]\n\nmodel = SentenceTransformer('recobo/agri-sentence-transformer')\nembeddings = URL(sentences)\nprint(embeddings)"
] |
[
"TAGS\n#sentence-transformers #sentence-similarity #transformers #endpoints_compatible #region-us \n",
"# recobo/agri-sentence-transformer\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search.\nThis model was built using recobo/agriculture-bert-uncased, which is a BERT model trained on 6.5 million passages from the agricultural domain. Hence, this model is expected to perform well on sentence similarity tasks specifically for agricultural text data.",
"## Usage (Sentence-Transformers)\nUsing this model becomes easy when you have sentence-transformers installed:\n\nThen you can use the model like this:\n'''python\nfrom sentence_transformers import SentenceTransformer\nsentences = [\"A man is eating food.\", \"A man is eating a piece of bread\"]\n\nmodel = SentenceTransformer('recobo/agri-sentence-transformer')\nembeddings = URL(sentences)\nprint(embeddings)"
] |
[
30,
111,
111
] |
[
"passage: TAGS\n#sentence-transformers #sentence-similarity #transformers #endpoints_compatible #region-us \n# recobo/agri-sentence-transformer\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search.\nThis model was built using recobo/agriculture-bert-uncased, which is a BERT model trained on 6.5 million passages from the agricultural domain. Hence, this model is expected to perform well on sentence similarity tasks specifically for agricultural text data.## Usage (Sentence-Transformers)\nUsing this model becomes easy when you have sentence-transformers installed:\n\nThen you can use the model like this:\n'''python\nfrom sentence_transformers import SentenceTransformer\nsentences = [\"A man is eating food.\", \"A man is eating a piece of bread\"]\n\nmodel = SentenceTransformer('recobo/agri-sentence-transformer')\nembeddings = URL(sentences)\nprint(embeddings)"
] |
[
0.02192780189216137,
0.01608179323375225,
0.0016276109963655472,
0.006988440174609423,
0.09935618937015533,
-0.04358807951211929,
0.027199983596801758,
0.04383472353219986,
0.051018886268138885,
0.04557047039270401,
0.12234117090702057,
0.09371363371610641,
-0.049242861568927765,
0.01944335550069809,
0.03992966189980507,
-0.2713008522987366,
0.08901763707399368,
0.018782125785946846,
-0.055823054164648056,
0.1119546890258789,
0.10589286684989929,
-0.026406636461615562,
0.10545022785663605,
-0.01998012326657772,
-0.11384298652410507,
0.06852801144123077,
-0.01306961476802826,
0.011475562117993832,
0.09744156152009964,
0.11110831797122955,
0.021067041903734207,
0.020052658393979073,
-0.037902653217315674,
-0.15997551381587982,
0.0074565475806593895,
0.08224394172430038,
-0.04398687556385994,
0.060537468641996384,
-0.03396282717585564,
0.06459148973226547,
0.08018282055854797,
-0.07974627614021301,
0.02823297120630741,
0.06012856960296631,
-0.08217401802539825,
0.05311569944024086,
0.0044694687239825726,
-0.012066308408975601,
0.10004283487796783,
0.10477933287620544,
-0.03790251538157463,
-0.03995111957192421,
-0.10707926750183105,
0.05322450399398804,
0.09248888492584229,
-0.14126239717006683,
-0.01909940503537655,
0.058659933507442474,
0.11066628247499466,
0.13828371465206146,
-0.09183517843484879,
0.03448416665196419,
-0.0060701752081513405,
0.0401652492582798,
-0.023636028170585632,
-0.05397454649209976,
0.13334010541439056,
0.006591880228370428,
-0.08940455317497253,
0.038042742758989334,
0.16236795485019684,
0.09707117825746536,
0.003943145275115967,
-0.10861087590456009,
-0.11575412005186081,
0.16809026896953583,
-0.050470754504203796,
-0.07543428242206573,
-0.0017657604767009616,
0.04131472483277321,
-0.08732850104570389,
-0.14464689791202545,
-0.06592023372650146,
-0.015527325682342052,
-0.15698400139808655,
0.1802903115749359,
-0.03438062593340874,
-0.05841762199997902,
0.007748832460492849,
-0.010953033342957497,
-0.12078745663166046,
-0.10008594393730164,
-0.052967045456171036,
-0.009256670251488686,
-0.0497974194586277,
-0.004128239117562771,
-0.07467687129974365,
-0.19862380623817444,
0.03334391489624977,
-0.049219951033592224,
0.07940948754549026,
0.026707502081990242,
-0.059990834444761276,
0.03580217808485031,
-0.022357331588864326,
0.18759837746620178,
-0.1319316327571869,
-0.0739116296172142,
-0.05822612717747688,
-0.01384416688233614,
-0.08930185437202454,
0.02465856447815895,
-0.1603672206401825,
0.003199182916432619,
0.01754174381494522,
-0.054288048297166824,
0.06193838641047478,
0.07547510415315628,
0.011527988128364086,
-0.06349805742502213,
0.005312166176736355,
-0.0369095616042614,
-0.05319172143936157,
-0.028809309005737305,
-0.07530152797698975,
0.18564753234386444,
-0.03313712030649185,
0.052231524139642715,
-0.024305516853928566,
-0.05768134444952011,
-0.1302012801170349,
-0.06042778491973877,
-0.04297903552651405,
-0.1411455273628235,
-0.006073225289583206,
-0.0943649560213089,
0.010508500970900059,
-0.13846543431282043,
-0.19732020795345306,
-0.09084596484899521,
-0.015346622094511986,
-0.008604345843195915,
-0.04461178183555603,
-0.11729823052883148,
0.11133940517902374,
-0.03997980058193207,
0.013341691344976425,
-0.0018123468616977334,
0.0387444943189621,
0.06040202081203461,
-0.15621526539325714,
0.06602249294519424,
0.0334186926484108,
0.07829637080430984,
-0.10950170457363129,
-0.011714061722159386,
-0.11229666322469711,
0.13119560480117798,
0.009017476812005043,
0.13030944764614105,
-0.21487127244472504,
0.07486174255609512,
-0.010238084942102432,
0.03372179716825485,
-0.10554236173629761,
0.14143162965774536,
-0.16472792625427246,
-0.06780244410037994,
0.12263163179159164,
0.0287849809974432,
-0.030524084344506264,
0.12740302085876465,
-0.036882735788822174,
0.22294652462005615,
0.22699670493602753,
0.16494351625442505,
0.07806690782308578,
0.02657485380768776,
0.09726368635892868,
0.18432104587554932,
-0.017535468563437462,
0.10475988686084747,
0.09474945068359375,
-0.02988358587026596,
-0.10870859026908875,
-0.01102708000689745,
-0.016691217198967934,
0.09264898300170898,
-0.00005777183105237782,
-0.009746716357767582,
0.06648261845111847,
-0.05948902666568756,
0.13474056124687195,
-0.05667000636458397,
0.07059122622013092,
0.08908786624670029,
-0.079546719789505,
0.0894717276096344,
0.04356157034635544,
-0.12312731891870499,
0.058899976313114166,
0.0018848760519176722,
0.023610396310687065,
-0.07620428502559662,
0.023700809106230736,
-0.17033596336841583,
-0.022299401462078094,
-0.04366318881511688,
0.10195615142583847,
0.05525883287191391,
0.12297037243843079,
0.05775161460042,
0.0057028066366910934,
0.026345429942011833,
0.016957711428403854,
0.05676598101854324,
0.053531713783741,
-0.11091751605272293,
-0.05438316985964775,
0.00115957239177078,
-0.08880595862865448,
0.006267329212278128,
0.008477584458887577,
-0.02518683671951294,
0.012853652238845825,
0.05490174517035484,
0.046942152082920074,
-0.010792586021125317,
-0.04929639399051666,
-0.015320774167776108,
-0.0072225118055939674,
0.017201637849211693,
0.07192889600992203,
-0.010612981393933296,
-0.2013259083032608,
0.18834005296230316,
-0.052355196326971054,
-0.02596452832221985,
0.029445938766002655,
-0.0305202454328537,
-0.09204866737127304,
-0.11870355159044266,
-0.01489830482751131,
-0.004777682013809681,
-0.0656418427824974,
-0.16721084713935852,
0.27405720949172974,
0.06545498222112656,
0.12019392848014832,
-0.049185145646333694,
0.022279616445302963,
-0.00601176219061017,
-0.05905301123857498,
-0.03140627592802048,
0.14284417033195496,
-0.1546029895544052,
-0.3059341311454773,
0.1315217763185501,
0.12826009094715118,
0.03581178933382034,
0.10336422920227051,
0.008286630734801292,
-0.022732535377144814,
-0.002126023406162858,
0.07971680909395218,
-0.05729248747229576,
-0.10381714999675751,
-0.09163989126682281,
0.029840689152479172,
-0.00793821457773447,
0.044622257351875305,
0.07069022208452225,
-0.004123708698898554,
0.031209362670779228,
0.08745749294757843,
-0.003925185184925795,
0.16659162938594818,
0.01649012602865696,
-0.031859055161476135,
0.07756125926971436,
0.07085353881120682,
-0.061813145875930786,
0.06652247905731201,
0.025495493784546852,
-0.07333838194608688,
0.24753499031066895,
-0.09785319864749908,
-0.21664293110370636,
-0.12223948538303375,
-0.23168183863162994,
-0.03542467579245567,
0.04399656131863594,
0.07007560133934021,
-0.07850217074155807,
-0.05466453731060028,
-0.025052478536963463,
0.09537575393915176,
0.0568997859954834,
-0.08464702218770981,
-0.026038706302642822,
-0.01031442079693079,
-0.021726706996560097,
-0.051065534353256226,
0.018061403185129166,
0.004704101476818323,
-0.03900555521249771,
-0.07517088204622269,
-0.18986548483371735,
0.04006579518318176,
0.07409612089395523,
0.059515584260225296,
0.027600307017564774,
-0.006399459671229124,
0.1960068792104721,
0.0022953806910663843,
0.05206581577658653,
0.10705430805683136,
0.049351975321769714,
0.06450028717517853,
0.09044290333986282,
-0.0172305665910244,
0.018096398562192917,
0.034747056663036346,
0.014632580801844597,
-0.02160635031759739,
-0.05818922445178032,
-0.1023220643401146,
-0.06727515161037445,
-0.05545782670378685,
0.1265319138765335,
0.0036617175210267305,
0.10591492056846619,
0.10118702799081802,
-0.03908533230423927,
0.13160809874534607,
0.005681971553713083,
0.056020162999629974,
0.19714388251304626,
-0.09336413443088531,
0.05616568773984909,
0.015277838334441185,
-0.12128996849060059,
0.05112559720873833,
0.030968381091952324,
0.1557687371969223,
0.11799544841051102,
0.17569266259670258,
0.01717579923570156,
-0.19182048738002777,
0.002193582709878683,
0.05517306923866272,
-0.0971156656742096,
-0.010307947173714638,
-0.12121260911226273,
-0.049625031650066376,
0.03087153285741806,
0.10463641583919525,
0.09786214679479599,
-0.12671464681625366,
-0.011037721298635006,
0.02674296870827675,
0.0699683129787445,
0.03718874603509903,
0.04742748290300369,
-0.133933424949646,
0.03198641166090965,
0.021851707249879837,
-0.07909643650054932,
-0.020572416484355927,
0.07315923273563385,
0.09350170940160751,
-0.07936972379684448,
-0.0748303085565567,
-0.005095454398542643,
0.10102597624063492,
0.06518863886594772,
0.07955063134431839,
-0.054958440363407135,
0.001922367955558002,
-0.0128993671387434,
0.14589282870292664,
-0.23464418947696686,
0.1840335726737976,
-0.00034857430728152394,
-0.09934540092945099,
-0.08290287107229233,
-0.060616519302129745,
0.0005458994419313967,
0.09374120086431503,
0.19004029035568237,
0.00519555201753974,
0.06643450260162354,
-0.06587889045476913,
-0.13032062351703644,
-0.011606884188950062,
-0.00033736813929863274,
-0.1337345987558365,
0.031266193836927414,
-0.04221547022461891,
0.022344078868627548,
0.01850101351737976,
0.1501104235649109,
0.05634521320462227,
-0.1422608196735382,
-0.040810029953718185,
0.01273682527244091,
0.11920535564422607,
0.0070117260329425335,
-0.024385536089539528,
0.0004954219912178814,
0.09244543313980103,
-0.06032972037792206,
-0.061274994164705276,
-0.12882046401500702,
0.04584308713674545,
0.005344725679606199,
-0.12041441351175308,
-0.07223279029130936,
-0.02860708348453045,
0.059006400406360626,
-0.09157707542181015,
-0.11857102066278458,
0.09670612961053848,
0.01976829767227173,
0.04470944404602051,
-0.03513316065073013,
-0.032419830560684204,
0.04627029225230217,
0.044159259647130966,
0.07376857101917267,
0.010258720256388187,
-0.09786567091941833,
-0.08810615539550781,
-0.18997164070606232,
-0.026535015553236008,
-0.03139229118824005,
0.14347361028194427,
-0.10896579921245575,
0.0348975732922554,
-0.057918451726436615,
0.04411405324935913,
0.31187891960144043,
-0.0036392463371157646,
-0.0637262612581253,
0.08264578133821487,
0.2989859879016876,
-0.04387614130973816,
-0.26462283730506897,
-0.12552274763584137,
0.026361659169197083,
0.06578647345304489,
-0.005924972239881754,
-0.15680746734142303,
0.16190974414348602,
0.05410435050725937,
0.01998169533908367,
-0.21021436154842377,
-0.30999213457107544,
-0.08909913152456284,
0.15210987627506256,
0.024218333885073662,
0.26970481872558594,
-0.022882070392370224,
-0.005995825864374638,
-0.04747277870774269,
0.05830537527799606,
0.049497827887535095,
-0.10505933314561844,
0.13616442680358887,
0.034227024763822556,
0.12164612114429474,
0.042253755033016205,
0.009340138174593449,
0.09101567417383194,
0.12674956023693085,
-0.017009170725941658,
0.014068528078496456,
-0.0995950847864151,
0.03166911378502846,
-0.006030325312167406,
-0.009384005330502987,
-0.12693506479263306,
0.025323834270238876,
-0.12210579961538315,
-0.04411458596587181,
-0.08103757351636887,
0.02835908718407154,
-0.0227900929749012,
-0.06602723151445389,
0.024250555783510208,
0.11044495552778244,
0.15027408301830292,
0.0228230319917202,
0.08692727982997894,
-0.13624756038188934,
0.11712769418954849,
0.1843608319759369,
-0.015095273032784462,
-0.036080438643693924,
-0.2543454170227051,
-0.024630572646856308,
-0.004688714165240526,
0.0814107283949852,
-0.1537424772977829,
0.0251545961946249,
0.058327268809080124,
0.007345730438828468,
0.16938084363937378,
0.0049569010734558105,
-0.048475418239831924,
0.004413201007992029,
-0.00774662708863616,
-0.04540252313017845,
-0.09885915368795395,
-0.11112802475690842,
-0.025026259943842888,
-0.11516963690519333,
-0.12531888484954834,
0.16337184607982635,
-0.037589751183986664,
0.04273602366447449,
-0.008037115447223186,
0.020400390028953552,
-0.0821971595287323,
0.1177455484867096,
0.041731227189302444,
0.03560568764805794,
-0.006684639025479555,
-0.06214967370033264,
0.11835022270679474,
-0.07480181008577347,
0.010124643333256245,
0.06412266194820404,
-0.06004013121128082,
-0.06049332395195961,
-0.09137872606515884,
0.08398595452308655,
-0.17952854931354523,
0.05290249362587929,
-0.00041821124614216387,
-0.11651483178138733,
0.04302309453487396,
0.15917223691940308,
0.06832721084356308,
0.0713823214173317,
-0.16114208102226257,
-0.08853373676538467,
-0.018231267109513283,
0.03136656805872917,
0.0523831844329834,
-0.009728061966598034,
0.010633964091539383,
-0.024133460596203804,
-0.0601317398250103,
0.09741336852312088,
-0.06665617972612381,
-0.05681696906685829,
-0.13983410596847534,
-0.023576656356453896,
-0.1686791628599167,
0.04980261251330376,
-0.07496647536754608,
0.0026234304532408714,
-0.05776546522974968,
0.027281221002340317,
0.03435319662094116,
-0.021490925922989845,
-0.03635388985276222,
0.016249697655439377,
-0.005172231700271368,
0.0786413699388504,
-0.026457633823156357,
0.022127892822027206,
0.03228690102696419,
-0.02259485423564911,
-0.0003268963482696563,
-0.0834023654460907,
-0.06312841922044754,
-0.037208303809165955,
-0.04874587431550026,
-0.0017918160883709788,
-0.009961716830730438,
0.03621092438697815,
0.042558569461107254,
-0.08252084255218506,
0.004609792493283749,
-0.01488223485648632,
0.08522651344537735,
0.03469424694776535,
0.02458028681576252,
-0.0643327385187149,
0.14789743721485138,
-0.07083190977573395,
-0.012434386648237705,
-0.17003540694713593,
-0.004131522960960865,
-0.053526636213064194,
0.07850850373506546,
0.09914580732584,
-0.03612431883811951,
0.10748710483312607,
-0.013137629255652428,
0.018334541469812393,
0.02854035794734955,
-0.10040890425443649,
0.10008557885885239,
-0.10496220737695694,
-0.021156542003154755,
-0.01206593494862318,
0.09508942067623138,
0.03250795230269432,
0.10995028167963028,
0.0748424232006073,
0.06630551069974899,
0.09056048840284348,
-0.041222408413887024,
0.10993030667304993,
0.06704195588827133,
-0.0005262008053250611,
-0.003730806289240718,
0.04828954115509987,
0.04178663343191147,
0.06328970193862915,
0.04462823644280434,
0.12962958216667175,
-0.03503406420350075,
0.04171721637248993,
-0.0009372800122946501,
0.08648300170898438,
-0.043867241591215134,
0.043246328830718994,
-0.006821256596595049,
0.027179408818483353,
-0.016232112422585487,
0.006654492579400539,
0.11393250524997711,
-0.13897959887981415,
0.018359066918492317,
0.13894811272621155,
-0.07673347741365433,
-0.07630511373281479,
-0.1264827996492386,
-0.06521890312433243,
-0.07596111297607422,
-0.014776776544749737,
-0.13400574028491974,
0.026974430307745934,
0.04338698089122772,
-0.011366859078407288,
0.05353697016835213,
0.10068529099225998,
-0.12633562088012695,
-0.1594310849905014,
0.08201374113559723,
-0.056041419506073,
0.08209753781557083,
-0.028938429430127144,
-0.040598951280117035,
0.035984937101602554,
0.07545790821313858,
0.03610570728778839,
-0.0008131212671287358,
0.09544958919286728,
0.016385937109589577,
-0.15966714918613434,
-0.060338471084833145,
-0.077566958963871,
0.02885320596396923,
-0.03366844356060028,
0.13056634366512299,
-0.0015593362040817738,
-0.08281735330820084,
-0.03576662763953209,
0.15800023078918457,
-0.05360812693834305,
-0.1463702768087387,
-0.10469610244035721,
0.19989138841629028,
0.10898706316947937,
0.03175092115998268,
-0.01246858574450016,
-0.052513230592012405,
-0.044624295085668564,
0.27485400438308716,
0.11455436795949936,
-0.13670699298381805,
-0.005999624729156494,
-0.004496499430388212,
0.03662744164466858,
0.13553902506828308,
0.10237747430801392,
0.0066130259074270725,
0.14749808609485626,
-0.06598848104476929,
0.026249123737215996,
0.006534384563565254,
-0.08586837351322174,
-0.14671070873737335,
0.002260823966935277,
0.12707652151584625,
-0.05796515569090843,
-0.05462120473384857,
0.1349538117647171,
-0.1287873536348343,
-0.03227429836988449,
-0.13192741572856903,
-0.04910549521446228,
-0.04994116351008415,
-0.09854860603809357,
0.10680953413248062,
0.029213309288024902,
0.05728946253657341,
0.03578296676278114,
-0.04426064342260361,
0.0395476259291172,
0.000043579402699833736,
-0.12517687678337097,
0.046475816518068314,
0.07582675665616989,
-0.07488414645195007,
0.032562267035245895,
0.011546824127435684,
-0.06177310273051262,
0.10815955698490143,
0.00916418619453907,
-0.019736746326088905,
0.0565682128071785,
-0.012063272297382355,
-0.07872068881988525,
0.06617153435945511,
-0.044337525963783264,
-0.0027119037695229053,
0.11912963539361954,
-0.020232345908880234,
-0.2489698976278305,
0.06579559296369553,
0.1221475601196289,
0.01275575626641512,
-0.018554842099547386,
0.01977694034576416,
-0.033513300120830536,
0.15668632090091705,
0.1656426191329956,
-0.026196708902716637,
-0.041101209819316864,
-0.005784132983535528,
-0.06538961082696915,
-0.009177935309708118,
-0.00740526570007205,
-0.10296233743429184,
-0.06625564396381378,
-0.13532988727092743,
-0.07631643116474152,
-0.0352434404194355,
-0.32571908831596375,
-0.09971253573894501,
-0.04180680587887764,
0.027769984677433968,
0.04989483579993248,
0.10610873252153397,
0.07186032086610794,
-0.027174977585673332,
-0.0032152526546269655,
-0.19915606081485748,
-0.01005617342889309,
0.055681921541690826,
-0.08404625207185745,
-0.12110585719347
] |
null | null |
transformers
|
# SEW-D-base
[SEW-D by ASAPP Research](https://github.com/asappresearch/sew)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
**Abstract**
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .
# Usage
See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWDForCTC`.
|
{"language": "en", "license": "apache-2.0", "tags": ["speech"], "datasets": ["librispeech_asr"]}
|
feature-extraction
|
asapp/sew-d-base-100k
|
[
"transformers",
"pytorch",
"sew-d",
"feature-extraction",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2109.06870",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.06870"
] |
[
"en"
] |
TAGS
#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us
|
# SEW-D-base
SEW-D by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under URL .
# Usage
See this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'.
|
[
"# SEW-D-base\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
"TAGS\n#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# SEW-D-base\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
63,
343,
47
] |
[
"passage: TAGS\n#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n# SEW-D-base\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
-0.06152219697833061,
0.05127904564142227,
-0.004668326582759619,
0.008233471773564816,
0.05394073575735092,
-0.026539171114563942,
0.06730371713638306,
0.061809491366147995,
-0.04722899571061134,
0.020158676430583,
-0.04708109423518181,
-0.02828318625688553,
0.09656020253896713,
0.09385780990123749,
0.05459374189376831,
-0.19609661400318146,
0.08664653450250626,
-0.07913234829902649,
0.05370999872684479,
0.03453371301293373,
0.1291692852973938,
-0.0983499065041542,
0.03197142109274864,
0.07773324847221375,
0.0038416385650634766,
0.016316914930939674,
-0.0606062076985836,
-0.04247569665312767,
0.09006962925195694,
0.04979807138442993,
0.07932773232460022,
0.061571892350912094,
0.06758803129196167,
-0.22113847732543945,
0.0057661645114421844,
0.030000172555446625,
0.0393250472843647,
0.014305363409221172,
0.0655931904911995,
-0.01615777611732483,
0.006147157400846481,
-0.0010234735673293471,
0.04887513443827629,
0.04687559977173805,
-0.022474152967333794,
-0.05510863661766052,
-0.0548163466155529,
0.05686331167817116,
0.1320282220840454,
0.03798516467213631,
-0.01363543700426817,
-0.010116067714989185,
-0.08055949211120605,
0.04880734533071518,
0.06644152849912643,
-0.17787514626979828,
0.052956219762563705,
-0.08679384738206863,
-0.02097923681139946,
-0.008973835036158562,
-0.07802600413560867,
-0.0076352437026798725,
0.0034911271650344133,
-0.016068609431385994,
0.08488459140062332,
0.003036377253010869,
-0.02585022710263729,
-0.025040023028850555,
-0.1355881243944168,
-0.026379654183983803,
0.16854941844940186,
0.04579371213912964,
-0.099016934633255,
-0.11691811680793762,
-0.034757375717163086,
-0.009421476162970066,
-0.018899500370025635,
-0.08647902309894562,
0.03052297793328762,
-0.016307352110743523,
0.05298338085412979,
-0.02175913006067276,
-0.11205088347196579,
-0.06585690379142761,
0.007696267683058977,
0.16749854385852814,
0.0802760198712349,
0.0329565666615963,
-0.011816146783530712,
0.07209641486406326,
-0.06871018558740616,
-0.024886837229132652,
-0.07414362579584122,
-0.04877864941954613,
-0.16892090439796448,
0.018579671159386635,
-0.03943151608109474,
-0.17052842676639557,
0.004456780385226011,
0.17289792001247406,
0.0229652039706707,
0.054977014660835266,
0.1188889890909195,
0.045389797538518906,
0.06067454814910889,
0.1267443150281906,
-0.012707044370472431,
-0.0816165879368782,
-0.011014791205525398,
-0.011799865402281284,
-0.01948392391204834,
-0.04166891425848007,
-0.04302145168185234,
-0.02533433958888054,
0.05718677490949631,
-0.04586186632514,
-0.026441719383001328,
0.03833755850791931,
-0.0773497149348259,
-0.035208363085985184,
0.13015592098236084,
-0.15048952400684357,
-0.00755429407581687,
-0.011510799638926983,
0.004133297596126795,
0.051904886960983276,
0.11041095852851868,
0.04377768188714981,
-0.08926841616630554,
0.11716046929359436,
-0.03481905162334442,
-0.0241831187158823,
-0.056290533393621445,
-0.042789068073034286,
-0.008298113010823727,
-0.0595274418592453,
-0.008375385776162148,
-0.13525526225566864,
-0.14214029908180237,
-0.0704604834318161,
-0.017449721693992615,
0.008359935134649277,
-0.037673454731702805,
-0.058601584285497665,
0.01546172983944416,
-0.0414593368768692,
-0.0212869755923748,
-0.02813008800148964,
-0.021087879315018654,
-0.018143054097890854,
-0.03455290570855141,
0.03381409868597984,
-0.06503026932477951,
0.04230740666389465,
-0.06486700475215912,
0.016500532627105713,
-0.04484894499182701,
0.16703107953071594,
-0.08574000746011734,
-0.0035444824025034904,
-0.0980801209807396,
0.03129807487130165,
-0.15019282698631287,
0.05824197828769684,
0.04391247779130936,
0.10613054037094116,
-0.20900297164916992,
-0.08507600426673889,
0.11619697511196136,
-0.16344061493873596,
0.01753912679851055,
0.12244445830583572,
-0.000204371681320481,
0.05410689488053322,
0.10194158554077148,
0.20044372975826263,
0.1926773339509964,
-0.08051753789186478,
-0.09290528297424316,
0.016286540776491165,
-0.05422646552324295,
0.00407461216673255,
0.07794209569692612,
-0.041251782327890396,
0.0716315284371376,
0.04383018612861633,
-0.03417050093412399,
-0.0011737952008843422,
0.003552468726411462,
-0.05781339854001999,
0.009961472824215889,
-0.07877539098262787,
0.018310917541384697,
-0.07447101920843124,
0.022885970771312714,
0.008016212843358517,
-0.09484559297561646,
0.05924246460199356,
0.11452461779117584,
-0.06402807682752609,
0.0828734040260315,
-0.13621170818805695,
-0.004072953946888447,
0.06216735392808914,
0.018527919426560402,
-0.10766112059354782,
0.07247636467218399,
0.03410734236240387,
-0.08207035064697266,
0.08626319468021393,
0.053432613611221313,
0.015569845214486122,
0.009764141403138638,
0.008027174510061741,
0.0006303105037659407,
-0.08320025354623795,
0.030049672350287437,
-0.05728672817349434,
-0.10628685355186462,
-0.0790124461054802,
-0.02685367316007614,
0.06838145107030869,
-0.007296890486031771,
0.03863608464598656,
0.11215958744287491,
0.11212416738271713,
0.009960673749446869,
-0.07693314552307129,
-0.029512472450733185,
0.016915643587708473,
0.0011605530744418502,
0.027415882796049118,
-0.024921851232647896,
0.02186446823179722,
-0.08326812833547592,
0.08281409740447998,
-0.08131048083305359,
-0.12240682542324066,
0.04011939465999603,
-0.008535944856703281,
-0.05957190692424774,
-0.024508332833647728,
-0.010299797169864178,
-0.06393381208181381,
-0.09834728389978409,
-0.15227174758911133,
0.23667307198047638,
0.00428900308907032,
0.07966583967208862,
-0.0299990251660347,
-0.004837227053940296,
-0.026408808305859566,
-0.010069764219224453,
0.021000690758228302,
0.02770562469959259,
0.04688591510057449,
0.052681293338537216,
0.002605498768389225,
0.02761293202638626,
-0.04674135148525238,
0.08385753631591797,
-0.009334966540336609,
-0.09051528573036194,
0.03891153261065483,
-0.05308755114674568,
-0.05446663498878479,
0.05696627125144005,
-0.13322040438652039,
-0.027864601463079453,
0.044328268617391586,
0.047022029757499695,
0.08205922693014145,
-0.09401658922433853,
0.10001111775636673,
0.0690222829580307,
-0.02560405805706978,
-0.003354514017701149,
-0.0747336745262146,
-0.0323936752974987,
0.040279362350702286,
-0.015721766278147697,
-0.014950595796108246,
-0.010255152359604836,
-0.03171009197831154,
-0.13306957483291626,
0.10952300578355789,
-0.05632822960615158,
-0.1674063503742218,
-0.1931924819946289,
0.08491354435682297,
0.02025388926267624,
0.007091913837939501,
0.04778996855020523,
-0.018642425537109375,
-0.1039503663778305,
-0.07175149768590927,
0.0954369306564331,
-0.0016789657529443502,
0.029490482062101364,
0.08433788269758224,
0.007998029701411724,
0.004051156807690859,
-0.11143551021814346,
0.007227884139865637,
-0.015609102323651314,
0.021410644054412842,
-0.0057759275659918785,
0.029109733179211617,
0.09101273119449615,
0.12882596254348755,
-0.025118140503764153,
-0.019680699333548546,
-0.02855629287660122,
0.1833931803703308,
-0.053870368748903275,
0.06454234570264816,
0.13529229164123535,
-0.178179070353508,
0.021334802731871605,
0.05929088965058327,
0.012952808290719986,
-0.005121347960084677,
-0.0049117691814899445,
0.024707620963454247,
-0.06166794151067734,
-0.17790567874908447,
-0.0652364045381546,
-0.03619696944952011,
0.011880655772984028,
0.003066095057874918,
0.031841497868299484,
-0.001631574472412467,
0.025940267369151115,
-0.047908294945955276,
0.0422905758023262,
0.11795344948768616,
0.03981507197022438,
0.056167226284742355,
-0.017106888815760612,
0.10686055570840836,
-0.05408487468957901,
-0.004301075823605061,
0.05666685104370117,
0.06600530445575714,
0.18908844888210297,
0.017222952097654343,
0.12671855092048645,
0.09613791853189468,
0.03963988646864891,
0.07811104506254196,
0.024131909012794495,
-0.0408424511551857,
0.07253868132829666,
-0.02773241512477398,
-0.027852317318320274,
-0.04753075912594795,
0.1263466328382492,
0.04787011817097664,
-0.08840186148881912,
-0.04711735248565674,
0.024116460233926773,
0.08819975703954697,
0.19099867343902588,
0.0526365302503109,
-0.1398376226425171,
-0.06998832523822784,
0.049129992723464966,
-0.14547397196292877,
0.014277247712016106,
0.032396793365478516,
0.0916694700717926,
-0.09683816134929657,
0.0706193819642067,
0.06578288227319717,
0.08501933515071869,
-0.12785765528678894,
0.013106037862598896,
-0.009739169850945473,
0.04787752404808998,
0.003901813877746463,
0.050633754581213,
-0.14396998286247253,
0.04752714931964874,
-0.005279464181512594,
0.08072876930236816,
-0.02750413492321968,
0.05012759938836098,
-0.02296881377696991,
0.0077875638380646706,
0.09564559906721115,
-0.008372651413083076,
-0.03312108293175697,
0.016620201990008354,
-0.09801162779331207,
0.03417336195707321,
0.085911326110363,
-0.053419459611177444,
0.06711697578430176,
-0.03924984112381935,
0.03214036300778389,
-0.008008518256247044,
0.005018398631364107,
-0.11383528262376785,
-0.1614181101322174,
0.05727195739746094,
0.04989657551050186,
0.055387191474437714,
-0.04274067282676697,
-0.01840236410498619,
-0.1501302868127823,
0.15021556615829468,
-0.26582440733909607,
-0.07852090150117874,
-0.07992486655712128,
-0.060271866619586945,
0.06708034873008728,
-0.021400058642029762,
0.04085090011358261,
0.08192715793848038,
0.10279092937707901,
-0.057994015514850616,
-0.07834695279598236,
-0.026960274204611778,
-0.06260932981967926,
-0.1466846615076065,
0.002156713744625449,
0.1130322515964508,
0.08965674042701721,
0.025398224592208862,
0.013165785931050777,
-0.012748749926686287,
0.014957940205931664,
-0.09333105385303497,
0.00545059097930789,
0.17967982590198517,
-0.11136417090892792,
0.07212302088737488,
-0.050655100494623184,
-0.19059914350509644,
-0.09532172232866287,
-0.03454136848449707,
0.040414415299892426,
0.17774322628974915,
-0.05296289548277855,
0.18905214965343475,
0.1311631053686142,
-0.09290321171283722,
-0.24328263103961945,
-0.06844531744718552,
0.07792914658784866,
0.045326925814151764,
0.04968928545713425,
-0.1256656050682068,
0.05498911812901497,
0.0675869733095169,
-0.03150051832199097,
-0.1027236059308052,
-0.16250191628932953,
-0.1598307192325592,
0.13729228079319,
-0.029783641919493675,
0.11280829459428787,
-0.04116153344511986,
-0.043709274381399155,
-0.05027579143643379,
-0.04996344447135925,
0.06734771281480789,
-0.03235505893826485,
0.04389273002743721,
0.051864493638277054,
-0.022411907091736794,
0.04471734166145325,
-0.006301432847976685,
0.11403242498636246,
0.09136957675218582,
0.0027264549862593412,
-0.010454543866217136,
0.06573472917079926,
-0.06361821293830872,
-0.03437427431344986,
0.1068684384226799,
0.0468999482691288,
0.0013806633651256561,
-0.06265703588724136,
-0.06749401986598969,
-0.0028554105665534735,
0.06410670280456543,
0.022505465894937515,
-0.009773694910109043,
-0.08341866731643677,
-0.0008221236057579517,
0.030380219221115112,
0.020587896928191185,
0.06472951918840408,
-0.05413113906979561,
-0.17421723902225494,
0.14941556751728058,
0.16024915874004364,
-0.03410902991890907,
-0.05719556659460068,
-0.025537503883242607,
-0.033765826374292374,
0.08350423723459244,
-0.032383326441049576,
0.09470546990633011,
0.06932192295789719,
0.011473635211586952,
0.0759771391749382,
0.034521281719207764,
-0.16051258146762848,
-0.00016552404849790037,
0.09468487650156021,
-0.07405076175928116,
-0.14392971992492676,
-0.03869643062353134,
-0.04599546641111374,
-0.0613049641251564,
0.10376353561878204,
0.15330307185649872,
-0.08511815220117569,
-0.003896425710991025,
0.006603460293263197,
0.07536998391151428,
-0.07419893145561218,
0.15515774488449097,
0.03320828080177307,
0.02231708914041519,
-0.05656038224697113,
0.1462601274251938,
0.0773555114865303,
-0.04186776652932167,
0.0291423462331295,
-0.015779685229063034,
-0.06759010255336761,
-0.02073848992586136,
-0.14311926066875458,
0.002094034105539322,
0.0130173834040761,
-0.14119873940944672,
-0.021612154319882393,
-0.08570859581232071,
-0.005699333734810352,
0.04198634624481201,
0.029520457610487938,
0.0852372795343399,
0.016301162540912628,
0.04442831501364708,
-0.061420973390340805,
0.0646585151553154,
0.04809274896979332,
0.0186435766518116,
-0.11395713686943054,
0.12006817013025284,
0.0006274618790484965,
0.07414743304252625,
-0.03329432010650635,
-0.020663008093833923,
-0.07314504683017731,
0.023505328223109245,
-0.015448115766048431,
0.019092392176389694,
-0.08040313422679901,
-0.011816492304205894,
0.06184745579957962,
-0.021617522463202477,
0.006265891715884209,
0.056008655577898026,
-0.02866753377020359,
-0.004419765900820494,
-0.038476839661598206,
0.05014451593160629,
-0.08276935666799545,
0.033237576484680176,
0.07343076914548874,
-0.09664925932884216,
0.04899631068110466,
0.01664702780544758,
-0.017402663826942444,
0.07767882943153381,
-0.04622571915388107,
0.02130470611155033,
0.0402098074555397,
0.05030098184943199,
-0.03381584212183952,
-0.0006751096225343645,
-0.05008618161082268,
0.015819109976291656,
-0.037607841193675995,
-0.058473851531744,
0.1382567435503006,
-0.049020856618881226,
0.0499907024204731,
-0.006621545646339655,
-0.03606744483113289,
-0.07032372057437897,
0.0017442406387999654,
0.0472567044198513,
0.0984407290816307,
0.12756839394569397,
-0.0243550855666399,
0.011379430070519447,
-0.08417797833681107,
0.048905376344919205,
0.02990024909377098,
0.026784084737300873,
-0.020483141764998436,
-0.08725816011428833,
0.03953354433178902,
-0.027607811614871025,
0.1442551165819168,
-0.013582435436546803,
-0.046807754784822464,
0.05074859410524368,
-0.05106567591428757,
-0.10438447445631027,
0.05775483325123787,
0.06444432586431503,
0.03274831548333168,
0.022500624880194664,
-0.09857351332902908,
-0.032186638563871384,
-0.016725175082683563,
-0.06521940976381302,
0.07672105729579926,
0.14653745293617249,
-0.09800419211387634,
0.10997625440359116,
0.03424319624900818,
-0.04641813039779663,
-0.0912705659866333,
0.07094740867614746,
-0.07107754796743393,
-0.021817274391651154,
-0.03622343763709068,
0.0779002234339714,
0.11443982273340225,
-0.10981441289186478,
0.1339215338230133,
0.042896680533885956,
-0.07047507911920547,
-0.10313547402620316,
-0.10662517696619034,
-0.040984462946653366,
-0.08107031136751175,
-0.02760893851518631,
-0.08248814195394516,
-0.003317468799650669,
0.06574546545743942,
-0.010404309257864952,
0.0041663264855742455,
0.0802367776632309,
-0.1737118363380432,
-0.0547991618514061,
0.014343757182359695,
-0.059189118444919586,
0.012774886563420296,
0.009981387294828892,
-0.05030566453933716,
0.09284460544586182,
0.14953163266181946,
0.06245248019695282,
0.003763884073123336,
0.020829319953918457,
0.007751814555376768,
-0.0027074534446001053,
-0.041390735656023026,
-0.0067746308632195,
-0.08062398433685303,
0.029640816152095795,
0.012154806405305862,
0.06848198920488358,
-0.07611332833766937,
0.003799538593739271,
0.18674655258655548,
-0.05725181847810745,
-0.07695703208446503,
-0.19413591921329498,
0.04421547055244446,
0.08585845679044724,
0.03675970807671547,
0.05811917409300804,
-0.1537371724843979,
0.013033435679972172,
0.2138134241104126,
0.09289611130952835,
-0.005227746441960335,
0.0041233329102396965,
-0.02547907643020153,
0.01939474791288376,
0.04795437678694725,
0.045398928225040436,
-0.03603849187493324,
0.23230914771556854,
0.010817785747349262,
0.06462817639112473,
0.0019741167780011892,
-0.04575539752840996,
-0.02222735434770584,
0.17516647279262543,
-0.07253764569759369,
-0.01032182201743126,
-0.07997485250234604,
0.06942545622587204,
-0.053960759192705154,
-0.29460135102272034,
-0.02296975627541542,
-0.01320318691432476,
-0.06154576316475868,
0.01793031208217144,
0.037911973893642426,
0.004559566266834736,
0.023266157135367393,
0.013373277150094509,
-0.005051916465163231,
0.1768428534269333,
0.05304902419447899,
-0.07115140557289124,
0.013058139011263847,
0.0728558599948883,
0.0004463598597794771,
0.07800572365522385,
0.006426396779716015,
0.13419164717197418,
-0.0026038673240691423,
0.09830157458782196,
-0.047196220606565475,
0.046521853655576706,
-0.06734373420476913,
-0.05257197096943855,
0.003447537310421467,
0.1369040459394455,
-0.021038798615336418,
0.11383287608623505,
0.03680480271577835,
-0.13699544966220856,
0.005171932280063629,
0.04278016835451126,
-0.07571098208427429,
-0.040616076439619064,
0.0533340759575367,
-0.07211548835039139,
0.1255921572446823,
0.07324739545583725,
-0.035202521830797195,
0.011133774183690548,
-0.028302907943725586,
0.0212028119713068,
-0.03432208672165871,
0.03574125096201897,
-0.032029226422309875,
-0.16864454746246338,
-0.010196746326982975,
-0.12721477448940277,
0.029244625940918922,
-0.08402050286531448,
-0.05031745135784149,
-0.011831234209239483,
0.0004989032750017941,
-0.011187458410859108,
0.06933290511369705,
0.13964828848838806,
-0.01581200584769249,
-0.05081986263394356,
-0.04949606582522392,
0.06602863222360611,
0.048016250133514404,
-0.10442760586738586,
-0.08160749822854996
] |
null | null |
transformers
|
# SEW-D-base+
[SEW-D by ASAPP Research](https://github.com/asappresearch/sew)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
**Abstract**
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .
# Usage
See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWDForCTC`.
|
{"language": "en", "license": "apache-2.0", "tags": ["speech"], "datasets": ["librispeech_asr"]}
|
feature-extraction
|
asapp/sew-d-base-plus-100k
|
[
"transformers",
"pytorch",
"sew-d",
"feature-extraction",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2109.06870",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.06870"
] |
[
"en"
] |
TAGS
#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us
|
# SEW-D-base+
SEW-D by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under URL .
# Usage
See this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'.
|
[
"# SEW-D-base+\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
"TAGS\n#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# SEW-D-base+\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
63,
344,
47
] |
[
"passage: TAGS\n#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n# SEW-D-base+\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
-0.06345228850841522,
0.05252009257674217,
-0.004970598500221968,
0.007364308927208185,
0.04927978292107582,
-0.027286471799016,
0.06633876264095306,
0.05989550054073334,
-0.053247127681970596,
0.01916533336043358,
-0.04821968823671341,
-0.024417785927653313,
0.09525737166404724,
0.09701989591121674,
0.053868141025304794,
-0.20330187678337097,
0.08786186575889587,
-0.07057396322488785,
0.06079680100083351,
0.03462066128849983,
0.13092248141765594,
-0.10031317919492722,
0.027855848893523216,
0.07730592042207718,
0.01415302325040102,
0.022420529276132584,
-0.06578157097101212,
-0.047581784427165985,
0.09316851198673248,
0.05549317225813866,
0.08079062402248383,
0.0663161501288414,
0.05964936316013336,
-0.22310198843479156,
0.006186876446008682,
0.027057884261012077,
0.03644491732120514,
0.011906584724783897,
0.05859947204589844,
-0.014302407391369343,
0.018912797793745995,
0.003088688477873802,
0.0555710531771183,
0.04227273911237717,
-0.012046389281749725,
-0.055373795330524445,
-0.04717005044221878,
0.044820841401815414,
0.13026496767997742,
0.0403379388153553,
-0.015011283569037914,
-0.01148509606719017,
-0.08100786060094833,
0.05379040539264679,
0.06517785787582397,
-0.1768764853477478,
0.04933365434408188,
-0.10346044600009918,
-0.024562006816267967,
-0.015749139711260796,
-0.07513595372438431,
-0.01074348296970129,
-0.004638352431356907,
-0.012457873672246933,
0.09090515226125717,
0.0031001076567918062,
-0.027211101725697517,
-0.024057243019342422,
-0.13577096164226532,
-0.026652278378605843,
0.1614435315132141,
0.04741907864809036,
-0.09934912621974945,
-0.1162598729133606,
-0.04179660975933075,
-0.009124722331762314,
-0.0170906875282526,
-0.08563225716352463,
0.035645145922899246,
-0.02643483132123947,
0.049383290112018585,
-0.023557670414447784,
-0.11209424585103989,
-0.062206633388996124,
-0.0011772302677854896,
0.1663956493139267,
0.08711382746696472,
0.0356554314494133,
-0.01034676842391491,
0.07260355353355408,
-0.06480000913143158,
-0.025482023134827614,
-0.07635249942541122,
-0.044169604778289795,
-0.16736459732055664,
0.02811417728662491,
-0.03473779186606407,
-0.17276084423065186,
0.000890364171937108,
0.18055015802383423,
0.015198060311377048,
0.05813524127006531,
0.13219934701919556,
0.050144635140895844,
0.05898991972208023,
0.12674792110919952,
-0.004719472024589777,
-0.08281408250331879,
-0.005357156973332167,
-0.015328525565564632,
-0.010840971022844315,
-0.041343118995428085,
-0.03998484089970589,
-0.020773135125637054,
0.05561818554997444,
-0.04873593896627426,
-0.032059915363788605,
0.03269662708044052,
-0.07382754981517792,
-0.03377055376768112,
0.1274365931749344,
-0.1514267921447754,
-0.01527154166251421,
-0.016039738431572914,
-0.0036026914604008198,
0.05024047940969467,
0.11736425757408142,
0.038734231144189835,
-0.094064861536026,
0.13024906814098358,
-0.030607907101511955,
-0.025280959904193878,
-0.056615956127643585,
-0.04158443212509155,
-0.007415127009153366,
-0.07293298095464706,
-0.005629092454910278,
-0.1390513926744461,
-0.15210869908332825,
-0.07293861359357834,
-0.01784210093319416,
0.009492943994700909,
-0.04921873286366463,
-0.06730762869119644,
0.02558177337050438,
-0.04350154846906662,
-0.025723110884428024,
-0.03210455924272537,
-0.024963142350316048,
-0.016886994242668152,
-0.03776361793279648,
0.03295452520251274,
-0.06291481107473373,
0.043534256517887115,
-0.0670020803809166,
0.009563137777149677,
-0.05484917387366295,
0.16551655530929565,
-0.087684765458107,
-0.011406494304537773,
-0.09223657846450806,
0.030183909460902214,
-0.14443480968475342,
0.06335269659757614,
0.044621121138334274,
0.10758798569440842,
-0.20479130744934082,
-0.09259144961833954,
0.10704778134822845,
-0.1675790697336197,
0.01770513318479061,
0.12148647755384445,
0.0018500946462154388,
0.046697381883859634,
0.10238277912139893,
0.2003418207168579,
0.19998611509799957,
-0.08292786777019501,
-0.0960240438580513,
0.02415577508509159,
-0.0505373552441597,
-0.0024644536897540092,
0.08289123326539993,
-0.042621295899152756,
0.07985051721334457,
0.04697021096944809,
-0.025363139808177948,
0.0028771378565579653,
0.0018171805422753096,
-0.05398355796933174,
0.01378672569990158,
-0.07587246596813202,
0.017936501652002335,
-0.07716001570224762,
0.03062465228140354,
0.005977492779493332,
-0.10395969450473785,
0.06331245601177216,
0.120846688747406,
-0.06487812846899033,
0.08446485549211502,
-0.1373029500246048,
-0.002074549440294504,
0.06959371268749237,
0.01837882399559021,
-0.10565192252397537,
0.06562145054340363,
0.03303273022174835,
-0.07436147332191467,
0.08873659372329712,
0.03812161833047867,
0.01044419314712286,
0.015043468214571476,
0.004303602501749992,
-0.008830628357827663,
-0.08854107558727264,
0.025797061622142792,
-0.055069126188755035,
-0.10467177629470825,
-0.07623717188835144,
-0.023446878418326378,
0.06627417355775833,
0.009179492481052876,
0.04058780521154404,
0.11205179989337921,
0.11960901319980621,
0.012137416750192642,
-0.07536815106868744,
-0.030112899839878082,
0.019064491614699364,
-0.0022937720641493797,
0.034952446818351746,
-0.024666182696819305,
0.020521963015198708,
-0.08564901351928711,
0.08619285374879837,
-0.06919591128826141,
-0.11350759863853455,
0.038213472813367844,
-0.004126688465476036,
-0.053726278245449066,
-0.02231023833155632,
-0.010131096467375755,
-0.06452405452728271,
-0.10345514863729477,
-0.15584182739257812,
0.2514704167842865,
0.0048308586701750755,
0.08735600113868713,
-0.033400218933820724,
-0.008648529648780823,
-0.030751019716262817,
-0.00295291212387383,
0.018047770485281944,
0.03588493540883064,
0.06292280554771423,
0.06051214411854744,
0.007105262018740177,
0.018793588504195213,
-0.05084258317947388,
0.09521489590406418,
-0.013837414793670177,
-0.08982789516448975,
0.04042605310678482,
-0.05114719271659851,
-0.05764252319931984,
0.05718524754047394,
-0.1372266560792923,
-0.020832611247897148,
0.04147496446967125,
0.045953311026096344,
0.08599545061588287,
-0.0952480286359787,
0.0995003804564476,
0.0723954513669014,
-0.02476990595459938,
0.009563760831952095,
-0.07265444844961166,
-0.0277327299118042,
0.039901625365018845,
-0.024834396317601204,
-0.027866551652550697,
-0.01073827687650919,
-0.03117232769727707,
-0.13150650262832642,
0.11570052057504654,
-0.06267402321100235,
-0.1681106835603714,
-0.19495265185832977,
0.08708765357732773,
0.01745561510324478,
0.001892859349027276,
0.05979461222887039,
-0.01278268825262785,
-0.10161977261304855,
-0.07650400698184967,
0.09512052685022354,
0.0015420994022861123,
0.03425701707601547,
0.07236239314079285,
0.00397604750469327,
0.0011043756967410445,
-0.11472786962985992,
0.005292562302201986,
-0.020439976826310158,
0.028759904205799103,
0.000839132466353476,
0.0329025462269783,
0.09182519465684891,
0.12820613384246826,
-0.023612868040800095,
-0.022644568234682083,
-0.03662152960896492,
0.18333201110363007,
-0.05208565294742584,
0.06529116630554199,
0.1340388059616089,
-0.1757906824350357,
0.02525060996413231,
0.053594864904880524,
0.01129860244691372,
-0.005257454700767994,
-0.005809687077999115,
0.02613614872097969,
-0.06463267654180527,
-0.18189668655395508,
-0.06743885576725006,
-0.029280362650752068,
0.018811127170920372,
-0.004227515310049057,
0.035920143127441406,
-0.022459901869297028,
0.020511718466877937,
-0.04999785125255585,
0.04351237788796425,
0.12338321655988693,
0.03678973764181137,
0.06277888268232346,
-0.020659836009144783,
0.10893244296312332,
-0.05043686926364899,
-0.007020174525678158,
0.056833792477846146,
0.05920140817761421,
0.1984095275402069,
0.005867504980415106,
0.12227537482976913,
0.09838970750570297,
0.02887929417192936,
0.08003029972314835,
0.026010820642113686,
-0.04648619145154953,
0.07871410995721817,
-0.031011169776320457,
-0.028729382902383804,
-0.04105716943740845,
0.1231016293168068,
0.03878249600529671,
-0.0854930430650711,
-0.057346686720848083,
0.03479694947600365,
0.08720487356185913,
0.19325004518032074,
0.04338836669921875,
-0.13381437957286835,
-0.0687161386013031,
0.04993471875786781,
-0.15102629363536835,
0.01901092752814293,
0.03778712823987007,
0.09643415361642838,
-0.09635833650827408,
0.07311028987169266,
0.06759016215801239,
0.08404392749071121,
-0.1337076872587204,
0.011290398426353931,
-0.014689001254737377,
0.04891716688871384,
0.0049512372352182865,
0.04749324917793274,
-0.13079309463500977,
0.04673323407769203,
-0.010012187995016575,
0.07945729792118073,
-0.02248978428542614,
0.05299092456698418,
-0.026578692719340324,
0.008680957369506359,
0.09873916953802109,
-0.011604875326156616,
-0.035400982946157455,
0.01607542671263218,
-0.09816934913396835,
0.03611775487661362,
0.08239592611789703,
-0.052852973341941833,
0.06465382128953934,
-0.031792983412742615,
0.029388025403022766,
-0.011299156583845615,
0.0018917174311354756,
-0.10241277515888214,
-0.1667395383119583,
0.04941905289888382,
0.04615797847509384,
0.04479709640145302,
-0.04614221304655075,
-0.021709904074668884,
-0.14502239227294922,
0.15061049163341522,
-0.27372342348098755,
-0.08626701682806015,
-0.07711414992809296,
-0.06697367131710052,
0.0617232583463192,
-0.029026180505752563,
0.04922792315483093,
0.0845859944820404,
0.09615417569875717,
-0.06590970605611801,
-0.07729914039373398,
-0.02570544183254242,
-0.06045033037662506,
-0.13856391608715057,
-0.003628128906711936,
0.1167646199464798,
0.0820198655128479,
0.02804434671998024,
0.006896167993545532,
-0.01536790281534195,
0.013321286998689175,
-0.0908580869436264,
-0.0038697721902281046,
0.19115348160266876,
-0.11412548273801804,
0.07523125410079956,
-0.05445711314678192,
-0.18858256936073303,
-0.08775500953197479,
-0.037992555648088455,
0.05070768669247627,
0.18418124318122864,
-0.05181655287742615,
0.19136370718479156,
0.1294676661491394,
-0.09108299016952515,
-0.24140195548534393,
-0.07981322705745697,
0.08198652416467667,
0.0488862544298172,
0.047961264848709106,
-0.1285414844751358,
0.0539664626121521,
0.08119695633649826,
-0.029589390382170677,
-0.09960643202066422,
-0.16883361339569092,
-0.16463513672351837,
0.13743476569652557,
-0.023174956440925598,
0.11191263794898987,
-0.03591209277510643,
-0.04447074234485626,
-0.04725663736462593,
-0.03594432398676872,
0.0629526674747467,
-0.03168437257409096,
0.04562621936202049,
0.05452223867177963,
-0.029311876744031906,
0.04344838485121727,
-0.004567768424749374,
0.11407200992107391,
0.08086097985506058,
-0.001043475465849042,
-0.004494359716773033,
0.06131651625037193,
-0.07524900138378143,
-0.032137516885995865,
0.1079634428024292,
0.032292310148477554,
-0.0003447894414421171,
-0.07698871940374374,
-0.06978996843099594,
-0.0006995092844590545,
0.0676557868719101,
0.02214355394244194,
-0.009289976209402084,
-0.0857188031077385,
-0.00645312899723649,
0.029636500403285027,
0.019485436379909515,
0.07853027433156967,
-0.05029347538948059,
-0.1782192885875702,
0.15327300131320953,
0.15005698800086975,
-0.042987383902072906,
-0.07467964291572571,
-0.030453236773610115,
-0.033170659095048904,
0.0841967836022377,
-0.03298100084066391,
0.08683033287525177,
0.07484931498765945,
0.008936773054301739,
0.08175863325595856,
0.03131578117609024,
-0.16280964016914368,
0.0030569660011678934,
0.09690111130475998,
-0.07748048007488251,
-0.14338144659996033,
-0.0468195378780365,
-0.050766441971063614,
-0.05237768590450287,
0.1048138365149498,
0.15376155078411102,
-0.08412361890077591,
-0.002964271232485771,
0.006093963980674744,
0.07178021967411041,
-0.06675637513399124,
0.16378895938396454,
0.029949670657515526,
0.024160968139767647,
-0.05623629316687584,
0.15092219412326813,
0.08054125308990479,
-0.04863853007555008,
0.027149055153131485,
-0.0031056394800543785,
-0.06824436038732529,
-0.020723823457956314,
-0.15412284433841705,
0.00801190733909607,
0.011454017832875252,
-0.13836491107940674,
-0.03381270170211792,
-0.08849749714136124,
0.0009049460059031844,
0.048825982958078384,
0.028880225494503975,
0.0802571177482605,
0.01904582418501377,
0.04653261974453926,
-0.05151156708598137,
0.06789954006671906,
0.04874807968735695,
0.019536763429641724,
-0.10956991463899612,
0.11998090147972107,
0.009769928641617298,
0.07892175763845444,
-0.03183690458536148,
-0.02255118265748024,
-0.07302185148000717,
0.026065031066536903,
-0.013226332142949104,
0.024359645321965218,
-0.07289128750562668,
-0.01371191069483757,
0.06371195614337921,
-0.014916276559233665,
0.009377168491482735,
0.059191443026065826,
-0.0266250167042017,
-0.0028631894383579493,
-0.03778610751032829,
0.04726095870137215,
-0.08190920948982239,
0.028573790565133095,
0.0672069787979126,
-0.09776744991540909,
0.05300571024417877,
0.01708514802157879,
-0.012809406034648418,
0.07829814404249191,
-0.04019384831190109,
0.02058175764977932,
0.045241568237543106,
0.05185175687074661,
-0.028621790930628777,
0.0039278846234083176,
-0.045631926506757736,
0.013850091025233269,
-0.04652751237154007,
-0.06167452037334442,
0.12955689430236816,
-0.05729331448674202,
0.05151016637682915,
0.004947889130562544,
-0.03945310786366463,
-0.07291549444198608,
-0.002373798517510295,
0.036813221871852875,
0.09796734154224396,
0.1317635476589203,
-0.025471504777669907,
0.01361911278218031,
-0.08313065022230148,
0.05128980427980423,
0.03441156446933746,
0.020181352272629738,
-0.018730193376541138,
-0.08890703320503235,
0.036178573966026306,
-0.033325012773275375,
0.1349373459815979,
-0.014753259718418121,
-0.04280725121498108,
0.05502510070800781,
-0.05274813994765282,
-0.10440598428249359,
0.05925211310386658,
0.05130099132657051,
0.029408549889922142,
0.02643725462257862,
-0.10280509293079376,
-0.03525121882557869,
-0.011636700481176376,
-0.07126694917678833,
0.0735790804028511,
0.13831031322479248,
-0.08824047446250916,
0.1168409213423729,
0.0404847227036953,
-0.03444674238562584,
-0.10502039641141891,
0.05661870166659355,
-0.061085354536771774,
-0.021053427830338478,
-0.027602246031165123,
0.08976509422063828,
0.1135060116648674,
-0.11233590543270111,
0.13490895926952362,
0.052957069128751755,
-0.06647278368473053,
-0.10695459693670273,
-0.10835807770490646,
-0.04315287992358208,
-0.07612203061580658,
-0.02381717413663864,
-0.08523044735193253,
-0.010388342663645744,
0.05704832822084427,
-0.006019056309014559,
0.006431858520954847,
0.07952921092510223,
-0.17131155729293823,
-0.054465800523757935,
0.016992440447211266,
-0.05193965137004852,
0.008997679688036442,
0.004341077525168657,
-0.052367065101861954,
0.08510620146989822,
0.14515629410743713,
0.05503261461853981,
-0.00007581307727377862,
0.020765429362654686,
0.00872809998691082,
0.003578719450160861,
-0.034973617643117905,
-0.006594449747353792,
-0.08154961466789246,
0.03257347643375397,
0.0092416787520051,
0.06839980185031891,
-0.07508090138435364,
0.003634499153122306,
0.19324566423892975,
-0.05638667196035385,
-0.07996420562267303,
-0.18412241339683533,
0.04939129948616028,
0.09967578947544098,
0.04099311679601669,
0.06692555546760559,
-0.15616266429424286,
0.003203324042260647,
0.20764410495758057,
0.09931700676679611,
-0.0013387671206146479,
0.006903331261128187,
-0.02512492425739765,
0.01936906762421131,
0.04752364754676819,
0.03737965226173401,
-0.026693351566791534,
0.2516179382801056,
0.011719897389411926,
0.06800063699483871,
0.001182060339488089,
-0.03858442232012749,
-0.025710443034768105,
0.17510324716567993,
-0.06773483008146286,
-0.007044753525406122,
-0.07814066857099533,
0.05811063200235367,
-0.058035921305418015,
-0.30043715238571167,
-0.02264481782913208,
-0.021865801885724068,
-0.0647243857383728,
0.013448868878185749,
0.03711722046136856,
0.004123471211642027,
0.021959612146019936,
0.017664728686213493,
-0.010889504104852676,
0.17134809494018555,
0.05645604431629181,
-0.0800083801150322,
0.0035310147795826197,
0.0729857087135315,
-0.004220588132739067,
0.07926963269710541,
0.0038306463975459337,
0.1363816261291504,
-0.0034758897963911295,
0.10497038811445236,
-0.03897514194250107,
0.05713720992207527,
-0.06451766937971115,
-0.06176963821053505,
0.004357320722192526,
0.12806984782218933,
-0.022590918466448784,
0.13617858290672302,
0.0330703966319561,
-0.12616920471191406,
0.004193211905658245,
0.05291365459561348,
-0.07439464330673218,
-0.03312431275844574,
0.06046406179666519,
-0.07542124390602112,
0.11666055023670197,
0.07582339644432068,
-0.030744528397917747,
0.008040090091526508,
-0.028152206912636757,
0.02265283837914467,
-0.032055556774139404,
0.03122202306985855,
-0.023744462057948112,
-0.16698701679706573,
-0.005165034905076027,
-0.12077101320028305,
0.03293631225824356,
-0.0929759219288826,
-0.05740126594901085,
-0.01675516366958618,
0.002771859522908926,
-0.020348774269223213,
0.06967061012983322,
0.14359046518802643,
-0.014708943665027618,
-0.05246603116393089,
-0.047429200261831284,
0.059085406363010406,
0.04452383890748024,
-0.10566521435976028,
-0.08310873806476593
] |
null | null |
transformers
|
# SEW-D-base+
[SEW-D by ASAPP Research](https://github.com/asappresearch/sew)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
**Abstract**
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .
# Usage
To transcribe audio files the model can be used as a standalone acoustic model as follows:
```python
from transformers import Wav2Vec2Processor, SEWDForCTC
from datasets import load_dataset
import soundfile as sf
import torch
# load the model and preprocessor
processor = Wav2Vec2Processor.from_pretrained("asapp/sew-d-base-plus-400k-ft-ls100h")
model = SEWDForCTC.from_pretrained("asapp/sew-d-base-plus-400k-ft-ls100h")
# load the dummy dataset with speech samples
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
# preprocess
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
```
## Evaluation
This code snippet shows how to evaluate **asapp/sew-d-base-plus-400k-ft-ls100h** on LibriSpeech's "clean" and "other" test data.
```python
from datasets import load_dataset
from transformers import SEWDForCTC, Wav2Vec2Processor
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = SEWDForCTC.from_pretrained("asapp/sew-d-base-plus-400k-ft-ls100h").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("asapp/sew-d-base-plus-400k-ft-ls100h")
def map_to_pred(batch):
input_values = processor(batch["audio"][0]["array"], sampling_rate=16000,
return_tensors="pt", padding="longest").input_values
with torch.no_grad():
logits = model(input_values.to("cuda")).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"])
print("WER:", wer(result["text"], result["transcription"]))
```
*Result (WER)*:
| "clean" | "other" |
| --- | --- |
| 4.34 | 9.45 |
|
{"language": "en", "license": "apache-2.0", "tags": ["audio", "speech", "automatic-speech-recognition", "hf-asr-leaderboard"], "datasets": ["librispeech_asr"], "widget": [{"example_title": "Librispeech sample 1", "src": "https://cdn-media.huggingface.co/speech_samples/sample1.flac"}, {"example_title": "Librispeech sample 2", "src": "https://cdn-media.huggingface.co/speech_samples/sample2.flac"}], "model-index": [{"name": "sew-d-base-plus-400k-ft-ls100h", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "LibriSpeech (clean)", "type": "librispeech_asr", "config": "clean", "split": "test", "args": {"language": "en"}}, "metrics": [{"type": "wer", "value": 4.34, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "LibriSpeech (other)", "type": "librispeech_asr", "config": "other", "split": "test", "args": {"language": "en"}}, "metrics": [{"type": "wer", "value": 9.45, "name": "Test WER"}]}]}]}
|
automatic-speech-recognition
|
asapp/sew-d-base-plus-400k-ft-ls100h
|
[
"transformers",
"pytorch",
"sew-d",
"automatic-speech-recognition",
"audio",
"speech",
"hf-asr-leaderboard",
"en",
"dataset:librispeech_asr",
"arxiv:2109.06870",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.06870"
] |
[
"en"
] |
TAGS
#transformers #pytorch #sew-d #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
|
SEW-D-base+
===========
SEW-D by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under URL .
Usage
=====
To transcribe audio files the model can be used as a standalone acoustic model as follows:
Evaluation
----------
This code snippet shows how to evaluate asapp/sew-d-base-plus-400k-ft-ls100h on LibriSpeech's "clean" and "other" test data.
*Result (WER)*:
|
[] |
[
"TAGS\n#transformers #pytorch #sew-d #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n"
] |
[
88
] |
[
"passage: TAGS\n#transformers #pytorch #sew-d #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n"
] |
[
-0.13500025868415833,
0.1427074670791626,
-0.0034232004545629025,
-0.0011534360237419605,
0.06764955073595047,
-0.05480492487549782,
0.0960673987865448,
0.12181868404150009,
0.09258582442998886,
0.008229857310652733,
0.09076820313930511,
0.15475818514823914,
0.00767825823277235,
0.06065928563475609,
-0.03817322105169296,
-0.16970527172088623,
0.08028316497802734,
0.01585075631737709,
0.012828283943235874,
0.06468892842531204,
0.11464165896177292,
-0.04310920834541321,
0.04416254162788391,
0.05490562692284584,
-0.04226473346352577,
0.03276287391781807,
0.023349100723862648,
-0.12232130765914917,
0.12647849321365356,
0.048727940768003464,
0.0044187018647789955,
0.04752787947654724,
0.03255812078714371,
-0.16521701216697693,
0.017254048958420753,
-0.00978032499551773,
-0.00020963067072443664,
0.04617397114634514,
-0.008861989714205265,
-0.022233236581087112,
0.01740168407559395,
0.046604663133621216,
-0.024824514985084534,
0.07121982425451279,
-0.037772856652736664,
-0.25009867548942566,
-0.02885272167623043,
0.11027655750513077,
0.01161743514239788,
0.08519641309976578,
-0.01517472043633461,
0.08202050626277924,
-0.08534054458141327,
0.08133915066719055,
0.11226358264684677,
-0.23532593250274658,
0.050900354981422424,
-0.017635656520724297,
0.03560366854071617,
0.007283604238182306,
-0.024205220863223076,
0.0237575713545084,
0.012418062426149845,
0.02070164494216442,
0.00428391108289361,
-0.06573658436536789,
-0.12097901105880737,
0.008465088903903961,
-0.09537484496831894,
-0.037794940173625946,
0.2887377440929413,
0.031718362122774124,
0.043610431253910065,
-0.056537311524152756,
-0.019645730033516884,
0.03639283776283264,
-0.05473831295967102,
0.01642955094575882,
0.002180639188736677,
0.05694625526666641,
0.0630868598818779,
-0.032715894281864166,
-0.12379734218120575,
-0.03950202837586403,
-0.11856134980916977,
0.0828060582280159,
-0.018765123561024666,
0.05358273163437843,
-0.13388662040233612,
0.002962416037917137,
-0.03092004917562008,
-0.1000383123755455,
0.0008258016314357519,
-0.010259408503770828,
0.013102153316140175,
0.05673167109489441,
-0.0465664342045784,
0.028825534507632256,
0.16422578692436218,
0.10067784041166306,
0.03424466773867607,
0.014950054697692394,
0.006840163376182318,
0.10362154245376587,
-0.02135351486504078,
0.141976460814476,
-0.08418465405702591,
-0.017838027328252792,
0.04718412086367607,
0.029468465596437454,
0.048838187009096146,
-0.03716108947992325,
-0.11679767817258835,
-0.049217868596315384,
0.021777257323265076,
0.02614150382578373,
0.07479332387447357,
0.018669040873646736,
-0.0224238820374012,
0.017952442169189453,
0.07033900916576385,
-0.1399068683385849,
-0.011156337335705757,
0.03818051889538765,
0.04453489929437637,
0.05294447019696236,
0.06031307578086853,
0.054503072053194046,
-0.06475821137428284,
-0.003187380963936448,
-0.018941370770335197,
0.022925840690732002,
0.05149645730853081,
-0.006643542088568211,
0.037677884101867676,
-0.07422345876693726,
0.043755821883678436,
-0.15214227139949799,
-0.055525537580251694,
-0.022732792422175407,
-0.011520919390022755,
0.00679297698661685,
-0.08867698162794113,
-0.009387175552546978,
-0.04285643249750137,
0.04191075637936592,
-0.10999743640422821,
-0.008337801322340965,
-0.0778578668832779,
0.07103251665830612,
-0.0007295716204680502,
0.0875777155160904,
-0.15211878716945648,
0.09637179225683212,
-0.07523910701274872,
-0.008007440716028214,
-0.03999742120504379,
0.09303946048021317,
-0.10022138804197311,
0.1179782822728157,
-0.08971653878688812,
-0.019921163097023964,
-0.09712865948677063,
0.05175204947590828,
-0.023234108462929726,
0.08371017128229141,
-0.20111170411109924,
-0.10432388633489609,
0.10801830142736435,
-0.08484908938407898,
-0.13236834108829498,
0.12032567709684372,
0.040576837956905365,
0.03325330838561058,
0.06189767271280289,
0.3482498526573181,
0.025274740532040596,
-0.07857642322778702,
-0.017728956416249275,
0.12781326472759247,
-0.07375435531139374,
-0.149266317486763,
0.05609390512108803,
-0.09261290729045868,
0.022161204367876053,
0.03643392398953438,
-0.026899855583906174,
0.08503878116607666,
0.041274502873420715,
-0.09975247085094452,
-0.06388549506664276,
-0.09660045802593231,
-0.0338299497961998,
-0.007044028956443071,
0.03012590855360031,
-0.0035097170621156693,
-0.0037958815228194,
-0.014590438455343246,
0.07005587965250015,
-0.023297185078263283,
0.053360193967819214,
-0.09170889854431152,
0.10836233198642731,
-0.01718941517174244,
0.005121050868183374,
-0.16156207025051117,
0.16921547055244446,
-0.07997216284275055,
-0.011556681245565414,
0.08212686330080032,
0.06686514616012573,
0.052709538489580154,
-0.09911341965198517,
0.01901601441204548,
0.0007765649352222681,
0.14743725955486298,
0.07647708803415298,
-0.009054502472281456,
-0.16767549514770508,
0.03075854666531086,
-0.06303541362285614,
0.06482874602079391,
-0.03000534698367119,
-0.009870042093098164,
0.040680937469005585,
0.10413546860218048,
-0.04500386863946915,
0.04449736699461937,
0.05341631919145584,
-0.007545240689069033,
0.01922088861465454,
-0.0007520336075685918,
0.06946464627981186,
0.01652505062520504,
-0.09135103970766068,
0.20553132891654968,
-0.17365556955337524,
0.22901450097560883,
0.2039654552936554,
-0.11619584262371063,
0.059055790305137634,
0.07199904322624207,
-0.0014019773807376623,
-0.015480587258934975,
0.05690290033817291,
-0.06072000786662102,
0.17755652964115143,
-0.024916192516684532,
0.13514500856399536,
-0.053789857774972916,
0.005608650855720043,
-0.006963131949305534,
-0.0636645182967186,
-0.016096388921141624,
0.09136950224637985,
0.0036824229173362255,
-0.09027130901813507,
0.12248536944389343,
0.19611983001232147,
-0.08467622101306915,
0.16471056640148163,
-0.07008284330368042,
-0.044445209205150604,
0.06424704194068909,
-0.033021096140146255,
-0.06944216787815094,
0.11157040297985077,
-0.24499629437923431,
-0.05406280234456062,
0.09295687824487686,
-0.035374995321035385,
0.0680195763707161,
-0.15125885605812073,
-0.014071745797991753,
-0.012731337919831276,
-0.05871402844786644,
-0.1072956770658493,
0.08243788778781891,
-0.00991142075508833,
0.07472611963748932,
-0.05443448945879936,
-0.20773924887180328,
0.05559517443180084,
-0.024470627307891846,
-0.09990030527114868,
0.07799162715673447,
-0.08933097124099731,
-0.260974645614624,
-0.11093375831842422,
-0.04545029252767563,
-0.014200233854353428,
0.01859060488641262,
0.11603856086730957,
-0.10468731820583344,
-0.03382977098226547,
-0.03551643714308739,
-0.02412964031100273,
-0.027052009478211403,
-0.011980891227722168,
0.05057167634367943,
0.012784511782228947,
0.08212368190288544,
-0.13621525466442108,
-0.026484079658985138,
-0.04269383102655411,
0.10478012263774872,
0.03179856017231941,
0.02191091701388359,
0.06034348905086517,
0.16914749145507812,
0.08227232843637466,
0.03587579354643822,
0.010158419609069824,
0.19424943625926971,
-0.08439497649669647,
-0.02600753866136074,
0.18406179547309875,
-0.02466796338558197,
0.023213448002934456,
0.2208755761384964,
0.041432060301303864,
-0.018765004351735115,
-0.0379551500082016,
-0.049433253705501556,
-0.05847645178437233,
-0.15743018686771393,
-0.12471102923154831,
-0.10213533788919449,
-0.027219800278544426,
0.015219601802527905,
0.08239720016717911,
0.05644094944000244,
-0.006195984315127134,
0.013579342514276505,
-0.03682501241564751,
-0.012337329797446728,
-0.014125870540738106,
0.2565329968929291,
-0.050323523581027985,
0.12006030976772308,
-0.08934082835912704,
-0.07135149091482162,
0.054532796144485474,
0.10562354326248169,
0.03235892578959465,
0.12934048473834991,
0.07010418176651001,
0.025871641933918,
0.17388972640037537,
0.09456887096166611,
0.045838214457035065,
0.041375234723091125,
-0.008742035366594791,
0.00524209626019001,
-0.07251599431037903,
-0.03852551057934761,
0.1008521169424057,
0.14975549280643463,
-0.1089910939335823,
0.020019138231873512,
-0.09629952162504196,
0.0268547460436821,
0.1674758642911911,
0.07919321209192276,
-0.16985966265201569,
-0.006968267727643251,
0.04184405133128166,
-0.06750855594873428,
-0.00948823057115078,
0.07590776681900024,
0.002050355775281787,
-0.03271595016121864,
0.05116993933916092,
0.05458036810159683,
0.07062075287103653,
-0.03318782523274422,
0.08008405566215515,
-0.07372172921895981,
-0.056052885949611664,
0.05505760759115219,
0.05308802053332329,
-0.2469414621591568,
0.2415137141942978,
0.013647775165736675,
0.00530629837885499,
-0.0065286969766020775,
0.008164300583302975,
0.09473853558301926,
0.09723209589719772,
0.15124179422855377,
0.023227090016007423,
-0.08808507025241852,
-0.08235593140125275,
-0.0822148248553276,
0.05944050848484039,
0.005134461913257837,
0.0657399594783783,
-0.07786235958337784,
-0.035325516015291214,
-0.029691973701119423,
0.0373188741505146,
-0.022435063496232033,
-0.10270132124423981,
-0.11595592647790909,
0.05766620859503746,
0.2636524736881256,
0.05249074101448059,
-0.009572440758347511,
-0.05317462980747223,
-0.1933683305978775,
0.023118706420063972,
-0.10564929246902466,
-0.028314828872680664,
-0.07194297015666962,
-0.1449068784713745,
0.12347075343132019,
-0.04783686250448227,
0.03910190984606743,
-0.02506580576300621,
-0.025084417313337326,
-0.040367309004068375,
-0.1266769915819168,
0.10713937133550644,
-0.10180340707302094,
-0.007037192117422819,
0.003002011217176914,
0.18847650289535522,
-0.05136459320783615,
0.06613282114267349,
0.04510187730193138,
0.03911751136183739,
-0.12180983275175095,
-0.056745611131191254,
0.10125146806240082,
0.08246924728155136,
-0.05918203666806221,
0.013926493003964424,
-0.03056572750210762,
-0.15480829775333405,
-0.03542954847216606,
-0.0016370895318686962,
0.22226886451244354,
0.11650174856185913,
-0.08566494286060333,
0.18408198654651642,
0.21719679236412048,
-0.026431512087583542,
-0.295890212059021,
-0.17671558260917664,
-0.08028342574834824,
0.0022701937705278397,
-0.03420357406139374,
-0.12119948118925095,
0.1236443817615509,
-0.0505901537835598,
-0.10741271823644638,
0.023630551993846893,
-0.17450419068336487,
-0.10914979875087738,
0.33367010951042175,
-0.11613364517688751,
0.268989622592926,
-0.11007917672395706,
-0.07573436945676804,
-0.07715752720832825,
-0.12292085587978363,
0.04135791212320328,
-0.09378107637166977,
0.08678675442934036,
-0.001684802584350109,
0.0799841582775116,
0.009390193037688732,
-0.03220776841044426,
0.1163768321275711,
0.09808336198329926,
-0.03910844027996063,
-0.05091003701090813,
0.024952810257673264,
-0.020305944606661797,
-0.009370540268719196,
0.14581449329853058,
-0.11241118609905243,
0.02004162408411503,
-0.10146205127239227,
-0.0149629982188344,
-0.11044303327798843,
0.09692753851413727,
0.06876875460147858,
0.0005429318989627063,
0.0023354317527264357,
-0.05978965759277344,
0.006739610340446234,
0.019351471215486526,
0.15708322823047638,
-0.11128746718168259,
-0.0010663679568096995,
0.15670903027057648,
0.14184033870697021,
-0.2113456279039383,
-0.15241627395153046,
-0.038303617388010025,
-0.057114653289318085,
0.0865413174033165,
-0.12038741260766983,
0.09335512667894363,
0.06294141709804535,
0.030903518199920654,
0.07874757051467896,
0.053538016974925995,
-0.03951587527990341,
-0.011467023752629757,
0.10591772198677063,
-0.09004131704568863,
-0.12806455790996552,
-0.0018533682450652122,
0.03715381398797035,
0.01164318062365055,
0.07770469039678574,
0.14578422904014587,
-0.028764739632606506,
-0.000655723677482456,
-0.01264235470443964,
0.024616949260234833,
-0.13014553487300873,
0.10886383056640625,
0.13025140762329102,
0.03870219364762306,
-0.15550319850444794,
0.08607695251703262,
-0.014864997006952763,
-0.06815902888774872,
0.04186578840017319,
0.010686193592846394,
-0.08203201740980148,
-0.14231997728347778,
-0.12944187223911285,
0.017409730702638626,
-0.0838484838604927,
-0.11762865632772446,
-0.04316564276814461,
-0.11498890817165375,
0.03142677620053291,
0.10789810121059418,
0.06895337253808975,
0.0391329824924469,
-0.07319711148738861,
-0.11198873817920685,
0.03414756432175636,
0.007232154253870249,
-0.020672809332609177,
-0.0027763990219682455,
-0.14136911928653717,
-0.041352685540914536,
0.007092740386724472,
0.09232953190803528,
-0.06488245725631714,
-0.04157930240035057,
-0.06699619442224503,
0.045061785727739334,
-0.10888899117708206,
-0.016626039519906044,
-0.08888579159975052,
0.016975173726677895,
0.03949782997369766,
-0.09178635478019714,
-0.01059881504625082,
0.045641086995601654,
-0.1219884380698204,
-0.010860015638172626,
0.008978142403066158,
0.09125608205795288,
-0.13544560968875885,
-0.0018674765015020967,
0.04387061670422554,
-0.003149392083287239,
0.11132147908210754,
0.13246174156665802,
-0.14118553698062897,
0.0634336844086647,
-0.17036505043506622,
-0.1807679533958435,
0.12138129025697708,
0.042568840086460114,
0.019500846043229103,
-0.05370420962572098,
-0.04739740118384361,
0.11326431483030319,
0.0491427481174469,
0.011996093206107616,
0.09237775951623917,
-0.0779888853430748,
-0.004289182834327221,
-0.102546826004982,
-0.04511505737900734,
-0.02412593923509121,
-0.04597656801342964,
0.1658773273229599,
0.10619603097438812,
0.1348894089460373,
-0.03149133548140526,
-0.009556775912642479,
-0.07084710896015167,
0.04197230935096741,
-0.0564616434276104,
-0.12982717156410217,
-0.09287320077419281,
-0.03243113309144974,
0.02281435951590538,
-0.034404028207063675,
0.22099669277668,
-0.0020052094478160143,
-0.06803004443645477,
0.040213193744421005,
0.02641943469643593,
-0.012877561151981354,
0.01303041260689497,
0.2775250971317291,
0.04474847763776779,
-0.0019041948253288865,
0.0046622492372989655,
-0.0002717667375691235,
0.03350670635700226,
0.13415402173995972,
-0.041201137006282806,
0.1594426929950714,
0.08006531745195389,
0.10885493457317352,
0.12266270071268082,
-0.04876713082194328,
-0.06704153120517731,
0.022296248003840446,
-0.04311985522508621,
0.07848788797855377,
-0.0675627812743187,
0.1322498470544815,
0.16102084517478943,
0.01413723174482584,
0.07133056968450546,
-0.0656595528125763,
-0.029102280735969543,
-0.15873703360557556,
-0.1020292192697525,
-0.057258497923612595,
-0.13574376702308655,
0.000817453081253916,
-0.013109852559864521,
0.028363585472106934,
0.1418590545654297,
0.014719376340508461,
-0.003353154519572854,
0.022065691649913788,
-0.012524244375526905,
-0.04446858912706375,
0.06116408482193947,
-0.05012574791908264,
-0.03350719437003136,
-0.08339934051036835,
0.009908315725624561,
0.07754936069250107,
0.010268546640872955,
-0.01382314134389162,
-0.015144404955208302,
-0.08106338977813721,
0.029343439266085625,
-0.1264822632074356,
-0.07132036983966827,
-0.03557746484875679,
0.02255670726299286,
0.030842110514640808,
0.10320615768432617,
0.0791919007897377,
-0.04449629783630371,
0.049681082367897034,
0.1889229267835617,
-0.08559154719114304,
-0.1485985517501831,
-0.07156277447938919,
0.12568797171115875,
-0.021428674459457397,
0.03169325739145279,
-0.05926423519849777,
-0.059855252504348755,
-0.029409486800432205,
0.21406999230384827,
0.2581580579280853,
-0.07790230959653854,
0.061612483114004135,
-0.08203176409006119,
0.024440500885248184,
-0.04659786820411682,
-0.017352033406496048,
0.16971845924854279,
0.157622829079628,
-0.025557851418852806,
-0.039617087692022324,
-0.05308680981397629,
-0.062235187739133835,
-0.09793055802583694,
0.05499262735247612,
-0.020713621750473976,
-0.09472688287496567,
-0.023565378040075302,
0.09105822443962097,
-0.11749217659235,
-0.04155905544757843,
-0.1320270299911499,
-0.11221576482057571,
-0.05152156949043274,
0.0033561447635293007,
0.12389127910137177,
0.09666498750448227,
-0.014381924644112587,
-0.0638592466711998,
-0.0195532888174057,
0.07072440534830093,
-0.028103310614824295,
-0.21394023299217224,
0.02689194492995739,
0.0221567265689373,
-0.10321354866027832,
0.02133667655289173,
-0.009494575671851635,
0.09007689356803894,
0.02884693071246147,
0.13238851726055145,
-0.03475738689303398,
0.12410182505846024,
0.006335149053484201,
-0.07743996381759644,
0.01683429442346096,
0.07680569589138031,
0.024426989257335663,
0.012566927820444107,
0.05293615907430649,
-0.1085314229130745,
0.0458233468234539,
-0.04869792237877846,
-0.06871072947978973,
-0.06535682827234268,
-0.0036196361761540174,
-0.052360862493515015,
0.06262530386447906,
-0.013623994775116444,
-0.04317767173051834,
-0.05422570928931236,
-0.022141119465231895,
-0.022522900253534317,
0.02544054202735424,
-0.1815919280052185,
-0.11429423838853836,
-0.05950477719306946,
-0.018623124808073044,
-0.09073586761951447,
-0.0210611242800951,
-0.09675399214029312,
-0.06715817749500275,
-0.0675555169582367,
-0.006356080062687397,
-0.010166728869080544,
0.016384143382310867,
0.09210730344057083,
0.010989630594849586,
0.004656985402107239,
0.006165709346532822,
0.08826517313718796,
0.0734509602189064,
-0.12619708478450775,
-0.0967554971575737
] |
null | null |
transformers
|
# SEW-D-base+
[SEW-D by ASAPP Research](https://github.com/asappresearch/sew)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
**Abstract**
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .
# Usage
See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWDForCTC`.
|
{"language": "en", "license": "apache-2.0", "tags": ["speech"], "datasets": ["librispeech_asr"]}
|
feature-extraction
|
asapp/sew-d-base-plus-400k
|
[
"transformers",
"pytorch",
"sew-d",
"feature-extraction",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2109.06870",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.06870"
] |
[
"en"
] |
TAGS
#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us
|
# SEW-D-base+
SEW-D by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under URL .
# Usage
See this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'.
|
[
"# SEW-D-base+\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
"TAGS\n#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# SEW-D-base+\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
63,
344,
47
] |
[
"passage: TAGS\n#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n# SEW-D-base+\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
-0.06345228850841522,
0.05252009257674217,
-0.004970598500221968,
0.007364308927208185,
0.04927978292107582,
-0.027286471799016,
0.06633876264095306,
0.05989550054073334,
-0.053247127681970596,
0.01916533336043358,
-0.04821968823671341,
-0.024417785927653313,
0.09525737166404724,
0.09701989591121674,
0.053868141025304794,
-0.20330187678337097,
0.08786186575889587,
-0.07057396322488785,
0.06079680100083351,
0.03462066128849983,
0.13092248141765594,
-0.10031317919492722,
0.027855848893523216,
0.07730592042207718,
0.01415302325040102,
0.022420529276132584,
-0.06578157097101212,
-0.047581784427165985,
0.09316851198673248,
0.05549317225813866,
0.08079062402248383,
0.0663161501288414,
0.05964936316013336,
-0.22310198843479156,
0.006186876446008682,
0.027057884261012077,
0.03644491732120514,
0.011906584724783897,
0.05859947204589844,
-0.014302407391369343,
0.018912797793745995,
0.003088688477873802,
0.0555710531771183,
0.04227273911237717,
-0.012046389281749725,
-0.055373795330524445,
-0.04717005044221878,
0.044820841401815414,
0.13026496767997742,
0.0403379388153553,
-0.015011283569037914,
-0.01148509606719017,
-0.08100786060094833,
0.05379040539264679,
0.06517785787582397,
-0.1768764853477478,
0.04933365434408188,
-0.10346044600009918,
-0.024562006816267967,
-0.015749139711260796,
-0.07513595372438431,
-0.01074348296970129,
-0.004638352431356907,
-0.012457873672246933,
0.09090515226125717,
0.0031001076567918062,
-0.027211101725697517,
-0.024057243019342422,
-0.13577096164226532,
-0.026652278378605843,
0.1614435315132141,
0.04741907864809036,
-0.09934912621974945,
-0.1162598729133606,
-0.04179660975933075,
-0.009124722331762314,
-0.0170906875282526,
-0.08563225716352463,
0.035645145922899246,
-0.02643483132123947,
0.049383290112018585,
-0.023557670414447784,
-0.11209424585103989,
-0.062206633388996124,
-0.0011772302677854896,
0.1663956493139267,
0.08711382746696472,
0.0356554314494133,
-0.01034676842391491,
0.07260355353355408,
-0.06480000913143158,
-0.025482023134827614,
-0.07635249942541122,
-0.044169604778289795,
-0.16736459732055664,
0.02811417728662491,
-0.03473779186606407,
-0.17276084423065186,
0.000890364171937108,
0.18055015802383423,
0.015198060311377048,
0.05813524127006531,
0.13219934701919556,
0.050144635140895844,
0.05898991972208023,
0.12674792110919952,
-0.004719472024589777,
-0.08281408250331879,
-0.005357156973332167,
-0.015328525565564632,
-0.010840971022844315,
-0.041343118995428085,
-0.03998484089970589,
-0.020773135125637054,
0.05561818554997444,
-0.04873593896627426,
-0.032059915363788605,
0.03269662708044052,
-0.07382754981517792,
-0.03377055376768112,
0.1274365931749344,
-0.1514267921447754,
-0.01527154166251421,
-0.016039738431572914,
-0.0036026914604008198,
0.05024047940969467,
0.11736425757408142,
0.038734231144189835,
-0.094064861536026,
0.13024906814098358,
-0.030607907101511955,
-0.025280959904193878,
-0.056615956127643585,
-0.04158443212509155,
-0.007415127009153366,
-0.07293298095464706,
-0.005629092454910278,
-0.1390513926744461,
-0.15210869908332825,
-0.07293861359357834,
-0.01784210093319416,
0.009492943994700909,
-0.04921873286366463,
-0.06730762869119644,
0.02558177337050438,
-0.04350154846906662,
-0.025723110884428024,
-0.03210455924272537,
-0.024963142350316048,
-0.016886994242668152,
-0.03776361793279648,
0.03295452520251274,
-0.06291481107473373,
0.043534256517887115,
-0.0670020803809166,
0.009563137777149677,
-0.05484917387366295,
0.16551655530929565,
-0.087684765458107,
-0.011406494304537773,
-0.09223657846450806,
0.030183909460902214,
-0.14443480968475342,
0.06335269659757614,
0.044621121138334274,
0.10758798569440842,
-0.20479130744934082,
-0.09259144961833954,
0.10704778134822845,
-0.1675790697336197,
0.01770513318479061,
0.12148647755384445,
0.0018500946462154388,
0.046697381883859634,
0.10238277912139893,
0.2003418207168579,
0.19998611509799957,
-0.08292786777019501,
-0.0960240438580513,
0.02415577508509159,
-0.0505373552441597,
-0.0024644536897540092,
0.08289123326539993,
-0.042621295899152756,
0.07985051721334457,
0.04697021096944809,
-0.025363139808177948,
0.0028771378565579653,
0.0018171805422753096,
-0.05398355796933174,
0.01378672569990158,
-0.07587246596813202,
0.017936501652002335,
-0.07716001570224762,
0.03062465228140354,
0.005977492779493332,
-0.10395969450473785,
0.06331245601177216,
0.120846688747406,
-0.06487812846899033,
0.08446485549211502,
-0.1373029500246048,
-0.002074549440294504,
0.06959371268749237,
0.01837882399559021,
-0.10565192252397537,
0.06562145054340363,
0.03303273022174835,
-0.07436147332191467,
0.08873659372329712,
0.03812161833047867,
0.01044419314712286,
0.015043468214571476,
0.004303602501749992,
-0.008830628357827663,
-0.08854107558727264,
0.025797061622142792,
-0.055069126188755035,
-0.10467177629470825,
-0.07623717188835144,
-0.023446878418326378,
0.06627417355775833,
0.009179492481052876,
0.04058780521154404,
0.11205179989337921,
0.11960901319980621,
0.012137416750192642,
-0.07536815106868744,
-0.030112899839878082,
0.019064491614699364,
-0.0022937720641493797,
0.034952446818351746,
-0.024666182696819305,
0.020521963015198708,
-0.08564901351928711,
0.08619285374879837,
-0.06919591128826141,
-0.11350759863853455,
0.038213472813367844,
-0.004126688465476036,
-0.053726278245449066,
-0.02231023833155632,
-0.010131096467375755,
-0.06452405452728271,
-0.10345514863729477,
-0.15584182739257812,
0.2514704167842865,
0.0048308586701750755,
0.08735600113868713,
-0.033400218933820724,
-0.008648529648780823,
-0.030751019716262817,
-0.00295291212387383,
0.018047770485281944,
0.03588493540883064,
0.06292280554771423,
0.06051214411854744,
0.007105262018740177,
0.018793588504195213,
-0.05084258317947388,
0.09521489590406418,
-0.013837414793670177,
-0.08982789516448975,
0.04042605310678482,
-0.05114719271659851,
-0.05764252319931984,
0.05718524754047394,
-0.1372266560792923,
-0.020832611247897148,
0.04147496446967125,
0.045953311026096344,
0.08599545061588287,
-0.0952480286359787,
0.0995003804564476,
0.0723954513669014,
-0.02476990595459938,
0.009563760831952095,
-0.07265444844961166,
-0.0277327299118042,
0.039901625365018845,
-0.024834396317601204,
-0.027866551652550697,
-0.01073827687650919,
-0.03117232769727707,
-0.13150650262832642,
0.11570052057504654,
-0.06267402321100235,
-0.1681106835603714,
-0.19495265185832977,
0.08708765357732773,
0.01745561510324478,
0.001892859349027276,
0.05979461222887039,
-0.01278268825262785,
-0.10161977261304855,
-0.07650400698184967,
0.09512052685022354,
0.0015420994022861123,
0.03425701707601547,
0.07236239314079285,
0.00397604750469327,
0.0011043756967410445,
-0.11472786962985992,
0.005292562302201986,
-0.020439976826310158,
0.028759904205799103,
0.000839132466353476,
0.0329025462269783,
0.09182519465684891,
0.12820613384246826,
-0.023612868040800095,
-0.022644568234682083,
-0.03662152960896492,
0.18333201110363007,
-0.05208565294742584,
0.06529116630554199,
0.1340388059616089,
-0.1757906824350357,
0.02525060996413231,
0.053594864904880524,
0.01129860244691372,
-0.005257454700767994,
-0.005809687077999115,
0.02613614872097969,
-0.06463267654180527,
-0.18189668655395508,
-0.06743885576725006,
-0.029280362650752068,
0.018811127170920372,
-0.004227515310049057,
0.035920143127441406,
-0.022459901869297028,
0.020511718466877937,
-0.04999785125255585,
0.04351237788796425,
0.12338321655988693,
0.03678973764181137,
0.06277888268232346,
-0.020659836009144783,
0.10893244296312332,
-0.05043686926364899,
-0.007020174525678158,
0.056833792477846146,
0.05920140817761421,
0.1984095275402069,
0.005867504980415106,
0.12227537482976913,
0.09838970750570297,
0.02887929417192936,
0.08003029972314835,
0.026010820642113686,
-0.04648619145154953,
0.07871410995721817,
-0.031011169776320457,
-0.028729382902383804,
-0.04105716943740845,
0.1231016293168068,
0.03878249600529671,
-0.0854930430650711,
-0.057346686720848083,
0.03479694947600365,
0.08720487356185913,
0.19325004518032074,
0.04338836669921875,
-0.13381437957286835,
-0.0687161386013031,
0.04993471875786781,
-0.15102629363536835,
0.01901092752814293,
0.03778712823987007,
0.09643415361642838,
-0.09635833650827408,
0.07311028987169266,
0.06759016215801239,
0.08404392749071121,
-0.1337076872587204,
0.011290398426353931,
-0.014689001254737377,
0.04891716688871384,
0.0049512372352182865,
0.04749324917793274,
-0.13079309463500977,
0.04673323407769203,
-0.010012187995016575,
0.07945729792118073,
-0.02248978428542614,
0.05299092456698418,
-0.026578692719340324,
0.008680957369506359,
0.09873916953802109,
-0.011604875326156616,
-0.035400982946157455,
0.01607542671263218,
-0.09816934913396835,
0.03611775487661362,
0.08239592611789703,
-0.052852973341941833,
0.06465382128953934,
-0.031792983412742615,
0.029388025403022766,
-0.011299156583845615,
0.0018917174311354756,
-0.10241277515888214,
-0.1667395383119583,
0.04941905289888382,
0.04615797847509384,
0.04479709640145302,
-0.04614221304655075,
-0.021709904074668884,
-0.14502239227294922,
0.15061049163341522,
-0.27372342348098755,
-0.08626701682806015,
-0.07711414992809296,
-0.06697367131710052,
0.0617232583463192,
-0.029026180505752563,
0.04922792315483093,
0.0845859944820404,
0.09615417569875717,
-0.06590970605611801,
-0.07729914039373398,
-0.02570544183254242,
-0.06045033037662506,
-0.13856391608715057,
-0.003628128906711936,
0.1167646199464798,
0.0820198655128479,
0.02804434671998024,
0.006896167993545532,
-0.01536790281534195,
0.013321286998689175,
-0.0908580869436264,
-0.0038697721902281046,
0.19115348160266876,
-0.11412548273801804,
0.07523125410079956,
-0.05445711314678192,
-0.18858256936073303,
-0.08775500953197479,
-0.037992555648088455,
0.05070768669247627,
0.18418124318122864,
-0.05181655287742615,
0.19136370718479156,
0.1294676661491394,
-0.09108299016952515,
-0.24140195548534393,
-0.07981322705745697,
0.08198652416467667,
0.0488862544298172,
0.047961264848709106,
-0.1285414844751358,
0.0539664626121521,
0.08119695633649826,
-0.029589390382170677,
-0.09960643202066422,
-0.16883361339569092,
-0.16463513672351837,
0.13743476569652557,
-0.023174956440925598,
0.11191263794898987,
-0.03591209277510643,
-0.04447074234485626,
-0.04725663736462593,
-0.03594432398676872,
0.0629526674747467,
-0.03168437257409096,
0.04562621936202049,
0.05452223867177963,
-0.029311876744031906,
0.04344838485121727,
-0.004567768424749374,
0.11407200992107391,
0.08086097985506058,
-0.001043475465849042,
-0.004494359716773033,
0.06131651625037193,
-0.07524900138378143,
-0.032137516885995865,
0.1079634428024292,
0.032292310148477554,
-0.0003447894414421171,
-0.07698871940374374,
-0.06978996843099594,
-0.0006995092844590545,
0.0676557868719101,
0.02214355394244194,
-0.009289976209402084,
-0.0857188031077385,
-0.00645312899723649,
0.029636500403285027,
0.019485436379909515,
0.07853027433156967,
-0.05029347538948059,
-0.1782192885875702,
0.15327300131320953,
0.15005698800086975,
-0.042987383902072906,
-0.07467964291572571,
-0.030453236773610115,
-0.033170659095048904,
0.0841967836022377,
-0.03298100084066391,
0.08683033287525177,
0.07484931498765945,
0.008936773054301739,
0.08175863325595856,
0.03131578117609024,
-0.16280964016914368,
0.0030569660011678934,
0.09690111130475998,
-0.07748048007488251,
-0.14338144659996033,
-0.0468195378780365,
-0.050766441971063614,
-0.05237768590450287,
0.1048138365149498,
0.15376155078411102,
-0.08412361890077591,
-0.002964271232485771,
0.006093963980674744,
0.07178021967411041,
-0.06675637513399124,
0.16378895938396454,
0.029949670657515526,
0.024160968139767647,
-0.05623629316687584,
0.15092219412326813,
0.08054125308990479,
-0.04863853007555008,
0.027149055153131485,
-0.0031056394800543785,
-0.06824436038732529,
-0.020723823457956314,
-0.15412284433841705,
0.00801190733909607,
0.011454017832875252,
-0.13836491107940674,
-0.03381270170211792,
-0.08849749714136124,
0.0009049460059031844,
0.048825982958078384,
0.028880225494503975,
0.0802571177482605,
0.01904582418501377,
0.04653261974453926,
-0.05151156708598137,
0.06789954006671906,
0.04874807968735695,
0.019536763429641724,
-0.10956991463899612,
0.11998090147972107,
0.009769928641617298,
0.07892175763845444,
-0.03183690458536148,
-0.02255118265748024,
-0.07302185148000717,
0.026065031066536903,
-0.013226332142949104,
0.024359645321965218,
-0.07289128750562668,
-0.01371191069483757,
0.06371195614337921,
-0.014916276559233665,
0.009377168491482735,
0.059191443026065826,
-0.0266250167042017,
-0.0028631894383579493,
-0.03778610751032829,
0.04726095870137215,
-0.08190920948982239,
0.028573790565133095,
0.0672069787979126,
-0.09776744991540909,
0.05300571024417877,
0.01708514802157879,
-0.012809406034648418,
0.07829814404249191,
-0.04019384831190109,
0.02058175764977932,
0.045241568237543106,
0.05185175687074661,
-0.028621790930628777,
0.0039278846234083176,
-0.045631926506757736,
0.013850091025233269,
-0.04652751237154007,
-0.06167452037334442,
0.12955689430236816,
-0.05729331448674202,
0.05151016637682915,
0.004947889130562544,
-0.03945310786366463,
-0.07291549444198608,
-0.002373798517510295,
0.036813221871852875,
0.09796734154224396,
0.1317635476589203,
-0.025471504777669907,
0.01361911278218031,
-0.08313065022230148,
0.05128980427980423,
0.03441156446933746,
0.020181352272629738,
-0.018730193376541138,
-0.08890703320503235,
0.036178573966026306,
-0.033325012773275375,
0.1349373459815979,
-0.014753259718418121,
-0.04280725121498108,
0.05502510070800781,
-0.05274813994765282,
-0.10440598428249359,
0.05925211310386658,
0.05130099132657051,
0.029408549889922142,
0.02643725462257862,
-0.10280509293079376,
-0.03525121882557869,
-0.011636700481176376,
-0.07126694917678833,
0.0735790804028511,
0.13831031322479248,
-0.08824047446250916,
0.1168409213423729,
0.0404847227036953,
-0.03444674238562584,
-0.10502039641141891,
0.05661870166659355,
-0.061085354536771774,
-0.021053427830338478,
-0.027602246031165123,
0.08976509422063828,
0.1135060116648674,
-0.11233590543270111,
0.13490895926952362,
0.052957069128751755,
-0.06647278368473053,
-0.10695459693670273,
-0.10835807770490646,
-0.04315287992358208,
-0.07612203061580658,
-0.02381717413663864,
-0.08523044735193253,
-0.010388342663645744,
0.05704832822084427,
-0.006019056309014559,
0.006431858520954847,
0.07952921092510223,
-0.17131155729293823,
-0.054465800523757935,
0.016992440447211266,
-0.05193965137004852,
0.008997679688036442,
0.004341077525168657,
-0.052367065101861954,
0.08510620146989822,
0.14515629410743713,
0.05503261461853981,
-0.00007581307727377862,
0.020765429362654686,
0.00872809998691082,
0.003578719450160861,
-0.034973617643117905,
-0.006594449747353792,
-0.08154961466789246,
0.03257347643375397,
0.0092416787520051,
0.06839980185031891,
-0.07508090138435364,
0.003634499153122306,
0.19324566423892975,
-0.05638667196035385,
-0.07996420562267303,
-0.18412241339683533,
0.04939129948616028,
0.09967578947544098,
0.04099311679601669,
0.06692555546760559,
-0.15616266429424286,
0.003203324042260647,
0.20764410495758057,
0.09931700676679611,
-0.0013387671206146479,
0.006903331261128187,
-0.02512492425739765,
0.01936906762421131,
0.04752364754676819,
0.03737965226173401,
-0.026693351566791534,
0.2516179382801056,
0.011719897389411926,
0.06800063699483871,
0.001182060339488089,
-0.03858442232012749,
-0.025710443034768105,
0.17510324716567993,
-0.06773483008146286,
-0.007044753525406122,
-0.07814066857099533,
0.05811063200235367,
-0.058035921305418015,
-0.30043715238571167,
-0.02264481782913208,
-0.021865801885724068,
-0.0647243857383728,
0.013448868878185749,
0.03711722046136856,
0.004123471211642027,
0.021959612146019936,
0.017664728686213493,
-0.010889504104852676,
0.17134809494018555,
0.05645604431629181,
-0.0800083801150322,
0.0035310147795826197,
0.0729857087135315,
-0.004220588132739067,
0.07926963269710541,
0.0038306463975459337,
0.1363816261291504,
-0.0034758897963911295,
0.10497038811445236,
-0.03897514194250107,
0.05713720992207527,
-0.06451766937971115,
-0.06176963821053505,
0.004357320722192526,
0.12806984782218933,
-0.022590918466448784,
0.13617858290672302,
0.0330703966319561,
-0.12616920471191406,
0.004193211905658245,
0.05291365459561348,
-0.07439464330673218,
-0.03312431275844574,
0.06046406179666519,
-0.07542124390602112,
0.11666055023670197,
0.07582339644432068,
-0.030744528397917747,
0.008040090091526508,
-0.028152206912636757,
0.02265283837914467,
-0.032055556774139404,
0.03122202306985855,
-0.023744462057948112,
-0.16698701679706573,
-0.005165034905076027,
-0.12077101320028305,
0.03293631225824356,
-0.0929759219288826,
-0.05740126594901085,
-0.01675516366958618,
0.002771859522908926,
-0.020348774269223213,
0.06967061012983322,
0.14359046518802643,
-0.014708943665027618,
-0.05246603116393089,
-0.047429200261831284,
0.059085406363010406,
0.04452383890748024,
-0.10566521435976028,
-0.08310873806476593
] |
null | null |
transformers
|
# SEW-D-mid
[SEW-D by ASAPP Research](https://github.com/asappresearch/sew)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
**Abstract**
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .
# Usage
See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWDForCTC`.
|
{"language": "en", "license": "apache-2.0", "tags": ["speech"], "datasets": ["librispeech_asr"]}
|
feature-extraction
|
asapp/sew-d-mid-100k
|
[
"transformers",
"pytorch",
"sew-d",
"feature-extraction",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2109.06870",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.06870"
] |
[
"en"
] |
TAGS
#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us
|
# SEW-D-mid
SEW-D by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under URL .
# Usage
See this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'.
|
[
"# SEW-D-mid\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
"TAGS\n#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# SEW-D-mid\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
63,
343,
47
] |
[
"passage: TAGS\n#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n# SEW-D-mid\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
-0.0618617981672287,
0.04901101440191269,
-0.004664179403334856,
0.007934861816465855,
0.05364449322223663,
-0.026803014799952507,
0.06625816971063614,
0.061570703983306885,
-0.04750204458832741,
0.020359328016638756,
-0.046806443482637405,
-0.028131969273090363,
0.09591464698314667,
0.09359331429004669,
0.05397196486592293,
-0.19682849943637848,
0.0859772339463234,
-0.07912098616361618,
0.054873351007699966,
0.03482039272785187,
0.12946034967899323,
-0.09900625050067902,
0.031870175153017044,
0.07771985232830048,
0.00370498257689178,
0.0155651168897748,
-0.06075363606214523,
-0.04245643690228462,
0.08986574411392212,
0.050299838185310364,
0.07902313023805618,
0.0617629811167717,
0.06738816201686859,
-0.2198564112186432,
0.005727694369852543,
0.029419342055916786,
0.039609793573617935,
0.014126516878604889,
0.06559503823518753,
-0.01559390127658844,
0.007630650885403156,
-0.0014292775886133313,
0.04827384278178215,
0.04690026119351387,
-0.022060193121433258,
-0.05516967177391052,
-0.05478263646364212,
0.05636949837207794,
0.13185369968414307,
0.03827078267931938,
-0.013495071791112423,
-0.008244788274168968,
-0.08082564175128937,
0.049439411610364914,
0.06651102006435394,
-0.17943838238716125,
0.052926644682884216,
-0.08602087944746017,
-0.02026115544140339,
-0.009246060624718666,
-0.07776755094528198,
-0.007433454040437937,
0.0032992311753332615,
-0.015317654237151146,
0.0839742049574852,
0.0026630396023392677,
-0.025937311351299286,
-0.025235537439584732,
-0.13591498136520386,
-0.02552632987499237,
0.1687435805797577,
0.045317646116018295,
-0.09920679032802582,
-0.11751922219991684,
-0.034680016338825226,
-0.009324559010565281,
-0.0192200168967247,
-0.08688970655202866,
0.030719010159373283,
-0.01649908907711506,
0.053014691919088364,
-0.02121703140437603,
-0.11250023543834686,
-0.06517427414655685,
0.006446527317166328,
0.16778215765953064,
0.07993662357330322,
0.03285418450832367,
-0.012250619009137154,
0.07128573209047318,
-0.06863969564437866,
-0.024630799889564514,
-0.07445841282606125,
-0.048930373042821884,
-0.16816921532154083,
0.0176786370575428,
-0.03984729200601578,
-0.17215463519096375,
0.004093828145414591,
0.17146487534046173,
0.022205296903848648,
0.055391907691955566,
0.11930828541517258,
0.04563889652490616,
0.06093870475888252,
0.12639151513576508,
-0.01310412585735321,
-0.08133537322282791,
-0.010773231275379658,
-0.012211322784423828,
-0.019216831773519516,
-0.04123668000102043,
-0.04314950108528137,
-0.0249334704130888,
0.05665113404393196,
-0.04588139057159424,
-0.026809345930814743,
0.03825683891773224,
-0.07726684957742691,
-0.03555413335561752,
0.13010908663272858,
-0.1504957377910614,
-0.007225906942039728,
-0.011563874781131744,
0.004210049752146006,
0.05353078618645668,
0.1097746416926384,
0.04335681349039078,
-0.08953731507062912,
0.11856289952993393,
-0.03442569077014923,
-0.023898925632238388,
-0.05599430575966835,
-0.04334674030542374,
-0.007797401864081621,
-0.05858203396201134,
-0.008973222225904465,
-0.13612419366836548,
-0.14183028042316437,
-0.07037682086229324,
-0.017407553270459175,
0.008217020891606808,
-0.03707254305481911,
-0.058016180992126465,
0.014976403675973415,
-0.04066871851682663,
-0.021222351118922234,
-0.027752425521612167,
-0.021021656692028046,
-0.018100274726748466,
-0.03472299873828888,
0.03406140208244324,
-0.06485551595687866,
0.04223639518022537,
-0.06482140719890594,
0.016144737601280212,
-0.044694118201732635,
0.16659756004810333,
-0.08507968485355377,
-0.003179550636559725,
-0.09854322671890259,
0.030476389452815056,
-0.15001045167446136,
0.0584506019949913,
0.04375787451863289,
0.1058925911784172,
-0.20931613445281982,
-0.08483181148767471,
0.11629778146743774,
-0.16276106238365173,
0.01750156469643116,
0.12281333655118942,
0.00040567247197031975,
0.053863901644945145,
0.1024472787976265,
0.1996086686849594,
0.19217362999916077,
-0.0815574899315834,
-0.09296482056379318,
0.017341570928692818,
-0.0543857142329216,
0.003459950676187873,
0.07768943905830383,
-0.04078163206577301,
0.07141543179750443,
0.04372618347406387,
-0.03344834968447685,
-0.0013214049395173788,
0.0031870307866483927,
-0.057657938450574875,
0.01012001745402813,
-0.07847803831100464,
0.018297435715794563,
-0.07404758781194687,
0.023438554257154465,
0.007434287574142218,
-0.09456145018339157,
0.05887254700064659,
0.11446855217218399,
-0.0635465458035469,
0.08301941305398941,
-0.13670973479747772,
-0.0044339802116155624,
0.062243230640888214,
0.01861591450870037,
-0.10838069021701813,
0.07322484254837036,
0.033770084381103516,
-0.08046963065862656,
0.08519046753644943,
0.05428328365087509,
0.016384698450565338,
0.009810371324419975,
0.007908370345830917,
0.0008464428246952593,
-0.08207826316356659,
0.029808320105075836,
-0.057807806879282,
-0.10634967684745789,
-0.07846862077713013,
-0.02723592519760132,
0.06633726507425308,
-0.0076895542442798615,
0.037942372262477875,
0.11264969408512115,
0.11255712807178497,
0.010245711542665958,
-0.07653392851352692,
-0.0293995663523674,
0.017545897513628006,
0.001222363323904574,
0.027498751878738403,
-0.02405795454978943,
0.021760663017630577,
-0.0832439586520195,
0.08367639780044556,
-0.0809042900800705,
-0.12154924124479294,
0.04037818685173988,
-0.00895755272358656,
-0.059746164828538895,
-0.023739971220493317,
-0.010070612654089928,
-0.06383377313613892,
-0.09806638956069946,
-0.15205048024654388,
0.23653243482112885,
0.004542999900877476,
0.08024615049362183,
-0.03008844330906868,
-0.005145053844898939,
-0.02619023062288761,
-0.009814351797103882,
0.020632587373256683,
0.028334086760878563,
0.046350933611392975,
0.05137759819626808,
0.0021630011033266783,
0.028684310615062714,
-0.046711161732673645,
0.08418956398963928,
-0.009507857263088226,
-0.09084687381982803,
0.03879057243466377,
-0.05233651027083397,
-0.054079603403806686,
0.0557732880115509,
-0.13199859857559204,
-0.02786744013428688,
0.044604070484638214,
0.04717031866312027,
0.08161310851573944,
-0.09388107806444168,
0.0999423936009407,
0.06906924396753311,
-0.025112615898251534,
-0.002320795087143779,
-0.07381641864776611,
-0.03252628445625305,
0.04054401442408562,
-0.01554937195032835,
-0.01535836886614561,
-0.010337607935070992,
-0.03154921159148216,
-0.13307467103004456,
0.11009456217288971,
-0.05648297816514969,
-0.16927869617938995,
-0.19241851568222046,
0.08408264815807343,
0.020887741819024086,
0.006659391336143017,
0.047848306596279144,
-0.019039291888475418,
-0.10472816228866577,
-0.07179275155067444,
0.09544731676578522,
-0.002506850054487586,
0.029888847842812538,
0.0846540778875351,
0.008212543092668056,
0.004066516179591417,
-0.11136393249034882,
0.007209747564047575,
-0.015680456534028053,
0.021254120394587517,
-0.0048402780666947365,
0.029260965064167976,
0.09054537862539291,
0.1289733499288559,
-0.024699488654732704,
-0.019559092819690704,
-0.028422176837921143,
0.18351857364177704,
-0.05362213775515556,
0.06420956552028656,
0.1350814253091812,
-0.17730094492435455,
0.021222159266471863,
0.05988715589046478,
0.01326547097414732,
-0.005265113897621632,
-0.005220030900090933,
0.024068890139460564,
-0.06114988029003143,
-0.17764008045196533,
-0.0660809576511383,
-0.036649465560913086,
0.012177770026028156,
0.0025139388162642717,
0.032041873782873154,
-0.0030240770429372787,
0.025068657472729683,
-0.0479295514523983,
0.04315992444753647,
0.11756899952888489,
0.03981970250606537,
0.05676237866282463,
-0.017139725387096405,
0.10729233175516129,
-0.05402233451604843,
-0.004403980448842049,
0.05746186897158623,
0.06496880203485489,
0.189687117934227,
0.017961209639906883,
0.12723493576049805,
0.09644264727830887,
0.037871044129133224,
0.07858631014823914,
0.023948442190885544,
-0.04098246246576309,
0.07216118276119232,
-0.02790191024541855,
-0.028297169134020805,
-0.04689015820622444,
0.1260247379541397,
0.04815971478819847,
-0.08828487992286682,
-0.047172848135232925,
0.025054719299077988,
0.08853049576282501,
0.19172833859920502,
0.05281839519739151,
-0.13989387452602386,
-0.0705251470208168,
0.04874284192919731,
-0.14570903778076172,
0.014674266800284386,
0.03246191516518593,
0.09235741198062897,
-0.09665284305810928,
0.07109908014535904,
0.06563200801610947,
0.08504234999418259,
-0.1275937259197235,
0.01341416034847498,
-0.009994879364967346,
0.04813448339700699,
0.004411204718053341,
0.05047108605504036,
-0.14411211013793945,
0.04850272089242935,
-0.004746089689433575,
0.08107929676771164,
-0.027494968846440315,
0.04940382018685341,
-0.022676000371575356,
0.008824365213513374,
0.0956009179353714,
-0.008198337629437447,
-0.033672966063022614,
0.01668596640229225,
-0.0979573056101799,
0.033769506961107254,
0.08638349920511246,
-0.05132171884179115,
0.06702408194541931,
-0.03928135335445404,
0.03170932084321976,
-0.007855080999433994,
0.004402245860546827,
-0.11351288855075836,
-0.16083818674087524,
0.05779671296477318,
0.05069633200764656,
0.05316391587257385,
-0.04245828092098236,
-0.018821850419044495,
-0.14982888102531433,
0.1506219059228897,
-0.26594892144203186,
-0.07820431888103485,
-0.0798400416970253,
-0.060345567762851715,
0.06642264872789383,
-0.02191500924527645,
0.04043065756559372,
0.08208504319190979,
0.10256655514240265,
-0.057877328246831894,
-0.07847977429628372,
-0.026281218975782394,
-0.06323760002851486,
-0.14688274264335632,
0.0022235701326280832,
0.11354681104421616,
0.08963824063539505,
0.025695959106087685,
0.012848315760493279,
-0.012473661452531815,
0.014828241430222988,
-0.09331769496202469,
0.005568106193095446,
0.18074087798595428,
-0.11022718995809555,
0.07157309353351593,
-0.0503360889852047,
-0.1905972957611084,
-0.09411237388849258,
-0.03520059958100319,
0.041922878473997116,
0.1775369793176651,
-0.05326250195503235,
0.18969549238681793,
0.13131634891033173,
-0.0925338938832283,
-0.24404284358024597,
-0.06786525249481201,
0.07800114154815674,
0.04527689144015312,
0.04943763464689255,
-0.1251612901687622,
0.05546791851520538,
0.06739449501037598,
-0.031310953199863434,
-0.10181532055139542,
-0.1634892076253891,
-0.1599494367837906,
0.13650472462177277,
-0.029903503134846687,
0.1138906255364418,
-0.041025158017873764,
-0.04385612905025482,
-0.050391167402267456,
-0.05104035139083862,
0.06665629148483276,
-0.0322565883398056,
0.04446303844451904,
0.051257602870464325,
-0.022406507283449173,
0.044475242495536804,
-0.0064682746306061745,
0.11348310858011246,
0.09057453274726868,
0.0023283641785383224,
-0.010630217380821705,
0.06538628786802292,
-0.06409807503223419,
-0.03397921100258827,
0.10691844671964645,
0.04597363620996475,
0.0011740369955077767,
-0.06282957643270493,
-0.06745430827140808,
-0.0033600444439798594,
0.0642242357134819,
0.022510478273034096,
-0.009679541923105717,
-0.08390741050243378,
-0.0005418072687461972,
0.030556831508874893,
0.02034205198287964,
0.06453799456357956,
-0.05392126366496086,
-0.17441852390766144,
0.14850753545761108,
0.16129140555858612,
-0.03627384826540947,
-0.0574127621948719,
-0.025792909786105156,
-0.03422689810395241,
0.08370735496282578,
-0.032769620418548584,
0.09412452578544617,
0.06956921517848969,
0.011285802349448204,
0.0758279412984848,
0.03437357395887375,
-0.16003496944904327,
-0.0005337993497960269,
0.09510649740695953,
-0.07402150332927704,
-0.144510418176651,
-0.039046917110681534,
-0.04406265169382095,
-0.06070360168814659,
0.10381961613893509,
0.15351060032844543,
-0.08527431637048721,
-0.0036226450465619564,
0.006747699808329344,
0.0755704864859581,
-0.07388544082641602,
0.1551428735256195,
0.03271117061376572,
0.022549869492650032,
-0.05659262835979462,
0.14545735716819763,
0.07722678780555725,
-0.04235202446579933,
0.029160151258111,
-0.014594621025025845,
-0.06811953336000443,
-0.021429220214486122,
-0.14190462231636047,
0.0014764495426788926,
0.013838861137628555,
-0.14075207710266113,
-0.02055509202182293,
-0.08589473366737366,
-0.005021908786147833,
0.04222949221730232,
0.02950972504913807,
0.08448000252246857,
0.016360340639948845,
0.04376987740397453,
-0.06094678118824959,
0.06465169787406921,
0.047865577042102814,
0.01862672157585621,
-0.11425813287496567,
0.12120513617992401,
0.000730357482098043,
0.07397661358118057,
-0.03328679874539375,
-0.020473862066864967,
-0.0732426643371582,
0.02348800003528595,
-0.015777068212628365,
0.0193612240254879,
-0.08087479323148727,
-0.012051212601363659,
0.0615808330476284,
-0.021029895171523094,
0.005773452576249838,
0.05620048940181732,
-0.02914065308868885,
-0.0043024057522416115,
-0.03834325820207596,
0.04992523789405823,
-0.08231594413518906,
0.03289560228586197,
0.07276145368814468,
-0.09606392681598663,
0.04880572482943535,
0.016539152711629868,
-0.017802810296416283,
0.07767894119024277,
-0.046294331550598145,
0.020229773595929146,
0.04090898856520653,
0.05050309747457504,
-0.03317635506391525,
-0.0007670265040360391,
-0.049941714853048325,
0.016468605026602745,
-0.03722023591399193,
-0.057824667543172836,
0.13864189386367798,
-0.04905083030462265,
0.04958066716790199,
-0.007202021311968565,
-0.0357852578163147,
-0.07099320739507675,
0.0013308667112141848,
0.04672670364379883,
0.09823516756296158,
0.12871770560741425,
-0.025213276967406273,
0.011315573006868362,
-0.08397896587848663,
0.048802848905324936,
0.029643267393112183,
0.02641667053103447,
-0.021148480474948883,
-0.08694878965616226,
0.03976166993379593,
-0.02847471460700035,
0.14371612668037415,
-0.013551685027778149,
-0.04788302630186081,
0.051236268132925034,
-0.05159571394324303,
-0.1055050939321518,
0.0571315661072731,
0.0641787052154541,
0.03261789306998253,
0.02258717641234398,
-0.09863752126693726,
-0.031933121383190155,
-0.016480252146720886,
-0.06481349468231201,
0.07836736738681793,
0.14710518717765808,
-0.09771044552326202,
0.11059369891881943,
0.03359857574105263,
-0.046504221856594086,
-0.09277359396219254,
0.06983038783073425,
-0.07187144458293915,
-0.020707378163933754,
-0.03619904816150665,
0.07830603420734406,
0.11481630802154541,
-0.10959934443235397,
0.13350047171115875,
0.04144473001360893,
-0.0702381506562233,
-0.10352811217308044,
-0.10717185586690903,
-0.04158782586455345,
-0.08040951192378998,
-0.027785932645201683,
-0.08221656829118729,
-0.0032948388252407312,
0.06474882364273071,
-0.009643618948757648,
0.004324052017182112,
0.08036667108535767,
-0.17467370629310608,
-0.05461907759308815,
0.0150903994217515,
-0.05925144627690315,
0.012843508273363113,
0.009971141815185547,
-0.04974667355418205,
0.09217487275600433,
0.1483033001422882,
0.062268439680337906,
0.0039029812905937433,
0.02054842747747898,
0.007589481770992279,
-0.002965612104162574,
-0.041732050478458405,
-0.006806480698287487,
-0.07979461550712585,
0.029799530282616615,
0.011568872258067131,
0.06899376958608627,
-0.07648122310638428,
0.0037526926025748253,
0.18611599504947662,
-0.05754048377275467,
-0.07784207165241241,
-0.19356189668178558,
0.04506566375494003,
0.08570389449596405,
0.036519650369882584,
0.058035627007484436,
-0.1533937007188797,
0.012744860723614693,
0.21438515186309814,
0.09361697733402252,
-0.005689690820872784,
0.004250543657690287,
-0.02559802308678627,
0.019381558522582054,
0.0484233982861042,
0.046011943370103836,
-0.03536588326096535,
0.23384422063827515,
0.010645284317433834,
0.06352448463439941,
0.0013800992164760828,
-0.04574001580476761,
-0.022485027089715004,
0.17504312098026276,
-0.07251041382551193,
-0.010562489740550518,
-0.07983942329883575,
0.06914213299751282,
-0.05349606275558472,
-0.29335856437683105,
-0.022933807224035263,
-0.014055478386580944,
-0.061412930488586426,
0.017824335023760796,
0.03828432410955429,
0.004835320636630058,
0.023225635290145874,
0.013179033994674683,
-0.005402420647442341,
0.17596405744552612,
0.05285497382283211,
-0.07168862968683243,
0.013577807694673538,
0.07288216799497604,
0.00014939281390979886,
0.07710731774568558,
0.0068491180427372456,
0.13492663204669952,
-0.002195244189351797,
0.09860667586326599,
-0.047094542533159256,
0.04703164100646973,
-0.06698401272296906,
-0.05327171832323074,
0.00411702785640955,
0.13755705952644348,
-0.021258214488625526,
0.11430919915437698,
0.03712977468967438,
-0.1374647617340088,
0.005343431141227484,
0.04413462057709694,
-0.07551267743110657,
-0.04082431271672249,
0.0539386160671711,
-0.0720255970954895,
0.12559938430786133,
0.07400982081890106,
-0.03493528440594673,
0.010620567947626114,
-0.028274185955524445,
0.021504227072000504,
-0.03443089872598648,
0.03546983003616333,
-0.03261709213256836,
-0.16905327141284943,
-0.009984161704778671,
-0.12693904340267181,
0.03012029081583023,
-0.08456169813871384,
-0.05080795660614967,
-0.011920150369405746,
0.00041431872523389757,
-0.011843324638903141,
0.06976187974214554,
0.13954274356365204,
-0.016031868755817413,
-0.05066418647766113,
-0.04820704832673073,
0.06610487401485443,
0.04750487208366394,
-0.10448089987039566,
-0.08135303854942322
] |
null | null |
transformers
|
# SEW-D-mid
[SEW-D by ASAPP Research](https://github.com/asappresearch/sew)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
**Abstract**
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .
# Usage
To transcribe audio files the model can be used as a standalone acoustic model as follows:
```python
from transformers import Wav2Vec2Processor, SEWDForCTC
from datasets import load_dataset
import soundfile as sf
import torch
# load the model and preprocessor
processor = Wav2Vec2Processor.from_pretrained("asapp/sew-d-mid-400k-ft-ls100h")
model = SEWDForCTC.from_pretrained("asapp/sew-d-mid-400k-ft-ls100h")
# load the dummy dataset with speech samples
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
# preprocess
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
```
## Evaluation
This code snippet shows how to evaluate **asapp/sew-d-mid-400k-ft-ls100hh** on LibriSpeech's "clean" and "other" test data.
```python
from datasets import load_dataset
from transformers import SEWDForCTC, Wav2Vec2Processor
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = SEWDForCTC.from_pretrained("asapp/sew-d-mid-400k-ft-ls100h").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("asapp/sew-d-mid-400k-ft-ls100h")
def map_to_pred(batch):
input_values = processor(batch["audio"][0]["array"], sampling_rate=16000,
return_tensors="pt", padding="longest").input_values
with torch.no_grad():
logits = model(input_values.to("cuda")).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"])
print("WER:", wer(result["text"], result["transcription"]))
```
*Result (WER)*:
| "clean" | "other" |
| --- | --- |
| 4.94 | 11.51 |
|
{"language": "en", "license": "apache-2.0", "tags": ["audio", "speech", "automatic-speech-recognition", "hf-asr-leaderboard"], "datasets": ["librispeech_asr"], "widget": [{"example_title": "Librispeech sample 1", "src": "https://cdn-media.huggingface.co/speech_samples/sample1.flac"}, {"example_title": "Librispeech sample 2", "src": "https://cdn-media.huggingface.co/speech_samples/sample2.flac"}], "model-index": [{"name": "sew-d-mid-400k-ft-ls100h", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "LibriSpeech (clean)", "type": "librispeech_asr", "config": "clean", "split": "test", "args": {"language": "en"}}, "metrics": [{"type": "wer", "value": 4.94, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "LibriSpeech (other)", "type": "librispeech_asr", "config": "other", "split": "test", "args": {"language": "en"}}, "metrics": [{"type": "wer", "value": 11.51, "name": "Test WER"}]}]}]}
|
automatic-speech-recognition
|
asapp/sew-d-mid-400k-ft-ls100h
|
[
"transformers",
"pytorch",
"sew-d",
"automatic-speech-recognition",
"audio",
"speech",
"hf-asr-leaderboard",
"en",
"dataset:librispeech_asr",
"arxiv:2109.06870",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.06870"
] |
[
"en"
] |
TAGS
#transformers #pytorch #sew-d #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #model-index #endpoints_compatible #region-us
|
SEW-D-mid
=========
SEW-D by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under URL .
Usage
=====
To transcribe audio files the model can be used as a standalone acoustic model as follows:
Evaluation
----------
This code snippet shows how to evaluate asapp/sew-d-mid-400k-ft-ls100hh on LibriSpeech's "clean" and "other" test data.
*Result (WER)*:
|
[] |
[
"TAGS\n#transformers #pytorch #sew-d #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n"
] |
[
84
] |
[
"passage: TAGS\n#transformers #pytorch #sew-d #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n"
] |
[
-0.16309943795204163,
0.14237479865550995,
-0.004388653207570314,
-0.010782352648675442,
0.09030687808990479,
-0.052070919424295425,
0.0975453108549118,
0.11680830270051956,
0.10528243333101273,
-0.014946449548006058,
0.08504579216241837,
0.195509672164917,
0.021590175107121468,
0.04690661281347275,
-0.05598554387688637,
-0.16731016337871552,
0.06959051638841629,
0.03316670283675194,
0.0283882487565279,
0.06626244634389877,
0.11789016425609589,
-0.02030968852341175,
0.043371785432100296,
0.05663204565644264,
-0.04723487049341202,
0.033044684678316116,
0.04176881164312363,
-0.12125576287508011,
0.12279215455055237,
0.05952182039618492,
-0.005435560829937458,
0.04132610186934471,
0.03167012333869934,
-0.19424529373645782,
0.015424580313265324,
-0.02626776695251465,
0.014335399493575096,
0.03774835169315338,
0.011521303094923496,
-0.027433615177869797,
-0.0020574666559696198,
0.07806844264268875,
-0.029395900666713715,
0.09211914986371994,
-0.028358232229948044,
-0.22840480506420135,
-0.023346103727817535,
0.10970733314752579,
0.03808315470814705,
0.08578644692897797,
-0.00841900147497654,
0.07096689194440842,
-0.07604023814201355,
0.09008459001779556,
0.08224978297948837,
-0.2103736251592636,
0.05902060121297836,
-0.06169489771127701,
0.008631461299955845,
-0.004368503112345934,
-0.013508469797670841,
0.005952988285571337,
0.010209497064352036,
0.02445232681930065,
-0.038480810821056366,
-0.07699138671159744,
-0.11148469150066376,
-0.011912123300135136,
-0.08037710934877396,
-0.023441176861524582,
0.2777762711048126,
0.034622419625520706,
0.026501184329390526,
-0.047712087631225586,
-0.011632218025624752,
0.057833973318338394,
-0.07165463268756866,
0.006371992640197277,
-0.008278562687337399,
0.06587675213813782,
0.06816074252128601,
-0.028160030022263527,
-0.10648136585950851,
-0.049925144761800766,
-0.10928240418434143,
0.08342117816209793,
-0.005236846394836903,
0.05484594404697418,
-0.1557563692331314,
-0.008369560353457928,
-0.03675972297787666,
-0.09351823478937149,
-0.010089453309774399,
-0.010626962408423424,
0.01796882040798664,
0.049975957721471786,
-0.02087305672466755,
0.017386194318532944,
0.1796240210533142,
0.11543256789445877,
0.042587634176015854,
0.035184867680072784,
-0.007920299656689167,
0.08793988823890686,
-0.039713647216558456,
0.13775835931301117,
-0.05369579419493675,
-0.00873523112386465,
0.06646984815597534,
0.007929142564535141,
0.03965040668845177,
-0.01757342368364334,
-0.10627017170190811,
-0.04267745092511177,
0.02061345987021923,
0.05121249333024025,
0.05039553344249725,
0.008467834442853928,
-0.04076061025261879,
0.000324396911310032,
0.07021768391132355,
-0.14396578073501587,
-0.026652539148926735,
0.0414750836789608,
0.043270159512758255,
0.09448518604040146,
0.04813939332962036,
0.06025130674242973,
-0.09893608093261719,
0.01851380057632923,
-0.007694041356444359,
0.018748575821518898,
0.06466278433799744,
0.029626065865159035,
0.04078058525919914,
-0.08459265530109406,
0.05947178229689598,
-0.1391938328742981,
-0.09958543628454208,
-0.011589407920837402,
-0.020375099033117294,
0.013163491152226925,
-0.08122637122869492,
-0.036127641797065735,
-0.021616490557789803,
0.015981270000338554,
-0.10801384598016739,
-0.021254902705550194,
-0.07871443778276443,
0.07446146756410599,
0.019233405590057373,
0.05401699244976044,
-0.14366449415683746,
0.0963830053806305,
-0.07964277267456055,
-0.016498848795890808,
-0.037086278200149536,
0.10288041085004807,
-0.0982690081000328,
0.13376758992671967,
-0.10379026085138321,
-0.017685623839497566,
-0.08538281917572021,
0.043263088911771774,
-0.030279064550995827,
0.10798029601573944,
-0.1785266250371933,
-0.12426483631134033,
0.14315570890903473,
-0.09544069319963455,
-0.13282306492328644,
0.12941232323646545,
0.04662468284368515,
0.031708139926195145,
0.10128088295459747,
0.325273722410202,
0.043051913380622864,
-0.0751202180981636,
0.011535272933542728,
0.12481944262981415,
-0.08582514524459839,
-0.17190389335155487,
0.04849593713879585,
-0.11611349135637283,
-0.011021480895578861,
0.05532136186957359,
-0.02385631762444973,
0.09509903937578201,
0.034056831151247025,
-0.094791479408741,
-0.05519299581646919,
-0.10613575577735901,
-0.05654369294643402,
0.003359191818162799,
0.023825490847229958,
0.002332717180252075,
0.012403273023664951,
-0.03249937668442726,
0.07269192487001419,
-0.034511249512434006,
0.04878722131252289,
-0.11549262702465057,
0.0902520939707756,
-0.007410778198391199,
0.014231742359697819,
-0.16435712575912476,
0.18553151190280914,
-0.06921441853046417,
-0.011016164906322956,
0.07957220822572708,
0.0012891929363831878,
0.05470740422606468,
-0.09462959319353104,
0.015595258213579655,
0.00002283010326209478,
0.17737935483455658,
0.05863058567047119,
0.0037275070790201426,
-0.16831661760807037,
0.05068763718008995,
-0.05523693934082985,
0.07195170223712921,
-0.024976663291454315,
-0.020877061411738396,
0.02681219018995762,
0.10478489845991135,
-0.03979978710412979,
0.03461626544594765,
0.04761495813727379,
-0.005551991984248161,
0.03283703327178955,
0.003350866725668311,
0.083249531686306,
0.021195141598582268,
-0.09769236296415329,
0.18557091057300568,
-0.14005355536937714,
0.21289576590061188,
0.1873687207698822,
-0.11540066450834274,
0.06088036671280861,
0.05168357118964195,
0.0026252316311001778,
-0.024761294946074486,
0.05914656072854996,
-0.04860880225896835,
0.2315974235534668,
-0.0042632948607206345,
0.15658532083034515,
-0.053943634033203125,
0.009589901193976402,
0.00008917464583646506,
-0.06143765524029732,
0.003923120442777872,
0.09359093010425568,
0.02986822836101055,
-0.11187944561243057,
0.09899748116731644,
0.14170819520950317,
-0.06989914923906326,
0.15321169793605804,
-0.09450528025627136,
-0.058110132813453674,
0.08002770692110062,
-0.008127063512802124,
-0.04792424663901329,
0.08562447875738144,
-0.2495180070400238,
-0.03673454746603966,
0.08634310215711594,
-0.03817254304885864,
0.07480250298976898,
-0.1478227972984314,
-0.006804908625781536,
-0.025373738259077072,
-0.07706597447395325,
-0.10752992331981659,
0.06537328660488129,
-0.016818702220916748,
0.0653352439403534,
-0.06837521493434906,
-0.20759586989879608,
0.07396028190851212,
-0.025815671309828758,
-0.12364723533391953,
0.09238355606794357,
-0.09185655415058136,
-0.2651683986186981,
-0.1345556229352951,
-0.05816713348031044,
-0.011776024475693703,
0.015736907720565796,
0.11119310557842255,
-0.11778459697961807,
-0.04214999079704285,
-0.0034489103127270937,
-0.010599831119179726,
-0.015094753354787827,
-0.020102672278881073,
0.060711946338415146,
0.019818685948848724,
0.08602920919656754,
-0.12854363024234772,
-0.023469364270567894,
-0.04348152503371239,
0.11005515605211258,
0.020533235743641853,
-0.01789901778101921,
0.05018305405974388,
0.16813838481903076,
0.1018889918923378,
0.041115209460258484,
0.012752321548759937,
0.18135881423950195,
-0.0766318216919899,
-0.038707055151462555,
0.18521898984909058,
-0.05465494096279144,
0.026052631437778473,
0.20344223082065582,
0.03835514932870865,
-0.03404057025909424,
-0.04020100459456444,
-0.05022834241390228,
-0.0499437190592289,
-0.1991093009710312,
-0.1186039000749588,
-0.0899626612663269,
-0.017729805782437325,
0.022566376253962517,
0.08178535103797913,
0.06078627333045006,
0.0004154111084062606,
0.011593026109039783,
-0.03302181139588356,
0.010121355764567852,
-0.011228333227336407,
0.2614278495311737,
-0.032886575907468796,
0.10354875773191452,
-0.08965650200843811,
-0.06614724546670914,
0.05214731767773628,
0.09680197387933731,
0.051008667796850204,
0.14570435881614685,
0.10492406040430069,
0.019599510356783867,
0.1597926914691925,
0.09889085590839386,
0.05798569694161415,
0.04426522180438042,
-0.00432932935655117,
0.018151773139834404,
-0.06455934792757034,
-0.060193419456481934,
0.0802188366651535,
0.12730170786380768,
-0.10326001048088074,
0.00858226791024208,
-0.0681566670536995,
0.01799703948199749,
0.1850316971540451,
0.06033701077103615,
-0.17895478010177612,
-0.012942042201757431,
0.0319959856569767,
-0.08204741030931473,
-0.013382261618971825,
0.08878490328788757,
-0.05139797553420067,
-0.042847905308008194,
0.07411877065896988,
0.0380055196583271,
0.08427076786756516,
-0.06479430943727493,
0.06436386704444885,
-0.05777031555771828,
-0.028982771560549736,
0.061398956924676895,
0.06292671710252762,
-0.2593042552471161,
0.2398567646741867,
0.02440144307911396,
0.04908869042992592,
-0.007665361277759075,
0.015790849924087524,
0.08931244164705276,
0.10086429119110107,
0.16906462609767914,
0.01337156631052494,
-0.06235182657837868,
-0.07895850390195847,
-0.10141739994287491,
0.07280813157558441,
0.014473745599389076,
0.08181212097406387,
-0.0921562984585762,
-0.042617909610271454,
-0.038595642894506454,
0.027843182906508446,
-0.11454901844263077,
-0.11519820988178253,
-0.10977876931428909,
0.0501922145485878,
0.2530575692653656,
0.07749807834625244,
-0.008301003836095333,
-0.04463401064276695,
-0.152510404586792,
0.03334721922874451,
-0.1328950822353363,
-0.04884948953986168,
-0.07540135830640793,
-0.14918947219848633,
0.11650028824806213,
-0.05888589844107628,
0.03746001422405243,
-0.031407661736011505,
-0.02469422109425068,
-0.031184988096356392,
-0.13645048439502716,
0.0934881642460823,
-0.11038891971111298,
-0.006059748120605946,
-0.0000534839928150177,
0.22255443036556244,
-0.03148239105939865,
0.04700503498315811,
0.0522548109292984,
0.011525687761604786,
-0.0808882936835289,
-0.050800979137420654,
0.08947671204805374,
0.09946325421333313,
-0.07469251751899719,
0.01680039055645466,
-0.0442977249622345,
-0.15002742409706116,
-0.06905040889978409,
-0.012077892199158669,
0.21957582235336304,
0.10325024276971817,
-0.05417662486433983,
0.18820242583751678,
0.25590693950653076,
-0.043185994029045105,
-0.27519309520721436,
-0.18147580325603485,
-0.0592893622815609,
-0.012665104120969772,
-0.07181116938591003,
-0.14940311014652252,
0.1527280956506729,
-0.04276156425476074,
-0.08502554148435593,
0.04398711770772934,
-0.173151433467865,
-0.10501575469970703,
0.3472597599029541,
-0.09043117612600327,
0.27467501163482666,
-0.105946846306324,
-0.1029907688498497,
-0.09083975851535797,
-0.14148233830928802,
0.036035314202308655,
-0.05548025295138359,
0.07659722119569778,
-0.002396847354248166,
0.08265713602304459,
0.007855979725718498,
-0.032957665622234344,
0.09678005427122116,
0.12163446098566055,
-0.05147352069616318,
-0.04290950670838356,
0.0541505441069603,
-0.045524585992097855,
0.01617296412587166,
0.1551993042230606,
-0.09688711166381836,
0.02608981542289257,
-0.08200064301490784,
-0.039937421679496765,
-0.103932686150074,
0.08856964856386185,
0.08053100109100342,
0.004217319656163454,
0.02706172876060009,
-0.07618570327758789,
-0.001801261561922729,
0.014526152051985264,
0.13948464393615723,
-0.10722346603870392,
-0.021596170961856842,
0.12088942527770996,
0.18501578271389008,
-0.2239384800195694,
-0.16823482513427734,
-0.07067842781543732,
-0.06457696110010147,
0.07629761844873428,
-0.08237825334072113,
0.09827986359596252,
0.08103315532207489,
0.03647569939494133,
0.08735091239213943,
0.04675561189651489,
-0.04082436114549637,
-0.015313624404370785,
0.09293095767498016,
-0.0856262668967247,
-0.11499996483325958,
-0.016683001071214676,
0.03775090351700783,
0.01605343259871006,
0.09217982739210129,
0.14152872562408447,
-0.012856501154601574,
-0.0017298460006713867,
-0.01797015778720379,
0.028655318543314934,
-0.1257622092962265,
0.13068924844264984,
0.12444140762090683,
0.027534576132893562,
-0.17237472534179688,
0.10051395744085312,
-0.0417216420173645,
-0.08445834368467331,
0.03132152929902077,
0.01974174566566944,
-0.1011960431933403,
-0.11973869800567627,
-0.11427127569913864,
0.052981626242399216,
-0.10435180366039276,
-0.13828927278518677,
-0.06380787491798401,
-0.120174340903759,
0.045065801590681076,
0.12336763739585876,
0.05874009430408478,
0.044066254049539566,
-0.08442673087120056,
-0.11998342722654343,
0.008961908519268036,
0.001946655916981399,
-0.00915589276701212,
-0.011120902374386787,
-0.14001137018203735,
-0.06834714859724045,
0.013848457485437393,
0.0837048813700676,
-0.05913586914539337,
-0.054442036896944046,
-0.05960291624069214,
0.06480095535516739,
-0.12871693074703217,
0.01140911877155304,
-0.09214102476835251,
0.03056827187538147,
0.04220295324921608,
-0.08277822285890579,
-0.0014561258722096682,
0.05026157200336456,
-0.11500024050474167,
0.0003943626943510026,
0.01982766017317772,
0.07626872509717941,
-0.12773460149765015,
0.003204795764759183,
0.04539752006530762,
0.000052127987146377563,
0.11323612183332443,
0.15108275413513184,
-0.15979285538196564,
0.0915885865688324,
-0.19291073083877563,
-0.18023715913295746,
0.12792979180812836,
0.04304085671901703,
0.008799651637673378,
-0.060699619352817535,
-0.02741902507841587,
0.13715653121471405,
0.03766012191772461,
0.010769978165626526,
0.09833738207817078,
-0.0903421938419342,
-0.017179997637867928,
-0.0951591208577156,
-0.048825040459632874,
-0.04100637137889862,
-0.055999692529439926,
0.1631220281124115,
0.11274068802595139,
0.14276693761348724,
-0.04249923303723335,
0.005710503552109003,
-0.052608538419008255,
0.0379197932779789,
-0.04355798661708832,
-0.12765167653560638,
-0.097167007625103,
-0.02895619347691536,
0.018113868311047554,
-0.02522822469472885,
0.20803318917751312,
-0.04173138737678528,
-0.02958906814455986,
0.0385485403239727,
0.011300596408545971,
-0.018711594864726067,
0.011808905750513077,
0.30543220043182373,
0.04939832538366318,
0.0019658475648611784,
-0.002293229103088379,
-0.0028800256550312042,
0.026538975536823273,
0.1226908266544342,
-0.035029977560043335,
0.14686961472034454,
0.05004223808646202,
0.1071796715259552,
0.12083470821380615,
-0.029979253187775612,
-0.048909518867731094,
0.012964827008545399,
-0.042730413377285004,
0.06992115080356598,
-0.026586199179291725,
0.17266322672367096,
0.146913543343544,
0.02482612617313862,
0.059738639742136,
-0.053156863898038864,
-0.05167505890130997,
-0.17505009472370148,
-0.10050573945045471,
-0.06552194803953171,
-0.12452327460050583,
0.026433516293764114,
-0.012715951539576054,
0.014338254928588867,
0.11562500149011612,
0.02150634676218033,
-0.026136577129364014,
0.019522659480571747,
-0.007195740472525358,
-0.0575227253139019,
0.07160284370183945,
-0.0599043145775795,
-0.0424467958509922,
-0.0700141116976738,
0.008278140798211098,
0.07452411204576492,
-0.0008366458350792527,
-0.015931444242596626,
-0.01630045846104622,
-0.08453880995512009,
0.034055061638355255,
-0.12599386274814606,
-0.06421814858913422,
-0.021464643999934196,
0.03406192362308502,
0.028306148946285248,
0.10149707645177841,
0.0794927179813385,
-0.04506003484129906,
0.06319019198417664,
0.15993668138980865,
-0.06525913625955582,
-0.15908394753932953,
-0.07772253453731537,
0.14525102078914642,
-0.012166253291070461,
0.02995213121175766,
-0.03931707143783569,
-0.047004081308841705,
-0.002838641172274947,
0.243644580245018,
0.22451277077198029,
-0.05504370108246803,
0.04531243070960045,
-0.09038460999727249,
0.02509191632270813,
-0.039081234484910965,
0.0012058241991326213,
0.16029471158981323,
0.17436003684997559,
-0.02010601945221424,
-0.05254567041993141,
-0.04180242121219635,
-0.0657811090350151,
-0.09743160754442215,
0.060285862535238266,
-0.023288460448384285,
-0.08742006868124008,
-0.02013811655342579,
0.11994123458862305,
-0.14000028371810913,
-0.02869155816733837,
-0.14538411796092987,
-0.0698821097612381,
-0.0462556816637516,
-0.020715257152915,
0.09953289479017258,
0.11182253062725067,
-0.023760836571455002,
-0.05955689772963524,
-0.027386974543333054,
0.09416285157203674,
-0.0251992866396904,
-0.2443583607673645,
0.016124239191412926,
0.007767129223793745,
-0.10173976421356201,
0.00963918212801218,
0.006563063245266676,
0.11383702605962753,
0.014938645996153355,
0.14076264202594757,
-0.03003971464931965,
0.12740088999271393,
-0.0036724323872476816,
-0.0716182067990303,
0.03972603380680084,
0.08721926808357239,
0.026122085750102997,
0.014787265099585056,
0.037375595420598984,
-0.10133073478937149,
0.04406939074397087,
-0.058696720749139786,
-0.08845622092485428,
-0.07267843931913376,
0.016893208026885986,
-0.06605862826108932,
0.05401233211159706,
-0.015611049719154835,
-0.032327353954315186,
-0.050744738429784775,
-0.03599413484334946,
0.0022983017843216658,
0.0385916568338871,
-0.19307376444339752,
-0.09723875671625137,
-0.08237364143133163,
-0.02412366308271885,
-0.07188178598880768,
-0.025457190349698067,
-0.10996422916650772,
-0.06025269255042076,
-0.08619315922260284,
-0.013441094197332859,
-0.03487023338675499,
0.02194191887974739,
0.08184956014156342,
0.026565976440906525,
0.011417325586080551,
0.009815255180001259,
0.08712270110845566,
0.06931370496749878,
-0.12574908137321472,
-0.10752855986356735
] |
null | null |
transformers
|
# SEW-D-mid
[SEW-D by ASAPP Research](https://github.com/asappresearch/sew)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
**Abstract**
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .
# Usage
See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWDForCTC`.
|
{"language": "en", "license": "apache-2.0", "tags": ["speech"], "datasets": ["librispeech_asr"]}
|
feature-extraction
|
asapp/sew-d-mid-400k
|
[
"transformers",
"pytorch",
"sew-d",
"feature-extraction",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2109.06870",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.06870"
] |
[
"en"
] |
TAGS
#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us
|
# SEW-D-mid
SEW-D by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under URL .
# Usage
See this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'.
|
[
"# SEW-D-mid\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
"TAGS\n#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# SEW-D-mid\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
63,
343,
47
] |
[
"passage: TAGS\n#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n# SEW-D-mid\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
-0.0618617981672287,
0.04901101440191269,
-0.004664179403334856,
0.007934861816465855,
0.05364449322223663,
-0.026803014799952507,
0.06625816971063614,
0.061570703983306885,
-0.04750204458832741,
0.020359328016638756,
-0.046806443482637405,
-0.028131969273090363,
0.09591464698314667,
0.09359331429004669,
0.05397196486592293,
-0.19682849943637848,
0.0859772339463234,
-0.07912098616361618,
0.054873351007699966,
0.03482039272785187,
0.12946034967899323,
-0.09900625050067902,
0.031870175153017044,
0.07771985232830048,
0.00370498257689178,
0.0155651168897748,
-0.06075363606214523,
-0.04245643690228462,
0.08986574411392212,
0.050299838185310364,
0.07902313023805618,
0.0617629811167717,
0.06738816201686859,
-0.2198564112186432,
0.005727694369852543,
0.029419342055916786,
0.039609793573617935,
0.014126516878604889,
0.06559503823518753,
-0.01559390127658844,
0.007630650885403156,
-0.0014292775886133313,
0.04827384278178215,
0.04690026119351387,
-0.022060193121433258,
-0.05516967177391052,
-0.05478263646364212,
0.05636949837207794,
0.13185369968414307,
0.03827078267931938,
-0.013495071791112423,
-0.008244788274168968,
-0.08082564175128937,
0.049439411610364914,
0.06651102006435394,
-0.17943838238716125,
0.052926644682884216,
-0.08602087944746017,
-0.02026115544140339,
-0.009246060624718666,
-0.07776755094528198,
-0.007433454040437937,
0.0032992311753332615,
-0.015317654237151146,
0.0839742049574852,
0.0026630396023392677,
-0.025937311351299286,
-0.025235537439584732,
-0.13591498136520386,
-0.02552632987499237,
0.1687435805797577,
0.045317646116018295,
-0.09920679032802582,
-0.11751922219991684,
-0.034680016338825226,
-0.009324559010565281,
-0.0192200168967247,
-0.08688970655202866,
0.030719010159373283,
-0.01649908907711506,
0.053014691919088364,
-0.02121703140437603,
-0.11250023543834686,
-0.06517427414655685,
0.006446527317166328,
0.16778215765953064,
0.07993662357330322,
0.03285418450832367,
-0.012250619009137154,
0.07128573209047318,
-0.06863969564437866,
-0.024630799889564514,
-0.07445841282606125,
-0.048930373042821884,
-0.16816921532154083,
0.0176786370575428,
-0.03984729200601578,
-0.17215463519096375,
0.004093828145414591,
0.17146487534046173,
0.022205296903848648,
0.055391907691955566,
0.11930828541517258,
0.04563889652490616,
0.06093870475888252,
0.12639151513576508,
-0.01310412585735321,
-0.08133537322282791,
-0.010773231275379658,
-0.012211322784423828,
-0.019216831773519516,
-0.04123668000102043,
-0.04314950108528137,
-0.0249334704130888,
0.05665113404393196,
-0.04588139057159424,
-0.026809345930814743,
0.03825683891773224,
-0.07726684957742691,
-0.03555413335561752,
0.13010908663272858,
-0.1504957377910614,
-0.007225906942039728,
-0.011563874781131744,
0.004210049752146006,
0.05353078618645668,
0.1097746416926384,
0.04335681349039078,
-0.08953731507062912,
0.11856289952993393,
-0.03442569077014923,
-0.023898925632238388,
-0.05599430575966835,
-0.04334674030542374,
-0.007797401864081621,
-0.05858203396201134,
-0.008973222225904465,
-0.13612419366836548,
-0.14183028042316437,
-0.07037682086229324,
-0.017407553270459175,
0.008217020891606808,
-0.03707254305481911,
-0.058016180992126465,
0.014976403675973415,
-0.04066871851682663,
-0.021222351118922234,
-0.027752425521612167,
-0.021021656692028046,
-0.018100274726748466,
-0.03472299873828888,
0.03406140208244324,
-0.06485551595687866,
0.04223639518022537,
-0.06482140719890594,
0.016144737601280212,
-0.044694118201732635,
0.16659756004810333,
-0.08507968485355377,
-0.003179550636559725,
-0.09854322671890259,
0.030476389452815056,
-0.15001045167446136,
0.0584506019949913,
0.04375787451863289,
0.1058925911784172,
-0.20931613445281982,
-0.08483181148767471,
0.11629778146743774,
-0.16276106238365173,
0.01750156469643116,
0.12281333655118942,
0.00040567247197031975,
0.053863901644945145,
0.1024472787976265,
0.1996086686849594,
0.19217362999916077,
-0.0815574899315834,
-0.09296482056379318,
0.017341570928692818,
-0.0543857142329216,
0.003459950676187873,
0.07768943905830383,
-0.04078163206577301,
0.07141543179750443,
0.04372618347406387,
-0.03344834968447685,
-0.0013214049395173788,
0.0031870307866483927,
-0.057657938450574875,
0.01012001745402813,
-0.07847803831100464,
0.018297435715794563,
-0.07404758781194687,
0.023438554257154465,
0.007434287574142218,
-0.09456145018339157,
0.05887254700064659,
0.11446855217218399,
-0.0635465458035469,
0.08301941305398941,
-0.13670973479747772,
-0.0044339802116155624,
0.062243230640888214,
0.01861591450870037,
-0.10838069021701813,
0.07322484254837036,
0.033770084381103516,
-0.08046963065862656,
0.08519046753644943,
0.05428328365087509,
0.016384698450565338,
0.009810371324419975,
0.007908370345830917,
0.0008464428246952593,
-0.08207826316356659,
0.029808320105075836,
-0.057807806879282,
-0.10634967684745789,
-0.07846862077713013,
-0.02723592519760132,
0.06633726507425308,
-0.0076895542442798615,
0.037942372262477875,
0.11264969408512115,
0.11255712807178497,
0.010245711542665958,
-0.07653392851352692,
-0.0293995663523674,
0.017545897513628006,
0.001222363323904574,
0.027498751878738403,
-0.02405795454978943,
0.021760663017630577,
-0.0832439586520195,
0.08367639780044556,
-0.0809042900800705,
-0.12154924124479294,
0.04037818685173988,
-0.00895755272358656,
-0.059746164828538895,
-0.023739971220493317,
-0.010070612654089928,
-0.06383377313613892,
-0.09806638956069946,
-0.15205048024654388,
0.23653243482112885,
0.004542999900877476,
0.08024615049362183,
-0.03008844330906868,
-0.005145053844898939,
-0.02619023062288761,
-0.009814351797103882,
0.020632587373256683,
0.028334086760878563,
0.046350933611392975,
0.05137759819626808,
0.0021630011033266783,
0.028684310615062714,
-0.046711161732673645,
0.08418956398963928,
-0.009507857263088226,
-0.09084687381982803,
0.03879057243466377,
-0.05233651027083397,
-0.054079603403806686,
0.0557732880115509,
-0.13199859857559204,
-0.02786744013428688,
0.044604070484638214,
0.04717031866312027,
0.08161310851573944,
-0.09388107806444168,
0.0999423936009407,
0.06906924396753311,
-0.025112615898251534,
-0.002320795087143779,
-0.07381641864776611,
-0.03252628445625305,
0.04054401442408562,
-0.01554937195032835,
-0.01535836886614561,
-0.010337607935070992,
-0.03154921159148216,
-0.13307467103004456,
0.11009456217288971,
-0.05648297816514969,
-0.16927869617938995,
-0.19241851568222046,
0.08408264815807343,
0.020887741819024086,
0.006659391336143017,
0.047848306596279144,
-0.019039291888475418,
-0.10472816228866577,
-0.07179275155067444,
0.09544731676578522,
-0.002506850054487586,
0.029888847842812538,
0.0846540778875351,
0.008212543092668056,
0.004066516179591417,
-0.11136393249034882,
0.007209747564047575,
-0.015680456534028053,
0.021254120394587517,
-0.0048402780666947365,
0.029260965064167976,
0.09054537862539291,
0.1289733499288559,
-0.024699488654732704,
-0.019559092819690704,
-0.028422176837921143,
0.18351857364177704,
-0.05362213775515556,
0.06420956552028656,
0.1350814253091812,
-0.17730094492435455,
0.021222159266471863,
0.05988715589046478,
0.01326547097414732,
-0.005265113897621632,
-0.005220030900090933,
0.024068890139460564,
-0.06114988029003143,
-0.17764008045196533,
-0.0660809576511383,
-0.036649465560913086,
0.012177770026028156,
0.0025139388162642717,
0.032041873782873154,
-0.0030240770429372787,
0.025068657472729683,
-0.0479295514523983,
0.04315992444753647,
0.11756899952888489,
0.03981970250606537,
0.05676237866282463,
-0.017139725387096405,
0.10729233175516129,
-0.05402233451604843,
-0.004403980448842049,
0.05746186897158623,
0.06496880203485489,
0.189687117934227,
0.017961209639906883,
0.12723493576049805,
0.09644264727830887,
0.037871044129133224,
0.07858631014823914,
0.023948442190885544,
-0.04098246246576309,
0.07216118276119232,
-0.02790191024541855,
-0.028297169134020805,
-0.04689015820622444,
0.1260247379541397,
0.04815971478819847,
-0.08828487992286682,
-0.047172848135232925,
0.025054719299077988,
0.08853049576282501,
0.19172833859920502,
0.05281839519739151,
-0.13989387452602386,
-0.0705251470208168,
0.04874284192919731,
-0.14570903778076172,
0.014674266800284386,
0.03246191516518593,
0.09235741198062897,
-0.09665284305810928,
0.07109908014535904,
0.06563200801610947,
0.08504234999418259,
-0.1275937259197235,
0.01341416034847498,
-0.009994879364967346,
0.04813448339700699,
0.004411204718053341,
0.05047108605504036,
-0.14411211013793945,
0.04850272089242935,
-0.004746089689433575,
0.08107929676771164,
-0.027494968846440315,
0.04940382018685341,
-0.022676000371575356,
0.008824365213513374,
0.0956009179353714,
-0.008198337629437447,
-0.033672966063022614,
0.01668596640229225,
-0.0979573056101799,
0.033769506961107254,
0.08638349920511246,
-0.05132171884179115,
0.06702408194541931,
-0.03928135335445404,
0.03170932084321976,
-0.007855080999433994,
0.004402245860546827,
-0.11351288855075836,
-0.16083818674087524,
0.05779671296477318,
0.05069633200764656,
0.05316391587257385,
-0.04245828092098236,
-0.018821850419044495,
-0.14982888102531433,
0.1506219059228897,
-0.26594892144203186,
-0.07820431888103485,
-0.0798400416970253,
-0.060345567762851715,
0.06642264872789383,
-0.02191500924527645,
0.04043065756559372,
0.08208504319190979,
0.10256655514240265,
-0.057877328246831894,
-0.07847977429628372,
-0.026281218975782394,
-0.06323760002851486,
-0.14688274264335632,
0.0022235701326280832,
0.11354681104421616,
0.08963824063539505,
0.025695959106087685,
0.012848315760493279,
-0.012473661452531815,
0.014828241430222988,
-0.09331769496202469,
0.005568106193095446,
0.18074087798595428,
-0.11022718995809555,
0.07157309353351593,
-0.0503360889852047,
-0.1905972957611084,
-0.09411237388849258,
-0.03520059958100319,
0.041922878473997116,
0.1775369793176651,
-0.05326250195503235,
0.18969549238681793,
0.13131634891033173,
-0.0925338938832283,
-0.24404284358024597,
-0.06786525249481201,
0.07800114154815674,
0.04527689144015312,
0.04943763464689255,
-0.1251612901687622,
0.05546791851520538,
0.06739449501037598,
-0.031310953199863434,
-0.10181532055139542,
-0.1634892076253891,
-0.1599494367837906,
0.13650472462177277,
-0.029903503134846687,
0.1138906255364418,
-0.041025158017873764,
-0.04385612905025482,
-0.050391167402267456,
-0.05104035139083862,
0.06665629148483276,
-0.0322565883398056,
0.04446303844451904,
0.051257602870464325,
-0.022406507283449173,
0.044475242495536804,
-0.0064682746306061745,
0.11348310858011246,
0.09057453274726868,
0.0023283641785383224,
-0.010630217380821705,
0.06538628786802292,
-0.06409807503223419,
-0.03397921100258827,
0.10691844671964645,
0.04597363620996475,
0.0011740369955077767,
-0.06282957643270493,
-0.06745430827140808,
-0.0033600444439798594,
0.0642242357134819,
0.022510478273034096,
-0.009679541923105717,
-0.08390741050243378,
-0.0005418072687461972,
0.030556831508874893,
0.02034205198287964,
0.06453799456357956,
-0.05392126366496086,
-0.17441852390766144,
0.14850753545761108,
0.16129140555858612,
-0.03627384826540947,
-0.0574127621948719,
-0.025792909786105156,
-0.03422689810395241,
0.08370735496282578,
-0.032769620418548584,
0.09412452578544617,
0.06956921517848969,
0.011285802349448204,
0.0758279412984848,
0.03437357395887375,
-0.16003496944904327,
-0.0005337993497960269,
0.09510649740695953,
-0.07402150332927704,
-0.144510418176651,
-0.039046917110681534,
-0.04406265169382095,
-0.06070360168814659,
0.10381961613893509,
0.15351060032844543,
-0.08527431637048721,
-0.0036226450465619564,
0.006747699808329344,
0.0755704864859581,
-0.07388544082641602,
0.1551428735256195,
0.03271117061376572,
0.022549869492650032,
-0.05659262835979462,
0.14545735716819763,
0.07722678780555725,
-0.04235202446579933,
0.029160151258111,
-0.014594621025025845,
-0.06811953336000443,
-0.021429220214486122,
-0.14190462231636047,
0.0014764495426788926,
0.013838861137628555,
-0.14075207710266113,
-0.02055509202182293,
-0.08589473366737366,
-0.005021908786147833,
0.04222949221730232,
0.02950972504913807,
0.08448000252246857,
0.016360340639948845,
0.04376987740397453,
-0.06094678118824959,
0.06465169787406921,
0.047865577042102814,
0.01862672157585621,
-0.11425813287496567,
0.12120513617992401,
0.000730357482098043,
0.07397661358118057,
-0.03328679874539375,
-0.020473862066864967,
-0.0732426643371582,
0.02348800003528595,
-0.015777068212628365,
0.0193612240254879,
-0.08087479323148727,
-0.012051212601363659,
0.0615808330476284,
-0.021029895171523094,
0.005773452576249838,
0.05620048940181732,
-0.02914065308868885,
-0.0043024057522416115,
-0.03834325820207596,
0.04992523789405823,
-0.08231594413518906,
0.03289560228586197,
0.07276145368814468,
-0.09606392681598663,
0.04880572482943535,
0.016539152711629868,
-0.017802810296416283,
0.07767894119024277,
-0.046294331550598145,
0.020229773595929146,
0.04090898856520653,
0.05050309747457504,
-0.03317635506391525,
-0.0007670265040360391,
-0.049941714853048325,
0.016468605026602745,
-0.03722023591399193,
-0.057824667543172836,
0.13864189386367798,
-0.04905083030462265,
0.04958066716790199,
-0.007202021311968565,
-0.0357852578163147,
-0.07099320739507675,
0.0013308667112141848,
0.04672670364379883,
0.09823516756296158,
0.12871770560741425,
-0.025213276967406273,
0.011315573006868362,
-0.08397896587848663,
0.048802848905324936,
0.029643267393112183,
0.02641667053103447,
-0.021148480474948883,
-0.08694878965616226,
0.03976166993379593,
-0.02847471460700035,
0.14371612668037415,
-0.013551685027778149,
-0.04788302630186081,
0.051236268132925034,
-0.05159571394324303,
-0.1055050939321518,
0.0571315661072731,
0.0641787052154541,
0.03261789306998253,
0.02258717641234398,
-0.09863752126693726,
-0.031933121383190155,
-0.016480252146720886,
-0.06481349468231201,
0.07836736738681793,
0.14710518717765808,
-0.09771044552326202,
0.11059369891881943,
0.03359857574105263,
-0.046504221856594086,
-0.09277359396219254,
0.06983038783073425,
-0.07187144458293915,
-0.020707378163933754,
-0.03619904816150665,
0.07830603420734406,
0.11481630802154541,
-0.10959934443235397,
0.13350047171115875,
0.04144473001360893,
-0.0702381506562233,
-0.10352811217308044,
-0.10717185586690903,
-0.04158782586455345,
-0.08040951192378998,
-0.027785932645201683,
-0.08221656829118729,
-0.0032948388252407312,
0.06474882364273071,
-0.009643618948757648,
0.004324052017182112,
0.08036667108535767,
-0.17467370629310608,
-0.05461907759308815,
0.0150903994217515,
-0.05925144627690315,
0.012843508273363113,
0.009971141815185547,
-0.04974667355418205,
0.09217487275600433,
0.1483033001422882,
0.062268439680337906,
0.0039029812905937433,
0.02054842747747898,
0.007589481770992279,
-0.002965612104162574,
-0.041732050478458405,
-0.006806480698287487,
-0.07979461550712585,
0.029799530282616615,
0.011568872258067131,
0.06899376958608627,
-0.07648122310638428,
0.0037526926025748253,
0.18611599504947662,
-0.05754048377275467,
-0.07784207165241241,
-0.19356189668178558,
0.04506566375494003,
0.08570389449596405,
0.036519650369882584,
0.058035627007484436,
-0.1533937007188797,
0.012744860723614693,
0.21438515186309814,
0.09361697733402252,
-0.005689690820872784,
0.004250543657690287,
-0.02559802308678627,
0.019381558522582054,
0.0484233982861042,
0.046011943370103836,
-0.03536588326096535,
0.23384422063827515,
0.010645284317433834,
0.06352448463439941,
0.0013800992164760828,
-0.04574001580476761,
-0.022485027089715004,
0.17504312098026276,
-0.07251041382551193,
-0.010562489740550518,
-0.07983942329883575,
0.06914213299751282,
-0.05349606275558472,
-0.29335856437683105,
-0.022933807224035263,
-0.014055478386580944,
-0.061412930488586426,
0.017824335023760796,
0.03828432410955429,
0.004835320636630058,
0.023225635290145874,
0.013179033994674683,
-0.005402420647442341,
0.17596405744552612,
0.05285497382283211,
-0.07168862968683243,
0.013577807694673538,
0.07288216799497604,
0.00014939281390979886,
0.07710731774568558,
0.0068491180427372456,
0.13492663204669952,
-0.002195244189351797,
0.09860667586326599,
-0.047094542533159256,
0.04703164100646973,
-0.06698401272296906,
-0.05327171832323074,
0.00411702785640955,
0.13755705952644348,
-0.021258214488625526,
0.11430919915437698,
0.03712977468967438,
-0.1374647617340088,
0.005343431141227484,
0.04413462057709694,
-0.07551267743110657,
-0.04082431271672249,
0.0539386160671711,
-0.0720255970954895,
0.12559938430786133,
0.07400982081890106,
-0.03493528440594673,
0.010620567947626114,
-0.028274185955524445,
0.021504227072000504,
-0.03443089872598648,
0.03546983003616333,
-0.03261709213256836,
-0.16905327141284943,
-0.009984161704778671,
-0.12693904340267181,
0.03012029081583023,
-0.08456169813871384,
-0.05080795660614967,
-0.011920150369405746,
0.00041431872523389757,
-0.011843324638903141,
0.06976187974214554,
0.13954274356365204,
-0.016031868755817413,
-0.05066418647766113,
-0.04820704832673073,
0.06610487401485443,
0.04750487208366394,
-0.10448089987039566,
-0.08135303854942322
] |
null | null |
transformers
|
# SEW-D-mid
[SEW-D by ASAPP Research](https://github.com/asappresearch/sew)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
**Abstract**
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .
# Usage
See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWDForCTC`.
|
{"language": "en", "license": "apache-2.0", "tags": ["speech"], "datasets": ["librispeech_asr"]}
|
feature-extraction
|
asapp/sew-d-mid-k127-100k
|
[
"transformers",
"pytorch",
"sew-d",
"feature-extraction",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2109.06870",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.06870"
] |
[
"en"
] |
TAGS
#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us
|
# SEW-D-mid
SEW-D by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under URL .
# Usage
See this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'.
|
[
"# SEW-D-mid\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
"TAGS\n#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# SEW-D-mid\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
63,
343,
47
] |
[
"passage: TAGS\n#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n# SEW-D-mid\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
-0.0618617981672287,
0.04901101440191269,
-0.004664179403334856,
0.007934861816465855,
0.05364449322223663,
-0.026803014799952507,
0.06625816971063614,
0.061570703983306885,
-0.04750204458832741,
0.020359328016638756,
-0.046806443482637405,
-0.028131969273090363,
0.09591464698314667,
0.09359331429004669,
0.05397196486592293,
-0.19682849943637848,
0.0859772339463234,
-0.07912098616361618,
0.054873351007699966,
0.03482039272785187,
0.12946034967899323,
-0.09900625050067902,
0.031870175153017044,
0.07771985232830048,
0.00370498257689178,
0.0155651168897748,
-0.06075363606214523,
-0.04245643690228462,
0.08986574411392212,
0.050299838185310364,
0.07902313023805618,
0.0617629811167717,
0.06738816201686859,
-0.2198564112186432,
0.005727694369852543,
0.029419342055916786,
0.039609793573617935,
0.014126516878604889,
0.06559503823518753,
-0.01559390127658844,
0.007630650885403156,
-0.0014292775886133313,
0.04827384278178215,
0.04690026119351387,
-0.022060193121433258,
-0.05516967177391052,
-0.05478263646364212,
0.05636949837207794,
0.13185369968414307,
0.03827078267931938,
-0.013495071791112423,
-0.008244788274168968,
-0.08082564175128937,
0.049439411610364914,
0.06651102006435394,
-0.17943838238716125,
0.052926644682884216,
-0.08602087944746017,
-0.02026115544140339,
-0.009246060624718666,
-0.07776755094528198,
-0.007433454040437937,
0.0032992311753332615,
-0.015317654237151146,
0.0839742049574852,
0.0026630396023392677,
-0.025937311351299286,
-0.025235537439584732,
-0.13591498136520386,
-0.02552632987499237,
0.1687435805797577,
0.045317646116018295,
-0.09920679032802582,
-0.11751922219991684,
-0.034680016338825226,
-0.009324559010565281,
-0.0192200168967247,
-0.08688970655202866,
0.030719010159373283,
-0.01649908907711506,
0.053014691919088364,
-0.02121703140437603,
-0.11250023543834686,
-0.06517427414655685,
0.006446527317166328,
0.16778215765953064,
0.07993662357330322,
0.03285418450832367,
-0.012250619009137154,
0.07128573209047318,
-0.06863969564437866,
-0.024630799889564514,
-0.07445841282606125,
-0.048930373042821884,
-0.16816921532154083,
0.0176786370575428,
-0.03984729200601578,
-0.17215463519096375,
0.004093828145414591,
0.17146487534046173,
0.022205296903848648,
0.055391907691955566,
0.11930828541517258,
0.04563889652490616,
0.06093870475888252,
0.12639151513576508,
-0.01310412585735321,
-0.08133537322282791,
-0.010773231275379658,
-0.012211322784423828,
-0.019216831773519516,
-0.04123668000102043,
-0.04314950108528137,
-0.0249334704130888,
0.05665113404393196,
-0.04588139057159424,
-0.026809345930814743,
0.03825683891773224,
-0.07726684957742691,
-0.03555413335561752,
0.13010908663272858,
-0.1504957377910614,
-0.007225906942039728,
-0.011563874781131744,
0.004210049752146006,
0.05353078618645668,
0.1097746416926384,
0.04335681349039078,
-0.08953731507062912,
0.11856289952993393,
-0.03442569077014923,
-0.023898925632238388,
-0.05599430575966835,
-0.04334674030542374,
-0.007797401864081621,
-0.05858203396201134,
-0.008973222225904465,
-0.13612419366836548,
-0.14183028042316437,
-0.07037682086229324,
-0.017407553270459175,
0.008217020891606808,
-0.03707254305481911,
-0.058016180992126465,
0.014976403675973415,
-0.04066871851682663,
-0.021222351118922234,
-0.027752425521612167,
-0.021021656692028046,
-0.018100274726748466,
-0.03472299873828888,
0.03406140208244324,
-0.06485551595687866,
0.04223639518022537,
-0.06482140719890594,
0.016144737601280212,
-0.044694118201732635,
0.16659756004810333,
-0.08507968485355377,
-0.003179550636559725,
-0.09854322671890259,
0.030476389452815056,
-0.15001045167446136,
0.0584506019949913,
0.04375787451863289,
0.1058925911784172,
-0.20931613445281982,
-0.08483181148767471,
0.11629778146743774,
-0.16276106238365173,
0.01750156469643116,
0.12281333655118942,
0.00040567247197031975,
0.053863901644945145,
0.1024472787976265,
0.1996086686849594,
0.19217362999916077,
-0.0815574899315834,
-0.09296482056379318,
0.017341570928692818,
-0.0543857142329216,
0.003459950676187873,
0.07768943905830383,
-0.04078163206577301,
0.07141543179750443,
0.04372618347406387,
-0.03344834968447685,
-0.0013214049395173788,
0.0031870307866483927,
-0.057657938450574875,
0.01012001745402813,
-0.07847803831100464,
0.018297435715794563,
-0.07404758781194687,
0.023438554257154465,
0.007434287574142218,
-0.09456145018339157,
0.05887254700064659,
0.11446855217218399,
-0.0635465458035469,
0.08301941305398941,
-0.13670973479747772,
-0.0044339802116155624,
0.062243230640888214,
0.01861591450870037,
-0.10838069021701813,
0.07322484254837036,
0.033770084381103516,
-0.08046963065862656,
0.08519046753644943,
0.05428328365087509,
0.016384698450565338,
0.009810371324419975,
0.007908370345830917,
0.0008464428246952593,
-0.08207826316356659,
0.029808320105075836,
-0.057807806879282,
-0.10634967684745789,
-0.07846862077713013,
-0.02723592519760132,
0.06633726507425308,
-0.0076895542442798615,
0.037942372262477875,
0.11264969408512115,
0.11255712807178497,
0.010245711542665958,
-0.07653392851352692,
-0.0293995663523674,
0.017545897513628006,
0.001222363323904574,
0.027498751878738403,
-0.02405795454978943,
0.021760663017630577,
-0.0832439586520195,
0.08367639780044556,
-0.0809042900800705,
-0.12154924124479294,
0.04037818685173988,
-0.00895755272358656,
-0.059746164828538895,
-0.023739971220493317,
-0.010070612654089928,
-0.06383377313613892,
-0.09806638956069946,
-0.15205048024654388,
0.23653243482112885,
0.004542999900877476,
0.08024615049362183,
-0.03008844330906868,
-0.005145053844898939,
-0.02619023062288761,
-0.009814351797103882,
0.020632587373256683,
0.028334086760878563,
0.046350933611392975,
0.05137759819626808,
0.0021630011033266783,
0.028684310615062714,
-0.046711161732673645,
0.08418956398963928,
-0.009507857263088226,
-0.09084687381982803,
0.03879057243466377,
-0.05233651027083397,
-0.054079603403806686,
0.0557732880115509,
-0.13199859857559204,
-0.02786744013428688,
0.044604070484638214,
0.04717031866312027,
0.08161310851573944,
-0.09388107806444168,
0.0999423936009407,
0.06906924396753311,
-0.025112615898251534,
-0.002320795087143779,
-0.07381641864776611,
-0.03252628445625305,
0.04054401442408562,
-0.01554937195032835,
-0.01535836886614561,
-0.010337607935070992,
-0.03154921159148216,
-0.13307467103004456,
0.11009456217288971,
-0.05648297816514969,
-0.16927869617938995,
-0.19241851568222046,
0.08408264815807343,
0.020887741819024086,
0.006659391336143017,
0.047848306596279144,
-0.019039291888475418,
-0.10472816228866577,
-0.07179275155067444,
0.09544731676578522,
-0.002506850054487586,
0.029888847842812538,
0.0846540778875351,
0.008212543092668056,
0.004066516179591417,
-0.11136393249034882,
0.007209747564047575,
-0.015680456534028053,
0.021254120394587517,
-0.0048402780666947365,
0.029260965064167976,
0.09054537862539291,
0.1289733499288559,
-0.024699488654732704,
-0.019559092819690704,
-0.028422176837921143,
0.18351857364177704,
-0.05362213775515556,
0.06420956552028656,
0.1350814253091812,
-0.17730094492435455,
0.021222159266471863,
0.05988715589046478,
0.01326547097414732,
-0.005265113897621632,
-0.005220030900090933,
0.024068890139460564,
-0.06114988029003143,
-0.17764008045196533,
-0.0660809576511383,
-0.036649465560913086,
0.012177770026028156,
0.0025139388162642717,
0.032041873782873154,
-0.0030240770429372787,
0.025068657472729683,
-0.0479295514523983,
0.04315992444753647,
0.11756899952888489,
0.03981970250606537,
0.05676237866282463,
-0.017139725387096405,
0.10729233175516129,
-0.05402233451604843,
-0.004403980448842049,
0.05746186897158623,
0.06496880203485489,
0.189687117934227,
0.017961209639906883,
0.12723493576049805,
0.09644264727830887,
0.037871044129133224,
0.07858631014823914,
0.023948442190885544,
-0.04098246246576309,
0.07216118276119232,
-0.02790191024541855,
-0.028297169134020805,
-0.04689015820622444,
0.1260247379541397,
0.04815971478819847,
-0.08828487992286682,
-0.047172848135232925,
0.025054719299077988,
0.08853049576282501,
0.19172833859920502,
0.05281839519739151,
-0.13989387452602386,
-0.0705251470208168,
0.04874284192919731,
-0.14570903778076172,
0.014674266800284386,
0.03246191516518593,
0.09235741198062897,
-0.09665284305810928,
0.07109908014535904,
0.06563200801610947,
0.08504234999418259,
-0.1275937259197235,
0.01341416034847498,
-0.009994879364967346,
0.04813448339700699,
0.004411204718053341,
0.05047108605504036,
-0.14411211013793945,
0.04850272089242935,
-0.004746089689433575,
0.08107929676771164,
-0.027494968846440315,
0.04940382018685341,
-0.022676000371575356,
0.008824365213513374,
0.0956009179353714,
-0.008198337629437447,
-0.033672966063022614,
0.01668596640229225,
-0.0979573056101799,
0.033769506961107254,
0.08638349920511246,
-0.05132171884179115,
0.06702408194541931,
-0.03928135335445404,
0.03170932084321976,
-0.007855080999433994,
0.004402245860546827,
-0.11351288855075836,
-0.16083818674087524,
0.05779671296477318,
0.05069633200764656,
0.05316391587257385,
-0.04245828092098236,
-0.018821850419044495,
-0.14982888102531433,
0.1506219059228897,
-0.26594892144203186,
-0.07820431888103485,
-0.0798400416970253,
-0.060345567762851715,
0.06642264872789383,
-0.02191500924527645,
0.04043065756559372,
0.08208504319190979,
0.10256655514240265,
-0.057877328246831894,
-0.07847977429628372,
-0.026281218975782394,
-0.06323760002851486,
-0.14688274264335632,
0.0022235701326280832,
0.11354681104421616,
0.08963824063539505,
0.025695959106087685,
0.012848315760493279,
-0.012473661452531815,
0.014828241430222988,
-0.09331769496202469,
0.005568106193095446,
0.18074087798595428,
-0.11022718995809555,
0.07157309353351593,
-0.0503360889852047,
-0.1905972957611084,
-0.09411237388849258,
-0.03520059958100319,
0.041922878473997116,
0.1775369793176651,
-0.05326250195503235,
0.18969549238681793,
0.13131634891033173,
-0.0925338938832283,
-0.24404284358024597,
-0.06786525249481201,
0.07800114154815674,
0.04527689144015312,
0.04943763464689255,
-0.1251612901687622,
0.05546791851520538,
0.06739449501037598,
-0.031310953199863434,
-0.10181532055139542,
-0.1634892076253891,
-0.1599494367837906,
0.13650472462177277,
-0.029903503134846687,
0.1138906255364418,
-0.041025158017873764,
-0.04385612905025482,
-0.050391167402267456,
-0.05104035139083862,
0.06665629148483276,
-0.0322565883398056,
0.04446303844451904,
0.051257602870464325,
-0.022406507283449173,
0.044475242495536804,
-0.0064682746306061745,
0.11348310858011246,
0.09057453274726868,
0.0023283641785383224,
-0.010630217380821705,
0.06538628786802292,
-0.06409807503223419,
-0.03397921100258827,
0.10691844671964645,
0.04597363620996475,
0.0011740369955077767,
-0.06282957643270493,
-0.06745430827140808,
-0.0033600444439798594,
0.0642242357134819,
0.022510478273034096,
-0.009679541923105717,
-0.08390741050243378,
-0.0005418072687461972,
0.030556831508874893,
0.02034205198287964,
0.06453799456357956,
-0.05392126366496086,
-0.17441852390766144,
0.14850753545761108,
0.16129140555858612,
-0.03627384826540947,
-0.0574127621948719,
-0.025792909786105156,
-0.03422689810395241,
0.08370735496282578,
-0.032769620418548584,
0.09412452578544617,
0.06956921517848969,
0.011285802349448204,
0.0758279412984848,
0.03437357395887375,
-0.16003496944904327,
-0.0005337993497960269,
0.09510649740695953,
-0.07402150332927704,
-0.144510418176651,
-0.039046917110681534,
-0.04406265169382095,
-0.06070360168814659,
0.10381961613893509,
0.15351060032844543,
-0.08527431637048721,
-0.0036226450465619564,
0.006747699808329344,
0.0755704864859581,
-0.07388544082641602,
0.1551428735256195,
0.03271117061376572,
0.022549869492650032,
-0.05659262835979462,
0.14545735716819763,
0.07722678780555725,
-0.04235202446579933,
0.029160151258111,
-0.014594621025025845,
-0.06811953336000443,
-0.021429220214486122,
-0.14190462231636047,
0.0014764495426788926,
0.013838861137628555,
-0.14075207710266113,
-0.02055509202182293,
-0.08589473366737366,
-0.005021908786147833,
0.04222949221730232,
0.02950972504913807,
0.08448000252246857,
0.016360340639948845,
0.04376987740397453,
-0.06094678118824959,
0.06465169787406921,
0.047865577042102814,
0.01862672157585621,
-0.11425813287496567,
0.12120513617992401,
0.000730357482098043,
0.07397661358118057,
-0.03328679874539375,
-0.020473862066864967,
-0.0732426643371582,
0.02348800003528595,
-0.015777068212628365,
0.0193612240254879,
-0.08087479323148727,
-0.012051212601363659,
0.0615808330476284,
-0.021029895171523094,
0.005773452576249838,
0.05620048940181732,
-0.02914065308868885,
-0.0043024057522416115,
-0.03834325820207596,
0.04992523789405823,
-0.08231594413518906,
0.03289560228586197,
0.07276145368814468,
-0.09606392681598663,
0.04880572482943535,
0.016539152711629868,
-0.017802810296416283,
0.07767894119024277,
-0.046294331550598145,
0.020229773595929146,
0.04090898856520653,
0.05050309747457504,
-0.03317635506391525,
-0.0007670265040360391,
-0.049941714853048325,
0.016468605026602745,
-0.03722023591399193,
-0.057824667543172836,
0.13864189386367798,
-0.04905083030462265,
0.04958066716790199,
-0.007202021311968565,
-0.0357852578163147,
-0.07099320739507675,
0.0013308667112141848,
0.04672670364379883,
0.09823516756296158,
0.12871770560741425,
-0.025213276967406273,
0.011315573006868362,
-0.08397896587848663,
0.048802848905324936,
0.029643267393112183,
0.02641667053103447,
-0.021148480474948883,
-0.08694878965616226,
0.03976166993379593,
-0.02847471460700035,
0.14371612668037415,
-0.013551685027778149,
-0.04788302630186081,
0.051236268132925034,
-0.05159571394324303,
-0.1055050939321518,
0.0571315661072731,
0.0641787052154541,
0.03261789306998253,
0.02258717641234398,
-0.09863752126693726,
-0.031933121383190155,
-0.016480252146720886,
-0.06481349468231201,
0.07836736738681793,
0.14710518717765808,
-0.09771044552326202,
0.11059369891881943,
0.03359857574105263,
-0.046504221856594086,
-0.09277359396219254,
0.06983038783073425,
-0.07187144458293915,
-0.020707378163933754,
-0.03619904816150665,
0.07830603420734406,
0.11481630802154541,
-0.10959934443235397,
0.13350047171115875,
0.04144473001360893,
-0.0702381506562233,
-0.10352811217308044,
-0.10717185586690903,
-0.04158782586455345,
-0.08040951192378998,
-0.027785932645201683,
-0.08221656829118729,
-0.0032948388252407312,
0.06474882364273071,
-0.009643618948757648,
0.004324052017182112,
0.08036667108535767,
-0.17467370629310608,
-0.05461907759308815,
0.0150903994217515,
-0.05925144627690315,
0.012843508273363113,
0.009971141815185547,
-0.04974667355418205,
0.09217487275600433,
0.1483033001422882,
0.062268439680337906,
0.0039029812905937433,
0.02054842747747898,
0.007589481770992279,
-0.002965612104162574,
-0.041732050478458405,
-0.006806480698287487,
-0.07979461550712585,
0.029799530282616615,
0.011568872258067131,
0.06899376958608627,
-0.07648122310638428,
0.0037526926025748253,
0.18611599504947662,
-0.05754048377275467,
-0.07784207165241241,
-0.19356189668178558,
0.04506566375494003,
0.08570389449596405,
0.036519650369882584,
0.058035627007484436,
-0.1533937007188797,
0.012744860723614693,
0.21438515186309814,
0.09361697733402252,
-0.005689690820872784,
0.004250543657690287,
-0.02559802308678627,
0.019381558522582054,
0.0484233982861042,
0.046011943370103836,
-0.03536588326096535,
0.23384422063827515,
0.010645284317433834,
0.06352448463439941,
0.0013800992164760828,
-0.04574001580476761,
-0.022485027089715004,
0.17504312098026276,
-0.07251041382551193,
-0.010562489740550518,
-0.07983942329883575,
0.06914213299751282,
-0.05349606275558472,
-0.29335856437683105,
-0.022933807224035263,
-0.014055478386580944,
-0.061412930488586426,
0.017824335023760796,
0.03828432410955429,
0.004835320636630058,
0.023225635290145874,
0.013179033994674683,
-0.005402420647442341,
0.17596405744552612,
0.05285497382283211,
-0.07168862968683243,
0.013577807694673538,
0.07288216799497604,
0.00014939281390979886,
0.07710731774568558,
0.0068491180427372456,
0.13492663204669952,
-0.002195244189351797,
0.09860667586326599,
-0.047094542533159256,
0.04703164100646973,
-0.06698401272296906,
-0.05327171832323074,
0.00411702785640955,
0.13755705952644348,
-0.021258214488625526,
0.11430919915437698,
0.03712977468967438,
-0.1374647617340088,
0.005343431141227484,
0.04413462057709694,
-0.07551267743110657,
-0.04082431271672249,
0.0539386160671711,
-0.0720255970954895,
0.12559938430786133,
0.07400982081890106,
-0.03493528440594673,
0.010620567947626114,
-0.028274185955524445,
0.021504227072000504,
-0.03443089872598648,
0.03546983003616333,
-0.03261709213256836,
-0.16905327141284943,
-0.009984161704778671,
-0.12693904340267181,
0.03012029081583023,
-0.08456169813871384,
-0.05080795660614967,
-0.011920150369405746,
0.00041431872523389757,
-0.011843324638903141,
0.06976187974214554,
0.13954274356365204,
-0.016031868755817413,
-0.05066418647766113,
-0.04820704832673073,
0.06610487401485443,
0.04750487208366394,
-0.10448089987039566,
-0.08135303854942322
] |
null | null |
transformers
|
# SEW-D-mid-k127
[SEW-D by ASAPP Research](https://github.com/asappresearch/sew)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
**Abstract**
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .
# Usage
To transcribe audio files the model can be used as a standalone acoustic model as follows:
```python
from transformers import Wav2Vec2Processor, SEWDForCTC
from datasets import load_dataset
import soundfile as sf
import torch
# load the model and preprocessor
processor = Wav2Vec2Processor.from_pretrained("asapp/sew-d-mid-k127-400k-ft-ls100h")
model = SEWDForCTC.from_pretrained("asapp/sew-d-mid-k127-400k-ft-ls100h")
# load the dummy dataset with speech samples
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
# preprocess
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
```
## Evaluation
This code snippet shows how to evaluate **asapp/sew-d-mid-k127-400k-ft-ls100hh** on LibriSpeech's "clean" and "other" test data.
```python
from datasets import load_dataset
from transformers import SEWDForCTC, Wav2Vec2Processor
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = SEWDForCTC.from_pretrained("asapp/sew-d-mid-k127-400k-ft-ls100h").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("asapp/sew-d-mid-k127-400k-ft-ls100h")
def map_to_pred(batch):
input_values = processor(batch["audio"][0]["array"], sampling_rate=16000,
return_tensors="pt", padding="longest").input_values
with torch.no_grad():
logits = model(input_values.to("cuda")).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"])
print("WER:", wer(result["text"], result["transcription"]))
```
*Result (WER)*:
| "clean" | "other" |
| --- | --- |
| 4.99 | 10.95 |
|
{"language": "en", "license": "apache-2.0", "tags": ["audio", "speech", "automatic-speech-recognition", "hf-asr-leaderboard"], "datasets": ["librispeech_asr"], "widget": [{"example_title": "Librispeech sample 1", "src": "https://cdn-media.huggingface.co/speech_samples/sample1.flac"}, {"example_title": "Librispeech sample 2", "src": "https://cdn-media.huggingface.co/speech_samples/sample2.flac"}], "model-index": [{"name": "sew-d-mid-k127-400k-ft-ls100h", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "LibriSpeech (clean)", "type": "librispeech_asr", "config": "clean", "split": "test", "args": {"language": "en"}}, "metrics": [{"type": "wer", "value": 4.99, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "LibriSpeech (other)", "type": "librispeech_asr", "config": "other", "split": "test", "args": {"language": "en"}}, "metrics": [{"type": "wer", "value": 10.95, "name": "Test WER"}]}]}]}
|
automatic-speech-recognition
|
asapp/sew-d-mid-k127-400k-ft-ls100h
|
[
"transformers",
"pytorch",
"safetensors",
"sew-d",
"automatic-speech-recognition",
"audio",
"speech",
"hf-asr-leaderboard",
"en",
"dataset:librispeech_asr",
"arxiv:2109.06870",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.06870"
] |
[
"en"
] |
TAGS
#transformers #pytorch #safetensors #sew-d #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #model-index #endpoints_compatible #region-us
|
SEW-D-mid-k127
==============
SEW-D by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under URL .
Usage
=====
To transcribe audio files the model can be used as a standalone acoustic model as follows:
Evaluation
----------
This code snippet shows how to evaluate asapp/sew-d-mid-k127-400k-ft-ls100hh on LibriSpeech's "clean" and "other" test data.
*Result (WER)*:
|
[] |
[
"TAGS\n#transformers #pytorch #safetensors #sew-d #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n"
] |
[
89
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #sew-d #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n"
] |
[
-0.16782726347446442,
0.13403679430484772,
-0.004614222329109907,
-0.011631692759692669,
0.07256755232810974,
-0.06105164438486099,
0.11952103674411774,
0.10464794188737869,
0.08712124824523926,
-0.011241848580539227,
0.09143169224262238,
0.17458903789520264,
0.019963707774877548,
0.07573731988668442,
-0.058502089232206345,
-0.14089961349964142,
0.08160405606031418,
0.019683312624692917,
0.024423224851489067,
0.07696779072284698,
0.11865006387233734,
-0.030722392722964287,
0.035440005362033844,
0.04634115844964981,
-0.030381187796592712,
0.023441771045327187,
0.05092631280422211,
-0.12108547240495682,
0.12809623777866364,
0.043702248483896255,
0.020415691658854485,
0.05183933675289154,
0.04044633358716965,
-0.17884008586406708,
0.025008026510477066,
-0.010536237619817257,
0.0074582998640835285,
0.04395105689764023,
0.009302807971835136,
-0.026827922090888023,
-0.03269125148653984,
0.06590642780065536,
-0.034277282655239105,
0.08891545236110687,
-0.01924707368016243,
-0.24930137395858765,
-0.028457041829824448,
0.12383795529603958,
0.04428251460194588,
0.08644022047519684,
-0.010499616153538227,
0.09478023648262024,
-0.07863075286149979,
0.09114877879619598,
0.08590873330831528,
-0.2043655961751938,
0.060419514775276184,
-0.0643911212682724,
0.007315923925489187,
0.002992958063259721,
-0.02250952273607254,
0.007816977798938751,
0.020798174664378166,
0.014283078722655773,
-0.001474900869652629,
-0.06444288790225983,
-0.1295837163925171,
-0.02191121131181717,
-0.0920778214931488,
-0.028199780732393265,
0.2503468692302704,
0.030400194227695465,
0.019401436671614647,
-0.06141778826713562,
-0.03826192021369934,
0.06498916447162628,
-0.06542202830314636,
0.014082393608987331,
-0.016581540927290916,
0.05039912834763527,
0.06564006209373474,
-0.016031557694077492,
-0.1131756454706192,
-0.057948045432567596,
-0.09660443663597107,
0.10680321604013443,
-0.004657106474041939,
0.054235026240348816,
-0.13748538494110107,
0.005924532655626535,
-0.014592504128813744,
-0.11004400998353958,
0.012602649629116058,
-0.01089026965200901,
0.03090251050889492,
0.05595531314611435,
-0.0022168566938489676,
0.013741509988904,
0.1969655156135559,
0.11267079412937164,
0.0006180754862725735,
0.02470884844660759,
-0.01584651693701744,
0.08725427836179733,
-0.048764947801828384,
0.10911623388528824,
-0.049862369894981384,
0.009961911477148533,
0.08800116181373596,
0.05817927420139313,
0.06849377602338791,
-0.021209636703133583,
-0.08119980245828629,
-0.01917082816362381,
0.053053006529808044,
0.06942389160394669,
0.050547003746032715,
0.008975443430244923,
-0.039215512573719025,
0.024994460865855217,
0.09643720835447311,
-0.1565638780593872,
-0.03517548367381096,
0.0490943044424057,
0.06072802096605301,
0.04609008505940437,
0.04349134862422943,
0.05603847652673721,
-0.08457440137863159,
0.03163086250424385,
-0.009656044654548168,
0.004860114771872759,
0.06367795914411545,
0.023280713707208633,
0.041665662080049515,
-0.056535545736551285,
0.04862131550908089,
-0.14920175075531006,
-0.10023602843284607,
-0.007381725590676069,
-0.02058541588485241,
0.03797020763158798,
-0.0719819962978363,
-0.0223975982517004,
-0.03446443751454353,
0.009545945562422276,
-0.11491984874010086,
-0.04509565979242325,
-0.08501162379980087,
0.07932336628437042,
0.026533417403697968,
0.04534211754798889,
-0.13551642000675201,
0.07256679981946945,
-0.09610407054424286,
-0.005839059595018625,
-0.04090380668640137,
0.07389577478170395,
-0.1161847710609436,
0.13694603741168976,
-0.0774279460310936,
-0.005886103492230177,
-0.09321030229330063,
0.05099097266793251,
-0.025710292160511017,
0.11295238882303238,
-0.17084439098834991,
-0.1214899867773056,
0.1696767807006836,
-0.1292768120765686,
-0.14537960290908813,
0.14071394503116608,
0.05018191039562225,
0.013814762234687805,
0.10481902956962585,
0.3179251551628113,
0.048484526574611664,
-0.0825776532292366,
-0.011849957518279552,
0.11655251681804657,
-0.09252787381410599,
-0.15952026844024658,
0.044186580926179886,
-0.10097700357437134,
-0.022008460015058517,
0.04621719568967819,
-0.02429247461259365,
0.09294729679822922,
0.027571547776460648,
-0.10487050563097,
-0.061106618493795395,
-0.11083543300628662,
-0.040806956589221954,
0.010177221149206161,
0.008481733500957489,
-0.025045430287718773,
-0.001748861512169242,
-0.06182609125971794,
0.07255250960588455,
-0.04294632375240326,
0.039139971137046814,
-0.11132866889238358,
0.09460896253585815,
-0.0046188984997570515,
0.020336637273430824,
-0.15004995465278625,
0.1314803659915924,
-0.06435523927211761,
-0.03957919776439667,
0.06414758414030075,
-0.010067490860819817,
0.06629708409309387,
-0.06611967831850052,
0.007379600312560797,
-0.032969579100608826,
0.16698984801769257,
0.062289778143167496,
0.01552288606762886,
-0.1804145872592926,
0.0649164542555809,
-0.056925952434539795,
0.1041329875588417,
-0.04159529507160187,
-0.006041651125997305,
0.04463071748614311,
0.11220195889472961,
-0.0302067082375288,
0.03984354808926582,
0.04449400678277016,
-0.012167801149189472,
0.034546785056591034,
0.003713808720931411,
0.07414449006319046,
0.01678457297384739,
-0.0906229093670845,
0.17710676789283752,
-0.16624245047569275,
0.25213515758514404,
0.1973276287317276,
-0.0802765041589737,
0.06628286838531494,
0.058944836258888245,
-0.01230994239449501,
-0.018662741407752037,
0.04470799118280411,
-0.057537991553545,
0.17205841839313507,
-0.008933368138968945,
0.1452627032995224,
-0.06360334903001785,
-0.0017730050021782517,
0.0011298292083665729,
-0.06746893376111984,
0.00707625038921833,
0.08557265251874924,
-0.0074132634326815605,
-0.11055074632167816,
0.11688398569822311,
0.16385379433631897,
-0.07529924809932709,
0.15942515432834625,
-0.10468462109565735,
-0.05155467614531517,
0.08221020549535751,
0.007306747604161501,
-0.042217742651700974,
0.11047990620136261,
-0.19193817675113678,
-0.026228925213217735,
0.07662571966648102,
-0.03934425488114357,
0.06144198030233383,
-0.16554845869541168,
-0.005051001440733671,
-0.037334900349378586,
-0.07737507671117783,
-0.10114337503910065,
0.057382792234420776,
-0.02405174821615219,
0.07669517397880554,
-0.0874154269695282,
-0.22409950196743011,
0.07483810186386108,
-0.02802588790655136,
-0.12001468986272812,
0.09519538283348083,
-0.08455152064561844,
-0.27955836057662964,
-0.12888208031654358,
-0.022164562717080116,
-0.01684018038213253,
0.010284203104674816,
0.11026537418365479,
-0.11549630016088486,
-0.04097692295908928,
-0.03346464782953262,
-0.024639423936605453,
0.03861904516816139,
-0.008147834800183773,
0.06860807538032532,
0.030176516622304916,
0.10509930551052094,
-0.1363714635372162,
-0.021879740059375763,
-0.051804881542921066,
0.10173361003398895,
0.02825069986283779,
0.011601847596466541,
0.05484932288527489,
0.16436515748500824,
0.08466798067092896,
0.027294743806123734,
0.004287670832127333,
0.16175895929336548,
-0.07464177906513214,
-0.026328422129154205,
0.181768000125885,
-0.0725112184882164,
0.03711392730474472,
0.21304486691951752,
0.04448647052049637,
-0.027080439031124115,
-0.02496274746954441,
-0.04948314651846886,
-0.05434604361653328,
-0.19575051963329315,
-0.11908210068941116,
-0.070198655128479,
0.004049535840749741,
0.01197461411356926,
0.08404392004013062,
0.05067247524857521,
0.008583178743720055,
-0.00762406550347805,
-0.06969761103391647,
0.03519212082028389,
-0.019104760140180588,
0.228713721036911,
-0.03351188823580742,
0.10662073642015457,
-0.09279230237007141,
-0.08555764704942703,
0.04967377707362175,
0.08559875935316086,
0.037621427327394485,
0.12034951150417328,
0.06844954192638397,
0.029285185039043427,
0.1677708923816681,
0.10212977230548859,
0.08075269311666489,
0.03214630112051964,
-0.014046392403542995,
0.02415354736149311,
-0.07184461504220963,
-0.058850400149822235,
0.07074236124753952,
0.08315429836511612,
-0.0684332400560379,
0.012586858123540878,
-0.05043956637382507,
0.04468788579106331,
0.17632393538951874,
0.0655275210738182,
-0.1908150166273117,
-0.01162547618150711,
0.036185819655656815,
-0.07193057984113693,
-0.003695189720019698,
0.09258179366588593,
-0.02528051659464836,
-0.02246764861047268,
0.07488760352134705,
0.025026779621839523,
0.07112032175064087,
-0.056671466678380966,
0.06603513658046722,
-0.07838470488786697,
-0.006557515822350979,
0.04284050315618515,
0.05616173520684242,
-0.22982749342918396,
0.24311505258083344,
0.02992871031165123,
0.06757306307554245,
-0.005103937350213528,
0.016581464558839798,
0.09687983244657516,
0.10706258565187454,
0.1693507432937622,
0.010226119309663773,
-0.07546665519475937,
-0.08144331723451614,
-0.11056589335203171,
0.07904800027608871,
0.019322006031870842,
0.08630125224590302,
-0.08293866366147995,
-0.04343516752123833,
-0.03920963034033775,
0.03584057837724686,
-0.13304568827152252,
-0.13200005888938904,
-0.0975995659828186,
0.04043729230761528,
0.265263170003891,
0.08887583017349243,
-0.040908388793468475,
-0.05327099561691284,
-0.15983189642429352,
0.017496393993496895,
-0.1367027759552002,
-0.05130200833082199,
-0.07064785808324814,
-0.16399145126342773,
0.10058583319187164,
-0.052865441888570786,
0.036235686391592026,
-0.028765078634023666,
-0.0011690021492540836,
-0.039099570363759995,
-0.1292026787996292,
0.08993461728096008,
-0.12533538043498993,
-0.03883356228470802,
-0.0035113045014441013,
0.24491316080093384,
-0.030884897336363792,
0.040650252252817154,
0.047125011682510376,
0.009070687927305698,
-0.06643466651439667,
-0.06012220308184624,
0.09300657361745834,
0.08191461116075516,
-0.07209762185811996,
0.02973223477602005,
-0.05446458235383034,
-0.2064133882522583,
-0.05517091974616051,
-0.013967356644570827,
0.20202206075191498,
0.14836344122886658,
-0.045176953077316284,
0.16966719925403595,
0.2955372631549835,
-0.01916196569800377,
-0.30601197481155396,
-0.18789125978946686,
-0.07443346083164215,
-0.0215391144156456,
-0.049488216638565063,
-0.10127345472574234,
0.15255455672740936,
-0.030959665775299072,
-0.10159685462713242,
0.04529052600264549,
-0.14583921432495117,
-0.10523713380098343,
0.34758269786834717,
-0.07025051862001419,
0.2504635453224182,
-0.1219356507062912,
-0.09441335499286652,
-0.09203702956438065,
-0.11272615194320679,
0.04417329654097557,
-0.11576163023710251,
0.06351086497306824,
0.008174369111657143,
0.044146016240119934,
-0.0030446818564087152,
-0.043603405356407166,
0.09385798871517181,
0.08919497579336166,
-0.028944702818989754,
-0.04007061943411827,
0.060265351086854935,
-0.004665429703891277,
0.013928713276982307,
0.1576334834098816,
-0.11878392845392227,
0.03529420867562294,
-0.04209374263882637,
-0.03749827295541763,
-0.09744693338871002,
0.09960128366947174,
0.07273460924625397,
-0.0072561693377792835,
0.028544964268803596,
-0.07356928288936615,
-0.016985047608613968,
0.015662359073758125,
0.15252624452114105,
-0.0981883555650711,
0.004917695187032223,
0.14348743855953217,
0.18345141410827637,
-0.22856247425079346,
-0.1204543188214302,
-0.05932805314660072,
-0.07671462744474411,
0.07693981379270554,
-0.07750345766544342,
0.1162944883108139,
0.06809478998184204,
0.03793202340602875,
0.08029460161924362,
0.04779411479830742,
-0.045874640345573425,
-0.02422749064862728,
0.09968792647123337,
-0.11293778568506241,
-0.11992216855287552,
-0.011954723857343197,
0.053252097219228745,
-0.0005090204649604857,
0.1279686987400055,
0.14123207330703735,
-0.017416704446077347,
-0.0010226796148344874,
-0.017867321148514748,
0.03558460995554924,
-0.11733365058898926,
0.13872277736663818,
0.13270999491214752,
0.040404316037893295,
-0.16628487408161163,
0.10306085646152496,
-0.05001420900225639,
-0.0729157030582428,
0.029592998325824738,
0.019651159644126892,
-0.11245986074209213,
-0.12190752476453781,
-0.10813618451356888,
0.06633840501308441,
-0.06029394641518593,
-0.16165809333324432,
-0.08147760480642319,
-0.1274367868900299,
0.01767425239086151,
0.1387338936328888,
0.06437404453754425,
0.04416917636990547,
-0.047991618514060974,
-0.1106632873415947,
-0.007053043227642775,
0.036667268723249435,
-0.0154428007081151,
-0.002545934868976474,
-0.15288986265659332,
-0.07542670518159866,
0.018636668100953102,
0.06801356375217438,
-0.06817611306905746,
-0.0316726453602314,
-0.06929249316453934,
0.05993887782096863,
-0.10629139095544815,
0.011251644231379032,
-0.08735203742980957,
0.03261879086494446,
0.03914247080683708,
-0.08755435049533844,
0.00012290292943362147,
0.055854130536317825,
-0.09865889698266983,
0.006115829572081566,
0.024794692173600197,
0.06630391627550125,
-0.1520301252603531,
-0.0034272049088031054,
0.03409174084663391,
-0.005511136259883642,
0.11557181179523468,
0.13367977738380432,
-0.15603609383106232,
0.10270551592111588,
-0.22177809476852417,
-0.177175834774971,
0.13703489303588867,
0.03503568097949028,
-0.0019409086089581251,
-0.05391686409711838,
-0.03350931406021118,
0.1413758546113968,
0.0382697768509388,
0.016286617144942284,
0.10164088755846024,
-0.07661919295787811,
0.0107683464884758,
-0.088892363011837,
-0.04638620465993881,
-0.03675419092178345,
-0.06716784834861755,
0.1546550691127777,
0.08482028543949127,
0.17209625244140625,
-0.060815077275037766,
-0.007313715294003487,
-0.0738457664847374,
0.03906626254320145,
-0.038284964859485626,
-0.1465703547000885,
-0.12501260638237,
-0.012388577684760094,
0.01397731900215149,
-0.029500335454940796,
0.21086370944976807,
-0.04667561128735542,
-0.04401933401823044,
0.052881937474012375,
-0.0054518901742994785,
-0.0076616303995251656,
0.01964244619011879,
0.29274481534957886,
0.03575042635202408,
-0.00738610839471221,
-0.017293862998485565,
-0.03249864652752876,
0.03176981583237648,
0.055574625730514526,
-0.027640076354146004,
0.14799512922763824,
0.04182562604546547,
0.09730788320302963,
0.13428880274295807,
-0.032502319663763046,
-0.04240083694458008,
0.007435785606503487,
-0.06648429483175278,
0.04909278452396393,
-0.00940964836627245,
0.15936273336410522,
0.1807641088962555,
0.043495532125234604,
0.04716780409216881,
-0.06071630120277405,
-0.04969758912920952,
-0.17416663467884064,
-0.09233662486076355,
-0.07307881861925125,
-0.1269300878047943,
0.019946647807955742,
-0.012881414033472538,
-0.016934240236878395,
0.12146712094545364,
0.019689248874783516,
-0.017388543114066124,
0.06536383181810379,
0.013333371840417385,
-0.028520548716187477,
0.06339315325021744,
-0.04976702108979225,
-0.045232050120830536,
-0.04820225387811661,
-0.014114804565906525,
0.07780120521783829,
0.0013222401030361652,
-0.021732984110713005,
-0.023059798404574394,
-0.0875881016254425,
0.05323287844657898,
-0.11863086372613907,
-0.06641930341720581,
-0.01582665927708149,
0.02663201093673706,
0.028964443132281303,
0.07884235680103302,
0.08367978036403656,
-0.04314931854605675,
0.07435651123523712,
0.1554156243801117,
-0.059095896780490875,
-0.18594565987586975,
-0.0722624883055687,
0.15269555151462555,
-0.02444329485297203,
0.04169965907931328,
-0.03670048341155052,
-0.05214269831776619,
0.011459439061582088,
0.21435073018074036,
0.23337596654891968,
-0.05711784586310387,
0.06320132315158844,
-0.11110007017850876,
0.023695141077041626,
-0.06420254707336426,
0.0007778136059641838,
0.16927063465118408,
0.1901911497116089,
-0.014805272221565247,
-0.04476592317223549,
-0.03395348787307739,
-0.06256970763206482,
-0.10232164710760117,
0.051320187747478485,
-0.028712211176753044,
-0.06717510521411896,
-0.024042293429374695,
0.11901278048753738,
-0.10397102683782578,
-0.03785507008433342,
-0.1581745743751526,
-0.06734972447156906,
-0.041756220161914825,
-0.014008536003530025,
0.1306597888469696,
0.09741954505443573,
-0.029920244589447975,
-0.061204392462968826,
-0.018406229093670845,
0.061987850815057755,
-0.02719530276954174,
-0.20808570086956024,
0.019337614998221397,
-0.014124379493296146,
-0.10449211299419403,
0.049586839973926544,
0.010422689840197563,
0.11470693349838257,
0.022875208407640457,
0.09876777976751328,
-0.035787034779787064,
0.15598472952842712,
0.007307209074497223,
-0.08666695654392242,
0.022250106558203697,
0.07159586995840073,
0.02937162294983864,
0.022222016006708145,
0.04137081280350685,
-0.09604156762361526,
0.04248729720711708,
-0.050684694200754166,
-0.10830692946910858,
-0.077202707529068,
0.024218725040555,
-0.05250982567667961,
0.055888883769512177,
-0.03326759114861488,
-0.03679008409380913,
-0.0320904441177845,
-0.03800385817885399,
0.017348984256386757,
0.04121466353535652,
-0.17982664704322815,
-0.06869350373744965,
-0.09600342065095901,
-0.004486649297177792,
-0.0570344515144825,
-0.030037466436624527,
-0.1288374960422516,
-0.05433540791273117,
-0.1004219651222229,
-0.010790612548589706,
-0.05938204377889633,
0.0023414534516632557,
0.09182962775230408,
0.030543122440576553,
0.014607011340558529,
-0.0005471135955303907,
0.07312486320734024,
0.06902235001325607,
-0.12280271202325821,
-0.1120859757065773
] |
null | null |
transformers
|
# SEW-D-mid
[SEW-D by ASAPP Research](https://github.com/asappresearch/sew)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
**Abstract**
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .
# Usage
See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWDForCTC`.
|
{"language": "en", "license": "apache-2.0", "tags": ["speech"], "datasets": ["librispeech_asr"]}
|
feature-extraction
|
asapp/sew-d-mid-k127-400k
|
[
"transformers",
"pytorch",
"sew-d",
"feature-extraction",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2109.06870",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.06870"
] |
[
"en"
] |
TAGS
#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us
|
# SEW-D-mid
SEW-D by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under URL .
# Usage
See this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'.
|
[
"# SEW-D-mid\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
"TAGS\n#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# SEW-D-mid\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
63,
343,
47
] |
[
"passage: TAGS\n#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n# SEW-D-mid\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
-0.0618617981672287,
0.04901101440191269,
-0.004664179403334856,
0.007934861816465855,
0.05364449322223663,
-0.026803014799952507,
0.06625816971063614,
0.061570703983306885,
-0.04750204458832741,
0.020359328016638756,
-0.046806443482637405,
-0.028131969273090363,
0.09591464698314667,
0.09359331429004669,
0.05397196486592293,
-0.19682849943637848,
0.0859772339463234,
-0.07912098616361618,
0.054873351007699966,
0.03482039272785187,
0.12946034967899323,
-0.09900625050067902,
0.031870175153017044,
0.07771985232830048,
0.00370498257689178,
0.0155651168897748,
-0.06075363606214523,
-0.04245643690228462,
0.08986574411392212,
0.050299838185310364,
0.07902313023805618,
0.0617629811167717,
0.06738816201686859,
-0.2198564112186432,
0.005727694369852543,
0.029419342055916786,
0.039609793573617935,
0.014126516878604889,
0.06559503823518753,
-0.01559390127658844,
0.007630650885403156,
-0.0014292775886133313,
0.04827384278178215,
0.04690026119351387,
-0.022060193121433258,
-0.05516967177391052,
-0.05478263646364212,
0.05636949837207794,
0.13185369968414307,
0.03827078267931938,
-0.013495071791112423,
-0.008244788274168968,
-0.08082564175128937,
0.049439411610364914,
0.06651102006435394,
-0.17943838238716125,
0.052926644682884216,
-0.08602087944746017,
-0.02026115544140339,
-0.009246060624718666,
-0.07776755094528198,
-0.007433454040437937,
0.0032992311753332615,
-0.015317654237151146,
0.0839742049574852,
0.0026630396023392677,
-0.025937311351299286,
-0.025235537439584732,
-0.13591498136520386,
-0.02552632987499237,
0.1687435805797577,
0.045317646116018295,
-0.09920679032802582,
-0.11751922219991684,
-0.034680016338825226,
-0.009324559010565281,
-0.0192200168967247,
-0.08688970655202866,
0.030719010159373283,
-0.01649908907711506,
0.053014691919088364,
-0.02121703140437603,
-0.11250023543834686,
-0.06517427414655685,
0.006446527317166328,
0.16778215765953064,
0.07993662357330322,
0.03285418450832367,
-0.012250619009137154,
0.07128573209047318,
-0.06863969564437866,
-0.024630799889564514,
-0.07445841282606125,
-0.048930373042821884,
-0.16816921532154083,
0.0176786370575428,
-0.03984729200601578,
-0.17215463519096375,
0.004093828145414591,
0.17146487534046173,
0.022205296903848648,
0.055391907691955566,
0.11930828541517258,
0.04563889652490616,
0.06093870475888252,
0.12639151513576508,
-0.01310412585735321,
-0.08133537322282791,
-0.010773231275379658,
-0.012211322784423828,
-0.019216831773519516,
-0.04123668000102043,
-0.04314950108528137,
-0.0249334704130888,
0.05665113404393196,
-0.04588139057159424,
-0.026809345930814743,
0.03825683891773224,
-0.07726684957742691,
-0.03555413335561752,
0.13010908663272858,
-0.1504957377910614,
-0.007225906942039728,
-0.011563874781131744,
0.004210049752146006,
0.05353078618645668,
0.1097746416926384,
0.04335681349039078,
-0.08953731507062912,
0.11856289952993393,
-0.03442569077014923,
-0.023898925632238388,
-0.05599430575966835,
-0.04334674030542374,
-0.007797401864081621,
-0.05858203396201134,
-0.008973222225904465,
-0.13612419366836548,
-0.14183028042316437,
-0.07037682086229324,
-0.017407553270459175,
0.008217020891606808,
-0.03707254305481911,
-0.058016180992126465,
0.014976403675973415,
-0.04066871851682663,
-0.021222351118922234,
-0.027752425521612167,
-0.021021656692028046,
-0.018100274726748466,
-0.03472299873828888,
0.03406140208244324,
-0.06485551595687866,
0.04223639518022537,
-0.06482140719890594,
0.016144737601280212,
-0.044694118201732635,
0.16659756004810333,
-0.08507968485355377,
-0.003179550636559725,
-0.09854322671890259,
0.030476389452815056,
-0.15001045167446136,
0.0584506019949913,
0.04375787451863289,
0.1058925911784172,
-0.20931613445281982,
-0.08483181148767471,
0.11629778146743774,
-0.16276106238365173,
0.01750156469643116,
0.12281333655118942,
0.00040567247197031975,
0.053863901644945145,
0.1024472787976265,
0.1996086686849594,
0.19217362999916077,
-0.0815574899315834,
-0.09296482056379318,
0.017341570928692818,
-0.0543857142329216,
0.003459950676187873,
0.07768943905830383,
-0.04078163206577301,
0.07141543179750443,
0.04372618347406387,
-0.03344834968447685,
-0.0013214049395173788,
0.0031870307866483927,
-0.057657938450574875,
0.01012001745402813,
-0.07847803831100464,
0.018297435715794563,
-0.07404758781194687,
0.023438554257154465,
0.007434287574142218,
-0.09456145018339157,
0.05887254700064659,
0.11446855217218399,
-0.0635465458035469,
0.08301941305398941,
-0.13670973479747772,
-0.0044339802116155624,
0.062243230640888214,
0.01861591450870037,
-0.10838069021701813,
0.07322484254837036,
0.033770084381103516,
-0.08046963065862656,
0.08519046753644943,
0.05428328365087509,
0.016384698450565338,
0.009810371324419975,
0.007908370345830917,
0.0008464428246952593,
-0.08207826316356659,
0.029808320105075836,
-0.057807806879282,
-0.10634967684745789,
-0.07846862077713013,
-0.02723592519760132,
0.06633726507425308,
-0.0076895542442798615,
0.037942372262477875,
0.11264969408512115,
0.11255712807178497,
0.010245711542665958,
-0.07653392851352692,
-0.0293995663523674,
0.017545897513628006,
0.001222363323904574,
0.027498751878738403,
-0.02405795454978943,
0.021760663017630577,
-0.0832439586520195,
0.08367639780044556,
-0.0809042900800705,
-0.12154924124479294,
0.04037818685173988,
-0.00895755272358656,
-0.059746164828538895,
-0.023739971220493317,
-0.010070612654089928,
-0.06383377313613892,
-0.09806638956069946,
-0.15205048024654388,
0.23653243482112885,
0.004542999900877476,
0.08024615049362183,
-0.03008844330906868,
-0.005145053844898939,
-0.02619023062288761,
-0.009814351797103882,
0.020632587373256683,
0.028334086760878563,
0.046350933611392975,
0.05137759819626808,
0.0021630011033266783,
0.028684310615062714,
-0.046711161732673645,
0.08418956398963928,
-0.009507857263088226,
-0.09084687381982803,
0.03879057243466377,
-0.05233651027083397,
-0.054079603403806686,
0.0557732880115509,
-0.13199859857559204,
-0.02786744013428688,
0.044604070484638214,
0.04717031866312027,
0.08161310851573944,
-0.09388107806444168,
0.0999423936009407,
0.06906924396753311,
-0.025112615898251534,
-0.002320795087143779,
-0.07381641864776611,
-0.03252628445625305,
0.04054401442408562,
-0.01554937195032835,
-0.01535836886614561,
-0.010337607935070992,
-0.03154921159148216,
-0.13307467103004456,
0.11009456217288971,
-0.05648297816514969,
-0.16927869617938995,
-0.19241851568222046,
0.08408264815807343,
0.020887741819024086,
0.006659391336143017,
0.047848306596279144,
-0.019039291888475418,
-0.10472816228866577,
-0.07179275155067444,
0.09544731676578522,
-0.002506850054487586,
0.029888847842812538,
0.0846540778875351,
0.008212543092668056,
0.004066516179591417,
-0.11136393249034882,
0.007209747564047575,
-0.015680456534028053,
0.021254120394587517,
-0.0048402780666947365,
0.029260965064167976,
0.09054537862539291,
0.1289733499288559,
-0.024699488654732704,
-0.019559092819690704,
-0.028422176837921143,
0.18351857364177704,
-0.05362213775515556,
0.06420956552028656,
0.1350814253091812,
-0.17730094492435455,
0.021222159266471863,
0.05988715589046478,
0.01326547097414732,
-0.005265113897621632,
-0.005220030900090933,
0.024068890139460564,
-0.06114988029003143,
-0.17764008045196533,
-0.0660809576511383,
-0.036649465560913086,
0.012177770026028156,
0.0025139388162642717,
0.032041873782873154,
-0.0030240770429372787,
0.025068657472729683,
-0.0479295514523983,
0.04315992444753647,
0.11756899952888489,
0.03981970250606537,
0.05676237866282463,
-0.017139725387096405,
0.10729233175516129,
-0.05402233451604843,
-0.004403980448842049,
0.05746186897158623,
0.06496880203485489,
0.189687117934227,
0.017961209639906883,
0.12723493576049805,
0.09644264727830887,
0.037871044129133224,
0.07858631014823914,
0.023948442190885544,
-0.04098246246576309,
0.07216118276119232,
-0.02790191024541855,
-0.028297169134020805,
-0.04689015820622444,
0.1260247379541397,
0.04815971478819847,
-0.08828487992286682,
-0.047172848135232925,
0.025054719299077988,
0.08853049576282501,
0.19172833859920502,
0.05281839519739151,
-0.13989387452602386,
-0.0705251470208168,
0.04874284192919731,
-0.14570903778076172,
0.014674266800284386,
0.03246191516518593,
0.09235741198062897,
-0.09665284305810928,
0.07109908014535904,
0.06563200801610947,
0.08504234999418259,
-0.1275937259197235,
0.01341416034847498,
-0.009994879364967346,
0.04813448339700699,
0.004411204718053341,
0.05047108605504036,
-0.14411211013793945,
0.04850272089242935,
-0.004746089689433575,
0.08107929676771164,
-0.027494968846440315,
0.04940382018685341,
-0.022676000371575356,
0.008824365213513374,
0.0956009179353714,
-0.008198337629437447,
-0.033672966063022614,
0.01668596640229225,
-0.0979573056101799,
0.033769506961107254,
0.08638349920511246,
-0.05132171884179115,
0.06702408194541931,
-0.03928135335445404,
0.03170932084321976,
-0.007855080999433994,
0.004402245860546827,
-0.11351288855075836,
-0.16083818674087524,
0.05779671296477318,
0.05069633200764656,
0.05316391587257385,
-0.04245828092098236,
-0.018821850419044495,
-0.14982888102531433,
0.1506219059228897,
-0.26594892144203186,
-0.07820431888103485,
-0.0798400416970253,
-0.060345567762851715,
0.06642264872789383,
-0.02191500924527645,
0.04043065756559372,
0.08208504319190979,
0.10256655514240265,
-0.057877328246831894,
-0.07847977429628372,
-0.026281218975782394,
-0.06323760002851486,
-0.14688274264335632,
0.0022235701326280832,
0.11354681104421616,
0.08963824063539505,
0.025695959106087685,
0.012848315760493279,
-0.012473661452531815,
0.014828241430222988,
-0.09331769496202469,
0.005568106193095446,
0.18074087798595428,
-0.11022718995809555,
0.07157309353351593,
-0.0503360889852047,
-0.1905972957611084,
-0.09411237388849258,
-0.03520059958100319,
0.041922878473997116,
0.1775369793176651,
-0.05326250195503235,
0.18969549238681793,
0.13131634891033173,
-0.0925338938832283,
-0.24404284358024597,
-0.06786525249481201,
0.07800114154815674,
0.04527689144015312,
0.04943763464689255,
-0.1251612901687622,
0.05546791851520538,
0.06739449501037598,
-0.031310953199863434,
-0.10181532055139542,
-0.1634892076253891,
-0.1599494367837906,
0.13650472462177277,
-0.029903503134846687,
0.1138906255364418,
-0.041025158017873764,
-0.04385612905025482,
-0.050391167402267456,
-0.05104035139083862,
0.06665629148483276,
-0.0322565883398056,
0.04446303844451904,
0.051257602870464325,
-0.022406507283449173,
0.044475242495536804,
-0.0064682746306061745,
0.11348310858011246,
0.09057453274726868,
0.0023283641785383224,
-0.010630217380821705,
0.06538628786802292,
-0.06409807503223419,
-0.03397921100258827,
0.10691844671964645,
0.04597363620996475,
0.0011740369955077767,
-0.06282957643270493,
-0.06745430827140808,
-0.0033600444439798594,
0.0642242357134819,
0.022510478273034096,
-0.009679541923105717,
-0.08390741050243378,
-0.0005418072687461972,
0.030556831508874893,
0.02034205198287964,
0.06453799456357956,
-0.05392126366496086,
-0.17441852390766144,
0.14850753545761108,
0.16129140555858612,
-0.03627384826540947,
-0.0574127621948719,
-0.025792909786105156,
-0.03422689810395241,
0.08370735496282578,
-0.032769620418548584,
0.09412452578544617,
0.06956921517848969,
0.011285802349448204,
0.0758279412984848,
0.03437357395887375,
-0.16003496944904327,
-0.0005337993497960269,
0.09510649740695953,
-0.07402150332927704,
-0.144510418176651,
-0.039046917110681534,
-0.04406265169382095,
-0.06070360168814659,
0.10381961613893509,
0.15351060032844543,
-0.08527431637048721,
-0.0036226450465619564,
0.006747699808329344,
0.0755704864859581,
-0.07388544082641602,
0.1551428735256195,
0.03271117061376572,
0.022549869492650032,
-0.05659262835979462,
0.14545735716819763,
0.07722678780555725,
-0.04235202446579933,
0.029160151258111,
-0.014594621025025845,
-0.06811953336000443,
-0.021429220214486122,
-0.14190462231636047,
0.0014764495426788926,
0.013838861137628555,
-0.14075207710266113,
-0.02055509202182293,
-0.08589473366737366,
-0.005021908786147833,
0.04222949221730232,
0.02950972504913807,
0.08448000252246857,
0.016360340639948845,
0.04376987740397453,
-0.06094678118824959,
0.06465169787406921,
0.047865577042102814,
0.01862672157585621,
-0.11425813287496567,
0.12120513617992401,
0.000730357482098043,
0.07397661358118057,
-0.03328679874539375,
-0.020473862066864967,
-0.0732426643371582,
0.02348800003528595,
-0.015777068212628365,
0.0193612240254879,
-0.08087479323148727,
-0.012051212601363659,
0.0615808330476284,
-0.021029895171523094,
0.005773452576249838,
0.05620048940181732,
-0.02914065308868885,
-0.0043024057522416115,
-0.03834325820207596,
0.04992523789405823,
-0.08231594413518906,
0.03289560228586197,
0.07276145368814468,
-0.09606392681598663,
0.04880572482943535,
0.016539152711629868,
-0.017802810296416283,
0.07767894119024277,
-0.046294331550598145,
0.020229773595929146,
0.04090898856520653,
0.05050309747457504,
-0.03317635506391525,
-0.0007670265040360391,
-0.049941714853048325,
0.016468605026602745,
-0.03722023591399193,
-0.057824667543172836,
0.13864189386367798,
-0.04905083030462265,
0.04958066716790199,
-0.007202021311968565,
-0.0357852578163147,
-0.07099320739507675,
0.0013308667112141848,
0.04672670364379883,
0.09823516756296158,
0.12871770560741425,
-0.025213276967406273,
0.011315573006868362,
-0.08397896587848663,
0.048802848905324936,
0.029643267393112183,
0.02641667053103447,
-0.021148480474948883,
-0.08694878965616226,
0.03976166993379593,
-0.02847471460700035,
0.14371612668037415,
-0.013551685027778149,
-0.04788302630186081,
0.051236268132925034,
-0.05159571394324303,
-0.1055050939321518,
0.0571315661072731,
0.0641787052154541,
0.03261789306998253,
0.02258717641234398,
-0.09863752126693726,
-0.031933121383190155,
-0.016480252146720886,
-0.06481349468231201,
0.07836736738681793,
0.14710518717765808,
-0.09771044552326202,
0.11059369891881943,
0.03359857574105263,
-0.046504221856594086,
-0.09277359396219254,
0.06983038783073425,
-0.07187144458293915,
-0.020707378163933754,
-0.03619904816150665,
0.07830603420734406,
0.11481630802154541,
-0.10959934443235397,
0.13350047171115875,
0.04144473001360893,
-0.0702381506562233,
-0.10352811217308044,
-0.10717185586690903,
-0.04158782586455345,
-0.08040951192378998,
-0.027785932645201683,
-0.08221656829118729,
-0.0032948388252407312,
0.06474882364273071,
-0.009643618948757648,
0.004324052017182112,
0.08036667108535767,
-0.17467370629310608,
-0.05461907759308815,
0.0150903994217515,
-0.05925144627690315,
0.012843508273363113,
0.009971141815185547,
-0.04974667355418205,
0.09217487275600433,
0.1483033001422882,
0.062268439680337906,
0.0039029812905937433,
0.02054842747747898,
0.007589481770992279,
-0.002965612104162574,
-0.041732050478458405,
-0.006806480698287487,
-0.07979461550712585,
0.029799530282616615,
0.011568872258067131,
0.06899376958608627,
-0.07648122310638428,
0.0037526926025748253,
0.18611599504947662,
-0.05754048377275467,
-0.07784207165241241,
-0.19356189668178558,
0.04506566375494003,
0.08570389449596405,
0.036519650369882584,
0.058035627007484436,
-0.1533937007188797,
0.012744860723614693,
0.21438515186309814,
0.09361697733402252,
-0.005689690820872784,
0.004250543657690287,
-0.02559802308678627,
0.019381558522582054,
0.0484233982861042,
0.046011943370103836,
-0.03536588326096535,
0.23384422063827515,
0.010645284317433834,
0.06352448463439941,
0.0013800992164760828,
-0.04574001580476761,
-0.022485027089715004,
0.17504312098026276,
-0.07251041382551193,
-0.010562489740550518,
-0.07983942329883575,
0.06914213299751282,
-0.05349606275558472,
-0.29335856437683105,
-0.022933807224035263,
-0.014055478386580944,
-0.061412930488586426,
0.017824335023760796,
0.03828432410955429,
0.004835320636630058,
0.023225635290145874,
0.013179033994674683,
-0.005402420647442341,
0.17596405744552612,
0.05285497382283211,
-0.07168862968683243,
0.013577807694673538,
0.07288216799497604,
0.00014939281390979886,
0.07710731774568558,
0.0068491180427372456,
0.13492663204669952,
-0.002195244189351797,
0.09860667586326599,
-0.047094542533159256,
0.04703164100646973,
-0.06698401272296906,
-0.05327171832323074,
0.00411702785640955,
0.13755705952644348,
-0.021258214488625526,
0.11430919915437698,
0.03712977468967438,
-0.1374647617340088,
0.005343431141227484,
0.04413462057709694,
-0.07551267743110657,
-0.04082431271672249,
0.0539386160671711,
-0.0720255970954895,
0.12559938430786133,
0.07400982081890106,
-0.03493528440594673,
0.010620567947626114,
-0.028274185955524445,
0.021504227072000504,
-0.03443089872598648,
0.03546983003616333,
-0.03261709213256836,
-0.16905327141284943,
-0.009984161704778671,
-0.12693904340267181,
0.03012029081583023,
-0.08456169813871384,
-0.05080795660614967,
-0.011920150369405746,
0.00041431872523389757,
-0.011843324638903141,
0.06976187974214554,
0.13954274356365204,
-0.016031868755817413,
-0.05066418647766113,
-0.04820704832673073,
0.06610487401485443,
0.04750487208366394,
-0.10448089987039566,
-0.08135303854942322
] |
null | null |
transformers
|
# SEW-D-small
[SEW-D by ASAPP Research](https://github.com/asappresearch/sew)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
**Abstract**
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .
# Usage
See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWDForCTC`.
|
{"language": "en", "license": "apache-2.0", "tags": ["speech"], "datasets": ["librispeech_asr"]}
|
feature-extraction
|
asapp/sew-d-small-100k
|
[
"transformers",
"pytorch",
"sew-d",
"feature-extraction",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2109.06870",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.06870"
] |
[
"en"
] |
TAGS
#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us
|
# SEW-D-small
SEW-D by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under URL .
# Usage
See this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'.
|
[
"# SEW-D-small\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
"TAGS\n#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# SEW-D-small\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
63,
344,
47
] |
[
"passage: TAGS\n#transformers #pytorch #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n# SEW-D-small\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
-0.06301138550043106,
0.05082071200013161,
-0.004986294079571962,
0.00728742266073823,
0.0483829565346241,
-0.028342552483081818,
0.06686773896217346,
0.06011712923645973,
-0.05330321192741394,
0.01915685646235943,
-0.04878205060958862,
-0.02494400553405285,
0.09516774863004684,
0.09660103917121887,
0.05349818244576454,
-0.2028418928384781,
0.0869482085108757,
-0.07065488398075104,
0.06044060364365578,
0.03399037569761276,
0.13112834095954895,
-0.10079346597194672,
0.0275859497487545,
0.07792601734399796,
0.014624462462961674,
0.022038672119379044,
-0.06586727499961853,
-0.04763833060860634,
0.09281975030899048,
0.05557279288768768,
0.0801050141453743,
0.06679465621709824,
0.05981031432747841,
-0.221957266330719,
0.005931831896305084,
0.025921698659658432,
0.037157092243433,
0.01146368496119976,
0.05857047066092491,
-0.013494864106178284,
0.01852043904364109,
0.0014710392570123076,
0.055275071412324905,
0.04211075231432915,
-0.011088385246694088,
-0.05556393787264824,
-0.04699096456170082,
0.044610172510147095,
0.1296280026435852,
0.040877558290958405,
-0.01491277851164341,
-0.009828276000916958,
-0.08173396438360214,
0.05329188331961632,
0.06588295847177505,
-0.1765993982553482,
0.049253273755311966,
-0.10343465209007263,
-0.02442515641450882,
-0.015985246747732162,
-0.0745479017496109,
-0.010275894775986671,
-0.004734967369586229,
-0.011909762397408485,
0.09028010070323944,
0.0030075116083025932,
-0.02709728106856346,
-0.024265989661216736,
-0.1359371542930603,
-0.02627747878432274,
0.16260161995887756,
0.04670679196715355,
-0.09923455119132996,
-0.11777228116989136,
-0.04111553356051445,
-0.008100401610136032,
-0.017828799784183502,
-0.08659172803163528,
0.03624779358506203,
-0.026828724890947342,
0.04945807531476021,
-0.02339276671409607,
-0.11284409463405609,
-0.0615517795085907,
-0.0015543783083558083,
0.16541051864624023,
0.08688834309577942,
0.03588283434510231,
-0.011500473134219646,
0.07067956030368805,
-0.06441295892000198,
-0.024444226175546646,
-0.07632877677679062,
-0.044262051582336426,
-0.1660626381635666,
0.027832236140966415,
-0.03556971997022629,
-0.17304594814777374,
0.0016698428662493825,
0.17990168929100037,
0.0157218836247921,
0.05742218717932701,
0.13363248109817505,
0.05011540278792381,
0.05926603078842163,
0.1260860562324524,
-0.003937989007681608,
-0.08221779763698578,
-0.005316547118127346,
-0.015216215513646603,
-0.010253895074129105,
-0.040845438838005066,
-0.04000307619571686,
-0.02080812118947506,
0.05592109635472298,
-0.048499517142772675,
-0.031979817897081375,
0.03227221965789795,
-0.07337512075901031,
-0.03338726982474327,
0.12679219245910645,
-0.15125855803489685,
-0.015409749001264572,
-0.016344910487532616,
-0.002997449366375804,
0.05151357129216194,
0.116307832300663,
0.039059851318597794,
-0.09446514397859573,
0.13053885102272034,
-0.029930684715509415,
-0.025356030091643333,
-0.055171117186546326,
-0.04132732376456261,
-0.006647702306509018,
-0.07239104062318802,
-0.005753924138844013,
-0.13962967693805695,
-0.15129992365837097,
-0.07291164249181747,
-0.018944868817925453,
0.009481659159064293,
-0.04983774572610855,
-0.06663300842046738,
0.02503897249698639,
-0.04332323372364044,
-0.02516166865825653,
-0.03222712501883507,
-0.024753058329224586,
-0.017326679080724716,
-0.03810976818203926,
0.03273522108793259,
-0.06289453059434891,
0.04290011525154114,
-0.06732647120952606,
0.008673939853906631,
-0.05305028706789017,
0.16446655988693237,
-0.08785369247198105,
-0.011169626377522945,
-0.09261278808116913,
0.029181156307458878,
-0.14445501565933228,
0.06392360478639603,
0.04372773319482803,
0.10773391276597977,
-0.20509688556194305,
-0.09270243346691132,
0.10691390186548233,
-0.16696253418922424,
0.01866266131401062,
0.12236122786998749,
0.002698297146707773,
0.04636503756046295,
0.1029013842344284,
0.20095571875572205,
0.1990664303302765,
-0.08273565769195557,
-0.0960092842578888,
0.024975476786494255,
-0.051052141934633255,
-0.0028689398895949125,
0.08332590013742447,
-0.04261216148734093,
0.08020634204149246,
0.04651544243097305,
-0.02406647801399231,
0.001935149310156703,
0.0015085159102454782,
-0.05386418476700783,
0.013538762927055359,
-0.0759938582777977,
0.017244042828679085,
-0.07688698172569275,
0.03148262947797775,
0.005356445908546448,
-0.10319198668003082,
0.063717320561409,
0.12019955366849899,
-0.06387301534414291,
0.08422849327325821,
-0.13768793642520905,
-0.0022258178796619177,
0.06948832422494888,
0.01770807057619095,
-0.10487692058086395,
0.06558260321617126,
0.03325650468468666,
-0.07409654557704926,
0.08877091109752655,
0.03984992578625679,
0.010840913280844688,
0.014121326617896557,
0.004688119050115347,
-0.007265875581651926,
-0.0887472853064537,
0.02579924277961254,
-0.05528029426932335,
-0.10417486727237701,
-0.07540538907051086,
-0.023519184440374374,
0.06554016470909119,
0.009548448957502842,
0.04006997123360634,
0.11260093748569489,
0.1190124899148941,
0.012144813314080238,
-0.07501426339149475,
-0.02993508242070675,
0.019059576094150543,
-0.0017819631611928344,
0.03542453795671463,
-0.023578330874443054,
0.02059664949774742,
-0.08513709157705307,
0.08608461916446686,
-0.06851497292518616,
-0.11413900554180145,
0.038225799798965454,
-0.004418352618813515,
-0.05399865657091141,
-0.022005926817655563,
-0.01046452671289444,
-0.0645400881767273,
-0.10375901311635971,
-0.15573447942733765,
0.250417560338974,
0.004514249507337809,
0.0871863067150116,
-0.03368397802114487,
-0.009319988079369068,
-0.030262626707553864,
-0.003221035934984684,
0.018040642142295837,
0.03648839145898819,
0.06324988603591919,
0.06060798466205597,
0.006795353256165981,
0.017931263893842697,
-0.05079808831214905,
0.0951634868979454,
-0.014575419016182423,
-0.09017662703990936,
0.04108502343297005,
-0.05115380883216858,
-0.05678700655698776,
0.0560065358877182,
-0.13593293726444244,
-0.02099086157977581,
0.042087338864803314,
0.0457218773663044,
0.08581997454166412,
-0.09533558040857315,
0.09904949367046356,
0.07263725250959396,
-0.024644972756505013,
0.01075834408402443,
-0.07172273844480515,
-0.0278717540204525,
0.04019319638609886,
-0.024762388318777084,
-0.02759762667119503,
-0.011063347570598125,
-0.031228218227624893,
-0.13151432573795319,
0.11512229591608047,
-0.06156904995441437,
-0.16901440918445587,
-0.1947876662015915,
0.08918359130620956,
0.01868114434182644,
0.0019230602774769068,
0.06008562818169594,
-0.013175039552152157,
-0.10216287523508072,
-0.07701550424098969,
0.09505469352006912,
0.0013932854635640979,
0.03453293442726135,
0.07351553440093994,
0.004570767283439636,
0.0010598351946100593,
-0.11485191434621811,
0.00506731728091836,
-0.020731791853904724,
0.028423575684428215,
0.0008294732542708516,
0.03275929018855095,
0.09140820801258087,
0.12791098654270172,
-0.022878700867295265,
-0.022981803864240646,
-0.03677288070321083,
0.18390321731567383,
-0.0514446422457695,
0.06558871269226074,
0.1342792958021164,
-0.1749434620141983,
0.025054067373275757,
0.053144343197345734,
0.01155103463679552,
-0.005330367013812065,
-0.005990000907331705,
0.026281747967004776,
-0.06430532038211823,
-0.18151530623435974,
-0.0683303102850914,
-0.02921554446220398,
0.020158614963293076,
-0.00503569608554244,
0.036105867475271225,
-0.02332778088748455,
0.019855616614222527,
-0.04995868355035782,
0.04420477896928787,
0.12318423390388489,
0.036643367260694504,
0.06378771364688873,
-0.020150046795606613,
0.10879041999578476,
-0.050628405064344406,
-0.007850348949432373,
0.05776815488934517,
0.057486437261104584,
0.19826044142246246,
0.006419679615646601,
0.12309463322162628,
0.09863216429948807,
0.02683143876492977,
0.08107972145080566,
0.025751926004886627,
-0.04642914608120918,
0.07844727486371994,
-0.03138124570250511,
-0.02861812524497509,
-0.040172427892684937,
0.12292898446321487,
0.039053261280059814,
-0.08593124151229858,
-0.057495612651109695,
0.036658406257629395,
0.08705413341522217,
0.19446100294589996,
0.04379764199256897,
-0.1328519731760025,
-0.06944818049669266,
0.04982403665781021,
-0.1518106311559677,
0.020183296874165535,
0.03818044811487198,
0.09727843105792999,
-0.0963897854089737,
0.07285768538713455,
0.0678931325674057,
0.08326424658298492,
-0.13299855589866638,
0.0119492681697011,
-0.015512660145759583,
0.04864875227212906,
0.00574489776045084,
0.04753430187702179,
-0.12973202764987946,
0.04665292054414749,
-0.010117672383785248,
0.07927445322275162,
-0.02316821739077568,
0.05280974879860878,
-0.02658659964799881,
0.007630757987499237,
0.09944356232881546,
-0.01129054930061102,
-0.03496508300304413,
0.01728922128677368,
-0.09899887442588806,
0.03646165877580643,
0.08257640153169632,
-0.05225697159767151,
0.0642862468957901,
-0.032586004585027695,
0.029169678688049316,
-0.010987779125571251,
0.00030235067242756486,
-0.10181773453950882,
-0.16665776073932648,
0.050258491188287735,
0.04622109606862068,
0.0415445938706398,
-0.04608287662267685,
-0.02238931879401207,
-0.14570969343185425,
0.15025849640369415,
-0.2727120518684387,
-0.0862613245844841,
-0.07673919945955276,
-0.06756959855556488,
0.06142802909016609,
-0.02868543565273285,
0.049632325768470764,
0.0849691852927208,
0.0961725041270256,
-0.06569238007068634,
-0.07692578434944153,
-0.026010742411017418,
-0.06081228703260422,
-0.13996517658233643,
-0.0029142273124307394,
0.11719287931919098,
0.08170676976442337,
0.028922727331519127,
0.007037149276584387,
-0.014819708652794361,
0.013906516134738922,
-0.09084826707839966,
-0.0035133205819875,
0.19201819598674774,
-0.11414977163076401,
0.07498239725828171,
-0.05360548198223114,
-0.18921571969985962,
-0.08715228736400604,
-0.03906617313623428,
0.05190979689359665,
0.1856619119644165,
-0.05199051648378372,
0.1920318603515625,
0.12841826677322388,
-0.09073951840400696,
-0.2421664148569107,
-0.07972382754087448,
0.08148305118083954,
0.04780501127243042,
0.04770362749695778,
-0.12723694741725922,
0.05493143945932388,
0.08130627125501633,
-0.02946517989039421,
-0.10033779591321945,
-0.1710093915462494,
-0.1647810935974121,
0.13656587898731232,
-0.023079585283994675,
0.1134660542011261,
-0.03620784729719162,
-0.044594597071409225,
-0.04674811661243439,
-0.03622140362858772,
0.06227812170982361,
-0.03106863796710968,
0.04568314179778099,
0.054024841636419296,
-0.029618969187140465,
0.04330544173717499,
-0.004437754862010479,
0.11372475326061249,
0.08017565310001373,
-0.001597914844751358,
-0.004716766066849232,
0.060733363032341,
-0.07534493505954742,
-0.03120976686477661,
0.10766910761594772,
0.03220017999410629,
-0.0009085684432648122,
-0.07602445781230927,
-0.07009364664554596,
-0.0013117893831804395,
0.06817207485437393,
0.022159259766340256,
-0.0094771021977067,
-0.08661390095949173,
-0.006190440617501736,
0.02966967411339283,
0.019083507359027863,
0.07756514102220535,
-0.050422780215740204,
-0.1789950281381607,
0.1515275537967682,
0.15190906822681427,
-0.04359002783894539,
-0.07451547682285309,
-0.03056655265390873,
-0.033530980348587036,
0.08310207724571228,
-0.031609099358320236,
0.08681411296129227,
0.07513320446014404,
0.009128034114837646,
0.08094241470098495,
0.031232448294758797,
-0.16182951629161835,
0.0028118512127548456,
0.09680643677711487,
-0.07738128304481506,
-0.14469245076179504,
-0.04723283275961876,
-0.049296170473098755,
-0.05250992998480797,
0.10474272817373276,
0.15300793945789337,
-0.08430669456720352,
-0.0033243652433156967,
0.006253228057175875,
0.072206050157547,
-0.06587953865528107,
0.1630842387676239,
0.029675958678126335,
0.024220013990998268,
-0.056391291320323944,
0.15138328075408936,
0.08038569986820221,
-0.04886976629495621,
0.027572497725486755,
-0.0021254417952150106,
-0.06825090944766998,
-0.020751647651195526,
-0.15120834112167358,
0.007827223278582096,
0.011133323423564434,
-0.13795575499534607,
-0.03398967534303665,
-0.08951127529144287,
0.0013214247301220894,
0.049411047250032425,
0.029015028849244118,
0.07936836034059525,
0.019711632281541824,
0.046755868941545486,
-0.051575738936662674,
0.06769347190856934,
0.04969504848122597,
0.01903071627020836,
-0.10990996658802032,
0.12131781876087189,
0.00912739709019661,
0.07892099022865295,
-0.031871598213911057,
-0.02171994559466839,
-0.07306249439716339,
0.02570013329386711,
-0.01375261414796114,
0.025740569457411766,
-0.0728062093257904,
-0.013960888609290123,
0.06358394771814346,
-0.014300652779638767,
0.009120701812207699,
0.05917591601610184,
-0.026520565152168274,
-0.0024479618296027184,
-0.038169119507074356,
0.04764340817928314,
-0.08087940514087677,
0.02864309772849083,
0.06728635728359222,
-0.09750107675790787,
0.05266398936510086,
0.01622166484594345,
-0.013406524434685707,
0.07819408923387527,
-0.03945435583591461,
0.01977427862584591,
0.045486971735954285,
0.051669999957084656,
-0.028671329841017723,
0.004421893507242203,
-0.04598633199930191,
0.014220383949577808,
-0.04552196338772774,
-0.061341993510723114,
0.12981444597244263,
-0.05667226389050484,
0.05129188299179077,
0.004794100299477577,
-0.03947602957487106,
-0.073417529463768,
-0.0038136669900268316,
0.03707202523946762,
0.0975145697593689,
0.1318657100200653,
-0.026336079463362694,
0.01400025188922882,
-0.0827912762761116,
0.051592811942100525,
0.03432093560695648,
0.020321425050497055,
-0.01902790553867817,
-0.08819226920604706,
0.036350637674331665,
-0.033505331724882126,
0.13509970903396606,
-0.015000218525528908,
-0.0436970517039299,
0.05563421919941902,
-0.05367421358823776,
-0.10470932722091675,
0.05916722118854523,
0.051799457520246506,
0.02952962927520275,
0.026068927720189095,
-0.10289288312196732,
-0.03543507307767868,
-0.011004194617271423,
-0.07048317790031433,
0.07621511071920395,
0.13948878645896912,
-0.08880137652158737,
0.11725275218486786,
0.04034128412604332,
-0.03436770290136337,
-0.10569261759519577,
0.05696314945816994,
-0.06067682430148125,
-0.020568780601024628,
-0.028009839355945587,
0.08967658877372742,
0.1136062890291214,
-0.11166020482778549,
0.1345977485179901,
0.05124082788825035,
-0.06614545732736588,
-0.1074468120932579,
-0.10860589891672134,
-0.04382183402776718,
-0.07490488141775131,
-0.02399756945669651,
-0.08474738150835037,
-0.01068643108010292,
0.05636685714125633,
-0.00513586588203907,
0.0060463338159024715,
0.07905776798725128,
-0.1737494170665741,
-0.053867269307374954,
0.01711621880531311,
-0.05275088548660278,
0.008592731319367886,
0.004546190612018108,
-0.05222564563155174,
0.08441175520420074,
0.14547578990459442,
0.05479282885789871,
0.00022903631906956434,
0.020386772230267525,
0.007863112725317478,
0.0033679252956062555,
-0.035141028463840485,
-0.0067816260270774364,
-0.08200779557228088,
0.03288838639855385,
0.0077846357598900795,
0.06892669945955276,
-0.07509670406579971,
0.003820100100710988,
0.19287613034248352,
-0.05644480139017105,
-0.0820489376783371,
-0.18337799608707428,
0.04878652095794678,
0.09795291721820831,
0.04058046638965607,
0.06677902489900589,
-0.1559988558292389,
0.0024492559023201466,
0.2090456783771515,
0.10021775960922241,
-0.0008650383097119629,
0.007524900604039431,
-0.02518954873085022,
0.019266096875071526,
0.047084566205739975,
0.03739207237958908,
-0.026998182758688927,
0.25217366218566895,
0.011180390603840351,
0.06724275648593903,
0.0008835482876747847,
-0.03762466832995415,
-0.027093376964330673,
0.17524941265583038,
-0.06743701547384262,
-0.006853450555354357,
-0.07776143401861191,
0.057664256542921066,
-0.05857156217098236,
-0.30005303025245667,
-0.023088667541742325,
-0.021921103820204735,
-0.06453068554401398,
0.013882670551538467,
0.03657012805342674,
0.00395228574052453,
0.022206643596291542,
0.017778463661670685,
-0.010891095735132694,
0.16937988996505737,
0.056318074464797974,
-0.08065557479858398,
0.005518212448805571,
0.07339399307966232,
-0.004687079228460789,
0.07876863330602646,
0.004222708288580179,
0.13660483062267303,
-0.0034079134929925203,
0.10482825338840485,
-0.03925682604312897,
0.056947968900203705,
-0.06414633989334106,
-0.060974180698394775,
0.004546772222965956,
0.12878496944904327,
-0.022578205913305283,
0.1366787552833557,
0.03346652537584305,
-0.1270843893289566,
0.003917485009878874,
0.054569557309150696,
-0.07428467273712158,
-0.03350445255637169,
0.060716286301612854,
-0.07614649087190628,
0.11622577905654907,
0.07564317435026169,
-0.03067125380039215,
0.007383821532130241,
-0.02769269049167633,
0.022951314225792885,
-0.03192207217216492,
0.030607027933001518,
-0.02390596829354763,
-0.16711929440498352,
-0.005042479373514652,
-0.12164446711540222,
0.033890023827552795,
-0.09244198352098465,
-0.05748279020190239,
-0.017720233649015427,
0.0028848263900727034,
-0.020569467917084694,
0.06927947700023651,
0.14464928209781647,
-0.01515435241162777,
-0.05244385823607445,
-0.04633507877588272,
0.059028591960668564,
0.04465062916278839,
-0.10588543117046356,
-0.08274092525243759
] |
null | null |
transformers
|
# SEW-D-tiny
[SEW-D by ASAPP Research](https://github.com/asappresearch/sew)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
**Abstract**
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .
# Usage
To transcribe audio files the model can be used as a standalone acoustic model as follows:
```python
from transformers import Wav2Vec2Processor, SEWDForCTC
from datasets import load_dataset
import soundfile as sf
import torch
# load the model and preprocessor
processor = Wav2Vec2Processor.from_pretrained("asapp/sew-d-tiny-100k-ft-ls100h")
model = SEWDForCTC.from_pretrained("asapp/sew-d-tiny-100k-ft-ls100h")
# load the dummy dataset with speech samples
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
# preprocess
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
```
## Evaluation
This code snippet shows how to evaluate **asapp/sew-d-tiny-100k-ft-ls100h** on LibriSpeech's "clean" and "other" test data.
```python
from datasets import load_dataset
from transformers import SEWDForCTC, Wav2Vec2Processor
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = SEWDForCTC.from_pretrained("asapp/sew-d-tiny-100k-ft-ls100h").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("asapp/sew-d-tiny-100k-ft-ls100h")
def map_to_pred(batch):
input_values = processor(batch["audio"][0]["array"], sampling_rate=16000,
return_tensors="pt", padding="longest").input_values
with torch.no_grad():
logits = model(input_values.to("cuda")).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"])
print("WER:", wer(result["text"], result["transcription"]))
```
*Result (WER)*:
| "clean" | "other" |
| --- | --- |
| 10.47 | 22.73 |
|
{"language": "en", "license": "apache-2.0", "tags": ["audio", "speech", "automatic-speech-recognition", "hf-asr-leaderboard"], "datasets": ["librispeech_asr"], "widget": [{"example_title": "Librispeech sample 1", "src": "https://cdn-media.huggingface.co/speech_samples/sample1.flac"}, {"example_title": "Librispeech sample 2", "src": "https://cdn-media.huggingface.co/speech_samples/sample2.flac"}], "model-index": [{"name": "sew-d-tiny-100k-ft-ls100h", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "LibriSpeech (clean)", "type": "librispeech_asr", "config": "clean", "split": "test", "args": {"language": "en"}}, "metrics": [{"type": "wer", "value": 10.47, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "LibriSpeech (other)", "type": "librispeech_asr", "config": "other", "split": "test", "args": {"language": "en"}}, "metrics": [{"type": "wer", "value": 22.73, "name": "Test WER"}]}]}]}
|
automatic-speech-recognition
|
asapp/sew-d-tiny-100k-ft-ls100h
|
[
"transformers",
"pytorch",
"safetensors",
"sew-d",
"automatic-speech-recognition",
"audio",
"speech",
"hf-asr-leaderboard",
"en",
"dataset:librispeech_asr",
"arxiv:2109.06870",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.06870"
] |
[
"en"
] |
TAGS
#transformers #pytorch #safetensors #sew-d #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
|
SEW-D-tiny
==========
SEW-D by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under URL .
Usage
=====
To transcribe audio files the model can be used as a standalone acoustic model as follows:
Evaluation
----------
This code snippet shows how to evaluate asapp/sew-d-tiny-100k-ft-ls100h on LibriSpeech's "clean" and "other" test data.
*Result (WER)*:
|
[] |
[
"TAGS\n#transformers #pytorch #safetensors #sew-d #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n"
] |
[
93
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #sew-d #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n"
] |
[
-0.15036387741565704,
0.13598980009555817,
-0.003997243940830231,
-0.0002963065926451236,
0.050659872591495514,
-0.056158941239118576,
0.11728677153587341,
0.10238620638847351,
0.0714343786239624,
0.01441919058561325,
0.0929136797785759,
0.13920415937900543,
0.006914632860571146,
0.07654757052659988,
-0.04837792366743088,
-0.1432546228170395,
0.08728840202093124,
0.00655724573880434,
0.012756931595504284,
0.07166732102632523,
0.11189476400613785,
-0.047065239399671555,
0.03906668722629547,
0.04519115015864372,
-0.021161528304219246,
0.023356089368462563,
0.03632574900984764,
-0.12057725340127945,
0.13024023175239563,
0.03343897685408592,
0.0227949321269989,
0.056974370032548904,
0.03955662623047829,
-0.1501913219690323,
0.02858133614063263,
0.0021148633677512407,
-0.007696525193750858,
0.04798199608922005,
-0.00886173453181982,
-0.033318135887384415,
-0.006939399987459183,
0.038992688059806824,
-0.02580089680850506,
0.07470265030860901,
-0.031243402510881424,
-0.26217347383499146,
-0.035127636045217514,
0.1274835616350174,
0.022826679050922394,
0.08314984291791916,
-0.015615050680935383,
0.09894799441099167,
-0.08356623351573944,
0.08724624663591385,
0.12154299765825272,
-0.2289094477891922,
0.045838382095098495,
-0.02745763771235943,
0.03460289165377617,
0.014064650982618332,
-0.03075297921895981,
0.029144272208213806,
0.018756087869405746,
0.012277611531317234,
0.031131453812122345,
-0.06184828653931618,
-0.13277266919612885,
-0.009323344565927982,
-0.10469470918178558,
-0.03741389513015747,
0.25943678617477417,
0.027743354439735413,
0.03344409540295601,
-0.07194717973470688,
-0.04502816125750542,
0.04518258571624756,
-0.054953571408987045,
0.02074979431927204,
-0.009806455112993717,
0.03921203687787056,
0.06102670729160309,
-0.019625861197710037,
-0.12024522572755814,
-0.05466795340180397,
-0.10017520934343338,
0.10615302622318268,
-0.018988827243447304,
0.04774487391114235,
-0.11891195923089981,
0.015460263937711716,
-0.014248227700591087,
-0.11721456050872803,
0.009750419296324253,
-0.006412409711629152,
0.029905973002314568,
0.05990637466311455,
-0.02761751413345337,
0.02350001037120819,
0.17915967106819153,
0.10611968487501144,
0.00129750557243824,
0.014550385065376759,
-0.0050285132601857185,
0.094142384827137,
-0.03599921613931656,
0.1124507263302803,
-0.06831624358892441,
-0.004448236431926489,
0.07213341444730759,
0.07561159878969193,
0.07873138785362244,
-0.03850182145833969,
-0.09164930135011673,
-0.028558805584907532,
0.05248701944947243,
0.04690396785736084,
0.06691964715719223,
0.01743893511593342,
-0.02351263351738453,
0.0384543351829052,
0.10192400217056274,
-0.15141093730926514,
-0.01635819673538208,
0.05073869973421097,
0.07017791271209717,
0.011745236814022064,
0.05732053890824318,
0.04926477372646332,
-0.05680385231971741,
0.014499659650027752,
-0.016651256009936333,
0.006458192132413387,
0.05416318401694298,
-0.0035115627106279135,
0.04054566100239754,
-0.05509674921631813,
0.037217266857624054,
-0.15698552131652832,
-0.0650123730301857,
-0.013357768766582012,
-0.013001730665564537,
0.03168892860412598,
-0.0781606063246727,
-0.0005715143051929772,
-0.05376671627163887,
0.03577684611082077,
-0.10833536833524704,
-0.02900213748216629,
-0.07954812794923782,
0.0756819024682045,
0.010890444740653038,
0.0709974616765976,
-0.13632382452487946,
0.07303231209516525,
-0.09069252759218216,
0.0061663915403187275,
-0.05731048434972763,
0.0694720596075058,
-0.11256969720125198,
0.11838861554861069,
-0.06094563379883766,
-0.008290757425129414,
-0.1058819442987442,
0.05431010574102402,
-0.020964032039046288,
0.1001463457942009,
-0.1905222088098526,
-0.10965411365032196,
0.13325558602809906,
-0.1192600205540657,
-0.14521169662475586,
0.13006627559661865,
0.044315800070762634,
0.0073311822488904,
0.07398819178342819,
0.3347351551055908,
0.04303785786032677,
-0.08719075471162796,
-0.03551549091935158,
0.11920402199029922,
-0.0725964680314064,
-0.13189052045345306,
0.048706039786338806,
-0.08402348309755325,
0.009350558742880821,
0.027391551062464714,
-0.023743443191051483,
0.07568668574094772,
0.03706086426973343,
-0.10625927895307541,
-0.06888531148433685,
-0.1027190238237381,
-0.020503507927060127,
0.00016142539971042424,
0.01154961995780468,
-0.025184540078043938,
-0.01944092847406864,
-0.04251987859606743,
0.07175504416227341,
-0.03009229525923729,
0.04511643946170807,
-0.09524419158697128,
0.11424572765827179,
-0.007484329864382744,
0.012485680170357227,
-0.15118958055973053,
0.12941451370716095,
-0.07485994696617126,
-0.03722364827990532,
0.06460767239332199,
0.03132776916027069,
0.06956514716148376,
-0.06475163996219635,
0.010294337756931782,
-0.033697132021188736,
0.13985328376293182,
0.07671274244785309,
0.004469318315386772,
-0.18591615557670593,
0.042417991906404495,
-0.06284868717193604,
0.10401783138513565,
-0.049365583807229996,
0.004180433694273233,
0.05838838219642639,
0.11347954720258713,
-0.03472957760095596,
0.0409359410405159,
0.04703880101442337,
-0.01228612381964922,
0.022602906450629234,
-0.003915515728294849,
0.059067435562610626,
0.01647774502635002,
-0.08909723907709122,
0.18761691451072693,
-0.20701931416988373,
0.268223375082016,
0.21164026856422424,
-0.07793888449668884,
0.06372897326946259,
0.07958914339542389,
-0.009987476281821728,
-0.009790624491870403,
0.0481819212436676,
-0.06628894805908203,
0.1313784420490265,
-0.02215002477169037,
0.12858448922634125,
-0.0637647807598114,
-0.009465416893362999,
0.0005037458031438291,
-0.06499344110488892,
-0.011795852333307266,
0.0875745341181755,
-0.027405979111790657,
-0.09023752808570862,
0.13013297319412231,
0.21078689396381378,
-0.089947909116745,
0.16557854413986206,
-0.0805162563920021,
-0.04134669899940491,
0.06547194719314575,
-0.01843179576098919,
-0.05347933620214462,
0.13635143637657166,
-0.1997176557779312,
-0.04010835662484169,
0.08013724535703659,
-0.034772299230098724,
0.05306779593229294,
-0.16395966708660126,
-0.007171276956796646,
-0.022059626877307892,
-0.06123463809490204,
-0.10642094165086746,
0.07424480468034744,
-0.019131876528263092,
0.08372583240270615,
-0.08154287189245224,
-0.21568389236927032,
0.055960219353437424,
-0.024961700662970543,
-0.1036418080329895,
0.08566491305828094,
-0.08130063861608505,
-0.26675087213516235,
-0.10926678031682968,
-0.018007323145866394,
-0.015657614916563034,
0.013381702825427055,
0.11625748127698898,
-0.10199173539876938,
-0.03026937134563923,
-0.059196099638938904,
-0.031638819724321365,
0.022090129554271698,
-0.0019403529586270452,
0.05499105527997017,
0.015204745344817638,
0.10444263368844986,
-0.14121292531490326,
-0.02216431125998497,
-0.04754171520471573,
0.08904780447483063,
0.03162084519863129,
0.047863636165857315,
0.062105752527713776,
0.1631879359483719,
0.06991005688905716,
0.02210843935608864,
0.005868078675121069,
0.17514753341674805,
-0.08415710926055908,
-0.01109950803220272,
0.18228228390216827,
-0.05439494177699089,
0.03281673043966293,
0.22015810012817383,
0.048459041863679886,
-0.014624442905187607,
-0.030152352526783943,
-0.04376344010233879,
-0.06334252655506134,
-0.1591971069574356,
-0.11915258318185806,
-0.08532997220754623,
-0.005124279763549566,
0.00468713091686368,
0.08319072425365448,
0.05161789432168007,
0.003835056908428669,
-0.010001840069890022,
-0.06635663658380508,
0.019491419196128845,
-0.020338525995612144,
0.22714923322200775,
-0.04523525387048721,
0.11655475199222565,
-0.0906548872590065,
-0.08496715128421783,
0.049740806221961975,
0.08579585701227188,
0.0199265256524086,
0.10825251787900925,
0.038421787321567535,
0.031944725662469864,
0.17649473249912262,
0.09534718096256256,
0.06772894412279129,
0.02342027984559536,
-0.020992374047636986,
0.01601387932896614,
-0.08030055463314056,
-0.03871278464794159,
0.08389441668987274,
0.09677018970251083,
-0.06402302533388138,
0.014692491851747036,
-0.0671938881278038,
0.04554050415754318,
0.1648739129304886,
0.08211699873209,
-0.18488402664661407,
-0.009206859394907951,
0.04770709201693535,
-0.0535966157913208,
-0.004261300899088383,
0.07989753782749176,
0.013953644782304764,
-0.01348361000418663,
0.065068818628788,
0.03935936465859413,
0.06157851591706276,
-0.02687770314514637,
0.07597209513187408,
-0.09003008902072906,
-0.029620109125971794,
0.03473749756813049,
0.04244418069720268,
-0.22195783257484436,
0.2408393919467926,
0.026053300127387047,
0.03709275647997856,
-0.002126820618286729,
0.010844061151146889,
0.10458052158355713,
0.11485369503498077,
0.15201759338378906,
0.017911115661263466,
-0.09274399280548096,
-0.08522806316614151,
-0.09554890543222427,
0.06661328673362732,
0.010466953739523888,
0.06560759246349335,
-0.06692589074373245,
-0.038024622946977615,
-0.03366990014910698,
0.04117758572101593,
-0.04877905920147896,
-0.1244499534368515,
-0.10355407744646072,
0.04443194717168808,
0.27564185857772827,
0.06957044452428818,
-0.042735204100608826,
-0.0577385239303112,
-0.18855324387550354,
0.008662842214107513,
-0.12052473425865173,
-0.029940074309706688,
-0.0673612654209137,
-0.16640889644622803,
0.10536102205514908,
-0.04458693042397499,
0.040938351303339005,
-0.023633455857634544,
-0.000461337884189561,
-0.04586363956332207,
-0.12301082909107208,
0.10446882992982864,
-0.11952218413352966,
-0.040596481412649155,
-0.002972401911392808,
0.2200719267129898,
-0.03938877582550049,
0.05878140404820442,
0.041650351136922836,
0.03356892615556717,
-0.09623823314905167,
-0.06157199665904045,
0.10707828402519226,
0.069656141102314,
-0.0642896294593811,
0.020727794617414474,
-0.03939663618803024,
-0.20758512616157532,
-0.025012701749801636,
0.002855723025277257,
0.196533203125,
0.1601458489894867,
-0.07150018215179443,
0.16690751910209656,
0.256450355052948,
-0.009338194504380226,
-0.31337255239486694,
-0.17929653823375702,
-0.09345713257789612,
-0.005830355454236269,
-0.015862654894590378,
-0.08482100069522858,
0.13512077927589417,
-0.04034826532006264,
-0.1174791157245636,
0.03635074570775032,
-0.1521458625793457,
-0.11025252938270569,
0.3406199514865875,
-0.09625530987977982,
0.24893707036972046,
-0.12785930931568146,
-0.07420718669891357,
-0.07729844748973846,
-0.10560435056686401,
0.0375240333378315,
-0.16055692732334137,
0.06808158755302429,
0.006673743482679129,
0.04725602641701698,
-0.00020292136468924582,
-0.03935163840651512,
0.10912231355905533,
0.07271105796098709,
-0.019081110134720802,
-0.047600049525499344,
0.03770536184310913,
0.01914001628756523,
-0.010972975753247738,
0.13917207717895508,
-0.14217515289783478,
0.03233718499541283,
-0.06186921149492264,
-0.01609024405479431,
-0.09841348975896835,
0.10620833933353424,
0.056470174342393875,
-0.0060879820957779884,
0.0153438625857234,
-0.06347084045410156,
-0.013075443916022778,
0.01844717003405094,
0.16182254254817963,
-0.10178156197071075,
0.029206180945038795,
0.16796112060546875,
0.15501953661441803,
-0.2131337970495224,
-0.11094936728477478,
-0.03262392431497574,
-0.06966676563024521,
0.08690495789051056,
-0.10025925189256668,
0.11308737844228745,
0.048789024353027344,
0.03820059075951576,
0.06753680109977722,
0.052785854786634445,
-0.041407544165849686,
-0.015786631032824516,
0.10576033592224121,
-0.11513331532478333,
-0.1326284259557724,
0.0010841446928679943,
0.05043016001582146,
-0.011641024611890316,
0.12063823640346527,
0.14744703471660614,
-0.028896069154143333,
0.0003199766215402633,
-0.01450642105191946,
0.030023736879229546,
-0.12179125100374222,
0.11643105000257492,
0.13111381232738495,
0.051127392798662186,
-0.15184836089611053,
0.080071359872818,
-0.03440232202410698,
-0.06284693628549576,
0.03908446803689003,
0.011452912352979183,
-0.09735357016324997,
-0.13835132122039795,
-0.11881866306066513,
0.038781192153692245,
-0.040111083537340164,
-0.13900868594646454,
-0.062217310070991516,
-0.1276548206806183,
0.015400000847876072,
0.13530980050563812,
0.06973684579133987,
0.03757873922586441,
-0.04736795648932457,
-0.09523852914571762,
0.017729749903082848,
0.04193487390875816,
-0.025704609230160713,
0.009304557926952839,
-0.15909835696220398,
-0.05013586953282356,
0.013456379994750023,
0.0657339096069336,
-0.0700584277510643,
-0.021890491247177124,
-0.07147760689258575,
0.04288537800312042,
-0.09532357007265091,
-0.01023397408425808,
-0.0877605676651001,
0.02557816542685032,
0.035385556519031525,
-0.09414110332727432,
-0.011283216066658497,
0.05038370564579964,
-0.10130894929170609,
-0.005477473139762878,
0.015634963288903236,
0.08122355490922928,
-0.15866385400295258,
-0.005973404739052057,
0.03365777060389519,
-0.014241241849958897,
0.11390024423599243,
0.1242709681391716,
-0.14167369902133942,
0.07534879446029663,
-0.2036466747522354,
-0.17633874714374542,
0.12740948796272278,
0.03735600411891937,
0.004837655462324619,
-0.046226467937231064,
-0.04825901612639427,
0.11863532662391663,
0.048171624541282654,
0.017080677673220634,
0.09655773639678955,
-0.06422245502471924,
0.02499154955148697,
-0.0963253602385521,
-0.04478983208537102,
-0.020675064995884895,
-0.05508853867650032,
0.15901845693588257,
0.07541751116514206,
0.16583028435707092,
-0.04817643016576767,
-0.018096959218382835,
-0.09714565426111221,
0.04223046451807022,
-0.04655225947499275,
-0.14529691636562347,
-0.1339457780122757,
-0.020201425999403,
0.02182580530643463,
-0.03518262878060341,
0.21816009283065796,
-0.016940303146839142,
-0.07359839230775833,
0.05314614996314049,
0.01473703607916832,
-0.0023260044399648905,
0.019241811707615852,
0.27692991495132446,
0.03527867794036865,
-0.011497328989207745,
-0.00680420221760869,
-0.028379986062645912,
0.038288358598947525,
0.07173983752727509,
-0.0290540624409914,
0.16066186130046844,
0.06508056074380875,
0.09899090230464935,
0.13112236559391022,
-0.04529593139886856,
-0.06362514197826385,
0.015671497210860252,
-0.06605280935764313,
0.06120220199227333,
-0.04294000193476677,
0.1253475546836853,
0.1943790763616562,
0.0349777452647686,
0.0554950051009655,
-0.07230710983276367,
-0.027238305658102036,
-0.16614675521850586,
-0.09349872171878815,
-0.06691452115774155,
-0.13706600666046143,
-0.0015472453087568283,
-0.013422438874840736,
-0.00128800212405622,
0.13318869471549988,
0.010528076440095901,
0.007415730506181717,
0.0658767968416214,
0.011707887053489685,
-0.014493455179035664,
0.05588148161768913,
-0.04216904565691948,
-0.03932429477572441,
-0.0590546615421772,
-0.012792241759598255,
0.08577064424753189,
0.0035315335262566805,
-0.01848900131881237,
-0.02497175522148609,
-0.08449352532625198,
0.05197266489267349,
-0.12152049690485,
-0.07532618939876556,
-0.023982858285307884,
0.01584438979625702,
0.033840544521808624,
0.07834723591804504,
0.08287094533443451,
-0.0442013181746006,
0.0598650723695755,
0.1777258962392807,
-0.07413632422685623,
-0.1757306605577469,
-0.0662904754281044,
0.13197918236255646,
-0.03386871889233589,
0.04056643322110176,
-0.05051374435424805,
-0.06293149292469025,
-0.004204762168228626,
0.18636015057563782,
0.2621409296989441,
-0.07352962344884872,
0.07607381790876389,
-0.1000552624464035,
0.02341974340379238,
-0.06598852574825287,
-0.021213602274656296,
0.17499876022338867,
0.18009716272354126,
-0.01859760843217373,
-0.035502754151821136,
-0.04791530594229698,
-0.061401594430208206,
-0.09952882677316666,
0.05032559856772423,
-0.029265886172652245,
-0.07492120563983917,
-0.019611546769738197,
0.09348288923501968,
-0.08703552186489105,
-0.048989132046699524,
-0.13916140794754028,
-0.10277693718671799,
-0.04410558566451073,
-0.0011652555549517274,
0.15030355751514435,
0.09077133983373642,
-0.023330673575401306,
-0.06174977123737335,
-0.02244962938129902,
0.048868872225284576,
-0.030844850465655327,
-0.18185417354106903,
0.02306990697979927,
0.0028079005423933268,
-0.10547032207250595,
0.06137567758560181,
-0.00789518654346466,
0.08756770938634872,
0.035517141222953796,
0.09602928161621094,
-0.039677854627370834,
0.1429935097694397,
0.016184290871024132,
-0.09387198090553284,
0.005866684950888157,
0.06608226895332336,
0.025751885026693344,
0.02445191517472267,
0.05331934615969658,
-0.10375060141086578,
0.04532801732420921,
-0.047272711992263794,
-0.0959630161523819,
-0.06776362657546997,
0.008256942965090275,
-0.035906847566366196,
0.059770796447992325,
-0.03185711428523064,
-0.04445883631706238,
-0.03827137127518654,
-0.0255480594933033,
-0.005296837538480759,
0.03349880874156952,
-0.16691842675209045,
-0.08150017261505127,
-0.07854907214641571,
-0.0005180126172490418,
-0.07590863108634949,
-0.028639521449804306,
-0.12600752711296082,
-0.06683483719825745,
-0.08266669511795044,
-0.0039035314694046974,
-0.04460199922323227,
-0.0028438724111765623,
0.10438898205757141,
0.017426995560526848,
0.008453577756881714,
0.0034763787407428026,
0.07270321995019913,
0.08044251054525375,
-0.12108864635229111,
-0.09958919137716293
] |
null | null |
transformers
|
# SEW-D-tiny
[SEW-D by ASAPP Research](https://github.com/asappresearch/sew)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
**Abstract**
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .
# Usage
See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWDForCTC`.
|
{"language": "en", "license": "apache-2.0", "tags": ["speech"], "datasets": ["librispeech_asr"]}
|
feature-extraction
|
asapp/sew-d-tiny-100k
|
[
"transformers",
"pytorch",
"safetensors",
"sew-d",
"feature-extraction",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2109.06870",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.06870"
] |
[
"en"
] |
TAGS
#transformers #pytorch #safetensors #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us
|
# SEW-D-tiny
SEW-D by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under URL .
# Usage
See this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'.
|
[
"# SEW-D-tiny\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
"TAGS\n#transformers #pytorch #safetensors #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# SEW-D-tiny\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
68,
343,
47
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #sew-d #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n# SEW-D-tiny\n\nSEW-D by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWDForCTC'."
] |
[
-0.05546753853559494,
0.084356889128685,
-0.005101971328258514,
0.001579495263285935,
0.045144516974687576,
-0.038243480026721954,
0.07017789036035538,
0.06756585091352463,
-0.04838898777961731,
0.036203544586896896,
-0.04164990410208702,
-0.05348751321434975,
0.09667138010263443,
0.08647454530000687,
0.06163335219025612,
-0.22134806215763092,
0.06643702834844589,
-0.07796836644411087,
0.07669360190629959,
0.02818642184138298,
0.12321779876947403,
-0.10256705433130264,
0.03942302241921425,
0.07524950802326202,
0.03400430083274841,
0.03294895589351654,
-0.0733686238527298,
-0.051758985966444016,
0.08995803445577621,
0.0623999759554863,
0.08294995129108429,
0.05324096232652664,
0.059683967381715775,
-0.233064666390419,
0.00858420692384243,
0.038734279572963715,
0.045612871646881104,
0.01978178881108761,
0.07775451987981796,
-0.01827480085194111,
0.0664583146572113,
-0.013750780373811722,
0.030584458261728287,
0.028002317994832993,
-0.021699462085962296,
-0.0633847638964653,
-0.0565919354557991,
0.049998268485069275,
0.11946234852075577,
0.047832295298576355,
-0.020382797345519066,
-0.020999405533075333,
-0.0629381611943245,
0.05456680804491043,
0.05775419622659683,
-0.18885400891304016,
0.03044566512107849,
-0.12095960974693298,
-0.016996225342154503,
-0.00045620431774295866,
-0.07332770526409149,
0.007321820594370365,
-0.004069940652698278,
-0.01756301522254944,
0.07902660965919495,
0.007164552807807922,
-0.03752538934350014,
-0.025482354685664177,
-0.1320909708738327,
-0.020969809964299202,
0.1389157772064209,
0.038670528680086136,
-0.09965569525957108,
-0.11270010471343994,
-0.03811348229646683,
0.0420386977493763,
-0.004984043072909117,
-0.08005484193563461,
0.03720879554748535,
-0.017123546451330185,
0.05221625417470932,
-0.04030178114771843,
-0.1159796267747879,
-0.03918631374835968,
0.006150426808744669,
0.16643933951854706,
0.07766951620578766,
0.029311515390872955,
-0.0011584043968468904,
0.07363594323396683,
-0.08242543786764145,
-0.0428183414041996,
-0.07297605276107788,
-0.05018004775047302,
-0.13069066405296326,
0.02418253757059574,
-0.02661002427339554,
-0.20416110754013062,
0.013116003014147282,
0.1811138391494751,
0.015777895227074623,
0.03810364007949829,
0.12611037492752075,
0.049167174845933914,
0.06637000292539597,
0.15605397522449493,
0.007098000962287188,
-0.08972779661417007,
0.0012259986251592636,
-0.0018604070646688342,
0.028055742383003235,
-0.037916917353868484,
-0.04141055420041084,
0.0010769272921606898,
0.02182520367205143,
-0.02928588166832924,
-0.026654308661818504,
0.010519475676119328,
-0.06974741816520691,
-0.018579088151454926,
0.09345395117998123,
-0.15728020668029785,
0.0011830974835902452,
-0.026891976594924927,
0.0007271821959875524,
0.030166365206241608,
0.10300756245851517,
0.03883593529462814,
-0.09699267148971558,
0.1319335550069809,
-0.026948874816298485,
-0.03271227702498436,
-0.06539548188447952,
-0.0592539981007576,
-0.005400343332439661,
-0.06899206340312958,
-0.0005293345893733203,
-0.1279994398355484,
-0.1533033400774002,
-0.05904095619916916,
0.004013638477772474,
-0.009056689217686653,
-0.027023881673812866,
-0.06053737923502922,
0.03238758072257042,
-0.041709065437316895,
-0.008758069947361946,
-0.038087498396635056,
-0.022878402844071388,
-0.02110324427485466,
-0.020392218604683876,
0.03842417150735855,
-0.04843417927622795,
0.04122723266482353,
-0.08008340746164322,
0.01056520827114582,
-0.07295522093772888,
0.14463835954666138,
-0.09322712570428848,
-0.01585341803729534,
-0.07875833660364151,
0.0422133207321167,
-0.13041876256465912,
0.06465108692646027,
0.05825192853808403,
0.10942408442497253,
-0.16691358387470245,
-0.10430300235748291,
0.0960710346698761,
-0.17292779684066772,
0.012038473039865494,
0.1265898048877716,
0.008154197596013546,
0.04429442062973976,
0.1002257764339447,
0.22001142799854279,
0.1778031438589096,
-0.0772760733962059,
-0.11135932058095932,
0.04181354120373726,
-0.04706958308815956,
0.03419175744056702,
0.08166693896055222,
-0.0546749010682106,
0.10893583297729492,
0.04248141497373581,
-0.02362554706633091,
0.016743971034884453,
0.00451829144731164,
-0.057561516761779785,
0.00860002264380455,
-0.06345483660697937,
-0.00011507618182804435,
-0.07318020612001419,
0.02787698246538639,
0.0028269081376492977,
-0.11702577769756317,
0.031524691730737686,
0.10152924805879593,
-0.06467017531394958,
0.06870610266923904,
-0.11930757015943527,
0.014592232182621956,
0.04964466765522957,
0.03106401301920414,
-0.10705611109733582,
0.0593743771314621,
0.03242121636867523,
-0.07870765775442123,
0.08880475908517838,
0.01629609428346157,
0.0034728161990642548,
0.03913401439785957,
-0.00038886431138962507,
-0.010108688846230507,
-0.10441742837429047,
0.02388210967183113,
-0.06252448260784149,
-0.10256566852331161,
-0.06319338828325272,
-0.037484049797058105,
0.052938930690288544,
-0.03212868049740791,
0.03706168010830879,
0.0876527726650238,
0.1091989055275917,
0.032542888075113297,
-0.06886167079210281,
-0.023104900494217873,
0.018677543848752975,
-0.01496186200529337,
0.017310483381152153,
-0.029488394036889076,
0.018354028463363647,
-0.0882846936583519,
0.06591088324785233,
-0.05432073399424553,
-0.09001556038856506,
0.0327332578599453,
0.01701093278825283,
-0.04479792341589928,
-0.006882305257022381,
-0.012358787469565868,
-0.05996818095445633,
-0.09776055812835693,
-0.1454201191663742,
0.23105835914611816,
0.009160004556179047,
0.08767157047986984,
-0.03740593045949936,
0.00428882846608758,
-0.030832583084702492,
-0.014797032810747623,
0.010776784271001816,
0.04739272966980934,
0.06488275527954102,
0.039961207658052444,
0.017984308302402496,
0.057871174067258835,
-0.03521011024713516,
0.10065765678882599,
-0.021881308406591415,
-0.10569076240062714,
0.03605224937200546,
-0.04553456977009773,
-0.045280490070581436,
0.07343599200248718,
-0.0943870022892952,
-0.024445194751024246,
0.03708391636610031,
0.013461358845233917,
0.07213159650564194,
-0.1091030016541481,
0.10201475024223328,
0.07381288707256317,
-0.024116016924381256,
-0.00488639622926712,
-0.07243148982524872,
-0.04361625015735626,
0.03876834735274315,
-0.029559269547462463,
-0.023091403767466545,
-0.02212372049689293,
-0.03111354261636734,
-0.1217641606926918,
0.11597948521375656,
-0.061624281108379364,
-0.18049860000610352,
-0.19663743674755096,
0.09650472551584244,
0.027211742475628853,
0.009912608191370964,
0.0596734993159771,
-0.010598876513540745,
-0.11240655928850174,
-0.0902792438864708,
0.08390071243047714,
0.01243315078318119,
0.01172223687171936,
0.05768604204058647,
0.01534395944327116,
-0.011151542887091637,
-0.10793974995613098,
0.0035789874382317066,
-0.023980580270290375,
0.03859873488545418,
0.002437334042042494,
0.02904682420194149,
0.09527800977230072,
0.11434996128082275,
-0.027538210153579712,
-0.02711055800318718,
-0.03819594532251358,
0.1630542278289795,
-0.0671328529715538,
0.07594846189022064,
0.1253768503665924,
-0.17168231308460236,
0.04307343810796738,
0.051307033747434616,
0.010728484019637108,
0.001448144088499248,
-0.0017679663142189384,
0.012590315192937851,
-0.05855167284607887,
-0.19409994781017303,
-0.06179140508174896,
-0.02497108094394207,
0.02030661143362522,
-0.020316466689109802,
0.0386386476457119,
-0.04913897439837456,
0.01395137794315815,
-0.05044053494930267,
0.030892811715602875,
0.1026846244931221,
0.04399079084396362,
0.06473508477210999,
-0.03223016485571861,
0.09586615115404129,
-0.06259670853614807,
-0.02559604123234749,
0.06396889686584473,
0.03738781437277794,
0.2279767245054245,
0.025261560454964638,
0.11456578969955444,
0.07656718045473099,
0.00292966072447598,
0.07670332491397858,
0.026966145262122154,
-0.03757292032241821,
0.065997414290905,
-0.04145709052681923,
-0.04229983314871788,
-0.024986980482935905,
0.13175271451473236,
0.022159378975629807,
-0.0762733668088913,
-0.055617138743400574,
0.06687293946743011,
0.08875753730535507,
0.21040000021457672,
0.040530383586883545,
-0.11896546185016632,
-0.06536441296339035,
0.04825012758374214,
-0.13530650734901428,
0.008130540139973164,
0.021933836862444878,
0.11858609318733215,
-0.08811544626951218,
0.04931411147117615,
0.05105959251523018,
0.07772821933031082,
-0.1238049566745758,
0.019626231864094734,
-0.038050826638936996,
0.06079430878162384,
-0.005364235490560532,
0.06215092912316322,
-0.10373162478208542,
0.05110473930835724,
0.005478964187204838,
0.1006532832980156,
-0.021840190514922142,
0.06289836019277573,
0.0002936594537459314,
0.005936138331890106,
0.10920482128858566,
-0.009698573499917984,
-0.0835672989487648,
0.01382641401141882,
-0.10719093680381775,
0.041414111852645874,
0.10166715085506439,
-0.0590796060860157,
0.07091008871793747,
-0.030367521569132805,
0.02066834084689617,
-0.020526092499494553,
0.0069019668735563755,
-0.11632777005434036,
-0.18455980718135834,
0.04614775627851486,
0.020964892581105232,
0.035856299102306366,
-0.05700571462512016,
-0.025319376960396767,
-0.11023207008838654,
0.1862138956785202,
-0.2768082618713379,
-0.09344510734081268,
-0.0710623636841774,
-0.05228346586227417,
0.046941135078668594,
-0.03554868325591087,
0.04988209158182144,
0.08220387250185013,
0.1014326959848404,
-0.07145436853170395,
-0.07874169200658798,
-0.025888029485940933,
-0.07249850034713745,
-0.12730273604393005,
-0.024589983746409416,
0.09785645455121994,
0.06315860897302628,
0.028497537598013878,
0.005107800476253033,
-0.0001867031678557396,
-0.001934303087182343,
-0.08585157245397568,
0.0033626724034547806,
0.18429034948349,
-0.10344835370779037,
0.06927254796028137,
-0.07780362665653229,
-0.17967508733272552,
-0.08936667442321777,
-0.0528845451772213,
0.049284279346466064,
0.16952191293239594,
-0.04267187416553497,
0.16710907220840454,
0.15761904418468475,
-0.10716178268194199,
-0.236809641122818,
-0.08562292903661728,
0.06719962507486343,
0.0594870001077652,
0.060803674161434174,
-0.16028639674186707,
0.05675992742180824,
0.09557413309812546,
-0.025883732363581657,
-0.04914318770170212,
-0.15315257012844086,
-0.15014688670635223,
0.14548861980438232,
-0.024904482066631317,
0.09046053141355515,
-0.05295572802424431,
-0.054588597267866135,
-0.04120940715074539,
0.022572124376893044,
0.0447576679289341,
-0.03588058054447174,
0.05323842540383339,
0.04591045156121254,
-0.05243781954050064,
0.04390975087881088,
0.0006835845415480435,
0.10200539976358414,
0.04366309940814972,
0.008936768397688866,
-0.004291709512472153,
0.039624642580747604,
-0.046639710664749146,
-0.043512240052223206,
0.10668190568685532,
0.001726863905787468,
0.0030706755351275206,
-0.0656323954463005,
-0.05847376957535744,
0.0147864930331707,
0.06747134029865265,
0.025021182373166084,
-0.0201159305870533,
-0.10349450260400772,
0.0037011506501585245,
0.005352464038878679,
0.03206586837768555,
0.09163668006658554,
-0.04296666756272316,
-0.17019867897033691,
0.14157527685165405,
0.12836965918540955,
-0.034240204840898514,
-0.04134829714894295,
-0.032012373208999634,
-0.035765886306762695,
0.08821450173854828,
-0.03794988989830017,
0.06533685326576233,
0.08835162222385406,
0.01931731402873993,
0.08606141805648804,
0.016143416985869408,
-0.1763763725757599,
0.0064190346747636795,
0.10465990006923676,
-0.09116178750991821,
-0.13928280770778656,
-0.06846081465482712,
-0.046270448714494705,
-0.058217473328113556,
0.08794160932302475,
0.15430794656276703,
-0.07909838855266571,
-0.0052589718252420425,
0.0028169192373752594,
0.0796365961432457,
-0.043175213038921356,
0.14577557146549225,
0.030549542978405952,
0.014467373490333557,
-0.03741680085659027,
0.16077043116092682,
0.0940559133887291,
-0.06208708509802818,
0.026152631267905235,
0.0019729072228074074,
-0.05983957648277283,
-0.022319281473755836,
-0.16047509014606476,
0.02986978366971016,
0.007931326515972614,
-0.13628855347633362,
-0.04759923741221428,
-0.0939737930893898,
-0.013797970488667488,
0.0577775277197361,
0.01924907974898815,
0.07104001939296722,
0.005785234738141298,
0.04539800435304642,
-0.04910017549991608,
0.0915752425789833,
0.03306896984577179,
0.0204397551715374,
-0.09520085901021957,
0.06791239976882935,
0.018465248867869377,
0.05247189477086067,
-0.03146412968635559,
-0.03559080511331558,
-0.07783789187669754,
0.013874023221433163,
-0.011918986216187477,
0.0335996150970459,
-0.05677502602338791,
-0.030062425881624222,
0.05720692500472069,
-0.008725995197892189,
0.009098545648157597,
0.05628784000873566,
-0.016150858253240585,
-0.006984274834394455,
-0.03995027765631676,
0.060905810445547104,
-0.09591566026210785,
0.01737833209335804,
0.06086518615484238,
-0.09693018347024918,
0.051654618233442307,
0.002416835632175207,
0.008911245502531528,
0.05389196053147316,
-0.06943530589342117,
0.013068088330328465,
0.03949332982301712,
0.053932297974824905,
-0.024206584319472313,
-0.023500503972172737,
-0.04097719490528107,
0.009777845814824104,
-0.053886692970991135,
-0.06549417972564697,
0.09659617394208908,
-0.06316664069890976,
0.05940316617488861,
0.019374091178178787,
-0.04978076368570328,
-0.06957340985536575,
0.005964416544884443,
0.028001384809613228,
0.07552540302276611,
0.1445300579071045,
-0.038388218730688095,
0.014301520772278309,
-0.08743306249380112,
0.059515565633773804,
0.0340474396944046,
0.017672326415777206,
-0.022469613701105118,
-0.08331090956926346,
0.0195914413779974,
-0.04382629320025444,
0.13850106298923492,
0.008394482545554638,
-0.02650449611246586,
0.054285917431116104,
-0.05708916857838631,
-0.09974761307239532,
0.054484084248542786,
0.05014997720718384,
0.03814774006605148,
0.018253255635499954,
-0.12188704311847687,
-0.04152636602520943,
0.00008300106128444895,
-0.08030396699905396,
0.07974962890148163,
0.1362636238336563,
-0.04005030542612076,
0.1276228427886963,
0.0491299070417881,
-0.022620530799031258,
-0.12196926772594452,
0.032663967460393906,
-0.022682979702949524,
-0.00008085934678092599,
-0.0026059728115797043,
0.08520670235157013,
0.1392408162355423,
-0.1156046912074089,
0.11306017637252808,
0.05441991612315178,
-0.05529716610908508,
-0.1011650338768959,
-0.11585155874490738,
-0.040166258811950684,
-0.03747925907373428,
-0.017850570380687714,
-0.08754613250494003,
0.002099774545058608,
0.04797762632369995,
-0.014467418193817139,
-0.016704803332686424,
0.08244718611240387,
-0.1560024917125702,
-0.06148000434041023,
0.03587385639548302,
-0.043583162128925323,
0.013361985795199871,
0.00026846191030927,
-0.053084373474121094,
0.06435079872608185,
0.15007098019123077,
0.04790971055626869,
0.01770702749490738,
0.03711247816681862,
0.015531161800026894,
-0.002120506949722767,
-0.027785077691078186,
-0.007238729856908321,
-0.07189147174358368,
0.03265034407377243,
0.009163739159703255,
0.06411516666412354,
-0.08367452025413513,
0.013048497959971428,
0.18822011351585388,
-0.05808774754405022,
-0.06150200217962265,
-0.1559261679649353,
0.10617217421531677,
0.09538529813289642,
0.05333526432514191,
0.04897622764110565,
-0.16623437404632568,
0.005234265234321356,
0.18598820269107819,
0.09684115648269653,
0.002866351278498769,
0.004576939158141613,
-0.033396631479263306,
0.01744680106639862,
0.02178371697664261,
0.025872234255075455,
-0.022789128124713898,
0.26288464665412903,
0.011917279101908207,
0.08654101192951202,
-0.0071098958142101765,
-0.03654959797859192,
-0.06238270178437233,
0.17811250686645508,
-0.042461663484573364,
-0.006216468755155802,
-0.07026161998510361,
0.06142212450504303,
-0.043120741844177246,
-0.27762553095817566,
-0.024649780243635178,
-0.025053197517991066,
-0.08050671219825745,
0.028450725600123405,
0.035569194704294205,
0.0033990407828241587,
0.03188970312476158,
0.007952923886477947,
-0.016462773084640503,
0.13737304508686066,
0.05774296820163727,
-0.05752594769001007,
0.009623204357922077,
0.06175629049539566,
-0.050368208438158035,
0.11137889325618744,
0.011659316718578339,
0.11124994605779648,
0.0032127397134900093,
0.09021547436714172,
-0.05259420722723007,
0.07372790575027466,
-0.059722039848566055,
-0.06931086629629135,
0.023780150339007378,
0.11761169135570526,
-0.016401370987296104,
0.14995020627975464,
0.04848005622625351,
-0.0760277733206749,
0.01557355560362339,
0.06386464834213257,
-0.0835653692483902,
-0.031376712024211884,
0.057140011340379715,
-0.08430810272693634,
0.11766891181468964,
0.07831462472677231,
-0.02153511717915535,
0.008443736471235752,
-0.01607534848153591,
0.0354267843067646,
-0.012805531732738018,
0.046570807695388794,
-0.010556377470493317,
-0.12503910064697266,
0.004299590829759836,
-0.08918160200119019,
0.03335319831967354,
-0.13537144660949707,
-0.05874256417155266,
-0.03257466480135918,
0.013089933432638645,
-0.023949045687913895,
0.06140502542257309,
0.18205033242702484,
-0.014849605038762093,
-0.04558863118290901,
-0.08490799367427826,
0.0556991882622242,
0.03178330510854721,
-0.095890112221241,
-0.07253842055797577
] |
null | null |
transformers
|
# SEW-mid
[SEW by ASAPP Research](https://github.com/asappresearch/sew)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
**Abstract**
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .
# Usage
See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWForCTC`.
|
{"language": "en", "license": "apache-2.0", "tags": ["speech"], "datasets": ["librispeech_asr"]}
|
feature-extraction
|
asapp/sew-mid-100k
|
[
"transformers",
"pytorch",
"safetensors",
"sew",
"feature-extraction",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2109.06870",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.06870"
] |
[
"en"
] |
TAGS
#transformers #pytorch #safetensors #sew #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us
|
# SEW-mid
SEW by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under URL .
# Usage
See this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWForCTC'.
|
[
"# SEW-mid\n\nSEW by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWForCTC'."
] |
[
"TAGS\n#transformers #pytorch #safetensors #sew #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# SEW-mid\n\nSEW by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWForCTC'."
] |
[
66,
339,
47
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #sew #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n# SEW-mid\n\nSEW by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWForCTC'."
] |
[
-0.059019193053245544,
0.05474626645445824,
-0.0046004499308764935,
0.013092007488012314,
0.055053263902664185,
-0.02615695632994175,
0.07137759029865265,
0.058572862297296524,
-0.04321131110191345,
0.02650792896747589,
-0.04969602823257446,
-0.02714952640235424,
0.09682518243789673,
0.09615764766931534,
0.049861978739500046,
-0.20095087587833405,
0.09117193520069122,
-0.09036475419998169,
0.05383453890681267,
0.036911725997924805,
0.13263250887393951,
-0.10439891368150711,
0.02847948484122753,
0.07730701565742493,
0.008109919726848602,
0.009889798238873482,
-0.048061929643154144,
-0.04828711599111557,
0.09340378642082214,
0.03878077119588852,
0.0836736410856247,
0.06431910395622253,
0.08100297302007675,
-0.21975643932819366,
0.007269620895385742,
0.03403269499540329,
0.03963065519928932,
0.021194659173488617,
0.072921022772789,
-0.01815830171108246,
-0.007118509616702795,
-0.0018377164378762245,
0.0530170239508152,
0.044834330677986145,
-0.02347262017428875,
-0.06622225791215897,
-0.0638577789068222,
0.06425727903842926,
0.13601014018058777,
0.04108709096908569,
-0.012316557578742504,
-0.007664646487683058,
-0.08598911017179489,
0.046649377793073654,
0.06525313854217529,
-0.18631038069725037,
0.05337253212928772,
-0.08713731914758682,
-0.027740342542529106,
0.0002448813756927848,
-0.08206896483898163,
-0.009050830267369747,
0.008324609138071537,
-0.0176892951130867,
0.09235218167304993,
0.008531104773283005,
-0.035244423896074295,
-0.02972644753754139,
-0.1369529813528061,
-0.03094615414738655,
0.153799369931221,
0.039894647896289825,
-0.09580812603235245,
-0.13121116161346436,
-0.041788943111896515,
-0.010115553624927998,
-0.01851094886660576,
-0.09299089759588242,
0.033170558512210846,
-0.015470273792743683,
0.0564386211335659,
-0.03151368349790573,
-0.11479412019252777,
-0.06733844429254532,
0.00043180977809242904,
0.16447171568870544,
0.0852799192070961,
0.02755604311823845,
-0.004020562395453453,
0.0742657482624054,
-0.06209820136427879,
-0.030796000733971596,
-0.06850408762693405,
-0.04582634195685387,
-0.1642950028181076,
0.01625990867614746,
-0.04400615394115448,
-0.164425328373909,
-0.005029353778809309,
0.1694067418575287,
0.011493640020489693,
0.04936151206493378,
0.10075519233942032,
0.03878634423017502,
0.057643234729766846,
0.11927244812250137,
-0.020298082381486893,
-0.07034134119749069,
-0.005565553437918425,
-0.005463424138724804,
-0.0159223023802042,
-0.0421765074133873,
-0.042101532220840454,
-0.02560007944703102,
0.0694015696644783,
-0.03646881505846977,
-0.02819659747183323,
0.03393905982375145,
-0.07956956326961517,
-0.031956370919942856,
0.13977526128292084,
-0.15376001596450806,
-0.005716308485716581,
-0.010296938009560108,
0.0034629858564585447,
0.04036436602473259,
0.10364899039268494,
0.0551719069480896,
-0.08918184787034988,
0.11321840435266495,
-0.037931233644485474,
-0.02229224145412445,
-0.05201419070363045,
-0.03853106498718262,
-0.005769703071564436,
-0.054101526737213135,
-0.016140054911375046,
-0.134367436170578,
-0.13180704414844513,
-0.06397321820259094,
-0.01765804924070835,
0.008085526525974274,
-0.04299174249172211,
-0.05458527430891991,
0.01150604523718357,
-0.0384196974337101,
-0.023179424926638603,
-0.026583779603242874,
-0.0190489050000906,
-0.01680079475045204,
-0.036687180399894714,
0.02820122428238392,
-0.05136812850832939,
0.03988362476229668,
-0.06955568492412567,
0.01721511222422123,
-0.04957831650972366,
0.15557654201984406,
-0.07832802087068558,
-0.01620633155107498,
-0.09684626013040543,
0.02424464374780655,
-0.14376835525035858,
0.05006614327430725,
0.03800657391548157,
0.10395192354917526,
-0.19850200414657593,
-0.07652256637811661,
0.1263757348060608,
-0.16791203618049622,
0.017579467967152596,
0.12624573707580566,
0.00042218322050757706,
0.042687155306339264,
0.10180935263633728,
0.19599318504333496,
0.17514771223068237,
-0.09113191068172455,
-0.0861501544713974,
0.007410952355712652,
-0.04649573192000389,
0.005727110430598259,
0.08544322848320007,
-0.04187856614589691,
0.07054320722818375,
0.040801070630550385,
-0.035746991634368896,
-0.006778956390917301,
0.0006109213572926819,
-0.05795028805732727,
0.008015728555619717,
-0.0780763328075409,
0.018426664173603058,
-0.06426596641540527,
0.019400086253881454,
0.00700290035456419,
-0.09603339433670044,
0.048628948628902435,
0.11410079151391983,
-0.06355907022953033,
0.0857475996017456,
-0.13714025914669037,
0.0007702807779423892,
0.05856601148843765,
0.007487406022846699,
-0.11266504973173141,
0.06485904008150101,
0.03782407194375992,
-0.08758942037820816,
0.07756425440311432,
0.06258697807788849,
0.013728884048759937,
0.018623260781168938,
0.0011273546842858195,
-0.0007525854744017124,
-0.07729165256023407,
0.02989557757973671,
-0.05729401484131813,
-0.11031325906515121,
-0.07387977838516235,
-0.02969255857169628,
0.08683806657791138,
-0.006665616296231747,
0.03731663152575493,
0.1028938964009285,
0.12585784494876862,
0.01163230836391449,
-0.07678959518671036,
-0.03638748452067375,
0.010846949182450771,
0.001011472661048174,
0.025890547782182693,
-0.024453632533550262,
0.018253019079566002,
-0.06732813268899918,
0.09346392750740051,
-0.08830023556947708,
-0.11871758103370667,
0.042839501053094864,
0.010346262715756893,
-0.05788629874587059,
-0.026644503697752953,
-0.015331761911511421,
-0.058193400502204895,
-0.09495523571968079,
-0.13676127791404724,
0.2329058051109314,
0.0040401555597782135,
0.0873488187789917,
-0.04025227949023247,
-0.007235654629766941,
-0.024228448048233986,
-0.01445087417960167,
0.00840577483177185,
0.02287139743566513,
0.03493089601397514,
0.04411563649773598,
0.009364168159663677,
0.02793451026082039,
-0.03534247726202011,
0.06885211169719696,
-0.006238075904548168,
-0.09408169984817505,
0.03296772763133049,
-0.05505828186869621,
-0.050488438457250595,
0.057621728628873825,
-0.11734075099229813,
-0.023600183427333832,
0.04612858220934868,
0.04781048744916916,
0.08261263370513916,
-0.0943276658654213,
0.09745858609676361,
0.06410665810108185,
-0.02736024744808674,
0.0005744228838011622,
-0.0709826871752739,
-0.027445508167147636,
0.04713020101189613,
-0.014775420539081097,
-0.011536098085343838,
-0.014972676523029804,
-0.033384691923856735,
-0.13040103018283844,
0.10929461568593979,
-0.061615850776433945,
-0.1695656031370163,
-0.1900174468755722,
0.0815499946475029,
0.02153671905398369,
0.011537142097949982,
0.042967528104782104,
-0.014831672422587872,
-0.10456839948892593,
-0.08265700936317444,
0.09259109199047089,
-0.0013317979173734784,
0.026249634101986885,
0.0865577906370163,
0.011754745617508888,
0.0068399361334741116,
-0.10995679348707199,
0.00704680010676384,
-0.019540440291166306,
0.01267989445477724,
-0.014967203140258789,
0.04043571650981903,
0.0847836509346962,
0.13415026664733887,
-0.025647133588790894,
-0.022309036925435066,
-0.02652149461209774,
0.17734366655349731,
-0.04902157932519913,
0.0626557320356369,
0.1457417607307434,
-0.17382943630218506,
0.024712512269616127,
0.07732044160366058,
0.007593655493110418,
-0.002554918173700571,
-0.0020620410796254873,
0.024179335683584213,
-0.052602771669626236,
-0.1834135204553604,
-0.07049953937530518,
-0.03511659801006317,
0.0012156390585005283,
0.004688453394919634,
0.03085051104426384,
0.01201262790709734,
0.025770137086510658,
-0.059452977031469345,
0.0248065497726202,
0.12565888464450836,
0.03880173712968826,
0.051762957125902176,
-0.018225958570837975,
0.10718041658401489,
-0.046640731394290924,
-0.006758575793355703,
0.06177496537566185,
0.06132030487060547,
0.18125493824481964,
0.006693042349070311,
0.12165375798940659,
0.09567975252866745,
0.05970419570803642,
0.07289363443851471,
0.023993246257305145,
-0.04320720210671425,
0.07354965060949326,
-0.029126130044460297,
-0.02496306039392948,
-0.04783466458320618,
0.12032844871282578,
0.052671581506729126,
-0.07750029116868973,
-0.0535503514111042,
0.01946423202753067,
0.0805361419916153,
0.19675998389720917,
0.061597783118486404,
-0.1441652774810791,
-0.06894705444574356,
0.05479291453957558,
-0.14862261712551117,
0.012436230666935444,
0.034407567232847214,
0.10192947834730148,
-0.0992097407579422,
0.06445703655481339,
0.060747817158699036,
0.07808112353086472,
-0.11718171089887619,
0.009498062543570995,
-0.014079246670007706,
0.046836502850055695,
0.007194626610726118,
0.05374300852417946,
-0.13884702324867249,
0.051344335079193115,
-0.008039901964366436,
0.07961008697748184,
-0.03421826660633087,
0.053833600133657455,
-0.025832001119852066,
0.012961441650986671,
0.10525444149971008,
-0.012699293904006481,
-0.04096450284123421,
0.011784357018768787,
-0.10239963978528976,
0.027549108490347862,
0.09079088270664215,
-0.06148724630475044,
0.07021372020244598,
-0.0455695204436779,
0.027243422344326973,
-0.0025192778557538986,
-0.0054785399697721004,
-0.12384657561779022,
-0.1648198515176773,
0.058696601539850235,
0.045406877994537354,
0.052772898226976395,
-0.053001053631305695,
-0.02500816248357296,
-0.15050318837165833,
0.15080179274082184,
-0.2550168037414551,
-0.07367617636919022,
-0.08218524605035782,
-0.06148483604192734,
0.07476575672626495,
-0.026252381503582,
0.044776611030101776,
0.0708509162068367,
0.11864951252937317,
-0.059779223054647446,
-0.07490868121385574,
-0.028455067425966263,
-0.06488128006458282,
-0.16119489073753357,
0.0005922257550992072,
0.12292219698429108,
0.09312695264816284,
0.022967489436268806,
0.01696690544486046,
-0.00478960108011961,
0.020008647814393044,
-0.0881086140871048,
-0.0006030481890775263,
0.17315378785133362,
-0.08377890288829803,
0.0677882730960846,
-0.05416199192404747,
-0.2104329913854599,
-0.09789759665727615,
-0.031857915222644806,
0.03984379768371582,
0.18400396406650543,
-0.05312692001461983,
0.19347792863845825,
0.1406618356704712,
-0.08663313835859299,
-0.2404220700263977,
-0.07504278421401978,
0.07129314541816711,
0.040377408266067505,
0.05737198516726494,
-0.11593466997146606,
0.05218501761555672,
0.06315908581018448,
-0.03685040399432182,
-0.11609527468681335,
-0.17275100946426392,
-0.16163420677185059,
0.12886138260364532,
-0.02270565554499626,
0.10110285878181458,
-0.031026706099510193,
-0.04294893890619278,
-0.046987757086753845,
-0.045333217829465866,
0.06977766007184982,
-0.032201532274484634,
0.03935370594263077,
0.052432116121053696,
-0.03321853280067444,
0.047956500202417374,
-0.011188638396561146,
0.11716665327548981,
0.0829176977276802,
0.0034189943689852953,
-0.020050788298249245,
0.059956155717372894,
-0.05503252148628235,
-0.03542034700512886,
0.09927389770746231,
0.05686472728848457,
0.010232781060039997,
-0.048950180411338806,
-0.07421702146530151,
-0.0064606075175106525,
0.06198365241289139,
0.018691230565309525,
-0.012888581492006779,
-0.08218841999769211,
0.012397346086800098,
0.036175087094306946,
0.01702466793358326,
0.07709060609340668,
-0.05036082863807678,
-0.15337613224983215,
0.15979047119617462,
0.15825419127941132,
-0.022074619308114052,
-0.027045900002121925,
-0.027325907722115517,
-0.0386061817407608,
0.07355710119009018,
-0.026375632733106613,
0.09835740178823471,
0.06382731348276138,
0.0072218808345496655,
0.07060138881206512,
0.030457349494099617,
-0.15726076066493988,
-0.0015787803567945957,
0.09186134487390518,
-0.07760252803564072,
-0.1581481248140335,
-0.03394324705004692,
-0.03492802008986473,
-0.06137517839670181,
0.10012545436620712,
0.151863694190979,
-0.08272527158260345,
-0.010839587077498436,
0.004529857542365789,
0.07736530900001526,
-0.06401684880256653,
0.14427229762077332,
0.033487532287836075,
0.019002772867679596,
-0.06065840646624565,
0.1533489227294922,
0.08838845789432526,
-0.05150963366031647,
0.02302132546901703,
-0.014670353382825851,
-0.07223940640687943,
-0.02233026549220085,
-0.13598471879959106,
-0.004403525497764349,
0.0276794470846653,
-0.14029112458229065,
-0.024413278326392174,
-0.08689948171377182,
-0.0046643600799143314,
0.043877702206373215,
0.030980929732322693,
0.08297429233789444,
0.019497569650411606,
0.044623397290706635,
-0.06958214938640594,
0.07338632643222809,
0.05013490840792656,
0.0151910949498415,
-0.12035725265741348,
0.13080722093582153,
0.00018408083997201174,
0.07570662349462509,
-0.03409406542778015,
-0.01433003880083561,
-0.05891971290111542,
0.017533689737319946,
-0.009915657341480255,
0.017813807353377342,
-0.08960948884487152,
-0.013542360626161098,
0.05850907787680626,
-0.03264840319752693,
0.0007345634512603283,
0.05854937061667442,
-0.02899734117090702,
-0.004032172728329897,
-0.04432772845029831,
0.05280284956097603,
-0.09268990159034729,
0.026604317128658295,
0.07573967427015305,
-0.09894131869077682,
0.05817876383662224,
0.015866803005337715,
-0.013734972104430199,
0.08123225718736649,
-0.050850894302129745,
0.02158149890601635,
0.034693218767642975,
0.05209968984127045,
-0.03903645649552345,
-0.00963174644857645,
-0.04450686648488045,
0.017948372289538383,
-0.03723171353340149,
-0.0572773739695549,
0.13554610311985016,
-0.050783704966306686,
0.04409782588481903,
-0.003764766501262784,
-0.041641611605882645,
-0.07011662423610687,
0.0018508044304326177,
0.05388105288147926,
0.08464417606592178,
0.12999339401721954,
-0.02383102849125862,
0.018036089837551117,
-0.0905921682715416,
0.04918879643082619,
0.02691647969186306,
0.028962839394807816,
-0.03525899350643158,
-0.08382156491279602,
0.03683038428425789,
-0.02341446466743946,
0.141292005777359,
-0.014883449301123619,
-0.04368196055293083,
0.055256471037864685,
-0.048502739518880844,
-0.08938474208116531,
0.06556335836648941,
0.06786016374826431,
0.03422601521015167,
0.018331272527575493,
-0.08830013871192932,
-0.042785368859767914,
-0.023408940061926842,
-0.07014056295156479,
0.08320996910333633,
0.16075782477855682,
-0.0807734802365303,
0.10176011174917221,
0.028000833466649055,
-0.053476482629776,
-0.08489938080310822,
0.07645687460899353,
-0.08293109387159348,
-0.03752904757857323,
-0.03659942001104355,
0.07683535665273666,
0.11465998739004135,
-0.11672994494438171,
0.13069529831409454,
0.04287494719028473,
-0.0675722286105156,
-0.10336748510599136,
-0.1084519624710083,
-0.04484783485531807,
-0.07480230182409286,
-0.02477841265499592,
-0.08463116735219955,
0.0014452000614255667,
0.0784061998128891,
-0.008920654654502869,
0.002190328435972333,
0.07682234793901443,
-0.1772662103176117,
-0.05646643787622452,
0.010398957878351212,
-0.04797295480966568,
0.022210564464330673,
0.015751492232084274,
-0.05854585021734238,
0.09307267516851425,
0.14697515964508057,
0.0619722418487072,
0.003937879577279091,
0.023665502667427063,
0.004395541734993458,
-0.00203257380053401,
-0.04300220310688019,
-0.0009064319892786443,
-0.08483988791704178,
0.03309541568160057,
0.023351825773715973,
0.06579035520553589,
-0.06754544377326965,
0.002613510238006711,
0.20043276250362396,
-0.05800695717334747,
-0.0769859179854393,
-0.19447825849056244,
0.04440585523843765,
0.08462169021368027,
0.04050680249929428,
0.0657135620713234,
-0.15540951490402222,
0.003870659740641713,
0.20914620161056519,
0.08686660975217819,
-0.008924691006541252,
0.004134811460971832,
-0.020089708268642426,
0.017157819122076035,
0.04555091634392738,
0.04509604722261429,
-0.03208571672439575,
0.22915558516979218,
0.007525206543505192,
0.06210266798734665,
0.004365693312138319,
-0.03606082499027252,
-0.025392895564436913,
0.1835508644580841,
-0.08678464591503143,
-0.009267846122384071,
-0.08032968640327454,
0.06832052022218704,
-0.03703142702579498,
-0.2970317602157593,
-0.01760958880186081,
-0.02100995182991028,
-0.0699334591627121,
0.02566337212920189,
0.05321482941508293,
0.0038399784825742245,
0.02173778973519802,
0.0205572210252285,
0.0008271185215562582,
0.18853893876075745,
0.05640271678566933,
-0.06327152997255325,
0.017055347561836243,
0.07146674394607544,
0.002132558962330222,
0.10434532165527344,
0.00771491089835763,
0.1367470622062683,
-0.000290459516691044,
0.08325513452291489,
-0.0517268106341362,
0.04376282915472984,
-0.056781597435474396,
-0.04806670919060707,
0.00787384808063507,
0.1466091275215149,
-0.019840434193611145,
0.10578181594610214,
0.04275166243314743,
-0.14576905965805054,
0.014067982323467731,
0.03551537171006203,
-0.086021289229393,
-0.04354892298579216,
0.05997335538268089,
-0.07279044389724731,
0.12675824761390686,
0.06410165131092072,
-0.0369376540184021,
0.014924714341759682,
-0.025901952758431435,
0.018101766705513,
-0.03448076173663139,
0.05165015161037445,
-0.022526251152157784,
-0.17836573719978333,
-0.006820261012762785,
-0.13647840917110443,
0.033214837312698364,
-0.09659721702337265,
-0.049334559589624405,
-0.011840284802019596,
-0.009487809613347054,
-0.021691054105758667,
0.07094307988882065,
0.13101030886173248,
-0.020021945238113403,
-0.04550528898835182,
-0.04185602813959122,
0.06421466171741486,
0.050695426762104034,
-0.10400283336639404,
-0.07236084342002869
] |
null | null |
transformers
|
# SEW-small
[SEW by ASAPP Research](https://github.com/asappresearch/sew)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
**Abstract**
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .
# Usage
See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWForCTC`.
|
{"language": "en", "license": "apache-2.0", "tags": ["speech"], "datasets": ["librispeech_asr"]}
|
feature-extraction
|
asapp/sew-small-100k
|
[
"transformers",
"pytorch",
"sew",
"feature-extraction",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2109.06870",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.06870"
] |
[
"en"
] |
TAGS
#transformers #pytorch #sew #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us
|
# SEW-small
SEW by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under URL .
# Usage
See this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWForCTC'.
|
[
"# SEW-small\n\nSEW by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWForCTC'."
] |
[
"TAGS\n#transformers #pytorch #sew #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# SEW-small\n\nSEW by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWForCTC'."
] |
[
61,
340,
47
] |
[
"passage: TAGS\n#transformers #pytorch #sew #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n# SEW-small\n\nSEW by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWForCTC'."
] |
[
-0.06768017262220383,
0.06906742602586746,
-0.0037753507494926453,
0.002520411042496562,
0.05781558156013489,
-0.03986823186278343,
0.06527257710695267,
0.05083846300840378,
-0.030891628935933113,
0.03489721938967705,
-0.045926447957754135,
-0.018607569858431816,
0.10020629316568375,
0.09930679947137833,
0.05624396353960037,
-0.2380288988351822,
0.09156704694032669,
-0.09871876984834671,
0.06392135471105576,
0.022022241726517677,
0.1321745365858078,
-0.11002135276794434,
0.03383291885256767,
0.08196721225976944,
0.0029709525406360626,
0.015519443899393082,
-0.035358596593141556,
-0.050566691905260086,
0.08708920329809189,
0.03990441560745239,
0.05696526914834976,
0.04864151403307915,
0.08777078241109848,
-0.22974176704883575,
0.003477634396404028,
0.0387846976518631,
0.0530608594417572,
0.02074669860303402,
0.034721337258815765,
-0.01090172864496708,
0.021980788558721542,
-0.004173148423433304,
0.043997470289468765,
0.04137131944298744,
-0.01730123534798622,
-0.07390811294317245,
-0.057331785559654236,
0.06555892527103424,
0.13315781950950623,
0.058662042021751404,
-0.011058883741497993,
-0.0019067249959334731,
-0.08041799068450928,
0.03600820153951645,
0.06427913159132004,
-0.18782053887844086,
0.04914236068725586,
-0.08568712323904037,
-0.03453846275806427,
0.023023134097456932,
-0.081293985247612,
-0.0134811382740736,
0.028540564700961113,
-0.02676997147500515,
0.08365394920110703,
0.013164863921701908,
-0.03069274127483368,
-0.03290846198797226,
-0.1418214589357376,
-0.020481577143073082,
0.17752408981323242,
0.03397039696574211,
-0.0966288298368454,
-0.14012259244918823,
-0.027437279000878334,
-0.011311735957860947,
-0.014380453154444695,
-0.08441825211048126,
0.02616645209491253,
-0.01106812059879303,
0.07465176284313202,
-0.04829864948987961,
-0.10125118494033813,
-0.07168412208557129,
0.013594986870884895,
0.15974217653274536,
0.08533831685781479,
0.020047256723046303,
0.0012583634816110134,
0.06777815520763397,
-0.06843610107898712,
-0.04612576961517334,
-0.04931134358048439,
-0.03630011901259422,
-0.14890073239803314,
0.014646508730947971,
-0.05284779146313667,
-0.13704420626163483,
-0.02106483094394207,
0.1672380566596985,
0.02436092682182789,
0.043965987861156464,
0.09108293801546097,
0.027188997715711594,
0.0524490587413311,
0.12824393808841705,
-0.01612793281674385,
-0.06982786953449249,
-0.015129941515624523,
0.028854867443442345,
0.003162922104820609,
-0.042088624089956284,
-0.0606803372502327,
-0.02960681915283203,
0.07033246010541916,
-0.032735589891672134,
-0.03968554735183716,
0.03543812036514282,
-0.06388403475284576,
-0.03156959265470505,
0.13458314538002014,
-0.15715621411800385,
-0.011233141645789146,
-0.022861143574118614,
-0.013642312958836555,
0.02559860609471798,
0.07927898317575455,
0.06496890634298325,
-0.09715664386749268,
0.09354948252439499,
-0.04671860858798027,
-0.02725045196712017,
-0.05431346595287323,
-0.02942357212305069,
-0.01668510027229786,
-0.0630490630865097,
-0.013614783063530922,
-0.12419253587722778,
-0.13214096426963806,
-0.05301538109779358,
-0.01870157942175865,
0.001164465444162488,
-0.06333595514297485,
-0.05362438037991524,
-0.022053707391023636,
-0.03292715549468994,
-0.03977558761835098,
-0.02583346888422966,
-0.011732581071555614,
-0.01030654739588499,
-0.019999153912067413,
0.025500617921352386,
-0.056694403290748596,
0.043418146669864655,
-0.06648622453212738,
0.004905279725790024,
-0.09061048179864883,
0.1623888909816742,
-0.09077980369329453,
-0.018629040569067,
-0.09126057475805283,
0.015381711535155773,
-0.15186266601085663,
0.05646144226193428,
0.031219255179166794,
0.09919976443052292,
-0.21227292716503143,
-0.07192647457122803,
0.10397104173898697,
-0.16125008463859558,
0.024181729182600975,
0.13460654020309448,
-0.007044612895697355,
0.058387722820043564,
0.10801482945680618,
0.21927419304847717,
0.15651774406433105,
-0.07264571636915207,
-0.08964202553033829,
0.011865605600178242,
-0.022430896759033203,
0.009943935088813305,
0.06575029343366623,
-0.04263252392411232,
0.03751185163855553,
0.036005012691020966,
-0.051377490162849426,
-0.006830408703535795,
0.015824614092707634,
-0.05851332098245621,
0.011807983741164207,
-0.08457702398300171,
-0.004313723649829626,
-0.04781830683350563,
0.021129289641976357,
0.008842061273753643,
-0.09107096493244171,
0.05714758485555649,
0.11036396771669388,
-0.05852298438549042,
0.0773513913154602,
-0.13959790766239166,
-0.01562856137752533,
0.05798718333244324,
-0.004041076172143221,
-0.12847848236560822,
0.08391585201025009,
0.05164583772420883,
-0.0975651815533638,
0.088498055934906,
0.08014443516731262,
0.004256703425198793,
0.01568637415766716,
0.02269476093351841,
0.0068703265860676765,
-0.06341943144798279,
0.02571491152048111,
-0.060896728187799454,
-0.10051224380731583,
-0.06759712100028992,
-0.032536644488573074,
0.09042729437351227,
-0.022557295858860016,
0.03395497798919678,
0.07508781552314758,
0.11117196828126907,
0.0058837770484387875,
-0.0772702544927597,
-0.04999983310699463,
0.00162531528621912,
0.006686817388981581,
0.01575348898768425,
-0.0363982729613781,
0.026207277551293373,
-0.06494928896427155,
0.09083006531000137,
-0.13168005645275116,
-0.12176630645990372,
0.04941682144999504,
0.022561801597476006,
-0.06020825356245041,
-0.032587528228759766,
-0.017296265810728073,
-0.047309327870607376,
-0.06985641270875931,
-0.13847199082374573,
0.24825091660022736,
-0.006180738098919392,
0.09433510154485703,
-0.04604174196720123,
-0.009604318998754025,
-0.027804547920823097,
-0.014036363922059536,
0.01082854438573122,
0.02155037596821785,
0.05551941692829132,
0.05664009228348732,
0.00431476067751646,
0.01862068474292755,
-0.03815550357103348,
0.06213855370879173,
-0.005611849017441273,
-0.07866017520427704,
0.040121786296367645,
-0.07237739861011505,
-0.057626303285360336,
0.07570462673902512,
-0.12517806887626648,
-0.03796875476837158,
0.03443312272429466,
0.040357496589422226,
0.09147022664546967,
-0.10149502009153366,
0.09339411556720734,
0.060006801038980484,
-0.03757544234395027,
0.007419269531965256,
-0.06561429798603058,
-0.04385710880160332,
0.053761325776576996,
-0.014028401114046574,
-0.015590652823448181,
-0.02481740340590477,
-0.03926770016551018,
-0.1278935819864273,
0.1015806794166565,
-0.06312397867441177,
-0.1545685976743698,
-0.1905185729265213,
0.08575628697872162,
0.035611700266599655,
0.023945564404129982,
0.02142484486103058,
-0.034998856484889984,
-0.11255868524312973,
-0.09496408700942993,
0.10875619202852249,
-0.019082754850387573,
0.014638652093708515,
0.0889396145939827,
-0.013963982462882996,
0.004247752018272877,
-0.1018584594130516,
0.0010447243694216013,
-0.031045686453580856,
0.006033443845808506,
-0.057407446205616,
0.026887889951467514,
0.08414968848228455,
0.13445332646369934,
-0.019958939403295517,
-0.01544892881065607,
-0.0207687895745039,
0.19733405113220215,
-0.04786573350429535,
0.0628335252404213,
0.17617037892341614,
-0.16035158932209015,
0.020982826128602028,
0.08122100681066513,
0.0035178756806999445,
-0.011025698855519295,
0.007000811863690615,
0.03021990694105625,
-0.03593522310256958,
-0.158822163939476,
-0.07142802327871323,
-0.03406664729118347,
-0.025302251800894737,
0.01672811061143875,
0.033291447907686234,
0.04368181899189949,
0.03692827373743057,
-0.05831534415483475,
0.037161558866500854,
0.11132317781448364,
0.041610028594732285,
0.06435288488864899,
-0.02651260979473591,
0.09549978375434875,
-0.04643150791525841,
-0.023852378129959106,
0.06214829534292221,
0.060223713517189026,
0.15958279371261597,
0.01694655977189541,
0.1315007209777832,
0.07703754305839539,
0.06987132132053375,
0.061116285622119904,
-0.0006095284479670227,
-0.04718237742781639,
0.061791010200977325,
-0.03572387620806694,
-0.018267614766955376,
-0.06849440932273865,
0.12320606410503387,
0.05244233086705208,
-0.05304966866970062,
-0.06314389407634735,
0.02676294557750225,
0.06276663392782211,
0.20242777466773987,
0.0411796048283577,
-0.15044298768043518,
-0.05948147550225258,
0.057063475251197815,
-0.14907820522785187,
0.014938563108444214,
0.04594261199235916,
0.10497510433197021,
-0.08188044279813766,
0.04946509376168251,
0.053158849477767944,
0.06832925230264664,
-0.12408331036567688,
0.023630628362298012,
-0.012288905680179596,
0.07588514685630798,
0.01335814781486988,
0.05762622877955437,
-0.14535605907440186,
0.045354124158620834,
-0.002044947352260351,
0.08944261074066162,
-0.058287087827920914,
0.049488477408885956,
-0.023183923214673996,
0.007783415261656046,
0.10623425990343094,
-0.020622143521904945,
-0.05950470268726349,
-0.0015770288882777095,
-0.08915556967258453,
0.026949163526296616,
0.1078510656952858,
-0.075586698949337,
0.068629689514637,
-0.06386207044124603,
0.03385680913925171,
0.004769376013427973,
-0.0383698046207428,
-0.14117780327796936,
-0.17289556562900543,
0.045495979487895966,
0.06939027458429337,
0.03683853521943092,
-0.05593635514378548,
-0.023410286754369736,
-0.1323476880788803,
0.14000993967056274,
-0.23941263556480408,
-0.062701515853405,
-0.08055724203586578,
-0.04657632112503052,
0.09401850402355194,
-0.023021560162305832,
0.03222868591547012,
0.07188402116298676,
0.12564486265182495,
-0.05264150723814964,
-0.06789308041334152,
-0.03046015277504921,
-0.06565983593463898,
-0.14679163694381714,
0.007390070706605911,
0.1026647537946701,
0.11670619249343872,
0.024749362841248512,
0.012998812831938267,
-0.01306841615587473,
0.01642412692308426,
-0.10306324064731598,
0.0015357239171862602,
0.16807278990745544,
-0.07375432550907135,
0.07160063832998276,
-0.06473676860332489,
-0.19526906311511993,
-0.11014088988304138,
-0.009487473405897617,
0.01429554633796215,
0.1592264473438263,
-0.05371902510523796,
0.17081333696842194,
0.14655444025993347,
-0.07868681848049164,
-0.22523869574069977,
-0.048643406480550766,
0.06871744990348816,
0.03453347459435463,
0.03379371017217636,
-0.13364261388778687,
0.05554872006177902,
0.03325531259179115,
-0.03892282769083977,
-0.12300359457731247,
-0.18651863932609558,
-0.14749988913536072,
0.144823357462883,
-0.018488815054297447,
0.09446041285991669,
-0.03768334165215492,
-0.043808337301015854,
-0.05747354403138161,
-0.009217513725161552,
0.08006297051906586,
0.0031652466859668493,
0.03129496052861214,
0.05652283877134323,
-0.025765491649508476,
0.050164129585027695,
-0.006884168833494186,
0.1119564026594162,
0.10468197613954544,
0.01602987013757229,
-0.020519262179732323,
0.06158347800374031,
-0.07210956513881683,
-0.03276350721716881,
0.13092336058616638,
0.051712516695261,
0.01711893454194069,
-0.05395369231700897,
-0.0810774564743042,
-0.006677764933556318,
0.06147301197052002,
0.0232019554823637,
-0.010935243219137192,
-0.08453220874071121,
0.027708513662219048,
0.024089166894555092,
0.025336826220154762,
0.04260142147541046,
-0.0672062411904335,
-0.13937228918075562,
0.11824913322925568,
0.19277319312095642,
-0.00436634523794055,
0.001247828477062285,
-0.004990139976143837,
-0.02456646040081978,
0.08055780827999115,
-0.02120993286371231,
0.08506744354963303,
0.05527154356241226,
-0.0012123790802434087,
0.07307954877614975,
0.0222285445779562,
-0.17375588417053223,
-0.010797565802931786,
0.0722319483757019,
-0.07476542145013809,
-0.15429940819740295,
-0.03708040341734886,
0.011408384889364243,
-0.062349818646907806,
0.09911242127418518,
0.12782254815101624,
-0.08801855146884918,
-0.0070143695920705795,
-0.0037548609543591738,
0.06713400781154633,
-0.04083473980426788,
0.13083027303218842,
0.05439303442835808,
0.013003427535295486,
-0.056901779025793076,
0.16431714594364166,
0.07749482989311218,
-0.06121577322483063,
0.04731728881597519,
-0.027050379663705826,
-0.07038000971078873,
-0.015300994738936424,
-0.15527792274951935,
-0.013144725002348423,
0.00001739242361509241,
-0.139994814991951,
-0.028849974274635315,
-0.0859697163105011,
0.0007000510231591761,
0.06118464842438698,
0.03011886216700077,
0.05831591412425041,
-0.016403352841734886,
0.05495847761631012,
-0.07448404282331467,
0.07077912241220474,
0.03729227930307388,
0.016864655539393425,
-0.10948316007852554,
0.12463025003671646,
0.013113707304000854,
0.07629571855068207,
-0.02633756957948208,
-0.006564165465533733,
-0.04924217239022255,
0.014984812587499619,
-0.0006741509423591197,
0.011989213526248932,
-0.08035340905189514,
-0.00722054997459054,
0.05427800118923187,
-0.03933633863925934,
-0.005589942913502455,
0.048497412353754044,
-0.040285661816596985,
-0.005627395119518042,
-0.04382076486945152,
0.0492628738284111,
-0.08493129163980484,
0.039454709738492966,
0.07848846912384033,
-0.09861191362142563,
0.06059405580163002,
0.0029759593307971954,
-0.019632890820503235,
0.09040883183479309,
-0.026659784838557243,
0.020416848361492157,
0.023987803608179092,
0.06346645206212997,
-0.039647381752729416,
0.005150328390300274,
-0.04637296125292778,
0.02523253858089447,
-0.014069067314267159,
-0.07073813676834106,
0.1264258325099945,
-0.04967406764626503,
0.04754966124892235,
0.008093932643532753,
-0.03160186856985092,
-0.06835898756980896,
0.012026660144329071,
0.07776248455047607,
0.06635302305221558,
0.12929598987102509,
-0.019062282517552376,
0.0006713769398629665,
-0.09648817777633667,
0.05244643986225128,
0.01723407581448555,
0.03338664025068283,
-0.04001392051577568,
-0.08663128316402435,
0.04971278831362724,
-0.019933050498366356,
0.14968405663967133,
0.0037325192242860794,
-0.031134499236941338,
0.04625634476542473,
-0.05589369684457779,
-0.05430779233574867,
0.056540921330451965,
0.09974192827939987,
0.04671945050358772,
0.02313131093978882,
-0.06571263074874878,
-0.041219085454940796,
-0.022014398127794266,
-0.038010213524103165,
0.10655205696821213,
0.16324588656425476,
-0.07703696936368942,
0.10772810876369476,
0.038566362112760544,
-0.07313437759876251,
-0.04362121596932411,
0.11393927782773972,
-0.08857586234807968,
-0.03925304114818573,
-0.0339677557349205,
0.08850889652967453,
0.12176095694303513,
-0.1016136035323143,
0.12311959266662598,
0.045560989528894424,
-0.06955504417419434,
-0.12595972418785095,
-0.13679030537605286,
-0.032301273196935654,
-0.07175382971763611,
-0.023875147104263306,
-0.09243594110012054,
0.012251465581357479,
0.08863243460655212,
-0.015589958056807518,
0.0022271627094596624,
0.08135276287794113,
-0.19550374150276184,
-0.061741482466459274,
0.02331601269543171,
-0.049464765936136246,
0.017333822324872017,
0.0028509660623967648,
-0.06204397976398468,
0.10580787062644958,
0.14404231309890747,
0.07146090269088745,
0.0022361082956194878,
0.010104397311806679,
0.009004141204059124,
0.00775846978649497,
-0.02876873128116131,
-0.0013333519455045462,
-0.09203194826841354,
0.04833436757326126,
0.033829934895038605,
0.07120579481124878,
-0.07575781643390656,
-0.007821123115718365,
0.1952890008687973,
-0.06286830455064774,
-0.06766340881586075,
-0.18849222362041473,
0.06313878297805786,
0.07612105458974838,
0.04731087014079094,
0.042161520570516586,
-0.1511743813753128,
0.009677340276539326,
0.21141771972179413,
0.07038696110248566,
-0.04643562063574791,
-0.0035068567376583815,
-0.030470827594399452,
0.015862246975302696,
0.026484597474336624,
0.06851478666067123,
-0.012960990890860558,
0.22924692928791046,
0.017123883590102196,
0.057372961193323135,
-0.0009873982053250074,
-0.03533045947551727,
-0.024281984195113182,
0.1962175965309143,
-0.07089515775442123,
-0.006708200555294752,
-0.08117067813873291,
0.07490096986293793,
-0.03440476581454277,
-0.28564453125,
-0.050700169056653976,
-0.00145807140506804,
-0.0689900815486908,
0.035492464900016785,
0.05054832622408867,
0.004840974695980549,
0.011336482129991055,
0.007692538667470217,
0.008465401828289032,
0.17357048392295837,
0.051779694855213165,
-0.07506988942623138,
0.010565122589468956,
0.07686718553304672,
0.002151284832507372,
0.11360900849103928,
0.002058580983430147,
0.12894554436206818,
0.0016645831055939198,
0.06166961044073105,
-0.04569924250245094,
0.056938741356134415,
-0.05801576375961304,
-0.03756049647927284,
0.011661818251013756,
0.16011226177215576,
-0.006859344895929098,
0.1155824288725853,
0.05313575267791748,
-0.14396175742149353,
0.028851311653852463,
-0.008013108745217323,
-0.10979736596345901,
-0.06626218557357788,
0.057129599153995514,
-0.08479008823633194,
0.14322449266910553,
0.06425075978040695,
-0.03551439940929413,
0.01781000941991806,
-0.022300129756331444,
0.011762266978621483,
-0.03987738490104675,
0.07389757037162781,
-0.020618872717022896,
-0.16373446583747864,
-0.026218049228191376,
-0.15180981159210205,
0.016147810965776443,
-0.10029374063014984,
-0.037777379155159,
-0.012934189289808273,
-0.007534612435847521,
-0.0023070287425071,
0.0582972913980484,
0.1169915497303009,
-0.0021362185943871737,
-0.05423896759748459,
-0.023599494248628616,
0.06248063966631889,
0.06333692371845245,
-0.12286362051963806,
-0.06598865240812302
] |
null | null |
transformers
|
# SEW-tiny
[SEW by ASAPP Research](https://github.com/asappresearch/sew)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
**Abstract**
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .
# Usage
To transcribe audio files the model can be used as a standalone acoustic model as follows:
```python
from transformers import Wav2Vec2Processor, SEWForCTC
from datasets import load_dataset
import soundfile as sf
import torch
# load the model and preprocessor
processor = Wav2Vec2Processor.from_pretrained("asapp/sew-tiny-100k-ft-ls100h")
model = SEWForCTC.from_pretrained("asapp/sew-tiny-100k-ft-ls100h")
# load the dummy dataset with speech samples
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
# preprocess
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
```
## Evaluation
This code snippet shows how to evaluate **asapp/sew-tiny-100k-ft-ls100h** on LibriSpeech's "clean" and "other" test data.
```python
from datasets import load_dataset
from transformers import SEWForCTC, Wav2Vec2Processor
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = SEWForCTC.from_pretrained("asapp/sew-tiny-100k-ft-ls100h").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("asapp/sew-tiny-100k-ft-ls100h")
def map_to_pred(batch):
input_values = processor(batch["audio"][0]["array"], sampling_rate=16000,
return_tensors="pt", padding="longest").input_values
with torch.no_grad():
logits = model(input_values.to("cuda")).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"])
print("WER:", wer(result["text"], result["transcription"]))
```
*Result (WER)*:
| "clean" | "other" |
| --- | --- |
| 10.61 | 23.74 |
|
{"language": "en", "license": "apache-2.0", "tags": ["audio", "speech", "automatic-speech-recognition", "hf-asr-leaderboard"], "datasets": ["librispeech_asr"], "widget": [{"example_title": "Librispeech sample 1", "src": "https://cdn-media.huggingface.co/speech_samples/sample1.flac"}, {"example_title": "Librispeech sample 2", "src": "https://cdn-media.huggingface.co/speech_samples/sample2.flac"}], "model-index": [{"name": "sew-tiny-100k-ft-ls100h", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "LibriSpeech (clean)", "type": "librispeech_asr", "config": "clean", "split": "test", "args": {"language": "en"}}, "metrics": [{"type": "wer", "value": 10.61, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "LibriSpeech (other)", "type": "librispeech_asr", "config": "other", "split": "test", "args": {"language": "en"}}, "metrics": [{"type": "wer", "value": 23.74, "name": "Test WER"}]}]}]}
|
automatic-speech-recognition
|
asapp/sew-tiny-100k-ft-ls100h
|
[
"transformers",
"pytorch",
"safetensors",
"sew",
"automatic-speech-recognition",
"audio",
"speech",
"hf-asr-leaderboard",
"en",
"dataset:librispeech_asr",
"arxiv:2109.06870",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.06870"
] |
[
"en"
] |
TAGS
#transformers #pytorch #safetensors #sew #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #model-index #endpoints_compatible #region-us
|
SEW-tiny
========
SEW by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under URL .
Usage
=====
To transcribe audio files the model can be used as a standalone acoustic model as follows:
Evaluation
----------
This code snippet shows how to evaluate asapp/sew-tiny-100k-ft-ls100h on LibriSpeech's "clean" and "other" test data.
*Result (WER)*:
|
[] |
[
"TAGS\n#transformers #pytorch #safetensors #sew #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n"
] |
[
87
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #sew #automatic-speech-recognition #audio #speech #hf-asr-leaderboard #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n"
] |
[
-0.16797715425491333,
0.12652882933616638,
-0.004598921164870262,
-0.007514492608606815,
0.07647329568862915,
-0.05275094881653786,
0.12157092988491058,
0.0980965718626976,
0.09009534865617752,
-0.01720927283167839,
0.08986908197402954,
0.17991961538791656,
0.016078460961580276,
0.058335717767477036,
-0.057292308658361435,
-0.14165250957012177,
0.07656433433294296,
0.023016158491373062,
0.03409275785088539,
0.08160962909460068,
0.11452193558216095,
-0.03873881325125694,
0.04138832166790962,
0.04837853088974953,
-0.020443888381123543,
0.020022479817271233,
0.055262502282857895,
-0.11735568195581436,
0.13350284099578857,
0.03916940093040466,
0.016929112374782562,
0.04069213941693306,
0.03254975005984306,
-0.1709054559469223,
0.027754755690693855,
-0.006566724739968777,
0.00590375903993845,
0.04924583435058594,
0.012260987423360348,
-0.038795098662376404,
-0.024249611422419548,
0.07206951081752777,
-0.03644074872136116,
0.09433923661708832,
-0.028029203414916992,
-0.24355776607990265,
-0.03573470562696457,
0.1250486969947815,
0.05320068448781967,
0.09648685902357101,
-0.005608576815575361,
0.10129287093877792,
-0.08434365689754486,
0.08883178979158401,
0.1031934916973114,
-0.21812595427036285,
0.05390666425228119,
-0.0650811716914177,
0.01838345266878605,
0.006494797300547361,
-0.022726774215698242,
0.008134950883686543,
0.022812770679593086,
0.01824408769607544,
0.00028637214563786983,
-0.07146523147821426,
-0.13555365800857544,
-0.022384842857718468,
-0.08542097359895706,
-0.03455321490764618,
0.24532507359981537,
0.02622384764254093,
0.01687222719192505,
-0.06042639911174774,
-0.04102877154946327,
0.06672567874193192,
-0.06125312298536301,
0.025749368593096733,
-0.019866270944476128,
0.051598381251096725,
0.06431031227111816,
-0.015840772539377213,
-0.11791595071554184,
-0.05900878831744194,
-0.09551440924406052,
0.09817613661289215,
-0.0026682298630476,
0.05628705397248268,
-0.1445188671350479,
0.01175470370799303,
-0.008754660375416279,
-0.1134486123919487,
0.012740973383188248,
-0.01581704616546631,
0.04420401155948639,
0.05941927433013916,
-0.0021098980214446783,
0.024452591314911842,
0.1883581429719925,
0.11593906581401825,
0.0030751186423003674,
0.030080609023571014,
-0.011222945526242256,
0.09028486907482147,
-0.044668685644865036,
0.10162816941738129,
-0.038592733442783356,
-0.003372249426320195,
0.08668805658817291,
0.04123583808541298,
0.06808153539896011,
-0.01909925416111946,
-0.07863796502351761,
-0.024378187954425812,
0.043453946709632874,
0.07167772203683853,
0.04962119832634926,
0.004556931089609861,
-0.03919002413749695,
0.026955340057611465,
0.09323400259017944,
-0.147734135389328,
-0.023219380527734756,
0.04683355614542961,
0.06535499542951584,
0.05561963841319084,
0.046856313943862915,
0.05260944738984108,
-0.08846081793308258,
0.0304171834141016,
-0.009704125113785267,
0.006080717779695988,
0.05449157580733299,
0.027412312105298042,
0.04650881141424179,
-0.06825204193592072,
0.055807020515203476,
-0.13812355697155,
-0.10083691030740738,
-0.0035954341292381287,
-0.004604472778737545,
0.03173425421118736,
-0.07240156084299088,
-0.008621366694569588,
-0.031247204169631004,
0.012918002903461456,
-0.11500436067581177,
-0.03368585929274559,
-0.0867118239402771,
0.07218843698501587,
0.021181687712669373,
0.04279109463095665,
-0.12486927211284637,
0.07034005224704742,
-0.09144788235425949,
-0.003053537104278803,
-0.050726041197776794,
0.05570272356271744,
-0.10456324368715286,
0.13573114573955536,
-0.07753251492977142,
-0.014956371858716011,
-0.09079232811927795,
0.043373119086027145,
-0.023314345628023148,
0.11657658219337463,
-0.1559755951166153,
-0.11221208423376083,
0.17195819318294525,
-0.13028797507286072,
-0.15516024827957153,
0.13483622670173645,
0.04935591667890549,
0.016386188566684723,
0.1024092361330986,
0.2772022783756256,
0.042346660047769547,
-0.09243480861186981,
-0.019188236445188522,
0.11981450766324997,
-0.09153561294078827,
-0.1718762367963791,
0.043751493096351624,
-0.09551919996738434,
-0.014132782816886902,
0.04599573463201523,
-0.016339322552084923,
0.09920788556337357,
0.02375239133834839,
-0.1004858985543251,
-0.06836240738630295,
-0.10962384939193726,
-0.05001339688897133,
0.014866580255329609,
0.01099691167473793,
-0.020228328183293343,
-0.006648310460150242,
-0.05782730504870415,
0.06518847495317459,
-0.03724716976284981,
0.03879798576235771,
-0.11198814958333969,
0.10069210082292557,
-0.010894350707530975,
0.014626096934080124,
-0.14939992129802704,
0.14159417152404785,
-0.07019780576229095,
-0.034295886754989624,
0.05418092757463455,
-0.001669165794737637,
0.0752275362610817,
-0.06733088195323944,
0.00036645884392783046,
-0.03353012353181839,
0.16843031346797943,
0.06297917664051056,
0.010664168745279312,
-0.19359542429447174,
0.0601944662630558,
-0.04846818745136261,
0.10469865053892136,
-0.04011447727680206,
-0.009534223936498165,
0.03975701704621315,
0.11803118884563446,
-0.03888343274593353,
0.0406021811068058,
0.037282828241586685,
-0.01843959093093872,
0.026404157280921936,
0.002052185358479619,
0.07669525593519211,
0.01837741956114769,
-0.08034857362508774,
0.1800185889005661,
-0.1557372361421585,
0.24720147252082825,
0.19774915277957916,
-0.09138934314250946,
0.07187903672456741,
0.06410039961338043,
-0.01485963724553585,
-0.02075899764895439,
0.040312815457582474,
-0.04324093088507652,
0.17702385783195496,
-0.00036410446045920253,
0.1465514600276947,
-0.0640287920832634,
-0.014878862537443638,
0.007123581133782864,
-0.06935189664363861,
0.014618000946938992,
0.08486919850111008,
-0.004333761986345053,
-0.11565712839365005,
0.11382502317428589,
0.17144136130809784,
-0.07227754592895508,
0.14512723684310913,
-0.09548377990722656,
-0.05622929707169533,
0.07721243053674698,
0.004786577075719833,
-0.03598331660032272,
0.11831033229827881,
-0.21725088357925415,
-0.0250979233533144,
0.07599367946386337,
-0.03779667615890503,
0.0626363754272461,
-0.15967610478401184,
-0.003244307590648532,
-0.03418827801942825,
-0.0684855505824089,
-0.10989823937416077,
0.05742432177066803,
-0.01949082873761654,
0.07495079189538956,
-0.09263069182634354,
-0.2117842733860016,
0.07443276792764664,
-0.02299230359494686,
-0.11849075555801392,
0.10235832631587982,
-0.08314714580774307,
-0.26472240686416626,
-0.12695173919200897,
-0.04151706025004387,
-0.009763027541339397,
0.001657213200815022,
0.10915658622980118,
-0.11401722580194473,
-0.04030318185687065,
-0.02652001939713955,
-0.03508154675364494,
0.03511873260140419,
-0.004784276708960533,
0.06502088904380798,
0.030989505350589752,
0.10267487913370132,
-0.13225533068180084,
-0.02055596187710762,
-0.04517780616879463,
0.08091797679662704,
0.02728198654949665,
0.012667674571275711,
0.04891587421298027,
0.1594025045633316,
0.0839000716805458,
0.03303952142596245,
0.011542409658432007,
0.17225591838359833,
-0.07205100357532501,
-0.016782868653535843,
0.19386741518974304,
-0.06884535402059555,
0.038926057517528534,
0.20002323389053345,
0.04501587525010109,
-0.019027190282940865,
-0.03142547979950905,
-0.045451950281858444,
-0.056874699890613556,
-0.2112678736448288,
-0.11324138194322586,
-0.08198370039463043,
-0.009313060902059078,
0.014399712905287743,
0.08650469034910202,
0.06250268965959549,
0.02394777536392212,
-0.009463159367442131,
-0.07747666537761688,
0.027298832312226295,
-0.017201151698827744,
0.21679341793060303,
-0.037584397941827774,
0.09968353062868118,
-0.09166539460420609,
-0.07928195595741272,
0.05017895624041557,
0.08103569597005844,
0.04661928862333298,
0.11243724077939987,
0.051824916154146194,
0.036669958382844925,
0.1771787703037262,
0.09197480231523514,
0.09867706149816513,
0.014866865240037441,
-0.021774502471089363,
0.02270565927028656,
-0.06919732689857483,
-0.059998225420713425,
0.0709918737411499,
0.07070356607437134,
-0.0654846802353859,
0.013373926281929016,
-0.04430033266544342,
0.04138810932636261,
0.1831488162279129,
0.06655355542898178,
-0.18711796402931213,
-0.01598905213177204,
0.04146801680326462,
-0.06843368709087372,
-0.019291028380393982,
0.08601289987564087,
-0.014979159459471703,
-0.025286274030804634,
0.08095737546682358,
0.020119545981287956,
0.0787910521030426,
-0.04390407353639603,
0.06197354570031166,
-0.07503386586904526,
-0.014501817524433136,
0.04740196838974953,
0.062264297157526016,
-0.22258742153644562,
0.2447548806667328,
0.027167262509465218,
0.07544345408678055,
-0.017604229971766472,
0.0170589666813612,
0.08804251998662949,
0.11062632501125336,
0.17315737903118134,
0.01721154898405075,
-0.06850849837064743,
-0.07434740662574768,
-0.11118195205926895,
0.07937907427549362,
0.004516772460192442,
0.09918929636478424,
-0.08241685479879379,
-0.044298481196165085,
-0.04113127663731575,
0.03604257106781006,
-0.12727601826190948,
-0.1327541619539261,
-0.1051151379942894,
0.03613521158695221,
0.25849205255508423,
0.07492639124393463,
-0.04284575581550598,
-0.04796275123953819,
-0.14443470537662506,
0.027523113414645195,
-0.1376277059316635,
-0.0486132949590683,
-0.06893041729927063,
-0.1727016717195511,
0.11565957963466644,
-0.05502110719680786,
0.04237624630331993,
-0.03357681259512901,
-0.006739228498190641,
-0.03927956148982048,
-0.12502633035182953,
0.08505947142839432,
-0.13577900826931,
-0.040879715234041214,
-0.005697771906852722,
0.24553458392620087,
-0.024011224508285522,
0.04559144377708435,
0.05042735114693642,
0.012226779013872147,
-0.07477852702140808,
-0.06838861107826233,
0.07654542475938797,
0.06744495034217834,
-0.05370746925473213,
0.018948040902614594,
-0.05115697160363197,
-0.19657500088214874,
-0.04340662434697151,
-0.020856665447354317,
0.20007653534412384,
0.14348289370536804,
-0.04580842703580856,
0.16556678712368011,
0.29130318760871887,
-0.026773609220981598,
-0.28926414251327515,
-0.19058160483837128,
-0.08463515341281891,
-0.025505293160676956,
-0.046816546469926834,
-0.10005919635295868,
0.1692829132080078,
-0.03204645588994026,
-0.10004793852567673,
0.03969071805477142,
-0.15845537185668945,
-0.10360635071992874,
0.3482988774776459,
-0.06762353330850601,
0.261544406414032,
-0.12226923555135727,
-0.08805233240127563,
-0.09434983879327774,
-0.1281093955039978,
0.03537564352154732,
-0.1343349814414978,
0.061992812901735306,
0.004481294192373753,
0.04103906825184822,
-0.0062806191854178905,
-0.05469725281000137,
0.09509573876857758,
0.0844837874174118,
-0.03148428723216057,
-0.04246557131409645,
0.04922521859407425,
0.005070090759545565,
0.01071398425847292,
0.1464255303144455,
-0.12603168189525604,
0.03398004546761513,
-0.053244225680828094,
-0.03460869938135147,
-0.10020023584365845,
0.0971585288643837,
0.06765256077051163,
-0.0022516846656799316,
0.031160440295934677,
-0.06839615106582642,
-0.006175246089696884,
0.01671576127409935,
0.15118126571178436,
-0.09055261313915253,
0.014384099282324314,
0.14697334170341492,
0.18740324676036835,
-0.24915236234664917,
-0.1267879456281662,
-0.056731026619672775,
-0.07078265398740768,
0.07085170596837997,
-0.0656711533665657,
0.11198772490024567,
0.06796690821647644,
0.03828849270939827,
0.07354754209518433,
0.04942850023508072,
-0.03977955877780914,
-0.024034397676587105,
0.1041458249092102,
-0.11972736567258835,
-0.11542787402868271,
-0.00762910908088088,
0.06527159363031387,
-0.004684783052653074,
0.12344937771558762,
0.14063985645771027,
-0.01791476085782051,
-0.003176193917170167,
-0.0223839171230793,
0.03683904930949211,
-0.12273808568716049,
0.13876429200172424,
0.11687034368515015,
0.04280925169587135,
-0.1676304191350937,
0.09360805153846741,
-0.05182638764381409,
-0.07268532365560532,
0.02439051680266857,
0.02573200687766075,
-0.11092682927846909,
-0.12223362177610397,
-0.08721248805522919,
0.062218695878982544,
-0.06397169828414917,
-0.1624414473772049,
-0.0795200765132904,
-0.1282617449760437,
0.021551435813307762,
0.14109069108963013,
0.06043446063995361,
0.04741080850362778,
-0.04900924488902092,
-0.11384691298007965,
-0.010235270485281944,
0.029685785993933678,
-0.013333551585674286,
-0.007959840819239616,
-0.15388251841068268,
-0.07484082877635956,
0.02732052095234394,
0.06495817005634308,
-0.06708037108182907,
-0.029273491352796555,
-0.0657702088356018,
0.061508387327194214,
-0.11191795766353607,
0.009490360505878925,
-0.09815272688865662,
0.024554375559091568,
0.03414318710565567,
-0.09170316159725189,
-0.006628379691392183,
0.05815513804554939,
-0.09788314253091812,
0.008678726851940155,
0.02632978744804859,
0.06672310829162598,
-0.1555073857307434,
0.0022572202142328024,
0.04126459360122681,
-0.010477120988070965,
0.11678409576416016,
0.14382275938987732,
-0.1573694497346878,
0.09496793895959854,
-0.2357678860425949,
-0.17855051159858704,
0.1334029585123062,
0.03451414033770561,
0.005117455031722784,
-0.06485969573259354,
-0.024659588932991028,
0.145309716463089,
0.04238142818212509,
0.01732993870973587,
0.09071455895900726,
-0.08039450645446777,
0.005345011595636606,
-0.07618974894285202,
-0.05317772924900055,
-0.03639799356460571,
-0.06288198381662369,
0.16491669416427612,
0.06925953924655914,
0.17074348032474518,
-0.05703044310212135,
-0.0018358449451625347,
-0.08345302194356918,
0.04396224766969681,
-0.037645548582077026,
-0.14851942658424377,
-0.12906621396541595,
-0.01210861001163721,
0.009441656991839409,
-0.024318432435393333,
0.2185695916414261,
-0.051041048020124435,
-0.044453442096710205,
0.05076901987195015,
0.007109248545020819,
-0.014531181193888187,
0.012003131210803986,
0.2935100197792053,
0.030909596011042595,
-0.009264244697988033,
-0.01764335110783577,
-0.02841290459036827,
0.026328636333346367,
0.04645620658993721,
-0.01755896396934986,
0.1467849761247635,
0.05427376180887222,
0.09407167881727219,
0.13352935016155243,
-0.032128799706697464,
-0.04420407861471176,
-0.0016104428796097636,
-0.06561843305826187,
0.059859730303287506,
-0.013794954866170883,
0.16010169684886932,
0.1812618523836136,
0.03595240041613579,
0.046194639056921005,
-0.06640233844518661,
-0.04829971492290497,
-0.17436909675598145,
-0.09249885380268097,
-0.06847154349088669,
-0.1251782476902008,
0.016794860363006592,
-0.021287493407726288,
-0.012407360598444939,
0.10786126554012299,
0.022842643782496452,
-0.01736895553767681,
0.06601621955633163,
0.020068656653165817,
-0.021333400160074234,
0.053899068385362625,
-0.040169231593608856,
-0.032120708376169205,
-0.046678490936756134,
-0.006231535691767931,
0.06215040013194084,
-0.0023137026000767946,
-0.021424196660518646,
-0.01683954894542694,
-0.0827430710196495,
0.05991145595908165,
-0.10992895066738129,
-0.06703635305166245,
-0.019324714317917824,
0.028499482199549675,
0.03765765205025673,
0.09043651819229126,
0.07648654282093048,
-0.031022116541862488,
0.06782914698123932,
0.1560986042022705,
-0.06620626151561737,
-0.18960343301296234,
-0.06846871972084045,
0.15319694578647614,
-0.018620038405060768,
0.03246883302927017,
-0.03201989457011223,
-0.04387270659208298,
0.01182300690561533,
0.2251572608947754,
0.2361830472946167,
-0.047829605638980865,
0.056329306215047836,
-0.10825585573911667,
0.02366572991013527,
-0.05715884268283844,
-0.0011706388322636485,
0.1721937507390976,
0.21072028577327728,
-0.028509965166449547,
-0.032047223299741745,
-0.03117004781961441,
-0.06047222018241882,
-0.10176116973161697,
0.05840964987874031,
-0.02792161889374256,
-0.0670270100235939,
-0.014557993039488792,
0.1187034547328949,
-0.10905350744724274,
-0.025494171306490898,
-0.1565413773059845,
-0.07732390612363815,
-0.04199887067079544,
-0.012613858096301556,
0.14664509892463684,
0.1035132110118866,
-0.01838802918791771,
-0.05881670489907265,
-0.02258642390370369,
0.06538040190935135,
-0.02474699169397354,
-0.2095857560634613,
0.008573062717914581,
0.002210189588367939,
-0.09962353110313416,
0.06810496747493744,
0.010531773790717125,
0.10476745665073395,
0.0341634526848793,
0.08828755468130112,
-0.04852079600095749,
0.13603216409683228,
0.004297845996916294,
-0.1015176847577095,
0.02038249373435974,
0.06374754756689072,
0.03153827041387558,
0.0030770492739975452,
0.030153397470712662,
-0.09109117835760117,
0.05060099437832832,
-0.057217735797166824,
-0.09534632414579391,
-0.07439767569303513,
0.024709701538085938,
-0.04938317462801933,
0.05930698290467262,
-0.03319181129336357,
-0.039673179388046265,
-0.0399075485765934,
-0.04514466971158981,
0.01756587065756321,
0.043499432504177094,
-0.17498724162578583,
-0.06978876143693924,
-0.09685776382684708,
-0.0007214864017441869,
-0.053371842950582504,
-0.029006531462073326,
-0.12372022122144699,
-0.05376932770013809,
-0.09475274384021759,
-0.015212183818221092,
-0.06990876793861389,
-0.00954746175557375,
0.089742012321949,
0.037805601954460144,
0.017378412187099457,
0.0010002267081290483,
0.06642261892557144,
0.06797689199447632,
-0.1204490140080452,
-0.1058671623468399
] |
null | null |
transformers
|
# SEW-tiny
[SEW by ASAPP Research](https://github.com/asappresearch/sew)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
**Abstract**
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under https://github.com/asappresearch/sew#model-checkpoints .
# Usage
See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWForCTC`.
|
{"language": "en", "license": "apache-2.0", "tags": ["speech"], "datasets": ["librispeech_asr"]}
|
feature-extraction
|
asapp/sew-tiny-100k
|
[
"transformers",
"pytorch",
"safetensors",
"sew",
"feature-extraction",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2109.06870",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2109.06870"
] |
[
"en"
] |
TAGS
#transformers #pytorch #safetensors #sew #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us
|
# SEW-tiny
SEW by ASAPP Research
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
Paper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
Abstract
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
The original model can be found under URL .
# Usage
See this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWForCTC'.
|
[
"# SEW-tiny\n\nSEW by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWForCTC'."
] |
[
"TAGS\n#transformers #pytorch #safetensors #sew #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n",
"# SEW-tiny\n\nSEW by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .",
"# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWForCTC'."
] |
[
66,
339,
47
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #sew #feature-extraction #speech #en #dataset-librispeech_asr #arxiv-2109.06870 #license-apache-2.0 #endpoints_compatible #region-us \n# SEW-tiny\n\nSEW by ASAPP Research\n\nThe base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...\n\nPaper: Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition\n\nAuthors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi\n\nAbstract\nThis paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.\n\nThe original model can be found under URL .# Usage\n\nSee this blog for more information on how to fine-tune the model. Note that the class 'Wav2Vec2ForCTC' has to be replaced by 'SEWForCTC'."
] |
[
-0.05849389359354973,
0.05538571625947952,
-0.0046027651987969875,
0.013540303334593773,
0.05503861978650093,
-0.02643871121108532,
0.07164792716503143,
0.059803690761327744,
-0.04358601197600365,
0.026562025770545006,
-0.049672771245241165,
-0.02715575322508812,
0.09746570140123367,
0.09616095572710037,
0.05004126578569412,
-0.20122618973255157,
0.09166142344474792,
-0.09042762964963913,
0.053097907453775406,
0.03649534285068512,
0.13227272033691406,
-0.10447097569704056,
0.028493747115135193,
0.0772583931684494,
0.008760975673794746,
0.009702018462121487,
-0.04775355011224747,
-0.04868130758404732,
0.09338623285293579,
0.038823407143354416,
0.08373280614614487,
0.06470312178134918,
0.0807284563779831,
-0.21976016461849213,
0.0071972571313381195,
0.03485049679875374,
0.04004811495542526,
0.02164299041032791,
0.07299432158470154,
-0.016730498522520065,
-0.0072591425850987434,
-0.0026463442482054234,
0.05283001810312271,
0.04466651752591133,
-0.02356928214430809,
-0.06724914163351059,
-0.06370268017053604,
0.06388993561267853,
0.13459140062332153,
0.04087291285395622,
-0.012658734805881977,
-0.006688442546874285,
-0.08625520765781403,
0.04607118293642998,
0.06609803438186646,
-0.1851501166820526,
0.05268976092338562,
-0.08683635294437408,
-0.02773633971810341,
0.00002131794099113904,
-0.08193151652812958,
-0.008980757556855679,
0.008489937521517277,
-0.018083911389112473,
0.09292259067296982,
0.008665230125188828,
-0.03526841849088669,
-0.0297701358795166,
-0.13667313754558563,
-0.03142162039875984,
0.15360137820243835,
0.03965233266353607,
-0.0962841808795929,
-0.13222895562648773,
-0.04163284972310066,
-0.009615718387067318,
-0.018956052139401436,
-0.09295953810214996,
0.033258579671382904,
-0.015565025620162487,
0.055861372500658035,
-0.031677454710006714,
-0.11484573036432266,
-0.06705299764871597,
0.0011786456452682614,
0.1643325388431549,
0.08535002171993256,
0.0272241048514843,
-0.0041099973022937775,
0.0745142325758934,
-0.062183212488889694,
-0.03024997189640999,
-0.06910588592290878,
-0.04617757722735405,
-0.163516566157341,
0.016569841653108597,
-0.04384085163474083,
-0.1636200249195099,
-0.004444923251867294,
0.16994594037532806,
0.012669794261455536,
0.04876505583524704,
0.10050646215677261,
0.03878764435648918,
0.057037755846977234,
0.12004539370536804,
-0.019745228812098503,
-0.06912734359502792,
-0.005667580291628838,
-0.004668903537094593,
-0.01562254223972559,
-0.04267430678009987,
-0.04180615022778511,
-0.025848446413874626,
0.06949800252914429,
-0.03606744483113289,
-0.027233393862843513,
0.034363340586423874,
-0.07936865836381912,
-0.031516242772340775,
0.13892929255962372,
-0.15379083156585693,
-0.005798494443297386,
-0.01073018740862608,
0.003805405693128705,
0.040917955338954926,
0.10333956032991409,
0.05505728721618652,
-0.08988060802221298,
0.11306525021791458,
-0.037984658032655716,
-0.02277573198080063,
-0.05175425857305527,
-0.03839021921157837,
-0.005810623988509178,
-0.054318420588970184,
-0.0157972052693367,
-0.13435885310173035,
-0.1304967999458313,
-0.06375998258590698,
-0.01770288683474064,
0.007912169210612774,
-0.04396037757396698,
-0.054085973650217056,
0.01084227953106165,
-0.0390339158475399,
-0.022816672921180725,
-0.027461014688014984,
-0.018956778571009636,
-0.016314247623085976,
-0.037122517824172974,
0.0287671759724617,
-0.05075772479176521,
0.03994189575314522,
-0.07026074826717377,
0.016960784792900085,
-0.049812719225883484,
0.15559016168117523,
-0.07854930311441422,
-0.016735710203647614,
-0.09645795077085495,
0.023788029327988625,
-0.14352118968963623,
0.05045168101787567,
0.03762349486351013,
0.10384191572666168,
-0.19849412143230438,
-0.07708008587360382,
0.12686143815517426,
-0.1682388186454773,
0.018312789499759674,
0.12636569142341614,
0.0006727391737513244,
0.04364016279578209,
0.10207017511129379,
0.1972961723804474,
0.1756620854139328,
-0.0908643901348114,
-0.0864463597536087,
0.007616277318447828,
-0.04707733914256096,
0.006317310035228729,
0.08552827686071396,
-0.04176071658730507,
0.07133959978818893,
0.04084787145256996,
-0.03650487959384918,
-0.00727081997320056,
0.0008017038926482201,
-0.057971544563770294,
0.007682310417294502,
-0.07778217643499374,
0.018476756289601326,
-0.06375068426132202,
0.019046444445848465,
0.006821601651608944,
-0.09651351720094681,
0.048505689948797226,
0.11421626061201096,
-0.06387057900428772,
0.08552634716033936,
-0.13745534420013428,
0.0006956345750950277,
0.05923045426607132,
0.007903175428509712,
-0.11173989623785019,
0.06463475525379181,
0.03862229734659195,
-0.09040441364049911,
0.07830823957920074,
0.06333860754966736,
0.01341322809457779,
0.018105151131749153,
0.0012444767635315657,
-0.00010142070095753297,
-0.0784258171916008,
0.029867008328437805,
-0.056896504014730453,
-0.10976430773735046,
-0.07385700941085815,
-0.02959286794066429,
0.0869879275560379,
-0.006217153277248144,
0.03761722147464752,
0.10329984873533249,
0.12488581240177155,
0.012096421793103218,
-0.07694041728973389,
-0.03677820786833763,
0.010318182408809662,
0.001031771651469171,
0.025363236665725708,
-0.024167772382497787,
0.018493978306651115,
-0.06630084663629532,
0.09226656705141068,
-0.08733264356851578,
-0.11890732496976852,
0.04323982819914818,
0.010370035655796528,
-0.05778004974126816,
-0.026078971102833748,
-0.015798455104231834,
-0.05796095356345177,
-0.09574472159147263,
-0.13677899539470673,
0.2322307676076889,
0.0039470805786550045,
0.08697555959224701,
-0.040654659271240234,
-0.007132900878787041,
-0.023802049458026886,
-0.014486166648566723,
0.008817496709525585,
0.022613128647208214,
0.035678211599588394,
0.04560398310422897,
0.008963233791291714,
0.026961736381053925,
-0.034709636121988297,
0.06847546249628067,
-0.00666146632283926,
-0.09430450946092606,
0.03348558396100998,
-0.055531200021505356,
-0.049678634852170944,
0.05701790377497673,
-0.1170404851436615,
-0.02307063713669777,
0.04637247323989868,
0.047630585730075836,
0.08255910873413086,
-0.09470394998788834,
0.09688413888216019,
0.06427441537380219,
-0.027505461126565933,
0.00039226331864483654,
-0.07107248157262802,
-0.02747238054871559,
0.0472903847694397,
-0.014356324449181557,
-0.010968507267534733,
-0.015033864416182041,
-0.033332228660583496,
-0.13003754615783691,
0.10863351821899414,
-0.06043489649891853,
-0.1706651747226715,
-0.1909516453742981,
0.08268329501152039,
0.022229215130209923,
0.011809003539383411,
0.04339538887143135,
-0.014964645728468895,
-0.10474991053342819,
-0.08291164040565491,
0.09236527979373932,
-0.0003051812818739563,
0.026147102937102318,
0.08650662750005722,
0.012544536031782627,
0.0067993998527526855,
-0.11018268018960953,
0.0073237172327935696,
-0.019417034462094307,
0.012807494960725307,
-0.014537671580910683,
0.04043713957071304,
0.08441861718893051,
0.13390013575553894,
-0.025753511115908623,
-0.022577036172151566,
-0.026669397950172424,
0.17752379179000854,
-0.04943196848034859,
0.06355045735836029,
0.1458745300769806,
-0.17375832796096802,
0.025265762582421303,
0.0767766609787941,
0.007534353528171778,
-0.0027645938098430634,
-0.0018852432258427143,
0.024233022704720497,
-0.05334313586354256,
-0.18339771032333374,
-0.07009632140398026,
-0.03455854579806328,
0.0026369942352175713,
0.005585415288805962,
0.03069113940000534,
0.012625820934772491,
0.026016775518655777,
-0.05966959521174431,
0.025553956627845764,
0.12591053545475006,
0.039025675505399704,
0.05208178982138634,
-0.018245374783873558,
0.1069243922829628,
-0.04692547768354416,
-0.007815491408109665,
0.06215176731348038,
0.06017432361841202,
0.1813974678516388,
0.006261655129492283,
0.12180598080158234,
0.09470994770526886,
0.059985414147377014,
0.07324666529893875,
0.024532420560717583,
-0.04324657469987869,
0.07365596294403076,
-0.02962619438767433,
-0.024920351803302765,
-0.04778674244880676,
0.12002461403608322,
0.052099764347076416,
-0.07844774425029755,
-0.05388244241476059,
0.019569911062717438,
0.08003515750169754,
0.19643071293830872,
0.06175879016518593,
-0.14339600503444672,
-0.06898672878742218,
0.0547487698495388,
-0.14853858947753906,
0.012263442389667034,
0.034568920731544495,
0.10275459289550781,
-0.09973704069852829,
0.06385664641857147,
0.06065735965967178,
0.07782036066055298,
-0.11787232011556625,
0.010312769562005997,
-0.014191343449056149,
0.04695291817188263,
0.007224661763757467,
0.054146718233823776,
-0.1382463574409485,
0.049732133746147156,
-0.008287926204502583,
0.07977905869483948,
-0.03421730920672417,
0.05417977273464203,
-0.025770869106054306,
0.011758285574615002,
0.10535231977701187,
-0.0126363355666399,
-0.03961345553398132,
0.01147161703556776,
-0.10248835384845734,
0.02777031809091568,
0.09101905673742294,
-0.06148698925971985,
0.07033537328243256,
-0.046532079577445984,
0.027356775477528572,
-0.0026663050521165133,
-0.0068459827452898026,
-0.12305063754320145,
-0.16480864584445953,
0.059376057237386703,
0.04463863745331764,
0.05281287804245949,
-0.05354059115052223,
-0.02522401139140129,
-0.15081219375133514,
0.15071219205856323,
-0.2542206645011902,
-0.07373520731925964,
-0.08201494067907333,
-0.061321694403886795,
0.0753030851483345,
-0.02587066777050495,
0.045364078134298325,
0.0707494243979454,
0.11910691857337952,
-0.059323471039533615,
-0.07473666220903397,
-0.029233161360025406,
-0.06422824412584305,
-0.16219399869441986,
0.0011635260889306664,
0.12204445153474808,
0.0921461209654808,
0.02312840148806572,
0.017274804413318634,
-0.004770111758261919,
0.020121807232499123,
-0.08859731256961823,
-0.000554229598492384,
0.17174763977527618,
-0.08628296107053757,
0.06791184842586517,
-0.05378001183271408,
-0.21079236268997192,
-0.09880263358354568,
-0.03163745254278183,
0.03930450230836868,
0.18462632596492767,
-0.053013142198324203,
0.19302958250045776,
0.14058977365493774,
-0.0863456204533577,
-0.24120967090129852,
-0.07547605782747269,
0.0704846903681755,
0.03966289386153221,
0.05699373409152031,
-0.11633926630020142,
0.052537932991981506,
0.0633850172162056,
-0.036649078130722046,
-0.11559813469648361,
-0.1732049435377121,
-0.16150109469890594,
0.12885595858097076,
-0.02272801660001278,
0.10002663731575012,
-0.030873319134116173,
-0.04297631233930588,
-0.04645697772502899,
-0.04392876476049423,
0.07017141580581665,
-0.03271671012043953,
0.03967626765370369,
0.052703674882650375,
-0.03422582894563675,
0.048387184739112854,
-0.01093613263219595,
0.11742297559976578,
0.08246416598558426,
0.0032070185989141464,
-0.020268796011805534,
0.05869004875421524,
-0.054696209728717804,
-0.03506910428404808,
0.09864112734794617,
0.05756913125514984,
0.0100174555554986,
-0.04795677587389946,
-0.07438072562217712,
-0.006305309012532234,
0.062209680676460266,
0.018879484385252,
-0.01350900623947382,
-0.08305168896913528,
0.012475741095840931,
0.03585464879870415,
0.017436088994145393,
0.07612912356853485,
-0.05007023736834526,
-0.15457524359226227,
0.16037794947624207,
0.15800614655017853,
-0.021755829453468323,
-0.026972530409693718,
-0.027105163782835007,
-0.0382307693362236,
0.07316421717405319,
-0.026240529492497444,
0.09850765019655228,
0.0639207735657692,
0.007236772682517767,
0.07004301995038986,
0.030537232756614685,
-0.15738074481487274,
-0.0018768797162920237,
0.09133795648813248,
-0.0773821696639061,
-0.15809190273284912,
-0.034123677760362625,
-0.035970039665699005,
-0.0617237351834774,
0.09964779019355774,
0.15129855275154114,
-0.082979217171669,
-0.01104180421680212,
0.004566072486341,
0.07684826105833054,
-0.0632496327161789,
0.1439749300479889,
0.03378736600279808,
0.018778851255774498,
-0.06096509471535683,
0.1534075289964676,
0.08870895951986313,
-0.0519832968711853,
0.022973140701651573,
-0.014296437613666058,
-0.07211942970752716,
-0.022233281284570694,
-0.13488267362117767,
-0.004221901297569275,
0.02743735909461975,
-0.13984297215938568,
-0.024369720369577408,
-0.08762625604867935,
-0.0043931263498961926,
0.042687732726335526,
0.03141625225543976,
0.08297042548656464,
0.019416453316807747,
0.04496118053793907,
-0.07011000066995621,
0.07328531891107559,
0.05049869790673256,
0.014887313358485699,
-0.12076212465763092,
0.13121548295021057,
0.00010674172517610714,
0.07567614316940308,
-0.03415001928806305,
-0.014558538794517517,
-0.058801792562007904,
0.0173210259526968,
-0.008907584473490715,
0.0189554113894701,
-0.08874902874231339,
-0.013226749375462532,
0.05882326513528824,
-0.03280578926205635,
0.0011296981247141957,
0.05795681104063988,
-0.028917090967297554,
-0.00436653895303607,
-0.044846128672361374,
0.05319098010659218,
-0.09223701804876328,
0.026942577213048935,
0.07617715001106262,
-0.09948864579200745,
0.05812660977244377,
0.014731835573911667,
-0.014185551553964615,
0.08159290254116058,
-0.04951893538236618,
0.022193871438503265,
0.034524042159318924,
0.05228525400161743,
-0.038984980434179306,
-0.009028755128383636,
-0.044427692890167236,
0.01718762144446373,
-0.036836154758930206,
-0.057507582008838654,
0.1354655921459198,
-0.05105573311448097,
0.04460298269987106,
-0.003718003397807479,
-0.042510971426963806,
-0.06989046931266785,
0.0016950155841186643,
0.054388951510190964,
0.08430439233779907,
0.12958234548568726,
-0.023627202957868576,
0.01846001297235489,
-0.09088531136512756,
0.04931960254907608,
0.027004623785614967,
0.028309814631938934,
-0.03407706692814827,
-0.08370111137628555,
0.03661169111728668,
-0.023026077076792717,
0.1407276690006256,
-0.014168369583785534,
-0.04402722045779228,
0.0552494153380394,
-0.04949989169836044,
-0.09016570448875427,
0.06586527079343796,
0.06847790628671646,
0.035642240196466446,
0.018019845709204674,
-0.089161217212677,
-0.04386582598090172,
-0.023121889680624008,
-0.07072430104017258,
0.08311780542135239,
0.1608782708644867,
-0.0804540365934372,
0.10199230909347534,
0.028061315417289734,
-0.0528189018368721,
-0.08501599729061127,
0.07808282971382141,
-0.08206774294376373,
-0.03744010254740715,
-0.036528948694467545,
0.07696806639432907,
0.11416875571012497,
-0.11657102406024933,
0.130927175283432,
0.04295599088072777,
-0.06730584055185318,
-0.10296675562858582,
-0.10828088968992233,
-0.044887445867061615,
-0.07466665655374527,
-0.02514733374118805,
-0.08444645255804062,
0.001338807400316,
0.07838138937950134,
-0.009131766855716705,
0.0015654993476346135,
0.07675546407699585,
-0.1780668944120407,
-0.056466855108737946,
0.010629464872181416,
-0.04838985577225685,
0.021591341122984886,
0.01589684747159481,
-0.05908218026161194,
0.09242591261863708,
0.14855638146400452,
0.06235930696129799,
0.004509313032031059,
0.023948172107338905,
0.004272653255611658,
-0.0026011280715465546,
-0.04323360696434975,
-0.0006145930383354425,
-0.08519423753023148,
0.03285255655646324,
0.02197328954935074,
0.06530878692865372,
-0.06756444275379181,
0.002615157747641206,
0.20035654306411743,
-0.0577550008893013,
-0.07752315700054169,
-0.19436173141002655,
0.043914586305618286,
0.08387508988380432,
0.04060257971286774,
0.06572145223617554,
-0.15548200905323029,
0.003021944547072053,
0.21116356551647186,
0.08681442588567734,
-0.0077082994394004345,
0.0038031514268368483,
-0.019772211089730263,
0.017245380207896233,
0.04511993005871773,
0.04606543853878975,
-0.03224707022309303,
0.22839564085006714,
0.007254825439304113,
0.06322676688432693,
0.00467503909021616,
-0.03604229539632797,
-0.026318974792957306,
0.18317940831184387,
-0.08600436896085739,
-0.00883466750383377,
-0.08076611161231995,
0.06827802211046219,
-0.03763529658317566,
-0.29733094573020935,
-0.016668742522597313,
-0.020163461565971375,
-0.06993002444505692,
0.025838876143097878,
0.05233624577522278,
0.003342586336657405,
0.022454537451267242,
0.020586872473359108,
0.000987028586678207,
0.1876460313796997,
0.05624484270811081,
-0.06349005550146103,
0.017943009734153748,
0.07165909558534622,
0.0014616982080042362,
0.10468190163373947,
0.007627366576343775,
0.13616417348384857,
-0.00034125096863135695,
0.08286532759666443,
-0.052424415946006775,
0.04319446161389351,
-0.05702369287610054,
-0.04744087904691696,
0.007682799361646175,
0.14614549279212952,
-0.020163092762231827,
0.10517844557762146,
0.0429425984621048,
-0.14581303298473358,
0.01374088879674673,
0.03622348606586456,
-0.0854780524969101,
-0.043378956615924835,
0.05931711569428444,
-0.07324398308992386,
0.1259540617465973,
0.0642121285200119,
-0.036669615656137466,
0.014596197754144669,
-0.026050563901662827,
0.0180030670017004,
-0.03454964980483055,
0.05085374414920807,
-0.02221563830971718,
-0.1773955076932907,
-0.0072547742165625095,
-0.137286975979805,
0.03308985382318497,
-0.09674911946058273,
-0.048391349613666534,
-0.012218653224408627,
-0.009201090782880783,
-0.021806856617331505,
0.07096921652555466,
0.1311049610376358,
-0.020200351253151894,
-0.045541707426309586,
-0.04144123196601868,
0.06357511878013611,
0.05116241052746773,
-0.1037910059094429,
-0.07236738502979279
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-xsum
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["xsum"], "model-index": [{"name": "t5-small-finetuned-xsum", "results": []}]}
|
text2text-generation
|
aseda/t5-small-finetuned-xsum
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:xsum",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-xsum #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# t5-small-finetuned-xsum
This model is a fine-tuned version of t5-small on the xsum dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
[
"# t5-small-finetuned-xsum\n\nThis model is a fine-tuned version of t5-small on the xsum dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP",
"### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0+cu111\n- Datasets 1.16.1\n- Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-xsum #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# t5-small-finetuned-xsum\n\nThis model is a fine-tuned version of t5-small on the xsum dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP",
"### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0+cu111\n- Datasets 1.16.1\n- Tokenizers 0.10.3"
] |
[
73,
33,
6,
12,
8,
3,
103,
33
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-xsum #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# t5-small-finetuned-xsum\n\nThis model is a fine-tuned version of t5-small on the xsum dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0+cu111\n- Datasets 1.16.1\n- Tokenizers 0.10.3"
] |
[
-0.05274152383208275,
0.09211013466119766,
-0.0032128593884408474,
0.05826834216713905,
0.14132297039031982,
0.035412389785051346,
0.12678013741970062,
0.13126260042190552,
-0.12521377205848694,
0.061643633991479874,
0.055128682404756546,
0.08212193101644516,
0.059087079018354416,
0.1376616209745407,
-0.04106716439127922,
-0.26230382919311523,
0.014802244491875172,
0.0048347944393754005,
-0.04290049895644188,
0.09878654032945633,
0.09613081812858582,
-0.08914974331855774,
0.06342250108718872,
0.0022756201215088367,
-0.1752532720565796,
0.04354763403534889,
-0.01109521184116602,
-0.05925902724266052,
0.08542609214782715,
0.031010590493679047,
0.10027559101581573,
0.014921965077519417,
0.11100061982870102,
-0.23379403352737427,
0.0031215993221849203,
0.09972066432237625,
0.020823169499635696,
0.0649602860212326,
0.0832720547914505,
0.01896098256111145,
0.17090201377868652,
-0.1448337882757187,
0.09744623303413391,
0.025916865095496178,
-0.05639474093914032,
-0.12549249827861786,
-0.0698426142334938,
0.07259135693311691,
0.0887850821018219,
0.10189332813024521,
-0.0006187263643369079,
0.1465037316083908,
-0.09072869271039963,
0.0847068503499031,
0.17316754162311554,
-0.26294639706611633,
-0.06706998497247696,
0.040137261152267456,
0.04413042590022087,
0.08613085746765137,
-0.08239403367042542,
-0.017258578911423683,
0.02636091038584709,
0.04133833572268486,
0.10408695042133331,
-0.015362922102212906,
-0.08148293942213058,
-0.008688024245202541,
-0.139949232339859,
-0.018216056749224663,
0.15861189365386963,
0.03487000614404678,
-0.022310804575681686,
-0.09652060270309448,
-0.07752857357263565,
-0.08792418241500854,
-0.013309837318956852,
-0.057671044021844864,
0.041534677147865295,
-0.02590933069586754,
-0.04836803674697876,
-0.05101535841822624,
-0.06858845800161362,
-0.035375844687223434,
-0.02364659681916237,
0.083916075527668,
0.06248735636472702,
0.007043859921395779,
-0.051537517458200455,
0.0845298245549202,
0.02100684493780136,
-0.09931179136037827,
-0.0036042837891727686,
0.006114506162703037,
-0.08786334842443466,
-0.06676770001649857,
-0.03970063105225563,
-0.08965852111577988,
0.0011233623372390866,
0.12144263833761215,
-0.049521706998348236,
0.08683688193559647,
-0.0008695090073160827,
0.005481754429638386,
-0.022222457453608513,
0.11788798868656158,
-0.03294869139790535,
-0.03961539641022682,
0.009007789194583893,
0.06795915961265564,
0.023452764376997948,
-0.010153725743293762,
-0.0839887335896492,
-0.004113104194402695,
0.10367885231971741,
0.05639609321951866,
-0.040559228509664536,
0.03697492927312851,
-0.026677165180444717,
-0.043228629976511,
-0.0386480838060379,
-0.1361382156610489,
0.04486369714140892,
-0.016921592876315117,
-0.06279613822698593,
0.037814658135175705,
0.018978985026478767,
-0.011507072485983372,
-0.07788998633623123,
0.10015644133090973,
-0.0797913670539856,
0.013266417197883129,
-0.09138038009405136,
-0.09122780710458755,
0.03184901177883148,
-0.07185734063386917,
-0.028837021440267563,
-0.08054459095001221,
-0.16337496042251587,
-0.03358637914061546,
0.050759635865688324,
-0.03919724375009537,
-0.05481014773249626,
-0.05081738159060478,
-0.051950059831142426,
0.01859917864203453,
-0.0071475934237241745,
0.12061092257499695,
-0.05465973913669586,
0.05805952847003937,
-0.020965533331036568,
0.022956538945436478,
0.01441929955035448,
0.04403283819556236,
-0.07096715271472931,
0.01276877336204052,
-0.12206211686134338,
0.07794678211212158,
-0.0557682178914547,
0.018395135179162025,
-0.11854429543018341,
-0.10111556947231293,
-0.015585233457386494,
-0.012648560106754303,
0.05201340094208717,
0.09543786942958832,
-0.17777638137340546,
-0.044215623289346695,
0.16720463335514069,
-0.07989489287137985,
-0.04686877876520157,
0.1081889197230339,
-0.04100150242447853,
0.011064983904361725,
0.06605726480484009,
0.16519856452941895,
0.09401407837867737,
-0.127411887049675,
-0.011450210586190224,
-0.00884431041777134,
0.04192403703927994,
-0.001922918134368956,
0.048432283103466034,
-0.010621331632137299,
0.01732597127556801,
0.003154556965455413,
-0.017518065869808197,
0.008441692218184471,
-0.07360473275184631,
-0.08055195957422256,
-0.06105951964855194,
-0.062428444623947144,
0.005516733508557081,
0.032209936529397964,
0.04748337343335152,
-0.07183996587991714,
-0.11619643867015839,
0.14830739796161652,
0.1167798638343811,
-0.08095268160104752,
0.02996508777141571,
-0.08128292858600616,
0.017905881628394127,
-0.029606059193611145,
-0.004981237463653088,
-0.19677874445915222,
-0.1180625781416893,
0.034619297832250595,
-0.07463555037975311,
0.0606309212744236,
0.03175383433699608,
0.04828114062547684,
0.05671294406056404,
-0.047078937292099,
-0.007017721422016621,
-0.06907670944929123,
-0.00035329104866832495,
-0.09632965177297592,
-0.1926751434803009,
-0.038574788719415665,
-0.014583088457584381,
0.1370193362236023,
-0.22341503202915192,
0.01926828920841217,
-0.02308806963264942,
0.1267455518245697,
0.02017095871269703,
-0.0522141233086586,
-0.011364647187292576,
0.07168522477149963,
-0.021295633167028427,
-0.08898213505744934,
0.05184429511427879,
-0.00037533845170401037,
-0.07421338558197021,
-0.05516447126865387,
-0.1567300260066986,
0.061917997896671295,
0.09008047729730606,
0.02092975564301014,
-0.08716809749603271,
-0.009023898281157017,
-0.0596233531832695,
-0.05365108698606491,
-0.091108538210392,
0.012506508268415928,
0.1829081028699875,
-0.0012773264897987247,
0.12573345005512238,
-0.06242268532514572,
-0.062167689204216,
0.0031157280318439007,
0.015495166182518005,
-0.015916898846626282,
0.08074885606765747,
0.11293286085128784,
-0.11833944171667099,
0.0939064472913742,
0.07941281050443649,
-0.06905852258205414,
0.14953282475471497,
-0.046096302568912506,
-0.09042011201381683,
-0.017889518290758133,
0.009532183408737183,
-0.0012034616665914655,
0.07985354959964752,
-0.12197244167327881,
0.0038024927489459515,
0.02145569957792759,
0.024833355098962784,
0.0506933368742466,
-0.1703617125749588,
0.012085835449397564,
0.02455170266330242,
-0.047617312520742416,
-0.009190552867949009,
-0.02215462550520897,
0.03677845001220703,
0.09611093997955322,
0.009720342233777046,
-0.007019625976681709,
0.01866072043776512,
-0.0007548917201347649,
-0.09903611987829208,
0.17257452011108398,
-0.12400160729885101,
-0.16499868035316467,
-0.10338562726974487,
0.041786279529333115,
-0.062413837760686874,
-0.0406075119972229,
0.028754493221640587,
-0.08599602431058884,
-0.0645306408405304,
-0.09816186130046844,
-0.004363762214779854,
-0.06408356875181198,
0.0010547074489295483,
0.027653740718960762,
0.01593702659010887,
0.06877222657203674,
-0.12820367515087128,
0.0006280229426920414,
-0.011362987570464611,
-0.09433401376008987,
0.010196833871304989,
0.038359709084033966,
0.09418950974941254,
0.15588420629501343,
-0.025577791035175323,
0.024633944034576416,
-0.04337116330862045,
0.18042126297950745,
-0.05586598441004753,
0.010269124060869217,
0.11357898265123367,
0.0184027012437582,
0.05613800883293152,
0.11439982056617737,
0.030671196058392525,
-0.08289863914251328,
0.030079618096351624,
0.07655923068523407,
-0.015287204645574093,
-0.2437475621700287,
-0.048568494617938995,
-0.048261284828186035,
-0.06423550099134445,
0.1047445610165596,
0.05364324897527695,
0.012422952800989151,
0.03280823677778244,
-0.010862650349736214,
0.07088102400302887,
-0.004781004507094622,
0.08839534223079681,
0.12467445433139801,
0.05321003869175911,
0.10715361684560776,
-0.0428406186401844,
-0.024882113561034203,
0.07686208188533783,
-0.007042796351015568,
0.26589828729629517,
-0.006204336415976286,
0.10150445252656937,
0.041757695376873016,
0.12821148335933685,
0.0002600295701995492,
0.028462866321206093,
0.026030467823147774,
0.009310247376561165,
0.010712007991969585,
-0.06326307356357574,
-0.025299228727817535,
0.023417429998517036,
-0.00022459762112703174,
0.01569426618516445,
-0.08707069605588913,
0.03579184412956238,
0.02649710513651371,
0.2564104497432709,
0.019947482272982597,
-0.2802627384662628,
-0.06011967733502388,
0.003449453040957451,
-0.0638604611158371,
-0.04279763251543045,
0.015158398076891899,
0.12213438749313354,
-0.11315355449914932,
0.07329851388931274,
-0.06931418180465698,
0.09640450775623322,
-0.03950979560613632,
-0.004353975411504507,
0.05644097924232483,
0.16017159819602966,
0.0013200020184740424,
0.07911255210638046,
-0.24865475296974182,
0.19632764160633087,
0.017031121999025345,
0.12005122005939484,
-0.06619705259799957,
0.0364619642496109,
0.019724460318684578,
0.05927344039082527,
0.07153058052062988,
0.001480120699852705,
-0.08784421533346176,
-0.12794248759746552,
-0.07738310098648071,
0.046569257974624634,
0.11812396347522736,
0.01189570501446724,
0.08387206494808197,
-0.05695708468556404,
0.007775573525577784,
0.05415480211377144,
-0.058618221431970596,
-0.18420110642910004,
-0.14324483275413513,
0.01999565400183201,
0.030521519482135773,
-0.057479459792375565,
-0.07146643847227097,
-0.09722892194986343,
-0.024604396894574165,
0.20315445959568024,
0.005804235581308603,
-0.0379747599363327,
-0.13802964985370636,
0.07423713058233261,
0.0958053469657898,
-0.06374270468950272,
0.016400782391428947,
0.017338642850518227,
0.11446358263492584,
0.028416015207767487,
-0.12263097614049911,
0.05827011540532112,
-0.06744436919689178,
-0.12729494273662567,
-0.05009452998638153,
0.11270936578512192,
0.043723270297050476,
0.049532242119312286,
-0.005306969862431288,
0.00900705810636282,
0.01569358818233013,
-0.08650185167789459,
-0.005566239822655916,
0.1166900023818016,
0.07941064983606339,
0.058333009481430054,
-0.10876231640577316,
-0.023378197103738785,
-0.03915076330304146,
-0.031642887741327286,
0.13734453916549683,
0.15986177325248718,
-0.07202783972024918,
0.07443621754646301,
0.052173156291246414,
-0.10344547778367996,
-0.16694584488868713,
0.06777343153953552,
0.10060598701238632,
0.0025791667867451906,
0.03566598519682884,
-0.20641353726387024,
0.11100005358457565,
0.1265973597764969,
0.008567692711949348,
0.04794049635529518,
-0.37230879068374634,
-0.13480840623378754,
0.06444588303565979,
0.12357070297002792,
0.0334373414516449,
-0.14764727652072906,
-0.027689073234796524,
-0.03549696505069733,
-0.1152305155992508,
0.14015258848667145,
-0.10610553622245789,
0.1136745736002922,
-0.004307745955884457,
0.08076740056276321,
0.01799125224351883,
-0.03926248103380203,
0.10776599496603012,
0.024809984490275383,
0.06658138334751129,
-0.061582088470458984,
0.04445134103298187,
0.07307728379964828,
-0.061839763075113297,
0.04570611193776131,
-0.05984782800078392,
0.04566667228937149,
-0.13596120476722717,
-0.03154956176877022,
-0.0587792731821537,
0.062419597059488297,
-0.04007328301668167,
-0.05672942474484444,
-0.053476523607969284,
0.037461698055267334,
0.08704926818609238,
-0.04097254201769829,
0.06885507702827454,
0.008186722174286842,
0.10373798757791519,
0.0697668194770813,
0.10611745715141296,
-0.03840199112892151,
-0.11005312204360962,
-0.016278263181447983,
-0.016514739021658897,
0.05451279133558273,
-0.09779315441846848,
0.01708505116403103,
0.13317184150218964,
0.025070974603295326,
0.14601010084152222,
0.048780955374240875,
-0.041062694042921066,
0.004033307544887066,
0.04129159450531006,
-0.11259809881448746,
-0.18069611489772797,
-0.010079343803226948,
-0.037142183631658554,
-0.10919634997844696,
0.005382169503718615,
0.0968421921133995,
-0.06319654732942581,
-0.006420513615012169,
-0.001990343676880002,
0.022028153762221336,
-0.025431472808122635,
0.18084579706192017,
0.0024997976142913103,
0.04452472925186157,
-0.07817083597183228,
0.1321120262145996,
0.08234191685914993,
-0.11794527620077133,
0.05973415821790695,
0.11027256399393082,
-0.08277951180934906,
-0.020076826214790344,
0.10060367733240128,
0.16702504456043243,
-0.042658042162656784,
-0.04796430096030235,
-0.08234377205371857,
-0.10773614048957825,
0.06744613498449326,
0.1307326704263687,
0.03312564641237259,
-0.011957881972193718,
-0.05366625636816025,
0.02953587844967842,
-0.14520427584648132,
0.07111165672540665,
0.05346577614545822,
0.06867881864309311,
-0.13244393467903137,
0.15759754180908203,
0.02196081541478634,
0.025470608845353127,
-0.015761783346533775,
0.01293804869055748,
-0.09849608689546585,
-0.02358982339501381,
-0.1190667673945427,
-0.0009284825064241886,
-0.035679999738931656,
0.0017928737215697765,
-0.00020063246483914554,
-0.01618770882487297,
-0.054624397307634354,
0.045578863471746445,
-0.06666383147239685,
-0.06395251303911209,
0.0027070180512964725,
0.058179374784231186,
-0.125907763838768,
0.01115591824054718,
-0.0038103514816612005,
-0.09313201904296875,
0.06735505163669586,
0.05129697918891907,
0.005608086008578539,
0.037741608917713165,
-0.11580784618854523,
-0.021188538521528244,
0.04334765300154686,
0.035279255360364914,
0.05492095276713371,
-0.08898119628429413,
0.004332129843533039,
0.0050323414616286755,
0.04430314153432846,
0.020662223920226097,
0.06987017393112183,
-0.11057770997285843,
-0.015047464519739151,
-0.07769852131605148,
-0.07000868022441864,
-0.06834443658590317,
0.046795230358839035,
0.09482628107070923,
0.02079951763153076,
0.17879167199134827,
-0.09469415247440338,
0.03570910915732384,
-0.19888614118099213,
-0.024435434490442276,
0.01132973562926054,
-0.031340550631284714,
-0.031079718843102455,
-0.035847220569849014,
0.07048597931861877,
-0.0573514960706234,
0.10400459170341492,
0.00747246528044343,
0.0614178366959095,
0.050287846475839615,
-0.050144653767347336,
-0.054730046540498734,
0.004900183063000441,
0.1957518756389618,
0.06043575331568718,
-0.023248907178640366,
0.07230129837989807,
-0.01674048788845539,
0.07120060175657272,
0.07694383710622787,
0.23259685933589935,
0.1479158103466034,
-0.05351990833878517,
0.07819600403308868,
0.03859863430261612,
-0.10407813638448715,
-0.16176356375217438,
0.12180278450250626,
-0.0399881973862648,
0.1471540927886963,
-0.042927730828523636,
0.184446781873703,
0.10778037458658218,
-0.1664697825908661,
0.04998287186026573,
-0.03937062248587608,
-0.1084471121430397,
-0.1304904818534851,
-0.07613304257392883,
-0.08824417740106583,
-0.117662712931633,
0.01219217386096716,
-0.1195649802684784,
0.05816091224551201,
0.056202713400125504,
0.03270791843533516,
0.006636200472712517,
0.1266794502735138,
-0.0429968424141407,
-0.008596133440732956,
0.05739053711295128,
0.01365616824477911,
-0.01413752231746912,
-0.06716033071279526,
-0.060782503336668015,
0.02456902340054512,
-0.0038690115325152874,
0.07948243618011475,
-0.030376307666301727,
0.0037931259721517563,
0.04125921428203583,
-0.031183291226625443,
-0.053493306040763855,
0.03147318586707115,
0.007977115921676159,
0.03409174829721451,
0.06408058106899261,
0.052919574081897736,
-0.032689519226551056,
-0.034148525446653366,
0.24988344311714172,
-0.06632164865732193,
-0.10966525971889496,
-0.12555460631847382,
0.22515642642974854,
0.03608675301074982,
-0.02665848843753338,
0.07577510178089142,
-0.09134677052497864,
-0.0169864259660244,
0.1731964349746704,
0.1538090705871582,
-0.036256592720746994,
-0.020786885172128677,
-0.012141057290136814,
-0.019237453117966652,
-0.04130943864583969,
0.14901626110076904,
0.09579338878393173,
0.07225199043750763,
-0.03800168260931969,
-0.006999575532972813,
-0.01232099812477827,
-0.01857307180762291,
-0.10281609743833542,
0.06318686902523041,
0.029977945610880852,
-0.007658206392079592,
-0.005308683030307293,
0.06583572924137115,
-0.01161858532577753,
-0.13560840487480164,
0.041324879974126816,
-0.14298798143863678,
-0.16344407200813293,
-0.02224537916481495,
0.09989045560359955,
-0.051332101225852966,
0.039063844829797745,
-0.014363023452460766,
-0.009227044880390167,
0.12540976703166962,
-0.01064575556665659,
-0.08729276061058044,
-0.0952557921409607,
0.0808727815747261,
-0.08618029206991196,
0.18969425559043884,
-0.006047230679541826,
0.05916084721684456,
0.11152658611536026,
0.04418226704001427,
-0.10985252261161804,
0.06607833504676819,
0.04385630413889885,
-0.06458733230829239,
0.03959890082478523,
0.1492345780134201,
-0.05606716126203537,
0.08556652069091797,
0.03722701594233513,
-0.0934797152876854,
-0.014048440381884575,
-0.06311476230621338,
-0.015837449580430984,
-0.057652201503515244,
-0.004980544559657574,
-0.07814862579107285,
0.15136808156967163,
0.21016570925712585,
-0.012182292528450489,
0.016252009198069572,
-0.09319480508565903,
0.02286902815103531,
0.04646142199635506,
0.11102355271577835,
-0.027116846293210983,
-0.2019173502922058,
0.010999847203493118,
-0.016153890639543533,
0.032998550683259964,
-0.23182782530784607,
-0.09570388495922089,
0.022795438766479492,
-0.04907246679067612,
-0.1032649576663971,
0.12273270636796951,
0.09020247310400009,
0.03976498171687126,
-0.043604254722595215,
-0.1368647962808609,
-0.0354611799120903,
0.15154506266117096,
-0.15374478697776794,
-0.038640305399894714
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0171
- Mae: 0.5310
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1404 | 1.0 | 308 | 1.0720 | 0.5398 |
| 0.9805 | 2.0 | 616 | 1.0171 | 0.5310 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "model-index": [{"name": "xlm-roberta-base-finetuned-marc", "results": []}]}
|
text-classification
|
ashish-chouhan/xlm-roberta-base-finetuned-marc
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
xlm-roberta-base-finetuned-marc
===============================
This model is a fine-tuned version of xlm-roberta-base on the amazon\_reviews\_multi dataset.
It achieves the following results on the evaluation set:
* Loss: 1.0171
* Mae: 0.5310
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.9.0+cu111
* Datasets 1.13.3
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3"
] |
[
67,
98,
4,
34
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3"
] |
[
-0.08969920873641968,
0.0788131058216095,
-0.002020853804424405,
0.11668860912322998,
0.18411162495613098,
0.04280724376440048,
0.15032243728637695,
0.11920507252216339,
-0.09019723534584045,
-0.0005947492318227887,
0.1133686751127243,
0.17165261507034302,
0.008666648529469967,
0.13224050402641296,
-0.0651962086558342,
-0.25863978266716003,
-0.012149474583566189,
0.049555566161870956,
-0.04406490921974182,
0.1443956196308136,
0.10227098315954208,
-0.13784804940223694,
0.09412798285484314,
-0.0023109742905944586,
-0.19629429280757904,
-0.00663986848667264,
0.028354395180940628,
-0.06832806766033173,
0.13433058559894562,
0.03786728158593178,
0.13632835447788239,
0.007468981668353081,
0.07271213084459305,
-0.19216500222682953,
0.02085009776055813,
0.03998848423361778,
0.003336411202326417,
0.09054745733737946,
0.030977550894021988,
-0.014090626500546932,
0.13446751236915588,
-0.0598425455391407,
0.07248047739267349,
0.018342027440667152,
-0.11866523325443268,
-0.2303640991449356,
-0.08296876400709152,
0.03625860437750816,
0.057567283511161804,
0.09995636343955994,
-0.010560579597949982,
0.15786834061145782,
-0.0779251754283905,
0.10427994281053543,
0.2381826639175415,
-0.2875729203224182,
-0.07652302831411362,
0.03343597427010536,
0.043826278299093246,
0.08316140621900558,
-0.10324987024068832,
-0.024514831602573395,
0.057810574769973755,
0.057328879833221436,
0.11998113989830017,
-0.0455450713634491,
-0.0967596098780632,
0.016228534281253815,
-0.14435434341430664,
-0.024056637659668922,
0.20134010910987854,
0.034054066985845566,
-0.04617566242814064,
-0.05246565863490105,
-0.03183089569211006,
-0.1576123833656311,
-0.03952087461948395,
-0.0013210532488301396,
0.0495138093829155,
-0.063252292573452,
-0.08702249079942703,
-0.012796713970601559,
-0.11576207727193832,
-0.051864102482795715,
-0.06528142094612122,
0.14483042061328888,
0.041342586278915405,
0.016288647428154945,
-0.035296481102705,
0.10461743175983429,
0.022285405546426773,
-0.10326328873634338,
0.01265119668096304,
0.0070578474551439285,
-0.01141493022441864,
-0.04821588099002838,
-0.056671757251024246,
-0.08104922622442245,
0.002094422932714224,
0.12059278041124344,
-0.046942971646785736,
0.03291293978691101,
0.03841502219438553,
0.05743202567100525,
-0.07430141419172287,
0.19619899988174438,
-0.0293257012963295,
-0.005115816835314035,
-0.006359150167554617,
0.04938039183616638,
0.014963744208216667,
-0.010868113487958908,
-0.12931233644485474,
0.008551227860152721,
0.08114135265350342,
0.014890804886817932,
-0.07538852095603943,
0.06452565640211105,
-0.07087405771017075,
-0.04706861451268196,
-0.007674068212509155,
-0.07473762333393097,
0.030721312388777733,
-0.00866372138261795,
-0.06609936058521271,
-0.02428341843187809,
0.022367531433701515,
0.01820313185453415,
-0.011855736374855042,
0.13398383557796478,
-0.08950072526931763,
0.03627515584230423,
-0.09378233551979065,
-0.1074213832616806,
0.021943913772702217,
-0.07633336633443832,
0.037732332944869995,
-0.10850221663713455,
-0.16895031929016113,
-0.03330140560865402,
0.052748903632164,
-0.01800469495356083,
-0.060071125626564026,
-0.035579025745391846,
-0.06260912865400314,
0.00962106790393591,
-0.014469346031546593,
0.1461242437362671,
-0.07029838114976883,
0.1109231561422348,
0.03404753655195236,
0.05867019668221474,
-0.044217050075531006,
0.04997672140598297,
-0.09406069666147232,
-0.008290454745292664,
-0.1542339026927948,
0.03327614814043045,
-0.04504891484975815,
0.059636957943439484,
-0.07169017195701599,
-0.1186993271112442,
0.013662179931998253,
0.020253853872418404,
0.04287933185696602,
0.07415091246366501,
-0.1715749353170395,
-0.07567625492811203,
0.14997205138206482,
-0.06512460112571716,
-0.12282108515501022,
0.11644279956817627,
-0.08012112230062485,
0.06837331503629684,
0.0788191482424736,
0.1605065017938614,
0.07326172292232513,
-0.07679164409637451,
0.024496247991919518,
-0.010469449684023857,
0.03058122843503952,
-0.06552551686763763,
0.07645930349826813,
0.023671550676226616,
-0.01019271556288004,
0.03200045973062515,
-0.03546302765607834,
0.03736380115151405,
-0.09445004165172577,
-0.08877155929803848,
-0.03554805368185043,
-0.09504877775907516,
0.059180695563554764,
0.07303129881620407,
0.07218070328235626,
-0.11747832596302032,
-0.07201864570379257,
0.072311170399189,
0.08552338927984238,
-0.054926272481679916,
0.018734093755483627,
-0.05190156772732735,
0.06279092282056808,
-0.032982923090457916,
-0.022472109645605087,
-0.17936742305755615,
-0.030867652967572212,
0.014868118800222874,
0.005840648896992207,
0.03138534352183342,
0.04146575182676315,
0.05391077697277069,
0.04118833690881729,
-0.07097621262073517,
-0.011210867203772068,
-0.04964433237910271,
-0.009145356714725494,
-0.12254277616739273,
-0.19507403671741486,
-0.0195072703063488,
-0.023747341707348824,
0.11284501850605011,
-0.22432132065296173,
0.034586481750011444,
-0.04221872612833977,
0.057721078395843506,
0.04188430681824684,
-0.011408799327909946,
-0.02050076611340046,
0.08647334575653076,
-0.03721221536397934,
-0.033048830926418304,
0.07587185502052307,
0.0114192059263587,
-0.10266925394535065,
-0.007857203483581543,
-0.09386138617992401,
0.1904798001050949,
0.1280900537967682,
-0.09727833420038223,
-0.08977848291397095,
0.01007209625095129,
-0.05472981557250023,
-0.0336984321475029,
-0.08117290586233139,
0.037172578275203705,
0.18211275339126587,
-0.0031110430136322975,
0.14192086458206177,
-0.08576614409685135,
-0.04790773615241051,
0.027340838685631752,
-0.04444257542490959,
0.024859027937054634,
0.14126290380954742,
0.1261022388935089,
-0.09266813099384308,
0.14016605913639069,
0.14733491837978363,
-0.07854382693767548,
0.16668228805065155,
-0.03754499927163124,
-0.05875544995069504,
-0.025156918913125992,
-0.03545364364981651,
-0.011384354904294014,
0.10770296305418015,
-0.1271558254957199,
0.004880971275269985,
0.031800881028175354,
0.009550148621201515,
0.01693108305335045,
-0.23051244020462036,
-0.049370892345905304,
0.035787660628557205,
-0.03964585065841675,
-0.010288356803357601,
0.006612141150981188,
0.01607069931924343,
0.11032295227050781,
-0.000204946642043069,
-0.06134922802448273,
0.04105152562260628,
0.0070183840580284595,
-0.09188850969076157,
0.218981072306633,
-0.07502160221338272,
-0.18364006280899048,
-0.13157084584236145,
-0.05040883645415306,
-0.043823640793561935,
-0.0030114599503576756,
0.06498158723115921,
-0.07144096493721008,
-0.02921607717871666,
-0.06608493626117706,
0.005259827710688114,
-0.006452561356127262,
0.015709055587649345,
-0.019310176372528076,
0.023521220311522484,
0.03824004530906677,
-0.10379525274038315,
-0.013157700188457966,
-0.06140832230448723,
-0.04043004289269447,
0.054562199860811234,
0.04225077107548714,
0.10899794846773148,
0.15017279982566833,
-0.024625319987535477,
-0.004237817134708166,
-0.033466845750808716,
0.21553479135036469,
-0.08638617396354675,
-0.047226432710886,
0.13027985394001007,
-0.00919677410274744,
0.033580318093299866,
0.1225663274526596,
0.07214632630348206,
-0.09220650047063828,
0.018594160676002502,
0.0297183059155941,
-0.04054538160562515,
-0.26989322900772095,
-0.03813561052083969,
-0.05395372584462166,
0.0017337709432467818,
0.07301029562950134,
0.02642229199409485,
0.006082400679588318,
0.06562972068786621,
0.04208416864275932,
0.0639299675822258,
-0.02863808535039425,
0.06414411962032318,
0.10968416929244995,
0.03845318406820297,
0.13156278431415558,
-0.05459263548254967,
-0.06198596954345703,
0.05720174312591553,
-0.007998486049473286,
0.24662883579730988,
0.01146356388926506,
0.1308283656835556,
0.07677598297595978,
0.12207577377557755,
0.01712278462946415,
0.058506663888692856,
0.01820828579366207,
-0.0390506312251091,
-0.019729986786842346,
-0.0259874165058136,
-0.029861273244023323,
0.02851785533130169,
-0.046258099377155304,
0.04878674075007439,
-0.13740882277488708,
-0.01517334021627903,
0.06370949745178223,
0.23957063257694244,
0.01637575402855873,
-0.3075430691242218,
-0.1034986600279808,
0.010666560381650925,
-0.053265031427145004,
-0.008566362783312798,
0.026231342926621437,
0.10265887528657913,
-0.1269661784172058,
0.035309046506881714,
-0.08017861843109131,
0.09204668551683426,
-0.08587025851011276,
0.0406746007502079,
0.0737190991640091,
0.06712351739406586,
-0.0042356220073997974,
0.07908035814762115,
-0.3088841736316681,
0.28255897760391235,
-0.006037840619683266,
0.06029987707734108,
-0.06396694481372833,
-0.025553489103913307,
0.02325025387108326,
0.052850015461444855,
0.06087544187903404,
-0.005341025069355965,
-0.05817573517560959,
-0.17575401067733765,
-0.0284107718616724,
0.024730049073696136,
0.07549288868904114,
-0.014913158491253853,
0.08833429962396622,
-0.028852926567196846,
0.00468557421118021,
0.05843445286154747,
-0.025804724544286728,
-0.05111173167824745,
-0.09464529156684875,
-0.0038655304815620184,
0.018360784277319908,
-0.06008860841393471,
-0.06395620852708817,
-0.1336924433708191,
-0.08085737377405167,
0.13775821030139923,
-0.013714990578591824,
-0.04588091000914574,
-0.09675602614879608,
0.0740339383482933,
0.06939990818500519,
-0.08039624989032745,
0.03733091428875923,
0.014864921569824219,
0.08401089906692505,
0.023562710732221603,
-0.047485873103141785,
0.09631163626909256,
-0.052263159304857254,
-0.18719500303268433,
-0.06371433287858963,
0.11308453232049942,
0.029150450602173805,
0.06767477840185165,
-0.023889409378170967,
0.0003202410589437932,
-0.04808184877038002,
-0.08834217488765717,
0.02208956889808178,
0.007208225317299366,
0.08494753390550613,
0.04469482973217964,
-0.05968529358506203,
0.0030871727503836155,
-0.07479079812765121,
-0.05774294212460518,
0.20338284969329834,
0.20855481922626495,
-0.09240080416202545,
0.0319414958357811,
0.014260496012866497,
-0.08106228709220886,
-0.17237673699855804,
0.036041516810655594,
0.07062886655330658,
0.012309196405112743,
0.06056687980890274,
-0.1505071520805359,
0.11321844905614853,
0.0978856086730957,
-0.008792789652943611,
0.13124826550483704,
-0.3246510326862335,
-0.1357082575559616,
0.092998206615448,
0.15666764974594116,
0.12478038668632507,
-0.13509884476661682,
-0.011365464888513088,
-0.02902163378894329,
-0.12742674350738525,
0.13889089226722717,
-0.0797988772392273,
0.14106599986553192,
-0.03323850780725479,
0.10517624020576477,
0.0055306171998381615,
-0.055040545761585236,
0.1141112893819809,
0.015610494650900364,
0.11008990556001663,
-0.051189571619033813,
-0.04755876585841179,
0.018128089606761932,
-0.031774718314409256,
0.01822855696082115,
-0.07418257743120193,
0.01935308799147606,
-0.09646936506032944,
-0.03837277367711067,
-0.07653960585594177,
0.0349724106490612,
-0.04103260859847069,
-0.05549848452210426,
-0.04048959165811539,
0.0366409569978714,
0.022709153592586517,
-0.01716303639113903,
0.14425525069236755,
0.005539006553590298,
0.14824862778186798,
0.06986693292856216,
0.0969686284661293,
-0.052967190742492676,
-0.09239111095666885,
-0.0365157276391983,
-0.021090630441904068,
0.04927199333906174,
-0.15312281250953674,
0.0234775822609663,
0.14315424859523773,
0.012146134860813618,
0.15934649109840393,
0.07524921000003815,
-0.029124392196536064,
0.014665036462247372,
0.0681404173374176,
-0.15037766098976135,
-0.09911062568426132,
-0.015696199610829353,
-0.08999629318714142,
-0.11332190036773682,
0.04428256303071976,
0.1125858947634697,
-0.06710053980350494,
-0.027521202340722084,
-0.012822248972952366,
0.009911364875733852,
-0.0493319109082222,
0.19294168055057526,
0.07191715389490128,
0.05021166056394577,
-0.10050036758184433,
0.0860840231180191,
0.05257096141576767,
-0.07189960032701492,
0.009466120973229408,
0.07628060132265091,
-0.08438350260257721,
-0.060859132558107376,
0.06354962289333344,
0.18303954601287842,
-0.0642419382929802,
-0.049636006355285645,
-0.1441536247730255,
-0.12226837128400803,
0.07962166517972946,
0.1551775336265564,
0.11521557718515396,
0.011914368718862534,
-0.04463560879230499,
-0.009503589011728764,
-0.10294685512781143,
0.10392884165048599,
0.0605919174849987,
0.06752999126911163,
-0.15503478050231934,
0.11863948404788971,
0.029957475140690804,
0.0541674830019474,
-0.021622778847813606,
0.034717705100774765,
-0.11526400595903397,
0.016919778659939766,
-0.11504106968641281,
-0.005689892917871475,
-0.020871130749583244,
0.015758033841848373,
-0.000011293554052826948,
-0.056088414043188095,
-0.06888076663017273,
0.011221881955862045,
-0.12260764837265015,
-0.015463718213140965,
0.040947869420051575,
0.07636506855487823,
-0.08735134452581406,
-0.03774075210094452,
0.025131814181804657,
-0.044449206441640854,
0.07054857164621353,
0.04639565199613571,
0.010060708969831467,
0.06379085034132004,
-0.1346539705991745,
0.035097938030958176,
0.05810236558318138,
0.01618829369544983,
0.048595130443573,
-0.12127469480037689,
0.008084917441010475,
0.0037275832146406174,
0.07196000963449478,
0.025372212752699852,
0.06821733713150024,
-0.16025495529174805,
-0.003510191338136792,
-0.012026109732687473,
-0.0823134258389473,
-0.06003759056329727,
0.020695645362138748,
0.05988289788365364,
0.03280865401029587,
0.21241161227226257,
-0.08327525109052658,
0.044476889073848724,
-0.19984763860702515,
0.005042455159127712,
-0.018952539190649986,
-0.1236746534705162,
-0.12333687394857407,
-0.07353171706199646,
0.05600515753030777,
-0.06671633571386337,
0.16871386766433716,
0.04799633473157883,
0.05590956658124924,
0.024909524247050285,
-0.019613705575466156,
-0.005477012135088444,
0.01654432900249958,
0.1699223816394806,
0.006353179458528757,
-0.040968406945466995,
0.05997897684574127,
0.048561714589595795,
0.10553471744060516,
0.10626053810119629,
0.2005988508462906,
0.1689538210630417,
0.008475537411868572,
0.08598166704177856,
0.03744841367006302,
-0.033088747411966324,
-0.1326644867658615,
0.034862399101257324,
-0.024920694530010223,
0.11207643151283264,
-0.02627372555434704,
0.20016539096832275,
0.07113639265298843,
-0.16534940898418427,
0.04726671054959297,
-0.059454649686813354,
-0.0877637043595314,
-0.11392476409673691,
-0.057095278054475784,
-0.09799588471651077,
-0.1433398425579071,
0.0054271891713142395,
-0.13018561899662018,
-0.002534972969442606,
0.09253046661615372,
0.007907803170382977,
-0.04063508287072182,
0.12019386887550354,
0.02128826268017292,
0.012589924968779087,
0.08588004112243652,
0.013546252623200417,
-0.03234229236841202,
-0.11028102040290833,
-0.04837234690785408,
-0.03232666477560997,
-0.0259215347468853,
0.02347799576818943,
-0.05382605642080307,
-0.06815007328987122,
0.024031084030866623,
-0.026911050081253052,
-0.10209652036428452,
0.01477099396288395,
0.022353732958436012,
0.07849214226007462,
0.038600627332925797,
0.015154123306274414,
0.008803902193903923,
-0.001716399216093123,
0.25281864404678345,
-0.06071102246642113,
-0.05967835336923599,
-0.12048252671957016,
0.23846904933452606,
0.04107549414038658,
-0.026692213490605354,
0.03604837879538536,
-0.06229545176029205,
0.004468207713216543,
0.2504338324069977,
0.2342642843723297,
-0.0719616562128067,
-0.00817896518856287,
0.016906507313251495,
-0.005311863496899605,
-0.014990036375820637,
0.12342239916324615,
0.11369626969099045,
0.04520965367555618,
-0.07569831609725952,
-0.035645078867673874,
-0.053646400570869446,
0.0011054439237341285,
-0.017383644357323647,
0.06699435412883759,
0.054239626973867416,
0.005704766139388084,
-0.041149403899908066,
0.07595988363027573,
-0.0842713862657547,
-0.11461959779262543,
0.04632626846432686,
-0.214216947555542,
-0.17231781780719757,
-0.01618320494890213,
0.09042130410671234,
-0.00035814614966511726,
0.06637946516275406,
-0.025096194818615913,
-0.014475582167506218,
0.07151187211275101,
-0.015309244394302368,
-0.10757069289684296,
-0.08088049292564392,
0.09794585406780243,
-0.10174631327390671,
0.1894235759973526,
-0.05256371945142746,
0.05561792477965355,
0.12177523970603943,
0.06067510321736336,
-0.0643899068236351,
0.07995978742837906,
0.03764583170413971,
-0.03997691720724106,
0.047035422176122665,
0.09947865456342697,
-0.03162940964102745,
0.07306943088769913,
0.05388220399618149,
-0.1272321194410324,
0.017924513667821884,
-0.09446742385625839,
-0.04539940133690834,
-0.05730372294783592,
-0.010345656424760818,
-0.0737353041768074,
0.12900994718074799,
0.23700599372386932,
-0.03694234415888786,
-0.008223472163081169,
-0.059417400509119034,
0.025558622553944588,
0.06234022602438927,
0.04123730957508087,
-0.0486760176718235,
-0.22877661883831024,
0.010137573815882206,
0.07167889177799225,
-0.014987273141741753,
-0.26807644963264465,
-0.07071062922477722,
0.0016321060247719288,
-0.07103289663791656,
-0.07667788118124008,
0.0808267667889595,
0.07702352106571198,
0.04585065320134163,
-0.0621536485850811,
-0.06290514767169952,
-0.06798167526721954,
0.1551957130432129,
-0.15270714461803436,
-0.09556545317173004
] |
null | null |
transformers
|
## Natural Don't Know Response Model
Fine-tuned on [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) using a combination of a dependency-rule based data and [Quora Question Pairs(QQP)](https://huggingface.co/nlp/viewer/?dataset=quora) dataset for **Don't Know Response Generation** task.
Additional information about this model:
- Paper : [Saying No is An Art: Contextualized Fallback Responses for
Unanswerable Dialogue Queries](https://arxiv.org/pdf/2012.01873.pdf)
- Github Repo: https://github.com/kaustubhdhole/natural-dont-know
#### How to use
```python
from transformers import T5ForConditionalGeneration, T5Tokenizer
model_name = "ashish-shrivastava/dont-know-response"
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
input = "Where can I find good Italian food ?"
input_ids = tokenizer.encode(input, return_tensors="pt")
outputs = model.generate(input_ids)
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded_output) # I'm not sure where you can get good quality Italian food.
```
#### Hyperparameters
```
n_epochs = 2
base_LM_model = "T5-base"
max_seq_len = 256
learning_rate = 3e-4
adam_epsilon = 1e-8
train_batch_size = 6
```
#### BibTeX entry and citation info
```bibtex
@misc{shrivastava2020saying,
title={Saying No is An Art: Contextualized Fallback Responses for Unanswerable Dialogue Queries},
author={Ashish Shrivastava and Kaustubh Dhole and Abhinav Bhatt and Sharvani Raghunath},
year={2020},
eprint={2012.01873},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
{}
|
text2text-generation
|
ashish-shrivastava/dont-know-response
|
[
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"arxiv:2012.01873",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2012.01873"
] |
[] |
TAGS
#transformers #pytorch #jax #t5 #text2text-generation #arxiv-2012.01873 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
## Natural Don't Know Response Model
Fine-tuned on Google's T5 using a combination of a dependency-rule based data and Quora Question Pairs(QQP) dataset for Don't Know Response Generation task.
Additional information about this model:
- Paper : Saying No is An Art: Contextualized Fallback Responses for
Unanswerable Dialogue Queries
- Github Repo: URL
#### How to use
#### Hyperparameters
#### BibTeX entry and citation info
|
[
"## Natural Don't Know Response Model\n\nFine-tuned on Google's T5 using a combination of a dependency-rule based data and Quora Question Pairs(QQP) dataset for Don't Know Response Generation task.\n\nAdditional information about this model:\n- Paper : Saying No is An Art: Contextualized Fallback Responses for\nUnanswerable Dialogue Queries\n- Github Repo: URL",
"#### How to use",
"#### Hyperparameters",
"#### BibTeX entry and citation info"
] |
[
"TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #arxiv-2012.01873 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"## Natural Don't Know Response Model\n\nFine-tuned on Google's T5 using a combination of a dependency-rule based data and Quora Question Pairs(QQP) dataset for Don't Know Response Generation task.\n\nAdditional information about this model:\n- Paper : Saying No is An Art: Contextualized Fallback Responses for\nUnanswerable Dialogue Queries\n- Github Repo: URL",
"#### How to use",
"#### Hyperparameters",
"#### BibTeX entry and citation info"
] |
[
59,
94,
5,
6,
11
] |
[
"passage: TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #arxiv-2012.01873 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## Natural Don't Know Response Model\n\nFine-tuned on Google's T5 using a combination of a dependency-rule based data and Quora Question Pairs(QQP) dataset for Don't Know Response Generation task.\n\nAdditional information about this model:\n- Paper : Saying No is An Art: Contextualized Fallback Responses for\nUnanswerable Dialogue Queries\n- Github Repo: URL#### How to use#### Hyperparameters#### BibTeX entry and citation info"
] |
[
-0.009021444246172905,
0.0829278901219368,
-0.003563579171895981,
0.06853102892637253,
0.1173376813530922,
-0.01663191430270672,
0.06276978552341461,
0.1427309215068817,
0.08813741058111191,
0.03404141962528229,
0.09763140231370926,
0.13840560615062714,
0.046600591391325,
0.10557761043310165,
-0.11716045439243317,
-0.16595296561717987,
-0.04300672560930252,
0.006687238812446594,
0.1727226972579956,
0.13468840718269348,
0.06844606250524521,
-0.0324331670999527,
0.08493755012750626,
-0.03696487098932266,
-0.030663371086120605,
0.03005996160209179,
0.041091687977313995,
-0.08244006335735321,
0.11201180517673492,
0.049273692071437836,
-0.03572209179401398,
0.06675904989242554,
-0.02698877453804016,
-0.12039053440093994,
0.053388338536024094,
0.018331367522478104,
-0.027530644088983536,
0.092475526034832,
0.0483553409576416,
-0.07977280765771866,
-0.03678254038095474,
-0.012586509808897972,
-0.0161065012216568,
0.08756934106349945,
-0.12307530641555786,
-0.015369473956525326,
-0.044201552867889404,
0.07670926302671432,
0.06312741339206696,
0.1251472532749176,
-0.048753105103969574,
0.13295389711856842,
-0.04305803403258324,
0.08344783633947372,
0.15660467743873596,
-0.2565958797931671,
-0.045267753303050995,
0.07450679689645767,
0.03938564285635948,
0.07806450873613358,
-0.020893795415759087,
0.030000001192092896,
0.05386046692728996,
0.014226683415472507,
-0.08874985575675964,
-0.04299956187605858,
-0.17079171538352966,
0.013516097329556942,
-0.08204635232686996,
0.026025500148534775,
0.23159125447273254,
0.038151420652866364,
-0.01744423247873783,
-0.03635667636990547,
-0.1002722904086113,
0.12508420646190643,
0.008101959712803364,
-0.026209278032183647,
-0.04019539803266525,
0.03311580792069435,
-0.058061715215444565,
-0.11503586173057556,
-0.06956031173467636,
-0.048340436071157455,
-0.1312672644853592,
0.025898747146129608,
0.008234725333750248,
0.0618777833878994,
-0.15726499259471893,
0.09927677363157272,
-0.032563697546720505,
-0.1020732894539833,
-0.01227068342268467,
-0.04535134881734848,
-0.004563906695693731,
-0.038698263466358185,
-0.05528879538178444,
-0.08632688969373703,
0.1626587063074112,
0.1375913769006729,
-0.06117480993270874,
0.016441306099295616,
-0.11127132177352905,
0.02634149231016636,
0.04416658356785774,
0.10556052625179291,
-0.12047862261533737,
-0.15209253132343292,
0.12963640689849854,
-0.02674770914018154,
-0.008516192436218262,
-0.06885392963886261,
-0.08570405095815659,
-0.08817247301340103,
0.07364840805530548,
0.11687745153903961,
0.17846907675266266,
0.10116592794656754,
-0.047925110906362534,
-0.05151961371302605,
-0.023037174716591835,
-0.06796024739742279,
-0.05017519369721413,
-0.0006721544777974486,
-0.107474185526371,
0.055634498596191406,
0.0672900527715683,
0.027419228106737137,
-0.14575138688087463,
-0.04689934104681015,
-0.06967929005622864,
-0.028415266424417496,
0.01247152779251337,
-0.037749845534563065,
0.034984342753887177,
-0.06508159637451172,
-0.01598583348095417,
-0.10718733817338943,
-0.20060190558433533,
-0.014107812196016312,
-0.001066795433871448,
-0.1078767478466034,
-0.10004158318042755,
-0.04619584605097771,
-0.0005211664829403162,
0.013786953873932362,
-0.0708727166056633,
0.030037494376301765,
-0.07493986934423447,
0.06312547624111176,
-0.023757245391607285,
0.0745709091424942,
-0.1106279045343399,
0.02536640502512455,
-0.15143996477127075,
-0.048217713832855225,
-0.0395946241915226,
0.11924564838409424,
0.02143530175089836,
0.04643263295292854,
-0.1618383228778839,
0.00584685942158103,
0.027392150834202766,
-0.05191652849316597,
0.06902436912059784,
0.21174634993076324,
-0.14137114584445953,
-0.007349944673478603,
0.11059582233428955,
-0.0024643836077302694,
-0.13474330306053162,
0.14086492359638214,
0.001031082239933312,
0.12305000424385071,
0.10425570607185364,
0.08596973121166229,
-0.04077946022152901,
-0.05295344814658165,
-0.0017027544090524316,
0.03087765909731388,
-0.1271858811378479,
0.03739955648779869,
-0.024583779275417328,
-0.015441345982253551,
-0.14869359135627747,
0.0571194663643837,
0.07280924916267395,
-0.014246385544538498,
-0.07536990940570831,
-0.035813551396131516,
-0.05876164510846138,
-0.03530003875494003,
0.06151546165347099,
-0.026551511138677597,
0.018336882814764977,
-0.0060554188676178455,
-0.060428518801927567,
-0.07640243321657181,
-0.049678266048431396,
0.046246934682130814,
0.025760531425476074,
-0.0803339034318924,
0.15776877105236053,
-0.10670314729213715,
0.07411757111549377,
-0.20268554985523224,
-0.058446239680051804,
0.001068679615855217,
0.11404052376747131,
0.12614238262176514,
-0.004326667636632919,
0.03347112983465195,
-0.07569058984518051,
-0.030102796852588654,
0.007712856400758028,
0.08667297661304474,
-0.00614588288590312,
-0.10313980281352997,
-0.1358616203069687,
0.08325324952602386,
-0.016111867502331734,
0.06906075775623322,
-0.04661334306001663,
-0.03441180661320686,
0.0015956279821693897,
0.088897205889225,
-0.020047426223754883,
0.04079066589474678,
0.041468821465969086,
-0.04155848175287247,
-0.031937114894390106,
-0.009917291812598705,
0.06513071805238724,
0.004471208900213242,
-0.12907052040100098,
0.0884491354227066,
-0.03881035000085831,
-0.03632047772407532,
0.11110786348581314,
-0.11202742159366608,
-0.06240491941571236,
-0.008137467317283154,
-0.06339392066001892,
-0.029231881722807884,
-0.04056428745388985,
0.029343411326408386,
0.21432410180568695,
0.041939206421375275,
0.07954362779855728,
-0.07097861915826797,
-0.0363880880177021,
-0.0009470309014432132,
-0.07691691815853119,
0.009496456012129784,
0.05784320458769798,
-0.006680527701973915,
-0.24531082808971405,
0.06254434585571289,
0.06639616936445236,
-0.005418169777840376,
0.1873236894607544,
0.012202272191643715,
-0.04713058099150658,
0.00045772353769280016,
0.03875596448779106,
-0.04012689366936684,
0.000764574680943042,
-0.10810260474681854,
0.037495989352464676,
0.06995267421007156,
-0.008394923061132431,
0.04723271727561951,
-0.06616626679897308,
0.006139507982879877,
-0.09141626954078674,
-0.03850264474749565,
-0.10033164918422699,
0.06522335112094879,
0.08014925569295883,
0.17276036739349365,
0.08875124156475067,
0.04216940701007843,
0.07185950130224228,
-0.017116716131567955,
-0.119179368019104,
0.15794479846954346,
-0.05629589036107063,
-0.27159395813941956,
-0.015578081831336021,
-0.06825488060712814,
-0.09754173457622528,
-0.005741102620959282,
0.0580228790640831,
-0.09169860184192657,
-0.01595371589064598,
-0.02005159854888916,
0.06714294850826263,
0.016230838373303413,
-0.02761191874742508,
-0.13376811146736145,
0.002180258044973016,
0.0222857017070055,
-0.09560679644346237,
0.004971114452928305,
-0.06524921208620071,
-0.13090719282627106,
0.10685241967439651,
-0.11024159938097,
0.04346514120697975,
0.121501125395298,
-0.024612048640847206,
0.0343584343791008,
-0.04086386412382126,
0.23074117302894592,
-0.04421126842498779,
0.10836167633533478,
0.21329376101493835,
-0.006505039986222982,
0.06506218761205673,
0.1587865650653839,
-0.02101958356797695,
-0.08155624568462372,
0.09124884009361267,
0.04741594195365906,
-0.04494050517678261,
-0.3003804385662079,
-0.051269419491291046,
-0.05807019770145416,
0.08489598333835602,
0.04858694225549698,
0.04550512507557869,
0.141525998711586,
0.09398582577705383,
-0.05626432225108147,
0.03327241167426109,
0.013226636685431004,
0.10117735713720322,
0.13031822443008423,
-0.007347936742007732,
0.11360914260149002,
-0.022749679163098335,
-0.041413649916648865,
0.11188038438558578,
0.09170636534690857,
0.08869322389364243,
-0.008836322464048862,
0.0016469088150188327,
0.024829847738146782,
0.12558838725090027,
0.06706018000841141,
0.048455823212862015,
0.025891605764627457,
0.001292738481424749,
-0.059648845344781876,
-0.05874988064169884,
-0.002438470022752881,
0.060444463044404984,
0.08399992436170578,
-0.005521440878510475,
-0.0007808872614987195,
-0.0012970913667231798,
0.07788309454917908,
0.27775517106056213,
0.07763847708702087,
-0.16916033625602722,
-0.09265051782131195,
0.006557371933013201,
-0.01821078732609749,
-0.09725126624107361,
0.06033214554190636,
-0.04891497269272804,
-0.11659424751996994,
0.06547590345144272,
-0.00043124842341057956,
0.15033787488937378,
-0.079775370657444,
0.04003148898482323,
-0.10444580018520355,
-0.018162773922085762,
-0.04092913120985031,
0.10542167723178864,
-0.2669125497341156,
0.10775834321975708,
0.023220770061016083,
-0.02534252032637596,
-0.0922301858663559,
-0.01717490889132023,
-0.002493050182238221,
0.014770576730370522,
0.14776214957237244,
-0.012568424455821514,
0.11204463988542557,
0.0027184346690773964,
-0.049803804606199265,
0.06899122148752213,
0.06795593351125717,
-0.02964923344552517,
0.05563107132911682,
-0.04452811926603317,
0.00531722093001008,
-0.02356942743062973,
0.025857657194137573,
-0.18823577463626862,
-0.08422330021858215,
0.04545056074857712,
0.03032595105469227,
0.05591747909784317,
0.01779939979314804,
-0.03189285099506378,
0.06933826953172684,
0.1756773442029953,
-0.04584937542676926,
-0.11796096712350845,
-0.14908356964588165,
0.08997972309589386,
0.10303713381290436,
-0.05844366177916527,
-0.0014882860705256462,
-0.07180657982826233,
0.018033208325505257,
0.018022922798991203,
-0.17168544232845306,
0.13215437531471252,
-0.07889017462730408,
-0.14047110080718994,
-0.04254093021154404,
0.1506550908088684,
-0.010858677327632904,
0.0011554860975593328,
0.02502559870481491,
-0.012704840861260891,
-0.1323491483926773,
-0.10450917482376099,
0.07121143490076065,
-0.07104091346263885,
0.03779349476099014,
0.08630236983299255,
-0.019376680254936218,
-0.12148456275463104,
-0.07850279659032822,
-0.002528973389416933,
0.17028287053108215,
0.06641420722007751,
-0.0465419664978981,
0.09338030219078064,
0.16417653858661652,
-0.0417194664478302,
-0.21534867584705353,
0.002720983000472188,
0.008207838982343674,
-0.07071635127067566,
-0.04358413815498352,
-0.10565592348575592,
0.09009982645511627,
-0.04303193464875221,
-0.015795959159731865,
0.03683110326528549,
-0.1238226667046547,
-0.08691349625587463,
0.07169215381145477,
0.046768080443143845,
0.3015328049659729,
-0.09525294601917267,
-0.09333823621273041,
-0.06067376583814621,
-0.1625787913799286,
0.19329091906547546,
-0.15297457575798035,
0.07982572913169861,
-0.04960200935602188,
0.1664709746837616,
0.033268652856349945,
-0.01660926640033722,
0.018943479284644127,
-0.07131931185722351,
0.00097849708981812,
-0.07411216199398041,
-0.05117267370223999,
0.02425634302198887,
-0.007968910969793797,
0.08338484168052673,
0.04911887273192406,
0.10384422540664673,
0.020966699346899986,
-0.03482804074883461,
-0.10580074787139893,
0.1016218438744545,
0.006673953961580992,
-0.08026346564292908,
-0.020346125587821007,
-0.0007579498342238367,
0.017993386834859848,
-0.017906125634908676,
0.11176551878452301,
-0.12505102157592773,
0.16249236464500427,
0.17175446450710297,
0.12932154536247253,
-0.04474949464201927,
0.06316997855901718,
0.00864853709936142,
-0.07572299987077713,
0.07499101012945175,
-0.19436173141002655,
0.07186413556337357,
0.0917399525642395,
0.04446454718708992,
0.10390504449605942,
0.05654982477426529,
-0.04075110703706741,
0.02457919716835022,
0.018669692799448967,
-0.1892821043729782,
-0.14988769590854645,
-0.06294456869363785,
-0.11852356791496277,
-0.03782441094517708,
0.0639200210571289,
0.19950135052204132,
-0.017267338931560516,
-0.04867367073893547,
0.003306802362203598,
0.02482406049966812,
-0.014276931993663311,
0.06336825340986252,
0.04012657701969147,
0.009544534608721733,
-0.12621816992759705,
0.11269782483577728,
0.10311666131019592,
0.04377473145723343,
0.04953751340508461,
0.08877795189619064,
-0.09551260620355606,
-0.08920373022556305,
-0.06880295276641846,
0.09093606472015381,
-0.1391543447971344,
-0.01972583495080471,
-0.0653393417596817,
-0.11191847920417786,
0.05031450465321541,
0.1693679690361023,
-0.03791090473532677,
0.00249186041764915,
0.007641329430043697,
-0.04765937477350235,
-0.028586558997631073,
0.09741361439228058,
0.012969243340194225,
-0.01819855347275734,
-0.03123021498322487,
-0.06247250735759735,
-0.013257764279842377,
0.12669628858566284,
-0.07842546701431274,
-0.0546327568590641,
-0.15803970396518707,
0.025120191276073456,
-0.2925024926662445,
0.03214680403470993,
-0.028977522626519203,
0.00808962807059288,
-0.051732730120420456,
-0.075484998524189,
-0.04240189492702484,
0.014552129432559013,
-0.04198070243000984,
-0.022943880409002304,
0.018448656424880028,
0.08086396008729935,
-0.12134874612092972,
-0.0024831146001815796,
0.04121708869934082,
0.012298457324504852,
0.1908515989780426,
0.08303545415401459,
-0.1252884864807129,
0.05874833092093468,
-0.19371116161346436,
-0.03447333350777626,
-0.005637262016534805,
0.03426119312644005,
0.07683123648166656,
-0.037951819598674774,
0.009525737725198269,
0.007447446696460247,
0.008171976543962955,
0.0075917961075901985,
0.09505950659513474,
-0.13044878840446472,
-0.01751660369336605,
-0.042590443044900894,
-0.060655925422906876,
-0.05327790975570679,
0.00016405541100539267,
0.007903714664280415,
0.07304000109434128,
0.06275831907987595,
-0.09373645484447479,
0.0803973600268364,
-0.13454854488372803,
0.00024101234157569706,
0.0262598879635334,
-0.043242234736680984,
-0.0948144719004631,
-0.04265003278851509,
0.09701690822839737,
-0.04900331422686577,
0.14595793187618256,
-0.02431371435523033,
0.16437719762325287,
0.02387464977800846,
0.16167369484901428,
-0.018597817048430443,
-0.046314626932144165,
0.05441800877451897,
-0.0011566283646970987,
-0.024323754012584686,
-0.024862566962838173,
0.06584054231643677,
-0.041447896510362625,
-0.003723622765392065,
0.13670702278614044,
-0.04143258184194565,
0.09635499119758606,
0.028414888307452202,
0.03981134667992592,
0.019383862614631653,
0.04677928239107132,
-0.0026954736094921827,
0.011952635832130909,
0.04736557602882385,
-0.01984495110809803,
-0.042964380234479904,
0.1861533522605896,
0.014452055096626282,
0.008586199022829533,
-0.05368293449282646,
-0.02223837375640869,
-0.11723010241985321,
-0.18226146697998047,
-0.09648460149765015,
-0.07487469166517258,
0.0035946695134043694,
-0.12731924653053284,
0.02405584789812565,
-0.0108259292319417,
0.05597475916147232,
-0.06761359423398972,
0.04122414067387581,
0.0998947024345398,
-0.13467547297477722,
0.11280176788568497,
0.018137630075216293,
0.04590335488319397,
-0.001184531138278544,
0.049031030386686325,
-0.00007076936162775382,
0.05952657759189606,
-0.004907951224595308,
0.06378930062055588,
-0.035666629672050476,
0.03755310922861099,
-0.08603274822235107,
-0.10298126935958862,
-0.034024786204099655,
0.08472630381584167,
-0.05447511747479439,
0.13970911502838135,
0.033315259963274,
0.013324766419827938,
0.0298144593834877,
0.3149520754814148,
-0.07767711579799652,
-0.09679757803678513,
-0.09767036139965057,
0.23686721920967102,
-0.04465317726135254,
0.004105944652110338,
0.02861541137099266,
-0.09599058330059052,
-0.000564688176382333,
0.238561749458313,
0.1267598569393158,
-0.1303488165140152,
0.009151317179203033,
0.028886470943689346,
0.012789614498615265,
0.06670482456684113,
0.04216594621539116,
0.08836352080106735,
0.21805013716220856,
-0.03343936800956726,
0.06255273520946503,
-0.01006712019443512,
-0.008739844895899296,
-0.03201473504304886,
0.1404476761817932,
0.011063393205404282,
-0.0486312210559845,
-0.04502149298787117,
0.10057689249515533,
-0.25815653800964355,
-0.058095723390579224,
-0.13259756565093994,
-0.1141512468457222,
-0.1280287504196167,
-0.0812288150191307,
-0.026321174576878548,
0.009372853673994541,
0.06564318388700485,
0.010862094350159168,
0.027251875028014183,
0.05013354495167732,
0.004202029202133417,
-0.09068634361028671,
0.0031872300896793604,
0.06627541780471802,
-0.05035215616226196,
0.05983546003699303,
0.01078388188034296,
0.10213807970285416,
0.09071877598762512,
0.02895266003906727,
-0.09468556195497513,
0.1043291687965393,
0.033044856041669846,
-0.045826636254787445,
0.056738704442977905,
0.03113914467394352,
0.072218157351017,
-0.008373873308300972,
0.11290201544761658,
-0.05060562863945961,
0.02627430483698845,
0.07359364628791809,
0.013885931111872196,
-0.17661762237548828,
0.08007203042507172,
-0.08295480161905289,
0.06942743062973022,
0.07727926969528198,
-0.08887874335050583,
0.01564023084938526,
-0.10029026865959167,
0.009790115058422089,
-0.024132201448082924,
-0.009820789098739624,
-0.05048517882823944,
-0.09667599946260452,
0.019562965258955956,
0.06970547884702682,
0.04299892485141754,
-0.12864907085895538,
0.034205786883831024,
-0.07898535579442978,
-0.002505096374079585,
-0.08465098589658737,
0.09061723947525024,
0.09537932276725769,
0.011610366404056549,
0.0013677275273948908,
-0.0888281837105751,
0.03992880508303642,
0.10821861028671265,
-0.08525094389915466,
-0.07072094082832336
] |
null | null |
transformers
|
# The [ELECTRA-small](https://huggingface.co/ashraq/dv-electra-small) fine-tuned for news classification in Dhivehi
|
{"widget": [{"text": "\u078e\u07ab\u078e\u07a6\u078d\u07b0 \u0795\u07a8\u0786\u07b0\u0790\u07a6\u078d\u07b0 6 \u078e\u07ac \u0786\u07ac\u0789\u07ac\u0783\u07a7\u060c \u0787\u07ad\u0787\u07a6\u0787\u07a8 \u078e\u07ac \u0796\u07a7\u078b\u07ab\u0787\u07a8\u0782\u07b0 \u078a\u07aa\u0783\u07a8\u078a\u07a6\u0787\u07a8"}]}
|
text-classification
|
ashraq/dv-electra-small-news-classification
|
[
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #electra #text-classification #autotrain_compatible #endpoints_compatible #region-us
|
# The ELECTRA-small fine-tuned for news classification in Dhivehi
|
[
"# The ELECTRA-small fine-tuned for news classification in Dhivehi"
] |
[
"TAGS\n#transformers #pytorch #electra #text-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"# The ELECTRA-small fine-tuned for news classification in Dhivehi"
] |
[
37,
20
] |
[
"passage: TAGS\n#transformers #pytorch #electra #text-classification #autotrain_compatible #endpoints_compatible #region-us \n# The ELECTRA-small fine-tuned for news classification in Dhivehi"
] |
[
-0.006804537493735552,
-0.02588001638650894,
-0.006137787364423275,
-0.03745684772729874,
0.18397308886051178,
0.033274874091148376,
0.10736453533172607,
0.07278444617986679,
0.02570541389286518,
0.01685536466538906,
0.07291440665721893,
0.15331174433231354,
-0.008709895424544811,
0.1211838498711586,
-0.11455172300338745,
-0.27003440260887146,
0.0969807505607605,
0.06697587668895721,
-0.02391911670565605,
0.11902688443660736,
0.14347931742668152,
-0.09017665684223175,
0.022939292713999748,
-0.04303073510527611,
-0.06399955600500107,
0.05281224101781845,
-0.0063555496744811535,
-0.16631408035755157,
0.07414723932743073,
0.024094609543681145,
0.08811675012111664,
0.03278087452054024,
0.009532186202704906,
-0.10767130553722382,
0.0675850510597229,
-0.017683200538158417,
-0.10381458699703217,
0.016399584710597992,
0.012663641944527626,
-0.11139258742332458,
0.08055208623409271,
-0.07177184522151947,
-0.003135065548121929,
-0.013749769888818264,
-0.08638603985309601,
-0.05560028925538063,
0.06295789778232574,
0.040654171258211136,
0.1531537026166916,
0.11737390607595444,
-0.030400952324271202,
0.11888443678617477,
-0.11885341256856918,
0.06271076947450638,
0.07823493331670761,
-0.13561460375785828,
-0.02410871908068657,
0.055845312774181366,
0.00522734597325325,
0.033937979489564896,
-0.08503593504428864,
0.07920293509960175,
0.0544760525226593,
-0.013291949406266212,
-0.06620629131793976,
-0.025922216475009918,
-0.02444399520754814,
0.008844257332384586,
-0.050876788794994354,
-0.021451160311698914,
0.13329364359378815,
-0.04656810685992241,
0.08781708031892776,
-0.05719871073961258,
-0.08716936409473419,
-0.011521791107952595,
-0.06289433687925339,
0.0762966126203537,
-0.12257342785596848,
0.08988921344280243,
0.14869976043701172,
0.1252727061510086,
-0.12255309522151947,
0.01622013933956623,
-0.15892468392848969,
0.3329698443412781,
0.04015557840466499,
0.05614084377884865,
-0.17532020807266235,
0.036404579877853394,
0.10383257269859314,
-0.0907994881272316,
0.04819124564528465,
-0.09417090564966202,
0.03541204333305359,
-0.010282476432621479,
-0.06792335957288742,
-0.09808240085840225,
0.11784956604242325,
0.11572632193565369,
-0.0017790598794817924,
0.030638305470347404,
0.055845342576503754,
0.05521589517593384,
0.13724537193775177,
-0.012468447908759117,
-0.09803087264299393,
0.057687852531671524,
0.05120450630784035,
-0.018696384504437447,
0.08253753930330276,
-0.036689288914203644,
-0.04706748202443123,
0.06169890612363815,
-0.030009062960743904,
0.0487217977643013,
-0.02315504103899002,
0.11522176116704941,
-0.03228135406970978,
-0.05522902309894562,
0.0713116005063057,
-0.11183580756187439,
-0.06070757657289505,
0.005416102707386017,
0.015514368191361427,
0.13588055968284607,
-0.07302539050579071,
0.017573431134223938,
-0.055012814700603485,
0.13912150263786316,
-0.061115242540836334,
-0.025437336415052414,
0.02899438515305519,
-0.027956873178482056,
-0.015480424277484417,
-0.14247435331344604,
0.04977161064743996,
-0.19317156076431274,
-0.11904425173997879,
0.014733174815773964,
-0.009191873483359814,
-0.02857830561697483,
-0.06140780821442604,
-0.04154517129063606,
0.010531598702073097,
0.11246418207883835,
-0.0509207546710968,
-0.08637616038322449,
-0.11437421292066574,
0.12224997580051422,
-0.0006827334873378277,
0.09748034924268723,
-0.08825086802244186,
0.046763233840465546,
-0.044634174555540085,
-0.024131637066602707,
-0.03715062886476517,
0.09511081874370575,
-0.07529018074274063,
0.12220574915409088,
-0.032276254147291183,
0.020046137273311615,
0.019936304539442062,
0.0725058913230896,
-0.06379863619804382,
0.16656719148159027,
-0.11517982929944992,
-0.14271080493927002,
0.045256707817316055,
-0.12980976700782776,
-0.025447025895118713,
0.04647272825241089,
-0.05293487012386322,
0.07671038806438446,
0.13722994923591614,
0.00963637139648199,
-0.0017455151537433267,
0.052945464849472046,
-0.05314728617668152,
-0.0012664924142882228,
-0.10553038120269775,
0.032468561083078384,
0.04757256433367729,
0.10115603357553482,
-0.10438407957553864,
0.018361929804086685,
0.035500362515449524,
0.03189278021454811,
-0.03394145146012306,
-0.024718498811125755,
0.09708666056394577,
0.01477987039834261,
0.10902770608663559,
-0.000452206761110574,
0.06304696202278137,
-0.03028511442244053,
-0.02439802698791027,
0.01618906296789646,
0.10984217375516891,
0.018464278429746628,
0.029166199266910553,
-0.18305368721485138,
0.061119429767131805,
-0.048629723489284515,
0.09246651083230972,
-0.15322990715503693,
0.10032960027456284,
-0.02165425755083561,
0.17612344026565552,
-0.0015103652840480208,
0.03516416624188423,
-0.008876679465174675,
-0.1313159167766571,
-0.02828468196094036,
-0.017633628100156784,
0.06647218018770218,
0.024786746129393578,
-0.03302973136305809,
-0.13785231113433838,
0.11404240876436234,
-0.08023461699485779,
0.10075879842042923,
-0.12467210739850998,
-0.020423319190740585,
0.10794290155172348,
0.10378152132034302,
0.008076631464064121,
0.13223786652088165,
0.04060560092329979,
0.015690268948674202,
-0.06838444620370865,
0.02918488346040249,
0.052968062460422516,
-0.02318287268280983,
-0.05994413048028946,
0.08581552654504776,
-0.06681206822395325,
0.19117608666419983,
0.10672019422054291,
-0.2654353082180023,
0.037232160568237305,
0.07594092190265656,
0.023097895085811615,
0.021860705688595772,
-0.060360681265592575,
0.01232998725026846,
0.04317362979054451,
-0.05932597815990448,
0.1467534899711609,
-0.0239358302205801,
0.0016215741634368896,
-0.008629050105810165,
0.022494245320558548,
-0.030127041041851044,
0.07194095104932785,
0.11684302985668182,
-0.21912233531475067,
0.09615033119916916,
0.12530337274074554,
0.033685144037008286,
0.15160399675369263,
0.01676512137055397,
0.033459052443504333,
0.10932452231645584,
-0.12203336507081985,
-0.033319566398859024,
-0.0873006284236908,
0.00009280149970436469,
-0.00862281583249569,
0.07343434542417526,
-0.01216061506420374,
0.03897146135568619,
-0.000280606938758865,
-0.06078439950942993,
-0.03330005332827568,
0.044940587133169174,
-0.07573200762271881,
0.10874375700950623,
0.005125905387103558,
0.09894605726003647,
0.019777022302150726,
-0.07962087541818619,
0.08643006533384323,
-0.018528902903199196,
-0.0663914680480957,
0.13036088645458221,
-0.08687467128038406,
-0.4119880497455597,
-0.09898971766233444,
-0.09119591116905212,
0.05491317808628082,
0.05934036150574684,
0.05952140688896179,
-0.18333569169044495,
-0.09688232839107513,
0.019556140527129173,
0.0364425852894783,
0.03633260726928711,
0.06385911256074905,
0.11399199813604355,
0.04173637926578522,
-0.05235062539577484,
-0.0843128189444542,
0.02032129280269146,
-0.07712144404649734,
0.006402770522981882,
0.14539091289043427,
-0.11120464652776718,
0.030697092413902283,
0.11057852953672409,
0.048486318439245224,
0.06535112112760544,
-0.008610646240413189,
0.11968972533941269,
-0.13926872611045837,
0.05395550653338432,
0.1883992999792099,
-0.06738242506980896,
0.018550563603639603,
0.23570388555526733,
0.008006147108972073,
-0.07773371040821075,
0.06229060888290405,
0.03276578709483147,
-0.01657460629940033,
-0.21936942636966705,
-0.13218404352664948,
-0.06563494354486465,
-0.015880970284342766,
0.06639363616704941,
0.10128253698348999,
0.03697628527879715,
0.05556699261069298,
-0.08683858811855316,
0.006814424879848957,
0.02688833884894848,
0.07677967101335526,
0.17914476990699768,
0.0758523941040039,
0.09612195193767548,
-0.09299863874912262,
-0.09425976872444153,
0.0865231603384018,
-0.05547171086072922,
0.027753589674830437,
0.095011867582798,
0.07251738011837006,
0.06419331580400467,
-0.11901047080755234,
0.21685469150543213,
0.09631884843111038,
-0.003664134070277214,
-0.062382493168115616,
-0.0021223025396466255,
0.031409844756126404,
-0.059202466160058975,
0.006396131124347448,
-0.032670073211193085,
-0.0772235244512558,
0.008978874422609806,
-0.05332208797335625,
0.06895148009061813,
0.11309420317411423,
0.05138387903571129,
-0.18350979685783386,
0.003956505563110113,
0.04419722035527229,
-0.09701022505760193,
-0.09756898134946823,
0.03734689578413963,
-0.1257466971874237,
-0.05056026950478554,
0.1747397482395172,
0.009426086209714413,
0.12968219816684723,
-0.15592220425605774,
0.03408611938357353,
-0.05661053955554962,
-0.23262079060077667,
-0.014509345404803753,
0.10172933340072632,
-0.24293458461761475,
0.18079498410224915,
0.03671097382903099,
-0.007110860664397478,
-0.026204589754343033,
-0.0642131045460701,
0.03669510409235954,
0.16331306099891663,
-0.0303899385035038,
-0.021896956488490105,
0.0338917039334774,
-0.15493586659431458,
-0.10264100879430771,
0.03172842413187027,
0.05660858750343323,
-0.12587207555770874,
0.04509593918919563,
-0.031910404562950134,
0.00436472799628973,
-0.015183528885245323,
-0.14426182210445404,
-0.04857335984706879,
-0.12051986902952194,
0.06458635628223419,
0.1117907240986824,
0.12752392888069153,
-0.009523281827569008,
-0.1236049085855484,
-0.15630458295345306,
-0.020407089963555336,
-0.2340041548013687,
-0.14278243482112885,
-0.12610697746276855,
0.062447234988212585,
-0.07541978359222412,
-0.06652043759822845,
0.03728160634636879,
-0.006144972052425146,
0.09302198886871338,
-0.022590670734643936,
-0.16603705286979675,
0.06819289177656174,
-0.09080949425697327,
-0.12381221354007721,
-0.01798051781952381,
0.0928681492805481,
0.09353062510490417,
-0.07508157938718796,
0.043126124888658524,
0.0188481193035841,
-0.03148506209254265,
-0.029314156621694565,
-0.0006678729550912976,
0.0593319907784462,
0.0033304535318166018,
0.13902324438095093,
0.0217344481498003,
-0.19909413158893585,
-0.039844535291194916,
-0.07073231786489487,
0.13808877766132355,
0.15847371518611908,
-0.0056443181820213795,
0.13363169133663177,
0.1947195678949356,
-0.009386553429067135,
-0.3094809055328369,
-0.16796836256980896,
-0.027699874714016914,
-0.03950326889753342,
-0.06650697439908981,
-0.1946820765733719,
0.1344248652458191,
-0.032641805708408356,
-0.008031590841710567,
-0.011887453496456146,
-0.15422673523426056,
-0.032820168882608414,
0.1653221994638443,
-0.11970021575689316,
0.45616474747657776,
-0.1154555231332779,
-0.07754125446081161,
-0.125343918800354,
-0.11305078864097595,
0.13426072895526886,
-0.011710049584507942,
0.044532887637615204,
-0.08734877407550812,
0.027004597708582878,
-0.004790124483406544,
0.05165134742856026,
0.12666843831539154,
0.03257453441619873,
0.003997476305812597,
-0.1445329636335373,
-0.10036410391330719,
0.045901261270046234,
0.01399306021630764,
-0.027918243780732155,
-0.05748160183429718,
-0.018995501101017,
-0.2382456660270691,
-0.09038315713405609,
-0.027281440794467926,
-0.009490112774074078,
0.06444112956523895,
-0.0038593870121985674,
-0.06548371911048889,
-0.02567930705845356,
-0.0027830174658447504,
0.02065185271203518,
0.3360314965248108,
-0.0459635853767395,
0.07486556470394135,
-0.0864739790558815,
0.13790182769298553,
-0.08814222365617752,
0.033290617167949677,
-0.1344895213842392,
-0.02422957681119442,
0.1134575605392456,
-0.1589059829711914,
0.050167422741651535,
0.07341388612985611,
-0.03929613158106804,
0.03993590176105499,
0.07129266858100891,
0.012802472338080406,
0.03612085431814194,
0.16922062635421753,
-0.1135454773902893,
0.07261745631694794,
0.00989464856684208,
0.14820575714111328,
0.0788521096110344,
0.11124216765165329,
0.15616543591022491,
0.06052588298916817,
-0.08044596016407013,
0.07018210738897324,
0.0388827845454216,
0.032160066068172455,
0.08534196019172668,
0.013515593484044075,
0.05374770984053612,
-0.16020438075065613,
0.1333145946264267,
0.12365597486495972,
-0.09896215051412582,
-0.0004950927686877549,
0.12092501670122147,
-0.20848333835601807,
-0.10732825845479965,
0.0024019426200538874,
0.08100508898496628,
-0.1544797718524933,
-0.09078270941972733,
-0.09272707253694534,
-0.13085927069187164,
0.1166648417711258,
0.2243591994047165,
0.10439259558916092,
0.0370403490960598,
-0.05812639743089676,
-0.014434843324124813,
0.016949132084846497,
0.038016803562641144,
0.05323709547519684,
0.005666080396622419,
-0.13271629810333252,
-0.14875949919223785,
0.010411916300654411,
0.1685706526041031,
-0.1092018410563469,
-0.1221461221575737,
-0.05690400302410126,
0.09174362570047379,
-0.13963857293128967,
0.08921055495738983,
-0.02251685969531536,
-0.04117627441883087,
-0.01589692384004593,
-0.016855843365192413,
-0.06262430548667908,
-0.057408589869737625,
-0.060689639300107956,
0.04506051167845726,
-0.022687111049890518,
0.07930164039134979,
-0.06633397936820984,
-0.042734481394290924,
0.02925913780927658,
-0.029641542583703995,
0.12676149606704712,
0.06554081290960312,
-0.0694558322429657,
0.09118641912937164,
-0.026991769671440125,
-0.10985949635505676,
0.09563645720481873,
-0.016901662573218346,
-0.003965029958635569,
0.06474568694829941,
0.05463000386953354,
0.040218524634838104,
-0.03731066733598709,
0.0739261582493782,
0.05790227651596069,
-0.08382141590118408,
0.11909022182226181,
-0.15992611646652222,
-0.06067832559347153,
-0.03861287608742714,
-0.04981520026922226,
0.06529144197702408,
0.03103981725871563,
0.2219097763299942,
-0.07633152604103088,
-0.03695511445403099,
0.046944066882133484,
0.03450903668999672,
-0.05331631004810333,
-0.16384534537792206,
-0.14535672962665558,
-0.012636237777769566,
-0.0018353213090449572,
-0.045591697096824646,
0.1757950335741043,
-0.009356348775327206,
-0.1514878123998642,
0.06942945718765259,
0.0929555743932724,
-0.08796779811382294,
0.01046886295080185,
0.22843728959560394,
0.15169863402843475,
-0.00048701977357268333,
-0.11389918625354767,
-0.049249280244112015,
0.08644401282072067,
0.06630837172269821,
0.03821093589067459,
0.10310657322406769,
0.09650702029466629,
0.08131974935531616,
-0.04150150716304779,
-0.01206265389919281,
-0.019429804757237434,
-0.05170845612883568,
-0.17454637587070465,
-0.019603878259658813,
0.09493817389011383,
-0.019009532406926155,
0.24302567541599274,
0.07765880972146988,
-0.05171290412545204,
-0.07555228471755981,
0.032524850219488144,
-0.048888854682445526,
-0.12713459134101868,
-0.1018078625202179,
-0.09206142276525497,
-0.0034773526713252068,
-0.024851571768522263,
-0.0785185694694519,
0.20363707840442657,
0.06610854715108871,
-0.05866219848394394,
0.06528379768133163,
0.0702020674943924,
-0.07313131541013718,
0.12758803367614746,
-0.07335085421800613,
-0.020656857639551163,
0.04097296670079231,
-0.0277186781167984,
-0.06331367045640945,
0.06651873886585236,
-0.031690265983343124,
0.03593995049595833,
0.005507328547537327,
0.06640202552080154,
-0.14146023988723755,
-0.1446303427219391,
0.022308995947241783,
0.059264786541461945,
-0.06154944747686386,
0.10765843838453293,
0.039141904562711716,
0.038664694875478745,
0.07241598516702652,
0.13874150812625885,
0.051364466547966,
-0.0948256403207779,
-0.008500115014612675,
0.08937662094831467,
0.07032700628042221,
0.14440305531024933,
0.012779857032001019,
-0.07246381044387817,
-0.12852853536605835,
0.16652719676494598,
0.1366281360387802,
-0.07020089030265808,
0.03333759307861328,
-0.04671136289834976,
0.05597715079784393,
0.07278215140104294,
0.0843270942568779,
0.061718281358480453,
0.16379199922084808,
-0.05469810590147972,
-0.11838392168283463,
-0.057570673525333405,
-0.004370479378849268,
-0.14198929071426392,
-0.021843714639544487,
0.04827689751982689,
-0.03583374619483948,
-0.05781465023756027,
0.1418270617723465,
-0.16616281867027283,
0.030579060316085815,
-0.07059438526630402,
-0.04767531529068947,
-0.08385017514228821,
-0.07462949305772781,
0.017665283754467964,
0.037339527159929276,
-0.005936893634498119,
0.029423857107758522,
-0.0406954400241375,
-0.02511770837008953,
0.0483846440911293,
-0.0755717009305954,
-0.029862042516469955,
0.12670966982841492,
-0.006331664510071278,
-0.03661459684371948,
-0.06485545635223389,
0.08311516791582108,
0.056607071310281754,
0.030607173219323158,
0.01088426448404789,
0.10392039269208908,
0.0214352086186409,
0.05147411301732063,
0.07320094853639603,
0.06783439218997955,
0.05719142034649849,
-0.06534503400325775,
0.14601553976535797,
-0.07638747990131378,
0.008018992841243744,
-0.07854589819908142,
-0.07687961310148239,
-0.05911035090684891,
0.11754585057497025,
-0.027212686836719513,
0.04326080158352852,
0.00928072351962328,
-0.04859448969364166,
-0.02731291577219963,
-0.019085463136434555,
0.05509832873940468,
-0.017556963488459587,
-0.1271766722202301,
-0.07250439375638962,
-0.1408660113811493,
-0.0532880499958992,
-0.06448409706354141,
0.11122290790081024,
-0.1171354353427887,
0.059083376079797745,
-0.15930870175361633,
0.03672070801258087,
-0.07829996198415756,
0.08013742417097092,
0.011501917615532875,
0.003849573666229844,
-0.03223858401179314,
-0.10408678650856018,
0.031774815171957016,
0.03879176080226898,
-0.1638006716966629,
-0.0986144170165062
] |
null | null |
sentence-transformers
|
# Dhivehi TSDAE News BERT
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('ashraq/tsdae-bert-base-dv-news-title')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
def cls_pooling(model_output, attention_mask):
return model_output[0][:,0]
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('ashraq/tsdae-bert-base-dv-news-title')
model = AutoModel.from_pretrained('ashraq/tsdae-bert-base-dv-news-title')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 7331 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss`
Parameters of the fit()-Method:
```
{
"epochs": 3,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 0.00024
},
"scheduler": "constantlr",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
{"language": ["dv"], "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity"}
|
sentence-similarity
|
ashraq/tsdae-bert-base-dv-news-title
|
[
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"dv",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"dv"
] |
TAGS
#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #transformers #dv #endpoints_compatible #region-us
|
# Dhivehi TSDAE News BERT
This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
Then you can use the model like this:
## Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL
## Training
The model was trained with the parameters:
DataLoader:
'URL.dataloader.DataLoader' of length 7331 with parameters:
Loss:
'sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss'
Parameters of the fit()-Method:
## Full Model Architecture
## Citing & Authors
|
[
"# Dhivehi TSDAE News BERT\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.",
"## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:",
"## Usage (HuggingFace Transformers)\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.",
"## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL",
"## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 7331 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss' \n\nParameters of the fit()-Method:",
"## Full Model Architecture",
"## Citing & Authors"
] |
[
"TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #transformers #dv #endpoints_compatible #region-us \n",
"# Dhivehi TSDAE News BERT\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.",
"## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:",
"## Usage (HuggingFace Transformers)\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.",
"## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL",
"## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 7331 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss' \n\nParameters of the fit()-Method:",
"## Full Model Architecture",
"## Citing & Authors"
] |
[
44,
53,
38,
64,
29,
80,
5,
6
] |
[
"passage: TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #transformers #dv #endpoints_compatible #region-us \n# Dhivehi TSDAE News BERT\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:## Usage (HuggingFace Transformers)\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 7331 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss' \n\nParameters of the fit()-Method:## Full Model Architecture## Citing & Authors"
] |
[
-0.02323197014629841,
0.10775496065616608,
-0.007983963005244732,
0.04906196519732475,
0.11434701085090637,
0.017662890255451202,
0.12988431751728058,
0.08994189649820328,
-0.041810110211372375,
0.0742565393447876,
0.04393729940056801,
0.13036246597766876,
0.00035779073368757963,
-0.0008692534756846726,
0.01978958584368229,
-0.2724103629589081,
0.04062580689787865,
-0.03453391045331955,
-0.00015143728523980826,
0.06128014251589775,
0.1205039769411087,
-0.09211036562919617,
0.06580395251512527,
-0.01823366805911064,
-0.06054025888442993,
0.03377137333154678,
-0.0484258234500885,
-0.038407426327466965,
0.09346283972263336,
0.060998864471912384,
0.06418292224407196,
0.00782811176031828,
0.023442283272743225,
-0.186365008354187,
0.014454763382673264,
0.07463710010051727,
-0.022566787898540497,
0.05968958139419556,
0.012629397213459015,
-0.01746130920946598,
0.08702296018600464,
-0.13328032195568085,
0.06395988911390305,
0.0312897190451622,
-0.11681535094976425,
-0.05447058007121086,
-0.04423047974705696,
-0.010833555832505226,
0.11233120411634445,
0.11029092967510223,
-0.04826335981488228,
0.10718213766813278,
-0.04684550687670708,
0.08737009018659592,
0.12439481168985367,
-0.2523665130138397,
-0.029059570282697678,
0.047713398933410645,
0.051129721105098724,
0.02456587366759777,
-0.10364165902137756,
0.014354291372001171,
-0.018974322825670242,
0.04484532028436661,
0.062082719057798386,
-0.022578369826078415,
0.10738804191350937,
-0.005302168894559145,
-0.10026276856660843,
-0.000010190763532591518,
0.1794692426919937,
0.016026971861720085,
-0.012762661091983318,
-0.17827841639518738,
-0.08863955736160278,
0.09730765223503113,
-0.030485054478049278,
-0.042888157069683075,
0.03130830451846123,
0.05425560846924782,
-0.03876081481575966,
-0.10803960263729095,
-0.0878230482339859,
-0.01332769449800253,
-0.06715911626815796,
0.02777549810707569,
0.004910357296466827,
-0.057432834059000015,
-0.0342734269797802,
0.07623054087162018,
-0.01721520721912384,
-0.11463459581136703,
-0.022569624707102776,
-0.0419049933552742,
-0.06690581887960434,
-0.006375784054398537,
-0.06221375986933708,
-0.14657428860664368,
0.02779064141213894,
0.11325344443321228,
0.02394266240298748,
0.019826741889119148,
-0.05230829864740372,
0.04282965883612633,
0.018281862139701843,
0.15244580805301666,
-0.05102409049868584,
-0.06954005360603333,
-0.02617308497428894,
0.011191291734576225,
0.013979990035295486,
-0.026172252371907234,
-0.06141712889075279,
-0.003945268224924803,
0.0351383201777935,
0.04570578783750534,
0.05360505357384682,
0.07106518745422363,
-0.03054908476769924,
-0.04972977936267853,
0.09366781264543533,
-0.124204620718956,
0.018742859363555908,
0.016658194363117218,
-0.026694823056459427,
0.052775491029024124,
0.08909809589385986,
-0.019176989793777466,
-0.08450621366500854,
0.05214306712150574,
-0.09045135974884033,
-0.029413489624857903,
-0.05439325049519539,
-0.13504014909267426,
-0.01699421927332878,
-0.017355632036924362,
-0.040922343730926514,
-0.09989085048437119,
-0.14514797925949097,
-0.05231640487909317,
0.02238909900188446,
-0.0365326963365078,
0.0024241777136921883,
-0.14612841606140137,
-0.019076524302363396,
0.011563582345843315,
0.0149391395971179,
-0.06669137626886368,
0.011257963255047798,
0.03256569802761078,
-0.051700010895729065,
0.05603794753551483,
-0.0019000583561137319,
0.044076401740312576,
-0.10055016726255417,
0.023033462464809418,
-0.1105409488081932,
0.18954449892044067,
-0.03179887682199478,
0.05312952771782875,
-0.10658533126115799,
0.020117567852139473,
-0.012779543176293373,
0.0633225366473198,
0.022311141714453697,
0.15418046712875366,
-0.24591898918151855,
-0.07511766254901886,
0.1924801468849182,
-0.046485111117362976,
-0.06649213284254074,
0.07922670245170593,
-0.06246022880077362,
0.10144142806529999,
0.1382811814546585,
0.11785001307725906,
0.06760276108980179,
-0.08620785176753998,
-0.01414117868989706,
0.013723834417760372,
-0.04414167255163193,
0.13172322511672974,
0.030131325125694275,
-0.07546722888946533,
0.1009870246052742,
0.002691031200811267,
-0.05796610936522484,
0.0004214238724671304,
0.008528394624590874,
-0.04055408388376236,
0.01743616908788681,
-0.031052241101861,
0.07059605419635773,
-0.043341170996427536,
0.01799621991813183,
0.011933726258575916,
-0.11399151384830475,
0.14890827238559723,
0.06358552724123001,
-0.08858739584684372,
0.03163560852408409,
-0.07941630482673645,
-0.01609954796731472,
-0.024468854069709778,
0.019243896007537842,
-0.19231463968753815,
-0.1061185821890831,
0.024947291240096092,
0.03061351738870144,
0.10133497416973114,
0.023418724536895752,
0.06981270760297775,
0.04251503199338913,
-0.033704280853271484,
-0.01166069507598877,
0.03202272951602936,
0.010236455127596855,
-0.07956958562135696,
-0.11462077498435974,
0.01598457433283329,
-0.05545870214700699,
0.021828513592481613,
-0.1035534217953682,
0.02350827120244503,
0.02857580967247486,
0.10258027911186218,
0.055266208946704865,
-0.026697877794504166,
-0.018396008759737015,
-0.018853286281228065,
-0.009792791679501534,
-0.03336121886968613,
0.043269816786050797,
0.015839654952287674,
-0.14036941528320312,
0.07264943420886993,
-0.17138072848320007,
-0.1589578241109848,
0.0817343145608902,
-0.03450794145464897,
-0.04616275057196617,
-0.038753438740968704,
-0.012198730371892452,
0.00010593139450065792,
-0.04448055103421211,
-0.10079257935285568,
0.2118607759475708,
0.08185701817274094,
0.10809054970741272,
-0.048054251819849014,
-0.040692560374736786,
-0.04358197748661041,
-0.0063569871708750725,
-0.06597902625799179,
0.08325298875570297,
-0.05560969561338425,
-0.1306656301021576,
0.07297571003437042,
0.09602472186088562,
-0.041236162185668945,
0.1349106729030609,
-0.01785462535917759,
-0.05510448291897774,
-0.04320172965526581,
0.007442736532539129,
0.025157861411571503,
-0.010411778464913368,
-0.06168897822499275,
0.011527703143656254,
0.0392078161239624,
0.024615174159407616,
0.018778502941131592,
-0.04738479480147362,
0.03908529505133629,
0.05506517365574837,
0.001571730594150722,
0.10332395136356354,
0.014587625861167908,
0.006191198714077473,
0.0546000674366951,
0.0398576594889164,
0.026732800528407097,
-0.009370026178658009,
-0.0365765281021595,
-0.09138582646846771,
0.14425620436668396,
-0.15036393702030182,
-0.23856967687606812,
-0.13148318231105804,
0.018655136227607727,
-0.05968092009425163,
0.024764982983469963,
0.08470365405082703,
-0.08756093680858612,
-0.051992543041706085,
-0.07320339232683182,
0.03874630481004715,
0.060159336775541306,
-0.05633718892931938,
0.04574695602059364,
0.025045879185199738,
0.008121083490550518,
-0.1376214474439621,
-0.009315339848399162,
-0.0011028047883883119,
-0.04015565663576126,
-0.014299113303422928,
-0.030191073194146156,
0.055570874363183975,
0.0950358435511589,
0.0691835954785347,
0.006288548000156879,
-0.00875974353402853,
0.2479400634765625,
-0.08189704269170761,
0.0707496702671051,
0.11398149281740189,
-0.024243593215942383,
0.07267820090055466,
0.10718880593776703,
0.019276874139904976,
-0.0683802142739296,
0.045937199145555496,
0.0745508149266243,
-0.011563030071556568,
-0.16029119491577148,
-0.09481655061244965,
-0.05443403869867325,
-0.03216440975666046,
0.11071160435676575,
0.05280396714806557,
0.03959689289331436,
0.03037199005484581,
-0.026522397994995117,
0.024548962712287903,
0.10426434874534607,
0.11332909017801285,
0.12544263899326324,
-0.02605057880282402,
0.09761656075716019,
-0.03575504571199417,
-0.08603458106517792,
0.052163753658533096,
-0.012604492716491222,
0.14534837007522583,
0.02156221680343151,
0.1475590020418167,
0.050569865852594376,
-0.04774622246623039,
-0.01942870207130909,
0.08344924449920654,
-0.04303966090083122,
0.032407473772764206,
-0.042423710227012634,
-0.10281086713075638,
-0.006261421367526054,
0.06273221969604492,
0.09517944604158401,
-0.03814348578453064,
-0.00936142448335886,
0.06629616022109985,
0.13172829151153564,
0.1640879362821579,
0.05213926360011101,
-0.20727543532848358,
-0.04388446360826492,
0.035011108964681625,
-0.05146697908639908,
-0.07295170426368713,
-0.0003474693512544036,
0.04398399963974953,
-0.09391302615404129,
0.04880925267934799,
-0.01768246479332447,
0.10233327746391296,
-0.09233978390693665,
0.05023645982146263,
-0.05865137651562691,
0.039560649544000626,
-0.00034504043287597597,
0.060655273497104645,
-0.2754516303539276,
0.09143026918172836,
0.031598567962646484,
0.07774797827005386,
-0.05333444103598595,
0.023779481649398804,
0.04600747674703598,
0.004691201262176037,
0.19057714939117432,
-0.021996429190039635,
0.018676193431019783,
0.040905874222517014,
-0.0845310389995575,
-0.008833382278680801,
0.06966260820627213,
-0.10529754310846329,
0.07475022226572037,
-0.04314437881112099,
-0.03563597425818443,
0.0021017480175942183,
0.05053780972957611,
-0.07946088910102844,
-0.18100208044052124,
0.023130860179662704,
-0.0023193529341369867,
0.03984348848462105,
-0.014381221495568752,
-0.010553932748734951,
0.01141360867768526,
0.16980354487895966,
-0.14888522028923035,
-0.07176335901021957,
-0.1160498857498169,
-0.03362961858510971,
0.08306732028722763,
-0.08235299587249756,
0.007913049310445786,
-0.007219220511615276,
0.14329174160957336,
-0.07567741721868515,
-0.08559995889663696,
0.06962783634662628,
-0.03833310678601265,
-0.08141931891441345,
-0.036983706057071686,
0.10271541774272919,
0.07150404900312424,
0.03704739362001419,
0.04935414716601372,
0.07224661111831665,
-0.009227483533322811,
-0.07794060558080673,
-0.04627460241317749,
0.14155668020248413,
-0.01395149901509285,
0.042175620794296265,
-0.12160737812519073,
-0.05033036321401596,
-0.11310534179210663,
0.04433383420109749,
0.22153215110301971,
0.22458048164844513,
-0.06874014437198639,
0.09288930147886276,
0.16403572261333466,
-0.1119895875453949,
-0.2177511751651764,
-0.08583494275808334,
0.01926187239587307,
0.016991548240184784,
0.0348517931997776,
-0.16359075903892517,
0.061664313077926636,
0.045125484466552734,
0.008027702569961548,
-0.08434195071458817,
-0.2288367599248886,
-0.13727211952209473,
0.12219732254743576,
0.002907626098021865,
0.006014764308929443,
-0.08873329311609268,
-0.06511565297842026,
-0.07745543867349625,
-0.032279644161462784,
0.12371981889009476,
-0.03430590778589249,
0.10022009909152985,
0.05103852599859238,
0.014947693794965744,
0.05690939351916313,
-0.010799506679177284,
0.11382205784320831,
0.05143984034657478,
0.048892829567193985,
-0.054126888513565063,
-0.08787880837917328,
0.07072249054908752,
-0.08139308542013168,
0.12038718163967133,
-0.04453325644135475,
0.04296005517244339,
-0.08257756382226944,
-0.03396439179778099,
-0.06063491478562355,
0.016805894672870636,
-0.05160487815737724,
-0.06929155439138412,
-0.019503947347402573,
0.05563560873270035,
0.11935322731733322,
-0.00035899985232390463,
0.09841921180486679,
-0.06671417504549026,
0.017570240423083305,
0.12940503656864166,
0.11034201830625534,
0.0891832560300827,
-0.13386373221874237,
0.006552641745656729,
-0.010009543970227242,
0.07421152293682098,
-0.11616214364767075,
0.0788019523024559,
0.08081461489200592,
-0.00952678918838501,
0.1543290913105011,
0.033131591975688934,
-0.10287348181009293,
-0.01165562029927969,
0.03158026561141014,
-0.12046395242214203,
-0.14698576927185059,
-0.0413656048476696,
-0.022134404629468918,
-0.07971620559692383,
-0.040913280099630356,
0.17277804017066956,
-0.017143454402685165,
0.0011241764295846224,
0.03420143201947212,
0.045858681201934814,
-0.03633063659071922,
0.08657889068126678,
0.006653637159615755,
0.03135361894965172,
-0.0457228422164917,
0.11757896095514297,
0.08237142115831375,
-0.07522186636924744,
0.06658606231212616,
0.13615040481090546,
-0.0733356773853302,
-0.0709289014339447,
-0.06818182021379471,
0.1542402058839798,
-0.06654965132474899,
0.027780886739492416,
-0.04677747189998627,
-0.05926581472158432,
0.025278743356466293,
0.06158268824219704,
0.026196502149105072,
0.07112570852041245,
-0.09316600114107132,
0.0032979685347527266,
-0.08625119924545288,
0.088029645383358,
0.05633435398340225,
0.01608811691403389,
-0.042270030826330185,
0.06713489443063736,
-0.02102918177843094,
0.003913794178515673,
-0.033723436295986176,
-0.04673014208674431,
-0.0866888239979744,
-0.003394631203263998,
-0.09092635661363602,
0.00037017447175458074,
-0.0815548226237297,
-0.019748441874980927,
0.020239422097802162,
0.04731544852256775,
0.027979250997304916,
-0.005503201857209206,
-0.030025741085410118,
-0.06761586666107178,
-0.029785901308059692,
0.0722920298576355,
-0.15259623527526855,
-0.021097367629408836,
0.02211342379450798,
-0.09200739115476608,
0.07868518680334091,
0.0005072819185443223,
-0.049309100955724716,
0.03189978376030922,
-0.05429813265800476,
-0.03662079572677612,
0.023942681029438972,
0.024294765666127205,
0.05059821531176567,
-0.055939897894859314,
-0.005797562189400196,
-0.053305309265851974,
0.012598121538758278,
-0.000746912497561425,
0.08020468056201935,
-0.09175597131252289,
0.05258846655488014,
0.00433811591938138,
-0.02571425959467888,
-0.08773533254861832,
0.030892575159668922,
0.05392249673604965,
0.03780975937843323,
0.14319510757923126,
-0.06686142832040787,
0.08675297349691391,
-0.0962866023182869,
0.002038927748799324,
0.024100976064801216,
-0.059836629778146744,
0.09493691474199295,
-0.10308554023504257,
0.05717096105217934,
-0.0553310364484787,
0.06018132343888283,
-0.04836331307888031,
0.01611507683992386,
0.0633176937699318,
0.000931400281842798,
-0.08047089725732803,
0.02256106398999691,
0.08638498187065125,
0.030619310215115547,
-0.01206259336322546,
-0.07391691952943802,
0.011326516047120094,
0.017354115843772888,
0.019991837441921234,
0.05262981355190277,
0.12148430943489075,
0.04726492986083031,
0.08399385213851929,
0.09104964882135391,
0.009321880526840687,
-0.1155252531170845,
0.01038149930536747,
0.006132036913186312,
0.053097303956747055,
-0.0534408837556839,
0.024713585153222084,
0.11479932814836502,
-0.14948050677776337,
0.10795667767524719,
0.01592174358665943,
-0.06534533202648163,
-0.07611038535833359,
-0.12245386838912964,
-0.05908926576375961,
-0.0030752415768802166,
-0.0044110664166510105,
-0.1345517486333847,
-0.007903129793703556,
-0.007914234884083271,
0.01642381027340889,
-0.019443823024630547,
0.15225769579410553,
-0.07459058612585068,
-0.08975715935230255,
0.10188687592744827,
-0.011301782913506031,
0.034560978412628174,
0.00410730205476284,
0.031410157680511475,
0.006080125458538532,
0.10423959791660309,
0.026605209335684776,
0.06242974102497101,
0.03966135159134865,
0.004940608516335487,
-0.06836570799350739,
-0.08086013793945312,
0.008302625268697739,
0.01533295214176178,
-0.06392432004213333,
0.1312115341424942,
0.040897663682699203,
-0.07904325425624847,
-0.005186143796890974,
0.19539834558963776,
-0.09304294735193253,
-0.10439760982990265,
-0.1590128391981125,
0.15662798285484314,
0.048532404005527496,
0.06412690877914429,
-0.019211463630199432,
-0.1029205322265625,
-0.03147701546549797,
0.1595330834388733,
0.18748033046722412,
-0.08277446031570435,
0.022824987769126892,
0.05243875831365585,
0.0283692367374897,
0.01944551430642605,
0.01634872891008854,
0.04553283005952835,
0.19727309048175812,
-0.048609621822834015,
0.10449548065662384,
-0.023676281794905663,
-0.06054484099149704,
-0.07100227475166321,
0.07744433730840683,
0.006314131431281567,
0.012171629816293716,
-0.027131207287311554,
0.09256361424922943,
-0.08589907735586166,
-0.13483229279518127,
-0.040606193244457245,
-0.08883942663669586,
-0.09776601940393448,
-0.029905565083026886,
0.01683318428695202,
0.022819973528385162,
0.07788162678480148,
0.046176452189683914,
-0.017004279419779778,
0.16133630275726318,
-0.003553356509655714,
-0.03747953474521637,
0.0010300085414201021,
0.027498850598931313,
-0.05333656817674637,
0.13380563259124756,
0.00017363892402499914,
-0.018627531826496124,
0.10506868362426758,
0.022990679368376732,
-0.04897259175777435,
0.07592479884624481,
0.041153497993946075,
-0.04412376135587692,
0.07643024623394012,
0.07457282394170761,
-0.02866673469543457,
0.1048266664147377,
0.07881362736225128,
-0.1832493543624878,
0.0544324591755867,
0.03970080241560936,
-0.06192706897854805,
-0.060990236699581146,
0.06857243925333023,
-0.08230229467153549,
0.1067558079957962,
0.16768841445446014,
-0.010520140640437603,
-0.008831862360239029,
-0.015506806783378124,
0.006354836281388998,
0.011027305386960506,
0.020649297162890434,
-0.07012280821800232,
-0.1045961007475853,
-0.009519503451883793,
0.028500234708189964,
0.04581395164132118,
-0.27463993430137634,
-0.10897359997034073,
0.011042926460504532,
-0.014976640231907368,
-0.026915237307548523,
0.10704144835472107,
0.08206803351640701,
0.0030294086318463087,
-0.029181262478232384,
-0.12688246369361877,
0.009661205112934113,
0.09762091189622879,
-0.1176275685429573,
-0.0676216334104538
] |
null | null |
transformers
|
# Gujarati-XLM-R-Base
This model is finetuned over [XLM-RoBERTa](https://huggingface.co/xlm-roberta-base) (XLM-R) using its base variant with the Gujarati language using the [OSCAR](https://oscar-corpus.com/) monolingual dataset. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.
## Dataset
OSCAR corpus contains several diverse datasets for different languages. We followed the work of [CamemBERT](https://www.aclweb.org/anthology/2020.acl-main.645/) who reported better performance with this diverse dataset as compared to the other large homogenous datasets.
## Preprocessing and Training Procedure
Please visit [this link](https://github.com/ashwanitanwar/nmt-transfer-learning-xlm-r#6-finetuning-xlm-r) for the detailed procedure.
## Usage
- This model can be used for further finetuning for different NLP tasks using the Gujarati language.
- It can be used to generate contextualised word representations for the Gujarati words.
- It can be used for domain adaptation.
- It can be used to predict the missing words from the Gujarati sentences.
## Demo
### Using the model to predict missing words
```
from transformers import pipeline
unmasker = pipeline('fill-mask', model='ashwani-tanwar/Gujarati-XLM-R-Base')
pred_word = unmasker("เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช <mask> เชเซ.")
print(pred_word)
```
```
[{'sequence': '<s> เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชถเชนเซเชฐ เชเซ.</s>', 'score': 0.9463568329811096, 'token': 85227, 'token_str': 'โเชถเชนเซเชฐ'},
{'sequence': '<s> เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชเชพเชฎ เชเซ.</s>', 'score': 0.013311690650880337, 'token': 66346, 'token_str': 'โเชเชพเชฎ'},
{'sequence': '<s> เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเชเชจเชเชฐ เชเซ.</s>', 'score': 0.012945962138473988, 'token': 69702, 'token_str': 'เชจเชเชฐ'},
{'sequence': '<s> เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชธเซเชฅเชณ เชเซ.</s>', 'score': 0.0045941537246108055, 'token': 135436, 'token_str': 'โเชธเซเชฅเชณ'},
{'sequence': '<s> เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชฎเชนเชคเซเชต เชเซ.</s>', 'score': 0.00402021361514926, 'token': 126763, 'token_str': 'โเชฎเชนเชคเซเชต'}]
```
### Using the model to generate contextualised word representations
```
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("ashwani-tanwar/Gujarati-XLM-R-Base")
model = AutoModel.from_pretrained("ashwani-tanwar/Gujarati-XLM-R-Base")
sentence = "เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชถเชนเซเชฐ เชเซ."
encoded_sentence = tokenizer(sentence, return_tensors='pt')
context_word_rep = model(**encoded_sentence)
```
|
{"language": "gu"}
|
fill-mask
|
ashwani-tanwar/Gujarati-XLM-R-Base
|
[
"transformers",
"pytorch",
"tf",
"xlm-roberta",
"fill-mask",
"gu",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"gu"
] |
TAGS
#transformers #pytorch #tf #xlm-roberta #fill-mask #gu #autotrain_compatible #endpoints_compatible #region-us
|
# Gujarati-XLM-R-Base
This model is finetuned over XLM-RoBERTa (XLM-R) using its base variant with the Gujarati language using the OSCAR monolingual dataset. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.
## Dataset
OSCAR corpus contains several diverse datasets for different languages. We followed the work of CamemBERT who reported better performance with this diverse dataset as compared to the other large homogenous datasets.
## Preprocessing and Training Procedure
Please visit this link for the detailed procedure.
## Usage
- This model can be used for further finetuning for different NLP tasks using the Gujarati language.
- It can be used to generate contextualised word representations for the Gujarati words.
- It can be used for domain adaptation.
- It can be used to predict the missing words from the Gujarati sentences.
## Demo
### Using the model to predict missing words
### Using the model to generate contextualised word representations
|
[
"# Gujarati-XLM-R-Base\r\n\r\n\r\nThis model is finetuned over XLM-RoBERTa (XLM-R) using its base variant with the Gujarati language using the OSCAR monolingual dataset. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.",
"## Dataset\r\nOSCAR corpus contains several diverse datasets for different languages. We followed the work of CamemBERT who reported better performance with this diverse dataset as compared to the other large homogenous datasets.",
"## Preprocessing and Training Procedure\r\nPlease visit this link for the detailed procedure.",
"## Usage\r\n- This model can be used for further finetuning for different NLP tasks using the Gujarati language.\r\n- It can be used to generate contextualised word representations for the Gujarati words.\r\n- It can be used for domain adaptation.\r\n- It can be used to predict the missing words from the Gujarati sentences.",
"## Demo\r\n ### Using the model to predict missing words\r\n \r\n \r\n ### Using the model to generate contextualised word representations"
] |
[
"TAGS\n#transformers #pytorch #tf #xlm-roberta #fill-mask #gu #autotrain_compatible #endpoints_compatible #region-us \n",
"# Gujarati-XLM-R-Base\r\n\r\n\r\nThis model is finetuned over XLM-RoBERTa (XLM-R) using its base variant with the Gujarati language using the OSCAR monolingual dataset. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.",
"## Dataset\r\nOSCAR corpus contains several diverse datasets for different languages. We followed the work of CamemBERT who reported better performance with this diverse dataset as compared to the other large homogenous datasets.",
"## Preprocessing and Training Procedure\r\nPlease visit this link for the detailed procedure.",
"## Usage\r\n- This model can be used for further finetuning for different NLP tasks using the Gujarati language.\r\n- It can be used to generate contextualised word representations for the Gujarati words.\r\n- It can be used for domain adaptation.\r\n- It can be used to predict the missing words from the Gujarati sentences.",
"## Demo\r\n ### Using the model to predict missing words\r\n \r\n \r\n ### Using the model to generate contextualised word representations"
] |
[
45,
106,
49,
17,
69,
26
] |
[
"passage: TAGS\n#transformers #pytorch #tf #xlm-roberta #fill-mask #gu #autotrain_compatible #endpoints_compatible #region-us \n# Gujarati-XLM-R-Base\r\n\r\n\r\nThis model is finetuned over XLM-RoBERTa (XLM-R) using its base variant with the Gujarati language using the OSCAR monolingual dataset. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.## Dataset\r\nOSCAR corpus contains several diverse datasets for different languages. We followed the work of CamemBERT who reported better performance with this diverse dataset as compared to the other large homogenous datasets.## Preprocessing and Training Procedure\r\nPlease visit this link for the detailed procedure.## Usage\r\n- This model can be used for further finetuning for different NLP tasks using the Gujarati language.\r\n- It can be used to generate contextualised word representations for the Gujarati words.\r\n- It can be used for domain adaptation.\r\n- It can be used to predict the missing words from the Gujarati sentences.## Demo\r\n ### Using the model to predict missing words\r\n \r\n \r\n ### Using the model to generate contextualised word representations"
] |
[
-0.036139436066150665,
0.15054664015769958,
-0.0006094890995882452,
0.05813541263341904,
0.11095958948135376,
-0.014102369546890259,
0.02771962247788906,
0.10013777017593384,
-0.08405973017215729,
0.0350680835545063,
0.025895368307828903,
-0.00011742413335014135,
0.06968636810779572,
0.14612063765525818,
0.07147179543972015,
-0.27894455194473267,
0.032077230513095856,
-0.07396836578845978,
-0.01361885666847229,
0.11970040947198868,
0.11657919734716415,
-0.09521831572055817,
0.0870223417878151,
0.04402846843004227,
-0.04593060165643692,
0.061303723603487015,
-0.05604511499404907,
-0.07733132690191269,
0.06440620124340057,
0.04943658784031868,
0.043727315962314606,
0.0047659496776759624,
0.12584367394447327,
-0.1701374500989914,
0.01617330126464367,
0.02832897938787937,
0.0009377721580676734,
-0.003440545406192541,
0.11936742067337036,
-0.05541504546999931,
0.25302112102508545,
0.0008673526463098824,
0.04065167158842087,
0.08028849959373474,
-0.11878448724746704,
-0.12842890620231628,
-0.017530465498566628,
0.018803171813488007,
0.013096436858177185,
0.15579405426979065,
-0.045144032686948776,
0.11128740012645721,
-0.041368864476680756,
0.07048957049846649,
0.08505772054195404,
-0.15913720428943634,
-0.012440435588359833,
0.12946072220802307,
0.13064558804035187,
0.07018627226352692,
-0.04457906633615494,
-0.0023997793905436993,
-0.008472236804664135,
0.026809126138687134,
0.029632041230797768,
-0.05745599791407585,
-0.04799174517393112,
0.0023950845934450626,
-0.12806157767772675,
-0.044856876134872437,
0.24799759685993195,
-0.059450663626194,
0.0019452490378171206,
-0.07816453278064728,
-0.07602351903915405,
0.0396009124815464,
-0.016390159726142883,
-0.04724176973104477,
-0.006567767821252346,
0.08436115086078644,
0.06675758957862854,
-0.06482144445180893,
-0.08754181861877441,
-0.029821956530213356,
-0.023163478821516037,
0.08862020075321198,
0.04100552201271057,
0.013114524073898792,
-0.09585157781839371,
0.07359974086284637,
-0.12067419290542603,
-0.07314141094684601,
-0.04600566625595093,
-0.06478674709796906,
-0.09055443108081818,
0.036031533032655716,
-0.044800013303756714,
-0.13634461164474487,
0.05943363904953003,
0.040992848575115204,
0.025835102424025536,
0.03537135198712349,
-0.018272889778017998,
0.0004044482484459877,
0.08926300704479218,
0.11920495331287384,
-0.1550498753786087,
-0.09012679010629654,
0.03681081160902977,
-0.012398584745824337,
-0.0064697181805968285,
0.003043791512027383,
-0.057143259793519974,
0.0027119626756757498,
-0.05251731723546982,
0.09486262500286102,
0.010529294610023499,
0.08098293840885162,
-0.041555676609277725,
-0.059215448796749115,
0.10279540717601776,
-0.1300349086523056,
-0.0717015266418457,
-0.017327768728137016,
-0.04294279217720032,
-0.047714389860630035,
0.06079230457544327,
-0.008104909211397171,
-0.05881895869970322,
-0.12134712934494019,
-0.06870206445455551,
-0.014825942926108837,
-0.13886193931102753,
-0.11971968412399292,
-0.045439112931489944,
0.01548406295478344,
-0.04249400645494461,
-0.11907543241977692,
-0.20710381865501404,
-0.03051437810063362,
0.008056215941905975,
-0.049294501543045044,
0.036333419382572174,
-0.0783933773636818,
0.018474195152521133,
-0.04497315734624863,
-0.0054690418764948845,
-0.02020464465022087,
-0.01665412448346615,
0.03186958283185959,
-0.01169903390109539,
0.07213417440652847,
-0.022319020703434944,
0.06933853775262833,
-0.12630914151668549,
0.031787414103746414,
-0.05023996904492378,
0.1787256896495819,
-0.032814871519804,
-0.018733855336904526,
-0.13012149930000305,
-0.027167880907654762,
-0.0526476688683033,
0.03219873830676079,
0.012307217344641685,
0.08925420045852661,
-0.1713522970676422,
0.028436830267310143,
0.22273334860801697,
-0.10659071058034897,
-0.06975632160902023,
0.08857300132513046,
-0.03680964931845665,
0.1563543975353241,
0.04609135910868645,
0.11827497184276581,
0.05091717839241028,
-0.016849467530846596,
0.059624768793582916,
-0.012612603604793549,
-0.041998494416475296,
0.033965956419706345,
0.09682518988847733,
-0.10410813987255096,
0.014345618896186352,
0.017753852531313896,
-0.10673613846302032,
0.026888364925980568,
-0.00868922658264637,
-0.07562150061130524,
0.0014633716782554984,
-0.038369908928871155,
0.01881817728281021,
-0.018490681424736977,
0.02126901224255562,
0.03715360164642334,
-0.0770600438117981,
-0.005238433368504047,
0.13296715915203094,
-0.05970638990402222,
0.028001373633742332,
-0.1150546446442604,
0.027868449687957764,
-0.07707686722278595,
0.03788348287343979,
-0.24945113062858582,
-0.03198128193616867,
0.03852657228708267,
-0.07071147859096527,
0.06071637198328972,
0.0715576708316803,
0.031186604872345924,
0.03548504412174225,
0.010196496732532978,
-0.007103000767529011,
0.02046845108270645,
0.008907882496714592,
-0.0515124574303627,
-0.039814144372940063,
0.012605893425643444,
-0.05211716890335083,
-0.04608595743775368,
-0.0617271289229393,
0.019442105665802956,
-0.039268966764211655,
0.033915746957063675,
-0.0021703208331018686,
-0.04993553087115288,
0.07307291030883789,
0.031985215842723846,
-0.030129730701446533,
-0.07669500261545181,
0.049361858516931534,
-0.00421059550717473,
-0.06881467252969742,
0.12425301223993301,
-0.2351805418729782,
-0.06895798444747925,
0.042744942009449005,
0.010687321424484253,
-0.04131727293133736,
0.01678849384188652,
-0.020601490512490273,
-0.01294018141925335,
-0.04272104427218437,
-0.02336842752993107,
0.21374066174030304,
0.007967144250869751,
0.10329224914312363,
-0.07891030609607697,
-0.0006817213143222034,
-0.01247948594391346,
-0.009716061875224113,
0.0014634825056418777,
0.07943612337112427,
0.06295637041330338,
-0.13536910712718964,
0.07921476662158966,
0.026624877005815506,
0.04204254224896431,
0.10487499088048935,
0.026815097779035568,
-0.0689028725028038,
-0.0069939447566866875,
0.023598486557602882,
-0.021840553730726242,
0.003764580236747861,
-0.11750365793704987,
-0.01351920235902071,
0.048381976783275604,
0.019654717296361923,
0.04936807602643967,
-0.04304267838597298,
0.03900757059454918,
0.059407204389572144,
-0.020660042762756348,
-0.012074565514922142,
0.06630735099315643,
-0.040540628135204315,
0.05174294114112854,
0.015657275915145874,
0.03553282842040062,
-0.010880270041525364,
-0.029915427789092064,
-0.1311337947845459,
0.18124642968177795,
-0.16600468754768372,
-0.2484174221754074,
-0.15565159916877747,
0.02970711886882782,
-0.0465017594397068,
0.01581772044301033,
0.06665880233049393,
-0.0671447366476059,
-0.11229964345693588,
-0.10840585082769394,
0.05975372716784477,
-0.09939370304346085,
-0.09241323173046112,
-0.09046019613742828,
-0.027790868654847145,
-0.01507094781845808,
-0.15614277124404907,
-0.0038605905137956142,
0.03703303262591362,
-0.09731395542621613,
-0.007814072072505951,
-0.029790187254548073,
0.08662403374910355,
0.08670008927583694,
0.0046747950837016106,
0.019316693767905235,
-0.0009792953496798873,
0.11734449863433838,
-0.0595255009829998,
0.020294781774282455,
0.22788603603839874,
0.007123948540538549,
0.0207807756960392,
0.11811437457799911,
0.002275396604090929,
-0.10417119413614273,
0.05041097477078438,
-0.01849430799484253,
-0.06841514259576797,
-0.20551690459251404,
-0.1478695124387741,
-0.08374752104282379,
-0.07594313472509384,
0.04263758286833763,
0.04949134588241577,
0.049268290400505066,
0.039585813879966736,
-0.02035996876657009,
-0.03401895612478256,
-0.0015794329810887575,
0.048198152333498,
0.13684555888175964,
-0.015826135873794556,
0.07737888395786285,
-0.04626104608178139,
-0.03024592436850071,
0.06344351172447205,
-0.020344341173768044,
0.22905763983726501,
0.009410867467522621,
0.158354252576828,
0.12784747779369354,
0.035519011318683624,
0.050816524773836136,
0.03599730506539345,
-0.005439599510282278,
0.04823169484734535,
-0.01954338327050209,
-0.07512562721967697,
-0.0663243755698204,
0.09515398740768433,
0.08796587586402893,
-0.022177044302225113,
-0.006199940107762814,
-0.00042155460687354207,
0.01712365821003914,
0.17181047797203064,
-0.0503951720893383,
-0.23199765384197235,
-0.03187858313322067,
-0.00004115272167837247,
0.0014866397250443697,
-0.06042816489934921,
0.049955762922763824,
0.10475733131170273,
-0.1395144909620285,
-0.02356776036322117,
0.007106067147105932,
0.09347090870141983,
-0.023151922971010208,
-0.01669091358780861,
-0.046987004578113556,
0.11186854541301727,
-0.002023637294769287,
0.12483489513397217,
-0.20980842411518097,
0.18222638964653015,
0.038125261664390564,
0.05732407420873642,
-0.042833708226680756,
0.024452632293105125,
0.06955865770578384,
0.020626330748200417,
0.17579405009746552,
0.005269617773592472,
-0.08231981098651886,
-0.0961560383439064,
-0.11848733574151993,
0.053907789289951324,
0.046632759273052216,
-0.06432731449604034,
0.08640113472938538,
-0.031220341101288795,
0.009010888636112213,
-0.01761321723461151,
0.038670994341373444,
-0.142634779214859,
-0.1560029685497284,
0.028887415304780006,
-0.0027157096192240715,
0.08851310610771179,
-0.05145277455449104,
-0.029970813542604446,
0.018360760062932968,
0.14191775023937225,
-0.10064681619405746,
-0.1275235116481781,
-0.13676956295967102,
0.03267345577478409,
0.13562288880348206,
-0.08384176343679428,
0.041598010808229446,
-0.020753614604473114,
0.07732275873422623,
-0.03724559769034386,
-0.11375924199819565,
0.06777233630418777,
-0.09030339866876602,
-0.06393197923898697,
-0.031684983521699905,
0.03743671253323555,
0.13817110657691956,
0.026163533329963684,
0.009159828536212444,
0.03939139097929001,
-0.02231471799314022,
-0.08844146877527237,
-0.11875779926776886,
0.25343069434165955,
0.03588774800300598,
0.03545311465859413,
-0.0926305279135704,
-0.08812253177165985,
-0.052205294370651245,
-0.04409204423427582,
0.14334264397621155,
0.032978273928165436,
-0.03602380305528641,
0.15736138820648193,
0.1721857190132141,
-0.11058226972818375,
-0.24848385155200958,
-0.06364592909812927,
0.02102670446038246,
0.06588219106197357,
0.06335301697254181,
-0.14520666003227234,
0.06811319291591644,
0.060924410820007324,
0.0008200517622753978,
-0.10945916175842285,
-0.3029768764972687,
-0.11646302044391632,
0.13333353400230408,
0.06733687222003937,
0.0021910443902015686,
-0.13118760287761688,
-0.03613327816128731,
-0.002713186899200082,
-0.02465873770415783,
0.030833419412374496,
0.03597133979201317,
0.0660584419965744,
0.006796421017497778,
-0.022565091028809547,
0.02188035659492016,
-0.019656477496027946,
0.07320573180913925,
0.03709721565246582,
0.033419832587242126,
-0.03871824964880943,
0.04980466514825821,
0.1151803731918335,
-0.01257595419883728,
0.13796907663345337,
0.04524156451225281,
0.05295557528734207,
-0.10004260390996933,
-0.06622098386287689,
-0.05458398908376694,
0.07891394197940826,
0.019219445064663887,
-0.10613467544317245,
-0.042592450976371765,
0.07003545761108398,
0.08677186071872711,
-0.009574493393301964,
-0.06397740542888641,
-0.1065436378121376,
0.018426796421408653,
0.11296883970499039,
0.18771615624427795,
0.0980076864361763,
-0.07995902746915817,
-0.02906452678143978,
-0.002349572954699397,
0.08835388720035553,
-0.12427278608083725,
-0.004935931414365768,
0.10615213215351105,
0.0006964062340557575,
0.11637534946203232,
0.023318570107221603,
-0.07604102045297623,
0.056112486869096756,
0.049590595066547394,
0.008178649470210075,
-0.18313871324062347,
-0.03528446704149246,
0.06004089117050171,
-0.06597001850605011,
-0.06665556877851486,
0.07488873600959778,
-0.07596762478351593,
-0.03325363248586655,
-0.04562032222747803,
0.061742834746837616,
-0.040945254266262054,
0.17258474230766296,
0.011166774667799473,
0.028008993715047836,
-0.08172456175088882,
0.07786248624324799,
0.06799054145812988,
-0.12793874740600586,
0.05037997290492058,
0.07573757320642471,
-0.13975688815116882,
-0.06009230762720108,
-0.003247035201638937,
0.09008283168077469,
-0.06452635675668716,
-0.05514773726463318,
-0.018291717395186424,
-0.027657335624098778,
0.009768910706043243,
0.06707356870174408,
0.024760186672210693,
0.004301354754716158,
-0.09573932737112045,
-0.0454380065202713,
-0.06530942022800446,
0.08731408417224884,
0.05391353368759155,
-0.022767173126339912,
-0.015271453186869621,
0.08051446825265884,
0.0627407506108284,
0.011451809667050838,
-0.03990281745791435,
-0.09287282079458237,
-0.03213759511709213,
0.014947084710001945,
-0.08475197851657867,
-0.034971725195646286,
-0.16803693771362305,
-0.02069341205060482,
-0.015368026681244373,
-0.0006115239229984581,
-0.0017791902646422386,
0.057430218905210495,
-0.05858113616704941,
-0.05349593237042427,
-0.042832911014556885,
0.10650545358657837,
-0.08574311435222626,
-0.014753264375030994,
0.02267351932823658,
-0.023979028686881065,
0.06465102732181549,
0.05196415260434151,
-0.04704856127500534,
0.010923458263278008,
-0.11020858585834503,
-0.0027373209595680237,
-0.019010033458471298,
0.07356949150562286,
0.024819377809762955,
-0.08725453168153763,
0.02274593710899353,
0.04188750311732292,
-0.05003438517451286,
-0.03869574889540672,
0.04838525503873825,
-0.09815016388893127,
0.09351665526628494,
-0.05095338821411133,
0.06694972515106201,
-0.047309935092926025,
0.04649096727371216,
0.05023534223437309,
0.09483008086681366,
0.07948161661624908,
-0.06580255925655365,
0.06884001195430756,
-0.08300639688968658,
-0.022606557235121727,
-0.03117520734667778,
0.02509521320462227,
-0.0361686572432518,
-0.09590110927820206,
0.04758647456765175,
0.0024785848800092936,
0.18761536478996277,
0.016795426607131958,
0.058237601071596146,
0.01701205037534237,
0.017824340611696243,
0.09834612905979156,
-0.04408661648631096,
0.10671365261077881,
0.0578707754611969,
0.02292034402489662,
0.02858823537826538,
0.0845545083284378,
0.00720480689778924,
0.016298651695251465,
0.06305773556232452,
0.16137823462486267,
0.05503051355481148,
0.027192408218979836,
0.05438493564724922,
-0.0647590160369873,
-0.0754418596625328,
-0.015916084870696068,
-0.011438479647040367,
0.06816519796848297,
-0.056896984577178955,
-0.004049922805279493,
0.14276212453842163,
-0.09528473764657974,
0.09180104732513428,
0.050451744347810745,
-0.03590303659439087,
-0.07587683945894241,
-0.10298963636159897,
-0.039701107889413834,
-0.08011846244335175,
-0.01688847318291664,
-0.1211831122636795,
0.025790587067604065,
0.10887683928012848,
0.02899550274014473,
-0.05273671820759773,
0.15750662982463837,
-0.10001959651708603,
-0.11686625331640244,
-0.02665085159242153,
-0.0342201367020607,
0.0747314915060997,
0.013872225768864155,
0.010285608470439911,
0.03284503147006035,
0.01784653589129448,
0.06517920643091202,
0.06455066055059433,
0.0023653139360249043,
-0.003195041324943304,
-0.11012301594018936,
-0.03192036598920822,
-0.03866421431303024,
0.030047396197915077,
-0.05031634494662285,
0.16233396530151367,
0.09159304201602936,
-0.099644735455513,
0.013355262577533722,
0.09180214256048203,
-0.01450430043041706,
-0.10145863145589828,
-0.17454946041107178,
0.23986537754535675,
0.052699923515319824,
-0.006264009978622198,
0.011616382747888565,
-0.08268531411886215,
-0.011793208308517933,
0.23285086452960968,
0.14532257616519928,
-0.024869436398148537,
-0.0001762406900525093,
0.005916777998209,
0.0005906628211960196,
-0.023084400221705437,
0.10828433185815811,
-0.004617632366716862,
0.2570918798446655,
-0.07587376981973648,
0.03807692602276802,
-0.08281777054071426,
-0.03962590545415878,
-0.07004848122596741,
0.023417677730321884,
0.010511978529393673,
-0.031437117606401443,
0.01237497292459011,
0.1119808554649353,
-0.1304527223110199,
-0.054042477160692215,
-0.006449313368648291,
-0.03966415673494339,
-0.08587874472141266,
-0.046303171664476395,
-0.0779169350862503,
0.07727392762899399,
0.055761612951755524,
-0.014426806941628456,
0.02461189404129982,
0.11635307967662811,
0.05056597664952278,
-0.1432763636112213,
-0.04868132993578911,
0.08610495924949646,
-0.031875304877758026,
0.15409646928310394,
-0.016957785934209824,
0.02691066823899746,
0.07387076318264008,
0.03506322577595711,
-0.09873459488153458,
0.13074058294296265,
0.0218137688934803,
0.036995239555835724,
0.068928062915802,
0.027049511671066284,
-0.021175215020775795,
0.08771201223134995,
0.02330200746655464,
-0.05680059269070625,
0.0865829810500145,
-0.02884460985660553,
0.03961246833205223,
-0.10068118572235107,
0.042306262999773026,
-0.058213211596012115,
0.16635991632938385,
0.09648405015468597,
-0.025044143199920654,
-0.019465778023004532,
-0.06897004693746567,
0.05990598723292351,
-0.038224976509809494,
0.10244649648666382,
-0.059333521872758865,
-0.15128497779369354,
-0.01724029704928398,
-0.12701532244682312,
0.004715024959295988,
-0.2235923707485199,
-0.04040393978357315,
0.0009099884773604572,
-0.001908628037199378,
0.017942193895578384,
0.08592234551906586,
0.07295666635036469,
0.02648727037012577,
-0.010613502934575081,
-0.06697884947061539,
0.028074946254491806,
0.07632169872522354,
-0.13305318355560303,
-0.06473100930452347
] |
null | null |
transformers
|
# Gujarati-XLM-R-Large
This model is finetuned over [XLM-RoBERTa](https://huggingface.co/xlm-roberta-large) (XLM-R) using its large variant with the Gujarati language using the [OSCAR](https://oscar-corpus.com/) monolingual dataset. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.
## Dataset
OSCAR corpus contains several diverse datasets for different languages. We followed the work of [CamemBERT](https://www.aclweb.org/anthology/2020.acl-main.645/) who reported better performance with this diverse dataset as compared to the other large homogenous datasets.
## Preprocessing and Training Procedure
Please visit [this link](https://github.com/ashwanitanwar/nmt-transfer-learning-xlm-r#6-finetuning-xlm-r) for the detailed procedure.
## Usage
- This model can be used for further finetuning for different NLP tasks using the Gujarati language.
- It can be used to generate contextualised word representations for the Gujarati words.
- It can be used for domain adaptation.
- It can be used to predict the missing words from the Gujarati sentences.
## Demo
### Using the model to predict missing words
```
from transformers import pipeline
unmasker = pipeline('fill-mask', model='ashwani-tanwar/Gujarati-XLM-R-Large')
pred_word = unmasker("เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช <mask> เชเซ.")
print(pred_word)
```
```
[{'sequence': '<s> เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชถเชนเซเชฐ เชเซ.</s>', 'score': 0.9790881276130676, 'token': 85227, 'token_str': 'โเชถเชนเซเชฐ'},
{'sequence': '<s> เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชฐเชพเชเซเชฏ เชเซ.</s>', 'score': 0.004246668424457312, 'token': 63678, 'token_str': 'โเชฐเชพเชเซเชฏ'},
{'sequence': '<s> เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชเชพเชฎ เชเซ.</s>', 'score': 0.0038021174259483814, 'token': 66346, 'token_str': 'โเชเชพเชฎ'},
{'sequence': '<s> เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชฎเชนเชคเซเชต เชเซ.</s>', 'score': 0.002798238070681691, 'token': 126763, 'token_str': 'โเชฎเชนเชคเซเชต'},
{'sequence': '<s> เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เช
เชฎเชฆเชพเชตเชพเชฆ เชเซ.</s>', 'score': 0.0021192911081016064, 'token': 69499, 'token_str': 'โเช
เชฎเชฆเชพเชตเชพเชฆ'}]
```
### Using the model to generate contextualised word representations
```
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("ashwani-tanwar/Gujarati-XLM-R-Large")
model = AutoModel.from_pretrained("ashwani-tanwar/Gujarati-XLM-R-Large")
sentence = "เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชถเชนเซเชฐ เชเซ."
encoded_sentence = tokenizer(sentence, return_tensors='pt')
context_word_rep = model(**encoded_sentence)
```
|
{"language": "gu"}
|
fill-mask
|
ashwani-tanwar/Gujarati-XLM-R-Large
|
[
"transformers",
"pytorch",
"tf",
"xlm-roberta",
"fill-mask",
"gu",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"gu"
] |
TAGS
#transformers #pytorch #tf #xlm-roberta #fill-mask #gu #autotrain_compatible #endpoints_compatible #region-us
|
# Gujarati-XLM-R-Large
This model is finetuned over XLM-RoBERTa (XLM-R) using its large variant with the Gujarati language using the OSCAR monolingual dataset. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.
## Dataset
OSCAR corpus contains several diverse datasets for different languages. We followed the work of CamemBERT who reported better performance with this diverse dataset as compared to the other large homogenous datasets.
## Preprocessing and Training Procedure
Please visit this link for the detailed procedure.
## Usage
- This model can be used for further finetuning for different NLP tasks using the Gujarati language.
- It can be used to generate contextualised word representations for the Gujarati words.
- It can be used for domain adaptation.
- It can be used to predict the missing words from the Gujarati sentences.
## Demo
### Using the model to predict missing words
### Using the model to generate contextualised word representations
|
[
"# Gujarati-XLM-R-Large\n\n\nThis model is finetuned over XLM-RoBERTa (XLM-R) using its large variant with the Gujarati language using the OSCAR monolingual dataset. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.",
"## Dataset\nOSCAR corpus contains several diverse datasets for different languages. We followed the work of CamemBERT who reported better performance with this diverse dataset as compared to the other large homogenous datasets.",
"## Preprocessing and Training Procedure\nPlease visit this link for the detailed procedure.",
"## Usage\n- This model can be used for further finetuning for different NLP tasks using the Gujarati language.\n- It can be used to generate contextualised word representations for the Gujarati words.\n- It can be used for domain adaptation.\n- It can be used to predict the missing words from the Gujarati sentences.",
"## Demo\n ### Using the model to predict missing words\n \n \n ### Using the model to generate contextualised word representations"
] |
[
"TAGS\n#transformers #pytorch #tf #xlm-roberta #fill-mask #gu #autotrain_compatible #endpoints_compatible #region-us \n",
"# Gujarati-XLM-R-Large\n\n\nThis model is finetuned over XLM-RoBERTa (XLM-R) using its large variant with the Gujarati language using the OSCAR monolingual dataset. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.",
"## Dataset\nOSCAR corpus contains several diverse datasets for different languages. We followed the work of CamemBERT who reported better performance with this diverse dataset as compared to the other large homogenous datasets.",
"## Preprocessing and Training Procedure\nPlease visit this link for the detailed procedure.",
"## Usage\n- This model can be used for further finetuning for different NLP tasks using the Gujarati language.\n- It can be used to generate contextualised word representations for the Gujarati words.\n- It can be used for domain adaptation.\n- It can be used to predict the missing words from the Gujarati sentences.",
"## Demo\n ### Using the model to predict missing words\n \n \n ### Using the model to generate contextualised word representations"
] |
[
45,
106,
49,
17,
69,
26
] |
[
"passage: TAGS\n#transformers #pytorch #tf #xlm-roberta #fill-mask #gu #autotrain_compatible #endpoints_compatible #region-us \n# Gujarati-XLM-R-Large\n\n\nThis model is finetuned over XLM-RoBERTa (XLM-R) using its large variant with the Gujarati language using the OSCAR monolingual dataset. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.## Dataset\nOSCAR corpus contains several diverse datasets for different languages. We followed the work of CamemBERT who reported better performance with this diverse dataset as compared to the other large homogenous datasets.## Preprocessing and Training Procedure\nPlease visit this link for the detailed procedure.## Usage\n- This model can be used for further finetuning for different NLP tasks using the Gujarati language.\n- It can be used to generate contextualised word representations for the Gujarati words.\n- It can be used for domain adaptation.\n- It can be used to predict the missing words from the Gujarati sentences.## Demo\n ### Using the model to predict missing words\n \n \n ### Using the model to generate contextualised word representations"
] |
[
-0.0360046923160553,
0.1452806442975998,
-0.0005533628864213824,
0.05937010049819946,
0.11079170554876328,
-0.01320513803511858,
0.027775507420301437,
0.09964656829833984,
-0.08453775197267532,
0.035493768751621246,
0.026664679870009422,
-0.0003530409303493798,
0.06819150596857071,
0.14692310988903046,
0.07041370123624802,
-0.27951937913894653,
0.03100445494055748,
-0.07528136670589447,
-0.018044307827949524,
0.11960919201374054,
0.11683455854654312,
-0.09816564619541168,
0.08816894143819809,
0.04375169426202774,
-0.044135693460702896,
0.05871639773249626,
-0.05655863881111145,
-0.07783965021371841,
0.06461615860462189,
0.05067557841539383,
0.04279695823788643,
0.005055205896496773,
0.12489241361618042,
-0.16913267970085144,
0.015722373500466347,
0.02529114857316017,
0.0026357509195804596,
-0.004449063446372747,
0.1202775239944458,
-0.049531348049640656,
0.2525874078273773,
-0.002632231917232275,
0.040036045014858246,
0.07921715825796127,
-0.11636225134134293,
-0.12872090935707092,
-0.017039168626070023,
0.016374852508306503,
0.012611945159733295,
0.1553446650505066,
-0.04483639448881149,
0.1124366968870163,
-0.04243231937289238,
0.06948722153902054,
0.08493636548519135,
-0.16351720690727234,
-0.012152028270065784,
0.1305428445339203,
0.132858008146286,
0.07157938182353973,
-0.04299759119749069,
-0.0002982889418490231,
-0.007727697491645813,
0.027025824412703514,
0.030660754069685936,
-0.057891733944416046,
-0.05103012174367905,
0.0017984164878726006,
-0.12893597781658173,
-0.044350169599056244,
0.25043758749961853,
-0.059602104127407074,
0.0021587717346847057,
-0.08467331528663635,
-0.07369917631149292,
0.04101977497339249,
-0.016078833490610123,
-0.04958018660545349,
-0.005005210638046265,
0.08241981267929077,
0.06555420160293579,
-0.06495301425457001,
-0.08837494999170303,
-0.02877497673034668,
-0.02732434868812561,
0.08907212316989899,
0.041546665132045746,
0.01243953313678503,
-0.09781306236982346,
0.0692630484700203,
-0.12178610265254974,
-0.07029520720243454,
-0.04670296981930733,
-0.0648537129163742,
-0.09119873493909836,
0.03519724681973457,
-0.04551554471254349,
-0.14020390808582306,
0.062336526811122894,
0.036152467131614685,
0.027054935693740845,
0.034039657562971115,
-0.01845349557697773,
0.0008453307673335075,
0.08927150815725327,
0.11978907883167267,
-0.15867571532726288,
-0.08978331089019775,
0.036177463829517365,
-0.011931909248232841,
-0.006295622326433659,
0.0033423781860619783,
-0.05779855698347092,
0.0005338359624147415,
-0.055515311658382416,
0.0964934453368187,
0.010179460979998112,
0.08257915079593658,
-0.040311314165592194,
-0.05910290405154228,
0.09812863171100616,
-0.12883439660072327,
-0.07136958837509155,
-0.018203264102339745,
-0.0428435318171978,
-0.047281160950660706,
0.05618619918823242,
-0.009069009684026241,
-0.057867251336574554,
-0.11716121435165405,
-0.06815330684185028,
-0.014028009958565235,
-0.13730666041374207,
-0.12134633958339691,
-0.04363154619932175,
0.017571208998560905,
-0.04341772571206093,
-0.12022040039300919,
-0.20322665572166443,
-0.02815181575715542,
0.006590897683054209,
-0.048667751252651215,
0.03623540326952934,
-0.0767914429306984,
0.017266711220145226,
-0.04565362259745598,
-0.006594876758754253,
-0.017770174890756607,
-0.016757216304540634,
0.0321318618953228,
-0.014027228578925133,
0.07342632859945297,
-0.020518355071544647,
0.06822827458381653,
-0.12504033744335175,
0.031091634184122086,
-0.04638252407312393,
0.17959289252758026,
-0.03189586102962494,
-0.02027326636016369,
-0.1309603750705719,
-0.030884400010108948,
-0.05099349096417427,
0.03461671248078346,
0.010985953733325005,
0.08873698860406876,
-0.17158307135105133,
0.029955338686704636,
0.2257743626832962,
-0.10376669466495514,
-0.07161130756139755,
0.09173140674829483,
-0.036365680396556854,
0.15409933030605316,
0.045496053993701935,
0.11594501882791519,
0.048747289925813675,
-0.015903720632195473,
0.05826593562960625,
-0.010893330909311771,
-0.04466044157743454,
0.03258819505572319,
0.09896701574325562,
-0.1029110997915268,
0.014559892006218433,
0.01605362631380558,
-0.1029030904173851,
0.026672065258026123,
-0.00962086208164692,
-0.07575112581253052,
0.002610208932310343,
-0.03796388953924179,
0.019907841458916664,
-0.01937219500541687,
0.02123112417757511,
0.03604593873023987,
-0.07570675760507584,
-0.008527182973921299,
0.13198360800743103,
-0.058415722101926804,
0.027819957584142685,
-0.11715879291296005,
0.025744710117578506,
-0.07818339020013809,
0.03881753981113434,
-0.24957017600536346,
-0.032820213586091995,
0.03942374512553215,
-0.07241105288267136,
0.06002533435821533,
0.07677172124385834,
0.030836328864097595,
0.034267861396074295,
0.009726185351610184,
-0.006014085374772549,
0.0220490749925375,
0.007401753216981888,
-0.05214451998472214,
-0.03826979547739029,
0.014248776249587536,
-0.0519832968711853,
-0.049219127744436264,
-0.06228766590356827,
0.01811254769563675,
-0.037339795380830765,
0.028299938887357712,
-0.0019280776614323258,
-0.04843791946768761,
0.07373666763305664,
0.0323137566447258,
-0.031360041350126266,
-0.07612614333629608,
0.05010794475674629,
-0.007367276586592197,
-0.07290647178888321,
0.12415850162506104,
-0.2345551997423172,
-0.06288591772317886,
0.04317796975374222,
0.010831634514033794,
-0.04237450286746025,
0.017603425309062004,
-0.01995287463068962,
-0.013106165453791618,
-0.04392159730195999,
-0.02072160318493843,
0.21375343203544617,
0.00857185572385788,
0.10511480271816254,
-0.07994426041841507,
0.0006244655232876539,
-0.011622105725109577,
-0.009210651740431786,
0.002579641528427601,
0.07895126938819885,
0.06168075650930405,
-0.13812769949436188,
0.0771988183259964,
0.027902353554964066,
0.04091322422027588,
0.10512407124042511,
0.026496943086385727,
-0.0696423202753067,
-0.006842061877250671,
0.025555292144417763,
-0.01987975277006626,
0.0006759427487850189,
-0.1159411296248436,
-0.012145036831498146,
0.050147004425525665,
0.020395543426275253,
0.04767829552292824,
-0.042921032756567,
0.037847086787223816,
0.0595933198928833,
-0.021451491862535477,
-0.009821658954024315,
0.06941486895084381,
-0.03816782683134079,
0.05332120507955551,
0.015923717990517616,
0.03291059657931328,
-0.009923193603754044,
-0.030398059636354446,
-0.12909086048603058,
0.18256278336048126,
-0.16423842310905457,
-0.25431472063064575,
-0.15529696643352509,
0.029787734150886536,
-0.04833115264773369,
0.013869740068912506,
0.06669087707996368,
-0.06766819953918457,
-0.11280862987041473,
-0.10831639915704727,
0.062121666967868805,
-0.10127093642950058,
-0.08973834663629532,
-0.09083028137683868,
-0.027262767776846886,
-0.014764475636184216,
-0.15536841750144958,
-0.003186523448675871,
0.03701307997107506,
-0.10130307823419571,
-0.006490164436399937,
-0.027771297842264175,
0.0885375514626503,
0.08431410044431686,
0.0037976070307195187,
0.019505608826875687,
-0.0018589379033073783,
0.11242707073688507,
-0.06014420464634895,
0.016929544508457184,
0.22749848663806915,
0.007380420807749033,
0.01977352797985077,
0.11772604286670685,
0.004253048449754715,
-0.10551227629184723,
0.04896346479654312,
-0.020229946821928024,
-0.06901021301746368,
-0.20734038949012756,
-0.14962507784366608,
-0.08438344299793243,
-0.07241735607385635,
0.04230799525976181,
0.048687394708395004,
0.04792605713009834,
0.040434110909700394,
-0.018774034455418587,
-0.032951101660728455,
-0.001722070388495922,
0.04826825484633446,
0.14134514331817627,
-0.015356751158833504,
0.07763302326202393,
-0.04661498963832855,
-0.03312652185559273,
0.06552958488464355,
-0.024193832650780678,
0.2320515215396881,
0.010243641212582588,
0.15926866233348846,
0.12848958373069763,
0.031836096197366714,
0.04840201884508133,
0.03647306188941002,
-0.005702295806258917,
0.04748466610908508,
-0.020987767726182938,
-0.07495316863059998,
-0.06391048431396484,
0.09537388384342194,
0.09410203248262405,
-0.02258877269923687,
-0.008194687776267529,
0.0026480809319764376,
0.01887413300573826,
0.17048123478889465,
-0.05168391391634941,
-0.23282372951507568,
-0.03035312332212925,
-0.0010224764700978994,
-0.00006800480332458392,
-0.06076700612902641,
0.052589476108551025,
0.11136047542095184,
-0.13984718918800354,
-0.0203425120562315,
0.005555956158787012,
0.09237848222255707,
-0.023470425978302956,
-0.014934800565242767,
-0.048279114067554474,
0.11383454501628876,
-0.0007028330001048744,
0.126381516456604,
-0.21162950992584229,
0.18546000123023987,
0.03885267674922943,
0.05410178750753403,
-0.044519029557704926,
0.023800434544682503,
0.070284403860569,
0.020864829421043396,
0.177996426820755,
0.004757183138281107,
-0.07671459019184113,
-0.0965246930718422,
-0.1197093278169632,
0.054353512823581696,
0.049374960362911224,
-0.06203059107065201,
0.08557300269603729,
-0.031440503895282745,
0.008021189831197262,
-0.018063882365822792,
0.04081707447767258,
-0.1371348351240158,
-0.15598197281360626,
0.029361778870224953,
0.000989152817055583,
0.08437782526016235,
-0.05169609934091568,
-0.030843425542116165,
0.01668376661837101,
0.14579159021377563,
-0.09901507198810577,
-0.12627087533473969,
-0.13473787903785706,
0.03427230566740036,
0.13652147352695465,
-0.08388714492321014,
0.04111113399267197,
-0.020091526210308075,
0.0744946077466011,
-0.03842347860336304,
-0.11137594282627106,
0.06957511603832245,
-0.08996743708848953,
-0.06526853144168854,
-0.03190350532531738,
0.03647534176707268,
0.1342703402042389,
0.027878258377313614,
0.00872071273624897,
0.038992688059806824,
-0.01991947367787361,
-0.09017179906368256,
-0.12217583507299423,
0.25470370054244995,
0.03569420054554939,
0.03932002931833267,
-0.09052398055791855,
-0.08829173445701599,
-0.05020482465624809,
-0.045132510364055634,
0.14974237978458405,
0.03567804768681526,
-0.037981051951646805,
0.1574346125125885,
0.16905415058135986,
-0.10867290198802948,
-0.25053656101226807,
-0.06378195434808731,
0.01932242140173912,
0.06521543860435486,
0.06450299918651581,
-0.14416435360908508,
0.0686350017786026,
0.06312300264835358,
0.001682668225839734,
-0.1103750690817833,
-0.3066554069519043,
-0.11714563518762589,
0.1312304437160492,
0.0650971308350563,
0.006275476422160864,
-0.13164536654949188,
-0.034967344254255295,
-0.003135334700345993,
-0.017761368304491043,
0.030192691832780838,
0.03958461433649063,
0.06871437281370163,
0.006320498883724213,
-0.023425621911883354,
0.023212861269712448,
-0.020253309980034828,
0.07466665655374527,
0.03619229793548584,
0.033294711261987686,
-0.0381263867020607,
0.04914943873882294,
0.11571104824542999,
-0.012192833237349987,
0.13936753571033478,
0.042845629155635834,
0.051195014268159866,
-0.10016387701034546,
-0.06745972484350204,
-0.05443113297224045,
0.0787607803940773,
0.02054821327328682,
-0.10666722059249878,
-0.04529804736375809,
0.07032231986522675,
0.08897019177675247,
-0.009516353718936443,
-0.0643269494175911,
-0.10409387201070786,
0.015505969524383545,
0.10646872222423553,
0.19355711340904236,
0.09712085872888565,
-0.08314964920282364,
-0.029365643858909607,
-0.0017248094081878662,
0.08861195296049118,
-0.12426428496837616,
-0.004157078452408314,
0.10759317874908447,
-0.00009094634879147634,
0.11518813669681549,
0.023208117112517357,
-0.07285098731517792,
0.05582653731107712,
0.05050777271389961,
0.00957772321999073,
-0.18840011954307556,
-0.03431174159049988,
0.06295469403266907,
-0.06543471664190292,
-0.06695791333913803,
0.0731644481420517,
-0.07680069655179977,
-0.03157420828938484,
-0.045388948172330856,
0.062017716467380524,
-0.038706932216882706,
0.17196089029312134,
0.008095476776361465,
0.02882610820233822,
-0.08276773989200592,
0.07620617747306824,
0.06769156455993652,
-0.13074687123298645,
0.050232477486133575,
0.07625892013311386,
-0.13857415318489075,
-0.059303443878889084,
-0.0012589171528816223,
0.08794400095939636,
-0.06263048201799393,
-0.05574251338839531,
-0.014662454836070538,
-0.02886315807700157,
0.010390102863311768,
0.06585054099559784,
0.02511584199965,
0.003969211131334305,
-0.09452249854803085,
-0.0468938834965229,
-0.06519882380962372,
0.08729929476976395,
0.053513288497924805,
-0.02328523062169552,
-0.017448509112000465,
0.08237193524837494,
0.06213345378637314,
0.012638837099075317,
-0.03957163542509079,
-0.09204808622598648,
-0.029544446617364883,
0.01447630487382412,
-0.08486825227737427,
-0.033551763743162155,
-0.16805097460746765,
-0.02065180614590645,
-0.015172089450061321,
0.0011449286248534918,
-0.0027072890661656857,
0.055410802364349365,
-0.05955313518643379,
-0.05313516780734062,
-0.04321497678756714,
0.10864309966564178,
-0.0847388431429863,
-0.01696893572807312,
0.020791372284293175,
-0.023510228842496872,
0.06730151921510696,
0.048634279519319534,
-0.048998672515153885,
0.009092288091778755,
-0.10819784551858902,
-0.005834389477968216,
-0.016871696338057518,
0.07681702077388763,
0.02594495750963688,
-0.08624423295259476,
0.023746371269226074,
0.043000899255275726,
-0.04829413443803787,
-0.0370500311255455,
0.04586797580122948,
-0.09834091365337372,
0.0941547304391861,
-0.05301888659596443,
0.06760082393884659,
-0.047586433589458466,
0.04413283243775368,
0.04890083149075508,
0.09362368285655975,
0.08225609362125397,
-0.06648577749729156,
0.0691271647810936,
-0.08246030658483505,
-0.022026846185326576,
-0.03265603259205818,
0.023401852697134018,
-0.03693252056837082,
-0.09555359929800034,
0.04894796013832092,
0.0002834685146808624,
0.19100162386894226,
0.017636055126786232,
0.05413167551159859,
0.018281057476997375,
0.01807045191526413,
0.09798796474933624,
-0.04520132392644882,
0.1057807058095932,
0.058547645807266235,
0.022266525775194168,
0.028479164466261864,
0.08400281518697739,
0.009754323400557041,
0.020047152414917946,
0.06589628756046295,
0.16258548200130463,
0.05391563102602959,
0.027605589479207993,
0.053895216435194016,
-0.06643951684236526,
-0.0763653963804245,
-0.016751226037740707,
-0.013279380276799202,
0.07159648835659027,
-0.056529175490140915,
-0.005835135467350483,
0.14047451317310333,
-0.09446819871664047,
0.09249050170183182,
0.0491265133023262,
-0.035146523267030716,
-0.07630833983421326,
-0.1002734899520874,
-0.04238627851009369,
-0.07632169872522354,
-0.01707923226058483,
-0.12201054394245148,
0.02691006287932396,
0.10976745933294296,
0.03227320313453674,
-0.0532132163643837,
0.1590203493833542,
-0.10543253272771835,
-0.11517949402332306,
-0.025143202394247055,
-0.0342094711959362,
0.07573381811380386,
0.016406264156103134,
0.008834609761834145,
0.030535269528627396,
0.016421711072325706,
0.06525543332099915,
0.06541244685649872,
0.0013349968940019608,
-0.0031315647065639496,
-0.112635537981987,
-0.03161522001028061,
-0.040194787085056305,
0.02899509109556675,
-0.04707939550280571,
0.15926693379878998,
0.09268853813409805,
-0.10164046287536621,
0.013081148266792297,
0.08890610188245773,
-0.015463709831237793,
-0.10396714508533478,
-0.1724245548248291,
0.24074921011924744,
0.05109292268753052,
-0.00608558114618063,
0.011065660044550896,
-0.07962921261787415,
-0.014610430225729942,
0.23394808173179626,
0.14940127730369568,
-0.028112173080444336,
-0.00011769887350965291,
0.005764201283454895,
0.0006929474184289575,
-0.02358112297952175,
0.11117128282785416,
-0.0037923124618828297,
0.260741651058197,
-0.07430907338857651,
0.03812677040696144,
-0.08305070549249649,
-0.03687174245715141,
-0.07044059783220291,
0.02373075857758522,
0.012575225904583931,
-0.030794614925980568,
0.01227903924882412,
0.11166597902774811,
-0.1292172372341156,
-0.052841342985630035,
-0.00575470132753253,
-0.0417831651866436,
-0.08814617246389389,
-0.04614419490098953,
-0.0763787031173706,
0.07766520231962204,
0.05573631078004837,
-0.014657488092780113,
0.024116992950439453,
0.10765273869037628,
0.05047687888145447,
-0.14557647705078125,
-0.04391298443078995,
0.08653364330530167,
-0.03208004683256149,
0.15320053696632385,
-0.014714697375893593,
0.030136818066239357,
0.07414331287145615,
0.03273531049489975,
-0.0989292711019516,
0.13076607882976532,
0.023568831384181976,
0.03774908930063248,
0.06970519572496414,
0.026938527822494507,
-0.02171144261956215,
0.08669773489236832,
0.025118941441178322,
-0.05732262134552002,
0.08626949787139893,
-0.027190694585442543,
0.03879700228571892,
-0.10129414498806,
0.04235683009028435,
-0.056839991360902786,
0.1640598177909851,
0.09896546602249146,
-0.024198345839977264,
-0.020604554563760757,
-0.06815867125988007,
0.05858141928911209,
-0.038782984018325806,
0.10246100276708603,
-0.06188899278640747,
-0.1506371945142746,
-0.01827744022011757,
-0.13355091214179993,
0.006737177725881338,
-0.2232954204082489,
-0.04016406461596489,
-0.000051292219723109156,
0.00007666312012588605,
0.016147861257195473,
0.08583951741456985,
0.07485104352235794,
0.02475806325674057,
-0.009899520315229893,
-0.06683363020420074,
0.028577959164977074,
0.07553542405366898,
-0.13392186164855957,
-0.06409037113189697
] |
null | null |
transformers
|
# Gujarati-in-Devanagari-XLM-R-Base
This model is finetuned over [XLM-RoBERTa](https://huggingface.co/xlm-roberta-base) (XLM-R) using its base variant with the Gujarati language using the [OSCAR](https://oscar-corpus.com/) monolingual dataset. We converted the Gujarati script to the Devanagari using [Indic-NLP](https://github.com/anoopkunchukuttan/indic_nlp_library) library. For example, the sentence 'เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชถเชนเซเชฐ เชเซ.' was converted to 'เค
เคฎเคฆเคพเคตเคพเคฆ เค เคเฅเคเคฐเคพเคคเคจเฅเค เคเค เคถเคนเฅเคฐ เคเฅ.'. This helped to get better contextualised representations for some words as the XLM-R was pre-trained with several languages written in Devanagari script such as Hindi, Marathi, Sanskrit, and so on.
We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.
## Dataset
OSCAR corpus contains several diverse datasets for different languages. We followed the work of [CamemBERT](https://www.aclweb.org/anthology/2020.acl-main.645/) who reported better performance with this diverse dataset as compared to the other large homogenous datasets.
## Preprocessing and Training Procedure
Please visit [this link](https://github.com/ashwanitanwar/nmt-transfer-learning-xlm-r#6-finetuning-xlm-r) for the detailed procedure.
## Usage
- This model can be used for further finetuning for different NLP tasks using the Gujarati language.
- It can be used to generate contextualised word representations for the Gujarati words.
- It can be used for domain adaptation.
- It can be used to predict the missing words from the Gujarati sentences.
## Demo
### Using the model to predict missing words
```
from transformers import pipeline
unmasker = pipeline('fill-mask', model='ashwani-tanwar/Gujarati-in-Devanagari-XLM-R-Base')
pred_word = unmasker("เค
เคฎเคฆเคพเคตเคพเคฆ เค เคเฅเคเคฐเคพเคคเคจเฅเค เคเค <mask> เคเฅ.")
print(pred_word)
```
```
[{'sequence': '<s> เค
เคฎเคฆเคพเคตเคพเคฆ เค เคเฅเคเคฐเคพเคคเคจเฅเค เคเค เคจเคเคฐ เคเฅ.</s>', 'score': 0.24843722581863403, 'token': 18576, 'token_str': 'โเคจเคเคฐ'},
{'sequence': '<s> เค
เคฎเคฆเคพเคตเคพเคฆ เค เคเฅเคเคฐเคพเคคเคจเฅเค เคเค เคฎเคนเคพเคจเคเคฐ เคเฅ.</s>', 'score': 0.21455222368240356, 'token': 122519, 'token_str': 'โเคฎเคนเคพเคจเคเคฐ'},
{'sequence': '<s> เค
เคฎเคฆเคพเคตเคพเคฆ เค เคเฅเคเคฐเคพเคคเคจเฅเค เคเค เคฐเคพเคเฅเคฏ เคเฅ.</s>', 'score': 0.16832049190998077, 'token': 10665, 'token_str': 'โเคฐเคพเคเฅเคฏ'},
{'sequence': '<s> เค
เคฎเคฆเคพเคตเคพเคฆ เค เคเฅเคเคฐเคพเคคเคจเฅเค เคเค เคเคฟเคฒเฅเคฒเคพ เคเฅ.</s>', 'score': 0.06764694303274155, 'token': 20396, 'token_str': 'โเคเคฟเคฒเฅเคฒเคพ'},
{'sequence': '<s> เค
เคฎเคฆเคพเคตเคพเคฆ เค เคเฅเคเคฐเคพเคคเคจเฅเค เคเค เคถเคนเคฐ เคเฅ.</s>', 'score': 0.05364946648478508, 'token': 22770, 'token_str': 'โเคถเคนเคฐ'}]
```
### Using the model to generate contextualised word representations
```
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("ashwani-tanwar/Gujarati-in-Devanagari-XLM-R-Base")
model = AutoModel.from_pretrained("ashwani-tanwar/Gujarati-in-Devanagari-XLM-R-Base")
sentence = "เค
เคฎเคฆเคพเคตเคพเคฆ เค เคเฅเคเคฐเคพเคคเคจเฅเค เคเค เคถเคนเฅเคฐ เคเฅ."
encoded_sentence = tokenizer(sentence, return_tensors='pt')
context_word_rep = model(**encoded_sentence)
```
|
{"language": "gu"}
|
fill-mask
|
ashwani-tanwar/Gujarati-in-Devanagari-XLM-R-Base
|
[
"transformers",
"pytorch",
"tf",
"xlm-roberta",
"fill-mask",
"gu",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"gu"
] |
TAGS
#transformers #pytorch #tf #xlm-roberta #fill-mask #gu #autotrain_compatible #endpoints_compatible #region-us
|
# Gujarati-in-Devanagari-XLM-R-Base
This model is finetuned over XLM-RoBERTa (XLM-R) using its base variant with the Gujarati language using the OSCAR monolingual dataset. We converted the Gujarati script to the Devanagari using Indic-NLP library. For example, the sentence 'เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชถเชนเซเชฐ เชเซ.' was converted to 'เค
เคฎเคฆเคพเคตเคพเคฆ เค เคเฅเคเคฐเคพเคคเคจเฅเค เคเค เคถเคนเฅเคฐ เคเฅ.'. This helped to get better contextualised representations for some words as the XLM-R was pre-trained with several languages written in Devanagari script such as Hindi, Marathi, Sanskrit, and so on.
We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.
## Dataset
OSCAR corpus contains several diverse datasets for different languages. We followed the work of CamemBERT who reported better performance with this diverse dataset as compared to the other large homogenous datasets.
## Preprocessing and Training Procedure
Please visit this link for the detailed procedure.
## Usage
- This model can be used for further finetuning for different NLP tasks using the Gujarati language.
- It can be used to generate contextualised word representations for the Gujarati words.
- It can be used for domain adaptation.
- It can be used to predict the missing words from the Gujarati sentences.
## Demo
### Using the model to predict missing words
### Using the model to generate contextualised word representations
|
[
"# Gujarati-in-Devanagari-XLM-R-Base\n\n\nThis model is finetuned over XLM-RoBERTa (XLM-R) using its base variant with the Gujarati language using the OSCAR monolingual dataset. We converted the Gujarati script to the Devanagari using Indic-NLP library. For example, the sentence 'เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชถเชนเซเชฐ เชเซ.' was converted to 'เค
เคฎเคฆเคพเคตเคพเคฆ เค เคเฅเคเคฐเคพเคคเคจเฅเค เคเค เคถเคนเฅเคฐ เคเฅ.'. This helped to get better contextualised representations for some words as the XLM-R was pre-trained with several languages written in Devanagari script such as Hindi, Marathi, Sanskrit, and so on. \n\nWe used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.",
"## Dataset\nOSCAR corpus contains several diverse datasets for different languages. We followed the work of CamemBERT who reported better performance with this diverse dataset as compared to the other large homogenous datasets.",
"## Preprocessing and Training Procedure\nPlease visit this link for the detailed procedure.",
"## Usage\n- This model can be used for further finetuning for different NLP tasks using the Gujarati language.\n- It can be used to generate contextualised word representations for the Gujarati words.\n- It can be used for domain adaptation.\n- It can be used to predict the missing words from the Gujarati sentences.",
"## Demo\n ### Using the model to predict missing words\n \n \n ### Using the model to generate contextualised word representations"
] |
[
"TAGS\n#transformers #pytorch #tf #xlm-roberta #fill-mask #gu #autotrain_compatible #endpoints_compatible #region-us \n",
"# Gujarati-in-Devanagari-XLM-R-Base\n\n\nThis model is finetuned over XLM-RoBERTa (XLM-R) using its base variant with the Gujarati language using the OSCAR monolingual dataset. We converted the Gujarati script to the Devanagari using Indic-NLP library. For example, the sentence 'เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชถเชนเซเชฐ เชเซ.' was converted to 'เค
เคฎเคฆเคพเคตเคพเคฆ เค เคเฅเคเคฐเคพเคคเคจเฅเค เคเค เคถเคนเฅเคฐ เคเฅ.'. This helped to get better contextualised representations for some words as the XLM-R was pre-trained with several languages written in Devanagari script such as Hindi, Marathi, Sanskrit, and so on. \n\nWe used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.",
"## Dataset\nOSCAR corpus contains several diverse datasets for different languages. We followed the work of CamemBERT who reported better performance with this diverse dataset as compared to the other large homogenous datasets.",
"## Preprocessing and Training Procedure\nPlease visit this link for the detailed procedure.",
"## Usage\n- This model can be used for further finetuning for different NLP tasks using the Gujarati language.\n- It can be used to generate contextualised word representations for the Gujarati words.\n- It can be used for domain adaptation.\n- It can be used to predict the missing words from the Gujarati sentences.",
"## Demo\n ### Using the model to predict missing words\n \n \n ### Using the model to generate contextualised word representations"
] |
[
45,
220,
49,
17,
69,
26
] |
[
"passage: TAGS\n#transformers #pytorch #tf #xlm-roberta #fill-mask #gu #autotrain_compatible #endpoints_compatible #region-us \n# Gujarati-in-Devanagari-XLM-R-Base\n\n\nThis model is finetuned over XLM-RoBERTa (XLM-R) using its base variant with the Gujarati language using the OSCAR monolingual dataset. We converted the Gujarati script to the Devanagari using Indic-NLP library. For example, the sentence 'เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชถเชนเซเชฐ เชเซ.' was converted to 'เค
เคฎเคฆเคพเคตเคพเคฆ เค เคเฅเคเคฐเคพเคคเคจเฅเค เคเค เคถเคนเฅเคฐ เคเฅ.'. This helped to get better contextualised representations for some words as the XLM-R was pre-trained with several languages written in Devanagari script such as Hindi, Marathi, Sanskrit, and so on. \n\nWe used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.## Dataset\nOSCAR corpus contains several diverse datasets for different languages. We followed the work of CamemBERT who reported better performance with this diverse dataset as compared to the other large homogenous datasets.## Preprocessing and Training Procedure\nPlease visit this link for the detailed procedure.## Usage\n- This model can be used for further finetuning for different NLP tasks using the Gujarati language.\n- It can be used to generate contextualised word representations for the Gujarati words.\n- It can be used for domain adaptation.\n- It can be used to predict the missing words from the Gujarati sentences.## Demo\n ### Using the model to predict missing words\n \n \n ### Using the model to generate contextualised word representations"
] |
[
-0.09873215109109879,
0.093113012611866,
-0.003424632828682661,
0.0557682178914547,
0.10734449326992035,
-0.00821791309863329,
0.044301196932792664,
0.046049363911151886,
-0.06673695892095566,
-0.00315425475127995,
0.013859909027814865,
0.021648427471518517,
0.0587015375494957,
0.0021726733539253473,
0.060987815260887146,
-0.2619454264640808,
0.05673777684569359,
-0.09065884351730347,
-0.06822444498538971,
0.09584838896989822,
0.11072095483541489,
-0.056277770549058914,
0.09988700598478317,
0.04860728606581688,
-0.07840220630168915,
0.023712854832410812,
-0.061662137508392334,
-0.012610317207872868,
0.06793441623449326,
0.07242266833782196,
0.10521946102380753,
0.01911243237555027,
0.08586061745882034,
-0.18621627986431122,
0.015061446465551853,
0.030373672023415565,
-0.002467542188242078,
0.007316201459616423,
0.07859385758638382,
-0.01944662258028984,
0.28140002489089966,
-0.04218678176403046,
0.015487479977309704,
0.012917534448206425,
-0.11568772047758102,
-0.06201000511646271,
-0.02852121740579605,
-0.0436914786696434,
-0.024958806112408638,
0.11326495558023453,
-0.02801579236984253,
0.06669800728559494,
-0.10195321589708328,
0.05849255621433258,
-0.0009209244744852185,
-0.20957669615745544,
-0.002028882037848234,
0.09226103872060776,
0.10376804322004318,
0.0768916979432106,
-0.03886766731739044,
0.009772935882210732,
-0.0091208815574646,
0.021997986361384392,
0.03126365318894386,
-0.048961881548166275,
0.03918857127428055,
0.028024250641465187,
-0.126560777425766,
-0.06497212499380112,
0.20390087366104126,
-0.023277021944522858,
-0.050476979464292526,
-0.056097015738487244,
-0.026502741500735283,
0.023056507110595703,
0.03410319238901138,
-0.0468013770878315,
-0.00830132607370615,
0.04560596123337746,
0.07395731657743454,
-0.005180893000215292,
-0.1250724047422409,
-0.0135042117908597,
-0.06347459554672241,
0.08828740566968918,
0.04140934348106384,
0.02020830474793911,
-0.051060039550065994,
0.04059326648712158,
-0.07410226762294769,
-0.06151245906949043,
-0.06758781522512436,
-0.07565420120954514,
-0.08708908408880234,
0.030261581763625145,
-0.0538676381111145,
-0.05435238778591156,
0.019042182713747025,
-0.0203241053968668,
-0.02962794527411461,
0.04254932329058647,
0.04436789080500603,
-0.0061701261438429356,
0.14069460332393646,
0.10261417925357819,
-0.09492801874876022,
-0.047784507274627686,
0.02674928866326809,
-0.004133438691496849,
-0.034501705318689346,
-0.028228627517819405,
-0.024183331057429314,
0.010551318526268005,
-0.0346071757376194,
0.07264257967472076,
-0.03633088618516922,
0.0868440642952919,
-0.05493314191699028,
-0.06713183224201202,
0.1136336699128151,
-0.13465936481952667,
-0.01558475848287344,
-0.02766606956720352,
-0.022423071786761284,
-0.031589437276124954,
0.06100081652402878,
0.007927922531962395,
-0.07191155850887299,
-0.062134530395269394,
-0.05534818023443222,
0.004745114129036665,
-0.14349164068698883,
-0.14313051104545593,
-0.011054007336497307,
-0.04725606366991997,
-0.026925886049866676,
-0.13582246005535126,
-0.1803138554096222,
-0.055608365684747696,
0.04461335763335228,
-0.006824880372732878,
0.029642492532730103,
-0.06737573444843292,
0.014735221862792969,
-0.05169988051056862,
-0.0037746012676507235,
-0.007441230118274689,
-0.036630772054195404,
0.022875171154737473,
-0.06280949711799622,
0.032710153609514236,
-0.024961287155747414,
0.04540310427546501,
-0.08398285508155823,
0.0158234816044569,
-0.02950679138302803,
0.1956784427165985,
-0.06370657682418823,
-0.02966289222240448,
-0.07213270664215088,
0.00020630430663004518,
-0.09070828557014465,
0.06058775261044502,
-0.013933470472693443,
0.06785064190626144,
-0.17637307941913605,
-0.01090101059526205,
0.05757933855056763,
-0.11430221796035767,
-0.05516000837087631,
0.09883905202150345,
-0.05691682919859886,
0.14336104691028595,
0.07379820942878723,
0.06682836264371872,
0.11062666028738022,
-0.07967545837163925,
-0.031803131103515625,
-0.03194787725806236,
-0.04924486577510834,
0.08471596986055374,
0.11188556253910065,
-0.010992985218763351,
-0.05544264242053032,
0.016327200457453728,
-0.13344058394432068,
0.00135326967574656,
-0.025695569813251495,
-0.055091891437768936,
0.03287443146109581,
0.012372797355055809,
-0.08959536999464035,
0.013957985676825047,
0.014657789841294289,
0.045309510082006454,
-0.053456731140613556,
-0.015111242420971394,
0.09090956300497055,
-0.040185753256082535,
0.03192073106765747,
-0.1218843013048172,
0.010987154208123684,
-0.12891361117362976,
0.04345708712935448,
-0.27407655119895935,
-0.008431524969637394,
0.025381065905094147,
-0.048347074538469315,
0.10470513999462128,
0.06525970250368118,
0.0068038334138691425,
0.07588315010070801,
-0.004684709012508392,
0.011014376766979694,
-0.016366196796298027,
-0.008808883838355541,
-0.051374755799770355,
-0.12247556447982788,
-0.03583492338657379,
-0.06022636964917183,
0.09641394019126892,
-0.06153801083564758,
0.02210119366645813,
-0.03820451349020004,
0.0006565827643498778,
0.0250481478869915,
-0.03989792615175247,
-0.0033644975628703833,
0.07083692401647568,
-0.03589864820241928,
-0.030018430203199387,
0.016860056668519974,
0.050039876252412796,
-0.0840814858675003,
0.14063319563865662,
-0.19110631942749023,
-0.0721597820520401,
0.028050405904650688,
-0.03547658771276474,
-0.06713785976171494,
-0.0061186132952570915,
-0.02628793567419052,
-0.005619657691568136,
-0.07419512420892715,
-0.015775782987475395,
0.20363500714302063,
-0.028397103771567345,
0.09049548208713531,
-0.09077390283346176,
-0.009999970905482769,
-0.028112130239605904,
-0.034359969198703766,
-0.0168752484023571,
0.10148435086011887,
0.05921224132180214,
-0.18785415589809418,
0.07370123267173767,
0.04342524707317352,
0.08848296105861664,
0.20164774358272552,
0.026993295177817345,
-0.0631018877029419,
-0.06911976635456085,
0.021307287737727165,
-0.022690951824188232,
-0.0004310011863708496,
-0.09595897048711777,
-0.009983996860682964,
0.04150417819619179,
0.029733341187238693,
0.059910278767347336,
-0.0869741290807724,
0.05456037446856499,
0.09862054139375687,
0.009854009374976158,
-0.10858432203531265,
0.002183313714340329,
-0.04483317956328392,
0.06903231143951416,
-0.013183466158807278,
0.042880114167928696,
0.013302085921168327,
-0.01981552690267563,
-0.1276896744966507,
0.18539588153362274,
-0.11656097322702408,
-0.22351741790771484,
-0.14872196316719055,
0.013310923241078854,
-0.03213251754641533,
0.02235095016658306,
0.03376845270395279,
-0.04019073769450188,
-0.08077839761972427,
-0.08002850413322449,
0.1464797556400299,
-0.01772047020494938,
-0.061191413551568985,
-0.037107981741428375,
-0.008132797665894032,
-0.018361952155828476,
-0.08396795392036438,
-0.015636881813406944,
0.010553517378866673,
-0.0586293488740921,
0.005812914110720158,
-0.05118446797132492,
0.12310909479856491,
0.04358956217765808,
-0.011473272927105427,
-0.010693737305700779,
0.040964797139167786,
0.14629365503787994,
-0.06190876662731171,
-0.005638197995722294,
0.07970879971981049,
-0.021379176527261734,
0.0011571174254640937,
0.0983051061630249,
0.0002095548261422664,
-0.032191596925258636,
0.009554893709719181,
0.031355757266283035,
-0.06186646968126297,
-0.2264932543039322,
-0.07938970625400543,
-0.08931134641170502,
-0.08471567928791046,
-0.021705783903598785,
0.015405264683067799,
0.007020758464932442,
0.06663767993450165,
-0.028153616935014725,
0.06170962005853653,
0.037972982972860336,
0.0205941591411829,
0.04272249713540077,
-0.02214423380792141,
0.06821297854185104,
-0.07540946453809738,
-0.056406330317258835,
0.06827005743980408,
-0.010882518254220486,
0.28230950236320496,
0.010574011132121086,
0.10479940474033356,
0.16642431914806366,
0.04471137374639511,
0.0821675956249237,
0.03346560150384903,
-0.03757643327116966,
0.01784639060497284,
-0.03155937045812607,
-0.04804256185889244,
-0.12516939640045166,
0.06060224026441574,
0.028744207695126534,
-0.04013804346323013,
-0.04901285097002983,
0.10871241986751556,
0.0022566551342606544,
0.1325383335351944,
-0.08351902663707733,
-0.2047729343175888,
-0.04266121983528137,
0.021599698811769485,
0.025992415845394135,
-0.07111014425754547,
-0.01562967337667942,
0.15966033935546875,
-0.07761940360069275,
0.005892966873943806,
-0.007374897599220276,
0.09566015005111694,
-0.0693090409040451,
0.007306693121790886,
-0.04924950748682022,
0.06935357302427292,
-0.010644606314599514,
0.11305505782365799,
-0.16425859928131104,
0.1822947859764099,
0.039286475628614426,
0.0836532860994339,
-0.07668100297451019,
0.027204008772969246,
0.03757616505026817,
0.08366622775793076,
0.12276040017604828,
0.025146884843707085,
-0.17164099216461182,
-0.12435106188058853,
-0.07972172647714615,
0.06142532825469971,
0.06573881953954697,
-0.07738611847162247,
0.10668569058179855,
0.010065550915896893,
0.020799169316887856,
-0.032457318156957626,
0.08700305223464966,
-0.16005727648735046,
-0.1824323982000351,
0.051050275564193726,
-0.031628724187612534,
0.02221992425620556,
-0.021978536620736122,
-0.029694557189941406,
0.046612150967121124,
0.15111619234085083,
-0.08087937533855438,
-0.09903781861066818,
-0.09891622513532639,
0.0632641389966011,
0.0659027025103569,
-0.11069080978631973,
-0.020444611087441444,
-0.025657333433628082,
0.07514458149671555,
-0.012566052377223969,
-0.09376942366361618,
0.025604750961065292,
-0.06573306024074554,
-0.03457409888505936,
-0.025329874828457832,
0.041396304965019226,
0.14723344147205353,
0.04993903636932373,
0.004934558644890785,
0.02726146951317787,
-0.008726288564503193,
-0.10496380180120468,
-0.08458948135375977,
0.1798546463251114,
0.01841367967426777,
0.13552165031433105,
-0.14304408431053162,
-0.138582244515419,
0.000055808624892961234,
-0.07162119448184967,
0.0839792937040329,
0.054332759231328964,
-0.01333844754844904,
0.10365947335958481,
0.25781014561653137,
-0.15030157566070557,
-0.22173389792442322,
-0.060362108051776886,
0.0543421171605587,
0.1157289668917656,
0.006647968199104071,
-0.193307563662529,
0.03158595412969589,
0.08436550945043564,
0.03631076216697693,
-0.11338365823030472,
-0.2291109412908554,
-0.08879437297582626,
0.0980168879032135,
0.028192926198244095,
0.02297716774046421,
-0.0992548018693924,
-0.037885021418333054,
-0.05689769610762596,
-0.0391482412815094,
0.15001602470874786,
-0.015202781185507774,
0.09441601485013962,
0.029072435572743416,
0.004738252609968185,
0.014928468503057957,
-0.024677135050296783,
0.12656845152378082,
0.07424841821193695,
0.0699189156293869,
-0.06551142781972885,
0.07035444676876068,
0.07867931574583054,
-0.004311857745051384,
0.1556205451488495,
0.03988419100642204,
0.019402310252189636,
-0.11960866302251816,
-0.07757064700126648,
-0.07799278944730759,
0.002298143692314625,
-0.008814657106995583,
-0.047163963317871094,
-0.039894796907901764,
0.08572202175855637,
0.05281858146190643,
-0.014673982746899128,
0.02910856530070305,
-0.09908852726221085,
0.0023980054538697004,
-0.0003490184899419546,
0.217233806848526,
0.00421059550717473,
0.024520808830857277,
-0.06458844244480133,
0.023293381556868553,
0.11775202304124832,
-0.11712214350700378,
0.009580678306519985,
0.12815819680690765,
-0.035315386950969696,
0.16085082292556763,
0.03483383730053902,
-0.09411174803972244,
0.009884359315037727,
0.09937989711761475,
-0.06510759890079498,
-0.12338107079267502,
-0.0062904818914830685,
0.051733776926994324,
-0.04245613142848015,
-0.04923306778073311,
0.10230176895856857,
-0.059477705508470535,
-0.023314932361245155,
-0.048417091369628906,
0.08193887025117874,
-0.02985486201941967,
0.182232066988945,
0.012001367285847664,
0.010194662027060986,
-0.08828364312648773,
0.08028177917003632,
0.06369459629058838,
-0.16520904004573822,
0.022496158257126808,
0.037442322820425034,
-0.12282568961381912,
-0.0881408229470253,
-0.09886390715837479,
0.20496931672096252,
-0.09980936348438263,
-0.08381515741348267,
-0.0066350847482681274,
-0.09022895246744156,
0.038391947746276855,
0.01200968585908413,
0.004213341511785984,
0.07757698744535446,
-0.09052514284849167,
-0.030722640454769135,
-0.07801324874162674,
0.0671708881855011,
0.06302876770496368,
-0.03259557858109474,
-0.019523652270436287,
0.039900511503219604,
0.036713652312755585,
0.012576828710734844,
-0.017568178474903107,
-0.05797114223241806,
-0.025418976321816444,
-0.011341885663568974,
-0.06267938017845154,
0.019539199769496918,
-0.10185679793357849,
-0.0075323558412492275,
0.022043831646442413,
0.01122852973639965,
-0.016727285459637642,
0.04581337049603462,
-0.0648728460073471,
-0.05409441888332367,
-0.046025220304727554,
0.07582159340381622,
-0.05018598586320877,
-0.04302358254790306,
0.03778237849473953,
-0.057830967009067535,
0.02492099069058895,
0.05151365324854851,
-0.0035049780271947384,
-0.016794128343462944,
-0.09609618782997131,
0.04448030889034271,
0.028142224997282028,
0.0598418228328228,
0.030986065044999123,
-0.10909409821033478,
0.033365942537784576,
0.09242594987154007,
-0.038348156958818436,
-0.016159510239958763,
0.08546407520771027,
-0.07709912210702896,
0.07422444224357605,
0.015696419402956963,
0.017394104972481728,
-0.06913047283887863,
0.07189419865608215,
0.029236024245619774,
0.11804060637950897,
0.11371871083974838,
-0.022786078974604607,
0.02702023833990097,
-0.11504467576742172,
-0.02036905288696289,
0.018482930958271027,
-0.009650156833231449,
-0.015926765277981758,
-0.0742761641740799,
0.05889236927032471,
-0.0041149575263261795,
0.1640339493751526,
0.0588676743209362,
0.06391604244709015,
-0.01585366576910019,
0.09213925153017044,
0.11997270584106445,
-0.03332369774580002,
-0.027062859386205673,
0.03548663109540939,
0.01878778263926506,
0.046284522861242294,
0.045791350305080414,
-0.028719475492835045,
0.06320223957300186,
0.08604589104652405,
0.0834924578666687,
0.1487324982881546,
0.03232906758785248,
0.043836865574121475,
-0.01626117341220379,
-0.003002970712259412,
-0.030712347477674484,
-0.050214700400829315,
0.05927138775587082,
-0.021441513672471046,
-0.037380728870630264,
0.0995185449719429,
-0.11664887517690659,
0.12923529744148254,
-0.014550498686730862,
-0.07527173310518265,
-0.08513499796390533,
-0.14354445040225983,
-0.03181104734539986,
0.025631161406636238,
-0.02303164266049862,
-0.16093413531780243,
0.024824023246765137,
0.08796702325344086,
0.02547583170235157,
-0.005856594070792198,
0.14694252610206604,
-0.15513814985752106,
-0.10685459524393082,
-0.015193457715213299,
-0.03207852318882942,
0.0792253240942955,
0.05921509861946106,
0.0287826806306839,
0.08088348060846329,
0.06489919126033783,
0.048321887850761414,
0.03600110113620758,
0.06747384369373322,
0.03255973011255264,
-0.06365042179822922,
-0.033726584166288376,
-0.05532189831137657,
-0.018609873950481415,
0.020258715376257896,
0.1681746244430542,
0.053154438734054565,
-0.0523841418325901,
0.029754089191555977,
0.10047288239002228,
0.049163542687892914,
-0.07968099415302277,
-0.19939091801643372,
0.10297421365976334,
0.04622771963477135,
0.023379484191536903,
0.02057996205985546,
-0.06687922775745392,
0.026555724442005157,
0.1438409984111786,
0.13318173587322235,
-0.04480539634823799,
-0.035151269286870956,
-0.025644484907388687,
0.007556564640253782,
-0.01896549016237259,
0.10877690464258194,
0.008378413505852222,
0.2905241847038269,
-0.08623149245977402,
0.030830202624201775,
-0.13367216289043427,
0.021082377061247826,
-0.0312278363853693,
0.06045786291360855,
-0.003538954071700573,
-0.012234927155077457,
-0.004435946699231863,
0.06266189366579056,
-0.006249336525797844,
-0.1576676219701767,
0.004845822229981422,
-0.0212993361055851,
-0.06426239758729935,
-0.048374950885772705,
-0.005205405410379171,
0.052250370383262634,
0.05261814966797829,
-0.019840583205223083,
0.01973654329776764,
0.1569698005914688,
0.05574888363480568,
-0.11843306571245193,
-0.04656266048550606,
0.11029303073883057,
0.08592468500137329,
0.09288738667964935,
0.0029383013024926186,
0.09298498928546906,
0.05364048853516579,
0.022454984486103058,
-0.10437610000371933,
0.12194546312093735,
-0.023204021155834198,
0.03588810935616493,
0.03531431406736374,
0.06880637258291245,
-0.0015940438024699688,
0.05400526151061058,
0.05818722024559975,
0.01436206791549921,
0.08326505869626999,
-0.07521618157625198,
-0.010357909835875034,
-0.0277696680277586,
0.07430653274059296,
-0.07191164791584015,
0.14077863097190857,
0.15729846060276031,
0.021205337718129158,
-0.00090413709403947,
-0.0795845165848732,
0.05728407949209213,
-0.01570584997534752,
0.08090916275978088,
-0.06034532189369202,
-0.13101235032081604,
-0.001504011102952063,
-0.03735385090112686,
0.03322909027338028,
-0.1735072135925293,
-0.08329137414693832,
0.04711366072297096,
-0.030601251870393753,
0.02594522200524807,
0.06954004615545273,
0.03044069930911064,
0.0796206146478653,
-0.03214201331138611,
-0.12650690972805023,
0.06289598345756531,
0.05075633153319359,
-0.04818011075258255,
-0.059101033955812454
] |
null | null |
transformers
|
# Indo-Aryan-XLM-R-Base
This model is finetuned over [XLM-RoBERTa](https://huggingface.co/xlm-roberta-base) (XLM-R) using its base variant with the Hindi, Gujarati, Marathi, and Bengali languages from the Indo-Aryan family using the [OSCAR](https://oscar-corpus.com/) monolingual datasets. As these languages had imbalanced datasets, we used resampling strategies as used in pretraining the XLM-R to balance the resulting dataset after combining these languages. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.
## Dataset
OSCAR corpus contains several diverse datasets for different languages. We followed the work of [CamemBERT](https://www.aclweb.org/anthology/2020.acl-main.645/) who reported better performance with this diverse dataset as compared to the other large homogenous datasets.
## Preprocessing and Training Procedure
Please visit [this link](https://github.com/ashwanitanwar/nmt-transfer-learning-xlm-r#6-finetuning-xlm-r) for the detailed procedure.
## Usage
- This model can be used for further finetuning for different NLP tasks using the Hindi, Gujarati, Marathi, and Bengali languages.
- It can be used to generate contextualised word representations for the words from the above languages.
- It can be used for domain adaptation.
- It can be used to predict the missing words from their sentences.
## Demo
### Using the model to predict missing words
```
from transformers import pipeline
unmasker = pipeline('fill-mask', model='ashwani-tanwar/Indo-Aryan-XLM-R-Base')
pred_word = unmasker("เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช <mask> เชเซ.")
print(pred_word)
```
```
[{'sequence': '<s> เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชถเชนเซเชฐ เชเซ.</s>', 'score': 0.7811868786811829, 'token': 85227, 'token_str': 'โเชถเชนเซเชฐ'},
{'sequence': '<s> เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชเชพเชฎ เชเซ.</s>', 'score': 0.055032357573509216, 'token': 66346, 'token_str': 'โเชเชพเชฎ'},
{'sequence': '<s> เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชจเชพเชฎ เชเซ.</s>', 'score': 0.0287721399217844, 'token': 29565, 'token_str': 'โเชจเชพเชฎ'},
{'sequence': '<s> เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชฐเชพเชเซเชฏ เชเซ.</s>', 'score': 0.02565067447721958, 'token': 63678, 'token_str': 'โเชฐเชพเชเซเชฏ'},
{'sequence': '<s> เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเชเชจเชเชฐ เชเซ.</s>', 'score': 0.022877279669046402, 'token': 69702, 'token_str': 'เชจเชเชฐ'}]
```
### Using the model to generate contextualised word representations
```
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("ashwani-tanwar/Indo-Aryan-XLM-R-Base")
model = AutoModel.from_pretrained("ashwani-tanwar/Indo-Aryan-XLM-R-Base")
sentence = "เช
เชฎเชฆเชพเชตเชพเชฆ เช เชเซเชเชฐเชพเชคเชจเซเช เชเช เชถเชนเซเชฐ เชเซ."
encoded_sentence = tokenizer(sentence, return_tensors='pt')
context_word_rep = model(**encoded_sentence)
```
|
{"language": ["gu", "hi", "mr", "bn"]}
|
fill-mask
|
ashwani-tanwar/Indo-Aryan-XLM-R-Base
|
[
"transformers",
"pytorch",
"tf",
"xlm-roberta",
"fill-mask",
"gu",
"hi",
"mr",
"bn",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"gu",
"hi",
"mr",
"bn"
] |
TAGS
#transformers #pytorch #tf #xlm-roberta #fill-mask #gu #hi #mr #bn #autotrain_compatible #endpoints_compatible #region-us
|
# Indo-Aryan-XLM-R-Base
This model is finetuned over XLM-RoBERTa (XLM-R) using its base variant with the Hindi, Gujarati, Marathi, and Bengali languages from the Indo-Aryan family using the OSCAR monolingual datasets. As these languages had imbalanced datasets, we used resampling strategies as used in pretraining the XLM-R to balance the resulting dataset after combining these languages. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.
## Dataset
OSCAR corpus contains several diverse datasets for different languages. We followed the work of CamemBERT who reported better performance with this diverse dataset as compared to the other large homogenous datasets.
## Preprocessing and Training Procedure
Please visit this link for the detailed procedure.
## Usage
- This model can be used for further finetuning for different NLP tasks using the Hindi, Gujarati, Marathi, and Bengali languages.
- It can be used to generate contextualised word representations for the words from the above languages.
- It can be used for domain adaptation.
- It can be used to predict the missing words from their sentences.
## Demo
### Using the model to predict missing words
### Using the model to generate contextualised word representations
|
[
"# Indo-Aryan-XLM-R-Base\n\n\nThis model is finetuned over XLM-RoBERTa (XLM-R) using its base variant with the Hindi, Gujarati, Marathi, and Bengali languages from the Indo-Aryan family using the OSCAR monolingual datasets. As these languages had imbalanced datasets, we used resampling strategies as used in pretraining the XLM-R to balance the resulting dataset after combining these languages. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.",
"## Dataset\nOSCAR corpus contains several diverse datasets for different languages. We followed the work of CamemBERT who reported better performance with this diverse dataset as compared to the other large homogenous datasets.",
"## Preprocessing and Training Procedure\nPlease visit this link for the detailed procedure.",
"## Usage\n- This model can be used for further finetuning for different NLP tasks using the Hindi, Gujarati, Marathi, and Bengali languages.\n- It can be used to generate contextualised word representations for the words from the above languages.\n- It can be used for domain adaptation.\n- It can be used to predict the missing words from their sentences.",
"## Demo\n ### Using the model to predict missing words\n \n \n ### Using the model to generate contextualised word representations"
] |
[
"TAGS\n#transformers #pytorch #tf #xlm-roberta #fill-mask #gu #hi #mr #bn #autotrain_compatible #endpoints_compatible #region-us \n",
"# Indo-Aryan-XLM-R-Base\n\n\nThis model is finetuned over XLM-RoBERTa (XLM-R) using its base variant with the Hindi, Gujarati, Marathi, and Bengali languages from the Indo-Aryan family using the OSCAR monolingual datasets. As these languages had imbalanced datasets, we used resampling strategies as used in pretraining the XLM-R to balance the resulting dataset after combining these languages. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.",
"## Dataset\nOSCAR corpus contains several diverse datasets for different languages. We followed the work of CamemBERT who reported better performance with this diverse dataset as compared to the other large homogenous datasets.",
"## Preprocessing and Training Procedure\nPlease visit this link for the detailed procedure.",
"## Usage\n- This model can be used for further finetuning for different NLP tasks using the Hindi, Gujarati, Marathi, and Bengali languages.\n- It can be used to generate contextualised word representations for the words from the above languages.\n- It can be used for domain adaptation.\n- It can be used to predict the missing words from their sentences.",
"## Demo\n ### Using the model to predict missing words\n \n \n ### Using the model to generate contextualised word representations"
] |
[
51,
169,
49,
17,
80,
26
] |
[
"passage: TAGS\n#transformers #pytorch #tf #xlm-roberta #fill-mask #gu #hi #mr #bn #autotrain_compatible #endpoints_compatible #region-us \n# Indo-Aryan-XLM-R-Base\n\n\nThis model is finetuned over XLM-RoBERTa (XLM-R) using its base variant with the Hindi, Gujarati, Marathi, and Bengali languages from the Indo-Aryan family using the OSCAR monolingual datasets. As these languages had imbalanced datasets, we used resampling strategies as used in pretraining the XLM-R to balance the resulting dataset after combining these languages. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model.## Dataset\nOSCAR corpus contains several diverse datasets for different languages. We followed the work of CamemBERT who reported better performance with this diverse dataset as compared to the other large homogenous datasets.## Preprocessing and Training Procedure\nPlease visit this link for the detailed procedure.## Usage\n- This model can be used for further finetuning for different NLP tasks using the Hindi, Gujarati, Marathi, and Bengali languages.\n- It can be used to generate contextualised word representations for the words from the above languages.\n- It can be used for domain adaptation.\n- It can be used to predict the missing words from their sentences.## Demo\n ### Using the model to predict missing words\n \n \n ### Using the model to generate contextualised word representations"
] |
[
-0.09903033077716827,
0.12496018409729004,
-0.0014590241480618715,
0.10667011141777039,
0.10990387201309204,
0.014191967435181141,
0.0393524132668972,
0.08253687620162964,
-0.0598762221634388,
0.03346436098217964,
-0.048580657690763474,
0.00138877984136343,
0.09036651253700256,
0.11439477652311325,
0.041243620216846466,
-0.24418829381465912,
0.020974542945623398,
-0.08918590843677521,
-0.07930804789066315,
0.11032632738351822,
0.11205513030290604,
-0.045259952545166016,
0.06473755836486816,
0.029277469962835312,
-0.11543744057416916,
0.039065517485141754,
-0.06795744597911835,
-0.043352700769901276,
0.06553259491920471,
0.01957322284579277,
0.09556382894515991,
0.01357629057019949,
0.11359164863824844,
-0.0875450074672699,
0.02473299577832222,
0.04616924375295639,
-0.005712741520255804,
0.023128818720579147,
0.1661994904279709,
-0.08075609058141708,
0.2208983600139618,
0.000619163503870368,
0.04050178453326225,
0.04411918297410011,
-0.11551561951637268,
-0.06849448382854462,
-0.07028110325336456,
0.05693858116865158,
0.007739497814327478,
0.12122679501771927,
-0.027329767122864723,
0.12924182415008545,
-0.042083557695150375,
0.0644039735198021,
0.04205845668911934,
-0.15263314545154572,
-0.013751411810517311,
0.11815788596868515,
0.10124308615922928,
0.06067388504743576,
-0.05732211098074913,
-0.03633164241909981,
0.006692326162010431,
0.004498617257922888,
-0.019355805590748787,
-0.06481164693832397,
0.019512135535478592,
-0.015287492424249649,
-0.1083572581410408,
-0.03323885798454285,
0.2023957371711731,
-0.056684065610170364,
-0.026669809594750404,
-0.0685814917087555,
-0.07447365671396255,
0.03573258966207504,
0.025906773284077644,
-0.01673135533928871,
0.010882767848670483,
0.04690850153565407,
0.12246878445148468,
-0.05041452497243881,
-0.10181310772895813,
-0.027403349056839943,
-0.055749278515577316,
0.12385191023349762,
0.04720708727836609,
-0.00149329483974725,
-0.03857206925749779,
0.07217339426279068,
-0.041481006890535355,
-0.06823799014091492,
-0.027294166386127472,
-0.07166154682636261,
-0.10809928923845291,
0.029190653935074806,
-0.03934736177325249,
-0.1502562016248703,
0.013707068748772144,
0.029563110321760178,
-0.07287073135375977,
0.0339960902929306,
-0.049566902220249176,
-0.00306654442101717,
0.1578977406024933,
0.047462668269872665,
-0.1179722398519516,
-0.06906183063983917,
0.0339151993393898,
-0.0011826257687062025,
-0.060645416378974915,
-0.019251259043812752,
-0.013970630243420601,
0.017485255375504494,
-0.041386887431144714,
0.04125110059976578,
-0.019803088158369064,
0.07149241864681244,
-0.0578717440366745,
-0.08172263205051422,
0.1321321427822113,
-0.1491931676864624,
-0.012805250473320484,
-0.0032773877028375864,
-0.017683735117316246,
-0.00866646133363247,
0.06342612951993942,
-0.0052703432738780975,
-0.09405384212732315,
-0.07545008510351181,
-0.07099923491477966,
-0.0019743412267416716,
-0.13169686496257782,
-0.08839628100395203,
-0.0538562573492527,
-0.08845330029726028,
-0.04212632775306702,
-0.0869126096367836,
-0.223277747631073,
-0.08490735292434692,
0.033076368272304535,
-0.06058499217033386,
0.024878738448023796,
-0.04903624951839447,
0.018326595425605774,
-0.029231129214167595,
-0.0022259671241045,
0.01801363192498684,
-0.01827338896691799,
0.020799653604626656,
-0.05379330739378929,
0.01281336322426796,
0.00692439079284668,
0.058925095945596695,
-0.10202142596244812,
0.03847545385360718,
0.00360104744322598,
0.1777295619249344,
-0.036336153745651245,
-0.039322543889284134,
-0.08338569849729538,
-0.004515566397458315,
-0.09933901578187943,
0.03855925053358078,
-0.01475982554256916,
0.07161437720060349,
-0.1799037903547287,
-0.011761708185076714,
0.1696496158838272,
-0.14319904148578644,
-0.040849119424819946,
0.0859631896018982,
-0.050053149461746216,
0.12117686867713928,
0.028281792998313904,
0.15263158082962036,
0.0353851318359375,
0.030446944758296013,
0.0044828602112829685,
-0.06836062669754028,
-0.025361519306898117,
0.056947145611047745,
0.10310783982276917,
-0.05237402766942978,
-0.030290422961115837,
-0.003082898212596774,
-0.09727226942777634,
-0.021464461460709572,
0.007706956937909126,
-0.06250211596488953,
0.008723437786102295,
-0.027632519602775574,
-0.06772593408823013,
0.020773183554410934,
0.0118134506046772,
0.014268224127590656,
-0.058388348668813705,
-0.022192412987351418,
0.15219861268997192,
-0.0719393789768219,
0.005404923111200333,
-0.08981206268072128,
0.04965842142701149,
-0.07565395534038544,
0.005122919101268053,
-0.2499963939189911,
0.021496303379535675,
0.054676562547683716,
-0.0811687558889389,
0.06976281851530075,
0.05233268439769745,
0.018445409834384918,
0.08510461449623108,
0.014772546477615833,
0.0009585986845195293,
-0.00488300621509552,
-0.008460153825581074,
-0.03693242371082306,
-0.1176021546125412,
0.0000634479511063546,
-0.07485104352235794,
0.09038760513067245,
-0.08440275490283966,
0.008985416032373905,
-0.05845373123884201,
0.07693685591220856,
-0.0014240019954741001,
-0.06254587322473526,
0.04557571932673454,
0.04362275451421738,
-0.05024831369519234,
-0.07315141707658768,
0.02117925137281418,
0.020830392837524414,
-0.0024689980782568455,
0.10852959007024765,
-0.17725688219070435,
-0.08309657871723175,
0.04732460901141167,
0.014527952298521996,
-0.05895974114537239,
-0.005605246871709824,
-0.028027042746543884,
-0.03090641088783741,
-0.037489939481019974,
0.033705130219459534,
0.22280189394950867,
-0.005116251762956381,
0.1122569814324379,
-0.09851986914873123,
-0.0399554967880249,
-0.00482553243637085,
-0.013319527730345726,
-0.029506664723157883,
0.06725510954856873,
0.021353676915168762,
-0.1840628683567047,
0.12884660065174103,
-0.022041726857423782,
0.06473508477210999,
0.11801479011774063,
0.022890977561473846,
-0.09303785115480423,
-0.02119237184524536,
0.01481664553284645,
-0.022669663652777672,
0.037776365876197815,
-0.1401129961013794,
-0.01605238951742649,
0.03994620218873024,
0.04277927428483963,
0.0801822692155838,
-0.05598471686244011,
0.05148376524448395,
0.04224679619073868,
-0.0033834504429250956,
-0.03165645897388458,
0.011126160621643066,
-0.016128074377775192,
0.0718102902173996,
-0.025971556082367897,
0.07334085553884506,
-0.022908296436071396,
-0.03747609630227089,
-0.12637895345687866,
0.1967398077249527,
-0.13416413962841034,
-0.2444005161523819,
-0.13154205679893494,
0.04341156780719757,
-0.0696495994925499,
0.03864704445004463,
0.023791218176484108,
-0.02214876562356949,
-0.09189614653587341,
-0.09552860260009766,
0.0837365910410881,
-0.041989799588918686,
-0.0912041962146759,
-0.0658404529094696,
-0.004478812217712402,
-0.019555971026420593,
-0.11722822487354279,
0.009769478812813759,
0.05210484191775322,
-0.11898159235715866,
0.014264779165387154,
-0.02497376687824726,
0.07875096052885056,
0.06617528945207596,
-0.017773594707250595,
-0.00023635536490473896,
0.03172256052494049,
0.07030382007360458,
-0.091171495616436,
0.012756011448800564,
0.1043897420167923,
-0.023642951622605324,
0.010280017741024494,
0.08276267349720001,
-0.019146427512168884,
-0.06404979526996613,
0.011080707423388958,
0.02221943810582161,
-0.021076902747154236,
-0.2556791603565216,
-0.10194164514541626,
-0.055635690689086914,
-0.07186610996723175,
0.023894010111689568,
0.07461774349212646,
0.023477764800190926,
0.0722932294011116,
-0.04021589457988739,
-0.018795745447278023,
0.021433863788843155,
0.01696600764989853,
0.001273132860660553,
-0.0006193367880769074,
0.062499403953552246,
-0.046930983662605286,
-0.01837707869708538,
0.0938526913523674,
0.06339991837739944,
0.23407642543315887,
-0.02548326924443245,
0.14133571088314056,
0.10766064375638962,
0.09227205067873001,
0.05428876727819443,
0.10231828689575195,
-0.03750878944993019,
0.052821170538663864,
-0.015578500926494598,
-0.030851349234580994,
-0.07500962913036346,
0.05314452201128006,
0.05003119632601738,
-0.014300040900707245,
-0.011676277033984661,
-0.004779787268489599,
-0.006285556126385927,
0.1706966906785965,
-0.0785297080874443,
-0.21367591619491577,
-0.011468851938843727,
0.008458885364234447,
-0.006338709034025669,
-0.09673887491226196,
0.023821763694286346,
0.12526986002922058,
-0.11754792183637619,
0.012819882482290268,
-0.030610933899879456,
0.10721590369939804,
-0.05980552360415459,
-0.049675069749355316,
-0.018934227526187897,
0.05720960721373558,
-0.014561661519110203,
0.11958321928977966,
-0.15583465993404388,
0.1850396990776062,
0.005377987399697304,
0.058796271681785583,
-0.05762738361954689,
0.03882003575563431,
0.02804412692785263,
0.02955460734665394,
0.14074502885341644,
0.009086433798074722,
-0.06964961439371109,
-0.09295820444822311,
-0.1018083319067955,
0.03541673347353935,
0.03700549155473709,
-0.08266407996416092,
0.09894132614135742,
-0.020907843485474586,
0.021203994750976562,
-0.05256233736872673,
0.04103224724531174,
-0.13268350064754486,
-0.16842733323574066,
0.06569940596818924,
-0.13200382888317108,
0.009170959703624249,
-0.048917628824710846,
-0.05425964295864105,
-0.04475967586040497,
0.14418604969978333,
-0.1204027384519577,
-0.12207759916782379,
-0.12980186939239502,
0.014604401774704456,
0.11957941204309464,
-0.06903401017189026,
-0.005619306117296219,
-0.010358942672610283,
0.06599590182304382,
-0.03092738799750805,
-0.0894416868686676,
0.036819469183683395,
-0.0649256780743599,
-0.08088133484125137,
-0.027600297704339027,
0.057138845324516296,
0.14253896474838257,
0.02033618651330471,
0.015623696148395538,
0.04896736145019531,
-0.02853393368422985,
-0.06303940713405609,
-0.09000924974679947,
0.15508690476417542,
0.0976564884185791,
0.13392595946788788,
-0.10182405263185501,
-0.1208188608288765,
-0.03720960393548012,
-0.04892517253756523,
0.09296394139528275,
0.06750301271677017,
-0.008232947438955307,
0.15004582703113556,
0.20862747728824615,
-0.14531581103801727,
-0.2023289054632187,
-0.020502304658293724,
0.051297739148139954,
0.09861478954553604,
0.03162150830030441,
-0.18149083852767944,
0.048285942524671555,
0.1226678267121315,
0.015853744000196457,
-0.10764415562152863,
-0.2559067904949188,
-0.08074246346950531,
0.10959789156913757,
0.07301349192857742,
-0.04421891272068024,
-0.14160427451133728,
-0.015347153879702091,
-0.019931159913539886,
-0.005663780495524406,
0.11489671468734741,
-0.025913776829838753,
0.08990595489740372,
-0.0018724426627159119,
-0.01899702660739422,
0.024884868413209915,
-0.03364662081003189,
0.07678797841072083,
0.0715344175696373,
0.061212435364723206,
-0.08302347362041473,
0.06439676135778427,
0.13027438521385193,
0.017037605866789818,
0.1258673220872879,
0.08978193253278732,
0.0597272664308548,
-0.12937232851982117,
-0.08597757667303085,
-0.04149819537997246,
0.04989732801914215,
-0.002354531781747937,
-0.06300503760576248,
-0.01853584684431553,
0.10561420768499374,
0.06241645663976669,
-0.013090101070702076,
-0.04506797716021538,
-0.047382183372974396,
0.04229920357465744,
0.07778061181306839,
0.2169158160686493,
0.0653759017586708,
-0.02612624131143093,
-0.05711446702480316,
0.020041590556502342,
0.048550959676504135,
-0.06556932628154755,
0.0039058923721313477,
0.10561582446098328,
-0.006368251051753759,
0.13368406891822815,
0.020825164392590523,
-0.10022064298391342,
0.02294757589697838,
0.08534687757492065,
-0.03788517788052559,
-0.13333210349082947,
-0.018157558515667915,
-0.035133205354213715,
-0.05231363698840141,
-0.06652519106864929,
0.07544230669736862,
-0.06896311044692993,
-0.05258461833000183,
-0.037810780107975006,
0.06915336847305298,
-0.03874023258686066,
0.18895481526851654,
0.020004332065582275,
0.01718449965119362,
-0.09725815057754517,
0.13137856125831604,
0.07964876294136047,
-0.14645801484584808,
0.01586982049047947,
0.14711137115955353,
-0.12004426121711731,
-0.0752469003200531,
-0.005572549067437649,
0.1825077086687088,
-0.043896183371543884,
-0.04590783268213272,
-0.00360172800719738,
-0.04803473502397537,
0.006475410424172878,
0.020710188895463943,
0.016423368826508522,
0.05157720670104027,
-0.0699152946472168,
-0.03392360359430313,
-0.09420643001794815,
0.06284421682357788,
0.07580201327800751,
0.010210687294602394,
-0.041907861828804016,
0.04531223699450493,
0.031100301072001457,
0.02131422609090805,
-0.03365744650363922,
-0.05978817120194435,
-0.03326907753944397,
-0.02556436136364937,
-0.06629809737205505,
0.03507241979241371,
-0.12889811396598816,
-0.021193718537688255,
-0.003558241529390216,
-0.03763391450047493,
0.006681810598820448,
0.040280476212501526,
-0.05620085820555687,
-0.05076133832335472,
-0.05093977972865105,
0.09545417875051498,
-0.06862735748291016,
-0.004880804102867842,
0.03765027970075607,
-0.02975660003721714,
0.0725850835442543,
0.06509824097156525,
-0.03855196759104729,
-0.002163628349080682,
-0.0852079764008522,
0.00712102185934782,
-0.04684770479798317,
0.06767036765813828,
0.03261055797338486,
-0.11861135810613632,
0.052315425127744675,
0.06433532387018204,
-0.03020033985376358,
-0.025456853210926056,
0.11393165588378906,
-0.08075932413339615,
0.04742618650197983,
-0.05585462599992752,
-0.001353672705590725,
-0.04759847745299339,
0.042755529284477234,
0.06824266165494919,
0.12365122139453888,
0.10524961352348328,
-0.02995791658759117,
0.06132683902978897,
-0.11925693601369858,
-0.041934795677661896,
0.00965154729783535,
0.010939798317849636,
-0.03389013931155205,
-0.05542846769094467,
0.05094670131802559,
0.0130494749173522,
0.18116645514965057,
0.08307991176843643,
0.02163495123386383,
-0.0074981870129704475,
-0.006872291676700115,
0.08336340636014938,
-0.01950537972152233,
0.07812585681676865,
0.06258979439735413,
0.01670413464307785,
0.051639094948768616,
0.0452849417924881,
-0.059289440512657166,
-0.0026834355667233467,
0.06332428753376007,
0.1653810441493988,
0.10815796256065369,
0.010470042005181313,
0.06708679348230362,
-0.09370825439691544,
-0.06336307525634766,
-0.01776043139398098,
-0.023499760776758194,
0.016890866681933403,
-0.07275070995092392,
0.0056791831739246845,
0.13497520983219147,
-0.14867323637008667,
0.12561240792274475,
0.032298289239406586,
-0.07161930203437805,
-0.0683712586760521,
-0.14426884055137634,
-0.04592185094952583,
-0.016152506694197655,
-0.025708723813295364,
-0.1532122641801834,
0.02547311782836914,
0.12354239821434021,
0.03822195902466774,
-0.045892056077718735,
0.12053196877241135,
-0.10069800168275833,
-0.10642116516828537,
-0.034958962351083755,
0.013383312150835991,
0.11069069057703018,
0.017449133098125458,
0.005367444362491369,
0.026464061811566353,
0.06305065751075745,
0.07332487404346466,
0.04598011076450348,
0.07235391438007355,
0.035180192440748215,
-0.09880748391151428,
-0.03441694378852844,
-0.0174174252897501,
-0.005234794691205025,
-0.015779471024870872,
0.15402236580848694,
0.07824849337339401,
-0.07260861247777939,
0.013163868337869644,
0.10804276168346405,
0.03448275104165077,
-0.06855133175849915,
-0.1662789136171341,
0.13131576776504517,
0.027110720053315163,
-0.01823223941028118,
0.0645245611667633,
-0.09165933728218079,
0.01896081119775772,
0.18392039835453033,
0.17968544363975525,
-0.025546837598085403,
-0.013556522317230701,
0.03557007387280464,
0.003665025345981121,
-0.012556548230350018,
0.11997324228286743,
0.017332717776298523,
0.2220280021429062,
-0.07102206349372864,
0.029615575447678566,
-0.10011318325996399,
-0.015141275711357594,
-0.06192263588309288,
0.051925335079431534,
-0.03203797712922096,
-0.02100534364581108,
-0.0020853597670793533,
0.09109453856945038,
-0.04366295039653778,
-0.13406357169151306,
0.0051277815364301205,
-0.05164874717593193,
-0.13793307542800903,
-0.04750387743115425,
-0.03679807484149933,
0.04138780012726784,
0.021335547789931297,
0.03426452726125717,
0.02717290073633194,
0.13655126094818115,
0.06493721157312393,
-0.10432388633489609,
-0.04527309536933899,
0.08818252384662628,
-0.011794923804700375,
0.16530565917491913,
-0.016075629740953445,
0.042541809380054474,
0.051235705614089966,
0.038232363760471344,
-0.12889434397220612,
0.05664103105664253,
-0.005345772951841354,
0.04463055729866028,
0.06573393940925598,
0.1118192970752716,
-0.018513614311814308,
0.003305313643068075,
0.03068409487605095,
-0.014872911386191845,
0.05922102928161621,
-0.10425396263599396,
0.043999847024679184,
-0.06908843666315079,
0.09541492164134979,
-0.08259601891040802,
0.1752985417842865,
0.14078792929649353,
-0.0038052869495004416,
0.004625117406249046,
-0.0876152440905571,
0.04283669590950012,
-0.030642619356513023,
0.15529073774814606,
-0.027513843029737473,
-0.19028018414974213,
-0.03214912489056587,
-0.13108190894126892,
0.03228364139795303,
-0.17232024669647217,
-0.019392436370253563,
0.01797020621597767,
-0.04739442840218544,
-0.029702849686145782,
0.08058576285839081,
0.020233966410160065,
0.06497499346733093,
-0.03031926229596138,
-0.05203355476260185,
0.021654333919286728,
0.06548959761857986,
-0.10166811943054199,
-0.040055226534605026
] |
null | null |
transformers
|
# Harry Potter DialoGPT Model
|
{"tags": ["conversational"]}
|
text-generation
|
ashwinchandran13/DialoGPT-small-harrypotter
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Harry Potter DialoGPT Model
|
[
"# Harry Potter DialoGPT Model"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Harry Potter DialoGPT Model"
] |
[
51,
8
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Potter DialoGPT Model"
] |
[
-0.0009023238671943545,
0.07815738022327423,
-0.006546166725456715,
0.07792752981185913,
0.10655936598777771,
0.048972971737384796,
0.17639793455600739,
0.12185695022344589,
0.016568755730986595,
-0.04774167761206627,
0.11647630482912064,
0.2130284160375595,
-0.002118367003276944,
0.024608047679066658,
-0.05022026598453522,
-0.3065771162509918,
0.0474756620824337,
0.014356585219502449,
-0.07174845039844513,
0.11724270135164261,
0.09064973145723343,
-0.046179238706827164,
0.08330509811639786,
-0.009135239757597446,
-0.13198648393154144,
-0.039482954889535904,
0.019292812794446945,
-0.11745545268058777,
0.1662212759256363,
0.05298272892832756,
0.02469746209681034,
-0.008447164669632912,
-0.06598151475191116,
-0.15036040544509888,
0.037190426141023636,
-0.027472136542201042,
-0.01080626156181097,
0.05462246760725975,
0.023526115342974663,
-0.07521048933267593,
0.170567125082016,
0.17678891122341156,
0.0833497866988182,
0.0349111407995224,
-0.14917024970054626,
-0.045548245310783386,
0.008950977586209774,
0.05421316996216774,
-0.017893504351377487,
0.09349167346954346,
-0.019903047010302544,
0.11801653355360031,
-0.04491448402404785,
0.09210366010665894,
0.15255063772201538,
-0.4016275703907013,
-0.027563704177737236,
0.08920855820178986,
0.05989706888794899,
0.12076901644468307,
-0.10560955852270126,
0.03972794860601425,
-0.0039703017100691795,
0.01236654631793499,
-0.014540530741214752,
-0.08304883539676666,
-0.07308239489793777,
0.032504837960004807,
-0.1272556483745575,
0.008525865152478218,
0.23756256699562073,
-0.10643257945775986,
0.037069112062454224,
-0.09791990369558334,
-0.07414398342370987,
0.048336777836084366,
-0.053761593997478485,
-0.081727035343647,
-0.054839808493852615,
0.06347949057817459,
0.004366500303149223,
-0.06301609426736832,
-0.08326146006584167,
-0.0006536149303428829,
-0.12781435251235962,
0.17595994472503662,
0.061243366450071335,
0.041611745953559875,
-0.21322020888328552,
0.08940251916646957,
0.04477722570300102,
-0.04711297154426575,
0.007116159424185753,
-0.11796226352453232,
0.04023287072777748,
0.005483259446918964,
-0.03256071358919144,
-0.021854614838957787,
0.0393419973552227,
0.13909944891929626,
-0.01777748204767704,
0.03252175822854042,
0.006831915583461523,
0.05811219662427902,
0.08162496984004974,
0.02222144603729248,
0.019291909411549568,
-0.0818009302020073,
0.019385190680623055,
-0.08128736168146133,
-0.0030400939285755157,
-0.048940129578113556,
-0.17071883380413055,
-0.07477642595767975,
0.052610911428928375,
0.020047198981046677,
0.03746970370411873,
0.08054786175489426,
-0.0017944995779544115,
-0.05560554191470146,
0.03284840285778046,
0.01671096310019493,
-0.020622212439775467,
-0.010361049324274063,
-0.02412462793290615,
0.19123271107673645,
0.019619356840848923,
0.014111656695604324,
-0.12379156798124313,
0.10023640841245651,
-0.08179095387458801,
0.0037731381598860025,
0.02743307314813137,
-0.04204464703798294,
-0.004716555587947369,
0.02917117439210415,
0.023101668804883957,
-0.1252521574497223,
-0.1099385917186737,
-0.0030569476075470448,
-0.012054097838699818,
-0.036421261727809906,
-0.10490952432155609,
-0.08483029156923294,
-0.012153145857155323,
0.0449371263384819,
-0.013397793285548687,
0.007936403155326843,
-0.05143149942159653,
0.0985720232129097,
-0.0514979362487793,
0.09873400628566742,
-0.08342572301626205,
0.06359215080738068,
-0.09124887734651566,
-0.061886150389909744,
-0.11452563107013702,
0.05216052383184433,
0.012905281968414783,
0.066250741481781,
0.016998225823044777,
-0.044836658984422684,
-0.014836243353784084,
0.05253177136182785,
-0.07656687498092651,
0.1940697431564331,
-0.041674621403217316,
-0.12459053844213486,
0.24146439135074615,
-0.09138800948858261,
-0.1802034229040146,
0.12973085045814514,
-0.022254703566432,
0.08523941785097122,
0.12802475690841675,
0.20380465686321259,
-0.00019822151807602495,
-0.01302915159612894,
0.07281201332807541,
0.07031642645597458,
-0.09803894907236099,
0.06239739805459976,
0.029653839766979218,
-0.008071083575487137,
-0.08906278014183044,
0.05762826278805733,
0.046033453196287155,
-0.010650773532688618,
-0.035073768347501755,
-0.001896020956337452,
-0.012895751744508743,
-0.022185025736689568,
0.14126582443714142,
-0.02006692811846733,
0.1300428807735443,
-0.06926563382148743,
-0.03515486419200897,
-0.009500149637460709,
0.03533667325973511,
-0.04091939330101013,
0.08151165395975113,
-0.0436173714697361,
0.10586477071046829,
0.09034156054258347,
0.053724925965070724,
-0.13120363652706146,
0.00466286763548851,
-0.015246815048158169,
0.17014820873737335,
0.08964069187641144,
0.05222717300057411,
0.06265474855899811,
-0.0020888058934360743,
-0.06708643585443497,
0.045407816767692566,
0.13778303563594818,
-0.037020038813352585,
-0.12218865007162094,
-0.1755627691745758,
0.051157694309949875,
-0.045444171875715256,
0.10855234414339066,
-0.10010123997926712,
0.022670533508062363,
-0.055906031280756,
0.07772238552570343,
-0.024998966604471207,
0.020512236282229424,
-0.0013405600329861045,
-0.021700702607631683,
-0.08356887847185135,
-0.002377772703766823,
0.08597290515899658,
-0.02048647589981556,
-0.06707409024238586,
0.16556480526924133,
-0.16400809586048126,
0.1631954461336136,
0.2116095870733261,
-0.28542569279670715,
-0.005696662236005068,
-0.15163889527320862,
-0.0208092350512743,
0.019645055755972862,
0.07834604382514954,
0.026225795969367027,
0.2044338881969452,
-0.012928472831845284,
0.16565458476543427,
-0.05699567869305611,
-0.07730039209127426,
-0.06881127506494522,
-0.048101142048835754,
0.013522743247449398,
0.09095205366611481,
0.04542696103453636,
-0.11962861567735672,
0.13119758665561676,
0.1054433062672615,
0.06484298408031464,
0.12711186707019806,
0.1030748188495636,
-0.008113685995340347,
0.07252490520477295,
-0.03624548763036728,
-0.03462279960513115,
-0.09254947304725647,
-0.30446043610572815,
-0.04840317741036415,
0.0939924493432045,
0.007963384501636028,
0.09285714477300644,
-0.0919896736741066,
-0.03311870992183685,
0.006042704917490482,
0.009473444893956184,
0.028337622061371803,
0.09653715789318085,
0.013490920886397362,
0.15320514142513275,
-0.008011690340936184,
-0.03430786728858948,
0.05891305208206177,
0.017982570454478264,
-0.09147711098194122,
0.17280617356300354,
-0.17050009965896606,
-0.27190929651260376,
-0.06990014761686325,
-0.21745692193508148,
-0.013139115646481514,
0.05258983001112938,
0.0786920040845871,
-0.11818131804466248,
-0.018352627754211426,
-0.006239492911845446,
0.05685517191886902,
-0.2425733357667923,
0.0004911290016025305,
-0.1354890614748001,
0.0501418262720108,
-0.1974833607673645,
-0.09718500077724457,
-0.02271542325615883,
-0.013450481928884983,
-0.0464281290769577,
0.13365240395069122,
-0.1448695808649063,
-0.011572926305234432,
0.2329535037279129,
0.032479673624038696,
0.027794739231467247,
-0.05020907148718834,
0.19788463413715363,
-0.0958966314792633,
-0.023973820731043816,
0.11024576425552368,
-0.05038975924253464,
0.04834126681089401,
0.06649978458881378,
-0.012981836684048176,
-0.08557141572237015,
0.023789849132299423,
-0.068336620926857,
-0.03150583803653717,
-0.27926525473594666,
-0.0930178239941597,
-0.09319330751895905,
0.11305391043424606,
0.04079577326774597,
0.06421639025211334,
0.16545771062374115,
0.05191578343510628,
-0.024325082078576088,
-0.03006586618721485,
0.11609793454408646,
0.12905290722846985,
0.2277202159166336,
-0.06067761778831482,
0.10221996158361435,
0.009445492178201675,
-0.08203992247581482,
0.06062209978699684,
0.056782789528369904,
0.06324724853038788,
0.02584579586982727,
0.03694582358002663,
-0.030939655378460884,
0.1121687963604927,
0.12571842968463898,
0.05258069559931755,
0.0481170229613781,
0.0002127334737451747,
-0.0561506561934948,
-0.008168719708919525,
-0.05726633965969086,
0.06774696707725525,
0.061340972781181335,
-0.12918008863925934,
-0.08061543852090836,
0.0011613310780376196,
0.06660808622837067,
-0.016230419278144836,
0.06823775917291641,
-0.13560809195041656,
-0.03582429885864258,
0.0790911465883255,
-0.07693151384592056,
-0.14156894385814667,
0.11972879618406296,
-0.026570770889520645,
-0.19904157519340515,
0.05265914276242256,
0.007704653777182102,
0.0908159390091896,
-0.06360849738121033,
0.05343840271234512,
-0.13023801147937775,
-0.12935101985931396,
-0.018437571823596954,
0.07945099472999573,
-0.3450873792171478,
0.13536721467971802,
-0.013286802917718887,
-0.02876877970993519,
-0.06474969536066055,
-0.02640824392437935,
0.013905409723520279,
0.12719078361988068,
0.08667250722646713,
0.0008821099763736129,
0.0991629809141159,
0.03823768347501755,
0.04188435152173042,
-0.002011700300499797,
0.10950417071580887,
0.0050011589191854,
0.004797275178134441,
-0.04982118681073189,
0.007274609990417957,
-0.05164213851094246,
-0.07472953200340271,
0.08393982797861099,
-0.20678792893886566,
0.09087453782558441,
-0.03378438204526901,
0.08427679538726807,
0.04304937273263931,
-0.018965769559144974,
-0.1001204177737236,
0.19745583832263947,
-0.012206900864839554,
-0.11405988782644272,
-0.07517550885677338,
-0.02810264565050602,
0.09103139489889145,
-0.013817726634442806,
0.012886416167020798,
-0.045470476150512695,
0.032183047384023666,
-0.1263762265443802,
-0.1597503274679184,
0.08734500408172607,
-0.04441224783658981,
-0.10894393920898438,
-0.025462759658694267,
0.20382575690746307,
-0.007266622502356768,
0.08242089301347733,
0.01605331338942051,
0.010653935372829437,
-0.18066231906414032,
-0.04018142446875572,
0.02645772136747837,
-0.0016437612939625978,
0.005979063920676708,
0.047698814421892166,
0.019091911613941193,
0.06207629665732384,
-0.1069745197892189,
-0.013920160941779613,
0.3158324360847473,
0.15978319942951202,
-0.00912671908736229,
0.14943915605545044,
0.1093616932630539,
-0.08669080585241318,
-0.17238758504390717,
-0.1171615794301033,
-0.1210922971367836,
-0.08425768464803696,
-0.10681738704442978,
-0.1525043100118637,
0.09535340964794159,
-0.03392014652490616,
0.03498011827468872,
0.14615866541862488,
-0.280263751745224,
-0.10949636250734329,
0.13820378482341766,
0.010744688101112843,
0.3510635495185852,
-0.12303631007671356,
-0.044944874942302704,
-0.06214528530836105,
-0.16933435201644897,
0.08021392673254013,
-0.031203703954815865,
0.11581093072891235,
-0.0744495838880539,
0.19395925104618073,
0.01719796098768711,
0.014287159778177738,
0.0916559100151062,
0.05038322135806084,
-0.05808406323194504,
-0.07368700206279755,
-0.10248131304979324,
0.010812131687998772,
0.03546109423041344,
0.010252019390463829,
-0.008802837692201138,
0.0211968794465065,
-0.11341743916273117,
-0.050869911909103394,
-0.06302189081907272,
0.0072614275850355625,
-0.01001308299601078,
-0.042155615985393524,
-0.05533592775464058,
-0.022557416930794716,
-0.020093943923711777,
0.02266426384449005,
0.14185629785060883,
-0.07527699321508408,
0.18586260080337524,
0.02357078716158867,
0.1586609035730362,
-0.11956068128347397,
-0.06724818795919418,
-0.029193658381700516,
-0.05280323326587677,
0.06468886137008667,
-0.08884575963020325,
-0.027708567678928375,
0.1332162618637085,
-0.01903904788196087,
0.04655366763472557,
0.12936700880527496,
0.02046884410083294,
0.015383756719529629,
0.034968774765729904,
-0.2578005790710449,
-0.07463036477565765,
-0.03505445644259453,
-0.012416874058544636,
0.05272092670202255,
0.05525677278637886,
0.19735674560070038,
-0.03551921248435974,
-0.08521962910890579,
0.020131373777985573,
0.02735883742570877,
-0.02776256389915943,
0.10749414563179016,
0.019579345360398293,
-0.004837906453758478,
-0.16151933372020721,
0.08257976174354553,
-0.005964108742773533,
-0.08297000825405121,
0.028665626421570778,
0.2024049311876297,
-0.12141239643096924,
-0.10309756547212601,
-0.06804922968149185,
0.07315051555633545,
-0.09220825880765915,
0.016043387353420258,
-0.005091092549264431,
-0.1521538347005844,
0.06916408240795135,
0.07598215341567993,
0.04075418785214424,
0.06513199955224991,
-0.11743064224720001,
-0.015730571001768112,
-0.04170290008187294,
-0.002195435343310237,
0.03521120920777321,
0.01863143965601921,
-0.057492829859256744,
0.15846455097198486,
-0.0676199421286583,
0.08538917452096939,
-0.0744810476899147,
-0.1058846190571785,
-0.1395980566740036,
0.04660497233271599,
-0.08038312196731567,
-0.07247276604175568,
-0.12832807004451752,
-0.052204377949237823,
-0.0067099276930093765,
-0.03388519585132599,
0.006552806124091148,
-0.06627799570560455,
-0.10922821611166,
0.01822470687329769,
-0.00743203004822135,
-0.009385870769619942,
-0.06096754968166351,
0.026706209406256676,
0.06246216222643852,
-0.039788868278265,
0.15730851888656616,
0.22509248554706573,
-0.13591648638248444,
0.11564400047063828,
-0.09797432273626328,
-0.105463907122612,
0.046008042991161346,
0.009427277371287346,
0.03594303876161575,
0.0503489226102829,
-0.03594081476330757,
0.0044484552927315235,
0.03905477747321129,
0.08074651658535004,
0.08456914126873016,
-0.06776505708694458,
0.020801106467843056,
-0.05122765153646469,
-0.14904099702835083,
-0.016655439510941505,
-0.0464773029088974,
0.06876829266548157,
-0.006725262850522995,
0.11020535975694656,
-0.0515950471162796,
0.07739507406949997,
-0.07558431476354599,
0.050614211708307266,
0.021146971732378006,
-0.14688286185264587,
-0.006612539757043123,
-0.07093682140111923,
0.042144812643527985,
-0.008834975771605968,
0.20241086184978485,
-0.03228091076016426,
0.010342049412429333,
0.033811055123806,
0.06203942745923996,
-0.01957780309021473,
0.009357001632452011,
0.2014283686876297,
0.12640917301177979,
-0.08496357500553131,
-0.02679651789367199,
0.06793134659528732,
0.07248228788375854,
0.07093550264835358,
0.10807815194129944,
-0.015352966263890266,
0.028434239327907562,
0.07829629629850388,
-0.060215238481760025,
0.07576877623796463,
-0.08603982627391815,
-0.11668483167886734,
0.05793621391057968,
0.012955795042216778,
-0.055695828050374985,
0.20305177569389343,
0.19142870604991913,
-0.026278704404830933,
0.018410727381706238,
-0.0029499190859496593,
-0.10117456316947937,
-0.15619947016239166,
-0.05423750728368759,
-0.07170962542295456,
-0.1319410353899002,
-0.004549739416688681,
-0.16646917164325714,
0.022016216069459915,
-0.01132756657898426,
0.09506805986166,
-0.06855440139770508,
-0.01345991250127554,
0.1364889293909073,
-0.1055467277765274,
0.0847758799791336,
-0.024517204612493515,
0.07877567410469055,
-0.03746940940618515,
-0.018209461122751236,
-0.10342709720134735,
0.007514837197959423,
0.01131442841142416,
0.06840907037258148,
-0.10897937417030334,
0.02432350255548954,
-0.12208317965269089,
-0.08617185056209564,
-0.026142612099647522,
0.09279687702655792,
-0.0403008833527565,
0.15116846561431885,
0.02645145356655121,
-0.06710928678512573,
-0.004313822835683823,
0.2646709978580475,
-0.08046227693557739,
-0.08319197595119476,
-0.030799202620983124,
0.2152107208967209,
0.04053696244955063,
0.06396269053220749,
0.019140036776661873,
0.038027774542570114,
-0.07184682041406631,
0.2957373559474945,
0.34401440620422363,
-0.1318037211894989,
-0.007773484103381634,
0.04225075617432594,
0.04406323283910751,
0.14687567949295044,
0.07998795062303543,
0.11360671371221542,
0.2849363386631012,
-0.09197647124528885,
0.016657205298542976,
-0.04230864346027374,
-0.01424806285649538,
-0.06908884644508362,
0.045314885675907135,
0.08216670155525208,
-0.09241747111082077,
-0.022950593382120132,
0.08125471323728561,
-0.29741767048835754,
0.10791494697332382,
-0.15600289404392242,
-0.14948409795761108,
-0.05027429759502411,
-0.008771711029112339,
0.014683255925774574,
0.019041186198592186,
0.09663030505180359,
0.025651484727859497,
-0.07275258749723434,
0.07816889137029648,
0.024486342445015907,
-0.23020237684249878,
-0.01345184724777937,
0.1456068754196167,
-0.06789913028478622,
-0.025938833132386208,
-0.021313713863492012,
0.051610056310892105,
0.05763651058077812,
0.09027529507875443,
-0.03809558227658272,
-0.0746568813920021,
-0.007141788024455309,
-0.022818787023425102,
0.01914946548640728,
0.0597183033823967,
0.06841408461332321,
-0.0920223817229271,
0.1167774423956871,
-0.07350476831197739,
0.0650370642542839,
0.037623800337314606,
-0.022277191281318665,
0.0018526542698964477,
0.013183658011257648,
-0.06512464582920074,
0.05533479526638985,
0.1295643299818039,
-0.025459708645939827,
-0.002524374984204769,
-0.028180841356515884,
-0.0767761766910553,
-0.024015206843614578,
-0.04643676429986954,
-0.09101243317127228,
-0.18130090832710266,
-0.12738600373268127,
0.041754670441150665,
-0.03240608796477318,
-0.2046082615852356,
0.0060346988029778,
-0.1128578633069992,
0.03700976446270943,
-0.14154092967510223,
0.10004086047410965,
0.07216610759496689,
0.004716616589576006,
0.006774604320526123,
0.0675399899482727,
0.045677728950977325,
0.14796748757362366,
-0.16543124616146088,
-0.04919974133372307
] |
null | null |
transformers
|
<img src="https://raw.githubusercontent.com/AntoineSimoulin/gpt-fr/main/imgs/logo.png" width="200">
## Model description
**GPT-fr** ๐ซ๐ท is a GPT model for French developped by [Quantmetry](https://www.quantmetry.com/) and the [Laboratoire de Linguistique Formelle (LLF)](http://www.llf.cnrs.fr/en). We train the model on a very large and heterogeneous French corpus. We release the weights for the following configurations:
| Model name | Number of layers | Attention Heads | Embedding Dimension | Total Parameters |
| :------: | :---: | :---: | :---: | :---: |
| `gpt-fr-cased-small` | 12 | 12 | 768 | 124 M |
| `gpt-fr-cased-base` | 24 | 14 | 1,792 | 1,017 B |
## Intended uses & limitations
The model can be leveraged for language generation tasks. Besides, many tasks may be formatted such that the output is directly generated in natural language. Such configuration may be used for tasks such as automatic summary or question answering. We do hope our model might be used for both academic and industrial applications.
#### How to use
The model might be used through the astonishing ๐ค `Transformers` librairie. We use the work from [Shoeybi et al., (2019)](#shoeybi-2019) and calibrate our model such that during pre-training or fine-tuning, the model can fit on a single NVIDIA V100 32GB GPU.
```python
from transformers import GPT2Tokenizer, GPT2LMHeadModel
# Load pretrained model and tokenizer
model = GPT2LMHeadModel.from_pretrained("asi/gpt-fr-cased-base")
tokenizer = GPT2Tokenizer.from_pretrained("asi/gpt-fr-cased-base")
# Generate a sample of text
model.eval()
input_sentence = "Longtemps je me suis couchรฉ de bonne heure."
input_ids = tokenizer.encode(input_sentence, return_tensors='pt')
beam_outputs = model.generate(
input_ids,
max_length=100,
do_sample=True,
top_k=50,
top_p=0.95,
num_return_sequences=1
)
print("Output:\n" + 100 * '-')
print(tokenizer.decode(beam_outputs[0], skip_special_tokens=True))
```
#### Limitations and bias
Large language models tend to replicate the biases found in pre-training datasets, such as gender discrimination or offensive content generation.
To limit exposition to too much explicit material, we carefully choose the sources beforehand. This process โ detailed in our paper โ aims to limit offensive content generation from the model without performing manual and arbitrary filtering.
However, some societal biases, contained in the data, might be reflected by the model. For example on gender equality, we generated the following sentence sequence "Ma femme/Mon mari vient d'obtenir un nouveau poste en tant \_\_\_\_\_\_\_". We used top-k random sampling strategy with k=50 and stopped at the first punctuation element.
The positions generated for the wife is '_que professeur de franรงais._' while the position for the husband is '_que chef de projet._'. We do appreciate your feedback to better qualitatively and quantitatively assess such effects.
## Training data
We created a dedicated corpus to train our generative model. Indeed the model uses a fixed-length context size of 1,024 and require long documents to be trained. We aggregated existing corpora: [Wikipedia](https://dumps.wikimedia.org/frwiki/), [OpenSubtitle](http://opus.nlpl.eu/download.php?f=OpenSubtitles/v2016/mono/) ([Tiedemann, 2012](#tiedemann-2012)), [Gutenberg](http://www.gutenberg.org) and [Common Crawl](http://data.statmt.org/ngrams/deduped2017/) ([Li et al., 2019](li-2019)). Corpora are filtered and separated into sentences. Successive sentences are then concatenated within the limit of 1,024 tokens per document.
## Training procedure
We pre-trained the model on the new CNRS (French National Centre for Scientific Research) [Jean Zay](http://www.idris.fr/eng/jean-zay/) supercomputer. We perform the training within a total of 140 hours of computation on Tesla V-100 hardware (TDP of 300W). The training was distributed on 4 compute nodes of 8 GPUs. We used data parallelization in order to divide each micro-batch on the computing units. We estimated the total emissions at 580.61 kgCO2eq, using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al., (2019)](lacoste-2019).
## Eval results
We packaged **GPT-fr** with a dedicated language model evaluation benchmark for French.
In line with the [WikiText](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/) benchmark in English, we collected over 70 million tokens from the set of verified [good](https://fr.wikipedia.org/wiki/Wikip%C3%A9dia:Articles_de_qualit%C3%A9) and [featured](https://fr.wikipedia.org/wiki/Wikip%C3%A9dia:Bons_articles) articles on Wikipedia. The model reaches a zero-shot perplexity of **12.9** on the test set.
### BibTeX entry and citation info
Along with the model hosted by HuggingFace transformers library, we maintain a [git repository](https://github.com/AntoineSimoulin/gpt-fr).
If you use **GPT-fr** for your scientific publications or your industrial applications, please cite the following paper:
```bibtex
@inproceedings{simoulin:hal-03265900,
TITLE = {{Un mod{\`e}le Transformer G{\'e}n{\'e}ratif Pr{\'e}-entrain{\'e} pour le \_\_\_\_\_\_ fran{\c c}ais}},
AUTHOR = {Simoulin, Antoine and Crabb{\'e}, Benoit},
URL = {https://hal.archives-ouvertes.fr/hal-03265900},
BOOKTITLE = {{Traitement Automatique des Langues Naturelles}},
ADDRESS = {Lille, France},
EDITOR = {Denis, Pascal and Grabar, Natalia and Fraisse, Amel and Cardon, R{\'e}mi and Jacquemin, Bernard and Kergosien, Eric and Balvet, Antonio},
PUBLISHER = {{ATALA}},
PAGES = {246-255},
YEAR = {2021},
KEYWORDS = {fran{\c c}ais. ; GPT ; G{\'e}n{\'e}ratif ; Transformer ; Pr{\'e}-entra{\^i}n{\'e}},
PDF = {https://hal.archives-ouvertes.fr/hal-03265900/file/7.pdf},
HAL_ID = {hal-03265900},
HAL_VERSION = {v1},
}
```
### References
><div name="tiedemann-2012">Jรถrg Tiedemann: Parallel Data, Tools and Interfaces in OPUS. LREC 2012: 2214-2218</div>
><div name="li-2019">Xian Li, Paul Michel, Antonios Anastasopoulos, Yonatan Belinkov, Nadir Durrani, Orhan Firat, Philipp Koehn, Graham Neubig, Juan Pino, Hassan Sajjad: Findings of the First Shared Task on Machine Translation Robustness. WMT (2) 2019: 91-102</div>
><div name="shoeybi-2019">Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, Bryan Catanzaro: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. CoRR abs/1909.08053 (2019)</div>
><div name="lacoste-2019">Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, Thomas Dandres: Quantifying the Carbon Emissions of Machine Learning. CoRR abs/1910.09700 (2019)</div>
|
{"language": ["fr"], "license": "apache-2.0", "tags": ["tf", "pytorch", "gpt2", "text-generation"], "thumbnail": "https://raw.githubusercontent.com/AntoineSimoulin/gpt-fr/main/imgs/logo.png", "model-index": [{"name": "asi/gpt-fr-cased-base", "results": [{"task": {"type": "text-generation", "name": "Wikitext-fr"}, "dataset": {"name": "Wikitext-fr", "type": "wikitext_fr"}, "metrics": [{"type": "perplexity", "value": 12.9, "name": "Perplexity"}]}, {"task": {"type": "text-classification", "name": "FLUE"}, "dataset": {"name": "CLS-Books", "type": "flue", "split": "CLS"}, "metrics": [{"type": "accuracy", "value": 91.6, "name": "Accuracy"}, {"type": "accuracy", "value": 91.4, "name": "Accuracy"}, {"type": "accuracy", "value": 92.6, "name": "Accuracy"}]}, {"task": {"type": "text-classification", "name": "FLUE"}, "dataset": {"name": "PAWS-X", "type": "flue", "split": "PAWS-X"}, "metrics": [{"type": "accuracy", "value": 86.3, "name": "Accuracy"}]}, {"task": {"type": "text-classification", "name": "FLUE"}, "dataset": {"name": "XNLI", "type": "flue", "split": "XNLI"}, "metrics": [{"type": "accuracy", "value": 77.9, "name": "Accuracy"}]}, {"task": {"type": "summarization", "name": "OrangeSum"}, "dataset": {"name": "OrangeSum-Abstract", "type": "orange_sum", "split": "abstract"}, "metrics": [{"type": "rouge", "value": 16.6, "name": "ROUGE-1"}, {"type": "rouge", "value": 3.4, "name": "ROUGE-2"}, {"type": "rouge", "value": 11.5, "name": "ROUGE-L"}]}, {"task": {"type": "summarization", "name": "OrangeSum"}, "dataset": {"name": "OrangeSum-Title", "type": "orange_sum", "split": "title"}, "metrics": [{"type": "rouge", "value": 10.2, "name": "ROUGE-1"}, {"type": "rouge", "value": 2.6, "name": "ROUGE-2"}, {"type": "rouge", "value": 8.4, "name": "ROUGE-L"}]}]}]}
|
text-generation
|
asi/gpt-fr-cased-base
|
[
"transformers",
"pytorch",
"tf",
"jax",
"gpt2",
"text-generation",
"fr",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"fr"
] |
TAGS
#transformers #pytorch #tf #jax #gpt2 #text-generation #fr #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
<img src="URL width="200">
Model description
-----------------
GPT-fr ๐ซ๐ท is a GPT model for French developped by Quantmetry and the Laboratoire de Linguistique Formelle (LLF). We train the model on a very large and heterogeneous French corpus. We release the weights for the following configurations:
Intended uses & limitations
---------------------------
The model can be leveraged for language generation tasks. Besides, many tasks may be formatted such that the output is directly generated in natural language. Such configuration may be used for tasks such as automatic summary or question answering. We do hope our model might be used for both academic and industrial applications.
#### How to use
The model might be used through the astonishing 'Transformers' librairie. We use the work from Shoeybi et al., (2019) and calibrate our model such that during pre-training or fine-tuning, the model can fit on a single NVIDIA V100 32GB GPU.
#### Limitations and bias
Large language models tend to replicate the biases found in pre-training datasets, such as gender discrimination or offensive content generation.
To limit exposition to too much explicit material, we carefully choose the sources beforehand. This process โ detailed in our paper โ aims to limit offensive content generation from the model without performing manual and arbitrary filtering.
However, some societal biases, contained in the data, might be reflected by the model. For example on gender equality, we generated the following sentence sequence "Ma femme/Mon mari vient d'obtenir un nouveau poste en tant \_\_\_\_\_\_\_". We used top-k random sampling strategy with k=50 and stopped at the first punctuation element.
The positions generated for the wife is '*que professeur de franรงais.*' while the position for the husband is '*que chef de projet.*'. We do appreciate your feedback to better qualitatively and quantitatively assess such effects.
Training data
-------------
We created a dedicated corpus to train our generative model. Indeed the model uses a fixed-length context size of 1,024 and require long documents to be trained. We aggregated existing corpora: Wikipedia, OpenSubtitle (Tiedemann, 2012), Gutenberg and Common Crawl (Li et al., 2019). Corpora are filtered and separated into sentences. Successive sentences are then concatenated within the limit of 1,024 tokens per document.
Training procedure
------------------
We pre-trained the model on the new CNRS (French National Centre for Scientific Research) Jean Zay supercomputer. We perform the training within a total of 140 hours of computation on Tesla V-100 hardware (TDP of 300W). The training was distributed on 4 compute nodes of 8 GPUs. We used data parallelization in order to divide each micro-batch on the computing units. We estimated the total emissions at 580.61 kgCO2eq, using the Machine Learning Impact calculator presented in Lacoste et al., (2019).
Eval results
------------
We packaged GPT-fr with a dedicated language model evaluation benchmark for French.
In line with the WikiText benchmark in English, we collected over 70 million tokens from the set of verified good and featured articles on Wikipedia. The model reaches a zero-shot perplexity of 12.9 on the test set.
### BibTeX entry and citation info
Along with the model hosted by HuggingFace transformers library, we maintain a git repository.
If you use GPT-fr for your scientific publications or your industrial applications, please cite the following paper:
### References
>
> Jรถrg Tiedemann: Parallel Data, Tools and Interfaces in OPUS. LREC 2012: 2214-2218
>
>
> Xian Li, Paul Michel, Antonios Anastasopoulos, Yonatan Belinkov, Nadir Durrani, Orhan Firat, Philipp Koehn, Graham Neubig, Juan Pino, Hassan Sajjad: Findings of the First Shared Task on Machine Translation Robustness. WMT (2) 2019: 91-102
>
>
> Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, Bryan Catanzaro: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. CoRR abs/1909.08053 (2019)
>
>
> Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, Thomas Dandres: Quantifying the Carbon Emissions of Machine Learning. CoRR abs/1910.09700 (2019)
>
|
[
"#### How to use\n\n\nThe model might be used through the astonishing 'Transformers' librairie. We use the work from Shoeybi et al., (2019) and calibrate our model such that during pre-training or fine-tuning, the model can fit on a single NVIDIA V100 32GB GPU.",
"#### Limitations and bias\n\n\nLarge language models tend to replicate the biases found in pre-training datasets, such as gender discrimination or offensive content generation.\n\n\nTo limit exposition to too much explicit material, we carefully choose the sources beforehand. This process โ detailed in our paper โ aims to limit offensive content generation from the model without performing manual and arbitrary filtering.\n\n\nHowever, some societal biases, contained in the data, might be reflected by the model. For example on gender equality, we generated the following sentence sequence \"Ma femme/Mon mari vient d'obtenir un nouveau poste en tant \\_\\_\\_\\_\\_\\_\\_\". We used top-k random sampling strategy with k=50 and stopped at the first punctuation element.\nThe positions generated for the wife is '*que professeur de franรงais.*' while the position for the husband is '*que chef de projet.*'. We do appreciate your feedback to better qualitatively and quantitatively assess such effects.\n\n\nTraining data\n-------------\n\n\nWe created a dedicated corpus to train our generative model. Indeed the model uses a fixed-length context size of 1,024 and require long documents to be trained. We aggregated existing corpora: Wikipedia, OpenSubtitle (Tiedemann, 2012), Gutenberg and Common Crawl (Li et al., 2019). Corpora are filtered and separated into sentences. Successive sentences are then concatenated within the limit of 1,024 tokens per document.\n\n\nTraining procedure\n------------------\n\n\nWe pre-trained the model on the new CNRS (French National Centre for Scientific Research) Jean Zay supercomputer. We perform the training within a total of 140 hours of computation on Tesla V-100 hardware (TDP of 300W). The training was distributed on 4 compute nodes of 8 GPUs. We used data parallelization in order to divide each micro-batch on the computing units. We estimated the total emissions at 580.61 kgCO2eq, using the Machine Learning Impact calculator presented in Lacoste et al., (2019).\n\n\nEval results\n------------\n\n\nWe packaged GPT-fr with a dedicated language model evaluation benchmark for French.\nIn line with the WikiText benchmark in English, we collected over 70 million tokens from the set of verified good and featured articles on Wikipedia. The model reaches a zero-shot perplexity of 12.9 on the test set.",
"### BibTeX entry and citation info\n\n\nAlong with the model hosted by HuggingFace transformers library, we maintain a git repository.\nIf you use GPT-fr for your scientific publications or your industrial applications, please cite the following paper:",
"### References\n\n\n\n> \n> Jรถrg Tiedemann: Parallel Data, Tools and Interfaces in OPUS. LREC 2012: 2214-2218\n> \n\n\n\n> \n> Xian Li, Paul Michel, Antonios Anastasopoulos, Yonatan Belinkov, Nadir Durrani, Orhan Firat, Philipp Koehn, Graham Neubig, Juan Pino, Hassan Sajjad: Findings of the First Shared Task on Machine Translation Robustness. WMT (2) 2019: 91-102\n> \n\n\n\n> \n> Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, Bryan Catanzaro: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. CoRR abs/1909.08053 (2019)\n> \n\n\n\n> \n> Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, Thomas Dandres: Quantifying the Carbon Emissions of Machine Learning. CoRR abs/1910.09700 (2019)\n>"
] |
[
"TAGS\n#transformers #pytorch #tf #jax #gpt2 #text-generation #fr #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n",
"#### How to use\n\n\nThe model might be used through the astonishing 'Transformers' librairie. We use the work from Shoeybi et al., (2019) and calibrate our model such that during pre-training or fine-tuning, the model can fit on a single NVIDIA V100 32GB GPU.",
"#### Limitations and bias\n\n\nLarge language models tend to replicate the biases found in pre-training datasets, such as gender discrimination or offensive content generation.\n\n\nTo limit exposition to too much explicit material, we carefully choose the sources beforehand. This process โ detailed in our paper โ aims to limit offensive content generation from the model without performing manual and arbitrary filtering.\n\n\nHowever, some societal biases, contained in the data, might be reflected by the model. For example on gender equality, we generated the following sentence sequence \"Ma femme/Mon mari vient d'obtenir un nouveau poste en tant \\_\\_\\_\\_\\_\\_\\_\". We used top-k random sampling strategy with k=50 and stopped at the first punctuation element.\nThe positions generated for the wife is '*que professeur de franรงais.*' while the position for the husband is '*que chef de projet.*'. We do appreciate your feedback to better qualitatively and quantitatively assess such effects.\n\n\nTraining data\n-------------\n\n\nWe created a dedicated corpus to train our generative model. Indeed the model uses a fixed-length context size of 1,024 and require long documents to be trained. We aggregated existing corpora: Wikipedia, OpenSubtitle (Tiedemann, 2012), Gutenberg and Common Crawl (Li et al., 2019). Corpora are filtered and separated into sentences. Successive sentences are then concatenated within the limit of 1,024 tokens per document.\n\n\nTraining procedure\n------------------\n\n\nWe pre-trained the model on the new CNRS (French National Centre for Scientific Research) Jean Zay supercomputer. We perform the training within a total of 140 hours of computation on Tesla V-100 hardware (TDP of 300W). The training was distributed on 4 compute nodes of 8 GPUs. We used data parallelization in order to divide each micro-batch on the computing units. We estimated the total emissions at 580.61 kgCO2eq, using the Machine Learning Impact calculator presented in Lacoste et al., (2019).\n\n\nEval results\n------------\n\n\nWe packaged GPT-fr with a dedicated language model evaluation benchmark for French.\nIn line with the WikiText benchmark in English, we collected over 70 million tokens from the set of verified good and featured articles on Wikipedia. The model reaches a zero-shot perplexity of 12.9 on the test set.",
"### BibTeX entry and citation info\n\n\nAlong with the model hosted by HuggingFace transformers library, we maintain a git repository.\nIf you use GPT-fr for your scientific publications or your industrial applications, please cite the following paper:",
"### References\n\n\n\n> \n> Jรถrg Tiedemann: Parallel Data, Tools and Interfaces in OPUS. LREC 2012: 2214-2218\n> \n\n\n\n> \n> Xian Li, Paul Michel, Antonios Anastasopoulos, Yonatan Belinkov, Nadir Durrani, Orhan Firat, Philipp Koehn, Graham Neubig, Juan Pino, Hassan Sajjad: Findings of the First Shared Task on Machine Translation Robustness. WMT (2) 2019: 91-102\n> \n\n\n\n> \n> Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, Bryan Catanzaro: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. CoRR abs/1909.08053 (2019)\n> \n\n\n\n> \n> Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, Thomas Dandres: Quantifying the Carbon Emissions of Machine Learning. CoRR abs/1910.09700 (2019)\n>"
] |
[
71,
71,
539,
59,
213
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #gpt2 #text-generation #fr #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n#### How to use\n\n\nThe model might be used through the astonishing 'Transformers' librairie. We use the work from Shoeybi et al., (2019) and calibrate our model such that during pre-training or fine-tuning, the model can fit on a single NVIDIA V100 32GB GPU."
] |
[
-0.03408413752913475,
-0.01247474830597639,
0.002256683772429824,
0.141060933470726,
0.14576071500778198,
0.08405815064907074,
0.09617749601602554,
0.12071748077869415,
0.012271019630134106,
-0.02759738825261593,
0.1432456523180008,
0.11329968273639679,
0.025663815438747406,
0.16986767947673798,
0.07100731879472733,
-0.19192783534526825,
0.058344826102256775,
0.11571483314037323,
-0.04170186445116997,
0.09334870427846909,
0.0749819427728653,
-0.09122522920370102,
0.14201341569423676,
0.02590933069586754,
-0.20179373025894165,
-0.05098935589194298,
0.034733641892671585,
-0.0498855784535408,
0.1261366456747055,
0.15047313272953033,
0.045032743364572525,
0.042334310710430145,
0.10973212867975235,
-0.08978478610515594,
0.03548577055335045,
0.0607406347990036,
-0.09086054563522339,
0.05080538988113403,
0.04732019826769829,
0.0014514500508084893,
0.1947167068719864,
0.018237397074699402,
-0.03769650310277939,
0.04105105623602867,
-0.09337703883647919,
-0.1627448946237564,
0.01165721658617258,
0.013207630254328251,
0.013499395921826363,
0.030638370662927628,
0.018546439707279205,
0.13217340409755707,
-0.005204455461353064,
0.056035127490758896,
0.1068774089217186,
-0.268072247505188,
-0.07578401267528534,
0.1638159304857254,
0.062407806515693665,
-0.025446750223636627,
-0.019212940707802773,
0.08284246921539307,
0.0400974377989769,
0.04576222226023674,
0.11727628111839294,
-0.03834235295653343,
0.011344405822455883,
0.03573698177933693,
-0.07850964367389679,
-0.09009290486574173,
0.13700295984745026,
0.0006171072018332779,
0.013559145852923393,
-0.09268835932016373,
-0.10365867614746094,
-0.031078916043043137,
-0.05609644949436188,
0.02966046705842018,
-0.04103560745716095,
-0.0056343586184084415,
0.015145869925618172,
-0.07624262571334839,
-0.09787112474441528,
-0.14332368969917297,
-0.078437939286232,
0.1967405527830124,
0.02948085218667984,
0.12482370436191559,
-0.09200362116098404,
0.13303706049919128,
-0.09584008902311325,
-0.030936751514673233,
0.007373509928584099,
-0.10960046947002411,
-0.05975008010864258,
0.03891744837164879,
-0.06954911351203918,
0.03301412612199783,
0.0328480526804924,
0.12154734879732132,
0.07268960028886795,
-0.009129537269473076,
0.13180187344551086,
0.03678344190120697,
-0.005555353127419949,
0.03477107360959053,
-0.12586180865764618,
-0.07325612753629684,
0.004022714216262102,
0.031030450016260147,
-0.01926344819366932,
-0.02201448194682598,
-0.1377251148223877,
-0.12089375406503677,
-0.09205097705125809,
-0.054563309997320175,
0.0667727142572403,
0.09537205845117569,
-0.026219377294182777,
-0.06277984380722046,
0.12517721951007843,
-0.02266923151910305,
0.008760680444538593,
-0.0250961035490036,
-0.007751767057925463,
-0.01926451176404953,
0.10605988651514053,
-0.07364063709974289,
-0.003218431957066059,
-0.057963233441114426,
-0.06206858530640602,
-0.06919247657060623,
-0.15051552653312683,
-0.04924505203962326,
0.02813260816037655,
-0.08619628846645355,
0.05368509516119957,
-0.1517389565706253,
-0.17340470850467682,
0.059820983558893204,
0.09258057177066803,
-0.07176769524812698,
-0.04369596764445305,
0.028412410989403725,
0.010882084257900715,
0.06534986943006516,
-0.021201003342866898,
0.17217570543289185,
-0.024848083034157753,
0.0744754895567894,
0.09845391660928726,
0.15342393517494202,
-0.12412549555301666,
0.020860705524683,
-0.03363075107336044,
0.0298308152705431,
0.06738855689764023,
0.030115408822894096,
-0.00962755549699068,
0.010576890781521797,
-0.005288475193083286,
-0.049604371190071106,
-0.11850741505622864,
0.03281626105308533,
0.06087889149785042,
0.048141587525606155,
-0.13153479993343353,
-0.016625963151454926,
0.20718973875045776,
-0.0700172558426857,
-0.2009379267692566,
0.12485658377408981,
-0.01149959210306406,
0.00834900513291359,
0.02156347595155239,
0.011419438757002354,
0.12108005583286285,
-0.06400058418512344,
0.0293171014636755,
0.10305221378803253,
-0.1367923468351364,
-0.1795540452003479,
0.10204435884952545,
0.14882393181324005,
-0.06583181768655777,
0.0560055635869503,
-0.002084883628413081,
0.1304909586906433,
-0.03708364814519882,
-0.06444393843412399,
-0.09893276542425156,
-0.11149177700281143,
0.08060593903064728,
0.06731468439102173,
0.018205365166068077,
-0.05679101124405861,
-0.10412392020225525,
-0.006128664594143629,
0.10972380638122559,
-0.08436258137226105,
-0.0007815650897100568,
-0.1273552030324936,
0.12118575721979141,
-0.1127130463719368,
0.08994784206151962,
-0.10337352752685547,
-0.04667442664504051,
-0.011463078670203686,
0.025598807260394096,
0.02135775424540043,
0.16640673577785492,
0.08986850082874298,
0.031078489497303963,
-0.057812388986349106,
0.06537948548793793,
-0.007999599911272526,
0.00026484212139621377,
-0.02271692082285881,
-0.070807546377182,
-0.03792085498571396,
-0.06542277336120605,
0.00482088653370738,
-0.060975152999162674,
0.01533543225377798,
-0.003742293920367956,
0.08315423130989075,
-0.05363946780562401,
0.04963693022727966,
-0.04408460855484009,
-0.027819626033306122,
-0.04715337976813316,
-0.022282060235738754,
0.12128959596157074,
-0.02159191109240055,
0.0022367711644619703,
0.07506353408098221,
-0.11054808646440506,
0.2051040679216385,
0.21063537895679474,
-0.10742075741291046,
0.03793898969888687,
0.012469440698623657,
-0.02074805274605751,
-0.0068430290557444096,
-0.007789576891809702,
-0.004843608941882849,
0.0900280550122261,
-0.029629820957779884,
0.10639312863349915,
-0.08512271195650101,
0.028566287830471992,
0.10277236253023148,
0.027454791590571404,
0.004457641858607531,
0.009672138839960098,
0.18751221895217896,
-0.045464713126420975,
0.07974694669246674,
0.10789553821086884,
-0.030163444578647614,
0.16360868513584137,
0.04011250659823418,
-0.05678340047597885,
0.01871515065431595,
-0.09733102470636368,
-0.02449147216975689,
0.1672310084104538,
-0.13849161565303802,
-0.05495420843362808,
0.09368565678596497,
-0.057601120322942734,
0.07829934358596802,
-0.1405944973230362,
0.015839146450161934,
0.03887183964252472,
-0.015612084418535233,
0.03428949415683746,
0.06979192793369293,
-0.06414191424846649,
0.08220478892326355,
0.03590802103281021,
-0.04429459944367409,
0.0879221260547638,
0.02197934128344059,
-0.08555922657251358,
0.12118735164403915,
-0.048389632254838943,
-0.27701276540756226,
-0.1514066755771637,
-0.0067284246906638145,
-0.04754430800676346,
0.09763659536838531,
0.00798110757023096,
-0.006461265962570906,
-0.05340343713760376,
0.019024815410375595,
0.045215584337711334,
0.020455768331885338,
0.03930714353919029,
-0.006382660940289497,
0.04163558408617973,
-0.03144722431898117,
-0.08093592524528503,
0.0010379668092355132,
0.05216771364212036,
-0.03998692333698273,
0.09953580796718597,
-0.054612331092357635,
0.08492853492498398,
0.08924649655818939,
-0.06973150372505188,
0.030414221808314323,
-0.007658947724848986,
0.19161124527454376,
-0.08241062611341476,
0.06958169490098953,
0.20701159536838531,
0.09592915326356888,
-0.025801265612244606,
0.05054885894060135,
-0.001951261074282229,
-0.07043351978063583,
0.03133183345198631,
-0.07260198146104813,
-0.1170702874660492,
-0.09119998663663864,
-0.07039736211299896,
-0.12225890159606934,
0.07453466206789017,
0.11357893794775009,
0.010638809762895107,
0.02179126627743244,
0.1599116027355194,
0.005475446116179228,
0.1391524374485016,
-0.03053888864815235,
0.06357909739017487,
0.20100906491279602,
-0.0014461105456575751,
0.1333908587694168,
-0.10949570685625076,
-0.04170868173241615,
0.07709023356437683,
0.09702850878238678,
0.09659064561128616,
-0.006593376863747835,
0.130648672580719,
0.04411574453115463,
0.05224493518471718,
0.10283636301755905,
0.1396346092224121,
-0.007695458363741636,
-0.04277190938591957,
-0.0495869442820549,
-0.007501884829252958,
-0.1392245888710022,
0.06606657803058624,
0.01554294116795063,
-0.08985691517591476,
0.0029365294612944126,
0.04220457375049591,
0.051864977926015854,
0.04027251526713371,
0.027007771655917168,
-0.3412134349346161,
-0.05628132447600365,
0.023288076743483543,
0.0032215069513767958,
-0.140111044049263,
0.06462559103965759,
0.08458022028207779,
-0.08673349767923355,
-0.010119960643351078,
-0.06357958167791367,
0.10944919288158417,
0.012935598380863667,
0.020384816452860832,
0.07121772319078445,
0.040256090462207794,
0.03440824896097183,
0.1743968427181244,
-0.30501967668533325,
0.09993358701467514,
-0.00004794499545823783,
0.00010272620420437306,
-0.10320716351270676,
-0.01930798776447773,
0.04313359037041664,
0.10985264927148819,
0.08754011243581772,
-0.017144041135907173,
0.0669349730014801,
-0.02524672821164131,
-0.04080948233604431,
0.045009270310401917,
-0.012133225798606873,
0.046649180352687836,
0.02944672666490078,
-0.06021010875701904,
-0.013122549280524254,
-0.01579437591135502,
0.1217961385846138,
-0.008918197825551033,
-0.17834800481796265,
0.04027314856648445,
0.028900159522891045,
-0.02383643388748169,
-0.04039028286933899,
-0.06838295608758926,
-0.15152353048324585,
0.06599543988704681,
0.022330068051815033,
-0.06254446506500244,
-0.11191827803850174,
0.038438692688941956,
0.07855433225631714,
-0.03449133783578873,
0.0875653624534607,
-0.047092974185943604,
0.10107431560754776,
-0.07111220061779022,
-0.1540629267692566,
0.051503073424100876,
-0.11745345592498779,
-0.07566234469413757,
-0.024404944851994514,
0.028886768966913223,
-0.0785047709941864,
0.06317805498838425,
0.0277018453925848,
0.01169207226485014,
-0.11535631120204926,
-0.09960100799798965,
-0.016651980578899384,
-0.03747843950986862,
-0.006444214843213558,
-0.09917666018009186,
0.03620419278740883,
0.016210786998271942,
0.053088150918483734,
0.007884697057306767,
0.07587255537509918,
0.01748318411409855,
-0.11892981082201004,
0.0710967481136322,
0.07869839668273926,
-0.0052216509357094765,
-0.31215909123420715,
-0.09370841085910797,
-0.03712676465511322,
0.04754151403903961,
-0.10703998059034348,
-0.13578887283802032,
0.08500569313764572,
-0.052596595138311386,
-0.03607186675071716,
0.11183393746614456,
-0.09745470434427261,
-0.11594208329916,
0.09009002149105072,
0.10129571706056595,
0.19964537024497986,
-0.09304825216531754,
0.03241578862071037,
-0.05231747403740883,
-0.2797335386276245,
0.22871224582195282,
-0.10188651829957962,
0.08450563251972198,
-0.08459922671318054,
0.031010238453745842,
-0.015392790548503399,
-0.07148326933383942,
0.11619222909212112,
-0.051336757838726044,
0.048047978430986404,
-0.06631414592266083,
0.10754531621932983,
0.1152893453836441,
-0.012382477521896362,
0.02960238792002201,
-0.058270420879125595,
0.04142210632562637,
-0.10440759360790253,
-0.11465655267238617,
-0.10101142525672913,
-0.01174225378781557,
-0.0038910433650016785,
-0.08682969212532043,
-0.020252354443073273,
0.009279070422053337,
-0.03270881623029709,
-0.021913766860961914,
-0.037169333547353745,
-0.012572775594890118,
-0.07615908235311508,
0.11612574756145477,
0.10356669872999191,
-0.14036613702774048,
-0.06867305189371109,
-0.03474496304988861,
-0.03055606223642826,
0.07182717323303223,
-0.2143511325120926,
-0.0004433398717083037,
0.1005246564745903,
-0.049618374556303024,
0.02450851909816265,
0.08153142780065536,
0.0022239317186176777,
-0.026352452114224434,
0.14556294679641724,
-0.12581375241279602,
-0.06290867924690247,
-0.06732480973005295,
-0.05926084518432617,
-0.01104809157550335,
-0.01751505583524704,
0.019170863553881645,
-0.054059889167547226,
-0.0100780688226223,
-0.015211831778287888,
-0.023495085537433624,
-0.08451355248689651,
0.06904921680688858,
0.08991461247205734,
0.05617855116724968,
-0.09846986085176468,
0.0046258349902927876,
-0.030327241867780685,
-0.10724907368421555,
-0.03911035507917404,
0.04038550704717636,
-0.13543611764907837,
-0.10765703022480011,
-0.013152014464139938,
-0.0080346018075943,
-0.1428348422050476,
-0.10247191786766052,
-0.06670349836349487,
-0.07725922763347626,
0.033884286880493164,
-0.013852953910827637,
0.11618692427873611,
0.030235521495342255,
-0.009452559985220432,
-0.05234939604997635,
-0.10036491602659225,
0.0812319815158844,
-0.06170031800866127,
0.0456894226372242,
-0.12743444740772247,
0.04172699898481369,
0.022844817489385605,
0.10608324408531189,
-0.09269369393587112,
0.01315939798951149,
-0.06427361071109772,
0.03517846018075943,
-0.14297527074813843,
0.023662859573960304,
-0.10056670010089874,
-0.005458229687064886,
-0.00044038714258931577,
-0.03579474985599518,
-0.0651058703660965,
0.009245378896594048,
-0.09740100055932999,
0.006514191161841154,
0.018352869898080826,
0.02605976164340973,
-0.002250614808872342,
0.007163680624216795,
0.0332469679415226,
-0.02426203154027462,
0.033163491636514664,
0.018084019422531128,
-0.008654153905808926,
0.06286416202783585,
-0.04605230316519737,
-0.016788430511951447,
-0.05761844664812088,
0.10155060887336731,
0.029308855533599854,
-0.006330672651529312,
0.09281611442565918,
0.024065904319286346,
0.029103431850671768,
-0.007505272980779409,
0.011116987094283104,
-0.06594539433717728,
0.045456208288669586,
-0.07114182412624359,
-0.029282046481966972,
-0.000037343022995628417,
-0.005731252487748861,
0.07078690081834793,
0.050781212747097015,
0.07349405437707901,
-0.014855480752885342,
0.011861088685691357,
-0.14085254073143005,
0.044069964438676834,
-0.05483236536383629,
-0.075321726500988,
-0.04584578052163124,
-0.10693763941526413,
0.01623503677546978,
0.03367864713072777,
0.2521896958351135,
0.08831113576889038,
-0.039519742131233215,
-0.02036958746612072,
-0.036969143897295,
0.028420565649867058,
-0.026185717433691025,
0.23630645871162415,
0.06009611859917641,
0.045749641954898834,
-0.03496096283197403,
0.12007716298103333,
0.09607537090778351,
0.14877428114414215,
0.0011099646799266338,
0.057377271354198456,
0.01329635176807642,
0.13812531530857086,
0.04234902188181877,
-0.06208840385079384,
-0.06843892484903336,
-0.0024167546071112156,
-0.0878799632191658,
0.038472190499305725,
-0.11678284406661987,
0.009608502499759197,
0.1227445974946022,
-0.07414563745260239,
0.030080383643507957,
-0.0289936400949955,
-0.054846588522195816,
-0.048875682055950165,
-0.09475059062242508,
-0.06995231658220291,
-0.15400467813014984,
0.0256350114941597,
-0.05716795474290848,
-0.08002983033657074,
0.09322648495435715,
0.028769489377737045,
-0.06170477345585823,
0.13901546597480774,
-0.0012761320685967803,
0.026418335735797882,
-0.02358953282237053,
0.010861721821129322,
0.026528486981987953,
0.00985773652791977,
-0.06569042056798935,
-0.04539387673139572,
-0.06656226515769958,
0.027558287605643272,
-0.02925971709191799,
-0.02608346752822399,
0.051620662212371826,
0.04011461138725281,
-0.022147605195641518,
-0.06784222275018692,
0.004407500848174095,
0.0218886137008667,
0.13769377768039703,
-0.0441565178334713,
-0.0025007021613419056,
0.004611043259501457,
0.11520866304636002,
-0.02620238997042179,
-0.14041917026042938,
-0.1318543255329132,
0.12686815857887268,
-0.028227809816598892,
0.013541106134653091,
0.01248146127909422,
-0.023073066025972366,
-0.04643573611974716,
0.2998879849910736,
0.24281057715415955,
-0.05621577799320221,
-0.011223861947655678,
0.07975845783948898,
0.0006136555457487702,
0.03357810899615288,
0.16389138996601105,
-0.007380960509181023,
0.1725388616323471,
-0.07973521947860718,
-0.08454921841621399,
-0.048525452613830566,
-0.014356005936861038,
0.04044489935040474,
-0.005804835353046656,
0.02030455507338047,
-0.01919080689549446,
-0.019381195306777954,
-0.0365438237786293,
-0.03155004233121872,
0.07435110956430435,
0.06861206889152527,
-0.0788513794541359,
-0.014252318069338799,
-0.015767715871334076,
-0.038218993693590164,
-0.01800842396914959,
0.07080312073230743,
-0.06548063457012177,
0.0701436921954155,
0.020736975595355034,
-0.007562856189906597,
-0.24422982335090637,
0.05384322628378868,
0.07971872389316559,
0.02093925140798092,
0.16727620363235474,
-0.08702103048563004,
0.12423810362815857,
0.11472968757152557,
0.00012591847917065024,
-0.14332106709480286,
0.07023078203201294,
-0.05110056698322296,
-0.006227807607501745,
0.03277828171849251,
0.026471640914678574,
0.0003678901703096926,
-0.10904347151517868,
-0.03290224075317383,
-0.0728699117898941,
0.008969680406153202,
-0.0280644278973341,
0.02602090872824192,
-0.0706806480884552,
0.05148869752883911,
-0.04684235528111458,
0.14451144635677338,
0.11582854390144348,
0.004673248156905174,
-0.09587913006544113,
-0.06593386828899384,
0.08180233091115952,
0.013738400302827358,
0.03825348615646362,
-0.10300106555223465,
-0.07718627899885178,
-0.0603615939617157,
-0.06561308354139328,
-0.061887722462415695,
-0.25658687949180603,
-0.032523684203624725,
-0.049895353615283966,
-0.05009422451257706,
-0.038069192320108414,
0.06027206778526306,
0.13578937947750092,
0.03901884704828262,
-0.03823673725128174,
-0.040976136922836304,
-0.06032566353678703,
0.02609851211309433,
-0.12944939732551575,
-0.17455551028251648
] |
null | null |
transformers
|
<img src="https://raw.githubusercontent.com/AntoineSimoulin/gpt-fr/main/imgs/logo.png" width="200">
## Model description
**GPT-fr** ๐ซ๐ท is a GPT model for French developped by [Quantmetry](https://www.quantmetry.com/) and the [Laboratoire de Linguistique Formelle (LLF)](http://www.llf.cnrs.fr/en). We train the model on a very large and heterogeneous French corpus. We release the weights for the following configurations:
| Model name | Number of layers | Attention Heads | Embedding Dimension | Total Parameters |
| :------: | :---: | :---: | :---: | :---: |
| `gpt-fr-cased-small` | 12 | 12 | 768 | 124 M |
| `gpt-fr-cased-base` | 24 | 14 | 1,792 | 1,017 B |
## Intended uses & limitations
The model can be leveraged for language generation tasks. Besides, many tasks may be formatted such that the output is directly generated in natural language. Such configuration may be used for tasks such as automatic summary or question answering. We do hope our model might be used for both academic and industrial applications.
#### How to use
The model might be used through the astonishing ๐ค `Transformers` librairie:
```python
from transformers import GPT2Tokenizer, GPT2LMHeadModel
# Load pretrained model and tokenizer
model = GPT2LMHeadModel.from_pretrained("asi/gpt-fr-cased-small")
tokenizer = GPT2Tokenizer.from_pretrained("asi/gpt-fr-cased-small")
# Generate a sample of text
model.eval()
input_sentence = "Longtemps je me suis couchรฉ de bonne heure."
input_ids = tokenizer.encode(input_sentence, return_tensors='pt')
beam_outputs = model.generate(
input_ids,
max_length=100,
do_sample=True,
top_k=50,
top_p=0.95,
num_return_sequences=1
)
print("Output:\n" + 100 * '-')
print(tokenizer.decode(beam_outputs[0], skip_special_tokens=True))
```
#### Limitations and bias
Large language models tend to replicate the biases found in pre-training datasets, such as gender discrimination or offensive content generation.
To limit exposition to too much explicit material, we carefully choose the sources beforehand. This process โ detailed in our paper โ aims to limit offensive content generation from the model without performing manual and arbitrary filtering.
However, some societal biases, contained in the data, might be reflected by the model. For example on gender equality, we generated the following sentence sequence "Ma femme/Mon mari vient d'obtenir un nouveau poste. A partir de demain elle/il sera \_\_\_\_\_\_\_" and observed the model generated distinct positions given the subject gender. We used top-k random sampling strategy with k=50 and stopped at the first punctuation element.
The positions generated for the wife is '_femme de mรฉnage de la maison_' while the position for the husband is '_ร la tรชte de la police_'. We do appreciate your feedback to better qualitatively and quantitatively assess such effects.
## Training data
We created a dedicated corpus to train our generative model. Indeed the model uses a fixed-length context size of 1,024 and require long documents to be trained. We aggregated existing corpora: [Wikipedia](https://dumps.wikimedia.org/frwiki/), [OpenSubtitle](http://opus.nlpl.eu/download.php?f=OpenSubtitles/v2016/mono/) ([Tiedemann, 2012](#tiedemann-2012)), [Gutenberg](http://www.gutenberg.org). Corpora are filtered and separated into sentences. Successive sentences are then concatenated within the limit of 1,024 tokens per document.
## Training procedure
We pre-trained the model on a TPU v2-8 using the amazing [Google Colab](https://colab.research.google.com) inter-server.
## Eval results
We packaged **GPT-fr** with a dedicated language model evaluation benchmark.
In line with the [WikiText](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/) benchmark in English, we collected over 70 million tokens from the set of verified [good](https://fr.wikipedia.org/wiki/Wikip%C3%A9dia:Articles_de_qualit%C3%A9) and [featured](https://fr.wikipedia.org/wiki/Wikip%C3%A9dia:Bons_articles) articles on French Wikipedia. The model reaches a zero-shot perplexity of **109.2** on the test set.
### BibTeX entry and citation info
Along with the model hosted by HuggingFace transformers library, we maintain a [git repository](https://github.com/AntoineSimoulin/gpt-fr).
If you use **GPT-fr** for your scientific publications or your industrial applications, please cite the following paper:
```bibtex
@inproceedings{simoulin:hal-03265900,
TITLE = {{Un mod{\`e}le Transformer G{\'e}n{\'e}ratif Pr{\'e}-entrain{\'e} pour le \_\_\_\_\_\_ fran{\c c}ais}},
AUTHOR = {Simoulin, Antoine and Crabb{\'e}, Benoit},
URL = {https://hal.archives-ouvertes.fr/hal-03265900},
BOOKTITLE = {{Traitement Automatique des Langues Naturelles}},
ADDRESS = {Lille, France},
EDITOR = {Denis, Pascal and Grabar, Natalia and Fraisse, Amel and Cardon, R{\'e}mi and Jacquemin, Bernard and Kergosien, Eric and Balvet, Antonio},
PUBLISHER = {{ATALA}},
PAGES = {246-255},
YEAR = {2021},
KEYWORDS = {fran{\c c}ais. ; GPT ; G{\'e}n{\'e}ratif ; Transformer ; Pr{\'e}-entra{\^i}n{\'e}},
PDF = {https://hal.archives-ouvertes.fr/hal-03265900/file/7.pdf},
HAL_ID = {hal-03265900},
HAL_VERSION = {v1},
}
```
### References
><div name="tiedemann-2012">Jรถrg Tiedemann: Parallel Data, Tools and Interfaces in OPUS. LREC 2012: 2214-2218</div>
|
{"language": ["fr"], "license": "apache-2.0", "tags": ["tf", "pytorch", "gpt2", "text-generation"], "thumbnail": "https://raw.githubusercontent.com/AntoineSimoulin/gpt-fr/main/imgs/logo.png", "model-index": [{"name": "asi/gpt-fr-cased-base", "results": [{"task": {"type": "text-generation", "name": "Wikitext-fr"}, "dataset": {"name": "Wikitext-fr", "type": "wikitext_fr"}, "metrics": [{"type": "perplexity", "value": 109.2, "name": "Perplexity"}]}, {"task": {"type": "text-classification", "name": "FLUE"}, "dataset": {"name": "CLS-Books", "type": "flue", "split": "CLS"}, "metrics": [{"type": "accuracy", "value": 88.3, "name": "Accuracy"}, {"type": "accuracy", "value": 86.9, "name": "Accuracy"}, {"type": "accuracy", "value": 89.3, "name": "Accuracy"}]}, {"task": {"type": "text-classification", "name": "FLUE"}, "dataset": {"name": "PAWS-X", "type": "flue", "split": "PAWS-X"}, "metrics": [{"type": "accuracy", "value": 83.3, "name": "Accuracy"}]}, {"task": {"type": "text-classification", "name": "FLUE"}, "dataset": {"name": "XNLI", "type": "flue", "split": "XNLI"}, "metrics": [{"type": "accuracy", "value": 75.6, "name": "Accuracy"}]}, {"task": {"type": "summarization", "name": "OrangeSum"}, "dataset": {"name": "OrangeSum-Abstract", "type": "orange_sum", "split": "abstract"}, "metrics": [{"type": "rouge", "value": 17.5, "name": "ROUGE-1"}, {"type": "rouge", "value": 3.1, "name": "ROUGE-2"}, {"type": "rouge", "value": 12.1, "name": "ROUGE-L"}]}, {"task": {"type": "summarization", "name": "OrangeSum"}, "dataset": {"name": "OrangeSum-Title", "type": "orange_sum", "split": "title"}, "metrics": [{"type": "rouge", "value": 13.9, "name": "ROUGE-1"}, {"type": "rouge", "value": 2.3, "name": "ROUGE-2"}, {"type": "rouge", "value": 9.7, "name": "ROUGE-L"}]}]}]}
|
text-generation
|
asi/gpt-fr-cased-small
|
[
"transformers",
"pytorch",
"tf",
"jax",
"gpt2",
"text-generation",
"fr",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"fr"
] |
TAGS
#transformers #pytorch #tf #jax #gpt2 #text-generation #fr #license-apache-2.0 #model-index #endpoints_compatible #has_space #text-generation-inference #region-us
|
<img src="URL width="200">
Model description
-----------------
GPT-fr ๐ซ๐ท is a GPT model for French developped by Quantmetry and the Laboratoire de Linguistique Formelle (LLF). We train the model on a very large and heterogeneous French corpus. We release the weights for the following configurations:
Intended uses & limitations
---------------------------
The model can be leveraged for language generation tasks. Besides, many tasks may be formatted such that the output is directly generated in natural language. Such configuration may be used for tasks such as automatic summary or question answering. We do hope our model might be used for both academic and industrial applications.
#### How to use
The model might be used through the astonishing 'Transformers' librairie:
#### Limitations and bias
Large language models tend to replicate the biases found in pre-training datasets, such as gender discrimination or offensive content generation.
To limit exposition to too much explicit material, we carefully choose the sources beforehand. This process โ detailed in our paper โ aims to limit offensive content generation from the model without performing manual and arbitrary filtering.
However, some societal biases, contained in the data, might be reflected by the model. For example on gender equality, we generated the following sentence sequence "Ma femme/Mon mari vient d'obtenir un nouveau poste. A partir de demain elle/il sera \_\_\_\_\_\_\_" and observed the model generated distinct positions given the subject gender. We used top-k random sampling strategy with k=50 and stopped at the first punctuation element.
The positions generated for the wife is '*femme de mรฉnage de la maison*' while the position for the husband is '*ร la tรชte de la police*'. We do appreciate your feedback to better qualitatively and quantitatively assess such effects.
Training data
-------------
We created a dedicated corpus to train our generative model. Indeed the model uses a fixed-length context size of 1,024 and require long documents to be trained. We aggregated existing corpora: Wikipedia, OpenSubtitle (Tiedemann, 2012), Gutenberg. Corpora are filtered and separated into sentences. Successive sentences are then concatenated within the limit of 1,024 tokens per document.
Training procedure
------------------
We pre-trained the model on a TPU v2-8 using the amazing Google Colab inter-server.
Eval results
------------
We packaged GPT-fr with a dedicated language model evaluation benchmark.
In line with the WikiText benchmark in English, we collected over 70 million tokens from the set of verified good and featured articles on French Wikipedia. The model reaches a zero-shot perplexity of 109.2 on the test set.
### BibTeX entry and citation info
Along with the model hosted by HuggingFace transformers library, we maintain a git repository.
If you use GPT-fr for your scientific publications or your industrial applications, please cite the following paper:
### References
>
> Jรถrg Tiedemann: Parallel Data, Tools and Interfaces in OPUS. LREC 2012: 2214-2218
|
[
"#### How to use\n\n\nThe model might be used through the astonishing 'Transformers' librairie:",
"#### Limitations and bias\n\n\nLarge language models tend to replicate the biases found in pre-training datasets, such as gender discrimination or offensive content generation.\n\n\nTo limit exposition to too much explicit material, we carefully choose the sources beforehand. This process โ detailed in our paper โ aims to limit offensive content generation from the model without performing manual and arbitrary filtering.\n\n\nHowever, some societal biases, contained in the data, might be reflected by the model. For example on gender equality, we generated the following sentence sequence \"Ma femme/Mon mari vient d'obtenir un nouveau poste. A partir de demain elle/il sera \\_\\_\\_\\_\\_\\_\\_\" and observed the model generated distinct positions given the subject gender. We used top-k random sampling strategy with k=50 and stopped at the first punctuation element.\nThe positions generated for the wife is '*femme de mรฉnage de la maison*' while the position for the husband is '*ร la tรชte de la police*'. We do appreciate your feedback to better qualitatively and quantitatively assess such effects.\n\n\nTraining data\n-------------\n\n\nWe created a dedicated corpus to train our generative model. Indeed the model uses a fixed-length context size of 1,024 and require long documents to be trained. We aggregated existing corpora: Wikipedia, OpenSubtitle (Tiedemann, 2012), Gutenberg. Corpora are filtered and separated into sentences. Successive sentences are then concatenated within the limit of 1,024 tokens per document.\n\n\nTraining procedure\n------------------\n\n\nWe pre-trained the model on a TPU v2-8 using the amazing Google Colab inter-server.\n\n\nEval results\n------------\n\n\nWe packaged GPT-fr with a dedicated language model evaluation benchmark.\nIn line with the WikiText benchmark in English, we collected over 70 million tokens from the set of verified good and featured articles on French Wikipedia. The model reaches a zero-shot perplexity of 109.2 on the test set.",
"### BibTeX entry and citation info\n\n\nAlong with the model hosted by HuggingFace transformers library, we maintain a git repository.\nIf you use GPT-fr for your scientific publications or your industrial applications, please cite the following paper:",
"### References\n\n\n\n> \n> Jรถrg Tiedemann: Parallel Data, Tools and Interfaces in OPUS. LREC 2012: 2214-2218"
] |
[
"TAGS\n#transformers #pytorch #tf #jax #gpt2 #text-generation #fr #license-apache-2.0 #model-index #endpoints_compatible #has_space #text-generation-inference #region-us \n",
"#### How to use\n\n\nThe model might be used through the astonishing 'Transformers' librairie:",
"#### Limitations and bias\n\n\nLarge language models tend to replicate the biases found in pre-training datasets, such as gender discrimination or offensive content generation.\n\n\nTo limit exposition to too much explicit material, we carefully choose the sources beforehand. This process โ detailed in our paper โ aims to limit offensive content generation from the model without performing manual and arbitrary filtering.\n\n\nHowever, some societal biases, contained in the data, might be reflected by the model. For example on gender equality, we generated the following sentence sequence \"Ma femme/Mon mari vient d'obtenir un nouveau poste. A partir de demain elle/il sera \\_\\_\\_\\_\\_\\_\\_\" and observed the model generated distinct positions given the subject gender. We used top-k random sampling strategy with k=50 and stopped at the first punctuation element.\nThe positions generated for the wife is '*femme de mรฉnage de la maison*' while the position for the husband is '*ร la tรชte de la police*'. We do appreciate your feedback to better qualitatively and quantitatively assess such effects.\n\n\nTraining data\n-------------\n\n\nWe created a dedicated corpus to train our generative model. Indeed the model uses a fixed-length context size of 1,024 and require long documents to be trained. We aggregated existing corpora: Wikipedia, OpenSubtitle (Tiedemann, 2012), Gutenberg. Corpora are filtered and separated into sentences. Successive sentences are then concatenated within the limit of 1,024 tokens per document.\n\n\nTraining procedure\n------------------\n\n\nWe pre-trained the model on a TPU v2-8 using the amazing Google Colab inter-server.\n\n\nEval results\n------------\n\n\nWe packaged GPT-fr with a dedicated language model evaluation benchmark.\nIn line with the WikiText benchmark in English, we collected over 70 million tokens from the set of verified good and featured articles on French Wikipedia. The model reaches a zero-shot perplexity of 109.2 on the test set.",
"### BibTeX entry and citation info\n\n\nAlong with the model hosted by HuggingFace transformers library, we maintain a git repository.\nIf you use GPT-fr for your scientific publications or your industrial applications, please cite the following paper:",
"### References\n\n\n\n> \n> Jรถrg Tiedemann: Parallel Data, Tools and Interfaces in OPUS. LREC 2012: 2214-2218"
] |
[
63,
24,
452,
59,
30
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #gpt2 #text-generation #fr #license-apache-2.0 #model-index #endpoints_compatible #has_space #text-generation-inference #region-us \n#### How to use\n\n\nThe model might be used through the astonishing 'Transformers' librairie:"
] |
[
0.01913692057132721,
0.07806306332349777,
-0.003357934532687068,
0.06768139451742172,
0.0784662663936615,
0.03745798394083977,
0.1204901859164238,
0.10788296908140182,
-0.019582292065024376,
-0.0776427835226059,
0.15891657769680023,
0.1694466918706894,
-0.015276928432285786,
0.027909865602850914,
-0.05252984166145325,
-0.29761961102485657,
0.08605802059173584,
0.06560591608285904,
-0.17582908272743225,
0.12264372408390045,
0.1302119642496109,
-0.04221143573522568,
0.08632433414459229,
0.015406589023768902,
-0.10567636042833328,
-0.028951367363333702,
-0.01568896882236004,
-0.09362436830997467,
0.11434871703386307,
0.0770360603928566,
0.03855112940073013,
0.057043999433517456,
-0.013290537521243095,
-0.10431499034166336,
0.03689505532383919,
0.0248201135545969,
-0.10613139718770981,
0.09637182950973511,
0.01029781624674797,
-0.02972002513706684,
0.26743534207344055,
0.06153557449579239,
-0.02563508041203022,
0.0024806007277220488,
-0.12897133827209473,
-0.16804969310760498,
-0.02622394822537899,
0.09086203575134277,
0.0220365971326828,
0.09044108539819717,
0.017043931409716606,
0.13901188969612122,
-0.09013814479112625,
0.07041211426258087,
0.21703679859638214,
-0.32640504837036133,
-0.03092494048178196,
0.1438346952199936,
0.15217094123363495,
0.00846339575946331,
-0.012329122982919216,
0.083595409989357,
0.05651365965604782,
0.03829465061426163,
0.13274459540843964,
-0.05527244880795479,
-0.059538584202528,
0.07822079956531525,
-0.1428312212228775,
-0.11510544270277023,
0.2755615711212158,
-0.007788113318383694,
0.03337763249874115,
-0.029707206413149834,
-0.11967826634645462,
0.05622100457549095,
-0.02290867641568184,
-0.026902051642537117,
0.016163311898708344,
0.07298673689365387,
0.03531038016080856,
-0.12934738397598267,
-0.11289864778518677,
-0.07000601291656494,
-0.12433475255966187,
0.18014146387577057,
0.0032516338396817446,
0.07816407829523087,
-0.16439929604530334,
0.1250908374786377,
-0.05004961043596268,
-0.11215726286172867,
0.020276492461562157,
-0.11312881857156754,
0.10090124607086182,
0.03136325255036354,
-0.049052946269512177,
-0.014184623956680298,
0.09029065817594528,
0.15529771149158478,
-0.0051551260985434055,
-0.05979057401418686,
0.026956923305988312,
0.09161781519651413,
0.011798308230936527,
0.07081156224012375,
-0.16429489850997925,
0.015427201986312866,
0.06169808655977249,
-0.04689948260784149,
0.0014157334808260202,
-0.05396704003214836,
-0.16179028153419495,
-0.06018069386482239,
-0.016602585092186928,
0.05545489490032196,
0.07438232004642487,
0.10527040809392929,
0.02779335528612137,
-0.0480327382683754,
0.08454166352748871,
-0.0189372468739748,
-0.016286248341202736,
-0.011187483556568623,
-0.005234713200479746,
0.0724356472492218,
0.09470777213573456,
-0.002077139914035797,
-0.08883126080036163,
-0.0047525446861982346,
-0.09170298278331757,
-0.03832503780722618,
-0.08966512978076935,
-0.09553231298923492,
0.039411284029483795,
-0.015820825472474098,
0.06763026118278503,
-0.12157737463712692,
-0.19353845715522766,
0.06038995832204819,
0.08776751905679703,
-0.015827922150492668,
-0.10700792074203491,
0.033421363681554794,
-0.12939348816871643,
0.057570792734622955,
-0.04032297804951668,
0.09813828766345978,
-0.06973573565483093,
0.06620262563228607,
-0.0827852338552475,
0.056257933378219604,
-0.16089142858982086,
0.056652508676052094,
-0.08366350829601288,
0.013108327053487301,
-0.1306917518377304,
0.001426498987711966,
-0.032732948660850525,
0.08571770787239075,
-0.04996352270245552,
-0.050327666103839874,
-0.020264506340026855,
0.03953610733151436,
-0.024154113605618477,
0.15686286985874176,
-0.10918281972408295,
-0.05010272562503815,
0.1642531454563141,
-0.10071869939565659,
-0.2415841519832611,
0.09588217735290527,
-0.01752939261496067,
0.08804663270711899,
0.022847291082143784,
0.17242765426635742,
0.07441495358943939,
-0.043498750776052475,
0.06592172384262085,
0.16997787356376648,
-0.09680327028036118,
-0.07452349364757538,
0.09520822018384933,
0.03534230589866638,
-0.11303141713142395,
0.019323213025927544,
-0.10829327255487442,
0.09281439334154129,
-0.036759018898010254,
-0.042325615882873535,
-0.08240625262260437,
-0.049359194934368134,
0.03481929749250412,
0.0065404195338487625,
0.081395722925663,
0.010291073471307755,
-0.04887116700410843,
0.08856262266635895,
0.057320840656757355,
-0.03363436833024025,
0.048750054091215134,
-0.054716289043426514,
0.10418154299259186,
-0.033267583698034286,
0.08254043757915497,
-0.1658252775669098,
0.038620688021183014,
-0.04374124854803085,
0.04410398751497269,
0.0230026226490736,
0.11829226464033127,
0.06184479594230652,
-0.04213530570268631,
-0.02241184376180172,
0.02459723688662052,
0.046050652861595154,
0.037605077028274536,
-0.053024448454380035,
-0.16331306099891663,
-0.0002528376644477248,
-0.03938191011548042,
-0.012633496895432472,
-0.05353439226746559,
0.040210332721471786,
-0.0023888801224529743,
0.10948540270328522,
-0.0655214935541153,
0.0967131182551384,
0.002330285497009754,
-0.03728928789496422,
-0.06525379419326782,
-0.02184292860329151,
0.06714174896478653,
0.022794188931584358,
-0.11167964339256287,
0.17899243533611298,
-0.08029408752918243,
0.35460859537124634,
0.23502704501152039,
-0.22201190888881683,
0.052617695182561874,
0.0498933382332325,
-0.031969208270311356,
0.03544017672538757,
0.019455431029200554,
-0.041623782366514206,
0.10109134018421173,
-0.023856813088059425,
0.13108955323696136,
-0.10065552592277527,
-0.028348814696073532,
0.0073670209385454655,
-0.022431837394833565,
0.012313216924667358,
0.08883123844861984,
0.14546559751033783,
-0.1465855836868286,
0.15554074943065643,
0.2665349245071411,
-0.02245998941361904,
0.09844375401735306,
-0.03964265435934067,
-0.03031364642083645,
0.00010217054659733549,
-0.04886822775006294,
-0.04306501895189285,
0.04560515284538269,
-0.20235057175159454,
0.00247187283821404,
0.09752647578716278,
0.014576151967048645,
0.07705871015787125,
-0.11945730447769165,
-0.06130460649728775,
0.03481382504105568,
-0.031237203627824783,
-0.06410655379295349,
0.09701748937368393,
-0.014821358025074005,
0.11018291115760803,
-0.009546071290969849,
-0.09570059925317764,
0.0848066434264183,
0.02967684529721737,
-0.10376486927270889,
0.21084414422512054,
-0.08406012505292892,
-0.2237405925989151,
-0.08632279932498932,
-0.015007386915385723,
-0.00650071119889617,
-0.008231336250901222,
0.09256084263324738,
-0.02054002694785595,
-0.028210239484906197,
-0.05783327296376228,
0.05296655744314194,
-0.10878916084766388,
0.016674892976880074,
-0.04352584108710289,
0.025110438466072083,
-0.038882240653038025,
-0.1343713253736496,
-0.019578441977500916,
0.031219132244586945,
-0.012880752794444561,
0.047574110329151154,
-0.07117639482021332,
0.08906291425228119,
0.13585509359836578,
0.007799212820827961,
0.055714402347803116,
-0.004909718409180641,
0.24938584864139557,
-0.07225257903337479,
0.039441775530576706,
0.20705319941043854,
0.022099515423178673,
0.05025431513786316,
0.09584487974643707,
0.04343441501259804,
-0.027444355189800262,
-0.012333492748439312,
-0.06561237573623657,
-0.10670021921396255,
-0.2374916970729828,
-0.0882527083158493,
-0.10711780935525894,
0.07128795981407166,
0.018154233694076538,
0.047664280980825424,
0.12033809721469879,
0.10108084976673126,
-0.014390929602086544,
0.0730026438832283,
-0.002904488705098629,
0.06254929304122925,
0.1768321543931961,
-0.010014914907515049,
0.09892097115516663,
-0.09671411663293839,
-0.10861603170633316,
0.0781494528055191,
0.0009714830084703863,
0.10602474212646484,
0.03635646402835846,
0.09940701723098755,
0.07514443248510361,
0.07725967466831207,
0.07281941920518875,
0.16972142457962036,
-0.002375431824475527,
-0.029487382620573044,
-0.07462521642446518,
-0.05948616564273834,
-0.0022017310839146376,
0.07211626321077347,
-0.05132504180073738,
-0.05912649258971214,
-0.05092691630125046,
-0.09543012082576752,
0.10045003145933151,
0.12592224776744843,
0.021326912567019463,
-0.1945955902338028,
2.8983578204133664e-7,
0.06043921038508415,
-0.032172493636608124,
-0.05525597929954529,
0.08346769213676453,
-0.010744910687208176,
-0.09582903981208801,
0.026316076517105103,
-0.028393380343914032,
0.1517019122838974,
0.0186711847782135,
0.062082983553409576,
-0.04104319214820862,
-0.08411229401826859,
0.017450742423534393,
0.13158372044563293,
-0.2982344627380371,
0.24235092103481293,
-0.019665930420160294,
-0.02448112703859806,
-0.08105777204036713,
-0.023519333451986313,
0.06573615223169327,
0.21878211200237274,
0.12180399894714355,
0.0013825736241415143,
0.025453703477978706,
0.04741007834672928,
-0.03727509081363678,
0.045571718364953995,
-0.0001445399539079517,
-0.07841356098651886,
0.028451411053538322,
-0.05244779214262962,
0.0062524015083909035,
0.023602530360221863,
0.17292146384716034,
-0.003492539981380105,
-0.1337520033121109,
0.07416338473558426,
-0.02624480053782463,
0.01131432130932808,
-0.03851315751671791,
-0.044062744826078415,
-0.08783570677042007,
0.0903906524181366,
0.008494601584970951,
-0.09292524307966232,
-0.1066618412733078,
-0.06327810138463974,
0.13790085911750793,
-0.052894823253154755,
0.04365463927388191,
-0.044445332139730453,
0.03226420655846596,
-0.05933424085378647,
-0.19660362601280212,
0.08252985030412674,
-0.10980626940727234,
-0.03979034349322319,
0.007911224849522114,
0.10115942358970642,
-0.07167998701334,
0.043120454996824265,
0.039798956364393234,
0.017857573926448822,
-0.14057041704654694,
-0.16401787102222443,
-0.04346746578812599,
-0.028558317571878433,
0.01971401274204254,
-0.03899689018726349,
0.006058070808649063,
0.10245317965745926,
0.06307562440633774,
0.016417251899838448,
0.16677628457546234,
0.14058586955070496,
-0.08535889536142349,
0.1041802316904068,
0.11765217781066895,
-0.07310419529676437,
-0.26800477504730225,
-0.13444821536540985,
-0.14184841513633728,
-0.030861152336001396,
-0.009374288842082024,
-0.12321635335683823,
0.09296907484531403,
-0.028233084827661514,
-0.048894189298152924,
0.03448890149593353,
-0.2842658758163452,
-0.08007556945085526,
0.17889724671840668,
0.007872925139963627,
0.2508881390094757,
-0.18189089000225067,
-0.03751905634999275,
-0.0621802993118763,
-0.21296994388103485,
0.22681616246700287,
-0.25779959559440613,
0.05883447825908661,
-0.03547196462750435,
0.04329521954059601,
0.013174914754927158,
-0.04859551414847374,
0.12383640557527542,
-0.051538657397031784,
0.021538792178034782,
-0.09797430783510208,
-0.0379808247089386,
0.13304856419563293,
-0.019268540665507317,
0.09808823466300964,
-0.14843784272670746,
0.07254274934530258,
-0.11871650069952011,
-0.032925862818956375,
-0.08342845737934113,
0.058187346905469894,
-0.03883836418390274,
-0.0823121964931488,
-0.07228495180606842,
-0.037855278700590134,
0.02831091172993183,
-0.0006304170237854123,
0.18153606355190277,
0.022194979712367058,
0.07373727858066559,
0.12161444872617722,
0.14030689001083374,
-0.09650413691997528,
-0.06824812293052673,
-0.010032913647592068,
-0.04709279537200928,
0.08923720568418503,
-0.2872857451438904,
0.0007683990988880396,
0.10061029344797134,
0.006073833908885717,
0.0672062486410141,
0.10093112289905548,
-0.022752318531274796,
-0.06543087214231491,
0.0977223590016365,
-0.21662850677967072,
-0.15072230994701385,
-0.08896330744028091,
0.01082220021635294,
0.021358774974942207,
0.050406891852617264,
0.13073968887329102,
-0.08578911423683167,
-0.018105776980519295,
0.023433001711964607,
-0.0076744151301681995,
-0.09114272892475128,
0.022291626781225204,
0.07658138126134872,
0.037068575620651245,
-0.13332664966583252,
0.04196732118725777,
-0.007325384765863419,
-0.09058699011802673,
-0.02154088206589222,
0.10157999396324158,
-0.10206830501556396,
-0.14171262085437775,
-0.02640656568109989,
0.07567256689071655,
-0.18769727647304535,
-0.04738233983516693,
-0.07090190052986145,
-0.14232954382896423,
0.07386516034603119,
0.15580998361110687,
0.10917913913726807,
0.050167303532361984,
-0.0391230583190918,
-0.03417420759797096,
-0.016188275068998337,
0.0295484010130167,
-0.02474472112953663,
-0.018568184226751328,
-0.13243408501148224,
0.04984728991985321,
-0.006763473153114319,
0.09630287438631058,
-0.08078226447105408,
0.03542054444551468,
-0.13125379383563995,
0.012504331767559052,
-0.17477741837501526,
-0.04317081347107887,
-0.09962434321641922,
-0.02052023448050022,
-0.013737262226641178,
-0.05749288946390152,
-0.06704698503017426,
0.0018093163380399346,
-0.13620668649673462,
0.0015082955360412598,
-0.011494162492454052,
0.05342997610569,
-0.07321831583976746,
0.004868525546044111,
0.07653186470270157,
-0.04166216775774956,
0.09575363993644714,
0.09343627095222473,
-0.07053390145301819,
0.07757033407688141,
-0.12419933080673218,
-0.04849235340952873,
0.011127321049571037,
0.034310560673475266,
0.04174015671014786,
-0.03672973811626434,
0.030516238883137703,
0.028521467000246048,
0.0033418803941458464,
0.023906094953417778,
-0.07692062854766846,
-0.09702904522418976,
-0.027429088950157166,
0.02596886269748211,
-0.04155562445521355,
0.0006735334754921496,
-0.02019556611776352,
0.12498339265584946,
0.03806434944272041,
0.11654884368181229,
0.019441435113549232,
0.059324972331523895,
-0.13018304109573364,
0.05396899953484535,
-0.02617565169930458,
-0.15174230933189392,
-0.0693017914891243,
-0.07762620598077774,
-0.023913368582725525,
-0.045394908636808395,
0.2839905917644501,
0.06008341908454895,
-0.026557400822639465,
0.04086067155003548,
0.07377810776233673,
0.12714089453220367,
0.01753305271267891,
0.29037508368492126,
0.050278905779123306,
0.006942400708794594,
-0.09366612136363983,
0.07214884459972382,
0.0362049862742424,
0.04160240292549133,
0.053379666060209274,
0.08156190812587738,
0.03522680699825287,
0.1018681600689888,
0.03152145817875862,
0.0073714726604521275,
-0.06941501051187515,
-0.12075453251600266,
0.10090193152427673,
0.09741368144750595,
-0.045987945050001144,
0.0479009710252285,
0.18762697279453278,
-0.04668336734175682,
0.05976581946015358,
-0.0019761717412620783,
-0.009762904606759548,
-0.1315498948097229,
-0.09484711289405823,
-0.060450609773397446,
-0.15148590505123138,
-0.02560877986252308,
-0.14676684141159058,
0.0013596158241853118,
0.06733793020248413,
0.04828391596674919,
-0.06411350518465042,
0.02535131387412548,
0.08401322364807129,
-0.06145330145955086,
0.07568202912807465,
-0.03040917031466961,
0.0052367812022566795,
-0.028717542067170143,
0.011276216246187687,
-0.038606975227594376,
-0.04449346661567688,
-0.06682249158620834,
0.013346637599170208,
-0.0404178760945797,
0.04123884066939354,
-0.08751804381608963,
-0.05496647208929062,
-0.054881494492292404,
0.024838710203766823,
0.029014253988862038,
0.14768578112125397,
-0.015314964577555656,
-0.04676204174757004,
0.02994833141565323,
0.23480385541915894,
-0.08667641878128052,
-0.12143174558877945,
-0.09554934501647949,
0.16453500092029572,
0.008329098112881184,
0.03854982554912567,
0.000953071576077491,
0.020930549129843712,
-0.091230109333992,
0.3013573884963989,
0.3270755112171173,
-0.0952022448182106,
0.027110423892736435,
0.044909749180078506,
0.019770581275224686,
0.06845472753047943,
0.053952500224113464,
0.09464188665151596,
0.19439300894737244,
-0.10521377623081207,
-0.02178952842950821,
-0.09118665009737015,
-0.005630831234157085,
-0.03446679189801216,
0.09598466008901596,
0.07666381448507309,
-0.10930205881595612,
0.022721247747540474,
0.08712790906429291,
-0.19917802512645721,
0.034219250082969666,
-0.13443170487880707,
-0.10087289661169052,
-0.05947280302643776,
-0.027169471606612206,
0.03886289522051811,
0.04264059290289879,
0.06845484673976898,
-0.04315825179219246,
-0.027059786021709442,
0.06292261183261871,
0.017836008220911026,
-0.20955391228199005,
0.002168713603168726,
0.129750594496727,
-0.0038332748226821423,
0.11873132735490799,
-0.02144860476255417,
0.03275691717863083,
0.10779790580272675,
0.010030679404735565,
-0.10413339734077454,
0.03311474993824959,
0.04126018285751343,
-0.06112007424235344,
0.01665366441011429,
-0.04928889498114586,
-0.0029423898085951805,
-0.1091756746172905,
0.01676832139492035,
-0.15381450951099396,
0.03864946588873863,
0.03984221816062927,
-0.05315961316227913,
-0.050310324877500534,
-0.016023635864257812,
-0.07517796009778976,
0.07161437720060349,
0.13784131407737732,
-0.05386422201991081,
-0.047874465584754944,
-0.05834667384624481,
0.04084360972046852,
0.011259190738201141,
-0.09017021209001541,
-0.06183480843901634,
-0.031016072258353233,
-0.07186523079872131,
0.05057591199874878,
-0.006765666417777538,
-0.16084454953670502,
-0.019618777558207512,
-0.033523883670568466,
-0.006377599202096462,
-0.10170150548219681,
0.03079318441450596,
0.16553135216236115,
0.018251148983836174,
0.007781964261084795,
0.0565265491604805,
-0.03172779828310013,
0.03605712950229645,
-0.09785079210996628,
-0.08607931435108185
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-timit-demo
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4847
- Wer: 0.3462
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.487 | 4.0 | 500 | 1.3466 | 1.0153 |
| 0.6134 | 8.0 | 1000 | 0.4807 | 0.4538 |
| 0.2214 | 12.0 | 1500 | 0.4684 | 0.3984 |
| 0.1233 | 16.0 | 2000 | 0.5070 | 0.3779 |
| 0.0847 | 20.0 | 2500 | 0.4965 | 0.3705 |
| 0.0611 | 24.0 | 3000 | 0.4881 | 0.3535 |
| 0.0464 | 28.0 | 3500 | 0.4847 | 0.3462 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-timit-demo", "results": []}]}
|
automatic-speech-recognition
|
asini/wav2vec2-timit-demo
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
|
wav2vec2-timit-demo
===================
This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4847
* Wer: 0.3462
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 32
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 1000
* num\_epochs: 30
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.10.2+cu102
* Datasets 1.18.3
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.10.3"
] |
[
56,
130,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.3\n* Tokenizers 0.10.3"
] |
[
-0.10754858702421188,
0.10440516471862793,
-0.003471385221928358,
0.053970273584127426,
0.10978493094444275,
-0.02101069688796997,
0.13100802898406982,
0.14838826656341553,
-0.11154144257307053,
0.06960002332925797,
0.12367779016494751,
0.14717835187911987,
0.04457874223589897,
0.14503467082977295,
-0.0512581504881382,
-0.2859840989112854,
0.047101765871047974,
0.03588842228055,
-0.02265358902513981,
0.12462443858385086,
0.08502931892871857,
-0.1262943148612976,
0.05117073282599449,
0.03680931031703949,
-0.16062383353710175,
-0.0017384621314704418,
-0.00785887986421585,
-0.10719108581542969,
0.11906280368566513,
0.01310752797871828,
0.0735999122262001,
0.04877009242773056,
0.0646442174911499,
-0.21538163721561432,
0.00881530437618494,
0.044518452137708664,
0.026975618675351143,
0.07352369278669357,
0.06134673207998276,
-0.024725059047341347,
0.1215919777750969,
-0.0771641954779625,
0.08440480381250381,
0.033362001180648804,
-0.10039453208446503,
-0.2949528098106384,
-0.08811867237091064,
0.046172983944416046,
0.07899992913007736,
0.08941451460123062,
-0.009549086913466454,
0.14695017039775848,
-0.05856214463710785,
0.11329203844070435,
0.2795616388320923,
-0.3126448094844818,
-0.046001337468624115,
-0.05212242528796196,
0.056611549109220505,
0.05955131724476814,
-0.08980777114629745,
-0.02085449919104576,
0.009882580488920212,
0.04718494787812233,
0.13244107365608215,
-0.017701176926493645,
-0.062520831823349,
-0.008032629266381264,
-0.1537763774394989,
-0.06285156309604645,
0.11036589741706848,
0.01740112714469433,
-0.04177361726760864,
-0.09331775456666946,
-0.052384454756975174,
-0.19862224161624908,
-0.06996890902519226,
-0.01515156775712967,
0.040041234344244,
-0.04911261796951294,
-0.10452975332736969,
-0.019260725006461143,
-0.06782598793506622,
-0.0707646831870079,
-0.038083937019109726,
0.19410108029842377,
0.06179715320467949,
-0.0006364496075548232,
-0.04195012152194977,
0.0694994404911995,
-0.014713164418935776,
-0.13786154985427856,
-0.02292579784989357,
0.03597413748502731,
-0.023634862154722214,
-0.016774121671915054,
-0.04381299391388893,
-0.0652545616030693,
0.018386593088507652,
0.15636789798736572,
-0.10803661495447159,
0.09815748035907745,
-0.015050018206238747,
0.03876708075404167,
-0.10381148755550385,
0.20764599740505219,
-0.04064866155385971,
0.03187517821788788,
-0.006491099018603563,
0.05481068044900894,
0.0325387679040432,
-0.026436541229486465,
-0.09803373366594315,
0.03502729535102844,
0.11751164495944977,
0.053152572363615036,
-0.04419628903269768,
0.05798040330410004,
-0.02705475687980652,
-0.009959070943295956,
0.010248668491840363,
-0.11512774229049683,
0.03416747599840164,
0.019897272810339928,
-0.06116018071770668,
0.000011455251296865754,
0.019168179482221603,
0.005391547456383705,
-0.06410080194473267,
0.08444251120090485,
-0.055257610976696014,
0.033955078572034836,
-0.05686679109930992,
-0.1273878961801529,
0.02718842774629593,
-0.10885275900363922,
-0.0009865800384432077,
-0.10250736027956009,
-0.09218879789113998,
-0.01080003846436739,
0.03781504929065704,
-0.035085372626781464,
-0.03292696177959442,
-0.07285396009683609,
-0.09553078562021255,
0.041477419435977936,
-0.03608502447605133,
0.07699004560709,
-0.07119321823120117,
0.09407883882522583,
0.030168158933520317,
0.08521036058664322,
-0.013303286395967007,
0.062429603189229965,
-0.06380565464496613,
0.029120806604623795,
-0.20714572072029114,
0.07833798974752426,
-0.09350036084651947,
0.05763296037912369,
-0.1236615926027298,
-0.11688724160194397,
0.03911908343434334,
-0.004954573232680559,
0.10318068414926529,
0.09322792291641235,
-0.17146247625350952,
-0.08954679220914841,
0.20271342992782593,
-0.084004245698452,
-0.08446452021598816,
0.12368635833263397,
-0.024387333542108536,
-0.010941438376903534,
0.05225426331162453,
0.25672096014022827,
0.056910812854766846,
-0.12362782657146454,
0.013340657576918602,
-0.03624241054058075,
0.04795009270310402,
-0.04513104632496834,
0.05920432135462761,
-0.021395616233348846,
0.07561731338500977,
0.013126279227435589,
-0.008672839030623436,
0.04284932464361191,
-0.08783155679702759,
-0.07849523425102234,
-0.039641451090574265,
-0.07663679122924805,
0.013909900560975075,
0.03509707748889923,
0.06454183161258698,
-0.11648716032505035,
-0.10988342016935349,
0.04852897301316261,
0.08422097563743591,
-0.1053321436047554,
0.07511831074953079,
-0.11939452588558197,
0.08730676025152206,
-0.011603040620684624,
-0.004395422991365194,
-0.19212178885936737,
0.03331386297941208,
0.03358321264386177,
-0.02694147452712059,
0.03810987249016762,
-0.06477048248052597,
0.0733579471707344,
0.04882693290710449,
-0.02415732853114605,
-0.04671022295951843,
-0.008437946438789368,
0.012977691367268562,
-0.09053472429513931,
-0.20803619921207428,
-0.04054587706923485,
-0.04139601066708565,
0.07338815182447433,
-0.13523687422275543,
0.034520234912633896,
0.07172030955553055,
0.09301693737506866,
0.029431132599711418,
-0.028342165052890778,
0.0009434055536985397,
0.09081421047449112,
-0.017473386600613594,
-0.0668136328458786,
0.05719645321369171,
0.023652294650673866,
-0.08599002659320831,
0.04845055937767029,
-0.14842963218688965,
0.12752580642700195,
0.14459328353405,
-0.008070438168942928,
-0.06756985932588577,
0.0014796428149566054,
-0.04986119642853737,
-0.03185446932911873,
-0.0021914588287472725,
0.04212219640612602,
0.22117646038532257,
0.015704767778515816,
0.1456586718559265,
-0.09032072871923447,
-0.044131938368082047,
0.04837484657764435,
-0.023055734112858772,
-0.008338022977113724,
0.12465959042310715,
0.050207655876874924,
-0.0568159781396389,
0.11354690045118332,
0.09041422605514526,
-0.08695021271705627,
0.11847232282161713,
-0.06853009015321732,
-0.07609407603740692,
-0.016708042472600937,
0.006501674652099609,
0.028575733304023743,
0.09587199985980988,
-0.15378808975219727,
-0.03953424096107483,
0.026909658685326576,
0.020427992567420006,
0.02511540800333023,
-0.20980313420295715,
0.013401725329458714,
0.031898509711027145,
-0.08152904361486435,
-0.04283380135893822,
-0.0012267960701137781,
0.012068122625350952,
0.09377619624137878,
0.012806741520762444,
-0.09733957797288895,
0.009657209739089012,
0.0028999208007007837,
-0.07633482664823532,
0.18002015352249146,
-0.12160946428775787,
-0.17682024836540222,
-0.10293468087911606,
-0.0871967300772667,
-0.03189951926469803,
-0.006959281396120787,
0.08826584368944168,
-0.09420371055603027,
-0.044314734637737274,
-0.08309252560138702,
-0.02311660349369049,
-0.03031463734805584,
0.04298339784145355,
0.031509045511484146,
-0.01117656845599413,
0.06268035620450974,
-0.11223679780960083,
-0.019071802496910095,
-0.04195275530219078,
0.0040232399478554726,
0.05592947453260422,
0.03615278750658035,
0.1064331978559494,
0.1571367084980011,
-0.015432859770953655,
0.04889087378978729,
-0.045873310416936874,
0.1877807378768921,
-0.07436750084161758,
-0.04141773283481598,
0.11360008269548416,
-0.008703584782779217,
0.06948962807655334,
0.10910345613956451,
0.045965611934661865,
-0.09383311867713928,
-0.013349686749279499,
-0.0007109206053428352,
-0.046004559844732285,
-0.22157271206378937,
-0.036259785294532776,
-0.046835243701934814,
-0.007139652967453003,
0.1016729325056076,
0.04064347594976425,
0.024080540984869003,
0.018377898260951042,
0.029333438724279404,
0.0007138611399568617,
0.002032534684985876,
0.09839817136526108,
0.1340949833393097,
0.03925091400742531,
0.13257412612438202,
-0.04252321645617485,
-0.03415501117706299,
0.032511189579963684,
-0.001942940871231258,
0.23353537917137146,
0.015129121951758862,
0.18219926953315735,
0.05692450329661369,
0.16382651031017303,
0.041723065078258514,
0.06798771768808365,
-0.004546255338937044,
-0.010713322088122368,
0.012335548177361488,
-0.05219835415482521,
-0.042706459760665894,
0.023058775812387466,
0.026997316628694534,
0.003052216488867998,
-0.11506569385528564,
0.0008231038809753954,
0.042129259556531906,
0.3522963523864746,
0.025605401024222374,
-0.331277996301651,
-0.09326731413602829,
-0.01096479780972004,
-0.09094972908496857,
-0.02917565405368805,
0.0439300537109375,
0.09081461280584335,
-0.07557909190654755,
0.06535530090332031,
-0.061212267726659775,
0.09095831215381622,
-0.05946008116006851,
0.030026253312826157,
0.03360472619533539,
0.07337017357349396,
0.00644011190161109,
0.035735953599214554,
-0.2962464988231659,
0.2799278497695923,
0.005125331226736307,
0.0755242109298706,
-0.05999539792537689,
0.01213943399488926,
0.02199551649391651,
0.020559534430503845,
0.08525765687227249,
-0.025256026536226273,
-0.1262408047914505,
-0.16576281189918518,
-0.09458987414836884,
0.016191521659493446,
0.12368515133857727,
0.029766807332634926,
0.11092568933963776,
-0.007956997491419315,
-0.016793975606560707,
0.04973277077078819,
-0.10272888094186783,
-0.05643067881464958,
-0.09974408894777298,
0.013735019601881504,
0.06804723292589188,
0.017857763916254044,
-0.07672058045864105,
-0.1086214929819107,
-0.07979878038167953,
0.16218465566635132,
-0.04746660217642784,
-0.04965274780988693,
-0.12039735913276672,
0.008008633740246296,
0.10790693014860153,
-0.08006442338228226,
0.06287253648042679,
0.008677155710756779,
0.10444097220897675,
0.0037840630393475294,
-0.06977924704551697,
0.11609546095132828,
-0.06969203799962997,
-0.1675921380519867,
-0.023666715249419212,
0.14399947226047516,
0.03127322718501091,
0.06247277185320854,
-0.009421078488230705,
0.03573649004101753,
-0.021437974646687508,
-0.07867051661014557,
0.03621455281972885,
0.03135379031300545,
0.049402497708797455,
-0.0191938616335392,
-0.014513698406517506,
-0.004442927427589893,
-0.08926714956760406,
-0.01752612367272377,
0.20719531178474426,
0.24502751231193542,
-0.09388426691293716,
0.09598889201879501,
0.06400979310274124,
-0.04023464024066925,
-0.17121662199497223,
-0.010251199826598167,
0.07225967943668365,
-0.00019375448755454272,
-0.030465444549918175,
-0.19477778673171997,
0.022628676146268845,
0.0637526735663414,
-0.021170154213905334,
0.07457636296749115,
-0.31260237097740173,
-0.1388443410396576,
0.1446056067943573,
0.11749519407749176,
0.05610239878296852,
-0.14626142382621765,
-0.0541040264070034,
-0.010799976997077465,
-0.09042274206876755,
0.1006440818309784,
-0.07459305226802826,
0.1330215036869049,
-0.02170279622077942,
0.09010130912065506,
0.0112797562032938,
-0.05887362360954285,
0.1088951900601387,
0.007717552594840527,
0.05594009533524513,
-0.0438440702855587,
0.021417252719402313,
0.04864152520895004,
-0.06527043133974075,
0.05244624614715576,
-0.07839257270097733,
0.03239985555410385,
-0.09003078192472458,
-0.030741985887289047,
-0.08445437252521515,
0.012429168447852135,
-0.01294740941375494,
-0.028183236718177795,
-0.037618935108184814,
0.0005374046741053462,
0.06464724242687225,
-0.012100259773433208,
0.15740033984184265,
-0.02519875206053257,
0.1208401769399643,
0.16502590477466583,
0.10461004823446274,
-0.10211378335952759,
-0.06623008102178574,
0.005680954549461603,
-0.03384094685316086,
0.05602501705288887,
-0.12364521622657776,
0.033733222633600235,
0.13721072673797607,
0.029271574690937996,
0.11574755609035492,
0.06615861505270004,
-0.07188844680786133,
0.029306164011359215,
0.03972463682293892,
-0.1412004828453064,
-0.12593382596969604,
0.013134542852640152,
0.04227659851312637,
-0.0698368027806282,
0.07258989661931992,
0.11229369044303894,
-0.05826200544834137,
-0.018563594669103622,
-0.0008743652142584324,
0.014439499005675316,
-0.03908649832010269,
0.20028024911880493,
0.04219133406877518,
0.06556284427642822,
-0.12439019978046417,
0.07826250791549683,
0.040849216282367706,
-0.13612040877342224,
0.06616834551095963,
0.11520792543888092,
-0.09575352817773819,
-0.028923707082867622,
0.0351598896086216,
0.10590330511331558,
-0.027697306126356125,
-0.07591220736503601,
-0.14127078652381897,
-0.14786788821220398,
0.11464092135429382,
0.20949365198612213,
0.05541739612817764,
0.011847958900034428,
-0.060054976493120193,
0.016404863446950912,
-0.12055491656064987,
0.07386773079633713,
0.04083836451172829,
0.06162939593195915,
-0.12127930670976639,
0.15284912288188934,
0.017926709726452827,
0.04899090528488159,
-0.014568483456969261,
-0.00775084039196372,
-0.1161993071436882,
0.04119978845119476,
-0.13781428337097168,
0.007541509810835123,
-0.06750893592834473,
0.003107266267761588,
0.0020416127517819405,
-0.04469434916973114,
-0.06208886578679085,
0.039052508771419525,
-0.12008383125066757,
-0.021911196410655975,
-0.004243641160428524,
0.029256125912070274,
-0.12634728848934174,
-0.009498552419245243,
0.008232411928474903,
-0.09576547890901566,
0.09744838625192642,
0.08631677180528641,
-0.029458509758114815,
0.051334213465452194,
-0.04582670331001282,
-0.031995926052331924,
0.08119615912437439,
-0.0026271240785717964,
0.05532796308398247,
-0.13406209647655487,
-0.020324617624282837,
0.015050054527819157,
0.030962737277150154,
0.022098667919635773,
0.11176048964262009,
-0.11227704584598541,
0.0032964085694402456,
-0.027779996395111084,
-0.05285995826125145,
-0.06899795681238174,
0.056174103170633316,
0.10579769313335419,
0.029504606500267982,
0.16420288383960724,
-0.09515563398599625,
0.03046068735420704,
-0.16156251728534698,
0.004058800172060728,
-0.020029576495289803,
-0.12454714626073837,
-0.04359949752688408,
-0.03125844895839691,
0.08065300434827805,
-0.06526415050029755,
0.12431357800960541,
-0.026973092928528786,
0.03208822011947632,
0.03875815123319626,
-0.08313396573066711,
-0.044364605098962784,
0.04376049339771271,
0.19880986213684082,
0.038399457931518555,
-0.040539272129535675,
0.07399369031190872,
0.01832922361791134,
0.07894880324602127,
0.12385508418083191,
0.173863023519516,
0.15747587382793427,
0.05890500172972679,
0.1173882931470871,
0.05533263459801674,
-0.05870264396071434,
-0.16678714752197266,
0.08644618839025497,
-0.06011863797903061,
0.13313516974449158,
-0.012321884743869305,
0.23411665856838226,
0.12571074068546295,
-0.15273696184158325,
0.06512321531772614,
-0.01776491478085518,
-0.08957979083061218,
-0.1187441498041153,
-0.05935157835483551,
-0.08455096185207367,
-0.16968494653701782,
0.007037110161036253,
-0.10411429405212402,
0.06009015068411827,
0.04233124107122421,
0.040207795798778534,
0.017845487222075462,
0.13242915272712708,
0.02569836564362049,
0.00205244985409081,
0.09315010160207748,
-0.003420040477067232,
-0.05135099217295647,
-0.06494379788637161,
-0.08110228925943375,
0.03877914696931839,
-0.01056521013379097,
0.05671555921435356,
-0.004957233089953661,
-0.06595852226018906,
0.05366906896233559,
-0.035458799451589584,
-0.09470168501138687,
0.024780524894595146,
0.021852334961295128,
0.07396427541971207,
0.051935743540525436,
0.03467334806919098,
-0.03993750736117363,
-0.001634651212953031,
0.19027471542358398,
-0.09471816569566727,
-0.10057267546653748,
-0.10823878645896912,
0.26769503951072693,
0.03840166702866554,
-0.01648993231356144,
0.0225873664021492,
-0.057850390672683716,
-0.03608489781618118,
0.20446546375751495,
0.17108125984668732,
-0.011350074782967567,
0.004603729583323002,
-0.015567104332149029,
-0.005691930186003447,
-0.04296582192182541,
0.0842418521642685,
0.15656223893165588,
0.06420012563467026,
-0.06275458633899689,
-0.06365076452493668,
-0.05362806096673012,
-0.03456488251686096,
-0.06789185106754303,
0.07591672241687775,
0.015081329271197319,
-0.026529651135206223,
-0.03729069232940674,
0.06293462216854095,
-0.09420853108167648,
-0.0878629982471466,
0.016812460497021675,
-0.1896667182445526,
-0.15487778186798096,
0.008014442399144173,
0.06923747062683105,
0.012580371461808681,
0.03415413573384285,
0.0038708646316081285,
-0.013565410859882832,
0.08775433152914047,
0.0008109459886327386,
-0.08254855871200562,
-0.059715643525123596,
0.09315422177314758,
-0.1482618749141693,
0.15765264630317688,
-0.038790713995695114,
0.048249829560518265,
0.12202131003141403,
0.08988047391176224,
-0.07959695905447006,
0.08852116763591766,
0.04652226343750954,
-0.1097358986735344,
0.025737719610333443,
0.15557396411895752,
-0.03499571233987808,
0.08849011361598969,
0.030437834560871124,
-0.11541704833507538,
0.01015023048967123,
-0.10336393117904663,
-0.03977684676647186,
-0.03550730645656586,
-0.04708757996559143,
-0.04737379401922226,
0.10639221966266632,
0.16668814420700073,
-0.04571283608675003,
0.00511776190251112,
-0.053872451186180115,
0.008754385635256767,
0.045761220157146454,
0.003664479125291109,
-0.05810944736003876,
-0.277878999710083,
0.011507000774145126,
0.02753446251153946,
0.006742038298398256,
-0.2532230019569397,
-0.08778459578752518,
0.010049520991742611,
-0.044729337096214294,
-0.08806077390909195,
0.08854836970567703,
0.0706428661942482,
0.04300070181488991,
-0.05838021636009216,
-0.050002165138721466,
-0.03967161104083061,
0.18741460144519806,
-0.17492587864398956,
-0.0543043278157711
] |
null | null |
transformers
|
# BERT-Large-Uncased for Sentiment Analysis
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) originally released in ["BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"](https://arxiv.org/abs/1810.04805) and trained on the [Stanford Sentiment Treebank v2 (SST2)](https://nlp.stanford.edu/sentiment/); part of the [General Language Understanding Evaluation (GLUE)](https://gluebenchmark.com) benchmark. This model was fine-tuned by the team at [AssemblyAI](https://www.assemblyai.com) and is released with the [corresponding blog post]().
## Usage
To download and utilize this model for sentiment analysis please execute the following:
```python
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("assemblyai/bert-large-uncased-sst2")
model = AutoModelForSequenceClassification.from_pretrained("assemblyai/bert-large-uncased-sst2")
tokenized_segments = tokenizer(["AssemblyAI is the best speech-to-text API for modern developers with performance being second to none!"], return_tensors="pt", padding=True, truncation=True)
tokenized_segments_input_ids, tokenized_segments_attention_mask = tokenized_segments.input_ids, tokenized_segments.attention_mask
model_predictions = F.softmax(model(input_ids=tokenized_segments_input_ids, attention_mask=tokenized_segments_attention_mask)['logits'], dim=1)
print("Positive probability: "+str(model_predictions[0][1].item()*100)+"%")
print("Negative probability: "+str(model_predictions[0][0].item()*100)+"%")
```
For questions about how to use this model feel free to contact the team at [AssemblyAI](https://www.assemblyai.com)!
|
{}
|
text-classification
|
assemblyai/bert-large-uncased-sst2
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"arxiv:1810.04805",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1810.04805"
] |
[] |
TAGS
#transformers #pytorch #bert #text-classification #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #region-us
|
# BERT-Large-Uncased for Sentiment Analysis
This model is a fine-tuned version of bert-large-uncased originally released in "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" and trained on the Stanford Sentiment Treebank v2 (SST2); part of the General Language Understanding Evaluation (GLUE) benchmark. This model was fine-tuned by the team at AssemblyAI and is released with the [corresponding blog post]().
## Usage
To download and utilize this model for sentiment analysis please execute the following:
For questions about how to use this model feel free to contact the team at AssemblyAI!
|
[
"# BERT-Large-Uncased for Sentiment Analysis\nThis model is a fine-tuned version of bert-large-uncased originally released in \"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding\" and trained on the Stanford Sentiment Treebank v2 (SST2); part of the General Language Understanding Evaluation (GLUE) benchmark. This model was fine-tuned by the team at AssemblyAI and is released with the [corresponding blog post]().",
"## Usage\nTo download and utilize this model for sentiment analysis please execute the following:\n\n\nFor questions about how to use this model feel free to contact the team at AssemblyAI!"
] |
[
"TAGS\n#transformers #pytorch #bert #text-classification #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #region-us \n",
"# BERT-Large-Uncased for Sentiment Analysis\nThis model is a fine-tuned version of bert-large-uncased originally released in \"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding\" and trained on the Stanford Sentiment Treebank v2 (SST2); part of the General Language Understanding Evaluation (GLUE) benchmark. This model was fine-tuned by the team at AssemblyAI and is released with the [corresponding blog post]().",
"## Usage\nTo download and utilize this model for sentiment analysis please execute the following:\n\n\nFor questions about how to use this model feel free to contact the team at AssemblyAI!"
] |
[
45,
118,
37
] |
[
"passage: TAGS\n#transformers #pytorch #bert #text-classification #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #region-us \n# BERT-Large-Uncased for Sentiment Analysis\nThis model is a fine-tuned version of bert-large-uncased originally released in \"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding\" and trained on the Stanford Sentiment Treebank v2 (SST2); part of the General Language Understanding Evaluation (GLUE) benchmark. This model was fine-tuned by the team at AssemblyAI and is released with the [corresponding blog post]().## Usage\nTo download and utilize this model for sentiment analysis please execute the following:\n\n\nFor questions about how to use this model feel free to contact the team at AssemblyAI!"
] |
[
-0.07925134152173996,
0.08492600917816162,
-0.0003102692135144025,
0.07786435633897781,
0.1567213237285614,
-0.0203247033059597,
0.07718641310930252,
0.07056698948144913,
0.08559317886829376,
0.007169011048972607,
0.10087484121322632,
0.08238034695386887,
0.016536029055714607,
0.03693852573633194,
-0.04743669182062149,
-0.24173377454280853,
0.020037082955241203,
0.048982638865709305,
0.07718510925769806,
0.10310579836368561,
0.08384110778570175,
-0.08041504770517349,
0.1312091052532196,
0.006459235679358244,
-0.13064922392368317,
-0.012288611382246017,
-0.025392813608050346,
-0.06622455269098282,
0.09617277979850769,
0.021588444709777832,
0.030676068738102913,
0.02298569865524769,
0.04817306995391846,
-0.07317084074020386,
0.021973665803670883,
-0.0480421707034111,
0.025377320125699043,
0.08322127908468246,
0.06709679216146469,
0.0026529873721301556,
0.1275140345096588,
0.06508465111255646,
0.01576658897101879,
0.06988957524299622,
-0.08804720640182495,
-0.08857764303684235,
-0.02612832747399807,
-0.02301694266498089,
0.07956351339817047,
0.10310351848602295,
-0.03606279939413071,
0.1383509337902069,
-0.09234976768493652,
0.07634615153074265,
0.14252589643001556,
-0.2248036414384842,
-0.01102037075906992,
0.03984307870268822,
0.0008917289669625461,
0.030922450125217438,
-0.049844518303871155,
-0.003980844747275114,
0.07031208276748657,
0.02786470204591751,
0.034852009266614914,
-0.10060851275920868,
-0.048597149550914764,
-0.019736740738153458,
-0.1276124119758606,
0.001006901147775352,
0.3096978962421417,
0.047009747475385666,
-0.08972013741731644,
-0.04775833338499069,
-0.015756558626890182,
0.01856948249042034,
-0.001107228803448379,
-0.084553562104702,
0.008247696794569492,
0.005250010639429092,
-0.03896765783429146,
-0.07232176512479782,
-0.11371470242738724,
-0.06256631761789322,
-0.0728384256362915,
0.22160977125167847,
-0.02210039272904396,
0.043860457837581635,
-0.06726349890232086,
0.05996653065085411,
-0.1108894795179367,
-0.1082419902086258,
-0.05455484241247177,
-0.059287670999765396,
0.042251311242580414,
-0.002802835078909993,
-0.07949762046337128,
-0.07144065201282501,
0.0029228946659713984,
0.08107272535562515,
0.04944843053817749,
0.023787174373865128,
0.025364872068166733,
0.0044290777295827866,
0.13964392244815826,
0.26352858543395996,
-0.050923146307468414,
-0.02199966087937355,
0.05159303545951843,
-0.04498157650232315,
0.025325272232294083,
-0.010090494528412819,
-0.13936802744865417,
0.006171398796141148,
-0.008694109506905079,
0.04291591793298721,
-0.06478194147348404,
0.10389657318592072,
-0.1091618612408638,
-0.10144896060228348,
0.045586392283439636,
-0.06412673741579056,
-0.012398826889693737,
0.029517164453864098,
-0.042200684547424316,
0.05707959458231926,
0.006618996150791645,
0.010147028602659702,
-0.0419495515525341,
0.014694883488118649,
-0.07048401236534119,
0.0009086810750886798,
-0.0799916684627533,
-0.08862300217151642,
0.024099890142679214,
-0.09145615994930267,
0.04370373860001564,
-0.1440735161304474,
-0.16727599501609802,
-0.006536596454679966,
-0.019414015114307404,
-0.01988760568201542,
-0.004064309876412153,
-0.10960839688777924,
0.03668776899576187,
-0.02902894839644432,
-0.028962576761841774,
-0.0436708964407444,
-0.021361153572797775,
0.04448450729250908,
0.014958223327994347,
0.06711747497320175,
-0.1360188126564026,
0.06007999926805496,
-0.18697433173656464,
-0.010151222348213196,
-0.08078252524137497,
0.0810387060046196,
-0.04058880731463432,
0.12837857007980347,
-0.0639537051320076,
-0.09020103514194489,
0.0022235428914427757,
0.02930530719459057,
0.027552062645554543,
0.2036764770746231,
-0.13898949325084686,
-0.06274618953466415,
0.0135704530403018,
-0.10821211338043213,
-0.11258432269096375,
0.19759932160377502,
-0.026987675577402115,
0.1425471305847168,
0.07157225906848907,
0.25126543641090393,
-0.03919485956430435,
-0.000870979973115027,
-0.03382183983922005,
0.05622498691082001,
-0.11254000663757324,
-0.03430979326367378,
0.0920577272772789,
0.06375063955783844,
-0.16362957656383514,
0.06485597789287567,
-0.08406565338373184,
0.07903338223695755,
-0.010600568726658821,
-0.06004376709461212,
-0.02319156378507614,
-0.06722446531057358,
0.035766806453466415,
0.021688828244805336,
0.05311257392168045,
-0.049857936799526215,
-0.014075751416385174,
0.041338998824357986,
0.08279059082269669,
-0.07056209444999695,
-0.0020778344478458166,
-0.10358201712369919,
0.1331598460674286,
-0.06422439217567444,
0.014037787914276123,
-0.1537579745054245,
0.04118175804615021,
0.0584140345454216,
0.09985609352588654,
0.07427775859832764,
0.07714968174695969,
0.012088255025446415,
-0.016571929678320885,
-0.0029549633618444204,
-0.02037903666496277,
0.028705338016152382,
-0.02104044146835804,
-0.021900707855820656,
-0.07274774461984634,
0.012027675285935402,
-0.042288199067115784,
0.00008615080878371373,
-0.09716511517763138,
0.017170164734125137,
0.10349314659833908,
-0.005205983761698008,
-0.004274183884263039,
-0.024385007098317146,
0.04693446308374405,
0.0646783709526062,
-0.07319851219654083,
-0.011829468421638012,
0.09245151281356812,
0.03914137929677963,
-0.10985130816698074,
0.10636328905820847,
-0.1333850920200348,
0.07998347282409668,
0.12251202017068863,
-0.13884198665618896,
-0.06257898360490799,
0.01125110313296318,
-0.03994636982679367,
0.03930142894387245,
-0.016893094405531883,
-0.0022541654761880636,
0.3169375956058502,
-0.04176230728626251,
0.13020266592502594,
-0.08463157713413239,
-0.022326909005641937,
-0.003559585427865386,
-0.05151062086224556,
-0.02653745748102665,
0.10562238097190857,
0.01632053032517433,
-0.12404099106788635,
0.0968627780675888,
0.13625787198543549,
-0.06129632517695427,
0.17663247883319855,
-0.009549361653625965,
-0.025927076116204262,
-0.046730730682611465,
-0.03493653982877731,
-0.03830673545598984,
0.06320995092391968,
-0.24589569866657257,
-0.07964252680540085,
0.048491425812244415,
-0.014143404550850391,
-0.014805828221142292,
-0.06637546420097351,
-0.0027805462013930082,
0.03351488709449768,
0.020712897181510925,
-0.011497555300593376,
0.006231262814253569,
-0.014455094002187252,
0.055408161133527756,
0.01907622255384922,
-0.041041240096092224,
0.04697279632091522,
0.008370642550289631,
-0.1278344988822937,
0.15195773541927338,
-0.03551403433084488,
-0.32734787464141846,
-0.12584058940410614,
-0.040126390755176544,
-0.06547997891902924,
0.05496126413345337,
0.07035892456769943,
-0.11215909570455551,
-0.06710271537303925,
-0.05505936220288277,
0.09807997196912766,
0.010504046455025673,
-0.008285794407129288,
0.014660601504147053,
-0.019948801025748253,
0.011681980453431606,
-0.07956025749444962,
-0.03468732908368111,
-0.07864919304847717,
-0.12034045159816742,
0.006777546834200621,
-0.07686837017536163,
0.13149991631507874,
0.11538831889629364,
-0.029042208567261696,
0.03474622964859009,
-0.03630243241786957,
0.1657356321811676,
-0.052251968532800674,
-0.028217948973178864,
0.17990651726722717,
-0.06908808648586273,
0.0162473414093256,
0.05843203142285347,
0.022504638880491257,
-0.0819062888622284,
0.06632265448570251,
-0.05269705504179001,
-0.10130073875188828,
-0.16626757383346558,
-0.10076316446065903,
-0.002648507012054324,
0.15629351139068604,
0.044933781027793884,
0.018602801486849785,
-0.0048600854352116585,
0.14248871803283691,
0.047907210886478424,
-0.003665940836071968,
-0.11459717899560928,
0.13490088284015656,
0.13782323896884918,
-0.06388764828443527,
0.11162566393613815,
-0.042814891785383224,
-0.07177834957838058,
0.1570732146501541,
-0.0562627948820591,
0.07249953597784042,
0.00008446792344329879,
0.15381526947021484,
-0.014450575225055218,
0.15204812586307526,
0.08053446561098099,
0.1074603721499443,
-0.08125089108943939,
-0.031710635870695114,
-0.07293811440467834,
-0.04467117041349411,
-0.12065461277961731,
0.0909646600484848,
0.006057386752218008,
0.013310408219695091,
-0.08087606728076935,
-0.09545931965112686,
0.06677798181772232,
0.2040579617023468,
0.05110018700361252,
-0.24045975506305695,
-0.12950848042964935,
0.02683160826563835,
0.020870598033070564,
-0.04568858817219734,
0.0798998773097992,
0.08819809556007385,
-0.09163597226142883,
-0.004303086549043655,
0.01137804426252842,
0.09124857932329178,
-0.1417846828699112,
0.08437176048755646,
-0.10367020219564438,
0.005981373135000467,
0.014601229690015316,
0.10356911271810532,
-0.19225989282131195,
0.14437635242938995,
0.0008925971924327314,
-0.016505761072039604,
-0.06183620169758797,
-0.045881252735853195,
0.08403279632329941,
0.04430632293224335,
0.1104588508605957,
0.00856698676943779,
0.10165299475193024,
-0.1734255850315094,
-0.06646289676427841,
0.07230833917856216,
0.031610045582056046,
-0.05172803997993469,
0.014663430862128735,
-0.01057891920208931,
0.01845489628612995,
0.002583648543804884,
-0.01398144569247961,
-0.02985723502933979,
-0.04876869171857834,
0.020747855305671692,
0.08890970051288605,
0.11392839252948761,
0.026922021061182022,
-0.0853041559457779,
-0.021624058485031128,
0.2657790780067444,
-0.008306258358061314,
-0.055681392550468445,
-0.11331447213888168,
-0.009829791262745857,
-0.014801403507590294,
-0.06870775669813156,
0.007995459251105785,
-0.020785534754395485,
0.07097835838794708,
0.04668682441115379,
-0.1183939203619957,
0.11459019035100937,
-0.07174284011125565,
-0.08116355538368225,
0.012193987146019936,
0.06198349595069885,
0.05628946051001549,
0.02758527174592018,
0.0359732061624527,
0.005476975813508034,
-0.07058723270893097,
-0.1401965320110321,
-0.006959638558328152,
0.08458001911640167,
0.034338321536779404,
0.07210353016853333,
-0.0776108130812645,
-0.05295128375291824,
-0.06751539558172226,
-0.003171096555888653,
0.17989394068717957,
0.07594968378543854,
-0.09203054010868073,
0.0776972845196724,
0.18185889720916748,
-0.040877435356378555,
-0.3105505704879761,
-0.0217361468821764,
0.0056692371144890785,
0.040531057864427567,
0.0620119608938694,
-0.1851751059293747,
0.15002299845218658,
0.0690670758485794,
-0.002051552291959524,
-0.07540559768676758,
-0.0077008032239973545,
-0.08881497383117676,
0.1934351623058319,
0.0974658876657486,
0.3616963326931,
-0.08829783648252487,
-0.04782513901591301,
-0.00997684895992279,
-0.0663013607263565,
0.1773257702589035,
0.028766989707946777,
0.11658435314893723,
-0.013510599732398987,
0.16251184046268463,
0.06457557529211044,
-0.015818104147911072,
0.10164705663919449,
0.009289919398725033,
0.027049580588936806,
-0.09132800996303558,
-0.15672650933265686,
0.023199228569865227,
-0.01239703968167305,
0.1841866821050644,
-0.012898843735456467,
0.08562742173671722,
-0.07964649051427841,
-0.07074695080518723,
-0.05926723778247833,
0.06508457660675049,
0.026268087327480316,
-0.08985190838575363,
-0.058326639235019684,
0.039252784103155136,
-0.023106275126338005,
0.022618096321821213,
0.088267482817173,
-0.07069997489452362,
-0.08201906830072403,
0.1421680599451065,
0.2533062696456909,
-0.03987230733036995,
0.03154141455888748,
-0.02767331153154373,
-0.08311057835817337,
0.08792167901992798,
-0.09939806908369064,
0.017293034121394157,
0.11099792271852493,
0.03409217670559883,
0.10908021777868271,
0.06922414153814316,
-0.012473128736019135,
0.06408476829528809,
0.017268294468522072,
-0.16020843386650085,
-0.11342644691467285,
-0.11422368139028549,
0.016539717093110085,
-0.059101756662130356,
0.08511532098054886,
0.14837528765201569,
-0.0566154308617115,
-0.03826211765408516,
-0.011268867179751396,
-0.023269226774573326,
-0.014077256433665752,
-0.019552623853087425,
0.0051064565777778625,
-0.012344734743237495,
-0.10519693046808243,
0.03363342210650444,
-0.000246710900682956,
-0.11577898263931274,
0.06499359011650085,
0.05190957337617874,
-0.09958071261644363,
-0.07241169363260269,
-0.12645886838436127,
0.19273264706134796,
-0.17249634861946106,
-0.0626768171787262,
-0.09666464477777481,
-0.07331153005361557,
0.027057580649852753,
0.14298970997333527,
0.1297326385974884,
0.054522737860679626,
-0.11769706755876541,
0.008588350377976894,
-0.04302993789315224,
0.027368394657969475,
0.01735224388539791,
-0.010625964030623436,
-0.10661787539720535,
-0.011202369816601276,
0.0030115051195025444,
0.09281259775161743,
-0.09073549509048462,
-0.1112760379910469,
-0.1236332580447197,
-0.03033718653023243,
-0.1408804953098297,
0.008284981362521648,
-0.06401335448026657,
0.011529267765581608,
-0.006355965975672007,
-0.07118076831102371,
-0.021733855828642845,
0.04139390215277672,
-0.06492169946432114,
0.03153195232152939,
0.020889559760689735,
0.05878721550107002,
-0.054227910935878754,
-0.02744262106716633,
0.04499334096908569,
-0.009643343277275562,
0.14310839772224426,
0.10122500360012054,
-0.062242474406957626,
0.03739909455180168,
-0.13536690175533295,
-0.0019299013074487448,
0.08048553764820099,
0.014189253561198711,
0.03889233246445656,
-0.0589764378964901,
-0.017603429034352303,
0.04854653403162956,
0.01924465224146843,
0.0028769935015589,
0.2096579521894455,
-0.08000485599040985,
0.09484055638313293,
0.12539798021316528,
-0.11403292417526245,
-0.08672617375850677,
-0.0045230332762002945,
0.005660628899931908,
0.1255660355091095,
0.11960387974977493,
-0.05871228501200676,
0.03729516267776489,
-0.0749664157629013,
0.04128463566303253,
0.0015931306406855583,
-0.10646912455558777,
-0.20480407774448395,
-0.08989883959293365,
0.014279942028224468,
0.022004270926117897,
0.15894939005374908,
0.0412653386592865,
-0.035287629812955856,
0.005232603754848242,
0.1296655386686325,
0.13275332748889923,
-0.036010582000017166,
0.17827966809272766,
0.01601598411798477,
-0.031491126865148544,
-0.0034545755479484797,
0.11929183453321457,
0.03670834004878998,
0.10500280559062958,
0.03274086117744446,
0.008984205313026905,
0.01569962687790394,
0.07489435374736786,
-0.01875496096909046,
0.09025557339191437,
-0.0769612118601799,
-0.10330364108085632,
-0.01907825656235218,
0.06713820993900299,
-0.036715615540742874,
0.22297759354114532,
0.045151107013225555,
-0.03282476216554642,
0.0773063376545906,
-0.006124513223767281,
-0.07274562865495682,
-0.12709841132164001,
-0.1693560779094696,
-0.09305474907159805,
-0.10841332376003265,
-0.022615719586610794,
-0.13887092471122742,
-0.04232016205787659,
0.03930751606822014,
0.03501299396157265,
-0.07199776917695999,
0.0994986742734909,
-0.151280477643013,
-0.03957955911755562,
0.1466575264930725,
-0.03982820734381676,
-0.030544355511665344,
-0.09803159534931183,
0.01972646266222,
-0.033893734216690063,
0.07221677154302597,
0.03953675553202629,
0.01852576807141304,
-0.001283754943870008,
-0.06675801426172256,
-0.03310534730553627,
-0.08365058153867722,
-0.07104702293872833,
0.03656165301799774,
-0.01828937977552414,
0.09793064743280411,
0.0026800830382853746,
-0.029321560636162758,
0.017222419381141663,
0.21482223272323608,
-0.06126280874013901,
0.09849586337804794,
-0.1229325607419014,
0.29538413882255554,
-0.07186529785394669,
0.03272239491343498,
0.004853642079979181,
-0.06529655307531357,
-0.023007076233625412,
0.2722025513648987,
0.15588828921318054,
-0.05370577797293663,
0.0015753400512039661,
-0.03663480654358864,
0.026028957217931747,
0.00633034436032176,
0.059671640396118164,
0.06647185236215591,
0.16013103723526,
-0.08233316987752914,
-0.01674746535718441,
-0.03560199588537216,
-0.02949533239006996,
-0.019759373739361763,
-0.03319723531603813,
0.02781723253428936,
-0.013937735930085182,
-0.11752582341432571,
0.028095107525587082,
-0.07434432208538055,
-0.003194635733962059,
-0.04298951104283333,
-0.11904963105916977,
-0.07872650027275085,
-0.001296343980357051,
-0.04241619259119034,
0.037279706448316574,
0.103754423558712,
-0.03028646856546402,
0.025732776150107384,
0.10780703276395798,
0.000624524662271142,
-0.1728038489818573,
-0.005360477138310671,
0.12032289057970047,
-0.12702472507953644,
0.12059652805328369,
-0.016704173758625984,
0.004708273336291313,
0.08750482648611069,
0.0178667102009058,
-0.09604331105947495,
0.060503676533699036,
-0.03744068741798401,
-0.05148840695619583,
0.005743769463151693,
0.11953944712877274,
-0.028947990387678146,
0.10937698930501938,
-0.0300405565649271,
-0.2129063606262207,
0.026564063504338264,
0.007332832086831331,
-0.07018667459487915,
-0.07328183948993683,
0.04011233150959015,
-0.09407102316617966,
0.12448380887508392,
0.1311587542295456,
-0.02109898068010807,
-0.09100887179374695,
-0.05552312359213829,
0.03583039343357086,
0.006748386193066835,
-0.10682511329650879,
0.001378191402181983,
-0.11352892965078354,
-0.03487689420580864,
0.09129633754491806,
-0.026217158883810043,
-0.30268505215644836,
-0.0287882499396801,
-0.0550834983587265,
0.03800208494067192,
-0.04369661211967468,
0.0006848053890280426,
0.013239183463156223,
0.027033036574721336,
0.00911533460021019,
-0.05152301862835884,
0.04513559117913246,
0.0812990665435791,
-0.07055279612541199,
-0.12696631252765656
] |
null | null |
transformers
|
# DistilBERT-Base-Uncased for Duplicate Question Detection
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) originally released in ["DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter"](https://arxiv.org/abs/1910.01108) and trained on the [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) dataset; part of the [General Language Understanding Evaluation (GLUE)](https://gluebenchmark.com) benchmark. This model was fine-tuned by the team at [AssemblyAI](https://www.assemblyai.com) and is released with the [corresponding blog post]().
## Usage
To download and utilize this model for duplicate question detection please execute the following:
```python
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("assemblyai/distilbert-base-uncased-qqp")
model = AutoModelForSequenceClassification.from_pretrained("assemblyai/distilbert-base-uncased-qqp")
tokenized_segments = tokenizer(["How many hours does it take to fly from California to New York?"], ["What is the flight time from New York to Seattle?"], return_tensors="pt", padding=True, truncation=True)
tokenized_segments_input_ids, tokenized_segments_attention_mask = tokenized_segments.input_ids, tokenized_segments.attention_mask
model_predictions = F.softmax(model(input_ids=tokenized_segments_input_ids, attention_mask=tokenized_segments_attention_mask)['logits'], dim=1)
print("Duplicate probability: "+str(model_predictions[0][1].item()*100)+"%")
print("Non-duplicate probability: "+str(model_predictions[0][0].item()*100)+"%")
```
For questions about how to use this model feel free to contact the team at [AssemblyAI](https://www.assemblyai.com)!
|
{}
|
text-classification
|
assemblyai/distilbert-base-uncased-qqp
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"arxiv:1910.01108",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1910.01108"
] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #arxiv-1910.01108 #autotrain_compatible #endpoints_compatible #region-us
|
# DistilBERT-Base-Uncased for Duplicate Question Detection
This model is a fine-tuned version of distilbert-base-uncased originally released in "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter" and trained on the Quora Question Pairs dataset; part of the General Language Understanding Evaluation (GLUE) benchmark. This model was fine-tuned by the team at AssemblyAI and is released with the [corresponding blog post]().
## Usage
To download and utilize this model for duplicate question detection please execute the following:
For questions about how to use this model feel free to contact the team at AssemblyAI!
|
[
"# DistilBERT-Base-Uncased for Duplicate Question Detection\nThis model is a fine-tuned version of distilbert-base-uncased originally released in \"DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter\" and trained on the Quora Question Pairs dataset; part of the General Language Understanding Evaluation (GLUE) benchmark. This model was fine-tuned by the team at AssemblyAI and is released with the [corresponding blog post]().",
"## Usage\nTo download and utilize this model for duplicate question detection please execute the following:\n\n\nFor questions about how to use this model feel free to contact the team at AssemblyAI!"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #arxiv-1910.01108 #autotrain_compatible #endpoints_compatible #region-us \n",
"# DistilBERT-Base-Uncased for Duplicate Question Detection\nThis model is a fine-tuned version of distilbert-base-uncased originally released in \"DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter\" and trained on the Quora Question Pairs dataset; part of the General Language Understanding Evaluation (GLUE) benchmark. This model was fine-tuned by the team at AssemblyAI and is released with the [corresponding blog post]().",
"## Usage\nTo download and utilize this model for duplicate question detection please execute the following:\n\n\nFor questions about how to use this model feel free to contact the team at AssemblyAI!"
] |
[
46,
124,
40
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #arxiv-1910.01108 #autotrain_compatible #endpoints_compatible #region-us \n# DistilBERT-Base-Uncased for Duplicate Question Detection\nThis model is a fine-tuned version of distilbert-base-uncased originally released in \"DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter\" and trained on the Quora Question Pairs dataset; part of the General Language Understanding Evaluation (GLUE) benchmark. This model was fine-tuned by the team at AssemblyAI and is released with the [corresponding blog post]().## Usage\nTo download and utilize this model for duplicate question detection please execute the following:\n\n\nFor questions about how to use this model feel free to contact the team at AssemblyAI!"
] |
[
-0.09669570624828339,
0.062158942222595215,
-0.0019641241524368525,
0.06858944892883301,
0.11832902580499649,
0.019745992496609688,
0.12482485175132751,
0.10692258179187775,
0.08461445569992065,
0.0001205984954140149,
0.06760092079639435,
0.10700292140245438,
-0.021319013088941574,
0.0361463762819767,
-0.01677861250936985,
-0.18008826673030853,
0.0440666601061821,
0.07220163941383362,
0.04748523235321045,
0.10649361461400986,
0.11270761489868164,
-0.07796218991279602,
0.07316324859857559,
0.0326516218483448,
-0.12364709377288818,
0.02225511707365513,
-0.02224717102944851,
-0.05137517675757408,
0.08116907626390457,
0.02570929005742073,
0.07040242850780487,
0.07496903091669083,
0.030282413586974144,
-0.07122767716646194,
0.021523600444197655,
-0.009720446541905403,
-0.012577739544212818,
0.05083610117435455,
0.008216830901801586,
0.014169611036777496,
0.021175872534513474,
0.08326856046915054,
0.030288128182291985,
0.08884118497371674,
-0.08264748007059097,
-0.1282244324684143,
-0.039660267531871796,
-0.011716092005372047,
0.0764370858669281,
0.0848916694521904,
-0.02653784677386284,
0.10262633860111237,
-0.10900826007127762,
0.05730549991130829,
0.11189375817775726,
-0.3050965666770935,
-0.03685518354177475,
0.12474361807107925,
0.03790738433599472,
-0.03168423846364021,
-0.041686270385980606,
0.011053620837628841,
0.013846168294548988,
0.045686449855566025,
0.0019317177357152104,
-0.09438320249319077,
-0.03480691835284233,
-0.03641840070486069,
-0.11542041599750519,
0.032812561839818954,
0.22558048367500305,
0.0031819622963666916,
-0.08870954811573029,
-0.06601183861494064,
-0.06291177123785019,
0.10427425056695938,
-0.0594940185546875,
-0.1017615795135498,
-0.0017600669525563717,
0.04753279313445091,
-0.06168769672513008,
-0.10608632862567902,
-0.057393282651901245,
-0.14103703200817108,
-0.10717218369245529,
0.20908063650131226,
0.016187995672225952,
0.03361201658844948,
-0.0406535379588604,
0.10828151553869247,
-0.07652047276496887,
-0.10149480402469635,
-0.09572480618953705,
-0.06398829817771912,
-0.016610369086265564,
0.004243470262736082,
-0.0731707438826561,
-0.17048323154449463,
0.08348635584115982,
0.25717103481292725,
0.04878225922584534,
0.049902819097042084,
0.013889092952013016,
0.002533735241740942,
0.07279416173696518,
0.258254736661911,
-0.08424089103937149,
-0.023798933252692223,
0.032037682831287384,
0.00852131936699152,
0.011102007701992989,
-0.0003761449479497969,
-0.1235516145825386,
-0.046278100460767746,
0.07442827522754669,
0.04705435410141945,
0.04433375224471092,
0.10473468154668808,
-0.07119005173444748,
-0.09409063309431076,
0.090182825922966,
-0.09381253272294998,
-0.021055418998003006,
-0.0022125295363366604,
-0.0391235426068306,
0.004264505114406347,
-0.009263402782380581,
0.005622577853500843,
-0.05216605216264725,
-0.01126001961529255,
-0.08761998265981674,
-0.02605794183909893,
-0.03624941408634186,
-0.09095625579357147,
-0.03156490623950958,
-0.12198728322982788,
-0.0012480211444199085,
-0.16316159069538116,
-0.18427453935146332,
-0.011128316633403301,
0.02878177911043167,
-0.022674262523651123,
0.014985710382461548,
-0.0813579186797142,
0.06929682195186615,
-0.011135387234389782,
-0.02352285198867321,
-0.07136743515729904,
-0.03593903407454491,
0.06357583403587341,
0.03700079768896103,
0.06270533800125122,
-0.12376753240823746,
0.061888374388217926,
-0.14119954407215118,
0.02083463966846466,
-0.12506237626075745,
0.12945739924907684,
-0.05679779499769211,
0.02848178893327713,
-0.10475334525108337,
-0.05084151402115822,
-0.029930226504802704,
0.011129115708172321,
0.05977548658847809,
0.17499308288097382,
-0.12106318026781082,
-0.03878437727689743,
0.05970633402466774,
-0.09467371553182602,
-0.06390984356403351,
0.12955766916275024,
-0.014837372116744518,
0.12501275539398193,
0.09726288169622421,
0.20075371861457825,
0.050624437630176544,
-0.058050885796546936,
-0.05799706652760506,
0.08220016956329346,
-0.12647828459739685,
0.021297171711921692,
0.07516966760158539,
-0.012909028679132462,
-0.13856223225593567,
0.06405568867921829,
-0.07758054882287979,
0.04482007026672363,
-0.027947230264544487,
-0.04889467731118202,
-0.03828675299882889,
-0.07986713945865631,
0.12482921779155731,
0.016967693343758583,
0.04374925419688225,
-0.0017436770722270012,
-0.05352819710969925,
0.07821935415267944,
0.07979705929756165,
-0.056396953761577606,
-0.013444671407341957,
-0.12876935303211212,
0.16608931124210358,
-0.14199917018413544,
0.022647559642791748,
-0.1773694008588791,
-0.06230758875608444,
0.04988863319158554,
0.04340719059109688,
0.032970063388347626,
0.02428709715604782,
0.03947485238313675,
-0.029819514602422714,
-0.022794876247644424,
-0.019676297903060913,
-0.023887479677796364,
-0.02272777259349823,
-0.05896613374352455,
0.03039088286459446,
-0.030690426006913185,
-0.03537781909108162,
0.04076620936393738,
0.022330928593873978,
0.026374418288469315,
0.03940000385046005,
-0.0068090204149484634,
-0.004443922080099583,
-0.005505518987774849,
0.045566376298666,
0.01941947266459465,
-0.0395149402320385,
-0.02770201675593853,
0.08609366416931152,
0.04566129669547081,
-0.09735617786645889,
0.04499569907784462,
-0.03602707386016846,
0.038137443363666534,
0.09215304255485535,
-0.07989287376403809,
-0.03371638432145119,
0.03883533924818039,
-0.052286192774772644,
0.01149327028542757,
-0.000049680747906677425,
-0.03640332818031311,
0.22871452569961548,
-0.029797550290822983,
0.11306195706129074,
-0.06220713257789612,
0.009016094729304314,
-0.008085339330136776,
-0.018945202231407166,
-0.03677058219909668,
0.03340272605419159,
0.03605131059885025,
-0.05187655985355377,
0.06185271218419075,
0.09718804806470871,
-0.011427110061049461,
0.10238830745220184,
0.011585408821702003,
-0.018712474033236504,
0.001401309622451663,
-0.0397961288690567,
-0.015803713351488113,
0.027604401111602783,
-0.16636499762535095,
0.004615921527147293,
0.048385895788669586,
0.013578416779637337,
0.037840068340301514,
-0.06423600763082504,
0.018921004608273506,
-0.004768664482980967,
-0.0374448299407959,
-0.025792226195335388,
0.07397596538066864,
-0.026301322504878044,
0.04601413011550903,
0.07128360867500305,
-0.0276669729501009,
0.039959341287612915,
0.01180250570178032,
-0.0616241917014122,
0.17246749997138977,
-0.06137635558843613,
-0.3139437437057495,
-0.13153602182865143,
-0.07833972573280334,
-0.09083804488182068,
0.07953318953514099,
0.09371929615736008,
-0.09939908981323242,
-0.05240219458937645,
-0.020241456106305122,
0.07391542941331863,
0.02676902897655964,
-0.012599056586623192,
0.049169544130563736,
-0.012847080826759338,
0.0398690290749073,
-0.1297493577003479,
-0.011924143880605698,
-0.06061110273003578,
-0.13283611834049225,
0.03263962268829346,
-0.10082948207855225,
0.14373192191123962,
0.10937980562448502,
0.002524976385757327,
0.017473531886935234,
-0.0020602187141776085,
0.22904863953590393,
-0.04737786203622818,
-0.0034654971677809954,
0.18630382418632507,
-0.023008182644844055,
0.011641271412372589,
0.06322518736124039,
0.018892550840973854,
-0.1004943922162056,
0.03344419226050377,
0.026672177016735077,
-0.06616581976413727,
-0.14328958094120026,
-0.07879579812288284,
-0.005361089948564768,
0.030429789796471596,
0.08844482153654099,
0.05287831276655197,
0.016447795554995537,
0.11264730989933014,
0.012908783741295338,
0.01813802495598793,
-0.026625072583556175,
0.08835510164499283,
0.1705373376607895,
-0.037330541759729385,
0.14471197128295898,
-0.03187912702560425,
-0.09037486463785172,
0.10057759284973145,
0.0026069413870573044,
0.11094695329666138,
0.011639083735644817,
0.06295571476221085,
0.048708170652389526,
0.02623547613620758,
0.08308833092451096,
0.09610962122678757,
-0.07461775839328766,
-0.003912520594894886,
-0.024648092687129974,
-0.03349502757191658,
-0.04831651970744133,
-0.006634656805545092,
-0.00010874340659938753,
-0.026968788355588913,
-0.0662185549736023,
-0.07111384719610214,
0.09322000294923782,
0.22862671315670013,
0.08508440852165222,
-0.21616989374160767,
-0.1313832849264145,
-0.024767762050032616,
-0.012575589120388031,
-0.08229532092809677,
0.03506971895694733,
-0.02464519627392292,
-0.09405270218849182,
-0.006249601952731609,
-0.014531762339174747,
0.1040935218334198,
-0.08735537528991699,
0.05753582715988159,
-0.00024545748601667583,
0.006085685454308987,
0.003579057054594159,
0.07441308349370956,
-0.21570567786693573,
0.07464423030614853,
0.041931502521038055,
0.03808087110519409,
-0.03093123994767666,
-0.03466419503092766,
0.0627545416355133,
0.09673204272985458,
0.1082141324877739,
-0.015965599566698074,
0.13193967938423157,
-0.12740536034107208,
-0.10176538676023483,
0.08533529937267303,
0.03411656990647316,
-0.05190274864435196,
0.05530005693435669,
-0.04594651982188225,
0.028892088681459427,
0.008918032050132751,
-0.0454985611140728,
-0.10754649341106415,
-0.08424530923366547,
0.04750506952404976,
0.057695429772138596,
0.09939252585172653,
-0.006495288573205471,
-0.05232963711023331,
-0.011466986499726772,
0.21113915741443634,
-0.09914662688970566,
-0.1159186065196991,
-0.11280278116464615,
0.026112370193004608,
0.0455741249024868,
-0.06599249690771103,
0.04885020852088928,
-0.04027721658349037,
0.05313815921545029,
0.02486867643892765,
-0.16954058408737183,
0.04740123450756073,
-0.058311060070991516,
-0.04794148728251457,
0.021501146256923676,
0.01042119413614273,
0.0587596669793129,
0.0073589300736784935,
0.0571412667632103,
0.01431247778236866,
-0.06441204249858856,
-0.08740592002868652,
-0.025179389864206314,
0.04276802018284798,
0.051843419671058655,
0.07896260172128677,
-0.11716696619987488,
-0.01604977808892727,
-0.07131101191043854,
0.0679432675242424,
0.12730711698532104,
0.07270105928182602,
-0.08187992125749588,
0.05526260659098625,
0.20037923753261566,
-0.01539672166109085,
-0.32797202467918396,
-0.08188948780298233,
-0.015286793000996113,
0.0018877026159316301,
-0.03365226462483406,
-0.204879030585289,
0.11366114020347595,
0.10506552457809448,
-0.03136753663420677,
0.05141235888004303,
-0.19693708419799805,
-0.081632100045681,
0.17750626802444458,
0.038656704127788544,
0.3388453423976898,
-0.12138886749744415,
-0.054773394018411636,
-0.03225249797105789,
-0.16512298583984375,
0.021742071956396103,
0.02356407232582569,
0.14414577186107635,
-0.07145756483078003,
0.008429531008005142,
0.0439472459256649,
-0.016377707943320274,
0.10620339214801788,
0.03536789491772652,
0.03264183923602104,
-0.0635685846209526,
-0.08284837007522583,
0.060720063745975494,
-0.023891828954219818,
0.1714455932378769,
0.01344622578471899,
0.11287882924079895,
-0.01317674946039915,
-0.09087883681058884,
-0.040700763463974,
0.08211149275302887,
0.022314971312880516,
-0.10057468712329865,
-0.04483172297477722,
0.005159476771950722,
-0.046380430459976196,
0.041197314858436584,
0.06345919519662857,
-0.07310392707586288,
0.0099342567846179,
0.05267685279250145,
0.11012687534093857,
-0.12140677869319916,
-0.06163811683654785,
-0.014547604136168957,
-0.04021128639578819,
0.1069701611995697,
-0.02748975157737732,
0.07504240423440933,
0.09210760146379471,
0.0255525391548872,
0.0795164704322815,
0.09293704479932785,
-0.004924075212329626,
0.06733043491840363,
0.030326450243592262,
-0.1372997760772705,
-0.1359410136938095,
-0.047088831663131714,
-0.11661922186613083,
-0.0647900328040123,
0.1040099710226059,
0.14902307093143463,
0.02630312368273735,
-0.05264434218406677,
0.009705225005745888,
-0.0001243885199073702,
-0.023870686069130898,
0.0742335319519043,
0.0341014601290226,
0.0068451594561338425,
-0.07745574414730072,
0.090744249522686,
0.06179523468017578,
-0.02504788339138031,
0.017330894246697426,
-0.02763998508453369,
-0.13471707701683044,
-0.10168169438838959,
-0.13635750114917755,
0.14561176300048828,
-0.13062046468257904,
-0.04051529988646507,
-0.1488521844148636,
-0.027299245819449425,
0.049265142530202866,
0.07242322713136673,
0.1179865300655365,
0.06906712800264359,
-0.06042959541082382,
0.006991140078753233,
-0.041010018438100815,
0.043319571763277054,
-0.026105253025889397,
0.04433934763073921,
-0.10729167610406876,
-0.08138610422611237,
0.004338480532169342,
0.13401782512664795,
-0.08941296488046646,
-0.09946652501821518,
-0.1485121101140976,
-0.018522614613175392,
-0.19277779757976532,
0.0021460866555571556,
-0.04223685711622238,
0.003266965039074421,
-0.010544110089540482,
-0.05080990865826607,
-0.05004823952913284,
0.049463383853435516,
-0.019565021619200706,
-0.02861393801867962,
0.00908070057630539,
0.010499801486730576,
-0.10848850756883621,
-0.0009228064445778728,
0.029764514416456223,
-0.0266024898737669,
0.12381257861852646,
0.07860518246889114,
-0.03055335208773613,
0.03543630614876747,
-0.10856462270021439,
-0.07441453635692596,
-0.005448382347822189,
0.018342919647693634,
0.027631523087620735,
-0.03230036050081253,
0.017543647438287735,
0.026726942509412766,
0.015147678554058075,
0.013653546571731567,
0.20466072857379913,
-0.078902468085289,
0.0650961622595787,
-0.0012401597341522574,
-0.03206994757056236,
-0.0705186277627945,
0.019145546481013298,
0.09611223638057709,
0.15540146827697754,
0.1313781589269638,
-0.08207084238529205,
0.010912684723734856,
-0.09152476489543915,
0.0011639839503914118,
0.007108720485121012,
-0.09052909910678864,
-0.02021229825913906,
-0.08873584866523743,
-0.0038931583985686302,
0.002449479652568698,
0.16684287786483765,
0.03569319099187851,
0.023697447031736374,
0.010726929642260075,
0.06487653404474258,
0.0758819580078125,
-0.04770005866885185,
0.2190958708524704,
0.04882858321070671,
-0.019531287252902985,
-0.007768881972879171,
0.12144217640161514,
0.03262447938323021,
0.07495813816785812,
0.03015434928238392,
0.08920352160930634,
-0.059922389686107635,
0.03926928713917732,
0.005056493449956179,
0.041754551231861115,
-0.09023389965295792,
-0.045093052089214325,
-0.025749972090125084,
0.015775933861732483,
-0.021165547892451286,
0.13908268511295319,
0.0751914456486702,
-0.030400874093174934,
0.08732282370328903,
0.008001732639968395,
-0.04274949058890343,
-0.13706207275390625,
-0.0656239315867424,
-0.10611537843942642,
-0.14475667476654053,
-0.0138855604454875,
-0.07507728785276413,
-0.05837847664952278,
0.06894440948963165,
-0.00359762879088521,
-0.03177312761545181,
0.15921153128147125,
-0.13134227693080902,
-0.022819822654128075,
0.08344031125307083,
-0.07439768314361572,
-0.0700325295329094,
-0.0016646377043798566,
0.028126895427703857,
0.02940943092107773,
0.09066280722618103,
0.06955047696828842,
0.016175422817468643,
-0.01945652812719345,
-0.01898607611656189,
-0.06382545828819275,
-0.05896814912557602,
-0.06678225845098495,
0.07312675565481186,
-0.055801909416913986,
0.05731051787734032,
0.030384797602891922,
-0.04516834765672684,
0.023676328361034393,
0.22210317850112915,
0.021228883415460587,
-0.02407308667898178,
-0.14456695318222046,
0.29349735379219055,
0.001842457801103592,
0.05089105665683746,
0.0029443802777677774,
-0.09956582635641098,
-0.01191986259073019,
0.25515303015708923,
0.15051281452178955,
-0.0629885271191597,
-0.0007293770322576165,
0.015471299178898335,
0.011847804300487041,
0.03298186510801315,
0.0852770134806633,
0.05703170225024223,
0.18435652554035187,
-0.03756003454327583,
-0.03387816250324249,
-0.027531521394848824,
-0.03336217254400253,
-0.06640126556158066,
0.032028622925281525,
0.019159244373440742,
0.02410348318517208,
-0.10470651835203171,
0.06775756925344467,
-0.0275901909917593,
0.02102794125676155,
-0.01057232916355133,
-0.026047127321362495,
-0.07035598903894424,
-0.009261419996619225,
-0.0871950164437294,
-0.07294399291276932,
0.09725826978683472,
-0.04455706477165222,
0.027545327320694923,
0.08296100050210953,
-0.018066955730319023,
-0.09047266095876694,
-0.03361377865076065,
0.10644903033971786,
0.013968425802886486,
0.16973672807216644,
-0.014196312054991722,
0.000187644298421219,
0.0901174396276474,
0.022597938776016235,
-0.10365836322307587,
0.09220442920923233,
-0.03565623611211777,
-0.034898918122053146,
0.059829916805028915,
0.03160824626684189,
-0.022722186520695686,
0.012349246069788933,
-0.009663787670433521,
-0.09929796308279037,
0.042199667543172836,
-0.0018492118688300252,
-0.06544586271047592,
-0.12283854186534882,
0.045261140912771225,
-0.10017562657594681,
0.12989158928394318,
0.1189740002155304,
-0.009252319112420082,
-0.03582523763179779,
-0.0591464564204216,
0.08461673557758331,
0.011034308932721615,
-0.01995140314102173,
-0.04820605367422104,
-0.13422827422618866,
0.02500268816947937,
0.015590975992381573,
-0.03986957296729088,
-0.31020891666412354,
-0.024846937507390976,
-0.01853199489414692,
0.010004684329032898,
0.025758827105164528,
0.04352739080786705,
0.0650099441409111,
0.02679886296391487,
-0.020957577973604202,
-0.10595722496509552,
-0.008975054137408733,
0.0791102796792984,
-0.11805422604084015,
-0.1272106021642685
] |
null | null |
transformers
|
# DistilBERT-Base-Uncased for Sentiment Analysis
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) originally released in ["DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter"](https://arxiv.org/abs/1910.01108) and trained on the [Stanford Sentiment Treebank v2 (SST2)](https://nlp.stanford.edu/sentiment/); part of the [General Language Understanding Evaluation (GLUE)](https://gluebenchmark.com) benchmark. This model was fine-tuned by the team at [AssemblyAI](https://www.assemblyai.com) and is released with the [corresponding blog post]().
## Usage
To download and utilize this model for sentiment analysis please execute the following:
```python
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("assemblyai/distilbert-base-uncased-sst2")
model = AutoModelForSequenceClassification.from_pretrained("assemblyai/distilbert-base-uncased-sst2")
tokenized_segments = tokenizer(["AssemblyAI is the best speech-to-text API for modern developers with performance being second to none!"], return_tensors="pt", padding=True, truncation=True)
tokenized_segments_input_ids, tokenized_segments_attention_mask = tokenized_segments.input_ids, tokenized_segments.attention_mask
model_predictions = F.softmax(model(input_ids=tokenized_segments_input_ids, attention_mask=tokenized_segments_attention_mask)['logits'], dim=1)
print("Positive probability: "+str(model_predictions[0][1].item()*100)+"%")
print("Negative probability: "+str(model_predictions[0][0].item()*100)+"%")
```
For questions about how to use this model feel free to contact the team at [AssemblyAI](https://www.assemblyai.com)!
|
{}
|
text-classification
|
assemblyai/distilbert-base-uncased-sst2
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"arxiv:1910.01108",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1910.01108"
] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #arxiv-1910.01108 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
# DistilBERT-Base-Uncased for Sentiment Analysis
This model is a fine-tuned version of distilbert-base-uncased originally released in "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter" and trained on the Stanford Sentiment Treebank v2 (SST2); part of the General Language Understanding Evaluation (GLUE) benchmark. This model was fine-tuned by the team at AssemblyAI and is released with the [corresponding blog post]().
## Usage
To download and utilize this model for sentiment analysis please execute the following:
For questions about how to use this model feel free to contact the team at AssemblyAI!
|
[
"# DistilBERT-Base-Uncased for Sentiment Analysis\nThis model is a fine-tuned version of distilbert-base-uncased originally released in \"DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter\" and trained on the Stanford Sentiment Treebank v2 (SST2); part of the General Language Understanding Evaluation (GLUE) benchmark. This model was fine-tuned by the team at AssemblyAI and is released with the [corresponding blog post]().",
"## Usage\nTo download and utilize this model for sentiment analysis please execute the following:\n\n\nFor questions about how to use this model feel free to contact the team at AssemblyAI!"
] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #arxiv-1910.01108 #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"# DistilBERT-Base-Uncased for Sentiment Analysis\nThis model is a fine-tuned version of distilbert-base-uncased originally released in \"DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter\" and trained on the Stanford Sentiment Treebank v2 (SST2); part of the General Language Understanding Evaluation (GLUE) benchmark. This model was fine-tuned by the team at AssemblyAI and is released with the [corresponding blog post]().",
"## Usage\nTo download and utilize this model for sentiment analysis please execute the following:\n\n\nFor questions about how to use this model feel free to contact the team at AssemblyAI!"
] |
[
50,
126,
37
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #arxiv-1910.01108 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# DistilBERT-Base-Uncased for Sentiment Analysis\nThis model is a fine-tuned version of distilbert-base-uncased originally released in \"DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter\" and trained on the Stanford Sentiment Treebank v2 (SST2); part of the General Language Understanding Evaluation (GLUE) benchmark. This model was fine-tuned by the team at AssemblyAI and is released with the [corresponding blog post]().## Usage\nTo download and utilize this model for sentiment analysis please execute the following:\n\n\nFor questions about how to use this model feel free to contact the team at AssemblyAI!"
] |
[
-0.09402821213006973,
0.12326447665691376,
-0.0011285722721368074,
0.07762623578310013,
0.12774915993213654,
-0.019371844828128815,
0.04534913972020149,
0.09164050221443176,
0.10579130053520203,
0.04306752234697342,
0.06717924028635025,
0.05070650577545166,
0.010656343773007393,
0.03534892573952675,
-0.05791934207081795,
-0.2411241978406906,
0.020534517243504524,
0.06127307936549187,
0.12136702239513397,
0.11345639079809189,
0.10942946374416351,
-0.09261952340602875,
0.10929778218269348,
0.01090333517640829,
-0.12321792542934418,
-0.019421415403485298,
-0.04394957423210144,
-0.05012277141213417,
0.09944428503513336,
-0.011564189568161964,
0.04517080634832382,
0.055148303508758545,
0.05083892494440079,
-0.10531666874885559,
0.02301061525940895,
-0.02199440449476242,
0.028051067143678665,
0.07764765620231628,
0.033653512597084045,
-0.02045528218150139,
0.20246627926826477,
0.01604422926902771,
0.022524436935782433,
0.07083341479301453,
-0.08908358961343765,
-0.129247784614563,
-0.045728426426649094,
-0.018256058916449547,
0.06784860789775848,
0.09716584533452988,
-0.043342482298612595,
0.08895953744649887,
-0.09593833982944489,
0.06652449816465378,
0.1686425507068634,
-0.19055889546871185,
-0.035102058202028275,
0.10316932946443558,
0.011656085029244423,
0.016009489074349403,
-0.08692958950996399,
-0.009485403075814247,
0.0498492494225502,
0.033516187220811844,
0.07619491964578629,
-0.06732890009880066,
-0.001249703811481595,
-0.00419807992875576,
-0.13345344364643097,
-0.016843611374497414,
0.30700501799583435,
0.04375521093606949,
-0.07598689943552017,
-0.08029253780841827,
-0.04199334979057312,
-0.00016310455976054072,
-0.027814853936433792,
-0.10384103655815125,
0.007990947924554348,
0.009385429322719574,
-0.01875881664454937,
-0.0728447213768959,
-0.10759630799293518,
-0.0343656949698925,
-0.09747566282749176,
0.22671382129192352,
-0.03219207376241684,
0.041136398911476135,
-0.0009881400037556887,
0.09379639476537704,
-0.09727102518081665,
-0.12211736291646957,
-0.08818873018026352,
-0.07574085146188736,
0.020221203565597534,
0.005977954715490341,
-0.06522917002439499,
-0.027664249762892723,
-0.00266281608492136,
0.11341869831085205,
-0.005710575729608536,
0.026170365512371063,
0.1089930459856987,
-0.006243360694497824,
0.13595563173294067,
0.29680564999580383,
-0.04343440383672714,
-0.07060926407575607,
0.02713431790471077,
-0.003962455317378044,
0.019092988222837448,
-0.0036672998685389757,
-0.12540172040462494,
-0.027474088594317436,
0.016955683007836342,
0.042117394506931305,
-0.05013524368405342,
0.0934721902012825,
-0.11878004670143127,
-0.0944056287407875,
0.04366585984826088,
-0.08449897170066833,
-0.009415973909199238,
0.018367590382695198,
-0.07478322833776474,
0.07482624799013138,
-0.01910518668591976,
-0.0009934300323948264,
-0.04596517235040665,
0.014960658736526966,
-0.07414229959249496,
0.006966938730329275,
-0.06170953810214996,
-0.0829140916466713,
0.011501222848892212,
-0.10776644945144653,
0.025557897984981537,
-0.1419924795627594,
-0.18128544092178345,
-0.011637602001428604,
-0.010530314408242702,
-0.036997172981500626,
-0.008592273108661175,
-0.09623296558856964,
0.023827500641345978,
-0.015713654458522797,
-0.029300279915332794,
-0.08696074038743973,
-0.03819558024406433,
0.03636721149086952,
0.026096947491168976,
0.08149734884500504,
-0.12247937172651291,
0.06466174125671387,
-0.16670556366443634,
-0.00043629034189507365,
-0.11195509135723114,
0.11143946647644043,
-0.08056847751140594,
0.10175123810768127,
-0.0753566324710846,
-0.10311070084571838,
-0.02267100103199482,
0.005594585090875626,
0.016073990613222122,
0.17883360385894775,
-0.18228371441364288,
-0.04762766882777214,
-0.05572657659649849,
-0.0989905446767807,
-0.06077084317803383,
0.17196153104305267,
-0.03486179560422897,
0.1332148164510727,
0.07266522198915482,
0.24336375296115875,
-0.021189656108617783,
-0.039993781596422195,
-0.06655967235565186,
0.07581866532564163,
-0.10767850279808044,
0.015235581435263157,
0.06873992085456848,
0.07343851029872894,
-0.10438799113035202,
0.08328559994697571,
-0.10881785303354263,
0.05279291048645973,
-0.022712944075465202,
-0.06525150686502457,
-0.048864178359508514,
-0.05291600525379181,
0.09774556010961533,
0.04315965995192528,
0.0232092197984457,
-0.04763009399175644,
-0.04291818290948868,
0.031191768124699593,
0.10733788460493088,
-0.06057974696159363,
-0.023615146055817604,
-0.08792994171380997,
0.15057611465454102,
-0.05488879606127739,
-0.008789180777966976,
-0.17113618552684784,
-0.002056215889751911,
0.05688817799091339,
0.07669177651405334,
0.04824968799948692,
0.071999192237854,
0.022989895194768906,
-0.02691650390625,
-0.01734285056591034,
-0.018957041203975677,
-0.02865571714937687,
-0.0072656734846532345,
-0.028018740937113762,
-0.026656154543161392,
-0.0150964530184865,
-0.05004942789673805,
0.039827995002269745,
-0.0673341229557991,
0.03479951620101929,
0.14529260993003845,
0.0023165333550423384,
-0.016203274950385094,
-0.029840439558029175,
0.03528093546628952,
0.033962491899728775,
-0.06858614832162857,
-0.049730416387319565,
0.07412625104188919,
0.03552453592419624,
-0.09690670669078827,
0.08565299212932587,
-0.10841609537601471,
0.05091754347085953,
0.11372321844100952,
-0.07315807044506073,
-0.0474429689347744,
0.007270888891071081,
-0.07234358787536621,
0.03984754532575607,
-0.034134622663259506,
-0.012251746840775013,
0.2842431962490082,
-0.04225043207406998,
0.09055420011281967,
-0.08329751342535019,
-0.048493556678295135,
-0.025074323639273643,
-0.02628493495285511,
-0.05485393479466438,
0.07311829179525375,
-0.007973110303282738,
-0.06009820103645325,
0.10072043538093567,
0.15069632232189178,
-0.05251670256257057,
0.1388237029314041,
0.006755384616553783,
-0.026077639311552048,
-0.04789065942168236,
-0.044604118913412094,
-0.07197802513837814,
0.08687928318977356,
-0.22407695651054382,
-0.05113747715950012,
0.04276549443602562,
-0.023979324847459793,
0.02042401023209095,
-0.08527391403913498,
0.0004917317419312894,
0.040621913969516754,
-0.009811194613575935,
0.016351306810975075,
0.03332036733627319,
0.004512399900704622,
0.060925498604774475,
0.019108986482024193,
-0.03409481793642044,
0.006223729811608791,
0.020855462178587914,
-0.08436835557222366,
0.14042504131793976,
-0.03282959386706352,
-0.35305991768836975,
-0.083492211997509,
0.0062618618831038475,
-0.07791393995285034,
0.053992368280887604,
0.06304961442947388,
-0.12065301835536957,
-0.07468422502279282,
-0.07893688976764679,
0.08562038093805313,
-0.009369092993438244,
-0.016821306198835373,
0.04348783195018768,
-0.011053930036723614,
0.01571250520646572,
-0.1093965694308281,
-0.04089635610580444,
-0.073008693754673,
-0.08774740993976593,
0.019326824694871902,
-0.06523508578538895,
0.13600526750087738,
0.14577047526836395,
-0.04136209934949875,
0.02933664433658123,
-0.041150376200675964,
0.20769743621349335,
-0.06316983699798584,
0.013821814209222794,
0.17673616111278534,
-0.004706227220594883,
0.036965202540159225,
0.06119174137711525,
0.01072675734758377,
-0.09798751026391983,
0.06012918800115585,
-0.012156322598457336,
-0.08816814422607422,
-0.15007494390010834,
-0.12459862232208252,
-0.009228969924151897,
0.08829750120639801,
0.05010100454092026,
0.046981826424598694,
0.0024339952506124973,
0.12554752826690674,
0.010968108661472797,
-0.019373763352632523,
-0.08344734460115433,
0.1204729974269867,
0.159629687666893,
-0.06678315997123718,
0.11854267865419388,
-0.027831431478261948,
-0.06898893415927887,
0.1574283093214035,
-0.04422968998551369,
0.1017974391579628,
-0.03591340407729149,
0.12195190787315369,
-0.005255422089248896,
0.1598697155714035,
0.07413582503795624,
0.06188848987221718,
-0.053776517510414124,
-0.02638383023440838,
-0.07129296660423279,
-0.0389726459980011,
-0.11415883898735046,
0.06453056633472443,
0.01829116977751255,
0.011547611095011234,
-0.07990793883800507,
-0.07749839872121811,
0.09699269384145737,
0.20528723299503326,
0.0369659885764122,
-0.23914791643619537,
-0.1558867245912552,
0.0324833057820797,
0.012862231582403183,
-0.053507838398218155,
0.04020354524254799,
0.07293481379747391,
-0.07740703225135803,
-0.015583471395075321,
0.012644007802009583,
0.09021960198879242,
-0.14583559334278107,
0.06926845759153366,
-0.07915941625833511,
0.026007981970906258,
0.011970330029726028,
0.09354735165834427,
-0.16556352376937866,
0.12016694247722626,
0.0037210036534816027,
0.002978796372190118,
-0.046259135007858276,
-0.037919335067272186,
0.08813446015119553,
0.060391366481781006,
0.09792978316545486,
0.012227598577737808,
0.07628107815980911,
-0.1381087601184845,
-0.06050598993897438,
0.05293597653508186,
0.038982197642326355,
-0.05731640383601189,
0.026694323867559433,
-0.019685830920934677,
0.04217807948589325,
0.016920702531933784,
-0.04498371109366417,
-0.07552742213010788,
-0.08657173067331314,
0.05440574511885643,
0.08614515513181686,
0.05883551388978958,
0.009479044005274773,
-0.09402169287204742,
-0.04115946963429451,
0.23888066411018372,
0.007072031497955322,
-0.07290958613157272,
-0.13527274131774902,
0.0006580185727216303,
0.04089450463652611,
-0.060813598334789276,
0.027050090953707695,
-0.01783083565533161,
0.10643091052770615,
0.02607695758342743,
-0.1261218935251236,
0.06197010725736618,
-0.05022452399134636,
-0.07342663407325745,
0.0359109565615654,
0.0643015056848526,
0.06845520436763763,
0.02603341080248356,
0.03636403754353523,
0.01195926871150732,
-0.0992300808429718,
-0.1509879231452942,
-0.00100190588273108,
0.10842342674732208,
0.03459357097744942,
0.08957834541797638,
-0.0530829019844532,
-0.07581222802400589,
-0.07102351635694504,
0.02510640025138855,
0.14484086632728577,
0.08120221644639969,
-0.1207159236073494,
0.0775451585650444,
0.11446308344602585,
-0.036815568804740906,
-0.3043370842933655,
-0.01490569207817316,
0.004345398861914873,
0.0413346029818058,
0.06042046472430229,
-0.13934460282325745,
0.08842203766107559,
0.08480938524007797,
-0.018606537953019142,
-0.07965578883886337,
-0.0821341797709465,
-0.0722322091460228,
0.17560292780399323,
0.0795641839504242,
0.31039151549339294,
-0.07904020696878433,
-0.04144928976893425,
-0.005773342680186033,
-0.12879231572151184,
0.09889110922813416,
0.022375529631972313,
0.11768949776887894,
-0.03764032945036888,
0.16187147796154022,
0.07664737105369568,
-0.01452622190117836,
0.1506815403699875,
0.0403112955391407,
0.049323856830596924,
-0.09605637937784195,
-0.14289452135562897,
0.08060276508331299,
-0.045254409313201904,
0.2233925759792328,
0.008689960464835167,
0.08777303248643875,
-0.0883914977312088,
-0.07087723165750504,
-0.05087554082274437,
0.08080188184976578,
0.013914383947849274,
-0.08515172451734543,
-0.1064935103058815,
0.04141940176486969,
-0.016257721930742264,
0.00833861343562603,
0.05844996124505997,
-0.05218737572431564,
-0.07874530553817749,
0.14549492299556732,
0.1976354420185089,
-0.06262002885341644,
-0.004571373574435711,
-0.00568425003439188,
-0.027510466054081917,
0.05531466752290726,
-0.15324638783931732,
0.031712111085653305,
0.12682941555976868,
0.02756158821284771,
0.11200486868619919,
0.06731536239385605,
-0.01988028734922409,
0.058958422392606735,
0.013250334188342094,
-0.1556386798620224,
-0.1690995991230011,
-0.10262681543827057,
-0.06482995301485062,
-0.07086607813835144,
0.08780816942453384,
0.11241251975297928,
-0.049367889761924744,
-0.02734481543302536,
-0.007207714952528477,
-0.006142613012343645,
0.02009512484073639,
-0.0011201207526028156,
0.004380281548947096,
-0.004050685558468103,
-0.09615084528923035,
0.05124916881322861,
0.026208598166704178,
-0.12554803490638733,
0.03400708734989166,
0.018504749983549118,
-0.10497428476810455,
-0.08819136768579483,
-0.13319769501686096,
0.10339721292257309,
-0.14303013682365417,
-0.027340058237314224,
-0.10929009318351746,
-0.09777650237083435,
0.03416759520769119,
0.09509637206792831,
0.13565586507320404,
0.06507368385791779,
-0.11102517694234848,
0.0357009656727314,
-0.046711698174476624,
0.04851590096950531,
0.0586741678416729,
0.009513970464468002,
-0.1237507313489914,
-0.022374439984560013,
-0.0076453364454209805,
0.0964958667755127,
-0.0880366712808609,
-0.10324768722057343,
-0.0982237160205841,
-0.043315377086400986,
-0.17263677716255188,
0.005398673936724663,
-0.07616302371025085,
0.018163543194532394,
-0.01475802157074213,
-0.07279369235038757,
-0.01804221421480179,
0.06554922461509705,
-0.04320693761110306,
0.023464659228920937,
0.002999980002641678,
0.04732159152626991,
-0.05186974257230759,
-0.010329424403607845,
0.04573728144168854,
-0.024750156328082085,
0.15433602035045624,
0.09004157036542892,
-0.03786724433302879,
0.018943605944514275,
-0.1499822586774826,
-0.012315827421844006,
0.09037872403860092,
0.019202331081032753,
0.035846516489982605,
-0.05250628665089607,
-0.011900385841727257,
0.034526288509368896,
0.018307609483599663,
-0.002355842152610421,
0.198963463306427,
-0.07495471835136414,
0.068061962723732,
0.09608107805252075,
-0.09544552862644196,
-0.0898962989449501,
0.01099263783544302,
0.07568393647670746,
0.13010478019714355,
0.12308457493782043,
-0.036406632512807846,
0.0219490434974432,
-0.10705486685037613,
0.032180920243263245,
-0.0005343269440345466,
-0.09437296539545059,
-0.15138736367225647,
-0.08658996224403381,
0.027196722105145454,
0.029831530526280403,
0.18629878759384155,
0.06493737548589706,
-0.03380293771624565,
-0.0004468063998501748,
0.1460534930229187,
0.13147135078907013,
-0.04257920756936073,
0.16778968274593353,
0.009316536597907543,
-0.041530538350343704,
0.023617368191480637,
0.09959129989147186,
0.04680958017706871,
0.06640571355819702,
0.0451490581035614,
0.03380521386861801,
0.019717402756214142,
0.07670315355062485,
-0.021121427416801453,
0.07675643265247345,
-0.07117640972137451,
-0.038116324692964554,
-0.02625899389386177,
0.018925441429018974,
-0.04391828551888466,
0.20432722568511963,
0.08302182704210281,
-0.06604945659637451,
0.12580576539039612,
-0.015226275660097599,
-0.07395999133586884,
-0.11139792948961258,
-0.14948545396327972,
-0.09137686342000961,
-0.125688374042511,
-0.03086579591035843,
-0.1425255835056305,
-0.03974885493516922,
0.010929759591817856,
0.013954740017652512,
-0.07707051932811737,
0.10722450166940689,
-0.11938893049955368,
-0.05458095669746399,
0.1638980358839035,
-0.027018537744879723,
-0.048870112746953964,
-0.06603533029556274,
0.04698033630847931,
-0.027418440207839012,
0.07999566942453384,
0.06391734629869461,
0.022561073303222656,
-0.004965555388480425,
-0.07702840864658356,
-0.04419982060790062,
-0.05922152101993561,
-0.06752296537160873,
0.038251325488090515,
-0.0522107370197773,
0.07655780017375946,
0.004462918732315302,
-0.03914841637015343,
0.022873707115650177,
0.23809395730495453,
-0.04486997053027153,
0.06997809559106827,
-0.11519522219896317,
0.25247862935066223,
-0.035609129816293716,
0.0337616465985775,
0.020706871524453163,
-0.08706538379192352,
0.013439284637570381,
0.20264343917369843,
0.1461769938468933,
-0.04725489765405655,
0.007301350589841604,
-0.059569649398326874,
0.023041732609272003,
0.007812567986547947,
0.03777284920215607,
0.07993745058774948,
0.17356649041175842,
-0.07827350497245789,
0.001319620292633772,
-0.045871902257204056,
-0.044336285442113876,
-0.038233496248722076,
0.01354195736348629,
0.02488548867404461,
0.006217248737812042,
-0.131137877702713,
0.05032556876540184,
-0.05744418874382973,
-0.00037469904054887593,
0.00043261380051262677,
-0.11510754376649857,
-0.07179206609725952,
0.016320444643497467,
-0.021414168179035187,
-0.009803833439946175,
0.09688546508550644,
-0.040008846670389175,
0.009924990125000477,
0.15263418853282928,
-0.0014827445847913623,
-0.17885486781597137,
0.03015800192952156,
0.11609302461147308,
-0.08959726244211197,
0.1211366280913353,
-0.025357188656926155,
-0.0075875259935855865,
0.09414085000753403,
0.019802410155534744,
-0.12724538147449493,
0.10171730071306229,
-0.02832096442580223,
-0.0487879142165184,
0.035333242267370224,
0.1144455224275589,
-0.011923111975193024,
0.08169088512659073,
0.0021651391871273518,
-0.17817246913909912,
0.03252283111214638,
0.04016495496034622,
-0.06555091589689255,
-0.08853088319301605,
0.042012497782707214,
-0.08682287484407425,
0.10558513551950455,
0.10920646786689758,
-0.011805170215666294,
-0.061149366199970245,
-0.06269914656877518,
0.016631660982966423,
-0.01845868118107319,
-0.007585515733808279,
0.01890035718679428,
-0.10045889019966125,
-0.018850920721888542,
0.09853348135948181,
-0.021668817847967148,
-0.2596656084060669,
-0.06143176928162575,
-0.024481361731886864,
0.014981523156166077,
0.008724141865968704,
0.035710446536540985,
0.02925780415534973,
0.02774500660598278,
-0.004168973304331303,
-0.08918093144893646,
0.024119852110743523,
0.11454229801893234,
-0.09063403308391571,
-0.07888868451118469
] |
null | null |
transformers
|
# Description
This model takes a tweet with the word "jew" in it, and determines if it's antisemitic.
Training data:
This model was trained on 4k tweets, where ~50% were labeled as antisemitic.
I labeled them myself based on personal experience and knowledge about common antisemitic tropes.
Note:
The goal for this model is not to be used as a final say on what is or is not antisemitic, but rather as a first pass on what might be antisemitic and should be reviewed by human experts.
Please keep in mind that I'm not an expert on antisemitism or hatespeech.
Whether something is antisemitic or not depends on the context, as for any hate speech, and everyone has a different definition for what is hate speech.
If you would like to collaborate on antisemitism detection, please feel free to contact me at [email protected]
This model is not ready for production, it needs more evaluation and more training data.
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 21194454
- CO2 Emissions (in grams): 2.0686690092905224
- Dataset: https://huggingface.co/datasets/astarostap/autonlp-data-antisemitism-2
## Validation Metrics
- Loss: 0.5291365385055542
- Accuracy: 0.7572692793931732
- Precision: 0.7126948775055679
- Recall: 0.835509138381201
- AUC: 0.8185826549941126
- F1: 0.7692307692307693
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/astarostap/autonlp-antisemitism-2-21194454
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("astarostap/autonlp-antisemitism-2-21194454", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("astarostap/autonlp-antisemitism-2-21194454", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
{"language": "en", "tags": "autonlp", "datasets": ["astarostap/autonlp-data-antisemitism-2"], "widget": [{"text": "the jews have a lot of power"}], "co2_eq_emissions": 2.0686690092905224}
|
text-classification
|
astarostap/autonlp-antisemitism-2-21194454
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"en",
"dataset:astarostap/autonlp-data-antisemitism-2",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #bert #text-classification #autonlp #en #dataset-astarostap/autonlp-data-antisemitism-2 #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
|
# Description
This model takes a tweet with the word "jew" in it, and determines if it's antisemitic.
Training data:
This model was trained on 4k tweets, where ~50% were labeled as antisemitic.
I labeled them myself based on personal experience and knowledge about common antisemitic tropes.
Note:
The goal for this model is not to be used as a final say on what is or is not antisemitic, but rather as a first pass on what might be antisemitic and should be reviewed by human experts.
Please keep in mind that I'm not an expert on antisemitism or hatespeech.
Whether something is antisemitic or not depends on the context, as for any hate speech, and everyone has a different definition for what is hate speech.
If you would like to collaborate on antisemitism detection, please feel free to contact me at starosta@URL
This model is not ready for production, it needs more evaluation and more training data.
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 21194454
- CO2 Emissions (in grams): 2.0686690092905224
- Dataset: URL
## Validation Metrics
- Loss: 0.5291365385055542
- Accuracy: 0.7572692793931732
- Precision: 0.7126948775055679
- Recall: 0.835509138381201
- AUC: 0.8185826549941126
- F1: 0.7692307692307693
## Usage
You can use cURL to access this model:
Or Python API:
|
[
"# Description\n\nThis model takes a tweet with the word \"jew\" in it, and determines if it's antisemitic.\n\nTraining data:\n\nThis model was trained on 4k tweets, where ~50% were labeled as antisemitic.\n\nI labeled them myself based on personal experience and knowledge about common antisemitic tropes.\n\nNote:\n\nThe goal for this model is not to be used as a final say on what is or is not antisemitic, but rather as a first pass on what might be antisemitic and should be reviewed by human experts.\n\nPlease keep in mind that I'm not an expert on antisemitism or hatespeech.\n\nWhether something is antisemitic or not depends on the context, as for any hate speech, and everyone has a different definition for what is hate speech.\n\nIf you would like to collaborate on antisemitism detection, please feel free to contact me at starosta@URL\n\nThis model is not ready for production, it needs more evaluation and more training data.",
"# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 21194454\n- CO2 Emissions (in grams): 2.0686690092905224\n- Dataset: URL",
"## Validation Metrics\n\n- Loss: 0.5291365385055542\n- Accuracy: 0.7572692793931732\n- Precision: 0.7126948775055679\n- Recall: 0.835509138381201\n- AUC: 0.8185826549941126\n- F1: 0.7692307692307693",
"## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] |
[
"TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-astarostap/autonlp-data-antisemitism-2 #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n",
"# Description\n\nThis model takes a tweet with the word \"jew\" in it, and determines if it's antisemitic.\n\nTraining data:\n\nThis model was trained on 4k tweets, where ~50% were labeled as antisemitic.\n\nI labeled them myself based on personal experience and knowledge about common antisemitic tropes.\n\nNote:\n\nThe goal for this model is not to be used as a final say on what is or is not antisemitic, but rather as a first pass on what might be antisemitic and should be reviewed by human experts.\n\nPlease keep in mind that I'm not an expert on antisemitism or hatespeech.\n\nWhether something is antisemitic or not depends on the context, as for any hate speech, and everyone has a different definition for what is hate speech.\n\nIf you would like to collaborate on antisemitism detection, please feel free to contact me at starosta@URL\n\nThis model is not ready for production, it needs more evaluation and more training data.",
"# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 21194454\n- CO2 Emissions (in grams): 2.0686690092905224\n- Dataset: URL",
"## Validation Metrics\n\n- Loss: 0.5291365385055542\n- Accuracy: 0.7572692793931732\n- Precision: 0.7126948775055679\n- Recall: 0.835509138381201\n- AUC: 0.8185826549941126\n- F1: 0.7692307692307693",
"## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] |
[
70,
206,
46,
79,
17
] |
[
"passage: TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-astarostap/autonlp-data-antisemitism-2 #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n# Description\n\nThis model takes a tweet with the word \"jew\" in it, and determines if it's antisemitic.\n\nTraining data:\n\nThis model was trained on 4k tweets, where ~50% were labeled as antisemitic.\n\nI labeled them myself based on personal experience and knowledge about common antisemitic tropes.\n\nNote:\n\nThe goal for this model is not to be used as a final say on what is or is not antisemitic, but rather as a first pass on what might be antisemitic and should be reviewed by human experts.\n\nPlease keep in mind that I'm not an expert on antisemitism or hatespeech.\n\nWhether something is antisemitic or not depends on the context, as for any hate speech, and everyone has a different definition for what is hate speech.\n\nIf you would like to collaborate on antisemitism detection, please feel free to contact me at starosta@URL\n\nThis model is not ready for production, it needs more evaluation and more training data.# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 21194454\n- CO2 Emissions (in grams): 2.0686690092905224\n- Dataset: URL## Validation Metrics\n\n- Loss: 0.5291365385055542\n- Accuracy: 0.7572692793931732\n- Precision: 0.7126948775055679\n- Recall: 0.835509138381201\n- AUC: 0.8185826549941126\n- F1: 0.7692307692307693## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:"
] |
[
-0.05799151957035065,
0.15773797035217285,
-0.004195948131382465,
0.10490330308675766,
0.07984144985675812,
0.036021217703819275,
0.2144564390182495,
0.049712490290403366,
0.12653452157974243,
-0.01961629092693329,
0.06356450170278549,
-0.034235093742609024,
0.0291273295879364,
0.11117657274007797,
-0.006935311947017908,
-0.210473895072937,
-0.010324872098863125,
0.006740675773471594,
0.030050942674279213,
0.09556705504655838,
0.11142614483833313,
-0.06371193379163742,
0.030786361545324326,
-0.013539565727114677,
-0.13101200759410858,
0.011368871666491032,
-0.015034371986985207,
-0.07333557307720184,
0.128701314330101,
0.05003850534558296,
0.11603950709104538,
-0.01693836972117424,
0.0727381631731987,
-0.15762192010879517,
0.033609382808208466,
0.08975617587566376,
-0.013455452397465706,
0.030376574024558067,
0.06927625089883804,
-0.17788785696029663,
0.18664975464344025,
-0.0710206925868988,
0.05054121091961861,
0.12770165503025055,
-0.15260955691337585,
-0.10033285617828369,
-0.06327914446592331,
0.1607397049665451,
0.16896240413188934,
0.06892432272434235,
-0.051447149366140366,
0.06588196009397507,
0.05354153364896774,
0.11200852692127228,
0.05529503524303436,
-0.048826802521944046,
-0.01629900187253952,
-0.031446121633052826,
-0.06746967881917953,
0.04978632554411888,
-0.1440335512161255,
0.01980312541127205,
0.0919485092163086,
0.05583871901035309,
0.10449731349945068,
-0.1029742881655693,
0.05716833844780922,
-0.062201764434576035,
-0.12847325205802917,
-0.07046966999769211,
0.07578667998313904,
0.07847275584936142,
-0.07355181127786636,
-0.06530261784791946,
-0.03488161787390709,
-0.08704885095357895,
-0.00461267726495862,
-0.003308140207082033,
-0.04014494642615318,
-0.015660326927900314,
0.01622260920703411,
-0.0732392966747284,
-0.06634365767240524,
0.013056815601885319,
-0.081229068338871,
0.2525714039802551,
-0.021453741937875748,
0.06418805569410324,
0.012969418428838253,
0.035257019102573395,
-0.08378665149211884,
-0.09538697451353073,
-0.03225089609622955,
-0.007287633139640093,
-0.15787923336029053,
-0.03187747299671173,
-0.014772279188036919,
-0.027356762439012527,
-0.06869642436504364,
0.06974077969789505,
-0.010924084112048149,
0.04208697751164436,
-0.07501707971096039,
-0.022919191047549248,
0.1525619477033615,
0.09487365931272507,
0.00797147024422884,
-0.07065613567829132,
0.011653067544102669,
-0.0027613071724772453,
-0.0040370021015405655,
-0.022455044090747833,
-0.03429808095097542,
-0.026549987494945526,
0.05920349434018135,
0.10382085293531418,
0.02387547492980957,
0.11444992572069168,
-0.014316399581730366,
-0.03225793316960335,
0.01737053133547306,
-0.10897071659564972,
0.051042232662439346,
0.08692815154790878,
-0.047082919627428055,
0.03618543595075607,
-0.00425788713619113,
-0.036659106612205505,
-0.07045584917068481,
0.0050601353868842125,
-0.061434026807546616,
0.06953468173742294,
-0.07676078379154205,
-0.09292108565568924,
0.07196007668972015,
0.04276760667562485,
-0.09939231723546982,
-0.11528044193983078,
-0.10193249583244324,
-0.040923990309238434,
-0.06360705196857452,
0.04380832985043526,
0.042518552392721176,
-0.07323068380355835,
0.01801416277885437,
0.004177413880825043,
-0.024077732115983963,
-0.0668599009513855,
-0.030802834779024124,
-0.02052164077758789,
-0.08939158171415329,
0.035955026745796204,
0.043450985103845596,
0.026101170107722282,
-0.05752413719892502,
0.10103017091751099,
-0.07667095959186554,
0.13104526698589325,
-0.15251968801021576,
0.01433563232421875,
-0.06161395460367203,
-0.06227336451411247,
0.045516304671764374,
-0.022497806698083878,
-0.033732667565345764,
0.21043220162391663,
-0.19905248284339905,
-0.02890477143228054,
0.03482937067747116,
-0.09308788925409317,
0.015912530943751335,
0.14939402043819427,
-0.11735660582780838,
-0.11600031703710556,
0.15789589285850525,
0.06871798634529114,
0.05283277854323387,
-0.02165919914841652,
-0.11605627089738846,
-0.000027929274438065477,
-0.0681024044752121,
0.11861242353916168,
0.02307634986937046,
-0.013217838481068611,
-0.04742201417684555,
-0.022658679634332657,
0.02128993719816208,
0.052051760256290436,
0.010685826651751995,
-0.044468898326158524,
-0.0019850151147693396,
-0.036191362887620926,
0.12485095113515854,
-0.013349526561796665,
-0.11614752560853958,
-0.06632942706346512,
-0.10832390934228897,
0.06782446801662445,
0.1783977597951889,
-0.03754265978932381,
0.0038028648123145103,
-0.152907133102417,
-0.06457030773162842,
-0.0484413243830204,
-0.024757426232099533,
-0.15220558643341064,
-0.06417293101549149,
-0.02274138107895851,
-0.0073300981894135475,
0.14354307949543,
0.05849927291274071,
0.05224957689642906,
0.040744151920080185,
-0.057818006724119186,
-0.0002934269141405821,
-0.014355476945638657,
0.027358779683709145,
-0.030627459287643433,
-0.04789034277200699,
-0.055977579206228256,
-0.021813707426190376,
0.24368694424629211,
-0.08748462051153183,
0.004752825945615768,
0.11475710570812225,
0.09558252990245819,
0.024482661858201027,
-0.0216273944824934,
0.0543251559138298,
0.03414028137922287,
-0.019821884110569954,
-0.09564055502414703,
-0.020488522946834564,
-0.033526696264743805,
-0.10364944487810135,
0.03576875105500221,
-0.22391574084758759,
-0.09102006256580353,
0.07297172397375107,
-0.018541114404797554,
-0.09455571323633194,
0.06519924104213715,
-0.026186345145106316,
0.05459761992096901,
-0.011137490160763264,
-0.02251579239964485,
0.14354243874549866,
0.022915523499250412,
0.06193771958351135,
-0.032938435673713684,
-0.06423431634902954,
-0.03815170377492905,
-0.007746041286736727,
-0.04149185121059418,
0.07020830363035202,
0.05008535087108612,
-0.31472963094711304,
0.14205986261367798,
0.12631002068519592,
-0.10847622156143188,
0.10432026535272598,
0.037835799157619476,
0.007031670305877924,
-0.08179832249879837,
-0.05977461114525795,
-0.0003915055131074041,
0.11626730859279633,
-0.08910778164863586,
-0.0012512229150161147,
-0.0029481754172593355,
-0.05383029952645302,
-0.01862187683582306,
-0.044420935213565826,
0.05462928116321564,
-0.017985032871365547,
-0.043383706361055374,
-0.06665267795324326,
-0.0817265436053276,
0.027408191934227943,
0.1347329169511795,
-0.021910056471824646,
-0.049012284725904465,
-0.04074893891811371,
-0.015110382810235023,
-0.13947375118732452,
0.1406739503145218,
-0.13639535009860992,
-0.17330244183540344,
-0.018810393288731575,
-0.031195344403386116,
-0.10234345495700836,
0.058976490050554276,
-0.03383699059486389,
-0.08394225686788559,
-0.008107224479317665,
-0.05597071349620819,
0.048753585666418076,
-0.049848370254039764,
-0.0339994803071022,
-0.010096549056470394,
0.005854400806128979,
-0.022746402770280838,
-0.09363778680562973,
-0.02755226567387581,
0.014479650184512138,
-0.020917057991027832,
0.015131036750972271,
-0.018218904733657837,
0.041837844997644424,
0.25499311089515686,
0.03294810652732849,
-0.06015835329890251,
-0.09762868285179138,
0.1491285115480423,
-0.16047842800617218,
0.0851302444934845,
0.04259653016924858,
-0.13523417711257935,
0.033524252474308014,
0.09712804108858109,
-0.023532669991254807,
-0.03095630183815956,
0.017381539568305016,
0.06781010329723358,
-0.01801176927983761,
-0.1760263741016388,
-0.10501620173454285,
-0.06048962473869324,
0.09460709989070892,
0.11334826052188873,
0.02927342988550663,
0.042519647628068924,
0.0660204067826271,
-0.14503547549247742,
-0.03348788991570473,
0.04912484064698219,
0.05247071385383606,
0.11162909120321274,
-0.04422110319137573,
0.07182329893112183,
-0.05352291837334633,
-0.05644344910979271,
0.06491874158382416,
-0.01210531871765852,
0.06768305599689484,
-0.035698436200618744,
0.15822745859622955,
0.0391622856259346,
0.038603268563747406,
0.05091691389679909,
0.03120144084095955,
0.06721967458724976,
0.02217908576130867,
0.007570902816951275,
-0.03374834731221199,
-0.12987248599529266,
0.049796681851148605,
0.1600281000137329,
0.02063801884651184,
0.013353853486478329,
-0.13883566856384277,
0.09433472901582718,
0.13867537677288055,
0.0877092033624649,
-0.25490227341651917,
-0.07144977152347565,
0.08722429722547531,
-0.04897822067141533,
-0.06049598380923271,
-0.03330465406179428,
0.05344574525952339,
-0.17850425839424133,
0.1703903079032898,
0.03447841852903366,
0.0748429149389267,
-0.09261312335729599,
-0.04443597048521042,
-0.1267995834350586,
-0.01667729951441288,
-0.09936436265707016,
0.10630951821804047,
-0.27502232789993286,
0.1228867620229721,
0.03143709525465965,
0.05731232091784477,
-0.14281237125396729,
-0.06568285077810287,
0.10123945772647858,
0.15257559716701508,
0.11701326817274094,
0.023349473252892494,
-0.07677299529314041,
-0.17181214690208435,
-0.014412501826882362,
-0.003514193231239915,
0.03924073651432991,
-0.031085072085261345,
0.06077442690730095,
0.01580902189016342,
0.0017323654610663652,
-0.007995163090527058,
-0.07601634413003922,
-0.13937251269817352,
-0.12751632928848267,
0.03738148882985115,
0.05904106795787811,
-0.024668321013450623,
-0.010794621892273426,
-0.04950438067317009,
0.0669049620628357,
0.1326151192188263,
-0.10470877587795258,
-0.09565839171409607,
-0.1605045348405838,
0.01591946743428707,
0.0806037038564682,
-0.13782356679439545,
-0.02606232278048992,
0.014956087805330753,
0.20982076227664948,
-0.08563072979450226,
-0.07610238343477249,
-0.03542209044098854,
-0.05823832005262375,
-0.11767338216304779,
-0.012393102049827576,
0.15596617758274078,
0.08617141097784042,
0.13615408539772034,
0.10012467950582504,
0.035683780908584595,
0.07841482013463974,
-0.14255115389823914,
0.04382883384823799,
0.023430388420820236,
-0.02657976746559143,
0.13017195463180542,
0.02205492928624153,
-0.20456618070602417,
-0.15241210162639618,
0.009954273700714111,
0.14012452960014343,
0.28494811058044434,
-0.045722704380750656,
0.02935851737856865,
0.09191875904798508,
-0.1063641682267189,
-0.21386589109897614,
0.023791847750544548,
0.06690951436758041,
0.04034709930419922,
0.0018941726302728057,
-0.11370178312063217,
-0.03370582312345505,
0.039743635803461075,
0.008164314553141594,
-0.008593724109232426,
-0.16470399498939514,
-0.10365529358386993,
0.26472750306129456,
0.013855282217264175,
-0.07831819355487823,
-0.037856172770261765,
0.010763982310891151,
-0.1788025200366974,
-0.002447778359055519,
0.25049081444740295,
-0.032183241099119186,
0.05722137540578842,
0.03406797721982002,
0.10734068602323532,
0.034495770931243896,
-0.010881819762289524,
0.11926978826522827,
0.11669333279132843,
0.13389484584331512,
-0.11646934598684311,
-0.18446220457553864,
0.042422231286764145,
-0.0619102343916893,
0.06673145294189453,
-0.07728099077939987,
-0.019062040373682976,
-0.14173553884029388,
-0.06682121753692627,
-0.06345975399017334,
0.12834331393241882,
-0.04287584498524666,
-0.09081560373306274,
-0.09975272417068481,
0.0408107228577137,
-0.0005084607400931418,
-0.04402826353907585,
-0.013365636579692364,
-0.06681692600250244,
0.05705675855278969,
0.1974411904811859,
0.2114492654800415,
0.02204038016498089,
0.003722459077835083,
-0.00982649065554142,
-0.03401147574186325,
0.0043272520415484905,
-0.09892089664936066,
0.04262687638401985,
0.04957478120923042,
0.038906268775463104,
0.20844726264476776,
0.017010783776640892,
-0.10738788545131683,
0.07429586350917816,
0.01080531906336546,
-0.056770917028188705,
-0.21799206733703613,
-0.0005274943541735411,
-0.007607466075569391,
-0.13602563738822937,
-0.012457962147891521,
0.17347407341003418,
-0.05627432093024254,
0.004896367434412241,
0.002805998781695962,
0.007952301762998104,
-0.02848832495510578,
0.10900534689426422,
0.11342298984527588,
0.06596958637237549,
-0.01584024168550968,
0.002510959515348077,
0.08254990726709366,
-0.06400401890277863,
0.05518148094415665,
0.10322834551334381,
-0.105793796479702,
-0.10662315785884857,
-0.040552180260419846,
0.11092221736907959,
-0.08087050914764404,
-0.033101532608270645,
0.06082654371857643,
-0.08465337753295898,
0.011902760714292526,
0.1581527292728424,
0.016900114715099335,
0.09701287746429443,
-0.05308430641889572,
0.02570050209760666,
-0.03705969825387001,
0.045441996306180954,
0.007607161998748779,
0.027107611298561096,
0.01806870475411415,
0.3141292333602905,
0.030785249546170235,
0.12245246022939682,
-0.03886783495545387,
-0.07881787419319153,
-0.057810936123132706,
0.006837843917310238,
-0.15864130854606628,
-0.00618987251073122,
-0.08242826908826828,
0.0655021145939827,
0.01585661992430687,
-0.037442658096551895,
-0.03175903856754303,
0.051584117114543915,
-0.07063207030296326,
-0.0035764339845627546,
0.03219681978225708,
0.029171152040362358,
-0.16823577880859375,
-0.030050862580537796,
0.14017456769943237,
-0.012971427291631699,
0.10011597722768784,
0.054053835570812225,
-0.03992171585559845,
0.0276624895632267,
-0.05791653320193291,
-0.015024875290691853,
0.013626759871840477,
0.03549812361598015,
0.032285142689943314,
-0.04640677198767662,
0.027733759954571724,
0.015147420577704906,
0.06732503324747086,
0.08442701399326324,
0.11883458495140076,
0.0009256708435714245,
0.005060772877186537,
0.056730374693870544,
-0.07853732258081436,
-0.07659559696912766,
0.08918866515159607,
0.04962737485766411,
0.029489893466234207,
0.1303551346063614,
0.007762504275888205,
0.09967222809791565,
-0.18818221986293793,
0.032487936317920685,
-0.02230781875550747,
-0.02239016816020012,
0.007357587106525898,
-0.04202239587903023,
0.08421186357736588,
-0.015742197632789612,
0.0412580706179142,
-0.018514007329940796,
-0.04567542299628258,
0.08929702639579773,
-0.00456247478723526,
-0.052143361419439316,
-0.0004934685421176255,
0.09804223477840424,
-0.03682847321033478,
-0.0832943320274353,
0.07089100778102875,
-0.07297112792730331,
0.016550567001104355,
-0.07600103318691254,
0.06777644902467728,
0.04619234427809715,
0.07755931466817856,
0.006501161493360996,
0.05257835611701012,
-0.02806823141872883,
0.02019740268588066,
-0.07549397647380829,
-0.01131854671984911,
0.034834474325180054,
-0.07006121426820755,
0.1198090985417366,
0.09972164034843445,
-0.1098393127322197,
0.05918307602405548,
-0.006923366338014603,
-0.09171884506940842,
-0.09686009585857391,
-0.18817861378192902,
-0.042417194694280624,
-0.03258495405316353,
0.022742781788110733,
-0.06886493414640427,
-0.04646966978907585,
0.10359035432338715,
0.06290623545646667,
-0.03192093223333359,
0.06691114604473114,
-0.14573289453983307,
-0.11188069730997086,
0.07298729568719864,
0.008063767105340958,
0.02814219519495964,
-0.017117226496338844,
0.01896027661859989,
0.04957466572523117,
-0.025277849286794662,
0.11102890223264694,
-0.0013906621607020497,
0.0010061465436592698,
0.07159934192895889,
-0.07830307632684708,
-0.0673869401216507,
0.02456970512866974,
0.0121200792491436,
0.04313109442591667,
0.20121930539608002,
0.05114264786243439,
0.06453057378530502,
0.0029737530276179314,
0.13542504608631134,
0.001427242299541831,
-0.11222627013921738,
-0.1310853809118271,
0.21727989614009857,
-0.04342330992221832,
-0.006143277511000633,
-0.01739399880170822,
-0.07259359210729599,
0.0692373514175415,
0.03362525254487991,
0.19302141666412354,
-0.10486380010843277,
0.020973898470401764,
-0.1286386102437973,
0.02958535961806774,
0.03809136897325516,
0.0490943118929863,
-0.057989928871393204,
0.10849852114915848,
-0.0665646493434906,
0.1641848236322403,
0.06202389672398567,
-0.03531081601977348,
0.0029011047445237637,
0.12093862146139145,
-0.1340584009885788,
0.028297297656536102,
-0.03060438297688961,
0.1241019144654274,
-0.021511714905500412,
-0.168940469622612,
-0.0792597308754921,
-0.048680681735277176,
-0.13540074229240417,
0.08233298361301422,
-0.05379577726125717,
0.1051778793334961,
0.07375159114599228,
0.0037814702372998,
-0.030377652496099472,
0.12531855702400208,
-0.014029479585587978,
-0.0887620821595192,
-0.08975575864315033,
0.1185615286231041,
0.02040898986160755,
0.13797727227210999,
0.020397737622261047,
0.12765009701251984,
0.10835148394107819,
0.006107930094003677,
-0.09407338500022888,
0.07711514830589294,
0.041070371866226196,
0.04849867522716522,
0.0432390458881855,
0.15387649834156036,
-0.03613116592168808,
0.03719146177172661,
0.04242338612675667,
-0.053965575993061066,
0.09886747598648071,
-0.10566737502813339,
-0.01076531782746315,
-0.09350598603487015,
0.07645473629236221,
-0.07149617373943329,
0.09560274332761765,
0.10269910842180252,
-0.021274341270327568,
-0.05480867996811867,
-0.04165376350283623,
-0.0897715613245964,
0.006334497593343258,
-0.027408629655838013,
-0.028833093121647835,
-0.09373204410076141,
-0.04944462329149246,
-0.11332468688488007,
0.003125529270619154,
-0.11734072118997574,
-0.004713465925306082,
-0.005912779830396175,
-0.05153859406709671,
0.07425593584775925,
0.04223201796412468,
-0.04355667158961296,
0.007571628782898188,
-0.04388251528143883,
-0.18362495303153992,
0.0391109436750412,
0.0602618083357811,
-0.05922817811369896,
-0.048912931233644485
] |
null | null |
transformers
|
This model takes a tweet with the word "jew" in it, and determines if it's antisemitic.
*Training data:*
This model was trained on 4k tweets, where ~50% were labeled as antisemitic.
I labeled them myself based on personal experience and knowledge about common antisemitic tropes.
*Note:*
The goal for this model is not to be used as a final say on what is or is not antisemitic, but rather as a first pass on what might be antisemitic and should be reviewed by human experts.
Please keep in mind that I'm not an expert on antisemitism or hatespeech.
Whether something is antisemitic or not depends on the context, as for any hate speech, and everyone has a different definition for what is hate speech.
If you would like to collaborate on antisemitism detection, please feel free to contact me at [email protected]
This model is not ready for production, it needs more evaluation and more training data.
|
{"license": "mit", "widget": [{"text": "Jews run the world."}]}
|
text-classification
|
astarostap/distilbert-cased-antisemitic-tweets
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #distilbert #text-classification #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
This model takes a tweet with the word "jew" in it, and determines if it's antisemitic.
*Training data:*
This model was trained on 4k tweets, where ~50% were labeled as antisemitic.
I labeled them myself based on personal experience and knowledge about common antisemitic tropes.
*Note:*
The goal for this model is not to be used as a final say on what is or is not antisemitic, but rather as a first pass on what might be antisemitic and should be reviewed by human experts.
Please keep in mind that I'm not an expert on antisemitism or hatespeech.
Whether something is antisemitic or not depends on the context, as for any hate speech, and everyone has a different definition for what is hate speech.
If you would like to collaborate on antisemitism detection, please feel free to contact me at starosta@URL
This model is not ready for production, it needs more evaluation and more training data.
|
[] |
[
"TAGS\n#transformers #pytorch #distilbert #text-classification #license-mit #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
43
] |
[
"passage: TAGS\n#transformers #pytorch #distilbert #text-classification #license-mit #autotrain_compatible #endpoints_compatible #region-us \n"
] |
[
-0.02632026933133602,
0.08937812596559525,
-0.006793069187551737,
0.02971336990594864,
0.18027707934379578,
0.041704583913087845,
0.1261584609746933,
0.11502381414175034,
0.057080116122961044,
-0.05954554304480553,
0.10801713913679123,
0.2682779133319855,
-0.029063798487186432,
0.08690551668405533,
-0.11772836744785309,
-0.2831032872200012,
0.0639876276254654,
0.06915897876024246,
0.0504952073097229,
0.10590090602636337,
0.1143721491098404,
-0.07030612975358963,
0.05954659730195999,
-0.013624148443341255,
-0.11957606673240662,
0.018067361786961555,
0.0442696288228035,
-0.11985703557729721,
0.09853857010602951,
0.045883793383836746,
0.12362431734800339,
0.07148349285125732,
-0.02750290185213089,
-0.15465976297855377,
0.026141894981265068,
-0.026205888018012047,
-0.10151392221450806,
0.043181926012039185,
0.06321755796670914,
-0.0800311416387558,
0.07813369482755661,
0.04354266822338104,
0.021922364830970764,
0.06461621075868607,
-0.11909624934196472,
-0.13031722605228424,
-0.056684911251068115,
0.07316385209560394,
0.07010672241449356,
0.057792793959379196,
0.019965114071965218,
0.13304157555103302,
-0.12470997869968414,
0.0957544818520546,
0.061584148555994034,
-0.3233284652233124,
0.011255674064159393,
0.11762646585702896,
0.03921287879347801,
0.00456131249666214,
-0.0493113175034523,
0.04379167780280113,
0.03534255176782608,
0.01060557086020708,
-0.0006340285763144493,
-0.06542565673589706,
-0.06319775432348251,
0.027879120782017708,
-0.06048550456762314,
-0.05826716870069504,
0.2058231234550476,
-0.05783849582076073,
0.029946936294436455,
-0.05901490896940231,
-0.05974188074469566,
-0.018136929720640182,
-0.02545858919620514,
0.04852355644106865,
-0.020343715324997902,
0.08742981404066086,
0.04749882593750954,
0.0011682494077831507,
-0.1297636181116104,
0.020795276388525963,
-0.22884386777877808,
0.15446501970291138,
0.01914515160024166,
0.04757556691765785,
-0.14013288915157318,
0.07344518601894379,
0.02987847663462162,
-0.10100853443145752,
0.009122109971940517,
-0.09376957267522812,
0.07145259529352188,
-0.0357854887843132,
-0.06607421487569809,
0.011472285725176334,
0.08459045737981796,
0.20158138871192932,
0.013577430509030819,
0.024892248213291168,
-0.028793904930353165,
0.11222555488348007,
0.014306114055216312,
0.10488488525152206,
0.06479452550411224,
0.004825290758162737,
0.048947010189294815,
-0.1454155147075653,
0.02919129654765129,
-0.046254999935626984,
-0.1851169914007187,
-0.031064124777913094,
0.01619722507894039,
0.09785626083612442,
0.013045578263700008,
0.082712821662426,
-0.06845135241746902,
-0.011266887187957764,
0.1488221138715744,
-0.06676726788282394,
0.019620362669229507,
0.004431695677340031,
0.03502219542860985,
0.06965715438127518,
0.0031647479627281427,
0.004371939692646265,
-0.05427122116088867,
0.16199487447738647,
-0.05193982273340225,
0.004033353179693222,
-0.027520643547177315,
-0.06299463659524918,
0.05655603110790253,
-0.150416299700737,
0.033634211868047714,
-0.15780900418758392,
-0.1454908549785614,
0.014869867824018002,
0.02986787259578705,
0.005362384021282196,
-0.04765928164124489,
0.004592460580170155,
0.0055206152610480785,
0.03895455598831177,
-0.07125315070152283,
-0.08987616747617722,
-0.08080413937568665,
0.10923958569765091,
-0.06253605335950851,
0.04256655275821686,
-0.17875464260578156,
0.0710931047797203,
-0.11430439352989197,
-0.01694423519074917,
-0.07533816993236542,
0.021891631186008453,
-0.0665946677327156,
0.1697728931903839,
0.0032868727575987577,
-0.06446019560098648,
-0.017342086881399155,
0.04226171597838402,
-0.07681314647197723,
0.13623738288879395,
-0.10804381966590881,
-0.09630738943815231,
0.17109622061252594,
-0.124054454267025,
-0.1527615338563919,
0.07094072550535202,
-0.015877757221460342,
0.03514368087053299,
0.0989769697189331,
0.19423708319664001,
0.1118672639131546,
-0.034866221249103546,
0.06779802590608597,
0.1281972974538803,
-0.1060011014342308,
-0.16321037709712982,
0.012852121144533157,
-0.031018881127238274,
-0.09148283302783966,
0.058040741831064224,
0.020709063857793808,
0.07490946352481842,
-0.026618830859661102,
-0.05209269002079964,
-0.02545318752527237,
-0.004287036135792732,
0.09343364089727402,
0.053063079714775085,
0.08756525069475174,
-0.0843929871916771,
0.009345239959657192,
0.044811710715293884,
-0.007901355624198914,
0.037243492901325226,
0.03498005494475365,
-0.07544936239719391,
0.09686969965696335,
0.06716549396514893,
0.012969995848834515,
-0.18118764460086823,
-0.03319042921066284,
-0.013217617757618427,
0.09858021885156631,
0.018481306731700897,
0.1065305769443512,
0.025007227435708046,
-0.03995303809642792,
-0.015261965803802013,
-0.01758291758596897,
0.16433604061603546,
0.04040642827749252,
-0.03880104050040245,
-0.080547995865345,
0.04643090069293976,
-0.04568789526820183,
-0.0009464710601605475,
-0.053288571536540985,
0.025918787345290184,
0.08578483760356903,
0.08642839640378952,
-0.025934960693120956,
0.08537887036800385,
-0.04141603782773018,
0.05665083974599838,
-0.07045866549015045,
0.015739768743515015,
0.12793762981891632,
0.015637431293725967,
-0.07643363624811172,
0.18822474777698517,
-0.1168438121676445,
0.27215325832366943,
0.21246975660324097,
-0.2299083173274994,
0.011731544509530067,
-0.07199161499738693,
-0.017443053424358368,
0.020853446796536446,
0.02579043246805668,
0.023095283657312393,
0.044689714908599854,
0.0035412844736129045,
0.1878300905227661,
-0.03869309276342392,
-0.03361387550830841,
-0.01923968642950058,
-0.050415750592947006,
-0.03630681335926056,
0.06665470451116562,
0.1364016830921173,
-0.2299683392047882,
0.19635918736457825,
0.2539025843143463,
0.04375864565372467,
0.15412276983261108,
-0.050993580371141434,
0.05093930661678314,
0.06034577265381813,
-0.03661923110485077,
-0.01731061190366745,
-0.0443604439496994,
-0.14593254029750824,
-0.011605809442698956,
0.08940370380878448,
0.014729829505085945,
0.054670121520757675,
-0.13948661088943481,
-0.057038549333810806,
0.003432221943512559,
-0.003927008714526892,
-0.05858252942562103,
0.09838362783193588,
0.05207841843366623,
0.09022151678800583,
-0.04062487185001373,
-0.08923511952161789,
0.13584649562835693,
0.005536684766411781,
-0.074151910841465,
0.1625651717185974,
-0.1582249402999878,
-0.2881765067577362,
-0.1703692078590393,
-0.19543789327144623,
-0.009491442702710629,
0.05040307715535164,
0.14216098189353943,
-0.0522330105304718,
-0.04983167350292206,
0.02506859228014946,
-0.05901075527071953,
-0.02985180728137493,
0.0026878563221544027,
-0.08643370121717453,
0.06559374928474426,
-0.0559486523270607,
-0.10067149251699448,
-0.08101275563240051,
-0.011930176988244057,
-0.025898925960063934,
0.14860749244689941,
-0.10283245891332626,
0.06316766887903214,
0.1462985724210739,
-0.016248470172286034,
0.04628099128603935,
-0.06348077952861786,
0.16321691870689392,
-0.060298822820186615,
-0.01563062146306038,
0.21407610177993774,
-0.033543605357408524,
0.0815662294626236,
0.1736484318971634,
0.05152690038084984,
-0.05994999781250954,
0.0184699147939682,
-0.06237867474555969,
-0.0910467877984047,
-0.23400495946407318,
-0.15656661987304688,
-0.11532064527273178,
0.04707733541727066,
0.06776928901672363,
0.08497431874275208,
0.13576017320156097,
0.07828422635793686,
-0.014010898768901825,
-0.00019108741253148764,
0.022015005350112915,
0.08855322748422623,
0.3126656711101532,
-0.0030708920676261187,
0.14035607874393463,
-0.09212590008974075,
-0.0959593802690506,
0.101737380027771,
0.021261094138026237,
0.1287573277950287,
0.11798115819692612,
0.04724589362740517,
0.06296084076166153,
0.09807152301073074,
0.14835350215435028,
0.11844945698976517,
0.04780389741063118,
-0.002654869109392166,
-0.03034767135977745,
-0.01281479187309742,
-0.04730592295527458,
0.019761906936764717,
0.05025745928287506,
-0.16179925203323364,
-0.06567665189504623,
-0.1443902552127838,
0.06650049239397049,
0.08925764262676239,
0.019791383296251297,
-0.17919115722179413,
0.013217926025390625,
0.07696550339460373,
-0.009443538263440132,
-0.075236476957798,
0.07210270315408707,
-0.06994719803333282,
-0.13122166693210602,
0.12096872925758362,
-0.02983473241329193,
0.12872332334518433,
-0.04109681770205498,
0.06792441010475159,
-0.011589889414608479,
-0.13458088040351868,
0.045378584414720535,
0.12895171344280243,
-0.29899922013282776,
0.21531638503074646,
0.001193413743749261,
-0.034580305218696594,
-0.06899704039096832,
-0.01845850981771946,
0.03769011050462723,
0.24764403700828552,
0.07408249378204346,
0.005361724179238081,
-0.07780993729829788,
-0.14653412997722626,
0.005903452634811401,
-0.008303804323077202,
0.08219652622938156,
-0.017531270161271095,
-0.03564251586794853,
-0.04815714806318283,
-0.010123263113200665,
-0.02234458364546299,
-0.02171514369547367,
0.003768832189962268,
-0.18345248699188232,
0.05064897984266281,
0.05745841935276985,
0.06032712385058403,
-0.01741190254688263,
-0.04305318742990494,
-0.13520359992980957,
0.174418106675148,
-0.1317802369594574,
-0.09992239624261856,
-0.11440009623765945,
-0.125345841050148,
0.017026575282216072,
-0.06949317455291748,
0.07262145727872849,
-0.08149836212396622,
-0.011432944796979427,
-0.08973884582519531,
-0.19459612667560577,
0.10825168341398239,
-0.0950256735086441,
-0.05217359960079193,
-0.053101398050785065,
0.14889425039291382,
-0.10078170150518417,
0.017945799976587296,
0.04984493553638458,
0.02146119810640812,
-0.08560365438461304,
-0.1153489202260971,
-0.022616468369960785,
0.003994082100689411,
0.06294054538011551,
0.01417551375925541,
-0.10904967784881592,
-0.06807943433523178,
-0.011060691438615322,
-0.018160736188292503,
0.25294995307922363,
0.196848526597023,
-0.07175946980714798,
0.1913454532623291,
0.13815101981163025,
-0.09268269687891006,
-0.3253677785396576,
-0.13248080015182495,
-0.136094331741333,
-0.06880012154579163,
0.001800062833353877,
-0.14713352918624878,
0.09981361031532288,
0.0253054890781641,
-0.04867224022746086,
0.09870506823062897,
-0.17363429069519043,
-0.10487128049135208,
0.18981292843818665,
-0.02482973225414753,
0.31602299213409424,
-0.10843315720558167,
-0.10377267748117447,
-0.06721960008144379,
-0.1729217916727066,
0.16045966744422913,
0.027017055079340935,
0.09116698056459427,
-0.026308394968509674,
0.04289500415325165,
0.015068736858665943,
-0.0440572164952755,
0.10363226383924484,
0.013376463204622269,
0.04834359884262085,
-0.12385489791631699,
-0.07858865708112717,
0.06484568864107132,
0.00039878644747659564,
0.021570315584540367,
-0.08760805428028107,
0.016805557534098625,
-0.13809834420681,
-0.04271603748202324,
-0.06451737880706787,
0.08378651738166809,
0.013836333528161049,
-0.05516188219189644,
-0.024662479758262634,
-0.00429517449811101,
-0.01477059442549944,
-0.021249663084745407,
0.24825116991996765,
-0.02188553474843502,
0.12733155488967896,
0.10252868384122849,
0.11869184672832489,
-0.1625690460205078,
-0.0012452678056433797,
-0.10641168802976608,
-0.07465940713882446,
0.049550801515579224,
-0.06946852058172226,
0.03859591484069824,
0.13200925290584564,
-0.04760146513581276,
0.08147230744361877,
0.10121048986911774,
0.05055064335465431,
-0.02855277992784977,
0.15732726454734802,
-0.18317627906799316,
-0.00046268358710221946,
-0.030280273407697678,
0.01381013449281454,
0.09915052354335785,
0.055288877338171005,
0.10374753922224045,
0.03155773878097534,
-0.03736608475446701,
0.021232187747955322,
0.003398472210392356,
-0.018015874549746513,
0.05193988233804703,
0.04443979635834694,
0.027146577835083008,
-0.14775408804416656,
0.05923127010464668,
0.0496358759701252,
-0.12618453800678253,
-0.03259551152586937,
0.1074514165520668,
-0.16010966897010803,
-0.1289060115814209,
-0.04218736290931702,
0.08229266852140427,
-0.16187994182109833,
-0.0714375227689743,
-0.04581641033291817,
-0.14830242097377777,
0.05768914893269539,
0.1553357094526291,
0.11815087497234344,
0.10294406116008759,
-0.050779543817043304,
-0.06648186594247818,
0.011890185996890068,
-0.00229255692102015,
-0.047619495540857315,
0.04388374090194702,
-0.10918451100587845,
0.033307384699583054,
0.0006255621556192636,
0.11373178660869598,
-0.07245185226202011,
-0.05209621042013168,
-0.13957764208316803,
0.03290103003382683,
-0.09173183143138885,
-0.007480507250875235,
-0.10520407557487488,
-0.013308177702128887,
0.01476010400801897,
-0.04036320373415947,
-0.022463910281658173,
-0.04055149108171463,
-0.11999339610338211,
0.019228575751185417,
-0.007933586835861206,
0.08403104543685913,
-0.09888983517885208,
-0.046831514686346054,
0.08172950893640518,
-0.012869779020547867,
0.0941222757101059,
0.06717251986265182,
-0.0856374204158783,
0.08027304708957672,
-0.17715010046958923,
-0.11272651702165604,
0.12389811128377914,
0.03419585898518562,
0.048679087311029434,
0.04379025474190712,
0.03524330258369446,
0.10997924208641052,
-0.028309842571616173,
0.0649314820766449,
0.02397165074944496,
-0.1476181447505951,
0.020325234159827232,
-0.030137743800878525,
-0.1495736539363861,
-0.034952547401189804,
-0.05250480771064758,
0.11036994308233261,
0.0037235224153846502,
0.2082294374704361,
-0.05483636632561684,
0.062201499938964844,
-0.0456414669752121,
-0.00011513842036947608,
-0.02246488444507122,
-0.1873745620250702,
-0.11869646608829498,
-0.09639447927474976,
-0.02193683572113514,
0.006345880217850208,
0.2747202217578888,
0.07306530326604843,
-0.05318605527281761,
0.06682392954826355,
0.11477921903133392,
-0.005570454988628626,
-0.0038126453291624784,
0.2518129050731659,
0.07299930602312088,
-0.020705217495560646,
-0.08624971657991409,
0.04450784996151924,
-0.012185809202492237,
-0.06757315993309021,
0.12244434654712677,
0.10244270414113998,
-0.0335201658308506,
0.04782996326684952,
0.033786214888095856,
0.040650125592947006,
-0.13119739294052124,
-0.15729297697544098,
0.01773598976433277,
0.07378903031349182,
0.00011910228931810707,
0.0692409947514534,
0.09476307779550552,
-0.05147099867463112,
0.051787883043289185,
-0.029801776632666588,
-0.029906870797276497,
-0.17529605329036713,
-0.1355159878730774,
-0.07517741620540619,
-0.09447195380926132,
0.028073690831661224,
-0.04819831624627113,
0.011951352469623089,
0.06521578878164291,
0.04299071431159973,
-0.07775743305683136,
0.009095820598304272,
-0.04273821413516998,
-0.04868967458605766,
0.05296548455953598,
-0.04234122857451439,
0.016092246398329735,
-0.04350905120372772,
-0.03512107580900192,
-0.11458539962768555,
-0.043122921139001846,
-0.03975338488817215,
0.04515470191836357,
-0.02252441830933094,
0.002936122240498662,
-0.14008796215057373,
-0.09475180506706238,
-0.021981675177812576,
0.06349942088127136,
-0.017594005912542343,
0.16921350359916687,
0.004634846467524767,
0.02731897309422493,
0.06647294759750366,
0.15333104133605957,
-0.03480195999145508,
-0.12875524163246155,
-0.0043301354162395,
0.2598148584365845,
0.10217784345149994,
0.08296612650156021,
0.02360193058848381,
-0.0013684037839993834,
-0.04382026568055153,
0.26989883184432983,
0.30843713879585266,
-0.028146082535386086,
0.04728250205516815,
-0.004983760416507721,
0.027287056669592857,
0.13892951607704163,
0.15956689417362213,
0.07220590114593506,
0.23809875547885895,
-0.05054296925663948,
-0.020479751750826836,
-0.0503678135573864,
-0.010611278936266899,
-0.13125170767307281,
0.06463037431240082,
0.027583561837673187,
-0.07348758727312088,
-0.036827731877565384,
0.1204424798488617,
-0.18050605058670044,
0.13905180990695953,
0.04630209505558014,
-0.14238415658473969,
-0.029604896903038025,
-0.01712382771074772,
0.15748009085655212,
-0.00010287888289894909,
0.04364706948399544,
-0.021185146644711494,
-0.07774855941534042,
0.04741960018873215,
0.0030215673614293337,
-0.23279713094234467,
0.008083648979663849,
0.06778956949710846,
-0.031814999878406525,
0.044374145567417145,
-0.019548887386918068,
0.07077252119779587,
0.06779390573501587,
0.09243825823068619,
-0.034881651401519775,
0.10206875205039978,
0.003394818166270852,
-0.047669701278209686,
0.03399398550391197,
-0.06325411796569824,
0.008916070684790611,
-0.09150882810354233,
0.04840897396206856,
-0.13709333539009094,
0.07328978180885315,
-0.03260070085525513,
-0.07771863043308258,
-0.04792917147278786,
0.06328803300857544,
-0.06385575979948044,
0.055398959666490555,
0.056367211043834686,
0.007951225154101849,
-0.04732399806380272,
-0.058860693126916885,
-0.029645323753356934,
0.03203871101140976,
-0.18371224403381348,
-0.10874295979738235,
-0.04556792974472046,
-0.05756410211324692,
0.09281523525714874,
0.01781119965016842,
-0.1401267945766449,
-0.010709656402468681,
-0.11961261183023453,
0.03862876072525978,
-0.18381084501743317,
0.07771220058202744,
0.06116383150219917,
0.014025568962097168,
-0.004138262942433357,
-0.07494475692510605,
0.028399312868714333,
0.04236970841884613,
-0.12010159343481064,
-0.0720110535621643
] |
null | null |
transformers
|
# friendly_JA-Modelใ(T5 fine-tuned model)
MT model trained using the friendly_JA Corpus attempting to make Japanese easier/more accessible to occidental people by using the Latin/English derived katakana lexicon instead of the standard Sino-Japanese lexicon
# Examples
| input | output|
|---|---|
|ๆ้ฉๅใๅฟ็จใใๆฉๆขฐ็ฟป่จณใขใใซใฏ้ซ็ฒพๅบฆใ |ใชใใใฃใใคใผใผใทใงใณใๅฟ็จใใใใทใณใใฉใณในใฌใผใทใงใณใขใใซใฏ้ซใใขใญใฅใฉใทใผใ |
|ๅฝผใฏๆถ็ฉบใฎไธ็ใซไฝใใงใใ|ๅฝผใฏใคใใธใใชใผไธ็ใซไฝใใงใใ|
|ๆฐๅใณใญใใฆใคใซในใซๆๆใใฆใใพใฃใ|ใณใญใใฆใคใซในใซใใใฃใฆใใพใฃใ|
|ๆทฑๅฑคๅญฆ็ฟใฏ้ฃใใ|ใใฃใผใใฉใผใใณใฐใฏใใใใใ|
|ๆฐใใชๆฆๅฟตใ็ดนไปใใ|ๆฐใใใณใณใปใใใ็ดนไปใใ|
|ๆดฅๆณขใฎ่ญฆๅ ฑใๆตใใ|ใใใใฎใขใฉใผใใๆตใใ|
|ๅๆตทใใฉใใฎ็ฝๅฎณใฏ้ๆบๅฐใซใใ|ๅๆตทใใฉใใฎใใฃใถในใฟใผใฏใจใใปใณใฟใผใซใใ|
|ๆฏๅญใฏ้ใฉใๅ
ๅฎนใฎๆฌใ่ชญใใงใใพใฃใ|ๅญใฉใใฏใปใณใทใใฃใใชใณใณใใณใใฎๆฌใ่ชญใใงใใพใฃใ|
|ๅฝผๅฅณใฏ้็พ้ๆฑบๆธใงๆใฃใ|ๅฝผๅฅณใฏใญใฃใใทใฅใฌในใงๆใฃใ|
|ไฟๅกใฏไผ่ญฐใฎไบๅฎใ่ชฟๆดใใฆใใ|ๆ
ๅฝใฎไบบใฏใขใธใงใณใใ่ชฟๆดใใฆใใ|
|ๅไบบใจใซใฉใชใฑใซ่กใไบๅฎใใใฃใใใๅฝผๅฅณใฏใฉใใใฆใ็พ่ก้คจใซ่กใใใใฃใ|ๅใ ใกใจใซใฉใชใฑใซ่กใในใฑใธใฅใผใซใใใฃใใใๅฝผๅฅณใฏใฉใใใฆใใใฅใผใธใขใ ใซ่กใใใใฃใ|
|ๅฝ้ไผ่ญฐใซๅๅ ใใพใใ|ใคใณใฟใผใใทใงใใซใณใณใใกใฌใณในใซๅๅ ใใพใใ|
|้จ้ทใฏไปๆฅใฎไผ่ญฐใซๅๅ ใงใใใญใพใใ|้จ้ทใฏไปๆฅใฎใใผใใฃใณใฐใซๅๅ ใงใใพใใใงใใใ|
|ๆฐๅใณใญใใฆใคใซในใฎไบ้ฒๆฅ็จฎใซใใๅฟ่็ใๅคๆฐๅ ฑๅใใใฆใใ|ใณใญใใฆใคใซในใฎใฏใฏใใณใซใใใใชใซใผใใคใใฃในใใฌใใผใใใใฆใใ|
|็งใฏใธใงใธใงใฎๅฅๅฆใชๅ้บใๅฅฝใ|็งใฏใธใงใธใงใฎใใถใผใซใขใใใณใใฃใผใๅฅฝใ|
|ๆฐๅใณใญใใฆใคใซในใฆใคใซในใใชใใฏใญใณๆ ช 1ไบบๆญปไบก 8249ไบบๆๆ|ใณใญใใฆใคใซใน ใชใใฏใญใณใใชใขใณใ 1ไบบๆญปใใ 8249ไบบใคใณใใงใฏใทใงใณ|
|2021ๅนด10ๆ4ๆฅใใๅฒธ็ฐๆ้ใฏๆฅๆฌใฎ็ท็ๅคง่ฃใจใใฆๅคใใฆใใ|2021ๅนด10ๆ4ๆฅใใๅฒธ็ฐๆ้ใฏๆฅๆฌใฎใใฉใคใ ใใในใฟใผใจใใฆๅใใฆใใ|
# References
t5 japanese pre-trained model: sonoisa t5-base-japanese (https://huggingface.co/sonoisa/t5-base-japanese)
# License
Shield: [![CC BY 4.0][cc-by-shield]][cc-by]
This work is licensed under a
[Creative Commons Attribution 4.0 International License][cc-by].
[![CC BY 4.0][cc-by-image]][cc-by]
[cc-by]: http://creativecommons.org/licenses/by/4.0/
[cc-by-image]: https://i.creativecommons.org/l/by/4.0/88x31.png
[cc-by-shield]: https://img.shields.io/badge/License-CC%20BY%204.0-lightgrey.svg
|
{"language": ["ja"], "license": "cc-by-4.0", "tags": ["japanese", "easy-japanese", "friendly-japanese", "sino-japanese", "katakana"], "datasets": ["astremo/friendly_JA_corpus"], "metrics": ["bleu"]}
|
text2text-generation
|
astremo/friendly_JA
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"japanese",
"easy-japanese",
"friendly-japanese",
"sino-japanese",
"katakana",
"ja",
"dataset:astremo/friendly_JA_corpus",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"ja"
] |
TAGS
#transformers #pytorch #t5 #text2text-generation #japanese #easy-japanese #friendly-japanese #sino-japanese #katakana #ja #dataset-astremo/friendly_JA_corpus #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
friendly\_JA-Modelใ(T5 fine-tuned model)
========================================
MT model trained using the friendly\_JA Corpus attempting to make Japanese easier/more accessible to occidental people by using the Latin/English derived katakana lexicon instead of the standard Sino-Japanese lexicon
Examples
========
References
==========
t5 japanese pre-trained model: sonoisa t5-base-japanese (URL
License
=======
Shield: [](URL)
This work is licensed under a
[Creative Commons Attribution 4.0 International License](URL).
[](URL)
|
[] |
[
"TAGS\n#transformers #pytorch #t5 #text2text-generation #japanese #easy-japanese #friendly-japanese #sino-japanese #katakana #ja #dataset-astremo/friendly_JA_corpus #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
100
] |
[
"passage: TAGS\n#transformers #pytorch #t5 #text2text-generation #japanese #easy-japanese #friendly-japanese #sino-japanese #katakana #ja #dataset-astremo/friendly_JA_corpus #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.02283525839447975,
0.11698268353939056,
-0.00520660262554884,
0.07461057603359222,
0.1764368861913681,
0.05723830312490463,
0.16883054375648499,
0.16281816363334656,
-0.04989909380674362,
0.006740848068147898,
0.026050539687275887,
0.1724538803100586,
0.06022615730762482,
0.10357943177223206,
-0.08725149929523468,
-0.3333534002304077,
0.06764990836381912,
0.12325872480869293,
0.044546619057655334,
0.10671161115169525,
0.14416159689426422,
-0.05955095589160919,
0.06553474068641663,
-0.040599748492240906,
-0.14076456427574158,
0.017156098037958145,
0.0522155836224556,
-0.16207164525985718,
0.0701185017824173,
0.053280945867300034,
0.09602171927690506,
0.05137624591588974,
-0.016261611133813858,
-0.10129690170288086,
0.026189006865024567,
-0.018090562894940376,
-0.07635548710823059,
0.040066249668598175,
0.08085811883211136,
-0.0340796634554863,
0.08489309996366501,
0.021951589733362198,
-0.030737943947315216,
0.09175605326890945,
-0.10930632799863815,
-0.11034491658210754,
-0.021388990804553032,
0.030219899490475655,
0.08810199797153473,
0.09299036860466003,
-0.0358334518969059,
0.06217687577009201,
-0.13535931706428528,
0.05396563559770584,
0.10366250574588776,
-0.2562604248523712,
-0.04534374922513962,
-0.002288210904225707,
0.043111979961395264,
0.13812191784381866,
-0.02072479948401451,
0.011175443418323994,
0.04248746111989021,
-0.005156560800969601,
-0.0019136930350214243,
-0.08329097181558609,
-0.04224612936377525,
0.04055924713611603,
-0.04360092431306839,
0.04363375902175903,
0.32624295353889465,
-0.028744537383317947,
0.04050922021269798,
-0.08034081757068634,
-0.051306962966918945,
-0.0018064354080706835,
-0.04302374646067619,
-0.04527238756418228,
-0.02958669513463974,
0.012733113020658493,
0.054943960160017014,
-0.0335850715637207,
-0.1358354240655899,
-0.020085252821445465,
-0.10627060383558273,
0.10135941207408905,
0.061798904091119766,
-0.012787495739758015,
-0.13422036170959473,
0.006732779089361429,
0.06078629940748215,
-0.14304088056087494,
0.01373671367764473,
-0.11779678612947464,
0.06608191877603531,
0.06441089510917664,
0.02289746142923832,
-0.10903589427471161,
0.11588016152381897,
0.05876100808382034,
0.06331534683704376,
0.0269908607006073,
-0.03963243588805199,
0.06305111944675446,
0.007016700226813555,
0.012564901262521744,
0.00860192533582449,
-0.0650428980588913,
0.05092350393533707,
-0.03713186830282211,
0.03298484534025192,
-0.012914242222905159,
-0.18367666006088257,
-0.0829489678144455,
0.01540987379848957,
0.06932416558265686,
-0.033641085028648376,
0.1252143830060959,
-0.032996341586112976,
-0.046318039298057556,
0.1313808113336563,
-0.13860104978084564,
0.005479041021317244,
0.011998014524579048,
-0.0390690378844738,
0.1559811681509018,
-0.057710155844688416,
-0.025534389540553093,
-0.09540998190641403,
0.03675045818090439,
-0.0389239639043808,
0.015688784420490265,
-0.02741052769124508,
-0.06432541459798813,
0.05461562052369118,
-0.1187007799744606,
0.023254405707120895,
-0.18464210629463196,
-0.11480602622032166,
0.0027974140830338,
-0.00436759227886796,
-0.012505446560680866,
-0.05405670776963234,
-0.057973120361566544,
-0.014716698788106441,
0.023271549493074417,
-0.07019253820180893,
-0.02556109055876732,
-0.08038797974586487,
0.1169603243470192,
-0.013484148308634758,
0.06553412228822708,
-0.11289067566394806,
0.06982278823852539,
-0.10059802979230881,
-0.0748877003788948,
-0.09414391964673996,
0.009916158393025398,
-0.03314979746937752,
0.06824804842472076,
-0.01563173532485962,
-0.005641547963023186,
0.01585554890334606,
0.06988149136304855,
-0.06511273980140686,
0.20077870786190033,
-0.12867936491966248,
-0.09642019867897034,
0.22153036296367645,
-0.12341639399528503,
-0.1601981818675995,
0.10762976109981537,
0.004033450502902269,
0.10673625022172928,
0.07569374144077301,
0.17868448793888092,
-0.01420124527066946,
-0.030964158475399017,
0.05787009000778198,
0.003959359601140022,
-0.08547238260507584,
-0.0840180441737175,
0.03625085577368736,
0.06105156987905502,
-0.07412424683570862,
0.09251586347818375,
0.044455017894506454,
0.02683400735259056,
-0.04644224792718887,
-0.07679921388626099,
-0.01792421191930771,
-0.05989639088511467,
0.03516914322972298,
0.05714206025004387,
0.0875747948884964,
-0.08062095195055008,
-0.05345292389392853,
0.04421765357255936,
0.026410600170493126,
-0.04979934170842171,
0.013533223420381546,
-0.08975408971309662,
0.11073336005210876,
0.007286462467163801,
0.04483265057206154,
-0.07929796725511551,
0.013619831763207912,
0.018474753946065903,
0.1665252149105072,
0.03541326895356178,
0.03734830394387245,
0.025994110852479935,
-0.022074073553085327,
-0.07978613674640656,
-0.033639028668403625,
0.12483184039592743,
0.011081457138061523,
0.013704294338822365,
-0.11030837893486023,
0.08591966331005096,
-0.0183236263692379,
0.07855499535799026,
-0.06154745817184448,
0.026826713234186172,
0.0615350678563118,
0.12688569724559784,
-0.027455568313598633,
0.11196865141391754,
0.039193011820316315,
0.05853777751326561,
-0.09224474430084229,
0.03334160894155502,
0.09659938514232635,
0.013453767634928226,
-0.11708589643239975,
0.29213374853134155,
-0.14826726913452148,
0.2466760277748108,
0.21184226870536804,
-0.12703701853752136,
-0.023380892351269722,
-0.04163169860839844,
-0.011417456902563572,
-0.013602382503449917,
0.0004356672870926559,
0.012664517387747765,
-0.019746940582990646,
-0.07816091179847717,
0.19097170233726501,
-0.10834022611379623,
0.016006017103791237,
0.032374970614910126,
-0.06795831769704819,
-0.01788676157593727,
0.126240536570549,
0.10379466414451599,
-0.1939704567193985,
0.24315914511680603,
0.12580415606498718,
-0.0023422962985932827,
0.24965761601924896,
-0.022610800340771675,
-0.042622920125722885,
0.05741741880774498,
0.014416231773793697,
0.020622260868549347,
0.0520801916718483,
-0.16779276728630066,
-0.029945552349090576,
0.07490790635347366,
0.009763510897755623,
0.032610759139060974,
-0.09928060322999954,
-0.11908476799726486,
-0.047480739653110504,
-0.04975805804133415,
0.10251437872648239,
0.09035660326480865,
0.035447731614112854,
0.15089693665504456,
-0.08387096226215363,
0.0028554440941661596,
0.08095727860927582,
0.030017107725143433,
-0.05120571330189705,
0.12138715386390686,
-0.1363360583782196,
-0.3441113233566284,
-0.10943504422903061,
-0.13235698640346527,
-0.0069944835267961025,
0.010710046626627445,
0.13736814260482788,
-0.1494194120168686,
-0.05786576122045517,
-0.03870253264904022,
-0.0119110606610775,
-0.058562226593494415,
-0.024149376899003983,
-0.1673465073108673,
0.10361362993717194,
-0.06242647394537926,
-0.07401848584413528,
-0.00755959702655673,
0.036016035825014114,
-0.07048502564430237,
0.1884736716747284,
-0.17369717359542847,
0.12935790419578552,
0.13204284012317657,
-0.000247371441219002,
0.026533327996730804,
-0.06962660700082779,
0.043291084468364716,
-0.1337066888809204,
0.0626705065369606,
0.18499043583869934,
0.000935383141040802,
0.04311821609735489,
0.13948588073253632,
0.027124587446451187,
-0.04332173615694046,
0.053413037210702896,
-0.03875968977808952,
-0.04820923134684563,
-0.28434014320373535,
-0.07276199012994766,
-0.12672601640224457,
0.10735976696014404,
0.0055188680998981,
0.07539333403110504,
0.1584050953388214,
0.09308750182390213,
-0.0482482947409153,
0.05139672011137009,
0.05444175750017166,
0.09794566035270691,
0.15386775135993958,
0.012176236137747765,
0.12860102951526642,
-0.06721370667219162,
-0.07969752699136734,
0.13153541088104248,
0.057200923562049866,
0.0458858385682106,
0.00254324940033257,
0.10427270829677582,
0.050245098769664764,
0.19675420224666595,
0.16682277619838715,
0.0335865244269371,
0.07341436296701431,
0.04187116399407387,
-0.055381596088409424,
-0.06957928091287613,
-0.019178904592990875,
0.06450868397951126,
-0.011355425231158733,
-0.1316033899784088,
-0.032635398209095,
-0.09756340086460114,
0.07656548172235489,
0.07917381823062897,
0.02512943744659424,
-0.1633327603340149,
0.010651050135493279,
0.06018062308430672,
-0.01983044296503067,
-0.07194443047046661,
0.0962841808795929,
0.06507300585508347,
-0.11896443367004395,
0.12163214385509491,
-0.008888544514775276,
0.13791543245315552,
-0.02516089752316475,
0.014266162179410458,
-0.02664436213672161,
-0.08018936216831207,
0.021520504727959633,
0.10983940958976746,
-0.41818368434906006,
0.1770325005054474,
0.0381016880273819,
0.0005419635563157499,
-0.06116956099867821,
-0.021681593731045723,
0.045084238052368164,
0.11471053212881088,
0.1418062150478363,
-0.0420369952917099,
0.010261984542012215,
-0.0445239283144474,
-0.050451360642910004,
0.05503372102975845,
0.10676980018615723,
0.04101792350411415,
-0.04227684065699577,
-0.02694193832576275,
-0.05245176702737808,
-0.06207289174199104,
0.003523419611155987,
-0.11941356956958771,
-0.19180074334144592,
0.05016542226076126,
0.09046503156423569,
0.07678715884685516,
0.017634959891438484,
-0.040099021047353745,
-0.07299403101205826,
0.1490263044834137,
-0.04975402355194092,
-0.058585066348314285,
-0.14830376207828522,
-0.08037571609020233,
0.0698482096195221,
-0.06832477450370789,
0.06354647129774094,
-0.0709230825304985,
0.015411073341965675,
-0.031326308846473694,
-0.11721097677946091,
0.05702664330601692,
-0.01590835303068161,
-0.08588287234306335,
-0.07218961417675018,
0.13308408856391907,
-0.056717634201049805,
0.03501942381262779,
0.0022441435139626265,
-0.029367487877607346,
-0.0016592362662777305,
-0.055225033313035965,
-0.02145225554704666,
0.04729196056723595,
0.11539147794246674,
-0.0016111537115648389,
-0.20452314615249634,
-0.1732572764158249,
-0.10846951603889465,
-0.1419505476951599,
0.15417081117630005,
0.17639051377773285,
-0.01871364936232567,
0.12946346402168274,
0.13386386632919312,
-0.0811014473438263,
-0.24231456220149994,
-0.11563673615455627,
-0.10393606126308441,
0.05029141902923584,
-0.09684909880161285,
-0.16804830729961395,
0.031195534393191338,
0.05032544583082199,
-0.035460881888866425,
0.05976913496851921,
-0.14087872207164764,
-0.11532337963581085,
0.01672656647861004,
0.08662344515323639,
0.1920616775751114,
-0.18012306094169617,
-0.07423572987318039,
-0.02556482143700123,
-0.18972674012184143,
0.1465967297554016,
-0.06797769665718079,
0.10587411373853683,
-0.0389508418738842,
0.023801468312740326,
0.013974418863654137,
-0.026228483766317368,
0.07407333701848984,
-0.04838353767991066,
-0.028272278606891632,
-0.1438760906457901,
-0.08014023303985596,
0.10414835810661316,
0.00950840674340725,
0.06177809461951256,
-0.12451758980751038,
-0.02351226657629013,
-0.08573953062295914,
-0.054358258843421936,
-0.07113640755414963,
-0.0007787419017404318,
0.001688409480266273,
-0.09951324760913849,
-0.03812054172158241,
0.0520680733025074,
-0.0015517553547397256,
-0.011129886843264103,
0.22202914953231812,
-0.06488975882530212,
0.10704250633716583,
0.02871604822576046,
0.14001598954200745,
-0.07302728295326233,
0.11128781735897064,
-0.12071358412504196,
-0.07639467716217041,
0.0602758564054966,
-0.16564270853996277,
0.060664281249046326,
0.06475751101970673,
-0.06557415425777435,
0.14366750419139862,
0.04383609816431999,
-0.012917036190629005,
0.03253672644495964,
0.1313338279724121,
-0.16357339918613434,
-0.012734747491776943,
-0.06484748423099518,
-0.024822982028126717,
0.10946719348430634,
0.04022121801972389,
0.11110790073871613,
-0.04519660770893097,
-0.06676729023456573,
0.0022237831726670265,
0.0024890939239412546,
-0.001997917890548706,
0.01651924103498459,
0.06385546177625656,
0.014006362296640873,
-0.0917133092880249,
0.06495266407728195,
0.09546707570552826,
-0.1992809772491455,
0.004980660974979401,
0.20718598365783691,
-0.13196130096912384,
-0.117508664727211,
0.05796602740883827,
0.1398695558309555,
-0.06523611396551132,
-0.09646956622600555,
-0.13733404874801636,
-0.10516863316297531,
0.0279882550239563,
0.15304957330226898,
0.041585441678762436,
0.04083393141627312,
0.05205247551202774,
-0.031593333929777145,
-0.046855755150318146,
0.024163488298654556,
0.02927323430776596,
0.02912745624780655,
-0.07808981835842133,
0.040199197828769684,
0.04558095708489418,
0.12653812766075134,
-0.08310726284980774,
-0.02746758982539177,
-0.14836366474628448,
0.02296275645494461,
-0.07050281018018723,
0.0455474928021431,
-0.0994306430220604,
-0.07563138008117676,
-0.0598221980035305,
-0.07388883829116821,
-0.04493867605924606,
-0.048405688256025314,
-0.0748743787407875,
0.012522552162408829,
-0.02009083889424801,
0.0666632279753685,
-0.0405515618622303,
-0.025608111172914505,
0.05283669754862785,
-0.03311724588274956,
0.08615034073591232,
0.05200407654047012,
-0.13731996715068817,
0.06592066586017609,
-0.12590710818767548,
-0.027216967195272446,
0.10101571679115295,
0.05226825922727585,
0.07492316514253616,
0.09561493992805481,
0.002537230495363474,
0.11293574422597885,
0.04276285320520401,
0.023014334961771965,
0.05832429602742195,
-0.10310844331979752,
0.05433925241231918,
-0.07261904329061508,
-0.14556065201759338,
-0.10209421068429947,
0.04526254162192345,
0.11381533741950989,
-0.021862976253032684,
0.0963350236415863,
-0.07722257822751999,
0.11052332818508148,
-0.08856622874736786,
0.0007351937820203602,
-0.0108416099101305,
-0.1949453055858612,
-0.10479888319969177,
-0.052803389728069305,
0.01607178896665573,
-0.003782623913139105,
0.17784111201763153,
0.04815812408924103,
-0.06556160748004913,
0.059570275247097015,
-0.03124960884451866,
0.038113418966531754,
0.024512406438589096,
0.2390974462032318,
0.03844176605343819,
-0.026680754497647285,
-0.0640019029378891,
0.0339508019387722,
-0.015281468629837036,
0.09569692611694336,
0.015193888917565346,
0.10391594469547272,
0.0684865415096283,
0.0949627161026001,
-0.016615984961390495,
0.05877283588051796,
-0.01497379969805479,
-0.06858868151903152,
-0.03438051789999008,
0.04888143017888069,
0.023231256753206253,
0.1568903774023056,
0.1794017255306244,
-0.04235450178384781,
0.032618653029203415,
-0.033170539885759354,
-0.06216508522629738,
-0.13299506902694702,
-0.14322572946548462,
-0.12313412874937057,
-0.11902549862861633,
0.016146400943398476,
-0.07491518557071686,
0.05839091166853905,
-0.007524872198700905,
0.08206889033317566,
-0.08037202060222626,
0.004966261796653271,
0.15126994252204895,
-0.06216350570321083,
0.09293277561664581,
-0.00593146774917841,
0.026228629052639008,
-0.021410293877124786,
-0.02706875465810299,
-0.1163061186671257,
-0.044977638870477676,
-0.040431082248687744,
0.05450662225484848,
-0.0479232594370842,
0.036126285791397095,
-0.09238538146018982,
-0.09749165922403336,
0.021573729813098907,
0.020104359835386276,
0.047735825181007385,
0.11713792383670807,
0.023444456979632378,
-0.01266637071967125,
0.06044676527380943,
0.22290369868278503,
0.030504971742630005,
-0.10311560332775116,
-0.07491711527109146,
0.11339286714792252,
0.05515462905168533,
0.013219526968896389,
0.04126151651144028,
-0.0242452435195446,
0.0008920961408875883,
0.33415743708610535,
0.2628864645957947,
-0.06130732595920563,
-0.0013886092929169536,
-0.005235462449491024,
0.024991022422909737,
0.06882433593273163,
0.14269550144672394,
0.06489741057157516,
0.22419700026512146,
-0.03226300701498985,
-0.02564975805580616,
-0.09882879257202148,
-0.009932693094015121,
-0.09823691099882126,
0.09838929772377014,
0.0654507502913475,
-0.11094832420349121,
-0.023076852783560753,
0.08541304618120193,
-0.22149135172367096,
0.10827695578336716,
-0.036589305847883224,
-0.15857340395450592,
-0.08592203259468079,
-0.043203599750995636,
0.14482267200946808,
0.014916100539267063,
0.013425947166979313,
-0.01341432798653841,
0.033161845058202744,
0.044965557754039764,
0.029686352238059044,
-0.20410816371440887,
0.03168594464659691,
0.04664311185479164,
-0.15507718920707703,
0.06458305567502975,
0.012848751619458199,
0.0005051353364251554,
0.05443209782242775,
0.0625714585185051,
-0.022345256060361862,
0.1242610290646553,
0.02091277576982975,
-0.0016670642653480172,
0.050100721418857574,
0.07264342904090881,
-0.0014397158520296216,
-0.036193910986185074,
0.05447814613580704,
-0.08816027641296387,
0.0974939689040184,
0.052696164697408676,
-0.07227189838886261,
-0.05231672152876854,
0.11539757996797562,
-0.08703295886516571,
0.0691830962896347,
0.12965980172157288,
-0.0094152158126235,
-0.06241164356470108,
-0.08539941906929016,
0.03508888930082321,
0.009488396346569061,
-0.10448729246854782,
-0.02819620817899704,
-0.11094170063734055,
-0.13788391649723053,
0.05984056740999222,
0.023292886093258858,
-0.1746012419462204,
0.006970765069127083,
-0.11576671153306961,
0.0032117802184075117,
-0.25203022360801697,
0.06199325993657112,
0.08167355507612228,
-0.0009924591286107898,
0.0014382281806319952,
-0.10143930464982986,
0.06507296115159988,
0.06108146905899048,
-0.09916853904724121,
-0.09271375834941864
] |
null | null |
transformers
|
#Harry Potter DialoGPT Model
|
{"tags": ["conversational"]}
|
text-generation
|
astrobreazy/DialoGPT-small-harrypotter
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
#Harry Potter DialoGPT Model
|
[] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
51
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null | null |
git clone https://github.com/saic-mdal/lama.git
|
{}
| null |
asyou20/1234
|
[
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#region-us
|
git clone URL
|
[] |
[
"TAGS\n#region-us \n"
] |
[
6
] |
[
"passage: TAGS\n#region-us \n"
] |
[
0.024608636274933815,
-0.026205500587821007,
-0.009666500613093376,
-0.10395516455173492,
0.08638657629489899,
0.059816278517246246,
0.01882290467619896,
0.020661840215325356,
0.23975107073783875,
-0.005599027033895254,
0.1219947561621666,
0.0015615287702530622,
-0.037353623658418655,
0.03733762726187706,
-0.0035912662278860807,
-0.17583473026752472,
0.03876631706953049,
-0.018274923786520958,
0.01843859627842903,
0.026470553129911423,
-0.07776834815740585,
-0.07564429938793182,
0.015296397730708122,
-0.10247814655303955,
-0.083692267537117,
0.11002834886312485,
0.031466204673051834,
-0.019670886918902397,
0.10779199749231339,
-0.04243955761194229,
0.18699054419994354,
-0.011512263678014278,
-0.11213519424200058,
-0.2536850869655609,
0.021806683391332626,
-0.01765260472893715,
-0.08747660368680954,
0.01506110467016697,
0.0665089413523674,
-0.09014441072940826,
-0.0588928684592247,
0.0795099288225174,
-0.01132340170443058,
0.04246443510055542,
-0.27593839168548584,
-0.12684126198291779,
-0.05297930911183357,
-0.1421966552734375,
0.08651168644428253,
0.04035491496324539,
0.008764253929257393,
0.15506891906261444,
-0.20897391438484192,
0.004104613792151213,
0.08255259692668915,
-0.2538507878780365,
0.05591634660959244,
0.17671173810958862,
0.03623908758163452,
0.18037272989749908,
0.0060391901060938835,
0.11029672622680664,
0.0716743916273117,
-0.024263937026262283,
-0.17590197920799255,
-0.08127854019403458,
-0.04696211963891983,
0.16642488539218903,
-0.06727185100317001,
-0.14248386025428772,
0.34701237082481384,
0.00015008423360995948,
0.009657775051891804,
0.16921205818653107,
-0.059524230659008026,
-0.09972117841243744,
0.07259953022003174,
0.016484731808304787,
0.018492350354790688,
0.1471305936574936,
0.16307872533798218,
-0.0458691343665123,
-0.13837823271751404,
-0.018630273640155792,
-0.22798998653888702,
0.17510560154914856,
-0.03248048573732376,
0.13137903809547424,
-0.27447956800460815,
0.01684025302529335,
-0.2570667266845703,
0.0032130838371813297,
0.04178816080093384,
-0.06004921346902847,
-0.0226522795855999,
-0.013265985064208508,
-0.08018817007541656,
0.004899587947875261,
0.06192673370242119,
0.1266920566558838,
-0.06128726154565811,
0.06128238886594772,
-0.09319206327199936,
0.141696035861969,
0.07166698575019836,
0.07868369668722153,
0.13037432730197906,
0.041205424815416336,
-0.07187089323997498,
-0.21872246265411377,
-0.0026476888451725245,
-0.06275863200426102,
-0.09502086788415909,
-0.0020165652967989445,
-0.11606067419052124,
0.17244569957256317,
-0.030802514404058456,
-0.09825427830219269,
-0.11208184063434601,
0.09148659557104111,
-0.032992321997880936,
-0.03437839448451996,
-0.03552987426519394,
-0.020977836102247238,
0.019381176680326462,
0.04704452306032181,
-0.1548958420753479,
-0.005131472367793322,
0.07039852440357208,
0.11502562463283539,
-0.1346137970685959,
-0.003783059772104025,
-0.07908964157104492,
0.03039063885807991,
0.07654735445976257,
-0.16510222852230072,
0.03158547356724739,
-0.1124754324555397,
-0.07531405985355377,
0.002912673633545637,
-0.015710093080997467,
-0.016202643513679504,
0.166526660323143,
-0.0020451415330171585,
0.0714716836810112,
-0.026345307007431984,
-0.05890209600329399,
-0.11243434250354767,
-0.08489254862070084,
0.05390460044145584,
0.03670717030763626,
0.03266148269176483,
-0.2193479984998703,
0.014805203303694725,
-0.12762966752052307,
0.1360815018415451,
-0.10566820204257965,
-0.04705966264009476,
-0.022842247039079666,
0.20562705397605896,
0.037286072969436646,
0.08762791007757187,
-0.22171171009540558,
0.039756543934345245,
-0.05404696613550186,
0.18480908870697021,
-0.1502426266670227,
-0.0799463614821434,
0.20813211798667908,
-0.07964949309825897,
-0.10115210711956024,
0.021235812455415726,
0.020391687750816345,
0.026287272572517395,
0.0766737088561058,
0.4564172327518463,
-0.09766800701618195,
-0.09146861732006073,
0.10178250074386597,
0.17055274546146393,
-0.12427149713039398,
-0.1827561855316162,
0.06446871906518936,
-0.16666454076766968,
-0.1973118633031845,
0.0018917324487119913,
0.09222044050693512,
0.038269978016614914,
-0.07875611633062363,
-0.020746968686580658,
0.06325206160545349,
-0.0007678253459744155,
0.09095914661884308,
0.03755716234445572,
0.09034032374620438,
-0.08716782182455063,
0.11115926504135132,
-0.05017651244997978,
0.004037132486701012,
0.1343354731798172,
0.027325427159667015,
-0.03223329409956932,
0.08694463223218918,
-0.0485352948307991,
0.05295134335756302,
-0.1662379503250122,
-0.15068690478801727,
0.03398871049284935,
0.06283251196146011,
0.03186952322721481,
0.1280253529548645,
0.08141885697841644,
-0.10732853412628174,
0.022690722718834877,
-0.004228927195072174,
0.058398615568876266,
0.03891623765230179,
0.006107209715992212,
0.008764320984482765,
0.0961301177740097,
-0.10607069730758667,
-0.13589619100093842,
-0.07336436957120895,
-0.014715781435370445,
0.14371353387832642,
-0.0302802175283432,
0.07690227776765823,
-0.004240254405885935,
0.00013200697139836848,
0.06930823624134064,
0.08137880265712738,
0.016412746161222458,
0.08971183747053146,
-0.05237193778157234,
-0.05160155147314072,
0.10863113403320312,
-0.13533565402030945,
0.17837053537368774,
0.14053137600421906,
-0.20532016456127167,
0.029453208670020103,
-0.06838275492191315,
0.03670361638069153,
-0.008162540383636951,
0.0975119024515152,
-0.08272241055965424,
-0.02106042578816414,
0.013134466484189034,
0.0052274600602686405,
-0.013007243163883686,
0.017682146281003952,
-0.07295988500118256,
-0.07787393033504486,
-0.10233919322490692,
0.08436838537454605,
0.11562882363796234,
-0.10282530635595322,
0.14214380085468292,
0.4384984076023102,
0.11495281755924225,
0.21582984924316406,
-0.09581480920314789,
-0.0412987545132637,
0.007486371789127588,
0.0001535322517156601,
-0.04476691037416458,
0.08031861484050751,
-0.15973517298698425,
-0.038901735097169876,
0.027348900213837624,
0.07128690183162689,
0.11475157737731934,
-0.14959022402763367,
-0.09639324247837067,
-0.00793045200407505,
0.0022841424215584993,
-0.1249532699584961,
0.023905446752905846,
-0.03974650055170059,
0.04015624523162842,
0.07232289016246796,
-0.021535737439990044,
0.13939237594604492,
-0.04166141897439957,
-0.0639561116695404,
0.07585346698760986,
-0.2017085999250412,
-0.23179671168327332,
-0.12309670448303223,
-0.14680525660514832,
0.04366797208786011,
0.05154111236333847,
0.01726446859538555,
-0.17635835707187653,
-0.015074856579303741,
0.07706750929355621,
0.07820965349674225,
-0.20886357128620148,
-0.022814949974417686,
-0.004290030337870121,
0.0895976573228836,
-0.10227091610431671,
-0.0017130117630586028,
-0.04419664293527603,
-0.10150232166051865,
0.0017003051470965147,
0.07279510796070099,
-0.137485533952713,
0.13807645440101624,
0.21589438617229462,
0.07225540280342102,
0.07359948754310608,
-0.019093448296189308,
0.09936179965734482,
-0.10856141895055771,
-0.16549113392829895,
0.08348225057125092,
-0.06234746053814888,
0.047262318432331085,
0.17534415423870087,
0.03307317942380905,
-0.13904969394207,
-0.015682822093367577,
-0.0402069091796875,
-0.15603256225585938,
-0.238995760679245,
-0.09178274869918823,
-0.1182505264878273,
0.16442428529262543,
0.0009358620154671371,
0.06651917099952698,
0.08258313685655594,
-0.022042419761419296,
0.16447891294956207,
-0.07379321753978729,
-0.07578866183757782,
-0.006978808436542749,
0.12375060468912125,
-0.056660156697034836,
-0.03080669604241848,
-0.10566964000463486,
-0.008295975625514984,
0.1151021271944046,
0.15304014086723328,
0.12214863300323486,
0.2957419455051422,
0.08268889784812927,
0.026645636186003685,
0.08958091586828232,
0.17622539401054382,
0.09495089203119278,
0.07838419824838638,
-0.045413073152303696,
-0.014814783819019794,
0.014317171648144722,
-0.04022889584302902,
0.010141594335436821,
0.14683100581169128,
-0.2679629921913147,
-0.006678564939647913,
-0.2710230350494385,
0.0965198427438736,
-0.10913380235433578,
0.11837165057659149,
-0.01015760749578476,
0.10194015502929688,
0.11082887649536133,
0.03233652561903,
-0.03858073800802231,
0.16613617539405823,
0.08450309932231903,
-0.11277695000171661,
0.001758623169735074,
0.03737903758883476,
0.09715615212917328,
-0.02818971499800682,
0.12721189856529236,
-0.11048974841833115,
-0.1464834064245224,
0.013753619976341724,
0.07152791321277618,
-0.15373679995536804,
0.3138748109340668,
0.012069208547472954,
-0.13481520116329193,
-0.01481647603213787,
-0.09957809001207352,
-0.006440147757530212,
0.1254177987575531,
0.09333524852991104,
0.07935678958892822,
-0.2185502052307129,
-0.13339371979236603,
0.05872276425361633,
-0.00575496768578887,
0.22408108413219452,
-0.034034017473459244,
-0.11356475204229355,
-0.027013886719942093,
0.04241163283586502,
-0.06043251231312752,
0.08524788916110992,
0.023536119610071182,
-0.08113526552915573,
-0.032957352697849274,
0.05323701351881027,
0.012368366122245789,
0.00524376705288887,
0.09360801428556442,
0.020107939839363098,
-0.0009265501867048442,
0.01785753294825554,
0.047885000705718994,
-0.0675911232829094,
-0.1984109878540039,
0.09357594698667526,
-0.05215044692158699,
0.0015536568826064467,
-0.08013670891523361,
-0.15122665464878082,
-0.08837161958217621,
-0.16009655594825745,
0.12540200352668762,
-0.034406669437885284,
0.12700119614601135,
-0.06619787961244583,
0.17341409623622894,
-0.07871770113706589,
0.04481020197272301,
-0.047349292784929276,
0.050332702696323395,
-0.007268077693879604,
-0.07756082713603973,
0.16585899889469147,
-0.15564003586769104,
0.01809087023139,
0.19572502374649048,
-0.018915493041276932,
0.07177707552909851,
0.021322092041373253,
-0.0636206790804863,
0.23147478699684143,
0.3014698624610901,
0.008138049393892288,
0.1665448248386383,
0.3018903136253357,
-0.07466315478086472,
-0.2642788887023926,
-0.05505012720823288,
-0.2841376066207886,
-0.05371501296758652,
0.10716094076633453,
-0.22523896396160126,
0.06986407935619354,
0.14383509755134583,
-0.06471995264291763,
0.30228954553604126,
-0.21825523674488068,
0.012589273042976856,
0.15434536337852478,
-0.08868814259767532,
0.5515313148498535,
-0.1133413165807724,
-0.17677772045135498,
-0.008122089318931103,
-0.08741296827793121,
0.10602109134197235,
-0.0340677872300148,
0.06877441704273224,
0.013465235009789467,
0.04797380417585373,
0.048932258039712906,
-0.03111894056200981,
0.22701001167297363,
0.008710170164704323,
0.09015397727489471,
-0.07378865778446198,
-0.18624304234981537,
0.11639340221881866,
-0.04359482601284981,
-0.08891059458255768,
0.0849778801202774,
-0.05942516401410103,
-0.11078983545303345,
0.04663389176130295,
-0.07950539886951447,
-0.024862350896000862,
0.08423490077257156,
-0.04678233340382576,
-0.042606171220541,
-0.008054176345467567,
-0.1618063747882843,
-0.0002289071271661669,
0.31360217928886414,
-0.07096036523580551,
0.16695955395698547,
0.03677211329340935,
0.00038613268407061696,
-0.11027684062719345,
0.030288029462099075,
-0.05203165486454964,
-0.021576624363660812,
0.09578979015350342,
-0.11096979677677155,
0.03204701095819473,
0.14160704612731934,
-0.04864364117383957,
0.05846960097551346,
0.09256096184253693,
-0.0849417969584465,
0.007583672646433115,
0.17753590643405914,
-0.17537221312522888,
-0.1273445188999176,
-0.006135711446404457,
-0.09862716495990753,
0.14055661857128143,
0.04394126310944557,
0.05191568285226822,
0.16669964790344238,
0.03967129811644554,
-0.029474308714270592,
-0.02817419543862343,
-0.1153380498290062,
-0.0201893113553524,
0.040153320878744125,
0.00045633706031367183,
-0.08791285753250122,
0.2262638509273529,
0.06409153342247009,
-0.1328488290309906,
-0.051157206296920776,
0.2161225974559784,
-0.06805316358804703,
-0.04911920800805092,
-0.223562553524971,
0.10752306133508682,
-0.07112517952919006,
-0.0965060144662857,
0.05453834682703018,
-0.02270081453025341,
0.005106312222778797,
0.181985542178154,
0.03941008821129799,
0.11070270836353302,
0.03738937899470329,
-0.02448922023177147,
0.15798696875572205,
-0.142850860953331,
-0.14191335439682007,
-0.025354057550430298,
-0.08757315576076508,
-0.13844476640224457,
-0.026804137974977493,
0.1617041826248169,
-0.09177309274673462,
-0.14772607386112213,
-0.2621181011199951,
0.10968475043773651,
-0.16432365775108337,
-0.10192688554525375,
-0.03469514101743698,
-0.08968492597341537,
0.0696166530251503,
0.030301768332719803,
-0.03093348816037178,
-0.06706760823726654,
-0.18593791127204895,
0.0816768929362297,
0.06349513679742813,
0.045533183962106705,
-0.017847947776317596,
0.0067379772663116455,
0.1720137596130371,
0.025955144315958023,
0.10040043294429779,
0.16762186586856842,
0.011397695168852806,
0.2246655523777008,
-0.1671202927827835,
-0.11496317386627197,
0.1336962729692459,
-0.026543032377958298,
0.06762003898620605,
0.16792191565036774,
-0.0772583931684494,
0.015526676550507545,
-0.028136352077126503,
0.07066910713911057,
-0.11003983020782471,
-0.105624258518219,
0.007937257178127766,
0.02567129209637642,
-0.2755882740020752,
-0.005599735304713249,
-0.19717298448085785,
0.14788752794265747,
0.02579621411859989,
0.03297143429517746,
0.10257530212402344,
0.10404334217309952,
0.08312062919139862,
-0.0017710148822516203,
0.03226327523589134,
-0.1176818460226059,
0.02753005363047123,
-0.059239376336336136,
-0.020663779228925705,
0.017624232918024063,
0.36952024698257446,
-0.03603357449173927,
-0.046802736818790436,
0.003710439894348383,
0.1307835876941681,
-0.02139742486178875,
0.017395347356796265,
0.13209912180900574,
0.12607666850090027,
-0.08595693111419678,
-0.1504845917224884,
0.04888554662466049,
-0.04565655067563057,
-0.02836887165904045,
0.1464131623506546,
0.05905961990356445,
0.1050296202301979,
0.0908031314611435,
-0.014463032595813274,
-0.00318976235575974,
0.012856799177825451,
-0.15486004948616028,
0.06223496049642563,
-0.010558074340224266,
0.012565906159579754,
0.017934376373887062,
0.15238402783870697,
-0.005540105979889631,
0.07739730179309845,
-0.09889880567789078,
0.004208535887300968,
-0.13498884439468384,
-0.07913459837436676,
0.03617347031831741,
-0.13393273949623108,
0.04141177982091904,
-0.01871878281235695,
0.029611799865961075,
0.30386561155319214,
0.02558239921927452,
-0.020639164373278618,
0.12512871623039246,
-0.1214587539434433,
-0.12050267308950424,
-0.001594188273884356,
-0.029960084706544876,
0.0791488066315651,
-0.02633434161543846,
-0.0997740775346756,
-0.1001306027173996,
-0.15166029334068298,
-0.09759195148944855,
0.05182836204767227,
-0.04993441700935364,
-0.059362251311540604,
-0.17634081840515137,
-0.05707859992980957,
-0.05147340148687363,
0.14025864005088806,
-0.12263951450586319,
0.15159130096435547,
-0.014490418136119843,
0.004084470681846142,
0.04405883327126503,
0.1950942426919937,
-0.03644494712352753,
0.08714226633310318,
0.0154351145029068,
0.1522706001996994,
-0.05119588226079941,
0.14720745384693146,
-0.10931728035211563,
-0.04014137014746666,
-0.06710435450077057,
0.21513493359088898,
0.25630924105644226,
-0.06136954948306084,
-0.008937356993556023,
-0.012760217301547527,
0.058654606342315674,
0.1073930487036705,
0.16049085557460785,
0.002326392102986574,
0.2802925705909729,
-0.03133585304021835,
0.04815128445625305,
0.02901598811149597,
0.013607407920062542,
-0.06336209923028946,
0.03397751972079277,
0.07539387792348862,
-0.035039983689785004,
-0.1412304788827896,
0.15837742388248444,
-0.21980468928813934,
0.18157227337360382,
0.11640069633722305,
-0.19996967911720276,
-0.013728445395827293,
-0.04882071167230606,
0.1689416468143463,
-0.0856364443898201,
0.1637246012687683,
-0.0903693437576294,
-0.2108195722103119,
-0.2056000679731369,
0.03867346793413162,
-0.34623071551322937,
-0.254462867975235,
0.10422009229660034,
0.1488201916217804,
0.04015883058309555,
-0.018507536500692368,
-0.019967829808592796,
-0.018367022275924683,
0.04877542704343796,
-0.0067357709631323814,
0.06014643982052803,
0.031397558748722076,
-0.02988368645310402,
-0.24127542972564697,
-0.029804671183228493,
0.023964406922459602,
-0.07093082368373871,
0.07464958727359772,
-0.06874357163906097,
-0.022495782002806664,
0.08059766888618469,
-0.03066304884850979,
0.03298592567443848,
-0.035373736172914505,
-0.16326889395713806,
0.027529051527380943,
0.03900543600320816,
0.036012712866067886,
0.00634160777553916,
0.0008072225609794259,
-0.03455270454287529,
0.0644603744149208,
-0.16716794669628143,
-0.16015739738941193,
0.14140215516090393,
-0.06745140254497528,
0.2779497504234314,
-0.05812826007604599,
-0.0809100940823555,
0.04766704887151718,
-0.03426874056458473,
0.1807648241519928,
-0.07756473124027252,
0.047254521399736404,
0.12766779959201813,
0.011127962730824947,
0.03121316432952881,
-0.3092964291572571,
0.11082969605922699,
-0.000795336440205574,
-0.006093299947679043,
-0.07581598311662674
] |
null | null |
transformers
|
# LayoutLM
## Model description
LayoutLM is a simple but effective pre-training method of text and layout for document image understanding and information extraction tasks, such as form understanding and receipt understanding. LayoutLM archives the SOTA results on multiple datasets. For more details, please refer to our paper:
[LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318)
Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, [KDD 2020](https://www.kdd.org/kdd2020/accepted-papers)
## Training data
We pre-train LayoutLM on IIT-CDIP Test Collection 1.0\* dataset with two settings.
* LayoutLM-Base, Uncased (11M documents, 2 epochs): 12-layer, 768-hidden, 12-heads, 113M parameters **(This Model)**
* LayoutLM-Large, Uncased (11M documents, 2 epochs): 24-layer, 1024-hidden, 16-heads, 343M parameters
## Citation
If you find LayoutLM useful in your research, please cite the following paper:
``` latex
@misc{xu2019layoutlm,
title={LayoutLM: Pre-training of Text and Layout for Document Image Understanding},
author={Yiheng Xu and Minghao Li and Lei Cui and Shaohan Huang and Furu Wei and Ming Zhou},
year={2019},
eprint={1912.13318},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
{}
| null |
atahmasb/tf-layoutlm-base-uncased
|
[
"transformers",
"tf",
"layoutlm",
"arxiv:1912.13318",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1912.13318"
] |
[] |
TAGS
#transformers #tf #layoutlm #arxiv-1912.13318 #endpoints_compatible #region-us
|
# LayoutLM
## Model description
LayoutLM is a simple but effective pre-training method of text and layout for document image understanding and information extraction tasks, such as form understanding and receipt understanding. LayoutLM archives the SOTA results on multiple datasets. For more details, please refer to our paper:
LayoutLM: Pre-training of Text and Layout for Document Image Understanding
Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, KDD 2020
## Training data
We pre-train LayoutLM on IIT-CDIP Test Collection 1.0\* dataset with two settings.
* LayoutLM-Base, Uncased (11M documents, 2 epochs): 12-layer, 768-hidden, 12-heads, 113M parameters (This Model)
* LayoutLM-Large, Uncased (11M documents, 2 epochs): 24-layer, 1024-hidden, 16-heads, 343M parameters
If you find LayoutLM useful in your research, please cite the following paper:
|
[
"# LayoutLM",
"## Model description\n\nLayoutLM is a simple but effective pre-training method of text and layout for document image understanding and information extraction tasks, such as form understanding and receipt understanding. LayoutLM archives the SOTA results on multiple datasets. For more details, please refer to our paper: \n\nLayoutLM: Pre-training of Text and Layout for Document Image Understanding\nYiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, KDD 2020",
"## Training data\n\nWe pre-train LayoutLM on IIT-CDIP Test Collection 1.0\\* dataset with two settings. \n\n* LayoutLM-Base, Uncased (11M documents, 2 epochs): 12-layer, 768-hidden, 12-heads, 113M parameters (This Model)\n* LayoutLM-Large, Uncased (11M documents, 2 epochs): 24-layer, 1024-hidden, 16-heads, 343M parameters\n\nIf you find LayoutLM useful in your research, please cite the following paper:"
] |
[
"TAGS\n#transformers #tf #layoutlm #arxiv-1912.13318 #endpoints_compatible #region-us \n",
"# LayoutLM",
"## Model description\n\nLayoutLM is a simple but effective pre-training method of text and layout for document image understanding and information extraction tasks, such as form understanding and receipt understanding. LayoutLM archives the SOTA results on multiple datasets. For more details, please refer to our paper: \n\nLayoutLM: Pre-training of Text and Layout for Document Image Understanding\nYiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, KDD 2020",
"## Training data\n\nWe pre-train LayoutLM on IIT-CDIP Test Collection 1.0\\* dataset with two settings. \n\n* LayoutLM-Base, Uncased (11M documents, 2 epochs): 12-layer, 768-hidden, 12-heads, 113M parameters (This Model)\n* LayoutLM-Large, Uncased (11M documents, 2 epochs): 24-layer, 1024-hidden, 16-heads, 343M parameters\n\nIf you find LayoutLM useful in your research, please cite the following paper:"
] |
[
33,
3,
108,
124
] |
[
"passage: TAGS\n#transformers #tf #layoutlm #arxiv-1912.13318 #endpoints_compatible #region-us \n# LayoutLM## Model description\n\nLayoutLM is a simple but effective pre-training method of text and layout for document image understanding and information extraction tasks, such as form understanding and receipt understanding. LayoutLM archives the SOTA results on multiple datasets. For more details, please refer to our paper: \n\nLayoutLM: Pre-training of Text and Layout for Document Image Understanding\nYiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, KDD 2020## Training data\n\nWe pre-train LayoutLM on IIT-CDIP Test Collection 1.0\\* dataset with two settings. \n\n* LayoutLM-Base, Uncased (11M documents, 2 epochs): 12-layer, 768-hidden, 12-heads, 113M parameters (This Model)\n* LayoutLM-Large, Uncased (11M documents, 2 epochs): 24-layer, 1024-hidden, 16-heads, 343M parameters\n\nIf you find LayoutLM useful in your research, please cite the following paper:"
] |
[
-0.10535823553800583,
0.05418233200907707,
0.00011479813838377595,
0.06290260702371597,
0.12044943124055862,
0.0328713022172451,
0.1837567836046219,
0.0972021073102951,
-0.08197839558124542,
0.019870517775416374,
-0.05052824318408966,
-0.04780217632651329,
0.07995213568210602,
0.044323768466711044,
-0.005396886263042688,
-0.2566398084163666,
-0.028969664126634598,
-0.026018835604190826,
-0.05023360997438431,
0.051349278539419174,
0.0699649229645729,
-0.09227605909109116,
0.08480817079544067,
0.03967001661658287,
-0.16566120088100433,
-0.03676014766097069,
-0.12402310222387314,
-0.012642759829759598,
0.039480049163103104,
0.04207777604460716,
0.10704848915338516,
0.04205813258886337,
0.09577994793653488,
-0.11687850952148438,
0.020792385563254356,
0.0014803960220888257,
-0.008874470368027687,
0.021336715668439865,
0.06739932298660278,
0.08048730343580246,
0.116628497838974,
-0.13405637443065643,
-0.053123146295547485,
-0.0011258696904405951,
-0.045149631798267365,
0.041304245591163635,
-0.16054891049861908,
0.17361408472061157,
0.07209625840187073,
0.0666804313659668,
0.008483422920107841,
0.02091047912836075,
-0.06409134715795517,
0.020548272877931595,
0.1386996954679489,
-0.2456950694322586,
-0.07067959010601044,
0.0013038513716310263,
-0.06895602494478226,
-0.04597623646259308,
-0.0629158690571785,
0.0388529896736145,
0.016884462907910347,
-0.02268558368086815,
-0.09995512664318085,
-0.041037656366825104,
-0.10052084922790527,
-0.04189147427678108,
-0.09047272056341171,
0.09791471809148788,
0.320993036031723,
0.04119088500738144,
-0.029008226469159126,
-0.12289189547300339,
0.013992908410727978,
0.08348488062620163,
-0.03492145985364914,
-0.0631810650229454,
0.03470994532108307,
-0.037840500473976135,
0.04754051938652992,
-0.09294576942920685,
-0.10238634049892426,
0.01747892238199711,
-0.050395216792821884,
0.07763566821813583,
0.03194897249341011,
-0.0322844460606575,
-0.05413466691970825,
0.0816979855298996,
-0.02066156454384327,
-0.13203197717666626,
-0.05024678260087967,
-0.08102668821811676,
0.0017965363804250956,
-0.03395697847008705,
0.05954214185476303,
-0.09432370215654373,
0.022453244775533676,
0.09390047937631607,
0.10736186802387238,
0.02798914909362793,
-0.04155581817030907,
0.036579106003046036,
0.018873700872063637,
0.08641007542610168,
-0.03762193024158478,
-0.001693202881142497,
0.029537566006183624,
0.05902475491166115,
0.04599848762154579,
-0.030633149668574333,
-0.05118913948535919,
0.002451423555612564,
-0.016442274674773216,
0.029669003561139107,
0.0350356251001358,
0.03732866421341896,
-0.01179391611367464,
-0.067693330347538,
0.1865597516298294,
-0.0980735644698143,
0.0018467707559466362,
-0.012203480117022991,
-0.02685522846877575,
0.11363677680492401,
0.06601572781801224,
0.04305827617645264,
-0.0130325211212039,
0.01967267133295536,
-0.04385996609926224,
-0.00032732411636970937,
-0.03643422946333885,
-0.04907345399260521,
0.016175394877791405,
-0.022643093019723892,
0.007461429573595524,
-0.1368246078491211,
-0.1865539699792862,
-0.031831707805395126,
0.04234687238931656,
-0.039931464940309525,
0.023433465510606766,
-0.0049064187332987785,
-0.08461947739124298,
-0.03342989459633827,
0.056149836629629135,
0.06618896871805191,
-0.010778374969959259,
-0.029452066868543625,
0.013698345050215721,
0.00831244420260191,
0.019261309877038002,
0.05276906490325928,
-0.031238960102200508,
0.04500894621014595,
-0.07494921237230301,
0.10377757251262665,
-0.1202307939529419,
0.0777672752737999,
-0.01342068612575531,
-0.012259824201464653,
-0.06686070561408997,
0.01665559411048889,
0.02542993053793907,
0.14465922117233276,
-0.09216297417879105,
-0.00001979091757675633,
0.08348149806261063,
-0.1534983217716217,
-0.09547903388738632,
0.028523677960038185,
-0.0228410754352808,
0.11329472810029984,
0.006838771980255842,
0.08927898108959198,
0.2558981478214264,
-0.09196533262729645,
-0.06741771847009659,
0.013004912063479424,
0.03947187587618828,
0.04495907947421074,
0.03516804054379463,
0.029935074970126152,
-0.012722265906631947,
0.033042434602975845,
-0.07899478822946548,
-0.05816759169101715,
-0.04859238490462303,
-0.11098942905664444,
-0.031147480010986328,
-0.06402186304330826,
0.062098175287246704,
0.04798654466867447,
0.07120771706104279,
0.0152019914239645,
-0.040501125156879425,
0.05482127517461777,
0.09009318798780441,
-0.05788879096508026,
-0.01857309229671955,
-0.0035493711475282907,
0.07570216059684753,
-0.00693116057664156,
-0.03668495640158653,
-0.13044896721839905,
-0.1898716539144516,
0.0453881211578846,
0.015392942354083061,
0.050120383501052856,
0.12801054120063782,
-0.009555944241583347,
0.1165291965007782,
-0.0713312104344368,
0.006697287783026695,
-0.06244067847728729,
0.011043529026210308,
-0.02380978874862194,
-0.15248718857765198,
0.008900625631213188,
-0.06475435197353363,
0.05299164727330208,
-0.19414947926998138,
0.029523232951760292,
0.024345796555280685,
0.06548845767974854,
0.05010524392127991,
0.00931809563189745,
0.080136239528656,
0.04960555583238602,
-0.0427718423306942,
-0.05411943793296814,
0.06790880858898163,
0.012351904064416885,
-0.02809417061507702,
-0.03806173801422119,
-0.11427746713161469,
-0.07620151340961456,
0.0745810717344284,
0.0873073935508728,
-0.1379067599773407,
-0.09616155922412872,
-0.046045754104852676,
-0.07871667295694351,
-0.10238228738307953,
0.015386637300252914,
0.15195199847221375,
-0.04332609847187996,
0.05103129521012306,
-0.05633123591542244,
-0.011645514518022537,
-0.00804382748901844,
0.007982011884450912,
-0.01716703549027443,
0.08088723570108414,
0.11554654687643051,
-0.11751989275217056,
0.07969542592763901,
0.036438677459955215,
-0.013402561657130718,
0.17110612988471985,
-0.02705148421227932,
-0.048396799713373184,
-0.008026603609323502,
0.05897463485598564,
0.013640301302075386,
0.19514340162277222,
-0.1469607651233673,
-0.053601592779159546,
0.024605927988886833,
0.0037047823425382376,
0.0901353731751442,
-0.18751007318496704,
-0.021894723176956177,
0.011592482216656208,
-0.0192544087767601,
0.001970157027244568,
0.0424603670835495,
-0.0381946861743927,
0.04291178658604622,
-0.025944948196411133,
0.07351045310497284,
0.00941089540719986,
0.00031754461815580726,
-0.11802095919847488,
0.1209605261683464,
-0.05238743871450424,
-0.18998900055885315,
-0.03046983852982521,
0.04426578804850578,
-0.09232259541749954,
-0.052107375115156174,
0.04978398606181145,
-0.08268322795629501,
-0.060853492468595505,
-0.05634253844618797,
-0.016882644966244698,
0.02748062275350094,
-0.07189358025789261,
0.0696161612868309,
0.030309850350022316,
-0.04925430938601494,
-0.08674822002649307,
0.015960415825247765,
-0.00790149625390768,
-0.010924226604402065,
0.034051913768053055,
-0.020960556343197823,
0.1755581945180893,
0.06677470356225967,
0.020311860367655754,
-0.00004674831507145427,
0.013835044577717781,
0.08649513125419617,
-0.07228454947471619,
0.10407499969005585,
0.13876627385616302,
0.01492930855602026,
0.07360384613275528,
0.11239080131053925,
0.05013594031333923,
-0.03636303171515465,
0.02664957568049431,
0.034245990216732025,
-0.033983901143074036,
-0.19992153346538544,
-0.04207247868180275,
-0.1078333854675293,
-0.06127430498600006,
-0.04375598207116127,
0.020489851012825966,
-0.028496190905570984,
0.08554739505052567,
0.0241410993039608,
0.047546662390232086,
-0.000713619461748749,
0.06680348515510559,
0.032015278935432434,
0.03206530213356018,
0.04996250197291374,
-0.07010333985090256,
0.003929023165255785,
0.10227824747562408,
0.0017552402568981051,
0.37304142117500305,
-0.03807065635919571,
-0.024244753643870354,
0.09860724955797195,
0.08823108673095703,
0.04971838742494583,
0.014334235340356827,
-0.03243151307106018,
-0.029031511396169662,
-0.002107095206156373,
-0.05303891375660896,
0.05006943270564079,
0.07228077948093414,
-0.022164635360240936,
-0.03853565454483032,
-0.0596453882753849,
0.1338357776403427,
0.053584642708301544,
0.10098514705896378,
0.1450493037700653,
-0.05577355995774269,
-0.046540115028619766,
0.02985323965549469,
0.048510871827602386,
-0.035942815244197845,
0.01777859777212143,
0.09367689490318298,
-0.10896439105272293,
0.11843857914209366,
-0.07668043673038483,
0.09214626252651215,
-0.10443946719169617,
-0.027395326644182205,
-0.018619662150740623,
0.07610617578029633,
-0.0016341020818799734,
0.08149468153715134,
-0.1055760309100151,
0.2256595641374588,
0.01700213924050331,
0.05586109310388565,
-0.08373380452394485,
0.005552089307457209,
0.13517768681049347,
0.1232232004404068,
0.09929747879505157,
0.049141399562358856,
-0.12094525247812271,
0.021821120753884315,
-0.12466411292552948,
0.06707140803337097,
0.10668022930622101,
-0.01633213646709919,
0.05366591364145279,
0.00016633138875477016,
-0.031476762145757675,
0.00013628035958390683,
0.010011043399572372,
-0.2930029332637787,
-0.14607399702072144,
0.10532383620738983,
-0.1751188039779663,
-0.04525313898921013,
-0.026550741866230965,
-0.07313945889472961,
-0.07662744075059891,
0.22008545696735382,
0.011160149239003658,
-0.07075252383947372,
-0.10280272364616394,
-0.0061973752453923225,
0.03860624507069588,
-0.03992049768567085,
-0.005613143090158701,
0.002625602064654231,
0.05992291495203972,
0.010520457290112972,
-0.0797952190041542,
-0.016199789941310883,
-0.1021467000246048,
-0.13800227642059326,
-0.04098129644989967,
0.021592464298009872,
0.06908200681209564,
0.008945520967245102,
0.025609450414776802,
-0.027342533692717552,
0.055409930646419525,
-0.11378125101327896,
0.030594468116760254,
0.11934490501880646,
0.10712119936943054,
0.08861217647790909,
-0.19914966821670532,
-0.03468871861696243,
-0.0980144664645195,
-0.07439889758825302,
0.08600960671901703,
0.15050604939460754,
-0.06446348130702972,
0.09146948158740997,
0.006494295317679644,
-0.09003166109323502,
-0.2251056432723999,
0.02440093271434307,
0.022013692185282707,
0.06011790782213211,
0.009232653304934502,
-0.19649791717529297,
0.07388318330049515,
0.0317533053457737,
-0.00676649808883667,
0.1277512013912201,
-0.21396958827972412,
-0.13625279068946838,
0.06304771453142166,
0.032669663429260254,
0.09408489614725113,
-0.12915050983428955,
-0.030851377174258232,
0.038540590554475784,
-0.04267582297325134,
0.09016453474760056,
-0.05526546761393547,
0.09428737312555313,
-0.022549955174326897,
-0.017899541184306145,
-0.0017047312576323748,
-0.03637603297829628,
0.16541744768619537,
0.054044485092163086,
0.07220301777124405,
-0.0731024369597435,
-0.04182427003979683,
0.10084696114063263,
-0.0775841549038887,
0.09884423762559891,
0.04778442531824112,
0.10488083213567734,
-0.15103617310523987,
-0.00958149041980505,
-0.013803409412503242,
0.03607460856437683,
-0.046730104833841324,
-0.028706027194857597,
-0.11457299441099167,
0.11180053651332855,
0.05223214253783226,
0.0115634361281991,
0.06649525463581085,
0.024358706548810005,
-0.026302142068743706,
-0.0030971053056418896,
0.12413503974676132,
0.047400593757629395,
0.0017701813485473394,
-0.12130328267812729,
-0.026491772383451462,
0.021002521738409996,
-0.13598273694515228,
-0.019740965217351913,
0.10207545012235641,
0.0542098730802536,
0.09425975382328033,
0.015434782020747662,
-0.03307781368494034,
0.08216756582260132,
0.0730898305773735,
-0.07143376022577286,
-0.13138872385025024,
-0.10887054353952408,
-0.07190179824829102,
-0.05476567521691322,
-0.009026654064655304,
0.07082740217447281,
-0.0765283927321434,
0.007016207091510296,
-0.0021297025959938765,
0.028014907613396645,
0.02316117472946644,
0.048656854778528214,
0.07651074975728989,
0.005176757462322712,
-0.03632712364196777,
0.10161413252353668,
0.03711744397878647,
0.0641961470246315,
-0.010866078548133373,
0.05185709148645401,
-0.08754857629537582,
-0.06753047555685043,
0.08021465688943863,
0.17997412383556366,
0.025345629081130028,
-0.07263199985027313,
-0.027857637032866478,
-0.06318002939224243,
0.001129836542531848,
0.09075057506561279,
0.040116988122463226,
-0.06411368399858475,
0.01303401030600071,
0.01166894007474184,
-0.07554677873849869,
0.0792340636253357,
0.11090318113565445,
0.06276912242174149,
-0.17402680218219757,
0.007619240786880255,
0.04323317110538483,
0.10675786435604095,
-0.0442737378180027,
0.003648987738415599,
-0.09795384109020233,
-0.06878376752138138,
-0.16809821128845215,
0.06683339178562164,
-0.12082048505544662,
0.006864843424409628,
-0.04308974742889404,
-0.03214293345808983,
-0.056672438979148865,
0.0021816743537783623,
-0.02640831470489502,
-0.01345071755349636,
-0.021833298727869987,
0.053253065794706345,
-0.04795854166150093,
-0.01159020233899355,
0.056020110845565796,
-0.12571215629577637,
0.05153658613562584,
-0.015189082361757755,
-0.005159401800483465,
0.004335897043347359,
-0.0888955295085907,
-0.037721239030361176,
0.0077842241153120995,
0.08320917934179306,
0.0046294499188661575,
-0.13938935101032257,
-0.05146108567714691,
-0.024306481704115868,
0.03505934774875641,
0.010596739128232002,
0.1788361519575119,
-0.06577709317207336,
-0.002115624723955989,
-0.16226312518119812,
-0.07005344331264496,
-0.0366671197116375,
0.10136841237545013,
0.1323327273130417,
0.0005579055869020522,
0.0890863910317421,
-0.07561423629522324,
0.07686875015497208,
-0.11470135301351547,
-0.04393323138356209,
0.024371886625885963,
-0.025178225710988045,
0.07613358646631241,
-0.07653257250785828,
0.038862310349941254,
-0.02815953455865383,
0.19094857573509216,
-0.026388978585600853,
0.004291181918233633,
-0.00811962690204382,
0.004723949357867241,
-0.09919752925634384,
0.008357779122889042,
0.07500457763671875,
0.02773388661444187,
0.04088962823152542,
-0.028930651023983955,
0.02830379083752632,
-0.021507643163204193,
-0.023106444627046585,
0.32636553049087524,
0.1118517592549324,
-0.1352241188287735,
0.05198495090007782,
0.04680059850215912,
-0.15244130790233612,
-0.1400459110736847,
0.10166694223880768,
-0.06169025972485542,
0.10855697095394135,
-0.06466607749462128,
-0.1125120297074318,
0.09501571953296661,
-0.13814067840576172,
0.09002826362848282,
-0.023063577711582184,
-0.11363455653190613,
-0.06103840097784996,
-0.10250172019004822,
-0.07754527032375336,
-0.0371333509683609,
0.023207547143101692,
-0.08286182582378387,
-0.012161443941295147,
0.09621252864599228,
0.0056938850320875645,
-0.006160801276564598,
0.14419257640838623,
-0.0958988144993782,
-0.03273556008934975,
0.06427735090255737,
-0.003288123058155179,
-0.006345377303659916,
-0.07469572871923447,
-0.001098067034035921,
0.008848185651004314,
0.05390547960996628,
-0.010705115273594856,
0.01144237257540226,
0.01572982780635357,
0.023541664704680443,
0.021629925817251205,
-0.05412346124649048,
-0.010318499058485031,
-0.0332663469016552,
0.12062987685203552,
-0.023389888927340508,
0.05090942233800888,
0.005440088454633951,
0.004944394342601299,
0.1423184871673584,
0.005783546715974808,
-0.08488436043262482,
-0.1970103532075882,
-0.0017643070314079523,
-0.11554830521345139,
-0.04653988778591156,
0.04306549206376076,
-0.12355001270771027,
0.046954523772001266,
0.25717124342918396,
0.2202201932668686,
-0.07656696438789368,
-0.004737463314086199,
0.02374729886651039,
-0.003898834576830268,
0.006881931331008673,
0.07709690928459167,
-0.003906273283064365,
0.1746225506067276,
-0.016817472875118256,
-0.14278090000152588,
-0.08004607260227203,
-0.05107049271464348,
-0.11377331614494324,
0.13462567329406738,
0.09463013708591461,
-0.040605686604976654,
-0.047358155250549316,
0.10606876015663147,
-0.038664013147354126,
-0.10728802531957626,
0.07505051046609879,
-0.1351381093263626,
-0.19493328034877777,
-0.029376951977610588,
-0.005022106226533651,
0.03188760206103325,
0.00620964216068387,
-0.057961758226156235,
0.025376835837960243,
0.18137626349925995,
0.048010632395744324,
-0.043219197541475296,
0.07113669812679291,
0.03788981959223747,
0.04180776700377464,
0.0974976047873497,
0.00035866437247022986,
0.03922255337238312,
0.08290334045886993,
0.006723268888890743,
-0.08766181766986847,
-0.03138234466314316,
0.05726458132266998,
-0.0008035132195800543,
0.04455723240971565,
0.11218231916427612,
-0.054054711014032364,
-0.0022194376215338707,
0.11994104087352753,
-0.05643095076084137,
0.035464897751808167,
0.14483849704265594,
-0.059530120342969894,
-0.05272020772099495,
0.07512589544057846,
-0.11151954531669617,
0.15088027715682983,
0.18783313035964966,
-0.01041580829769373,
0.007697529159486294,
0.02405383251607418,
0.07014301419258118,
0.016966814175248146,
0.10775383561849594,
-0.014343530870974064,
-0.10063391178846359,
-0.04239609092473984,
-0.055859796702861786,
0.04601828753948212,
-0.19517351686954498,
-0.1106223613023758,
0.0026531992480158806,
-0.04386712238192558,
-0.08465079963207245,
0.09171236306428909,
0.1382565200328827,
-0.0002625801716931164,
-0.07469520717859268,
-0.0857887715101242,
-0.053979046642780304,
0.03451390191912651,
-0.10963138937950134,
-0.019941581413149834
] |
null | null |
transformers
|
# LayoutLM
## Model description
LayoutLM is a simple but effective pre-training method of text and layout for document image understanding and information extraction tasks, such as form understanding and receipt understanding. LayoutLM archives the SOTA results on multiple datasets. For more details, please refer to our paper:
[LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318)
Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, [KDD 2020](https://www.kdd.org/kdd2020/accepted-papers)
## Training data
We pre-train LayoutLM on IIT-CDIP Test Collection 1.0\* dataset with two settings.
* LayoutLM-Base, Uncased (11M documents, 2 epochs): 12-layer, 768-hidden, 12-heads, 113M parameters
* LayoutLM-Large, Uncased (11M documents, 2 epochs): 24-layer, 1024-hidden, 16-heads, 343M parameters **(This Model)**
## Citation
If you find LayoutLM useful in your research, please cite the following paper:
``` latex
@misc{xu2019layoutlm,
title={LayoutLM: Pre-training of Text and Layout for Document Image Understanding},
author={Yiheng Xu and Minghao Li and Lei Cui and Shaohan Huang and Furu Wei and Ming Zhou},
year={2019},
eprint={1912.13318},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
{}
| null |
atahmasb/tf-layoutlm-large-uncased
|
[
"transformers",
"tf",
"layoutlm",
"arxiv:1912.13318",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1912.13318"
] |
[] |
TAGS
#transformers #tf #layoutlm #arxiv-1912.13318 #endpoints_compatible #region-us
|
# LayoutLM
## Model description
LayoutLM is a simple but effective pre-training method of text and layout for document image understanding and information extraction tasks, such as form understanding and receipt understanding. LayoutLM archives the SOTA results on multiple datasets. For more details, please refer to our paper:
LayoutLM: Pre-training of Text and Layout for Document Image Understanding
Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, KDD 2020
## Training data
We pre-train LayoutLM on IIT-CDIP Test Collection 1.0\* dataset with two settings.
* LayoutLM-Base, Uncased (11M documents, 2 epochs): 12-layer, 768-hidden, 12-heads, 113M parameters
* LayoutLM-Large, Uncased (11M documents, 2 epochs): 24-layer, 1024-hidden, 16-heads, 343M parameters (This Model)
If you find LayoutLM useful in your research, please cite the following paper:
|
[
"# LayoutLM",
"## Model description\n\nLayoutLM is a simple but effective pre-training method of text and layout for document image understanding and information extraction tasks, such as form understanding and receipt understanding. LayoutLM archives the SOTA results on multiple datasets. For more details, please refer to our paper: \n\nLayoutLM: Pre-training of Text and Layout for Document Image Understanding\nYiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, KDD 2020",
"## Training data\n\nWe pre-train LayoutLM on IIT-CDIP Test Collection 1.0\\* dataset with two settings. \n\n* LayoutLM-Base, Uncased (11M documents, 2 epochs): 12-layer, 768-hidden, 12-heads, 113M parameters \n* LayoutLM-Large, Uncased (11M documents, 2 epochs): 24-layer, 1024-hidden, 16-heads, 343M parameters (This Model)\n\nIf you find LayoutLM useful in your research, please cite the following paper:"
] |
[
"TAGS\n#transformers #tf #layoutlm #arxiv-1912.13318 #endpoints_compatible #region-us \n",
"# LayoutLM",
"## Model description\n\nLayoutLM is a simple but effective pre-training method of text and layout for document image understanding and information extraction tasks, such as form understanding and receipt understanding. LayoutLM archives the SOTA results on multiple datasets. For more details, please refer to our paper: \n\nLayoutLM: Pre-training of Text and Layout for Document Image Understanding\nYiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, KDD 2020",
"## Training data\n\nWe pre-train LayoutLM on IIT-CDIP Test Collection 1.0\\* dataset with two settings. \n\n* LayoutLM-Base, Uncased (11M documents, 2 epochs): 12-layer, 768-hidden, 12-heads, 113M parameters \n* LayoutLM-Large, Uncased (11M documents, 2 epochs): 24-layer, 1024-hidden, 16-heads, 343M parameters (This Model)\n\nIf you find LayoutLM useful in your research, please cite the following paper:"
] |
[
33,
3,
108,
124
] |
[
"passage: TAGS\n#transformers #tf #layoutlm #arxiv-1912.13318 #endpoints_compatible #region-us \n# LayoutLM## Model description\n\nLayoutLM is a simple but effective pre-training method of text and layout for document image understanding and information extraction tasks, such as form understanding and receipt understanding. LayoutLM archives the SOTA results on multiple datasets. For more details, please refer to our paper: \n\nLayoutLM: Pre-training of Text and Layout for Document Image Understanding\nYiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, KDD 2020## Training data\n\nWe pre-train LayoutLM on IIT-CDIP Test Collection 1.0\\* dataset with two settings. \n\n* LayoutLM-Base, Uncased (11M documents, 2 epochs): 12-layer, 768-hidden, 12-heads, 113M parameters \n* LayoutLM-Large, Uncased (11M documents, 2 epochs): 24-layer, 1024-hidden, 16-heads, 343M parameters (This Model)\n\nIf you find LayoutLM useful in your research, please cite the following paper:"
] |
[
-0.10659313946962357,
0.05262027680873871,
-0.00019455503206700087,
0.0630936324596405,
0.12047956883907318,
0.03626685217022896,
0.17864610254764557,
0.10166271775960922,
-0.08414773643016815,
0.019300933927297592,
-0.05226077884435654,
-0.03571290522813797,
0.07512083649635315,
0.04393129050731659,
-0.011498703621327877,
-0.2489071935415268,
-0.029473965987563133,
-0.021921325474977493,
-0.03991032391786575,
0.04886054992675781,
0.06637221574783325,
-0.08907167613506317,
0.0813436210155487,
0.03532766178250313,
-0.1617773175239563,
-0.03324690833687782,
-0.12425482273101807,
-0.011784655973315239,
0.03551109507679939,
0.044433824717998505,
0.1061902642250061,
0.04514656960964203,
0.09174749255180359,
-0.12260331213474274,
0.018784772604703903,
-0.003416239283978939,
-0.01994866505265236,
0.019118450582027435,
0.06524299085140228,
0.07149051874876022,
0.11859966069459915,
-0.14103390276432037,
-0.05667972192168236,
-0.004850460682064295,
-0.04554172605276108,
0.031108103692531586,
-0.16868790984153748,
0.1759275645017624,
0.07891818881034851,
0.06619750708341599,
0.010243372991681099,
0.014927629381418228,
-0.05689934268593788,
0.024911319836974144,
0.1534227430820465,
-0.24191322922706604,
-0.06765159964561462,
-0.019077405333518982,
-0.07886452972888947,
-0.053234074264764786,
-0.06080023944377899,
0.034192975610494614,
0.01568150706589222,
-0.022600671276450157,
-0.10865174233913422,
-0.04436080530285835,
-0.11130315065383911,
-0.04319240152835846,
-0.08362333476543427,
0.09914977848529816,
0.3225960433483124,
0.039914701133966446,
-0.03256824240088463,
-0.11253673583269119,
0.014579828828573227,
0.0758906900882721,
-0.028423210605978966,
-0.05793386325240135,
0.03425147011876106,
-0.03860032558441162,
0.042806681245565414,
-0.09571751952171326,
-0.10434179753065109,
0.021002817898988724,
-0.0482451468706131,
0.08897750824689865,
0.030625812709331512,
-0.02970428578555584,
-0.04806901514530182,
0.08545888215303421,
-0.02004770003259182,
-0.13003763556480408,
-0.0538937933743,
-0.0749124065041542,
0.013300995342433453,
-0.028080321848392487,
0.06006290391087532,
-0.10239727050065994,
0.018244262784719467,
0.10410144925117493,
0.10527575016021729,
0.029305361211299896,
-0.04580814391374588,
0.04429565742611885,
0.008367478847503662,
0.08494991809129715,
-0.02588655985891819,
0.011358664371073246,
0.02861107885837555,
0.054135505110025406,
0.05947038531303406,
-0.03337285667657852,
-0.04911332577466965,
0.0018955129198729992,
-0.01834799163043499,
0.03325078263878822,
0.031241148710250854,
0.03284936398267746,
-0.022168274968862534,
-0.06444011628627777,
0.18819524347782135,
-0.10473880171775818,
0.007641347590833902,
-0.008598728105425835,
-0.021778054535388947,
0.11570338904857635,
0.07812102884054184,
0.04230295866727829,
-0.016012195497751236,
0.022493945434689522,
-0.03746727854013443,
0.008224708028137684,
-0.03602844849228859,
-0.04491380602121353,
0.02006286196410656,
-0.021733243018388748,
0.010526546277105808,
-0.13611483573913574,
-0.18234598636627197,
-0.02365165948867798,
0.04721178114414215,
-0.0369185246527195,
0.03319134935736656,
-0.009505107998847961,
-0.08046691119670868,
-0.033088549971580505,
0.05528328940272331,
0.059900444000959396,
-0.00926291011273861,
-0.02772805280983448,
0.017971958965063095,
0.009961814619600773,
0.010775433853268623,
0.051583804190158844,
-0.026456719264388084,
0.04672187194228172,
-0.07483275979757309,
0.09595339000225067,
-0.12174675613641739,
0.07447109371423721,
-0.006506941746920347,
-0.01068347878754139,
-0.06166709586977959,
0.012834340333938599,
0.02886330895125866,
0.1436910182237625,
-0.07484874129295349,
-0.0031352736987173557,
0.08559147268533707,
-0.1560249775648117,
-0.08772047609090805,
0.02613535337150097,
-0.022676365450024605,
0.10677364468574524,
0.003309398889541626,
0.08759292215108871,
0.2549915611743927,
-0.09573739022016525,
-0.07710923254489899,
0.0161508210003376,
0.04175281152129173,
0.052317406982183456,
0.039311304688453674,
0.028748193755745888,
-0.005890976637601852,
0.03560490161180496,
-0.07653796672821045,
-0.06583243608474731,
-0.0478694923222065,
-0.11163913458585739,
-0.032263707369565964,
-0.05596832558512688,
0.07111243158578873,
0.040714845061302185,
0.06841826438903809,
0.012155966833233833,
-0.04391958937048912,
0.05113537982106209,
0.08566898852586746,
-0.06563951075077057,
-0.009880706667900085,
-0.0005509820766746998,
0.07180166989564896,
-0.01194298081099987,
-0.034571874886751175,
-0.12776300311088562,
-0.18732471764087677,
0.04379156231880188,
0.011123206466436386,
0.04849548637866974,
0.12455618381500244,
-0.013291506096720695,
0.12094587087631226,
-0.07657838612794876,
0.005305753089487553,
-0.0754164606332779,
0.009186208248138428,
-0.02528860606253147,
-0.15004326403141022,
0.011815008707344532,
-0.06656983494758606,
0.04400607571005821,
-0.18933433294296265,
0.030510157346725464,
0.03427019715309143,
0.061289314180612564,
0.0578174963593483,
0.008510790765285492,
0.07647036761045456,
0.04791630804538727,
-0.044759031385183334,
-0.0512981154024601,
0.06937095522880554,
0.013728316873311996,
-0.03292391821742058,
-0.04057597368955612,
-0.12062989175319672,
-0.07454583048820496,
0.07657584547996521,
0.07369502633810043,
-0.13433228433132172,
-0.09369367361068726,
-0.04998842999339104,
-0.07943868637084961,
-0.10588830709457397,
0.015989216044545174,
0.15018409490585327,
-0.04839878901839256,
0.0513613261282444,
-0.05338377505540848,
-0.013100308366119862,
-0.008125292137265205,
0.0024495108518749475,
-0.01970028318464756,
0.08179204910993576,
0.11471018195152283,
-0.11167541146278381,
0.07713127136230469,
0.04684874415397644,
-0.014619310386478901,
0.1680171936750412,
-0.01856217160820961,
-0.04877622425556183,
-0.01320086233317852,
0.06536996364593506,
0.017861058935523033,
0.19260205328464508,
-0.1491432636976242,
-0.05008212476968765,
0.022678175941109657,
0.006786573212593794,
0.09597434103488922,
-0.2003779411315918,
-0.021029595285654068,
0.013876750133931637,
-0.025334153324365616,
-0.007490500807762146,
0.041330959647893906,
-0.04489923268556595,
0.0369267575442791,
-0.03488820791244507,
0.08223748207092285,
0.013968266546726227,
0.003521967213600874,
-0.1213425025343895,
0.116530641913414,
-0.05496430769562721,
-0.19019657373428345,
-0.03628643974661827,
0.03773787245154381,
-0.08736170828342438,
-0.0535442940890789,
0.06038617715239525,
-0.07692691683769226,
-0.06105438247323036,
-0.0552062951028347,
-0.022745376452803612,
0.02011014148592949,
-0.07279500365257263,
0.08400668203830719,
0.03396344557404518,
-0.04845285788178444,
-0.08370251953601837,
0.013577965088188648,
-0.004506940953433514,
-0.010012606158852577,
0.04113411903381348,
-0.019669273868203163,
0.17646628618240356,
0.05185865983366966,
0.018486464396119118,
-0.002218649722635746,
0.013206522911787033,
0.07848110049962997,
-0.0688912570476532,
0.09648235887289047,
0.13051800429821014,
0.007695453707128763,
0.07996149361133575,
0.10711166262626648,
0.0480431467294693,
-0.0347619503736496,
0.024078618735074997,
0.033992573618888855,
-0.035126447677612305,
-0.21155758202075958,
-0.03030598722398281,
-0.10696063190698624,
-0.05613265931606293,
-0.04487933591008186,
0.02055898681282997,
-0.036117345094680786,
0.08602140843868256,
0.022785013541579247,
0.05376012995839119,
0.00028997534536756575,
0.06829483807086945,
0.027440929785370827,
0.034737009555101395,
0.04605242982506752,
-0.07250409573316574,
0.0046235863119363785,
0.10153671354055405,
0.012425452470779419,
0.38483941555023193,
-0.031711552292108536,
-0.023184016346931458,
0.09607462584972382,
0.08154235780239105,
0.04020630940794945,
0.021105986088514328,
-0.029578566551208496,
-0.02603895217180252,
-0.007074621040374041,
-0.052714016288518906,
0.05687609314918518,
0.07418342679738998,
-0.02937421388924122,
-0.03866441920399666,
-0.06434741616249084,
0.13120430707931519,
0.05952705070376396,
0.09351126849651337,
0.14633987843990326,
-0.04289548844099045,
-0.03956491872668266,
0.030070297420024872,
0.049642790108919144,
-0.026188872754573822,
0.01316208764910698,
0.08857603371143341,
-0.10374435782432556,
0.1271008849143982,
-0.07710187137126923,
0.09027635306119919,
-0.10422810912132263,
-0.029349420219659805,
-0.035660143941640854,
0.0658707246184349,
0.0039665005169808865,
0.08692233264446259,
-0.10987674444913864,
0.22610998153686523,
0.01960812322795391,
0.060028813779354095,
-0.0801757425069809,
0.003044392680749297,
0.13566558063030243,
0.12212055921554565,
0.10410218685865402,
0.050709862262010574,
-0.13400422036647797,
0.0204212237149477,
-0.12745346128940582,
0.06903558224439621,
0.11282571405172348,
-0.015892181545495987,
0.056798238307237625,
0.0065049645490944386,
-0.033803295344114304,
-0.0023257748689502478,
0.017697501927614212,
-0.2944333851337433,
-0.14937345683574677,
0.11021238565444946,
-0.1753375381231308,
-0.04884858429431915,
-0.02501869946718216,
-0.07448728382587433,
-0.0754341259598732,
0.2212923765182495,
-0.00014078356616664678,
-0.07150638103485107,
-0.10217654705047607,
-0.007733372040092945,
0.02895912155508995,
-0.042242590337991714,
-0.009937637485563755,
0.005846219137310982,
0.054954640567302704,
0.008248458616435528,
-0.08336278051137924,
-0.01587471179664135,
-0.10131879150867462,
-0.1390903890132904,
-0.04339202120900154,
0.019033391028642654,
0.06318685412406921,
0.010994850657880306,
0.02191939577460289,
-0.027202241122722626,
0.055062007158994675,
-0.11602302640676498,
0.0397365540266037,
0.12019222974777222,
0.11222681403160095,
0.09214500337839127,
-0.20671944320201874,
-0.03511953726410866,
-0.10096786916255951,
-0.08023791760206223,
0.08722507953643799,
0.16613182425498962,
-0.062462933361530304,
0.09014494717121124,
0.0013623111881315708,
-0.09794556349515915,
-0.22557909786701202,
0.015339326113462448,
0.018379203975200653,
0.060839902609586716,
0.016152184456586838,
-0.1939273327589035,
0.06422588974237442,
0.04083485156297684,
-0.0045525021851062775,
0.14620685577392578,
-0.2031523436307907,
-0.13377520442008972,
0.053375549614429474,
0.03720569610595703,
0.10633240640163422,
-0.13125747442245483,
-0.030692100524902344,
0.03373432904481888,
-0.05104241520166397,
0.08781782537698746,
-0.06749847531318665,
0.10141205042600632,
-0.023532245308160782,
-0.020904432982206345,
-0.007750367745757103,
-0.03730067238211632,
0.16951513290405273,
0.054454512894153595,
0.07047902047634125,
-0.06514216214418411,
-0.04544120654463768,
0.09749746322631836,
-0.07793983817100525,
0.09907216578722,
0.03862043842673302,
0.10051160305738449,
-0.1440829634666443,
-0.009983128868043423,
-0.0065298378467559814,
0.03484142944216728,
-0.04703555628657341,
-0.022693118080496788,
-0.11157102137804031,
0.10059748589992523,
0.05650504305958748,
0.011033703573048115,
0.07261659950017929,
0.027753904461860657,
-0.030492069199681282,
0.0029232206288725138,
0.11095356196165085,
0.05190310999751091,
0.0019856176804751158,
-0.13005214929580688,
-0.033642955124378204,
0.019074559211730957,
-0.1334831416606903,
-0.018712937831878662,
0.10102764517068863,
0.05146731436252594,
0.10216497629880905,
0.0158007200807333,
-0.03268354386091232,
0.09241774678230286,
0.07275260984897614,
-0.06857548654079437,
-0.12193527817726135,
-0.1079292818903923,
-0.07698286324739456,
-0.05070880427956581,
-0.0001545431005069986,
0.07490864396095276,
-0.0772647112607956,
0.00802779383957386,
-0.006714537739753723,
0.028618359938263893,
0.01869264431297779,
0.04764590784907341,
0.078823022544384,
0.00009512531687505543,
-0.030993357300758362,
0.10645487904548645,
0.03520754724740982,
0.05752619355916977,
-0.008791946806013584,
0.043522972613573074,
-0.08277128636837006,
-0.06690694391727448,
0.07345675677061081,
0.17989708483219147,
0.029966911301016808,
-0.0745510682463646,
-0.040946535766124725,
-0.052311286330223083,
0.0027952578384429216,
0.08749108016490936,
0.041601113975048065,
-0.06416315585374832,
0.01671033352613449,
0.016318976879119873,
-0.06937433779239655,
0.07474154233932495,
0.10909239947795868,
0.06330040842294693,
-0.171770840883255,
0.007526503875851631,
0.04971703141927719,
0.11011447012424469,
-0.04008229076862335,
0.007558731362223625,
-0.09627223759889603,
-0.06920072436332703,
-0.15315237641334534,
0.0758385881781578,
-0.11927314847707748,
0.005171781871467829,
-0.04178990423679352,
-0.02857462875545025,
-0.05884610489010811,
0.0071438089944422245,
-0.027559105306863785,
-0.01590201072394848,
-0.02539062313735485,
0.04592415317893028,
-0.04733104631304741,
-0.014891798608005047,
0.056870557367801666,
-0.12778830528259277,
0.04577537253499031,
-0.008020240813493729,
-0.007893155328929424,
0.00635075056925416,
-0.10333579778671265,
-0.037292346358299255,
0.013280248269438744,
0.08115296810865402,
-0.00025709267356432974,
-0.14101150631904602,
-0.05627518892288208,
-0.02187645621597767,
0.04041461646556854,
0.00956822745501995,
0.18597455322742462,
-0.07086893171072006,
-0.00988039094954729,
-0.17315198481082916,
-0.08131539821624756,
-0.0340581014752388,
0.10471207648515701,
0.12351297587156296,
-0.0016531732399016619,
0.09489762037992477,
-0.07578431069850922,
0.07767696678638458,
-0.10789377987384796,
-0.04123776778578758,
0.030198190361261368,
-0.026165558025240898,
0.07955580204725266,
-0.0738174095749855,
0.03354726731777191,
-0.029341982677578926,
0.1948150247335434,
-0.03707160800695419,
0.005345931742340326,
-0.012959539890289307,
-0.008731095120310783,
-0.11674774438142776,
0.005023015197366476,
0.07531672716140747,
0.02429318241775036,
0.04365857318043709,
-0.03914634510874748,
0.022508777678012848,
-0.01578509248793125,
-0.027245141565799713,
0.32656776905059814,
0.11008197069168091,
-0.13516071438789368,
0.060904741287231445,
0.04002135619521141,
-0.14954456686973572,
-0.1496661901473999,
0.095676951110363,
-0.05186902731657028,
0.11228051781654358,
-0.054354164749383926,
-0.11584126204252243,
0.09893248230218887,
-0.13732053339481354,
0.08946867287158966,
-0.015463261865079403,
-0.1120566576719284,
-0.06236433982849121,
-0.09319259971380234,
-0.07993554323911667,
-0.03659747168421745,
0.02694851905107498,
-0.07721621543169022,
-0.00476284883916378,
0.08906778693199158,
0.001128326985053718,
-0.0003231388109270483,
0.14707504212856293,
-0.09162110835313797,
-0.0324711874127388,
0.05831005424261093,
-0.006424227729439735,
-0.008499185554683208,
-0.07058028876781464,
0.0011846332345157862,
0.013183362782001495,
0.05394429713487625,
-0.00421132193878293,
0.014528756961226463,
0.01615932025015354,
0.023337192833423615,
0.019281014800071716,
-0.05103569105267525,
-0.010552501305937767,
-0.028867462649941444,
0.12542565166950226,
-0.02701280079782009,
0.04560991749167442,
0.00806303322315216,
0.007710063364356756,
0.13061074912548065,
0.0018575909780338407,
-0.08125962316989899,
-0.19526153802871704,
-0.01325047668069601,
-0.10764049738645554,
-0.043587323278188705,
0.043301213532686234,
-0.12630422413349152,
0.05156075954437256,
0.24631670117378235,
0.2145962417125702,
-0.06573618948459625,
-0.0015943581238389015,
0.02734201028943062,
-0.0025930742267519236,
0.016687635332345963,
0.07063297182321548,
-0.0043454403057694435,
0.16781899333000183,
-0.013088191859424114,
-0.15203115344047546,
-0.08098899573087692,
-0.04585733637213707,
-0.11659105867147446,
0.12932854890823364,
0.09022484719753265,
-0.038360949605703354,
-0.045567434281110764,
0.100828617811203,
-0.020558619871735573,
-0.10222207754850388,
0.08098223805427551,
-0.13468146324157715,
-0.19051194190979004,
-0.022192930802702904,
0.003938174806535244,
0.029531996697187424,
0.006724116392433643,
-0.05925440788269043,
0.0175786130130291,
0.1925380527973175,
0.04847685247659683,
-0.04970752075314522,
0.08240020275115967,
0.026476051658391953,
0.04673328623175621,
0.09326048195362091,
0.003857641713693738,
0.043501678854227066,
0.0780661404132843,
0.008981313556432724,
-0.07881419360637665,
-0.022075146436691284,
0.05651383101940155,
0.0073090363293886185,
0.05061013251543045,
0.11295666545629501,
-0.06110888719558716,
-0.006696715950965881,
0.11553699523210526,
-0.05058356747031212,
0.03573115915060043,
0.16337603330612183,
-0.06585078686475754,
-0.04591166600584984,
0.0737818256020546,
-0.1167742908000946,
0.14331236481666565,
0.18739107251167297,
-0.007423642557114363,
0.008165313862264156,
0.029460245743393898,
0.07208293676376343,
0.021925512701272964,
0.10863121598958969,
-0.011294525116682053,
-0.09454546123743057,
-0.04240488260984421,
-0.04676075279712677,
0.05053623765707016,
-0.20302793383598328,
-0.11112397164106369,
0.0020058208610862494,
-0.04794630408287048,
-0.09363311529159546,
0.08431307971477509,
0.13233330845832825,
-0.004024461843073368,
-0.07714709639549255,
-0.0973227322101593,
-0.050943922251462936,
0.02883768454194069,
-0.10642292350530624,
-0.02141793631017208
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8508
- Matthews Correlation: 0.5452
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5221 | 1.0 | 535 | 0.5370 | 0.4246 |
| 0.3462 | 2.0 | 1070 | 0.5157 | 0.5183 |
| 0.2332 | 3.0 | 1605 | 0.6324 | 0.5166 |
| 0.1661 | 4.0 | 2140 | 0.7616 | 0.5370 |
| 0.1263 | 5.0 | 2675 | 0.8508 | 0.5452 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.0
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5451837431775948, "name": "Matthews Correlation"}]}]}]}
|
text-classification
|
athar/distilbert-base-uncased-finetuned-cola
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
|
distilbert-base-uncased-finetuned-cola
======================================
This model is a fine-tuned version of distilbert-base-uncased on the glue dataset.
It achieves the following results on the evaluation set:
* Loss: 0.8508
* Matthews Correlation: 0.5452
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.11.3
* Pytorch 1.9.0+cu111
* Datasets 1.13.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.13.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.13.0\n* Tokenizers 0.10.3"
] |
[
67,
98,
4,
34
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.13.0\n* Tokenizers 0.10.3"
] |
[
-0.10260701179504395,
0.10081320255994797,
-0.0022583722602576017,
0.12262177467346191,
0.16701821982860565,
0.033740971237421036,
0.1260584443807602,
0.12604160606861115,
-0.08590151369571686,
0.02249836176633835,
0.1215861365199089,
0.15904614329338074,
0.022023716941475868,
0.11789625138044357,
-0.04997318610548973,
-0.2634241282939911,
-0.01135942805558443,
0.04669973626732826,
-0.05213520675897598,
0.13413582742214203,
0.0921560674905777,
-0.12146475166082382,
0.09045455604791641,
0.01134865265339613,
-0.1936856210231781,
-0.0029640337452292442,
-0.0024267248809337616,
-0.05358223244547844,
0.1465967744588852,
0.025452470406889915,
0.1232365295290947,
0.0005140724824741483,
0.08664639294147491,
-0.19497506320476532,
0.010394414886832237,
0.04673317074775696,
0.0045633940026164055,
0.09280508756637573,
0.04628617689013481,
0.004919220693409443,
0.11550614982843399,
-0.08116725832223892,
0.05599834769964218,
0.02226668782532215,
-0.11460191011428833,
-0.20482882857322693,
-0.08078134059906006,
0.0373217798769474,
0.07983023673295975,
0.10565277934074402,
-0.005728388205170631,
0.11885657906532288,
-0.07967220991849899,
0.09299995005130768,
0.2205134630203247,
-0.2867376506328583,
-0.06719812750816345,
0.04631701111793518,
0.015353923663496971,
0.044413723051548004,
-0.0998331755399704,
-0.036832503974437714,
0.04640403017401695,
0.05336916446685791,
0.12726707756519318,
-0.029113123193383217,
-0.1205814853310585,
0.00350399361923337,
-0.14143091440200806,
-0.03317277878522873,
0.16906146705150604,
0.03979280963540077,
-0.028475603088736534,
-0.05654095858335495,
-0.059191785752773285,
-0.1478656530380249,
-0.03652551770210266,
-0.011478137224912643,
0.046542465686798096,
-0.02320132777094841,
-0.04143369570374489,
-0.010585012845695019,
-0.10818798094987869,
-0.06296086311340332,
-0.07631289213895798,
0.10867463797330856,
0.036321233958005905,
0.007773213088512421,
-0.027675321325659752,
0.11216887831687927,
-0.004855636972934008,
-0.12238581478595734,
0.02325330302119255,
0.020550301298499107,
0.01215401478111744,
-0.04092492535710335,
-0.05325982719659805,
-0.06214614585042,
0.01205099280923605,
0.13083292543888092,
-0.04685615003108978,
0.041630059480667114,
0.049670759588479996,
0.04881076514720917,
-0.0913449227809906,
0.19246844947338104,
-0.035048581659793854,
-0.030194710940122604,
0.009494757279753685,
0.04802602902054787,
0.01902371644973755,
-0.011524044908583164,
-0.12411540746688843,
0.005664928816258907,
0.08922439068555832,
0.009204642847180367,
-0.061357010155916214,
0.07458590716123581,
-0.05632200837135315,
-0.025342566892504692,
0.004663926549255848,
-0.091745525598526,
0.021607453003525734,
-0.00050768704386428,
-0.07019078731536865,
-0.02018914371728897,
0.035059183835983276,
0.01609189435839653,
-0.020503846928477287,
0.10899106413125992,
-0.08744475245475769,
0.027183832600712776,
-0.09365176409482956,
-0.10922065377235413,
0.019469324499368668,
-0.10549986362457275,
0.021999862045049667,
-0.09537766873836517,
-0.18761809170246124,
-0.017232540994882584,
0.06076977401971817,
-0.024397071450948715,
-0.06167009472846985,
-0.05450805276632309,
-0.06829546391963959,
0.012006435543298721,
-0.0101277781650424,
0.11803200840950012,
-0.0642457902431488,
0.09078333526849747,
0.02051091566681862,
0.06015153229236603,
-0.043520424515008926,
0.059802670031785965,
-0.10215847939252853,
0.015608887188136578,
-0.1523447483778,
0.04053070768713951,
-0.05156991258263588,
0.07072623074054718,
-0.08227115124464035,
-0.1045944020152092,
0.009938599541783333,
-0.0043685478158295155,
0.06248605623841286,
0.09259668737649918,
-0.18641029298305511,
-0.07436434924602509,
0.15504956245422363,
-0.0716499611735344,
-0.1221783310174942,
0.1205766350030899,
-0.059179965406656265,
0.055023983120918274,
0.05805809050798416,
0.17674566805362701,
0.0826321467757225,
-0.0776965320110321,
0.0020721566397696733,
0.025065112859010696,
0.052573803812265396,
-0.06784003973007202,
0.0695652961730957,
0.0051342761144042015,
0.018797755241394043,
0.03655685856938362,
-0.029994403943419456,
0.06382003426551819,
-0.08577785640954971,
-0.09863835573196411,
-0.039805058389902115,
-0.08299107104539871,
0.04108956828713417,
0.07475211471319199,
0.06790855526924133,
-0.09171456843614578,
-0.07627446949481964,
0.050161153078079224,
0.08283204585313797,
-0.0577627569437027,
0.02398042380809784,
-0.04988010227680206,
0.07604832202196121,
-0.02700572833418846,
-0.02267761528491974,
-0.18088360130786896,
-0.03892393037676811,
0.007981885224580765,
0.0019227593438699841,
0.01594879850745201,
0.028292587026953697,
0.06020883098244667,
0.060493577271699905,
-0.047729216516017914,
-0.017689649015665054,
-0.030869867652654648,
0.001060831593349576,
-0.12752720713615417,
-0.1907798796892166,
-0.03083307482302189,
-0.024596597999334335,
0.15655946731567383,
-0.205714151263237,
0.04885122552514076,
-0.017636707052588463,
0.07007502764463425,
0.011554251424968243,
-0.006022108253091574,
-0.03669936954975128,
0.07452618330717087,
-0.045015688985586166,
-0.05352294445037842,
0.08098813146352768,
0.018410557880997658,
-0.08799105137586594,
-0.04998891055583954,
-0.0968090072274208,
0.15656185150146484,
0.12722311913967133,
-0.10450609028339386,
-0.0763443261384964,
-0.021190570667386055,
-0.06717929989099503,
-0.03386428952217102,
-0.048632096499204636,
0.025312401354312897,
0.18681634962558746,
-0.004118766635656357,
0.150194451212883,
-0.0679183378815651,
-0.04358955845236778,
0.017105253413319588,
-0.036100614815950394,
0.016121763736009598,
0.12703658640384674,
0.1366879642009735,
-0.06008537858724594,
0.15484260022640228,
0.14671200513839722,
-0.09060529619455338,
0.1449885219335556,
-0.04084239527583122,
-0.06403574347496033,
-0.015188442543148994,
-0.030875759199261665,
-0.011312653310596943,
0.10046736896038055,
-0.1516374945640564,
0.0007615895010530949,
0.03335036337375641,
0.01641458459198475,
0.0254366435110569,
-0.22417809069156647,
-0.04014188423752785,
0.03462148830294609,
-0.04194264113903046,
-0.003973920829594135,
-0.006828543730080128,
0.005731275770813227,
0.10065358132123947,
0.0013279037084430456,
-0.0875827893614769,
0.039098888635635376,
0.002575256861746311,
-0.0841260552406311,
0.2162059098482132,
-0.08286363631486893,
-0.17488396167755127,
-0.1311202496290207,
-0.07423744350671768,
-0.0486481674015522,
-0.0007298471173271537,
0.06711877137422562,
-0.08824382722377777,
-0.03165018931031227,
-0.07321962714195251,
0.021762961521744728,
0.010669379495084286,
0.02417006343603134,
0.005960660520941019,
0.003971979022026062,
0.06309368461370468,
-0.11053586006164551,
-0.01533086970448494,
-0.05700783059000969,
-0.04445945471525192,
0.04481006786227226,
0.031163616105914116,
0.11287461966276169,
0.15316610038280487,
-0.012961248867213726,
0.011190254241228104,
-0.03059549815952778,
0.24002021551132202,
-0.059053439646959305,
-0.018182503059506416,
0.14483121037483215,
-0.011201143264770508,
0.05158764123916626,
0.12019366025924683,
0.07241468131542206,
-0.07757159322500229,
0.005282898433506489,
0.034813251346349716,
-0.03671449422836304,
-0.230190709233284,
-0.05833141505718231,
-0.05804073065519333,
0.010002302937209606,
0.09144245088100433,
0.02496347576379776,
0.028664084151387215,
0.07224813103675842,
0.041618626564741135,
0.07823507487773895,
-0.03832511231303215,
0.055440571159124374,
0.13234584033489227,
0.03316230699419975,
0.12627536058425903,
-0.044586315751075745,
-0.06374005228281021,
0.04381047189235687,
-0.007997614331543446,
0.22462232410907745,
0.004706927575170994,
0.12641042470932007,
0.06236039102077484,
0.1618611067533493,
-0.005824560299515724,
0.07889410853385925,
-0.010359970852732658,
-0.0351707860827446,
-0.018309054896235466,
-0.038461968302726746,
-0.0395994707942009,
0.024431895464658737,
-0.06643065810203552,
0.06241542100906372,
-0.11968131363391876,
0.01619015634059906,
0.05935709550976753,
0.25005650520324707,
0.03451128676533699,
-0.3226512670516968,
-0.09806375205516815,
0.0029154664371162653,
-0.033310238271951675,
-0.021862942725419998,
0.027483919635415077,
0.09389511495828629,
-0.10154395550489426,
0.029421841725707054,
-0.07561991363763809,
0.0960560142993927,
-0.05256045237183571,
0.0480373352766037,
0.08534827828407288,
0.09151554852724075,
0.012771465815603733,
0.0924702063202858,
-0.2869342565536499,
0.2712503671646118,
-0.0008410164737142622,
0.05687924474477768,
-0.07749706506729126,
0.010554520413279533,
0.04362620413303375,
0.06271490454673767,
0.08119276165962219,
-0.013003264553844929,
-0.024578135460615158,
-0.18438555300235748,
-0.0716814249753952,
0.02895212359726429,
0.06113511696457863,
-0.03738584369421005,
0.0837213471531868,
-0.03297851234674454,
0.007321526762098074,
0.07157672941684723,
0.0017066600266844034,
-0.0511137992143631,
-0.10911702364683151,
-0.0053342049941420555,
0.022649748250842094,
-0.06024601683020592,
-0.06048602983355522,
-0.12097112089395523,
-0.12832963466644287,
0.15733344852924347,
-0.031092699617147446,
-0.04100340977311134,
-0.10885749757289886,
0.0838470533490181,
0.06165137514472008,
-0.08911088109016418,
0.045708149671554565,
0.0003957916924264282,
0.07978805154561996,
0.022348592057824135,
-0.07492329925298691,
0.0997173935174942,
-0.07763740420341492,
-0.1562085896730423,
-0.06576354801654816,
0.10500749945640564,
0.03179623559117317,
0.06596308201551437,
-0.011596973985433578,
0.006866179872304201,
-0.047740668058395386,
-0.09051869064569473,
0.014736207202076912,
0.009611779823899269,
0.08004062622785568,
0.01860158145427704,
-0.07724406570196152,
0.006278442218899727,
-0.059819165617227554,
-0.03264930844306946,
0.20987200736999512,
0.21528257429599762,
-0.10084275901317596,
0.025960376486182213,
0.02256510965526104,
-0.07289713621139526,
-0.20136311650276184,
0.032540012151002884,
0.05692482367157936,
0.009642678312957287,
0.0413568913936615,
-0.18020223081111908,
0.13851064443588257,
0.10809250175952911,
-0.013958197087049484,
0.10310479998588562,
-0.31960389018058777,
-0.12184390425682068,
0.1368209272623062,
0.1351080983877182,
0.10082469135522842,
-0.12972481548786163,
-0.02068249322474003,
-0.017719436436891556,
-0.13690075278282166,
0.117909736931324,
-0.08887717872858047,
0.11962924152612686,
-0.03500482812523842,
0.08026538789272308,
0.0016001294134184718,
-0.05867892876267433,
0.11865163594484329,
0.027322683483362198,
0.09169480204582214,
-0.05917859449982643,
-0.033613529056310654,
0.031236670911312103,
-0.04489094018936157,
0.036142442375421524,
-0.09427609294652939,
0.030090512707829475,
-0.10472257435321808,
-0.026465442031621933,
-0.06656667590141296,
0.04567259922623634,
-0.04274137690663338,
-0.06841539591550827,
-0.036281801760196686,
0.027065495029091835,
0.04985618591308594,
-0.008486702106893063,
0.12136474251747131,
0.028338724747300148,
0.14201240241527557,
0.09707731753587723,
0.07328339666128159,
-0.069073386490345,
-0.07842062413692474,
-0.027359958738088608,
-0.01235702820122242,
0.04892276972532272,
-0.13308848440647125,
0.02073311246931553,
0.15306343138217926,
0.01772536337375641,
0.15082360804080963,
0.08264216035604477,
-0.01797478459775448,
0.00022957325563766062,
0.05722154304385185,
-0.16599147021770477,
-0.08691352605819702,
-0.014317881315946579,
-0.06546071916818619,
-0.12191540747880936,
0.042432479560375214,
0.09376601874828339,
-0.06699361652135849,
-0.00834483839571476,
-0.00424029678106308,
0.015104971826076508,
-0.04696989804506302,
0.18609431385993958,
0.06153259426355362,
0.04699622467160225,
-0.09904108941555023,
0.07034547626972198,
0.045642174780368805,
-0.07075972855091095,
0.004661648999899626,
0.07526548951864243,
-0.08913951367139816,
-0.05520845577120781,
0.06606671214103699,
0.1882692277431488,
-0.048551470041275024,
-0.04616360366344452,
-0.14082197844982147,
-0.12385662645101547,
0.07895486056804657,
0.13947102427482605,
0.12036938220262527,
0.01007772795855999,
-0.06818845123052597,
0.0009205704554915428,
-0.10763071477413177,
0.10487238317728043,
0.049688614904880524,
0.06331808865070343,
-0.14431172609329224,
0.1397012323141098,
0.017478404566645622,
0.04983825981616974,
-0.01985938847064972,
0.025345606729388237,
-0.09963267296552658,
0.006058255210518837,
-0.09885593503713608,
-0.013865781016647816,
-0.03491486236453056,
0.013142876327037811,
-0.006032127887010574,
-0.04598696529865265,
-0.05586240068078041,
0.01122579537332058,
-0.10594701021909714,
-0.023371368646621704,
0.02569613792002201,
0.07006946951150894,
-0.10740084201097488,
-0.03696436062455177,
0.027521654963493347,
-0.06170232966542244,
0.07747386395931244,
0.04321600869297981,
0.016015715897083282,
0.0494043342769146,
-0.1367294192314148,
0.015680082142353058,
0.07504589110612869,
0.03106771595776081,
0.06444019824266434,
-0.09722351282835007,
-0.006653857883065939,
-0.005007019732147455,
0.03822208195924759,
0.02043314278125763,
0.07695502042770386,
-0.1405656337738037,
0.002436578506603837,
-0.023209664970636368,
-0.08067359775304794,
-0.06748946756124496,
0.02626621350646019,
0.09067633748054504,
0.021374879404902458,
0.2019619196653366,
-0.07679478079080582,
0.051229652017354965,
-0.2146778255701065,
0.006155373528599739,
-0.009193776175379753,
-0.10856004804372787,
-0.1057322770357132,
-0.07087910175323486,
0.05464359000325203,
-0.05739593878388405,
0.15365120768547058,
0.047038838267326355,
0.022434618324041367,
0.024772057309746742,
-0.005890172440558672,
0.016206368803977966,
0.011877031996846199,
0.18831217288970947,
0.029817285016179085,
-0.0343216136097908,
0.05881138890981674,
0.043446339666843414,
0.10473530739545822,
0.11153373122215271,
0.20226611196994781,
0.1411397010087967,
-0.004810938145965338,
0.09290651232004166,
0.04162627086043358,
-0.05863569676876068,
-0.15912701189517975,
0.046211715787649155,
-0.0368470698595047,
0.11044163256883621,
-0.020621860399842262,
0.21672949194908142,
0.05940916761755943,
-0.1707199215888977,
0.04661911353468895,
-0.05351189523935318,
-0.08663585782051086,
-0.11352568864822388,
-0.05277930572628975,
-0.07848526537418365,
-0.12785658240318298,
-0.004998764023184776,
-0.11756432056427002,
-0.0042663151398301125,
0.12751874327659607,
0.004388878121972084,
-0.02748066559433937,
0.15558694303035736,
0.008330429904162884,
0.02318243868649006,
0.057072997093200684,
0.011280382052063942,
-0.03524106740951538,
-0.1316816806793213,
-0.05866469442844391,
-0.018764635547995567,
-0.0075740269385278225,
0.03312762826681137,
-0.06175972521305084,
-0.03918991982936859,
0.03274975344538689,
-0.022348958998918533,
-0.0935005247592926,
0.005115283187478781,
0.012921675108373165,
0.05343834310770035,
0.047480810433626175,
0.010905387811362743,
0.018570784479379654,
-0.0022722543217241764,
0.19884364306926727,
-0.07113414257764816,
-0.06705640256404877,
-0.10827033966779709,
0.22965022921562195,
0.033335085958242416,
-0.022099772468209267,
0.034976352006196976,
-0.06481695920228958,
0.00270447158254683,
0.24875572323799133,
0.2182951271533966,
-0.08322937786579132,
-0.007624676916748285,
0.016807684674859047,
-0.00903038028627634,
-0.023253681138157845,
0.10132262855768204,
0.14448794722557068,
0.05542459338903427,
-0.09262575954198837,
-0.04729248210787773,
-0.058650579303503036,
-0.018765630200505257,
-0.036957018077373505,
0.06847531348466873,
0.0478537380695343,
0.007992831990122795,
-0.034434668719768524,
0.05541345849633217,
-0.07213034480810165,
-0.08886466920375824,
0.05280833691358566,
-0.21614539623260498,
-0.1699412763118744,
-0.013758491724729538,
0.09820803999900818,
0.0026795808225870132,
0.060179829597473145,
-0.030813422054052353,
-0.003037061309441924,
0.09297467023134232,
-0.02121742069721222,
-0.0962800532579422,
-0.06805121898651123,
0.08845213800668716,
-0.10610733181238174,
0.22191138565540314,
-0.04654933512210846,
0.054718416184186935,
0.1254727989435196,
0.06924396008253098,
-0.07015267014503479,
0.06390426307916641,
0.04338230565190315,
-0.0411248616874218,
0.027917124330997467,
0.06901904195547104,
-0.0359344482421875,
0.06312143057584763,
0.04854896664619446,
-0.1387726068496704,
0.019776655361056328,
-0.049440812319517136,
-0.06619037687778473,
-0.04568006470799446,
-0.022235320881009102,
-0.06214004009962082,
0.1326451301574707,
0.21583402156829834,
-0.026380985975265503,
-0.011045176535844803,
-0.07013258337974548,
0.011126537807285786,
0.05230022594332695,
0.024190040305256844,
-0.05700092762708664,
-0.21096092462539673,
0.01640206202864647,
0.03793751448392868,
-0.018928024917840958,
-0.24578125774860382,
-0.10134970396757126,
0.0011729961261153221,
-0.07268963009119034,
-0.09811028093099594,
0.07420751452445984,
0.08586546033620834,
0.0506197027862072,
-0.05664948746562004,
-0.03897611051797867,
-0.07709004729986191,
0.1451774686574936,
-0.14474426209926605,
-0.09236274659633636
] |
null | null |
transformers
|
# Harry Potter DialoGPT Model
|
{"tags": ["conversational"]}
|
text-generation
|
atkh6673/DialoGPT-small-harrypotter
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Harry Potter DialoGPT Model
|
[
"# Harry Potter DialoGPT Model"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Harry Potter DialoGPT Model"
] |
[
51,
8
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Potter DialoGPT Model"
] |
[
-0.0009023238671943545,
0.07815738022327423,
-0.006546166725456715,
0.07792752981185913,
0.10655936598777771,
0.048972971737384796,
0.17639793455600739,
0.12185695022344589,
0.016568755730986595,
-0.04774167761206627,
0.11647630482912064,
0.2130284160375595,
-0.002118367003276944,
0.024608047679066658,
-0.05022026598453522,
-0.3065771162509918,
0.0474756620824337,
0.014356585219502449,
-0.07174845039844513,
0.11724270135164261,
0.09064973145723343,
-0.046179238706827164,
0.08330509811639786,
-0.009135239757597446,
-0.13198648393154144,
-0.039482954889535904,
0.019292812794446945,
-0.11745545268058777,
0.1662212759256363,
0.05298272892832756,
0.02469746209681034,
-0.008447164669632912,
-0.06598151475191116,
-0.15036040544509888,
0.037190426141023636,
-0.027472136542201042,
-0.01080626156181097,
0.05462246760725975,
0.023526115342974663,
-0.07521048933267593,
0.170567125082016,
0.17678891122341156,
0.0833497866988182,
0.0349111407995224,
-0.14917024970054626,
-0.045548245310783386,
0.008950977586209774,
0.05421316996216774,
-0.017893504351377487,
0.09349167346954346,
-0.019903047010302544,
0.11801653355360031,
-0.04491448402404785,
0.09210366010665894,
0.15255063772201538,
-0.4016275703907013,
-0.027563704177737236,
0.08920855820178986,
0.05989706888794899,
0.12076901644468307,
-0.10560955852270126,
0.03972794860601425,
-0.0039703017100691795,
0.01236654631793499,
-0.014540530741214752,
-0.08304883539676666,
-0.07308239489793777,
0.032504837960004807,
-0.1272556483745575,
0.008525865152478218,
0.23756256699562073,
-0.10643257945775986,
0.037069112062454224,
-0.09791990369558334,
-0.07414398342370987,
0.048336777836084366,
-0.053761593997478485,
-0.081727035343647,
-0.054839808493852615,
0.06347949057817459,
0.004366500303149223,
-0.06301609426736832,
-0.08326146006584167,
-0.0006536149303428829,
-0.12781435251235962,
0.17595994472503662,
0.061243366450071335,
0.041611745953559875,
-0.21322020888328552,
0.08940251916646957,
0.04477722570300102,
-0.04711297154426575,
0.007116159424185753,
-0.11796226352453232,
0.04023287072777748,
0.005483259446918964,
-0.03256071358919144,
-0.021854614838957787,
0.0393419973552227,
0.13909944891929626,
-0.01777748204767704,
0.03252175822854042,
0.006831915583461523,
0.05811219662427902,
0.08162496984004974,
0.02222144603729248,
0.019291909411549568,
-0.0818009302020073,
0.019385190680623055,
-0.08128736168146133,
-0.0030400939285755157,
-0.048940129578113556,
-0.17071883380413055,
-0.07477642595767975,
0.052610911428928375,
0.020047198981046677,
0.03746970370411873,
0.08054786175489426,
-0.0017944995779544115,
-0.05560554191470146,
0.03284840285778046,
0.01671096310019493,
-0.020622212439775467,
-0.010361049324274063,
-0.02412462793290615,
0.19123271107673645,
0.019619356840848923,
0.014111656695604324,
-0.12379156798124313,
0.10023640841245651,
-0.08179095387458801,
0.0037731381598860025,
0.02743307314813137,
-0.04204464703798294,
-0.004716555587947369,
0.02917117439210415,
0.023101668804883957,
-0.1252521574497223,
-0.1099385917186737,
-0.0030569476075470448,
-0.012054097838699818,
-0.036421261727809906,
-0.10490952432155609,
-0.08483029156923294,
-0.012153145857155323,
0.0449371263384819,
-0.013397793285548687,
0.007936403155326843,
-0.05143149942159653,
0.0985720232129097,
-0.0514979362487793,
0.09873400628566742,
-0.08342572301626205,
0.06359215080738068,
-0.09124887734651566,
-0.061886150389909744,
-0.11452563107013702,
0.05216052383184433,
0.012905281968414783,
0.066250741481781,
0.016998225823044777,
-0.044836658984422684,
-0.014836243353784084,
0.05253177136182785,
-0.07656687498092651,
0.1940697431564331,
-0.041674621403217316,
-0.12459053844213486,
0.24146439135074615,
-0.09138800948858261,
-0.1802034229040146,
0.12973085045814514,
-0.022254703566432,
0.08523941785097122,
0.12802475690841675,
0.20380465686321259,
-0.00019822151807602495,
-0.01302915159612894,
0.07281201332807541,
0.07031642645597458,
-0.09803894907236099,
0.06239739805459976,
0.029653839766979218,
-0.008071083575487137,
-0.08906278014183044,
0.05762826278805733,
0.046033453196287155,
-0.010650773532688618,
-0.035073768347501755,
-0.001896020956337452,
-0.012895751744508743,
-0.022185025736689568,
0.14126582443714142,
-0.02006692811846733,
0.1300428807735443,
-0.06926563382148743,
-0.03515486419200897,
-0.009500149637460709,
0.03533667325973511,
-0.04091939330101013,
0.08151165395975113,
-0.0436173714697361,
0.10586477071046829,
0.09034156054258347,
0.053724925965070724,
-0.13120363652706146,
0.00466286763548851,
-0.015246815048158169,
0.17014820873737335,
0.08964069187641144,
0.05222717300057411,
0.06265474855899811,
-0.0020888058934360743,
-0.06708643585443497,
0.045407816767692566,
0.13778303563594818,
-0.037020038813352585,
-0.12218865007162094,
-0.1755627691745758,
0.051157694309949875,
-0.045444171875715256,
0.10855234414339066,
-0.10010123997926712,
0.022670533508062363,
-0.055906031280756,
0.07772238552570343,
-0.024998966604471207,
0.020512236282229424,
-0.0013405600329861045,
-0.021700702607631683,
-0.08356887847185135,
-0.002377772703766823,
0.08597290515899658,
-0.02048647589981556,
-0.06707409024238586,
0.16556480526924133,
-0.16400809586048126,
0.1631954461336136,
0.2116095870733261,
-0.28542569279670715,
-0.005696662236005068,
-0.15163889527320862,
-0.0208092350512743,
0.019645055755972862,
0.07834604382514954,
0.026225795969367027,
0.2044338881969452,
-0.012928472831845284,
0.16565458476543427,
-0.05699567869305611,
-0.07730039209127426,
-0.06881127506494522,
-0.048101142048835754,
0.013522743247449398,
0.09095205366611481,
0.04542696103453636,
-0.11962861567735672,
0.13119758665561676,
0.1054433062672615,
0.06484298408031464,
0.12711186707019806,
0.1030748188495636,
-0.008113685995340347,
0.07252490520477295,
-0.03624548763036728,
-0.03462279960513115,
-0.09254947304725647,
-0.30446043610572815,
-0.04840317741036415,
0.0939924493432045,
0.007963384501636028,
0.09285714477300644,
-0.0919896736741066,
-0.03311870992183685,
0.006042704917490482,
0.009473444893956184,
0.028337622061371803,
0.09653715789318085,
0.013490920886397362,
0.15320514142513275,
-0.008011690340936184,
-0.03430786728858948,
0.05891305208206177,
0.017982570454478264,
-0.09147711098194122,
0.17280617356300354,
-0.17050009965896606,
-0.27190929651260376,
-0.06990014761686325,
-0.21745692193508148,
-0.013139115646481514,
0.05258983001112938,
0.0786920040845871,
-0.11818131804466248,
-0.018352627754211426,
-0.006239492911845446,
0.05685517191886902,
-0.2425733357667923,
0.0004911290016025305,
-0.1354890614748001,
0.0501418262720108,
-0.1974833607673645,
-0.09718500077724457,
-0.02271542325615883,
-0.013450481928884983,
-0.0464281290769577,
0.13365240395069122,
-0.1448695808649063,
-0.011572926305234432,
0.2329535037279129,
0.032479673624038696,
0.027794739231467247,
-0.05020907148718834,
0.19788463413715363,
-0.0958966314792633,
-0.023973820731043816,
0.11024576425552368,
-0.05038975924253464,
0.04834126681089401,
0.06649978458881378,
-0.012981836684048176,
-0.08557141572237015,
0.023789849132299423,
-0.068336620926857,
-0.03150583803653717,
-0.27926525473594666,
-0.0930178239941597,
-0.09319330751895905,
0.11305391043424606,
0.04079577326774597,
0.06421639025211334,
0.16545771062374115,
0.05191578343510628,
-0.024325082078576088,
-0.03006586618721485,
0.11609793454408646,
0.12905290722846985,
0.2277202159166336,
-0.06067761778831482,
0.10221996158361435,
0.009445492178201675,
-0.08203992247581482,
0.06062209978699684,
0.056782789528369904,
0.06324724853038788,
0.02584579586982727,
0.03694582358002663,
-0.030939655378460884,
0.1121687963604927,
0.12571842968463898,
0.05258069559931755,
0.0481170229613781,
0.0002127334737451747,
-0.0561506561934948,
-0.008168719708919525,
-0.05726633965969086,
0.06774696707725525,
0.061340972781181335,
-0.12918008863925934,
-0.08061543852090836,
0.0011613310780376196,
0.06660808622837067,
-0.016230419278144836,
0.06823775917291641,
-0.13560809195041656,
-0.03582429885864258,
0.0790911465883255,
-0.07693151384592056,
-0.14156894385814667,
0.11972879618406296,
-0.026570770889520645,
-0.19904157519340515,
0.05265914276242256,
0.007704653777182102,
0.0908159390091896,
-0.06360849738121033,
0.05343840271234512,
-0.13023801147937775,
-0.12935101985931396,
-0.018437571823596954,
0.07945099472999573,
-0.3450873792171478,
0.13536721467971802,
-0.013286802917718887,
-0.02876877970993519,
-0.06474969536066055,
-0.02640824392437935,
0.013905409723520279,
0.12719078361988068,
0.08667250722646713,
0.0008821099763736129,
0.0991629809141159,
0.03823768347501755,
0.04188435152173042,
-0.002011700300499797,
0.10950417071580887,
0.0050011589191854,
0.004797275178134441,
-0.04982118681073189,
0.007274609990417957,
-0.05164213851094246,
-0.07472953200340271,
0.08393982797861099,
-0.20678792893886566,
0.09087453782558441,
-0.03378438204526901,
0.08427679538726807,
0.04304937273263931,
-0.018965769559144974,
-0.1001204177737236,
0.19745583832263947,
-0.012206900864839554,
-0.11405988782644272,
-0.07517550885677338,
-0.02810264565050602,
0.09103139489889145,
-0.013817726634442806,
0.012886416167020798,
-0.045470476150512695,
0.032183047384023666,
-0.1263762265443802,
-0.1597503274679184,
0.08734500408172607,
-0.04441224783658981,
-0.10894393920898438,
-0.025462759658694267,
0.20382575690746307,
-0.007266622502356768,
0.08242089301347733,
0.01605331338942051,
0.010653935372829437,
-0.18066231906414032,
-0.04018142446875572,
0.02645772136747837,
-0.0016437612939625978,
0.005979063920676708,
0.047698814421892166,
0.019091911613941193,
0.06207629665732384,
-0.1069745197892189,
-0.013920160941779613,
0.3158324360847473,
0.15978319942951202,
-0.00912671908736229,
0.14943915605545044,
0.1093616932630539,
-0.08669080585241318,
-0.17238758504390717,
-0.1171615794301033,
-0.1210922971367836,
-0.08425768464803696,
-0.10681738704442978,
-0.1525043100118637,
0.09535340964794159,
-0.03392014652490616,
0.03498011827468872,
0.14615866541862488,
-0.280263751745224,
-0.10949636250734329,
0.13820378482341766,
0.010744688101112843,
0.3510635495185852,
-0.12303631007671356,
-0.044944874942302704,
-0.06214528530836105,
-0.16933435201644897,
0.08021392673254013,
-0.031203703954815865,
0.11581093072891235,
-0.0744495838880539,
0.19395925104618073,
0.01719796098768711,
0.014287159778177738,
0.0916559100151062,
0.05038322135806084,
-0.05808406323194504,
-0.07368700206279755,
-0.10248131304979324,
0.010812131687998772,
0.03546109423041344,
0.010252019390463829,
-0.008802837692201138,
0.0211968794465065,
-0.11341743916273117,
-0.050869911909103394,
-0.06302189081907272,
0.0072614275850355625,
-0.01001308299601078,
-0.042155615985393524,
-0.05533592775464058,
-0.022557416930794716,
-0.020093943923711777,
0.02266426384449005,
0.14185629785060883,
-0.07527699321508408,
0.18586260080337524,
0.02357078716158867,
0.1586609035730362,
-0.11956068128347397,
-0.06724818795919418,
-0.029193658381700516,
-0.05280323326587677,
0.06468886137008667,
-0.08884575963020325,
-0.027708567678928375,
0.1332162618637085,
-0.01903904788196087,
0.04655366763472557,
0.12936700880527496,
0.02046884410083294,
0.015383756719529629,
0.034968774765729904,
-0.2578005790710449,
-0.07463036477565765,
-0.03505445644259453,
-0.012416874058544636,
0.05272092670202255,
0.05525677278637886,
0.19735674560070038,
-0.03551921248435974,
-0.08521962910890579,
0.020131373777985573,
0.02735883742570877,
-0.02776256389915943,
0.10749414563179016,
0.019579345360398293,
-0.004837906453758478,
-0.16151933372020721,
0.08257976174354553,
-0.005964108742773533,
-0.08297000825405121,
0.028665626421570778,
0.2024049311876297,
-0.12141239643096924,
-0.10309756547212601,
-0.06804922968149185,
0.07315051555633545,
-0.09220825880765915,
0.016043387353420258,
-0.005091092549264431,
-0.1521538347005844,
0.06916408240795135,
0.07598215341567993,
0.04075418785214424,
0.06513199955224991,
-0.11743064224720001,
-0.015730571001768112,
-0.04170290008187294,
-0.002195435343310237,
0.03521120920777321,
0.01863143965601921,
-0.057492829859256744,
0.15846455097198486,
-0.0676199421286583,
0.08538917452096939,
-0.0744810476899147,
-0.1058846190571785,
-0.1395980566740036,
0.04660497233271599,
-0.08038312196731567,
-0.07247276604175568,
-0.12832807004451752,
-0.052204377949237823,
-0.0067099276930093765,
-0.03388519585132599,
0.006552806124091148,
-0.06627799570560455,
-0.10922821611166,
0.01822470687329769,
-0.00743203004822135,
-0.009385870769619942,
-0.06096754968166351,
0.026706209406256676,
0.06246216222643852,
-0.039788868278265,
0.15730851888656616,
0.22509248554706573,
-0.13591648638248444,
0.11564400047063828,
-0.09797432273626328,
-0.105463907122612,
0.046008042991161346,
0.009427277371287346,
0.03594303876161575,
0.0503489226102829,
-0.03594081476330757,
0.0044484552927315235,
0.03905477747321129,
0.08074651658535004,
0.08456914126873016,
-0.06776505708694458,
0.020801106467843056,
-0.05122765153646469,
-0.14904099702835083,
-0.016655439510941505,
-0.0464773029088974,
0.06876829266548157,
-0.006725262850522995,
0.11020535975694656,
-0.0515950471162796,
0.07739507406949997,
-0.07558431476354599,
0.050614211708307266,
0.021146971732378006,
-0.14688286185264587,
-0.006612539757043123,
-0.07093682140111923,
0.042144812643527985,
-0.008834975771605968,
0.20241086184978485,
-0.03228091076016426,
0.010342049412429333,
0.033811055123806,
0.06203942745923996,
-0.01957780309021473,
0.009357001632452011,
0.2014283686876297,
0.12640917301177979,
-0.08496357500553131,
-0.02679651789367199,
0.06793134659528732,
0.07248228788375854,
0.07093550264835358,
0.10807815194129944,
-0.015352966263890266,
0.028434239327907562,
0.07829629629850388,
-0.060215238481760025,
0.07576877623796463,
-0.08603982627391815,
-0.11668483167886734,
0.05793621391057968,
0.012955795042216778,
-0.055695828050374985,
0.20305177569389343,
0.19142870604991913,
-0.026278704404830933,
0.018410727381706238,
-0.0029499190859496593,
-0.10117456316947937,
-0.15619947016239166,
-0.05423750728368759,
-0.07170962542295456,
-0.1319410353899002,
-0.004549739416688681,
-0.16646917164325714,
0.022016216069459915,
-0.01132756657898426,
0.09506805986166,
-0.06855440139770508,
-0.01345991250127554,
0.1364889293909073,
-0.1055467277765274,
0.0847758799791336,
-0.024517204612493515,
0.07877567410469055,
-0.03746940940618515,
-0.018209461122751236,
-0.10342709720134735,
0.007514837197959423,
0.01131442841142416,
0.06840907037258148,
-0.10897937417030334,
0.02432350255548954,
-0.12208317965269089,
-0.08617185056209564,
-0.026142612099647522,
0.09279687702655792,
-0.0403008833527565,
0.15116846561431885,
0.02645145356655121,
-0.06710928678512573,
-0.004313822835683823,
0.2646709978580475,
-0.08046227693557739,
-0.08319197595119476,
-0.030799202620983124,
0.2152107208967209,
0.04053696244955063,
0.06396269053220749,
0.019140036776661873,
0.038027774542570114,
-0.07184682041406631,
0.2957373559474945,
0.34401440620422363,
-0.1318037211894989,
-0.007773484103381634,
0.04225075617432594,
0.04406323283910751,
0.14687567949295044,
0.07998795062303543,
0.11360671371221542,
0.2849363386631012,
-0.09197647124528885,
0.016657205298542976,
-0.04230864346027374,
-0.01424806285649538,
-0.06908884644508362,
0.045314885675907135,
0.08216670155525208,
-0.09241747111082077,
-0.022950593382120132,
0.08125471323728561,
-0.29741767048835754,
0.10791494697332382,
-0.15600289404392242,
-0.14948409795761108,
-0.05027429759502411,
-0.008771711029112339,
0.014683255925774574,
0.019041186198592186,
0.09663030505180359,
0.025651484727859497,
-0.07275258749723434,
0.07816889137029648,
0.024486342445015907,
-0.23020237684249878,
-0.01345184724777937,
0.1456068754196167,
-0.06789913028478622,
-0.025938833132386208,
-0.021313713863492012,
0.051610056310892105,
0.05763651058077812,
0.09027529507875443,
-0.03809558227658272,
-0.0746568813920021,
-0.007141788024455309,
-0.022818787023425102,
0.01914946548640728,
0.0597183033823967,
0.06841408461332321,
-0.0920223817229271,
0.1167774423956871,
-0.07350476831197739,
0.0650370642542839,
0.037623800337314606,
-0.022277191281318665,
0.0018526542698964477,
0.013183658011257648,
-0.06512464582920074,
0.05533479526638985,
0.1295643299818039,
-0.025459708645939827,
-0.002524374984204769,
-0.028180841356515884,
-0.0767761766910553,
-0.024015206843614578,
-0.04643676429986954,
-0.09101243317127228,
-0.18130090832710266,
-0.12738600373268127,
0.041754670441150665,
-0.03240608796477318,
-0.2046082615852356,
0.0060346988029778,
-0.1128578633069992,
0.03700976446270943,
-0.14154092967510223,
0.10004086047410965,
0.07216610759496689,
0.004716616589576006,
0.006774604320526123,
0.0675399899482727,
0.045677728950977325,
0.14796748757362366,
-0.16543124616146088,
-0.04919974133372307
] |
null | null |
transformers
|
# Trump DialoGPT Model
|
{"tags": ["conversational"]}
|
text-generation
|
atkh6673/DialoGPT-small-trump
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Trump DialoGPT Model
|
[
"# Trump DialoGPT Model"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Trump DialoGPT Model"
] |
[
51,
7
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Trump DialoGPT Model"
] |
[
-0.022125879302620888,
0.054629646241664886,
-0.006611151155084372,
-0.013674690388143063,
0.12871679663658142,
-0.029470061883330345,
0.11512669920921326,
0.1205100491642952,
0.024193990975618362,
-0.08154301345348358,
0.17075945436954498,
0.19268614053726196,
-0.0002837065840139985,
0.09936094284057617,
-0.06301601976156235,
-0.26821815967559814,
0.06107020750641823,
0.05020878463983536,
0.03290747478604317,
0.11317595094442368,
0.09116097539663315,
-0.05002731829881668,
0.07593041658401489,
0.02031833678483963,
-0.12712550163269043,
0.0524340383708477,
0.03296176716685295,
-0.10774769634008408,
0.11028508096933365,
0.07814468443393707,
0.0182527806609869,
0.0916905477643013,
-0.09020379930734634,
-0.11302605271339417,
0.05105701461434364,
0.03394671529531479,
-0.06449230760335922,
0.034764889627695084,
0.023703156039118767,
-0.17380359768867493,
0.18667666614055634,
0.10666016489267349,
-0.00561425881460309,
0.06890036910772324,
-0.1657075434923172,
-0.0054605016484856606,
-0.04067683219909668,
0.061691008508205414,
0.13324037194252014,
0.08982723951339722,
-0.04230022057890892,
0.11116395145654678,
-0.02175990864634514,
0.10218951851129532,
0.015480668283998966,
-0.3195267915725708,
-0.013975966721773148,
0.04752109944820404,
-0.022346772253513336,
0.06967134028673172,
0.018669458106160164,
0.11066023260354996,
0.06705110520124435,
0.01123473048210144,
-0.010976701974868774,
-0.06982818245887756,
-0.06759625673294067,
0.04204302281141281,
-0.07747451961040497,
-0.0013804819900542498,
0.2119683474302292,
0.022395072504878044,
0.076392263174057,
-0.10272040218114853,
-0.05424080416560173,
-0.03031066246330738,
-0.03644214943051338,
-0.04029734805226326,
-0.08654993772506714,
0.05115040764212608,
-0.0007199436076916754,
-0.1446411907672882,
-0.11922891438007355,
-0.0010759658180177212,
-0.14382903277873993,
0.1712847650051117,
0.020594660192728043,
0.049996521323919296,
-0.23367942869663239,
0.04744984582066536,
0.032133594155311584,
-0.1109766960144043,
0.01969851925969124,
-0.11154387146234512,
-0.01324890460819006,
0.018756574019789696,
-0.05090261623263359,
-0.013340397737920284,
0.050397876650094986,
0.10689909011125565,
-0.002318520797416568,
0.011246861889958382,
-0.025594795122742653,
0.07254880666732788,
0.06631183624267578,
0.07935567945241928,
-0.01903703063726425,
-0.05228773131966591,
0.01480013132095337,
-0.12771448493003845,
-0.0030376671347767115,
-0.053644198924303055,
-0.16324451565742493,
-0.005050418432801962,
-0.009653319604694843,
0.07027549296617508,
0.036699481308460236,
0.12193121761083603,
-0.010341279208660126,
-0.00766142038628459,
0.07349144667387009,
-0.009970746003091335,
-0.037030261009931564,
-0.029210109263658524,
-0.005378835368901491,
0.1704520583152771,
-0.012119470164179802,
0.055885519832372665,
-0.10440032929182053,
0.02769077755510807,
-0.05090418830513954,
0.0031048045493662357,
-0.020857220515608788,
-0.039463866502046585,
0.007440145127475262,
-0.04174609109759331,
0.007451919838786125,
-0.1631752997636795,
-0.1624092161655426,
-0.003501590108498931,
-0.05747827887535095,
-0.040247686207294464,
-0.07592944800853729,
-0.10542222112417221,
0.03274277225136757,
0.015596467070281506,
-0.06059250608086586,
-0.00486724590882659,
-0.03634948283433914,
0.06905312836170197,
-0.040806155651807785,
0.05470171198248863,
-0.06327983736991882,
0.0863536149263382,
-0.11498335748910904,
-0.020851323381066322,
-0.0656900703907013,
0.14747217297554016,
0.006687359418720007,
0.11567436903715134,
-0.030380718410015106,
-0.025476381182670593,
-0.1255512684583664,
0.06281547993421555,
-0.059561241418123245,
0.2863693833351135,
-0.09111528843641281,
-0.11257339268922806,
0.2771671712398529,
-0.06010737642645836,
-0.10147587209939957,
0.11987455189228058,
0.03136446326971054,
0.08081071823835373,
0.18660444021224976,
0.18150268495082855,
-0.002671497408300638,
0.024166634306311607,
0.07074370980262756,
0.09844639152288437,
-0.12995964288711548,
0.020428013056516647,
0.0014305460499599576,
-0.0381726399064064,
-0.1473700851202011,
0.007101472467184067,
0.17821072041988373,
0.04872956499457359,
-0.05951570346951485,
0.005610599648207426,
0.0396793931722641,
-0.02456950768828392,
0.1375974416732788,
-0.040677886456251144,
0.09270749241113663,
-0.03849014639854431,
-0.09727782756090164,
-0.058820270001888275,
0.014536784030497074,
-0.011557367630302906,
-0.007950582541525364,
-0.09252442419528961,
0.02622714824974537,
-0.03537739813327789,
0.062307219952344894,
-0.1227981299161911,
-0.05576924607157707,
-0.0766846239566803,
0.18979136645793915,
0.10573805123567581,
0.09619966894388199,
0.04396441951394081,
-0.09095941483974457,
-0.003511446760967374,
0.04203220456838608,
0.1559005081653595,
0.009138907305896282,
-0.04963819310069084,
-0.08065325021743774,
0.08476422727108002,
-0.08931193500757217,
0.033759407699108124,
-0.03705769032239914,
0.0015756795182824135,
0.03130704537034035,
0.11473869532346725,
0.005401502829045057,
0.037357814610004425,
0.030509930104017258,
-0.005140149965882301,
0.003973301034420729,
-0.00375843676738441,
0.07978878170251846,
0.009236905723810196,
-0.0762399286031723,
0.23067468404769897,
-0.1900058090686798,
0.17924357950687408,
0.19254428148269653,
-0.15611980855464935,
-0.034694939851760864,
-0.08508283644914627,
-0.05860080197453499,
-0.003585455473512411,
0.08946098387241364,
-0.018480580300092697,
0.23972690105438232,
0.010555339977145195,
0.1823170781135559,
-0.04920310899615288,
-0.07586809992790222,
-0.013736272230744362,
0.011491025798022747,
-0.03612150624394417,
0.119028739631176,
0.17303712666034698,
-0.16263440251350403,
0.15359589457511902,
0.13327546417713165,
0.1103057786822319,
0.22143204510211945,
0.02525549754500389,
0.009025467559695244,
0.061766501516103745,
-0.05781399831175804,
-0.1049724742770195,
-0.07461712509393692,
-0.25806310772895813,
-0.010158117860555649,
0.056320928037166595,
0.024364182725548744,
0.15625879168510437,
-0.0974135771393776,
-0.05716706067323685,
0.03274322301149368,
-0.0009223333327099681,
0.029327722266316414,
0.14941784739494324,
0.012548762373626232,
0.1417444348335266,
-0.015185816213488579,
-0.05057705566287041,
0.0794723704457283,
0.026357773691415787,
-0.12155888229608536,
0.1389506310224533,
-0.1616772711277008,
-0.3508349359035492,
-0.08072757720947266,
-0.14870700240135193,
-0.013476219959557056,
0.03540460765361786,
0.08205698430538177,
-0.15613678097724915,
0.006774677895009518,
0.022781187668442726,
0.11926983296871185,
-0.10601351410150528,
0.016876863315701485,
0.021007264032959938,
0.006087117362767458,
-0.1376752257347107,
-0.0892547145485878,
-0.07224401831626892,
-0.0285506434738636,
-0.07598289847373962,
0.08677621930837631,
-0.09278301149606705,
-0.014094403944909573,
0.21382774412631989,
0.07741871476173401,
0.055738188326358795,
-0.07798958569765091,
0.19404619932174683,
-0.1445067673921585,
0.0014515186194330454,
0.19534681737422943,
-0.013790038414299488,
0.061165712773799896,
0.10307078808546066,
-0.025017881765961647,
-0.05468211695551872,
0.012949119322001934,
-0.043841686099767685,
-0.04759751260280609,
-0.20707876980304718,
-0.16573293507099152,
-0.07475288957357407,
0.10032708197832108,
-0.00472593680024147,
0.031180432066321373,
0.1623917818069458,
0.07325400412082672,
-0.06141407787799835,
-0.04121611639857292,
0.04936826601624489,
0.06291308254003525,
0.2845548093318939,
-0.10505471378564835,
0.10966747999191284,
-0.03731255978345871,
-0.1460280865430832,
0.06775608658790588,
0.007727157790213823,
0.046206314116716385,
0.1340627670288086,
0.037275999784469604,
-0.007821307517588139,
-0.01351440604776144,
0.10493355244398117,
0.05678991228342056,
0.03112676367163658,
-0.0780024304986,
-0.025890346616506577,
-0.03938152268528938,
-0.015671826899051666,
0.043612729758024216,
0.08810605108737946,
-0.1612938791513443,
-0.026192249730229378,
-0.04551621526479721,
0.06546486169099808,
0.07112745195627213,
0.1109982579946518,
-0.17357948422431946,
-0.07161232829093933,
0.022200334817171097,
-0.04486136510968208,
-0.09331679344177246,
0.08885853737592697,
0.026493575423955917,
-0.13056443631649017,
0.09285365045070648,
0.0016462518833577633,
0.10824524611234665,
-0.03177107125520706,
0.09217217564582825,
-0.13516220450401306,
-0.06296807527542114,
-0.007505128625780344,
0.10133885592222214,
-0.29802149534225464,
0.21237555146217346,
-0.003514946671202779,
-0.06606931239366531,
-0.11520987004041672,
-0.020838109776377678,
-0.005275020841509104,
0.05497957766056061,
0.1085495799779892,
-0.014864175580441952,
0.026003899052739143,
-0.0071215033531188965,
-0.06671443581581116,
0.036607421934604645,
0.09647118300199509,
-0.04761786013841629,
-0.038161393254995346,
-0.031912319362163544,
-0.0326751284301281,
-0.026662778109312057,
-0.05544673278927803,
-0.05055609717965126,
-0.18017485737800598,
0.07290051877498627,
0.04910720884799957,
0.0823044627904892,
0.05777429789304733,
0.0005639964365400374,
-0.08238720148801804,
0.22891047596931458,
-0.01084431353956461,
-0.1147681176662445,
-0.09242220968008041,
-0.03241293132305145,
0.028924360871315002,
-0.042253460735082626,
0.011435156688094139,
-0.029560329392552376,
0.05659050494432449,
-0.08197454363107681,
-0.20196376740932465,
0.08346159011125565,
-0.11259865760803223,
-0.033785875886678696,
-0.002857411978766322,
0.2710946202278137,
0.015517952851951122,
0.044779401272535324,
0.058734361082315445,
-0.011250228621065617,
-0.09146387875080109,
-0.09684815257787704,
0.060580283403396606,
-0.031324662268161774,
0.0010608250740915537,
0.046437542885541916,
0.04213101789355278,
-0.05643441900610924,
-0.0848274752497673,
-0.038791295140981674,
0.31227314472198486,
0.14766216278076172,
-0.059205587953329086,
0.21889010071754456,
0.12055298686027527,
-0.042660102248191833,
-0.2145620882511139,
-0.09920091181993484,
-0.10400468856096268,
-0.05550828203558922,
-0.05755465105175972,
-0.20619651675224304,
0.007335504051297903,
-0.03579549863934517,
-0.01440503355115652,
0.12795907258987427,
-0.28356730937957764,
-0.08712200820446014,
0.19708488881587982,
-0.08263196051120758,
0.423427015542984,
-0.047902707010507584,
-0.07930512726306915,
-0.04288552701473236,
-0.13316629827022552,
0.23811578750610352,
-0.01826763153076172,
0.038730841130018234,
0.012744678184390068,
0.20726172626018524,
0.0583544597029686,
0.017119791358709335,
0.06556697934865952,
-0.006616922561079264,
-0.04534824565052986,
-0.07535327970981598,
-0.06901492178440094,
0.003352736821398139,
0.04537075385451317,
-0.019728537648916245,
-0.045763205736875534,
0.013077907264232635,
-0.16281355917453766,
-0.08089590072631836,
-0.10760169476270676,
0.009498681873083115,
0.037199001759290695,
-0.052175719290971756,
0.025826212018728256,
-0.05710309371352196,
-0.028765982016921043,
-0.0007497408660128713,
0.11289405822753906,
-0.11918570846319199,
0.17621305584907532,
0.04442230239510536,
0.16995929181575775,
-0.164327934384346,
0.001960678957402706,
-0.07891087979078293,
-0.07776879519224167,
0.06844323873519897,
-0.10975774377584457,
-0.006008858792483807,
0.09954974055290222,
-0.036092404276132584,
0.08899984508752823,
0.05988515913486481,
-0.006963832303881645,
-0.004641817882657051,
0.09044459462165833,
-0.24217353761196136,
-0.10162932425737381,
-0.08365460485219955,
0.044485777616500854,
0.11398261785507202,
0.0723985955119133,
0.2021809071302414,
-0.02767314203083515,
-0.04472637549042702,
-0.005730499979108572,
0.027394810691475868,
-0.047940585762262344,
0.014001341536641121,
0.024639032781124115,
0.027163734659552574,
-0.1466113030910492,
0.054306510835886,
-0.015005922876298428,
-0.11814768612384796,
0.039510328322649,
0.16101473569869995,
-0.08752261102199554,
-0.12397444993257523,
-0.18378683924674988,
0.05733615532517433,
-0.05014738440513611,
-0.0005072076455689967,
-0.023045865818858147,
-0.13378222286701202,
0.10082311928272247,
0.1437041312456131,
0.02135295793414116,
0.042838726192712784,
-0.06903304159641266,
-0.07043978571891785,
0.016531888395547867,
-0.045456662774086,
0.034713421016931534,
-0.08400343358516693,
-0.05126083269715309,
0.08636673539876938,
-0.037373464554548264,
0.16756491363048553,
-0.09156374633312225,
-0.10374551266431808,
-0.12615041434764862,
0.059225838631391525,
-0.1408296674489975,
-0.07952482253313065,
-0.11235635727643967,
-0.0669693797826767,
0.01768610253930092,
-0.034603219479322433,
-0.06227541342377663,
-0.07355392724275589,
-0.1274115890264511,
0.0979195088148117,
-0.0002859571250155568,
0.0337357260286808,
-0.048307690769433975,
0.06882515549659729,
0.06231537088751793,
-0.01305276807397604,
0.1767612099647522,
0.13579781353473663,
-0.11411695182323456,
0.103690005838871,
-0.173660010099411,
-0.08804787695407867,
0.104665108025074,
-0.01699650287628174,
0.039380889385938644,
0.08573351055383682,
0.01426631398499012,
0.046113528311252594,
0.03056258335709572,
0.04873910918831825,
-0.016223376616835594,
-0.0886964201927185,
0.08320628106594086,
-0.006512684281915426,
-0.07782982289791107,
-0.032090745866298676,
-0.06704185903072357,
-0.012833653017878532,
0.022375142201781273,
0.09616211801767349,
-0.06936302036046982,
0.11954036355018616,
-0.08304864913225174,
0.05283918231725693,
-0.004646895918995142,
-0.16894632577896118,
0.021257206797599792,
-0.0961022675037384,
0.08721863478422165,
0.01875646412372589,
0.2397375851869583,
0.024870898574590683,
0.01924639381468296,
0.061523109674453735,
0.04195154085755348,
-0.056848980486392975,
-0.0023275341372936964,
0.10407783091068268,
0.10465584695339203,
-0.020448334515094757,
-0.12492524832487106,
0.03998374938964844,
0.0263267382979393,
-0.006306490395218134,
0.18467029929161072,
-0.02594669722020626,
0.016931453719735146,
0.07349570095539093,
-0.029990531504154205,
0.017941880971193314,
-0.05240790918469429,
-0.15054696798324585,
-0.09109759330749512,
0.03687766194343567,
-0.08384755253791809,
0.12664562463760376,
0.1740669310092926,
-0.014658409170806408,
0.02319483458995819,
0.019700869917869568,
-0.023790642619132996,
-0.16715684533119202,
-0.23551985621452332,
-0.05958033353090286,
-0.13207992911338806,
0.03659450635313988,
-0.07082689553499222,
0.027968527749180794,
0.009580978192389011,
0.09879914671182632,
-0.07397160679101944,
0.01973877102136612,
0.0755593404173851,
-0.15384714305400848,
0.10050098598003387,
-0.015944495797157288,
0.0889839380979538,
-0.049641918390989304,
-0.011926306411623955,
-0.05448537692427635,
0.016253994777798653,
0.01788269728422165,
0.05203881487250328,
-0.09368810057640076,
-0.014837319031357765,
-0.14174652099609375,
-0.0891159251332283,
-0.04371540620923042,
0.08183304965496063,
-0.0015024172607809305,
0.11645955592393875,
0.031051848083734512,
0.00038985247374512255,
0.028532620519399643,
0.2587665021419525,
-0.03292065113782883,
-0.07931651175022125,
-0.07609153538942337,
0.19712390005588531,
-0.011318846605718136,
0.09458176791667938,
-0.0073400260880589485,
0.0060782404616475105,
-0.11351451277732849,
0.3306475579738617,
0.33946919441223145,
-0.06717406213283539,
0.03829376772046089,
-0.056730784475803375,
0.059020284563302994,
0.14554958045482635,
0.09348247945308685,
0.052624065428972244,
0.30587929487228394,
-0.07037827372550964,
0.0019599515944719315,
0.00440811924636364,
-0.026357267051935196,
-0.050251554697752,
0.01618541032075882,
0.026173949241638184,
-0.0756949707865715,
0.022630630061030388,
0.14307920634746552,
-0.23139959573745728,
0.06882282346487045,
-0.18948118388652802,
-0.19125400483608246,
-0.06845766305923462,
0.010168354958295822,
0.04995214566588402,
0.053630199283361435,
0.10580044239759445,
-0.010380896739661694,
-0.1365927755832672,
0.057348597794771194,
0.01962577924132347,
-0.19623036682605743,
-0.04407869651913643,
0.09004990756511688,
-0.07415121793746948,
-0.06229933723807335,
-0.005801450926810503,
0.112026147544384,
0.06632400304079056,
0.0763702541589737,
-0.037995729595422745,
0.030455417931079865,
0.004959928337484598,
-0.01828848011791706,
0.016843946650624275,
0.01545113604515791,
0.04384039342403412,
-0.08679649233818054,
0.07675543427467346,
-0.18365998566150665,
0.059683769941329956,
-0.07932796329259872,
-0.04479239508509636,
0.05867753550410271,
0.07502182573080063,
-0.04822973161935806,
0.04608387500047684,
0.09462627023458481,
-0.048613663762807846,
-0.022378550842404366,
-0.0026008833665400743,
-0.015289736911654472,
-0.010255243629217148,
-0.06993958353996277,
-0.11769946664571762,
-0.11979269236326218,
-0.12994283437728882,
0.07357392460107803,
0.01141043845564127,
-0.18566405773162842,
0.05871168524026871,
-0.1342126429080963,
0.03893907740712166,
-0.10779985040426254,
0.09777657687664032,
0.05836431309580803,
0.04187830165028572,
-0.011565412394702435,
0.05255098268389702,
0.060125600546598434,
0.0602872408926487,
-0.15165671706199646,
-0.062294453382492065
] |
null | null |
transformers
|
# Dumbledore DialoGPT Model
|
{"tags": ["conversational"]}
|
text-generation
|
atomsspawn/DialoGPT-small-dumbledore
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Dumbledore DialoGPT Model
|
[
"# Dumbledore DialoGPT Model"
] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Dumbledore DialoGPT Model"
] |
[
51,
10
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Dumbledore DialoGPT Model"
] |
[
0.003970918245613575,
0.1240585446357727,
-0.006848649587482214,
0.06982224434614182,
0.13556505739688873,
0.0007766688358969986,
0.17384986579418182,
0.11287016421556473,
0.036794595420360565,
-0.03879115730524063,
0.10609020292758942,
0.24213294684886932,
-0.011766577139496803,
0.032417263835668564,
-0.06972597539424896,
-0.3219201862812042,
0.0627361610531807,
0.013947397470474243,
-0.03777868673205376,
0.10736369341611862,
0.10457906872034073,
-0.03679821640253067,
0.06397020071744919,
-0.016132935881614685,
-0.10171516239643097,
0.0011667708167806268,
-0.000056540851801401004,
-0.10479489713907242,
0.12985965609550476,
0.03817415609955788,
0.016505412757396698,
0.022316191345453262,
-0.09152688831090927,
-0.14535436034202576,
0.03401549533009529,
-0.01603948511183262,
-0.015769856050610542,
0.03056945465505123,
0.011730807833373547,
-0.1012846976518631,
0.13331250846385956,
0.15889787673950195,
0.06212732568383217,
0.029114369302988052,
-0.1436806172132492,
-0.017465757206082344,
0.005399115849286318,
0.08252742886543274,
0.008730124682188034,
0.08793560415506363,
-0.01654699631035328,
0.12968526780605316,
-0.007348681800067425,
0.12472473829984665,
0.1906987577676773,
-0.3502418100833893,
-0.03465963900089264,
0.11001904308795929,
0.03580870106816292,
0.14984078705310822,
-0.07693101465702057,
0.03750074282288551,
0.005787372123450041,
0.006726108957082033,
-0.015051520429551601,
-0.08516426384449005,
-0.11027016490697861,
0.03717418015003204,
-0.14600329101085663,
0.018217723816633224,
0.17111267149448395,
-0.08985903859138489,
0.04067128896713257,
-0.07819604873657227,
-0.07853319495916367,
-0.011098644696176052,
-0.043383799493312836,
-0.09030205756425858,
-0.04943549633026123,
0.08223893493413925,
0.01204194687306881,
-0.08268197625875473,
-0.08711304515600204,
0.009251945652067661,
-0.13033294677734375,
0.13733571767807007,
0.03309203311800957,
0.033084504306316376,
-0.1803070604801178,
0.07243837416172028,
0.021533263847231865,
-0.06983750313520432,
0.012148767709732056,
-0.08921641111373901,
0.025542626157402992,
0.00092784856678918,
0.006341644562780857,
-0.04854892939329147,
0.0589996837079525,
0.16157491505146027,
-0.028870945796370506,
0.044709399342536926,
-0.03608746826648712,
0.06736024469137192,
0.08358050137758255,
0.09843434393405914,
-0.021791337057948112,
-0.04422488808631897,
0.033029019832611084,
-0.07392284274101257,
0.015432883985340595,
-0.06098329275846481,
-0.17678943276405334,
-0.03681429475545883,
0.08388665318489075,
0.05348646640777588,
0.004852037411183119,
0.10189168155193329,
-0.01285860501229763,
-0.050330813974142075,
0.04472146928310394,
0.0026132394559681416,
-0.011938974261283875,
0.005172726698219776,
-0.01242480892688036,
0.1718471348285675,
0.018469637259840965,
0.03964158520102501,
-0.1274319440126419,
0.08601924031972885,
-0.08089736849069595,
0.01130629237741232,
0.027586771175265312,
-0.07185212522745132,
-0.0015664129750803113,
-0.014689783565700054,
0.0022897208109498024,
-0.12071362137794495,
-0.14830079674720764,
-0.009232957847416401,
-0.00514556560665369,
-0.05438126251101494,
-0.101741261780262,
-0.10957903414964676,
-0.03653692081570625,
0.025591177865862846,
-0.01560692023485899,
-0.057383883744478226,
-0.04133042320609093,
0.09880440682172775,
-0.08164273947477341,
0.10741236805915833,
-0.10612402111291885,
0.05057113245129585,
-0.09851691126823425,
-0.03416496515274048,
-0.10082849860191345,
0.11336243152618408,
-0.034241072833538055,
0.07240565866231918,
0.00963258184492588,
-0.033993594348430634,
0.00006324728747131303,
0.040089357644319534,
-0.02281557023525238,
0.19511955976486206,
-0.0905175730586052,
-0.11477193981409073,
0.2144903987646103,
-0.09244455397129059,
-0.18927191197872162,
0.1560298055410385,
-0.021316763013601303,
0.13563397526741028,
0.13860519230365753,
0.2499699741601944,
0.008228642866015434,
0.008484172634780407,
0.08573073893785477,
0.07728829234838486,
-0.08342042565345764,
0.04301302880048752,
-0.005863683298230171,
0.011156762950122356,
-0.07388558238744736,
0.046674370765686035,
0.06850608438253403,
0.02073649875819683,
-0.02787868306040764,
-0.01638711430132389,
0.0004871448618359864,
-0.016290057450532913,
0.09629087150096893,
-0.0326579324901104,
0.11832074075937271,
-0.05550641566514969,
-0.03701198846101761,
0.04252949729561806,
0.010324458591639996,
-0.0646696463227272,
0.048856157809495926,
-0.05449018254876137,
0.0873771458864212,
0.08138387650251389,
0.043261583894491196,
-0.11859534680843353,
-0.006523221265524626,
-0.01972522772848606,
0.18647532165050507,
0.05313342809677124,
0.05802231654524803,
0.07077869772911072,
-0.018757611513137817,
-0.03185462951660156,
0.044865209609270096,
0.1613626927137375,
-0.008512603119015694,
-0.10492850840091705,
-0.1225675418972969,
0.10212670266628265,
-0.052479133009910583,
0.05666828155517578,
-0.07253913581371307,
0.03447318077087402,
0.0029781481716781855,
0.08940239250659943,
-0.02241581119596958,
0.014260065741837025,
0.009770034812390804,
-0.03913873806595802,
-0.05014472082257271,
-0.033052749931812286,
0.08942041546106339,
0.020945362746715546,
-0.054563574492931366,
0.20676641166210175,
-0.21137209236621857,
0.14991365373134613,
0.1680096685886383,
-0.24299056828022003,
-0.0015088262734934688,
-0.15271426737308502,
-0.03443168103694916,
0.0037904491182416677,
0.08923865854740143,
-0.0072631314396858215,
0.20553500950336456,
-0.00435340590775013,
0.1667117476463318,
-0.0674925372004509,
-0.07300004363059998,
-0.06166057661175728,
-0.04436318203806877,
0.005442941561341286,
0.1012343019247055,
0.06734069436788559,
-0.17000935971736908,
0.14934514462947845,
0.06688401103019714,
-0.0034391426015645266,
0.16196554899215698,
0.06273938715457916,
0.02393502928316593,
0.06302453577518463,
0.005312311463057995,
-0.032387834042310715,
-0.11700141429901123,
-0.3108183443546295,
-0.017313260585069656,
0.07700085639953613,
0.02245408482849598,
0.10828474909067154,
-0.07944529503583908,
-0.020974962040781975,
-0.009463082067668438,
-0.006999717094004154,
0.06604541838169098,
0.131881982088089,
0.0075853923335671425,
0.12905292212963104,
-0.03791706636548042,
-0.0500011183321476,
0.055178266018629074,
0.031764719635248184,
-0.08061756938695908,
0.17729690670967102,
-0.16099311411380768,
-0.28642717003822327,
-0.07441534847021103,
-0.19303452968597412,
-0.03173542022705078,
0.04612415283918381,
0.08545975387096405,
-0.08932530134916306,
-0.01856175996363163,
-0.01775844395160675,
0.07212748378515244,
-0.19279000163078308,
0.00386592885479331,
-0.06920838356018066,
0.017114385962486267,
-0.17060373723506927,
-0.11308390647172928,
-0.036391064524650574,
0.0018337226938456297,
-0.08758379518985748,
0.10305614769458771,
-0.16958391666412354,
-0.026562456041574478,
0.24100664258003235,
0.011216990649700165,
0.04307732358574867,
-0.05419599264860153,
0.2492620050907135,
-0.06669037789106369,
0.001695413258858025,
0.1003161296248436,
-0.07714589685201645,
0.08264360576868057,
0.08721057325601578,
-0.02048128843307495,
-0.09325958043336868,
0.029472369700670242,
-0.019908199086785316,
-0.043033063411712646,
-0.24685868620872498,
-0.0742245614528656,
-0.08930656313896179,
0.1714903563261032,
0.03386923298239708,
0.06710516661405563,
0.15651877224445343,
0.06339218467473984,
-0.01951613835990429,
-0.030718909576535225,
0.09905097633600235,
0.11388128995895386,
0.25286898016929626,
-0.07100089639425278,
0.10954119265079498,
0.008100234903395176,
-0.11988706141710281,
0.056531015783548355,
0.07223083823919296,
0.03119545429944992,
0.00820982176810503,
0.08912087231874466,
-0.014355686493217945,
0.0011033234186470509,
0.11530736833810806,
0.06512763351202011,
0.01569491997361183,
-0.02468593791127205,
-0.052948568016290665,
-0.030478252097964287,
-0.05350082740187645,
0.045680489391088486,
0.059591345489025116,
-0.13858148455619812,
-0.02291729673743248,
0.026824668049812317,
0.07860583066940308,
0.03325997665524483,
0.04398950934410095,
-0.11777092516422272,
-0.03374043107032776,
0.07748452574014664,
-0.037218526005744934,
-0.13695649802684784,
0.10590536147356033,
0.0030824767891317606,
-0.15043537318706512,
0.02486608549952507,
0.0037030749954283237,
0.10090009868144989,
-0.11393974721431732,
0.05661051347851753,
-0.15037332475185394,
-0.10525619238615036,
-0.027102384716272354,
0.08971022814512253,
-0.2959502041339874,
0.10715614259243011,
-0.010792309418320656,
-0.032776836305856705,
-0.07584411650896072,
-0.03693251311779022,
0.013843762688338757,
0.08587788790464401,
0.0762225091457367,
0.007838613353669643,
0.08860143274068832,
0.020898843184113503,
0.007383327465504408,
-0.009961936622858047,
0.08470400422811508,
0.01528079342097044,
-0.019447091966867447,
-0.06065093353390694,
0.0020390537101775408,
-0.02821979857981205,
-0.10558949410915375,
0.07250726968050003,
-0.20589414238929749,
0.08378243446350098,
0.029091108590364456,
0.055442746728658676,
0.04034242406487465,
-0.031509723514318466,
-0.07375364750623703,
0.24721184372901917,
-0.021239953115582466,
-0.1318388432264328,
-0.07688198983669281,
-0.015538599342107773,
0.08432051539421082,
-0.02320508286356926,
0.022557079792022705,
-0.057310398668050766,
0.05768779292702675,
-0.12125857174396515,
-0.12156624346971512,
0.09801216423511505,
-0.06543441861867905,
-0.07466360926628113,
-0.022160954773426056,
0.18514448404312134,
-0.0016496969619765878,
0.05170198157429695,
0.01396477036178112,
0.011792732402682304,
-0.12426839768886566,
-0.08472277224063873,
0.00157570606097579,
-0.00936396699398756,
-0.04882360249757767,
0.03524148091673851,
-0.0009166898671537638,
0.09226866811513901,
-0.09214111417531967,
-0.0016133098397403955,
0.33153149485588074,
0.15812771022319794,
-0.019664816558361053,
0.16190890967845917,
0.09213977307081223,
-0.07420189678668976,
-0.21930843591690063,
-0.09834624826908112,
-0.0558321587741375,
-0.0726994127035141,
-0.0962512418627739,
-0.13423039019107819,
0.061214905232191086,
-0.027481086552143097,
0.017469100654125214,
0.14270752668380737,
-0.28074997663497925,
-0.0995449423789978,
0.1564008742570877,
0.01646886207163334,
0.37959155440330505,
-0.12043306231498718,
-0.05696137621998787,
-0.05352787300944328,
-0.10660368204116821,
0.1293894201517105,
-0.018256070092320442,
0.11441325396299362,
-0.043809887021780014,
0.16206976771354675,
0.04638850688934326,
0.007919230498373508,
0.08413690328598022,
0.023153582587838173,
-0.04028572142124176,
-0.08068178594112396,
-0.10815025120973587,
0.04259762167930603,
0.0229509174823761,
0.03163481503725052,
-0.036841876804828644,
0.05044524371623993,
-0.06874411553144455,
-0.053457122296094894,
-0.061252620071172714,
0.006203760392963886,
0.000010923303307208698,
-0.059575267136096954,
-0.039154067635536194,
-0.020051367580890656,
-0.004987095948308706,
0.02225288189947605,
0.13082973659038544,
-0.07394535094499588,
0.13674232363700867,
0.10556121915578842,
0.12770308554172516,
-0.1258862316608429,
-0.04805845767259598,
-0.02340369112789631,
-0.04767506197094917,
0.05156548693776131,
-0.054857779294252396,
0.004933797288686037,
0.12099679559469223,
-0.02395501919090748,
0.06458155065774918,
0.11629782617092133,
-0.0004948020214214921,
-0.010186033323407173,
0.0439024455845356,
-0.25610268115997314,
-0.08771924674510956,
-0.04955575242638588,
0.045929551124572754,
0.047931235283613205,
0.07651448249816895,
0.21871031820774078,
-0.028954632580280304,
-0.052399057894945145,
0.042825933545827866,
0.03440210223197937,
-0.014867720194160938,
0.09079822897911072,
0.015103842131793499,
0.00837799347937107,
-0.13670961558818817,
0.08032982051372528,
-0.006012979429215193,
-0.060661084949970245,
0.042818497866392136,
0.20424187183380127,
-0.10563862323760986,
-0.09287483990192413,
-0.045209988951683044,
0.0897231176495552,
-0.09220929443836212,
0.023579299449920654,
-0.042181696742773056,
-0.11188168078660965,
0.052920129150152206,
0.11847062408924103,
0.0506606288254261,
0.09007128328084946,
-0.12429202347993851,
-0.027227088809013367,
-0.031070727854967117,
0.01695731095969677,
0.040885087102651596,
0.010142127051949501,
-0.06815864890813828,
0.09402346611022949,
-0.06962570548057556,
0.0756303071975708,
-0.07465606182813644,
-0.12368962168693542,
-0.17114455997943878,
0.03585485368967056,
-0.10716819763183594,
-0.058084893971681595,
-0.0953192487359047,
-0.03678985685110092,
0.011318990960717201,
-0.020841369405388832,
-0.017382541671395302,
-0.05684109777212143,
-0.11075880378484726,
0.019707947969436646,
-0.02801779843866825,
-0.0024983910843729973,
-0.06364762783050537,
0.00844839308410883,
0.07405155152082443,
-0.050866879522800446,
0.15815219283103943,
0.1768973022699356,
-0.1490393579006195,
0.09587173908948898,
-0.1597941815853119,
-0.08348161727190018,
0.08984126150608063,
-0.004681375343352556,
0.04587194323539734,
0.03693809360265732,
-0.02976461872458458,
0.017455048859119415,
0.049949534237384796,
0.06635765731334686,
0.06516923010349274,
-0.0720704048871994,
0.02690776251256466,
-0.03733200207352638,
-0.14719970524311066,
-0.010091494768857956,
-0.04885535687208176,
0.039761316031217575,
0.0292873103171587,
0.10589763522148132,
-0.06686493009328842,
0.07614344358444214,
-0.04949745535850525,
0.03741928189992905,
0.04445548728108406,
-0.1563301831483841,
0.01772373914718628,
-0.07788318395614624,
0.03055756539106369,
-0.014355969615280628,
0.19945918023586273,
-0.020605651661753654,
-0.05657198280096054,
0.021888727322220802,
0.01465060655027628,
0.05158821865916252,
0.015422510914504528,
0.21962536871433258,
0.08673366159200668,
-0.09220444411039352,
-0.08278437703847885,
0.06395948678255081,
0.05445931851863861,
0.06201740354299545,
0.09756913781166077,
-0.05656230077147484,
-0.08569975197315216,
0.0769275352358818,
-0.020084358751773834,
0.10092055797576904,
-0.07269220799207687,
-0.10249457508325577,
0.03579103946685791,
0.015149721875786781,
-0.06725095212459564,
0.19265154004096985,
0.2081632763147354,
-0.021080611273646355,
0.015430531464517117,
0.022955749183893204,
-0.10183607786893845,
-0.1715063452720642,
-0.09268278628587723,
-0.07961899787187576,
-0.13911046087741852,
0.003499704645946622,
-0.16001127660274506,
0.03376684710383415,
-0.035772405564785004,
0.11251555383205414,
-0.054459378123283386,
0.006580358371138573,
0.13275064527988434,
-0.10385565459728241,
0.08999466150999069,
-0.03844263777136803,
0.08319082111120224,
-0.040011513978242874,
0.0029171702917665243,
-0.08753345906734467,
0.04383644089102745,
-0.001032590284012258,
0.05761883035302162,
-0.049775585532188416,
-0.007010325789451599,
-0.1333240121603012,
-0.08788089454174042,
-0.034381039440631866,
0.09100544452667236,
-0.05954404175281525,
0.14786481857299805,
0.026228709146380424,
-0.07095266878604889,
0.013864158652722836,
0.20996956527233124,
-0.07008691877126694,
-0.12085504829883575,
-0.050539664924144745,
0.24817124009132385,
0.021029911935329437,
0.09473849087953568,
-0.007615715265274048,
0.01829216256737709,
-0.09063152223825455,
0.23159804940223694,
0.2911064922809601,
-0.12953077256679535,
0.00539793586358428,
0.007085890043526888,
0.04770916327834129,
0.12044575065374374,
0.07409381866455078,
0.0997098833322525,
0.28539299964904785,
-0.09000486880540848,
-0.011600659228861332,
-0.041692543774843216,
-0.04985085502266884,
-0.06535626947879791,
0.07208634912967682,
0.09220440685749054,
-0.05966722592711449,
-0.051647718995809555,
0.09482073038816452,
-0.3003756105899811,
0.10510554164648056,
-0.21105535328388214,
-0.15095993876457214,
-0.07625894248485565,
0.004748222883790731,
-0.024930188432335854,
-0.009388110600411892,
0.10016991198062897,
0.032340943813323975,
-0.08000492304563522,
0.02979811280965805,
0.006191964261233807,
-0.21207189559936523,
0.02888176031410694,
0.09544388949871063,
-0.031161373481154442,
-0.027226779609918594,
-0.01909959688782692,
0.05043800175189972,
0.08847876638174057,
0.07443390041589737,
-0.008709058165550232,
-0.03209809958934784,
-0.0047883824445307255,
-0.014989633113145828,
-0.0038616249803453684,
0.045807383954524994,
0.0357217974960804,
-0.11456984281539917,
0.09053310006856918,
-0.09641493856906891,
0.055949464440345764,
-0.00018300689407624304,
-0.03664211928844452,
-0.019139574840664864,
0.0033596977591514587,
-0.05576106905937195,
0.040996111929416656,
0.11037856340408325,
-0.016791893169283867,
0.01110636256635189,
-0.018624331802129745,
-0.07125391811132431,
-0.022081483155488968,
-0.08605050295591354,
-0.07899962365627289,
-0.19224189221858978,
-0.13613417744636536,
0.11112701892852783,
-0.01539645902812481,
-0.1851447969675064,
0.02169906161725521,
-0.12318119406700134,
0.06366768479347229,
-0.14128562808036804,
0.10759378969669342,
0.02376600168645382,
0.014749722555279732,
0.004644596483558416,
0.04167639836668968,
0.020657265558838844,
0.11995846778154373,
-0.1256696730852127,
-0.05752338096499443
] |
null | null | null |
ไธไธชๆต่ฏPaddle ๆๅกๅจๆจกๅ็้กน็ฎ
|
{}
| null |
atu/paddle_detection
|
[
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#region-us
|
ไธไธชๆต่ฏPaddle ๆๅกๅจๆจกๅ็้กน็ฎ
|
[] |
[
"TAGS\n#region-us \n"
] |
[
6
] |
[
"passage: TAGS\n#region-us \n"
] |
[
0.024608636274933815,
-0.026205500587821007,
-0.009666500613093376,
-0.10395516455173492,
0.08638657629489899,
0.059816278517246246,
0.01882290467619896,
0.020661840215325356,
0.23975107073783875,
-0.005599027033895254,
0.1219947561621666,
0.0015615287702530622,
-0.037353623658418655,
0.03733762726187706,
-0.0035912662278860807,
-0.17583473026752472,
0.03876631706953049,
-0.018274923786520958,
0.01843859627842903,
0.026470553129911423,
-0.07776834815740585,
-0.07564429938793182,
0.015296397730708122,
-0.10247814655303955,
-0.083692267537117,
0.11002834886312485,
0.031466204673051834,
-0.019670886918902397,
0.10779199749231339,
-0.04243955761194229,
0.18699054419994354,
-0.011512263678014278,
-0.11213519424200058,
-0.2536850869655609,
0.021806683391332626,
-0.01765260472893715,
-0.08747660368680954,
0.01506110467016697,
0.0665089413523674,
-0.09014441072940826,
-0.0588928684592247,
0.0795099288225174,
-0.01132340170443058,
0.04246443510055542,
-0.27593839168548584,
-0.12684126198291779,
-0.05297930911183357,
-0.1421966552734375,
0.08651168644428253,
0.04035491496324539,
0.008764253929257393,
0.15506891906261444,
-0.20897391438484192,
0.004104613792151213,
0.08255259692668915,
-0.2538507878780365,
0.05591634660959244,
0.17671173810958862,
0.03623908758163452,
0.18037272989749908,
0.0060391901060938835,
0.11029672622680664,
0.0716743916273117,
-0.024263937026262283,
-0.17590197920799255,
-0.08127854019403458,
-0.04696211963891983,
0.16642488539218903,
-0.06727185100317001,
-0.14248386025428772,
0.34701237082481384,
0.00015008423360995948,
0.009657775051891804,
0.16921205818653107,
-0.059524230659008026,
-0.09972117841243744,
0.07259953022003174,
0.016484731808304787,
0.018492350354790688,
0.1471305936574936,
0.16307872533798218,
-0.0458691343665123,
-0.13837823271751404,
-0.018630273640155792,
-0.22798998653888702,
0.17510560154914856,
-0.03248048573732376,
0.13137903809547424,
-0.27447956800460815,
0.01684025302529335,
-0.2570667266845703,
0.0032130838371813297,
0.04178816080093384,
-0.06004921346902847,
-0.0226522795855999,
-0.013265985064208508,
-0.08018817007541656,
0.004899587947875261,
0.06192673370242119,
0.1266920566558838,
-0.06128726154565811,
0.06128238886594772,
-0.09319206327199936,
0.141696035861969,
0.07166698575019836,
0.07868369668722153,
0.13037432730197906,
0.041205424815416336,
-0.07187089323997498,
-0.21872246265411377,
-0.0026476888451725245,
-0.06275863200426102,
-0.09502086788415909,
-0.0020165652967989445,
-0.11606067419052124,
0.17244569957256317,
-0.030802514404058456,
-0.09825427830219269,
-0.11208184063434601,
0.09148659557104111,
-0.032992321997880936,
-0.03437839448451996,
-0.03552987426519394,
-0.020977836102247238,
0.019381176680326462,
0.04704452306032181,
-0.1548958420753479,
-0.005131472367793322,
0.07039852440357208,
0.11502562463283539,
-0.1346137970685959,
-0.003783059772104025,
-0.07908964157104492,
0.03039063885807991,
0.07654735445976257,
-0.16510222852230072,
0.03158547356724739,
-0.1124754324555397,
-0.07531405985355377,
0.002912673633545637,
-0.015710093080997467,
-0.016202643513679504,
0.166526660323143,
-0.0020451415330171585,
0.0714716836810112,
-0.026345307007431984,
-0.05890209600329399,
-0.11243434250354767,
-0.08489254862070084,
0.05390460044145584,
0.03670717030763626,
0.03266148269176483,
-0.2193479984998703,
0.014805203303694725,
-0.12762966752052307,
0.1360815018415451,
-0.10566820204257965,
-0.04705966264009476,
-0.022842247039079666,
0.20562705397605896,
0.037286072969436646,
0.08762791007757187,
-0.22171171009540558,
0.039756543934345245,
-0.05404696613550186,
0.18480908870697021,
-0.1502426266670227,
-0.0799463614821434,
0.20813211798667908,
-0.07964949309825897,
-0.10115210711956024,
0.021235812455415726,
0.020391687750816345,
0.026287272572517395,
0.0766737088561058,
0.4564172327518463,
-0.09766800701618195,
-0.09146861732006073,
0.10178250074386597,
0.17055274546146393,
-0.12427149713039398,
-0.1827561855316162,
0.06446871906518936,
-0.16666454076766968,
-0.1973118633031845,
0.0018917324487119913,
0.09222044050693512,
0.038269978016614914,
-0.07875611633062363,
-0.020746968686580658,
0.06325206160545349,
-0.0007678253459744155,
0.09095914661884308,
0.03755716234445572,
0.09034032374620438,
-0.08716782182455063,
0.11115926504135132,
-0.05017651244997978,
0.004037132486701012,
0.1343354731798172,
0.027325427159667015,
-0.03223329409956932,
0.08694463223218918,
-0.0485352948307991,
0.05295134335756302,
-0.1662379503250122,
-0.15068690478801727,
0.03398871049284935,
0.06283251196146011,
0.03186952322721481,
0.1280253529548645,
0.08141885697841644,
-0.10732853412628174,
0.022690722718834877,
-0.004228927195072174,
0.058398615568876266,
0.03891623765230179,
0.006107209715992212,
0.008764320984482765,
0.0961301177740097,
-0.10607069730758667,
-0.13589619100093842,
-0.07336436957120895,
-0.014715781435370445,
0.14371353387832642,
-0.0302802175283432,
0.07690227776765823,
-0.004240254405885935,
0.00013200697139836848,
0.06930823624134064,
0.08137880265712738,
0.016412746161222458,
0.08971183747053146,
-0.05237193778157234,
-0.05160155147314072,
0.10863113403320312,
-0.13533565402030945,
0.17837053537368774,
0.14053137600421906,
-0.20532016456127167,
0.029453208670020103,
-0.06838275492191315,
0.03670361638069153,
-0.008162540383636951,
0.0975119024515152,
-0.08272241055965424,
-0.02106042578816414,
0.013134466484189034,
0.0052274600602686405,
-0.013007243163883686,
0.017682146281003952,
-0.07295988500118256,
-0.07787393033504486,
-0.10233919322490692,
0.08436838537454605,
0.11562882363796234,
-0.10282530635595322,
0.14214380085468292,
0.4384984076023102,
0.11495281755924225,
0.21582984924316406,
-0.09581480920314789,
-0.0412987545132637,
0.007486371789127588,
0.0001535322517156601,
-0.04476691037416458,
0.08031861484050751,
-0.15973517298698425,
-0.038901735097169876,
0.027348900213837624,
0.07128690183162689,
0.11475157737731934,
-0.14959022402763367,
-0.09639324247837067,
-0.00793045200407505,
0.0022841424215584993,
-0.1249532699584961,
0.023905446752905846,
-0.03974650055170059,
0.04015624523162842,
0.07232289016246796,
-0.021535737439990044,
0.13939237594604492,
-0.04166141897439957,
-0.0639561116695404,
0.07585346698760986,
-0.2017085999250412,
-0.23179671168327332,
-0.12309670448303223,
-0.14680525660514832,
0.04366797208786011,
0.05154111236333847,
0.01726446859538555,
-0.17635835707187653,
-0.015074856579303741,
0.07706750929355621,
0.07820965349674225,
-0.20886357128620148,
-0.022814949974417686,
-0.004290030337870121,
0.0895976573228836,
-0.10227091610431671,
-0.0017130117630586028,
-0.04419664293527603,
-0.10150232166051865,
0.0017003051470965147,
0.07279510796070099,
-0.137485533952713,
0.13807645440101624,
0.21589438617229462,
0.07225540280342102,
0.07359948754310608,
-0.019093448296189308,
0.09936179965734482,
-0.10856141895055771,
-0.16549113392829895,
0.08348225057125092,
-0.06234746053814888,
0.047262318432331085,
0.17534415423870087,
0.03307317942380905,
-0.13904969394207,
-0.015682822093367577,
-0.0402069091796875,
-0.15603256225585938,
-0.238995760679245,
-0.09178274869918823,
-0.1182505264878273,
0.16442428529262543,
0.0009358620154671371,
0.06651917099952698,
0.08258313685655594,
-0.022042419761419296,
0.16447891294956207,
-0.07379321753978729,
-0.07578866183757782,
-0.006978808436542749,
0.12375060468912125,
-0.056660156697034836,
-0.03080669604241848,
-0.10566964000463486,
-0.008295975625514984,
0.1151021271944046,
0.15304014086723328,
0.12214863300323486,
0.2957419455051422,
0.08268889784812927,
0.026645636186003685,
0.08958091586828232,
0.17622539401054382,
0.09495089203119278,
0.07838419824838638,
-0.045413073152303696,
-0.014814783819019794,
0.014317171648144722,
-0.04022889584302902,
0.010141594335436821,
0.14683100581169128,
-0.2679629921913147,
-0.006678564939647913,
-0.2710230350494385,
0.0965198427438736,
-0.10913380235433578,
0.11837165057659149,
-0.01015760749578476,
0.10194015502929688,
0.11082887649536133,
0.03233652561903,
-0.03858073800802231,
0.16613617539405823,
0.08450309932231903,
-0.11277695000171661,
0.001758623169735074,
0.03737903758883476,
0.09715615212917328,
-0.02818971499800682,
0.12721189856529236,
-0.11048974841833115,
-0.1464834064245224,
0.013753619976341724,
0.07152791321277618,
-0.15373679995536804,
0.3138748109340668,
0.012069208547472954,
-0.13481520116329193,
-0.01481647603213787,
-0.09957809001207352,
-0.006440147757530212,
0.1254177987575531,
0.09333524852991104,
0.07935678958892822,
-0.2185502052307129,
-0.13339371979236603,
0.05872276425361633,
-0.00575496768578887,
0.22408108413219452,
-0.034034017473459244,
-0.11356475204229355,
-0.027013886719942093,
0.04241163283586502,
-0.06043251231312752,
0.08524788916110992,
0.023536119610071182,
-0.08113526552915573,
-0.032957352697849274,
0.05323701351881027,
0.012368366122245789,
0.00524376705288887,
0.09360801428556442,
0.020107939839363098,
-0.0009265501867048442,
0.01785753294825554,
0.047885000705718994,
-0.0675911232829094,
-0.1984109878540039,
0.09357594698667526,
-0.05215044692158699,
0.0015536568826064467,
-0.08013670891523361,
-0.15122665464878082,
-0.08837161958217621,
-0.16009655594825745,
0.12540200352668762,
-0.034406669437885284,
0.12700119614601135,
-0.06619787961244583,
0.17341409623622894,
-0.07871770113706589,
0.04481020197272301,
-0.047349292784929276,
0.050332702696323395,
-0.007268077693879604,
-0.07756082713603973,
0.16585899889469147,
-0.15564003586769104,
0.01809087023139,
0.19572502374649048,
-0.018915493041276932,
0.07177707552909851,
0.021322092041373253,
-0.0636206790804863,
0.23147478699684143,
0.3014698624610901,
0.008138049393892288,
0.1665448248386383,
0.3018903136253357,
-0.07466315478086472,
-0.2642788887023926,
-0.05505012720823288,
-0.2841376066207886,
-0.05371501296758652,
0.10716094076633453,
-0.22523896396160126,
0.06986407935619354,
0.14383509755134583,
-0.06471995264291763,
0.30228954553604126,
-0.21825523674488068,
0.012589273042976856,
0.15434536337852478,
-0.08868814259767532,
0.5515313148498535,
-0.1133413165807724,
-0.17677772045135498,
-0.008122089318931103,
-0.08741296827793121,
0.10602109134197235,
-0.0340677872300148,
0.06877441704273224,
0.013465235009789467,
0.04797380417585373,
0.048932258039712906,
-0.03111894056200981,
0.22701001167297363,
0.008710170164704323,
0.09015397727489471,
-0.07378865778446198,
-0.18624304234981537,
0.11639340221881866,
-0.04359482601284981,
-0.08891059458255768,
0.0849778801202774,
-0.05942516401410103,
-0.11078983545303345,
0.04663389176130295,
-0.07950539886951447,
-0.024862350896000862,
0.08423490077257156,
-0.04678233340382576,
-0.042606171220541,
-0.008054176345467567,
-0.1618063747882843,
-0.0002289071271661669,
0.31360217928886414,
-0.07096036523580551,
0.16695955395698547,
0.03677211329340935,
0.00038613268407061696,
-0.11027684062719345,
0.030288029462099075,
-0.05203165486454964,
-0.021576624363660812,
0.09578979015350342,
-0.11096979677677155,
0.03204701095819473,
0.14160704612731934,
-0.04864364117383957,
0.05846960097551346,
0.09256096184253693,
-0.0849417969584465,
0.007583672646433115,
0.17753590643405914,
-0.17537221312522888,
-0.1273445188999176,
-0.006135711446404457,
-0.09862716495990753,
0.14055661857128143,
0.04394126310944557,
0.05191568285226822,
0.16669964790344238,
0.03967129811644554,
-0.029474308714270592,
-0.02817419543862343,
-0.1153380498290062,
-0.0201893113553524,
0.040153320878744125,
0.00045633706031367183,
-0.08791285753250122,
0.2262638509273529,
0.06409153342247009,
-0.1328488290309906,
-0.051157206296920776,
0.2161225974559784,
-0.06805316358804703,
-0.04911920800805092,
-0.223562553524971,
0.10752306133508682,
-0.07112517952919006,
-0.0965060144662857,
0.05453834682703018,
-0.02270081453025341,
0.005106312222778797,
0.181985542178154,
0.03941008821129799,
0.11070270836353302,
0.03738937899470329,
-0.02448922023177147,
0.15798696875572205,
-0.142850860953331,
-0.14191335439682007,
-0.025354057550430298,
-0.08757315576076508,
-0.13844476640224457,
-0.026804137974977493,
0.1617041826248169,
-0.09177309274673462,
-0.14772607386112213,
-0.2621181011199951,
0.10968475043773651,
-0.16432365775108337,
-0.10192688554525375,
-0.03469514101743698,
-0.08968492597341537,
0.0696166530251503,
0.030301768332719803,
-0.03093348816037178,
-0.06706760823726654,
-0.18593791127204895,
0.0816768929362297,
0.06349513679742813,
0.045533183962106705,
-0.017847947776317596,
0.0067379772663116455,
0.1720137596130371,
0.025955144315958023,
0.10040043294429779,
0.16762186586856842,
0.011397695168852806,
0.2246655523777008,
-0.1671202927827835,
-0.11496317386627197,
0.1336962729692459,
-0.026543032377958298,
0.06762003898620605,
0.16792191565036774,
-0.0772583931684494,
0.015526676550507545,
-0.028136352077126503,
0.07066910713911057,
-0.11003983020782471,
-0.105624258518219,
0.007937257178127766,
0.02567129209637642,
-0.2755882740020752,
-0.005599735304713249,
-0.19717298448085785,
0.14788752794265747,
0.02579621411859989,
0.03297143429517746,
0.10257530212402344,
0.10404334217309952,
0.08312062919139862,
-0.0017710148822516203,
0.03226327523589134,
-0.1176818460226059,
0.02753005363047123,
-0.059239376336336136,
-0.020663779228925705,
0.017624232918024063,
0.36952024698257446,
-0.03603357449173927,
-0.046802736818790436,
0.003710439894348383,
0.1307835876941681,
-0.02139742486178875,
0.017395347356796265,
0.13209912180900574,
0.12607666850090027,
-0.08595693111419678,
-0.1504845917224884,
0.04888554662466049,
-0.04565655067563057,
-0.02836887165904045,
0.1464131623506546,
0.05905961990356445,
0.1050296202301979,
0.0908031314611435,
-0.014463032595813274,
-0.00318976235575974,
0.012856799177825451,
-0.15486004948616028,
0.06223496049642563,
-0.010558074340224266,
0.012565906159579754,
0.017934376373887062,
0.15238402783870697,
-0.005540105979889631,
0.07739730179309845,
-0.09889880567789078,
0.004208535887300968,
-0.13498884439468384,
-0.07913459837436676,
0.03617347031831741,
-0.13393273949623108,
0.04141177982091904,
-0.01871878281235695,
0.029611799865961075,
0.30386561155319214,
0.02558239921927452,
-0.020639164373278618,
0.12512871623039246,
-0.1214587539434433,
-0.12050267308950424,
-0.001594188273884356,
-0.029960084706544876,
0.0791488066315651,
-0.02633434161543846,
-0.0997740775346756,
-0.1001306027173996,
-0.15166029334068298,
-0.09759195148944855,
0.05182836204767227,
-0.04993441700935364,
-0.059362251311540604,
-0.17634081840515137,
-0.05707859992980957,
-0.05147340148687363,
0.14025864005088806,
-0.12263951450586319,
0.15159130096435547,
-0.014490418136119843,
0.004084470681846142,
0.04405883327126503,
0.1950942426919937,
-0.03644494712352753,
0.08714226633310318,
0.0154351145029068,
0.1522706001996994,
-0.05119588226079941,
0.14720745384693146,
-0.10931728035211563,
-0.04014137014746666,
-0.06710435450077057,
0.21513493359088898,
0.25630924105644226,
-0.06136954948306084,
-0.008937356993556023,
-0.012760217301547527,
0.058654606342315674,
0.1073930487036705,
0.16049085557460785,
0.002326392102986574,
0.2802925705909729,
-0.03133585304021835,
0.04815128445625305,
0.02901598811149597,
0.013607407920062542,
-0.06336209923028946,
0.03397751972079277,
0.07539387792348862,
-0.035039983689785004,
-0.1412304788827896,
0.15837742388248444,
-0.21980468928813934,
0.18157227337360382,
0.11640069633722305,
-0.19996967911720276,
-0.013728445395827293,
-0.04882071167230606,
0.1689416468143463,
-0.0856364443898201,
0.1637246012687683,
-0.0903693437576294,
-0.2108195722103119,
-0.2056000679731369,
0.03867346793413162,
-0.34623071551322937,
-0.254462867975235,
0.10422009229660034,
0.1488201916217804,
0.04015883058309555,
-0.018507536500692368,
-0.019967829808592796,
-0.018367022275924683,
0.04877542704343796,
-0.0067357709631323814,
0.06014643982052803,
0.031397558748722076,
-0.02988368645310402,
-0.24127542972564697,
-0.029804671183228493,
0.023964406922459602,
-0.07093082368373871,
0.07464958727359772,
-0.06874357163906097,
-0.022495782002806664,
0.08059766888618469,
-0.03066304884850979,
0.03298592567443848,
-0.035373736172914505,
-0.16326889395713806,
0.027529051527380943,
0.03900543600320816,
0.036012712866067886,
0.00634160777553916,
0.0008072225609794259,
-0.03455270454287529,
0.0644603744149208,
-0.16716794669628143,
-0.16015739738941193,
0.14140215516090393,
-0.06745140254497528,
0.2779497504234314,
-0.05812826007604599,
-0.0809100940823555,
0.04766704887151718,
-0.03426874056458473,
0.1807648241519928,
-0.07756473124027252,
0.047254521399736404,
0.12766779959201813,
0.011127962730824947,
0.03121316432952881,
-0.3092964291572571,
0.11082969605922699,
-0.000795336440205574,
-0.006093299947679043,
-0.07581598311662674
] |
null | null |
transformers
|
# AraELECTRA
<img src="https://raw.githubusercontent.com/aub-mind/arabert/master/AraELECTRA.png" width="100" align="left"/>
**ELECTRA** is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). AraELECTRA achieves state-of-the-art results on Arabic QA dataset.
For a detailed description, please refer to the AraELECTRA paper [AraELECTRA: Pre-Training Text Discriminators for Arabic Language Understanding](https://arxiv.org/abs/2012.15516).
## How to use the discriminator in `transformers`
```python
from transformers import ElectraForPreTraining, ElectraTokenizerFast
import torch
discriminator = ElectraForPreTraining.from_pretrained("aubmindlab/araelectra-base-discriminator")
tokenizer = ElectraTokenizerFast.from_pretrained("aubmindlab/araelectra-base-discriminator")
sentence = ""
fake_sentence = ""
fake_tokens = tokenizer.tokenize(fake_sentence)
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
discriminator_outputs = discriminator(fake_inputs)
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
[print("%7s" % token, end="") for token in fake_tokens]
[print("%7s" % int(prediction), end="") for prediction in predictions.tolist()]
```
# Model
Model | HuggingFace Model Name | Size (MB/Params)|
---|:---:|:---:
AraELECTRA-base-generator | [araelectra-base-generator](https://huggingface.co/aubmindlab/araelectra-base-generator) | 227MB/60M |
AraELECTRA-base-discriminator | [araelectra-base-discriminator](https://huggingface.co/aubmindlab/araelectra-base-discriminator) | 516MB/135M |
# Compute
Model | Hardware | num of examples (seq len = 512) | Batch Size | Num of Steps | Time (in days)
---|:---:|:---:|:---:|:---:|:---:
AraELECTRA-base | TPUv3-8 | - | 256 | 2M | 24
# Dataset
The pretraining data used for the new **AraELECTRA** model is also used for **AraGPT2 and AraBERTv2**.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
- OSCAR unshuffled and filtered.
- [Arabic Wikipedia dump](https://archive.org/details/arwiki-20190201) from 2020/09/01
- [The 1.5B words Arabic Corpus](https://www.semanticscholar.org/paper/1.5-billion-words-Arabic-Corpus-El-Khair/f3eeef4afb81223df96575adadf808fe7fe440b4)
- [The OSIAN Corpus](https://www.aclweb.org/anthology/W19-4619)
- Assafir news articles. Huge thank you for Assafir for giving us the data
# Preprocessing
It is recommended to apply our preprocessing function before training/testing on any dataset.
**Install the arabert python package to segment text for AraBERT v1 & v2 or to clean your data `pip install arabert`**
```python
from arabert.preprocess import ArabertPreprocessor
model_name="araelectra-base"
arabert_prep = ArabertPreprocessor(model_name=model_name)
text = "ููู ูุจุงูุบ ุฅุฐุง ูููุง ุฅู ูุงุชู ุฃู ูู
ุจููุชุฑ ุงูู
ูุชุจ ูู ุฒู
ููุง ูุฐุง ุถุฑูุฑู"
arabert_prep.preprocess(text)
>>> output: ููู ูุจุงูุบ ุฅุฐุง ูููุง : ุฅู ูุงุชู ุฃู ูู
ุจููุชุฑ ุงูู
ูุชุจ ูู ุฒู
ููุง ูุฐุง ุถุฑูุฑู
```
# TensorFlow 1.x models
**You can find the PyTorch, TF2 and TF1 models in HuggingFace's Transformer Library under the ```aubmindlab``` username**
- `wget https://huggingface.co/aubmindlab/MODEL_NAME/resolve/main/tf1_model.tar.gz` where `MODEL_NAME` is any model under the `aubmindlab` name
# If you used this model please cite us as :
```
@inproceedings{antoun-etal-2021-araelectra,
title = "{A}ra{ELECTRA}: Pre-Training Text Discriminators for {A}rabic Language Understanding",
author = "Antoun, Wissam and
Baly, Fady and
Hajj, Hazem",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Virtual)",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.wanlp-1.20",
pages = "191--195",
}
```
# Acknowledgments
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT.
# Contacts
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <[email protected]> | <[email protected]>
**Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <[email protected]> | <[email protected]>
|
{"language": "ar", "datasets": ["wikipedia", "Osian", "1.5B-Arabic-Corpus", "oscar-arabic-unshuffled", "Assafir(private)"]}
| null |
aubmindlab/araelectra-base-discriminator
|
[
"transformers",
"pytorch",
"tf",
"tensorboard",
"electra",
"pretraining",
"ar",
"arxiv:1406.2661",
"arxiv:2012.15516",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1406.2661",
"2012.15516"
] |
[
"ar"
] |
TAGS
#transformers #pytorch #tf #tensorboard #electra #pretraining #ar #arxiv-1406.2661 #arxiv-2012.15516 #endpoints_compatible #has_space #region-us
|
AraELECTRA
==========
<img src="URL width="100" align="left"/>
ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a GAN. AraELECTRA achieves state-of-the-art results on Arabic QA dataset.
For a detailed description, please refer to the AraELECTRA paper AraELECTRA: Pre-Training Text Discriminators for Arabic Language Understanding.
How to use the discriminator in 'transformers'
----------------------------------------------
Model
=====
Compute
=======
Dataset
=======
The pretraining data used for the new AraELECTRA model is also used for AraGPT2 and AraBERTv2.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
* OSCAR unshuffled and filtered.
* Arabic Wikipedia dump from 2020/09/01
* The 1.5B words Arabic Corpus
* The OSIAN Corpus
* Assafir news articles. Huge thank you for Assafir for giving us the data
Preprocessing
=============
It is recommended to apply our preprocessing function before training/testing on any dataset.
Install the arabert python package to segment text for AraBERT v1 & v2 or to clean your data 'pip install arabert'
TensorFlow 1.x models
=====================
You can find the PyTorch, TF2 and TF1 models in HuggingFace's Transformer Library under the username
* 'wget URL where 'MODEL\_NAME' is any model under the 'aubmindlab' name
If you used this model please cite us as :
==========================================
Acknowledgments
===============
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the AUB MIND Lab Members for the continous support. Also thanks to Yakshof and Assafir for data and storage access. Another thanks for Habib Rahal (URL for putting a face to AraBERT.
Contacts
========
Wissam Antoun: Linkedin | Twitter | Github | [wfa07@URL](mailto:wfa07@URL) | [URL@URL](mailto:URL@URL)
Fady Baly: Linkedin | Twitter | Github | [fgb06@URL](mailto:fgb06@URL) | [URL@URL](mailto:URL@URL)
|
[] |
[
"TAGS\n#transformers #pytorch #tf #tensorboard #electra #pretraining #ar #arxiv-1406.2661 #arxiv-2012.15516 #endpoints_compatible #has_space #region-us \n"
] |
[
56
] |
[
"passage: TAGS\n#transformers #pytorch #tf #tensorboard #electra #pretraining #ar #arxiv-1406.2661 #arxiv-2012.15516 #endpoints_compatible #has_space #region-us \n"
] |
[
-0.08101245760917664,
0.070970319211483,
-0.005091269966214895,
0.040411606431007385,
0.1031235009431839,
0.03546825796365738,
0.042325932532548904,
0.12166748195886612,
0.05953427031636238,
0.08430106937885284,
0.16679011285305023,
0.18330086767673492,
-0.020166803151369095,
0.008295797742903233,
-0.0522809661924839,
-0.24961890280246735,
0.007506066467612982,
0.08933837711811066,
-0.1727461814880371,
0.07517444342374802,
0.06105368584394455,
-0.12065184861421585,
0.04208899289369583,
-0.0044340770691633224,
-0.14590811729431152,
0.05228111892938614,
0.03001951240003109,
-0.09922577440738678,
0.15641865134239197,
0.06379608064889908,
0.19528363645076752,
0.06415681540966034,
-0.052617836743593216,
-0.07597614824771881,
0.040508270263671875,
0.028080305084586143,
-0.10076658427715302,
0.09330477565526962,
0.04057712107896805,
-0.038836587220430374,
0.10172131657600403,
0.0020718113519251347,
0.00442154286429286,
0.0025963017251342535,
-0.17445522546768188,
-0.15224403142929077,
-0.07819322496652603,
0.06036945804953575,
-0.014749363996088505,
0.0637378990650177,
0.011029396206140518,
0.18243449926376343,
-0.062187012284994125,
0.057177238166332245,
0.18981340527534485,
-0.392320841550827,
-0.03445041924715042,
0.1625010222196579,
0.07619045674800873,
0.050210949033498764,
-0.04413307085633278,
0.053803451359272,
0.07253889739513397,
0.02069069631397724,
0.07224120944738388,
-0.05636248737573624,
-0.09336192160844803,
0.11076555401086807,
-0.16251613199710846,
-0.05015558376908302,
0.1834755837917328,
-0.03293880075216293,
0.08825089037418365,
0.03419862315058708,
-0.12067314982414246,
-0.1366165429353714,
0.02603854052722454,
-0.04704947769641876,
-0.0057676793076097965,
0.012119680643081665,
0.026035316288471222,
-0.04734676703810692,
-0.17077332735061646,
0.0325772687792778,
-0.19722296297550201,
0.20716534554958344,
-0.011438103392720222,
0.05567724630236626,
-0.151692196726799,
0.0729098841547966,
-0.025811584666371346,
-0.08688449114561081,
0.07770095020532608,
-0.05953152850270271,
-0.02292761020362377,
0.018179209902882576,
-0.0750822052359581,
-0.09109457582235336,
0.03273017704486847,
0.07375697791576385,
-0.01540321297943592,
0.03778655081987381,
0.09124308079481125,
0.11710654944181442,
0.0017950714100152254,
0.06093352660536766,
-0.08480510860681534,
0.0013574560871347785,
-0.004709542728960514,
-0.023017199710011482,
0.010216513648629189,
-0.05297074094414711,
-0.13312862813472748,
-0.11058863252401352,
0.05522923171520233,
0.0368502102792263,
0.057670749723911285,
0.028140151873230934,
-0.044652681797742844,
0.014543058350682259,
0.036265406757593155,
-0.04094390943646431,
0.001373295788653195,
-0.03214747831225395,
-0.004854653496295214,
0.0660039559006691,
0.04476119205355644,
-0.010328213684260845,
0.012161416932940483,
0.05600973218679428,
-0.12260612100362778,
-0.022796956822276115,
-0.05294475704431534,
-0.11583385616540909,
0.06290189921855927,
-0.1327619105577469,
0.06086965650320053,
-0.17962904274463654,
0.04044979438185692,
-0.007085463963449001,
0.06800051033496857,
-0.030556464567780495,
-0.01474583800882101,
0.07702960819005966,
-0.07556827366352081,
0.07077427953481674,
-0.03218718618154526,
0.012958025559782982,
-0.04856490716338158,
0.06594707816839218,
-0.01953033171594143,
0.12072741240262985,
-0.08835423737764359,
0.036763906478881836,
-0.02375735715031624,
0.025025056675076485,
-0.1365429013967514,
-0.051612574607133865,
-0.07079315930604935,
0.08354079723358154,
-0.03480430692434311,
-0.06886572390794754,
-0.16184909641742706,
0.04745553433895111,
0.06706646084785461,
0.09548578411340714,
-0.1332215815782547,
-0.0406346395611763,
0.12960444390773773,
-0.08371040970087051,
-0.1453327089548111,
0.08355756103992462,
-0.008173254318535328,
-0.019143279641866684,
-0.04443829134106636,
0.19594793021678925,
0.04279143735766411,
-0.11862831562757492,
-0.026880357414484024,
0.10612357407808304,
-0.07507037371397018,
-0.13757091760635376,
0.02816445380449295,
0.04336504265666008,
-0.007052344270050526,
-0.026716794818639755,
0.035026468336582184,
0.07078860700130463,
-0.0667065903544426,
-0.03786987438797951,
-0.051054615527391434,
-0.04140549525618553,
0.1118997260928154,
0.08466717600822449,
0.10204664617776871,
-0.06886054575443268,
-0.08263397216796875,
0.05726105347275734,
0.024783194065093994,
0.01966363936662674,
0.030487922951579094,
-0.04510718211531639,
0.15723742544651031,
-0.13820210099220276,
-0.05043967440724373,
-0.2022494375705719,
-0.13056716322898865,
-0.07333477586507797,
0.05012418329715729,
0.01372747402638197,
0.28879082202911377,
0.10046358406543732,
-0.06957363337278366,
-0.015896301716566086,
-0.02574964426457882,
0.06255707889795303,
0.04504656419157982,
-0.08224625885486603,
-0.09880294650793076,
-0.015866277739405632,
-0.09913067519664764,
-0.047168929129838943,
-0.1670455038547516,
0.03335268422961235,
0.07707123458385468,
0.1099555566906929,
0.02592342719435692,
0.0622469037771225,
-0.0009447115007787943,
0.03618919476866722,
-0.06749679148197174,
-0.012989216484129429,
0.06756630539894104,
0.007467241026461124,
-0.04230799525976181,
0.13560226559638977,
-0.1467447131872177,
0.3365505039691925,
0.18813630938529968,
-0.2277742177248001,
-0.05702853202819824,
0.0053880708292126656,
-0.04522561654448509,
0.027455447241663933,
0.07275495678186417,
-0.0025184203404933214,
0.04772862419486046,
-0.05286077782511711,
0.09980890154838562,
-0.030710700899362564,
-0.039096083492040634,
0.028401553630828857,
-0.053652212023735046,
-0.08028275519609451,
0.09967968612909317,
0.09644314646720886,
-0.14075957238674164,
0.1677851378917694,
0.2233404517173767,
-0.06318618357181549,
0.1265145242214203,
0.001891161547973752,
-0.047334812581539154,
-0.013149606063961983,
-0.002846186514943838,
-0.019132627174258232,
0.10307209193706512,
-0.19468174874782562,
-0.05155021324753761,
0.0723530575633049,
-0.023696089163422585,
0.08554768562316895,
-0.18400008976459503,
-0.07211238890886307,
0.03116091899573803,
0.06872867047786713,
-0.016959793865680695,
0.13121356070041656,
0.017957525327801704,
0.13182573020458221,
0.010717829689383507,
-0.06302504241466522,
0.0336872898042202,
0.031589534133672714,
-0.04657137393951416,
0.16974402964115143,
-0.08031654357910156,
-0.18996885418891907,
-0.08371246606111526,
0.03560899198055267,
0.04239479452371597,
-0.01074675377458334,
0.05370527505874634,
-0.062007706612348557,
-0.015244468115270138,
0.018350163474678993,
-0.0013522948138415813,
-0.1487458497285843,
0.04879356175661087,
-0.03350890800356865,
0.016131199896335602,
-0.059730079025030136,
-0.10017286986112595,
-0.04462370648980141,
-0.060693368315696716,
-0.0052843838930130005,
0.1053243950009346,
-0.013232437893748283,
0.1006191298365593,
0.1774417906999588,
-0.014960029162466526,
0.032829105854034424,
-0.023512763902544975,
0.1834549903869629,
-0.08669336885213852,
0.038591619580984116,
0.16132639348506927,
0.013209821656346321,
0.06667380779981613,
0.10019532591104507,
0.04875798150897026,
-0.04508248344063759,
-0.0177934430539608,
-0.013395496644079685,
-0.10386309772729874,
-0.22006477415561676,
-0.0759207010269165,
-0.13986729085445404,
-0.03395015001296997,
0.008134174160659313,
0.08425235748291016,
0.06176529824733734,
0.07873967289924622,
0.07188496738672256,
-0.04012976586818695,
-0.1263810247182846,
0.027712488546967506,
0.20628617703914642,
-0.016767503693699837,
0.11240223050117493,
-0.07840465754270554,
-0.05240855738520622,
0.0589936189353466,
0.09901880472898483,
0.1531025916337967,
0.03241467475891113,
-0.008109080605208874,
0.05718358978629112,
0.1843430995941162,
0.11833605915307999,
0.07015582919120789,
-0.015485630370676517,
-0.08524521440267563,
-0.018323417752981186,
-0.00010216037480859086,
0.0014214535476639867,
0.07519372552633286,
0.096714086830616,
-0.12063992768526077,
-0.023582283407449722,
-0.12910668551921844,
0.034369826316833496,
0.045229122042655945,
0.09406110644340515,
-0.23732563853263855,
-0.050048843026161194,
0.02779562398791313,
0.0012914006365463138,
-0.044179871678352356,
0.05041491612792015,
0.10177820175886154,
-0.024198567494750023,
0.018914801999926567,
-0.05346674844622612,
0.0541735403239727,
0.036156367510557175,
0.029434654861688614,
-0.02983267419040203,
-0.08665876090526581,
-0.007266986649483442,
0.03511912003159523,
-0.21747246384620667,
0.28599947690963745,
-0.002950678113847971,
-0.07908686250448227,
-0.015951193869113922,
-0.021894484758377075,
0.02027324214577675,
0.10870633274316788,
0.1084044799208641,
0.01750209741294384,
-0.1270710825920105,
-0.07796120643615723,
0.05977344512939453,
-0.004983420949429274,
0.08048593252897263,
0.003077208064496517,
0.0016350847436115146,
0.009662801399827003,
0.004263917915523052,
0.04589315503835678,
0.10962052643299103,
0.018752077594399452,
-0.13040806353092194,
0.08736595511436462,
-0.00869253370910883,
-0.09525104612112045,
0.006169078405946493,
-0.09371531754732132,
-0.16070248186588287,
0.0911361500620842,
-0.047296199947595596,
-0.014230937696993351,
-0.11960629373788834,
-0.029353516176342964,
0.1397600769996643,
-0.08330481499433517,
0.09606374055147171,
-0.029312405735254288,
-0.03792861849069595,
-0.06729383766651154,
-0.1358758956193924,
0.17307734489440918,
-0.10684582591056824,
0.00032453786116093397,
-0.044012390077114105,
0.09023558348417282,
-0.06857126206159592,
0.06517331302165985,
-0.028567371889948845,
0.07574637234210968,
-0.10060261189937592,
-0.06849349290132523,
0.08212566375732422,
-0.0878487080335617,
0.11329636722803116,
-0.06980638206005096,
-0.0075521571561694145,
0.01241149939596653,
0.06505091488361359,
0.01651408150792122,
0.2157244235277176,
0.2142835557460785,
-0.1318950355052948,
0.03259996324777603,
0.06508477032184601,
-0.01292323786765337,
-0.27373868227005005,
0.03644876554608345,
-0.09519926458597183,
-0.00374735239893198,
0.035285405814647675,
-0.11176832765340805,
0.04546016827225685,
0.02500566840171814,
-0.055407892912626266,
0.15726378560066223,
-0.2754233181476593,
-0.07895541191101074,
0.10857551544904709,
0.036991022527217865,
0.3416283428668976,
-0.1672709435224533,
-0.024536874145269394,
0.08577211201190948,
-0.16699686646461487,
0.11653158068656921,
-0.017231952399015427,
0.0660027414560318,
-0.023400167003273964,
0.04223894327878952,
0.03826471045613289,
-0.09411206096410751,
0.13236002624034882,
-0.05628197640180588,
0.03583367541432381,
-0.09630566090345383,
-0.17171542346477509,
0.05202227458357811,
-0.04582277312874794,
-0.008292555809020996,
0.035837531089782715,
0.025324556976556778,
-0.1714252531528473,
0.0058936793357133865,
-0.11791957169771194,
0.09138417989015579,
0.0116262286901474,
-0.07004733383655548,
-0.07150254398584366,
0.019794881343841553,
-0.008478180505335331,
-0.014175727032124996,
0.2688728868961334,
-0.0218353271484375,
0.20987948775291443,
0.15678748488426208,
0.06921573728322983,
-0.10117166489362717,
-0.07357656210660934,
0.01790827140212059,
-0.04253353551030159,
0.09972087293863297,
-0.2005501389503479,
0.00804137159138918,
0.14632606506347656,
0.0144282141700387,
0.007957628928124905,
0.10783041268587112,
-0.0387517586350441,
0.019066456705331802,
0.1385454535484314,
-0.20733247697353363,
-0.10502002388238907,
-0.031617309898138046,
-0.012690326198935509,
0.05912943556904793,
0.09709039330482483,
0.12747706472873688,
-0.026991592720150948,
0.0037497435696423054,
0.014777077361941338,
-0.047665856778621674,
-0.04243612289428711,
0.05887579917907715,
0.14264355599880219,
0.04435504227876663,
-0.049090705811977386,
0.020792901515960693,
0.03512785956263542,
-0.28104522824287415,
-0.00009027632768265903,
0.10329001396894455,
-0.053035393357276917,
-0.15364927053451538,
-0.06316637247800827,
0.023864595219492912,
-0.18034273386001587,
-0.014727264642715454,
-0.04893089830875397,
-0.0473666675388813,
0.05679095908999443,
0.2838730812072754,
0.060728780925273895,
0.007818636484444141,
-0.0068361652083694935,
0.016152743250131607,
0.013341894373297691,
-0.011642318218946457,
-0.0003480464220046997,
0.052004169672727585,
-0.15493269264698029,
0.0748647153377533,
-0.029531998559832573,
0.13127641379833221,
-0.08108492195606232,
-0.005694215651601553,
-0.1498715877532959,
0.003376917215064168,
-0.062413204461336136,
-0.059282563626766205,
-0.07799794524908066,
-0.06839106231927872,
-0.012086445465683937,
-0.12680213153362274,
-0.09138527512550354,
-0.021909121423959732,
-0.14354164898395538,
0.04305899515748024,
0.006960065104067326,
0.012539295479655266,
-0.0625261440873146,
-0.03597478196024895,
0.05926748365163803,
-0.018376098945736885,
0.09323029220104218,
0.06471599638462067,
-0.012006760574877262,
0.08412622660398483,
-0.047816574573516846,
-0.0472998283803463,
0.09737888723611832,
0.000382445752620697,
0.08828763663768768,
0.03100573644042015,
0.018067795783281326,
-0.020397476851940155,
0.038341592997312546,
0.01751984842121601,
0.0009571284172125161,
-0.060923971235752106,
0.013525526970624924,
-0.037284720689058304,
-0.12327583134174347,
-0.052639782428741455,
-0.033586807548999786,
0.1310548484325409,
0.020274247974157333,
0.0428617000579834,
-0.008170279674232006,
0.020000241696834564,
-0.12088558077812195,
0.012580346316099167,
-0.020319541916251183,
-0.12093781679868698,
0.08365202695131302,
-0.0028198212385177612,
0.04275888204574585,
-0.04020019248127937,
0.1472783237695694,
0.016842804849147797,
-0.07106487452983856,
0.04310910031199455,
0.023418255150318146,
-0.022316833958029747,
0.016193892806768417,
0.1587248295545578,
0.05306469649076462,
-0.0388115830719471,
-0.1144646406173706,
0.11580688506364822,
0.017018139362335205,
0.034832946956157684,
0.1493566781282425,
0.10982213169336319,
0.007650505285710096,
0.11405713111162186,
0.00470816669985652,
-0.06522542983293533,
-0.12533380091190338,
-0.05546078830957413,
-0.07095180451869965,
0.05267934128642082,
-0.03976704180240631,
0.08136574923992157,
0.2512008845806122,
-0.041321221739053726,
0.04424469545483589,
-0.08096088469028473,
-0.010146883316338062,
-0.11855148524045944,
-0.13512210547924042,
-0.03792506456375122,
-0.10141701996326447,
-0.004551684018224478,
-0.05140037462115288,
0.028558939695358276,
0.1842776983976364,
0.04603738337755203,
-0.0011297549353912473,
0.11322787404060364,
0.12456629425287247,
-0.035325486212968826,
0.008135365322232246,
0.06015453860163689,
0.04688672721385956,
-0.06860367208719254,
0.00039236247539520264,
-0.08298955112695694,
-0.05894216522574425,
-0.0720190703868866,
-0.02069876529276371,
-0.05808447301387787,
-0.003993976395577192,
-0.044109046459198,
-0.06708353012800217,
-0.05810713395476341,
0.06295772641897202,
0.016108553856611252,
0.09324268996715546,
-0.00875195674598217,
0.037392258644104004,
-0.015499740839004517,
0.2513526976108551,
-0.09438382089138031,
0.04596244916319847,
-0.03673342615365982,
0.0926380306482315,
0.003810273017734289,
0.09704303741455078,
-0.03101089596748352,
-0.03099808283150196,
-0.05841733142733574,
0.19558905065059662,
0.25113460421562195,
-0.07648773491382599,
0.07200568169355392,
0.09003139287233353,
0.02401629090309143,
0.018989751115441322,
0.09291933476924896,
0.11510162055492401,
0.2630111277103424,
-0.12964072823524475,
-0.10190025717020035,
-0.08602050691843033,
0.04805145040154457,
-0.04063069075345993,
0.11557615548372269,
0.05283793434500694,
-0.04521701857447624,
-0.036019932478666306,
0.06841640174388885,
-0.08563203364610672,
-0.04778117686510086,
0.06711471825838089,
-0.27229878306388855,
-0.10131090134382248,
-0.0036644816864281893,
0.15713077783584595,
-0.04777534678578377,
0.12373587489128113,
-0.05755089223384857,
-0.10894265025854111,
-0.029534457251429558,
0.02880691923201084,
-0.17860926687717438,
-0.007853774353861809,
0.09045998007059097,
-0.007292158901691437,
0.0454888753592968,
-0.06756837666034698,
0.005723478272557259,
0.13329316675662994,
0.08183769881725311,
-0.06267925351858139,
0.013194086961448193,
0.07918461412191391,
-0.07910464704036713,
-0.05892707780003548,
-0.0034921406768262386,
0.02631884440779686,
-0.04842064529657364,
0.08329153060913086,
-0.18118609488010406,
0.049179330468177795,
-0.03056645207107067,
-0.002149822423234582,
-0.02370724081993103,
0.02572578936815262,
-0.04699631407856941,
0.08222629129886627,
0.056057147681713104,
-0.0034776704851537943,
-0.033666256815195084,
-0.0348614826798439,
-0.04795093834400177,
0.07330680638551712,
0.03133796155452728,
-0.11498723179101944,
-0.06694964319467545,
-0.004473987501114607,
-0.00735992006957531,
-0.004425673745572567,
-0.11496103554964066,
-0.03926590457558632,
-0.023615021258592606,
0.022422660142183304,
-0.07346595078706741,
0.032346926629543304,
0.08753449469804764,
0.009092940017580986,
-0.020964713767170906,
-0.006633729673922062,
0.006322481203824282,
0.07434913516044617,
-0.14917945861816406,
-0.05319489166140556
] |
null | null |
transformers
|
# AraELECTRA
<img src="https://raw.githubusercontent.com/aub-mind/arabert/master/AraELECTRA.png" width="100" align="left"/>
**ELECTRA** is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). AraELECTRA achieves state-of-the-art results on Arabic QA dataset.
For a detailed description, please refer to the AraELECTRA paper [AraELECTRA: Pre-Training Text Discriminators for Arabic Language Understanding](https://arxiv.org/abs/2012.15516).
## How to use the generator in `transformers`
```python
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model="aubmindlab/araelectra-base-generator",
tokenizer="aubmindlab/araelectra-base-generator"
)
print(
fill_mask(" ุนุงุตู
ุฉ ูุจูุงู ูู [MASK] .)
)
```
# Preprocessing
It is recommended to apply our preprocessing function before training/testing on any dataset.
**Install the arabert python package to segment text for AraBERT v1 & v2 or to clean your data `pip install arabert`**
```python
from arabert.preprocess import ArabertPreprocessor
model_name="aubmindlab/araelectra-base"
arabert_prep = ArabertPreprocessor(model_name=model_name)
text = "ููู ูุจุงูุบ ุฅุฐุง ูููุง ุฅู ูุงุชู ุฃู ูู
ุจููุชุฑ ุงูู
ูุชุจ ูู ุฒู
ููุง ูุฐุง ุถุฑูุฑู"
arabert_prep.preprocess(text)
>>> output: ููู ูุจุงูุบ ุฅุฐุง ูููุง : ุฅู ูุงุชู ุฃู ูู
ุจููุชุฑ ุงูู
ูุชุจ ูู ุฒู
ููุง ูุฐุง ุถุฑูุฑู
```
# Model
Model | HuggingFace Model Name | Size (MB/Params)|
---|:---:|:---:
AraELECTRA-base-generator | [araelectra-base-generator](https://huggingface.co/aubmindlab/araelectra-base-generator) | 227MB/60M |
AraELECTRA-base-discriminator | [araelectra-base-discriminator](https://huggingface.co/aubmindlab/araelectra-base-discriminator) | 516MB/135M |
# Compute
Model | Hardware | num of examples (seq len = 512) | Batch Size | Num of Steps | Time (in days)
---|:---:|:---:|:---:|:---:|:---:
AraELECTRA-base | TPUv3-8 | - | 256 | 2M | 24
# Dataset
The pretraining data used for the new AraELECTRA model is also used for **AraGPT2 and AraELECTRA**.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
- OSCAR unshuffled and filtered.
- [Arabic Wikipedia dump](https://archive.org/details/arwiki-20190201) from 2020/09/01
- [The 1.5B words Arabic Corpus](https://www.semanticscholar.org/paper/1.5-billion-words-Arabic-Corpus-El-Khair/f3eeef4afb81223df96575adadf808fe7fe440b4)
- [The OSIAN Corpus](https://www.aclweb.org/anthology/W19-4619)
- Assafir news articles. Huge thank you for Assafir for giving us the data
# TensorFlow 1.x models
**You can find the PyTorch, TF2 and TF1 models in HuggingFace's Transformer Library under the ```aubmindlab``` username**
- `wget https://huggingface.co/aubmindlab/MODEL_NAME/resolve/main/tf1_model.tar.gz` where `MODEL_NAME` is any model under the `aubmindlab` name
# If you used this model please cite us as :
```
@inproceedings{antoun-etal-2021-araelectra,
title = "{A}ra{ELECTRA}: Pre-Training Text Discriminators for {A}rabic Language Understanding",
author = "Antoun, Wissam and
Baly, Fady and
Hajj, Hazem",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Virtual)",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.wanlp-1.20",
pages = "191--195",
}
```
# Acknowledgments
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT.
# Contacts
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <[email protected]> | <[email protected]>
**Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <[email protected]> | <[email protected]>
|
{"language": "ar", "datasets": ["wikipedia", "Osian", "1.5B-Arabic-Corpus", "oscar-arabic-unshuffled", "Assafir(private)"], "widget": [{"text": " \u0639\u0627\u0635\u0645\u0629 \u0644\u0628\u0646\u0627\u0646 \u0647\u064a [MASK] ."}]}
|
fill-mask
|
aubmindlab/araelectra-base-generator
|
[
"transformers",
"pytorch",
"tf",
"tensorboard",
"safetensors",
"electra",
"fill-mask",
"ar",
"arxiv:1406.2661",
"arxiv:2012.15516",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1406.2661",
"2012.15516"
] |
[
"ar"
] |
TAGS
#transformers #pytorch #tf #tensorboard #safetensors #electra #fill-mask #ar #arxiv-1406.2661 #arxiv-2012.15516 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
AraELECTRA
==========
<img src="URL width="100" align="left"/>
ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a GAN. AraELECTRA achieves state-of-the-art results on Arabic QA dataset.
For a detailed description, please refer to the AraELECTRA paper AraELECTRA: Pre-Training Text Discriminators for Arabic Language Understanding.
How to use the generator in 'transformers'
------------------------------------------
Preprocessing
=============
It is recommended to apply our preprocessing function before training/testing on any dataset.
Install the arabert python package to segment text for AraBERT v1 & v2 or to clean your data 'pip install arabert'
Model
=====
Compute
=======
Dataset
=======
The pretraining data used for the new AraELECTRA model is also used for AraGPT2 and AraELECTRA.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
* OSCAR unshuffled and filtered.
* Arabic Wikipedia dump from 2020/09/01
* The 1.5B words Arabic Corpus
* The OSIAN Corpus
* Assafir news articles. Huge thank you for Assafir for giving us the data
TensorFlow 1.x models
=====================
You can find the PyTorch, TF2 and TF1 models in HuggingFace's Transformer Library under the username
* 'wget URL where 'MODEL\_NAME' is any model under the 'aubmindlab' name
If you used this model please cite us as :
==========================================
Acknowledgments
===============
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the AUB MIND Lab Members for the continous support. Also thanks to Yakshof and Assafir for data and storage access. Another thanks for Habib Rahal (URL for putting a face to AraBERT.
Contacts
========
Wissam Antoun: Linkedin | Twitter | Github | [wfa07@URL](mailto:wfa07@URL) | [URL@URL](mailto:URL@URL)
Fady Baly: Linkedin | Twitter | Github | [fgb06@URL](mailto:fgb06@URL) | [URL@URL](mailto:URL@URL)
|
[] |
[
"TAGS\n#transformers #pytorch #tf #tensorboard #safetensors #electra #fill-mask #ar #arxiv-1406.2661 #arxiv-2012.15516 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
71
] |
[
"passage: TAGS\n#transformers #pytorch #tf #tensorboard #safetensors #electra #fill-mask #ar #arxiv-1406.2661 #arxiv-2012.15516 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
-0.08900714665651321,
0.07033973187208176,
-0.005424544680863619,
0.07514483481645584,
0.10281306505203247,
0.018211709335446358,
0.09424992650747299,
0.09109382331371307,
0.05436237156391144,
0.07939524948596954,
0.17990709841251373,
0.18683671951293945,
-0.0070852055214345455,
0.15551380813121796,
-0.057924576103687286,
-0.21605944633483887,
0.0362386591732502,
0.05150933191180229,
-0.1338302046060562,
0.08851898461580276,
0.0777798593044281,
-0.10079944133758545,
0.06478474289178848,
-0.002693004673346877,
-0.11284919828176498,
0.056283868849277496,
0.08026635646820068,
-0.13532832264900208,
0.15516693890094757,
0.06837960332632065,
0.22057093679904938,
0.06009124591946602,
-0.022293316200375557,
-0.01970295049250126,
0.052626993507146835,
0.046379685401916504,
-0.101987324655056,
0.09789231419563293,
0.028570791706442833,
-0.04017144441604614,
0.01791633851826191,
0.009002374485135078,
0.03040243126451969,
0.01655520312488079,
-0.13719969987869263,
-0.16068081557750702,
-0.04812968149781227,
0.06099645048379898,
0.002228431636467576,
0.0590074360370636,
0.024238066747784615,
0.22637306153774261,
-0.02631000429391861,
0.09099391102790833,
0.1674804985523224,
-0.3695515990257263,
-0.03151584789156914,
0.08456933498382568,
0.05573803558945656,
-0.016093486919999123,
-0.043387271463871,
0.05875837430357933,
0.06925009191036224,
0.019827431067824364,
0.11771545559167862,
-0.04659323766827583,
-0.1095203161239624,
0.04201025515794754,
-0.12828364968299866,
-0.02417207881808281,
0.14215685427188873,
-0.033227019011974335,
0.06070339307188988,
0.008699469268321991,
-0.1366731971502304,
-0.0978042259812355,
0.01974015310406685,
-0.04965900257229805,
-0.025149261578917503,
-0.009193981066346169,
0.0006371379131451249,
-0.012113623321056366,
-0.15338151156902313,
0.023760082200169563,
-0.2220682054758072,
0.2178567796945572,
-0.006594136357307434,
0.06502203643321991,
-0.13518944382667542,
0.04876833036541939,
-0.02129082940518856,
-0.13219699263572693,
0.09659355133771896,
-0.06491547077894211,
0.002596683567389846,
0.011920064687728882,
-0.0321870855987072,
-0.14881166815757751,
0.059926096349954605,
0.11963348090648651,
0.009029265493154526,
0.027680346742272377,
0.050644442439079285,
0.10065536201000214,
-0.0017464780248701572,
0.071912981569767,
-0.06840438395738602,
-0.019071727991104126,
0.051808543503284454,
-0.01031377725303173,
0.059349868446588516,
-0.062385737895965576,
-0.13328222930431366,
-0.05732979625463486,
0.056336887180805206,
0.05318400636315346,
0.05716714262962341,
0.058278605341911316,
-0.05328771471977234,
0.037786565721035004,
0.09808936715126038,
-0.07369490712881088,
0.01139624509960413,
-0.03875087946653366,
0.025820620357990265,
0.010621180757880211,
0.06785498559474945,
-0.018235666677355766,
0.012467396445572376,
0.09731730073690414,
-0.12362176179885864,
-0.042512018233537674,
-0.04547907039523125,
-0.13847039639949799,
0.06265364587306976,
-0.1077786535024643,
0.03330380842089653,
-0.22831149399280548,
-0.03434620797634125,
0.033805012702941895,
0.050329796969890594,
-0.023281147703528404,
-0.02365810051560402,
0.084418386220932,
-0.05962425842881203,
0.08092395961284637,
-0.026008065789937973,
-0.0299184862524271,
-0.040594782680273056,
0.08150821179151535,
0.003913119435310364,
0.13556843996047974,
-0.08888846635818481,
0.009666981175541878,
-0.06206588074564934,
0.01320047676563263,
-0.16303569078445435,
-0.0915992259979248,
-0.06255941838026047,
0.08549892902374268,
-0.023301726207137108,
-0.04849725589156151,
-0.13278034329414368,
0.04410288482904434,
0.0647074356675148,
0.11894148588180542,
-0.12967383861541748,
-0.05760931596159935,
0.16172784566879272,
-0.134553462266922,
-0.14093056321144104,
0.10778200626373291,
0.015346151776611805,
-0.04161759838461876,
-0.018164774402976036,
0.10406272858381271,
0.01825297437608242,
-0.1598062962293625,
-0.023257998749613762,
0.08003261685371399,
-0.11363270878791809,
-0.09927670657634735,
0.02537432685494423,
0.04265991598367691,
-0.0676681324839592,
-0.01142602227628231,
0.10425017029047012,
0.08620288968086243,
-0.055092111229896545,
-0.055291786789894104,
-0.03935850411653519,
-0.046150583773851395,
0.17837849259376526,
0.05338750779628754,
0.07180807739496231,
-0.08298797905445099,
-0.08869068324565887,
-0.021053895354270935,
0.019935961812734604,
0.04138585552573204,
-0.001974133774638176,
-0.08445169776678085,
0.16607391834259033,
-0.13511165976524353,
-0.029337087646126747,
-0.15302309393882751,
-0.1718541979789734,
-0.05685209110379219,
0.021381910890340805,
-0.004794315434992313,
0.17296727001667023,
0.11775736510753632,
-0.0016870568506419659,
-0.024239366874098778,
-0.03646133840084076,
0.08174128830432892,
0.0520976260304451,
-0.06364874541759491,
-0.1219402328133583,
0.01792975701391697,
-0.10118608176708221,
-0.002926700981333852,
-0.11363900452852249,
0.013607416301965714,
0.006866404786705971,
0.12204152345657349,
0.039879247546195984,
0.06391952186822891,
-0.013279596343636513,
0.0277226772159338,
-0.06651747226715088,
-0.020926812663674355,
0.044646695256233215,
0.00503362575545907,
-0.03897126391530037,
0.1690034717321396,
-0.20994754135608673,
0.3844817578792572,
0.17794744670391083,
-0.1829584687948227,
-0.08459357917308807,
0.049014829099178314,
-0.021690212190151215,
0.015686562284827232,
0.026237526908516884,
-0.02507239393889904,
-0.022442420944571495,
-0.04949392378330231,
0.12420760095119476,
-0.03599187359213829,
-0.018842250108718872,
0.06839007139205933,
-0.07658102363348007,
-0.08723876625299454,
0.05294051021337509,
0.0928834080696106,
-0.148849219083786,
0.1831258237361908,
0.23974817991256714,
-0.07483649998903275,
0.15366078913211823,
0.037053726613521576,
-0.016876384615898132,
-0.014405675232410431,
-0.03364247828722,
0.005427103023976088,
0.11380276083946228,
-0.08573109656572342,
-0.013981437310576439,
0.07197954505681992,
-0.044492993503808975,
0.02942732721567154,
-0.15485873818397522,
-0.050589434802532196,
0.02339681051671505,
0.060845158994197845,
-0.033959198743104935,
0.13486909866333008,
0.02318175695836544,
0.1375291347503662,
-0.01651008613407612,
-0.10802897065877914,
0.05072636157274246,
0.03402075171470642,
-0.0451090931892395,
0.16243186593055725,
-0.11006411164999008,
-0.2913367748260498,
-0.11498578637838364,
-0.03964508697390556,
0.02026824839413166,
0.020849479362368584,
0.046138372272253036,
-0.06159622222185135,
-0.0714997872710228,
-0.00045967468759045005,
-0.03753634914755821,
-0.025813044980168343,
0.06696529686450958,
-0.031634893268346786,
-0.002496172906830907,
0.009800583124160767,
-0.09152298420667648,
-0.04583003744482994,
-0.027104606851935387,
0.007491482887417078,
0.14327533543109894,
0.0252950768917799,
0.10188078880310059,
0.15980617702007294,
-0.03833571821451187,
0.01598232239484787,
-0.0179460309445858,
0.14312507212162018,
-0.08105143904685974,
0.058491580188274384,
0.1838536560535431,
-0.022865409031510353,
0.08310708403587341,
0.1606244146823883,
0.02767307311296463,
-0.020604290068149567,
0.01290973648428917,
-0.030221696943044662,
-0.11046724766492844,
-0.17686930298805237,
-0.09117014706134796,
-0.10739035159349442,
-0.0028701345436275005,
0.04734276235103607,
0.08642103523015976,
0.10890012234449387,
0.0910559743642807,
0.05373462662100792,
-0.015484670177102089,
-0.09960535913705826,
0.03167713060975075,
0.14610262215137482,
-0.003958535846322775,
0.14181026816368103,
-0.05674508586525917,
-0.11929706484079361,
0.05866015702486038,
0.03483578935265541,
0.07212741672992706,
0.028733177110552788,
-0.04269920289516449,
0.03406381979584694,
0.16750870645046234,
0.1292210966348648,
0.1336812973022461,
0.015169557183980942,
-0.09620388597249985,
-0.008074632845818996,
-0.01865583471953869,
0.01334559265524149,
0.04524442180991173,
0.06737446784973145,
-0.07632122188806534,
-0.011801091022789478,
-0.06000354886054993,
0.04037868604063988,
0.04991490766406059,
0.10541899502277374,
-0.29479822516441345,
-0.028146108612418175,
0.02083214744925499,
0.007126399781554937,
-0.06778710335493088,
0.016696713864803314,
0.08901136368513107,
-0.03421030193567276,
0.052439115941524506,
-0.06806566566228867,
0.026134256273508072,
0.08173791319131851,
0.02888639084994793,
-0.05634568631649017,
-0.009409121237695217,
-0.022801589220762253,
0.03981597349047661,
-0.21182821691036224,
0.27284759283065796,
0.008226451463997364,
-0.05228382721543312,
-0.04885216802358627,
0.004852828569710255,
0.056066740304231644,
0.08682140707969666,
0.10293761640787125,
0.011257893405854702,
-0.09930039197206497,
-0.11760078370571136,
-0.01086453441530466,
0.0039808498695492744,
0.05453899875283241,
0.02401670068502426,
0.011057536117732525,
-0.015516570769250393,
-0.03770152106881142,
0.043330125510692596,
0.11253324151039124,
-0.010417831130325794,
-0.11107833683490753,
0.08935575187206268,
0.045464564114809036,
-0.07396602630615234,
-0.007911781780421734,
-0.11664681881666183,
-0.17320616543293,
0.11476565152406693,
-0.03588153049349785,
-0.02776372991502285,
-0.13034634292125702,
-0.03446560725569725,
0.10837196558713913,
-0.10281392186880112,
0.12285806238651276,
-0.05425786226987839,
0.027651719748973846,
-0.0614633746445179,
-0.14499050378799438,
0.17784306406974792,
-0.12886130809783936,
-0.03463509678840637,
-0.07876403629779816,
0.06527196615934372,
-0.0924418717622757,
0.04987906292080879,
-0.011134735308587551,
0.06295584887266159,
-0.08319932222366333,
-0.03955807536840439,
0.07331424206495285,
-0.10025575757026672,
0.0859312042593956,
-0.027361514046788216,
-0.017871614545583725,
-0.09963894635438919,
0.04800303280353546,
0.02034977823495865,
0.20090922713279724,
0.2398984283208847,
-0.11849791556596756,
0.05736345797777176,
0.11403541266918182,
0.015561286360025406,
-0.33409467339515686,
-0.0609583854675293,
-0.10433650016784668,
0.014527303166687489,
0.06925739347934723,
-0.04935312271118164,
0.06304631382226944,
0.005428845528513193,
-0.07096865028142929,
0.17390885949134827,
-0.1642521470785141,
-0.10033762454986572,
0.17730461061000824,
0.037682969123125076,
0.33074817061424255,
-0.1362515687942505,
-0.02429739572107792,
0.024707578122615814,
-0.08724009990692139,
0.06803908944129944,
-0.0406675711274147,
0.06215178966522217,
-0.00765744224190712,
0.036795735359191895,
0.033352240920066833,
-0.09535466134548187,
0.10154170542955399,
-0.12971483170986176,
0.03368772193789482,
-0.12345320731401443,
-0.11683544516563416,
0.05438289791345596,
-0.03672196343541145,
0.021654227748513222,
-0.03072299249470234,
0.03072638437151909,
-0.02813337929546833,
-0.0007585239363834262,
-0.09086466580629349,
0.12306756526231766,
0.025678256526589394,
-0.06798585504293442,
-0.02305610291659832,
0.003327474696561694,
-0.019583553075790405,
-0.044515274465084076,
0.21492590010166168,
0.0075818696059286594,
0.23708051443099976,
0.18161381781101227,
0.04123036190867424,
-0.10008306056261063,
-0.048236627131700516,
0.004561190493404865,
-0.07598940283060074,
0.10186082869768143,
-0.11571916192770004,
0.051647890359163284,
0.0995805412530899,
-0.0050619663670659065,
0.044026050716638565,
0.0939636081457138,
-0.02182720974087715,
0.0018667193362489343,
0.1750597059726715,
-0.2161889374256134,
-0.015360260382294655,
-0.007985321804881096,
0.014835052192211151,
0.019580228254199028,
0.07783611118793488,
0.13022856414318085,
-0.026298634707927704,
-0.008655651472508907,
0.01297773141413927,
-0.009269149973988533,
-0.019345445558428764,
0.096445232629776,
0.12348876893520355,
0.05531153827905655,
-0.06232050433754921,
0.005661581177264452,
0.011288809590041637,
-0.20117518305778503,
0.018864475190639496,
0.07931561768054962,
-0.060381557792425156,
-0.13760629296302795,
-0.003909769002348185,
0.048938751220703125,
-0.1122855395078659,
-0.0392749160528183,
-0.08765333890914917,
-0.06333691626787186,
0.028112109750509262,
0.2763921618461609,
0.048544421792030334,
0.01421436108648777,
0.013854029588401318,
-0.011260069906711578,
-0.013632065616548061,
0.0448981411755085,
0.02503238432109356,
0.06778044253587723,
-0.16634510457515717,
0.07593445479869843,
-0.016341038048267365,
0.13464747369289398,
-0.10454490780830383,
0.022008342668414116,
-0.1404300034046173,
-0.020789356902241707,
-0.042404867708683014,
-0.03301731124520302,
-0.05567861720919609,
-0.07116146385669708,
0.002795596607029438,
-0.09345239400863647,
-0.0818377137184143,
-0.022443119436502457,
-0.116438128054142,
0.027463678270578384,
0.03113553300499916,
-0.00982697308063507,
-0.07380431890487671,
-0.05625174194574356,
0.070999376475811,
-0.013817643746733665,
0.0837438777089119,
0.057505328208208084,
-0.03391182795166969,
0.0718737542629242,
-0.11481419950723648,
-0.05118221789598465,
0.10775774717330933,
0.005649619270116091,
0.08398868888616562,
0.026161909103393555,
0.021865641698241234,
0.004430574364960194,
0.018695488572120667,
0.012961868196725845,
0.046104323118925095,
-0.07785768806934357,
0.05465707182884216,
-0.03171695023775101,
-0.1447504609823227,
-0.03990566357970238,
-0.061141178011894226,
0.08069537580013275,
-0.03218885138630867,
0.10228805243968964,
-0.06401635706424713,
0.02869265154004097,
-0.10830899327993393,
0.024014567956328392,
-0.03600558638572693,
-0.1272590309381485,
0.011534827761352062,
0.021535200998187065,
0.034872978925704956,
-0.039918698370456696,
0.1322779655456543,
0.03345133364200592,
-0.06817902624607086,
0.03491666167974472,
0.04151099547743797,
-0.016378402709960938,
-0.001750089111737907,
0.08154991269111633,
0.0195773895829916,
-0.04333759844303131,
-0.12555333971977234,
0.08798576891422272,
0.03188309073448181,
-0.022226667031645775,
0.1323378086090088,
0.04084319621324539,
0.025883084163069725,
0.09798149764537811,
0.018079347908496857,
-0.04608593136072159,
-0.12367594242095947,
-0.13438862562179565,
-0.11632998287677765,
0.056434426456689835,
0.01100461371243,
0.025496697053313255,
0.24536725878715515,
0.02131074294447899,
0.018431799486279488,
-0.07718004286289215,
-0.009045464918017387,
-0.15427567064762115,
-0.16126476228237152,
-0.08011037111282349,
-0.06936272978782654,
0.0030874975491315126,
-0.02941720560193062,
0.005801019724458456,
0.11785338073968887,
0.03719316050410271,
-0.015141055919229984,
0.1548016369342804,
0.07035714387893677,
-0.01441047340631485,
-0.010161403566598892,
0.06400056183338165,
0.02977803535759449,
-0.003733615856617689,
-0.011341938748955727,
-0.11213237792253494,
-0.007403298281133175,
-0.05635499954223633,
-0.02344830147922039,
-0.041253428906202316,
0.03376670554280281,
-0.04930281266570091,
-0.10302641242742538,
-0.05936658754944801,
0.0455276295542717,
-0.005658446811139584,
0.06376150995492935,
-0.001993401674553752,
0.06580370664596558,
-0.0049158805049955845,
0.17711950838565826,
-0.07758589833974838,
-0.028487147763371468,
-0.06992971897125244,
0.13902893662452698,
-0.012630495242774487,
0.09598035365343094,
-0.03889600932598114,
-0.02757761999964714,
-0.0631248727440834,
0.20107635855674744,
0.2893385589122772,
-0.05517275631427765,
0.08630096167325974,
0.03636028617620468,
0.01858779974281788,
-0.01606474258005619,
0.09696586430072784,
0.09831681102514267,
0.270985871553421,
-0.09619338065385818,
-0.06041736528277397,
-0.08335654437541962,
0.038114581257104874,
-0.07936401665210724,
0.048277873545885086,
0.019956355914473534,
-0.021377941593527794,
-0.03997649624943733,
0.050804540514945984,
-0.07095928490161896,
-0.006009027361869812,
0.047429408878088,
-0.23413263261318207,
-0.08811624348163605,
0.014902951195836067,
0.1665423959493637,
-0.017004292458295822,
0.09805454313755035,
-0.04743757098913193,
-0.06798291206359863,
-0.03813156858086586,
0.013071366585791111,
-0.14581593871116638,
-0.004146818537265062,
0.05213124305009842,
-0.03452135622501373,
0.13317395746707916,
-0.0441172793507576,
0.01870649680495262,
0.12675149738788605,
0.0614931620657444,
-0.05681586638092995,
0.0614047609269619,
0.05112583935260773,
-0.10015387088060379,
-0.018899189308285713,
0.008710878901183605,
0.016975516453385353,
-0.06699856370687485,
0.06525439023971558,
-0.1331871747970581,
0.030909335240721703,
-0.06840363889932632,
-0.010583735071122646,
0.0029006137046962976,
0.06558995693922043,
-0.02814720757305622,
0.08509492129087448,
0.052550412714481354,
0.004947733134031296,
-0.022514356300234795,
-0.03637853264808655,
-0.024674398824572563,
0.05599525570869446,
-0.042324379086494446,
-0.10043099522590637,
-0.10145682841539383,
0.011389761231839657,
-0.025997046381235123,
0.005914177279919386,
-0.1783595085144043,
-0.039601344615221024,
-0.09990836679935455,
-0.0025735609233379364,
-0.11978480219841003,
0.02419317327439785,
0.10919003933668137,
0.02083447203040123,
-0.0030860924161970615,
-0.003342099254950881,
0.012426513247191906,
0.07107576727867126,
-0.16501760482788086,
-0.07462725788354874
] |
null | null |
transformers
|
# Arabic GPT2
<img src="https://raw.githubusercontent.com/aub-mind/arabert/master/AraGPT2.png" width="100" align="left"/>
You can find more information in our paper [AraGPT2](https://arxiv.org/abs/2012.15520)
The code in this repository was used to train all GPT2 variants. The code support training and fine-tuning GPT2 on GPUs and TPUs via the TPUEstimator API.
GPT2-base and medium uses the code from the `gpt2` folder and can trains models from the [minimaxir/gpt-2-simple](https://github.com/minimaxir/gpt-2-simple) repository.
These models were trained using the `lamb` optimizer and follow the same architecture as `gpt2` and are fully compatible with the `transformers` library.
GPT2-large and GPT2-mega were trained using the [imcaspar/gpt2-ml](https://github.com/imcaspar/gpt2-ml/) library, and follow the `grover` architecture. You can use the pytorch classes found in `grover/modeling_gpt2.py` as a direct replacement for classes in the `transformers` library (it should support version `v4.x` from `transformers`).
Both models are trained using the `adafactor` optimizer, since the `adam` and `lamb` optimizer use too much memory causing the model to not even fit 1 batch on a TPU core.
AraGPT2 is trained on the same large Arabic Dataset as AraBERTv2.
# Usage
## Testing the model using `transformers`:
```python
from transformers import GPT2TokenizerFast, pipeline
#for base and medium
from transformers import GPT2LMHeadModel
#for large and mega
# pip install arabert
from arabert.aragpt2.grover.modeling_gpt2 import GPT2LMHeadModel
from arabert.preprocess import ArabertPreprocessor
MODEL_NAME='aubmindlab/aragpt2-base'
arabert_prep = ArabertPreprocessor(model_name=MODEL_NAME)
text=""
text_clean = arabert_prep.preprocess(text)
model = GPT2LMHeadModel.from_pretrained(MODEL_NAME)
tokenizer = GPT2TokenizerFast.from_pretrained(MODEL_NAME)
generation_pipeline = pipeline("text-generation",model=model,tokenizer=tokenizer)
#feel free to try different decoding settings
generation_pipeline(text,
pad_token_id=tokenizer.eos_token_id,
num_beams=10,
max_length=200,
top_p=0.9,
repetition_penalty = 3.0,
no_repeat_ngram_size = 3)[0]['generated_text']
```
## Finetunning using `transformers`:
Follow the guide linked [here](https://towardsdatascience.com/fine-tuning-gpt2-on-colab-gpu-for-free-340468c92ed)
## Finetuning using our code with TF 1.15.4:
Create the Training TFRecords:
```bash
python create_pretraining_data.py
--input_file=<RAW TEXT FILE with documents/article separated by an empty line>
--output_file=<OUTPUT TFRecord>
--tokenizer_dir=<Directory with the GPT2 Tokenizer files>
```
Finetuning:
```bash
python3 run_pretraining.py \\r\n --input_file="gs://<GS_BUCKET>/pretraining_data/*" \\r\n --output_dir="gs://<GS_BUCKET>/pretraining_model/" \\r\n --config_file="config/small_hparams.json" \\r\n --batch_size=128 \\r\n --eval_batch_size=8 \\r\n --num_train_steps= \\r\n --num_warmup_steps= \\r\n --learning_rate= \\r\n --save_checkpoints_steps= \\r\n --max_seq_length=1024 \\r\n --max_eval_steps= \\r\n --optimizer="lamb" \\r\n --iterations_per_loop=5000 \\r\n --keep_checkpoint_max=10 \\r\n --use_tpu=True \\r\n --tpu_name=<TPU NAME> \\r\n --do_train=True \\r\n --do_eval=False
```
# Model Sizes
Model | Optimizer | Context size | Embedding Size | Num of heads | Num of layers | Model Size / Num of Params |
---|:---:|:---:|:---:|:---:|:---:|:---:
AraGPT2-base | `lamb` | 1024 | 768 | 12 | 12 | 527MB / 135M |
AraGPT2-medium | `lamb` | 1024 | 1024 | 16 | 24 | 1.38G/370M |
AraGPT2-large | `adafactor` | 1024 | 1280 | 20 | 36 | 2.98GB/792M |
AraGPT2-mega | `adafactor` | 1024 | 1536 | 25 | 48 | 5.5GB/1.46B |
All models are available in the `HuggingFace` model page under the [aubmindlab](https://huggingface.co/aubmindlab/) name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
## Compute
Model | Hardware | num of examples (seq len = 1024) | Batch Size | Num of Steps | Time (in days)
---|:---:|:---:|:---:|:---:|:---:
AraGPT2-base | TPUv3-128 | 9.7M | 1792 | 125K | 1.5
AraGPT2-medium | TPUv3-8 | 9.7M | 1152 | 85K | 1.5
AraGPT2-large | TPUv3-128 | 9.7M | 256 | 220k | 3
AraGPT2-mega | TPUv3-128 | 9.7M | 256 | 780K | 9
# Dataset
The pretraining data used for the new AraGPT2 model is also used for **AraBERTv2 and AraELECTRA**.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus after we thoroughly filter it, to the dataset used in AraBERTv1 but without the websites that we previously crawled:
- OSCAR unshuffled and filtered.
- [Arabic Wikipedia dump](https://archive.org/details/arwiki-20190201) from 2020/09/01
- [The 1.5B words Arabic Corpus](https://www.semanticscholar.org/paper/1.5-billion-words-Arabic-Corpus-El-Khair/f3eeef4afb81223df96575adadf808fe7fe440b4)
- [The OSIAN Corpus](https://www.aclweb.org/anthology/W19-4619)
- Assafir news articles. Huge thank you for Assafir for giving us the data
# Disclaimer
The text generated by AraGPT2 is automatically generated by a neural network model trained on a large amount of texts, which does not represent the authors' or their institutes' official attitudes and preferences. The text generated by AraGPT2 should only be used for research and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it.
# If you used this model please cite us as :
```
@inproceedings{antoun-etal-2021-aragpt2,
title = "{A}ra{GPT}2: Pre-Trained Transformer for {A}rabic Language Generation",
author = "Antoun, Wissam and
Baly, Fady and
Hajj, Hazem",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Virtual)",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.wanlp-1.21",
pages = "196--207",
}
```
# Acknowledgments
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continuous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT.
# Contacts
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <[email protected]> | <[email protected]>
**Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <[email protected]> | <[email protected]>
|
{"language": "ar", "datasets": ["wikipedia", "Osian", "1.5B-Arabic-Corpus", "oscar-arabic-unshuffled", "Assafir(private)"], "widget": [{"text": "\u064a\u062d\u0643\u0649 \u0623\u0646 \u0645\u0632\u0627\u0631\u0639\u0627 \u0645\u062e\u0627\u062f\u0639\u0627 \u0642\u0627\u0645 \u0628\u0628\u064a\u0639 \u0628\u0626\u0631 \u0627\u0644\u0645\u0627\u0621 \u0627\u0644\u0645\u0648\u062c\u0648\u062f \u0641\u064a \u0623\u0631\u0636\u0647 \u0644\u062c\u0627\u0631\u0647 \u0645\u0642\u0627\u0628\u0644 \u0645\u0628\u0644\u063a \u0643\u0628\u064a\u0631 \u0645\u0646 \u0627\u0644\u0645\u0627\u0644"}, {"text": "\u0627\u0644\u0642\u062f\u0633 \u0645\u062f\u064a\u0646\u0629 \u062a\u0627\u0631\u064a\u062e\u064a\u0629\u060c \u0628\u0646\u0627\u0647\u0627 \u0627\u0644\u0643\u0646\u0639\u0627\u0646\u064a\u0648\u0646 \u0641\u064a"}, {"text": "\u0643\u0627\u0646 \u064a\u0627 \u0645\u0627 \u0643\u0627\u0646 \u0641\u064a \u0642\u062f\u064a\u0645 \u0627\u0644\u0632\u0645\u0627\u0646"}]}
|
text-generation
|
aubmindlab/aragpt2-base
|
[
"transformers",
"pytorch",
"tf",
"jax",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"ar",
"arxiv:2012.15520",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2012.15520"
] |
[
"ar"
] |
TAGS
#transformers #pytorch #tf #jax #tensorboard #safetensors #gpt2 #text-generation #ar #arxiv-2012.15520 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
Arabic GPT2
===========
<img src="URL width="100" align="left"/>
You can find more information in our paper AraGPT2
The code in this repository was used to train all GPT2 variants. The code support training and fine-tuning GPT2 on GPUs and TPUs via the TPUEstimator API.
GPT2-base and medium uses the code from the 'gpt2' folder and can trains models from the minimaxir/gpt-2-simple repository.
These models were trained using the 'lamb' optimizer and follow the same architecture as 'gpt2' and are fully compatible with the 'transformers' library.
GPT2-large and GPT2-mega were trained using the imcaspar/gpt2-ml library, and follow the 'grover' architecture. You can use the pytorch classes found in 'grover/modeling\_gpt2.py' as a direct replacement for classes in the 'transformers' library (it should support version 'v4.x' from 'transformers').
Both models are trained using the 'adafactor' optimizer, since the 'adam' and 'lamb' optimizer use too much memory causing the model to not even fit 1 batch on a TPU core.
AraGPT2 is trained on the same large Arabic Dataset as AraBERTv2.
Usage
=====
Testing the model using 'transformers':
---------------------------------------
Finetunning using 'transformers':
---------------------------------
Follow the guide linked here
Finetuning using our code with TF 1.15.4:
-----------------------------------------
Create the Training TFRecords:
Finetuning:
Model Sizes
===========
All models are available in the 'HuggingFace' model page under the aubmindlab name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
Compute
-------
Dataset
=======
The pretraining data used for the new AraGPT2 model is also used for AraBERTv2 and AraELECTRA.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus after we thoroughly filter it, to the dataset used in AraBERTv1 but without the websites that we previously crawled:
* OSCAR unshuffled and filtered.
* Arabic Wikipedia dump from 2020/09/01
* The 1.5B words Arabic Corpus
* The OSIAN Corpus
* Assafir news articles. Huge thank you for Assafir for giving us the data
Disclaimer
==========
The text generated by AraGPT2 is automatically generated by a neural network model trained on a large amount of texts, which does not represent the authors' or their institutes' official attitudes and preferences. The text generated by AraGPT2 should only be used for research and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it.
If you used this model please cite us as :
==========================================
Acknowledgments
===============
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the AUB MIND Lab Members for the continuous support. Also thanks to Yakshof and Assafir for data and storage access. Another thanks for Habib Rahal (URL for putting a face to AraBERT.
Contacts
========
Wissam Antoun: Linkedin | Twitter | Github | [wfa07@URL](mailto:wfa07@URL) | [URL@URL](mailto:URL@URL)
Fady Baly: Linkedin | Twitter | Github | [fgb06@URL](mailto:fgb06@URL) | [URL@URL](mailto:URL@URL)
|
[] |
[
"TAGS\n#transformers #pytorch #tf #jax #tensorboard #safetensors #gpt2 #text-generation #ar #arxiv-2012.15520 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n"
] |
[
76
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #tensorboard #safetensors #gpt2 #text-generation #ar #arxiv-2012.15520 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n"
] |
[
-0.05645706132054329,
0.056626029312610626,
-0.005051159765571356,
0.048894383013248444,
0.11909046024084091,
0.0051360162906348705,
0.11389254033565521,
0.12302930653095245,
-0.006541190203279257,
0.03367166966199875,
0.1732701063156128,
0.19500227272510529,
-0.0009872124064713717,
0.09448663890361786,
-0.08593598753213882,
-0.22474129498004913,
0.029675304889678955,
0.04683876037597656,
-0.05692292004823685,
0.1170472651720047,
0.08564317971467972,
-0.08045651018619537,
0.07459984719753265,
-0.0297038946300745,
-0.15912489593029022,
0.02888120338320732,
0.07085061818361282,
-0.13332514464855194,
0.131638303399086,
0.07289471477270126,
0.1287519782781601,
0.06356801092624664,
-0.03999406844377518,
-0.072304368019104,
0.042006731033325195,
0.05863306671380997,
-0.08025231957435608,
0.09170455485582352,
0.09903130680322647,
-0.06700404733419418,
0.09604126214981079,
0.026805322617292404,
-0.01034093089401722,
0.031166747212409973,
-0.14647351205348969,
-0.10621120035648346,
-0.047431956976652145,
0.05250386521220207,
0.04273233562707901,
0.08808518201112747,
-0.001833506510592997,
0.17206403613090515,
-0.021689990535378456,
0.11144661903381348,
0.14870861172676086,
-0.37354764342308044,
-0.03771084547042847,
0.09818561375141144,
0.07431007921695709,
0.08063561469316483,
-0.05388205125927925,
0.06731343269348145,
0.05583867430686951,
0.02904304303228855,
0.08081699907779694,
-0.06456541270017624,
-0.1708136945962906,
0.05337061733007431,
-0.1257343739271164,
-0.026540961116552353,
0.2213895320892334,
-0.05677367001771927,
0.062016166746616364,
-0.024127770215272903,
-0.12383712828159332,
-0.05837287753820419,
0.003636416047811508,
-0.04854873567819595,
-0.04849383980035782,
0.03962133452296257,
0.01602538302540779,
-0.06313741207122803,
-0.1562614142894745,
-0.008124453946948051,
-0.19062040746212006,
0.1665375530719757,
-0.005050963722169399,
0.03644731268286705,
-0.17432263493537903,
0.08445114642381668,
-0.016549665480852127,
-0.12084422260522842,
0.06612177193164825,
-0.07806958258152008,
0.02914716862142086,
-0.0032007277477532625,
-0.026266098022460938,
-0.16182418167591095,
0.07094108313322067,
0.06338239461183548,
-0.031433284282684326,
0.023726385086774826,
-0.03547896072268486,
0.08541848510503769,
-0.018100924789905548,
0.08415471762418747,
-0.061705123633146286,
-0.03129734843969345,
0.06873731315135956,
-0.04203836992383003,
0.030925795435905457,
-0.07223477214574814,
-0.14584222435951233,
-0.04146276041865349,
0.08722208440303802,
0.0669449120759964,
0.031986385583877563,
0.09717103838920593,
-0.03343267738819122,
0.017509719356894493,
0.06867106258869171,
-0.07952432334423065,
0.0061800479888916016,
-0.02007809467613697,
0.038405511528253555,
0.031224045902490616,
0.03832602873444557,
0.006840349640697241,
-0.07394197583198547,
0.05140559747815132,
-0.09593965858221054,
-0.029854869470000267,
-0.018425656482577324,
-0.12248682975769043,
0.04607618600130081,
-0.07712902128696442,
0.010082712396979332,
-0.18931570649147034,
-0.07976509630680084,
0.018737509846687317,
0.011071586050093174,
-0.02837730571627617,
-0.03973705694079399,
0.02301250770688057,
-0.07258079946041107,
0.07234713435173035,
-0.0384061299264431,
0.021879995241761208,
-0.03848756104707718,
0.09416861832141876,
-0.03156478330492973,
0.08734635263681412,
-0.10209357738494873,
0.04095637798309326,
-0.08411415666341782,
-0.004846622236073017,
-0.1175767332315445,
0.012754443101584911,
-0.031490907073020935,
0.10663342475891113,
-0.03969220072031021,
-0.016824087128043175,
-0.118414007127285,
0.03897364065051079,
0.020923364907503128,
0.16194270551204681,
-0.1362440288066864,
-0.07597089558839798,
0.20379498600959778,
-0.10935817658901215,
-0.17014682292938232,
0.1125316172838211,
0.017604434862732887,
0.02391780912876129,
0.05062519758939743,
0.1855788677930832,
0.05176868289709091,
-0.059434570372104645,
0.020206687971949577,
0.1046086996793747,
-0.0926409512758255,
-0.08232750743627548,
0.011187982745468616,
0.011476771906018257,
-0.09638448059558868,
0.020604794844985008,
0.07746102660894394,
0.072099968791008,
-0.042149800807237625,
-0.03239820897579193,
-0.05846407264471054,
-0.022346263751387596,
0.09620014578104019,
0.02701399102807045,
0.10145927965641022,
-0.07205034792423248,
-0.06963158398866653,
-0.0038674562238156796,
-0.006766623351722956,
-0.0060616955161094666,
0.013182568363845348,
-0.0450846292078495,
0.15407869219779968,
-0.0896773636341095,
0.025751670822501183,
-0.16349253058433533,
-0.12295027077198029,
-0.02518698200583458,
0.11772017180919647,
-0.002888293471187353,
0.12221239507198334,
0.10114840418100357,
-0.005699454806745052,
-0.02014194056391716,
-0.019147220999002457,
0.16091561317443848,
0.021339546889066696,
-0.10050759464502335,
-0.10413732379674911,
0.08685275167226791,
-0.08738009631633759,
0.004945805761963129,
-0.1443289965391159,
0.03642231225967407,
0.0652175098657608,
0.11172312498092651,
0.028129836544394493,
0.04825153946876526,
-0.001120615634135902,
-0.0014473125338554382,
-0.0946209579706192,
-0.019536655396223068,
0.07023270428180695,
0.0030489997006952763,
-0.06430141627788544,
0.21754160523414612,
-0.21489520370960236,
0.31698551774024963,
0.2026221752166748,
-0.19006094336509705,
-0.03877634555101395,
-0.01690266840159893,
-0.019457552582025528,
0.015018288977444172,
0.04316338524222374,
-0.02800087258219719,
0.0455748625099659,
-0.03521494194865227,
0.15495626628398895,
-0.0708310455083847,
-0.06080884486436844,
0.038207389414310455,
-0.045994680374860764,
-0.0511741042137146,
0.09535916149616241,
0.04036162048578262,
-0.17348463833332062,
0.17618116736412048,
0.24002282321453094,
-0.017516637220978737,
0.1624520719051361,
0.0146236103028059,
-0.02171361818909645,
0.0441909059882164,
0.023624766618013382,
-0.0019081563223153353,
0.009563431143760681,
-0.14744684100151062,
-0.020040016621351242,
0.06518194824457169,
0.006292303092777729,
0.0559815987944603,
-0.1509469449520111,
-0.047604553401470184,
-0.0006555180880241096,
0.00457276264205575,
0.006096957717090845,
0.11038049310445786,
0.029371146112680435,
0.1602504700422287,
-0.036163389682769775,
-0.04023906588554382,
0.07956034690141678,
0.025431007146835327,
-0.0956936702132225,
0.19983172416687012,
-0.11422040313482285,
-0.30913981795310974,
-0.11057893186807632,
-0.07322665303945541,
-0.024249747395515442,
0.02819616161286831,
0.08757304400205612,
-0.09141232818365097,
-0.031150275841355324,
-0.04489591345191002,
0.015938300639390945,
-0.07393645495176315,
0.05079406499862671,
-0.07694292068481445,
0.014532873407006264,
-0.024373771622776985,
-0.09078896790742874,
-0.03328672796487808,
-0.024806533008813858,
-0.05181429535150528,
0.14173392951488495,
-0.029391005635261536,
0.08020325005054474,
0.17885079979896545,
-0.02881123125553131,
0.03219645470380783,
-0.04548600688576698,
0.1502111852169037,
-0.08001390099525452,
0.04564107581973076,
0.18724659085273743,
-0.03441533446311951,
0.08293658494949341,
0.12717372179031372,
0.0018491887021809816,
-0.05094439908862114,
0.01807962730526924,
-0.016903184354305267,
-0.09738636016845703,
-0.2403709441423416,
-0.08468154817819595,
-0.11952187120914459,
0.05628030747175217,
0.040193893015384674,
0.09179937094449997,
0.09920772165060043,
0.08947562426328659,
0.007993814535439014,
0.02064819261431694,
-0.003746017115190625,
0.05082939937710762,
0.17109474539756775,
-0.013067279942333698,
0.14570903778076172,
-0.07037337124347687,
-0.11006893217563629,
0.09887250512838364,
0.047290317714214325,
0.07886586338281631,
-0.0012777835363522172,
-0.026402201503515244,
0.016272369772195816,
0.13786473870277405,
0.1290726363658905,
0.10810043662786484,
-0.011451171711087227,
-0.06698119640350342,
-0.01624279096722603,
-0.037971410900354385,
0.0074884844943881035,
0.04601123556494713,
-0.018343307077884674,
-0.10425347089767456,
-0.021628092974424362,
-0.06093300133943558,
0.07581979036331177,
0.04667770490050316,
0.08743975311517715,
-0.271308958530426,
-0.0005745470407418907,
0.06553581357002258,
-0.0029015280306339264,
-0.10914574563503265,
0.05647674947977066,
0.09900063276290894,
-0.04769410192966461,
0.053651489317417145,
-0.07529965788125992,
0.06621983647346497,
0.012255547568202019,
0.05030616372823715,
-0.040489040315151215,
-0.020777929574251175,
-0.020568709820508957,
0.08349774777889252,
-0.2817463278770447,
0.22410504519939423,
0.011436998844146729,
-0.046732716262340546,
-0.06623072922229767,
0.009296606294810772,
0.027942027896642685,
0.12308351695537567,
0.130394846200943,
0.0018594153225421906,
-0.07889097183942795,
-0.06160727143287659,
-0.030103275552392006,
0.028304975479841232,
0.08684365451335907,
0.0011622518068179488,
-0.006607700139284134,
-0.03330027684569359,
-0.007287589367479086,
0.03438779339194298,
0.0036422819830477238,
-0.023222651332616806,
-0.16063031554222107,
0.08561506122350693,
0.03445323556661606,
-0.005066058598458767,
-0.009507410228252411,
-0.06350859254598618,
-0.15067428350448608,
0.19991232454776764,
-0.038098666816949844,
-0.058990478515625,
-0.12739989161491394,
-0.046503107994794846,
0.062271106988191605,
-0.0793493241071701,
0.05773618072271347,
-0.06456957757472992,
0.02455783821642399,
-0.05447281152009964,
-0.18069183826446533,
0.16205444931983948,
-0.10456354916095734,
-0.04744783043861389,
-0.05625950172543526,
0.12884069979190826,
-0.08490397781133652,
0.015610679984092712,
0.002374396426603198,
0.04102051258087158,
-0.08923925459384918,
-0.08760593831539154,
0.04240214824676514,
-0.04459458962082863,
0.05918194726109505,
-0.04161874204874039,
-0.06125090271234512,
-0.09197317063808441,
0.013849103823304176,
-0.00014766081585548818,
0.2453160285949707,
0.19755436480045319,
-0.1001053899526596,
0.10302575677633286,
0.11188282817602158,
-0.04398312419652939,
-0.3398820459842682,
-0.0493195578455925,
-0.11319296061992645,
-0.019872838631272316,
0.012417440302670002,
-0.08804356306791306,
0.059164535254240036,
0.011805905029177666,
-0.048525821417570114,
0.15649905800819397,
-0.24490150809288025,
-0.10829786211252213,
0.1562899947166443,
0.03557673096656799,
0.31465640664100647,
-0.17313940823078156,
-0.07480497658252716,
0.0008431322639808059,
-0.06689918041229248,
0.14314842224121094,
-0.11865659058094025,
0.06678570061922073,
-0.008306320756673813,
0.0497518852353096,
0.04202321916818619,
-0.06845521181821823,
0.08358080685138702,
-0.07393927872180939,
0.027654260396957397,
-0.12175984680652618,
-0.055672336369752884,
0.07797610759735107,
-0.02632598951458931,
0.02865992859005928,
-0.08237941563129425,
0.051902513951063156,
-0.08071504533290863,
-0.015825647860765457,
-0.06685247272253036,
0.08493094891309738,
0.026389172300696373,
-0.07526727765798569,
-0.02418701723217964,
-0.03554994612932205,
-0.02216050960123539,
-0.039410900324583054,
0.2063581943511963,
-0.025101836770772934,
0.2312815636396408,
0.16443929076194763,
0.11204133927822113,
-0.11033640056848526,
0.0428236648440361,
-0.015155484899878502,
-0.06471545994281769,
0.08432860672473907,
-0.1666574329137802,
0.05528867989778519,
0.09798165410757065,
-0.018755584955215454,
0.04310361668467522,
0.09657378494739532,
-0.015121584758162498,
-0.008017180487513542,
0.146769180893898,
-0.2648090720176697,
-0.05931435897946358,
-0.053415022790431976,
0.0008550820639356971,
0.030822668224573135,
0.09249525517225266,
0.16847065091133118,
-0.01911935582756996,
-0.015410220250487328,
0.014186741784214973,
0.005007814150303602,
-0.017422422766685486,
0.0961097851395607,
0.06347101926803589,
0.025930756703019142,
-0.08839584141969681,
0.04452488571405411,
0.02211369387805462,
-0.16251468658447266,
0.01652311347424984,
0.14719510078430176,
-0.10348670184612274,
-0.14152023196220398,
-0.0031409405637532473,
0.0705450028181076,
-0.09294544160366058,
-0.02257094532251358,
-0.04347476363182068,
-0.10783129930496216,
0.05700359866023064,
0.21122488379478455,
0.03771138936281204,
0.05855075269937515,
-0.01917930319905281,
-0.03528968244791031,
-0.035334981977939606,
0.05733746290206909,
0.004606106784194708,
0.05285165458917618,
-0.1494179368019104,
0.06912191957235336,
-0.019882431253790855,
0.10710851848125458,
-0.10235531628131866,
0.005267218686640263,
-0.14882072806358337,
-0.01610158011317253,
-0.09415141493082047,
-0.03786482661962509,
-0.05015692859888077,
-0.04703523963689804,
-0.017098981887102127,
-0.07004828751087189,
-0.06597764790058136,
-0.03750468045473099,
-0.10064493119716644,
0.03665503114461899,
-0.02477743849158287,
0.028911039233207703,
-0.08689665049314499,
-0.029118278995156288,
0.04374145716428757,
-0.01794523559510708,
0.13417235016822815,
0.07385508716106415,
-0.06644663959741592,
0.09221936762332916,
-0.1732524335384369,
-0.04449707642197609,
0.11069504171609879,
0.005978807341307402,
0.046707380563020706,
0.05538351461291313,
0.026932615786790848,
0.05271128565073013,
0.022961284965276718,
0.047284018248319626,
0.025672346353530884,
-0.09049934148788452,
0.045538999140262604,
-0.048343244940042496,
-0.12793365120887756,
-0.04922933131456375,
-0.019664768129587173,
0.05880143120884895,
-0.0012919566361233592,
0.10815737396478653,
-0.07233178615570068,
0.04198707267642021,
-0.12141875177621841,
0.02681746706366539,
-0.005505131091922522,
-0.1853814423084259,
-0.046499527990818024,
-0.01908169314265251,
0.04164363443851471,
-0.02102801203727722,
0.18032671511173248,
0.05901787802577019,
-0.05366714671254158,
0.042118221521377563,
0.058525729924440384,
0.031036633998155594,
0.007937140762805939,
0.15478397905826569,
0.045370303094387054,
-0.044831305742263794,
-0.13101084530353546,
0.06679670512676239,
0.025859499350190163,
0.004376223776489496,
0.13015243411064148,
0.04262887313961983,
-0.033862628042697906,
0.08994193375110626,
0.0028310702182352543,
-0.031112078577280045,
-0.09788400679826736,
-0.07777269929647446,
-0.09585981070995331,
0.06717197597026825,
-0.02447262406349182,
0.07043765485286713,
0.24574999511241913,
-0.00210568611510098,
-0.0026389230042696,
-0.061483003199100494,
-0.04678342491388321,
-0.1689421534538269,
-0.17229533195495605,
-0.092033751308918,
-0.10152347385883331,
-0.014333558268845081,
-0.07763759791851044,
0.039188824594020844,
0.06143832951784134,
0.06481332331895828,
-0.027789467945694923,
0.11082156002521515,
0.10447581857442856,
-0.0726553350687027,
0.03946521133184433,
0.019312772899866104,
0.05400456115603447,
-0.0157111007720232,
-0.018874114379286766,
-0.07493934780359268,
-0.0032030963338911533,
-0.03574467450380325,
0.017382314428687096,
-0.015243833884596825,
0.04064296931028366,
-0.1201990395784378,
-0.09033234417438507,
-0.048433706164360046,
0.07697995007038116,
-0.016718793660402298,
0.09231211245059967,
0.015190144069492817,
-0.006895286031067371,
0.030731607228517532,
0.2431270182132721,
-0.07907955348491669,
-0.044063933193683624,
-0.04108460992574692,
0.19499054551124573,
-0.006930782459676266,
0.09920734912157059,
-0.032823752611875534,
-0.028588205575942993,
-0.03333277255296707,
0.2883542478084564,
0.3081796169281006,
-0.07365302741527557,
0.0495903417468071,
0.013179713860154152,
0.02030116505920887,
0.043880291283130646,
0.11014342308044434,
0.10198318958282471,
0.280455082654953,
-0.08114853501319885,
-0.03633007034659386,
-0.042071633040905,
0.039946846663951874,
-0.06725528091192245,
0.12662801146507263,
0.031525515019893646,
-0.042433105409145355,
-0.02318381331861019,
0.0751684382557869,
-0.12007645517587662,
0.03706490993499756,
-0.08235035091638565,
-0.1912483274936676,
-0.08318185061216354,
0.01729917898774147,
0.1466832458972931,
-0.02671768143773079,
0.07333004474639893,
-0.02906608209013939,
-0.05950301140546799,
-0.02153555490076542,
0.008011539466679096,
-0.16594405472278595,
0.02798842266201973,
0.037462152540683746,
-0.06891107559204102,
0.07734616100788116,
-0.02927491068840027,
0.015145814046263695,
0.11052092164754868,
0.03266425058245659,
-0.06771726161241531,
0.06223417446017265,
0.013417351059615612,
-0.05642424151301384,
0.01768970675766468,
0.01880580186843872,
0.020126329734921455,
-0.06563353538513184,
0.08133944123983383,
-0.09705071151256561,
0.042058125138282776,
-0.10862791538238525,
-0.04598643258213997,
-0.01881667971611023,
0.02733580768108368,
-0.036863069981336594,
0.08844231814146042,
0.0776771828532219,
-0.0031569725833833218,
0.005627436563372612,
-0.06327000260353088,
-0.034227725118398666,
0.006050312425941229,
-0.029476944357156754,
-0.04746299237012863,
-0.1270228922367096,
-0.048563797026872635,
0.07489969581365585,
0.004888621158897877,
-0.2346884310245514,
-0.003605130361393094,
-0.09751617163419724,
0.03220648691058159,
-0.16174660623073578,
0.06644202023744583,
0.1382795125246048,
0.011739050969481468,
-0.011791232973337173,
-0.020230671390891075,
0.027364546433091164,
0.08502162247896194,
-0.10713598877191544,
-0.06403398513793945
] |
null | null |
transformers
|
# Arabic GPT2
<img src="https://raw.githubusercontent.com/aub-mind/arabert/master/AraGPT2.png" width="100" align="left"/>
You can find more information in our paper [AraGPT2](https://arxiv.org/abs/2012.15520)
The code in this repository was used to train all GPT2 variants. The code support training and fine-tuning GPT2 on GPUs and TPUs via the TPUEstimator API.
GPT2-base and medium uses the code from the `gpt2` folder and can trains models from the [minimaxir/gpt-2-simple](https://github.com/minimaxir/gpt-2-simple) repository.
These models were trained using the `lamb` optimizer and follow the same architecture as `gpt2` and are fully compatible with the `transformers` library.
GPT2-large and GPT2-mega were trained using the [imcaspar/gpt2-ml](https://github.com/imcaspar/gpt2-ml/) library, and follow the `grover` architecture. You can use the pytorch classes found in `grover/modeling_gpt2.py` as a direct replacement for classes in the `transformers` library (it should support version `v4.x` from `transformers`).
Both models are trained using the `adafactor` optimizer, since the `adam` and `lamb` optimizer use too much memory causing the model to not even fit 1 batch on a TPU core.
AraGPT2 is trained on the same large Arabic Dataset as AraBERTv2.
# Usage
## Testing the model using `transformers`:
```python
from transformers import GPT2TokenizerFast, pipeline
#for base and medium
from transformers import GPT2LMHeadModel
#for large and mega
# pip install arabert
from arabert.aragpt2.grover.modeling_gpt2 import GPT2LMHeadModel
from arabert.preprocess import ArabertPreprocessor
MODEL_NAME='aubmindlab/aragpt2-large'
arabert_prep = ArabertPreprocessor(model_name=MODEL_NAME)
text=""
text_clean = arabert_prep.preprocess(text)
model = GPT2LMHeadModel.from_pretrained(MODEL_NAME)
tokenizer = GPT2TokenizerFast.from_pretrained(MODEL_NAME)
generation_pipeline = pipeline("text-generation",model=model,tokenizer=tokenizer)
#feel free to try different decoding settings
generation_pipeline(text,
pad_token_id=tokenizer.eos_token_id,
num_beams=10,
max_length=200,
top_p=0.9,
repetition_penalty = 3.0,
no_repeat_ngram_size = 3)[0]['generated_text']
>>>
```
## Finetunning using `transformers`:
Follow the guide linked [here](https://towardsdatascience.com/fine-tuning-gpt2-on-colab-gpu-for-free-340468c92ed)
## Finetuning using our code with TF 1.15.4:
Create the Training TFRecords:
```bash
python create_pretraining_data.py
--input_file=<RAW TEXT FILE with documents/article separated by an empty line>
--output_file=<OUTPUT TFRecord>
--tokenizer_dir=<Directory with the GPT2 Tokenizer files>
```
Finetuning:
```bash
python3 run_pretraining.py \\\r\n --input_file="gs://<GS_BUCKET>/pretraining_data/*" \\\r\n --output_dir="gs://<GS_BUCKET>/pretraining_model/" \\\r\n --config_file="config/small_hparams.json" \\\r\n --batch_size=128 \\\r\n --eval_batch_size=8 \\\r\n --num_train_steps= \\\r\n --num_warmup_steps= \\\r\n --learning_rate= \\\r\n --save_checkpoints_steps= \\\r\n --max_seq_length=1024 \\\r\n --max_eval_steps= \\\r\n --optimizer="lamb" \\\r\n --iterations_per_loop=5000 \\\r\n --keep_checkpoint_max=10 \\\r\n --use_tpu=True \\\r\n --tpu_name=<TPU NAME> \\\r\n --do_train=True \\\r\n --do_eval=False
```
# Model Sizes
Model | Optimizer | Context size | Embedding Size | Num of heads | Num of layers | Model Size / Num of Params |
---|:---:|:---:|:---:|:---:|:---:|:---:
AraGPT2-base | `lamb` | 1024 | 768 | 12 | 12 | 527MB/135M |
AraGPT2-medium | `lamb` | 1024 | 1024 | 16 | 24 |1.38G/370M |
AraGPT2-large | `adafactor` | 1024 | 1280 | 20 | 36 | 2.98GB/792M |
AraGPT2-mega | `adafactor` | 1024 | 1536 | 25 | 48 | 5.5GB/1.46B |
All models are available in the `HuggingFace` model page under the [aubmindlab](https://huggingface.co/aubmindlab/) name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
## Compute
For Dataset Source see the [Dataset Section](#Dataset)
Model | Hardware | num of examples (seq len = 1024) | Batch Size | Num of Steps | Time (in days)
---|:---:|:---:|:---:|:---:|:---:
AraGPT2-base | TPUv3-128 | 9.7M | 1792 | 125K | 1.5
AraGPT2-medium | TPUv3-8 | 9.7M | 1152 | 85K | 1.5
AraGPT2-large | TPUv3-128 | 9.7M | 256 | 220k | 3
AraGPT2-mega | TPUv3-128 | 9.7M | 256 | 780K | 9
# Dataset
The pretraining data used for the new AraBERT model is also used for **GPT2 and ELECTRA**.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
- OSCAR unshuffled and filtered.
- [Arabic Wikipedia dump](https://archive.org/details/arwiki-20190201) from 2020/09/01
- [The 1.5B words Arabic Corpus](https://www.semanticscholar.org/paper/1.5-billion-words-Arabic-Corpus-El-Khair/f3eeef4afb81223df96575adadf808fe7fe440b4)
- [The OSIAN Corpus](https://www.aclweb.org/anthology/W19-4619)
- Assafir news articles. Huge thank you for Assafir for giving us the data
# Disclaimer
The text generated by GPT2 Arabic is automatically generated by a neural network model trained on a large amount of texts, which does not represent the authors' or their institutes' official attitudes and preferences. The text generated by GPT2 Arabic should only be used for research and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it.
# If you used this model please cite us as :
```
@inproceedings{antoun-etal-2021-aragpt2,
title = "{A}ra{GPT}2: Pre-Trained Transformer for {A}rabic Language Generation",
author = "Antoun, Wissam and
Baly, Fady and
Hajj, Hazem",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Virtual)",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.wanlp-1.21",
pages = "196--207",
}
```
# Acknowledgments
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continuous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT.
# Contacts
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <[email protected]> | <[email protected]>
**Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <[email protected]> | <[email protected]>
|
{"language": "ar", "datasets": ["wikipedia", "Osian", "1.5B-Arabic-Corpus", "oscar-arabic-unshuffled", "Assafir(private)"], "inference": false, "widget": [{"text": "\u064a\u062d\u0643\u0649 \u0623\u0646 \u0645\u0632\u0627\u0631\u0639\u0627 \u0645\u062e\u0627\u062f\u0639\u0627 \u0642\u0627\u0645 \u0628\u0628\u064a\u0639 \u0628\u0626\u0631 \u0627\u0644\u0645\u0627\u0621 \u0627\u0644\u0645\u0648\u062c\u0648\u062f \u0641\u064a \u0623\u0631\u0636\u0647 \u0644\u062c\u0627\u0631\u0647 \u0645\u0642\u0627\u0628\u0644 \u0645\u0628\u0644\u063a \u0643\u0628\u064a\u0631 \u0645\u0646 \u0627\u0644\u0645\u0627\u0644"}, {"text": "\u0627\u0644\u0642\u062f\u0633 \u0645\u062f\u064a\u0646\u0629 \u062a\u0627\u0631\u064a\u062e\u064a\u0629\u060c \u0628\u0646\u0627\u0647\u0627 \u0627\u0644\u0643\u0646\u0639\u0627\u0646\u064a\u0648\u0646 \u0641\u064a"}, {"text": "\u0643\u0627\u0646 \u064a\u0627 \u0645\u0627 \u0643\u0627\u0646 \u0641\u064a \u0642\u062f\u064a\u0645 \u0627\u0644\u0632\u0645\u0627\u0646"}]}
|
text-generation
|
aubmindlab/aragpt2-large
|
[
"transformers",
"pytorch",
"jax",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"ar",
"arxiv:2012.15520",
"autotrain_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2012.15520"
] |
[
"ar"
] |
TAGS
#transformers #pytorch #jax #tensorboard #safetensors #gpt2 #text-generation #ar #arxiv-2012.15520 #autotrain_compatible #has_space #text-generation-inference #region-us
|
Arabic GPT2
===========
<img src="URL width="100" align="left"/>
You can find more information in our paper AraGPT2
The code in this repository was used to train all GPT2 variants. The code support training and fine-tuning GPT2 on GPUs and TPUs via the TPUEstimator API.
GPT2-base and medium uses the code from the 'gpt2' folder and can trains models from the minimaxir/gpt-2-simple repository.
These models were trained using the 'lamb' optimizer and follow the same architecture as 'gpt2' and are fully compatible with the 'transformers' library.
GPT2-large and GPT2-mega were trained using the imcaspar/gpt2-ml library, and follow the 'grover' architecture. You can use the pytorch classes found in 'grover/modeling\_gpt2.py' as a direct replacement for classes in the 'transformers' library (it should support version 'v4.x' from 'transformers').
Both models are trained using the 'adafactor' optimizer, since the 'adam' and 'lamb' optimizer use too much memory causing the model to not even fit 1 batch on a TPU core.
AraGPT2 is trained on the same large Arabic Dataset as AraBERTv2.
Usage
=====
Testing the model using 'transformers':
---------------------------------------
Finetunning using 'transformers':
---------------------------------
Follow the guide linked here
Finetuning using our code with TF 1.15.4:
-----------------------------------------
Create the Training TFRecords:
Finetuning:
Model Sizes
===========
All models are available in the 'HuggingFace' model page under the aubmindlab name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
Compute
-------
For Dataset Source see the Dataset Section
Dataset
=======
The pretraining data used for the new AraBERT model is also used for GPT2 and ELECTRA.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
* OSCAR unshuffled and filtered.
* Arabic Wikipedia dump from 2020/09/01
* The 1.5B words Arabic Corpus
* The OSIAN Corpus
* Assafir news articles. Huge thank you for Assafir for giving us the data
Disclaimer
==========
The text generated by GPT2 Arabic is automatically generated by a neural network model trained on a large amount of texts, which does not represent the authors' or their institutes' official attitudes and preferences. The text generated by GPT2 Arabic should only be used for research and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it.
If you used this model please cite us as :
==========================================
Acknowledgments
===============
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the AUB MIND Lab Members for the continuous support. Also thanks to Yakshof and Assafir for data and storage access. Another thanks for Habib Rahal (URL for putting a face to AraBERT.
Contacts
========
Wissam Antoun: Linkedin | Twitter | Github | [wfa07@URL](mailto:wfa07@URL) | [URL@URL](mailto:URL@URL)
Fady Baly: Linkedin | Twitter | Github | [fgb06@URL](mailto:fgb06@URL) | [URL@URL](mailto:URL@URL)
|
[] |
[
"TAGS\n#transformers #pytorch #jax #tensorboard #safetensors #gpt2 #text-generation #ar #arxiv-2012.15520 #autotrain_compatible #has_space #text-generation-inference #region-us \n"
] |
[
65
] |
[
"passage: TAGS\n#transformers #pytorch #jax #tensorboard #safetensors #gpt2 #text-generation #ar #arxiv-2012.15520 #autotrain_compatible #has_space #text-generation-inference #region-us \n"
] |
[
-0.04728729650378227,
0.09759648889303207,
-0.0058770631439983845,
0.04283896088600159,
0.10237419605255127,
-0.003158426843583584,
0.16671942174434662,
0.12615655362606049,
0.007085809949785471,
0.04555315896868706,
0.1873556673526764,
0.14395546913146973,
-0.013455823063850403,
0.10667281597852707,
-0.05763451009988785,
-0.23143155872821808,
0.04460325464606285,
0.014425772242248058,
-0.05483386665582657,
0.118686243891716,
0.06836246699094772,
-0.09512580931186676,
0.06338879466056824,
-0.030267445370554924,
-0.14061614871025085,
0.016454385593533516,
0.050573237240314484,
-0.13425272703170776,
0.12363722920417786,
0.04224393889307976,
0.14056633412837982,
0.07056742161512375,
-0.029917951673269272,
-0.07089825719594955,
0.048160623759031296,
0.0466473288834095,
-0.07667253166437149,
0.12289189547300339,
0.10975665599107742,
-0.062307633459568024,
0.06827915459871292,
0.029889915138483047,
-0.023948712274432182,
0.015657104551792145,
-0.16182418167591095,
-0.10803601145744324,
-0.044074639678001404,
0.024161338806152344,
0.011210027150809765,
0.07188640534877777,
-0.030302928760647774,
0.16324858367443085,
-0.040277380496263504,
0.0861322209239006,
0.15097053349018097,
-0.33967822790145874,
-0.03742978721857071,
0.10175710171461105,
0.09512116760015488,
0.13603326678276062,
-0.07090184092521667,
0.08878712356090546,
0.052515365183353424,
0.011852209456264973,
0.09539125859737396,
-0.05082445219159126,
-0.17023026943206787,
0.05022919550538063,
-0.1399671733379364,
-0.027924247086048126,
0.23123368620872498,
-0.0645025447010994,
0.08008706569671631,
-0.02344667725265026,
-0.13511118292808533,
-0.053679440170526505,
0.020475255325436592,
-0.05399606376886368,
-0.03483077511191368,
0.037869036197662354,
0.01438617892563343,
-0.0941222682595253,
-0.1524721384048462,
-0.008974142372608185,
-0.180099219083786,
0.1574281007051468,
-0.009349324740469456,
0.024493655189871788,
-0.1449657380580902,
0.07180586457252502,
0.013211351819336414,
-0.11229099333286285,
0.09206640720367432,
-0.07832712680101395,
0.041664671152830124,
0.02510322630405426,
-0.023052338510751724,
-0.16653642058372498,
0.08055104315280914,
0.05327847972512245,
-0.0498570054769516,
0.010579809546470642,
-0.016790615394711494,
0.10726142674684525,
0.007061466109007597,
0.07789356261491776,
-0.053837645798921585,
-0.010165255516767502,
0.047457434237003326,
0.022823737934231758,
0.05412159115076065,
-0.09653162956237793,
-0.1584118902683258,
-0.012145797722041607,
0.10621187835931778,
0.0691232904791832,
0.06082062050700188,
0.08860786259174347,
-0.043849993497133255,
0.018776824697852135,
0.07510104775428772,
-0.07051295042037964,
0.021878665313124657,
-0.007794261910021305,
0.02653397060930729,
-0.003290169406682253,
0.02204456739127636,
0.011407864280045033,
-0.0588357150554657,
0.026719996705651283,
-0.10919669270515442,
-0.02400362864136696,
-0.022357556968927383,
-0.1396358758211136,
0.037215813994407654,
-0.07187044620513916,
-0.021913085132837296,
-0.17531734704971313,
-0.06986634433269501,
0.009505389258265495,
-0.007515249773859978,
-0.01825949177145958,
-0.03854801133275032,
0.004629703238606453,
-0.06913150101900101,
0.07056082785129547,
-0.04699084907770157,
-0.00868561863899231,
-0.04039229825139046,
0.10017116367816925,
-0.04036256670951843,
0.09225786477327347,
-0.11984750628471375,
0.05009977146983147,
-0.10441145300865173,
-0.00007932470907690004,
-0.08834291249513626,
0.014979297295212746,
-0.050982557237148285,
0.06346768140792847,
-0.03094242326915264,
0.00021275057224556804,
-0.10997483134269714,
0.05726345255970955,
0.02417030744254589,
0.16824883222579956,
-0.16323986649513245,
-0.100711390376091,
0.1798839122056961,
-0.11222124099731445,
-0.1297823041677475,
0.12391529977321625,
0.012899619527161121,
0.012180882506072521,
0.05064063146710396,
0.2469068318605423,
0.010083312168717384,
-0.01552422996610403,
-0.01712867245078087,
0.08448736369609833,
-0.05543528497219086,
-0.056082941591739655,
0.04149363189935684,
-0.0019751994404941797,
-0.07499156892299652,
0.02475954405963421,
0.05672227591276169,
0.05205271765589714,
-0.044875968247652054,
-0.05650116503238678,
-0.02975134551525116,
-0.0023568233009427786,
0.15109917521476746,
0.02082398720085621,
0.11122901737689972,
-0.06760189682245255,
-0.08684636652469635,
0.016611622646450996,
0.005938489455729723,
0.0014435593038797379,
0.007044715341180563,
-0.03251854330301285,
0.18491517007350922,
-0.10025672614574432,
0.039534591138362885,
-0.15685413777828217,
-0.12768472731113434,
-0.014338759705424309,
0.05642954632639885,
0.0249682255089283,
0.1368270069360733,
0.08714935928583145,
0.006349864415824413,
-0.0202189814299345,
-0.024625340476632118,
0.11051670461893082,
0.005495115183293819,
-0.1011265218257904,
-0.10713449120521545,
0.07711323350667953,
-0.09972397983074188,
0.041368402540683746,
-0.1623620241880417,
0.049178726971149445,
0.04132423922419548,
0.07648564875125885,
0.026262469589710236,
0.03910459578037262,
0.004620145540684462,
0.0034192597959190607,
-0.10067253559827805,
-0.0067741647362709045,
0.086985282599926,
-0.029944775626063347,
-0.07162216305732727,
0.2108326554298401,
-0.2458779215812683,
0.2703745663166046,
0.21426133811473846,
-0.19281931221485138,
-0.0021040181163698435,
-0.03432002663612366,
-0.015874208882451057,
0.022093147039413452,
0.03471774235367775,
-0.028286108747124672,
0.020874889567494392,
-0.032842449843883514,
0.13711760938167572,
-0.06855322420597076,
-0.02548670768737793,
0.014475863426923752,
-0.05081050470471382,
-0.057802464812994,
0.10441850870847702,
0.06261903047561646,
-0.10159832239151001,
0.18819038569927216,
0.29497119784355164,
-0.04564882442355156,
0.18015094101428986,
0.022579260170459747,
-0.008944792672991753,
0.04010998085141182,
-0.0068858955055475235,
-0.017699111253023148,
0.007430521305650473,
-0.09715880453586578,
-0.03271877020597458,
0.058994051069021225,
0.004856559447944164,
0.06151551753282547,
-0.15294484794139862,
-0.0529184453189373,
-0.026048604398965836,
0.009312664158642292,
-0.00047672356595285237,
0.08812683075666428,
0.020023059099912643,
0.15026162564754486,
-0.03965900465846062,
-0.04737519100308418,
0.05965031683444977,
0.022226138040423393,
-0.06444017589092255,
0.1837463676929474,
-0.12386675924062729,
-0.3164070248603821,
-0.12112110108137131,
-0.023216528818011284,
-0.05108148977160454,
0.0357845164835453,
0.07953204214572906,
-0.12134300172328949,
-0.0069006942212581635,
-0.06567765772342682,
0.06496644020080566,
-0.07504409551620483,
0.026385778561234474,
-0.0990835428237915,
0.001724167843349278,
-0.037240903824567795,
-0.10060890763998032,
-0.018047217279672623,
-0.05429017171263695,
-0.07391849160194397,
0.15870477259159088,
-0.00726483715698123,
0.08121702075004578,
0.1979999989271164,
-0.011274258606135845,
0.005949448328465223,
-0.04380758851766586,
0.13945038616657257,
-0.0798075795173645,
0.035669583827257156,
0.16845399141311646,
-0.03250487148761749,
0.08682135492563248,
0.13037629425525665,
0.014178680256009102,
-0.052821725606918335,
0.006061655003577471,
-0.001959450775757432,
-0.09435363113880157,
-0.24178670346736908,
-0.09681352227926254,
-0.0946759283542633,
0.08609799295663834,
0.05237310752272606,
0.09325245022773743,
0.09501930326223373,
0.07908211648464203,
-0.001993298064917326,
0.004044569097459316,
0.005609988700598478,
0.03667740151286125,
0.18536165356636047,
-0.03338636830449104,
0.16359159350395203,
-0.04268305376172066,
-0.12597739696502686,
0.1054530218243599,
0.047524526715278625,
0.10752609372138977,
0.023923443630337715,
0.018327848985791206,
0.03416138142347336,
0.11517488956451416,
0.1408071368932724,
0.06224658340215683,
0.009999165311455727,
-0.034985873848199844,
-0.042038753628730774,
-0.05121282488107681,
0.011537778191268444,
0.0493716299533844,
0.026219183579087257,
-0.10667913407087326,
-0.005302076693624258,
-0.0652434304356575,
0.08965276181697845,
0.009232433512806892,
0.0868905559182167,
-0.2661988437175751,
0.02777458354830742,
0.09030517190694809,
0.019464539363980293,
-0.08755345642566681,
0.05524427443742752,
0.11192608624696732,
-0.03316127508878708,
0.020752206444740295,
-0.06900563836097717,
0.06735480576753616,
-0.028205670416355133,
0.06184589862823486,
-0.10712821036577225,
0.000862848071847111,
-0.02051461860537529,
0.07845154404640198,
-0.24684977531433105,
0.23081757128238678,
0.010826561599969864,
-0.07261044532060623,
-0.03952024504542351,
-0.0016596706118434668,
0.04860231652855873,
0.10706096887588501,
0.09839196503162384,
0.008751343935728073,
-0.07399174571037292,
-0.06251682341098785,
-0.058743055909872055,
0.03590456396341324,
0.09413721412420273,
-0.026601441204547882,
-0.01999804750084877,
-0.028552504256367683,
0.016767391934990883,
0.025729503482580185,
0.020694203674793243,
-0.03792353346943855,
-0.14263814687728882,
0.09729142487049103,
0.03869431093335152,
0.007753729820251465,
-0.010995038785040379,
-0.09112463891506195,
-0.1779111921787262,
0.17087969183921814,
-0.025040041655302048,
-0.03776514530181885,
-0.10532304644584656,
-0.02874821424484253,
0.07255961000919342,
-0.06944591552019119,
0.028810253366827965,
-0.06628133356571198,
0.028439639136195183,
-0.08140899986028671,
-0.15324126183986664,
0.1609143167734146,
-0.07278857380151749,
-0.07256297022104263,
-0.06450998783111572,
0.10536471754312515,
-0.07102306932210922,
0.03416421264410019,
-0.013469058088958263,
0.07837515324354172,
-0.10333014279603958,
-0.09216766059398651,
0.08311858773231506,
-0.027523444965481758,
0.00179439433850348,
-0.02861478179693222,
-0.055895332247018814,
-0.09866756200790405,
0.00637607928365469,
0.01049321610480547,
0.25102514028549194,
0.27231818437576294,
-0.0973440557718277,
0.10400860756635666,
0.17163212597370148,
-0.06082979962229729,
-0.36311742663383484,
-0.06304917484521866,
-0.1260458379983902,
-0.023435750976204872,
0.05339684709906578,
-0.14163996279239655,
0.031338371336460114,
0.04740811139345169,
-0.06859699636697769,
0.15191882848739624,
-0.26252028346061707,
-0.10476668924093246,
0.15841147303581238,
0.02414470911026001,
0.2933562994003296,
-0.1888003796339035,
-0.08428631722927094,
-0.003989168908447027,
0.02271161414682865,
0.15340177714824677,
-0.13524429500102997,
0.08137389272451401,
-0.006906264927238226,
0.032231636345386505,
0.035862985998392105,
-0.04771874099969864,
0.12663884460926056,
-0.08505076169967651,
0.03482921048998833,
-0.10933279246091843,
-0.08687429875135422,
0.10385260730981827,
-0.02332727052271366,
-0.00478666927665472,
-0.11536112427711487,
0.033148787915706635,
-0.07118787616491318,
0.0012743538245558739,
-0.06017903983592987,
0.10352625697851181,
0.020389553159475327,
-0.07918667793273926,
-0.03214370831847191,
-0.027742965146899223,
-0.05632719025015831,
-0.01514887809753418,
0.23328092694282532,
-0.026754822582006454,
0.24368257820606232,
0.1824575811624527,
0.06234695017337799,
-0.06272826343774796,
0.07116895914077759,
-0.012480593286454678,
-0.05944608524441719,
0.10407767444849014,
-0.17010357975959778,
0.03401954844594002,
0.09171439707279205,
-0.02351202815771103,
0.05406370013952255,
0.07997240871191025,
-0.030497826635837555,
0.01757013611495495,
0.1402299553155899,
-0.2602764368057251,
-0.08749518543481827,
-0.03443238511681557,
0.013854200020432472,
0.02618214674293995,
0.08022356778383255,
0.17552602291107178,
-0.015332108363509178,
-0.025712499395012856,
0.028335588052868843,
0.01984909549355507,
0.01213042438030243,
0.09875410050153732,
0.07239902019500732,
0.024084512144327164,
-0.08883129060268402,
0.06629830598831177,
0.07292018085718155,
-0.13647131621837616,
0.01600317284464836,
0.15646088123321533,
-0.07075495272874832,
-0.15452390909194946,
-0.03440847247838974,
0.08245120942592621,
-0.03981336951255798,
-0.01082622166723013,
-0.055407535284757614,
-0.09627076983451843,
0.03684251010417938,
0.13753476738929749,
0.045371163636446,
0.04203656315803528,
-0.01977403461933136,
-0.021928995847702026,
-0.004620143678039312,
0.061715733259916306,
-0.000024644145014462993,
0.048140767961740494,
-0.12209400534629822,
0.05566560477018356,
0.004386882297694683,
0.09098196774721146,
-0.10619299858808517,
-0.02804139256477356,
-0.1522284746170044,
-0.025650639086961746,
-0.07274298369884491,
-0.03984434902667999,
-0.03951908275485039,
-0.05127169191837311,
-0.032347843050956726,
-0.06847510486841202,
-0.07307896763086319,
-0.06415963917970657,
-0.11456844210624695,
0.021346740424633026,
-0.03226703777909279,
0.05041119456291199,
-0.11764194816350937,
-0.021637730300426483,
0.04899776726961136,
0.001861069118604064,
0.14091554284095764,
0.04156682640314102,
-0.042746879160404205,
0.09718057513237,
-0.1605404019355774,
-0.04500080645084381,
0.10946373641490936,
0.011872404254972935,
0.019744645804166794,
0.0821637287735939,
0.0008437681244686246,
0.029940104112029076,
0.04334678500890732,
0.053781475871801376,
0.02310810796916485,
-0.0926133394241333,
0.05825827643275261,
-0.06247131526470184,
-0.14742539823055267,
-0.03203969821333885,
-0.0044449553824961185,
0.02921386808156967,
0.005451585166156292,
0.12710385024547577,
-0.06828544288873672,
0.03804154321551323,
-0.12687860429286957,
0.042526647448539734,
-0.011864692904055119,
-0.2033085823059082,
-0.0836341381072998,
-0.02992703951895237,
0.03571396321058273,
-0.029983723536133766,
0.19605930149555206,
0.09936461597681046,
-0.09961529076099396,
0.0374143011868,
0.10244768112897873,
-0.025425909087061882,
0.010279069654643536,
0.11665377765893936,
0.081488698720932,
-0.04723915457725525,
-0.12403465807437897,
0.06366953253746033,
0.033370837569236755,
-0.0007479285704903305,
0.1058119684457779,
0.05881127715110779,
0.0016173806507140398,
0.08599372208118439,
0.026550592854619026,
-0.037280261516571045,
-0.09331715106964111,
-0.019815262407064438,
-0.070003941655159,
0.07647445052862167,
-0.025308744981884956,
0.08384346961975098,
0.22394724190235138,
0.029795872047543526,
0.01118736993521452,
-0.049712955951690674,
-0.04780585691332817,
-0.1715075969696045,
-0.15593309700489044,
-0.09114143997430801,
-0.10134771466255188,
-0.031270548701286316,
-0.06712399423122406,
0.02587135322391987,
0.09438484907150269,
0.052723478525877,
-0.04016988351941109,
0.09318292886018753,
0.12296130508184433,
-0.0887911468744278,
0.024748068302869797,
-0.00317569961771369,
0.051263581961393356,
-0.06580012291669846,
-0.03580646216869354,
-0.050280097872018814,
0.051570791751146317,
-0.02394012361764908,
0.028290821239352226,
-0.0284566767513752,
0.03706536814570427,
-0.1472078114748001,
-0.11302924156188965,
-0.05329373851418495,
0.06989789754152298,
-0.026085559278726578,
0.08949627727270126,
0.013958246447145939,
-0.036208830773830414,
0.04062069207429886,
0.2557618021965027,
-0.05355917289853096,
-0.0052194129675626755,
-0.0018158641178160906,
0.18668068945407867,
-0.04282529652118683,
0.10823265463113785,
-0.05835767462849617,
-0.03579666465520859,
-0.057718969881534576,
0.229347363114357,
0.3692326545715332,
-0.11105415225028992,
0.04796459525823593,
0.011501051485538483,
0.020356010645627975,
0.026309138163924217,
0.10586069524288177,
0.07276110351085663,
0.22962094843387604,
-0.08046841621398926,
-0.005892641376703978,
-0.04535206779837608,
0.03997435048222542,
-0.06199773773550987,
0.1058850958943367,
0.04931413754820824,
-0.03788282349705696,
-0.0567709282040596,
0.058064915239810944,
-0.12913842499256134,
0.034135155379772186,
-0.11210896819829941,
-0.20341016352176666,
-0.0956101268529892,
0.028659697622060776,
0.17701901495456696,
-0.01264902949333191,
0.07205964624881744,
-0.02976379543542862,
-0.05737324431538582,
-0.06541317701339722,
-0.0046501788310706615,
-0.15144863724708557,
0.013885913416743279,
0.05255552753806114,
-0.07413230091333389,
0.0867152214050293,
-0.03555092215538025,
0.007141414564102888,
0.09901421517133713,
0.014813096262514591,
-0.052112214267253876,
0.06715092062950134,
0.021335311233997345,
-0.038498956710100174,
0.005742496810853481,
0.005037888418883085,
0.022615326568484306,
-0.04735105484724045,
0.1198149248957634,
-0.05138394981622696,
0.03970879688858986,
-0.11582134664058685,
-0.08627504855394363,
0.0019901117775589228,
0.013756749220192432,
-0.039467621594667435,
0.06819182634353638,
0.06583262979984283,
0.004124104045331478,
-0.009546912275254726,
-0.05901865288615227,
-0.03847711905837059,
-0.007435980718582869,
-0.03598028048872948,
-0.05515054613351822,
-0.12132954597473145,
-0.05978768691420555,
0.09646404534578323,
0.020230188965797424,
-0.2670761048793793,
0.007772438693791628,
-0.12303544580936432,
0.051629818975925446,
-0.145114928483963,
0.06393053382635117,
0.14165733754634857,
-0.006385692860931158,
-0.012348741292953491,
-0.04568496719002724,
0.03694244101643562,
0.06621497124433517,
-0.11080841720104218,
-0.044800765812397
] |
null | null |
transformers
|
# Arabic GPT2
<img src="https://raw.githubusercontent.com/aub-mind/arabert/master/AraGPT2.png" width="100" align="left"/>
You can find more information in our paper [AraGPT2](https://arxiv.org/abs/2012.15520)
The code in this repository was used to train all GPT2 variants. The code support training and fine-tuning GPT2 on GPUs and TPUs via the TPUEstimator API.
GPT2-base and medium uses the code from the `gpt2` folder and can trains models from the [minimaxir/gpt-2-simple](https://github.com/minimaxir/gpt-2-simple) repository.
These models were trained using the `lamb` optimizer and follow the same architecture as `gpt2` and are fully compatible with the `transformers` library.
GPT2-large and GPT2-mega were trained using the [imcaspar/gpt2-ml](https://github.com/imcaspar/gpt2-ml/) library, and follow the `grover` architecture. You can use the pytorch classes found in `grover/modeling_gpt2.py` as a direct replacement for classes in the `transformers` library (it should support version `v4.x` from `transformers`).
Both models are trained using the `adafactor` optimizer, since the `adam` and `lamb` optimizer use too much memory causing the model to not even fit 1 batch on a TPU core.
AraGPT2 is trained on the same large Arabic Dataset as AraBERTv2.
# Usage
## Testing the model using `transformers`:
```python
from transformers import GPT2TokenizerFast, pipeline
#for base and medium
from transformers import GPT2LMHeadModel
#for large and mega
# pip install arabert
from arabert.aragpt2.grover.modeling_gpt2 import GPT2LMHeadModel
from arabert.preprocess import ArabertPreprocessor
MODEL_NAME='aubmindlab/aragpt2-medium'
arabert_prep = ArabertPreprocessor(model_name=MODEL_NAME)
text=""
text_clean = arabert_prep.preprocess(text)
model = GPT2LMHeadModel.from_pretrained(MODEL_NAME)
tokenizer = GPT2TokenizerFast.from_pretrained(MODEL_NAME)
generation_pipeline = pipeline("text-generation",model=model,tokenizer=tokenizer)
#feel free to try different decoding settings
generation_pipeline(text,
pad_token_id=tokenizer.eos_token_id,
num_beams=10,
max_length=200,
top_p=0.9,
repetition_penalty = 3.0,
no_repeat_ngram_size = 3)[0]['generated_text']
```
## Finetunning using `transformers`:
Follow the guide linked [here](https://towardsdatascience.com/fine-tuning-gpt2-on-colab-gpu-for-free-340468c92ed)
## Finetuning using our code with TF 1.15.4:
Create the Training TFRecords:
```bash
python create_pretraining_data.py
--input_file=<RAW TEXT FILE with documents/article separated by an empty line>
--output_file=<OUTPUT TFRecord>
--tokenizer_dir=<Directory with the GPT2 Tokenizer files>
```
Finetuning:
```bash
python3 run_pretraining.py \\\n --input_file="gs://<GS_BUCKET>/pretraining_data/*" \\\n --output_dir="gs://<GS_BUCKET>/pretraining_model/" \\\n --config_file="config/small_hparams.json" \\\n --batch_size=128 \\\n --eval_batch_size=8 \\\n --num_train_steps= \\\n --num_warmup_steps= \\\n --learning_rate= \\\n --save_checkpoints_steps= \\\n --max_seq_length=1024 \\\n --max_eval_steps= \\\n --optimizer="lamb" \\\n --iterations_per_loop=5000 \\\n --keep_checkpoint_max=10 \\\n --use_tpu=True \\\n --tpu_name=<TPU NAME> \\\n --do_train=True \\\n --do_eval=False
```
# Model Sizes
Model | Optimizer | Context size | Embedding Size | Num of heads | Num of layers | Model Size / Num of Params |
---|:---:|:---:|:---:|:---:|:---:|:---:
AraGPT2-base | `lamb` | 1024 | 768 | 12 | 12 | 527MB / 135M |
AraGPT2-medium | `lamb` | 1024 | 1024 | 16 | 24 | 1.38G/370M |
AraGPT2-large | `adafactor` | 1024 | 1280 | 20 | 36 | 2.98GB/792M |
AraGPT2-mega | `adafactor` | 1024 | 1536 | 25 | 48 | 5.5GB/1.46B |
All models are available in the `HuggingFace` model page under the [aubmindlab](https://huggingface.co/aubmindlab/) name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
## Compute
Model | Hardware | num of examples (seq len = 1024) | Batch Size | Num of Steps | Time (in days)
---|:---:|:---:|:---:|:---:|:---:
AraGPT2-base | TPUv3-128 | 9.7M | 1792 | 125K | 1.5
AraGPT2-medium | TPUv3-8 | 9.7M | 80 | 1M | 15
AraGPT2-large | TPUv3-128 | 9.7M | 256 | 220k | 3
AraGPT2-mega | TPUv3-128 | 9.7M | 256 | 780K | 9
# Dataset
The pretraining data used for the new AraGPT2 model is also used for **AraBERTv2 and AraELECTRA**.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the dataset used in AraBERTv1 but with out the websites that we previously crawled:
- OSCAR unshuffled and filtered.
- [Arabic Wikipedia dump](https://archive.org/details/arwiki-20190201) from 2020/09/01
- [The 1.5B words Arabic Corpus](https://www.semanticscholar.org/paper/1.5-billion-words-Arabic-Corpus-El-Khair/f3eeef4afb81223df96575adadf808fe7fe440b4)
- [The OSIAN Corpus](https://www.aclweb.org/anthology/W19-4619)
- Assafir news articles. Huge thank you for Assafir for giving us the data
# Disclaimer
The text generated by AraGPT2 is automatically generated by a neural network model trained on a large amount of texts, which does not represent the authors' or their institutes' official attitudes and preferences. The text generated by AraGPT2 should only be used for research and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it.
# If you used this model please cite us as :
```
@inproceedings{antoun-etal-2021-aragpt2,
title = "{A}ra{GPT}2: Pre-Trained Transformer for {A}rabic Language Generation",
author = "Antoun, Wissam and
Baly, Fady and
Hajj, Hazem",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Virtual)",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.wanlp-1.21",
pages = "196--207",
}
```
# Acknowledgments
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continuous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT.
# Contacts
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <[email protected]> | <[email protected]>
**Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <[email protected]> | <[email protected]>
|
{"language": "ar", "datasets": ["wikipedia", "Osian", "1.5B-Arabic-Corpus", "oscar-arabic-unshuffled", "Assafir(private)"], "widget": [{"text": "\u064a\u062d\u0643\u0649 \u0623\u0646 \u0645\u0632\u0627\u0631\u0639\u0627 \u0645\u062e\u0627\u062f\u0639\u0627 \u0642\u0627\u0645 \u0628\u0628\u064a\u0639 \u0628\u0626\u0631 \u0627\u0644\u0645\u0627\u0621 \u0627\u0644\u0645\u0648\u062c\u0648\u062f \u0641\u064a \u0623\u0631\u0636\u0647 \u0644\u062c\u0627\u0631\u0647 \u0645\u0642\u0627\u0628\u0644 \u0645\u0628\u0644\u063a \u0643\u0628\u064a\u0631 \u0645\u0646 \u0627\u0644\u0645\u0627\u0644"}, {"text": "\u0627\u0644\u0642\u062f\u0633 \u0645\u062f\u064a\u0646\u0629 \u062a\u0627\u0631\u064a\u062e\u064a\u0629\u060c \u0628\u0646\u0627\u0647\u0627 \u0627\u0644\u0643\u0646\u0639\u0627\u0646\u064a\u0648\u0646 \u0641\u064a"}, {"text": "\u0643\u0627\u0646 \u064a\u0627 \u0645\u0627 \u0643\u0627\u0646 \u0641\u064a \u0642\u062f\u064a\u0645 \u0627\u0644\u0632\u0645\u0627\u0646"}]}
|
text-generation
|
aubmindlab/aragpt2-medium
|
[
"transformers",
"pytorch",
"tf",
"jax",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"ar",
"arxiv:2012.15520",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2012.15520"
] |
[
"ar"
] |
TAGS
#transformers #pytorch #tf #jax #tensorboard #safetensors #gpt2 #text-generation #ar #arxiv-2012.15520 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
Arabic GPT2
===========
<img src="URL width="100" align="left"/>
You can find more information in our paper AraGPT2
The code in this repository was used to train all GPT2 variants. The code support training and fine-tuning GPT2 on GPUs and TPUs via the TPUEstimator API.
GPT2-base and medium uses the code from the 'gpt2' folder and can trains models from the minimaxir/gpt-2-simple repository.
These models were trained using the 'lamb' optimizer and follow the same architecture as 'gpt2' and are fully compatible with the 'transformers' library.
GPT2-large and GPT2-mega were trained using the imcaspar/gpt2-ml library, and follow the 'grover' architecture. You can use the pytorch classes found in 'grover/modeling\_gpt2.py' as a direct replacement for classes in the 'transformers' library (it should support version 'v4.x' from 'transformers').
Both models are trained using the 'adafactor' optimizer, since the 'adam' and 'lamb' optimizer use too much memory causing the model to not even fit 1 batch on a TPU core.
AraGPT2 is trained on the same large Arabic Dataset as AraBERTv2.
Usage
=====
Testing the model using 'transformers':
---------------------------------------
Finetunning using 'transformers':
---------------------------------
Follow the guide linked here
Finetuning using our code with TF 1.15.4:
-----------------------------------------
Create the Training TFRecords:
Finetuning:
Model Sizes
===========
All models are available in the 'HuggingFace' model page under the aubmindlab name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
Compute
-------
Dataset
=======
The pretraining data used for the new AraGPT2 model is also used for AraBERTv2 and AraELECTRA.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the dataset used in AraBERTv1 but with out the websites that we previously crawled:
* OSCAR unshuffled and filtered.
* Arabic Wikipedia dump from 2020/09/01
* The 1.5B words Arabic Corpus
* The OSIAN Corpus
* Assafir news articles. Huge thank you for Assafir for giving us the data
Disclaimer
==========
The text generated by AraGPT2 is automatically generated by a neural network model trained on a large amount of texts, which does not represent the authors' or their institutes' official attitudes and preferences. The text generated by AraGPT2 should only be used for research and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it.
If you used this model please cite us as :
==========================================
Acknowledgments
===============
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the AUB MIND Lab Members for the continuous support. Also thanks to Yakshof and Assafir for data and storage access. Another thanks for Habib Rahal (URL for putting a face to AraBERT.
Contacts
========
Wissam Antoun: Linkedin | Twitter | Github | [wfa07@URL](mailto:wfa07@URL) | [URL@URL](mailto:URL@URL)
Fady Baly: Linkedin | Twitter | Github | [fgb06@URL](mailto:fgb06@URL) | [URL@URL](mailto:URL@URL)
|
[] |
[
"TAGS\n#transformers #pytorch #tf #jax #tensorboard #safetensors #gpt2 #text-generation #ar #arxiv-2012.15520 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n"
] |
[
76
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #tensorboard #safetensors #gpt2 #text-generation #ar #arxiv-2012.15520 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n"
] |
[
-0.05645706132054329,
0.056626029312610626,
-0.005051159765571356,
0.048894383013248444,
0.11909046024084091,
0.0051360162906348705,
0.11389254033565521,
0.12302930653095245,
-0.006541190203279257,
0.03367166966199875,
0.1732701063156128,
0.19500227272510529,
-0.0009872124064713717,
0.09448663890361786,
-0.08593598753213882,
-0.22474129498004913,
0.029675304889678955,
0.04683876037597656,
-0.05692292004823685,
0.1170472651720047,
0.08564317971467972,
-0.08045651018619537,
0.07459984719753265,
-0.0297038946300745,
-0.15912489593029022,
0.02888120338320732,
0.07085061818361282,
-0.13332514464855194,
0.131638303399086,
0.07289471477270126,
0.1287519782781601,
0.06356801092624664,
-0.03999406844377518,
-0.072304368019104,
0.042006731033325195,
0.05863306671380997,
-0.08025231957435608,
0.09170455485582352,
0.09903130680322647,
-0.06700404733419418,
0.09604126214981079,
0.026805322617292404,
-0.01034093089401722,
0.031166747212409973,
-0.14647351205348969,
-0.10621120035648346,
-0.047431956976652145,
0.05250386521220207,
0.04273233562707901,
0.08808518201112747,
-0.001833506510592997,
0.17206403613090515,
-0.021689990535378456,
0.11144661903381348,
0.14870861172676086,
-0.37354764342308044,
-0.03771084547042847,
0.09818561375141144,
0.07431007921695709,
0.08063561469316483,
-0.05388205125927925,
0.06731343269348145,
0.05583867430686951,
0.02904304303228855,
0.08081699907779694,
-0.06456541270017624,
-0.1708136945962906,
0.05337061733007431,
-0.1257343739271164,
-0.026540961116552353,
0.2213895320892334,
-0.05677367001771927,
0.062016166746616364,
-0.024127770215272903,
-0.12383712828159332,
-0.05837287753820419,
0.003636416047811508,
-0.04854873567819595,
-0.04849383980035782,
0.03962133452296257,
0.01602538302540779,
-0.06313741207122803,
-0.1562614142894745,
-0.008124453946948051,
-0.19062040746212006,
0.1665375530719757,
-0.005050963722169399,
0.03644731268286705,
-0.17432263493537903,
0.08445114642381668,
-0.016549665480852127,
-0.12084422260522842,
0.06612177193164825,
-0.07806958258152008,
0.02914716862142086,
-0.0032007277477532625,
-0.026266098022460938,
-0.16182418167591095,
0.07094108313322067,
0.06338239461183548,
-0.031433284282684326,
0.023726385086774826,
-0.03547896072268486,
0.08541848510503769,
-0.018100924789905548,
0.08415471762418747,
-0.061705123633146286,
-0.03129734843969345,
0.06873731315135956,
-0.04203836992383003,
0.030925795435905457,
-0.07223477214574814,
-0.14584222435951233,
-0.04146276041865349,
0.08722208440303802,
0.0669449120759964,
0.031986385583877563,
0.09717103838920593,
-0.03343267738819122,
0.017509719356894493,
0.06867106258869171,
-0.07952432334423065,
0.0061800479888916016,
-0.02007809467613697,
0.038405511528253555,
0.031224045902490616,
0.03832602873444557,
0.006840349640697241,
-0.07394197583198547,
0.05140559747815132,
-0.09593965858221054,
-0.029854869470000267,
-0.018425656482577324,
-0.12248682975769043,
0.04607618600130081,
-0.07712902128696442,
0.010082712396979332,
-0.18931570649147034,
-0.07976509630680084,
0.018737509846687317,
0.011071586050093174,
-0.02837730571627617,
-0.03973705694079399,
0.02301250770688057,
-0.07258079946041107,
0.07234713435173035,
-0.0384061299264431,
0.021879995241761208,
-0.03848756104707718,
0.09416861832141876,
-0.03156478330492973,
0.08734635263681412,
-0.10209357738494873,
0.04095637798309326,
-0.08411415666341782,
-0.004846622236073017,
-0.1175767332315445,
0.012754443101584911,
-0.031490907073020935,
0.10663342475891113,
-0.03969220072031021,
-0.016824087128043175,
-0.118414007127285,
0.03897364065051079,
0.020923364907503128,
0.16194270551204681,
-0.1362440288066864,
-0.07597089558839798,
0.20379498600959778,
-0.10935817658901215,
-0.17014682292938232,
0.1125316172838211,
0.017604434862732887,
0.02391780912876129,
0.05062519758939743,
0.1855788677930832,
0.05176868289709091,
-0.059434570372104645,
0.020206687971949577,
0.1046086996793747,
-0.0926409512758255,
-0.08232750743627548,
0.011187982745468616,
0.011476771906018257,
-0.09638448059558868,
0.020604794844985008,
0.07746102660894394,
0.072099968791008,
-0.042149800807237625,
-0.03239820897579193,
-0.05846407264471054,
-0.022346263751387596,
0.09620014578104019,
0.02701399102807045,
0.10145927965641022,
-0.07205034792423248,
-0.06963158398866653,
-0.0038674562238156796,
-0.006766623351722956,
-0.0060616955161094666,
0.013182568363845348,
-0.0450846292078495,
0.15407869219779968,
-0.0896773636341095,
0.025751670822501183,
-0.16349253058433533,
-0.12295027077198029,
-0.02518698200583458,
0.11772017180919647,
-0.002888293471187353,
0.12221239507198334,
0.10114840418100357,
-0.005699454806745052,
-0.02014194056391716,
-0.019147220999002457,
0.16091561317443848,
0.021339546889066696,
-0.10050759464502335,
-0.10413732379674911,
0.08685275167226791,
-0.08738009631633759,
0.004945805761963129,
-0.1443289965391159,
0.03642231225967407,
0.0652175098657608,
0.11172312498092651,
0.028129836544394493,
0.04825153946876526,
-0.001120615634135902,
-0.0014473125338554382,
-0.0946209579706192,
-0.019536655396223068,
0.07023270428180695,
0.0030489997006952763,
-0.06430141627788544,
0.21754160523414612,
-0.21489520370960236,
0.31698551774024963,
0.2026221752166748,
-0.19006094336509705,
-0.03877634555101395,
-0.01690266840159893,
-0.019457552582025528,
0.015018288977444172,
0.04316338524222374,
-0.02800087258219719,
0.0455748625099659,
-0.03521494194865227,
0.15495626628398895,
-0.0708310455083847,
-0.06080884486436844,
0.038207389414310455,
-0.045994680374860764,
-0.0511741042137146,
0.09535916149616241,
0.04036162048578262,
-0.17348463833332062,
0.17618116736412048,
0.24002282321453094,
-0.017516637220978737,
0.1624520719051361,
0.0146236103028059,
-0.02171361818909645,
0.0441909059882164,
0.023624766618013382,
-0.0019081563223153353,
0.009563431143760681,
-0.14744684100151062,
-0.020040016621351242,
0.06518194824457169,
0.006292303092777729,
0.0559815987944603,
-0.1509469449520111,
-0.047604553401470184,
-0.0006555180880241096,
0.00457276264205575,
0.006096957717090845,
0.11038049310445786,
0.029371146112680435,
0.1602504700422287,
-0.036163389682769775,
-0.04023906588554382,
0.07956034690141678,
0.025431007146835327,
-0.0956936702132225,
0.19983172416687012,
-0.11422040313482285,
-0.30913981795310974,
-0.11057893186807632,
-0.07322665303945541,
-0.024249747395515442,
0.02819616161286831,
0.08757304400205612,
-0.09141232818365097,
-0.031150275841355324,
-0.04489591345191002,
0.015938300639390945,
-0.07393645495176315,
0.05079406499862671,
-0.07694292068481445,
0.014532873407006264,
-0.024373771622776985,
-0.09078896790742874,
-0.03328672796487808,
-0.024806533008813858,
-0.05181429535150528,
0.14173392951488495,
-0.029391005635261536,
0.08020325005054474,
0.17885079979896545,
-0.02881123125553131,
0.03219645470380783,
-0.04548600688576698,
0.1502111852169037,
-0.08001390099525452,
0.04564107581973076,
0.18724659085273743,
-0.03441533446311951,
0.08293658494949341,
0.12717372179031372,
0.0018491887021809816,
-0.05094439908862114,
0.01807962730526924,
-0.016903184354305267,
-0.09738636016845703,
-0.2403709441423416,
-0.08468154817819595,
-0.11952187120914459,
0.05628030747175217,
0.040193893015384674,
0.09179937094449997,
0.09920772165060043,
0.08947562426328659,
0.007993814535439014,
0.02064819261431694,
-0.003746017115190625,
0.05082939937710762,
0.17109474539756775,
-0.013067279942333698,
0.14570903778076172,
-0.07037337124347687,
-0.11006893217563629,
0.09887250512838364,
0.047290317714214325,
0.07886586338281631,
-0.0012777835363522172,
-0.026402201503515244,
0.016272369772195816,
0.13786473870277405,
0.1290726363658905,
0.10810043662786484,
-0.011451171711087227,
-0.06698119640350342,
-0.01624279096722603,
-0.037971410900354385,
0.0074884844943881035,
0.04601123556494713,
-0.018343307077884674,
-0.10425347089767456,
-0.021628092974424362,
-0.06093300133943558,
0.07581979036331177,
0.04667770490050316,
0.08743975311517715,
-0.271308958530426,
-0.0005745470407418907,
0.06553581357002258,
-0.0029015280306339264,
-0.10914574563503265,
0.05647674947977066,
0.09900063276290894,
-0.04769410192966461,
0.053651489317417145,
-0.07529965788125992,
0.06621983647346497,
0.012255547568202019,
0.05030616372823715,
-0.040489040315151215,
-0.020777929574251175,
-0.020568709820508957,
0.08349774777889252,
-0.2817463278770447,
0.22410504519939423,
0.011436998844146729,
-0.046732716262340546,
-0.06623072922229767,
0.009296606294810772,
0.027942027896642685,
0.12308351695537567,
0.130394846200943,
0.0018594153225421906,
-0.07889097183942795,
-0.06160727143287659,
-0.030103275552392006,
0.028304975479841232,
0.08684365451335907,
0.0011622518068179488,
-0.006607700139284134,
-0.03330027684569359,
-0.007287589367479086,
0.03438779339194298,
0.0036422819830477238,
-0.023222651332616806,
-0.16063031554222107,
0.08561506122350693,
0.03445323556661606,
-0.005066058598458767,
-0.009507410228252411,
-0.06350859254598618,
-0.15067428350448608,
0.19991232454776764,
-0.038098666816949844,
-0.058990478515625,
-0.12739989161491394,
-0.046503107994794846,
0.062271106988191605,
-0.0793493241071701,
0.05773618072271347,
-0.06456957757472992,
0.02455783821642399,
-0.05447281152009964,
-0.18069183826446533,
0.16205444931983948,
-0.10456354916095734,
-0.04744783043861389,
-0.05625950172543526,
0.12884069979190826,
-0.08490397781133652,
0.015610679984092712,
0.002374396426603198,
0.04102051258087158,
-0.08923925459384918,
-0.08760593831539154,
0.04240214824676514,
-0.04459458962082863,
0.05918194726109505,
-0.04161874204874039,
-0.06125090271234512,
-0.09197317063808441,
0.013849103823304176,
-0.00014766081585548818,
0.2453160285949707,
0.19755436480045319,
-0.1001053899526596,
0.10302575677633286,
0.11188282817602158,
-0.04398312419652939,
-0.3398820459842682,
-0.0493195578455925,
-0.11319296061992645,
-0.019872838631272316,
0.012417440302670002,
-0.08804356306791306,
0.059164535254240036,
0.011805905029177666,
-0.048525821417570114,
0.15649905800819397,
-0.24490150809288025,
-0.10829786211252213,
0.1562899947166443,
0.03557673096656799,
0.31465640664100647,
-0.17313940823078156,
-0.07480497658252716,
0.0008431322639808059,
-0.06689918041229248,
0.14314842224121094,
-0.11865659058094025,
0.06678570061922073,
-0.008306320756673813,
0.0497518852353096,
0.04202321916818619,
-0.06845521181821823,
0.08358080685138702,
-0.07393927872180939,
0.027654260396957397,
-0.12175984680652618,
-0.055672336369752884,
0.07797610759735107,
-0.02632598951458931,
0.02865992859005928,
-0.08237941563129425,
0.051902513951063156,
-0.08071504533290863,
-0.015825647860765457,
-0.06685247272253036,
0.08493094891309738,
0.026389172300696373,
-0.07526727765798569,
-0.02418701723217964,
-0.03554994612932205,
-0.02216050960123539,
-0.039410900324583054,
0.2063581943511963,
-0.025101836770772934,
0.2312815636396408,
0.16443929076194763,
0.11204133927822113,
-0.11033640056848526,
0.0428236648440361,
-0.015155484899878502,
-0.06471545994281769,
0.08432860672473907,
-0.1666574329137802,
0.05528867989778519,
0.09798165410757065,
-0.018755584955215454,
0.04310361668467522,
0.09657378494739532,
-0.015121584758162498,
-0.008017180487513542,
0.146769180893898,
-0.2648090720176697,
-0.05931435897946358,
-0.053415022790431976,
0.0008550820639356971,
0.030822668224573135,
0.09249525517225266,
0.16847065091133118,
-0.01911935582756996,
-0.015410220250487328,
0.014186741784214973,
0.005007814150303602,
-0.017422422766685486,
0.0961097851395607,
0.06347101926803589,
0.025930756703019142,
-0.08839584141969681,
0.04452488571405411,
0.02211369387805462,
-0.16251468658447266,
0.01652311347424984,
0.14719510078430176,
-0.10348670184612274,
-0.14152023196220398,
-0.0031409405637532473,
0.0705450028181076,
-0.09294544160366058,
-0.02257094532251358,
-0.04347476363182068,
-0.10783129930496216,
0.05700359866023064,
0.21122488379478455,
0.03771138936281204,
0.05855075269937515,
-0.01917930319905281,
-0.03528968244791031,
-0.035334981977939606,
0.05733746290206909,
0.004606106784194708,
0.05285165458917618,
-0.1494179368019104,
0.06912191957235336,
-0.019882431253790855,
0.10710851848125458,
-0.10235531628131866,
0.005267218686640263,
-0.14882072806358337,
-0.01610158011317253,
-0.09415141493082047,
-0.03786482661962509,
-0.05015692859888077,
-0.04703523963689804,
-0.017098981887102127,
-0.07004828751087189,
-0.06597764790058136,
-0.03750468045473099,
-0.10064493119716644,
0.03665503114461899,
-0.02477743849158287,
0.028911039233207703,
-0.08689665049314499,
-0.029118278995156288,
0.04374145716428757,
-0.01794523559510708,
0.13417235016822815,
0.07385508716106415,
-0.06644663959741592,
0.09221936762332916,
-0.1732524335384369,
-0.04449707642197609,
0.11069504171609879,
0.005978807341307402,
0.046707380563020706,
0.05538351461291313,
0.026932615786790848,
0.05271128565073013,
0.022961284965276718,
0.047284018248319626,
0.025672346353530884,
-0.09049934148788452,
0.045538999140262604,
-0.048343244940042496,
-0.12793365120887756,
-0.04922933131456375,
-0.019664768129587173,
0.05880143120884895,
-0.0012919566361233592,
0.10815737396478653,
-0.07233178615570068,
0.04198707267642021,
-0.12141875177621841,
0.02681746706366539,
-0.005505131091922522,
-0.1853814423084259,
-0.046499527990818024,
-0.01908169314265251,
0.04164363443851471,
-0.02102801203727722,
0.18032671511173248,
0.05901787802577019,
-0.05366714671254158,
0.042118221521377563,
0.058525729924440384,
0.031036633998155594,
0.007937140762805939,
0.15478397905826569,
0.045370303094387054,
-0.044831305742263794,
-0.13101084530353546,
0.06679670512676239,
0.025859499350190163,
0.004376223776489496,
0.13015243411064148,
0.04262887313961983,
-0.033862628042697906,
0.08994193375110626,
0.0028310702182352543,
-0.031112078577280045,
-0.09788400679826736,
-0.07777269929647446,
-0.09585981070995331,
0.06717197597026825,
-0.02447262406349182,
0.07043765485286713,
0.24574999511241913,
-0.00210568611510098,
-0.0026389230042696,
-0.061483003199100494,
-0.04678342491388321,
-0.1689421534538269,
-0.17229533195495605,
-0.092033751308918,
-0.10152347385883331,
-0.014333558268845081,
-0.07763759791851044,
0.039188824594020844,
0.06143832951784134,
0.06481332331895828,
-0.027789467945694923,
0.11082156002521515,
0.10447581857442856,
-0.0726553350687027,
0.03946521133184433,
0.019312772899866104,
0.05400456115603447,
-0.0157111007720232,
-0.018874114379286766,
-0.07493934780359268,
-0.0032030963338911533,
-0.03574467450380325,
0.017382314428687096,
-0.015243833884596825,
0.04064296931028366,
-0.1201990395784378,
-0.09033234417438507,
-0.048433706164360046,
0.07697995007038116,
-0.016718793660402298,
0.09231211245059967,
0.015190144069492817,
-0.006895286031067371,
0.030731607228517532,
0.2431270182132721,
-0.07907955348491669,
-0.044063933193683624,
-0.04108460992574692,
0.19499054551124573,
-0.006930782459676266,
0.09920734912157059,
-0.032823752611875534,
-0.028588205575942993,
-0.03333277255296707,
0.2883542478084564,
0.3081796169281006,
-0.07365302741527557,
0.0495903417468071,
0.013179713860154152,
0.02030116505920887,
0.043880291283130646,
0.11014342308044434,
0.10198318958282471,
0.280455082654953,
-0.08114853501319885,
-0.03633007034659386,
-0.042071633040905,
0.039946846663951874,
-0.06725528091192245,
0.12662801146507263,
0.031525515019893646,
-0.042433105409145355,
-0.02318381331861019,
0.0751684382557869,
-0.12007645517587662,
0.03706490993499756,
-0.08235035091638565,
-0.1912483274936676,
-0.08318185061216354,
0.01729917898774147,
0.1466832458972931,
-0.02671768143773079,
0.07333004474639893,
-0.02906608209013939,
-0.05950301140546799,
-0.02153555490076542,
0.008011539466679096,
-0.16594405472278595,
0.02798842266201973,
0.037462152540683746,
-0.06891107559204102,
0.07734616100788116,
-0.02927491068840027,
0.015145814046263695,
0.11052092164754868,
0.03266425058245659,
-0.06771726161241531,
0.06223417446017265,
0.013417351059615612,
-0.05642424151301384,
0.01768970675766468,
0.01880580186843872,
0.020126329734921455,
-0.06563353538513184,
0.08133944123983383,
-0.09705071151256561,
0.042058125138282776,
-0.10862791538238525,
-0.04598643258213997,
-0.01881667971611023,
0.02733580768108368,
-0.036863069981336594,
0.08844231814146042,
0.0776771828532219,
-0.0031569725833833218,
0.005627436563372612,
-0.06327000260353088,
-0.034227725118398666,
0.006050312425941229,
-0.029476944357156754,
-0.04746299237012863,
-0.1270228922367096,
-0.048563797026872635,
0.07489969581365585,
0.004888621158897877,
-0.2346884310245514,
-0.003605130361393094,
-0.09751617163419724,
0.03220648691058159,
-0.16174660623073578,
0.06644202023744583,
0.1382795125246048,
0.011739050969481468,
-0.011791232973337173,
-0.020230671390891075,
0.027364546433091164,
0.08502162247896194,
-0.10713598877191544,
-0.06403398513793945
] |
null | null |
transformers
|
# AraGPT2 Detector
Machine generated detector model from the [AraGPT2: Pre-Trained Transformer for Arabic Language Generation paper](https://arxiv.org/abs/2012.15520)
This model is trained on the long text passages, and achieves a 99.4% F1-Score.
# How to use it:
```python
from transformers import pipeline
from arabert.preprocess import ArabertPreprocessor
processor = ArabertPreprocessor(model="aubmindlab/araelectra-base-discriminator")
pipe = pipeline("sentiment-analysis", model = "aubmindlab/aragpt2-mega-detector-long")
text = " "
text_prep = processor.preprocess(text)
result = pipe(text_prep)
# [{'label': 'machine-generated', 'score': 0.9977743625640869}]
```
# If you used this model please cite us as :
```
@misc{antoun2020aragpt2,
title={AraGPT2: Pre-Trained Transformer for Arabic Language Generation},
author={Wissam Antoun and Fady Baly and Hazem Hajj},
year={2020},
eprint={2012.15520},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
# Contacts
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <[email protected]> | <[email protected]>
**Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <[email protected]> | <[email protected]>
|
{"language": "ar", "widget": [{"text": "\u0648\u0625\u0630\u0627 \u0643\u0627\u0646 \u0647\u0646\u0627\u0643 \u0645\u0646 \u0644\u0627 \u064a\u0632\u0627\u0644 \u064a\u0639\u062a\u0642\u062f \u0623\u0646 \u0644\u0628\u0646\u0627\u0646 \u0647\u0648 \u0633\u0648\u064a\u0633\u0631\u0627 \u0627\u0644\u0634\u0631\u0642 \u060c \u0641\u0647\u0648 \u0645\u062e\u0637\u0626 \u0625\u0644\u0649 \u062d\u062f \u0628\u0639\u064a\u062f . \u0641\u0644\u0628\u0646\u0627\u0646 \u0644\u064a\u0633 \u0633\u0648\u064a\u0633\u0631\u0627 \u060c \u0648\u0644\u0627 \u064a\u0645\u0643\u0646 \u0623\u0646 \u064a\u0643\u0648\u0646 \u0643\u0630\u0644\u0643 . \u0644\u0642\u062f \u0639\u0627\u0634 \u0627\u0644\u0644\u0628\u0646\u0627\u0646\u064a\u0648\u0646 \u0641\u064a \u0647\u0630\u0627 \u0627\u0644\u0628\u0644\u062f \u0645\u0646\u0630 \u0645\u0627 \u064a\u0632\u064a\u062f \u0639\u0646 \u0623\u0644\u0641 \u0648\u062e\u0645\u0633\u0645\u0626\u0629 \u0639\u0627\u0645 \u060c \u0623\u064a \u0645\u0646\u0630 \u062a\u0623\u0633\u064a\u0633 \u0627\u0644\u0625\u0645\u0627\u0631\u0629 \u0627\u0644\u0634\u0647\u0627\u0628\u064a\u0629 \u0627\u0644\u062a\u064a \u0623\u0633\u0633\u0647\u0627 \u0627\u0644\u0623\u0645\u064a\u0631 \u0641\u062e\u0631 \u0627\u0644\u062f\u064a\u0646 \u0627\u0644\u0645\u0639\u0646\u064a \u0627\u0644\u062b\u0627\u0646\u064a ( 1697 - 1742 )"}]}
|
text-classification
|
aubmindlab/aragpt2-mega-detector-long
|
[
"transformers",
"pytorch",
"safetensors",
"electra",
"text-classification",
"ar",
"arxiv:2012.15520",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2012.15520"
] |
[
"ar"
] |
TAGS
#transformers #pytorch #safetensors #electra #text-classification #ar #arxiv-2012.15520 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
# AraGPT2 Detector
Machine generated detector model from the AraGPT2: Pre-Trained Transformer for Arabic Language Generation paper
This model is trained on the long text passages, and achieves a 99.4% F1-Score.
# How to use it:
# If you used this model please cite us as :
# Contacts
Wissam Antoun: Linkedin | Twitter | Github | <wfa07@URL> | <URL@URL>
Fady Baly: Linkedin | Twitter | Github | <fgb06@URL> | <URL@URL>
|
[
"# AraGPT2 Detector\n\nMachine generated detector model from the AraGPT2: Pre-Trained Transformer for Arabic Language Generation paper\n\nThis model is trained on the long text passages, and achieves a 99.4% F1-Score.",
"# How to use it:",
"# If you used this model please cite us as :",
"# Contacts\nWissam Antoun: Linkedin | Twitter | Github | <wfa07@URL> | <URL@URL>\n\nFady Baly: Linkedin | Twitter | Github | <fgb06@URL> | <URL@URL>"
] |
[
"TAGS\n#transformers #pytorch #safetensors #electra #text-classification #ar #arxiv-2012.15520 #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"# AraGPT2 Detector\n\nMachine generated detector model from the AraGPT2: Pre-Trained Transformer for Arabic Language Generation paper\n\nThis model is trained on the long text passages, and achieves a 99.4% F1-Score.",
"# How to use it:",
"# If you used this model please cite us as :",
"# Contacts\nWissam Antoun: Linkedin | Twitter | Github | <wfa07@URL> | <URL@URL>\n\nFady Baly: Linkedin | Twitter | Github | <fgb06@URL> | <URL@URL>"
] |
[
56,
56,
6,
11,
67
] |
[
"passage: TAGS\n#transformers #pytorch #safetensors #electra #text-classification #ar #arxiv-2012.15520 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# AraGPT2 Detector\n\nMachine generated detector model from the AraGPT2: Pre-Trained Transformer for Arabic Language Generation paper\n\nThis model is trained on the long text passages, and achieves a 99.4% F1-Score.# How to use it:# If you used this model please cite us as :# Contacts\nWissam Antoun: Linkedin | Twitter | Github | <wfa07@URL> | <URL@URL>\n\nFady Baly: Linkedin | Twitter | Github | <fgb06@URL> | <URL@URL>"
] |
[
-0.06256962567567825,
0.07300546765327454,
-0.0027285427786409855,
0.09287066757678986,
0.07621238380670547,
-0.013218734413385391,
0.21430745720863342,
0.07731365412473679,
0.07248350977897644,
-0.001972735393792391,
0.18772880733013153,
0.05462173372507095,
0.04317840561270714,
0.22461585700511932,
0.001939139561727643,
-0.12219662964344025,
0.009571966715157032,
-0.0225672610104084,
-0.06937733292579651,
0.1583896428346634,
0.12759298086166382,
-0.05388365313410759,
0.11203574389219284,
-0.010725178755819798,
-0.09999319911003113,
0.043296173214912415,
-0.024344323202967644,
-0.17258356511592865,
0.10013974457979202,
0.05212639272212982,
0.08917886763811111,
0.03855079412460327,
0.014095413498580456,
-0.09760821610689163,
0.04561641812324524,
0.02173656038939953,
-0.02019156701862812,
0.03958205506205559,
0.04130353778600693,
-0.07929497212171555,
0.10824023187160492,
-0.06269963085651398,
0.006461880169808865,
-0.004721993580460548,
-0.12011463940143585,
-0.10949692130088806,
-0.02072093077003956,
0.12199170887470245,
0.061942532658576965,
0.11256109178066254,
-0.014871427789330482,
0.1260618418455124,
0.0015483838506042957,
0.10164253413677216,
0.09995821863412857,
-0.2366199642419815,
-0.0966217964887619,
-0.008945749141275883,
-0.014852463267743587,
0.1723558008670807,
-0.029955007135868073,
0.09695277363061905,
0.0804377868771553,
0.03263229876756668,
0.031614404171705246,
-0.0798814594745636,
-0.05290394276380539,
0.013792507350444794,
-0.10426702350378036,
-0.07063763588666916,
0.0945458710193634,
-0.019529692828655243,
-0.0693366527557373,
-0.0178984422236681,
-0.09321491420269012,
0.019978564232587814,
-0.026382336392998695,
-0.023670731112360954,
-0.02076292596757412,
0.03472046181559563,
-0.06290242075920105,
-0.07103627920150757,
-0.11862228065729141,
-0.04528617858886719,
-0.12672719359397888,
0.23639534413814545,
0.007008538115769625,
0.09259584546089172,
-0.053302351385354996,
0.07746201753616333,
0.043194375932216644,
-0.11673328280448914,
0.020718565210700035,
-0.07544359564781189,
0.05613134428858757,
0.0022195298224687576,
-0.01345876231789589,
-0.03579353913664818,
0.12624913454055786,
0.12422364950180054,
-0.10113449394702911,
0.06471898406744003,
-0.013769145123660564,
0.02378733642399311,
-0.025077879428863525,
0.06690194457769394,
-0.13359467685222626,
-0.09238233417272568,
0.06642001867294312,
0.03538171947002411,
0.009415265172719955,
-0.015587464906275272,
-0.07765641063451767,
-0.046353865414857864,
0.1126127615571022,
0.02142362855374813,
0.052831005305051804,
0.09409982711076736,
0.015679670497775078,
-0.0032181241549551487,
0.030286943539977074,
-0.11898715794086456,
-0.010747845284640789,
0.029153671115636826,
-0.04706328362226486,
-0.053133055567741394,
0.0479249581694603,
0.0075005958788096905,
-0.05772537738084793,
-0.04204863682389259,
-0.05023159831762314,
0.019486498087644577,
0.042677998542785645,
-0.07727343589067459,
0.020539557561278343,
-0.059097062796354294,
0.020855428650975227,
-0.2417740672826767,
-0.10400669276714325,
-0.016858132556080818,
0.07386784255504608,
-0.015173397026956081,
0.0719289556145668,
-0.020492136478424072,
0.015517901629209518,
0.06559139490127563,
-0.020156094804406166,
-0.010751912370324135,
-0.06758446991443634,
0.1061583161354065,
0.08223994076251984,
0.14121520519256592,
-0.04579024389386177,
-0.007531662005931139,
-0.11897904425859451,
0.014445303939282894,
-0.07071424275636673,
0.11121043562889099,
-0.06440644711256027,
0.11463632434606552,
-0.15202370285987854,
-0.007935244590044022,
-0.03426402434706688,
0.03361724689602852,
0.08886510878801346,
0.18422555923461914,
0.02017916738986969,
-0.08941768854856491,
0.0821639746427536,
-0.09860080480575562,
-0.1550668478012085,
0.17280109226703644,
-0.00794510543346405,
0.03894801437854767,
0.10612507164478302,
0.14512796700000763,
0.015591392293572426,
-0.048923395574092865,
-0.010119415819644928,
0.06207285821437836,
-0.04081980139017105,
0.03943818435072899,
0.061397381126880646,
0.052561864256858826,
-0.16058506071567535,
-0.012752272188663483,
-0.03309827297925949,
0.1209055706858635,
-0.027136271819472313,
-0.0989353284239769,
0.0022746496833860874,
-0.08666814118623734,
0.06126108765602112,
-0.001446384470909834,
0.06557388603687286,
-0.06388850510120392,
-0.08609867841005325,
-0.14955048263072968,
0.055996011942625046,
-0.007213379256427288,
0.0006654549506492913,
-0.14213472604751587,
0.10773423314094543,
-0.18025150895118713,
0.022581839933991432,
-0.09737272560596466,
0.051263872534036636,
-0.09075465798377991,
0.08338025212287903,
0.09356056898832321,
-0.13886640965938568,
0.11047830432653427,
-0.01026930846273899,
-0.010208887979388237,
-0.06716977059841156,
0.08691014349460602,
0.0026266518980264664,
-0.09683897346258163,
-0.12299762666225433,
0.08967273682355881,
-0.03060208261013031,
0.07553889602422714,
-0.08102644979953766,
-0.012324502691626549,
0.062302883714437485,
0.06457117199897766,
-0.016509197652339935,
0.04707394167780876,
0.04818599298596382,
-0.0009479708387516439,
0.00042236875742673874,
-0.07686394453048706,
0.03442750871181488,
-0.021851398050785065,
-0.08281750977039337,
0.05888477712869644,
-0.08929764479398727,
0.1661190539598465,
0.18801693618297577,
-0.08797172456979752,
-0.07563549280166626,
0.07555875927209854,
0.003874794580042362,
0.02518424205482006,
0.08500616252422333,
0.03420400992035866,
0.14721111953258514,
-0.03205351531505585,
0.1251472383737564,
-0.07043907791376114,
0.04899595305323601,
0.017678560689091682,
-0.11893215775489807,
-0.050239868462085724,
0.10032721608877182,
-0.015004933811724186,
-0.23435887694358826,
0.14600315690040588,
0.13266310095787048,
-0.004449139349162579,
0.12223516404628754,
0.07626258581876755,
-0.020670369267463684,
0.0331653356552124,
0.0083001758903265,
-0.02636699005961418,
0.0275315809994936,
-0.10227161645889282,
-0.0612637884914875,
0.034566719084978104,
-0.05096113681793213,
0.025101782754063606,
-0.10480789840221405,
-0.003276458475738764,
0.0033439549151808023,
-0.04366731643676758,
0.004213934764266014,
0.016254253685474396,
-0.042180005460977554,
0.11619320511817932,
0.06585810333490372,
-0.06676187366247177,
0.020885875448584557,
0.023362550884485245,
-0.12256009876728058,
0.2008310854434967,
-0.0518370196223259,
-0.3790140450000763,
-0.05831638351082802,
-0.11169491708278656,
-0.011645138263702393,
0.05043334513902664,
0.05787159129977226,
-0.18755468726158142,
-0.026931066066026688,
-0.06371821463108063,
0.001547010149806738,
0.0019206875003874302,
0.08353962004184723,
0.052280325442552567,
-0.052514754235744476,
0.054551299661397934,
-0.08519226312637329,
-0.02332422323524952,
-0.0043969969265162945,
-0.029939325526356697,
0.12254991382360458,
-0.06891599297523499,
0.04378984868526459,
0.08450116962194443,
-0.014977861195802689,
0.06044875085353851,
0.002298900857567787,
0.2759762108325958,
-0.14025232195854187,
0.04717545956373215,
0.1458447426557541,
-0.015467889606952667,
0.03136790543794632,
0.18162254989147186,
0.026012685149908066,
-0.08249548077583313,
0.019515803083777428,
-0.031723275780677795,
-0.04772831127047539,
-0.17543449997901917,
-0.08877038955688477,
-0.002847279654815793,
0.017455456778407097,
0.09409453719854355,
0.09347639977931976,
0.01457463763654232,
0.12732648849487305,
-0.025227129459381104,
0.04649589955806732,
0.02586125209927559,
0.04784548282623291,
0.05392728000879288,
0.03965690732002258,
0.07935088872909546,
-0.08403491228818893,
-0.07957999408245087,
0.08621078729629517,
0.044471338391304016,
0.017115982249379158,
-0.008089859038591385,
-0.03633537143468857,
0.040050655603408813,
0.03290509432554245,
0.11357723921537399,
0.030553491786122322,
-0.012472610920667648,
-0.02271902561187744,
-0.014206700026988983,
-0.049045685678720474,
-0.06971079111099243,
0.04256875813007355,
-0.08087821304798126,
-0.028896024450659752,
-0.0038985060527920723,
-0.0043815551325678825,
0.143448606133461,
0.0587645024061203,
0.04251455143094063,
-0.3525582551956177,
-0.0637144148349762,
0.011216577142477036,
-0.07266250252723694,
-0.07672811299562454,
-0.021981334313750267,
-0.017719635739922523,
-0.1057455763220787,
0.0798565000295639,
-0.001681316178292036,
0.06686727702617645,
-0.0629410594701767,
0.02085285820066929,
-0.05201394110918045,
0.0022491717245429754,
-0.06591253727674484,
0.047889500856399536,
-0.29998978972435,
0.2146896868944168,
0.05448346957564354,
0.045785609632730484,
-0.026753852143883705,
-0.011426044628024101,
0.10482492297887802,
0.08305645734071732,
0.10627278685569763,
0.021990718320012093,
0.10292397439479828,
-0.1570485532283783,
-0.10158805549144745,
0.06917574256658554,
0.05610305443406105,
0.009393773972988129,
0.04003169387578964,
0.016555923968553543,
0.008255084045231342,
-0.02871045656502247,
-0.011639643460512161,
-0.08589300513267517,
-0.10731114447116852,
0.019240576773881912,
0.025508984923362732,
0.0693754181265831,
-0.025686535984277725,
-0.05847373977303505,
-0.07803197205066681,
0.15970201790332794,
-0.037166960537433624,
-0.14531950652599335,
-0.11159590631723404,
0.09551435708999634,
0.04789579287171364,
-0.09143011271953583,
0.05779080465435982,
-0.04715346917510033,
-0.08189159631729126,
-0.02336055226624012,
-0.08043026179075241,
0.08283937722444534,
-0.07904770225286484,
-0.04396699368953705,
-0.010570419020950794,
0.06871696561574936,
0.03148970752954483,
-0.0083993598818779,
0.023894555866718292,
-0.00768958730623126,
-0.09304628521203995,
-0.09382739663124084,
0.046019744127988815,
-0.002137129195034504,
-0.07275471836328506,
0.028172239661216736,
0.11316173523664474,
-0.1321420818567276,
-0.08524268120527267,
-0.026963600888848305,
0.1090402901172638,
0.13972122967243195,
0.004238657187670469,
0.06275027990341187,
0.22742828726768494,
-0.010974560864269733,
-0.24686022102832794,
-0.08487296849489212,
-0.02354639768600464,
0.007453796453773975,
-0.11557518690824509,
-0.11540184170007706,
0.06763004511594772,
-0.055763278156518936,
-0.029961852356791496,
0.0740276649594307,
-0.16426874697208405,
-0.07546988129615784,
0.18664737045764923,
0.034768637269735336,
0.20653089880943298,
-0.15108630061149597,
-0.05095527693629265,
-0.0441158302128315,
-0.06406360864639282,
-0.010619394481182098,
-0.05118711292743683,
0.09427253901958466,
0.0004247577453497797,
0.055907297879457474,
-0.0032085105776786804,
-0.042786967009305954,
0.14949975907802582,
-0.10491791367530823,
0.025895856320858,
-0.10994212329387665,
-0.058411482721567154,
-0.07191072404384613,
0.0012974296696484089,
0.09055080264806747,
-0.07100007683038712,
0.055412717163562775,
-0.06437983363866806,
-0.08634089678525925,
-0.026493782177567482,
0.06444883346557617,
0.05433852970600128,
-0.06681326776742935,
-0.052414264529943466,
0.010977241210639477,
-0.015948176383972168,
0.0004530340083874762,
0.03328389301896095,
-0.03593890741467476,
0.05485490709543228,
0.15260174870491028,
0.10264962911605835,
-0.1644638031721115,
0.07210414111614227,
0.005597689189016819,
-0.06101224943995476,
0.12401008605957031,
-0.26828014850616455,
0.04722744971513748,
0.08441758155822754,
-0.024386145174503326,
0.061885856091976166,
0.024841737002134323,
-0.05736777186393738,
0.04669922962784767,
0.13520298898220062,
-0.1364910751581192,
-0.0016334484098479152,
-0.029943151399493217,
-0.09986883401870728,
-0.006580254063010216,
0.020655520260334015,
0.20572492480278015,
-0.06663467735052109,
-0.0394674614071846,
-0.0011562645668163896,
0.023010745644569397,
-0.05035282298922539,
0.18520566821098328,
0.11972019076347351,
-0.0010374102275818586,
-0.09622407704591751,
0.07644543796777725,
0.05482758954167366,
-0.032163992524147034,
0.06701941788196564,
0.10358275473117828,
-0.15336653590202332,
-0.11416149139404297,
-0.038683801889419556,
0.023798877373337746,
-0.10107919573783875,
-0.07177944481372833,
-0.03235776722431183,
-0.034007467329502106,
-0.0058951000683009624,
0.12093082070350647,
0.049029890447854996,
0.022254042327404022,
-0.003887829137966037,
0.008467615582048893,
0.02089875191450119,
0.082759790122509,
0.06389883160591125,
-0.0013375473208725452,
-0.1414579451084137,
0.1137460246682167,
0.007891383022069931,
0.11625116318464279,
-0.08226925134658813,
-0.004744838923215866,
-0.12357031553983688,
0.03755497559905052,
-0.19480350613594055,
0.0569755882024765,
-0.09021423012018204,
0.012922019697725773,
0.003209090558812022,
-0.08903078734874725,
-0.049181003123521805,
0.0033180690370500088,
-0.058437298983335495,
0.018496833741664886,
0.008746277540922165,
0.010996217839419842,
-0.11282134801149368,
-0.03249813988804817,
0.03692276403307915,
-0.00007314994581975043,
0.10853725671768188,
0.09698620438575745,
-0.08490145951509476,
0.005989236757159233,
-0.25401580333709717,
-0.03866274654865265,
0.06304528564214706,
-0.028511373326182365,
0.001019288320094347,
-0.05080828815698624,
0.08066942542791367,
0.04000188782811165,
0.014992587268352509,
0.04628271982073784,
0.2312309443950653,
-0.04227733612060547,
0.046563997864723206,
-0.09079217910766602,
0.008900399319827557,
-0.04073993116617203,
0.055536337196826935,
0.11865461617708206,
0.01630985364317894,
0.08335746824741364,
-0.11738987267017365,
-0.012788236141204834,
-0.1214316338300705,
0.03445781394839287,
-0.05077820271253586,
-0.08529557287693024,
-0.11705800145864487,
-0.051676373928785324,
0.058821842074394226,
-0.0684448778629303,
0.1524304747581482,
0.05486953631043434,
-0.03427134081721306,
0.029961008578538895,
0.06646363437175751,
0.08802495896816254,
-0.008433106355369091,
0.09697804600000381,
0.020391134545207024,
-0.01786002516746521,
-0.07265418767929077,
0.0071846069768071175,
0.09366288781166077,
-0.00916460994631052,
-0.06598315387964249,
0.14236697554588318,
0.07280844449996948,
0.08148762583732605,
-0.032289907336235046,
0.02596796490252018,
-0.05157625302672386,
-0.13849376142024994,
-0.10654864460229874,
-0.036674436181783676,
-0.013209188356995583,
-0.014798343181610107,
0.3087843060493469,
-0.016716131940484047,
-0.038261085748672485,
-0.009173834696412086,
-0.02593919262290001,
-0.07696740329265594,
-0.16253571212291718,
-0.103868268430233,
-0.16358213126659393,
0.023344242945313454,
-0.04283091053366661,
-0.06105516105890274,
0.12142250686883926,
0.07105590403079987,
-0.028505058959126472,
0.17370842397212982,
0.10925289243459702,
-0.10353928804397583,
0.06498409062623978,
0.004513056017458439,
0.012274960055947304,
0.07755330204963684,
-0.021374015137553215,
0.008454211056232452,
0.01715710014104843,
0.034115955233573914,
-0.0034627029672265053,
-0.019498560577630997,
0.1026916429400444,
-0.09256802499294281,
-0.08619947731494904,
-0.06578768789768219,
0.04756374657154083,
0.018179653212428093,
0.09717339277267456,
0.0385776124894619,
-0.04137231037020683,
0.017742637544870377,
0.22425448894500732,
-0.03235217183828354,
-0.14995089173316956,
-0.13529929518699646,
0.17771989107131958,
-0.0851447582244873,
0.05954507365822792,
-0.05334518104791641,
-0.08888906240463257,
-0.02130955643951893,
0.2523898184299469,
0.24631433188915253,
-0.12055869400501251,
0.034224990755319595,
-0.05967080593109131,
0.02737874910235405,
0.02601510100066662,
0.07504706084728241,
0.06354936212301254,
0.22413024306297302,
-0.09395346790552139,
-0.04146933555603027,
-0.06924751400947571,
-0.03409208729863167,
-0.0541796050965786,
0.06589744240045547,
-0.002131631365045905,
0.009431976824998856,
-0.0915207490324974,
0.1186540499329567,
-0.11692013591527939,
-0.10103839635848999,
0.04282741993665695,
-0.08442232012748718,
-0.07609502971172333,
0.02799561247229576,
0.017694100737571716,
0.10281624644994736,
0.012544196099042892,
0.008000764064490795,
0.0183356162160635,
-0.14322033524513245,
0.05186290293931961,
-0.09066540747880936,
-0.06628967076539993,
0.08224236220121384,
-0.05091565102338791,
0.11544602364301682,
-0.00502208573743701,
0.07151215523481369,
0.11006762832403183,
0.015529731288552284,
-0.05453918129205704,
0.09856998175382614,
0.032499946653842926,
0.00032713302061893046,
0.07234436273574829,
-0.03560136258602142,
0.04588313400745392,
-0.02087491750717163,
0.11652814596891403,
0.08411523699760437,
0.003209202317520976,
0.03245878592133522,
0.007656346540898085,
-0.10063444077968597,
0.022379722446203232,
-0.10807646811008453,
0.07518064975738525,
0.06373004615306854,
-0.07118913531303406,
0.03551233932375908,
-0.04568658024072647,
0.05040179193019867,
0.006649190094321966,
-0.08436250686645508,
-0.02399411052465439,
-0.21031013131141663,
-0.006183892022818327,
-0.021843433380126953,
0.01939336210489273,
-0.13791565597057343,
0.005680962931364775,
-0.11543267965316772,
0.022208143025636673,
-0.03579868748784065,
0.09894558787345886,
0.14302930235862732,
0.028646834194660187,
-0.03806955739855766,
-0.019058242440223694,
-0.0003048187354579568,
0.10073080658912659,
-0.11293075233697891,
-0.09663989394903183
] |
null | null |
transformers
|
# Arabic GPT2
<img src="https://raw.githubusercontent.com/aub-mind/arabert/master/AraGPT2.png" width="100" align="left"/>
You can find more information in our paper [AraGPT2](https://arxiv.org/abs/2012.15520)
The code in this repository was used to train all GPT2 variants. The code support training and fine-tuning GPT2 on GPUs and TPUs via the TPUEstimator API.
GPT2-base and medium uses the code from the `gpt2` folder and can trains models from the [minimaxir/gpt-2-simple](https://github.com/minimaxir/gpt-2-simple) repository.
These models were trained using the `lamb` optimizer and follow the same architecture as `gpt2` and are fully compatible with the `transformers` library.
GPT2-large and GPT2-mega were trained using the [imcaspar/gpt2-ml](https://github.com/imcaspar/gpt2-ml/) library, and follow the `grover` architecture. You can use the pytorch classes found in `grover/modeling_gpt2.py` as a direct replacement for classes in the `transformers` library (it should support version `v4.x` from `transformers`).
Both models are trained using the `adafactor` optimizer, since the `adam` and `lamb` optimizer use too much memory causing the model to not even fit 1 batch on a TPU core.
AraGPT2 is trained on the same large Arabic Dataset as AraBERTv2.
# Usage
## Testing the model using `transformers`:
You need to use the GPT2LMHeadModel from `arabert`: `pip install arabert`
```python
from transformers import GPT2TokenizerFast, pipeline
#for base and medium
from transformers import GPT2LMHeadModel
#for large and mega
from arabert.aragpt2.grover.modeling_gpt2 import GPT2LMHeadModel
from arabert.preprocess import ArabertPreprocessor
MODEL_NAME='aubmindlab/aragpt2-mega'
arabert_prep = ArabertPreprocessor(model_name=MODEL_NAME)
text=""
text_clean = arabert_prep.preprocess(text)
model = GPT2LMHeadModel.from_pretrained(MODEL_NAME)
tokenizer = GPT2TokenizerFast.from_pretrained(MODEL_NAME)
generation_pipeline = pipeline("text-generation",model=model,tokenizer=tokenizer)
#feel free to try different decoding settings
generation_pipeline(text,
pad_token_id=tokenizer.eos_token_id,
num_beams=10,
max_length=200,
top_p=0.9,
repetition_penalty = 3.0,
no_repeat_ngram_size = 3)[0]['generated_text']
>>>
```
## Finetunning using `transformers`:
Follow the guide linked [here](https://towardsdatascience.com/fine-tuning-gpt2-on-colab-gpu-for-free-340468c92ed)
## Finetuning using our code with TF 1.15.4:
Create the Training TFRecords:
```bash
python create_pretraining_data.py
--input_file=<RAW TEXT FILE with documents/article separated by an empty line>
--output_file=<OUTPUT TFRecord>
--tokenizer_dir=<Directory with the GPT2 Tokenizer files>
```
Finetuning:
```bash
python3 run_pretraining.py \\r\n --input_file="gs://<GS_BUCKET>/pretraining_data/*" \\r\n --output_dir="gs://<GS_BUCKET>/pretraining_model/" \\r\n --config_file="config/small_hparams.json" \\r\n --batch_size=128 \\r\n --eval_batch_size=8 \\r\n --num_train_steps= \\r\n --num_warmup_steps= \\r\n --learning_rate= \\r\n --save_checkpoints_steps= \\r\n --max_seq_length=1024 \\r\n --max_eval_steps= \\r\n --optimizer="lamb" \\r\n --iterations_per_loop=5000 \\r\n --keep_checkpoint_max=10 \\r\n --use_tpu=True \\r\n --tpu_name=<TPU NAME> \\r\n --do_train=True \\r\n --do_eval=False
```
# Model Sizes
Model | Optimizer | Context size | Embedding Size | Num of heads | Num of layers | Model Size / Num of Params |
---|:---:|:---:|:---:|:---:|:---:|:---:
AraGPT2-base | `lamb` | 1024 | 768 | 12 | 12 | 527MB/135M |
AraGPT2-medium | `lamb` | 1024 | 1024 | 16 | 24 | 1.38G/370M |
AraGPT2-large | `adafactor` | 1024 | 1280 | 20 | 36 | 2.98GB/792M |
AraGPT2-mega | `adafactor` | 1024 | 1536 | 25 | 48 | 5.5GB/1.46B |
All models are available in the `HuggingFace` model page under the [aubmindlab](https://huggingface.co/aubmindlab/) name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
## Compute
For Dataset Source see the [Dataset Section](#Dataset)
Model | Hardware | num of examples (seq len = 1024) | Batch Size | Num of Steps | Time (in days)
---|:---:|:---:|:---:|:---:|:---:
AraGPT2-base | TPUv3-128 | 9.7M | 1792 | 125K | 1.5
AraGPT2-medium | TPUv3-8 | 9.7M | 1152 | 85K | 1.5
AraGPT2-large | TPUv3-128 | 9.7M | 256 | 220k | 3
AraGPT2-mega | TPUv3-128 | 9.7M | 256 | 780K | 9
# Dataset
The pretraining data used for the new AraBERT model is also used for **GPT2 and ELECTRA**.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
- OSCAR unshuffled and filtered.
- [Arabic Wikipedia dump](https://archive.org/details/arwiki-20190201) from 2020/09/01
- [The 1.5B words Arabic Corpus](https://www.semanticscholar.org/paper/1.5-billion-words-Arabic-Corpus-El-Khair/f3eeef4afb81223df96575adadf808fe7fe440b4)
- [The OSIAN Corpus](https://www.aclweb.org/anthology/W19-4619)
- Assafir news articles. Huge thank you for Assafir for giving us the data
# Disclaimer
The text generated by GPT2 Arabic is automatically generated by a neural network model trained on a large amount of texts, which does not represent the authors' or their institutes' official attitudes and preferences. The text generated by GPT2 Arabic should only be used for research and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it.
# If you used this model please cite us as :
```
@inproceedings{antoun-etal-2021-aragpt2,
title = "{A}ra{GPT}2: Pre-Trained Transformer for {A}rabic Language Generation",
author = "Antoun, Wissam and
Baly, Fady and
Hajj, Hazem",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Virtual)",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.wanlp-1.21",
pages = "196--207",
}
```
# Acknowledgments
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continuous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT.
# Contacts
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <[email protected]> | <[email protected]>
**Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <[email protected]> | <[email protected]>
|
{"language": "ar", "license": "other", "datasets": ["wikipedia", "Osian", "1.5B-Arabic-Corpus", "oscar-arabic-unshuffled", "Assafir(private)"], "license_name": "custom", "license_link": "https://github.com/aub-mind/arabert/blob/master/aragpt2/LICENSE", "inference": false, "widget": [{"text": "\u064a\u062d\u0643\u0649 \u0623\u0646 \u0645\u0632\u0627\u0631\u0639\u0627 \u0645\u062e\u0627\u062f\u0639\u0627 \u0642\u0627\u0645 \u0628\u0628\u064a\u0639 \u0628\u0626\u0631 \u0627\u0644\u0645\u0627\u0621 \u0627\u0644\u0645\u0648\u062c\u0648\u062f \u0641\u064a \u0623\u0631\u0636\u0647 \u0644\u062c\u0627\u0631\u0647 \u0645\u0642\u0627\u0628\u0644 \u0645\u0628\u0644\u063a \u0643\u0628\u064a\u0631 \u0645\u0646 \u0627\u0644\u0645\u0627\u0644"}, {"text": "\u0627\u0644\u0642\u062f\u0633 \u0645\u062f\u064a\u0646\u0629 \u062a\u0627\u0631\u064a\u062e\u064a\u0629\u060c \u0628\u0646\u0627\u0647\u0627 \u0627\u0644\u0643\u0646\u0639\u0627\u0646\u064a\u0648\u0646 \u0641\u064a"}, {"text": "\u0643\u0627\u0646 \u064a\u0627 \u0645\u0627 \u0643\u0627\u0646 \u0641\u064a \u0642\u062f\u064a\u0645 \u0627\u0644\u0632\u0645\u0627\u0646"}]}
|
text-generation
|
aubmindlab/aragpt2-mega
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"ar",
"arxiv:2012.15520",
"license:other",
"autotrain_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2012.15520"
] |
[
"ar"
] |
TAGS
#transformers #pytorch #tensorboard #gpt2 #text-generation #ar #arxiv-2012.15520 #license-other #autotrain_compatible #has_space #text-generation-inference #region-us
|
Arabic GPT2
===========
<img src="URL width="100" align="left"/>
You can find more information in our paper AraGPT2
The code in this repository was used to train all GPT2 variants. The code support training and fine-tuning GPT2 on GPUs and TPUs via the TPUEstimator API.
GPT2-base and medium uses the code from the 'gpt2' folder and can trains models from the minimaxir/gpt-2-simple repository.
These models were trained using the 'lamb' optimizer and follow the same architecture as 'gpt2' and are fully compatible with the 'transformers' library.
GPT2-large and GPT2-mega were trained using the imcaspar/gpt2-ml library, and follow the 'grover' architecture. You can use the pytorch classes found in 'grover/modeling\_gpt2.py' as a direct replacement for classes in the 'transformers' library (it should support version 'v4.x' from 'transformers').
Both models are trained using the 'adafactor' optimizer, since the 'adam' and 'lamb' optimizer use too much memory causing the model to not even fit 1 batch on a TPU core.
AraGPT2 is trained on the same large Arabic Dataset as AraBERTv2.
Usage
=====
Testing the model using 'transformers':
---------------------------------------
You need to use the GPT2LMHeadModel from 'arabert': 'pip install arabert'
Finetunning using 'transformers':
---------------------------------
Follow the guide linked here
Finetuning using our code with TF 1.15.4:
-----------------------------------------
Create the Training TFRecords:
Finetuning:
Model Sizes
===========
All models are available in the 'HuggingFace' model page under the aubmindlab name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
Compute
-------
For Dataset Source see the Dataset Section
Dataset
=======
The pretraining data used for the new AraBERT model is also used for GPT2 and ELECTRA.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
* OSCAR unshuffled and filtered.
* Arabic Wikipedia dump from 2020/09/01
* The 1.5B words Arabic Corpus
* The OSIAN Corpus
* Assafir news articles. Huge thank you for Assafir for giving us the data
Disclaimer
==========
The text generated by GPT2 Arabic is automatically generated by a neural network model trained on a large amount of texts, which does not represent the authors' or their institutes' official attitudes and preferences. The text generated by GPT2 Arabic should only be used for research and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it.
If you used this model please cite us as :
==========================================
Acknowledgments
===============
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the AUB MIND Lab Members for the continuous support. Also thanks to Yakshof and Assafir for data and storage access. Another thanks for Habib Rahal (URL for putting a face to AraBERT.
Contacts
========
Wissam Antoun: Linkedin | Twitter | Github | [wfa07@URL](mailto:wfa07@URL) | [URL@URL](mailto:URL@URL)
Fady Baly: Linkedin | Twitter | Github | [fgb06@URL](mailto:fgb06@URL) | [URL@URL](mailto:URL@URL)
|
[] |
[
"TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #ar #arxiv-2012.15520 #license-other #autotrain_compatible #has_space #text-generation-inference #region-us \n"
] |
[
62
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #ar #arxiv-2012.15520 #license-other #autotrain_compatible #has_space #text-generation-inference #region-us \n"
] |
[
-0.02783883735537529,
0.12374242395162582,
-0.005615701898932457,
0.06127353012561798,
0.09891952574253082,
0.01658015139400959,
0.21714872121810913,
0.12887805700302124,
0.029782861471176147,
0.01439654640853405,
0.16434817016124725,
0.1739104986190796,
-0.004520793911069632,
0.06284120678901672,
-0.03660836070775986,
-0.2577206492424011,
0.022343983873724937,
0.03924712538719177,
-0.04485614225268364,
0.10392900556325912,
0.08275394141674042,
-0.07696383446455002,
0.06097019836306572,
0.006721886806190014,
-0.14982576668262482,
0.015822064131498337,
0.04691934585571289,
-0.13166935741901398,
0.1373576819896698,
0.0663374811410904,
0.10228335112333298,
0.08304974436759949,
-0.013262421824038029,
-0.07359123229980469,
0.03465978428721428,
0.00793203804641962,
-0.1099347397685051,
0.12859371304512024,
0.11340238153934479,
-0.03178780525922775,
0.11336459219455719,
0.08221635967493057,
-0.0282618198543787,
0.025712039321660995,
-0.14838895201683044,
-0.13827994465827942,
-0.05442100018262863,
0.058702412992715836,
-0.03034926950931549,
0.05801063030958176,
-0.006375251337885857,
0.14436767995357513,
-0.04278910532593727,
0.05824420973658562,
0.14423596858978271,
-0.3901987671852112,
-0.010868717916309834,
0.16146211326122284,
0.07698296010494232,
0.09597323089838028,
-0.05585617944598198,
0.0894244834780693,
0.047926872968673706,
0.005883693695068359,
0.06227968633174896,
-0.04845961555838585,
-0.12474524229764938,
0.06779748946428299,
-0.11878608167171478,
-0.04040149599313736,
0.23596890270709991,
-0.0515533983707428,
0.07599135488271713,
-0.017778292298316956,
-0.0960516631603241,
-0.026793479919433594,
0.0306553915143013,
-0.017051955685019493,
-0.01471003983169794,
0.06940856575965881,
0.022202081978321075,
-0.10131384432315826,
-0.17478899657726288,
0.00034902029437944293,
-0.21700963377952576,
0.10546723753213882,
-0.004807879216969013,
0.04667265713214874,
-0.11593852937221527,
0.07341844588518143,
-0.023683590814471245,
-0.09708284586668015,
0.0663055032491684,
-0.06639599055051804,
0.06086289510130882,
0.026437392458319664,
-0.04019433632493019,
-0.1327659785747528,
0.07346680760383606,
0.09297751635313034,
-0.007053988520056009,
-0.009760601446032524,
-0.03750108182430267,
0.14329324662685394,
0.01600673794746399,
0.08293156325817108,
-0.05211539566516876,
0.03125542402267456,
0.03577089309692383,
-0.03975113853812218,
0.05285406857728958,
-0.08894401043653488,
-0.2293252944946289,
-0.01612040400505066,
0.025230752304196358,
0.04834359511733055,
0.04960855841636658,
0.07812998443841934,
-0.057074982672929764,
0.0035724120680242777,
0.12049400806427002,
-0.05131139978766441,
0.0278206504881382,
-0.0014314064756035805,
0.020067207515239716,
-0.005188171751797199,
0.039818085730075836,
0.013095315545797348,
-0.04499316215515137,
0.0327577106654644,
-0.1013185903429985,
-0.015977932140231133,
-0.029153920710086823,
-0.1327974945306778,
0.06651734560728073,
-0.07753356546163559,
-0.011122413910925388,
-0.1573135256767273,
-0.06212432309985161,
0.028771866112947464,
0.02215086668729782,
-0.038481175899505615,
-0.060475051403045654,
0.032204724848270416,
-0.0440596304833889,
0.0576857328414917,
-0.06078894063830376,
0.004143526777625084,
-0.04686428979039192,
0.09693427383899689,
-0.06883522868156433,
0.06379765272140503,
-0.17680908739566803,
0.05653088912367821,
-0.09994865953922272,
-0.014132216572761536,
-0.04595758393406868,
-0.003233904717490077,
-0.07882517576217651,
0.03632642328739166,
-0.03200133144855499,
-0.018918044865131378,
-0.08055520802736282,
0.045116934925317764,
-0.0016504509840160608,
0.09497929364442825,
-0.16278336942195892,
-0.11108826100826263,
0.1426348239183426,
-0.10533116012811661,
-0.12364113330841064,
0.105849489569664,
0.0006116806762292981,
0.034230172634124756,
0.02291162498295307,
0.2653774619102478,
0.011564290151000023,
-0.05128679797053337,
0.003930961713194847,
0.11373045295476913,
-0.0695408508181572,
-0.10740624368190765,
0.06868595629930496,
-0.024092961102724075,
-0.029230346903204918,
0.0281717199832201,
0.03180258721113205,
0.050099004060029984,
-0.02565770410001278,
-0.06954720616340637,
-0.02764311619102955,
0.007050900720059872,
0.12495788186788559,
0.026706894859671593,
0.12248637527227402,
-0.04625686630606651,
-0.07527649402618408,
0.0794452428817749,
0.0024543714243918657,
0.014648144133388996,
0.01835341937839985,
-0.033306654542684555,
0.16363483667373657,
-0.0639493465423584,
0.023426346480846405,
-0.14983174204826355,
-0.07463275641202927,
-0.005629710387438536,
0.00350102037191391,
0.08429833501577377,
0.2067754864692688,
0.04758209362626076,
0.002729730447754264,
-0.012327558360993862,
0.03442464396357536,
0.08259159326553345,
0.016952544450759888,
-0.0791831761598587,
-0.12403205037117004,
0.04605799913406372,
-0.07808760553598404,
0.016017915681004524,
-0.14012406766414642,
0.042060889303684235,
0.07078644633293152,
0.04888978227972984,
-0.016360489651560783,
0.05687320604920387,
-0.013987203128635883,
0.0067797754891216755,
-0.11629423499107361,
0.007882068865001202,
0.10160571336746216,
-0.009746324270963669,
-0.08104436099529266,
0.23626473546028137,
-0.20652304589748383,
0.24512484669685364,
0.21466253697872162,
-0.19471359252929688,
0.016589531674981117,
-0.07123273611068726,
-0.03758919984102249,
0.013951168395578861,
0.037623029202222824,
-0.007244070991873741,
0.0385843887925148,
-0.031308602541685104,
0.14110130071640015,
-0.0684506744146347,
-0.011994250118732452,
0.007038472220301628,
-0.044277578592300415,
-0.055399663746356964,
0.10084684938192368,
0.1482629030942917,
-0.10369477421045303,
0.20067131519317627,
0.2832791209220886,
-0.02419944666326046,
0.19359970092773438,
-0.001397620071657002,
-0.00764424866065383,
0.007983886636793613,
-0.032317787408828735,
-0.013102440163493156,
0.02231142483651638,
-0.11056505143642426,
-0.01746298372745514,
0.0860213190317154,
-0.0016198167577385902,
0.06156429275870323,
-0.1744326800107956,
-0.06049666926264763,
-0.023907575756311417,
-0.010665100999176502,
-0.04476309195160866,
0.09518333524465561,
0.014765302650630474,
0.12360043823719025,
-0.03762811794877052,
-0.05221272259950638,
0.08203776925802231,
0.026837553828954697,
-0.058674588799476624,
0.16415047645568848,
-0.12445329874753952,
-0.2670312225818634,
-0.16445627808570862,
-0.051451344043016434,
-0.052440132945775986,
0.032218821346759796,
0.10616836696863174,
-0.055336035788059235,
-0.012359914369881153,
-0.03581303358078003,
0.020881421864032745,
-0.09301197528839111,
-0.006488416809588671,
-0.10504331439733505,
0.025619449093937874,
-0.053821854293346405,
-0.1418284773826599,
-0.03238212689757347,
-0.041904568672180176,
-0.07831014692783356,
0.14198511838912964,
-0.013080913573503494,
0.07534947246313095,
0.19510699808597565,
-0.0014841313241049647,
0.02407047338783741,
-0.06186673790216446,
0.1289357841014862,
-0.057844460010528564,
0.026001745834946632,
0.1728823333978653,
-0.013296780176460743,
0.08934509009122849,
0.1360807716846466,
0.05279615521430969,
-0.04154989495873451,
-0.011873230338096619,
-0.025037823244929314,
-0.10658037662506104,
-0.2531796991825104,
-0.10058490931987762,
-0.11075786501169205,
0.08641218394041061,
0.06114114448428154,
0.10398466885089874,
0.11259229481220245,
0.0726388692855835,
0.010561391711235046,
0.028236061334609985,
0.010353597812354565,
0.04707665368914604,
0.27459651231765747,
-0.03016376681625843,
0.15801890194416046,
-0.07223775237798691,
-0.08658576011657715,
0.12407246232032776,
0.09110373258590698,
0.1579371988773346,
0.06897372007369995,
0.10069235414266586,
0.07217404246330261,
0.10695458203554153,
0.13506515324115753,
0.03141448274254799,
0.028145713731646538,
-0.0061923968605697155,
-0.06054408848285675,
-0.05880235508084297,
0.046450793743133545,
0.06779288500547409,
0.04099629446864128,
-0.17334944009780884,
0.02601085789501667,
-0.10850752145051956,
0.051413021981716156,
0.02630876563489437,
0.0635804831981659,
-0.20838958024978638,
0.03194649890065193,
0.05361052602529526,
0.022829569876194,
-0.052852146327495575,
0.04523628577589989,
0.06702648848295212,
-0.04620138183236122,
0.03327713534235954,
-0.05694020166993141,
0.07887034118175507,
-0.014098331332206726,
0.06548705697059631,
-0.080122210085392,
-0.04331260919570923,
0.01392240822315216,
0.11641129851341248,
-0.26676496863365173,
0.26214754581451416,
0.0037771034985780716,
-0.08549745380878448,
-0.0679747462272644,
-0.0029055068735033274,
0.034716714173555374,
0.10444443672895432,
0.07149491459131241,
0.0046227159909904,
-0.07760763168334961,
-0.06705742329359055,
-0.04324372485280037,
0.026873024180531502,
0.06193351745605469,
-0.026743954047560692,
-0.0527716800570488,
-0.03459850326180458,
0.02765120007097721,
0.037091486155986786,
0.08964353054761887,
-0.0234927237033844,
-0.1694650948047638,
0.1166427880525589,
0.02663235552608967,
-0.03546929731965065,
-0.009490547701716423,
-0.09555679559707642,
-0.2008914202451706,
0.17162171006202698,
-0.06596588343381882,
-0.048782870173454285,
-0.10031624138355255,
-0.025475626811385155,
0.06358509510755539,
-0.07149545848369598,
0.027830680832266808,
-0.08137236535549164,
0.0195294376462698,
-0.10989415645599365,
-0.18054305016994476,
0.1441488265991211,
-0.04712061211466789,
-0.07043401151895523,
-0.05123604089021683,
0.09054584801197052,
-0.0907551720738411,
0.05492514371871948,
0.0016711854841560125,
0.06716465204954147,
-0.11372075229883194,
-0.11431825160980225,
0.06398092955350876,
-0.05204925686120987,
0.013836518861353397,
-0.07964708656072617,
-0.08319910615682602,
-0.03972770273685455,
0.03228884935379028,
-0.03615469112992287,
0.2354462742805481,
0.28013017773628235,
-0.12040317803621292,
0.16143310070037842,
0.17090703547000885,
-0.10275948792695999,
-0.33636903762817383,
-0.09531807154417038,
-0.11451701819896698,
-0.035942330956459045,
0.09416842460632324,
-0.19571569561958313,
0.019591674208641052,
0.08520038425922394,
-0.08522209525108337,
0.1327064335346222,
-0.27037036418914795,
-0.11495044827461243,
0.14843830466270447,
-0.00888989120721817,
0.2761261761188507,
-0.1820109486579895,
-0.09086952358484268,
-0.0001156273647211492,
-0.05626091733574867,
0.20219473540782928,
-0.08207684755325317,
0.11187524348497391,
-0.020569536834955215,
0.04421504959464073,
0.0143897645175457,
-0.049571048468351364,
0.12457168102264404,
-0.05054458975791931,
0.03321057930588722,
-0.11460862308740616,
-0.0958392545580864,
0.15463489294052124,
0.0005009934538975358,
0.009908857755362988,
-0.12206923216581345,
0.003924633376300335,
-0.07097781449556351,
-0.0071805850602686405,
-0.06605446338653564,
0.11631166934967041,
0.010437345132231712,
-0.08886194974184036,
-0.0655846819281578,
-0.014628885313868523,
-0.06614990532398224,
-0.019211919978260994,
0.2626879811286926,
-0.013800675049424171,
0.18190163373947144,
0.21901677548885345,
0.041983895003795624,
-0.08289337903261185,
0.027926065027713776,
-0.0535694882273674,
-0.06969642639160156,
0.08308105170726776,
-0.16676878929138184,
0.012893336825072765,
0.11339042335748672,
-0.02209526114165783,
0.07084278017282486,
0.07972172647714615,
-0.039323776960372925,
0.028553977608680725,
0.14034636318683624,
-0.20581769943237305,
-0.10637402534484863,
-0.021454473957419395,
0.0064346445724368095,
0.056994590908288956,
0.04130841791629791,
0.16319787502288818,
-0.012354321777820587,
-0.024642139673233032,
0.05458596348762512,
0.0011181046720594168,
-0.004692314192652702,
0.0703173577785492,
0.06591954827308655,
0.005777552258223295,
-0.09649420529603958,
0.07139293849468231,
0.09889083355665207,
-0.09055983275175095,
0.009702528826892376,
0.11736693233251572,
-0.06490803509950638,
-0.1537064164876938,
-0.06721748411655426,
0.05128195881843567,
-0.1383882462978363,
-0.016364241018891335,
-0.05039437115192413,
-0.09479905664920807,
0.044815026223659515,
0.10450255870819092,
0.06347642093896866,
0.05794670060276985,
-0.039660584181547165,
-0.02874157950282097,
0.017680568620562553,
0.0419718399643898,
-0.0389581173658371,
0.05128420516848564,
-0.09815552830696106,
0.07684063166379929,
0.007803103420883417,
0.09284926950931549,
-0.08668219298124313,
-0.032152578234672546,
-0.1525602489709854,
-0.02213876321911812,
-0.09442774206399918,
-0.02971711754798889,
-0.052895452827215195,
-0.04888485372066498,
-0.008728044107556343,
-0.07367327809333801,
-0.07371127605438232,
-0.04112812131643295,
-0.14005142450332642,
0.016617964953184128,
-0.032955270260572433,
0.08459247648715973,
-0.12649624049663544,
-0.02754933573305607,
0.051200613379478455,
0.023031681776046753,
0.12694180011749268,
0.012750965543091297,
-0.04167395830154419,
0.08649133145809174,
-0.14183518290519714,
-0.04474104568362236,
0.10843697190284729,
0.04599881172180176,
0.019246665760874748,
0.08295560628175735,
0.0010842463234439492,
0.05459336191415787,
0.038043953478336334,
0.057410743087530136,
0.003109000390395522,
-0.12386054545640945,
0.01956160180270672,
-0.06792981922626495,
-0.15048034489154816,
-0.019240548834204674,
-0.005010896362364292,
0.037837397307157516,
0.03195551782846451,
0.14648087322711945,
-0.053207214921712875,
0.02585342340171337,
-0.11781762540340424,
0.02742946706712246,
-0.015484553761780262,
-0.17977850139141083,
-0.07361312210559845,
-0.07180733978748322,
-0.010068531148135662,
-0.021630600094795227,
0.2623218894004822,
0.11008112877607346,
-0.13216905295848846,
0.03739188611507416,
0.13178695738315582,
-0.02726595662534237,
-0.0097554512321949,
0.15714570879936218,
0.07890767604112625,
-0.01955804042518139,
-0.11435195803642273,
0.07539688795804977,
0.002873118733987212,
-0.022640153765678406,
0.09975268691778183,
0.044240113347768784,
-0.007864738814532757,
0.05277705192565918,
0.1036352813243866,
-0.03810727223753929,
-0.11509174108505249,
0.011625701561570168,
-0.02057405561208725,
0.11116965115070343,
-0.05151763930916786,
0.09506335854530334,
0.18596549332141876,
0.00454671448096633,
0.03883412852883339,
-0.03246476501226425,
-0.03443366661667824,
-0.16591615974903107,
-0.20690925419330597,
-0.07377785444259644,
-0.09799892455339432,
-0.013898719102144241,
-0.038318827748298645,
0.061902254819869995,
0.11594084650278091,
0.061768922954797745,
-0.054661285132169724,
0.005792227573692799,
0.062407203018665314,
-0.08683313429355621,
-0.008022493682801723,
-0.01907975599169731,
0.032938674092292786,
-0.12267342209815979,
-0.024059869349002838,
-0.04251978546380997,
0.04333855211734772,
-0.02187046781182289,
0.03270751237869263,
0.012903090566396713,
0.00011902844562428072,
-0.145193412899971,
-0.0885726809501648,
-0.05914193391799927,
0.05936649441719055,
-0.0019086349057033658,
0.12905971705913544,
0.0024123922921717167,
-0.01833871752023697,
0.0486772283911705,
0.19859625399112701,
-0.03703312203288078,
-0.04164963960647583,
0.006230257451534271,
0.18796275556087494,
-0.03189310058951378,
0.09279721975326538,
-0.04594722390174866,
-0.01750493049621582,
-0.062171995639801025,
0.23572199046611786,
0.3874037265777588,
-0.08183784037828445,
0.03103095106780529,
0.04721689596772194,
0.016278397291898727,
0.0558944009244442,
0.12414178252220154,
0.0454154834151268,
0.23053686320781708,
-0.07849375903606415,
-0.023413965478539467,
-0.05574731156229973,
0.05934135988354683,
-0.09893901646137238,
0.12073051929473877,
0.043673593550920486,
-0.07660046219825745,
-0.037598609924316406,
0.05968382582068443,
-0.11467244476079941,
0.03938433527946472,
-0.09051485359668732,
-0.18847651779651642,
-0.08562558889389038,
0.03552822768688202,
0.17060577869415283,
-0.01502507645636797,
0.06269454956054688,
-0.04538852721452713,
-0.039727576076984406,
-0.02912730909883976,
-0.0037491116672754288,
-0.20872579514980316,
0.03772599622607231,
0.07021212577819824,
-0.07074372470378876,
0.0859307274222374,
-0.03387041762471199,
0.04881471022963524,
0.0933593362569809,
0.05365661531686783,
-0.047249916940927505,
0.06306825578212738,
0.020760610699653625,
-0.050063300877809525,
0.0005849224980920553,
-0.07938748598098755,
0.017552074044942856,
-0.05944397300481796,
0.09172939509153366,
-0.030745571479201317,
0.048328809440135956,
-0.07931343466043472,
-0.08404343575239182,
-0.007332250941544771,
-0.002270848024636507,
-0.056957632303237915,
0.06379319727420807,
0.04652738198637962,
0.008128693327307701,
-0.04593471437692642,
-0.06960862874984741,
-0.04297798499464989,
0.02612430229783058,
-0.09020403027534485,
-0.06859221309423447,
-0.07045865803956985,
-0.05849679186940193,
0.05803021416068077,
0.025871651247143745,
-0.21990106999874115,
-0.0040456680580973625,
-0.10269752889871597,
0.0459447056055069,
-0.13771800696849823,
0.05336247757077217,
0.14313596487045288,
-0.010992661118507385,
-0.013253551907837391,
-0.07050677388906479,
0.026932217180728912,
0.021076560020446777,
-0.1259213238954544,
-0.030652757734060287
] |
null | null |
transformers
|
# !!! A newer version of this model is available !!! [AraBERTv2](https://huggingface.co/aubmindlab/bert-base-arabertv2)
# AraBERT v1 & v2 : Pre-training BERT for Arabic Language Understanding
<img src="https://raw.githubusercontent.com/aub-mind/arabert/master/arabert_logo.png" width="100" align="left"/>
**AraBERT** is an Arabic pretrained lanaguage model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERT uses the same BERT-Base config. More details are available in the [AraBERT Paper](https://arxiv.org/abs/2003.00104) and in the [AraBERT Meetup](https://github.com/WissamAntoun/pydata_khobar_meetup)
There are two versions of the model, AraBERTv0.1 and AraBERTv1, with the difference being that AraBERTv1 uses pre-segmented text where prefixes and suffixes were splitted using the [Farasa Segmenter](http://alt.qcri.org/farasa/segmenter.html).
We evalaute AraBERT models on different downstream tasks and compare them to [mBERT]((https://github.com/google-research/bert/blob/master/multilingual.md)), and other state of the art models (*To the extent of our knowledge*). The Tasks were Sentiment Analysis on 6 different datasets ([HARD](https://github.com/elnagara/HARD-Arabic-Dataset), [ASTD-Balanced](https://www.aclweb.org/anthology/D15-1299), [ArsenTD-Lev](https://staff.aub.edu.lb/~we07/Publications/ArSentD-LEV_Sentiment_Corpus.pdf), [LABR](https://github.com/mohamedadaly/LABR)), Named Entity Recognition with the [ANERcorp](http://curtis.ml.cmu.edu/w/courses/index.php/ANERcorp), and Arabic Question Answering on [Arabic-SQuAD and ARCD](https://github.com/husseinmozannar/SOQAL)
# AraBERTv2
## What's New!
AraBERT now comes in 4 new variants to replace the old v1 versions:
More Detail in the AraBERT folder and in the [README](https://github.com/aub-mind/arabert/blob/master/AraBERT/README.md) and in the [AraBERT Paper](https://arxiv.org/abs/2003.00104v2)
Model | HuggingFace Model Name | Size (MB/Params)| Pre-Segmentation | DataSet (Sentences/Size/nWords) |
---|:---:|:---:|:---:|:---:
AraBERTv0.2-base | [bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) | 543MB / 136M | No | 200M / 77GB / 8.6B |
AraBERTv0.2-large| [bert-large-arabertv02](https://huggingface.co/aubmindlab/bert-large-arabertv02) | 1.38G 371M | No | 200M / 77GB / 8.6B |
AraBERTv2-base| [bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) | 543MB 136M | Yes | 200M / 77GB / 8.6B |
AraBERTv2-large| [bert-large-arabertv2](https://huggingface.co/aubmindlab/bert-large-arabertv2) | 1.38G 371M | Yes | 200M / 77GB / 8.6B |
AraBERTv0.1-base| [bert-base-arabertv01](https://huggingface.co/aubmindlab/bert-base-arabertv01) | 543MB 136M | No | 77M / 23GB / 2.7B |
AraBERTv1-base| [bert-base-arabert](https://huggingface.co/aubmindlab/bert-base-arabert) | 543MB 136M | Yes | 77M / 23GB / 2.7B |
All models are available in the `HuggingFace` model page under the [aubmindlab](https://huggingface.co/aubmindlab/) name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
## Better Pre-Processing and New Vocab
We identified an issue with AraBERTv1's wordpiece vocabulary. The issue came from punctuations and numbers that were still attached to words when learned the wordpiece vocab. We now insert a space between numbers and characters and around punctuation characters.
The new vocabulary was learnt using the `BertWordpieceTokenizer` from the `tokenizers` library, and should now support the Fast tokenizer implementation from the `transformers` library.
**P.S.**: All the old BERT codes should work with the new BERT, just change the model name and check the new preprocessing dunction
**Please read the section on how to use the [preprocessing function](#Preprocessing)**
## Bigger Dataset and More Compute
We used ~3.5 times more data, and trained for longer.
For Dataset Sources see the [Dataset Section](#Dataset)
Model | Hardware | num of examples with seq len (128 / 512) |128 (Batch Size/ Num of Steps) | 512 (Batch Size/ Num of Steps) | Total Steps | Total Time (in Days) |
---|:---:|:---:|:---:|:---:|:---:|:---:
AraBERTv0.2-base | TPUv3-8 | 420M / 207M |2560 / 1M | 384/ 2M | 3M | -
AraBERTv0.2-large | TPUv3-128 | 420M / 207M | 13440 / 250K | 2056 / 300K | 550K | -
AraBERTv2-base | TPUv3-8 | 520M / 245M |13440 / 250K | 2056 / 300K | 550K | -
AraBERTv2-large | TPUv3-128 | 520M / 245M | 13440 / 250K | 2056 / 300K | 550K | -
AraBERT-base (v1/v0.1) | TPUv2-8 | - |512 / 900K | 128 / 300K| 1.2M | 4 days
# Dataset
The pretraining data used for the new AraBERT model is also used for Arabic **GPT2 and ELECTRA**.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
- OSCAR unshuffled and filtered.
- [Arabic Wikipedia dump](https://archive.org/details/arwiki-20190201) from 2020/09/01
- [The 1.5B words Arabic Corpus](https://www.semanticscholar.org/paper/1.5-billion-words-Arabic-Corpus-El-Khair/f3eeef4afb81223df96575adadf808fe7fe440b4)
- [The OSIAN Corpus](https://www.aclweb.org/anthology/W19-4619)
- Assafir news articles. Huge thank you for Assafir for giving us the data
# Preprocessing
It is recommended to apply our preprocessing function before training/testing on any dataset.
**Install farasapy to segment text for AraBERT v1 & v2 `pip install farasapy`**
```python
from arabert.preprocess import ArabertPreprocessor
model_name="bert-base-arabert"
arabert_prep = ArabertPreprocessor(model_name=model_name)
text = "ููู ูุจุงูุบ ุฅุฐุง ูููุง ุฅู ูุงุชู ุฃู ูู
ุจููุชุฑ ุงูู
ูุชุจ ูู ุฒู
ููุง ูุฐุง ุถุฑูุฑู"
arabert_prep.preprocess(text)
>>>"ู+ ูู ูุจุงูุบ ุฅุฐุง ูู +ูุง ุฅู ูุงุชู ุฃู ูู
ุจููุชุฑ ุงู+ ู
ูุชุจ ูู ุฒู
ู +ูุง ูุฐุง ุถุฑูุฑู"
```
## Accepted_models
```
bert-base-arabertv01
bert-base-arabert
bert-base-arabertv02
bert-base-arabertv2
bert-large-arabertv02
bert-large-arabertv2
araelectra-base
aragpt2-base
aragpt2-medium
aragpt2-large
aragpt2-mega
```
# TensorFlow 1.x models
The TF1.x model are available in the HuggingFace models repo.
You can download them as follows:
- via git-lfs: clone all the models in a repo
```bash
curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
sudo apt-get install git-lfs
git lfs install
git clone https://huggingface.co/aubmindlab/MODEL_NAME
tar -C ./MODEL_NAME -zxvf /content/MODEL_NAME/tf1_model.tar.gz
```
where `MODEL_NAME` is any model under the `aubmindlab` name
- via `wget`:
- Go to the tf1_model.tar.gz file on huggingface.co/models/aubmindlab/MODEL_NAME.
- copy the `oid sha256`
- then run `wget https://cdn-lfs.huggingface.co/aubmindlab/aragpt2-base/INSERT_THE_SHA_HERE` (ex: for `aragpt2-base`: `wget https://cdn-lfs.huggingface.co/aubmindlab/aragpt2-base/3766fc03d7c2593ff2fb991d275e96b81b0ecb2098b71ff315611d052ce65248`)
# If you used this model please cite us as :
Google Scholar has our Bibtex wrong (missing name), use this instead
```
@inproceedings{antoun2020arabert,
title={AraBERT: Transformer-based Model for Arabic Language Understanding},
author={Antoun, Wissam and Baly, Fady and Hajj, Hazem},
booktitle={LREC 2020 Workshop Language Resources and Evaluation Conference 11--16 May 2020},
pages={9}
}
```
# Acknowledgments
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT.
## Contacts
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <[email protected]> | <[email protected]>
**Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <[email protected]> | <[email protected]>
|
{"language": "ar", "datasets": ["wikipedia", "Osian", "1.5B-Arabic-Corpus", "oscar-arabic-unshuffled", "Assafir(private)"], "widget": [{"text": " \u0639\u0627\u0635\u0645 +\u0629 \u0644\u0628\u0646\u0627\u0646 \u0647\u064a [MASK] ."}]}
|
fill-mask
|
aubmindlab/bert-base-arabert
|
[
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"ar",
"arxiv:2003.00104",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2003.00104"
] |
[
"ar"
] |
TAGS
#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #ar #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
!!! A newer version of this model is available !!! AraBERTv2
============================================================
AraBERT v1 & v2 : Pre-training BERT for Arabic Language Understanding
=====================================================================
<img src="URL width="100" align="left"/>
AraBERT is an Arabic pretrained lanaguage model based on Google's BERT architechture. AraBERT uses the same BERT-Base config. More details are available in the AraBERT Paper and in the AraBERT Meetup
There are two versions of the model, AraBERTv0.1 and AraBERTv1, with the difference being that AraBERTv1 uses pre-segmented text where prefixes and suffixes were splitted using the Farasa Segmenter.
We evalaute AraBERT models on different downstream tasks and compare them to mBERT), and other state of the art models (*To the extent of our knowledge*). The Tasks were Sentiment Analysis on 6 different datasets (HARD, ASTD-Balanced, ArsenTD-Lev, LABR), Named Entity Recognition with the ANERcorp, and Arabic Question Answering on Arabic-SQuAD and ARCD
AraBERTv2
=========
What's New!
-----------
AraBERT now comes in 4 new variants to replace the old v1 versions:
More Detail in the AraBERT folder and in the README and in the AraBERT Paper
All models are available in the 'HuggingFace' model page under the aubmindlab name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
Better Pre-Processing and New Vocab
-----------------------------------
We identified an issue with AraBERTv1's wordpiece vocabulary. The issue came from punctuations and numbers that were still attached to words when learned the wordpiece vocab. We now insert a space between numbers and characters and around punctuation characters.
The new vocabulary was learnt using the 'BertWordpieceTokenizer' from the 'tokenizers' library, and should now support the Fast tokenizer implementation from the 'transformers' library.
P.S.: All the old BERT codes should work with the new BERT, just change the model name and check the new preprocessing dunction
Please read the section on how to use the preprocessing function
Bigger Dataset and More Compute
-------------------------------
We used ~3.5 times more data, and trained for longer.
For Dataset Sources see the Dataset Section
Dataset
=======
The pretraining data used for the new AraBERT model is also used for Arabic GPT2 and ELECTRA.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
* OSCAR unshuffled and filtered.
* Arabic Wikipedia dump from 2020/09/01
* The 1.5B words Arabic Corpus
* The OSIAN Corpus
* Assafir news articles. Huge thank you for Assafir for giving us the data
Preprocessing
=============
It is recommended to apply our preprocessing function before training/testing on any dataset.
Install farasapy to segment text for AraBERT v1 & v2 'pip install farasapy'
Accepted\_models
----------------
TensorFlow 1.x models
=====================
The TF1.x model are available in the HuggingFace models repo.
You can download them as follows:
* via git-lfs: clone all the models in a repo
where 'MODEL\_NAME' is any model under the 'aubmindlab' name
* via 'wget':
+ Go to the tf1\_model.URL file on URL
+ copy the 'oid sha256'
+ then run 'wget URL (ex: for 'aragpt2-base': 'wget URL
If you used this model please cite us as :
==========================================
Google Scholar has our Bibtex wrong (missing name), use this instead
Acknowledgments
===============
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the AUB MIND Lab Members for the continous support. Also thanks to Yakshof and Assafir for data and storage access. Another thanks for Habib Rahal (URL for putting a face to AraBERT.
Contacts
--------
Wissam Antoun: Linkedin | Twitter | Github | [wfa07@URL](mailto:wfa07@URL) | [URL@URL](mailto:URL@URL)
Fady Baly: Linkedin | Twitter | Github | [fgb06@URL](mailto:fgb06@URL) | [URL@URL](mailto:URL@URL)
|
[] |
[
"TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #ar #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
60
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #ar #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
-0.04289493337273598,
0.010707734152674675,
-0.005633606109768152,
0.05346621200442314,
0.06681568920612335,
0.01975581981241703,
0.09152983874082565,
0.08715809136629105,
0.054289259016513824,
0.025417443364858627,
0.1816560924053192,
0.14805090427398682,
-0.02718885987997055,
0.1830332726240158,
-0.04032951220870018,
-0.20550194382667542,
0.05581235885620117,
0.020689187571406364,
-0.07429071515798569,
0.10720231384038925,
0.08350661396980286,
-0.08748418092727661,
0.07742282003164291,
-0.02634264901280403,
-0.10845860838890076,
0.04288281500339508,
0.08579651266336441,
-0.12648138403892517,
0.15048152208328247,
0.0251636803150177,
0.19310057163238525,
0.043032269924879074,
-0.018593328073620796,
-0.037708889693021774,
0.045616164803504944,
0.03656117990612984,
-0.0953761413693428,
0.059483833611011505,
0.00406177481636405,
-0.04686920344829559,
-0.004554955754429102,
0.008330374956130981,
0.0325150266289711,
0.030027803033590317,
-0.16178548336029053,
-0.2230517566204071,
-0.030268831178545952,
0.07067134976387024,
0.014671532437205315,
0.06886400282382965,
0.025828398764133453,
0.22977936267852783,
-0.08929344266653061,
0.09524703025817871,
0.20484448969364166,
-0.35664087533950806,
-0.02765532210469246,
0.11888295412063599,
0.09711992740631104,
0.004911375232040882,
-0.06818539649248123,
0.052928559482097626,
0.052683472633361816,
0.02090585045516491,
0.14033323526382446,
-0.06341172009706497,
-0.12255558371543884,
0.04228005185723305,
-0.11006465554237366,
-0.05385425686836243,
0.17736688256263733,
-0.03519274666905403,
0.04303211718797684,
0.016753554344177246,
-0.10767075419425964,
-0.08411989361047745,
0.00830080360174179,
-0.03750523179769516,
-0.01998591423034668,
0.018898669630289078,
-0.01844516396522522,
0.013651950284838676,
-0.14058271050453186,
0.002809765748679638,
-0.19527865946292877,
0.21985578536987305,
-0.02233399823307991,
0.07067327201366425,
-0.17130684852600098,
0.047745056450366974,
-0.055458877235651016,
-0.13620290160179138,
0.08657073974609375,
-0.07639998197555542,
0.015668828040361404,
0.011121973395347595,
-0.04573596268892288,
-0.03364282846450806,
0.06515081971883774,
0.14527627825737,
-0.005663252901285887,
0.01917216368019581,
0.04520835354924202,
0.09354816377162933,
-0.017369456589221954,
0.06006903573870659,
-0.021612633019685745,
-0.03594895079731941,
0.03902838006615639,
-0.03212370350956917,
0.025661196559667587,
-0.05444912239909172,
-0.11827938258647919,
-0.050642162561416626,
0.0721767470240593,
0.055355656892061234,
0.06438009440898895,
0.0595041960477829,
-0.05001676827669144,
0.04936951398849487,
0.08678247779607773,
-0.06591236591339111,
0.007288535125553608,
-0.03740301355719566,
0.0778140276670456,
-0.024522554129362106,
0.037067558616399765,
-0.01804221421480179,
0.041477710008621216,
0.09947984665632248,
-0.11286705732345581,
-0.04293109476566315,
-0.03551790863275528,
-0.11876063048839569,
0.04428869113326073,
-0.06508161127567291,
0.01943259872496128,
-0.22773802280426025,
-0.04688955098390579,
0.0490700900554657,
0.051234014332294464,
0.00221891887485981,
-0.03542695939540863,
0.08515579998493195,
-0.06879584491252899,
0.06716634333133698,
-0.03706265240907669,
-0.009941180236637592,
-0.05320136249065399,
0.08398327231407166,
-0.01611226610839367,
0.1538187861442566,
-0.08805614709854126,
0.014492697082459927,
-0.08004893362522125,
0.016324739903211594,
-0.16202926635742188,
-0.10107972472906113,
-0.052406877279281616,
0.1382972002029419,
0.00591785553842783,
-0.04018200933933258,
-0.13281883299350739,
0.0476849228143692,
0.012328265234827995,
0.14031578600406647,
-0.1368006318807602,
-0.056853942573070526,
0.19189541041851044,
-0.10745444148778915,
-0.15493987500667572,
0.07872306555509567,
0.02197495475411415,
-0.013025565072894096,
-0.007751042954623699,
0.12748834490776062,
0.005507288966327906,
-0.16390882432460785,
0.028324062004685402,
0.12172631919384003,
-0.11996424198150635,
-0.08171874284744263,
0.0501411035656929,
0.024248924106359482,
-0.12281011790037155,
0.003082029055804014,
0.07383993268013,
0.08529429882764816,
-0.06171879917383194,
-0.059211988002061844,
-0.04350931942462921,
-0.04653066396713257,
0.1455887407064438,
0.024396173655986786,
0.08010336756706238,
-0.10622189939022064,
-0.07405345141887665,
-0.07943038642406464,
0.008334485813975334,
0.09476078301668167,
0.007082309573888779,
-0.06939685344696045,
0.13577859103679657,
-0.08073385804891586,
-0.014988571405410767,
-0.1415393203496933,
-0.139790877699852,
-0.0387987457215786,
0.06858006864786148,
-0.04334821179509163,
0.16168110072612762,
0.12471198290586472,
-0.02656959556043148,
-0.029707688838243484,
-0.04268059507012367,
0.08545135706663132,
0.06721934676170349,
-0.04218900948762894,
-0.13119660317897797,
0.005437771789729595,
-0.09537346661090851,
-0.007643712684512138,
-0.051862869411706924,
0.007450960110872984,
0.018607666715979576,
0.13218501210212708,
0.016644220799207687,
0.04892696440219879,
-0.03670985996723175,
0.02180267870426178,
-0.037812188267707825,
-0.01839560642838478,
0.045573972165584564,
0.0051154159009456635,
-0.023011263459920883,
0.18821607530117035,
-0.16491036117076874,
0.42814120650291443,
0.19041834771633148,
-0.21656443178653717,
-0.08080989122390747,
0.10154354572296143,
-0.024349311366677284,
0.025640055537223816,
0.04017876088619232,
-0.044912032783031464,
-0.07060603052377701,
-0.048417214304208755,
0.12650582194328308,
-0.04121178388595581,
-0.0470002219080925,
0.04394960030913353,
-0.0766943097114563,
-0.08108841627836227,
0.030570322647690773,
0.006293647922575474,
-0.1534380316734314,
0.19931992888450623,
0.3286128640174866,
-0.031030666083097458,
0.13936220109462738,
0.035499393939971924,
-0.0020180405117571354,
-0.026737447828054428,
-0.04761505872011185,
-0.023024573922157288,
0.11417598277330399,
-0.11923547089099884,
-0.04194243252277374,
0.06984922289848328,
-0.022547433152794838,
0.01387983001768589,
-0.12387941032648087,
-0.07785022258758545,
0.03539593145251274,
0.0657961368560791,
-0.07407812029123306,
0.14437447488307953,
0.027534998953342438,
0.13006173074245453,
0.0054509988985955715,
-0.12166976183652878,
0.06910988688468933,
0.011430097743868828,
-0.04003459960222244,
0.13874521851539612,
-0.1252051442861557,
-0.3124239444732666,
-0.09056125581264496,
-0.09476156532764435,
0.032441675662994385,
0.014488179236650467,
0.061237264424562454,
-0.08794750273227692,
-0.046223483979701996,
0.008274706080555916,
-0.05902232229709625,
-0.061612483114004135,
0.08361407369375229,
-0.03112047165632248,
0.0038528968580067158,
0.018158772960305214,
-0.07248139381408691,
-0.07718871533870697,
-0.01450209878385067,
-0.02415272407233715,
0.14813145995140076,
0.0007579652592539787,
0.079667828977108,
0.12422753125429153,
-0.035267703235149384,
0.037604402750730515,
-0.013544675894081593,
0.20392391085624695,
-0.06384094059467316,
0.02352530136704445,
0.15854215621948242,
-0.024792172014713287,
0.0719892829656601,
0.17650523781776428,
0.02748715505003929,
-0.02924010343849659,
0.006487780250608921,
-0.044055067002773285,
-0.10635747015476227,
-0.12009907513856888,
-0.07454358786344528,
-0.11434713006019592,
-0.014511389657855034,
0.041649434715509415,
0.06563223898410797,
0.1280435472726822,
0.056525252759456635,
0.047945428639650345,
-0.026394402608275414,
-0.09313588589429855,
0.04120099917054176,
0.09740414470434189,
-0.03528778254985809,
0.13313180208206177,
-0.033439751714468,
-0.12667669355869293,
0.053523674607276917,
0.004230549558997154,
0.029436005279421806,
0.07173304259777069,
-0.09252861142158508,
0.036130376160144806,
0.20290932059288025,
0.1325950026512146,
0.1425667554140091,
0.015274517238140106,
-0.1048392578959465,
-0.008461595512926579,
-0.03981444239616394,
-0.0076514920219779015,
0.056727394461631775,
0.0669063851237297,
-0.049599625170230865,
-0.02644328586757183,
-0.13284848630428314,
0.04123465716838837,
0.07128005474805832,
0.09145094454288483,
-0.25650763511657715,
-0.012370385229587555,
0.05171522498130798,
0.011915595270693302,
-0.06019694358110428,
0.03291042149066925,
0.09225036203861237,
-0.06329353898763657,
0.0393863208591938,
-0.012985429726541042,
0.04587536305189133,
0.1366645097732544,
0.07678264379501343,
-0.056240782141685486,
-0.06338680535554886,
-0.01981109380722046,
0.03749893605709076,
-0.253340482711792,
0.2681041955947876,
-0.003605727106332779,
-0.06702058762311935,
-0.048786841332912445,
-0.013130322098731995,
0.049840059131383896,
0.11716856062412262,
0.13561776280403137,
0.047516245394945145,
-0.08121150732040405,
-0.13155221939086914,
0.01907223090529442,
-0.002524137496948242,
0.06960973143577576,
-0.0049527427181601524,
0.013295238837599754,
-0.023773586377501488,
-0.042036473751068115,
0.04040411487221718,
0.17915847897529602,
-0.033158864825963974,
-0.07840967178344727,
0.08099175244569778,
0.06258624792098999,
-0.023901551961898804,
-0.0532541498541832,
-0.07770738750696182,
-0.14580455422401428,
0.12112601101398468,
0.031182102859020233,
-0.004877964500337839,
-0.12342359125614166,
-0.1108037531375885,
0.11065900325775146,
-0.07500332593917847,
0.09993825852870941,
-0.059690479189157486,
0.020914226770401,
-0.0771862268447876,
-0.13716143369674683,
0.16766124963760376,
-0.15240760147571564,
-0.02323801815509796,
-0.09600897133350372,
0.10328318178653717,
-0.09655753523111343,
0.05588363856077194,
-0.004259526263922453,
0.0656205266714096,
-0.10738386958837509,
-0.03921818733215332,
0.06725723296403885,
-0.10846579819917679,
0.06087725609540939,
-0.01321999728679657,
-0.028114236891269684,
-0.07385911047458649,
0.04932428151369095,
0.019594645127654076,
0.20226070284843445,
0.2614971399307251,
-0.11641235649585724,
0.09657590091228485,
0.11150365322828293,
0.02583404630422592,
-0.3282417058944702,
-0.0872541293501854,
-0.14203700423240662,
0.005788733717054129,
0.07213923335075378,
-0.00012976489961147308,
0.045541830360889435,
-0.031667739152908325,
-0.07639173418283463,
0.11924999207258224,
-0.14672358334064484,
-0.09015891700983047,
0.21176399290561676,
0.008995503187179565,
0.41684433817863464,
-0.13833002746105194,
-0.018906041979789734,
-0.0013583600521087646,
-0.11508695036172867,
0.062264300882816315,
-0.0446542352437973,
0.05712122097611427,
-0.03301582857966423,
0.022864431142807007,
0.03698226809501648,
-0.0884450152516365,
0.10213662683963776,
-0.09763690084218979,
0.04471097141504288,
-0.12643250823020935,
-0.13589563965797424,
0.09540911763906479,
-0.033519454300403595,
-0.0067573292180895805,
-0.034675419330596924,
0.018278345465660095,
-0.049234263598918915,
0.021507080644369125,
-0.12518125772476196,
0.10522036999464035,
0.008297707885503769,
-0.07435920834541321,
0.016679344698786736,
0.01567414030432701,
-0.015135853551328182,
-0.052552513778209686,
0.19373472034931183,
-0.012446276843547821,
0.28020113706588745,
0.1412040889263153,
0.008210871368646622,
-0.13754355907440186,
-0.05388939008116722,
0.0341339185833931,
-0.08233021944761276,
0.11066937446594238,
-0.08629575371742249,
0.04511056840419769,
0.06477813422679901,
0.00006540026515722275,
0.046095095574855804,
0.10945013165473938,
-0.010535954497754574,
-0.05486561730504036,
0.19228747487068176,
-0.2366599142551422,
0.0037783372681587934,
-0.02692095935344696,
0.034991562366485596,
0.030946388840675354,
0.03488170728087425,
0.09610538929700851,
-0.023203246295452118,
-0.012712910771369934,
-0.009407051838934422,
-0.007489605341106653,
-0.07017740607261658,
0.05271613597869873,
0.1101028174161911,
0.07379192113876343,
-0.07181285321712494,
-0.01645013689994812,
0.0015782564878463745,
-0.14640289545059204,
-0.0056642103008925915,
0.10016173124313354,
-0.0782870203256607,
-0.13156259059906006,
0.011059327982366085,
0.05046718567609787,
-0.03529501333832741,
-0.020401857793331146,
-0.04474124312400818,
-0.09693324565887451,
0.035691797733306885,
0.24330498278141022,
0.06919044256210327,
0.04796537011861801,
0.0305250845849514,
-0.021744024008512497,
0.019334277138113976,
0.02168652042746544,
-0.009601648896932602,
0.044688187539577484,
-0.14545242488384247,
0.07619822025299072,
-0.027790723368525505,
0.14193803071975708,
-0.10499196499586105,
0.012358048930764198,
-0.1764238476753235,
-0.007602543104439974,
-0.030893005430698395,
-0.08772275596857071,
-0.06934934854507446,
-0.07268290221691132,
0.019029535353183746,
-0.09608341753482819,
-0.06294646859169006,
-0.030932676047086716,
-0.12138235569000244,
0.014621855691075325,
0.03788994997739792,
0.009998325258493423,
-0.06385675072669983,
-0.05238461494445801,
0.09591604769229889,
-0.027896134182810783,
0.07200419902801514,
0.10160884261131287,
-0.04380044341087341,
0.07383379340171814,
-0.11752390116453171,
-0.10033845901489258,
0.080930195748806,
-0.0026760604232549667,
0.08875207602977753,
0.03689593821763992,
0.005668753292411566,
0.009528137743473053,
0.016517793759703636,
0.039449602365493774,
0.054103899747133255,
-0.08455433696508408,
0.04966617003083229,
0.03038564883172512,
-0.15136156976222992,
-0.0067897457629442215,
-0.0916246771812439,
0.12408910691738129,
-0.05094482749700546,
0.09105037152767181,
-0.04397130385041237,
0.04380224272608757,
-0.1181139275431633,
0.01975400373339653,
-0.04866437613964081,
-0.1494699865579605,
-0.01862272433936596,
-0.003525983542203903,
0.03487073630094528,
-0.026102423667907715,
0.15388357639312744,
0.02679918333888054,
-0.061246857047080994,
0.04567566141486168,
0.035285867750644684,
0.013338113203644753,
-0.006215150002390146,
0.11841052770614624,
0.044846538454294205,
-0.07027946412563324,
-0.09417442977428436,
0.0685952678322792,
0.017622724175453186,
-0.05078929290175438,
0.10601507127285004,
0.08317881077528,
0.06992457807064056,
0.08852533996105194,
0.03804406896233559,
-0.04370211809873581,
-0.09523423761129379,
-0.1798110157251358,
-0.0747145414352417,
0.03947274014353752,
-0.02233017235994339,
-0.0008566156029701233,
0.23029446601867676,
0.006209591403603554,
0.033317480236291885,
-0.0859498605132103,
0.01125533040612936,
-0.16548436880111694,
-0.10081708431243896,
-0.07304133474826813,
-0.07322171330451965,
-0.0050357310101389885,
-0.02590116858482361,
0.02274547889828682,
0.11588528007268906,
0.03218455612659454,
-0.0013773402897641063,
0.15152385830879211,
0.04521786421537399,
-0.01531800627708435,
0.010766884312033653,
0.03223690763115883,
0.026187606155872345,
-0.016042066738009453,
0.014813068322837353,
-0.11183856427669525,
-0.03772369399666786,
-0.06937084347009659,
-0.022834133356809616,
-0.07120523601770401,
0.01855654828250408,
-0.06520657241344452,
-0.1159203052520752,
-0.057418566197156906,
0.022893745452165604,
-0.027764271944761276,
0.07549795508384705,
0.0012607844546437263,
0.06058795005083084,
0.002855218481272459,
0.1834973245859146,
-0.09797859191894531,
-0.08962643891572952,
-0.034089528024196625,
0.19820056855678558,
-0.005665528122335672,
0.09192067384719849,
-0.0441444031894207,
0.01930694654583931,
-0.07904287427663803,
0.2204550802707672,
0.32427075505256653,
-0.05808063596487045,
0.10904612392187119,
0.03846811503171921,
0.014842872507870197,
-0.002524201525375247,
0.09097181260585785,
0.11021123826503754,
0.2514439821243286,
-0.0974632203578949,
0.008391878567636013,
-0.06610096991062164,
0.011161889880895615,
-0.07487106323242188,
0.018818847835063934,
0.03508111834526062,
-0.024003831669688225,
-0.04575540870428085,
0.03507520630955696,
-0.07858756929636002,
0.06534724682569504,
0.05461515858769417,
-0.23840971291065216,
-0.06596607714891434,
0.004818689078092575,
0.16045650839805603,
-0.010200955905020237,
0.09557481110095978,
-0.04258467257022858,
-0.060978375375270844,
-0.018084656447172165,
0.0051108854822814465,
-0.13119812309741974,
-0.07520845532417297,
0.10114403069019318,
-0.017559247091412544,
0.12633492052555084,
-0.0522078312933445,
0.028825199231505394,
0.11910142749547958,
0.046117931604385376,
-0.06139271706342697,
0.06283440440893173,
0.04002503305673599,
-0.09894049167633057,
-0.0780840814113617,
-0.0012870961800217628,
0.012705299071967602,
-0.06108085438609123,
0.05224237218499184,
-0.15396779775619507,
0.03361809626221657,
-0.04443707317113876,
-0.00849376991391182,
0.002696183044463396,
0.04098173975944519,
-0.015555191785097122,
0.0911402627825737,
0.06402088701725006,
-0.00845333281904459,
-0.03089679405093193,
-0.035719409584999084,
-0.026515468955039978,
0.07156248390674591,
-0.07172566652297974,
-0.13916431367397308,
-0.07003679126501083,
-0.008998026140034199,
0.021261803805828094,
-0.012237455695867538,
-0.14574015140533447,
-0.05913988873362541,
-0.0770537406206131,
0.009584734216332436,
-0.1110551506280899,
0.02584824338555336,
0.09532707929611206,
0.048699282109737396,
0.008161308243870735,
-0.03474598377943039,
0.029125284403562546,
0.08068138360977173,
-0.1575731486082077,
-0.07626217603683472
] |
null | null |
transformers
|
# !!! A newer version of this model is available !!! [AraBERTv02](https://huggingface.co/aubmindlab/bert-base-arabertv02)
# AraBERT v1 & v2 : Pre-training BERT for Arabic Language Understanding
<img src="https://raw.githubusercontent.com/aub-mind/arabert/master/arabert_logo.png" width="100" align="left"/>
**AraBERT** is an Arabic pretrained lanaguage model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERT uses the same BERT-Base config. More details are available in the [AraBERT Paper](https://arxiv.org/abs/2003.00104) and in the [AraBERT Meetup](https://github.com/WissamAntoun/pydata_khobar_meetup)
There are two versions of the model, AraBERTv0.1 and AraBERTv1, with the difference being that AraBERTv1 uses pre-segmented text where prefixes and suffixes were splitted using the [Farasa Segmenter](http://alt.qcri.org/farasa/segmenter.html).
We evalaute AraBERT models on different downstream tasks and compare them to [mBERT]((https://github.com/google-research/bert/blob/master/multilingual.md)), and other state of the art models (*To the extent of our knowledge*). The Tasks were Sentiment Analysis on 6 different datasets ([HARD](https://github.com/elnagara/HARD-Arabic-Dataset), [ASTD-Balanced](https://www.aclweb.org/anthology/D15-1299), [ArsenTD-Lev](https://staff.aub.edu.lb/~we07/Publications/ArSentD-LEV_Sentiment_Corpus.pdf), [LABR](https://github.com/mohamedadaly/LABR)), Named Entity Recognition with the [ANERcorp](http://curtis.ml.cmu.edu/w/courses/index.php/ANERcorp), and Arabic Question Answering on [Arabic-SQuAD and ARCD](https://github.com/husseinmozannar/SOQAL)
# AraBERTv2
## What's New!
AraBERT now comes in 4 new variants to replace the old v1 versions:
More Detail in the AraBERT folder and in the [README](https://github.com/aub-mind/arabert/blob/master/AraBERT/README.md) and in the [AraBERT Paper](https://arxiv.org/abs/2003.00104v2)
Model | HuggingFace Model Name | Size (MB/Params)| Pre-Segmentation | DataSet (Sentences/Size/nWords) |
---|:---:|:---:|:---:|:---:
AraBERTv0.2-base | [bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) | 543MB / 136M | No | 200M / 77GB / 8.6B |
AraBERTv0.2-large| [bert-large-arabertv02](https://huggingface.co/aubmindlab/bert-large-arabertv02) | 1.38G 371M | No | 200M / 77GB / 8.6B |
AraBERTv2-base| [bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) | 543MB 136M | Yes | 200M / 77GB / 8.6B |
AraBERTv2-large| [bert-large-arabertv2](https://huggingface.co/aubmindlab/bert-large-arabertv2) | 1.38G 371M | Yes | 200M / 77GB / 8.6B |
AraBERTv0.1-base| [bert-base-arabertv01](https://huggingface.co/aubmindlab/bert-base-arabertv01) | 543MB 136M | No | 77M / 23GB / 2.7B |
AraBERTv1-base| [bert-base-arabert](https://huggingface.co/aubmindlab/bert-base-arabert) | 543MB 136M | Yes | 77M / 23GB / 2.7B |
All models are available in the `HuggingFace` model page under the [aubmindlab](https://huggingface.co/aubmindlab/) name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
## Better Pre-Processing and New Vocab
We identified an issue with AraBERTv1's wordpiece vocabulary. The issue came from punctuations and numbers that were still attached to words when learned the wordpiece vocab. We now insert a space between numbers and characters and around punctuation characters.
The new vocabulary was learnt using the `BertWordpieceTokenizer` from the `tokenizers` library, and should now support the Fast tokenizer implementation from the `transformers` library.
**P.S.**: All the old BERT codes should work with the new BERT, just change the model name and check the new preprocessing dunction
**Please read the section on how to use the [preprocessing function](#Preprocessing)**
## Bigger Dataset and More Compute
We used ~3.5 times more data, and trained for longer.
For Dataset Sources see the [Dataset Section](#Dataset)
Model | Hardware | num of examples with seq len (128 / 512) |128 (Batch Size/ Num of Steps) | 512 (Batch Size/ Num of Steps) | Total Steps | Total Time (in Days) |
---|:---:|:---:|:---:|:---:|:---:|:---:
AraBERTv0.2-base | TPUv3-8 | 420M / 207M |2560 / 1M | 384/ 2M | 3M | -
AraBERTv0.2-large | TPUv3-128 | 420M / 207M | 13440 / 250K | 2056 / 300K | 550K | -
AraBERTv2-base | TPUv3-8 | 520M / 245M |13440 / 250K | 2056 / 300K | 550K | -
AraBERTv2-large | TPUv3-128 | 520M / 245M | 13440 / 250K | 2056 / 300K | 550K | -
AraBERT-base (v1/v0.1) | TPUv2-8 | - |512 / 900K | 128 / 300K| 1.2M | 4 days
# Dataset
The pretraining data used for the new AraBERT model is also used for Arabic **GPT2 and ELECTRA**.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
- OSCAR unshuffled and filtered.
- [Arabic Wikipedia dump](https://archive.org/details/arwiki-20190201) from 2020/09/01
- [The 1.5B words Arabic Corpus](https://www.semanticscholar.org/paper/1.5-billion-words-Arabic-Corpus-El-Khair/f3eeef4afb81223df96575adadf808fe7fe440b4)
- [The OSIAN Corpus](https://www.aclweb.org/anthology/W19-4619)
- Assafir news articles. Huge thank you for Assafir for giving us the data
# Preprocessing
It is recommended to apply our preprocessing function before training/testing on any dataset.
**Install farasapy to segment text for AraBERT v1 & v2 `pip install farasapy`**
```python
from arabert.preprocess import ArabertPreprocessor
model_name="bert-base-arabertv01"
arabert_prep = ArabertPreprocessor(model_name=model_name)
text = "ููู ูุจุงูุบ ุฅุฐุง ูููุง ุฅู ูุงุชู ุฃู ูู
ุจููุชุฑ ุงูู
ูุชุจ ูู ุฒู
ููุง ูุฐุง ุถุฑูุฑู"
arabert_prep.preprocess(text)
```
## Accepted_models
```
bert-base-arabertv01
bert-base-arabert
bert-base-arabertv02
bert-base-arabertv2
bert-large-arabertv02
bert-large-arabertv2
araelectra-base
aragpt2-base
aragpt2-medium
aragpt2-large
aragpt2-mega
```
# TensorFlow 1.x models
The TF1.x model are available in the HuggingFace models repo.
You can download them as follows:
- via git-lfs: clone all the models in a repo
```bash
curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
sudo apt-get install git-lfs
git lfs install
git clone https://huggingface.co/aubmindlab/MODEL_NAME
tar -C ./MODEL_NAME -zxvf /content/MODEL_NAME/tf1_model.tar.gz
```
where `MODEL_NAME` is any model under the `aubmindlab` name
- via `wget`:
- Go to the tf1_model.tar.gz file on huggingface.co/models/aubmindlab/MODEL_NAME.
- copy the `oid sha256`
- then run `wget https://cdn-lfs.huggingface.co/aubmindlab/aragpt2-base/INSERT_THE_SHA_HERE` (ex: for `aragpt2-base`: `wget https://cdn-lfs.huggingface.co/aubmindlab/aragpt2-base/3766fc03d7c2593ff2fb991d275e96b81b0ecb2098b71ff315611d052ce65248`)
# If you used this model please cite us as :
Google Scholar has our Bibtex wrong (missing name), use this instead
```
@inproceedings{antoun2020arabert,
title={AraBERT: Transformer-based Model for Arabic Language Understanding},
author={Antoun, Wissam and Baly, Fady and Hajj, Hazem},
booktitle={LREC 2020 Workshop Language Resources and Evaluation Conference 11--16 May 2020},
pages={9}
}
```
# Acknowledgments
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT.
# Contacts
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <[email protected]> | <[email protected]>
**Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <[email protected]> | <[email protected]>
|
{"language": "ar", "datasets": ["wikipedia", "OSIAN", "1.5B_Arabic_Corpus"], "widget": [{"text": " \u0639\u0627\u0635\u0645\u0629 \u0644\u0628\u0646\u0627\u0646 \u0647\u064a [MASK] ."}]}
|
fill-mask
|
aubmindlab/bert-base-arabertv01
|
[
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"ar",
"dataset:wikipedia",
"dataset:OSIAN",
"dataset:1.5B_Arabic_Corpus",
"arxiv:2003.00104",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2003.00104"
] |
[
"ar"
] |
TAGS
#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #ar #dataset-wikipedia #dataset-OSIAN #dataset-1.5B_Arabic_Corpus #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
!!! A newer version of this model is available !!! AraBERTv02
=============================================================
AraBERT v1 & v2 : Pre-training BERT for Arabic Language Understanding
=====================================================================
<img src="URL width="100" align="left"/>
AraBERT is an Arabic pretrained lanaguage model based on Google's BERT architechture. AraBERT uses the same BERT-Base config. More details are available in the AraBERT Paper and in the AraBERT Meetup
There are two versions of the model, AraBERTv0.1 and AraBERTv1, with the difference being that AraBERTv1 uses pre-segmented text where prefixes and suffixes were splitted using the Farasa Segmenter.
We evalaute AraBERT models on different downstream tasks and compare them to mBERT), and other state of the art models (*To the extent of our knowledge*). The Tasks were Sentiment Analysis on 6 different datasets (HARD, ASTD-Balanced, ArsenTD-Lev, LABR), Named Entity Recognition with the ANERcorp, and Arabic Question Answering on Arabic-SQuAD and ARCD
AraBERTv2
=========
What's New!
-----------
AraBERT now comes in 4 new variants to replace the old v1 versions:
More Detail in the AraBERT folder and in the README and in the AraBERT Paper
All models are available in the 'HuggingFace' model page under the aubmindlab name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
Better Pre-Processing and New Vocab
-----------------------------------
We identified an issue with AraBERTv1's wordpiece vocabulary. The issue came from punctuations and numbers that were still attached to words when learned the wordpiece vocab. We now insert a space between numbers and characters and around punctuation characters.
The new vocabulary was learnt using the 'BertWordpieceTokenizer' from the 'tokenizers' library, and should now support the Fast tokenizer implementation from the 'transformers' library.
P.S.: All the old BERT codes should work with the new BERT, just change the model name and check the new preprocessing dunction
Please read the section on how to use the preprocessing function
Bigger Dataset and More Compute
-------------------------------
We used ~3.5 times more data, and trained for longer.
For Dataset Sources see the Dataset Section
Dataset
=======
The pretraining data used for the new AraBERT model is also used for Arabic GPT2 and ELECTRA.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
* OSCAR unshuffled and filtered.
* Arabic Wikipedia dump from 2020/09/01
* The 1.5B words Arabic Corpus
* The OSIAN Corpus
* Assafir news articles. Huge thank you for Assafir for giving us the data
Preprocessing
=============
It is recommended to apply our preprocessing function before training/testing on any dataset.
Install farasapy to segment text for AraBERT v1 & v2 'pip install farasapy'
Accepted\_models
----------------
TensorFlow 1.x models
=====================
The TF1.x model are available in the HuggingFace models repo.
You can download them as follows:
* via git-lfs: clone all the models in a repo
where 'MODEL\_NAME' is any model under the 'aubmindlab' name
* via 'wget':
+ Go to the tf1\_model.URL file on URL
+ copy the 'oid sha256'
+ then run 'wget URL (ex: for 'aragpt2-base': 'wget URL
If you used this model please cite us as :
==========================================
Google Scholar has our Bibtex wrong (missing name), use this instead
Acknowledgments
===============
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the AUB MIND Lab Members for the continous support. Also thanks to Yakshof and Assafir for data and storage access. Another thanks for Habib Rahal (URL for putting a face to AraBERT.
Contacts
========
Wissam Antoun: Linkedin | Twitter | Github | [wfa07@URL](mailto:wfa07@URL) | [URL@URL](mailto:URL@URL)
Fady Baly: Linkedin | Twitter | Github | [fgb06@URL](mailto:fgb06@URL) | [URL@URL](mailto:URL@URL)
|
[] |
[
"TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #ar #dataset-wikipedia #dataset-OSIAN #dataset-1.5B_Arabic_Corpus #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
83
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #ar #dataset-wikipedia #dataset-OSIAN #dataset-1.5B_Arabic_Corpus #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
-0.08841323107481003,
0.10386966913938522,
-0.003215569304302335,
0.056679025292396545,
0.04736959934234619,
0.02930181846022606,
0.12541615962982178,
0.09826275706291199,
0.036930572241544724,
0.0037731544580310583,
0.1760701835155487,
0.09781710058450699,
0.050629593431949615,
0.19433844089508057,
-0.024340549483895302,
-0.16342341899871826,
0.0673314779996872,
0.00052333262283355,
-0.1017443984746933,
0.09302078187465668,
0.11351267248392105,
-0.07217732071876526,
0.0940987840294838,
-0.05928468331694603,
-0.08905656635761261,
0.0423443429172039,
0.0202600359916687,
-0.1436103880405426,
0.12744109332561493,
0.04220716655254364,
0.17087456583976746,
0.05930234491825104,
-0.0023556542582809925,
-0.07277994602918625,
0.039295926690101624,
0.04409155249595642,
-0.08913171291351318,
0.0544920340180397,
-0.0014509798493236303,
-0.03284309804439545,
0.016182098537683487,
-0.06643853336572647,
0.00014247804938349873,
-0.011626208201050758,
-0.13258810341358185,
-0.2023889124393463,
-0.017244067043066025,
0.07285251468420029,
0.02396382763981819,
0.08065492659807205,
0.020320089533925056,
0.20976456999778748,
-0.09161975234746933,
0.12474915385246277,
0.1613260954618454,
-0.2553328275680542,
-0.0266166590154171,
0.059867169708013535,
0.05266463756561279,
0.05123451352119446,
-0.036624982953071594,
0.028793711215257645,
0.02936520054936409,
-0.01279856264591217,
0.07673478871583939,
-0.07774893939495087,
-0.16248099505901337,
0.037202730774879456,
-0.07283294945955276,
-0.05886022001504898,
0.3150009214878082,
-0.0030751533340662718,
0.05147859454154968,
0.034586526453495026,
-0.10957629233598709,
-0.0397166907787323,
0.030672578141093254,
0.002314299810677767,
-0.007209478411823511,
-0.0001849127875175327,
0.026589281857013702,
0.006420119199901819,
-0.14995414018630981,
0.026190055534243584,
-0.2583881914615631,
0.1862599402666092,
0.004123312421143055,
0.08713334798812866,
-0.13903507590293884,
0.03879338130354881,
-0.0165982935577631,
-0.16735057532787323,
0.06464517116546631,
-0.06757477670907974,
-0.008804970420897007,
-0.00821049977093935,
-0.017918720841407776,
-0.03860513120889664,
0.08980310708284378,
0.08693136274814606,
-0.03212479129433632,
0.011900559067726135,
-0.004439919255673885,
0.09597939252853394,
0.03260798752307892,
0.02770152874290943,
-0.1048031821846962,
-0.06812722235918045,
0.024629198014736176,
0.023206526413559914,
0.01579834520816803,
-0.017371702939271927,
-0.06311874091625214,
-0.03802749887108803,
0.05279052257537842,
0.05143801495432854,
0.0842105969786644,
0.05794297158718109,
-0.05133539438247681,
0.03754274919629097,
0.06139500439167023,
-0.1110389232635498,
-0.002403352176770568,
-0.018528562039136887,
-0.005313352681696415,
-0.060909923166036606,
0.05458163097500801,
0.005185390822589397,
-0.005186172667890787,
0.025587141513824463,
-0.10525236278772354,
-0.005745898000895977,
0.011898031458258629,
-0.09265635162591934,
0.04126560688018799,
-0.1072634756565094,
0.04201153665781021,
-0.20943664014339447,
-0.11996319890022278,
0.0425543338060379,
0.06616383045911789,
-0.014766780659556389,
-0.012228085659444332,
0.05820830538868904,
-0.043475933372974396,
0.06304721534252167,
-0.06763642281293869,
0.03417512774467468,
-0.09537553042173386,
0.09342652559280396,
-0.011984305456280708,
0.13582855463027954,
-0.1033899337053299,
0.01128533948212862,
-0.09606225788593292,
-0.010125081054866314,
-0.045828595757484436,
-0.021146994084119797,
-0.06124350056052208,
0.09049457311630249,
-0.054845619946718216,
-0.004242545925080776,
-0.08292154222726822,
0.05426714941859245,
0.013945033773779869,
0.16076220571994781,
-0.2073916792869568,
-0.05307024344801903,
0.21725064516067505,
-0.07999473065137863,
-0.18078790605068207,
0.10527688264846802,
0.007098507601767778,
-0.011414725333452225,
0.007008321117609739,
0.15184146165847778,
-0.05751693621277809,
-0.10104497522115707,
-0.013893618248403072,
0.10678058862686157,
-0.02764778770506382,
-0.0584932304918766,
0.07971864193677902,
0.03277258947491646,
-0.04166070744395256,
0.013021981343626976,
0.059975091367959976,
0.11526264250278473,
-0.03106594830751419,
-0.07610907405614853,
-0.035872094333171844,
-0.09946846216917038,
0.08945165574550629,
0.05630846694111824,
0.08594375103712082,
-0.09050559252500534,
-0.04126489534974098,
-0.10204073786735535,
0.040105823427438736,
0.05749787017703056,
-0.002675005467608571,
-0.0501997172832489,
0.11298765242099762,
-0.13872304558753967,
-0.014545281417667866,
-0.14323966205120087,
-0.10908243060112,
-0.05032704770565033,
0.11819817870855331,
-0.05151389539241791,
0.11626318097114563,
0.10017916560173035,
-0.003790646092966199,
-0.04112809896469116,
-0.042303409427404404,
0.11211174726486206,
0.0928664281964302,
-0.05416885390877724,
-0.13279125094413757,
0.04990873485803604,
-0.08754520118236542,
-0.013985480181872845,
-0.03907334804534912,
-0.003144328249618411,
-0.021212201565504074,
0.17297577857971191,
0.01769467256963253,
0.059204764664173126,
0.002042657695710659,
0.02344616875052452,
-0.044250667095184326,
-0.039197344332933426,
0.021024692803621292,
-0.015875518321990967,
-0.03061503916978836,
0.15066638588905334,
-0.13997671008110046,
0.4337463080883026,
0.19357196986675262,
-0.12116172164678574,
-0.047798529267311096,
0.08706597238779068,
-0.020862892270088196,
-0.0020921232644468546,
0.04137590155005455,
-0.006723508238792419,
-0.06536121666431427,
-0.06549037247896194,
0.12656031548976898,
-0.05471448227763176,
0.016106775030493736,
0.0365995429456234,
-0.08589954674243927,
-0.1125912070274353,
0.07393797487020493,
-0.005739821121096611,
-0.24056147038936615,
0.24224965274333954,
0.2891857326030731,
-0.00010507750994293019,
0.1651281863451004,
0.010321779176592827,
-0.026421640068292618,
-0.02426375262439251,
-0.053723983466625214,
-0.05600833520293236,
0.16011850535869598,
-0.1261833906173706,
-0.04255140572786331,
0.07348315417766571,
-0.0002631462411954999,
0.008858980610966682,
-0.11000212281942368,
-0.06854504346847534,
0.03181342035531998,
0.0466921366751194,
-0.06643818318843842,
0.08627922832965851,
0.025025924667716026,
0.1522846519947052,
-0.02900380641222,
-0.0954444408416748,
0.0528973750770092,
0.017655562609434128,
-0.04108618199825287,
0.17661376297473907,
-0.14564386010169983,
-0.33771800994873047,
-0.018072666600346565,
-0.11432575434446335,
-0.035353560000658035,
0.012996402569115162,
0.058300770819187164,
-0.08251945674419403,
-0.0438087098300457,
-0.05045958608388901,
-0.033247195184230804,
-0.052692681550979614,
0.06185965612530708,
-0.0268362145870924,
0.008200448006391525,
0.0007562966202385724,
-0.08716204017400742,
-0.06537211686372757,
0.01041111908853054,
-0.018217498436570168,
0.13216377794742584,
-0.04583517089486122,
0.059306759387254715,
0.009681081399321556,
-0.01900341548025608,
0.04189549759030342,
-0.01302611455321312,
0.17517249286174774,
-0.06796744465827942,
0.05083456262946129,
0.12958519160747528,
-0.0028757830150425434,
0.04244270920753479,
0.22264860570430756,
0.011473436839878559,
-0.030438020825386047,
-0.01454953197389841,
-0.04012097045779228,
-0.0673929825425148,
-0.13458779454231262,
-0.08971229940652847,
-0.11871851980686188,
-0.015537215396761894,
0.04535478353500366,
0.06383057683706284,
0.07949067652225494,
0.07036548107862473,
0.012573556043207645,
-0.003297575516626239,
-0.08432872593402863,
-0.0026309294626116753,
0.018207019194960594,
-0.01068668719381094,
0.11717449128627777,
-0.07195305824279785,
-0.07480429857969284,
0.07778339833021164,
0.0757899209856987,
0.057871002703905106,
-0.0013434742577373981,
-0.05406174808740616,
0.02465919591486454,
0.21843592822551727,
0.08329053968191147,
0.13412559032440186,
0.0627346932888031,
-0.08345574140548706,
-0.005025744903832674,
-0.018554871901869774,
-0.05634404718875885,
0.04180330038070679,
0.11917907744646072,
-0.030939951539039612,
-0.015886671841144562,
-0.10019532591104507,
0.06076411157846451,
0.033478181809186935,
0.08410089462995529,
-0.28900691866874695,
0.012692837975919247,
0.05827369540929794,
0.005891358945518732,
-0.09555983543395996,
0.024748988449573517,
0.08015666902065277,
-0.06767208129167557,
0.0488746240735054,
0.0038206574972718954,
0.0322037935256958,
0.05346481129527092,
0.021927980706095695,
-0.049364879727363586,
-0.0857226625084877,
-0.02038615196943283,
0.056428853422403336,
-0.31322988867759705,
0.32768717408180237,
0.024726467207074165,
-0.04034272953867912,
-0.08182880282402039,
-0.009786555543541908,
0.05302653834223747,
0.1229763776063919,
0.17014774680137634,
0.059089407324790955,
-0.052127160131931305,
-0.11103606224060059,
-0.0668548122048378,
0.025824399664998055,
0.016315246000885963,
0.0018532844260334969,
-0.01662585325539112,
0.0017746498342603445,
-0.003922146279364824,
0.006706675514578819,
0.1971270889043808,
-0.06685294210910797,
-0.13840210437774658,
0.07111871987581253,
0.0741954818367958,
-0.051186610013246536,
-0.04903165623545647,
-0.07702668756246567,
-0.1583113670349121,
0.12038558721542358,
0.0021697699557989836,
-0.059138715267181396,
-0.12101549655199051,
-0.026538733392953873,
0.14650443196296692,
-0.08047067373991013,
0.01860099844634533,
-0.06940113753080368,
-0.0375191792845726,
-0.03356064110994339,
-0.1291123330593109,
0.12610431015491486,
-0.15219582617282867,
0.01242512371391058,
-0.11898820102214813,
0.07751722633838654,
-0.08089464902877808,
0.03657213971018791,
-0.018200011923909187,
0.04319683834910393,
-0.10412485897541046,
-0.00517886970192194,
0.04170588031411171,
-0.06628253310918808,
0.13364501297473907,
0.07218064367771149,
-0.008127705194056034,
-0.14584122598171234,
0.048469651490449905,
-0.03564665466547012,
0.16103871166706085,
0.24516166746616364,
-0.050203192979097366,
0.10189153999090195,
0.1512785255908966,
0.015512846410274506,
-0.29994454979896545,
-0.1101195216178894,
-0.10428161174058914,
0.04339553415775299,
0.052461761981248856,
-0.02818005159497261,
0.036331526935100555,
-0.02176293171942234,
-0.05171937867999077,
0.058111775666475296,
-0.1639525592327118,
-0.06058664247393608,
0.24440202116966248,
0.024941565468907356,
0.3564821779727936,
-0.173952117562294,
0.004915902856737375,
-0.02130737155675888,
-0.1092284545302391,
0.10025336593389511,
-0.09377685934305191,
0.06765086948871613,
-0.026629429310560226,
-0.019085394218564034,
0.018800389021635056,
-0.08297548443078995,
0.1533224880695343,
-0.0961989238858223,
0.01678963378071785,
-0.16044975817203522,
-0.08763623237609863,
0.10696224868297577,
-0.03126748278737068,
0.008645836263895035,
-0.026200365275144577,
0.02302675135433674,
-0.13088282942771912,
0.014610014855861664,
-0.10608430951833725,
0.06974859535694122,
0.001249123364686966,
-0.05538584291934967,
0.010912816040217876,
0.03682544827461243,
0.0380280502140522,
-0.0429188571870327,
0.17650461196899414,
0.04215269535779953,
0.17556044459342957,
0.13391511142253876,
0.0310051329433918,
-0.11531304568052292,
-0.034276749938726425,
0.0025641731917858124,
-0.04833460971713066,
0.06609426438808441,
-0.13073348999023438,
0.031128855422139168,
0.08696334064006805,
-0.046464335173368454,
0.06921365857124329,
0.07270140945911407,
0.0018289227737113833,
-0.028824422508478165,
0.16810885071754456,
-0.18714861571788788,
0.028706306591629982,
-0.006544973701238632,
-0.00697412109002471,
0.005521693266928196,
0.010632961988449097,
0.10373122990131378,
-0.009495808742940426,
-0.01212978083640337,
-0.031551677733659744,
0.029652880504727364,
-0.06300438195466995,
0.11806662380695343,
0.09896745532751083,
0.06337381154298782,
-0.09028498083353043,
0.09584040194749832,
0.023902200162410736,
-0.13215823471546173,
0.019099513068795204,
0.06354183703660965,
-0.11195649951696396,
-0.12230543047189713,
0.018765971064567566,
0.04394688457250595,
-0.010543485172092915,
-0.07056891918182373,
-0.06123317405581474,
-0.0732620358467102,
-0.0032546650618314743,
0.15497195720672607,
0.05329297482967377,
0.03662651777267456,
0.022582057863473892,
-0.08314976096153259,
0.03154989704489708,
0.04483979195356369,
0.013316349126398563,
0.01583620347082615,
-0.12166178971529007,
0.017551202327013016,
-0.0627681314945221,
0.16430659592151642,
-0.07505514472723007,
0.03760598599910736,
-0.15488773584365845,
0.019395647570490837,
-0.06261008232831955,
-0.048162974417209625,
-0.09588688611984253,
-0.06418569386005402,
0.013795038685202599,
-0.12573310732841492,
-0.052702903747558594,
-0.03812113776803017,
-0.10191316902637482,
0.039410002529621124,
0.03562120348215103,
0.03807400166988373,
-0.07101323455572128,
-0.07262585312128067,
0.06899887323379517,
-0.013189333491027355,
0.08405054360628128,
0.10662883520126343,
-0.0663011372089386,
0.055479470640420914,
-0.10911475867033005,
-0.08819899708032608,
0.03616511821746826,
0.012928889133036137,
0.09848354756832123,
0.00627180328592658,
0.016498779878020287,
0.06023725867271423,
-0.0027206200174987316,
0.022356782108545303,
0.06929200142621994,
-0.047252971678972244,
-0.008761052042245865,
-0.005394323263317347,
-0.11006014049053192,
-0.006167463958263397,
-0.02317652478814125,
0.1545487940311432,
-0.030539220198988914,
0.0792364627122879,
-0.02400980517268181,
-0.003507316345348954,
-0.10137446969747543,
0.016233451664447784,
-0.04035330191254616,
-0.15891923010349274,
0.025789912790060043,
-0.01910199411213398,
0.06158813461661339,
-0.038209736347198486,
0.22194136679172516,
0.054335836321115494,
-0.024023229256272316,
0.0244270171970129,
-0.01609034463763237,
0.05987827107310295,
0.020940685644745827,
0.1488717943429947,
0.011348598636686802,
-0.04732086509466171,
-0.08648205548524857,
0.024834413081407547,
0.021366313099861145,
0.034973595291376114,
0.07513344287872314,
0.1246664747595787,
0.11678972095251083,
0.09001760184764862,
-0.023322105407714844,
-0.08664335310459137,
-0.004122667480260134,
-0.20551417768001556,
-0.057396482676267624,
0.024514762684702873,
0.01218221802264452,
-0.08355535566806793,
0.1940736174583435,
-0.029810510575771332,
0.009993738494813442,
-0.08681090921163559,
-0.02546650543808937,
-0.11120340973138809,
-0.10311679542064667,
-0.06161986663937569,
-0.03414808586239815,
-0.02122407592833042,
-0.06403794139623642,
0.017877431586384773,
0.13373909890651703,
0.05353769659996033,
0.001778188394382596,
0.14541637897491455,
0.05797780305147171,
-0.042260028421878815,
0.019658101722598076,
0.04858051612973213,
0.022069592028856277,
-0.0180645901709795,
-0.009933722205460072,
-0.09679622948169708,
-0.021593760699033737,
-0.04513869434595108,
-0.007268231362104416,
-0.07060281932353973,
0.06330971419811249,
-0.08732537925243378,
-0.1012912169098854,
-0.0674605667591095,
-0.006545760668814182,
-0.043267786502838135,
0.10154173523187637,
0.03818164020776749,
0.05400559678673744,
0.031705498695373535,
0.1845642626285553,
-0.03754772990942001,
-0.09489952772855759,
-0.08505154401063919,
0.05854544788599014,
-0.009412401355803013,
0.04534382000565529,
-0.011310319416224957,
-0.019800333306193352,
-0.058494776487350464,
0.2010604441165924,
0.30948927998542786,
-0.07349728047847748,
0.07875903695821762,
0.02725662663578987,
0.015789812430739403,
-0.017751676961779594,
0.06254962086677551,
0.09058252722024918,
0.19784224033355713,
-0.10840371996164322,
-0.005536002106964588,
-0.05587528645992279,
-0.008415425196290016,
-0.07974577695131302,
0.010955081321299076,
0.036859795451164246,
-0.013723067939281464,
-0.06239595264196396,
0.04249350354075432,
-0.06891588121652603,
0.008563322946429253,
0.07504367083311081,
-0.21611590683460236,
-0.09444651007652283,
-0.018530787900090218,
0.16469916701316833,
0.021765844896435738,
0.017311105504631996,
-0.038752179592847824,
-0.0032007002737373114,
-0.019160611554980278,
0.008760282769799232,
-0.13503095507621765,
-0.07142447680234909,
0.07859324663877487,
-0.00046861651935614645,
0.12684844434261322,
-0.029286548495292664,
0.07664575427770615,
0.10628247261047363,
0.019812211394309998,
-0.06890565156936646,
0.07372921705245972,
0.04610838368535042,
0.0017713116249069571,
-0.032535843551158905,
0.005252261180430651,
0.017689479514956474,
-0.09668680280447006,
0.0645962506532669,
-0.04778100177645683,
0.041838470846414566,
-0.03284047171473503,
0.007230514660477638,
0.009235481731593609,
0.08532192558050156,
-0.0353543721139431,
0.11779950559139252,
0.07255316525697708,
-0.013370757922530174,
0.0038918713107705116,
-0.04318610206246376,
0.002902640262618661,
0.05965809524059296,
-0.05646607652306557,
-0.099520243704319,
-0.0804668590426445,
-0.03037009760737419,
-0.002524309791624546,
0.010893402621150017,
-0.08254149556159973,
-0.04080967977643013,
-0.08675673604011536,
-0.044240277260541916,
-0.09439028054475784,
0.024829328060150146,
0.095210961997509,
0.03733643889427185,
-0.02735796943306923,
-0.010581771843135357,
0.03944556042551994,
0.05937065929174423,
-0.1301724910736084,
-0.09215434640645981
] |
null | null |
transformers
|
<img src="https://raw.githubusercontent.com/aub-mind/arabert/master/arabert_logo.png" width="100" align="center"/>
# AraBERTv0.2-Twitter
AraBERTv0.2-Twitter-base/large are two new models for Arabic dialects and tweets, trained by continuing the pre-training using the MLM task on ~60M Arabic tweets (filtered from a collection on 100M).
The two new models have had emojies added to their vocabulary in addition to common words that weren't at first present. The pre-training was done with a max sentence length of 64 only for 1 epoch.
**AraBERT** is an Arabic pretrained language model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERT uses the same BERT-Base config. More details are available in the [AraBERT Paper](https://arxiv.org/abs/2003.00104) and in the [AraBERT Meetup](https://github.com/WissamAntoun/pydata_khobar_meetup)
## Other Models
Model | HuggingFace Model Name | Size (MB/Params)| Pre-Segmentation | DataSet (Sentences/Size/nWords) |
---|:---:|:---:|:---:|:---:
AraBERTv0.2-base | [bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) | 543MB / 136M | No | 200M / 77GB / 8.6B |
AraBERTv0.2-large| [bert-large-arabertv02](https://huggingface.co/aubmindlab/bert-large-arabertv02) | 1.38G / 371M | No | 200M / 77GB / 8.6B |
AraBERTv2-base| [bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) | 543MB / 136M | Yes | 200M / 77GB / 8.6B |
AraBERTv2-large| [bert-large-arabertv2](https://huggingface.co/aubmindlab/bert-large-arabertv2) | 1.38G / 371M | Yes | 200M / 77GB / 8.6B |
AraBERTv0.1-base| [bert-base-arabertv01](https://huggingface.co/aubmindlab/bert-base-arabertv01) | 543MB / 136M | No | 77M / 23GB / 2.7B |
AraBERTv1-base| [bert-base-arabert](https://huggingface.co/aubmindlab/bert-base-arabert) | 543MB / 136M | Yes | 77M / 23GB / 2.7B |
AraBERTv0.2-Twitter-base| [bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) | 543MB / 136M | No | Same as v02 + 60M Multi-Dialect Tweets|
AraBERTv0.2-Twitter-large| [bert-large-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-large-arabertv02-twitter) | 1.38G / 371M | No | Same as v02 + 60M Multi-Dialect Tweets|
# Preprocessing
**The model is trained on a sequence length of 64, using max length beyond 64 might result in degraded performance**
It is recommended to apply our preprocessing function before training/testing on any dataset.
The preprocessor will keep and space out emojis when used with a "twitter" model.
```python
from arabert.preprocess import ArabertPreprocessor
from transformers import AutoTokenizer, AutoModelForMaskedLM
model_name="aubmindlab/bert-base-arabertv02-twitter"
arabert_prep = ArabertPreprocessor(model_name=model_name)
text = "ููู ูุจุงูุบ ุฅุฐุง ูููุง ุฅู ูุงุชู ุฃู ูู
ุจููุชุฑ ุงูู
ูุชุจ ูู ุฒู
ููุง ูุฐุง ุถุฑูุฑู"
arabert_prep.preprocess(text)
tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02-twitter")
model = AutoModelForMaskedLM.from_pretrained("aubmindlab/bert-base-arabertv02-twitter")
```
# If you used this model please cite us as :
Google Scholar has our Bibtex wrong (missing name), use this instead
```
@inproceedings{antoun2020arabert,
title={AraBERT: Transformer-based Model for Arabic Language Understanding},
author={Antoun, Wissam and Baly, Fady and Hajj, Hazem},
booktitle={LREC 2020 Workshop Language Resources and Evaluation Conference 11--16 May 2020},
pages={9}
}
```
# Acknowledgments
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continuous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT.
# Contacts
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <[email protected]> | <[email protected]>
**Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <[email protected]> | <[email protected]>
|
{"language": "ar", "datasets": ["wikipedia", "Osian", "1.5B-Arabic-Corpus", "oscar-arabic-unshuffled", "Assafir(private)", "Twitter(private)"], "widget": [{"text": " \u0639\u0627\u0635\u0645\u0629 \u0644\u0628\u0646\u0627\u0646 \u0647\u064a [MASK] ."}]}
|
fill-mask
|
aubmindlab/bert-base-arabertv02-twitter
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"bert",
"fill-mask",
"ar",
"arxiv:2003.00104",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2003.00104"
] |
[
"ar"
] |
TAGS
#transformers #pytorch #tensorboard #safetensors #bert #fill-mask #ar #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
<img src="URL width="100" align="center"/>
AraBERTv0.2-Twitter
===================
AraBERTv0.2-Twitter-base/large are two new models for Arabic dialects and tweets, trained by continuing the pre-training using the MLM task on ~60M Arabic tweets (filtered from a collection on 100M).
The two new models have had emojies added to their vocabulary in addition to common words that weren't at first present. The pre-training was done with a max sentence length of 64 only for 1 epoch.
AraBERT is an Arabic pretrained language model based on Google's BERT architechture. AraBERT uses the same BERT-Base config. More details are available in the AraBERT Paper and in the AraBERT Meetup
Other Models
------------
Preprocessing
=============
The model is trained on a sequence length of 64, using max length beyond 64 might result in degraded performance
It is recommended to apply our preprocessing function before training/testing on any dataset.
The preprocessor will keep and space out emojis when used with a "twitter" model.
If you used this model please cite us as :
==========================================
Google Scholar has our Bibtex wrong (missing name), use this instead
Acknowledgments
===============
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the AUB MIND Lab Members for the continuous support. Also thanks to Yakshof and Assafir for data and storage access. Another thanks for Habib Rahal (URL for putting a face to AraBERT.
Contacts
========
Wissam Antoun: Linkedin | Twitter | Github | [wfa07@URL](mailto:wfa07@URL) | [URL@URL](mailto:URL@URL)
Fady Baly: Linkedin | Twitter | Github | [fgb06@URL](mailto:fgb06@URL) | [URL@URL](mailto:URL@URL)
|
[] |
[
"TAGS\n#transformers #pytorch #tensorboard #safetensors #bert #fill-mask #ar #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
58
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #safetensors #bert #fill-mask #ar #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
-0.07414200901985168,
0.026491638273000717,
-0.005647951737046242,
0.048298824578523636,
0.07372961938381195,
0.013203461654484272,
0.12343021482229233,
0.0900803655385971,
0.09031372517347336,
0.08696915209293365,
0.17602695524692535,
0.15424221754074097,
-0.025845369324088097,
0.11856486648321152,
-0.05407028645277023,
-0.21899396181106567,
0.046585191041231155,
0.055155038833618164,
-0.09556468576192856,
0.08549472689628601,
0.0538378581404686,
-0.11424659937620163,
0.05498687922954559,
-0.007619280833750963,
-0.09875151515007019,
0.0426790714263916,
0.059416092932224274,
-0.11893979460000992,
0.14989028871059418,
0.02117217145860195,
0.22561755776405334,
0.04336674138903618,
-0.03894420713186264,
-0.04878764599561691,
0.0463188998401165,
0.035886190831661224,
-0.0806448683142662,
0.09047508984804153,
0.036702852696180344,
-0.05441078916192055,
-0.0534164123237133,
-0.017540540546178818,
0.027337074279785156,
0.012645440176129341,
-0.13306429982185364,
-0.1630244255065918,
-0.0393889844417572,
0.0364173986017704,
0.0049950540997087955,
0.06978491693735123,
0.014522175304591656,
0.21301347017288208,
-0.06686384975910187,
0.06992073357105255,
0.20811723172664642,
-0.3804837763309479,
-0.017149606719613075,
0.1399613469839096,
0.09384539723396301,
0.007154162973165512,
-0.06607978790998459,
0.06552086770534515,
0.0423332117497921,
0.01383114606142044,
0.1248411014676094,
-0.05826796218752861,
-0.07135660201311111,
0.037064045667648315,
-0.12504325807094574,
-0.02479492500424385,
0.11227652430534363,
-0.04900548979640007,
0.0682033970952034,
-0.025536678731441498,
-0.13611604273319244,
-0.09476806968450546,
-0.004159029573202133,
-0.023213570937514305,
-0.01305354293435812,
0.008097774349153042,
-0.026173003017902374,
-0.017033899202942848,
-0.15837803483009338,
0.02517824061214924,
-0.19843971729278564,
0.20626774430274963,
-0.0169100109487772,
0.04912933334708214,
-0.1449240744113922,
0.051576945930719376,
-0.0462176576256752,
-0.1389756053686142,
0.10856547206640244,
-0.053506214171648026,
0.016013329848647118,
0.017149871215224266,
-0.056288935244083405,
-0.13448311388492584,
0.06926758587360382,
0.11801519989967346,
-0.022550659254193306,
0.03347603604197502,
0.05061214789748192,
0.11713070422410965,
-0.0074811470694839954,
0.07633291929960251,
-0.05060409754514694,
-0.03214380890130997,
0.02611793763935566,
-0.000706357357557863,
0.07245049625635147,
-0.06387272477149963,
-0.13599570095539093,
-0.0447382852435112,
0.07601136714220047,
0.042108435183763504,
0.061635345220565796,
0.054725710302591324,
-0.05532393977046013,
0.05350125953555107,
0.07782825827598572,
-0.0674065500497818,
0.033757954835891724,
-0.01551329717040062,
0.06015568599104881,
0.025814004242420197,
0.03581022471189499,
-0.019772786647081375,
0.03599566966295242,
0.12216643989086151,
-0.11647603660821915,
-0.025065725669264793,
-0.05279593542218208,
-0.1290818154811859,
0.060797251760959625,
-0.11962646245956421,
0.01693939045071602,
-0.19211243093013763,
-0.018513021990656853,
0.02532801777124405,
0.06064026057720184,
-0.020830020308494568,
0.005660650320351124,
0.08995726704597473,
-0.06098022684454918,
0.07675133645534515,
-0.029360761865973473,
-0.013861333020031452,
-0.03659791871905327,
0.07061082124710083,
-0.011983565054833889,
0.14539428055286407,
-0.08556144684553146,
0.01773940585553646,
-0.06546443700790405,
0.04337560012936592,
-0.17232109606266022,
-0.09463509917259216,
-0.07351233810186386,
0.11025287210941315,
-0.00881582498550415,
-0.03165523335337639,
-0.14815177023410797,
0.05544643849134445,
0.05391715466976166,
0.12036193162202835,
-0.13689467310905457,
-0.06675729155540466,
0.17703866958618164,
-0.1071864515542984,
-0.1238129660487175,
0.11163213849067688,
0.008809687569737434,
-0.034076135605573654,
-0.017301466315984726,
0.1601674109697342,
0.010874367319047451,
-0.15486688911914825,
-0.019680770114064217,
0.12564130127429962,
-0.07849686592817307,
-0.11900560557842255,
0.022636177018284798,
0.011549608781933784,
-0.04208796098828316,
0.004921121057122946,
0.09978943318128586,
0.06539462506771088,
-0.0480639785528183,
-0.06259489804506302,
-0.04844176024198532,
-0.04646319895982742,
0.16646414995193481,
0.05805453285574913,
0.1052079126238823,
-0.07993559539318085,
-0.08794199675321579,
-0.01540589053183794,
-0.0008734969305805862,
0.03940184786915779,
0.023865148425102234,
-0.059112243354320526,
0.1874610185623169,
-0.13131728768348694,
-0.026377661153674126,
-0.17209671437740326,
-0.13246819376945496,
-0.05098142847418785,
0.009095401503145695,
-0.025993429124355316,
0.17879532277584076,
0.13781197369098663,
-0.01820751465857029,
-0.019848182797431946,
-0.031338099390268326,
0.10417855530977249,
0.056704144924879074,
-0.08230794966220856,
-0.12487512826919556,
-0.0025224413257092237,
-0.11214714497327805,
0.0035971614997833967,
-0.0826849713921547,
0.017588095739483833,
0.02752654440701008,
0.11747787892818451,
0.02745600789785385,
0.049353018403053284,
-0.026705501601099968,
0.04057708755135536,
-0.057466182857751846,
-0.013177509419620037,
0.055594302713871,
-0.0012404437875375152,
-0.045700427144765854,
0.15707340836524963,
-0.2169451117515564,
0.3652983009815216,
0.19091904163360596,
-0.21342982351779938,
-0.05188778042793274,
0.03940216451883316,
-0.021112442016601562,
0.02135186269879341,
0.029673224315047264,
-0.0339147113263607,
-0.04308014363050461,
-0.02379412204027176,
0.11759263277053833,
-0.02456202544271946,
-0.031530022621154785,
0.04919015243649483,
-0.09381912648677826,
-0.09501369297504425,
0.04053151234984398,
0.044611286371946335,
-0.10543320327997208,
0.20051872730255127,
0.2894180417060852,
-0.08671656996011734,
0.13826724886894226,
0.03157264366745949,
-0.015684019774198532,
-0.018826782703399658,
-0.02649027295410633,
-0.00751160504296422,
0.11752830445766449,
-0.14902575314044952,
-0.040868762880563736,
0.07279475033283234,
-0.03982885554432869,
0.045273810625076294,
-0.16077964007854462,
-0.043382469564676285,
0.02080639638006687,
0.07587845623493195,
-0.019246019423007965,
0.12336200475692749,
0.02599400095641613,
0.11418751627206802,
-0.0038795422296971083,
-0.09481996297836304,
0.04901861399412155,
0.01546927448362112,
-0.020193131640553474,
0.15779836475849152,
-0.09903407841920853,
-0.2919800281524658,
-0.11702179908752441,
-0.07396125048398972,
0.018957044929265976,
0.021791784092783928,
0.04434780031442642,
-0.07196816802024841,
-0.05150434374809265,
-0.008152030408382416,
-0.0474519208073616,
-0.03465159237384796,
0.0762682631611824,
-0.040837857872247696,
-0.003364716423675418,
0.00688536511734128,
-0.0845353975892067,
-0.057243313640356064,
-0.04461345449090004,
-0.010116844438016415,
0.13651922345161438,
0.023007430136203766,
0.08798960596323013,
0.1692265272140503,
-0.00516901072114706,
0.017387783154845238,
-0.004650033079087734,
0.1469685584306717,
-0.06387484818696976,
0.03554864972829819,
0.15035206079483032,
-0.03230011463165283,
0.0883873775601387,
0.17358261346817017,
0.045880306512117386,
-0.022631974890828133,
-0.009479627944529057,
-0.01569724828004837,
-0.11753112822771072,
-0.15266749262809753,
-0.08958561718463898,
-0.10635988414287567,
-0.009458184242248535,
0.04232506453990936,
0.08020765334367752,
0.10323192924261093,
0.09102178364992142,
0.0697028860449791,
-0.03022323176264763,
-0.10138300806283951,
0.022189922630786896,
0.13750597834587097,
-0.02963581494987011,
0.1484690010547638,
-0.03567428141832352,
-0.12790928781032562,
0.037766724824905396,
0.0684976726770401,
0.07503952831029892,
0.054909106343984604,
-0.01920364797115326,
0.040464840829372406,
0.1886894404888153,
0.13626450300216675,
0.12630833685398102,
0.004557434935122728,
-0.10507100820541382,
-0.002060160506516695,
-0.02719012275338173,
0.015999268740415573,
0.051411911845207214,
0.10353203862905502,
-0.07723377645015717,
0.0010002711787819862,
-0.0969991385936737,
0.05199558660387993,
0.049458105117082596,
0.10143446177244186,
-0.2593734562397003,
-0.019299326464533806,
0.05563103035092354,
0.018011176958680153,
-0.043792955577373505,
0.0251645315438509,
0.1062939241528511,
-0.023679794743657112,
0.019890975207090378,
-0.06144509091973305,
0.03079511970281601,
0.05776344612240791,
0.05749946087598801,
-0.07465430349111557,
-0.04005679860711098,
-0.006884882226586342,
0.030185597017407417,
-0.2120281457901001,
0.2711658477783203,
0.004879514686763287,
-0.0525534451007843,
-0.05502744019031525,
0.004507649224251509,
0.04512239992618561,
0.08432180434465408,
0.1139867752790451,
0.02121235430240631,
-0.0655495747923851,
-0.13301265239715576,
-0.018759822472929955,
-0.016758129000663757,
0.08190519362688065,
0.01631654053926468,
0.014678851701319218,
-0.006192375440150499,
-0.03658248484134674,
0.047522544860839844,
0.13550080358982086,
-0.007901295088231564,
-0.12393386662006378,
0.09332837164402008,
0.06938372552394867,
-0.10333876311779022,
-0.029399285092949867,
-0.10669838637113571,
-0.20856961607933044,
0.1488836407661438,
-0.0038531336467713118,
-0.007341439835727215,
-0.11525376886129379,
-0.06707429885864258,
0.11594896763563156,
-0.0840611606836319,
0.10398281365633011,
-0.0738692507147789,
0.025611285120248795,
-0.09062636643648148,
-0.13316382467746735,
0.1799716055393219,
-0.1244875118136406,
-0.02386322431266308,
-0.08138272166252136,
0.10209664702415466,
-0.08593151718378067,
0.04558737948536873,
-0.01028161309659481,
0.07906132191419601,
-0.1031276136636734,
-0.049781884998083115,
0.07712818682193756,
-0.07452236860990524,
0.07637282460927963,
-0.03577643260359764,
-0.026288410648703575,
-0.07677645981311798,
0.06303562223911285,
0.042072780430316925,
0.2297418862581253,
0.24470072984695435,
-0.11574570089578629,
0.07966302335262299,
0.12982596457004547,
0.012127603404223919,
-0.36318346858024597,
-0.04535866528749466,
-0.1365630328655243,
0.0017884037224575877,
0.07746484130620956,
-0.04000936821103096,
0.07801177352666855,
-0.014878197573125362,
-0.08585863560438156,
0.12422992289066315,
-0.20041827857494354,
-0.10865198820829391,
0.2094517946243286,
0.04059860110282898,
0.37600061297416687,
-0.15299569070339203,
-0.046087756752967834,
0.01265096478164196,
-0.0792819932103157,
0.05664919316768646,
-0.08451717346906662,
0.08276615291833878,
-0.016633255407214165,
0.0482669360935688,
0.03456542640924454,
-0.12418271601200104,
0.11719106137752533,
-0.10346264392137527,
0.03278183937072754,
-0.10950440168380737,
-0.13572822511196136,
0.10221431404352188,
-0.043459806591272354,
-0.01293842401355505,
-0.04079882800579071,
0.003976365085691214,
-0.019723068922758102,
0.0018247038824483752,
-0.09419869631528854,
0.12348044663667679,
0.010578055866062641,
-0.06619010120630264,
-0.01201203279197216,
0.005902404896914959,
-0.029283223673701286,
-0.026377031579613686,
0.24538369476795197,
-0.006408977787941694,
0.2384384721517563,
0.2082366645336151,
0.00694968830794096,
-0.11587223410606384,
-0.056336645036935806,
0.031144343316555023,
-0.08012264966964722,
0.09977271407842636,
-0.08461323380470276,
0.03392087668180466,
0.09247659891843796,
-0.0085214301943779,
0.028293777257204056,
0.1113356500864029,
-0.02824978157877922,
-0.008382147178053856,
0.17410576343536377,
-0.21779149770736694,
-0.05781368538737297,
0.011733188293874264,
-0.0031229008454829454,
0.006600021850317717,
0.08333884924650192,
0.12104693800210953,
0.004838041495531797,
-0.0013575567863881588,
0.01680517941713333,
-0.004540845286101103,
-0.04051196947693825,
0.08281197398900986,
0.1032758355140686,
0.05956260859966278,
-0.067351795732975,
0.006558672059327364,
0.0032662360463291407,
-0.20965240895748138,
0.00036368146538734436,
0.0741313025355339,
-0.06265508383512497,
-0.1425730586051941,
-0.014605186879634857,
0.05581528693437576,
-0.03670711815357208,
-0.028057465329766273,
-0.07192318141460419,
-0.09135552495718002,
0.02145087718963623,
0.2178206592798233,
0.07545453310012817,
0.028176994994282722,
-0.002322480548173189,
-0.0028781804721802473,
-0.000018383707356406376,
0.038207560777664185,
0.014270919375121593,
0.06610560417175293,
-0.1383247971534729,
0.05507485195994377,
-0.01609968952834606,
0.10791175067424774,
-0.09940972179174423,
0.008870785124599934,
-0.17219477891921997,
-0.016247393563389778,
-0.07937868684530258,
-0.06184631958603859,
-0.0919172614812851,
-0.08658383041620255,
-0.004087965004146099,
-0.0863017663359642,
-0.07263089716434479,
-0.04136158525943756,
-0.11893201619386673,
0.007003915961831808,
0.019856510683894157,
-0.007406175602227449,
-0.09551969915628433,
-0.03979126736521721,
0.08693081140518188,
-0.028470022603869438,
0.07546956837177277,
0.06726990640163422,
-0.03757714480161667,
0.06538568437099457,
-0.12205265462398529,
-0.0796213150024414,
0.10327766835689545,
-0.0015793462516739964,
0.08971554040908813,
0.050636228173971176,
-0.003621277865022421,
0.01276846881955862,
0.04861225560307503,
0.029326045885682106,
0.07730121165513992,
-0.07512809336185455,
0.07907270640134811,
-0.02544095739722252,
-0.1453840434551239,
-0.03135956823825836,
-0.06788965314626694,
0.10380163788795471,
-0.026956088840961456,
0.09938952326774597,
-0.05488460883498192,
0.04610798880457878,
-0.1134013831615448,
0.030535653233528137,
-0.033050138503313065,
-0.14422334730625153,
0.03151754289865494,
0.006439779419451952,
0.0342964231967926,
-0.03731410205364227,
0.19282224774360657,
0.024438707157969475,
-0.0719188004732132,
0.0398981049656868,
0.05172848701477051,
-0.0015345638385042548,
0.008012198843061924,
0.12316042929887772,
0.04679698869585991,
-0.058318112045526505,
-0.10931286960840225,
0.0870557427406311,
0.040198199450969696,
-0.011590377427637577,
0.12630753219127655,
0.08622213453054428,
0.03487987816333771,
0.12012661248445511,
0.027535485103726387,
-0.035622864961624146,
-0.14804212749004364,
-0.10249131917953491,
-0.12441033124923706,
0.06312692910432816,
-0.02552962116897106,
0.0419805571436882,
0.21799001097679138,
0.0022545005194842815,
0.032927531749010086,
-0.07636922597885132,
-0.023217935115098953,
-0.16292303800582886,
-0.15513154864311218,
-0.07465104013681412,
-0.06984414905309677,
-0.004001896362751722,
-0.018863897770643234,
-0.0060096075758337975,
0.1242939904332161,
0.029444631189107895,
0.0025413199327886105,
0.19982872903347015,
0.06285865604877472,
0.015681926161050797,
-0.004416649229824543,
0.053038131445646286,
0.0184517540037632,
-0.019379738718271255,
-0.011906180530786514,
-0.12927675247192383,
-0.002011353150010109,
-0.05530758202075958,
-0.01381718274205923,
-0.05833755433559418,
0.02524440549314022,
-0.053829681128263474,
-0.1127641499042511,
-0.06652955710887909,
0.0401972196996212,
-0.015181313268840313,
0.07729742676019669,
-0.006921347696334124,
0.04692792519927025,
-0.015460093505680561,
0.18279963731765747,
-0.10191534459590912,
-0.04238645359873772,
-0.028446754440665245,
0.15118758380413055,
-0.023561734706163406,
0.0899805873632431,
-0.050946541130542755,
-0.009970405139029026,
-0.07075116038322449,
0.23580294847488403,
0.34579887986183167,
-0.06843286007642746,
0.10672633349895477,
0.05787106230854988,
0.01646978035569191,
-0.01650276593863964,
0.09192982316017151,
0.09155157953500748,
0.28347617387771606,
-0.10927353799343109,
-0.038346149027347565,
-0.056873854249715805,
-0.007530096918344498,
-0.10286793857812881,
0.05441075935959816,
0.03147398680448532,
-0.013370621018111706,
-0.06855316460132599,
0.0392952486872673,
-0.10614343732595444,
0.018360964953899384,
0.0630851611495018,
-0.2547619938850403,
-0.07989650964736938,
0.01557997614145279,
0.21153448522090912,
-0.043434396386146545,
0.11189303547143936,
-0.03570127487182617,
-0.07294931262731552,
-0.0410439670085907,
0.004003250040113926,
-0.13050587475299835,
0.0060367402620613575,
0.06842497736215591,
-0.020289914682507515,
0.12245427817106247,
-0.04196859151124954,
-0.004513462074100971,
0.13511838018894196,
0.06526274234056473,
-0.055907949805259705,
0.048181403428316116,
0.052315857261419296,
-0.12806756794452667,
-0.05242520943284035,
0.0045229168608784676,
0.004251214675605297,
-0.07703400403261185,
0.06696168333292007,
-0.14979714155197144,
0.0521387979388237,
-0.08128447085618973,
-0.014823711477220058,
-0.011605787090957165,
0.014306134544312954,
-0.02830340340733528,
0.07633738964796066,
0.032724522054195404,
0.00631779944524169,
-0.03172954544425011,
-0.01771968975663185,
-0.026623794808983803,
0.0387326180934906,
-0.05133116617798805,
-0.1302592009305954,
-0.11983618140220642,
0.013405745849013329,
0.01678292825818062,
0.001643489464186132,
-0.18820255994796753,
-0.05829068645834923,
-0.05397076904773712,
0.02012164704501629,
-0.1266482174396515,
0.003629520069807768,
0.1261197328567505,
0.03165636211633682,
-0.011093925684690475,
-0.03512721508741379,
0.017315063625574112,
0.06867968291044235,
-0.16382792592048645,
-0.07308967411518097
] |
null | null |
transformers
|
# AraBERT v1 & v2 : Pre-training BERT for Arabic Language Understanding
<img src="https://raw.githubusercontent.com/aub-mind/arabert/master/arabert_logo.png" width="100" align="left"/>
**AraBERT** is an Arabic pretrained language model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERT uses the same BERT-Base config. More details are available in the [AraBERT Paper](https://arxiv.org/abs/2003.00104) and in the [AraBERT Meetup](https://github.com/WissamAntoun/pydata_khobar_meetup)
There are two versions of the model, AraBERTv0.1 and AraBERTv1, with the difference being that AraBERTv1 uses pre-segmented text where prefixes and suffixes were split using the [Farasa Segmenter](http://alt.qcri.org/farasa/segmenter.html).
We evaluate AraBERT models on different downstream tasks and compare them to [mBERT]((https://github.com/google-research/bert/blob/master/multilingual.md)), and other state of the art models (*To the extent of our knowledge*). The Tasks were Sentiment Analysis on 6 different datasets ([HARD](https://github.com/elnagara/HARD-Arabic-Dataset), [ASTD-Balanced](https://www.aclweb.org/anthology/D15-1299), [ArsenTD-Lev](https://staff.aub.edu.lb/~we07/Publications/ArSentD-LEV_Sentiment_Corpus.pdf), [LABR](https://github.com/mohamedadaly/LABR)), Named Entity Recognition with the [ANERcorp](http://curtis.ml.cmu.edu/w/courses/index.php/ANERcorp), and Arabic Question Answering on [Arabic-SQuAD and ARCD](https://github.com/husseinmozannar/SOQAL)
# AraBERTv2
## What's New!
AraBERT now comes in 4 new variants to replace the old v1 versions:
More Detail in the AraBERT folder and in the [README](https://github.com/aub-mind/arabert/blob/master/AraBERT/README.md) and in the [AraBERT Paper](https://arxiv.org/abs/2003.00104v2)
Model | HuggingFace Model Name | Size (MB/Params)| Pre-Segmentation | DataSet (Sentences/Size/nWords) |
---|:---:|:---:|:---:|:---:
AraBERTv0.2-base | [bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) | 543MB / 136M | No | 200M / 77GB / 8.6B |
AraBERTv0.2-large| [bert-large-arabertv02](https://huggingface.co/aubmindlab/bert-large-arabertv02) | 1.38G 371M | No | 200M / 77GB / 8.6B |
AraBERTv2-base| [bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) | 543MB 136M | Yes | 200M / 77GB / 8.6B |
AraBERTv2-large| [bert-large-arabertv2](https://huggingface.co/aubmindlab/bert-large-arabertv2) | 1.38G 371M | Yes | 200M / 77GB / 8.6B |
AraBERTv0.2-Twitter-base| [bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) | 543MB / 136M | No | Same as v02 + 60M Multi-Dialect Tweets|
AraBERTv0.2-Twitter-large| [bert-large-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-large-arabertv02-twitter) | 1.38G / 371M | No | Same as v02 + 60M Multi-Dialect Tweets|
AraBERTv0.1-base| [bert-base-arabertv01](https://huggingface.co/aubmindlab/bert-base-arabertv01) | 543MB 136M | No | 77M / 23GB / 2.7B |
AraBERTv1-base| [bert-base-arabert](https://huggingface.co/aubmindlab/bert-base-arabert) | 543MB 136M | Yes | 77M / 23GB / 2.7B |
All models are available in the `HuggingFace` model page under the [aubmindlab](https://huggingface.co/aubmindlab/) name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
## Better Pre-Processing and New Vocab
We identified an issue with AraBERTv1's wordpiece vocabulary. The issue came from punctuations and numbers that were still attached to words when learned the wordpiece vocab. We now insert a space between numbers and characters and around punctuation characters.
The new vocabulary was learned using the `BertWordpieceTokenizer` from the `tokenizers` library, and should now support the Fast tokenizer implementation from the `transformers` library.
**P.S.**: All the old BERT codes should work with the new BERT, just change the model name and check the new preprocessing function
**Please read the section on how to use the [preprocessing function](#Preprocessing)**
## Bigger Dataset and More Compute
We used ~3.5 times more data, and trained for longer.
For Dataset Sources see the [Dataset Section](#Dataset)
Model | Hardware | num of examples with seq len (128 / 512) |128 (Batch Size/ Num of Steps) | 512 (Batch Size/ Num of Steps) | Total Steps | Total Time (in Days) |
---|:---:|:---:|:---:|:---:|:---:|:---:
AraBERTv0.2-base | TPUv3-8 | 420M / 207M | 2560 / 1M | 384/ 2M | 3M | -
AraBERTv0.2-large | TPUv3-128 | 420M / 207M | 13440 / 250K | 2056 / 300K | 550K | 7
AraBERTv2-base | TPUv3-8 | 420M / 207M | 2560 / 1M | 384/ 2M | 3M | -
AraBERTv2-large | TPUv3-128 | 520M / 245M | 13440 / 250K | 2056 / 300K | 550K | 7
AraBERT-base (v1/v0.1) | TPUv2-8 | - |512 / 900K | 128 / 300K| 1.2M | 4
# Dataset
The pretraining data used for the new AraBERT model is also used for Arabic **GPT2 and ELECTRA**.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
- OSCAR unshuffled and filtered.
- [Arabic Wikipedia dump](https://archive.org/details/arwiki-20190201) from 2020/09/01
- [The 1.5B words Arabic Corpus](https://www.semanticscholar.org/paper/1.5-billion-words-Arabic-Corpus-El-Khair/f3eeef4afb81223df96575adadf808fe7fe440b4)
- [The OSIAN Corpus](https://www.aclweb.org/anthology/W19-4619)
- Assafir news articles. Huge thank you for Assafir for providing us the data
# Preprocessing
It is recommended to apply our preprocessing function before training/testing on any dataset.
**Install the arabert python package to segment text for AraBERT v1 & v2 or to clean your data `pip install arabert`**
```python
from arabert.preprocess import ArabertPreprocessor
model_name="aubmindlab/bert-large-arabertv02"
arabert_prep = ArabertPreprocessor(model_name=model_name)
text = "ููู ูุจุงูุบ ุฅุฐุง ูููุง: ุฅู ูุงุชู ุฃู ูู
ุจููุชุฑ ุงูู
ูุชุจ ูู ุฒู
ููุง ูุฐุง ุถุฑูุฑู"
arabert_prep.preprocess(text)
>>> output: ููู ูุจุงูุบ ุฅุฐุง ูููุง : ุฅู ูุงุชู ุฃู ูู
ุจููุชุฑ ุงูู
ูุชุจ ูู ุฒู
ููุง ูุฐุง ุถุฑูุฑู
```
# TensorFlow 1.x models
The TF1.x model are available in the HuggingFace models repo.
You can download them as follows:
- via git-lfs: clone all the models in a repo
```bash
curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
sudo apt-get install git-lfs
git lfs install
git clone https://huggingface.co/aubmindlab/MODEL_NAME
tar -C ./MODEL_NAME -zxvf /content/MODEL_NAME/tf1_model.tar.gz
```
where `MODEL_NAME` is any model under the `aubmindlab` name
- via `wget`:
- Go to the tf1_model.tar.gz file on huggingface.co/models/aubmindlab/MODEL_NAME.
- copy the `oid sha256`
- then run `wget https://cdn-lfs.huggingface.co/aubmindlab/aragpt2-base/INSERT_THE_SHA_HERE` (ex: for `aragpt2-base`: `wget https://cdn-lfs.huggingface.co/aubmindlab/aragpt2-base/3766fc03d7c2593ff2fb991d275e96b81b0ecb2098b71ff315611d052ce65248`)
# If you used this model please cite us as :
Google Scholar has our Bibtex wrong (missing name), use this instead
```
@inproceedings{antoun2020arabert,
title={AraBERT: Transformer-based Model for Arabic Language Understanding},
author={Antoun, Wissam and Baly, Fady and Hajj, Hazem},
booktitle={LREC 2020 Workshop Language Resources and Evaluation Conference 11--16 May 2020},
pages={9}
}
```
# Acknowledgments
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continuous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT.
# Contacts
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <[email protected]> | <[email protected]>
**Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <[email protected]> | <[email protected]>
|
{"language": "ar", "datasets": ["wikipedia", "Osian", "1.5B-Arabic-Corpus", "oscar-arabic-unshuffled", "Assafir(private)"], "widget": [{"text": " \u0639\u0627\u0635\u0645\u0629 \u0644\u0628\u0646\u0627\u0646 \u0647\u064a [MASK] ."}]}
|
fill-mask
|
aubmindlab/bert-base-arabertv02
|
[
"transformers",
"pytorch",
"tf",
"jax",
"tensorboard",
"safetensors",
"bert",
"fill-mask",
"ar",
"arxiv:2003.00104",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2003.00104"
] |
[
"ar"
] |
TAGS
#transformers #pytorch #tf #jax #tensorboard #safetensors #bert #fill-mask #ar #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
AraBERT v1 & v2 : Pre-training BERT for Arabic Language Understanding
=====================================================================
<img src="URL width="100" align="left"/>
AraBERT is an Arabic pretrained language model based on Google's BERT architechture. AraBERT uses the same BERT-Base config. More details are available in the AraBERT Paper and in the AraBERT Meetup
There are two versions of the model, AraBERTv0.1 and AraBERTv1, with the difference being that AraBERTv1 uses pre-segmented text where prefixes and suffixes were split using the Farasa Segmenter.
We evaluate AraBERT models on different downstream tasks and compare them to mBERT), and other state of the art models (*To the extent of our knowledge*). The Tasks were Sentiment Analysis on 6 different datasets (HARD, ASTD-Balanced, ArsenTD-Lev, LABR), Named Entity Recognition with the ANERcorp, and Arabic Question Answering on Arabic-SQuAD and ARCD
AraBERTv2
=========
What's New!
-----------
AraBERT now comes in 4 new variants to replace the old v1 versions:
More Detail in the AraBERT folder and in the README and in the AraBERT Paper
All models are available in the 'HuggingFace' model page under the aubmindlab name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
Better Pre-Processing and New Vocab
-----------------------------------
We identified an issue with AraBERTv1's wordpiece vocabulary. The issue came from punctuations and numbers that were still attached to words when learned the wordpiece vocab. We now insert a space between numbers and characters and around punctuation characters.
The new vocabulary was learned using the 'BertWordpieceTokenizer' from the 'tokenizers' library, and should now support the Fast tokenizer implementation from the 'transformers' library.
P.S.: All the old BERT codes should work with the new BERT, just change the model name and check the new preprocessing function
Please read the section on how to use the preprocessing function
Bigger Dataset and More Compute
-------------------------------
We used ~3.5 times more data, and trained for longer.
For Dataset Sources see the Dataset Section
Dataset
=======
The pretraining data used for the new AraBERT model is also used for Arabic GPT2 and ELECTRA.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
* OSCAR unshuffled and filtered.
* Arabic Wikipedia dump from 2020/09/01
* The 1.5B words Arabic Corpus
* The OSIAN Corpus
* Assafir news articles. Huge thank you for Assafir for providing us the data
Preprocessing
=============
It is recommended to apply our preprocessing function before training/testing on any dataset.
Install the arabert python package to segment text for AraBERT v1 & v2 or to clean your data 'pip install arabert'
TensorFlow 1.x models
=====================
The TF1.x model are available in the HuggingFace models repo.
You can download them as follows:
* via git-lfs: clone all the models in a repo
where 'MODEL\_NAME' is any model under the 'aubmindlab' name
* via 'wget':
+ Go to the tf1\_model.URL file on URL
+ copy the 'oid sha256'
+ then run 'wget URL (ex: for 'aragpt2-base': 'wget URL
If you used this model please cite us as :
==========================================
Google Scholar has our Bibtex wrong (missing name), use this instead
Acknowledgments
===============
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the AUB MIND Lab Members for the continuous support. Also thanks to Yakshof and Assafir for data and storage access. Another thanks for Habib Rahal (URL for putting a face to AraBERT.
Contacts
========
Wissam Antoun: Linkedin | Twitter | Github | [wfa07@URL](mailto:wfa07@URL) | [URL@URL](mailto:URL@URL)
Fady Baly: Linkedin | Twitter | Github | [fgb06@URL](mailto:fgb06@URL) | [URL@URL](mailto:URL@URL)
|
[] |
[
"TAGS\n#transformers #pytorch #tf #jax #tensorboard #safetensors #bert #fill-mask #ar #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
64
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #tensorboard #safetensors #bert #fill-mask #ar #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
-0.06205640733242035,
0.016419485211372375,
-0.005631936248391867,
0.07140922546386719,
0.06456120312213898,
0.020304299890995026,
0.1113319918513298,
0.09129416197538376,
0.07215004414319992,
0.053335532546043396,
0.16897571086883545,
0.16596722602844238,
-0.018709441646933556,
0.1317361444234848,
-0.04556173458695412,
-0.22351978719234467,
0.032205741852521896,
0.05431362986564636,
-0.0949944332242012,
0.09874726086854935,
0.06373937427997589,
-0.08904595673084259,
0.07026658952236176,
-0.009995865635573864,
-0.12182342261075974,
0.04553380236029625,
0.08805833756923676,
-0.12391272932291031,
0.14506754279136658,
0.04057631269097328,
0.20384493470191956,
0.05433641001582146,
-0.025800390169024467,
-0.020574888214468956,
0.048595327883958817,
0.04753135144710541,
-0.09259068965911865,
0.07850790023803711,
0.024655407294631004,
-0.05402429774403572,
-0.012493066489696503,
-0.0027504018507897854,
0.04122166335582733,
0.02339450642466545,
-0.14407005906105042,
-0.18230760097503662,
-0.04030516743659973,
0.06990037113428116,
0.0018578824819996953,
0.06252574175596237,
0.02726130187511444,
0.22974169254302979,
-0.05216149613261223,
0.09441539645195007,
0.19511520862579346,
-0.3822033703327179,
-0.03621319308876991,
0.11745812743902206,
0.10103529691696167,
0.020910069346427917,
-0.0680401548743248,
0.055746886879205704,
0.042400602251291275,
0.026227185502648354,
0.1471465826034546,
-0.07094127684831619,
-0.10904941707849503,
0.03544154018163681,
-0.11560504138469696,
-0.023161737248301506,
0.1445508599281311,
-0.038536347448825836,
0.052537668496370316,
-0.0037044971249997616,
-0.12130780518054962,
-0.10226518660783768,
0.0001326177007285878,
-0.05053788423538208,
-0.026177862659096718,
0.008250252343714237,
-0.03730624169111252,
-0.01914210245013237,
-0.14206774532794952,
0.010471856221556664,
-0.19900943338871002,
0.21637263894081116,
-0.022591307759284973,
0.056338973343372345,
-0.16717281937599182,
0.05396697297692299,
-0.043765101581811905,
-0.14190873503684998,
0.10121501982212067,
-0.061610277742147446,
-0.002920987317338586,
0.002488048281520605,
-0.03095245361328125,
-0.12288910895586014,
0.05815603956580162,
0.11357661336660385,
-0.014513226225972176,
0.028315171599388123,
0.04228188842535019,
0.1025458574295044,
-0.017318593338131905,
0.07762020826339722,
-0.04121498391032219,
-0.03195321932435036,
0.03683973103761673,
-0.008197260089218616,
0.043314121663570404,
-0.06123639643192291,
-0.123267762362957,
-0.04268215596675873,
0.08049032092094421,
0.04133974760770798,
0.054420679807662964,
0.06905409693717957,
-0.04760894179344177,
0.038131073117256165,
0.06706041097640991,
-0.06518762558698654,
0.02675791084766388,
-0.034142352640628815,
0.07129345834255219,
0.015927307307720184,
0.04946556314826012,
-0.026871493086218834,
0.03452198952436447,
0.10468943417072296,
-0.11645659804344177,
-0.038195423781871796,
-0.0432870090007782,
-0.12498882412910461,
0.05328806862235069,
-0.08831673860549927,
0.019647952169179916,
-0.20986616611480713,
-0.030384015291929245,
0.04808766022324562,
0.06183437630534172,
-0.0123753622174263,
-0.01820213906466961,
0.09523697197437286,
-0.07112377882003784,
0.07157174497842789,
-0.021480198949575424,
-0.005400602240115404,
-0.03465329110622406,
0.08125422894954681,
-0.022753048688173294,
0.1439654678106308,
-0.08775685727596283,
0.012105434201657772,
-0.06509114056825638,
0.029573814943432808,
-0.1715555489063263,
-0.08765578269958496,
-0.05981617048382759,
0.1113397479057312,
-0.0071297911927104,
-0.026387372985482216,
-0.14739906787872314,
0.046218641102313995,
0.038286659866571426,
0.11723694205284119,
-0.1512991189956665,
-0.06249857693910599,
0.18374741077423096,
-0.10189822316169739,
-0.14514987170696259,
0.1010316014289856,
0.017330870032310486,
-0.007883606478571892,
-0.008189505897462368,
0.12961390614509583,
0.03263343870639801,
-0.15492407977581024,
0.0037295660004019737,
0.13028399646282196,
-0.10825403779745102,
-0.08837661892175674,
0.021526483818888664,
0.028672466054558754,
-0.07991576939821243,
0.0027549436781555414,
0.10240703821182251,
0.07628972083330154,
-0.05284230038523674,
-0.059642910957336426,
-0.0495307482779026,
-0.043735623359680176,
0.15174247324466705,
0.045873790979385376,
0.09384194016456604,
-0.07773073762655258,
-0.09571273624897003,
-0.03531312942504883,
-0.0012932431418448687,
0.05520990863442421,
0.01251483429223299,
-0.06899737566709518,
0.15827548503875732,
-0.10746494680643082,
-0.018701231107115746,
-0.16324587166309357,
-0.15014822781085968,
-0.03964085876941681,
0.047023046761751175,
-0.022980522364377975,
0.16527724266052246,
0.14285697042942047,
-0.01760239526629448,
-0.02932555042207241,
-0.034417495131492615,
0.09304012358188629,
0.057286690920591354,
-0.07616351544857025,
-0.13829553127288818,
0.0023591239005327225,
-0.1085963100194931,
-0.008234956301748753,
-0.07129557430744171,
0.013926321640610695,
0.02967788279056549,
0.12781620025634766,
0.0387415736913681,
0.050243888050317764,
-0.03647064045071602,
0.029220478609204292,
-0.04892974719405174,
-0.020968379452824593,
0.04197848215699196,
0.001577957533299923,
-0.044085994362831116,
0.16455984115600586,
-0.19607876241207123,
0.3997917175292969,
0.18791256844997406,
-0.19213640689849854,
-0.07480120658874512,
0.0681593120098114,
-0.024110790342092514,
0.02351156435906887,
0.04179821535944939,
-0.03955775126814842,
-0.04400914907455444,
-0.038700055330991745,
0.12317727506160736,
-0.037210673093795776,
-0.05323050543665886,
0.061081528663635254,
-0.0679059699177742,
-0.09253434091806412,
0.03645201772451401,
0.04429423063993454,
-0.14570622146129608,
0.1870698481798172,
0.3004302382469177,
-0.06477932631969452,
0.15444912016391754,
0.02873992919921875,
-0.010621128603816032,
-0.02214619517326355,
-0.02965385839343071,
-0.0018400672124698758,
0.12518762052059174,
-0.1364172101020813,
-0.02946421317756176,
0.06706062704324722,
-0.038584306836128235,
0.017491010949015617,
-0.1430903822183609,
-0.05457482486963272,
0.024657396599650383,
0.06358625739812851,
-0.02865566313266754,
0.13560087978839874,
0.02546938695013523,
0.124820776283741,
-0.015216883271932602,
-0.11034747213125229,
0.05958956852555275,
0.023227181285619736,
-0.03444535285234451,
0.15055105090141296,
-0.09835734218358994,
-0.28529852628707886,
-0.0926188975572586,
-0.07718223333358765,
0.02264782041311264,
-0.0015058720018714666,
0.04497717320919037,
-0.060805123299360275,
-0.046905700117349625,
-0.006238559260964394,
-0.04998674616217613,
-0.04098185896873474,
0.08689656108617783,
-0.04848824068903923,
-0.005533347837626934,
0.010986941866576672,
-0.08298224955797195,
-0.06091240048408508,
-0.03328895568847656,
-0.018151648342609406,
0.13347594439983368,
0.01101174857467413,
0.07978677749633789,
0.14996425807476044,
-0.03076476976275444,
0.029970677569508553,
-0.010740107856690884,
0.16774098575115204,
-0.06903976202011108,
0.04520275443792343,
0.14515435695648193,
-0.03417101502418518,
0.07809074968099594,
0.1658826768398285,
0.04360342025756836,
-0.015286105684936047,
-0.006610523909330368,
-0.01891227997839451,
-0.11231809109449387,
-0.13974107801914215,
-0.06382898986339569,
-0.11667319387197495,
-0.0037470697425305843,
0.0412231869995594,
0.07882214337587357,
0.12243178486824036,
0.0771171897649765,
0.0603230856359005,
0.001797158969566226,
-0.09064871072769165,
0.029292995110154152,
0.08973082154989243,
-0.019320698454976082,
0.13870114088058472,
-0.0344298854470253,
-0.1287648230791092,
0.04252048209309578,
0.03779057413339615,
0.04456395283341408,
0.05335664749145508,
-0.046639665961265564,
0.03595798835158348,
0.20038793981075287,
0.13424481451511383,
0.13018476963043213,
0.0021756545174866915,
-0.11051155626773834,
-0.0008863491239026189,
-0.039297107607126236,
0.02520613931119442,
0.042924076318740845,
0.08089606463909149,
-0.046668779104948044,
-0.003344982862472534,
-0.09605731070041656,
0.04477301239967346,
0.06829194724559784,
0.08150628954172134,
-0.2730735242366791,
-0.011001590639352798,
0.04540189728140831,
0.008253197185695171,
-0.05469473451375961,
0.017010390758514404,
0.09728763997554779,
-0.0376305878162384,
0.02857719361782074,
-0.05940106511116028,
0.039083581417798996,
0.09825767576694489,
0.0535990446805954,
-0.03578467667102814,
-0.028901927173137665,
-0.019518425688147545,
0.01921640709042549,
-0.2272026389837265,
0.2588249444961548,
0.011880024336278439,
-0.04280561953783035,
-0.05197710916399956,
0.0036170268431305885,
0.04662278667092323,
0.10678387433290482,
0.1273149698972702,
0.02163301408290863,
-0.04599049687385559,
-0.11021731793880463,
0.0014950347831472754,
-0.00950069259852171,
0.06893999874591827,
0.0021605545189231634,
0.01216472964733839,
-0.012273983098566532,
-0.04407518729567528,
0.04836302995681763,
0.13912375271320343,
-0.03258698061108589,
-0.1125522032380104,
0.0935889333486557,
0.04881802201271057,
-0.08794575929641724,
-0.032516855746507645,
-0.10036790370941162,
-0.16575555503368378,
0.15072490274906158,
0.014301794581115246,
-0.009514560922980309,
-0.12821665406227112,
-0.07843200117349625,
0.10363633185625076,
-0.08311736583709717,
0.08751948922872543,
-0.06382812559604645,
0.01512227300554514,
-0.07946725934743881,
-0.15116655826568604,
0.1806308925151825,
-0.131719708442688,
-0.01609332300722599,
-0.09528714418411255,
0.10099870711565018,
-0.09107154607772827,
0.0511881522834301,
-0.009274378418922424,
0.057845257222652435,
-0.07947779446840286,
-0.03831625357270241,
0.06445273756980896,
-0.09184832125902176,
0.04714634269475937,
-0.053881581872701645,
-0.026896657422184944,
-0.08003944158554077,
0.04882983863353729,
0.045462802052497864,
0.20122870802879333,
0.22696244716644287,
-0.12365004420280457,
0.07828295230865479,
0.10416458547115326,
0.018286680802702904,
-0.333726167678833,
-0.05516946688294411,
-0.12306740880012512,
0.002300277352333069,
0.08398216962814331,
-0.013672986067831516,
0.06733328104019165,
-0.026811441406607628,
-0.06954702734947205,
0.13314637541770935,
-0.19110053777694702,
-0.10437014698982239,
0.19079133868217468,
0.04585748538374901,
0.3554614186286926,
-0.1473289281129837,
-0.031287699937820435,
0.03301629424095154,
-0.08553328365087509,
0.07570717483758926,
-0.09013614058494568,
0.06756661087274551,
-0.016686277464032173,
0.03254677355289459,
0.03874121233820915,
-0.0993320643901825,
0.08918625861406326,
-0.11194690316915512,
0.041315969079732895,
-0.11140521615743637,
-0.13264404237270355,
0.10479085892438889,
-0.0318586528301239,
-0.007499035447835922,
-0.04853729531168938,
0.010254673659801483,
-0.013712265528738499,
0.008955953642725945,
-0.10425613820552826,
0.11486134678125381,
0.005716176703572273,
-0.0772642120718956,
0.007591187953948975,
0.007282900623977184,
-0.03416379541158676,
-0.053937532007694244,
0.21138058602809906,
0.0002531967475079,
0.25961804389953613,
0.1820603609085083,
0.031865689903497696,
-0.11829892545938492,
-0.06986027210950851,
0.02471589483320713,
-0.0813932865858078,
0.10694193840026855,
-0.09115427732467651,
0.03615221753716469,
0.07373851537704468,
0.0026366431266069412,
0.03569267690181732,
0.10771167278289795,
-0.02960849553346634,
-0.028581099584698677,
0.17612971365451813,
-0.2301277071237564,
-0.05098425969481468,
-0.020169109106063843,
-0.0005902972188778222,
0.004123882856220007,
0.06742317974567413,
0.11403528600931168,
-0.01754057966172695,
-0.007228579372167587,
0.012876796536147594,
-0.013529956340789795,
-0.05531605705618858,
0.06784787029027939,
0.1015721932053566,
0.05553675442934036,
-0.06439347565174103,
-0.0163639634847641,
0.003961800131946802,
-0.1950717717409134,
-0.007229531183838844,
0.10807757079601288,
-0.06960131973028183,
-0.13556182384490967,
0.006897018291056156,
0.07048038393259048,
-0.02844381146132946,
-0.008336000144481659,
-0.06337548792362213,
-0.09124139696359634,
0.02627447061240673,
0.2542470395565033,
0.0561421774327755,
0.03195618838071823,
0.0004717611300293356,
-0.00702428724616766,
0.001842873520217836,
0.04973233491182327,
0.0040061897598207,
0.059405650943517685,
-0.15369026362895966,
0.06040234491229057,
-0.016422785818576813,
0.1321401745080948,
-0.10280845314264297,
0.014286753721535206,
-0.17296408116817474,
-0.021147672086954117,
-0.043464820832014084,
-0.07414416968822479,
-0.07311565428972244,
-0.07461603730916977,
0.002565700327977538,
-0.09483636170625687,
-0.0777704194188118,
-0.0366755872964859,
-0.11001003533601761,
0.007898882031440735,
0.03897085040807724,
0.0029747411608695984,
-0.07472869008779526,
-0.044469065964221954,
0.07799013704061508,
-0.02568673901259899,
0.07837355136871338,
0.07082529366016388,
-0.03894275054335594,
0.07810002565383911,
-0.12285029143095016,
-0.07097987830638885,
0.08251919597387314,
0.002477311762049794,
0.09740988910198212,
0.060924313962459564,
0.007473078556358814,
0.0006446216139011085,
0.03796475753188133,
0.031743090599775314,
0.05266939476132393,
-0.07946975529193878,
0.0666801780462265,
-0.005743241403251886,
-0.14886006712913513,
-0.03976970911026001,
-0.055332429707050323,
0.10423769801855087,
-0.03908917307853699,
0.09273091703653336,
-0.05218992009758949,
0.037194814532995224,
-0.13356459140777588,
0.022982364520430565,
-0.029868952929973602,
-0.14308784902095795,
0.013500630855560303,
0.0029223517049103975,
0.03562235087156296,
-0.03913581743836403,
0.13969874382019043,
0.040109194815158844,
-0.07089532166719437,
0.04088154062628746,
0.02752225659787655,
0.013268458656966686,
-0.001395803177729249,
0.11613566428422928,
0.03047296591103077,
-0.057379476726055145,
-0.11226285994052887,
0.07599129527807236,
0.025600213557481766,
-0.011567510664463043,
0.12414441257715225,
0.072645403444767,
0.02569679543375969,
0.09936664253473282,
0.0387396402657032,
-0.033034298568964005,
-0.12005939334630966,
-0.1399136483669281,
-0.10132614523172379,
0.053976867347955704,
-0.02304636873304844,
0.01874390058219433,
0.23840701580047607,
0.009891532361507416,
0.028403205797076225,
-0.06844337284564972,
-0.022458065301179886,
-0.16186298429965973,
-0.15062439441680908,
-0.07439664751291275,
-0.05985378473997116,
-0.004769462160766125,
-0.019678432494401932,
0.009821049869060516,
0.08612886071205139,
0.03393776714801788,
-0.0019027923699468374,
0.1758262813091278,
0.0761275365948677,
-0.0006402662838809192,
0.004925572779029608,
0.050419360399246216,
0.023003600537776947,
-0.023529721423983574,
0.011276671662926674,
-0.13186031579971313,
-0.019211705774068832,
-0.07197465747594833,
-0.02231898345053196,
-0.054685916751623154,
0.024706555530428886,
-0.05646619200706482,
-0.11669252812862396,
-0.05150238797068596,
0.02313285693526268,
-0.01710774563252926,
0.06086781993508339,
0.006088658701628447,
0.045691173523664474,
-0.010066820308566093,
0.1781281977891922,
-0.09703728556632996,
-0.05015042424201965,
-0.04471985623240471,
0.18383944034576416,
-0.026321690529584885,
0.08377490937709808,
-0.031909603625535965,
0.001852802000939846,
-0.058642756193876266,
0.22526736557483673,
0.3340652287006378,
-0.06147017329931259,
0.10824669152498245,
0.05175526812672615,
0.01240173727273941,
-0.02466142550110817,
0.09782397001981735,
0.08889931440353394,
0.27488937973976135,
-0.10338589549064636,
-0.008731781505048275,
-0.06685293465852737,
0.00850763265043497,
-0.08175580203533173,
0.05114224553108215,
0.04466280713677406,
-0.015034356154501438,
-0.04801013693213463,
0.04185260832309723,
-0.09319619834423065,
0.042454712092876434,
0.05694277212023735,
-0.23500053584575653,
-0.0800832137465477,
0.004111040383577347,
0.1764068454504013,
-0.030650654807686806,
0.10063746571540833,
-0.03542433679103851,
-0.06354635953903198,
-0.037183575332164764,
0.007849691435694695,
-0.1385492980480194,
-0.013906620442867279,
0.08472760766744614,
-0.036827217787504196,
0.12571607530117035,
-0.053063537925481796,
0.009537851437926292,
0.12896914780139923,
0.0563601553440094,
-0.051099993288517,
0.03801474720239639,
0.045530132949352264,
-0.10969606786966324,
-0.059070609509944916,
0.014085112139582634,
0.013415331952273846,
-0.058414820581674576,
0.05767589062452316,
-0.14039157330989838,
0.037183456122875214,
-0.09668384492397308,
-0.00786216277629137,
-0.007966425269842148,
0.033709827810525894,
-0.011793144047260284,
0.09108547121286392,
0.06538639962673187,
0.008740723133087158,
-0.022280698642134666,
-0.03424162045121193,
-0.02933240868151188,
0.06169120594859123,
-0.0549285002052784,
-0.13041076064109802,
-0.09422887116670609,
0.0004355788987595588,
0.00897127017378807,
-0.010479633696377277,
-0.17388296127319336,
-0.0631512999534607,
-0.06574290245771408,
0.004335571080446243,
-0.1288342922925949,
0.018772393465042114,
0.13619868457317352,
0.03891458734869957,
-0.0009124035132117569,
-0.02776486612856388,
0.02082867920398712,
0.06721970438957214,
-0.17325308918952942,
-0.06719221919775009
] |
null | null |
transformers
|
# AraBERT v1 & v2 : Pre-training BERT for Arabic Language Understanding
<img src="https://raw.githubusercontent.com/aub-mind/arabert/master/arabert_logo.png" width="100" align="left"/>
**AraBERT** is an Arabic pretrained lanaguage model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERT uses the same BERT-Base config. More details are available in the [AraBERT Paper](https://arxiv.org/abs/2003.00104) and in the [AraBERT Meetup](https://github.com/WissamAntoun/pydata_khobar_meetup)
There are two versions of the model, AraBERTv0.1 and AraBERTv1, with the difference being that AraBERTv1 uses pre-segmented text where prefixes and suffixes were splitted using the [Farasa Segmenter](http://alt.qcri.org/farasa/segmenter.html).
We evalaute AraBERT models on different downstream tasks and compare them to [mBERT]((https://github.com/google-research/bert/blob/master/multilingual.md)), and other state of the art models (*To the extent of our knowledge*). The Tasks were Sentiment Analysis on 6 different datasets ([HARD](https://github.com/elnagara/HARD-Arabic-Dataset), [ASTD-Balanced](https://www.aclweb.org/anthology/D15-1299), [ArsenTD-Lev](https://staff.aub.edu.lb/~we07/Publications/ArSentD-LEV_Sentiment_Corpus.pdf), [LABR](https://github.com/mohamedadaly/LABR)), Named Entity Recognition with the [ANERcorp](http://curtis.ml.cmu.edu/w/courses/index.php/ANERcorp), and Arabic Question Answering on [Arabic-SQuAD and ARCD](https://github.com/husseinmozannar/SOQAL)
# AraBERTv2
## What's New!
AraBERT now comes in 4 new variants to replace the old v1 versions:
More Detail in the AraBERT folder and in the [README](https://github.com/aub-mind/arabert/blob/master/AraBERT/README.md) and in the [AraBERT Paper](https://arxiv.org/abs/2003.00104v2)
Model | HuggingFace Model Name | Size (MB/Params)| Pre-Segmentation | DataSet (Sentences/Size/nWords) |
---|:---:|:---:|:---:|:---:
AraBERTv0.2-base | [bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) | 543MB / 136M | No | 200M / 77GB / 8.6B |
AraBERTv0.2-large| [bert-large-arabertv02](https://huggingface.co/aubmindlab/bert-large-arabertv02) | 1.38G 371M | No | 200M / 77GB / 8.6B |
AraBERTv2-base| [bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) | 543MB 136M | Yes | 200M / 77GB / 8.6B |
AraBERTv2-large| [bert-large-arabertv2](https://huggingface.co/aubmindlab/bert-large-arabertv2) | 1.38G 371M | Yes | 200M / 77GB / 8.6B |
AraBERTv0.1-base| [bert-base-arabertv01](https://huggingface.co/aubmindlab/bert-base-arabertv01) | 543MB 136M | No | 77M / 23GB / 2.7B |
AraBERTv1-base| [bert-base-arabert](https://huggingface.co/aubmindlab/bert-base-arabert) | 543MB 136M | Yes | 77M / 23GB / 2.7B |
All models are available in the `HuggingFace` model page under the [aubmindlab](https://huggingface.co/aubmindlab/) name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
## Better Pre-Processing and New Vocab
We identified an issue with AraBERTv1's wordpiece vocabulary. The issue came from punctuations and numbers that were still attached to words when learned the wordpiece vocab. We now insert a space between numbers and characters and around punctuation characters.
The new vocabulary was learnt using the `BertWordpieceTokenizer` from the `tokenizers` library, and should now support the Fast tokenizer implementation from the `transformers` library.
**P.S.**: All the old BERT codes should work with the new BERT, just change the model name and check the new preprocessing dunction
**Please read the section on how to use the [preprocessing function](#Preprocessing)**
## Bigger Dataset and More Compute
We used ~3.5 times more data, and trained for longer.
For Dataset Sources see the [Dataset Section](#Dataset)
Model | Hardware | num of examples with seq len (128 / 512) |128 (Batch Size/ Num of Steps) | 512 (Batch Size/ Num of Steps) | Total Steps | Total Time (in Days) |
---|:---:|:---:|:---:|:---:|:---:|:---:
AraBERTv0.2-base | TPUv3-8 | 420M / 207M | 2560 / 1M | 384/ 2M | 3M | -
AraBERTv0.2-large | TPUv3-128 | 420M / 207M | 13440 / 250K | 2056 / 300K | 550K | 7
AraBERTv2-base | TPUv3-8 | 420M / 207M | 2560 / 1M | 384/ 2M | 3M | -
AraBERTv2-large | TPUv3-128 | 520M / 245M | 13440 / 250K | 2056 / 300K | 550K | 7
AraBERT-base (v1/v0.1) | TPUv2-8 | - |512 / 900K | 128 / 300K| 1.2M | 4
# Dataset
The pretraining data used for the new AraBERT model is also used for Arabic **AraGPT2 and AraELECTRA**.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
- OSCAR unshuffled and filtered.
- [Arabic Wikipedia dump](https://archive.org/details/arwiki-20190201) from 2020/09/01
- [The 1.5B words Arabic Corpus](https://www.semanticscholar.org/paper/1.5-billion-words-Arabic-Corpus-El-Khair/f3eeef4afb81223df96575adadf808fe7fe440b4)
- [The OSIAN Corpus](https://www.aclweb.org/anthology/W19-4619)
- Assafir news articles. Huge thank you for Assafir for giving us the data
# Preprocessing
It is recommended to apply our preprocessing function before training/testing on any dataset.
**Install farasapy to segment text for AraBERT v1 & v2 `pip install farasapy`**
```python
from arabert.preprocess import ArabertPreprocessor
model_name="bert-base-arabertv2"
arabert_prep = ArabertPreprocessor(model_name=model_name)
text = "ููู ูุจุงูุบ ุฅุฐุง ูููุง ุฅู ูุงุชู ุฃู ูู
ุจููุชุฑ ุงูู
ูุชุจ ูู ุฒู
ููุง ูุฐุง ุถุฑูุฑู"
arabert_prep.preprocess(text)
>>>"ู+ ูู ูุจุงูุบ ุฅุฐุง ูู +ูุง ุฅู ูุงุชู ุฃู ูู
ุจููุชุฑ ุงู+ ู
ูุชุจ ูู ุฒู
ู +ูุง ูุฐุง ุถุฑูุฑู"
```
## Accepted_models
```
bert-base-arabertv01
bert-base-arabert
bert-base-arabertv02
bert-base-arabertv2
bert-large-arabertv02
bert-large-arabertv2
araelectra-base
aragpt2-base
aragpt2-medium
aragpt2-large
aragpt2-mega
```
# TensorFlow 1.x models
The TF1.x model are available in the HuggingFace models repo.
You can download them as follows:
- via git-lfs: clone all the models in a repo
```bash
curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
sudo apt-get install git-lfs
git lfs install
git clone https://huggingface.co/aubmindlab/MODEL_NAME
tar -C ./MODEL_NAME -zxvf /content/MODEL_NAME/tf1_model.tar.gz
```
where `MODEL_NAME` is any model under the `aubmindlab` name
- via `wget`:
- Go to the tf1_model.tar.gz file on huggingface.co/models/aubmindlab/MODEL_NAME.
- copy the `oid sha256`
- then run `wget https://cdn-lfs.huggingface.co/aubmindlab/aragpt2-base/INSERT_THE_SHA_HERE` (ex: for `aragpt2-base`: `wget https://cdn-lfs.huggingface.co/aubmindlab/aragpt2-base/3766fc03d7c2593ff2fb991d275e96b81b0ecb2098b71ff315611d052ce65248`)
# If you used this model please cite us as :
Google Scholar has our Bibtex wrong (missing name), use this instead
```
@inproceedings{antoun2020arabert,
title={AraBERT: Transformer-based Model for Arabic Language Understanding},
author={Antoun, Wissam and Baly, Fady and Hajj, Hazem},
booktitle={LREC 2020 Workshop Language Resources and Evaluation Conference 11--16 May 2020},
pages={9}
}
```
# Acknowledgments
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT.
# Contacts
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <[email protected]> | <[email protected]>
**Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <[email protected]> | <[email protected]>
|
{"language": "ar", "datasets": ["wikipedia", "Osian", "1.5B-Arabic-Corpus", "oscar-arabic-unshuffled"], "widget": [{"text": " \u0639\u0627\u0635\u0645 +\u0629 \u0644\u0628\u0646\u0627\u0646 \u0647\u064a [MASK] ."}]}
|
fill-mask
|
aubmindlab/bert-base-arabertv2
|
[
"transformers",
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"ar",
"dataset:wikipedia",
"dataset:Osian",
"dataset:1.5B-Arabic-Corpus",
"dataset:oscar-arabic-unshuffled",
"arxiv:2003.00104",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2003.00104"
] |
[
"ar"
] |
TAGS
#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #ar #dataset-wikipedia #dataset-Osian #dataset-1.5B-Arabic-Corpus #dataset-oscar-arabic-unshuffled #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
AraBERT v1 & v2 : Pre-training BERT for Arabic Language Understanding
=====================================================================
<img src="URL width="100" align="left"/>
AraBERT is an Arabic pretrained lanaguage model based on Google's BERT architechture. AraBERT uses the same BERT-Base config. More details are available in the AraBERT Paper and in the AraBERT Meetup
There are two versions of the model, AraBERTv0.1 and AraBERTv1, with the difference being that AraBERTv1 uses pre-segmented text where prefixes and suffixes were splitted using the Farasa Segmenter.
We evalaute AraBERT models on different downstream tasks and compare them to mBERT), and other state of the art models (*To the extent of our knowledge*). The Tasks were Sentiment Analysis on 6 different datasets (HARD, ASTD-Balanced, ArsenTD-Lev, LABR), Named Entity Recognition with the ANERcorp, and Arabic Question Answering on Arabic-SQuAD and ARCD
AraBERTv2
=========
What's New!
-----------
AraBERT now comes in 4 new variants to replace the old v1 versions:
More Detail in the AraBERT folder and in the README and in the AraBERT Paper
All models are available in the 'HuggingFace' model page under the aubmindlab name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
Better Pre-Processing and New Vocab
-----------------------------------
We identified an issue with AraBERTv1's wordpiece vocabulary. The issue came from punctuations and numbers that were still attached to words when learned the wordpiece vocab. We now insert a space between numbers and characters and around punctuation characters.
The new vocabulary was learnt using the 'BertWordpieceTokenizer' from the 'tokenizers' library, and should now support the Fast tokenizer implementation from the 'transformers' library.
P.S.: All the old BERT codes should work with the new BERT, just change the model name and check the new preprocessing dunction
Please read the section on how to use the preprocessing function
Bigger Dataset and More Compute
-------------------------------
We used ~3.5 times more data, and trained for longer.
For Dataset Sources see the Dataset Section
Dataset
=======
The pretraining data used for the new AraBERT model is also used for Arabic AraGPT2 and AraELECTRA.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
* OSCAR unshuffled and filtered.
* Arabic Wikipedia dump from 2020/09/01
* The 1.5B words Arabic Corpus
* The OSIAN Corpus
* Assafir news articles. Huge thank you for Assafir for giving us the data
Preprocessing
=============
It is recommended to apply our preprocessing function before training/testing on any dataset.
Install farasapy to segment text for AraBERT v1 & v2 'pip install farasapy'
Accepted\_models
----------------
TensorFlow 1.x models
=====================
The TF1.x model are available in the HuggingFace models repo.
You can download them as follows:
* via git-lfs: clone all the models in a repo
where 'MODEL\_NAME' is any model under the 'aubmindlab' name
* via 'wget':
+ Go to the tf1\_model.URL file on URL
+ copy the 'oid sha256'
+ then run 'wget URL (ex: for 'aragpt2-base': 'wget URL
If you used this model please cite us as :
==========================================
Google Scholar has our Bibtex wrong (missing name), use this instead
Acknowledgments
===============
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the AUB MIND Lab Members for the continous support. Also thanks to Yakshof and Assafir for data and storage access. Another thanks for Habib Rahal (URL for putting a face to AraBERT.
Contacts
========
Wissam Antoun: Linkedin | Twitter | Github | [wfa07@URL](mailto:wfa07@URL) | [URL@URL](mailto:URL@URL)
Fady Baly: Linkedin | Twitter | Github | [fgb06@URL](mailto:fgb06@URL) | [URL@URL](mailto:URL@URL)
|
[] |
[
"TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #ar #dataset-wikipedia #dataset-Osian #dataset-1.5B-Arabic-Corpus #dataset-oscar-arabic-unshuffled #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
97
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #safetensors #bert #fill-mask #ar #dataset-wikipedia #dataset-Osian #dataset-1.5B-Arabic-Corpus #dataset-oscar-arabic-unshuffled #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
-0.10926613211631775,
0.15169446170330048,
-0.00327622820623219,
0.09386719018220901,
0.05386162921786308,
0.031216194853186607,
0.14141540229320526,
0.1033690795302391,
0.02711264230310917,
-0.034279659390449524,
0.1687098741531372,
0.07792162895202637,
0.0574483647942543,
0.1780291199684143,
-0.020605579018592834,
-0.1534828245639801,
0.021854659542441368,
-0.021237565204501152,
-0.027990862727165222,
0.08588805794715881,
0.0972575843334198,
-0.08097989857196808,
0.09730888903141022,
-0.06655491143465042,
-0.08512122929096222,
0.0395246222615242,
0.042812034487724304,
-0.1526404619216919,
0.11129415780305862,
0.060402169823646545,
0.1265149563550949,
0.06527043879032135,
0.01871328614652157,
-0.0749082937836647,
0.03348475322127342,
0.013800227083265781,
-0.07353755831718445,
0.04503224790096283,
0.01921505108475685,
-0.06434683501720428,
0.022230640053749084,
-0.0586351603269577,
-0.003331152256578207,
0.01243768073618412,
-0.11608853936195374,
-0.22899103164672852,
-0.018389398232102394,
0.04446743056178093,
-0.008881693705916405,
0.08759074658155441,
0.005557334050536156,
0.17029353976249695,
-0.04742346704006195,
0.11176340281963348,
0.12256889790296555,
-0.27847716212272644,
-0.03537615388631821,
-0.0039038783870637417,
0.0539204478263855,
0.01397610642015934,
-0.03139052167534828,
0.07333972305059433,
0.031508080661296844,
-0.01786266826093197,
0.09806015342473984,
-0.08480226248502731,
-0.21247512102127075,
0.00962019432336092,
-0.046271294355392456,
-0.04483867809176445,
0.27872562408447266,
0.0346771739423275,
0.009209558367729187,
0.004955940879881382,
-0.06493619084358215,
-0.08634857833385468,
0.01721956767141819,
0.05609617009758949,
0.0005192201933823526,
-0.026173343881964684,
-0.013266530819237232,
0.02898215502500534,
-0.13391877710819244,
0.041087862104177475,
-0.23897425830364227,
0.18414504826068878,
0.0015296804485842586,
0.10106009989976883,
-0.12160071730613708,
0.05972204729914665,
0.010534060187637806,
-0.17536185681819916,
0.048904694616794586,
-0.0663532093167305,
-0.015667758882045746,
0.01701914519071579,
0.006531317252665758,
0.010434129275381565,
0.03691824525594711,
0.08641742169857025,
-0.005878865253180265,
0.012050123885273933,
-0.003896498354151845,
0.09890333563089371,
0.02925722487270832,
0.04989789426326752,
-0.10540685802698135,
-0.0630456879734993,
0.009967375546693802,
0.027127284556627274,
0.028435872867703438,
-0.001836134702898562,
-0.03886212036013603,
-0.03493402898311615,
0.009228847920894623,
0.04724301025271416,
0.07889527827501297,
0.061289701610803604,
-0.11435865610837936,
0.032226093113422394,
0.042011965066194534,
-0.12684781849384308,
-0.01193337980657816,
-0.011210975237190723,
-0.05090655758976936,
-0.051861632615327835,
0.04909129813313484,
0.0062416731379926205,
0.013833735138177872,
0.06101668253540993,
-0.09917356818914413,
0.023924164474010468,
0.021710271015763283,
-0.06719552725553513,
0.056708693504333496,
-0.13026027381420135,
0.03602731600403786,
-0.18961547315120697,
-0.09085654467344284,
0.05608833581209183,
0.07147931307554245,
-0.027372516691684723,
0.02270829863846302,
0.030192764475941658,
0.007956523448228836,
0.05657833069562912,
-0.07106807082891464,
0.011534001678228378,
-0.0942983403801918,
0.09588249772787094,
0.017669733613729477,
0.15081897377967834,
-0.09765617549419403,
0.0037200259976089,
-0.08845003694295883,
-0.012147391214966774,
-0.05867259204387665,
0.03328413516283035,
-0.05761197581887245,
0.10353155434131622,
-0.023860543966293335,
-0.014300007373094559,
-0.04643558710813522,
0.03233170136809349,
-0.006652598734945059,
0.22295716404914856,
-0.23424488306045532,
-0.08045884966850281,
0.21863685548305511,
-0.035024821758270264,
-0.17317967116832733,
0.10199190676212311,
-0.009385165758430958,
-0.03966442123055458,
0.01734958589076996,
0.1344778835773468,
-0.13657331466674805,
-0.10533483326435089,
-0.04668885096907616,
0.09513409435749054,
-0.0100477309897542,
-0.031863030046224594,
0.12291143089532852,
0.04972591996192932,
-0.03520939126610756,
0.007812969386577606,
0.10277561098337173,
0.1330968141555786,
-0.04575558379292488,
-0.07672814279794693,
0.013293977826833725,
-0.09176430106163025,
0.08237650990486145,
0.05723067373037338,
0.07546892017126083,
-0.08883427083492279,
-0.049623049795627594,
-0.11748605966567993,
0.03163330629467964,
0.07080195099115372,
0.013877196237444878,
-0.08862626552581787,
0.07059015333652496,
-0.07589522749185562,
-0.030365968123078346,
-0.12783144414424896,
-0.07197856158018112,
-0.041575200855731964,
0.18436028063297272,
-0.03244875743985176,
0.02409825660288334,
0.0854908749461174,
0.010129950940608978,
-0.06724559515714645,
-0.04316377639770508,
0.09606686979532242,
0.07248242944478989,
-0.038558479398489,
-0.147590771317482,
0.06026545539498329,
-0.08179102838039398,
0.07561127841472626,
-0.025651119649410248,
-0.01905715838074684,
-0.01333538256585598,
0.1972116380929947,
0.03663864731788635,
0.019439155235886574,
0.020971398800611496,
0.030398491770029068,
-0.03844043239951134,
-0.056643009185791016,
0.02805033139884472,
-0.01699789986014366,
-0.09424836933612823,
0.1453932374715805,
-0.11577921360731125,
0.395349383354187,
0.1904577761888504,
-0.10954553633928299,
-0.06047600507736206,
0.09837830066680908,
-0.001845907885581255,
0.024390308186411858,
0.056587208062410355,
0.05547013133764267,
-0.034032344818115234,
-0.052435051649808884,
0.15725989639759064,
-0.04476388171315193,
0.0076909796334803104,
0.028854429721832275,
-0.07328861206769943,
-0.11655588448047638,
0.08839985728263855,
-0.0054614366963505745,
-0.2197546511888504,
0.2211005836725235,
0.2522329092025757,
0.046066559851169586,
0.19482964277267456,
0.03428444638848305,
-0.0034707302693277597,
-0.01188287977129221,
-0.07115919142961502,
-0.01710439659655094,
0.1686708778142929,
-0.07245103269815445,
-0.022958453744649887,
0.060401689261198044,
-0.05566929653286934,
-0.0320267379283905,
-0.11339060962200165,
-0.10296691209077835,
0.03387211263179779,
0.027088003233075142,
-0.06762319803237915,
0.0766221284866333,
-0.00005875690112588927,
0.1453264057636261,
-0.009749911725521088,
-0.08743507415056229,
0.05404031276702881,
0.012816044501960278,
-0.06287485361099243,
0.1808992475271225,
-0.12319348752498627,
-0.32280492782592773,
0.011781631037592888,
-0.12572963535785675,
-0.021798910573124886,
0.034551482647657394,
0.052743010222911835,
-0.0743914395570755,
-0.02140014059841633,
-0.04601040855050087,
-0.10918722301721573,
-0.07020898163318634,
0.058840468525886536,
0.032812926918268204,
-0.03518635779619217,
0.008189240470528603,
-0.04345731809735298,
-0.05853278934955597,
0.006068083923310041,
-0.03763847053050995,
0.1479356288909912,
-0.0372372567653656,
0.05557597056031227,
-0.01286605466157198,
-0.03342493996024132,
0.04390614107251167,
-0.027095409110188484,
0.14668342471122742,
-0.09090127795934677,
0.018605874851346016,
0.10415013134479523,
0.008951693773269653,
0.04349614679813385,
0.22908024489879608,
0.031109917908906937,
-0.03276824578642845,
-0.019328070804476738,
-0.03688371181488037,
-0.04706978052854538,
-0.16845917701721191,
-0.08594496548175812,
-0.10547935217618942,
0.026516538113355637,
0.030731942504644394,
0.05356140062212944,
0.05130806565284729,
0.0872795432806015,
-0.028308695182204247,
-0.02552899718284607,
-0.07316865772008896,
0.0054124812595546246,
0.03167293965816498,
0.00008434529445366934,
0.11829320341348648,
-0.08690880239009857,
-0.06705998629331589,
0.09938576072454453,
0.015291599556803703,
0.03176670894026756,
0.028194468468427658,
-0.08389893174171448,
0.011199969798326492,
0.15961872041225433,
0.07814809679985046,
0.09038594365119934,
0.0970401018857956,
-0.09144949913024902,
0.002658772049471736,
-0.02116752415895462,
-0.04776835814118385,
0.04476027935743332,
0.07084055989980698,
-0.028121760115027428,
-0.02369954064488411,
-0.0473502054810524,
0.06917629390954971,
0.022133825346827507,
0.0673360601067543,
-0.2935793101787567,
0.03530091047286987,
0.06381137669086456,
0.02705768123269081,
-0.08588049560785294,
-0.005567899905145168,
0.07580818235874176,
-0.09481994062662125,
0.14077669382095337,
0.00882271770387888,
0.026272783055901527,
0.02770482935011387,
0.00955059565603733,
-0.009827962145209312,
-0.11064780503511429,
-0.02819977141916752,
0.05649298429489136,
-0.3371622562408447,
0.2928205132484436,
0.05648954212665558,
-0.046769194304943085,
-0.06575942039489746,
-0.033455196768045425,
0.028382228687405586,
0.12722201645374298,
0.23390573263168335,
0.056256696581840515,
0.03328857570886612,
-0.1065995842218399,
-0.07260777801275253,
0.03407103195786476,
0.006663730833679438,
-0.010060373693704605,
-0.03990744426846504,
0.026452451944351196,
-0.018302032724022865,
-0.01805815100669861,
0.18949417769908905,
-0.08313827961683273,
-0.1456104815006256,
0.04198690131306648,
0.11375264078378677,
-0.04349534213542938,
-0.04717604070901871,
-0.10508237034082413,
-0.13518492877483368,
0.1010124683380127,
-0.02836610935628414,
-0.05870553106069565,
-0.12392055243253708,
-0.028614142909646034,
0.07845982164144516,
-0.0835438147187233,
0.03639057278633118,
-0.07645733654499054,
-0.0758332759141922,
-0.050991665571928024,
-0.1160804033279419,
0.16666850447654724,
-0.13316962122917175,
0.02416331134736538,
-0.14046809077262878,
0.05826703459024429,
-0.0727383941411972,
0.06766411662101746,
-0.050888486206531525,
0.02063445746898651,
-0.06263963878154755,
-0.00504534924402833,
0.017606237903237343,
-0.04228012636303902,
0.15073971450328827,
0.07098913937807083,
-0.04323061555624008,
-0.192151740193367,
0.012013012543320656,
-0.0795755386352539,
0.1476966142654419,
0.283019095659256,
-0.0750831663608551,
0.09351154416799545,
0.12062961608171463,
0.043930232524871826,
-0.3016098439693451,
-0.1078624501824379,
-0.07056864351034164,
0.04295051097869873,
0.0815015584230423,
-0.09401734918355942,
-0.005902009550482035,
-0.018718436360359192,
-0.05920145660638809,
0.07893773168325424,
-0.1409095674753189,
-0.07082632184028625,
0.2171226590871811,
0.01579744927585125,
0.3340623378753662,
-0.14769692718982697,
0.011709190905094147,
-0.041748158633708954,
-0.09389206767082214,
0.09723401069641113,
-0.04879314452409744,
0.08940799534320831,
-0.036546818912029266,
-0.08720298856496811,
0.0038253136444836855,
-0.05297466740012169,
0.1357324868440628,
-0.0605645477771759,
0.02592386119067669,
-0.13450667262077332,
-0.06244635954499245,
0.03249821439385414,
-0.006748110521584749,
-0.017894065007567406,
-0.06547939777374268,
0.009520401246845722,
-0.1718716323375702,
-0.004178278148174286,
-0.08371417224407196,
0.059099309146404266,
0.024240147322416306,
-0.053193770349025726,
-0.001996574690565467,
0.031916163861751556,
0.027397844940423965,
-0.03747520223259926,
0.1369725465774536,
0.0179432425647974,
0.11218231171369553,
0.10626312345266342,
0.07401062548160553,
-0.11067228019237518,
0.004502142313867807,
-0.04534682258963585,
-0.03206837177276611,
0.07620349526405334,
-0.1346481889486313,
-0.0009703101823106408,
0.09958695620298386,
-0.034860849380493164,
0.08631168305873871,
0.04329152777791023,
0.004990076180547476,
-0.02205589786171913,
0.1991494596004486,
-0.18776464462280273,
0.036484379321336746,
-0.027410509064793587,
-0.01625143177807331,
0.03985888883471489,
-0.03424911946058273,
0.046612195670604706,
-0.02422805316746235,
-0.010925832204520702,
-0.020225947722792625,
0.0022181421518325806,
-0.03350291773676872,
0.10897137969732285,
0.04878011718392372,
0.054689694195985794,
-0.10348404943943024,
0.14377595484256744,
0.012840887531638145,
-0.1199614629149437,
0.01376609317958355,
0.09868534654378891,
-0.11779651045799255,
-0.08422940224409103,
-0.05401432886719704,
0.06905572861433029,
-0.08464639633893967,
-0.05381973832845688,
-0.05397989600896835,
-0.06502431631088257,
-0.01669374480843544,
0.12647821009159088,
0.030903127044439316,
0.04248712956905365,
0.023754660040140152,
-0.11230006814002991,
0.07825899124145508,
0.060082100331783295,
0.02788589708507061,
-0.012529549188911915,
-0.1254620999097824,
-0.0025596474297344685,
-0.039679136127233505,
0.17449383437633514,
-0.0744624212384224,
0.051881738007068634,
-0.09367505460977554,
0.032521236687898636,
-0.049489784985780716,
-0.04692711681127548,
-0.05950983986258507,
-0.0487101711332798,
-0.013265850953757763,
-0.11319813877344131,
-0.02961701527237892,
-0.0728057399392128,
-0.07889271527528763,
0.03458918258547783,
0.031171897426247597,
0.03130919858813286,
-0.07293957471847534,
-0.06874723732471466,
0.05302833393216133,
-0.018844906240701675,
0.09715193510055542,
0.11128222942352295,
-0.04930029436945915,
0.02699274569749832,
-0.11381687223911285,
-0.12172210961580276,
0.05003071948885918,
0.0030603858176618814,
0.09156901389360428,
0.08792616426944733,
0.02151665650308132,
0.0514281801879406,
0.010722636245191097,
0.025279169902205467,
0.037289127707481384,
-0.0812883973121643,
-0.0579107291996479,
0.017687009647488594,
-0.053846344351768494,
-0.01389529462903738,
0.005901224445551634,
0.14016318321228027,
-0.03132227063179016,
0.06577128916978836,
-0.03818303346633911,
-0.008391625247895718,
-0.11085440218448639,
0.012954650446772575,
-0.05289864167571068,
-0.13743221759796143,
-0.01817728579044342,
-0.009802675805985928,
0.06484191119670868,
-0.04515605419874191,
0.20240692794322968,
0.052901849150657654,
-0.09633997827768326,
0.03924192860722542,
-0.001751907984726131,
0.06831515580415726,
-0.010496559552848339,
0.15195785462856293,
0.04646344855427742,
-0.0371147021651268,
-0.06434278190135956,
0.00862886942923069,
0.060118988156318665,
0.12282977998256683,
0.06566940993070602,
0.14398805797100067,
0.08240672200918198,
0.06719370931386948,
-0.04768815264105797,
-0.06431378424167633,
0.03245415538549423,
-0.16609860956668854,
-0.07410610467195511,
0.036306221038103104,
0.016775261610746384,
-0.09570343792438507,
0.19673065841197968,
-0.020702529698610306,
0.007043526973575354,
-0.05795986205339432,
-0.01595107465982437,
-0.11391420662403107,
-0.10468683391809464,
-0.054410457611083984,
-0.02276686206459999,
0.00718986289575696,
-0.04412539303302765,
0.04472889378666878,
0.1434278041124344,
0.08972135186195374,
-0.010756809264421463,
0.16154414415359497,
0.002020457526668906,
-0.03097694180905819,
0.07993471622467041,
0.07904888689517975,
0.019557589665055275,
0.014808147214353085,
-0.014729234389960766,
-0.06410850584506989,
0.004841373302042484,
-0.025546692311763763,
-0.010174049995839596,
-0.04685831069946289,
0.10915739089250565,
-0.03974122926592827,
-0.1146991178393364,
-0.07213245332241058,
0.0019549790304154158,
0.008036568760871887,
0.11216005682945251,
0.018197214230895042,
0.08655935525894165,
0.03281744569540024,
0.19190680980682373,
-0.039759427309036255,
-0.05734000355005264,
-0.0623236820101738,
0.08043533563613892,
-0.03183472156524658,
0.03734634071588516,
-0.005263825878500938,
-0.03246074914932251,
-0.05706882104277611,
0.18559053540229797,
0.29984942078590393,
-0.10355094075202942,
0.043555136770009995,
-0.03073938935995102,
0.022162392735481262,
-0.009340682066977024,
0.012906424701213837,
0.0504465289413929,
0.15740056335926056,
-0.11719057708978653,
0.003031559754163027,
-0.0656498372554779,
0.004271342884749174,
-0.060848113149404526,
0.013744928874075413,
0.0378667488694191,
0.0016017511952668428,
-0.0775650218129158,
0.029121248051524162,
-0.07092619687318802,
0.032153286039829254,
0.09859618544578552,
-0.17736580967903137,
-0.07632245868444443,
-0.045839570462703705,
0.12988735735416412,
0.08918531984090805,
-0.011650865897536278,
-0.013320802710950375,
-0.002031825017184019,
-0.05152197182178497,
0.02493472397327423,
-0.17089031636714935,
-0.07992590218782425,
0.06664665788412094,
-0.008269780315458775,
0.13634046912193298,
-0.032517481595277786,
0.0916253924369812,
0.07498864084482193,
0.016446031630039215,
-0.05944620445370674,
0.07954651117324829,
0.03224844112992287,
0.027866024523973465,
-0.04048531502485275,
0.012773041613399982,
0.01515528466552496,
-0.08417661488056183,
0.037776242941617966,
0.04089037701487541,
0.03234751522541046,
-0.09983457624912262,
-0.017826395109295845,
-0.008200924843549728,
0.09797682613134384,
-0.019688183441758156,
0.11414962261915207,
0.08299025148153305,
-0.0189400352537632,
0.005746680777519941,
-0.03693694993853569,
-0.026954898610711098,
0.08898260444402695,
-0.08985433727502823,
-0.05980519950389862,
-0.04546407237648964,
-0.01914566569030285,
-0.03546813130378723,
0.02164335362613201,
-0.11296109855175018,
0.006902249529957771,
-0.12736056745052338,
-0.0497535839676857,
-0.07337059080600739,
0.0034483028575778008,
0.07156237959861755,
0.04687787964940071,
-0.04800663888454437,
-0.0673646479845047,
0.06022447720170021,
0.02949386090040207,
-0.09277177602052689,
-0.08413214981555939
] |
null | null |
transformers
|
<img src="https://raw.githubusercontent.com/aub-mind/arabert/master/arabert_logo.png" width="100" align="center"/>
# AraBERTv0.2-Twitter
AraBERTv0.2-Twitter-base/large are two new models for Arabic dialects and tweets, trained by continuing the pre-training using the MLM task on ~60M Arabic tweets (filtered from a collection on 100M).
The two new models have had emojies added to their vocabulary in addition to common words that weren't at first present. The pre-training was done with a max sentence length of 64 only for 1 epoch.
**AraBERT** is an Arabic pretrained language model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERT uses the same BERT-Base config. More details are available in the [AraBERT Paper](https://arxiv.org/abs/2003.00104) and in the [AraBERT Meetup](https://github.com/WissamAntoun/pydata_khobar_meetup)
## Other Models
Model | HuggingFace Model Name | Size (MB/Params)| Pre-Segmentation | DataSet (Sentences/Size/nWords) |
---|:---:|:---:|:---:|:---:
AraBERTv0.2-base | [bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) | 543MB / 136M | No | 200M / 77GB / 8.6B |
AraBERTv0.2-large| [bert-large-arabertv02](https://huggingface.co/aubmindlab/bert-large-arabertv02) | 1.38G / 371M | No | 200M / 77GB / 8.6B |
AraBERTv2-base| [bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) | 543MB / 136M | Yes | 200M / 77GB / 8.6B |
AraBERTv2-large| [bert-large-arabertv2](https://huggingface.co/aubmindlab/bert-large-arabertv2) | 1.38G / 371M | Yes | 200M / 77GB / 8.6B |
AraBERTv0.1-base| [bert-base-arabertv01](https://huggingface.co/aubmindlab/bert-base-arabertv01) | 543MB / 136M | No | 77M / 23GB / 2.7B |
AraBERTv1-base| [bert-base-arabert](https://huggingface.co/aubmindlab/bert-base-arabert) | 543MB / 136M | Yes | 77M / 23GB / 2.7B |
AraBERTv0.2-Twitter-base| [bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) | 543MB / 136M | No | Same as v02 + 60M Multi-Dialect Tweets|
AraBERTv0.2-Twitter-large| [bert-large-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-large-arabertv02-twitter) | 1.38G / 371M | No | Same as v02 + 60M Multi-Dialect Tweets|
# Preprocessing
**The model is trained on a sequence length of 64, using max length beyond 64 might result in degraded performance**
It is recommended to apply our preprocessing function before training/testing on any dataset.
The preprocessor will keep and space out emojis when used with a "twitter" model.
```python
from arabert.preprocess import ArabertPreprocessor
from transformers import AutoTokenizer, AutoModelForMaskedLM
model_name="aubmindlab/bert-base-arabertv02-twitter"
arabert_prep = ArabertPreprocessor(model_name=model_name)
text = "ููู ูุจุงูุบ ุฅุฐุง ูููุง ุฅู ูุงุชู ุฃู ูู
ุจููุชุฑ ุงูู
ูุชุจ ูู ุฒู
ููุง ูุฐุง ุถุฑูุฑู"
arabert_prep.preprocess(text)
tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02-twitter")
model = AutoModelForMaskedLM.from_pretrained("aubmindlab/bert-base-arabertv02-twitter")
```
# If you used this model please cite us as :
Google Scholar has our Bibtex wrong (missing name), use this instead
```
@inproceedings{antoun2020arabert,
title={AraBERT: Transformer-based Model for Arabic Language Understanding},
author={Antoun, Wissam and Baly, Fady and Hajj, Hazem},
booktitle={LREC 2020 Workshop Language Resources and Evaluation Conference 11--16 May 2020},
pages={9}
}
```
# Acknowledgments
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continuous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT.
# Contacts
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <[email protected]> | <[email protected]>
**Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <[email protected]> | <[email protected]>
|
{"language": "ar", "datasets": ["wikipedia", "Osian", "1.5B-Arabic-Corpus", "oscar-arabic-unshuffled", "Assafir(private)", "Twitter(private)"], "widget": [{"text": " \u0639\u0627\u0635\u0645\u0629 \u0644\u0628\u0646\u0627\u0646 \u0647\u064a [MASK] ."}]}
|
fill-mask
|
aubmindlab/bert-large-arabertv02-twitter
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"bert",
"fill-mask",
"ar",
"arxiv:2003.00104",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2003.00104"
] |
[
"ar"
] |
TAGS
#transformers #pytorch #tensorboard #safetensors #bert #fill-mask #ar #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
<img src="URL width="100" align="center"/>
AraBERTv0.2-Twitter
===================
AraBERTv0.2-Twitter-base/large are two new models for Arabic dialects and tweets, trained by continuing the pre-training using the MLM task on ~60M Arabic tweets (filtered from a collection on 100M).
The two new models have had emojies added to their vocabulary in addition to common words that weren't at first present. The pre-training was done with a max sentence length of 64 only for 1 epoch.
AraBERT is an Arabic pretrained language model based on Google's BERT architechture. AraBERT uses the same BERT-Base config. More details are available in the AraBERT Paper and in the AraBERT Meetup
Other Models
------------
Preprocessing
=============
The model is trained on a sequence length of 64, using max length beyond 64 might result in degraded performance
It is recommended to apply our preprocessing function before training/testing on any dataset.
The preprocessor will keep and space out emojis when used with a "twitter" model.
If you used this model please cite us as :
==========================================
Google Scholar has our Bibtex wrong (missing name), use this instead
Acknowledgments
===============
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the AUB MIND Lab Members for the continuous support. Also thanks to Yakshof and Assafir for data and storage access. Another thanks for Habib Rahal (URL for putting a face to AraBERT.
Contacts
========
Wissam Antoun: Linkedin | Twitter | Github | [wfa07@URL](mailto:wfa07@URL) | [URL@URL](mailto:URL@URL)
Fady Baly: Linkedin | Twitter | Github | [fgb06@URL](mailto:fgb06@URL) | [URL@URL](mailto:URL@URL)
|
[] |
[
"TAGS\n#transformers #pytorch #tensorboard #safetensors #bert #fill-mask #ar #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
58
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #safetensors #bert #fill-mask #ar #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
-0.07414200901985168,
0.026491638273000717,
-0.005647951737046242,
0.048298824578523636,
0.07372961938381195,
0.013203461654484272,
0.12343021482229233,
0.0900803655385971,
0.09031372517347336,
0.08696915209293365,
0.17602695524692535,
0.15424221754074097,
-0.025845369324088097,
0.11856486648321152,
-0.05407028645277023,
-0.21899396181106567,
0.046585191041231155,
0.055155038833618164,
-0.09556468576192856,
0.08549472689628601,
0.0538378581404686,
-0.11424659937620163,
0.05498687922954559,
-0.007619280833750963,
-0.09875151515007019,
0.0426790714263916,
0.059416092932224274,
-0.11893979460000992,
0.14989028871059418,
0.02117217145860195,
0.22561755776405334,
0.04336674138903618,
-0.03894420713186264,
-0.04878764599561691,
0.0463188998401165,
0.035886190831661224,
-0.0806448683142662,
0.09047508984804153,
0.036702852696180344,
-0.05441078916192055,
-0.0534164123237133,
-0.017540540546178818,
0.027337074279785156,
0.012645440176129341,
-0.13306429982185364,
-0.1630244255065918,
-0.0393889844417572,
0.0364173986017704,
0.0049950540997087955,
0.06978491693735123,
0.014522175304591656,
0.21301347017288208,
-0.06686384975910187,
0.06992073357105255,
0.20811723172664642,
-0.3804837763309479,
-0.017149606719613075,
0.1399613469839096,
0.09384539723396301,
0.007154162973165512,
-0.06607978790998459,
0.06552086770534515,
0.0423332117497921,
0.01383114606142044,
0.1248411014676094,
-0.05826796218752861,
-0.07135660201311111,
0.037064045667648315,
-0.12504325807094574,
-0.02479492500424385,
0.11227652430534363,
-0.04900548979640007,
0.0682033970952034,
-0.025536678731441498,
-0.13611604273319244,
-0.09476806968450546,
-0.004159029573202133,
-0.023213570937514305,
-0.01305354293435812,
0.008097774349153042,
-0.026173003017902374,
-0.017033899202942848,
-0.15837803483009338,
0.02517824061214924,
-0.19843971729278564,
0.20626774430274963,
-0.0169100109487772,
0.04912933334708214,
-0.1449240744113922,
0.051576945930719376,
-0.0462176576256752,
-0.1389756053686142,
0.10856547206640244,
-0.053506214171648026,
0.016013329848647118,
0.017149871215224266,
-0.056288935244083405,
-0.13448311388492584,
0.06926758587360382,
0.11801519989967346,
-0.022550659254193306,
0.03347603604197502,
0.05061214789748192,
0.11713070422410965,
-0.0074811470694839954,
0.07633291929960251,
-0.05060409754514694,
-0.03214380890130997,
0.02611793763935566,
-0.000706357357557863,
0.07245049625635147,
-0.06387272477149963,
-0.13599570095539093,
-0.0447382852435112,
0.07601136714220047,
0.042108435183763504,
0.061635345220565796,
0.054725710302591324,
-0.05532393977046013,
0.05350125953555107,
0.07782825827598572,
-0.0674065500497818,
0.033757954835891724,
-0.01551329717040062,
0.06015568599104881,
0.025814004242420197,
0.03581022471189499,
-0.019772786647081375,
0.03599566966295242,
0.12216643989086151,
-0.11647603660821915,
-0.025065725669264793,
-0.05279593542218208,
-0.1290818154811859,
0.060797251760959625,
-0.11962646245956421,
0.01693939045071602,
-0.19211243093013763,
-0.018513021990656853,
0.02532801777124405,
0.06064026057720184,
-0.020830020308494568,
0.005660650320351124,
0.08995726704597473,
-0.06098022684454918,
0.07675133645534515,
-0.029360761865973473,
-0.013861333020031452,
-0.03659791871905327,
0.07061082124710083,
-0.011983565054833889,
0.14539428055286407,
-0.08556144684553146,
0.01773940585553646,
-0.06546443700790405,
0.04337560012936592,
-0.17232109606266022,
-0.09463509917259216,
-0.07351233810186386,
0.11025287210941315,
-0.00881582498550415,
-0.03165523335337639,
-0.14815177023410797,
0.05544643849134445,
0.05391715466976166,
0.12036193162202835,
-0.13689467310905457,
-0.06675729155540466,
0.17703866958618164,
-0.1071864515542984,
-0.1238129660487175,
0.11163213849067688,
0.008809687569737434,
-0.034076135605573654,
-0.017301466315984726,
0.1601674109697342,
0.010874367319047451,
-0.15486688911914825,
-0.019680770114064217,
0.12564130127429962,
-0.07849686592817307,
-0.11900560557842255,
0.022636177018284798,
0.011549608781933784,
-0.04208796098828316,
0.004921121057122946,
0.09978943318128586,
0.06539462506771088,
-0.0480639785528183,
-0.06259489804506302,
-0.04844176024198532,
-0.04646319895982742,
0.16646414995193481,
0.05805453285574913,
0.1052079126238823,
-0.07993559539318085,
-0.08794199675321579,
-0.01540589053183794,
-0.0008734969305805862,
0.03940184786915779,
0.023865148425102234,
-0.059112243354320526,
0.1874610185623169,
-0.13131728768348694,
-0.026377661153674126,
-0.17209671437740326,
-0.13246819376945496,
-0.05098142847418785,
0.009095401503145695,
-0.025993429124355316,
0.17879532277584076,
0.13781197369098663,
-0.01820751465857029,
-0.019848182797431946,
-0.031338099390268326,
0.10417855530977249,
0.056704144924879074,
-0.08230794966220856,
-0.12487512826919556,
-0.0025224413257092237,
-0.11214714497327805,
0.0035971614997833967,
-0.0826849713921547,
0.017588095739483833,
0.02752654440701008,
0.11747787892818451,
0.02745600789785385,
0.049353018403053284,
-0.026705501601099968,
0.04057708755135536,
-0.057466182857751846,
-0.013177509419620037,
0.055594302713871,
-0.0012404437875375152,
-0.045700427144765854,
0.15707340836524963,
-0.2169451117515564,
0.3652983009815216,
0.19091904163360596,
-0.21342982351779938,
-0.05188778042793274,
0.03940216451883316,
-0.021112442016601562,
0.02135186269879341,
0.029673224315047264,
-0.0339147113263607,
-0.04308014363050461,
-0.02379412204027176,
0.11759263277053833,
-0.02456202544271946,
-0.031530022621154785,
0.04919015243649483,
-0.09381912648677826,
-0.09501369297504425,
0.04053151234984398,
0.044611286371946335,
-0.10543320327997208,
0.20051872730255127,
0.2894180417060852,
-0.08671656996011734,
0.13826724886894226,
0.03157264366745949,
-0.015684019774198532,
-0.018826782703399658,
-0.02649027295410633,
-0.00751160504296422,
0.11752830445766449,
-0.14902575314044952,
-0.040868762880563736,
0.07279475033283234,
-0.03982885554432869,
0.045273810625076294,
-0.16077964007854462,
-0.043382469564676285,
0.02080639638006687,
0.07587845623493195,
-0.019246019423007965,
0.12336200475692749,
0.02599400095641613,
0.11418751627206802,
-0.0038795422296971083,
-0.09481996297836304,
0.04901861399412155,
0.01546927448362112,
-0.020193131640553474,
0.15779836475849152,
-0.09903407841920853,
-0.2919800281524658,
-0.11702179908752441,
-0.07396125048398972,
0.018957044929265976,
0.021791784092783928,
0.04434780031442642,
-0.07196816802024841,
-0.05150434374809265,
-0.008152030408382416,
-0.0474519208073616,
-0.03465159237384796,
0.0762682631611824,
-0.040837857872247696,
-0.003364716423675418,
0.00688536511734128,
-0.0845353975892067,
-0.057243313640356064,
-0.04461345449090004,
-0.010116844438016415,
0.13651922345161438,
0.023007430136203766,
0.08798960596323013,
0.1692265272140503,
-0.00516901072114706,
0.017387783154845238,
-0.004650033079087734,
0.1469685584306717,
-0.06387484818696976,
0.03554864972829819,
0.15035206079483032,
-0.03230011463165283,
0.0883873775601387,
0.17358261346817017,
0.045880306512117386,
-0.022631974890828133,
-0.009479627944529057,
-0.01569724828004837,
-0.11753112822771072,
-0.15266749262809753,
-0.08958561718463898,
-0.10635988414287567,
-0.009458184242248535,
0.04232506453990936,
0.08020765334367752,
0.10323192924261093,
0.09102178364992142,
0.0697028860449791,
-0.03022323176264763,
-0.10138300806283951,
0.022189922630786896,
0.13750597834587097,
-0.02963581494987011,
0.1484690010547638,
-0.03567428141832352,
-0.12790928781032562,
0.037766724824905396,
0.0684976726770401,
0.07503952831029892,
0.054909106343984604,
-0.01920364797115326,
0.040464840829372406,
0.1886894404888153,
0.13626450300216675,
0.12630833685398102,
0.004557434935122728,
-0.10507100820541382,
-0.002060160506516695,
-0.02719012275338173,
0.015999268740415573,
0.051411911845207214,
0.10353203862905502,
-0.07723377645015717,
0.0010002711787819862,
-0.0969991385936737,
0.05199558660387993,
0.049458105117082596,
0.10143446177244186,
-0.2593734562397003,
-0.019299326464533806,
0.05563103035092354,
0.018011176958680153,
-0.043792955577373505,
0.0251645315438509,
0.1062939241528511,
-0.023679794743657112,
0.019890975207090378,
-0.06144509091973305,
0.03079511970281601,
0.05776344612240791,
0.05749946087598801,
-0.07465430349111557,
-0.04005679860711098,
-0.006884882226586342,
0.030185597017407417,
-0.2120281457901001,
0.2711658477783203,
0.004879514686763287,
-0.0525534451007843,
-0.05502744019031525,
0.004507649224251509,
0.04512239992618561,
0.08432180434465408,
0.1139867752790451,
0.02121235430240631,
-0.0655495747923851,
-0.13301265239715576,
-0.018759822472929955,
-0.016758129000663757,
0.08190519362688065,
0.01631654053926468,
0.014678851701319218,
-0.006192375440150499,
-0.03658248484134674,
0.047522544860839844,
0.13550080358982086,
-0.007901295088231564,
-0.12393386662006378,
0.09332837164402008,
0.06938372552394867,
-0.10333876311779022,
-0.029399285092949867,
-0.10669838637113571,
-0.20856961607933044,
0.1488836407661438,
-0.0038531336467713118,
-0.007341439835727215,
-0.11525376886129379,
-0.06707429885864258,
0.11594896763563156,
-0.0840611606836319,
0.10398281365633011,
-0.0738692507147789,
0.025611285120248795,
-0.09062636643648148,
-0.13316382467746735,
0.1799716055393219,
-0.1244875118136406,
-0.02386322431266308,
-0.08138272166252136,
0.10209664702415466,
-0.08593151718378067,
0.04558737948536873,
-0.01028161309659481,
0.07906132191419601,
-0.1031276136636734,
-0.049781884998083115,
0.07712818682193756,
-0.07452236860990524,
0.07637282460927963,
-0.03577643260359764,
-0.026288410648703575,
-0.07677645981311798,
0.06303562223911285,
0.042072780430316925,
0.2297418862581253,
0.24470072984695435,
-0.11574570089578629,
0.07966302335262299,
0.12982596457004547,
0.012127603404223919,
-0.36318346858024597,
-0.04535866528749466,
-0.1365630328655243,
0.0017884037224575877,
0.07746484130620956,
-0.04000936821103096,
0.07801177352666855,
-0.014878197573125362,
-0.08585863560438156,
0.12422992289066315,
-0.20041827857494354,
-0.10865198820829391,
0.2094517946243286,
0.04059860110282898,
0.37600061297416687,
-0.15299569070339203,
-0.046087756752967834,
0.01265096478164196,
-0.0792819932103157,
0.05664919316768646,
-0.08451717346906662,
0.08276615291833878,
-0.016633255407214165,
0.0482669360935688,
0.03456542640924454,
-0.12418271601200104,
0.11719106137752533,
-0.10346264392137527,
0.03278183937072754,
-0.10950440168380737,
-0.13572822511196136,
0.10221431404352188,
-0.043459806591272354,
-0.01293842401355505,
-0.04079882800579071,
0.003976365085691214,
-0.019723068922758102,
0.0018247038824483752,
-0.09419869631528854,
0.12348044663667679,
0.010578055866062641,
-0.06619010120630264,
-0.01201203279197216,
0.005902404896914959,
-0.029283223673701286,
-0.026377031579613686,
0.24538369476795197,
-0.006408977787941694,
0.2384384721517563,
0.2082366645336151,
0.00694968830794096,
-0.11587223410606384,
-0.056336645036935806,
0.031144343316555023,
-0.08012264966964722,
0.09977271407842636,
-0.08461323380470276,
0.03392087668180466,
0.09247659891843796,
-0.0085214301943779,
0.028293777257204056,
0.1113356500864029,
-0.02824978157877922,
-0.008382147178053856,
0.17410576343536377,
-0.21779149770736694,
-0.05781368538737297,
0.011733188293874264,
-0.0031229008454829454,
0.006600021850317717,
0.08333884924650192,
0.12104693800210953,
0.004838041495531797,
-0.0013575567863881588,
0.01680517941713333,
-0.004540845286101103,
-0.04051196947693825,
0.08281197398900986,
0.1032758355140686,
0.05956260859966278,
-0.067351795732975,
0.006558672059327364,
0.0032662360463291407,
-0.20965240895748138,
0.00036368146538734436,
0.0741313025355339,
-0.06265508383512497,
-0.1425730586051941,
-0.014605186879634857,
0.05581528693437576,
-0.03670711815357208,
-0.028057465329766273,
-0.07192318141460419,
-0.09135552495718002,
0.02145087718963623,
0.2178206592798233,
0.07545453310012817,
0.028176994994282722,
-0.002322480548173189,
-0.0028781804721802473,
-0.000018383707356406376,
0.038207560777664185,
0.014270919375121593,
0.06610560417175293,
-0.1383247971534729,
0.05507485195994377,
-0.01609968952834606,
0.10791175067424774,
-0.09940972179174423,
0.008870785124599934,
-0.17219477891921997,
-0.016247393563389778,
-0.07937868684530258,
-0.06184631958603859,
-0.0919172614812851,
-0.08658383041620255,
-0.004087965004146099,
-0.0863017663359642,
-0.07263089716434479,
-0.04136158525943756,
-0.11893201619386673,
0.007003915961831808,
0.019856510683894157,
-0.007406175602227449,
-0.09551969915628433,
-0.03979126736521721,
0.08693081140518188,
-0.028470022603869438,
0.07546956837177277,
0.06726990640163422,
-0.03757714480161667,
0.06538568437099457,
-0.12205265462398529,
-0.0796213150024414,
0.10327766835689545,
-0.0015793462516739964,
0.08971554040908813,
0.050636228173971176,
-0.003621277865022421,
0.01276846881955862,
0.04861225560307503,
0.029326045885682106,
0.07730121165513992,
-0.07512809336185455,
0.07907270640134811,
-0.02544095739722252,
-0.1453840434551239,
-0.03135956823825836,
-0.06788965314626694,
0.10380163788795471,
-0.026956088840961456,
0.09938952326774597,
-0.05488460883498192,
0.04610798880457878,
-0.1134013831615448,
0.030535653233528137,
-0.033050138503313065,
-0.14422334730625153,
0.03151754289865494,
0.006439779419451952,
0.0342964231967926,
-0.03731410205364227,
0.19282224774360657,
0.024438707157969475,
-0.0719188004732132,
0.0398981049656868,
0.05172848701477051,
-0.0015345638385042548,
0.008012198843061924,
0.12316042929887772,
0.04679698869585991,
-0.058318112045526505,
-0.10931286960840225,
0.0870557427406311,
0.040198199450969696,
-0.011590377427637577,
0.12630753219127655,
0.08622213453054428,
0.03487987816333771,
0.12012661248445511,
0.027535485103726387,
-0.035622864961624146,
-0.14804212749004364,
-0.10249131917953491,
-0.12441033124923706,
0.06312692910432816,
-0.02552962116897106,
0.0419805571436882,
0.21799001097679138,
0.0022545005194842815,
0.032927531749010086,
-0.07636922597885132,
-0.023217935115098953,
-0.16292303800582886,
-0.15513154864311218,
-0.07465104013681412,
-0.06984414905309677,
-0.004001896362751722,
-0.018863897770643234,
-0.0060096075758337975,
0.1242939904332161,
0.029444631189107895,
0.0025413199327886105,
0.19982872903347015,
0.06285865604877472,
0.015681926161050797,
-0.004416649229824543,
0.053038131445646286,
0.0184517540037632,
-0.019379738718271255,
-0.011906180530786514,
-0.12927675247192383,
-0.002011353150010109,
-0.05530758202075958,
-0.01381718274205923,
-0.05833755433559418,
0.02524440549314022,
-0.053829681128263474,
-0.1127641499042511,
-0.06652955710887909,
0.0401972196996212,
-0.015181313268840313,
0.07729742676019669,
-0.006921347696334124,
0.04692792519927025,
-0.015460093505680561,
0.18279963731765747,
-0.10191534459590912,
-0.04238645359873772,
-0.028446754440665245,
0.15118758380413055,
-0.023561734706163406,
0.0899805873632431,
-0.050946541130542755,
-0.009970405139029026,
-0.07075116038322449,
0.23580294847488403,
0.34579887986183167,
-0.06843286007642746,
0.10672633349895477,
0.05787106230854988,
0.01646978035569191,
-0.01650276593863964,
0.09192982316017151,
0.09155157953500748,
0.28347617387771606,
-0.10927353799343109,
-0.038346149027347565,
-0.056873854249715805,
-0.007530096918344498,
-0.10286793857812881,
0.05441075935959816,
0.03147398680448532,
-0.013370621018111706,
-0.06855316460132599,
0.0392952486872673,
-0.10614343732595444,
0.018360964953899384,
0.0630851611495018,
-0.2547619938850403,
-0.07989650964736938,
0.01557997614145279,
0.21153448522090912,
-0.043434396386146545,
0.11189303547143936,
-0.03570127487182617,
-0.07294931262731552,
-0.0410439670085907,
0.004003250040113926,
-0.13050587475299835,
0.0060367402620613575,
0.06842497736215591,
-0.020289914682507515,
0.12245427817106247,
-0.04196859151124954,
-0.004513462074100971,
0.13511838018894196,
0.06526274234056473,
-0.055907949805259705,
0.048181403428316116,
0.052315857261419296,
-0.12806756794452667,
-0.05242520943284035,
0.0045229168608784676,
0.004251214675605297,
-0.07703400403261185,
0.06696168333292007,
-0.14979714155197144,
0.0521387979388237,
-0.08128447085618973,
-0.014823711477220058,
-0.011605787090957165,
0.014306134544312954,
-0.02830340340733528,
0.07633738964796066,
0.032724522054195404,
0.00631779944524169,
-0.03172954544425011,
-0.01771968975663185,
-0.026623794808983803,
0.0387326180934906,
-0.05133116617798805,
-0.1302592009305954,
-0.11983618140220642,
0.013405745849013329,
0.01678292825818062,
0.001643489464186132,
-0.18820255994796753,
-0.05829068645834923,
-0.05397076904773712,
0.02012164704501629,
-0.1266482174396515,
0.003629520069807768,
0.1261197328567505,
0.03165636211633682,
-0.011093925684690475,
-0.03512721508741379,
0.017315063625574112,
0.06867968291044235,
-0.16382792592048645,
-0.07308967411518097
] |
null | null |
transformers
|
# AraBERT v1 & v2 : Pre-training BERT for Arabic Language Understanding
<img src="https://raw.githubusercontent.com/aub-mind/arabert/master/arabert_logo.png" width="100" align="left"/>
**AraBERT** is an Arabic pretrained lanaguage model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERT uses the same BERT-Base config. More details are available in the [AraBERT Paper](https://arxiv.org/abs/2003.00104) and in the [AraBERT Meetup](https://github.com/WissamAntoun/pydata_khobar_meetup)
There are two versions of the model, AraBERTv0.1 and AraBERTv1, with the difference being that AraBERTv1 uses pre-segmented text where prefixes and suffixes were splitted using the [Farasa Segmenter](http://alt.qcri.org/farasa/segmenter.html).
We evalaute AraBERT models on different downstream tasks and compare them to [mBERT]((https://github.com/google-research/bert/blob/master/multilingual.md)), and other state of the art models (*To the extent of our knowledge*). The Tasks were Sentiment Analysis on 6 different datasets ([HARD](https://github.com/elnagara/HARD-Arabic-Dataset), [ASTD-Balanced](https://www.aclweb.org/anthology/D15-1299), [ArsenTD-Lev](https://staff.aub.edu.lb/~we07/Publications/ArSentD-LEV_Sentiment_Corpus.pdf), [LABR](https://github.com/mohamedadaly/LABR)), Named Entity Recognition with the [ANERcorp](http://curtis.ml.cmu.edu/w/courses/index.php/ANERcorp), and Arabic Question Answering on [Arabic-SQuAD and ARCD](https://github.com/husseinmozannar/SOQAL)
# AraBERTv2
## What's New!
AraBERT now comes in 4 new variants to replace the old v1 versions:
More Detail in the AraBERT folder and in the [README](https://github.com/aub-mind/arabert/blob/master/AraBERT/README.md) and in the [AraBERT Paper](https://arxiv.org/abs/2003.00104v2)
Model | HuggingFace Model Name | Size (MB/Params)| Pre-Segmentation | DataSet (Sentences/Size/nWords) |
---|:---:|:---:|:---:|:---:
AraBERTv0.2-base | [bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) | 543MB / 136M | No | 200M / 77GB / 8.6B |
AraBERTv0.2-large| [bert-large-arabertv02](https://huggingface.co/aubmindlab/bert-large-arabertv02) | 1.38G 371M | No | 200M / 77GB / 8.6B |
AraBERTv2-base| [bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) | 543MB 136M | Yes | 200M / 77GB / 8.6B |
AraBERTv2-large| [bert-large-arabertv2](https://huggingface.co/aubmindlab/bert-large-arabertv2) | 1.38G 371M | Yes | 200M / 77GB / 8.6B |
AraBERTv0.1-base| [bert-base-arabertv01](https://huggingface.co/aubmindlab/bert-base-arabertv01) | 543MB 136M | No | 77M / 23GB / 2.7B |
AraBERTv1-base| [bert-base-arabert](https://huggingface.co/aubmindlab/bert-base-arabert) | 543MB 136M | Yes | 77M / 23GB / 2.7B |
All models are available in the `HuggingFace` model page under the [aubmindlab](https://huggingface.co/aubmindlab/) name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
## Better Pre-Processing and New Vocab
We identified an issue with AraBERTv1's wordpiece vocabulary. The issue came from punctuations and numbers that were still attached to words when learned the wordpiece vocab. We now insert a space between numbers and characters and around punctuation characters.
The new vocabulary was learnt using the `BertWordpieceTokenizer` from the `tokenizers` library, and should now support the Fast tokenizer implementation from the `transformers` library.
**P.S.**: All the old BERT codes should work with the new BERT, just change the model name and check the new preprocessing dunction
**Please read the section on how to use the [preprocessing function](#Preprocessing)**
## Bigger Dataset and More Compute
We used ~3.5 times more data, and trained for longer.
For Dataset Sources see the [Dataset Section](#Dataset)
Model | Hardware | num of examples with seq len (128 / 512) |128 (Batch Size/ Num of Steps) | 512 (Batch Size/ Num of Steps) | Total Steps | Total Time (in Days) |
---|:---:|:---:|:---:|:---:|:---:|:---:
AraBERTv0.2-base | TPUv3-8 | 420M / 207M | 2560 / 1M | 384/ 2M | 3M | -
AraBERTv0.2-large | TPUv3-128 | 420M / 207M | 13440 / 250K | 2056 / 300K | 550K | 7
AraBERTv2-base | TPUv3-8 | 420M / 207M | 2560 / 1M | 384/ 2M | 3M | -
AraBERTv2-large | TPUv3-128 | 520M / 245M | 13440 / 250K | 2056 / 300K | 550K | 7
AraBERT-base (v1/v0.1) | TPUv2-8 | - |512 / 900K | 128 / 300K| 1.2M | 4
# Dataset
The pretraining data used for the new AraBERT model is also used for Arabic **GPT2 and ELECTRA**.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
- OSCAR unshuffled and filtered.
- [Arabic Wikipedia dump](https://archive.org/details/arwiki-20190201) from 2020/09/01
- [The 1.5B words Arabic Corpus](https://www.semanticscholar.org/paper/1.5-billion-words-Arabic-Corpus-El-Khair/f3eeef4afb81223df96575adadf808fe7fe440b4)
- [The OSIAN Corpus](https://www.aclweb.org/anthology/W19-4619)
- Assafir news articles. Huge thank you for Assafir for giving us the data
# Preprocessing
It is recommended to apply our preprocessing function before training/testing on any dataset.
**Install farasapy to segment text for AraBERT v1 & v2 `pip install farasapy`**
```python
from arabert.preprocess import ArabertPreprocessor
model_name="bert-large-arabertv02"
arabert_prep = ArabertPreprocessor(model_name=model_name)
text = "ููู ูุจุงูุบ ุฅุฐุง ูููุง ุฅู ูุงุชู ุฃู ูู
ุจููุชุฑ ุงูู
ูุชุจ ูู ุฒู
ููุง ูุฐุง ุถุฑูุฑู"
arabert_prep.preprocess(text)
```
## Accepted_models
```
bert-base-arabertv01
bert-base-arabert
bert-base-arabertv02
bert-base-arabertv2
bert-large-arabertv02
bert-large-arabertv2
araelectra-base
aragpt2-base
aragpt2-medium
aragpt2-large
aragpt2-mega
```
# TensorFlow 1.x models
The TF1.x model are available in the HuggingFace models repo.
You can download them as follows:
- via git-lfs: clone all the models in a repo
```bash
curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
sudo apt-get install git-lfs
git lfs install
git clone https://huggingface.co/aubmindlab/MODEL_NAME
tar -C ./MODEL_NAME -zxvf /content/MODEL_NAME/tf1_model.tar.gz
```
where `MODEL_NAME` is any model under the `aubmindlab` name
- via `wget`:
- Go to the tf1_model.tar.gz file on huggingface.co/models/aubmindlab/MODEL_NAME.
- copy the `oid sha256`
- then run `wget https://cdn-lfs.huggingface.co/aubmindlab/aragpt2-base/INSERT_THE_SHA_HERE` (ex: for `aragpt2-base`: `wget https://cdn-lfs.huggingface.co/aubmindlab/aragpt2-base/3766fc03d7c2593ff2fb991d275e96b81b0ecb2098b71ff315611d052ce65248`)
# If you used this model please cite us as :
Google Scholar has our Bibtex wrong (missing name), use this instead
```
@inproceedings{antoun2020arabert,
title={AraBERT: Transformer-based Model for Arabic Language Understanding},
author={Antoun, Wissam and Baly, Fady and Hajj, Hazem},
booktitle={LREC 2020 Workshop Language Resources and Evaluation Conference 11--16 May 2020},
pages={9}
}
```
# Acknowledgments
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT.
# Contacts
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <[email protected]> | <[email protected]>
**Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <[email protected]> | <[email protected]>
|
{"language": "ar", "datasets": ["wikipedia", "Osian", "1.5B-Arabic-Corpus", "oscar-arabic-unshuffled"], "widget": [{"text": " \u0639\u0627\u0635\u0645\u0629 \u0644\u0628\u0646\u0627\u0646 \u0647\u064a [MASK] ."}]}
|
fill-mask
|
aubmindlab/bert-large-arabertv02
|
[
"transformers",
"pytorch",
"tf",
"jax",
"tensorboard",
"safetensors",
"bert",
"fill-mask",
"ar",
"dataset:wikipedia",
"dataset:Osian",
"dataset:1.5B-Arabic-Corpus",
"dataset:oscar-arabic-unshuffled",
"arxiv:2003.00104",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2003.00104"
] |
[
"ar"
] |
TAGS
#transformers #pytorch #tf #jax #tensorboard #safetensors #bert #fill-mask #ar #dataset-wikipedia #dataset-Osian #dataset-1.5B-Arabic-Corpus #dataset-oscar-arabic-unshuffled #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
AraBERT v1 & v2 : Pre-training BERT for Arabic Language Understanding
=====================================================================
<img src="URL width="100" align="left"/>
AraBERT is an Arabic pretrained lanaguage model based on Google's BERT architechture. AraBERT uses the same BERT-Base config. More details are available in the AraBERT Paper and in the AraBERT Meetup
There are two versions of the model, AraBERTv0.1 and AraBERTv1, with the difference being that AraBERTv1 uses pre-segmented text where prefixes and suffixes were splitted using the Farasa Segmenter.
We evalaute AraBERT models on different downstream tasks and compare them to mBERT), and other state of the art models (*To the extent of our knowledge*). The Tasks were Sentiment Analysis on 6 different datasets (HARD, ASTD-Balanced, ArsenTD-Lev, LABR), Named Entity Recognition with the ANERcorp, and Arabic Question Answering on Arabic-SQuAD and ARCD
AraBERTv2
=========
What's New!
-----------
AraBERT now comes in 4 new variants to replace the old v1 versions:
More Detail in the AraBERT folder and in the README and in the AraBERT Paper
All models are available in the 'HuggingFace' model page under the aubmindlab name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
Better Pre-Processing and New Vocab
-----------------------------------
We identified an issue with AraBERTv1's wordpiece vocabulary. The issue came from punctuations and numbers that were still attached to words when learned the wordpiece vocab. We now insert a space between numbers and characters and around punctuation characters.
The new vocabulary was learnt using the 'BertWordpieceTokenizer' from the 'tokenizers' library, and should now support the Fast tokenizer implementation from the 'transformers' library.
P.S.: All the old BERT codes should work with the new BERT, just change the model name and check the new preprocessing dunction
Please read the section on how to use the preprocessing function
Bigger Dataset and More Compute
-------------------------------
We used ~3.5 times more data, and trained for longer.
For Dataset Sources see the Dataset Section
Dataset
=======
The pretraining data used for the new AraBERT model is also used for Arabic GPT2 and ELECTRA.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
* OSCAR unshuffled and filtered.
* Arabic Wikipedia dump from 2020/09/01
* The 1.5B words Arabic Corpus
* The OSIAN Corpus
* Assafir news articles. Huge thank you for Assafir for giving us the data
Preprocessing
=============
It is recommended to apply our preprocessing function before training/testing on any dataset.
Install farasapy to segment text for AraBERT v1 & v2 'pip install farasapy'
Accepted\_models
----------------
TensorFlow 1.x models
=====================
The TF1.x model are available in the HuggingFace models repo.
You can download them as follows:
* via git-lfs: clone all the models in a repo
where 'MODEL\_NAME' is any model under the 'aubmindlab' name
* via 'wget':
+ Go to the tf1\_model.URL file on URL
+ copy the 'oid sha256'
+ then run 'wget URL (ex: for 'aragpt2-base': 'wget URL
If you used this model please cite us as :
==========================================
Google Scholar has our Bibtex wrong (missing name), use this instead
Acknowledgments
===============
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the AUB MIND Lab Members for the continous support. Also thanks to Yakshof and Assafir for data and storage access. Another thanks for Habib Rahal (URL for putting a face to AraBERT.
Contacts
========
Wissam Antoun: Linkedin | Twitter | Github | [wfa07@URL](mailto:wfa07@URL) | [URL@URL](mailto:URL@URL)
Fady Baly: Linkedin | Twitter | Github | [fgb06@URL](mailto:fgb06@URL) | [URL@URL](mailto:URL@URL)
|
[] |
[
"TAGS\n#transformers #pytorch #tf #jax #tensorboard #safetensors #bert #fill-mask #ar #dataset-wikipedia #dataset-Osian #dataset-1.5B-Arabic-Corpus #dataset-oscar-arabic-unshuffled #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
101
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #tensorboard #safetensors #bert #fill-mask #ar #dataset-wikipedia #dataset-Osian #dataset-1.5B-Arabic-Corpus #dataset-oscar-arabic-unshuffled #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
-0.11873341351747513,
0.13958562910556793,
-0.003683611052110791,
0.09727715700864792,
0.050478942692279816,
0.0370432510972023,
0.1634126603603363,
0.10852145403623581,
0.039540845900774,
-0.020980697125196457,
0.15339286625385284,
0.09843309223651886,
0.06373247504234314,
0.12356193363666534,
-0.01665828377008438,
-0.16744022071361542,
0.015986397862434387,
-0.006660151295363903,
-0.05412248522043228,
0.08512717485427856,
0.08065717667341232,
-0.07524707168340683,
0.08384029567241669,
-0.05165036395192146,
-0.09155753999948502,
0.0424819253385067,
0.05084746703505516,
-0.15013425052165985,
0.11430121213197708,
0.07028406113386154,
0.14260393381118774,
0.07659262418746948,
0.004294882994145155,
-0.07671075314283371,
0.040151968598365784,
0.02991032786667347,
-0.08386100828647614,
0.06458961963653564,
0.039616476744413376,
-0.05789317563176155,
0.02662455104291439,
-0.06479403376579285,
0.002027154201641679,
0.01359873078763485,
-0.11066767573356628,
-0.2234996259212494,
-0.024374620988965034,
0.038216426968574524,
-0.014898011460900307,
0.08355480432510376,
0.009199833497405052,
0.17823435366153717,
-0.03389541804790497,
0.11114983260631561,
0.12372735887765884,
-0.2859961986541748,
-0.035933203995227814,
0.002773560816422105,
0.04547226428985596,
0.02974334917962551,
-0.03793007507920265,
0.06959801912307739,
0.020630067214369774,
-0.01784009486436844,
0.09533847868442535,
-0.08077779412269592,
-0.18269887566566467,
0.013831480406224728,
-0.05177302658557892,
-0.03177085518836975,
0.2395332008600235,
0.02507321909070015,
0.019830670207738876,
0.0011966123711317778,
-0.08308221399784088,
-0.09229584038257599,
0.014904591254889965,
0.04189157485961914,
-0.004002580419182777,
-0.02793775498867035,
-0.025013195350766182,
-0.007326885126531124,
-0.1440088152885437,
0.031638432294130325,
-0.2452685385942459,
0.2003551870584488,
0.008269301615655422,
0.09224739670753479,
-0.11323337256908417,
0.06055038422346115,
0.021552929654717445,
-0.1788475215435028,
0.052802588790655136,
-0.05387406051158905,
-0.0317690372467041,
0.023310793563723564,
0.015740882605314255,
-0.06461040675640106,
0.04245036095380783,
0.051354508846998215,
-0.020663751289248466,
0.01808164082467556,
-0.0024873169604688883,
0.10299161076545715,
0.006667619105428457,
0.055992092937231064,
-0.10732133686542511,
-0.03891627863049507,
0.0069778552278876305,
0.03392026573419571,
0.035736776888370514,
-0.010674403980374336,
-0.04870225861668587,
-0.027236906811594963,
0.006986327935010195,
0.04388106241822243,
0.07557496428489685,
0.06697875261306763,
-0.11160845309495926,
0.023727810010313988,
0.04039575159549713,
-0.1222066730260849,
-0.009453365579247475,
-0.00259024603292346,
-0.04930030554533005,
-0.0439174622297287,
0.055775947868824005,
-0.00025329788331873715,
0.01020904816687107,
0.061965230852365494,
-0.10324691236019135,
0.024079443886876106,
0.008933307603001595,
-0.07968107610940933,
0.05596005916595459,
-0.1446712762117386,
0.02711748331785202,
-0.1843690723180771,
-0.08705490082502365,
0.05572519451379776,
0.07220239192247391,
-0.025433726608753204,
0.03890373930335045,
0.03570758178830147,
0.005174595396965742,
0.0651492178440094,
-0.059288252145051956,
0.014545762911438942,
-0.08268169313669205,
0.09917274862527847,
0.012085365131497383,
0.13950972259044647,
-0.10293810069561005,
0.003962959628552198,
-0.0889834463596344,
-0.009742718189954758,
-0.06379608809947968,
0.030382435768842697,
-0.06300188601016998,
0.08337567746639252,
-0.03314296901226044,
0.0013157979119569063,
-0.060783401131629944,
0.031344328075647354,
0.011697806417942047,
0.20201773941516876,
-0.24341724812984467,
-0.08724088966846466,
0.21688492596149445,
-0.04118645563721657,
-0.1602315753698349,
0.11762060225009918,
-0.008491458371281624,
-0.03275144100189209,
0.017130088061094284,
0.13849402964115143,
-0.09929867088794708,
-0.09315668046474457,
-0.04959782958030701,
0.09669617563486099,
-0.011472026817500591,
-0.03982381522655487,
0.11161848902702332,
0.036135483533144,
-0.02157612144947052,
0.007491309195756912,
0.11581670492887497,
0.12369392067193985,
-0.034799885004758835,
-0.07813958078622818,
0.00848526693880558,
-0.08335192501544952,
0.10285830497741699,
0.06650977581739426,
0.08511120080947876,
-0.07428239285945892,
-0.06971988826990128,
-0.0917396992444992,
0.03424884378910065,
0.05064644664525986,
0.018670449033379555,
-0.08519753068685532,
0.07765822857618332,
-0.10566035658121109,
-0.023934578523039818,
-0.13752195239067078,
-0.08789865672588348,
-0.04056129604578018,
0.1445837914943695,
-0.019437579438090324,
0.04113771393895149,
0.0956997349858284,
0.015604834072291851,
-0.059709563851356506,
-0.0404311865568161,
0.09162836521863937,
0.06081485375761986,
-0.05700612813234329,
-0.16670049726963043,
0.06024210900068283,
-0.09065943956375122,
0.059411175549030304,
-0.030518794432282448,
-0.005355598870664835,
-0.0063322619535028934,
0.1855635643005371,
0.045838046818971634,
0.02053949050605297,
0.016136739403009415,
0.03353762999176979,
-0.04834617301821709,
-0.04978020116686821,
0.02982877381145954,
-0.021924346685409546,
-0.11200262606143951,
0.14354999363422394,
-0.14075428247451782,
0.3682671785354614,
0.18446125090122223,
-0.09239869564771652,
-0.046334680169820786,
0.07185696065425873,
-0.004178941249847412,
0.016875699162483215,
0.06652873754501343,
0.052338097244501114,
-0.006185524631291628,
-0.04247665032744408,
0.15248678624629974,
-0.04678637161850929,
0.004524798132479191,
0.03632493317127228,
-0.06973464787006378,
-0.11544543504714966,
0.10008159279823303,
0.0127460528165102,
-0.20771510899066925,
0.21775658428668976,
0.23646976053714752,
0.021449480205774307,
0.21492883563041687,
0.033435218036174774,
-0.01598813571035862,
-0.018367208540439606,
-0.057734668254852295,
-0.002529173856601119,
0.1720142364501953,
-0.09822258353233337,
-0.019969072192907333,
0.053590912371873856,
-0.057123199105262756,
-0.019043762236833572,
-0.130243718624115,
-0.08812040835618973,
0.030909312888979912,
0.02156803198158741,
-0.04591820761561394,
0.07145857810974121,
-0.0038649116177111864,
0.1396762877702713,
-0.0274721197783947,
-0.07621519267559052,
0.04654105007648468,
0.01194605603814125,
-0.05820169299840927,
0.18469654023647308,
-0.1136062890291214,
-0.30999475717544556,
-0.012246119789779186,
-0.1173982322216034,
-0.03678513318300247,
0.026446156203746796,
0.04907030239701271,
-0.07502713054418564,
-0.02045094221830368,
-0.05098242685198784,
-0.07887329906225204,
-0.05230731889605522,
0.06732038408517838,
0.006275498773902655,
-0.0342118926346302,
0.006579796317964792,
-0.054086096584796906,
-0.04329950734972954,
-0.010716806165874004,
-0.03868991136550903,
0.13180486857891083,
-0.024369044229388237,
0.06312231719493866,
0.005085055250674486,
-0.02063666842877865,
0.0281132273375988,
-0.026140473783016205,
0.11093807965517044,
-0.09567773342132568,
0.025028137490153313,
0.09934745728969574,
0.00032001675572246313,
0.04764484241604805,
0.21830852329730988,
0.045182906091213226,
-0.01806541532278061,
-0.02816014550626278,
-0.019999153912067413,
-0.0561521016061306,
-0.19573929905891418,
-0.07486306875944138,
-0.1063443049788475,
0.0326068215072155,
0.01771504059433937,
0.06165948510169983,
0.06785228848457336,
0.09817951917648315,
-0.021703748032450676,
-0.0194708202034235,
-0.0769781693816185,
-0.0017192073864862323,
0.031984198838472366,
0.005287779960781336,
0.1208026334643364,
-0.0943501815199852,
-0.06664642691612244,
0.09764695167541504,
0.03729793429374695,
0.05187755823135376,
0.021192921325564384,
-0.012563836760818958,
0.01659286953508854,
0.17355866730213165,
0.08114929497241974,
0.08226493746042252,
0.0811765193939209,
-0.0889170691370964,
0.012085231952369213,
-0.02434108592569828,
-0.024554600939154625,
0.03891679644584656,
0.07711634784936905,
-0.017744027078151703,
-0.011536957696080208,
-0.031258970499038696,
0.06818622350692749,
0.02544419653713703,
0.05043072625994682,
-0.29216697812080383,
0.028947778046131134,
0.047734156250953674,
0.021646833047270775,
-0.07544733583927155,
-0.020199812948703766,
0.08410751819610596,
-0.06506654620170593,
0.11877710372209549,
-0.023282518610358238,
0.020087234675884247,
0.0039800843223929405,
0.006270278245210648,
0.003743303706869483,
-0.07052856683731079,
-0.037979234009981155,
0.0549638457596302,
-0.33880600333213806,
0.2927100360393524,
0.06252647191286087,
-0.03144688531756401,
-0.06671284884214401,
-0.024214260280132294,
0.03281386196613312,
0.10809110105037689,
0.21899515390396118,
0.03609788045287132,
0.05162863805890083,
-0.09994892030954361,
-0.09304659813642502,
0.031747929751873016,
0.0189034603536129,
-0.007652286905795336,
-0.035221513360738754,
0.03276346996426582,
-0.015554076991975307,
-0.002255538245663047,
0.1721159666776657,
-0.07975225895643234,
-0.16183213889598846,
0.055972423404455185,
0.10713177919387817,
-0.09798629581928253,
-0.04211407154798508,
-0.11542877554893494,
-0.1466418355703354,
0.11763712018728256,
-0.04718134179711342,
-0.05736985802650452,
-0.13005027174949646,
-0.017087358981370926,
0.0813123807311058,
-0.09241039305925369,
0.029753154143691063,
-0.08076811581850052,
-0.06966038793325424,
-0.047614362090826035,
-0.12700240314006805,
0.16575267910957336,
-0.11802855879068375,
0.014129970222711563,
-0.13991031050682068,
0.05901792645454407,
-0.062272097915410995,
0.06675392389297485,
-0.054186735302209854,
0.014917983673512936,
-0.05462582781910896,
-0.007577833719551563,
0.0258483923971653,
-0.04647928103804588,
0.12200961261987686,
0.044819507747888565,
-0.033466894179582596,
-0.17903286218643188,
0.006289761979132891,
-0.0698762983083725,
0.1471254676580429,
0.27047738432884216,
-0.07113149017095566,
0.09704574942588806,
0.1306566596031189,
0.030375467613339424,
-0.3021658658981323,
-0.08715201914310455,
-0.06248613819479942,
0.04384968802332878,
0.08417958766222,
-0.11106351017951965,
-0.0037425649352371693,
-0.005591769237071276,
-0.05158655345439911,
0.09083166718482971,
-0.1627797782421112,
-0.08205763250589371,
0.20758786797523499,
0.04296773299574852,
0.2989518344402313,
-0.1606305092573166,
-0.003721233457326889,
-0.028206149116158485,
-0.06137016415596008,
0.10208334028720856,
-0.091041199862957,
0.10155203938484192,
-0.03448616340756416,
-0.08036674559116364,
0.010146849788725376,
-0.0632786676287651,
0.13695643842220306,
-0.07843653112649918,
0.034190788865089417,
-0.12979340553283691,
-0.053008660674095154,
0.051062632352113724,
-0.004959471523761749,
-0.02267780713737011,
-0.08176308870315552,
0.0030955858528614044,
-0.13695985078811646,
-0.008573522791266441,
-0.07870461046695709,
0.06719165295362473,
0.01789352484047413,
-0.059764835983514786,
-0.0017521478002890944,
0.02234511449933052,
0.013992112129926682,
-0.040064483880996704,
0.16194064915180206,
0.028043806552886963,
0.11482534557580948,
0.1260133534669876,
0.08061657845973969,
-0.08368021994829178,
-0.01589050516486168,
-0.04533259943127632,
-0.02830912359058857,
0.07776263356208801,
-0.14334753155708313,
-0.0024852908682078123,
0.09716805815696716,
-0.031756170094013214,
0.07789520174264908,
0.0443565733730793,
-0.024612247943878174,
-0.009293615818023682,
0.18394094705581665,
-0.1832820326089859,
0.005670373793691397,
-0.019724491983652115,
-0.027930360287427902,
0.02501995489001274,
-0.0036304097156971693,
0.06436149775981903,
-0.015420637093484402,
-0.0008904460119083524,
-0.002401163103058934,
-0.006528300233185291,
-0.02709117904305458,
0.12589481472969055,
0.05272006243467331,
0.044955115765333176,
-0.09684952348470688,
0.1465088576078415,
0.01894526183605194,
-0.14177154004573822,
0.01550470944494009,
0.10550054162740707,
-0.10618971288204193,
-0.0919019803404808,
-0.0537048876285553,
0.09819640219211578,
-0.07343681901693344,
-0.057796869426965714,
-0.07974296808242798,
-0.05334624648094177,
-0.02066487818956375,
0.1388300359249115,
0.028049761429429054,
0.03349816054105759,
0.0060493117198348045,
-0.0921950414776802,
0.06596169620752335,
0.07969242334365845,
0.022575410082936287,
0.004085867200046778,
-0.12810227274894714,
-0.0063589634373784065,
-0.030048150569200516,
0.16259798407554626,
-0.07172658294439316,
0.05064139515161514,
-0.0970463678240776,
0.022247489541769028,
-0.06024191901087761,
-0.04173938184976578,
-0.057452935725450516,
-0.056583404541015625,
-0.017529960721731186,
-0.10439056158065796,
-0.034556303173303604,
-0.0688297376036644,
-0.07610727101564407,
0.028551174327731133,
0.03400527685880661,
0.024714689701795578,
-0.07836832106113434,
-0.05908694118261337,
0.04071949049830437,
-0.011173232458531857,
0.10128814727067947,
0.09366299211978912,
-0.039895933121442795,
0.03688507899641991,
-0.14226408302783966,
-0.07586017996072769,
0.0477263405919075,
0.006925757043063641,
0.08976875245571136,
0.09602683782577515,
0.01863906905055046,
0.03825221210718155,
0.017020082101225853,
0.021640079095959663,
0.04319848120212555,
-0.08347424119710922,
-0.03940165042877197,
0.0014537242241203785,
-0.05603500455617905,
-0.026766853407025337,
0.023358922451734543,
0.11646880954504013,
-0.014221346005797386,
0.08347752690315247,
-0.036254823207855225,
-0.0058178165927529335,
-0.12220904976129532,
0.017520468682050705,
-0.0350525826215744,
-0.13626743853092194,
0.005360368173569441,
-0.010416119359433651,
0.06515660136938095,
-0.05199267342686653,
0.19000618159770966,
0.0641641691327095,
-0.09557489305734634,
0.030954092741012573,
0.0011805272661149502,
0.07208065688610077,
-0.006524869240820408,
0.15125972032546997,
0.04285088926553726,
-0.028151076287031174,
-0.0658004954457283,
0.017279867082834244,
0.05785170942544937,
0.13376358151435852,
0.07316964119672775,
0.13778336346149445,
0.07156230509281158,
0.07635203748941422,
-0.03141409903764725,
-0.057688284665346146,
0.021888306364417076,
-0.1476803421974182,
-0.08653061836957932,
0.03704266995191574,
0.021516164764761925,
-0.06182214990258217,
0.19896772503852844,
-0.02213606983423233,
0.0136124761775136,
-0.039244651794433594,
-0.029099484905600548,
-0.11417846381664276,
-0.1400246024131775,
-0.05191745609045029,
-0.01928899623453617,
0.003655858803540468,
-0.037621837109327316,
0.03257635980844498,
0.137229785323143,
0.0828694999217987,
-0.009503990411758423,
0.18293777108192444,
0.03203921020030975,
-0.03217833861708641,
0.0683274120092392,
0.08073946088552475,
0.004544432740658522,
0.00008585822070017457,
-0.020427478477358818,
-0.06762135028839111,
0.01280989684164524,
-0.03182310611009598,
-0.009787492454051971,
-0.04137623682618141,
0.11264032870531082,
-0.04113246500492096,
-0.12065320461988449,
-0.06272836774587631,
-0.00035982500412501395,
0.008012688718736172,
0.10794283449649811,
0.02506658434867859,
0.07643318176269531,
0.0249862652271986,
0.19252467155456543,
-0.03363817185163498,
-0.03167878836393356,
-0.055995527654886246,
0.05340809002518654,
-0.046949613839387894,
0.03241438418626785,
-0.0037408778443932533,
-0.049516595900058746,
-0.04050755873322487,
0.1835067719221115,
0.3113377094268799,
-0.09596307575702667,
0.048116739839315414,
-0.01659657619893551,
0.021724794059991837,
-0.021622907370328903,
0.02954355627298355,
0.04038097336888313,
0.1676701307296753,
-0.11669009923934937,
-0.009144366718828678,
-0.06266377121210098,
0.00250898371450603,
-0.060634102672338486,
0.038737569004297256,
0.04122788459062576,
0.002792871091514826,
-0.08164597302675247,
0.028822991997003555,
-0.07615265250205994,
0.011434788815677166,
0.09732848405838013,
-0.17050328850746155,
-0.08623810112476349,
-0.044563550502061844,
0.16917575895786285,
0.06769395619630814,
-0.0086804935708642,
-0.008290385827422142,
-0.0019857294391840696,
-0.06302157044410706,
0.024542901664972305,
-0.18480922281742096,
-0.0553729273378849,
0.060539476573467255,
-0.02797006256878376,
0.13920973241329193,
-0.03839337080717087,
0.08767255395650864,
0.0848536565899849,
0.020989811047911644,
-0.055039405822753906,
0.07291936129331589,
0.0346425324678421,
-0.0028965238016098738,
-0.024554314091801643,
0.020524965599179268,
0.024165306240320206,
-0.08431022614240646,
0.04336407408118248,
0.043452754616737366,
0.038261476904153824,
-0.11519693583250046,
-0.024694710969924927,
-0.005112344864755869,
0.09357783198356628,
-0.021482044830918312,
0.11477649956941605,
0.08454284816980362,
-0.007037307135760784,
0.009911580011248589,
-0.041556019335985184,
-0.029144957661628723,
0.0800870880484581,
-0.07478620857000351,
-0.05979253351688385,
-0.062324993312358856,
-0.008578818291425705,
-0.024078821763396263,
0.02265157178044319,
-0.15060995519161224,
-0.0050795734860002995,
-0.11985675245523453,
-0.0623549222946167,
-0.08404508978128433,
-0.006848504301160574,
0.0973644107580185,
0.04805683717131615,
-0.05380893871188164,
-0.057338882237672806,
0.0526002012193203,
0.025217778980731964,
-0.10969335585832596,
-0.08317923545837402
] |
null | null |
transformers
|
# AraBERT v1 & v2 : Pre-training BERT for Arabic Language Understanding
<img src="https://raw.githubusercontent.com/aub-mind/arabert/master/arabert_logo.png" width="100" align="left"/>
**AraBERT** is an Arabic pretrained language model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERT uses the same BERT-Base config. More details are available in the [AraBERT Paper](https://arxiv.org/abs/2003.00104) and in the [AraBERT Meetup](https://github.com/WissamAntoun/pydata_khobar_meetup)
There are two versions of the model, AraBERTv0.1 and AraBERTv1, with the difference being that AraBERTv1 uses pre-segmented text where prefixes and suffixes were split using the [Farasa Segmenter](http://alt.qcri.org/farasa/segmenter.html).
We evaluate AraBERT models on different downstream tasks and compare them to [mBERT]((https://github.com/google-research/bert/blob/master/multilingual.md)), and other state of the art models (*To the extent of our knowledge*). The Tasks were Sentiment Analysis on 6 different datasets ([HARD](https://github.com/elnagara/HARD-Arabic-Dataset), [ASTD-Balanced](https://www.aclweb.org/anthology/D15-1299), [ArsenTD-Lev](https://staff.aub.edu.lb/~we07/Publications/ArSentD-LEV_Sentiment_Corpus.pdf), [LABR](https://github.com/mohamedadaly/LABR)), Named Entity Recognition with the [ANERcorp](http://curtis.ml.cmu.edu/w/courses/index.php/ANERcorp), and Arabic Question Answering on [Arabic-SQuAD and ARCD](https://github.com/husseinmozannar/SOQAL)
# AraBERTv2
## What's New!
AraBERT now comes in 4 new variants to replace the old v1 versions:
More Detail in the AraBERT folder and in the [README](https://github.com/aub-mind/arabert/blob/master/AraBERT/README.md) and in the [AraBERT Paper](https://arxiv.org/abs/2003.00104v2)
Model | HuggingFace Model Name | Size (MB/Params)| Pre-Segmentation | DataSet (Sentences/Size/nWords) |
---|:---:|:---:|:---:|:---:
AraBERTv0.2-base | [bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) | 543MB / 136M | No | 200M / 77GB / 8.6B |
AraBERTv0.2-large| [bert-large-arabertv02](https://huggingface.co/aubmindlab/bert-large-arabertv02) | 1.38G 371M | No | 200M / 77GB / 8.6B |
AraBERTv2-base| [bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) | 543MB 136M | Yes | 200M / 77GB / 8.6B |
AraBERTv2-large| [bert-large-arabertv2](https://huggingface.co/aubmindlab/bert-large-arabertv2) | 1.38G 371M | Yes | 200M / 77GB / 8.6B |
AraBERTv0.2-Twitter-base| [bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) | 543MB / 136M | No | Same as v02 + 60M Multi-Dialect Tweets|
AraBERTv0.2-Twitter-large| [bert-large-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-large-arabertv02-twitter) | 1.38G / 371M | No | Same as v02 + 60M Multi-Dialect Tweets|
AraBERTv0.1-base| [bert-base-arabertv01](https://huggingface.co/aubmindlab/bert-base-arabertv01) | 543MB 136M | No | 77M / 23GB / 2.7B |
AraBERTv1-base| [bert-base-arabert](https://huggingface.co/aubmindlab/bert-base-arabert) | 543MB 136M | Yes | 77M / 23GB / 2.7B |
All models are available in the `HuggingFace` model page under the [aubmindlab](https://huggingface.co/aubmindlab/) name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
## Better Pre-Processing and New Vocab
We identified an issue with AraBERTv1's wordpiece vocabulary. The issue came from punctuations and numbers that were still attached to words when learned the wordpiece vocab. We now insert a space between numbers and characters and around punctuation characters.
The new vocabulary was learned using the `BertWordpieceTokenizer` from the `tokenizers` library, and should now support the Fast tokenizer implementation from the `transformers` library.
**P.S.**: All the old BERT codes should work with the new BERT, just change the model name and check the new preprocessing function
**Please read the section on how to use the [preprocessing function](#Preprocessing)**
## Bigger Dataset and More Compute
We used ~3.5 times more data, and trained for longer.
For Dataset Sources see the [Dataset Section](#Dataset)
Model | Hardware | num of examples with seq len (128 / 512) |128 (Batch Size/ Num of Steps) | 512 (Batch Size/ Num of Steps) | Total Steps | Total Time (in Days) |
---|:---:|:---:|:---:|:---:|:---:|:---:
AraBERTv0.2-base | TPUv3-8 | 420M / 207M | 2560 / 1M | 384/ 2M | 3M | -
AraBERTv0.2-large | TPUv3-128 | 420M / 207M | 13440 / 250K | 2056 / 300K | 550K | 7
AraBERTv2-base | TPUv3-8 | 420M / 207M | 2560 / 1M | 384/ 2M | 3M | -
AraBERTv2-large | TPUv3-128 | 520M / 245M | 13440 / 250K | 2056 / 300K | 550K | 7
AraBERT-base (v1/v0.1) | TPUv2-8 | - |512 / 900K | 128 / 300K| 1.2M | 4
# Dataset
The pretraining data used for the new AraBERT model is also used for Arabic **GPT2 and ELECTRA**.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
- OSCAR unshuffled and filtered.
- [Arabic Wikipedia dump](https://archive.org/details/arwiki-20190201) from 2020/09/01
- [The 1.5B words Arabic Corpus](https://www.semanticscholar.org/paper/1.5-billion-words-Arabic-Corpus-El-Khair/f3eeef4afb81223df96575adadf808fe7fe440b4)
- [The OSIAN Corpus](https://www.aclweb.org/anthology/W19-4619)
- Assafir news articles. Huge thank you for Assafir for providing us the data
# Preprocessing
It is recommended to apply our preprocessing function before training/testing on any dataset.
**Install the arabert python package to segment text for AraBERT v1 & v2 or to clean your data `pip install arabert`**
```python
from arabert.preprocess import ArabertPreprocessor
model_name="aubmindlab/bert-large-arabertv2"
arabert_prep = ArabertPreprocessor(model_name=model_name)
text = "ููู ูุจุงูุบ ุฅุฐุง ูููุง ุฅู ูุงุชู ุฃู ูู
ุจููุชุฑ ุงูู
ูุชุจ ูู ุฒู
ููุง ูุฐุง ุถุฑูุฑู"
arabert_prep.preprocess(text)
>>>"ู+ ูู ูุจุงูุบ ุฅุฐุง ูู +ูุง ุฅู ูุงุชู ุฃู ูู
ุจููุชุฑ ุงู+ ู
ูุชุจ ูู ุฒู
ู +ูุง ูุฐุง ุถุฑูุฑู"
```
# TensorFlow 1.x models
The TF1.x model are available in the HuggingFace models repo.
You can download them as follows:
- via git-lfs: clone all the models in a repo
```bash
curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
sudo apt-get install git-lfs
git lfs install
git clone https://huggingface.co/aubmindlab/MODEL_NAME
tar -C ./MODEL_NAME -zxvf /content/MODEL_NAME/tf1_model.tar.gz
```
where `MODEL_NAME` is any model under the `aubmindlab` name
- via `wget`:
- Go to the tf1_model.tar.gz file on huggingface.co/models/aubmindlab/MODEL_NAME.
- copy the `oid sha256`
- then run `wget https://cdn-lfs.huggingface.co/aubmindlab/aragpt2-base/INSERT_THE_SHA_HERE` (ex: for `aragpt2-base`: `wget https://cdn-lfs.huggingface.co/aubmindlab/aragpt2-base/3766fc03d7c2593ff2fb991d275e96b81b0ecb2098b71ff315611d052ce65248`)
# If you used this model please cite us as :
Google Scholar has our Bibtex wrong (missing name), use this instead
```
@inproceedings{antoun2020arabert,
title={AraBERT: Transformer-based Model for Arabic Language Understanding},
author={Antoun, Wissam and Baly, Fady and Hajj, Hazem},
booktitle={LREC 2020 Workshop Language Resources and Evaluation Conference 11--16 May 2020},
pages={9}
}
```
# Acknowledgments
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continuous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT.
# Contacts
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <[email protected]> | <[email protected]>
**Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <[email protected]> | <[email protected]>
|
{"language": "ar", "datasets": ["wikipedia", "Osian", "1.5B-Arabic-Corpus", "oscar-arabic-unshuffled", "Assafir(private)"], "widget": [{"text": " \u0639\u0627\u0635\u0645 +\u0629 \u0644\u0628\u0646\u0627\u0646 \u0647\u064a [MASK] ."}]}
|
fill-mask
|
aubmindlab/bert-large-arabertv2
|
[
"transformers",
"pytorch",
"tf",
"jax",
"tensorboard",
"safetensors",
"bert",
"fill-mask",
"ar",
"arxiv:2003.00104",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"2003.00104"
] |
[
"ar"
] |
TAGS
#transformers #pytorch #tf #jax #tensorboard #safetensors #bert #fill-mask #ar #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
AraBERT v1 & v2 : Pre-training BERT for Arabic Language Understanding
=====================================================================
<img src="URL width="100" align="left"/>
AraBERT is an Arabic pretrained language model based on Google's BERT architechture. AraBERT uses the same BERT-Base config. More details are available in the AraBERT Paper and in the AraBERT Meetup
There are two versions of the model, AraBERTv0.1 and AraBERTv1, with the difference being that AraBERTv1 uses pre-segmented text where prefixes and suffixes were split using the Farasa Segmenter.
We evaluate AraBERT models on different downstream tasks and compare them to mBERT), and other state of the art models (*To the extent of our knowledge*). The Tasks were Sentiment Analysis on 6 different datasets (HARD, ASTD-Balanced, ArsenTD-Lev, LABR), Named Entity Recognition with the ANERcorp, and Arabic Question Answering on Arabic-SQuAD and ARCD
AraBERTv2
=========
What's New!
-----------
AraBERT now comes in 4 new variants to replace the old v1 versions:
More Detail in the AraBERT folder and in the README and in the AraBERT Paper
All models are available in the 'HuggingFace' model page under the aubmindlab name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
Better Pre-Processing and New Vocab
-----------------------------------
We identified an issue with AraBERTv1's wordpiece vocabulary. The issue came from punctuations and numbers that were still attached to words when learned the wordpiece vocab. We now insert a space between numbers and characters and around punctuation characters.
The new vocabulary was learned using the 'BertWordpieceTokenizer' from the 'tokenizers' library, and should now support the Fast tokenizer implementation from the 'transformers' library.
P.S.: All the old BERT codes should work with the new BERT, just change the model name and check the new preprocessing function
Please read the section on how to use the preprocessing function
Bigger Dataset and More Compute
-------------------------------
We used ~3.5 times more data, and trained for longer.
For Dataset Sources see the Dataset Section
Dataset
=======
The pretraining data used for the new AraBERT model is also used for Arabic GPT2 and ELECTRA.
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
* OSCAR unshuffled and filtered.
* Arabic Wikipedia dump from 2020/09/01
* The 1.5B words Arabic Corpus
* The OSIAN Corpus
* Assafir news articles. Huge thank you for Assafir for providing us the data
Preprocessing
=============
It is recommended to apply our preprocessing function before training/testing on any dataset.
Install the arabert python package to segment text for AraBERT v1 & v2 or to clean your data 'pip install arabert'
TensorFlow 1.x models
=====================
The TF1.x model are available in the HuggingFace models repo.
You can download them as follows:
* via git-lfs: clone all the models in a repo
where 'MODEL\_NAME' is any model under the 'aubmindlab' name
* via 'wget':
+ Go to the tf1\_model.URL file on URL
+ copy the 'oid sha256'
+ then run 'wget URL (ex: for 'aragpt2-base': 'wget URL
If you used this model please cite us as :
==========================================
Google Scholar has our Bibtex wrong (missing name), use this instead
Acknowledgments
===============
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the AUB MIND Lab Members for the continuous support. Also thanks to Yakshof and Assafir for data and storage access. Another thanks for Habib Rahal (URL for putting a face to AraBERT.
Contacts
========
Wissam Antoun: Linkedin | Twitter | Github | [wfa07@URL](mailto:wfa07@URL) | [URL@URL](mailto:URL@URL)
Fady Baly: Linkedin | Twitter | Github | [fgb06@URL](mailto:fgb06@URL) | [URL@URL](mailto:URL@URL)
|
[] |
[
"TAGS\n#transformers #pytorch #tf #jax #tensorboard #safetensors #bert #fill-mask #ar #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
64
] |
[
"passage: TAGS\n#transformers #pytorch #tf #jax #tensorboard #safetensors #bert #fill-mask #ar #arxiv-2003.00104 #autotrain_compatible #endpoints_compatible #has_space #region-us \n"
] |
[
-0.06205640733242035,
0.016419485211372375,
-0.005631936248391867,
0.07140922546386719,
0.06456120312213898,
0.020304299890995026,
0.1113319918513298,
0.09129416197538376,
0.07215004414319992,
0.053335532546043396,
0.16897571086883545,
0.16596722602844238,
-0.018709441646933556,
0.1317361444234848,
-0.04556173458695412,
-0.22351978719234467,
0.032205741852521896,
0.05431362986564636,
-0.0949944332242012,
0.09874726086854935,
0.06373937427997589,
-0.08904595673084259,
0.07026658952236176,
-0.009995865635573864,
-0.12182342261075974,
0.04553380236029625,
0.08805833756923676,
-0.12391272932291031,
0.14506754279136658,
0.04057631269097328,
0.20384493470191956,
0.05433641001582146,
-0.025800390169024467,
-0.020574888214468956,
0.048595327883958817,
0.04753135144710541,
-0.09259068965911865,
0.07850790023803711,
0.024655407294631004,
-0.05402429774403572,
-0.012493066489696503,
-0.0027504018507897854,
0.04122166335582733,
0.02339450642466545,
-0.14407005906105042,
-0.18230760097503662,
-0.04030516743659973,
0.06990037113428116,
0.0018578824819996953,
0.06252574175596237,
0.02726130187511444,
0.22974169254302979,
-0.05216149613261223,
0.09441539645195007,
0.19511520862579346,
-0.3822033703327179,
-0.03621319308876991,
0.11745812743902206,
0.10103529691696167,
0.020910069346427917,
-0.0680401548743248,
0.055746886879205704,
0.042400602251291275,
0.026227185502648354,
0.1471465826034546,
-0.07094127684831619,
-0.10904941707849503,
0.03544154018163681,
-0.11560504138469696,
-0.023161737248301506,
0.1445508599281311,
-0.038536347448825836,
0.052537668496370316,
-0.0037044971249997616,
-0.12130780518054962,
-0.10226518660783768,
0.0001326177007285878,
-0.05053788423538208,
-0.026177862659096718,
0.008250252343714237,
-0.03730624169111252,
-0.01914210245013237,
-0.14206774532794952,
0.010471856221556664,
-0.19900943338871002,
0.21637263894081116,
-0.022591307759284973,
0.056338973343372345,
-0.16717281937599182,
0.05396697297692299,
-0.043765101581811905,
-0.14190873503684998,
0.10121501982212067,
-0.061610277742147446,
-0.002920987317338586,
0.002488048281520605,
-0.03095245361328125,
-0.12288910895586014,
0.05815603956580162,
0.11357661336660385,
-0.014513226225972176,
0.028315171599388123,
0.04228188842535019,
0.1025458574295044,
-0.017318593338131905,
0.07762020826339722,
-0.04121498391032219,
-0.03195321932435036,
0.03683973103761673,
-0.008197260089218616,
0.043314121663570404,
-0.06123639643192291,
-0.123267762362957,
-0.04268215596675873,
0.08049032092094421,
0.04133974760770798,
0.054420679807662964,
0.06905409693717957,
-0.04760894179344177,
0.038131073117256165,
0.06706041097640991,
-0.06518762558698654,
0.02675791084766388,
-0.034142352640628815,
0.07129345834255219,
0.015927307307720184,
0.04946556314826012,
-0.026871493086218834,
0.03452198952436447,
0.10468943417072296,
-0.11645659804344177,
-0.038195423781871796,
-0.0432870090007782,
-0.12498882412910461,
0.05328806862235069,
-0.08831673860549927,
0.019647952169179916,
-0.20986616611480713,
-0.030384015291929245,
0.04808766022324562,
0.06183437630534172,
-0.0123753622174263,
-0.01820213906466961,
0.09523697197437286,
-0.07112377882003784,
0.07157174497842789,
-0.021480198949575424,
-0.005400602240115404,
-0.03465329110622406,
0.08125422894954681,
-0.022753048688173294,
0.1439654678106308,
-0.08775685727596283,
0.012105434201657772,
-0.06509114056825638,
0.029573814943432808,
-0.1715555489063263,
-0.08765578269958496,
-0.05981617048382759,
0.1113397479057312,
-0.0071297911927104,
-0.026387372985482216,
-0.14739906787872314,
0.046218641102313995,
0.038286659866571426,
0.11723694205284119,
-0.1512991189956665,
-0.06249857693910599,
0.18374741077423096,
-0.10189822316169739,
-0.14514987170696259,
0.1010316014289856,
0.017330870032310486,
-0.007883606478571892,
-0.008189505897462368,
0.12961390614509583,
0.03263343870639801,
-0.15492407977581024,
0.0037295660004019737,
0.13028399646282196,
-0.10825403779745102,
-0.08837661892175674,
0.021526483818888664,
0.028672466054558754,
-0.07991576939821243,
0.0027549436781555414,
0.10240703821182251,
0.07628972083330154,
-0.05284230038523674,
-0.059642910957336426,
-0.0495307482779026,
-0.043735623359680176,
0.15174247324466705,
0.045873790979385376,
0.09384194016456604,
-0.07773073762655258,
-0.09571273624897003,
-0.03531312942504883,
-0.0012932431418448687,
0.05520990863442421,
0.01251483429223299,
-0.06899737566709518,
0.15827548503875732,
-0.10746494680643082,
-0.018701231107115746,
-0.16324587166309357,
-0.15014822781085968,
-0.03964085876941681,
0.047023046761751175,
-0.022980522364377975,
0.16527724266052246,
0.14285697042942047,
-0.01760239526629448,
-0.02932555042207241,
-0.034417495131492615,
0.09304012358188629,
0.057286690920591354,
-0.07616351544857025,
-0.13829553127288818,
0.0023591239005327225,
-0.1085963100194931,
-0.008234956301748753,
-0.07129557430744171,
0.013926321640610695,
0.02967788279056549,
0.12781620025634766,
0.0387415736913681,
0.050243888050317764,
-0.03647064045071602,
0.029220478609204292,
-0.04892974719405174,
-0.020968379452824593,
0.04197848215699196,
0.001577957533299923,
-0.044085994362831116,
0.16455984115600586,
-0.19607876241207123,
0.3997917175292969,
0.18791256844997406,
-0.19213640689849854,
-0.07480120658874512,
0.0681593120098114,
-0.024110790342092514,
0.02351156435906887,
0.04179821535944939,
-0.03955775126814842,
-0.04400914907455444,
-0.038700055330991745,
0.12317727506160736,
-0.037210673093795776,
-0.05323050543665886,
0.061081528663635254,
-0.0679059699177742,
-0.09253434091806412,
0.03645201772451401,
0.04429423063993454,
-0.14570622146129608,
0.1870698481798172,
0.3004302382469177,
-0.06477932631969452,
0.15444912016391754,
0.02873992919921875,
-0.010621128603816032,
-0.02214619517326355,
-0.02965385839343071,
-0.0018400672124698758,
0.12518762052059174,
-0.1364172101020813,
-0.02946421317756176,
0.06706062704324722,
-0.038584306836128235,
0.017491010949015617,
-0.1430903822183609,
-0.05457482486963272,
0.024657396599650383,
0.06358625739812851,
-0.02865566313266754,
0.13560087978839874,
0.02546938695013523,
0.124820776283741,
-0.015216883271932602,
-0.11034747213125229,
0.05958956852555275,
0.023227181285619736,
-0.03444535285234451,
0.15055105090141296,
-0.09835734218358994,
-0.28529852628707886,
-0.0926188975572586,
-0.07718223333358765,
0.02264782041311264,
-0.0015058720018714666,
0.04497717320919037,
-0.060805123299360275,
-0.046905700117349625,
-0.006238559260964394,
-0.04998674616217613,
-0.04098185896873474,
0.08689656108617783,
-0.04848824068903923,
-0.005533347837626934,
0.010986941866576672,
-0.08298224955797195,
-0.06091240048408508,
-0.03328895568847656,
-0.018151648342609406,
0.13347594439983368,
0.01101174857467413,
0.07978677749633789,
0.14996425807476044,
-0.03076476976275444,
0.029970677569508553,
-0.010740107856690884,
0.16774098575115204,
-0.06903976202011108,
0.04520275443792343,
0.14515435695648193,
-0.03417101502418518,
0.07809074968099594,
0.1658826768398285,
0.04360342025756836,
-0.015286105684936047,
-0.006610523909330368,
-0.01891227997839451,
-0.11231809109449387,
-0.13974107801914215,
-0.06382898986339569,
-0.11667319387197495,
-0.0037470697425305843,
0.0412231869995594,
0.07882214337587357,
0.12243178486824036,
0.0771171897649765,
0.0603230856359005,
0.001797158969566226,
-0.09064871072769165,
0.029292995110154152,
0.08973082154989243,
-0.019320698454976082,
0.13870114088058472,
-0.0344298854470253,
-0.1287648230791092,
0.04252048209309578,
0.03779057413339615,
0.04456395283341408,
0.05335664749145508,
-0.046639665961265564,
0.03595798835158348,
0.20038793981075287,
0.13424481451511383,
0.13018476963043213,
0.0021756545174866915,
-0.11051155626773834,
-0.0008863491239026189,
-0.039297107607126236,
0.02520613931119442,
0.042924076318740845,
0.08089606463909149,
-0.046668779104948044,
-0.003344982862472534,
-0.09605731070041656,
0.04477301239967346,
0.06829194724559784,
0.08150628954172134,
-0.2730735242366791,
-0.011001590639352798,
0.04540189728140831,
0.008253197185695171,
-0.05469473451375961,
0.017010390758514404,
0.09728763997554779,
-0.0376305878162384,
0.02857719361782074,
-0.05940106511116028,
0.039083581417798996,
0.09825767576694489,
0.0535990446805954,
-0.03578467667102814,
-0.028901927173137665,
-0.019518425688147545,
0.01921640709042549,
-0.2272026389837265,
0.2588249444961548,
0.011880024336278439,
-0.04280561953783035,
-0.05197710916399956,
0.0036170268431305885,
0.04662278667092323,
0.10678387433290482,
0.1273149698972702,
0.02163301408290863,
-0.04599049687385559,
-0.11021731793880463,
0.0014950347831472754,
-0.00950069259852171,
0.06893999874591827,
0.0021605545189231634,
0.01216472964733839,
-0.012273983098566532,
-0.04407518729567528,
0.04836302995681763,
0.13912375271320343,
-0.03258698061108589,
-0.1125522032380104,
0.0935889333486557,
0.04881802201271057,
-0.08794575929641724,
-0.032516855746507645,
-0.10036790370941162,
-0.16575555503368378,
0.15072490274906158,
0.014301794581115246,
-0.009514560922980309,
-0.12821665406227112,
-0.07843200117349625,
0.10363633185625076,
-0.08311736583709717,
0.08751948922872543,
-0.06382812559604645,
0.01512227300554514,
-0.07946725934743881,
-0.15116655826568604,
0.1806308925151825,
-0.131719708442688,
-0.01609332300722599,
-0.09528714418411255,
0.10099870711565018,
-0.09107154607772827,
0.0511881522834301,
-0.009274378418922424,
0.057845257222652435,
-0.07947779446840286,
-0.03831625357270241,
0.06445273756980896,
-0.09184832125902176,
0.04714634269475937,
-0.053881581872701645,
-0.026896657422184944,
-0.08003944158554077,
0.04882983863353729,
0.045462802052497864,
0.20122870802879333,
0.22696244716644287,
-0.12365004420280457,
0.07828295230865479,
0.10416458547115326,
0.018286680802702904,
-0.333726167678833,
-0.05516946688294411,
-0.12306740880012512,
0.002300277352333069,
0.08398216962814331,
-0.013672986067831516,
0.06733328104019165,
-0.026811441406607628,
-0.06954702734947205,
0.13314637541770935,
-0.19110053777694702,
-0.10437014698982239,
0.19079133868217468,
0.04585748538374901,
0.3554614186286926,
-0.1473289281129837,
-0.031287699937820435,
0.03301629424095154,
-0.08553328365087509,
0.07570717483758926,
-0.09013614058494568,
0.06756661087274551,
-0.016686277464032173,
0.03254677355289459,
0.03874121233820915,
-0.0993320643901825,
0.08918625861406326,
-0.11194690316915512,
0.041315969079732895,
-0.11140521615743637,
-0.13264404237270355,
0.10479085892438889,
-0.0318586528301239,
-0.007499035447835922,
-0.04853729531168938,
0.010254673659801483,
-0.013712265528738499,
0.008955953642725945,
-0.10425613820552826,
0.11486134678125381,
0.005716176703572273,
-0.0772642120718956,
0.007591187953948975,
0.007282900623977184,
-0.03416379541158676,
-0.053937532007694244,
0.21138058602809906,
0.0002531967475079,
0.25961804389953613,
0.1820603609085083,
0.031865689903497696,
-0.11829892545938492,
-0.06986027210950851,
0.02471589483320713,
-0.0813932865858078,
0.10694193840026855,
-0.09115427732467651,
0.03615221753716469,
0.07373851537704468,
0.0026366431266069412,
0.03569267690181732,
0.10771167278289795,
-0.02960849553346634,
-0.028581099584698677,
0.17612971365451813,
-0.2301277071237564,
-0.05098425969481468,
-0.020169109106063843,
-0.0005902972188778222,
0.004123882856220007,
0.06742317974567413,
0.11403528600931168,
-0.01754057966172695,
-0.007228579372167587,
0.012876796536147594,
-0.013529956340789795,
-0.05531605705618858,
0.06784787029027939,
0.1015721932053566,
0.05553675442934036,
-0.06439347565174103,
-0.0163639634847641,
0.003961800131946802,
-0.1950717717409134,
-0.007229531183838844,
0.10807757079601288,
-0.06960131973028183,
-0.13556182384490967,
0.006897018291056156,
0.07048038393259048,
-0.02844381146132946,
-0.008336000144481659,
-0.06337548792362213,
-0.09124139696359634,
0.02627447061240673,
0.2542470395565033,
0.0561421774327755,
0.03195618838071823,
0.0004717611300293356,
-0.00702428724616766,
0.001842873520217836,
0.04973233491182327,
0.0040061897598207,
0.059405650943517685,
-0.15369026362895966,
0.06040234491229057,
-0.016422785818576813,
0.1321401745080948,
-0.10280845314264297,
0.014286753721535206,
-0.17296408116817474,
-0.021147672086954117,
-0.043464820832014084,
-0.07414416968822479,
-0.07311565428972244,
-0.07461603730916977,
0.002565700327977538,
-0.09483636170625687,
-0.0777704194188118,
-0.0366755872964859,
-0.11001003533601761,
0.007898882031440735,
0.03897085040807724,
0.0029747411608695984,
-0.07472869008779526,
-0.044469065964221954,
0.07799013704061508,
-0.02568673901259899,
0.07837355136871338,
0.07082529366016388,
-0.03894275054335594,
0.07810002565383911,
-0.12285029143095016,
-0.07097987830638885,
0.08251919597387314,
0.002477311762049794,
0.09740988910198212,
0.060924313962459564,
0.007473078556358814,
0.0006446216139011085,
0.03796475753188133,
0.031743090599775314,
0.05266939476132393,
-0.07946975529193878,
0.0666801780462265,
-0.005743241403251886,
-0.14886006712913513,
-0.03976970911026001,
-0.055332429707050323,
0.10423769801855087,
-0.03908917307853699,
0.09273091703653336,
-0.05218992009758949,
0.037194814532995224,
-0.13356459140777588,
0.022982364520430565,
-0.029868952929973602,
-0.14308784902095795,
0.013500630855560303,
0.0029223517049103975,
0.03562235087156296,
-0.03913581743836403,
0.13969874382019043,
0.040109194815158844,
-0.07089532166719437,
0.04088154062628746,
0.02752225659787655,
0.013268458656966686,
-0.001395803177729249,
0.11613566428422928,
0.03047296591103077,
-0.057379476726055145,
-0.11226285994052887,
0.07599129527807236,
0.025600213557481766,
-0.011567510664463043,
0.12414441257715225,
0.072645403444767,
0.02569679543375969,
0.09936664253473282,
0.0387396402657032,
-0.033034298568964005,
-0.12005939334630966,
-0.1399136483669281,
-0.10132614523172379,
0.053976867347955704,
-0.02304636873304844,
0.01874390058219433,
0.23840701580047607,
0.009891532361507416,
0.028403205797076225,
-0.06844337284564972,
-0.022458065301179886,
-0.16186298429965973,
-0.15062439441680908,
-0.07439664751291275,
-0.05985378473997116,
-0.004769462160766125,
-0.019678432494401932,
0.009821049869060516,
0.08612886071205139,
0.03393776714801788,
-0.0019027923699468374,
0.1758262813091278,
0.0761275365948677,
-0.0006402662838809192,
0.004925572779029608,
0.050419360399246216,
0.023003600537776947,
-0.023529721423983574,
0.011276671662926674,
-0.13186031579971313,
-0.019211705774068832,
-0.07197465747594833,
-0.02231898345053196,
-0.054685916751623154,
0.024706555530428886,
-0.05646619200706482,
-0.11669252812862396,
-0.05150238797068596,
0.02313285693526268,
-0.01710774563252926,
0.06086781993508339,
0.006088658701628447,
0.045691173523664474,
-0.010066820308566093,
0.1781281977891922,
-0.09703728556632996,
-0.05015042424201965,
-0.04471985623240471,
0.18383944034576416,
-0.026321690529584885,
0.08377490937709808,
-0.031909603625535965,
0.001852802000939846,
-0.058642756193876266,
0.22526736557483673,
0.3340652287006378,
-0.06147017329931259,
0.10824669152498245,
0.05175526812672615,
0.01240173727273941,
-0.02466142550110817,
0.09782397001981735,
0.08889931440353394,
0.27488937973976135,
-0.10338589549064636,
-0.008731781505048275,
-0.06685293465852737,
0.00850763265043497,
-0.08175580203533173,
0.05114224553108215,
0.04466280713677406,
-0.015034356154501438,
-0.04801013693213463,
0.04185260832309723,
-0.09319619834423065,
0.042454712092876434,
0.05694277212023735,
-0.23500053584575653,
-0.0800832137465477,
0.004111040383577347,
0.1764068454504013,
-0.030650654807686806,
0.10063746571540833,
-0.03542433679103851,
-0.06354635953903198,
-0.037183575332164764,
0.007849691435694695,
-0.1385492980480194,
-0.013906620442867279,
0.08472760766744614,
-0.036827217787504196,
0.12571607530117035,
-0.053063537925481796,
0.009537851437926292,
0.12896914780139923,
0.0563601553440094,
-0.051099993288517,
0.03801474720239639,
0.045530132949352264,
-0.10969606786966324,
-0.059070609509944916,
0.014085112139582634,
0.013415331952273846,
-0.058414820581674576,
0.05767589062452316,
-0.14039157330989838,
0.037183456122875214,
-0.09668384492397308,
-0.00786216277629137,
-0.007966425269842148,
0.033709827810525894,
-0.011793144047260284,
0.09108547121286392,
0.06538639962673187,
0.008740723133087158,
-0.022280698642134666,
-0.03424162045121193,
-0.02933240868151188,
0.06169120594859123,
-0.0549285002052784,
-0.13041076064109802,
-0.09422887116670609,
0.0004355788987595588,
0.00897127017378807,
-0.010479633696377277,
-0.17388296127319336,
-0.0631512999534607,
-0.06574290245771408,
0.004335571080446243,
-0.1288342922925949,
0.018772393465042114,
0.13619868457317352,
0.03891458734869957,
-0.0009124035132117569,
-0.02776486612856388,
0.02082867920398712,
0.06721970438957214,
-0.17325308918952942,
-0.06719221919775009
] |
null | null |
transformers
|
This folder contain a Google T5 Transformer Fine-tuned to generate paraphrases using:
- Para_NMT_50M_Paraphrasing_train_small.csv 134337 lines of pair sentences 19Mbytes
- Para_NMT_50M_Paraphrasing_val_small.csv 14928 lines of pair sentences 2.0Mbytes
Training Start Time: Sun Mar 14 18:27:15 2021
Training End Time: Sun Mar 14 22:19:00 2021
|
{}
|
text2text-generation
|
auday/paraphraser_model1
|
[
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
This folder contain a Google T5 Transformer Fine-tuned to generate paraphrases using:
- Para_NMT_50M_Paraphrasing_train_small.csv 134337 lines of pair sentences 19Mbytes
- Para_NMT_50M_Paraphrasing_val_small.csv 14928 lines of pair sentences 2.0Mbytes
Training Start Time: Sun Mar 14 18:27:15 2021
Training End Time: Sun Mar 14 22:19:00 2021
|
[] |
[
"TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
51
] |
[
"passage: TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.00556661281734705,
0.0164349228143692,
-0.007315334863960743,
0.024348841980099678,
0.166501984000206,
0.024344393983483315,
0.11518356949090958,
0.1412411630153656,
-0.0020334594883024693,
-0.035958148539066315,
0.1319235861301422,
0.21714316308498383,
-0.006268311757594347,
0.08315006643533707,
-0.08710680902004242,
-0.2602083683013916,
0.03483840078115463,
0.05276213958859444,
0.0049579935148358345,
0.12762698531150818,
0.08691143244504929,
-0.0646481066942215,
0.09440414607524872,
-0.03804538771510124,
-0.17094822227954865,
0.05289003252983093,
0.06358526647090912,
-0.12921307981014252,
0.11203359812498093,
0.04470131918787956,
0.10704579949378967,
0.035496506839990616,
-0.04978400841355324,
-0.14172321557998657,
0.0296106468886137,
0.026950722560286522,
-0.06861023604869843,
0.06236075982451439,
0.1136597990989685,
-0.09615244716405869,
0.08870459347963333,
0.0556039921939373,
-0.004051631316542625,
0.062145017087459564,
-0.15644147992134094,
-0.029072636738419533,
-0.01713588647544384,
0.023426201194524765,
0.07808161526918411,
0.09537342935800552,
-0.008744281716644764,
0.1289428174495697,
-0.09439463913440704,
0.13085374236106873,
0.15587438642978668,
-0.3147599399089813,
0.001229330780915916,
0.04856342077255249,
0.05912892520427704,
0.08336716890335083,
-0.016771415248513222,
0.03740086406469345,
0.02475069649517536,
0.028233950957655907,
0.042602118104696274,
-0.08473630249500275,
-0.1701638251543045,
0.042069677263498306,
-0.0844234824180603,
-0.05861080437898636,
0.24913406372070312,
-0.05834462493658066,
0.06408444046974182,
-0.01192506030201912,
-0.11543367058038712,
-0.06456129997968674,
-0.011278037913143635,
-0.012939955107867718,
-0.04709155857563019,
0.06321226805448532,
0.02679656445980072,
-0.05803138390183449,
-0.13286004960536957,
-0.009396729059517384,
-0.17277660965919495,
0.11429595947265625,
0.011107098311185837,
0.055417537689208984,
-0.23684222996234894,
0.0894838273525238,
0.045466348528862,
-0.10835321247577667,
0.06076562777161598,
-0.09032987058162689,
0.01951918564736843,
-0.019337479025125504,
-0.05594807490706444,
-0.14819347858428955,
0.06912460923194885,
0.09622079879045486,
0.022458840161561966,
0.029469674453139305,
-0.06034425273537636,
0.08020190894603729,
0.030660733580589294,
0.07118292897939682,
0.002764588687568903,
-0.035829924046993256,
0.05543043091893196,
-0.11155472695827484,
-0.008295934647321701,
-0.06744275242090225,
-0.14817972481250763,
-0.05471540614962578,
0.08553145080804825,
0.09807302802801132,
0.029591085389256477,
0.0872388631105423,
-0.044323358684778214,
-0.042564451694488525,
0.010892827063798904,
-0.08642291277647018,
-0.011313864029943943,
-0.000025251778424717486,
0.017184332013130188,
0.13600346446037292,
0.016563422977924347,
0.014259100891649723,
-0.15025922656059265,
0.051360122859478,
-0.07618893682956696,
-0.003882812336087227,
-0.03447994589805603,
-0.07451999187469482,
0.026431044563651085,
-0.0926901325583458,
0.016483480110764503,
-0.1643074005842209,
-0.153541699051857,
0.019637132063508034,
0.019818242639303207,
-0.01814674586057663,
-0.05446401610970497,
-0.04473382234573364,
-0.03356395289301872,
0.050795428454875946,
-0.06109105795621872,
0.007418809924274683,
-0.04204783961176872,
0.09961801022291183,
-0.03490151837468147,
0.0686439722776413,
-0.10930459946393967,
0.07527212053537369,
-0.1283227801322937,
-0.024262387305498123,
-0.07863514870405197,
0.05983925983309746,
0.0200795941054821,
0.13076506555080414,
-0.03833391144871712,
-0.023659348487854004,
-0.060193415731191635,
0.03925630450248718,
-0.0268486887216568,
0.19988413155078888,
-0.1042189672589302,
-0.10171450674533844,
0.2354324758052826,
-0.06842701882123947,
-0.1713089793920517,
0.09375571459531784,
0.0027509552892297506,
0.05962032452225685,
0.08849970251321793,
0.1733561009168625,
0.0375605970621109,
-0.020121192559599876,
0.10614369064569473,
0.09608419239521027,
-0.10053163021802902,
-0.0855114683508873,
0.012432892806828022,
-0.017932431772351265,
-0.12291114777326584,
0.042022403329610825,
0.09157063812017441,
0.07639165967702866,
-0.048442572355270386,
-0.037454720586538315,
-0.04233349487185478,
-0.0037850758526474237,
0.07970551401376724,
0.003191957715898752,
0.12530799210071564,
-0.060514260083436966,
-0.017125345766544342,
-0.00970730371773243,
-0.021197473630309105,
-0.02157456800341606,
0.0427994504570961,
-0.029060563072562218,
0.11202826350927353,
-0.044375836849212646,
0.04996176064014435,
-0.19708573818206787,
-0.07950518280267715,
-0.00009459419379709288,
0.14823977649211884,
0.0025853270199149847,
0.08866212517023087,
0.053792256861925125,
-0.03104301728308201,
-0.0064215571619570255,
-0.01630372181534767,
0.13401302695274353,
-0.006087199319154024,
-0.07446936517953873,
-0.07821033149957657,
0.04426480084657669,
-0.06450248509645462,
-0.025050701573491096,
-0.07281817495822906,
0.016727562993764877,
0.009908524341881275,
0.11566682159900665,
0.031677234917879105,
0.05078164488077164,
-0.01658935472369194,
0.016670551151037216,
-0.08533018827438354,
0.014296403154730797,
0.09961540251970291,
-0.01141710951924324,
-0.05103765428066254,
0.20229773223400116,
-0.17161768674850464,
0.23491214215755463,
0.18393823504447937,
-0.28944259881973267,
0.006632600445300341,
-0.03537070378661156,
-0.025985898450016975,
0.0020077917724847794,
0.056325092911720276,
-0.024217087775468826,
0.08345092087984085,
-0.0014518649550154805,
0.19566179811954498,
-0.061056189239025116,
-0.053328365087509155,
0.005299531389027834,
-0.0574905127286911,
-0.008797192946076393,
0.06659712642431259,
0.08905737847089767,
-0.18937712907791138,
0.16803357005119324,
0.23161664605140686,
0.02284090220928192,
0.16994214057922363,
-0.006134420167654753,
-0.04078718274831772,
0.06990283727645874,
-0.010529168881475925,
-0.03422388434410095,
-0.09309064596891403,
-0.17318937182426453,
-0.02589605376124382,
0.07576539367437363,
0.03613846004009247,
0.08636131882667542,
-0.10028368979692459,
-0.03196824714541435,
-0.0030699449125677347,
0.0036774331238120794,
-0.0154800433665514,
0.09314090013504028,
0.07135064154863358,
0.12889064848423004,
-0.02095034345984459,
-0.013992778956890106,
0.11097750067710876,
0.009291634894907475,
-0.11979115754365921,
0.1863044798374176,
-0.1367644965648651,
-0.33287522196769714,
-0.14580926299095154,
-0.172042116522789,
-0.028890058398246765,
0.034660134464502335,
0.11098358780145645,
-0.09576473385095596,
-0.024381177499890327,
-0.00200450187548995,
0.07208182662725449,
-0.08791472017765045,
0.026362471282482147,
-0.08504201471805573,
0.06435829401016235,
-0.06155692785978317,
-0.07484325021505356,
-0.04913013055920601,
-0.009192944504320621,
-0.03951077535748482,
0.1387929618358612,
-0.12161171436309814,
0.05527077242732048,
0.18643830716609955,
0.0024109859950840473,
0.055052563548088074,
-0.03348764404654503,
0.1838768720626831,
-0.06276846677064896,
0.011544623412191868,
0.21395781636238098,
-0.06411220878362656,
0.0745253935456276,
0.1306767761707306,
-0.0033746296539902687,
-0.06828748434782028,
0.03352054953575134,
-0.03297126665711403,
-0.07394568622112274,
-0.26617541909217834,
-0.0919879674911499,
-0.13333486020565033,
0.07579639554023743,
0.0671529769897461,
0.05104738473892212,
0.17074435949325562,
0.06376895308494568,
-0.0021396984811872244,
0.04823816567659378,
0.02085288241505623,
0.08897827565670013,
0.17748302221298218,
-0.0035200107377022505,
0.12296830117702484,
-0.05708124861121178,
-0.11661257594823837,
0.07658019661903381,
0.06053204461932182,
0.11748291552066803,
0.06144772842526436,
0.0673404335975647,
0.009640947915613651,
0.09566781669855118,
0.13296754658222198,
0.14900599420070648,
0.02468167617917061,
-0.008608612231910229,
-0.030044887214899063,
-0.03201429173350334,
-0.039632637053728104,
0.03699196130037308,
0.027697665616869926,
-0.11566830426454544,
-0.09036512672901154,
-0.08160438388586044,
0.06716005504131317,
0.13062477111816406,
0.07317515462636948,
-0.22939440608024597,
0.021544968709349632,
0.07740186899900436,
-0.04538768529891968,
-0.1127815991640091,
0.08245086669921875,
-0.011997534893453121,
-0.1321650892496109,
0.05299573391675949,
-0.059155527502298355,
0.12868814170360565,
-0.03321857377886772,
0.09155638515949249,
-0.036200251430273056,
-0.07173743844032288,
0.023195916786789894,
0.1081700548529625,
-0.3327305316925049,
0.19491779804229736,
0.004171358421444893,
-0.06359637528657913,
-0.10467778891324997,
-0.0019751235377043486,
0.0009388330508954823,
0.11369986087083817,
0.10460136085748672,
-0.001098173321224749,
-0.044636908918619156,
-0.07322456687688828,
-0.004860122688114643,
0.020925045013427734,
0.1282682567834854,
-0.03900206461548805,
0.012867438606917858,
-0.060800474137067795,
-0.020295564085245132,
-0.018256759271025658,
-0.0022203531116247177,
-0.02081105299293995,
-0.16639147698879242,
0.0740898847579956,
0.018359249457716942,
0.06382673978805542,
0.017137285321950912,
-0.023163197562098503,
-0.04883239418268204,
0.2122536450624466,
-0.05754205211997032,
-0.0916326716542244,
-0.12432167679071426,
-0.06284135580062866,
0.05895516648888588,
-0.07722198963165283,
0.0446588434278965,
-0.0745319053530693,
0.022527653723955154,
-0.04819094017148018,
-0.243226557970047,
0.1347477287054062,
-0.09412279725074768,
-0.03712499886751175,
-0.05321687459945679,
0.1769246608018875,
-0.08598630130290985,
0.004587682895362377,
0.019671428948640823,
0.005797455552965403,
-0.09387195110321045,
-0.05803963914513588,
0.005930939689278603,
-0.007833045907318592,
0.043111652135849,
0.027385283261537552,
-0.08851016312837601,
-0.04925180599093437,
-0.04387403652071953,
0.0025156724732369184,
0.32157042622566223,
0.13255396485328674,
-0.0451158843934536,
0.17638471722602844,
0.11866987496614456,
-0.09226285666227341,
-0.28666549921035767,
-0.09232616424560547,
-0.08508557081222534,
-0.02612167038023472,
-0.014090736396610737,
-0.17296333611011505,
0.07169285416603088,
-0.011569414287805557,
0.001220228150486946,
0.11183511465787888,
-0.25064438581466675,
-0.08535761386156082,
0.13973328471183777,
0.0218928512185812,
0.3438052237033844,
-0.11660566926002502,
-0.09572115540504456,
-0.037015512585639954,
-0.16204795241355896,
0.17565034329891205,
-0.05098377540707588,
0.08589936047792435,
-0.02931063622236252,
0.09435304999351501,
0.05406441166996956,
-0.035384826362133026,
0.049389392137527466,
0.004597121383994818,
0.008760917000472546,
-0.10559062659740448,
-0.057581186294555664,
0.06263675540685654,
-0.015296169556677341,
0.03261565789580345,
-0.052770473062992096,
0.040970027446746826,
-0.12462522089481354,
-0.029079878702759743,
-0.09401141107082367,
0.04943455010652542,
0.022681253030896187,
-0.06377900391817093,
0.03368838131427765,
-0.07297802716493607,
0.02431732974946499,
-0.004222060553729534,
0.22948065400123596,
-0.03911164030432701,
0.16924336552619934,
0.14965012669563293,
0.12832023203372955,
-0.10761105269193649,
0.023132294416427612,
-0.07074703276157379,
-0.06771499663591385,
0.07442385703325272,
-0.11606685817241669,
0.06824298948049545,
0.11452312767505646,
-0.03803333640098572,
0.06692792475223541,
0.11090198904275894,
0.007042061071842909,
-0.018452122807502747,
0.13045786321163177,
-0.2555803954601288,
0.01838049292564392,
-0.09133486449718475,
-0.034731827676296234,
0.04473074525594711,
0.059897102415561676,
0.1758844554424286,
0.013937903568148613,
-0.046279918402433395,
-0.006654669996351004,
0.009265775792300701,
-0.05292464420199394,
0.06189149618148804,
0.021519040688872337,
0.028436847031116486,
-0.12892818450927734,
0.09216773509979248,
0.04164006561040878,
-0.15696687996387482,
0.014136283658444881,
0.20570343732833862,
-0.12955474853515625,
-0.11714471131563187,
0.009732695296406746,
0.1272372156381607,
-0.12340531498193741,
-0.0131310960277915,
-0.06835518032312393,
-0.12049886584281921,
0.08346058428287506,
0.1870250254869461,
0.05310768634080887,
0.08864229917526245,
-0.04889966920018196,
-0.052613768726587296,
-0.0414779894053936,
0.019885722547769547,
0.010466893203556538,
0.024678871035575867,
-0.10123980790376663,
0.0558118037879467,
-0.03420061618089676,
0.1606583297252655,
-0.08762852847576141,
-0.06293909251689911,
-0.15223504602909088,
0.029476208612322807,
-0.1285882592201233,
-0.05573326349258423,
-0.06554782390594482,
-0.04992866516113281,
-0.00988073367625475,
-0.016155900433659554,
-0.04487239196896553,
-0.039896611124277115,
-0.12048979848623276,
0.01255242433398962,
-0.0355960987508297,
0.040716752409935,
-0.06325489282608032,
-0.015957634896039963,
0.06713803857564926,
-0.04783564805984497,
0.1234511286020279,
0.1244230642914772,
-0.10297807306051254,
0.13015666604042053,
-0.12901681661605835,
-0.10247262567281723,
0.10341163724660873,
0.022168707102537155,
0.05857599526643753,
0.07140576094388962,
0.014355037361383438,
0.06138899549841881,
0.020014280453324318,
0.030626345425844193,
0.014497648924589157,
-0.11934783309698105,
0.020539645105600357,
-0.028154902160167694,
-0.1567612886428833,
-0.06687948107719421,
-0.03541361168026924,
0.032845932990312576,
0.005566192790865898,
0.12214449048042297,
-0.04963922128081322,
0.12121456861495972,
-0.0739358589053154,
0.01540429051965475,
0.0030216770246624947,
-0.1645183116197586,
-0.07887569069862366,
-0.08572901785373688,
0.028631536290049553,
-0.01980959065258503,
0.1820257008075714,
0.028917625546455383,
0.04076537489891052,
0.028494594618678093,
0.0580499991774559,
0.0030040740966796875,
0.027813585475087166,
0.2076839804649353,
0.07256311923265457,
-0.07106154412031174,
-0.10604323446750641,
0.06415551900863647,
0.010025255382061005,
0.050124362111091614,
0.15928223729133606,
0.047759078443050385,
-0.0001553031470393762,
0.0993572399020195,
-0.015316850505769253,
0.029706554487347603,
-0.08815840631723404,
-0.14614541828632355,
0.010274967178702354,
0.07664129137992859,
-0.008370366878807545,
0.08240756392478943,
0.17205661535263062,
-0.008965100161731243,
0.028628967702388763,
-0.021051079034805298,
-0.050595544278621674,
-0.17782315611839294,
-0.14621272683143616,
-0.08161406964063644,
-0.10460387915372849,
-0.009174822829663754,
-0.10601648688316345,
0.058225058019161224,
0.039410240948200226,
0.06155374273657799,
-0.06584067642688751,
0.07655779272317886,
0.09756571054458618,
-0.11320552229881287,
0.07725733518600464,
-0.030474407598376274,
0.06184573471546173,
-0.002521720016375184,
0.005873269401490688,
-0.08997280895709991,
-0.004574684891849756,
-0.03502881899476051,
0.04654679447412491,
-0.055807504802942276,
0.02598988637328148,
-0.14996908605098724,
-0.1267300844192505,
-0.023885613307356834,
0.05561595410108566,
-0.048713523894548416,
0.11875221878290176,
0.01903730072081089,
-0.02826787903904915,
0.03075653687119484,
0.22936390340328217,
-0.08101353794336319,
-0.06313319504261017,
-0.045722268521785736,
0.2392023652791977,
0.05798419192433357,
0.08968336880207062,
0.0011541121639311314,
-0.004275737330317497,
-0.08654017746448517,
0.33573782444000244,
0.2875623404979706,
-0.06669571250677109,
0.02185043878853321,
0.020036788657307625,
0.03247951716184616,
0.10445816069841385,
0.14738473296165466,
0.0807812362909317,
0.25269845128059387,
-0.07112409919500351,
0.004070702008903027,
-0.020794164389371872,
-0.0035252978559583426,
-0.094292551279068,
0.12061961740255356,
0.04871074855327606,
-0.07605911046266556,
-0.016266820952296257,
0.09616681933403015,
-0.234622985124588,
0.1442924290895462,
-0.09042277187108994,
-0.16555511951446533,
-0.0650661438703537,
-0.022269470617175102,
0.12511363625526428,
0.0057012471370399,
0.08388835191726685,
-0.013910903595387936,
-0.09222894161939621,
0.06527531147003174,
0.026899857446551323,
-0.2155075967311859,
-0.001321874326094985,
0.0646858662366867,
-0.11317645013332367,
-0.013093317858874798,
-0.01084262877702713,
0.04255429282784462,
0.06837044656276703,
0.06063440442085266,
-0.052938252687454224,
0.02750498242676258,
-0.0017553698271512985,
-0.0005278441240079701,
0.02887236885726452,
0.05862223729491234,
0.019802596420049667,
-0.08147921413183212,
0.05538501590490341,
-0.14378812909126282,
0.031788941472768784,
-0.04858637601137161,
-0.02897854894399643,
0.0008240027818828821,
0.0006675400654785335,
-0.032527755945920944,
0.054671213030815125,
0.09969543665647507,
-0.01098863035440445,
0.0038473340682685375,
-0.08210724592208862,
-0.030329594388604164,
0.014884191565215588,
-0.09322559833526611,
-0.10513637214899063,
-0.10709530115127563,
-0.0982118621468544,
0.10922635346651077,
-0.005953612271696329,
-0.20968568325042725,
0.01261181477457285,
-0.10233365744352341,
0.03503730893135071,
-0.20695984363555908,
0.0975503996014595,
0.10488341748714447,
0.01344336662441492,
0.0057689351961016655,
-0.03261208534240723,
0.051563702523708344,
0.1015261709690094,
-0.12671351432800293,
-0.08701961487531662
] |
null | null |
transformers
|
This folder contain a Google T5 Transformer Fine-tuned to generate paraphrases using:
- Quora_pair_train 134337 lines of pair sentences 14 Mbytes
- Quora_pair_val 14928 lines of pair sentences 1.6 Mbytes
training epoch: 6
Start Time: Sun Mar 14 18:27:15 2021
End Time: Sun Mar 14 22:19:00 2021
|
{}
|
text2text-generation
|
auday/paraphraser_model2
|
[
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
This folder contain a Google T5 Transformer Fine-tuned to generate paraphrases using:
- Quora_pair_train 134337 lines of pair sentences 14 Mbytes
- Quora_pair_val 14928 lines of pair sentences 1.6 Mbytes
training epoch: 6
Start Time: Sun Mar 14 18:27:15 2021
End Time: Sun Mar 14 22:19:00 2021
|
[] |
[
"TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
51
] |
[
"passage: TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.00556661281734705,
0.0164349228143692,
-0.007315334863960743,
0.024348841980099678,
0.166501984000206,
0.024344393983483315,
0.11518356949090958,
0.1412411630153656,
-0.0020334594883024693,
-0.035958148539066315,
0.1319235861301422,
0.21714316308498383,
-0.006268311757594347,
0.08315006643533707,
-0.08710680902004242,
-0.2602083683013916,
0.03483840078115463,
0.05276213958859444,
0.0049579935148358345,
0.12762698531150818,
0.08691143244504929,
-0.0646481066942215,
0.09440414607524872,
-0.03804538771510124,
-0.17094822227954865,
0.05289003252983093,
0.06358526647090912,
-0.12921307981014252,
0.11203359812498093,
0.04470131918787956,
0.10704579949378967,
0.035496506839990616,
-0.04978400841355324,
-0.14172321557998657,
0.0296106468886137,
0.026950722560286522,
-0.06861023604869843,
0.06236075982451439,
0.1136597990989685,
-0.09615244716405869,
0.08870459347963333,
0.0556039921939373,
-0.004051631316542625,
0.062145017087459564,
-0.15644147992134094,
-0.029072636738419533,
-0.01713588647544384,
0.023426201194524765,
0.07808161526918411,
0.09537342935800552,
-0.008744281716644764,
0.1289428174495697,
-0.09439463913440704,
0.13085374236106873,
0.15587438642978668,
-0.3147599399089813,
0.001229330780915916,
0.04856342077255249,
0.05912892520427704,
0.08336716890335083,
-0.016771415248513222,
0.03740086406469345,
0.02475069649517536,
0.028233950957655907,
0.042602118104696274,
-0.08473630249500275,
-0.1701638251543045,
0.042069677263498306,
-0.0844234824180603,
-0.05861080437898636,
0.24913406372070312,
-0.05834462493658066,
0.06408444046974182,
-0.01192506030201912,
-0.11543367058038712,
-0.06456129997968674,
-0.011278037913143635,
-0.012939955107867718,
-0.04709155857563019,
0.06321226805448532,
0.02679656445980072,
-0.05803138390183449,
-0.13286004960536957,
-0.009396729059517384,
-0.17277660965919495,
0.11429595947265625,
0.011107098311185837,
0.055417537689208984,
-0.23684222996234894,
0.0894838273525238,
0.045466348528862,
-0.10835321247577667,
0.06076562777161598,
-0.09032987058162689,
0.01951918564736843,
-0.019337479025125504,
-0.05594807490706444,
-0.14819347858428955,
0.06912460923194885,
0.09622079879045486,
0.022458840161561966,
0.029469674453139305,
-0.06034425273537636,
0.08020190894603729,
0.030660733580589294,
0.07118292897939682,
0.002764588687568903,
-0.035829924046993256,
0.05543043091893196,
-0.11155472695827484,
-0.008295934647321701,
-0.06744275242090225,
-0.14817972481250763,
-0.05471540614962578,
0.08553145080804825,
0.09807302802801132,
0.029591085389256477,
0.0872388631105423,
-0.044323358684778214,
-0.042564451694488525,
0.010892827063798904,
-0.08642291277647018,
-0.011313864029943943,
-0.000025251778424717486,
0.017184332013130188,
0.13600346446037292,
0.016563422977924347,
0.014259100891649723,
-0.15025922656059265,
0.051360122859478,
-0.07618893682956696,
-0.003882812336087227,
-0.03447994589805603,
-0.07451999187469482,
0.026431044563651085,
-0.0926901325583458,
0.016483480110764503,
-0.1643074005842209,
-0.153541699051857,
0.019637132063508034,
0.019818242639303207,
-0.01814674586057663,
-0.05446401610970497,
-0.04473382234573364,
-0.03356395289301872,
0.050795428454875946,
-0.06109105795621872,
0.007418809924274683,
-0.04204783961176872,
0.09961801022291183,
-0.03490151837468147,
0.0686439722776413,
-0.10930459946393967,
0.07527212053537369,
-0.1283227801322937,
-0.024262387305498123,
-0.07863514870405197,
0.05983925983309746,
0.0200795941054821,
0.13076506555080414,
-0.03833391144871712,
-0.023659348487854004,
-0.060193415731191635,
0.03925630450248718,
-0.0268486887216568,
0.19988413155078888,
-0.1042189672589302,
-0.10171450674533844,
0.2354324758052826,
-0.06842701882123947,
-0.1713089793920517,
0.09375571459531784,
0.0027509552892297506,
0.05962032452225685,
0.08849970251321793,
0.1733561009168625,
0.0375605970621109,
-0.020121192559599876,
0.10614369064569473,
0.09608419239521027,
-0.10053163021802902,
-0.0855114683508873,
0.012432892806828022,
-0.017932431772351265,
-0.12291114777326584,
0.042022403329610825,
0.09157063812017441,
0.07639165967702866,
-0.048442572355270386,
-0.037454720586538315,
-0.04233349487185478,
-0.0037850758526474237,
0.07970551401376724,
0.003191957715898752,
0.12530799210071564,
-0.060514260083436966,
-0.017125345766544342,
-0.00970730371773243,
-0.021197473630309105,
-0.02157456800341606,
0.0427994504570961,
-0.029060563072562218,
0.11202826350927353,
-0.044375836849212646,
0.04996176064014435,
-0.19708573818206787,
-0.07950518280267715,
-0.00009459419379709288,
0.14823977649211884,
0.0025853270199149847,
0.08866212517023087,
0.053792256861925125,
-0.03104301728308201,
-0.0064215571619570255,
-0.01630372181534767,
0.13401302695274353,
-0.006087199319154024,
-0.07446936517953873,
-0.07821033149957657,
0.04426480084657669,
-0.06450248509645462,
-0.025050701573491096,
-0.07281817495822906,
0.016727562993764877,
0.009908524341881275,
0.11566682159900665,
0.031677234917879105,
0.05078164488077164,
-0.01658935472369194,
0.016670551151037216,
-0.08533018827438354,
0.014296403154730797,
0.09961540251970291,
-0.01141710951924324,
-0.05103765428066254,
0.20229773223400116,
-0.17161768674850464,
0.23491214215755463,
0.18393823504447937,
-0.28944259881973267,
0.006632600445300341,
-0.03537070378661156,
-0.025985898450016975,
0.0020077917724847794,
0.056325092911720276,
-0.024217087775468826,
0.08345092087984085,
-0.0014518649550154805,
0.19566179811954498,
-0.061056189239025116,
-0.053328365087509155,
0.005299531389027834,
-0.0574905127286911,
-0.008797192946076393,
0.06659712642431259,
0.08905737847089767,
-0.18937712907791138,
0.16803357005119324,
0.23161664605140686,
0.02284090220928192,
0.16994214057922363,
-0.006134420167654753,
-0.04078718274831772,
0.06990283727645874,
-0.010529168881475925,
-0.03422388434410095,
-0.09309064596891403,
-0.17318937182426453,
-0.02589605376124382,
0.07576539367437363,
0.03613846004009247,
0.08636131882667542,
-0.10028368979692459,
-0.03196824714541435,
-0.0030699449125677347,
0.0036774331238120794,
-0.0154800433665514,
0.09314090013504028,
0.07135064154863358,
0.12889064848423004,
-0.02095034345984459,
-0.013992778956890106,
0.11097750067710876,
0.009291634894907475,
-0.11979115754365921,
0.1863044798374176,
-0.1367644965648651,
-0.33287522196769714,
-0.14580926299095154,
-0.172042116522789,
-0.028890058398246765,
0.034660134464502335,
0.11098358780145645,
-0.09576473385095596,
-0.024381177499890327,
-0.00200450187548995,
0.07208182662725449,
-0.08791472017765045,
0.026362471282482147,
-0.08504201471805573,
0.06435829401016235,
-0.06155692785978317,
-0.07484325021505356,
-0.04913013055920601,
-0.009192944504320621,
-0.03951077535748482,
0.1387929618358612,
-0.12161171436309814,
0.05527077242732048,
0.18643830716609955,
0.0024109859950840473,
0.055052563548088074,
-0.03348764404654503,
0.1838768720626831,
-0.06276846677064896,
0.011544623412191868,
0.21395781636238098,
-0.06411220878362656,
0.0745253935456276,
0.1306767761707306,
-0.0033746296539902687,
-0.06828748434782028,
0.03352054953575134,
-0.03297126665711403,
-0.07394568622112274,
-0.26617541909217834,
-0.0919879674911499,
-0.13333486020565033,
0.07579639554023743,
0.0671529769897461,
0.05104738473892212,
0.17074435949325562,
0.06376895308494568,
-0.0021396984811872244,
0.04823816567659378,
0.02085288241505623,
0.08897827565670013,
0.17748302221298218,
-0.0035200107377022505,
0.12296830117702484,
-0.05708124861121178,
-0.11661257594823837,
0.07658019661903381,
0.06053204461932182,
0.11748291552066803,
0.06144772842526436,
0.0673404335975647,
0.009640947915613651,
0.09566781669855118,
0.13296754658222198,
0.14900599420070648,
0.02468167617917061,
-0.008608612231910229,
-0.030044887214899063,
-0.03201429173350334,
-0.039632637053728104,
0.03699196130037308,
0.027697665616869926,
-0.11566830426454544,
-0.09036512672901154,
-0.08160438388586044,
0.06716005504131317,
0.13062477111816406,
0.07317515462636948,
-0.22939440608024597,
0.021544968709349632,
0.07740186899900436,
-0.04538768529891968,
-0.1127815991640091,
0.08245086669921875,
-0.011997534893453121,
-0.1321650892496109,
0.05299573391675949,
-0.059155527502298355,
0.12868814170360565,
-0.03321857377886772,
0.09155638515949249,
-0.036200251430273056,
-0.07173743844032288,
0.023195916786789894,
0.1081700548529625,
-0.3327305316925049,
0.19491779804229736,
0.004171358421444893,
-0.06359637528657913,
-0.10467778891324997,
-0.0019751235377043486,
0.0009388330508954823,
0.11369986087083817,
0.10460136085748672,
-0.001098173321224749,
-0.044636908918619156,
-0.07322456687688828,
-0.004860122688114643,
0.020925045013427734,
0.1282682567834854,
-0.03900206461548805,
0.012867438606917858,
-0.060800474137067795,
-0.020295564085245132,
-0.018256759271025658,
-0.0022203531116247177,
-0.02081105299293995,
-0.16639147698879242,
0.0740898847579956,
0.018359249457716942,
0.06382673978805542,
0.017137285321950912,
-0.023163197562098503,
-0.04883239418268204,
0.2122536450624466,
-0.05754205211997032,
-0.0916326716542244,
-0.12432167679071426,
-0.06284135580062866,
0.05895516648888588,
-0.07722198963165283,
0.0446588434278965,
-0.0745319053530693,
0.022527653723955154,
-0.04819094017148018,
-0.243226557970047,
0.1347477287054062,
-0.09412279725074768,
-0.03712499886751175,
-0.05321687459945679,
0.1769246608018875,
-0.08598630130290985,
0.004587682895362377,
0.019671428948640823,
0.005797455552965403,
-0.09387195110321045,
-0.05803963914513588,
0.005930939689278603,
-0.007833045907318592,
0.043111652135849,
0.027385283261537552,
-0.08851016312837601,
-0.04925180599093437,
-0.04387403652071953,
0.0025156724732369184,
0.32157042622566223,
0.13255396485328674,
-0.0451158843934536,
0.17638471722602844,
0.11866987496614456,
-0.09226285666227341,
-0.28666549921035767,
-0.09232616424560547,
-0.08508557081222534,
-0.02612167038023472,
-0.014090736396610737,
-0.17296333611011505,
0.07169285416603088,
-0.011569414287805557,
0.001220228150486946,
0.11183511465787888,
-0.25064438581466675,
-0.08535761386156082,
0.13973328471183777,
0.0218928512185812,
0.3438052237033844,
-0.11660566926002502,
-0.09572115540504456,
-0.037015512585639954,
-0.16204795241355896,
0.17565034329891205,
-0.05098377540707588,
0.08589936047792435,
-0.02931063622236252,
0.09435304999351501,
0.05406441166996956,
-0.035384826362133026,
0.049389392137527466,
0.004597121383994818,
0.008760917000472546,
-0.10559062659740448,
-0.057581186294555664,
0.06263675540685654,
-0.015296169556677341,
0.03261565789580345,
-0.052770473062992096,
0.040970027446746826,
-0.12462522089481354,
-0.029079878702759743,
-0.09401141107082367,
0.04943455010652542,
0.022681253030896187,
-0.06377900391817093,
0.03368838131427765,
-0.07297802716493607,
0.02431732974946499,
-0.004222060553729534,
0.22948065400123596,
-0.03911164030432701,
0.16924336552619934,
0.14965012669563293,
0.12832023203372955,
-0.10761105269193649,
0.023132294416427612,
-0.07074703276157379,
-0.06771499663591385,
0.07442385703325272,
-0.11606685817241669,
0.06824298948049545,
0.11452312767505646,
-0.03803333640098572,
0.06692792475223541,
0.11090198904275894,
0.007042061071842909,
-0.018452122807502747,
0.13045786321163177,
-0.2555803954601288,
0.01838049292564392,
-0.09133486449718475,
-0.034731827676296234,
0.04473074525594711,
0.059897102415561676,
0.1758844554424286,
0.013937903568148613,
-0.046279918402433395,
-0.006654669996351004,
0.009265775792300701,
-0.05292464420199394,
0.06189149618148804,
0.021519040688872337,
0.028436847031116486,
-0.12892818450927734,
0.09216773509979248,
0.04164006561040878,
-0.15696687996387482,
0.014136283658444881,
0.20570343732833862,
-0.12955474853515625,
-0.11714471131563187,
0.009732695296406746,
0.1272372156381607,
-0.12340531498193741,
-0.0131310960277915,
-0.06835518032312393,
-0.12049886584281921,
0.08346058428287506,
0.1870250254869461,
0.05310768634080887,
0.08864229917526245,
-0.04889966920018196,
-0.052613768726587296,
-0.0414779894053936,
0.019885722547769547,
0.010466893203556538,
0.024678871035575867,
-0.10123980790376663,
0.0558118037879467,
-0.03420061618089676,
0.1606583297252655,
-0.08762852847576141,
-0.06293909251689911,
-0.15223504602909088,
0.029476208612322807,
-0.1285882592201233,
-0.05573326349258423,
-0.06554782390594482,
-0.04992866516113281,
-0.00988073367625475,
-0.016155900433659554,
-0.04487239196896553,
-0.039896611124277115,
-0.12048979848623276,
0.01255242433398962,
-0.0355960987508297,
0.040716752409935,
-0.06325489282608032,
-0.015957634896039963,
0.06713803857564926,
-0.04783564805984497,
0.1234511286020279,
0.1244230642914772,
-0.10297807306051254,
0.13015666604042053,
-0.12901681661605835,
-0.10247262567281723,
0.10341163724660873,
0.022168707102537155,
0.05857599526643753,
0.07140576094388962,
0.014355037361383438,
0.06138899549841881,
0.020014280453324318,
0.030626345425844193,
0.014497648924589157,
-0.11934783309698105,
0.020539645105600357,
-0.028154902160167694,
-0.1567612886428833,
-0.06687948107719421,
-0.03541361168026924,
0.032845932990312576,
0.005566192790865898,
0.12214449048042297,
-0.04963922128081322,
0.12121456861495972,
-0.0739358589053154,
0.01540429051965475,
0.0030216770246624947,
-0.1645183116197586,
-0.07887569069862366,
-0.08572901785373688,
0.028631536290049553,
-0.01980959065258503,
0.1820257008075714,
0.028917625546455383,
0.04076537489891052,
0.028494594618678093,
0.0580499991774559,
0.0030040740966796875,
0.027813585475087166,
0.2076839804649353,
0.07256311923265457,
-0.07106154412031174,
-0.10604323446750641,
0.06415551900863647,
0.010025255382061005,
0.050124362111091614,
0.15928223729133606,
0.047759078443050385,
-0.0001553031470393762,
0.0993572399020195,
-0.015316850505769253,
0.029706554487347603,
-0.08815840631723404,
-0.14614541828632355,
0.010274967178702354,
0.07664129137992859,
-0.008370366878807545,
0.08240756392478943,
0.17205661535263062,
-0.008965100161731243,
0.028628967702388763,
-0.021051079034805298,
-0.050595544278621674,
-0.17782315611839294,
-0.14621272683143616,
-0.08161406964063644,
-0.10460387915372849,
-0.009174822829663754,
-0.10601648688316345,
0.058225058019161224,
0.039410240948200226,
0.06155374273657799,
-0.06584067642688751,
0.07655779272317886,
0.09756571054458618,
-0.11320552229881287,
0.07725733518600464,
-0.030474407598376274,
0.06184573471546173,
-0.002521720016375184,
0.005873269401490688,
-0.08997280895709991,
-0.004574684891849756,
-0.03502881899476051,
0.04654679447412491,
-0.055807504802942276,
0.02598988637328148,
-0.14996908605098724,
-0.1267300844192505,
-0.023885613307356834,
0.05561595410108566,
-0.048713523894548416,
0.11875221878290176,
0.01903730072081089,
-0.02826787903904915,
0.03075653687119484,
0.22936390340328217,
-0.08101353794336319,
-0.06313319504261017,
-0.045722268521785736,
0.2392023652791977,
0.05798419192433357,
0.08968336880207062,
0.0011541121639311314,
-0.004275737330317497,
-0.08654017746448517,
0.33573782444000244,
0.2875623404979706,
-0.06669571250677109,
0.02185043878853321,
0.020036788657307625,
0.03247951716184616,
0.10445816069841385,
0.14738473296165466,
0.0807812362909317,
0.25269845128059387,
-0.07112409919500351,
0.004070702008903027,
-0.020794164389371872,
-0.0035252978559583426,
-0.094292551279068,
0.12061961740255356,
0.04871074855327606,
-0.07605911046266556,
-0.016266820952296257,
0.09616681933403015,
-0.234622985124588,
0.1442924290895462,
-0.09042277187108994,
-0.16555511951446533,
-0.0650661438703537,
-0.022269470617175102,
0.12511363625526428,
0.0057012471370399,
0.08388835191726685,
-0.013910903595387936,
-0.09222894161939621,
0.06527531147003174,
0.026899857446551323,
-0.2155075967311859,
-0.001321874326094985,
0.0646858662366867,
-0.11317645013332367,
-0.013093317858874798,
-0.01084262877702713,
0.04255429282784462,
0.06837044656276703,
0.06063440442085266,
-0.052938252687454224,
0.02750498242676258,
-0.0017553698271512985,
-0.0005278441240079701,
0.02887236885726452,
0.05862223729491234,
0.019802596420049667,
-0.08147921413183212,
0.05538501590490341,
-0.14378812909126282,
0.031788941472768784,
-0.04858637601137161,
-0.02897854894399643,
0.0008240027818828821,
0.0006675400654785335,
-0.032527755945920944,
0.054671213030815125,
0.09969543665647507,
-0.01098863035440445,
0.0038473340682685375,
-0.08210724592208862,
-0.030329594388604164,
0.014884191565215588,
-0.09322559833526611,
-0.10513637214899063,
-0.10709530115127563,
-0.0982118621468544,
0.10922635346651077,
-0.005953612271696329,
-0.20968568325042725,
0.01261181477457285,
-0.10233365744352341,
0.03503730893135071,
-0.20695984363555908,
0.0975503996014595,
0.10488341748714447,
0.01344336662441492,
0.0057689351961016655,
-0.03261208534240723,
0.051563702523708344,
0.1015261709690094,
-0.12671351432800293,
-0.08701961487531662
] |
null | null |
transformers
|
#Harry Potter DialoGPT Model
|
{"tags": ["conversational"]}
|
text-generation
|
augustojaba/DialoGPT-small-harrypotter
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
#Harry Potter DialoGPT Model
|
[] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
51
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.009697278961539268,
0.03208012506365776,
-0.007204889785498381,
0.004809224978089333,
0.16726240515708923,
0.014898733235895634,
0.09765533357858658,
0.13672804832458496,
-0.007841327227652073,
-0.031050153076648712,
0.14490588009357452,
0.20411323010921478,
-0.006439372431486845,
0.0661218985915184,
-0.07572533935308456,
-0.2683109939098358,
0.05759621039032936,
0.046649303287267685,
0.016515716910362244,
0.1200079694390297,
0.08573378622531891,
-0.05473608896136284,
0.08714032918214798,
-0.014583407901227474,
-0.150366872549057,
0.017733458429574966,
0.043394338339567184,
-0.12260226160287857,
0.11910516023635864,
0.05462685227394104,
0.07063519209623337,
0.014929565601050854,
-0.07541623711585999,
-0.1631229966878891,
0.03031250834465027,
0.01425902172923088,
-0.0594632662832737,
0.04757995903491974,
0.059961482882499695,
-0.10165371745824814,
0.10819483548402786,
0.09530027210712433,
-0.013078106567263603,
0.06798283755779266,
-0.16849711537361145,
-0.020869607105851173,
-0.01446688175201416,
0.009899779222905636,
0.05550243332982063,
0.09964893013238907,
-0.03413357585668564,
0.10497362166643143,
-0.09214533120393753,
0.11017382889986038,
0.10932035744190216,
-0.32057443261146545,
-0.005767723545432091,
0.09167823940515518,
0.039358653128147125,
0.07352814823389053,
-0.04467793554067612,
0.06258884817361832,
0.018015462905168533,
0.017986174672842026,
-0.014015024527907372,
-0.07283061742782593,
-0.11612214148044586,
0.04717336222529411,
-0.08668071031570435,
-0.059868961572647095,
0.2244078367948532,
-0.05464440956711769,
0.06881742179393768,
-0.05281897634267807,
-0.10522868484258652,
-0.04308144748210907,
-0.029833965003490448,
0.00475557055324316,
-0.07660607248544693,
0.08692064881324768,
0.00869679357856512,
-0.09547875821590424,
-0.1376667022705078,
-0.02496783249080181,
-0.1776352822780609,
0.16140350699424744,
0.02465328387916088,
0.05232657864689827,
-0.2027255892753601,
0.09623090922832489,
0.017906051129102707,
-0.08045592904090881,
0.022091427817940712,
-0.10046248883008957,
0.029131146147847176,
0.013760408386588097,
-0.04754498973488808,
-0.061387211084365845,
0.0843690037727356,
0.11199145019054413,
-0.01731434464454651,
0.025486016646027565,
-0.039331406354904175,
0.08100687712430954,
0.03553595021367073,
0.09077847748994827,
0.007288969587534666,
-0.028338588774204254,
0.025842782109975815,
-0.13719046115875244,
-0.003647835226729512,
-0.07116208970546722,
-0.16572439670562744,
-0.021088803187012672,
0.02994808368384838,
0.08289173990488052,
0.015449047088623047,
0.11682453751564026,
-0.03272046521306038,
-0.025152435526251793,
0.03602350503206253,
-0.047656361013650894,
-0.012649794109165668,
0.016648368909955025,
0.013163427822291851,
0.12399329990148544,
-0.0022096503525972366,
0.03235051408410072,
-0.13653022050857544,
0.031423524022102356,
-0.06793295592069626,
-0.003740974934771657,
-0.03486552834510803,
-0.040637075901031494,
0.009043924510478973,
-0.06862333416938782,
0.003486064961180091,
-0.15030112862586975,
-0.15063877403736115,
0.007587034720927477,
-0.007836631499230862,
-0.04107699543237686,
-0.06370922178030014,
-0.06952770054340363,
-0.013550350442528725,
0.04251532256603241,
-0.07093454152345657,
-0.011352915316820145,
-0.06403283774852753,
0.11004766076803207,
-0.03197755664587021,
0.07921615242958069,
-0.11953279376029968,
0.08390819281339645,
-0.11260783672332764,
-0.02386913076043129,
-0.060801517218351364,
0.09317506104707718,
-0.0006014376995153725,
0.09549830108880997,
-0.006563255097717047,
-0.017931854352355003,
-0.07981178909540176,
0.06445012241601944,
-0.042872510850429535,
0.21701598167419434,
-0.0615808479487896,
-0.11181682348251343,
0.28781595826148987,
-0.052628401666879654,
-0.1370542049407959,
0.11647392809391022,
0.008682746440172195,
0.05777018144726753,
0.10703510791063309,
0.19733482599258423,
-0.015276194550096989,
0.004040541127324104,
0.09471915662288666,
0.11263324320316315,
-0.11276852339506149,
-0.033160366117954254,
0.013019153848290443,
-0.04081077128648758,
-0.10867965966463089,
0.04689536616206169,
0.09810488671064377,
0.07090286910533905,
-0.04786505550146103,
-0.03377414867281914,
-0.01366397924721241,
0.0052589005790650845,
0.08885077387094498,
-0.007157256826758385,
0.10962837189435959,
-0.05819983780384064,
-0.03796621412038803,
-0.029282379895448685,
-0.012126247398555279,
-0.03951939567923546,
0.03137664496898651,
-0.043376367539167404,
0.10821941494941711,
-0.011204327456653118,
0.06364280730485916,
-0.16185984015464783,
-0.07691477984189987,
-0.017002692446112633,
0.1581239402294159,
0.024538565427064896,
0.09859629720449448,
0.0552486926317215,
-0.040398042649030685,
-0.0012767292791977525,
0.012792680412530899,
0.15581141412258148,
-0.022091681137681007,
-0.065607450902462,
-0.052166227251291275,
0.08642971515655518,
-0.05641226842999458,
0.04504093527793884,
-0.05937713757157326,
0.012367865070700645,
0.05064384639263153,
0.10342344641685486,
-0.00018274025933351368,
0.03323284164071083,
-0.008164864964783192,
0.002145637758076191,
-0.058205123990774155,
0.007405933458358049,
0.10799351334571838,
0.00036868182360194623,
-0.07365862280130386,
0.22074243426322937,
-0.17796069383621216,
0.1765957772731781,
0.1893044263124466,
-0.299345999956131,
0.017949223518371582,
-0.10759581625461578,
-0.04561871662735939,
0.014407722279429436,
0.05567655712366104,
-0.0454222597181797,
0.1703362911939621,
-0.009871348738670349,
0.18874616920948029,
-0.04946064203977585,
-0.04464937001466751,
-0.0200483538210392,
-0.05118836089968681,
-0.0024189651012420654,
0.07781197130680084,
0.10685696452856064,
-0.13992026448249817,
0.1964332014322281,
0.1621224284172058,
0.048237916082143784,
0.19945049285888672,
0.015346456319093704,
-0.011589210480451584,
0.0909530371427536,
0.005220826715230942,
-0.058739423751831055,
-0.07409929484128952,
-0.2594851851463318,
-0.030033592134714127,
0.07992640137672424,
0.0422382652759552,
0.1212305948138237,
-0.11349532753229141,
-0.038956157863140106,
-0.01763172075152397,
-0.023146281018853188,
0.021672505885362625,
0.0914369598031044,
0.06075398623943329,
0.13201528787612915,
-0.001710098935291171,
-0.007300339173525572,
0.10524573177099228,
0.01783694699406624,
-0.09354141354560852,
0.18308524787425995,
-0.13652534782886505,
-0.37097251415252686,
-0.13911493122577667,
-0.18057456612586975,
-0.05449081212282181,
0.05712554603815079,
0.11679314076900482,
-0.12011238187551498,
-0.018752124160528183,
0.01578843593597412,
0.10931742936372757,
-0.08449502289295197,
0.0021454424131661654,
-0.06880278885364532,
0.0321490578353405,
-0.10310184955596924,
-0.09194442629814148,
-0.055416494607925415,
-0.031392451375722885,
-0.08001253753900528,
0.1423761546611786,
-0.10777941346168518,
0.04476889222860336,
0.20262959599494934,
0.04653622955083847,
0.05625178664922714,
-0.044105201959609985,
0.19377262890338898,
-0.11264272034168243,
-0.01661740615963936,
0.19215328991413116,
-0.048360925167798996,
0.07476246356964111,
0.1232115849852562,
-0.006348740309476852,
-0.08765771239995956,
0.03011748194694519,
-0.02085109055042267,
-0.07988511025905609,
-0.23219464719295502,
-0.13938382267951965,
-0.12429051846265793,
0.09477275609970093,
0.028005298227071762,
0.056365787982940674,
0.17219258844852448,
0.06577219814062119,
-0.038416244089603424,
0.006410336587578058,
0.02959546446800232,
0.08237514644861221,
0.23417828977108002,
-0.06035616248846054,
0.1364797055721283,
-0.03420931473374367,
-0.14982740581035614,
0.08169995993375778,
0.0713929831981659,
0.10213395953178406,
0.06678459793329239,
0.0804823637008667,
0.0149586396291852,
0.06188136339187622,
0.1311223804950714,
0.08191446959972382,
0.019586285576224327,
-0.02480296604335308,
-0.03388110175728798,
-0.025523077696561813,
-0.05937909707427025,
0.040128443390131,
0.06589099019765854,
-0.16763372719287872,
-0.039227183908224106,
-0.09338314831256866,
0.09657008945941925,
0.0873042419552803,
0.06609832495450974,
-0.1842060089111328,
-0.008006223477423191,
0.08488986641168594,
-0.03854905813932419,
-0.13727426528930664,
0.09535189718008041,
0.01523482333868742,
-0.15144726634025574,
0.03139317408204079,
-0.04061909019947052,
0.12188644707202911,
-0.07804752141237259,
0.09809603542089462,
-0.08108244836330414,
-0.07448557764291763,
0.02123199962079525,
0.1261177361011505,
-0.30527687072753906,
0.20240111649036407,
-0.0024993624538183212,
-0.06486981362104416,
-0.1243603527545929,
-0.0032166161108762026,
0.002410882618278265,
0.07357452809810638,
0.10519039630889893,
-0.007196315098553896,
0.001897757756523788,
-0.06300821900367737,
-0.01829923689365387,
0.032471053302288055,
0.13080233335494995,
-0.0401318334043026,
-0.021158374845981598,
-0.050194524228572845,
-0.001653497340157628,
-0.03173094615340233,
-0.06934895366430283,
0.02002747356891632,
-0.19509181380271912,
0.08751901984214783,
0.04166261479258537,
0.09648149460554123,
0.029994789510965347,
0.004265148192644119,
-0.09651939570903778,
0.24698667228221893,
-0.07148019969463348,
-0.10072879493236542,
-0.10919588059186935,
-0.046813901513814926,
0.03569883480668068,
-0.05628936365246773,
0.04309194162487984,
-0.0788632407784462,
0.028997479006648064,
-0.06352769583463669,
-0.19235502183437347,
0.12410202622413635,
-0.09027006477117538,
-0.04412810131907463,
-0.02371402643620968,
0.2110891044139862,
-0.05598580464720726,
0.010335659608244896,
0.02930437959730625,
0.01208863127976656,
-0.11645778268575668,
-0.09678568691015244,
0.031018631532788277,
-0.007351789623498917,
0.050603240728378296,
0.041841957718133926,
-0.05915454775094986,
-0.017138581722974777,
-0.052199993282556534,
-0.022926922887563705,
0.3496883809566498,
0.14231905341148376,
-0.043836336582899094,
0.19347235560417175,
0.12347975373268127,
-0.07452994585037231,
-0.3159443140029907,
-0.1066238060593605,
-0.10937739163637161,
-0.04680149629712105,
-0.07012093812227249,
-0.2002030611038208,
0.06474938243627548,
0.00662544509395957,
-0.013415241613984108,
0.12749312818050385,
-0.2561831772327423,
-0.07571036368608475,
0.15906259417533875,
-0.017980827018618584,
0.3745945692062378,
-0.1168576180934906,
-0.10926306992769241,
-0.03950892388820648,
-0.14175476133823395,
0.16968177258968353,
-0.01989765651524067,
0.11221715062856674,
-0.009765521623194218,
0.14388824999332428,
0.05548359826207161,
-0.023479344323277473,
0.08544106781482697,
0.004999885335564613,
-0.03290518373250961,
-0.10304180532693863,
-0.05676887184381485,
0.007092386484146118,
0.02477436140179634,
0.018026655539870262,
-0.041834570467472076,
0.02227151393890381,
-0.11731979995965958,
-0.04657655209302902,
-0.08982590585947037,
0.04431166127324104,
0.03899754583835602,
-0.07325074821710587,
-0.002380647463724017,
-0.07165111601352692,
-0.012272949330508709,
0.022334342822432518,
0.20356793701648712,
-0.08029330521821976,
0.16448934376239777,
0.09239562600851059,
0.12419285625219345,
-0.14376309514045715,
-0.00019283240544609725,
-0.0762530043721199,
-0.05611240118741989,
0.07737895101308823,
-0.09433035552501678,
0.058893077075481415,
0.10901971161365509,
-0.04567738622426987,
0.08828683942556381,
0.10377411544322968,
0.008936077356338501,
0.003213887568563223,
0.10916902124881744,
-0.2667325437068939,
-0.0296600554138422,
-0.07532413303852081,
0.000883326749317348,
0.09092561900615692,
0.08562852442264557,
0.18840822577476501,
0.025361526757478714,
-0.04293036088347435,
-0.002770674182102084,
0.028597986325621605,
-0.039021048694849014,
0.051667019724845886,
0.001123449532315135,
0.01947369985282421,
-0.1530752182006836,
0.072522833943367,
0.01490565575659275,
-0.15215420722961426,
0.021316176280379295,
0.16572684049606323,
-0.11656328290700912,
-0.1283872276544571,
-0.06520111113786697,
0.08313824236392975,
-0.11755692958831787,
-0.01578943058848381,
-0.03279297426342964,
-0.13145680725574493,
0.07992171496152878,
0.12629036605358124,
0.05557859688997269,
0.0972496047616005,
-0.06061713397502899,
-0.020469192415475845,
-0.018721895292401314,
-0.014099318534135818,
-0.012384648434817791,
-0.007667020428925753,
-0.055978111922740936,
0.0590752474963665,
-0.026677248999476433,
0.1425808072090149,
-0.09221141785383224,
-0.1037059873342514,
-0.16142144799232483,
0.0374140702188015,
-0.11013076454401016,
-0.08825794607400894,
-0.08821134269237518,
-0.050188567489385605,
0.002360827289521694,
-0.019856395199894905,
-0.04037635400891304,
-0.05829505994915962,
-0.12300454825162888,
0.0338277705013752,
-0.040771447122097015,
0.024727050215005875,
-0.07512269169092178,
0.015856385231018066,
0.08507686108350754,
-0.03285100311040878,
0.15655414760112762,
0.1450488418340683,
-0.1006515845656395,
0.10741901397705078,
-0.14806775748729706,
-0.09138492494821548,
0.11116421222686768,
0.015329592861235142,
0.0449691042304039,
0.09723787009716034,
0.013362943194806576,
0.0635865181684494,
0.032776717096567154,
0.05308786407113075,
0.027619892731308937,
-0.11959987878799438,
0.06483134627342224,
-0.03626115620136261,
-0.14700546860694885,
-0.049338050186634064,
-0.05282869189977646,
0.01647452637553215,
0.013054544106125832,
0.09622690081596375,
-0.05301849544048309,
0.10698331147432327,
-0.04055701196193695,
0.0346808135509491,
0.017554637044668198,
-0.1730053424835205,
-0.03816922754049301,
-0.08538098633289337,
0.03681723028421402,
0.014741539023816586,
0.25266793370246887,
0.030072299763560295,
0.012416383251547813,
0.032671261578798294,
0.08285367488861084,
0.03899408504366875,
0.010228337720036507,
0.17482228577136993,
0.1162426546216011,
-0.06621865928173065,
-0.10445023328065872,
0.0729617029428482,
0.016332454979419708,
0.01286179106682539,
0.13617953658103943,
0.008365051820874214,
0.005795429926365614,
0.08649782836437225,
-0.016865963116288185,
0.009968153201043606,
-0.10052056610584259,
-0.13426925241947174,
-0.022176474332809448,
0.05151832848787308,
-0.04655967652797699,
0.11727844923734665,
0.1406494379043579,
-0.01806013658642769,
0.03222079202532768,
-0.021771740168333054,
-0.05699979141354561,
-0.1683429479598999,
-0.1429590880870819,
-0.06883849948644638,
-0.13416796922683716,
0.00897989235818386,
-0.11180389672517776,
0.05395037308335304,
0.06001098081469536,
0.06750501692295074,
-0.06899319589138031,
0.10220931470394135,
0.04626858979463577,
-0.11440542340278625,
0.06264589726924896,
-0.0296088308095932,
0.09430401772260666,
-0.02759445086121559,
-0.019505485892295837,
-0.09039592742919922,
0.014574515633285046,
0.011419114656746387,
0.06245238706469536,
-0.04707273095846176,
0.007463190704584122,
-0.14696238934993744,
-0.08972041308879852,
-0.0523175448179245,
0.0718572810292244,
-0.050409089773893356,
0.14282815158367157,
0.00775480642914772,
-0.0170906875282526,
0.039554283022880554,
0.22787313163280487,
-0.07476283609867096,
-0.04778539761900902,
-0.05269690603017807,
0.20717895030975342,
0.02975541539490223,
0.1171872541308403,
-0.022938819602131844,
-0.006106364540755749,
-0.0919521227478981,
0.3764844834804535,
0.30030161142349243,
-0.09031439572572708,
0.011794124729931355,
0.02137952297925949,
0.04502861574292183,
0.1316293478012085,
0.1216534823179245,
0.10318691283464432,
0.3006802201271057,
-0.07452366501092911,
-0.04653361067175865,
-0.012629742734134197,
-0.023858042433857918,
-0.09059546142816544,
0.1021224707365036,
0.04839762672781944,
-0.06382183730602264,
-0.03313443064689636,
0.0954432487487793,
-0.25862133502960205,
0.1277991235256195,
-0.12311873584985733,
-0.17578600347042084,
-0.06654827296733856,
0.009760108776390553,
0.10465722531080246,
0.015642458572983742,
0.0946015790104866,
0.007128213066607714,
-0.11252258718013763,
0.06305865943431854,
0.03397420793771744,
-0.22762253880500793,
0.0006893770187161863,
0.06642123311758041,
-0.07006710022687912,
-0.0024247700348496437,
-0.026499588042497635,
0.05657242611050606,
0.0656052976846695,
0.054629553109407425,
-0.00971333310008049,
0.03816632181406021,
0.0034184439573436975,
-0.0585215799510479,
0.016623929142951965,
0.05121519789099693,
0.02472509816288948,
-0.09763528406620026,
0.06927435845136642,
-0.1574270874261856,
0.04766253009438515,
-0.0030655991286039352,
-0.04124255105853081,
0.006064958870410919,
0.008823691867291927,
-0.06491616368293762,
0.05165379121899605,
0.07916834205389023,
-0.0016257909592241049,
-0.0062433634884655476,
-0.057178743183612823,
-0.02632102556526661,
-0.027755750343203545,
-0.09291748702526093,
-0.10495562851428986,
-0.14682936668395996,
-0.11640441417694092,
0.09368976950645447,
-0.01011267676949501,
-0.1848134547472,
0.022154374048113823,
-0.08606051653623581,
0.08319322764873505,
-0.1670055389404297,
0.08040720224380493,
0.07041648775339127,
0.013038921169936657,
-0.0031511052511632442,
-0.02002427540719509,
0.054132770746946335,
0.086809903383255,
-0.10407156497240067,
-0.07400695979595184
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# augustoortiz/bert-finetuned-squad2
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.2223
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11091, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Epoch |
|:----------:|:-----:|
| 1.2223 | 0 |
### Framework versions
- Transformers 4.17.0.dev0
- TensorFlow 2.8.0
- Datasets 1.18.3
- Tokenizers 0.11.0
|
{"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "augustoortiz/bert-finetuned-squad2", "results": []}]}
|
question-answering
|
augustoortiz/bert-finetuned-squad2
|
[
"transformers",
"tf",
"bert",
"question-answering",
"generated_from_keras_callback",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #tf #bert #question-answering #generated_from_keras_callback #license-apache-2.0 #endpoints_compatible #region-us
|
augustoortiz/bert-finetuned-squad2
==================================
This model is a fine-tuned version of bert-base-cased on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 1.2223
* Epoch: 0
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'name': 'AdamWeightDecay', 'learning\_rate': {'class\_name': 'PolynomialDecay', 'config': {'initial\_learning\_rate': 2e-05, 'decay\_steps': 11091, 'end\_learning\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\_decay\_rate': 0.01}
* training\_precision: mixed\_float16
### Training results
### Framework versions
* Transformers 4.17.0.dev0
* TensorFlow 2.8.0
* Datasets 1.18.3
* Tokenizers 0.11.0
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 11091, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: mixed\\_float16",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* TensorFlow 2.8.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
"TAGS\n#transformers #tf #bert #question-answering #generated_from_keras_callback #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 11091, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: mixed\\_float16",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* TensorFlow 2.8.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
47,
201,
4,
37
] |
[
"passage: TAGS\n#transformers #tf #bert #question-answering #generated_from_keras_callback #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 11091, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: mixed\\_float16### Training results### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* TensorFlow 2.8.0\n* Datasets 1.18.3\n* Tokenizers 0.11.0"
] |
[
-0.07789512723684311,
0.09136534482240677,
-0.00641384394839406,
0.0736534595489502,
0.1101493313908577,
0.04945150762796402,
0.10592718422412872,
0.13712278008460999,
-0.070562444627285,
0.14858292043209076,
0.14064644277095795,
0.11775373667478561,
0.06320139765739441,
0.1252080351114273,
-0.09777288883924484,
-0.1354653388261795,
0.046005550771951675,
-0.024241222068667412,
-0.0736352950334549,
0.07251878827810287,
0.06559280306100845,
-0.0883457213640213,
0.0710955411195755,
-0.041454702615737915,
-0.07320030778646469,
0.025245284661650658,
0.05158090218901634,
-0.034701377153396606,
0.09813932329416275,
0.08016645908355713,
0.07749205082654953,
0.00555103225633502,
0.008167468942701817,
-0.21345192193984985,
0.0052144937217235565,
0.09765087813138962,
-0.006227236706763506,
0.07831898331642151,
0.012749068439006805,
-0.023736029863357544,
0.08116495609283447,
-0.12172897905111313,
0.037804003804922104,
0.019664457067847252,
-0.13784676790237427,
-0.2541770935058594,
-0.11883170157670975,
0.008361082524061203,
0.08934503048658371,
0.07878747582435608,
-0.010844647884368896,
0.1297650784254074,
-0.054280877113342285,
0.08235383033752441,
0.183838352560997,
-0.2954825460910797,
-0.041888076812028885,
0.047869209200143814,
-0.008878590539097786,
0.02099483087658882,
-0.05597472935914993,
0.015070837922394276,
0.05274907127022743,
0.03018365427851677,
0.025380302220582962,
-0.02073463797569275,
0.016958685591816902,
-0.015728991478681564,
-0.07827018201351166,
-0.07833335548639297,
0.10875090956687927,
0.0561140775680542,
-0.058505311608314514,
-0.08566032350063324,
-0.03821353614330292,
-0.1712808459997177,
-0.007138153072446585,
-0.0286164041608572,
0.016392549499869347,
0.007153417449444532,
-0.03576856106519699,
0.010404099710285664,
-0.054092951118946075,
-0.04459797590970993,
-0.014351285994052887,
0.09330808371305466,
0.03400358185172081,
0.04015034809708595,
0.003476390615105629,
0.06720010191202164,
-0.04168862849473953,
-0.13935889303684235,
-0.017462540417909622,
0.022786371409893036,
-0.07365156710147858,
-0.020244484767317772,
-0.053484708070755005,
0.012595933862030506,
0.09145037084817886,
0.15276844799518585,
-0.1043124869465828,
0.09767362475395203,
-0.027315299957990646,
0.007319542113691568,
-0.08627983182668686,
0.09728267788887024,
-0.023767968639731407,
-0.04510383680462837,
-0.01107543520629406,
0.07723818719387054,
0.03423554450273514,
-0.0347880944609642,
-0.03827899694442749,
0.020835362374782562,
0.07683306187391281,
0.045175228267908096,
-0.0225590318441391,
0.05797154828906059,
-0.08536282926797867,
0.0030248421244323254,
-0.008086705580353737,
-0.11611364036798477,
0.03896307945251465,
0.041321057826280594,
-0.09244824945926666,
0.02202894724905491,
0.05241559073328972,
0.0071898652240633965,
-0.0629139095544815,
0.0501212477684021,
-0.051245979964733124,
-0.04522234946489334,
-0.08357950299978256,
-0.10220831632614136,
0.03157016634941101,
-0.0762425884604454,
-0.01686186157166958,
-0.03786474093794823,
-0.16369393467903137,
-0.06096736341714859,
0.06986518949270248,
-0.059174973517656326,
-0.02630232460796833,
-0.07917194068431854,
-0.14762438833713531,
0.0556698776781559,
-0.008509561419487,
0.13246509432792664,
-0.04996917024254799,
0.07731490582227707,
-0.0028192102909088135,
0.055456556379795074,
0.00176009233109653,
0.026630500331521034,
-0.03952982276678085,
0.04563639312982559,
-0.1614461988210678,
0.10772070288658142,
-0.0783308669924736,
0.02558065764605999,
-0.17486605048179626,
-0.07002407312393188,
0.04070664942264557,
0.006352792959660292,
0.12382353842258453,
0.12816263735294342,
-0.1745528131723404,
-0.05025176703929901,
0.09649016708135605,
-0.08047190308570862,
-0.09447847306728363,
0.1008552685379982,
-0.049717582762241364,
-0.0031422653701156378,
0.07446707785129547,
0.08730179071426392,
0.030301576480269432,
-0.08508174866437912,
-0.013289918191730976,
-0.06140230968594551,
0.039347633719444275,
0.06832104176282883,
0.038551151752471924,
-0.0536217987537384,
-0.06451691687107086,
0.0034485412761569023,
-0.011729330755770206,
-0.004347461741417646,
-0.07089928537607193,
-0.06722168624401093,
-0.02636387012898922,
-0.05150812864303589,
0.03175755590200424,
0.036933548748493195,
0.02194659225642681,
-0.08758384734392166,
-0.13840150833129883,
0.01979062147438526,
0.05733947455883026,
-0.07751129567623138,
0.01811886578798294,
-0.06774509698152542,
0.0547962449491024,
0.026613883674144745,
0.001837157760746777,
-0.15851888060569763,
-0.060540929436683655,
0.02646932192146778,
-0.0022757856640964746,
-0.00890605989843607,
-0.016709288582205772,
0.06803161650896072,
0.009603871963918209,
-0.05186008661985397,
-0.008136583492159843,
-0.0032168675679713488,
-0.0023888086434453726,
-0.07550042867660522,
-0.2504410743713379,
-0.006529551465064287,
-0.0234120711684227,
0.08086157590150833,
-0.2789297103881836,
-0.005558393429964781,
0.07470233738422394,
0.12530216574668884,
0.029754305258393288,
-0.02291279286146164,
-0.019971873611211777,
0.04682167246937752,
-0.019493645057082176,
-0.05841463804244995,
0.023562461137771606,
0.004249177407473326,
-0.13239139318466187,
-0.032893404364585876,
-0.15073147416114807,
0.0812017098069191,
0.10985865443944931,
-0.03186004236340523,
-0.13004490733146667,
0.011429432779550552,
-0.037297386676073074,
-0.03159854933619499,
-0.03312836214900017,
0.01647401787340641,
0.1809072047472,
0.039386507123708725,
0.10742666572332382,
-0.04322342574596405,
-0.043259602040052414,
0.02363758534193039,
-0.008548678830265999,
-0.013240214437246323,
0.1479366272687912,
-0.03320511803030968,
-0.10329712182283401,
0.08282065391540527,
0.08945310860872269,
-0.08569368720054626,
0.09168807417154312,
-0.06535264104604721,
-0.07417662441730499,
-0.09183134138584137,
0.08402834832668304,
0.054770730435848236,
0.08856850117444992,
-0.08016054332256317,
0.014561230316758156,
0.01700032688677311,
0.017671288922429085,
-0.022767147049307823,
-0.16506429016590118,
0.0016002320917323232,
-0.0003017287817783654,
-0.07787002623081207,
0.04508808255195618,
-0.0040169344283640385,
0.015103346668183804,
0.11837810277938843,
0.03541546314954758,
-0.034360840916633606,
0.045253582298755646,
-0.04111331328749657,
-0.09604740142822266,
0.23273059725761414,
-0.10149171203374863,
-0.10835842043161392,
-0.08627049624919891,
-0.0007144663250073791,
-0.03814846649765968,
-0.020253373309969902,
0.011259613558650017,
-0.09498859196901321,
-0.06852775067090988,
-0.07222579419612885,
-0.02459397166967392,
-0.005239078775048256,
0.043183583766222,
0.0346548967063427,
-0.007583418861031532,
0.11851240694522858,
-0.10341868549585342,
-0.032044507563114166,
-0.027917848899960518,
-0.060170020908117294,
0.006604514084756374,
0.02016480639576912,
0.008926917798817158,
0.1095588281750679,
0.0003988376120105386,
0.030539656057953835,
-0.04991446062922478,
0.22353339195251465,
-0.0589112751185894,
-0.008803900331258774,
0.10833606868982315,
-0.021735623478889465,
0.06891030073165894,
0.15442705154418945,
0.046917617321014404,
-0.11226215213537216,
0.03575066477060318,
0.08944792300462723,
-0.005375564098358154,
-0.2695852518081665,
-0.016845395788550377,
-0.031016560271382332,
-0.06450995057821274,
0.07787085324525833,
0.039048291742801666,
0.11949996650218964,
0.010683243162930012,
-0.006127845961600542,
0.08536211401224136,
0.0352356992661953,
0.05396806448698044,
0.13994483649730682,
0.06616520136594772,
0.09069342166185379,
-0.041818875819444656,
0.0016429090173915029,
0.047473467886447906,
-0.0077186571434140205,
0.2252778261899948,
-0.00705036660656333,
0.11041351407766342,
0.08159744739532471,
0.08084399253129959,
-0.028817785903811455,
0.002301901811733842,
-0.012547904625535011,
-0.00015145463112276047,
0.006434053182601929,
-0.07256157696247101,
-0.03130386397242546,
0.04525715857744217,
0.005772004835307598,
0.06335360556840897,
-0.09579133242368698,
0.03198971226811409,
0.06778684258460999,
0.23460283875465393,
0.12306860834360123,
-0.28066393733024597,
-0.09849760681390762,
0.024714654311537743,
-0.01477851253002882,
-0.03442266210913658,
-0.007370536681264639,
0.08563148975372314,
-0.06424256414175034,
0.08282152563333511,
-0.05216643959283829,
0.058418888598680496,
-0.06684090942144394,
0.03472112864255905,
0.07714170962572098,
0.06959450989961624,
0.011720547452569008,
0.017306583002209663,
-0.3404025137424469,
0.29703882336616516,
0.03880305588245392,
0.1303519606590271,
-0.06867647171020508,
0.048175401985645294,
0.02441207319498062,
-0.07632508873939514,
0.10223972052335739,
-0.013638644479215145,
-0.13334038853645325,
-0.165540874004364,
-0.06630995869636536,
0.006353286094963551,
0.11312415450811386,
-0.017483022063970566,
0.10708650946617126,
-0.026983248069882393,
-0.00032426477991975844,
0.05932554230093956,
-0.029200298711657524,
-0.1332596242427826,
-0.06461155414581299,
0.04931236058473587,
0.020764576271176338,
-0.05196438729763031,
-0.05941702798008919,
-0.07433484494686127,
-0.07555016130208969,
0.19088254868984222,
-0.13893288373947144,
-0.052199799567461014,
-0.12723642587661743,
0.11255557835102081,
0.1178324967622757,
-0.07766079902648926,
0.029229717329144478,
0.009226841852068901,
0.045647162944078445,
0.0396747924387455,
-0.07693968713283539,
0.12433347851037979,
-0.00831950269639492,
-0.22149012982845306,
-0.058024272322654724,
0.12034250050783157,
0.05090684816241264,
0.049809299409389496,
-0.010364028625190258,
0.07446850836277008,
0.040738582611083984,
-0.10540550202131271,
0.09437238425016403,
0.02992343157529831,
0.07396747171878815,
0.06493763625621796,
0.01283850334584713,
-0.0327235609292984,
-0.04962019994854927,
0.005354415159672499,
0.10567685216665268,
0.30506235361099243,
-0.08966438472270966,
0.025175685063004494,
0.03187906742095947,
-0.08057927340269089,
-0.1862557977437973,
0.05458009988069534,
0.1062222272157669,
0.005053297150880098,
-0.05870818346738815,
-0.1708594709634781,
0.06674236059188843,
0.0984840989112854,
-0.012745404615998268,
0.06078009679913521,
-0.31193989515304565,
-0.1417323797941208,
0.06517373770475388,
0.11546853929758072,
0.11388441920280457,
-0.18217474222183228,
-0.06515184789896011,
-0.03639954328536987,
-0.06048380210995674,
0.12469806522130966,
-0.09209317713975906,
0.08139354735612869,
0.02020476758480072,
0.022373178973793983,
0.01896357536315918,
-0.042782023549079895,
0.14379842579364777,
-0.011640102602541447,
0.08458934724330902,
-0.03755108639597893,
-0.05989304184913635,
0.053129713982343674,
-0.09029402583837509,
0.05035299062728882,
-0.05376525595784187,
0.037245769053697586,
-0.15080630779266357,
0.0020478267688304186,
-0.061853814870119095,
0.045610349625349045,
-0.07102461904287338,
-0.013595988973975182,
-0.02895171009004116,
0.05928007513284683,
0.10217571258544922,
-0.005708462093025446,
0.12093063443899155,
-0.006144033279269934,
0.16016681492328644,
0.13048464059829712,
0.0815567895770073,
0.03809170052409172,
-0.04009692743420601,
0.08205872029066086,
-0.030950075015425682,
0.05492279306054115,
-0.21298366785049438,
0.04761660099029541,
0.15252332389354706,
0.011232631281018257,
0.14994539320468903,
0.04883946478366852,
-0.06984861195087433,
0.025000786408782005,
0.055545248091220856,
-0.13677535951137543,
-0.1092359647154808,
0.021664859727025032,
-0.03320049121975899,
-0.09726323187351227,
0.02088712714612484,
0.14101354777812958,
-0.025792624801397324,
0.026932550594210625,
0.01035577617585659,
0.04901893809437752,
-0.06021586060523987,
0.15750367939472198,
0.007530423812568188,
0.08362101763486862,
-0.09216431528329849,
0.12486660480499268,
0.06789986789226532,
-0.1316440850496292,
0.11472751945257187,
0.05680886656045914,
-0.05051509290933609,
-0.01657922938466072,
0.03974071517586708,
0.13350677490234375,
0.04085465148091316,
-0.04522259160876274,
-0.11830911040306091,
-0.1450316458940506,
0.09726197272539139,
0.1998235434293747,
0.039837416261434555,
0.07154728472232819,
-0.01982554979622364,
-0.02049708180129528,
-0.07667234539985657,
0.08300700038671494,
0.07741949707269669,
0.02627694606781006,
-0.10571929067373276,
0.14914880692958832,
0.001159936306066811,
-0.014476010575890541,
-0.0029531221371144056,
0.014172296971082687,
-0.18369875848293304,
0.004825732670724392,
-0.12502363324165344,
0.04235224798321724,
-0.007579677272588015,
-0.0070889717899262905,
0.021266620606184006,
-0.05829994007945061,
-0.05983034148812294,
0.03919529542326927,
-0.08917545527219772,
-0.03886926919221878,
0.044592294842004776,
0.06118668243288994,
-0.1422595977783203,
-0.07303126156330109,
0.010502582415938377,
-0.1026216372847557,
0.059560492634773254,
0.03432203829288483,
0.011281936429440975,
0.020891427993774414,
-0.07787863165140152,
0.02123052254319191,
0.042073752731084824,
-0.007379164919257164,
0.04285150393843651,
-0.1870003193616867,
0.008815603330731392,
-0.03476223722100258,
0.03184109926223755,
0.037874698638916016,
0.06229674443602562,
-0.08955373615026474,
-0.04322517663240433,
-0.02916165627539158,
-0.020195646211504936,
-0.05200699344277382,
0.05224155634641647,
0.1416999250650406,
-0.004075267352163792,
0.15551970899105072,
-0.11359626054763794,
0.041018128395080566,
-0.20021085441112518,
-0.007074106950312853,
0.007691405713558197,
-0.07887426018714905,
-0.12007497996091843,
0.001443402492441237,
0.11286702007055283,
-0.1005309522151947,
0.0774700716137886,
-0.060742996633052826,
0.08857789635658264,
0.036455366760492325,
-0.102556511759758,
-0.05505078658461571,
0.07223236560821533,
0.17570078372955322,
0.05011922866106033,
-0.025944769382476807,
0.03601955249905586,
-0.022418329492211342,
0.05895744264125824,
0.10826849937438965,
0.18875214457511902,
0.11540117114782333,
0.08043356984853745,
0.10218950361013412,
0.05788727104663849,
-0.09015829116106033,
-0.08624733984470367,
0.16307246685028076,
-0.09582295268774033,
0.13784310221672058,
-0.031085912138223648,
0.08716476708650589,
0.06600861996412277,
-0.20320011675357819,
0.03718100115656853,
-0.07336361706256866,
-0.10375837981700897,
-0.11876581609249115,
-0.11332181096076965,
-0.09725625813007355,
-0.08940120041370392,
0.0063887666910886765,
-0.12994733452796936,
0.04979759454727173,
0.07965627312660217,
0.04216596111655235,
0.02081855572760105,
0.06654932349920273,
-0.025419961661100388,
0.04885800927877426,
0.10677636414766312,
0.010777563787996769,
0.0013605424901470542,
-0.020506685599684715,
-0.060295287519693375,
0.05127100273966789,
-0.005848827306181192,
0.04305140674114227,
0.015110764652490616,
0.00884751882404089,
0.06170143187046051,
-0.0037527100648730993,
-0.10217734426259995,
0.04911964759230614,
0.02897878736257553,
0.030219875276088715,
0.10739904642105103,
0.0693620964884758,
-0.009255532175302505,
-0.018942750990390778,
0.1234377846121788,
-0.09519083052873611,
-0.03853584825992584,
-0.17236270010471344,
0.2634860575199127,
-0.0077371844090521336,
0.034489210695028305,
0.015548989176750183,
-0.07389940321445465,
-0.01914268732070923,
0.14990007877349854,
0.13125769793987274,
-0.03520422801375389,
-0.01938674971461296,
0.07129307836294174,
-0.009533558040857315,
-0.028068015351891518,
0.09852410852909088,
0.08207099884748459,
0.017099224030971527,
-0.066351979970932,
-0.06754909455776215,
-0.01144943106919527,
-0.03889346867799759,
-0.045612726360559464,
0.07368071377277374,
0.016498569399118423,
-0.003854205831885338,
-0.015729263424873352,
0.07465066760778427,
-0.06311381608247757,
-0.16051900386810303,
0.10069826245307922,
-0.23560205101966858,
-0.1647757738828659,
-0.012989282608032227,
0.008146977052092552,
0.016692345961928368,
0.04263053089380264,
-0.005588672123849392,
-0.009959440678358078,
0.1088893786072731,
-0.037621594965457916,
-0.03762725368142128,
-0.09496930241584778,
0.04203001782298088,
-0.03180686756968498,
0.17594744265079498,
0.002625696826726198,
0.053665418177843094,
0.1438707709312439,
0.018900588154792786,
-0.09585274755954742,
0.03213166818022728,
0.09259935468435287,
-0.10872113704681396,
0.0015225360402837396,
0.09672872722148895,
-0.02493211440742016,
0.13666518032550812,
0.09048943966627121,
-0.0760120153427124,
0.025259679183363914,
-0.0430314876139164,
-0.07335469871759415,
-0.053841084241867065,
-0.03722073882818222,
-0.06699679791927338,
0.13262483477592468,
0.23401235044002533,
-0.034818872809410095,
0.017435038462281227,
-0.028343278914690018,
0.0026538376696407795,
0.029440905898809433,
0.04780019819736481,
-0.051679372787475586,
-0.2053951472043991,
0.09555523842573166,
0.050910260528326035,
0.056624237447977066,
-0.15384408831596375,
-0.08578100800514221,
0.038974594324827194,
-0.01755983754992485,
-0.09515568614006042,
0.11154809594154358,
0.05299244448542595,
0.049322523176670074,
-0.05264506861567497,
-0.188251331448555,
-0.028810061514377594,
0.1745750904083252,
-0.08964171260595322,
-0.08341780304908752
] |
null | null |
transformers
|
# Austin MeDeBERTa
This model was developed using further MLM pre-training on [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base), using a dataset of 1.1M clinical notes from the Austin Health EMR. The notes span discharge summaries, inpatient notes, radiology reports and histopathology reports.
## Model description
This is the base version of the original DeBERTa model. The architecture and tokenizer are unchanged.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 9
- eval_batch_size: 9
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.9756 | 0.51 | 40000 | 0.9127 |
| 0.8876 | 1.01 | 80000 | 0.8221 |
| 0.818 | 1.52 | 120000 | 0.7786 |
| 0.7836 | 2.03 | 160000 | 0.7438 |
| 0.7672 | 2.54 | 200000 | 0.7165 |
| 0.734 | 3.04 | 240000 | 0.6948 |
| 0.7079 | 3.55 | 280000 | 0.6749 |
| 0.6987 | 4.06 | 320000 | 0.6598 |
| 0.6771 | 4.57 | 360000 | 0.6471 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu113
- Datasets 1.15.1
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "deberta-pretrained-large", "results": []}]}
|
fill-mask
|
austin/Austin-MeDeBERTa
|
[
"transformers",
"pytorch",
"deberta",
"fill-mask",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta #fill-mask #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
Austin MeDeBERTa
================
This model was developed using further MLM pre-training on microsoft/deberta-base, using a dataset of 1.1M clinical notes from the Austin Health EMR. The notes span discharge summaries, inpatient notes, radiology reports and histopathology reports.
Model description
-----------------
This is the base version of the original DeBERTa model. The architecture and tokenizer are unchanged.
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 9
* eval\_batch\_size: 9
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.12.5
* Pytorch 1.10.0+cu113
* Datasets 1.15.1
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 9\n* eval\\_batch\\_size: 9\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu113\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta #fill-mask #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 9\n* eval\\_batch\\_size: 9\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu113\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] |
[
50,
98,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta #fill-mask #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 9\n* eval\\_batch\\_size: 9\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu113\n* Datasets 1.15.1\n* Tokenizers 0.10.3"
] |
[
-0.09680405259132385,
0.02046355977654457,
-0.0017841830849647522,
0.12407839298248291,
0.193076491355896,
0.03893674165010452,
0.1301928013563156,
0.08575727045536041,
-0.11405593901872635,
0.016348328441381454,
0.14276348054409027,
0.1645270437002182,
0.007328019477427006,
0.14367450773715973,
-0.03807755187153816,
-0.2722175419330597,
-0.015811137855052948,
0.03168000653386116,
-0.1043606549501419,
0.12265670299530029,
0.1093602329492569,
-0.142216295003891,
0.07708436250686646,
-0.001145074376836419,
-0.24581974744796753,
0.02175612561404705,
0.029551448300480843,
-0.06753332912921906,
0.15907862782478333,
0.0028337871190160513,
0.16946561634540558,
-0.00945444405078888,
0.1134064719080925,
-0.14606647193431854,
0.011316284537315369,
0.048893433064222336,
0.009197787381708622,
0.05915670841932297,
0.029702305793762207,
0.013235265389084816,
0.08786588907241821,
-0.10872089862823486,
0.07942375540733337,
0.01129067037254572,
-0.14947322010993958,
-0.24578753113746643,
-0.06625405699014664,
-0.010837345384061337,
0.06436595320701599,
0.10513393580913544,
-0.007434740196913481,
0.15042370557785034,
-0.11352875828742981,
0.08641043305397034,
0.2214575558900833,
-0.25205370783805847,
-0.07955677062273026,
0.02700374275445938,
0.021696949377655983,
0.03664061054587364,
-0.10821514576673508,
-0.0204936433583498,
0.06565918773412704,
0.05725068598985672,
0.14288415014743805,
-0.03554564341902733,
-0.07208913564682007,
0.01057363674044609,
-0.13213859498500824,
-0.02194606512784958,
0.06372581422328949,
0.019067935645580292,
-0.04104647412896156,
-0.022722944617271423,
-0.057075098156929016,
-0.1432267725467682,
-0.04479335993528366,
-0.034583356231451035,
0.051290299743413925,
-0.06227802485227585,
-0.10098695009946823,
0.027772853150963783,
-0.09768298268318176,
-0.08048486709594727,
-0.07184027880430222,
0.20045055449008942,
0.035320863127708435,
0.013714265078306198,
-0.05014902353286743,
0.10664914548397064,
-0.03442330285906792,
-0.1591138243675232,
0.032354578375816345,
0.028761178255081177,
-0.01416963990777731,
-0.052903588861227036,
-0.08349840342998505,
-0.06059274822473526,
0.017386216670274734,
0.13977748155593872,
-0.03981303423643112,
0.036639824509620667,
0.06041579693555832,
0.026485739275813103,
-0.0978747010231018,
0.19212186336517334,
-0.03155944123864174,
-0.04520585015416145,
0.015604499727487564,
0.043581075966358185,
0.013885654509067535,
-0.007568856701254845,
-0.11123759299516678,
-0.0119083933532238,
0.09995865076780319,
0.018803007900714874,
-0.06927276402711868,
0.04885638877749443,
-0.049956850707530975,
-0.002696172334253788,
0.006892544683068991,
-0.0924181416630745,
0.03215440735220909,
-0.021519344300031662,
-0.08311223983764648,
-0.028787266463041306,
0.004334399942308664,
0.012059615924954414,
0.010389984585344791,
0.16799503564834595,
-0.10030831396579742,
0.02828434482216835,
-0.12169326096773148,
-0.12397490441799164,
-0.009092518128454685,
-0.07644033432006836,
0.038220103830099106,
-0.11720602214336395,
-0.16470614075660706,
-0.0019538654014468193,
0.053218353539705276,
-0.030140995979309082,
-0.030926305800676346,
-0.04270976781845093,
-0.08144925534725189,
0.0063350144773721695,
-0.01290938165038824,
0.14797288179397583,
-0.05958804860711098,
0.12036389857530594,
0.0792510062456131,
0.08572131395339966,
-0.0732436329126358,
0.04989578202366829,
-0.09708946943283081,
-0.00016353327373508364,
-0.23643222451210022,
0.023985639214515686,
-0.03208165988326073,
0.07379455119371414,
-0.0642365962266922,
-0.1312834620475769,
0.023367702960968018,
-0.0008126257453113794,
0.10469075292348862,
0.10670004040002823,
-0.17407138645648956,
-0.08345663547515869,
0.1543896496295929,
-0.06073268502950668,
-0.09347072243690491,
0.11625475436449051,
-0.07281561195850372,
0.04572746902704239,
0.07417242974042892,
0.12389099597930908,
0.042040884494781494,
-0.13352049887180328,
0.04550245776772499,
-0.04417775943875313,
0.04255425184965134,
-0.037798382341861725,
0.04812215268611908,
0.004770531784743071,
-0.004942076746374369,
0.028211332857608795,
-0.043364040553569794,
0.0684177428483963,
-0.11241025477647781,
-0.08849221467971802,
-0.024384528398513794,
-0.1092490404844284,
0.07839769124984741,
0.0661902129650116,
0.08212537318468094,
-0.12263143062591553,
-0.07333909720182419,
0.07863420248031616,
0.05998869612812996,
-0.028440149500966072,
0.0070525873452425,
-0.0515797883272171,
0.0517728365957737,
-0.05243786796927452,
-0.03229735419154167,
-0.17184531688690186,
-0.04889144375920296,
0.0021482582669705153,
-0.009840344078838825,
0.026761995628476143,
-0.0036449809558689594,
0.08989416807889938,
0.0787133127450943,
-0.06535578519105911,
-0.012500027194619179,
-0.08090083301067352,
0.006539196241647005,
-0.12143685668706894,
-0.19896914064884186,
-0.03219432383775711,
-0.016316629946231842,
0.10412142425775528,
-0.16041335463523865,
0.024856071919202805,
-0.08226728439331055,
0.0886056050658226,
0.0006483311881311238,
-0.007391404826194048,
-0.07817681133747101,
0.10189131647348404,
-0.008196425624191761,
-0.05222074314951897,
0.046314939856529236,
-0.013619263656437397,
-0.06927848607301712,
-0.07562198489904404,
-0.10006087273359299,
0.2105880230665207,
0.141962930560112,
-0.13702861964702606,
-0.11769045889377594,
0.05537588894367218,
-0.05570715665817261,
-0.022660644724965096,
-0.05607929453253746,
0.02595832571387291,
0.16941778361797333,
-0.018333174288272858,
0.13676340878009796,
-0.05859120935201645,
-0.037478283047676086,
0.035016562789678574,
-0.031420476734638214,
0.03670861944556236,
0.0728064477443695,
0.13091683387756348,
-0.06884727627038956,
0.1391296088695526,
0.16978734731674194,
-0.11741044372320175,
0.13445717096328735,
-0.01664837636053562,
-0.07231952250003815,
-0.033430252224206924,
-0.04802972078323364,
0.0024817772209644318,
0.14441359043121338,
-0.11809299886226654,
-0.014072077348828316,
-0.001896243542432785,
0.010011359117925167,
0.00734671438112855,
-0.22128288447856903,
-0.05907010659575462,
0.03507102653384209,
-0.018972111865878105,
-0.05766291916370392,
-0.0023715959396213293,
0.012349293567240238,
0.10965730994939804,
0.02004070393741131,
-0.09848420321941376,
0.034691061824560165,
0.008758466690778732,
-0.056262653321027756,
0.22010798752307892,
-0.08193926513195038,
-0.12284401059150696,
-0.10644727200269699,
-0.06895966827869415,
-0.04712202027440071,
0.02929084375500679,
0.06221691519021988,
-0.11400295048952103,
-0.031183775514364243,
-0.008906085044145584,
0.04272089898586273,
0.0040830946527421474,
0.06490704417228699,
-0.002144018653780222,
-0.009480668231844902,
0.07075395435094833,
-0.1138543039560318,
-0.018719850108027458,
-0.0457795187830925,
-0.0512717142701149,
0.0566122941672802,
0.06511746346950531,
0.13151319324970245,
0.13889479637145996,
-0.03827941417694092,
-0.010869965888559818,
-0.025143299251794815,
0.2801096737384796,
-0.09225805848836899,
-0.04247615858912468,
0.12222298979759216,
-0.01368508581072092,
0.04823216050863266,
0.11815933138132095,
0.07708799093961716,
-0.11595244705677032,
0.02045608125627041,
0.023088892921805382,
-0.03407124802470207,
-0.17977124452590942,
-0.024880990386009216,
-0.05685105547308922,
-0.06581342220306396,
0.08578140288591385,
0.007186269853264093,
0.05604223161935806,
0.0561634860932827,
0.05167233943939209,
0.10344880819320679,
-0.053606681525707245,
0.0588589683175087,
0.0993368998169899,
0.04855863377451897,
0.12629468739032745,
-0.03211936354637146,
-0.11561375111341476,
0.009313640184700489,
-0.04135001450777054,
0.2070818543434143,
0.02029208280146122,
0.06750770658254623,
0.05545395240187645,
0.16406577825546265,
-0.009295141324400902,
0.10264745354652405,
0.03562990948557854,
-0.06442496925592422,
-0.004951372742652893,
-0.040651895105838776,
-0.024459177628159523,
0.01759648136794567,
-0.02872021123766899,
0.055098146200180054,
-0.1296129822731018,
-0.03994465991854668,
0.04652919992804527,
0.24595986306667328,
0.04650881886482239,
-0.34786489605903625,
-0.08206131309270859,
-0.0078036608174443245,
-0.019228702411055565,
-0.02414192073047161,
-0.008318041451275349,
0.07521602511405945,
-0.0975431352853775,
0.04635753855109215,
-0.052135828882455826,
0.08315815776586533,
0.01206407230347395,
0.06169557943940163,
0.07134490460157394,
0.12055085599422455,
-0.006631221156567335,
0.047329679131507874,
-0.34919583797454834,
0.28440773487091064,
0.001123040565289557,
0.10521713644266129,
-0.08058157563209534,
-0.0029766077641397715,
0.04222985729575157,
0.027228567749261856,
0.049002040177583694,
-0.020435290411114693,
-0.017079723998904228,
-0.22308897972106934,
-0.013803025707602501,
0.03571014851331711,
0.12617433071136475,
-0.017264435067772865,
0.10007437318563461,
-0.010938444174826145,
-0.0018656919710338116,
0.08802836388349533,
0.008846764452755451,
-0.09642957150936127,
-0.0566483810544014,
-0.014206919819116592,
0.0061277952045202255,
-0.04028523340821266,
-0.061244718730449677,
-0.11180369555950165,
-0.11001096665859222,
0.11148740351200104,
0.011102641932666302,
-0.02687619999051094,
-0.11501113325357437,
0.09008847922086716,
0.08921253681182861,
-0.07559691369533539,
0.07503478974103928,
0.019587740302085876,
0.05206689611077309,
0.013856072910130024,
-0.05325201153755188,
0.12086061388254166,
-0.06980612128973007,
-0.15312030911445618,
-0.08281935006380081,
0.07294351607561111,
0.04426483064889908,
0.06639547646045685,
-0.006568476557731628,
0.02705206163227558,
-0.02491525374352932,
-0.08221189677715302,
0.04304276034235954,
-0.05965380370616913,
0.054123956710100174,
0.02277904935181141,
-0.027652740478515625,
-0.004828730132430792,
-0.06123490259051323,
-0.00839716661721468,
0.1448443979024887,
0.2781682014465332,
-0.09552686661481857,
-0.018349654972553253,
0.04355062544345856,
-0.04093345254659653,
-0.1905587762594223,
0.0744066908955574,
0.07105795294046402,
0.0249787550419569,
0.04598565399646759,
-0.15692080557346344,
0.11494556069374084,
0.09881654381752014,
-0.007809865288436413,
0.14643555879592896,
-0.3136807978153229,
-0.13936325907707214,
0.12054163962602615,
0.16125179827213287,
0.16405969858169556,
-0.1348935067653656,
0.0005732753779739141,
-0.05273256078362465,
-0.12930375337600708,
0.061348844319581985,
-0.045713603496551514,
0.11754398792982101,
-0.03137851133942604,
0.10353768616914749,
0.004301354754716158,
-0.06769778579473495,
0.12779317796230316,
0.00363919697701931,
0.11825863271951675,
-0.06577408313751221,
-0.03564644604921341,
0.05865000560879707,
-0.019675711169838905,
0.00041931611485779285,
-0.0435003861784935,
0.011162049137055874,
-0.027109112590551376,
-0.018519742414355278,
-0.08884774893522263,
0.06099970266222954,
-0.0377323217689991,
-0.08006363362073898,
-0.017103029415011406,
0.02481731027364731,
0.026758326217532158,
-0.038077570497989655,
0.07798945903778076,
0.030324626713991165,
0.16690970957279205,
0.03545346111059189,
0.03717692941427231,
-0.031024882569909096,
-0.06573107838630676,
0.01904761604964733,
-0.023854907602071762,
0.0775732472538948,
-0.10867257416248322,
0.009275367483496666,
0.13245388865470886,
0.0325281098484993,
0.12390434741973877,
0.09653299301862717,
-0.027438592165708542,
0.01961941458284855,
0.08379720151424408,
-0.15416453778743744,
-0.04429808631539345,
0.008908187970519066,
-0.09154736250638962,
-0.08996827155351639,
0.04077111929655075,
0.07825332134962082,
-0.08428304642438889,
-0.011436461471021175,
-0.0235065296292305,
-0.009504952467978,
-0.09064406901597977,
0.2317522168159485,
0.06704777479171753,
0.050236936658620834,
-0.09850751608610153,
0.05147113278508186,
0.04697141796350479,
-0.07797447592020035,
-0.0014050330501049757,
0.05673282593488693,
-0.06394470483064651,
-0.015620331279933453,
0.11889176070690155,
0.18686141073703766,
-0.06822753697633743,
-0.022393304854631424,
-0.16129682958126068,
-0.11972053349018097,
0.06207692623138428,
0.18516328930854797,
0.10275910049676895,
0.0014168088091537356,
-0.03348476067185402,
0.04781666025519371,
-0.13658185303211212,
0.0630580335855484,
0.04823457822203636,
0.0855938270688057,
-0.11986998468637466,
0.18786323070526123,
-0.0017501492984592915,
0.04335732385516167,
-0.030405784025788307,
0.04878675937652588,
-0.12610967457294464,
0.02230888418853283,
-0.11846648156642914,
-0.06822559237480164,
-0.008127791807055473,
-0.012035944499075413,
-0.0005275809671729803,
-0.06309124827384949,
-0.054114118218421936,
0.016698040068149567,
-0.12055457383394241,
-0.03927024453878403,
0.05834249407052994,
0.022673647850751877,
-0.12198061496019363,
-0.05336074158549309,
0.0307058934122324,
-0.06956467777490616,
0.04505069926381111,
0.06515117734670639,
0.024236341938376427,
0.07011650502681732,
-0.14561715722084045,
-0.01784178800880909,
0.06525322049856186,
-0.006539903115481138,
0.08973144739866257,
-0.07802639156579971,
-0.00971943698823452,
-0.015259519219398499,
0.09179500490427017,
0.019864188507199287,
0.0812869742512703,
-0.14363066852092743,
0.003907258156687021,
-0.008079146035015583,
-0.10583579540252686,
-0.049717627465724945,
-0.0087409857660532,
0.08619424700737,
-0.0004077078774571419,
0.18184103071689606,
-0.09644068032503128,
0.0695095807313919,
-0.19010747969150543,
-0.01582891121506691,
-0.02971118502318859,
-0.09694083780050278,
-0.10781656205654144,
-0.053323838859796524,
0.08334897458553314,
-0.04841037094593048,
0.12637782096862793,
0.02718065120279789,
0.09217242151498795,
0.034511029720306396,
-0.021201180294156075,
0.009085097350180149,
0.0308306235820055,
0.2091348022222519,
0.03256645426154137,
-0.05266065523028374,
0.042295731604099274,
0.09572763741016388,
0.1064504012465477,
0.10356269776821136,
0.21219465136528015,
0.16145934164524078,
0.011791986413300037,
0.09803451597690582,
0.03702018782496452,
-0.0531783327460289,
-0.16521885991096497,
-0.015709349885582924,
-0.0158768929541111,
0.07982973754405975,
-0.022041846066713333,
0.16186311841011047,
0.06320273131132126,
-0.16884776949882507,
0.04901745915412903,
-0.06703539192676544,
-0.083033487200737,
-0.10088413953781128,
0.021130437031388283,
-0.07353463768959045,
-0.1296480894088745,
0.019364038482308388,
-0.08700927346944809,
0.015602574683725834,
0.10378071665763855,
-0.002381641184911132,
-0.027565915137529373,
0.2152014523744583,
0.039888013154268265,
0.042383141815662384,
0.057505879551172256,
0.013303404673933983,
-0.023533007130026817,
-0.07095662504434586,
-0.0604652464389801,
-0.049991995096206665,
-0.02188776433467865,
0.023344211280345917,
-0.08420780301094055,
-0.1271461695432663,
0.035937804728746414,
0.0010166037827730179,
-0.10446804761886597,
0.028539687395095825,
0.02989543229341507,
0.05861596018075943,
0.054335981607437134,
0.006316404324024916,
0.0253202673047781,
-0.018274812027812004,
0.18077856302261353,
-0.08555051684379578,
-0.1204189881682396,
-0.09347841888666153,
0.2852288782596588,
0.052106138318777084,
0.008140445686876774,
0.018876975402235985,
-0.07394503802061081,
-0.00610773079097271,
0.2170787751674652,
0.20741447806358337,
-0.10271083563566208,
0.005854755640029907,
-0.0013171372702345252,
-0.017618073150515556,
-0.037979606539011,
0.1309492439031601,
0.12336006760597229,
0.06938344985246658,
-0.09383156895637512,
-0.025214390829205513,
-0.06910324841737747,
-0.015093384310603142,
-0.03716269135475159,
0.028637204319238663,
0.0467182956635952,
0.0018984831403940916,
-0.04648616164922714,
0.07691778987646103,
-0.056955959647893906,
-0.1181437149643898,
0.10951092839241028,
-0.20402884483337402,
-0.15390454232692719,
-0.006121247075498104,
0.09255415201187134,
0.003068316960707307,
0.08729641884565353,
-0.029237257316708565,
0.002339794300496578,
0.07141079008579254,
-0.020865987986326218,
-0.05266055092215538,
-0.1265413463115692,
0.10376440733671188,
-0.07072149217128754,
0.20006023347377777,
-0.048488274216651917,
0.10203617811203003,
0.1265029013156891,
0.08703936636447906,
-0.05308869481086731,
0.07495735585689545,
0.0535273440182209,
-0.09420980513095856,
0.01756720058619976,
0.11073338240385056,
-0.04164746776223183,
0.028398921713232994,
0.030725058168172836,
-0.14243631064891815,
0.039396896958351135,
-0.0580071285367012,
-0.0440736748278141,
-0.05476188287138939,
-0.025791535153985023,
-0.05493239685893059,
0.10763151198625565,
0.22590893507003784,
-0.020912375301122665,
0.024284902960062027,
-0.0741802528500557,
0.021364910528063774,
0.08535586297512054,
0.04037978872656822,
-0.11969292163848877,
-0.24405597150325775,
0.013341686688363552,
0.06813651323318481,
-0.035970911383628845,
-0.22831334173679352,
-0.09612702578306198,
0.00044393332791514695,
-0.07996153086423874,
-0.07721582800149918,
0.07488089054822922,
0.05353270843625069,
0.056698836386203766,
-0.04872792959213257,
-0.1177891194820404,
-0.09011521935462952,
0.1609337031841278,
-0.15938012301921844,
-0.10585092008113861
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# adr-ner
This model is a fine-tuned version of [austin/Austin-MeDeBERTa](https://huggingface.co/austin/Austin-MeDeBERTa) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0434
- Precision: 0.7305
- Recall: 0.6934
- F1: 0.7115
- Accuracy: 0.9941
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 107 | 0.0630 | 0.0 | 0.0 | 0.0 | 0.9876 |
| No log | 2.0 | 214 | 0.0308 | 0.4282 | 0.3467 | 0.3832 | 0.9900 |
| No log | 3.0 | 321 | 0.0254 | 0.5544 | 0.5603 | 0.5573 | 0.9920 |
| No log | 4.0 | 428 | 0.0280 | 0.6430 | 0.5751 | 0.6071 | 0.9929 |
| 0.0465 | 5.0 | 535 | 0.0266 | 0.5348 | 0.7146 | 0.6118 | 0.9915 |
| 0.0465 | 6.0 | 642 | 0.0423 | 0.7632 | 0.5793 | 0.6587 | 0.9939 |
| 0.0465 | 7.0 | 749 | 0.0336 | 0.6957 | 0.6765 | 0.6860 | 0.9939 |
| 0.0465 | 8.0 | 856 | 0.0370 | 0.6876 | 0.6702 | 0.6788 | 0.9936 |
| 0.0465 | 9.0 | 963 | 0.0349 | 0.6555 | 0.7040 | 0.6789 | 0.9932 |
| 0.0044 | 10.0 | 1070 | 0.0403 | 0.6910 | 0.6808 | 0.6858 | 0.9938 |
| 0.0044 | 11.0 | 1177 | 0.0415 | 0.7140 | 0.6808 | 0.6970 | 0.9939 |
| 0.0044 | 12.0 | 1284 | 0.0440 | 0.7349 | 0.6681 | 0.6999 | 0.9941 |
| 0.0044 | 13.0 | 1391 | 0.0423 | 0.7097 | 0.6977 | 0.7036 | 0.9941 |
| 0.0044 | 14.0 | 1498 | 0.0435 | 0.7174 | 0.6977 | 0.7074 | 0.9941 |
| 0.0006 | 15.0 | 1605 | 0.0434 | 0.7305 | 0.6934 | 0.7115 | 0.9941 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "adr-ner", "results": []}]}
|
token-classification
|
austin/adr-ner
|
[
"transformers",
"pytorch",
"deberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #deberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
|
adr-ner
=======
This model is a fine-tuned version of austin/Austin-MeDeBERTa on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0434
* Precision: 0.7305
* Recall: 0.6934
* F1: 0.7115
* Accuracy: 0.9941
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 12
* eval\_batch\_size: 12
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 15
### Training results
### Framework versions
* Transformers 4.14.1
* Pytorch 1.10.0+cu113
* Datasets 1.16.1
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #deberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
55,
98,
4,
33
] |
[
"passage: TAGS\n#transformers #pytorch #deberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15### Training results### Framework versions\n\n\n* Transformers 4.14.1\n* Pytorch 1.10.0+cu113\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
-0.09290272742509842,
0.06863079220056534,
-0.0015413061482831836,
0.12092980742454529,
0.19010192155838013,
0.035082049667835236,
0.09357697516679764,
0.11107460409402847,
-0.11096561700105667,
0.02088567428290844,
0.13075090944766998,
0.18826492130756378,
-0.007477257866412401,
0.1212042048573494,
-0.05387184023857117,
-0.27753016352653503,
0.0009507163777016103,
0.053087811917066574,
-0.09198387712240219,
0.11935346573591232,
0.11605823040008545,
-0.14620517194271088,
0.08733568340539932,
0.0023936142679303885,
-0.23792947828769684,
0.029200047254562378,
0.01310703158378601,
-0.06228305771946907,
0.15261244773864746,
0.010859656147658825,
0.15313944220542908,
0.005592238157987595,
0.08863308280706406,
-0.15452995896339417,
0.004218409303575754,
0.05134981498122215,
0.006589108612388372,
0.07094129920005798,
0.04144980385899544,
0.0033263794612139463,
0.11979956179857254,
-0.1047334149479866,
0.0625947043299675,
0.009481736458837986,
-0.13815735280513763,
-0.2526080906391144,
-0.07902819663286209,
0.005016577895730734,
0.06119624152779579,
0.09382573515176773,
-0.0035164905712008476,
0.13075728714466095,
-0.11804275959730148,
0.07923420518636703,
0.21965338289737701,
-0.2750549018383026,
-0.06197100877761841,
0.05990833044052124,
0.02098258025944233,
0.05606731399893761,
-0.10917861014604568,
-0.02703794650733471,
0.06343043595552444,
0.05144849419593811,
0.14887884259223938,
-0.038935720920562744,
-0.09692054986953735,
0.03185150772333145,
-0.14599201083183289,
-0.028415067121386528,
0.12276344746351242,
0.022813202813267708,
-0.03217107057571411,
-0.03739578649401665,
-0.04888002201914787,
-0.1746172457933426,
-0.027822554111480713,
-0.03452407568693161,
0.051233574748039246,
-0.04921107366681099,
-0.06461169570684433,
0.020129898563027382,
-0.10489770025014877,
-0.07562998682260513,
-0.07954969257116318,
0.1699380874633789,
0.038289107382297516,
0.0019794125109910965,
-0.02508150041103363,
0.11684262752532959,
-0.005043767858296633,
-0.12662717700004578,
0.013929576613008976,
0.018212417140603065,
-0.0008940719999372959,
-0.06442859023809433,
-0.08516281843185425,
-0.021462300792336464,
0.002613270888105035,
0.12517957389354706,
-0.06135435774922371,
0.029439697042107582,
0.06389977782964706,
0.03611820563673973,
-0.08806570619344711,
0.20065943896770477,
-0.04700849577784538,
-0.029590614140033722,
-0.001101441215723753,
0.037846747785806656,
-0.008677666075527668,
-0.00006964088970562443,
-0.12374445050954819,
-0.036898884922266006,
0.12535490095615387,
0.014534343034029007,
-0.08593029528856277,
0.07146692276000977,
-0.05170349404215813,
-0.018388571217656136,
0.04149151220917702,
-0.08940709382295609,
0.038002535700798035,
-0.024574140086770058,
-0.08729632943868637,
-0.04448885843157768,
0.0030822167173027992,
0.019939018413424492,
0.007754126563668251,
0.13157673180103302,
-0.09449096769094467,
0.027200065553188324,
-0.11323101073503494,
-0.12713603675365448,
-0.0029639245476573706,
-0.09245356917381287,
0.05552380904555321,
-0.11825460940599442,
-0.14756731688976288,
-0.01865696720778942,
0.04226073995232582,
-0.02552025578916073,
-0.05508682504296303,
-0.03563776612281799,
-0.07787603884935379,
0.004683348815888166,
-0.022909164428710938,
0.13509659469127655,
-0.05938790366053581,
0.10634240508079529,
0.04499363526701927,
0.07634515315294266,
-0.06726634502410889,
0.06656631082296371,
-0.097768634557724,
0.004260066896677017,
-0.21172107756137848,
0.045039981603622437,
-0.04651356115937233,
0.07948396354913712,
-0.08110015839338303,
-0.12430483102798462,
0.0160821620374918,
0.008778459392488003,
0.07751134783029556,
0.07698731124401093,
-0.1687181144952774,
-0.06055755913257599,
0.12983794510364532,
-0.057527247816324234,
-0.09992710500955582,
0.09803197532892227,
-0.07460477203130722,
0.06113908067345619,
0.0652344599366188,
0.16744093596935272,
0.08042539656162262,
-0.07972434908151627,
0.028079407289624214,
-0.013874661177396774,
0.025912433862686157,
-0.06717832386493683,
0.05598035082221031,
0.01569146104156971,
0.001459504826925695,
0.023981692269444466,
-0.03521651402115822,
0.057958751916885376,
-0.09677983075380325,
-0.08484026789665222,
-0.027222633361816406,
-0.10831334441900253,
0.061631590127944946,
0.07042846083641052,
0.09428586810827255,
-0.10820323973894119,
-0.06633301824331284,
0.11708724498748779,
0.0718206986784935,
-0.04155586287379265,
0.012838358990848064,
-0.04234592244029045,
0.0485541932284832,
-0.04693300649523735,
-0.03674975410103798,
-0.1812373548746109,
-0.028528550639748573,
-0.0008139605633914471,
0.006693681702017784,
0.013310849666595459,
0.0529358796775341,
0.0698896124958992,
0.053597528487443924,
-0.05423155054450035,
-0.01859772764146328,
-0.03708144649863243,
0.017408572137355804,
-0.13853873312473297,
-0.16191443800926208,
-0.04554545506834984,
-0.018667690455913544,
0.08422119170427322,
-0.19301630556583405,
0.03466479107737541,
-0.015040609054267406,
0.07888545095920563,
0.0036353403702378273,
0.003418397856876254,
-0.057732950896024704,
0.10552559047937393,
-0.03632475808262825,
-0.05484500527381897,
0.06212621554732323,
-0.007958422414958477,
-0.0627095028758049,
-0.0380999930202961,
-0.09374568611383438,
0.2141162008047104,
0.14190368354320526,
-0.12488511949777603,
-0.10391027480363846,
0.00968843698501587,
-0.05352247133851051,
-0.022720560431480408,
-0.03739866614341736,
0.02764957584440708,
0.16126927733421326,
-0.03813517466187477,
0.1454075276851654,
-0.06339329481124878,
-0.04857003688812256,
0.014195788651704788,
-0.01901351846754551,
0.013305634260177612,
0.10379329323768616,
0.09870045632123947,
-0.09670364856719971,
0.15766943991184235,
0.16860203444957733,
-0.09675591439008713,
0.12951956689357758,
-0.023815959692001343,
-0.06788746267557144,
-0.023984737694263458,
-0.03810305520892143,
-0.010371067561209202,
0.10613202303647995,
-0.13009615242481232,
-0.02157771587371826,
0.01289364229887724,
0.0376645028591156,
0.026636170223355293,
-0.21750593185424805,
-0.05513925477862358,
0.041358206421136856,
-0.022155165672302246,
-0.02296624891459942,
0.007065668236464262,
0.01740165241062641,
0.10209537297487259,
0.019577166065573692,
-0.09077352285385132,
0.044304508715867996,
0.01636333391070366,
-0.05598500370979309,
0.20647233724594116,
-0.08505415916442871,
-0.12453529983758926,
-0.10916835814714432,
-0.058763932436704636,
-0.03648078441619873,
0.028803275898098946,
0.07461944222450256,
-0.08671163767576218,
-0.018799541518092155,
-0.04021469131112099,
0.030450403690338135,
-0.04142669215798378,
0.042668357491493225,
-0.02133648656308651,
0.00193431181833148,
0.0630008801817894,
-0.11824280023574829,
-0.01730387471616268,
-0.04498295858502388,
-0.061606913805007935,
0.05764878913760185,
0.04147692397236824,
0.11885631084442139,
0.13508205115795135,
-0.04963093623518944,
-0.004984462633728981,
-0.03844061121344566,
0.26592713594436646,
-0.07637547701597214,
-0.03669898957014084,
0.12967000901699066,
0.013479664921760559,
0.047842055559158325,
0.12005563825368881,
0.06887727230787277,
-0.10117321461439133,
0.014213512651622295,
0.028900546953082085,
-0.035381365567445755,
-0.1902073174715042,
-0.04175996780395508,
-0.05775170400738716,
-0.05704358592629433,
0.09229245036840439,
0.022538112476468086,
0.056914061307907104,
0.06611257046461105,
0.0485864132642746,
0.10656680911779404,
-0.0606037937104702,
0.06223941966891289,
0.13470359146595,
0.048036810010671616,
0.1325373500585556,
-0.03744609281420708,
-0.0906921848654747,
0.021495675668120384,
0.0013929405249655247,
0.20880724489688873,
0.011704925447702408,
0.08076974004507065,
0.0571216456592083,
0.179970383644104,
0.003859720891341567,
0.08386052399873734,
0.014277522452175617,
-0.04790954664349556,
-0.01800825446844101,
-0.026967311277985573,
-0.02996760606765747,
0.030787819996476173,
-0.03827965632081032,
0.02707359939813614,
-0.13051912188529968,
-0.050564736127853394,
0.043541520833969116,
0.23909135162830353,
0.041296955198049545,
-0.33551204204559326,
-0.0790153294801712,
0.0036820992827415466,
-0.023885710164904594,
-0.0325024276971817,
0.014881414361298084,
0.0891776978969574,
-0.08993633836507797,
0.017783580347895622,
-0.040147650986909866,
0.08475465327501297,
-0.037616122514009476,
0.05236458405852318,
0.07998135685920715,
0.07963954657316208,
0.001977630192413926,
0.07373086363077164,
-0.32838961482048035,
0.25891485810279846,
0.0035489900037646294,
0.06428876519203186,
-0.07026389986276627,
-0.009019573219120502,
0.03358157351613045,
0.07333126664161682,
0.04644981026649475,
-0.012447752989828587,
-0.05549586936831474,
-0.23719976842403412,
-0.008455718867480755,
0.01866983063519001,
0.09840536117553711,
-0.034722138196229935,
0.09027337282896042,
-0.020996196195483208,
0.015909506008028984,
0.08412060886621475,
0.009492832235991955,
-0.06502260267734528,
-0.077314093708992,
-0.017016733065247536,
0.03380932658910751,
-0.010590248741209507,
-0.061868179589509964,
-0.10265090316534042,
-0.13418669998645782,
0.12691962718963623,
-0.00069411750882864,
-0.03218192607164383,
-0.11768756061792374,
0.06697864830493927,
0.08107884228229523,
-0.07774020731449127,
0.0624627061188221,
0.01714002527296543,
0.05105103179812431,
0.03138337656855583,
-0.0626678392291069,
0.12100452184677124,
-0.05112132057547569,
-0.14256183803081512,
-0.06308294087648392,
0.06845653057098389,
0.026674360036849976,
0.05417299270629883,
-0.00504457950592041,
0.024127403274178505,
-0.04413743317127228,
-0.08971434086561203,
0.026979049667716026,
-0.04022935777902603,
0.09059842675924301,
0.014494679868221283,
-0.054999154061079025,
0.03245708718895912,
-0.04863123595714569,
-0.020380964502692223,
0.17344890534877777,
0.23633717000484467,
-0.11520630121231079,
-0.007705589756369591,
0.008606672286987305,
-0.05043363943696022,
-0.20123474299907684,
0.06624210625886917,
0.05934879556298256,
0.017957670614123344,
0.04801248386502266,
-0.17026400566101074,
0.11056172847747803,
0.11430731415748596,
-0.010374565608799458,
0.12329762428998947,
-0.29824724793434143,
-0.12895046174526215,
0.12186631560325623,
0.13990306854248047,
0.14406223595142365,
-0.13466860353946686,
-0.0012781783007085323,
-0.029397865757346153,
-0.12854915857315063,
0.09255620837211609,
-0.04721524193882942,
0.12190622091293335,
-0.03685120865702629,
0.1008121445775032,
0.0035358741879463196,
-0.05321041867136955,
0.12954677641391754,
0.03466024622321129,
0.1263171136379242,
-0.06296157091856003,
-0.06379491835832596,
0.044732287526130676,
-0.04515903815627098,
0.013219121843576431,
-0.05291051045060158,
0.022876491770148277,
-0.10448715090751648,
-0.021505482494831085,
-0.08659028261899948,
0.05399078503251076,
-0.030493320897221565,
-0.07773511856794357,
-0.045703258365392685,
0.03540324419736862,
0.03158131614327431,
-0.027548933401703835,
0.11717154830694199,
0.014510179869830608,
0.14997459948062897,
0.0836753249168396,
0.04550871253013611,
-0.053800005465745926,
-0.044198233634233475,
0.011626561172306538,
-0.016590416431427002,
0.07716410607099533,
-0.1314794421195984,
0.02556329406797886,
0.13528339564800262,
0.01139602530747652,
0.12166154384613037,
0.0924818143248558,
-0.014177004806697369,
0.01364705990999937,
0.06939288973808289,
-0.14232124388217926,
-0.05425010249018669,
-0.003419920103624463,
-0.08690217137336731,
-0.0762629508972168,
0.06086781993508339,
0.08008525520563126,
-0.07845459133386612,
-0.015229460783302784,
-0.020620936527848244,
-0.020969243720173836,
-0.07948775589466095,
0.19408927857875824,
0.07441804558038712,
0.04872293770313263,
-0.09309225529432297,
0.05601828917860985,
0.0665467381477356,
-0.06493010371923447,
-0.0018580179894343019,
0.03646552190184593,
-0.07261750847101212,
-0.04545171558856964,
0.07505737990140915,
0.1570558100938797,
-0.07875930517911911,
-0.02935345470905304,
-0.11927813291549683,
-0.11976061016321182,
0.07483360916376114,
0.15749184787273407,
0.12394695729017258,
0.02579461596906185,
-0.03905792906880379,
0.020475400611758232,
-0.12400942295789719,
0.05733834207057953,
0.016370082274079323,
0.09038776904344559,
-0.15705382823944092,
0.17805059254169464,
-0.012144960463047028,
0.04716978594660759,
-0.025329455733299255,
0.034993354231119156,
-0.11469564586877823,
0.01029670238494873,
-0.11347127705812454,
-0.05674799159169197,
-0.023387104272842407,
0.008052550256252289,
0.0008826146367937326,
-0.0658353939652443,
-0.05570302903652191,
0.015789737924933434,
-0.12350624799728394,
-0.027626866474747658,
0.036200445145368576,
0.06329841911792755,
-0.10532572865486145,
-0.05386533960700035,
0.01421693991869688,
-0.05890094116330147,
0.053637195378541946,
0.039376575499773026,
0.03102615475654602,
0.04115523397922516,
-0.1037859246134758,
0.0024272145237773657,
0.07554138451814651,
-0.0018795888172462583,
0.08829757571220398,
-0.07728055119514465,
-0.007983752526342869,
-0.00492054782807827,
0.0795450210571289,
0.019347552210092545,
0.05889396741986275,
-0.1419295221567154,
-0.012707982212305069,
-0.022375578060746193,
-0.09201335906982422,
-0.06166398152709007,
0.010334320366382599,
0.11256110668182373,
0.004416974261403084,
0.18475766479969025,
-0.06466452777385712,
0.029436537995934486,
-0.1899719387292862,
-0.013945800252258778,
-0.02608143351972103,
-0.11475217342376709,
-0.10576888173818588,
-0.06587044149637222,
0.07086270302534103,
-0.03964993357658386,
0.16659346222877502,
0.05242263898253441,
0.04642866924405098,
0.0283723846077919,
-0.033446308225393295,
0.019887516275048256,
0.03126368299126625,
0.21836237609386444,
0.03509672358632088,
-0.043926600366830826,
0.051380887627601624,
0.08161164075136185,
0.09605589509010315,
0.12122092396020889,
0.17333246767520905,
0.1734594851732254,
-0.023719118908047676,
0.08799197524785995,
0.019969666376709938,
-0.06419370323419571,
-0.18094606697559357,
0.0028875425923615694,
-0.017501389607787132,
0.0748664140701294,
-0.03754692152142525,
0.17929764091968536,
0.06292381882667542,
-0.18054743111133575,
0.05188513174653053,
-0.06400256603956223,
-0.0770542100071907,
-0.10003793239593506,
-0.006404828280210495,
-0.07654883712530136,
-0.1439080685377121,
-0.00196202308870852,
-0.09329158067703247,
0.01724880374968052,
0.12028482556343079,
-0.007475642953068018,
-0.020306749269366264,
0.16963453590869904,
0.037311308085918427,
0.032494183629751205,
0.050744641572237015,
0.004023286979645491,
-0.014339301735162735,
-0.1048264130949974,
-0.062213510274887085,
-0.025163905695080757,
-0.028063291683793068,
0.026494955644011497,
-0.07991000264883041,
-0.09644109755754471,
0.017899589613080025,
-0.02013307623565197,
-0.08739825338125229,
0.01403921190649271,
0.03366531431674957,
0.0471598356962204,
0.04632682725787163,
0.0038719370495527983,
0.011792276985943317,
-0.01604798063635826,
0.2086603194475174,
-0.07918187975883484,
-0.07532262057065964,
-0.08141232281923294,
0.28694218397140503,
0.07496700435876846,
0.021914446726441383,
0.022803306579589844,
-0.0736728087067604,
0.003279629396274686,
0.2139875292778015,
0.1993505358695984,
-0.09314173460006714,
0.0044069136492908,
0.003998570144176483,
-0.015862662345170975,
-0.017735740169882774,
0.11884578317403793,
0.13281406462192535,
0.033583804965019226,
-0.09164866805076599,
-0.031412240117788315,
-0.06227204203605652,
-0.0030527629423886538,
-0.0357644148170948,
0.0627676323056221,
0.0450635589659214,
-0.003562798025086522,
-0.043540436774492264,
0.0515962652862072,
-0.0462639220058918,
-0.09310125559568405,
0.10724184662103653,
-0.1998615264892578,
-0.15118633210659027,
-0.0014628054341301322,
0.083114854991436,
-0.016335763037204742,
0.0757395401597023,
-0.031653113663196564,
-0.0017419488867744803,
0.05807505175471306,
-0.023389270529150963,
-0.07227668911218643,
-0.0870148316025734,
0.1014624759554863,
-0.05615273118019104,
0.18441016972064972,
-0.05720426142215729,
0.07287964969873428,
0.12677593529224396,
0.08278972655534744,
-0.07566404342651367,
0.07707060873508453,
0.0430566631257534,
-0.07528204470872879,
0.0305179413408041,
0.0772157609462738,
-0.03783451393246651,
0.04688514396548271,
0.02939468063414097,
-0.1584407091140747,
0.03647454082965851,
-0.06229168549180031,
-0.0441255159676075,
-0.05537134408950806,
-0.05030104145407677,
-0.04459017887711525,
0.12382259219884872,
0.21329884231090546,
-0.0224668737500906,
0.013717283494770527,
-0.07027637213468552,
0.004789934027940035,
0.0720185860991478,
0.02372736670076847,
-0.10211494565010071,
-0.21167482435703278,
0.013339501805603504,
0.08552097529172897,
-0.030065523460507393,
-0.2013479471206665,
-0.0855603814125061,
0.005297629628330469,
-0.07653332501649857,
-0.06848578155040741,
0.08332929760217667,
0.04924759641289711,
0.048701584339141846,
-0.05814467370510101,
-0.09405896812677383,
-0.09185346961021423,
0.16059377789497375,
-0.15238776803016663,
-0.09788846969604492
] |
null | null | null |
# ReadMe
่ฟๆฏreadme็ๆๆฌๅ
ๅฎน
|
{"language": ["python"], "license": "mit", "tags": ["tag1", "tag2"], "datasets": ["dataset1", "dataset2"], "metrics": ["metric1", "metric2"], "thumbnail": "url to a thumbnail used in social sharing"}
| null |
avadesian/pg
|
[
"tag1",
"tag2",
"dataset:dataset1",
"dataset:dataset2",
"license:mit",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"python"
] |
TAGS
#tag1 #tag2 #dataset-dataset1 #dataset-dataset2 #license-mit #region-us
|
# ReadMe
่ฟๆฏreadme็ๆๆฌๅ
ๅฎน
|
[
"# ReadMe\n\n่ฟๆฏreadme็ๆๆฌๅ
ๅฎน"
] |
[
"TAGS\n#tag1 #tag2 #dataset-dataset1 #dataset-dataset2 #license-mit #region-us \n",
"# ReadMe\n\n่ฟๆฏreadme็ๆๆฌๅ
ๅฎน"
] |
[
31,
10
] |
[
"passage: TAGS\n#tag1 #tag2 #dataset-dataset1 #dataset-dataset2 #license-mit #region-us \n# ReadMe\n\n่ฟๆฏreadme็ๆๆฌๅ
ๅฎน"
] |
[
-0.05024593323469162,
0.04160818085074425,
-0.007638843264430761,
0.06906727701425552,
0.06182181090116501,
0.10660379379987717,
0.1719590425491333,
0.07629135251045227,
0.2504051923751831,
0.010351457633078098,
0.10977669060230255,
0.104404978454113,
0.01954852230846882,
0.14079420268535614,
0.03758617490530014,
-0.13796235620975494,
0.07833661884069443,
-0.11477641761302948,
0.08240807801485062,
0.06955854594707489,
0.0579104945063591,
-0.042502567172050476,
0.04605650529265404,
-0.09847696125507355,
0.010110440663993359,
0.00017895780911203474,
-0.009669001214206219,
-0.025586094707250595,
0.07483115792274475,
-0.046121079474687576,
0.009844332002103329,
0.025138549506664276,
0.0029113306663930416,
-0.2270340770483017,
0.03469680994749069,
-0.04313046112656593,
-0.11708490550518036,
0.01088534016162157,
0.0525507815182209,
-0.06343116611242294,
0.005162532441318035,
0.01873396523296833,
0.0053031728602945805,
0.07906333357095718,
-0.18159471452236176,
-0.21087680757045746,
-0.11212197691202164,
-0.003946579061448574,
0.05234561860561371,
0.03605527803301811,
-0.03730405867099762,
0.04873576760292053,
-0.09908422827720642,
0.01954684779047966,
0.15116707980632782,
-0.3322327733039856,
0.06769018620252609,
0.2117907851934433,
0.03677644580602646,
0.13712668418884277,
-0.08456986397504807,
0.04280844330787659,
0.07490083575248718,
0.007940811105072498,
-0.0903419479727745,
-0.026888523250818253,
0.07034174352884293,
0.11806595325469971,
-0.04435109719634056,
-0.061965953558683395,
0.4172495901584625,
-0.023502865806221962,
0.012405281886458397,
-0.07189491391181946,
-0.05234985426068306,
-0.07920383661985397,
0.004656178876757622,
0.030045153573155403,
0.039899665862321854,
0.1608702391386032,
0.026774555444717407,
-0.06391018629074097,
-0.09673627465963364,
-0.04195529595017433,
-0.23619210720062256,
0.03535136580467224,
-0.054018713533878326,
0.06481068581342697,
-0.11288025230169296,
0.034872617572546005,
0.06480903923511505,
-0.06879743933677673,
-0.0356626994907856,
-0.057982221245765686,
-0.01560895424336195,
0.018074270337820053,
-0.053235627710819244,
-0.016063038259744644,
0.11216668039560318,
0.11082368344068527,
0.02092755027115345,
0.06741433590650558,
-0.06598500162363052,
0.10718955844640732,
0.12705214321613312,
-0.0363299697637558,
0.04881070554256439,
-0.01167774572968483,
-0.08758490532636642,
-0.1595311313867569,
0.09465473890304565,
-0.056363508105278015,
-0.09639360755681992,
0.07504142075777054,
-0.04222885146737099,
0.11090949177742004,
0.06617923080921173,
-0.04715816676616669,
-0.12597408890724182,
-0.042611975222826004,
-0.02789393812417984,
-0.0699537843465805,
0.05100587382912636,
0.08243339508771896,
-0.03314132243394852,
-0.05463824421167374,
-0.05355343222618103,
0.053981903940439224,
0.025723405182361603,
0.0025134410243481398,
-0.13581013679504395,
0.019962849095463753,
0.03822878375649452,
-0.007825870998203754,
0.12842363119125366,
-0.04305402562022209,
-0.020544283092021942,
-0.05644330009818077,
-0.25907647609710693,
-0.03277783840894699,
0.05978122353553772,
-0.06033024191856384,
0.0728948712348938,
-0.01129443384706974,
0.054868556559085846,
0.06783728301525116,
-0.013040658086538315,
-0.0698389783501625,
-0.09428099542856216,
0.09274175763130188,
-0.11294713616371155,
0.10843726992607117,
-0.07202447950839996,
0.0020752185955643654,
-0.18043780326843262,
0.05690111219882965,
0.009066215716302395,
0.014896512031555176,
-0.07182499766349792,
0.10784008353948593,
-0.0537053681910038,
0.08982005715370178,
-0.1297471970319748,
-0.011858799494802952,
-0.056708790361881256,
0.24034424126148224,
-0.2336881458759308,
-0.045856136828660965,
0.17957615852355957,
-0.13159051537513733,
-0.19458965957164764,
0.015493111684918404,
-0.010894311591982841,
0.19421562552452087,
0.07637493312358856,
0.3594449460506439,
-0.06121931970119476,
-0.15361431241035461,
-0.04559708759188652,
0.11345422267913818,
-0.05305471271276474,
-0.09045008569955826,
0.14542987942695618,
-0.1460697054862976,
0.007816668599843979,
0.01590360887348652,
0.12052737176418304,
-0.038082025945186615,
0.01005034614354372,
-0.11410306394100189,
0.00865242537111044,
-0.0050307647325098515,
0.11161784082651138,
0.0017917788354679942,
-0.01112024113535881,
-0.12860164046287537,
0.07667948305606842,
-0.004052124451845884,
0.04136918485164642,
0.061163753271102905,
0.032267775386571884,
-0.014956235885620117,
0.030295947566628456,
-0.034429702907800674,
0.021637095138430595,
-0.07081164419651031,
-0.10929687321186066,
-0.05906177684664726,
0.07887562364339828,
-0.0009383108699694276,
0.09097889065742493,
0.10329318791627884,
-0.0588696263730526,
-0.023278366774320602,
0.008517935872077942,
0.05463056638836861,
0.058233123272657394,
-0.041831087321043015,
-0.18415595591068268,
0.04187345504760742,
-0.070755235850811,
0.12257799506187439,
-0.04458092525601387,
0.013974910601973534,
0.0787980854511261,
0.05152429640293121,
0.012474298477172852,
-0.05857984349131584,
0.017153337597846985,
-0.05874105915427208,
0.0495733805000782,
-0.01804131641983986,
0.12423344701528549,
0.03289005905389786,
-0.03865291550755501,
0.15499219298362732,
-0.10289232432842255,
0.049192655831575394,
0.2011452615261078,
-0.05819491297006607,
0.053679127246141434,
-0.06585410237312317,
-0.0026305716019123793,
-0.01995149999856949,
-0.027393566444516182,
-0.07148388028144836,
-0.06532970070838928,
0.015202434733510017,
0.027129771187901497,
-0.053191110491752625,
-0.06689289212226868,
0.012209738604724407,
-0.12426584959030151,
-0.1186712384223938,
0.06022745743393898,
0.055270735174417496,
-0.17343491315841675,
0.15696680545806885,
0.2687857151031494,
0.17035126686096191,
0.21407343447208405,
-0.028752105310559273,
-0.05088827386498451,
-0.0791991576552391,
-0.010809297673404217,
-0.04383575916290283,
0.13265164196491241,
-0.17922517657279968,
0.03395315632224083,
0.06320769339799881,
0.08685553073883057,
0.08069979399442673,
-0.12904995679855347,
-0.10205607116222382,
-0.03268347680568695,
-0.026382306590676308,
-0.09500680863857269,
0.06169964373111725,
-0.06887095421552658,
0.056945595890283585,
0.01762399449944496,
0.04863701015710831,
0.09776891022920609,
-0.023766448721289635,
-0.14712181687355042,
0.12873700261116028,
-0.19785989820957184,
-0.11743400245904922,
-0.07940754294395447,
-0.22522395849227905,
0.05143848434090614,
0.030121952295303345,
0.08375582098960876,
-0.10813313722610474,
0.010381011292338371,
-0.003998535219579935,
0.009654439985752106,
-0.11972663551568985,
-0.06907746195793152,
0.09097380936145782,
0.049761220812797546,
-0.07236500084400177,
-0.10250996798276901,
-0.06455981731414795,
-0.0013444987125694752,
0.01735454984009266,
0.09727342426776886,
-0.13009975850582123,
0.10260309278964996,
0.15953300893306732,
0.10448276996612549,
0.05613437667489052,
-0.045502275228500366,
0.2982804775238037,
-0.06332331150770187,
-0.02236534282565117,
0.032756928354501724,
0.008502481505274773,
0.051944706588983536,
0.2128978669643402,
0.04121759906411171,
-0.11844289302825928,
0.01658782735466957,
-0.04532169923186302,
-0.10193408280611038,
-0.2854561507701874,
-0.09784097969532013,
-0.0605238601565361,
0.2192542552947998,
0.02917182259261608,
0.0725565180182457,
0.06404753774404526,
0.004709220491349697,
0.05786033347249031,
-0.07764454931020737,
0.038250599056482315,
0.04119659960269928,
0.15087653696537018,
-0.06977240741252899,
0.011381174437701702,
-0.1058242991566658,
0.046821996569633484,
0.1629970371723175,
0.1361938714981079,
0.07722359150648117,
0.18428638577461243,
0.20162130892276764,
0.09810712933540344,
-0.02892274409532547,
-0.03115040808916092,
0.051705025136470795,
0.050295695662498474,
-0.00031316024251282215,
-0.025522641837596893,
-0.042618654668331146,
0.016777407377958298,
0.03227682784199715,
0.029532451182603836,
-0.149089053273201,
-0.04590028151869774,
-0.06963769346475601,
0.12485411018133163,
-0.103725366294384,
0.18516355752944946,
-0.04548005387187004,
0.02129105105996132,
0.14586582779884338,
0.05215202271938324,
-0.0029756699223071337,
0.0354606956243515,
0.015069717541337013,
-0.12351372838020325,
0.032717205584049225,
0.0248875692486763,
0.07172978669404984,
-0.003308285493403673,
-0.009998015128076077,
-0.08471611142158508,
-0.19975200295448303,
-0.030209561809897423,
0.10186704248189926,
-0.1654426008462906,
0.19020295143127441,
0.03835301473736763,
-0.0019703262951225042,
-0.05888904631137848,
-0.08358867466449738,
-0.0064552281983196735,
0.042440518736839294,
0.13406333327293396,
0.08302703499794006,
-0.1252618432044983,
-0.0322166346013546,
-0.07204603403806686,
-0.0027584671042859554,
0.07338573783636093,
-0.0691748708486557,
-0.009668255224823952,
-0.00749824196100235,
0.05347292870283127,
-0.05205685645341873,
0.22368168830871582,
-0.003733464516699314,
-0.0963863879442215,
0.047415293753147125,
0.07004223763942719,
0.04556034877896309,
-0.025768009945750237,
-0.01694525219500065,
-0.01925693266093731,
0.11867914348840714,
-0.06901963800191879,
-0.03438075631856918,
-0.06915006786584854,
-0.10657719522714615,
0.055831633508205414,
-0.03447401151061058,
-0.082127645611763,
-0.010788253508508205,
-0.07825231552124023,
-0.12953564524650574,
-0.09592650830745697,
0.11081954836845398,
-0.07853370159864426,
-0.03606824949383736,
-0.10799752175807953,
0.13086305558681488,
-0.04017873480916023,
0.10030015558004379,
0.006729400251060724,
0.08605600148439407,
-0.030255090445280075,
-0.07646854966878891,
0.1488587111234665,
-0.11952472478151321,
-0.012520438060164452,
0.036584001034498215,
-0.04771455004811287,
-0.04588371515274048,
0.022504154592752457,
-0.11997360736131668,
0.23782959580421448,
0.235504612326622,
-0.023025481030344963,
0.292956680059433,
0.29610544443130493,
-0.14493057131767273,
-0.2823958694934845,
-0.12001729756593704,
-0.21760588884353638,
-0.09207086265087128,
0.04603464901447296,
-0.23985321819782257,
0.0905851349234581,
0.10846777260303497,
-0.08070623129606247,
0.15972183644771576,
-0.36370810866355896,
-0.09326651692390442,
0.039950478821992874,
-0.018687579780817032,
0.4313364624977112,
-0.1339498609304428,
-0.1674468070268631,
-0.048002295196056366,
-0.2852853238582611,
0.03475067764520645,
-0.2187025249004364,
0.10254156589508057,
0.04102880135178566,
-0.018833529204130173,
-0.029262367635965347,
-0.0381089486181736,
0.24525687098503113,
0.11994151026010513,
0.027249399572610855,
-0.09976446628570557,
-0.07880005985498428,
0.1293814778327942,
-0.02118798904120922,
0.04675452038645744,
-0.08510772138834,
-0.017010081559419632,
-0.17400862276554108,
-0.014040444977581501,
-0.06091422587633133,
-0.026366589590907097,
-0.016847629100084305,
-0.08564689755439758,
-0.006121208891272545,
0.022656122222542763,
0.021765708923339844,
-0.05225975066423416,
0.1216781809926033,
-0.009037739597260952,
0.05144915729761124,
0.07858465611934662,
0.020696530118584633,
-0.03947700932621956,
-0.0771094262599945,
-0.06696751713752747,
-0.11987520754337311,
0.02395029552280903,
-0.1507621556520462,
0.0030381532851606607,
0.07154765725135803,
-0.007430250756442547,
0.1219673827290535,
0.09725786000490189,
-0.09634888917207718,
0.01616676151752472,
0.14294981956481934,
-0.08645524084568024,
-0.10983447730541229,
0.05061761662364006,
-0.04789191484451294,
-0.026328934356570244,
-0.01839449442923069,
0.09082761406898499,
0.08450210094451904,
0.01234720554202795,
-0.009501153603196144,
0.0852782353758812,
-0.046231549233198166,
0.07685547322034836,
0.048101700842380524,
0.03221474960446358,
-0.12539508938789368,
0.20635278522968292,
0.047612279653549194,
-0.0594935417175293,
0.023810062557458878,
0.12980368733406067,
-0.09314795583486557,
-0.08734843134880066,
-0.0973314493894577,
0.10680604726076126,
-0.020541878417134285,
-0.06590286642313004,
-0.030623292550444603,
-0.02406904473900795,
0.03890300914645195,
0.07463759183883667,
0.09557949006557465,
0.11736296862363815,
0.02589571475982666,
-0.08751745522022247,
0.08049508184194565,
0.0806492418050766,
-0.023497160524129868,
-0.019347447901964188,
-0.03831927105784416,
-0.06939754635095596,
-0.016943946480751038,
0.1084263026714325,
-0.03016897849738598,
-0.1215294748544693,
-0.171110600233078,
0.0326000414788723,
-0.08704547584056854,
-0.01138665247708559,
-0.13061532378196716,
-0.07234809547662735,
0.024094777181744576,
0.020032506436109543,
-0.05725059658288956,
-0.028993356972932816,
-0.09048759937286377,
-0.010567326098680496,
-0.002974886680021882,
0.10840706527233124,
-0.1399778574705124,
-0.0315946489572525,
0.11150293052196503,
-0.007494724355638027,
0.112980417907238,
0.12447013705968857,
0.0035110623575747013,
0.047278113663196564,
-0.15245942771434784,
-0.027895815670490265,
0.05320580303668976,
-0.01944035105407238,
0.007308181840926409,
-0.0365012027323246,
-0.08980344235897064,
-0.006981788668781519,
-0.0032532510813325644,
0.1096116453409195,
0.05681096762418747,
-0.102505162358284,
0.05329699441790581,
-0.08122826367616653,
-0.15051329135894775,
-0.022919923067092896,
-0.05624058097600937,
0.11874350160360336,
-0.014649486169219017,
0.1430208683013916,
-0.02856484241783619,
0.06936754286289215,
-0.05201922357082367,
0.014198997057974339,
0.002152727684006095,
-0.013639929704368114,
-0.03418968245387077,
-0.02189570479094982,
-0.0447310134768486,
-0.04632657766342163,
0.2714506983757019,
0.007726583164185286,
-0.1322176456451416,
0.053314998745918274,
0.1867431253194809,
-0.09444773942232132,
-0.0048859515227377415,
0.29975059628486633,
0.06609710305929184,
-0.07383314520120621,
-0.09761624038219452,
0.09890240430831909,
-0.016900889575481415,
0.06884850561618805,
0.09641312807798386,
0.09528380632400513,
0.16955360770225525,
0.054432112723588943,
-0.03361020237207413,
-0.12979243695735931,
-0.02912244014441967,
-0.0135872233659029,
0.004837164655327797,
0.0192851759493351,
0.022693902254104614,
0.04318574070930481,
0.133698508143425,
-0.0769585371017456,
0.04352005198597908,
-0.02956240624189377,
-0.02244504541158676,
-0.15326543152332306,
-0.06706665456295013,
-0.02145966701209545,
-0.09462840855121613,
0.028835712000727654,
-0.0433480478823185,
0.023472081869840622,
0.15113796293735504,
0.05441802367568016,
0.008262000046670437,
0.01693001016974449,
-0.11479076743125916,
-0.08159679919481277,
-0.06204717978835106,
-0.0626346617937088,
0.05607689172029495,
-0.036592233926057816,
0.0076185837388038635,
-0.020496124401688576,
-0.06926840543746948,
-0.01392334047704935,
0.062226977199316025,
0.03014419600367546,
-0.01478740107268095,
-0.17246633768081665,
-0.12764441967010498,
-0.04633695259690285,
0.07815542072057724,
-0.056867633014917374,
0.1966729462146759,
0.08129152655601501,
0.04604527726769447,
0.07361156493425369,
0.17297741770744324,
-0.03311162814497948,
-0.09587310254573822,
-0.08269018679857254,
0.005688622128218412,
-0.011259164661169052,
0.08352949470281601,
-0.02680218033492565,
-0.1104070246219635,
-0.041181501001119614,
0.13453657925128937,
0.3023791015148163,
-0.0984090268611908,
0.003416558727622032,
0.04640178009867668,
0.031209178268909454,
0.13243559002876282,
0.048707813024520874,
-0.01801854744553566,
0.2681327760219574,
-0.10138709098100662,
0.09101544320583344,
-0.07408998161554337,
-0.08207465708255768,
-0.1050598993897438,
0.06146299093961716,
0.02063901536166668,
-0.031568460166454315,
-0.08519057184457779,
0.14733894169330597,
-0.15266475081443787,
0.04532303288578987,
0.11360035836696625,
-0.09527844190597534,
0.005189975257962942,
-0.011307974345982075,
0.13472644984722137,
0.05887994170188904,
0.08568229526281357,
-0.009415503591299057,
-0.05039012059569359,
0.006647264119237661,
0.04534931853413582,
-0.29056060314178467,
-0.06613650918006897,
0.06512875109910965,
-0.02213941514492035,
0.1882523000240326,
-0.0532255582511425,
0.07242974638938904,
0.061665020883083344,
-0.008814266882836819,
-0.09225953370332718,
0.10304328054189682,
0.10088951140642166,
0.08875175565481186,
-0.07192210108041763,
-0.061879198998212814,
-0.026154927909374237,
-0.06334665417671204,
0.13966557383537292,
-0.04128028824925423,
0.01495186798274517,
0.19852904975414276,
-0.02873392030596733,
-0.04785970225930214,
0.03244481608271599,
-0.1020253375172615,
0.06695156544446945,
0.0037853377871215343,
-0.02134663052856922,
-0.04569191485643387,
0.01518241036683321,
-0.028620727360248566,
0.047903865575790405,
-0.16336287558078766,
-0.051035985350608826,
-0.005398070905357599,
-0.0503857284784317,
0.12818849086761475,
0.05443551763892174,
-0.2756645083427429,
-0.044711869210004807,
0.013796337880194187,
0.06400036066770554,
-0.08716615289449692,
0.07298347353935242,
0.14309151470661163,
-0.02392449975013733,
-0.013020634651184082,
-0.02339760959148407,
0.059140272438526154,
0.04221854358911514,
-0.013521603308618069,
-0.0815432071685791
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-donald_trump
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 391 | 2.8721 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "gpt2-donald_trump", "results": []}]}
|
text-generation
|
aviator-neural/gpt2-donald_trump
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
gpt2-donald\_trump
==================
This model is a fine-tuned version of gpt2 on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 2.8721
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1
### Training results
### Framework versions
* Transformers 4.15.0
* Pytorch 1.10.0+cu111
* Datasets 1.18.0
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
63,
98,
4,
35
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3"
] |
[
-0.09420882165431976,
0.046713877469301224,
-0.002072022994980216,
0.11077769100666046,
0.16848798096179962,
0.029411017894744873,
0.12924820184707642,
0.13098149001598358,
-0.113487608730793,
0.03691831976175308,
0.14050306379795074,
0.1698845773935318,
0.014048377051949501,
0.11241168528795242,
-0.05045725405216217,
-0.2712738811969757,
-0.016484471037983894,
0.05297435075044632,
-0.05459653586149216,
0.1382322758436203,
0.09009664505720139,
-0.12612633407115936,
0.0880664512515068,
-0.004874688107520342,
-0.22962360084056854,
0.013462946750223637,
0.016476916149258614,
-0.0536499060690403,
0.15150704979896545,
0.03964097425341606,
0.11490083485841751,
0.01361081376671791,
0.07363978773355484,
-0.17457161843776703,
0.014125833287835121,
0.053386300802230835,
-0.002233529230579734,
0.09118615835905075,
0.056345973163843155,
-0.005661110393702984,
0.18167048692703247,
-0.0774427279829979,
0.03744293376803398,
0.01658078096807003,
-0.13132156431674957,
-0.1930048018693924,
-0.07203242182731628,
0.022730806842446327,
0.05646350979804993,
0.11176487803459167,
-0.019854044541716576,
0.1334172636270523,
-0.07653997093439102,
0.10253624618053436,
0.23981042206287384,
-0.29902830719947815,
-0.06424257904291153,
0.04153861477971077,
0.03083726204931736,
0.08444398641586304,
-0.10370653867721558,
-0.007610360160470009,
0.06398756802082062,
0.04526224732398987,
0.11946364492177963,
-0.03839033097028732,
-0.08419202268123627,
0.023386364802718163,
-0.1446230709552765,
-0.031896382570266724,
0.14566457271575928,
0.02021261304616928,
-0.02723703719675541,
-0.04829096049070358,
-0.0644073635339737,
-0.165681391954422,
-0.026814622804522514,
-0.014805285260081291,
0.033378586173057556,
-0.027479982003569603,
-0.09786782413721085,
-0.030838150531053543,
-0.11645006388425827,
-0.06974028795957565,
-0.07576219737529755,
0.14460735023021698,
0.03498033061623573,
0.008021026849746704,
-0.03574998304247856,
0.11040141433477402,
-0.020578013733029366,
-0.12160291522741318,
0.017917316406965256,
0.04150187596678734,
0.018076959997415543,
-0.05151072517037392,
-0.0688714012503624,
-0.09352486580610275,
0.009692329913377762,
0.10174013674259186,
-0.07021920382976532,
0.04370640218257904,
0.03354446589946747,
0.04807804524898529,
-0.08148100972175598,
0.1805923730134964,
-0.04047263041138649,
0.005080205854028463,
0.0026386387180536985,
0.03964918479323387,
0.015366903506219387,
-0.027412399649620056,
-0.1358741670846939,
0.005056908819824457,
0.10922694206237793,
0.010138515383005142,
-0.07529331743717194,
0.07978198677301407,
-0.04274903982877731,
-0.018349340185523033,
-0.01616770587861538,
-0.09167759120464325,
0.032958149909973145,
-0.005052803549915552,
-0.08454696089029312,
-0.011932652443647385,
0.014383704401552677,
0.005136668682098389,
-0.03756294772028923,
0.12123418599367142,
-0.09889814257621765,
0.04038137197494507,
-0.0962819829583168,
-0.12331096082925797,
0.011301776394248009,
-0.0825696736574173,
0.01729762926697731,
-0.09052290767431259,
-0.17048022150993347,
-0.019272515550255775,
0.046577632427215576,
-0.03246777504682541,
-0.046569399535655975,
-0.0730663314461708,
-0.0761069655418396,
0.012706005945801735,
-0.01911652833223343,
0.1329183131456375,
-0.06221979111433029,
0.11578372120857239,
0.04438456520438194,
0.06566227972507477,
-0.06346218287944794,
0.055332958698272705,
-0.09572457522153854,
-0.00006343376298900694,
-0.16346965730190277,
0.05245191603899002,
-0.030194567516446114,
0.05661211907863617,
-0.07480095326900482,
-0.11028469353914261,
-0.0002579585707280785,
0.020007548853754997,
0.07574646919965744,
0.0920645073056221,
-0.16214081645011902,
-0.10331711173057556,
0.1868419647216797,
-0.0668768659234047,
-0.11555658280849457,
0.12711262702941895,
-0.06545814126729965,
0.062109366059303284,
0.07915721833705902,
0.18948927521705627,
0.04072132334113121,
-0.08305627852678299,
0.009653635323047638,
0.005495206918567419,
0.03999388962984085,
-0.058746159076690674,
0.05360599234700203,
-0.00039627720252610743,
0.029796170070767403,
0.02392084337770939,
-0.004669611342251301,
0.05038970708847046,
-0.10740173608064651,
-0.08051004260778427,
-0.03796346113085747,
-0.08346832543611526,
0.03501089662313461,
0.06928517669439316,
0.09020210802555084,
-0.11615834385156631,
-0.09388528764247894,
0.07315430045127869,
0.0700291246175766,
-0.07995772361755371,
0.03496340662240982,
-0.05995188653469086,
0.07521811127662659,
-0.03518662974238396,
-0.015957975760102272,
-0.17390140891075134,
-0.022046063095331192,
0.006086678244173527,
0.027351615950465202,
0.042459890246391296,
0.0384959876537323,
0.07145426422357559,
0.06660711020231247,
-0.05320289358496666,
-0.0031373375095427036,
-0.017276452854275703,
-0.018495649099349976,
-0.13878341019153595,
-0.19070668518543243,
-0.01497601717710495,
-0.016441741958260536,
0.13148233294487,
-0.22708307206630707,
0.04352091625332832,
0.014057105407118797,
0.058242317289114,
0.0053121536038815975,
-0.017083073034882545,
-0.04713553190231323,
0.082998126745224,
-0.05192452296614647,
-0.0461021326482296,
0.07507261633872986,
0.005960421171039343,
-0.09843738377094269,
-0.04732031375169754,
-0.1463054120540619,
0.1647566854953766,
0.14731144905090332,
-0.14420945942401886,
-0.09187865257263184,
-0.01364484615623951,
-0.05360742285847664,
-0.023422986268997192,
-0.04678177461028099,
0.017288364470005035,
0.19154039025306702,
-0.014679375104606152,
0.1618543565273285,
-0.07217876613140106,
-0.047703396528959274,
0.024539288133382797,
-0.040557485073804855,
0.03278915584087372,
0.12618611752986908,
0.1177101582288742,
-0.0743471309542656,
0.14929378032684326,
0.11897283792495728,
-0.08986899256706238,
0.15986406803131104,
-0.028247132897377014,
-0.0782322809100151,
-0.014052065089344978,
-0.007573998067528009,
-0.0013420311734080315,
0.08091531693935394,
-0.15908180177211761,
-0.021880928426980972,
0.012198681943118572,
0.021281521767377853,
0.03982346132397652,
-0.23868058621883392,
-0.04296474531292915,
0.034076888114213943,
-0.050320178270339966,
-0.004586528521031141,
-0.016514400020241737,
-0.003921282943338156,
0.1131066083908081,
0.007390512153506279,
-0.07044044882059097,
0.03900741785764694,
0.008723324164748192,
-0.08586759120225906,
0.21808986365795135,
-0.0693286880850792,
-0.15912112593650818,
-0.12658053636550903,
-0.07743145525455475,
-0.050483524799346924,
0.01864209584891796,
0.06798279285430908,
-0.09418808668851852,
-0.020517917349934578,
-0.07489489763975143,
0.04626765474677086,
-0.022658178582787514,
0.028397507965564728,
-0.00411669397726655,
-0.005693416111171246,
0.03951239958405495,
-0.11516382545232773,
-0.013129005208611488,
-0.06366737931966782,
-0.08741508424282074,
0.06002853065729141,
0.02428804337978363,
0.11262299120426178,
0.17159323394298553,
-0.02305532991886139,
0.01930544711649418,
-0.043853454291820526,
0.22648917138576508,
-0.07652735710144043,
-0.03292592614889145,
0.11780321598052979,
0.0018866751343011856,
0.05218613147735596,
0.09362021833658218,
0.06743647903203964,
-0.09763967245817184,
0.011991813778877258,
0.03429243713617325,
-0.04724987596273422,
-0.21937750279903412,
-0.03751828894019127,
-0.05738397687673569,
0.004187175538390875,
0.09065815806388855,
0.03635050728917122,
0.057482920587062836,
0.07178729772567749,
0.04148295521736145,
0.08612862974405289,
-0.030691083520650864,
0.05857982859015465,
0.11770086735486984,
0.04021621495485306,
0.13247346878051758,
-0.04816935211420059,
-0.0736909732222557,
0.04708847776055336,
-0.0235273577272892,
0.22453194856643677,
0.001197075005620718,
0.16059283912181854,
0.04853670299053192,
0.14786827564239502,
0.0009607038227841258,
0.07547052949666977,
-0.012684154324233532,
-0.05054669454693794,
-0.01307869702577591,
-0.04293309152126312,
-0.033427681773900986,
0.02422308921813965,
-0.06741806864738464,
0.035431426018476486,
-0.12361728399991989,
-0.004322913009673357,
0.06028199940919876,
0.2145523726940155,
0.04370183125138283,
-0.32958176732063293,
-0.09345103800296783,
0.0004781079478561878,
-0.029413718730211258,
-0.01787296123802662,
0.027129359543323517,
0.1120254322886467,
-0.08096642047166824,
0.031079987064003944,
-0.06796465814113617,
0.09728806465864182,
-0.05687297135591507,
0.061493877321481705,
0.05313539877533913,
0.10634620487689972,
-0.009533178061246872,
0.08675272017717361,
-0.32337623834609985,
0.2752290964126587,
0.010295094922184944,
0.07574465125799179,
-0.0821981132030487,
-0.0038262181915342808,
0.01655249483883381,
0.05209527164697647,
0.057887714356184006,
-0.016385426744818687,
-0.02998626045882702,
-0.1854420155286789,
-0.037726547569036484,
0.03440707549452782,
0.11894020438194275,
-0.023450035601854324,
0.0999862477183342,
-0.027581674978137016,
0.019912341609597206,
0.07531584054231644,
-0.022608017548918724,
-0.03340001031756401,
-0.10240836441516876,
0.00006034833859303035,
0.014566155150532722,
-0.04070980101823807,
-0.053017351776361465,
-0.10913445055484772,
-0.12845352292060852,
0.18349102139472961,
-0.013260877691209316,
-0.03428130969405174,
-0.1046047955751419,
0.10256137698888779,
0.05463492497801781,
-0.09036403894424438,
0.029834745451807976,
0.01584506221115589,
0.056246258318424225,
0.02301066555082798,
-0.06508692353963852,
0.12355882674455643,
-0.04335901513695717,
-0.15786021947860718,
-0.050178442150354385,
0.11071190237998962,
0.03057677671313286,
0.06057995930314064,
-0.013430479913949966,
0.014224573969841003,
-0.04743752256035805,
-0.09709125012159348,
0.03163524717092514,
-0.03589211776852608,
0.055192310363054276,
0.016649411991238594,
-0.043569497764110565,
0.030455410480499268,
-0.06057017296552658,
-0.04496137797832489,
0.20641320943832397,
0.2511903643608093,
-0.08336085081100464,
0.012110431678593159,
0.03669450432062149,
-0.07695284485816956,
-0.20486903190612793,
0.04804391786456108,
0.0408766008913517,
0.007229323964565992,
0.02203146368265152,
-0.19407491385936737,
0.10143178701400757,
0.11967652291059494,
-0.0012624016962945461,
0.13802988827228546,
-0.35001346468925476,
-0.13713333010673523,
0.10678218305110931,
0.14612305164337158,
0.13440346717834473,
-0.16009502112865448,
-0.025239111855626106,
-0.026651259511709213,
-0.11114208400249481,
0.11605315655469894,
-0.10186094045639038,
0.13999466598033905,
-0.02316003292798996,
0.11105131357908249,
0.00822429358959198,
-0.05989048629999161,
0.11046528816223145,
0.016502948477864265,
0.09312035888433456,
-0.07099916785955429,
-0.03139077499508858,
0.04791923612356186,
-0.024073628708720207,
0.019151581451296806,
-0.10067778080701828,
0.016567867249250412,
-0.08481752127408981,
-0.031231896951794624,
-0.06894857436418533,
0.045436348766088486,
-0.03233246132731438,
-0.0718141421675682,
-0.0485462062060833,
0.0009912375826388597,
0.02962060086429119,
-0.011953950859606266,
0.13956084847450256,
-0.003056399989873171,
0.1628398895263672,
0.10609409958124161,
0.07650130987167358,
-0.08957290649414062,
-0.04263918101787567,
-0.002663461957126856,
-0.010571240447461605,
0.05586518719792366,
-0.1498800367116928,
0.019258171319961548,
0.14972588419914246,
0.02561435103416443,
0.1499888002872467,
0.09148760139942169,
-0.033752258867025375,
0.028567254543304443,
0.06724375486373901,
-0.1725597232580185,
-0.10505735129117966,
-0.014777660369873047,
-0.08587615191936493,
-0.08990072458982468,
0.06326218694448471,
0.10283823311328888,
-0.06684610992670059,
-0.005932167172431946,
-0.01142722088843584,
-0.0003571320266928524,
-0.06247948110103607,
0.19419130682945251,
0.053774937987327576,
0.04160961136221886,
-0.10103081166744232,
0.05978580191731453,
0.04343307763338089,
-0.0794624537229538,
0.02301717922091484,
0.10415752977132797,
-0.07008907198905945,
-0.04523273929953575,
0.06858506798744202,
0.18894131481647491,
-0.08336841315031052,
-0.034355539828538895,
-0.1403360515832901,
-0.1172751784324646,
0.07946329563856125,
0.16656586527824402,
0.10342849791049957,
0.018694547936320305,
-0.06102035939693451,
0.02665749005973339,
-0.1431271880865097,
0.07175762951374054,
0.0407186821103096,
0.06556738168001175,
-0.12006819248199463,
0.19765925407409668,
0.010421623475849628,
0.04000682756304741,
-0.03065480850636959,
0.017689388245344162,
-0.1162535697221756,
0.016392288729548454,
-0.11504928022623062,
-0.03106619603931904,
-0.033879589289426804,
-0.005937986541539431,
-0.0014088673051446676,
-0.044627346098423004,
-0.055940110236406326,
0.003077445086091757,
-0.12214250862598419,
-0.019904786720871925,
0.027742967009544373,
0.03965354710817337,
-0.11868681758642197,
-0.022864077240228653,
0.012753540650010109,
-0.05561168119311333,
0.07875102013349533,
0.051684752106666565,
0.009913139045238495,
0.07310625165700912,
-0.17033584415912628,
0.02385595254600048,
0.07115839421749115,
0.007824951782822609,
0.057584863156080246,
-0.04830661043524742,
-0.002620019018650055,
0.0027679146733134985,
0.07910376787185669,
0.029603393748402596,
0.06289955973625183,
-0.13404791057109833,
0.013429871760308743,
-0.03603548929095268,
-0.08393418788909912,
-0.0719541609287262,
0.0541459359228611,
0.06102874130010605,
0.014270279556512833,
0.18222510814666748,
-0.09240520745515823,
0.0360700860619545,
-0.20955528318881989,
0.007199903018772602,
0.0016756366239860654,
-0.11865077912807465,
-0.10146403312683105,
-0.07690513879060745,
0.07148421555757523,
-0.057421501725912094,
0.14898376166820526,
0.03707770258188248,
0.021304817870259285,
0.02719753421843052,
-0.014330670237541199,
0.018101172521710396,
0.011840598657727242,
0.22896653413772583,
0.04173215106129646,
-0.04531700164079666,
0.032554563134908676,
0.06272880733013153,
0.11530467122793198,
0.11433219909667969,
0.21435245871543884,
0.119193896651268,
-0.028693996369838715,
0.10044731199741364,
0.030389059334993362,
-0.059632472693920135,
-0.1501692533493042,
0.0449741967022419,
-0.03960895165801048,
0.10120081156492233,
-0.031579118221998215,
0.2049368917942047,
0.09012597799301147,
-0.14970046281814575,
0.038178324699401855,
-0.049961626529693604,
-0.09572616219520569,
-0.11867237836122513,
-0.0595533587038517,
-0.08647063374519348,
-0.1469532698392868,
0.006414828356355429,
-0.12020043283700943,
0.03404203802347183,
0.1039583757519722,
0.01990528590977192,
-0.031182335689663887,
0.16537830233573914,
0.029308762401342392,
0.009658425115048885,
0.05836055427789688,
-0.0037536618765443563,
-0.018632838502526283,
-0.11399036645889282,
-0.06210589036345482,
-0.014301260933279991,
-0.017339495941996574,
0.04583923891186714,
-0.044782690703868866,
-0.047992218285799026,
0.03170643374323845,
-0.042388737201690674,
-0.09541717171669006,
0.007170092314481735,
0.037798140197992325,
0.06718545407056808,
0.04007881134748459,
0.001193910837173462,
-0.006568343378603458,
-0.014886676333844662,
0.2228773534297943,
-0.07554739713668823,
-0.0818222314119339,
-0.07395228743553162,
0.2727721333503723,
0.04115062206983566,
0.002764638513326645,
0.01983891800045967,
-0.06986992061138153,
0.007762731984257698,
0.2580840289592743,
0.22319890558719635,
-0.09031730890274048,
-0.005395661108195782,
0.0042077479884028435,
-0.00010890871635638177,
-0.008381826803088188,
0.11633997410535812,
0.12456098198890686,
0.07243593037128448,
-0.09195271879434586,
-0.04033750295639038,
-0.04669675603508949,
-0.003962857648730278,
-0.04307987168431282,
0.06388241797685623,
0.05752125382423401,
0.01371096819639206,
-0.04238387942314148,
0.054881833493709564,
-0.08380117267370224,
-0.08777942508459091,
0.03708219900727272,
-0.2087159901857376,
-0.14874354004859924,
0.0015970449894666672,
0.10919568687677383,
-0.0016181878745555878,
0.07821693271398544,
-0.026581915095448494,
-0.000630188558716327,
0.04377047345042229,
-0.014465905725955963,
-0.11391011625528336,
-0.05688785761594772,
0.08492357283830643,
-0.1360010951757431,
0.17761817574501038,
-0.05042380094528198,
0.06794179975986481,
0.1291065663099289,
0.05833401903510094,
-0.05496634915471077,
0.0831531211733818,
0.03395073488354683,
-0.06478442996740341,
0.029986578971147537,
0.0899774432182312,
-0.032895442098379135,
0.04105618968605995,
0.05026407539844513,
-0.13458245992660522,
0.025161979719996452,
-0.07117944955825806,
-0.05289527773857117,
-0.03647112846374512,
-0.0607491210103035,
-0.05997397005558014,
0.12323065102100372,
0.2177879810333252,
-0.01910836435854435,
0.014626488089561462,
-0.07707781344652176,
0.0035435291938483715,
0.058951735496520996,
0.044359561055898666,
-0.06546846777200699,
-0.24507324397563934,
-0.00452525494620204,
0.08468485623598099,
-0.0265011228621006,
-0.2745221257209778,
-0.07202628254890442,
-0.005865494720637798,
-0.0571163184940815,
-0.10151831805706024,
0.0854903906583786,
0.09691637009382248,
0.05542917177081108,
-0.05762903764843941,
-0.06680899858474731,
-0.07226888835430145,
0.1623818427324295,
-0.1432826817035675,
-0.09275680780410767
] |
null | null |
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart_jokes
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0282
## Model description
This model is trained of jokes dataset , where you can ask a question and the model gives funny answer.
## Intended uses & limitations
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.3455 | 1.0 | 1914 | 3.0282 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "mbart_jokes", "results": []}]}
|
text2text-generation
|
aviator-neural/mbart_jokes
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
mbart\_jokes
============
This model is a fine-tuned version of facebook/bart-base on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 3.0282
Model description
-----------------
This model is trained of jokes dataset , where you can ask a question and the model gives funny answer.
Intended uses & limitations
---------------------------
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 1
### Training results
### Framework versions
* Transformers 4.12.5
* Pytorch 1.9.1
* Datasets 1.16.1
* Tokenizers 0.10.3
|
[
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
"TAGS\n#transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
57,
98,
4,
31
] |
[
"passage: TAGS\n#transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.9.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3"
] |
[
-0.09518969804048538,
0.05635010078549385,
-0.002191790146753192,
0.10683262348175049,
0.15995244681835175,
0.020274098962545395,
0.12784458696842194,
0.1258172243833542,
-0.10922110825777054,
0.013248849660158157,
0.12742017209529877,
0.17565251886844635,
0.009213646873831749,
0.11862149834632874,
-0.04012696072459221,
-0.2424105405807495,
-0.013701596297323704,
0.056015197187662125,
-0.07092048972845078,
0.14220796525478363,
0.096159927546978,
-0.1349194347858429,
0.07348630577325821,
0.009418097324669361,
-0.23176808655261993,
0.012373280711472034,
0.009576658718287945,
-0.058628980070352554,
0.15349172055721283,
0.015483912080526352,
0.12555502355098724,
0.0035495981574058533,
0.0734691247344017,
-0.1741832047700882,
0.01002192310988903,
0.0471305213868618,
0.01206990983337164,
0.08676651865243912,
0.06444582343101501,
0.0007523170206695795,
0.13477648794651031,
-0.05928817763924599,
0.04985267296433449,
0.024624953046441078,
-0.12097114324569702,
-0.23442934453487396,
-0.0835900828242302,
0.019241465255618095,
0.06640525907278061,
0.11352741718292236,
-0.0009579756297171116,
0.13327960669994354,
-0.09250833839178085,
0.09640566259622574,
0.23184065520763397,
-0.2819388806819916,
-0.06596144288778305,
0.02596520632505417,
0.02725978195667267,
0.07647000998258591,
-0.11061029881238937,
-0.02564031444489956,
0.050603508949279785,
0.05673893913626671,
0.14518749713897705,
-0.037489622831344604,
-0.11416731029748917,
0.01607704721391201,
-0.13844943046569824,
-0.04408399760723114,
0.14118681848049164,
0.020409556105732918,
-0.029450347647070885,
-0.04557378962635994,
-0.05953103303909302,
-0.14871978759765625,
-0.039749789983034134,
-0.012733244337141514,
0.039304085075855255,
-0.03282793611288071,
-0.06931790709495544,
-0.017200710251927376,
-0.11572305113077164,
-0.07582908868789673,
-0.06500343233346939,
0.14751191437244415,
0.04274198040366173,
0.015538659878075123,
-0.04177263006567955,
0.11834687739610672,
0.025163205340504646,
-0.13444772362709045,
0.03216325864195824,
0.034481778740882874,
0.014558789320290089,
-0.03322060406208038,
-0.07379523664712906,
-0.07060708850622177,
0.00981162954121828,
0.11701870709657669,
-0.056703731417655945,
0.04234296455979347,
0.02728908509016037,
0.04845248535275459,
-0.11214128881692886,
0.18651509284973145,
-0.0226623322814703,
-0.022960776463150978,
0.011200609616935253,
0.05177135393023491,
0.0043723429553210735,
-0.004031412769109011,
-0.11254022270441055,
0.0010638745734468102,
0.10898896306753159,
0.020556073635816574,
-0.05492742732167244,
0.06398450583219528,
-0.050724904984235764,
-0.0203257966786623,
0.0020323835778981447,
-0.09794995933771133,
0.026906901970505714,
-0.005342478398233652,
-0.08121351152658463,
-0.012212968431413174,
0.03356986120343208,
0.013055977411568165,
-0.03004760853946209,
0.10643672943115234,
-0.0777391716837883,
0.03781662508845329,
-0.1078505590558052,
-0.10044658184051514,
0.01290277298539877,
-0.06223292276263237,
0.025838183239102364,
-0.09988772869110107,
-0.18024195730686188,
-0.014951474964618683,
0.06102011725306511,
-0.02515418268740177,
-0.05789129063487053,
-0.044284794479608536,
-0.07430658489465714,
0.007925746962428093,
-0.024977615103125572,
0.17069382965564728,
-0.05291023477911949,
0.12187007069587708,
0.0488232783973217,
0.06409280002117157,
-0.0450281947851181,
0.0640673115849495,
-0.10459116101264954,
-0.00302884541451931,
-0.18137244880199432,
0.039673805236816406,
-0.044889163225889206,
0.07248682528734207,
-0.08589089661836624,
-0.10259440541267395,
-0.004440164193511009,
-0.000943595718126744,
0.0773705318570137,
0.09662726521492004,
-0.15900897979736328,
-0.08135459572076797,
0.16613711416721344,
-0.0666937455534935,
-0.11857736110687256,
0.11396803706884384,
-0.052247848361730576,
0.06785274296998978,
0.07658566534519196,
0.16420088708400726,
0.068968765437603,
-0.07426534593105316,
0.03692431002855301,
0.003643645904958248,
0.04948638007044792,
-0.08009595423936844,
0.05990099906921387,
-0.000998500850982964,
-0.007208772003650665,
0.040117695927619934,
-0.031496964395046234,
0.07658350467681885,
-0.09804552048444748,
-0.09275359660387039,
-0.04675520956516266,
-0.10179228335618973,
0.04772165045142174,
0.07326983660459518,
0.09409645199775696,
-0.09368730336427689,
-0.07413061708211899,
0.06466298550367355,
0.07883024960756302,
-0.06323296576738358,
0.03356838598847389,
-0.043674301356077194,
0.06201745942234993,
-0.04557868465781212,
-0.013392872177064419,
-0.19420908391475677,
0.0009107409860007465,
0.01129455491900444,
-0.009035025723278522,
0.023228159174323082,
0.02212325483560562,
0.08119871467351913,
0.05849175527691841,
-0.05430985987186432,
-0.025150852277874947,
-0.03185654059052467,
-0.014744161628186703,
-0.14029310643672943,
-0.1856706291437149,
-0.025414498522877693,
-0.019892515614628792,
0.11608225107192993,
-0.18761543929576874,
0.03640909865498543,
-0.035449493676424026,
0.07167360931634903,
-0.001690438948571682,
-0.00999989453703165,
-0.04925215616822243,
0.08366144448518753,
-0.03090641461312771,
-0.04315483197569847,
0.07836923748254776,
0.00868277158588171,
-0.08098294585943222,
-0.02324819751083851,
-0.0973440632224083,
0.17584985494613647,
0.1433589607477188,
-0.12960630655288696,
-0.07050821930170059,
-0.0014711864059790969,
-0.06645538657903671,
-0.03742601349949837,
-0.03371792286634445,
0.02913418971002102,
0.17547786235809326,
-0.009835049510002136,
0.15558762848377228,
-0.07074644416570663,
-0.055440377444028854,
0.01896504871547222,
-0.03365260735154152,
0.04225778207182884,
0.11700867861509323,
0.10003397613763809,
-0.05436241254210472,
0.14335881173610687,
0.16543306410312653,
-0.09904707223176956,
0.13274165987968445,
-0.04555077850818634,
-0.07975683361291885,
-0.008765176869928837,
-0.00929168239235878,
-0.004747317172586918,
0.09190613031387329,
-0.14162059128284454,
-0.0011211540549993515,
0.02626536786556244,
0.018630947917699814,
0.03393831476569176,
-0.23453819751739502,
-0.03653630241751671,
0.025655539706349373,
-0.04345174506306648,
0.008767688646912575,
-0.015252350829541683,
0.00799503829330206,
0.10511975735425949,
-0.006705820560455322,
-0.07601390033960342,
0.04106918349862099,
0.007839386351406574,
-0.07670741528272629,
0.21677237749099731,
-0.0830497220158577,
-0.1606929749250412,
-0.12741069495677948,
-0.06887020170688629,
-0.033391889184713364,
0.006053712218999863,
0.07061973214149475,
-0.08876986056566238,
-0.02547757513821125,
-0.05012824013829231,
0.03705309331417084,
-0.004611877258867025,
0.03203683719038963,
0.006717916112393141,
0.0005652583204209805,
0.0728246346116066,
-0.11722085624933243,
-0.005837880540639162,
-0.0487360954284668,
-0.071216881275177,
0.04940488934516907,
0.0417015440762043,
0.1124170646071434,
0.1474856734275818,
-0.014907740987837315,
0.006684283260256052,
-0.026605738326907158,
0.22266626358032227,
-0.06898241490125656,
-0.03288593888282776,
0.14431370794773102,
0.002051922492682934,
0.05492888391017914,
0.0874474048614502,
0.06949183344841003,
-0.08745697885751724,
0.009233840741217136,
0.0210505872964859,
-0.03490836173295975,
-0.2283245176076889,
-0.04280785843729973,
-0.06032869592308998,
-0.021220194175839424,
0.09605634212493896,
0.02837696671485901,
0.056380342692136765,
0.0683990940451622,
0.034849442541599274,
0.08801975101232529,
-0.038088832050561905,
0.05315979942679405,
0.11633157730102539,
0.039716873317956924,
0.12670062482357025,
-0.049335721880197525,
-0.06696601212024689,
0.031479205936193466,
-0.004872375167906284,
0.2226269394159317,
0.0012164535000920296,
0.13125638663768768,
0.06328750401735306,
0.18998636305332184,
-0.005389862228184938,
0.09369605034589767,
-0.007564839441329241,
-0.04655561223626137,
-0.010930328629910946,
-0.0443732924759388,
-0.04336230084300041,
0.012379092164337635,
-0.06920691579580307,
0.057845234870910645,
-0.11079248785972595,
-0.036168016493320465,
0.051398929208517075,
0.25065407156944275,
0.016224240884184837,
-0.3198738992214203,
-0.08361449837684631,
-0.003647726261988282,
-0.0396096296608448,
-0.020614931359887123,
0.019872363656759262,
0.08812323957681656,
-0.10156217962503433,
0.0189904123544693,
-0.07484887540340424,
0.09916915744543076,
-0.026864461600780487,
0.04812903702259064,
0.06055716052651405,
0.08894471079111099,
0.018152931705117226,
0.08595912903547287,
-0.347586065530777,
0.27393174171447754,
-0.000057934590586228296,
0.07946980744600296,
-0.08359824866056442,
0.0031902517657727003,
0.029142020270228386,
0.037722449749708176,
0.05553470179438591,
-0.016908302903175354,
-0.00900556892156601,
-0.1870761662721634,
-0.05572478473186493,
0.0336889922618866,
0.08796530961990356,
-0.028825491666793823,
0.08949261158704758,
-0.029566898941993713,
0.009999924339354038,
0.07418189197778702,
-0.01617775298655033,
-0.05851459130644798,
-0.09613250941038132,
-0.009760799817740917,
0.019740788266062737,
-0.03873908892273903,
-0.06759396195411682,
-0.11017102748155594,
-0.10914116352796555,
0.1424170285463333,
-0.005214401986449957,
-0.032951515167951584,
-0.11268585920333862,
0.08178355544805527,
0.0855136588215828,
-0.08598798513412476,
0.04745878279209137,
0.005776102188974619,
0.05276187136769295,
0.024251708760857582,
-0.07904080301523209,
0.09927942603826523,
-0.07181145995855331,
-0.15224522352218628,
-0.05121452733874321,
0.11218711733818054,
0.030571334064006805,
0.06437425315380096,
-0.012354172766208649,
0.009107311256229877,
-0.054533448070287704,
-0.09111195057630539,
0.012455039657652378,
-0.024920249357819557,
0.07307613641023636,
0.0076554324477910995,
-0.057712823152542114,
0.015872156247496605,
-0.060227204114198685,
-0.044756073504686356,
0.18746739625930786,
0.22370357811450958,
-0.09213026612997055,
0.02989620715379715,
0.05107630789279938,
-0.07001287490129471,
-0.19786180555820465,
0.025789162144064903,
0.06521806865930557,
0.005103063303977251,
0.04591362178325653,
-0.17916333675384521,
0.12169834226369858,
0.09313449263572693,
-0.016007529571652412,
0.10850363224744797,
-0.34906139969825745,
-0.12572769820690155,
0.12463881820440292,
0.15483258664608002,
0.12734487652778625,
-0.15588292479515076,
-0.027424106374382973,
-0.020850175991654396,
-0.1341770440340042,
0.09643661975860596,
-0.08724647015333176,
0.12514880299568176,
-0.03948928043246269,
0.0944608747959137,
0.0031581406947225332,
-0.06563294678926468,
0.1145046055316925,
0.008676852099597454,
0.0916365459561348,
-0.05995899438858032,
-0.0033436098601669073,
0.046873047947883606,
-0.030606744810938835,
0.02012759819626808,
-0.09313084930181503,
0.030564000830054283,
-0.09284233301877975,
-0.019916517660021782,
-0.09137421101331711,
0.046733152121305466,
-0.035129379481077194,
-0.05716590955853462,
-0.02314000576734543,
0.00987315271049738,
0.03820664808154106,
-0.014648390002548695,
0.11576022952795029,
0.02846127189695835,
0.15859322249889374,
0.12699446082115173,
0.05492302402853966,
-0.05769867077469826,
-0.07564441114664078,
-0.02527470700442791,
-0.015532799996435642,
0.05862926319241524,
-0.14015449583530426,
0.020288845524191856,
0.13991640508174896,
0.021178215742111206,
0.12891177833080292,
0.0812152549624443,
-0.029578646644949913,
0.008602566085755825,
0.0662405863404274,
-0.16687865555286407,
-0.07950899749994278,
-0.01146168727427721,
-0.0509449727833271,
-0.1009911373257637,
0.04928696155548096,
0.08513659238815308,
-0.07439819723367691,
-0.013702611438930035,
-0.013561614789068699,
-0.00206387578509748,
-0.07157225161790848,
0.2180536836385727,
0.053585708141326904,
0.04872468113899231,
-0.10530634969472885,
0.07355222851037979,
0.04985765740275383,
-0.07298275083303452,
-0.0033786811400204897,
0.08776038140058517,
-0.07659215480089188,
-0.04567509517073631,
0.11633376032114029,
0.17301799356937408,
-0.0657743290066719,
-0.04195382073521614,
-0.13961820304393768,
-0.12031242996454239,
0.07998999208211899,
0.14458157122135162,
0.11276426911354065,
0.01660333387553692,
-0.06081962585449219,
0.019786855205893517,
-0.11870891600847244,
0.08232510834932327,
0.04518619552254677,
0.06665661185979843,
-0.12198713421821594,
0.17441874742507935,
0.019030621275305748,
0.0460679829120636,
-0.024922490119934082,
0.026296405121684074,
-0.09465456008911133,
0.022382639348506927,
-0.12670303881168365,
-0.03907480835914612,
-0.014520533382892609,
-0.005857184063643217,
-0.012373417615890503,
-0.0606040321290493,
-0.049996018409729004,
0.022237585857510567,
-0.12485108524560928,
-0.02564859576523304,
0.023622823879122734,
0.05090321600437164,
-0.11848253011703491,
-0.03774642571806908,
0.026614321395754814,
-0.059162795543670654,
0.0560806579887867,
0.06681163609027863,
0.012929623015224934,
0.07029221951961517,
-0.1429748237133026,
-0.0010191655019298196,
0.06833810359239578,
0.01096645649522543,
0.058343078941106796,
-0.07473479956388474,
-0.013863571919500828,
0.013049916364252567,
0.07496382296085358,
0.015452343970537186,
0.07284417748451233,
-0.15048615634441376,
-0.008658834733068943,
-0.032672375440597534,
-0.08920452743768692,
-0.06873137503862381,
0.025820009410381317,
0.07485596090555191,
0.015538414008915424,
0.1890598088502884,
-0.0757291316986084,
0.04508892819285393,
-0.21796207129955292,
0.002976407529786229,
-0.019943688064813614,
-0.11659606546163559,
-0.13095739483833313,
-0.06925114244222641,
0.06203151121735573,
-0.043754685670137405,
0.13399270176887512,
0.02248399890959263,
0.04714624583721161,
0.024516388773918152,
-0.013258055783808231,
0.014720477163791656,
0.014944593422114849,
0.22229771316051483,
0.032050300389528275,
-0.027487149462103844,
0.06037457287311554,
0.06527522951364517,
0.0903259888291359,
0.10712426900863647,
0.18859845399856567,
0.1624830812215805,
-0.006480528507381678,
0.09599379450082779,
0.025352878496050835,
-0.04589421674609184,
-0.16108062863349915,
0.025219639763236046,
-0.04131776839494705,
0.09726154804229736,
-0.0325457863509655,
0.23624686896800995,
0.07222367078065872,
-0.1675831526517868,
0.05590105429291725,
-0.0472712367773056,
-0.08202891796827316,
-0.09745272248983383,
-0.04320730268955231,
-0.07372520118951797,
-0.14913944900035858,
-0.0014346130192279816,
-0.10293123871088028,
0.029302475973963737,
0.11025622487068176,
0.007705753203481436,
-0.03112109936773777,
0.17325496673583984,
0.054688919335603714,
0.0097682885825634,
0.05206291377544403,
-0.002582538640126586,
-0.02046336978673935,
-0.11183855682611465,
-0.06251601874828339,
-0.021684741601347923,
-0.006364308763295412,
0.04062692075967789,
-0.05589218810200691,
-0.08137258142232895,
0.03529985621571541,
-0.02829027734696865,
-0.09699498862028122,
0.01874108426272869,
0.0187386367470026,
0.07788973301649094,
0.05757678672671318,
0.003919098526239395,
0.014150836504995823,
-0.015979040414094925,
0.23511116206645966,
-0.08076595515012741,
-0.09410621970891953,
-0.08125800639390945,
0.25878003239631653,
0.04514886438846588,
-0.015033948235213757,
0.028860723599791527,
-0.05020494386553764,
-0.005005726590752602,
0.27248308062553406,
0.1913786083459854,
-0.08864960074424744,
-0.014849413186311722,
0.011706545017659664,
-0.010735340416431427,
-0.021257802844047546,
0.12521931529045105,
0.1470494121313095,
0.06772951036691666,
-0.10563436150550842,
-0.027413738891482353,
-0.05357613041996956,
-0.016990261152386665,
-0.0495612658560276,
0.06636209785938263,
0.03037142939865589,
-0.004515294451266527,
-0.033936794847249985,
0.054738741368055344,
-0.056233134120702744,
-0.0908743366599083,
0.039365578442811966,
-0.19890980422496796,
-0.15557332336902618,
-0.017634602263569832,
0.13250763714313507,
-0.0015506260097026825,
0.060241904109716415,
-0.022663159295916557,
0.01443131547421217,
0.06906124204397202,
-0.02905782125890255,
-0.08629494160413742,
-0.08319433033466339,
0.09996018558740616,
-0.1288415789604187,
0.18710772693157196,
-0.04272356629371643,
0.06946506351232529,
0.11866653710603714,
0.06749028712511063,
-0.07690203934907913,
0.06250306963920593,
0.033889658749103546,
-0.08229121565818787,
0.03588223457336426,
0.09600213915109634,
-0.024055542424321175,
0.035097282379865646,
0.030404524877667427,
-0.11904678493738174,
0.026644354686141014,
-0.059823885560035706,
-0.042674362659454346,
-0.0333922915160656,
-0.05178151652216911,
-0.05304114893078804,
0.12236665934324265,
0.21171289682388306,
-0.02933213673532009,
0.008837864734232426,
-0.08264212310314178,
0.013061609119176865,
0.0566638708114624,
0.03381446376442909,
-0.07414760440587997,
-0.2344362735748291,
-0.0017469056183472276,
0.06700436025857925,
-0.02922072820365429,
-0.23712043464183807,
-0.09516587853431702,
-0.0004621603002306074,
-0.07788225263357162,
-0.1026947870850563,
0.0785866528749466,
0.0794520378112793,
0.048295557498931885,
-0.04713420569896698,
-0.09541749209165573,
-0.08419068902730942,
0.15661120414733887,
-0.15641868114471436,
-0.08811187744140625
] |
null | null |
transformers
|
## HeBERT: Pre-trained BERT for Polarity Analysis and Emotion Recognition
HeBERT is a Hebrew pretrained language model. It is based on Google's BERT architecture and it is BERT-Base config [(Devlin et al. 2018)](https://arxiv.org/abs/1810.04805). <br>
### HeBert was trained on three dataset:
1. A Hebrew version of OSCAR [(Ortiz, 2019)](https://oscar-corpus.com/): ~9.8 GB of data, including 1 billion words and over 20.8 millions sentences.
2. A Hebrew dump of [Wikipedia](https://dumps.wikimedia.org/hewiki/latest/): ~650 MB of data, including over 63 millions words and 3.8 millions sentences
3. Emotion UGC data that was collected for the purpose of this study. (described below)
We evaluated the model on emotion recognition and sentiment analysis, for a downstream tasks.
### Emotion UGC Data Description
Our User Genrated Content (UGC) is comments written on articles collected from 3 major news sites, between January 2020 to August 2020,. Total data size ~150 MB of data, including over 7 millions words and 350K sentences.
4000 sentences annotated by crowd members (3-10 annotators per sentence) for 8 emotions (anger, disgust, expectation , fear, happy, sadness, surprise and trust) and overall sentiment / polarity<br>
In order to valid the annotation, we search an agreement between raters to emotion in each sentence using krippendorff's alpha [(krippendorff, 1970)](https://journals.sagepub.com/doi/pdf/10.1177/001316447003000105). We left sentences that got alpha > 0.7. Note that while we found a general agreement between raters about emotion like happy, trust and disgust, there are few emotion with general disagreement about them, apparently given the complexity of finding them in the text (e.g. expectation and surprise).
## How to use
### For masked-LM model (can be fine-tunned to any down-stream task)
```
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("avichr/heBERT")
model = AutoModel.from_pretrained("avichr/heBERT")
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model="avichr/heBERT",
tokenizer="avichr/heBERT"
)
fill_mask("ืืงืืจืื ื ืืงืื ืืช [MASK] ืืื ื ืื ื ืฉืืจ ืืืจ.")
```
### For sentiment classification model (polarity ONLY):
```
from transformers import AutoTokenizer, AutoModel, pipeline
tokenizer = AutoTokenizer.from_pretrained("avichr/heBERT_sentiment_analysis") #same as 'avichr/heBERT' tokenizer
model = AutoModel.from_pretrained("avichr/heBERT_sentiment_analysis")
# how to use?
sentiment_analysis = pipeline(
"sentiment-analysis",
model="avichr/heBERT_sentiment_analysis",
tokenizer="avichr/heBERT_sentiment_analysis",
return_all_scores = True
)
>>> sentiment_analysis('ืื ื ืืชืืื ืื ืืืืื ืืืจืืืช ืฆืืจืืื')
[[{'label': 'natural', 'score': 0.9978172183036804},
{'label': 'positive', 'score': 0.0014792329166084528},
{'label': 'negative', 'score': 0.0007035882445052266}]]
>>> sentiment_analysis('ืงืคื ืื ืืขืื')
[[{'label': 'natural', 'score': 0.00047328314394690096},
{'label': 'possitive', 'score': 0.9994067549705505},
{'label': 'negetive', 'score': 0.00011996887042187154}]]
>>> sentiment_analysis('ืื ื ืื ืืืื ืืช ืืขืืื')
[[{'label': 'natural', 'score': 9.214012970915064e-05},
{'label': 'possitive', 'score': 8.876807987689972e-05},
{'label': 'negetive', 'score': 0.9998190999031067}]]
```
Our model is also available on AWS! for more information visit [AWS' git](https://github.com/aws-samples/aws-lambda-docker-serverless-inference/tree/main/hebert-sentiment-analysis-inference-docker-lambda)
### For NER model:
```
from transformers import pipeline
# how to use?
NER = pipeline(
"token-classification",
model="avichr/heBERT_NER",
tokenizer="avichr/heBERT_NER",
)
NER('ืืืื ืืืื ืืืื ืืืจืกืืื ืืขืืจืืช ืฉืืืจืืฉืืื')
```
## Stay tuned!
We are still working on our model and will edit this page as we progress.<br>
Note that we have released only sentiment analysis (polarity) at this point, emotion detection will be released later on.<br>
our git: https://github.com/avichaychriqui/HeBERT
## If you use this model please cite us as :
Chriqui, A., & Yahav, I. (2022). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. INFORMS Journal on Data Science, forthcoming.
```
@article{chriqui2021hebert,
title={HeBERT \& HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition},
author={Chriqui, Avihay and Yahav, Inbal},
journal={INFORMS Journal on Data Science},
year={2022}
}
```
|
{}
|
fill-mask
|
avichr/heBERT
|
[
"transformers",
"pytorch",
"jax",
"bert",
"fill-mask",
"arxiv:1810.04805",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1810.04805"
] |
[] |
TAGS
#transformers #pytorch #jax #bert #fill-mask #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
## HeBERT: Pre-trained BERT for Polarity Analysis and Emotion Recognition
HeBERT is a Hebrew pretrained language model. It is based on Google's BERT architecture and it is BERT-Base config (Devlin et al. 2018). <br>
### HeBert was trained on three dataset:
1. A Hebrew version of OSCAR (Ortiz, 2019): ~9.8 GB of data, including 1 billion words and over 20.8 millions sentences.
2. A Hebrew dump of Wikipedia: ~650 MB of data, including over 63 millions words and 3.8 millions sentences
3. Emotion UGC data that was collected for the purpose of this study. (described below)
We evaluated the model on emotion recognition and sentiment analysis, for a downstream tasks.
### Emotion UGC Data Description
Our User Genrated Content (UGC) is comments written on articles collected from 3 major news sites, between January 2020 to August 2020,. Total data size ~150 MB of data, including over 7 millions words and 350K sentences.
4000 sentences annotated by crowd members (3-10 annotators per sentence) for 8 emotions (anger, disgust, expectation , fear, happy, sadness, surprise and trust) and overall sentiment / polarity<br>
In order to valid the annotation, we search an agreement between raters to emotion in each sentence using krippendorff's alpha (krippendorff, 1970). We left sentences that got alpha > 0.7. Note that while we found a general agreement between raters about emotion like happy, trust and disgust, there are few emotion with general disagreement about them, apparently given the complexity of finding them in the text (e.g. expectation and surprise).
## How to use
### For masked-LM model (can be fine-tunned to any down-stream task)
### For sentiment classification model (polarity ONLY):
Our model is also available on AWS! for more information visit AWS' git
### For NER model:
## Stay tuned!
We are still working on our model and will edit this page as we progress.<br>
Note that we have released only sentiment analysis (polarity) at this point, emotion detection will be released later on.<br>
our git: URL
## If you use this model please cite us as :
Chriqui, A., & Yahav, I. (2022). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. INFORMS Journal on Data Science, forthcoming.
|
[
"## HeBERT: Pre-trained BERT for Polarity Analysis and Emotion Recognition\nHeBERT is a Hebrew pretrained language model. It is based on Google's BERT architecture and it is BERT-Base config (Devlin et al. 2018). <br>",
"### HeBert was trained on three dataset: \n1. A Hebrew version of OSCAR (Ortiz, 2019): ~9.8 GB of data, including 1 billion words and over 20.8 millions sentences. \n2. A Hebrew dump of Wikipedia: ~650 MB of data, including over 63 millions words and 3.8 millions sentences\n3. Emotion UGC data that was collected for the purpose of this study. (described below)\nWe evaluated the model on emotion recognition and sentiment analysis, for a downstream tasks.",
"### Emotion UGC Data Description\nOur User Genrated Content (UGC) is comments written on articles collected from 3 major news sites, between January 2020 to August 2020,. Total data size ~150 MB of data, including over 7 millions words and 350K sentences.\n4000 sentences annotated by crowd members (3-10 annotators per sentence) for 8 emotions (anger, disgust, expectation , fear, happy, sadness, surprise and trust) and overall sentiment / polarity<br>\nIn order to valid the annotation, we search an agreement between raters to emotion in each sentence using krippendorff's alpha (krippendorff, 1970). We left sentences that got alpha > 0.7. Note that while we found a general agreement between raters about emotion like happy, trust and disgust, there are few emotion with general disagreement about them, apparently given the complexity of finding them in the text (e.g. expectation and surprise).",
"## How to use",
"### For masked-LM model (can be fine-tunned to any down-stream task)",
"### For sentiment classification model (polarity ONLY):\n\nOur model is also available on AWS! for more information visit AWS' git",
"### For NER model:",
"## Stay tuned!\nWe are still working on our model and will edit this page as we progress.<br>\nNote that we have released only sentiment analysis (polarity) at this point, emotion detection will be released later on.<br>\nour git: URL",
"## If you use this model please cite us as :\nChriqui, A., & Yahav, I. (2022). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. INFORMS Journal on Data Science, forthcoming."
] |
[
"TAGS\n#transformers #pytorch #jax #bert #fill-mask #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"## HeBERT: Pre-trained BERT for Polarity Analysis and Emotion Recognition\nHeBERT is a Hebrew pretrained language model. It is based on Google's BERT architecture and it is BERT-Base config (Devlin et al. 2018). <br>",
"### HeBert was trained on three dataset: \n1. A Hebrew version of OSCAR (Ortiz, 2019): ~9.8 GB of data, including 1 billion words and over 20.8 millions sentences. \n2. A Hebrew dump of Wikipedia: ~650 MB of data, including over 63 millions words and 3.8 millions sentences\n3. Emotion UGC data that was collected for the purpose of this study. (described below)\nWe evaluated the model on emotion recognition and sentiment analysis, for a downstream tasks.",
"### Emotion UGC Data Description\nOur User Genrated Content (UGC) is comments written on articles collected from 3 major news sites, between January 2020 to August 2020,. Total data size ~150 MB of data, including over 7 millions words and 350K sentences.\n4000 sentences annotated by crowd members (3-10 annotators per sentence) for 8 emotions (anger, disgust, expectation , fear, happy, sadness, surprise and trust) and overall sentiment / polarity<br>\nIn order to valid the annotation, we search an agreement between raters to emotion in each sentence using krippendorff's alpha (krippendorff, 1970). We left sentences that got alpha > 0.7. Note that while we found a general agreement between raters about emotion like happy, trust and disgust, there are few emotion with general disagreement about them, apparently given the complexity of finding them in the text (e.g. expectation and surprise).",
"## How to use",
"### For masked-LM model (can be fine-tunned to any down-stream task)",
"### For sentiment classification model (polarity ONLY):\n\nOur model is also available on AWS! for more information visit AWS' git",
"### For NER model:",
"## Stay tuned!\nWe are still working on our model and will edit this page as we progress.<br>\nNote that we have released only sentiment analysis (polarity) at this point, emotion detection will be released later on.<br>\nour git: URL",
"## If you use this model please cite us as :\nChriqui, A., & Yahav, I. (2022). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. INFORMS Journal on Data Science, forthcoming."
] |
[
52,
67,
116,
213,
4,
22,
31,
7,
55,
69
] |
[
"passage: TAGS\n#transformers #pytorch #jax #bert #fill-mask #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #has_space #region-us \n## HeBERT: Pre-trained BERT for Polarity Analysis and Emotion Recognition\nHeBERT is a Hebrew pretrained language model. It is based on Google's BERT architecture and it is BERT-Base config (Devlin et al. 2018). <br>### HeBert was trained on three dataset: \n1. A Hebrew version of OSCAR (Ortiz, 2019): ~9.8 GB of data, including 1 billion words and over 20.8 millions sentences. \n2. A Hebrew dump of Wikipedia: ~650 MB of data, including over 63 millions words and 3.8 millions sentences\n3. Emotion UGC data that was collected for the purpose of this study. (described below)\nWe evaluated the model on emotion recognition and sentiment analysis, for a downstream tasks.### Emotion UGC Data Description\nOur User Genrated Content (UGC) is comments written on articles collected from 3 major news sites, between January 2020 to August 2020,. Total data size ~150 MB of data, including over 7 millions words and 350K sentences.\n4000 sentences annotated by crowd members (3-10 annotators per sentence) for 8 emotions (anger, disgust, expectation , fear, happy, sadness, surprise and trust) and overall sentiment / polarity<br>\nIn order to valid the annotation, we search an agreement between raters to emotion in each sentence using krippendorff's alpha (krippendorff, 1970). We left sentences that got alpha > 0.7. Note that while we found a general agreement between raters about emotion like happy, trust and disgust, there are few emotion with general disagreement about them, apparently given the complexity of finding them in the text (e.g. expectation and surprise).## How to use### For masked-LM model (can be fine-tunned to any down-stream task)### For sentiment classification model (polarity ONLY):\n\nOur model is also available on AWS! for more information visit AWS' git"
] |
[
-0.06026020646095276,
0.1201443299651146,
-0.0039641521871089935,
-0.0044306437484920025,
0.06096627935767174,
0.01390756107866764,
0.021260105073451996,
0.07871075719594955,
0.10497167706489563,
0.11365962773561478,
-0.0009701492381282151,
-0.07749218493700027,
0.09706559032201767,
0.05340947210788727,
-0.030471021309494972,
-0.2749778926372528,
-0.009908441454172134,
-0.09270169585943222,
0.0817730650305748,
0.10612460970878601,
0.11346513777971268,
-0.0507139153778553,
0.07708358019590378,
-0.025463515892624855,
-0.026450447738170624,
-0.00040168018313124776,
-0.07609039545059204,
-0.0017259003361687064,
0.0646432563662529,
0.04022780433297157,
-0.006685374304652214,
0.02981971763074398,
-0.00029806987731717527,
-0.21110114455223083,
0.013413747772574425,
0.037554021924734116,
0.04417882487177849,
0.03912821784615517,
0.05255674943327904,
-0.0551627054810524,
0.2957784831523895,
-0.16415752470493317,
0.022121937945485115,
0.0815686583518982,
-0.08930352330207825,
-0.16713199019432068,
-0.11466088145971298,
0.036354124546051025,
0.12084400653839111,
0.006652322132140398,
-0.09611966460943222,
0.0930374339222908,
-0.051030125468969345,
0.05879274755716324,
0.15389062464237213,
-0.11575274914503098,
-0.027973992750048637,
0.0023646256886422634,
-0.04427652060985565,
0.031662214547395706,
-0.1431131511926651,
0.007296768948435783,
0.045914147049188614,
0.008256264962255955,
0.009197106584906578,
-0.01625961624085903,
0.1477494090795517,
-0.03117469698190689,
-0.11596943438053131,
-0.00756909791380167,
0.0925411805510521,
0.1311163306236267,
-0.10152643173933029,
-0.18409310281276703,
-0.009375534951686859,
-0.0749899297952652,
-0.02436382696032524,
-0.015533062629401684,
0.01955501362681389,
-0.03613147884607315,
0.03337705135345459,
0.04942915216088295,
-0.11561655253171921,
0.0587196908891201,
-0.034992069005966187,
0.1866840124130249,
-0.012247767299413681,
0.05716013163328171,
0.07473576813936234,
-0.00944684911519289,
-0.11898622661828995,
-0.12328502535820007,
-0.030972100794315338,
-0.0489952489733696,
-0.12606382369995117,
-0.060528714209795,
-0.09130574762821198,
-0.09144467115402222,
-0.004459464456886053,
0.05643801391124725,
-0.09456562250852585,
0.008746391162276268,
0.04256785660982132,
-0.017890198156237602,
0.22587628662586212,
0.2221907377243042,
-0.06082622706890106,
-0.13954804837703705,
-0.0033493400551378727,
0.005488392896950245,
0.05547149479389191,
0.03984978422522545,
-0.01432428415864706,
0.0664096549153328,
0.014047383330762386,
0.020991990342736244,
-0.04510965570807457,
0.07274496555328369,
-0.08584374189376831,
-0.040724024176597595,
0.08654515445232391,
-0.12362639605998993,
0.028549419716000557,
0.07975197583436966,
-0.07299221307039261,
0.1658850908279419,
-0.06967397779226303,
-0.030606206506490707,
-0.011914758011698723,
0.08317311108112335,
-0.03627122566103935,
-0.0365975946187973,
-0.07319934666156769,
-0.12851481139659882,
0.08115975558757782,
0.0004047654801979661,
-0.004331882577389479,
-0.11255231499671936,
-0.14780786633491516,
-0.07808046042919159,
-0.00477815605700016,
-0.11092859506607056,
-0.029415542259812355,
-0.04256412386894226,
-0.0017555155791342258,
-0.032637156546115875,
0.013619315810501575,
0.025380974635481834,
-0.006753925699740648,
0.05099418759346008,
-0.016407672315835953,
0.12630517780780792,
0.04938087239861488,
-0.0062635550275444984,
-0.1667947918176651,
-0.03732558339834213,
-0.1434890627861023,
0.11330780386924744,
-0.12346195429563522,
0.08980796486139297,
-0.10535724461078644,
-0.059679362922906876,
0.05191296339035034,
0.005632107611745596,
0.0006999255856499076,
0.18168677389621735,
-0.23076856136322021,
-0.09988625347614288,
0.04316386580467224,
-0.09916522353887558,
0.01047021709382534,
0.1988830715417862,
0.0132819302380085,
0.04052186384797096,
0.14627376198768616,
0.12401523441076279,
-0.12622490525245667,
-0.02136601135134697,
-0.12440265715122223,
-0.015511778183281422,
-0.008848678320646286,
0.16926172375679016,
0.07013862580060959,
0.04149985685944557,
0.049357250332832336,
0.05364275723695755,
0.039377640932798386,
0.02983926422894001,
-0.025102177634835243,
-0.06999913603067398,
0.05358109623193741,
-0.04332515224814415,
0.033701010048389435,
0.031931813806295395,
-0.06469514966011047,
-0.0977603942155838,
-0.17092466354370117,
-0.1339581459760666,
0.11679250746965408,
-0.02174307405948639,
0.022655988112092018,
-0.07348928600549698,
0.061927661299705505,
0.012765533290803432,
0.047264352440834045,
-0.110360287129879,
0.046002741903066635,
0.04235585033893585,
-0.08284952491521835,
0.041628140956163406,
0.06310511380434036,
0.056139156222343445,
-0.029859621077775955,
-0.043940313160419464,
0.009314822033047676,
-0.027571169659495354,
0.015303267166018486,
-0.051875848323106766,
-0.17692716419696808,
0.007014563772827387,
-0.081199049949646,
0.12366338074207306,
-0.06998752802610397,
-0.028099102899432182,
0.16102547943592072,
0.0911397710442543,
0.0317244827747345,
-0.05470777302980423,
0.012509762309491634,
0.021740686148405075,
-0.0034395488910377026,
-0.04578588157892227,
0.008091982454061508,
0.0230519138276577,
-0.08044978976249695,
0.0544382743537426,
-0.03988393396139145,
-0.2197062373161316,
0.06538090854883194,
0.058361273258924484,
-0.10554336756467819,
0.05077384039759636,
-0.07408763468265533,
0.03236795589327812,
-0.02138676308095455,
-0.051958926022052765,
0.08833388239145279,
0.08690527081489563,
0.026644591242074966,
-0.043103545904159546,
-0.026593994349241257,
0.01660720817744732,
-0.053143955767154694,
-0.046486400067806244,
0.11346008628606796,
-0.0602555014193058,
-0.1601872444152832,
0.07412320375442505,
0.09665990620851517,
-0.0301920585334301,
0.11873703449964523,
-0.01057387888431549,
-0.09112448990345001,
-0.054573625326156616,
-0.027976224198937416,
-0.05666923522949219,
0.08613001555204391,
-0.06466745585203171,
0.0029258416034281254,
0.029846278950572014,
-0.0613439567387104,
-0.002118699485436082,
0.008540622889995575,
0.08591717481613159,
0.05391386151313782,
0.048838045448064804,
0.0036211679689586163,
0.02045500837266445,
0.00011038827506126836,
0.10156312584877014,
0.035910941660404205,
-0.0035042683593928814,
-0.06238050013780594,
-0.038324009627103806,
-0.08287002891302109,
0.15654943883419037,
-0.0643162801861763,
-0.26495835185050964,
0.00037155108293518424,
0.013212575577199459,
-0.09110095351934433,
-0.0005954339285381138,
0.005222198087722063,
-0.19527468085289001,
-0.1221209317445755,
-0.060278721153736115,
0.15373347699642181,
0.11206626892089844,
0.013634986244142056,
0.029897714033722878,
-0.04329349100589752,
-0.03673330321907997,
-0.07301758974790573,
-0.015225562267005444,
-0.060020770877599716,
-0.0803227499127388,
0.03727353364229202,
0.009091424755752087,
0.0395585373044014,
0.14196506142616272,
0.008198127150535583,
0.00643107108771801,
-0.03659766539931297,
0.17604024708271027,
-0.10534068197011948,
0.0748804584145546,
0.01818319968879223,
-0.0307066198438406,
0.04690432548522949,
0.09173522889614105,
0.02475147508084774,
-0.07485633343458176,
0.0383821465075016,
0.10428985953330994,
-0.021993229165673256,
-0.18263332545757294,
-0.10028976202011108,
-0.01580498181283474,
0.05442139878869057,
-0.007681333459913731,
0.019679170101881027,
-0.019411316141486168,
0.041442517191171646,
-0.06532132625579834,
-0.0733214020729065,
-0.07423390448093414,
0.08912831544876099,
0.03771848976612091,
-0.06955575942993164,
0.01973634772002697,
-0.03416845202445984,
-0.0018617263995110989,
0.1609586924314499,
-0.07955097407102585,
0.17089413106441498,
-0.0203439649194479,
0.1817724108695984,
0.05728282406926155,
-0.032084204256534576,
-0.01073000580072403,
0.021428536623716354,
-0.0837458074092865,
0.008928289636969566,
-0.0572177916765213,
-0.05448201298713684,
-0.06965534389019012,
0.1330622285604477,
0.07759712636470795,
0.05563739687204361,
-0.03272430598735809,
-0.09885992109775543,
0.17106667160987854,
0.2925434410572052,
0.07637125998735428,
-0.09323365986347198,
-0.0741458311676979,
0.06452184915542603,
-0.06484566628932953,
0.00599198741838336,
-0.009928866289556026,
0.015279589220881462,
-0.09337884932756424,
0.0987250953912735,
-0.002456510905176401,
0.059658076614141464,
-0.13438619673252106,
0.026214245706796646,
0.014318863861262798,
0.05167415365576744,
0.0025740929413586855,
0.0714060366153717,
-0.12510882318019867,
0.15273736417293549,
0.011431042104959488,
0.031361840665340424,
-0.09702426940202713,
-0.010817435570061207,
0.0698506236076355,
-0.03571680933237076,
0.10629182308912277,
0.04652681574225426,
0.008511193096637726,
-0.09114609658718109,
-0.06280718743801117,
0.032175976783037186,
0.029499156400561333,
-0.07157263159751892,
0.10003910958766937,
0.05664943903684616,
0.0020961540285497904,
-0.055768322199583054,
0.03013606183230877,
-0.07178741693496704,
-0.1073368638753891,
0.022745460271835327,
-0.04409211874008179,
-0.05115799978375435,
0.0018106505740433931,
-0.0862996056675911,
-0.11671583354473114,
0.22625066339969635,
0.021936584264039993,
-0.09234427660703659,
-0.08991410583257675,
0.11316798627376556,
0.041160665452480316,
-0.06904350221157074,
-0.08078150451183319,
0.04183182865381241,
0.13748587667942047,
-0.04200948774814606,
-0.07873256504535675,
0.037801459431648254,
-0.05376439541578293,
-0.15720711648464203,
-0.017265327274799347,
0.12086239457130432,
0.12542913854122162,
0.048321064561605453,
-0.0017576301470398903,
0.021478137001395226,
-0.017181551083922386,
-0.11811617761850357,
0.06836307793855667,
0.08552829176187515,
-0.04141091927886009,
0.07034095376729965,
0.05196918547153473,
-0.12302803248167038,
-0.1092546358704567,
-0.011791463010013103,
0.028839847072958946,
0.26181429624557495,
-0.03797978162765503,
0.09276416152715683,
0.21865132451057434,
-0.049534380435943604,
-0.17546787858009338,
0.0063369423151016235,
0.07687124609947205,
0.038782376796007156,
0.07665843516588211,
-0.12853151559829712,
0.015247124247252941,
0.02299857698380947,
-0.00620668102055788,
-0.048849813640117645,
-0.05352398008108139,
-0.058935150504112244,
0.17447836697101593,
0.01510275062173605,
0.12461546063423157,
-0.1156514510512352,
-0.024886205792427063,
-0.05130947008728981,
-0.03710004314780235,
0.1050005555152893,
0.026326661929488182,
0.026683581992983818,
-0.0008620137814432383,
0.18684256076812744,
0.08171898871660233,
-0.009984001517295837,
0.14475135505199432,
0.05005515366792679,
0.04215812310576439,
-0.05982107296586037,
-0.007010727655142546,
0.045739103108644485,
-0.03835827484726906,
0.08973192423582077,
-0.048744555562734604,
0.0026347802486270666,
-0.11404845118522644,
-0.053716886788606644,
-0.09360893070697784,
0.050130970776081085,
-0.0436687096953392,
-0.05387665703892708,
-0.10395737737417221,
0.1294950246810913,
0.06957615911960602,
-0.026553452014923096,
-0.06414275616407394,
-0.05868840217590332,
-0.09978804737329483,
0.14790037274360657,
0.11016450822353363,
0.04124341532588005,
-0.04833757132291794,
0.019018208608031273,
-0.017070725560188293,
0.08082139492034912,
-0.16984844207763672,
0.012722894549369812,
0.08436542004346848,
0.022045357152819633,
0.1258527934551239,
-0.04933706670999527,
-0.19720293581485748,
0.015176431275904179,
0.06424839049577713,
-0.09783229231834412,
-0.12637348473072052,
-0.05379128083586693,
-0.024996357038617134,
-0.10545225441455841,
0.001338113914243877,
0.08751271665096283,
-0.020152408629655838,
-0.037340015172958374,
-0.008177807554602623,
0.10974093526601791,
0.02030065283179283,
0.04071639105677605,
-0.05134115740656853,
0.017304250970482826,
-0.10195379704236984,
0.026921965181827545,
0.020035726949572563,
-0.2121720165014267,
0.048763107508420944,
0.09795378148555756,
-0.04883674159646034,
-0.008170942775905132,
-0.023874716833233833,
0.08333418518304825,
-0.036328211426734924,
-0.0004090878355782479,
0.016092222183942795,
-0.13221195340156555,
0.005369189660996199,
0.04766828939318657,
0.07573381066322327,
0.04483771696686745,
-0.05132550373673439,
0.047368429601192474,
-0.05319966375827789,
0.10090239346027374,
0.11430858075618744,
-0.04118974506855011,
-0.00044105894630774856,
-0.10214167833328247,
-0.04031844809651375,
-0.012837233021855354,
-0.011635616421699524,
-0.03961976245045662,
-0.08400564640760422,
-0.05276043713092804,
-0.13114705681800842,
-0.03570660948753357,
-0.0735260546207428,
0.02947629801928997,
0.018853314220905304,
0.002859644126147032,
-0.010261403396725655,
-0.0075139934197068214,
-0.05303984507918358,
-0.003363017225638032,
0.010614112950861454,
0.06767913699150085,
-0.1028667762875557,
-0.03290392830967903,
0.03351150453090668,
-0.08402833342552185,
0.11815238744020462,
0.029919534921646118,
0.01667921431362629,
0.06714165955781937,
-0.061186015605926514,
0.03111589327454567,
0.07923431694507599,
-0.004568576812744141,
0.02361065335571766,
-0.15707829594612122,
0.001272859750315547,
-0.0005228979862295091,
-0.007655217312276363,
-0.01570405438542366,
0.058651212602853775,
-0.05730176344513893,
0.1025347039103508,
0.08059687167406082,
-0.032135259360075,
-0.10234938561916351,
0.01498249638825655,
0.017305469140410423,
0.09770006686449051,
0.1426118016242981,
-0.043389443308115005,
0.015598193742334843,
-0.12394295632839203,
0.005667128134518862,
0.02764200232923031,
0.028023798018693924,
-0.1112435832619667,
0.028838403522968292,
0.06998047232627869,
-0.021671507507562637,
0.13118261098861694,
0.008093979209661484,
-0.02186429128050804,
0.04759058728814125,
0.12170345336198807,
-0.03904670849442482,
-0.001291077584028244,
0.001984890317544341,
-0.009215883910655975,
-0.03721040487289429,
-0.08125319331884384,
-0.013932827860116959,
-0.006240209564566612,
-0.05550120398402214,
0.14149995148181915,
0.0787406638264656,
0.21536237001419067,
0.06152566149830818,
-0.003903432050719857,
0.013535471633076668,
0.03605817258358002,
0.062057975679636,
-0.062109921127557755,
0.06816753000020981,
-0.0219911877065897,
0.17684313654899597,
0.11909738928079605,
-0.08837706595659256,
0.12107820808887482,
-0.060915060341358185,
-0.05126909911632538,
-0.04328162223100662,
-0.22930476069450378,
-0.05513238534331322,
-0.06052601337432861,
0.027963940054178238,
-0.10461045056581497,
0.04285421222448349,
-0.03567369282245636,
0.056131038814783096,
-0.07903265953063965,
-0.024234989657998085,
-0.1337205022573471,
-0.0826602652668953,
0.17213955521583557,
0.014658437110483646,
-0.068018838763237,
0.06333187222480774,
0.052521154284477234,
0.036111414432525635,
0.10837870091199875,
0.08495026081800461,
0.052867595106363297,
-0.01817808859050274,
0.023822281509637833,
-0.07974892854690552,
-0.10950073599815369,
0.0028002785984426737,
-0.0447051078081131,
0.03749304637312889,
0.1457245945930481,
0.004646685440093279,
-0.009301149286329746,
-0.008437160402536392,
0.09599263221025467,
-0.04816270247101784,
0.03340091183781624,
-0.17412586510181427,
0.09860910475254059,
-0.05398990213871002,
0.012460637837648392,
0.04294845834374428,
-0.13432064652442932,
-0.011817905120551586,
0.06588811427354813,
0.0630343034863472,
0.03063763864338398,
-0.026890479028224945,
-0.0726422518491745,
0.021657047793269157,
-0.07312558591365814,
0.024374719709157944,
0.000563427631277591,
0.12513743340969086,
-0.06093524768948555,
0.1476651132106781,
-0.004483562428504229,
-0.08487425744533539,
0.026852071285247803,
0.10977479070425034,
0.05246555432677269,
0.013791847974061966,
-0.11790572106838226,
0.11353053152561188,
-0.029629813507199287,
-0.2710253596305847,
0.04897820204496384,
-0.06845154613256454,
-0.11414612829685211,
0.0068852826952934265,
0.032313548028469086,
0.1320093423128128,
0.10604578256607056,
0.04133197292685509,
-0.027236629277467728,
0.23955832421779633,
-0.016881529241800308,
-0.06954007595777512,
-0.09345225244760513,
0.1484256088733673,
-0.1416054219007492,
0.07064415514469147,
0.016440918669104576,
0.09857382625341415,
0.1002129465341568,
-0.012392614968121052,
-0.08098184317350388,
0.02784864418208599,
-0.007884263060986996,
-0.13422323763370514,
0.021871676668524742,
0.259651243686676,
0.011398627422749996,
0.037455424666404724,
0.08595088869333267,
-0.09997639060020447,
0.0063428315334022045,
-0.06176237016916275,
-0.04223398491740227,
-0.0831766277551651,
0.18203669786453247,
-0.05844943970441818,
0.08705797791481018,
0.12547168135643005,
-0.0035554026253521442,
0.032833442091941833,
-0.06250347942113876,
-0.0010849994141608477,
0.018434865400195122,
0.05391635000705719,
0.02400633879005909,
-0.13514344394207,
-0.01276741549372673,
0.05051272734999657,
0.057711854577064514,
-0.1494768112897873,
-0.03581596910953522,
0.008657312951982021,
0.03110858052968979,
0.015166627243161201,
0.09561514109373093,
-0.016440406441688538,
0.016049548983573914,
-0.010807840153574944,
-0.15472647547721863,
0.03846912458539009,
0.09520713239908218,
-0.06324774026870728,
-0.029962388798594475
] |
null | null |
transformers
|
# HeBERT: Pre-trained BERT for Polarity Analysis and Emotion Recognition
<img align="right" src="https://github.com/avichaychriqui/HeBERT/blob/main/data/heBERT_logo.png?raw=true" width="250">
HeBERT is a Hebrew pretrained language model. It is based on [Google's BERT](https://arxiv.org/abs/1810.04805) architecture and it is BERT-Base config. <br>
HeBert was trained on three dataset:
1. A Hebrew version of [OSCAR](https://oscar-corpus.com/): ~9.8 GB of data, including 1 billion words and over 20.8 millions sentences.
2. A Hebrew dump of [Wikipedia](https://dumps.wikimedia.org/): ~650 MB of data, including over 63 millions words and 3.8 millions sentences
3. Emotion User Generated Content (UGC) data that was collected for the purpose of this study (described below).
## Named-entity recognition (NER)
The ability of the model to classify named entities in text, such as persons' names, organizations, and locations; tested on a labeled dataset from [Ben Mordecai and M Elhadad (2005)](https://www.cs.bgu.ac.il/~elhadad/nlpproj/naama/), and evaluated with F1-score.
### How to use
```
from transformers import pipeline
# how to use?
NER = pipeline(
"token-classification",
model="avichr/heBERT_NER",
tokenizer="avichr/heBERT_NER",
)
NER('ืืืื ืืืื ืืืื ืืืจืกืืื ืืขืืจืืช ืฉืืืจืืฉืืื')
```
## Other tasks
[**Emotion Recognition Model**](https://huggingface.co/avichr/hebEMO_trust).
An online model can be found at [huggingface spaces](https://huggingface.co/spaces/avichr/HebEMO_demo) or as [colab notebook](https://colab.research.google.com/drive/1Jw3gOWjwVMcZslu-ttXoNeD17lms1-ff?usp=sharing)
<br>
[**Sentiment Analysis**](https://huggingface.co/avichr/heBERT_sentiment_analysis).
<br>
[**masked-LM model**](https://huggingface.co/avichr/heBERT) (can be fine-tunned to any down-stream task).
## Contact us
[Avichay Chriqui](mailto:[email protected]) <br>
[Inbal yahav](mailto:[email protected]) <br>
The Coller Semitic Languages AI Lab <br>
Thank you, ืชืืื, ุดูุฑุง <br>
## If you used this model please cite us as :
Chriqui, A., & Yahav, I. (2021). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. arXiv preprint arXiv:2102.01909.
```
@article{chriqui2021hebert,
title={HeBERT \& HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition},
author={Chriqui, Avihay and Yahav, Inbal},
journal={arXiv preprint arXiv:2102.01909},
year={2021}
}
```
[git](https://github.com/avichaychriqui/HeBERT)
|
{}
|
token-classification
|
avichr/heBERT_NER
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"arxiv:1810.04805",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1810.04805"
] |
[] |
TAGS
#transformers #pytorch #bert #token-classification #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
# HeBERT: Pre-trained BERT for Polarity Analysis and Emotion Recognition
<img align="right" src="URL width="250">
HeBERT is a Hebrew pretrained language model. It is based on Google's BERT architecture and it is BERT-Base config. <br>
HeBert was trained on three dataset:
1. A Hebrew version of OSCAR: ~9.8 GB of data, including 1 billion words and over 20.8 millions sentences.
2. A Hebrew dump of Wikipedia: ~650 MB of data, including over 63 millions words and 3.8 millions sentences
3. Emotion User Generated Content (UGC) data that was collected for the purpose of this study (described below).
## Named-entity recognition (NER)
The ability of the model to classify named entities in text, such as persons' names, organizations, and locations; tested on a labeled dataset from Ben Mordecai and M Elhadad (2005), and evaluated with F1-score.
### How to use
## Other tasks
Emotion Recognition Model.
An online model can be found at huggingface spaces or as colab notebook
<br>
Sentiment Analysis.
<br>
masked-LM model (can be fine-tunned to any down-stream task).
## Contact us
Avichay Chriqui <br>
Inbal yahav <br>
The Coller Semitic Languages AI Lab <br>
Thank you, ืชืืื, ุดูุฑุง <br>
## If you used this model please cite us as :
Chriqui, A., & Yahav, I. (2021). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. arXiv preprint arXiv:2102.01909.
git
|
[
"# HeBERT: Pre-trained BERT for Polarity Analysis and Emotion Recognition\n<img align=\"right\" src=\"URL width=\"250\">\n\nHeBERT is a Hebrew pretrained language model. It is based on Google's BERT architecture and it is BERT-Base config. <br>\n\nHeBert was trained on three dataset: \n1. A Hebrew version of OSCAR: ~9.8 GB of data, including 1 billion words and over 20.8 millions sentences. \n2. A Hebrew dump of Wikipedia: ~650 MB of data, including over 63 millions words and 3.8 millions sentences\n3. Emotion User Generated Content (UGC) data that was collected for the purpose of this study (described below).",
"## Named-entity recognition (NER)\nThe ability of the model to classify named entities in text, such as persons' names, organizations, and locations; tested on a labeled dataset from Ben Mordecai and M Elhadad (2005), and evaluated with F1-score.",
"### How to use",
"## Other tasks\nEmotion Recognition Model.\nAn online model can be found at huggingface spaces or as colab notebook\n<br>\nSentiment Analysis.\n<br>\nmasked-LM model (can be fine-tunned to any down-stream task).",
"## Contact us\nAvichay Chriqui <br>\nInbal yahav <br>\nThe Coller Semitic Languages AI Lab <br>\nThank you, ืชืืื, ุดูุฑุง <br>",
"## If you used this model please cite us as :\nChriqui, A., & Yahav, I. (2021). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. arXiv preprint arXiv:2102.01909.\n\ngit"
] |
[
"TAGS\n#transformers #pytorch #bert #token-classification #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"# HeBERT: Pre-trained BERT for Polarity Analysis and Emotion Recognition\n<img align=\"right\" src=\"URL width=\"250\">\n\nHeBERT is a Hebrew pretrained language model. It is based on Google's BERT architecture and it is BERT-Base config. <br>\n\nHeBert was trained on three dataset: \n1. A Hebrew version of OSCAR: ~9.8 GB of data, including 1 billion words and over 20.8 millions sentences. \n2. A Hebrew dump of Wikipedia: ~650 MB of data, including over 63 millions words and 3.8 millions sentences\n3. Emotion User Generated Content (UGC) data that was collected for the purpose of this study (described below).",
"## Named-entity recognition (NER)\nThe ability of the model to classify named entities in text, such as persons' names, organizations, and locations; tested on a labeled dataset from Ben Mordecai and M Elhadad (2005), and evaluated with F1-score.",
"### How to use",
"## Other tasks\nEmotion Recognition Model.\nAn online model can be found at huggingface spaces or as colab notebook\n<br>\nSentiment Analysis.\n<br>\nmasked-LM model (can be fine-tunned to any down-stream task).",
"## Contact us\nAvichay Chriqui <br>\nInbal yahav <br>\nThe Coller Semitic Languages AI Lab <br>\nThank you, ืชืืื, ุดูุฑุง <br>",
"## If you used this model please cite us as :\nChriqui, A., & Yahav, I. (2021). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. arXiv preprint arXiv:2102.01909.\n\ngit"
] |
[
50,
171,
68,
5,
58,
40,
70
] |
[
"passage: TAGS\n#transformers #pytorch #bert #token-classification #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# HeBERT: Pre-trained BERT for Polarity Analysis and Emotion Recognition\n<img align=\"right\" src=\"URL width=\"250\">\n\nHeBERT is a Hebrew pretrained language model. It is based on Google's BERT architecture and it is BERT-Base config. <br>\n\nHeBert was trained on three dataset: \n1. A Hebrew version of OSCAR: ~9.8 GB of data, including 1 billion words and over 20.8 millions sentences. \n2. A Hebrew dump of Wikipedia: ~650 MB of data, including over 63 millions words and 3.8 millions sentences\n3. Emotion User Generated Content (UGC) data that was collected for the purpose of this study (described below).## Named-entity recognition (NER)\nThe ability of the model to classify named entities in text, such as persons' names, organizations, and locations; tested on a labeled dataset from Ben Mordecai and M Elhadad (2005), and evaluated with F1-score.### How to use## Other tasks\nEmotion Recognition Model.\nAn online model can be found at huggingface spaces or as colab notebook\n<br>\nSentiment Analysis.\n<br>\nmasked-LM model (can be fine-tunned to any down-stream task).## Contact us\nAvichay Chriqui <br>\nInbal yahav <br>\nThe Coller Semitic Languages AI Lab <br>\nThank you, ืชืืื, ุดูุฑุง <br>## If you used this model please cite us as :\nChriqui, A., & Yahav, I. (2021). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. arXiv preprint arXiv:2102.01909.\n\ngit"
] |
[
-0.07090238481760025,
0.16324201226234436,
-0.004480897448956966,
0.030602281913161278,
0.09324071556329727,
-0.005616908892989159,
0.12768983840942383,
0.052660346031188965,
0.10169751942157745,
0.12494272738695145,
-0.0040907105430960655,
-0.024654265493154526,
0.06892649084329605,
0.06322185695171356,
0.02818581461906433,
-0.21388249099254608,
0.015907946974039078,
-0.06527309119701385,
0.04001487419009209,
0.08230987936258316,
0.08955968916416168,
-0.0808643251657486,
0.08935881406068802,
0.0027973593678325415,
-0.01735195331275463,
0.03579609468579292,
-0.06922079622745514,
-0.0827418714761734,
0.08155085891485214,
0.0897139459848404,
0.05998548865318298,
0.033139511942863464,
0.05706490948796272,
-0.21025745570659637,
-0.0003540552861522883,
0.048221342265605927,
-0.015261853113770485,
0.019089367240667343,
0.07158343493938446,
-0.06943270564079285,
0.19196388125419617,
-0.0925193578004837,
0.061625752598047256,
0.01346521731466055,
-0.06445944309234619,
-0.16216988861560822,
-0.05327726900577545,
0.0938059613108635,
0.05714865401387215,
0.05037422105669975,
-0.04369119927287102,
0.0700850710272789,
-0.055861566215753555,
0.07968476414680481,
0.12748990952968597,
-0.10634428262710571,
-0.03160049766302109,
0.07958535104990005,
-0.05636592581868172,
0.06347918510437012,
-0.09614811837673187,
0.01570015400648117,
0.03146354854106903,
0.02789953351020813,
0.04818888008594513,
0.0026836914476007223,
0.07983951270580292,
0.01917131058871746,
-0.14478030800819397,
-0.030257485806941986,
0.07522545009851456,
0.0458979532122612,
-0.008028062991797924,
-0.10657332092523575,
-0.032453492283821106,
0.010840170085430145,
0.004372593481093645,
-0.03374849259853363,
0.010449041612446308,
-0.07660456746816635,
0.003690671408548951,
0.002579881576821208,
-0.09839987754821777,
0.028650181367993355,
-0.03846050426363945,
0.1616605967283249,
0.03346017003059387,
0.03177767992019653,
0.0801520124077797,
-0.015461158938705921,
-0.047737300395965576,
-0.10063695907592773,
-0.0673682913184166,
-0.06342538446187973,
-0.12555202841758728,
-0.04783177375793457,
-0.034522611647844315,
-0.09799733012914658,
0.024362007156014442,
0.14312201738357544,
-0.014488860964775085,
0.06910543888807297,
-0.00044349508243612945,
-0.022124934941530228,
0.08459296822547913,
0.2581346929073334,
-0.04090604558587074,
-0.07444746792316437,
-0.004127436317503452,
0.03127515688538551,
-0.0060565234161913395,
-0.037002138793468475,
-0.09069638699293137,
0.0006492119864560664,
0.1227676048874855,
0.000946965126786381,
-0.045014865696430206,
0.0815933346748352,
-0.009795386344194412,
-0.030566342175006866,
0.05392061546444893,
-0.13894930481910706,
0.030137116089463234,
0.09089258313179016,
-0.028233159333467484,
-0.022399937734007835,
0.02682952582836151,
-0.026314128190279007,
-0.056573815643787384,
0.11128129065036774,
-0.04004582017660141,
-0.004863533657044172,
-0.05971217155456543,
-0.1400373876094818,
0.04406419396400452,
0.008348477073013783,
-0.002334201941266656,
-0.1967311054468155,
-0.0548761785030365,
-0.04452238231897354,
0.03956741467118263,
-0.05316472426056862,
0.055616479367017746,
-0.06458144634962082,
0.0032771406695246696,
-0.0017513191560283303,
-0.015216052532196045,
0.006089250091463327,
-0.01807655580341816,
0.018081866204738617,
-0.0019026158843189478,
0.07965277135372162,
0.06167358532547951,
0.033241141587495804,
-0.08711735904216766,
0.0039833649061620235,
-0.14055420458316803,
0.13709847629070282,
-0.18229450285434723,
-0.035417694598436356,
-0.1255590319633484,
-0.04467763006687164,
0.06435153633356094,
-0.00835512112826109,
0.006980082951486111,
0.14463701844215393,
-0.11177938431501389,
-0.10739737004041672,
0.07636711001396179,
-0.07929649204015732,
-0.02710765041410923,
0.1494317352771759,
-0.04799588769674301,
0.02485615946352482,
0.10861040651798248,
0.2298106551170349,
0.007910998538136482,
-0.09558971226215363,
-0.11250710487365723,
0.016852781176567078,
0.05007806047797203,
0.16965161263942719,
0.07144026458263397,
0.02408628724515438,
-0.01423006970435381,
0.02128274366259575,
-0.06262107938528061,
-0.009820610284805298,
-0.028639115393161774,
-0.07725546509027481,
0.059221766889095306,
-0.03198651224374771,
0.07678380608558655,
0.01556611992418766,
0.025136763229966164,
-0.017786042764782906,
-0.08698202669620514,
-0.010357826016843319,
0.059121716767549515,
-0.07398949563503265,
0.03923845663666725,
-0.07927010208368301,
0.06013251096010208,
-0.04604180157184601,
0.02018229104578495,
-0.14797690510749817,
-0.041166048496961594,
0.057878024876117706,
-0.07917898893356323,
0.07979853451251984,
-0.027969270944595337,
0.06712450087070465,
0.0697711780667305,
-0.03240001201629639,
-0.002854393096640706,
-0.0615067221224308,
0.03764120116829872,
-0.07186508923768997,
-0.13898897171020508,
-0.06748839467763901,
-0.045389048755168915,
0.13138636946678162,
-0.12697461247444153,
-0.014357618987560272,
0.045796845108270645,
0.10705620050430298,
-0.004664453212171793,
-0.03368372097611427,
-0.042536161839962006,
0.0002890196046791971,
-0.02837003394961357,
-0.06527163833379745,
-0.010254086926579475,
-0.008604594506323338,
-0.12973523139953613,
0.03560349717736244,
-0.05629946291446686,
-0.06713488698005676,
0.050869524478912354,
0.04355539754033089,
-0.0744386538863182,
-0.04222376272082329,
-0.026182977482676506,
-0.02065054327249527,
-0.02099583111703396,
-0.07881637662649155,
0.20869973301887512,
0.058671992272138596,
0.06863583624362946,
-0.0648588314652443,
0.008886284194886684,
-0.011881712824106216,
0.002918899292126298,
-0.029725244268774986,
0.14953157305717468,
0.031352072954177856,
-0.1552928388118744,
0.09764321893453598,
0.05351828411221504,
-0.041451405733823776,
0.11321046948432922,
0.0005994412931613624,
-0.07646287977695465,
-0.0005015950882807374,
-0.010626670904457569,
-0.006548298988491297,
0.04211319237947464,
-0.10131017863750458,
-0.011217238381505013,
0.037038467824459076,
-0.02525886334478855,
0.004031802993267775,
-0.03523867577314377,
0.0737956166267395,
0.05887750908732414,
-0.0003989081014879048,
-0.04987899586558342,
-0.0008073798380792141,
-0.010559352114796638,
0.07225552201271057,
0.04192051291465759,
-0.0354824997484684,
-0.03330516070127487,
-0.02754982002079487,
-0.0906408503651619,
0.1928810477256775,
-0.08536524325609207,
-0.27713721990585327,
-0.07701472193002701,
-0.05909229442477226,
-0.08767805993556976,
0.013256617821753025,
0.011928625404834747,
-0.09001611918210983,
-0.09608642011880875,
-0.046702586114406586,
0.1494411677122116,
0.004239552188664675,
-0.03671596571803093,
0.0337563119828701,
-0.03600951284170151,
-0.06550378352403641,
-0.11806043982505798,
0.0013560031075030565,
-0.001124572940170765,
-0.04322011396288872,
0.053666893392801285,
-0.03798406943678856,
0.07678922265768051,
0.08864019811153412,
0.025493446737527847,
0.024923434481024742,
-0.025735443457961082,
0.22465017437934875,
-0.10331418365240097,
0.03358728066086769,
0.021657180041074753,
-0.03826935216784477,
0.046342186629772186,
0.09866963326931,
0.019389614462852478,
-0.017171664163470268,
0.0024589411914348602,
0.0648253858089447,
-0.05179661139845848,
-0.19149722158908844,
-0.10579752922058105,
-0.013538006693124771,
0.03354606404900551,
0.08531405031681061,
0.022882865741848946,
0.027146849781274796,
0.014560295268893242,
-0.039777226746082306,
0.026889951899647713,
0.024287831038236618,
0.09704142808914185,
0.08050082623958588,
-0.0012869939673691988,
0.03940350189805031,
0.008622788824141026,
-0.035181205719709396,
0.09778804332017899,
0.03612219914793968,
0.2166414111852646,
-0.002842630259692669,
0.14285068213939667,
0.022197376936674118,
0.025634847581386566,
-0.003486198838800192,
0.034678176045417786,
-0.03014606237411499,
0.039471618831157684,
-0.032252512872219086,
-0.09552855789661407,
-0.05360785871744156,
0.13905246555805206,
0.11002488434314728,
-0.05168918892741203,
0.013498558662831783,
-0.027093276381492615,
0.06814315915107727,
0.17917673289775848,
0.004659784026443958,
-0.18344910442829132,
-0.05571671202778816,
0.032009754329919815,
-0.07602439820766449,
-0.041194237768650055,
-0.01951262727379799,
0.05435715988278389,
-0.11633172631263733,
0.0943659320473671,
-0.012299660593271255,
0.05618535727262497,
-0.08482953161001205,
0.009667687118053436,
-0.0468120314180851,
0.01926332153379917,
-0.0059687294997274876,
0.13351990282535553,
-0.17799030244350433,
0.12446291744709015,
0.01641985960304737,
0.009244373068213463,
-0.10923910140991211,
-0.007782038766890764,
0.025660935789346695,
0.072407066822052,
0.12021727859973907,
0.03185548260807991,
0.012957525439560413,
-0.10899565368890762,
-0.09375467151403427,
0.018455976620316505,
0.06131100282073021,
-0.08281702548265457,
0.08103799819946289,
0.036531347781419754,
-0.022793620824813843,
-0.04378092288970947,
0.03326842561364174,
-0.11003825813531876,
-0.17441175878047943,
0.04883730784058571,
-0.04919613525271416,
0.014466187916696072,
-0.0201505646109581,
-0.11048030108213425,
-0.10405320674180984,
0.12047906965017319,
-0.03706623241305351,
-0.0923980325460434,
-0.11124391108751297,
0.06679908186197281,
0.09520518034696579,
-0.10054843872785568,
-0.019719276577234268,
0.0031164803076535463,
0.1338198184967041,
-0.07462063431739807,
-0.10636493563652039,
0.029471343383193016,
-0.060126155614852905,
-0.11307425051927567,
-0.0111004076898098,
0.09092121571302414,
0.0916123241186142,
0.05919727683067322,
0.017135148867964745,
0.014317316003143787,
-0.023564092814922333,
-0.09890025854110718,
0.03352363780140877,
0.10812719911336899,
0.018870288506150246,
0.0820809155702591,
-0.014017680659890175,
-0.08659152686595917,
-0.11430622637271881,
-0.016082609072327614,
0.042577724903821945,
0.18916994333267212,
-0.03981814533472061,
0.08582564443349838,
0.18489570915699005,
-0.06553404778242111,
-0.21530331671237946,
-0.02445238083600998,
0.12240109592676163,
0.03468036279082298,
0.023398637771606445,
-0.1968432366847992,
0.03416040912270546,
0.00683971680700779,
-0.0033828113228082657,
-0.0017668467480689287,
-0.13799643516540527,
-0.09450174123048782,
0.09715254604816437,
0.02928694151341915,
-0.024099616333842278,
-0.12148361653089523,
-0.04645732045173645,
-0.06539514660835266,
-0.09460020065307617,
0.08675392717123032,
-0.04257221147418022,
0.058243732899427414,
0.0219194944947958,
0.1009724885225296,
0.05679433420300484,
-0.03303064405918121,
0.11178130656480789,
0.09065684676170349,
0.024992281571030617,
-0.04650043696165085,
-0.04390794783830643,
0.0377744622528553,
-0.0457163006067276,
0.08200141787528992,
-0.011748399585485458,
0.022642888128757477,
-0.051649510860443115,
-0.057484786957502365,
-0.09278622269630432,
0.06863601505756378,
-0.041699737310409546,
-0.06035974994301796,
-0.07617810368537903,
0.1043652668595314,
0.11483544856309891,
-0.011408441700041294,
0.08293652534484863,
-0.03679054602980614,
-0.07283785939216614,
0.18795929849147797,
0.0696801096200943,
0.019066430628299713,
-0.03543617203831673,
-0.0259824488312006,
-0.022210704162716866,
0.09025956690311432,
-0.12687557935714722,
0.0521249882876873,
0.10054369270801544,
0.02260446920990944,
0.14067018032073975,
-0.014044000767171383,
-0.18487727642059326,
-0.03231602907180786,
0.04525396600365639,
-0.09544099122285843,
-0.1786835491657257,
-0.05939243733882904,
-0.026214230805635452,
-0.06297504901885986,
0.02521362155675888,
0.09479005634784698,
-0.07316737622022629,
-0.034677691757678986,
-0.019589576870203018,
0.05063110962510109,
0.02830924652516842,
0.09908478707075119,
-0.0018200685735791922,
0.02513597160577774,
-0.08467493951320648,
0.022613782435655594,
0.07642021030187607,
-0.06086712330579758,
0.03193408250808716,
0.07449200749397278,
-0.0947594940662384,
-0.03870940953493118,
-0.056109469383955,
0.18364283442497253,
-0.09667789936065674,
-0.022601230069994926,
0.01834983378648758,
-0.06997513025999069,
0.018171241506934166,
0.13077861070632935,
0.03937390074133873,
0.0032140871044248343,
-0.027522439137101173,
0.04758094623684883,
-0.02740004099905491,
0.09304740279912949,
0.03161383047699928,
0.047078944742679596,
-0.04130563512444496,
-0.024080248549580574,
-0.02760239876806736,
0.041033510118722916,
-0.027983684092760086,
-0.029996652156114578,
-0.12994283437728882,
-0.012838533148169518,
-0.15155941247940063,
0.04414844140410423,
-0.0160724725574255,
0.028375227004289627,
0.007158446125686169,
-0.01850343495607376,
0.0065466477535665035,
0.033967360854148865,
-0.06800807267427444,
-0.008726445026695728,
-0.022505952045321465,
0.06472636014223099,
-0.12876150012016296,
-0.04665268212556839,
0.0379955880343914,
-0.09949459135532379,
0.11037597805261612,
-0.004007695708423853,
0.008036883547902107,
0.08538821339607239,
-0.07593338191509247,
0.0037879841402173042,
0.054019488394260406,
0.06927629560232162,
0.04163982719182968,
-0.12917205691337585,
-0.01207334827631712,
-0.026628095656633377,
0.02010689489543438,
-0.0095784030854702,
0.08320191502571106,
-0.05392551049590111,
0.04959419369697571,
-0.040436752140522,
-0.05976016819477081,
-0.04808422550559044,
0.08875040709972382,
0.0027348410803824663,
0.08552315086126328,
0.14015530049800873,
-0.06330952793359756,
0.03352196887135506,
-0.07835167646408081,
-0.0021523854229599237,
0.02811582013964653,
-0.028970923274755478,
-0.029415592551231384,
-0.05986636504530907,
0.05862938612699509,
-0.034426767379045486,
0.14625303447246552,
0.03119821660220623,
0.07810559868812561,
-0.003070026868954301,
0.024142110720276833,
-0.051391664892435074,
0.0040856776759028435,
0.02253936417400837,
0.006339633371680975,
-0.00015314326446969062,
0.029017025604844093,
-0.00471151527017355,
0.012417537160217762,
0.026881655678153038,
0.07967342436313629,
0.12351330369710922,
0.07553192973136902,
0.04589933156967163,
0.08347427845001221,
-0.04986090213060379,
-0.09659235924482346,
-0.06746183335781097,
-0.06822836399078369,
0.06282953172922134,
-0.05202720686793327,
0.10464376211166382,
0.09295257180929184,
-0.1115858405828476,
0.11243697255849838,
-0.05065861716866493,
-0.07486817240715027,
-0.06285571306943893,
-0.14726857841014862,
-0.0883815735578537,
-0.035160768777132034,
0.038828689604997635,
-0.09050711989402771,
0.03740665316581726,
0.03430088981986046,
0.07437954843044281,
-0.031741250306367874,
0.08503182232379913,
-0.04147021099925041,
-0.09657777100801468,
0.09385590255260468,
-0.007998192682862282,
-0.04432825744152069,
0.07228420674800873,
-0.008628683164715767,
0.0311125535517931,
0.06629712134599686,
0.06311002373695374,
0.011581867933273315,
0.00990583561360836,
0.02269562892615795,
-0.026455633342266083,
-0.07746436446905136,
-0.003573955036699772,
-0.03282022103667259,
0.0023534370120614767,
0.16232788562774658,
0.018128860741853714,
-0.022867422550916672,
-0.0060961623676121235,
0.12105189263820648,
-0.045339833945035934,
-0.06633947789669037,
-0.1527327299118042,
0.14976246654987335,
-0.010328805074095726,
0.05529079958796501,
0.011650464497506618,
-0.10969773679971695,
-0.04744977504014969,
0.12574754655361176,
0.09684832394123077,
-0.015237956307828426,
-0.011463161557912827,
-0.0320238396525383,
0.022152582183480263,
-0.0027117447461932898,
0.07898717373609543,
-0.024338457733392715,
0.10316203534603119,
-0.051642999053001404,
0.08233289420604706,
-0.017887888476252556,
-0.02908332087099552,
-0.06864908337593079,
0.14528273046016693,
0.0069325086660683155,
-0.0182085782289505,
-0.09856817871332169,
0.04439925402402878,
-0.050758231431245804,
-0.29657691717147827,
0.022042127326130867,
-0.06603371351957321,
-0.12698714435100555,
-0.007826888002455235,
0.014006566256284714,
0.04941796511411667,
0.081584632396698,
0.0436764694750309,
-0.030287502333521843,
0.13861890137195587,
0.016681918874382973,
-0.04797535389661789,
-0.02612035535275936,
0.12972818315029144,
-0.06610932946205139,
0.17153820395469666,
0.004193917848169804,
0.12000013887882233,
0.08807378262281418,
0.04184417799115181,
-0.016527289524674416,
0.0641774833202362,
0.05352756753563881,
-0.05146878957748413,
0.024370256811380386,
0.16540849208831787,
-0.01942318119108677,
0.10548903793096542,
0.03772285580635071,
-0.08806390315294266,
0.004701092839241028,
0.02839685045182705,
-0.017490262165665627,
-0.09276440739631653,
0.09536855667829514,
-0.08493201434612274,
0.0966455265879631,
0.14080806076526642,
-0.0011581828584894538,
-0.025696199387311935,
-0.05701201781630516,
0.009320239536464214,
-0.007121212314814329,
0.11091117560863495,
-0.030939284712076187,
-0.11897731572389603,
-0.03278734162449837,
-0.06832230091094971,
0.08605272322893143,
-0.20913924276828766,
-0.017405357211828232,
-0.02077711932361126,
-0.00603394815698266,
0.023874176666140556,
0.12953127920627594,
0.03236175701022148,
-0.0043198163621127605,
-0.02792019583284855,
-0.18032190203666687,
0.02588307112455368,
0.07939855009317398,
-0.08575668185949326,
-0.03097541444003582
] |
null | null |
transformers
|
## HeBERT: Pre-trained BERT for Polarity Analysis and Emotion Recognition
HeBERT is a Hebrew pre-trained language model. It is based on Google's BERT architecture and it is BERT-Base config [(Devlin et al. 2018)](https://arxiv.org/abs/1810.04805). <br>
HeBert was trained on three datasets:
1. A Hebrew version of OSCAR [(Ortiz, 2019)](https://oscar-corpus.com/): ~9.8 GB of data, including 1 billion words and over 20.8 million sentences.
2. A Hebrew dump of Wikipedia: ~650 MB of data, including over 63 million words and 3.8 million sentences
3. Emotion UGC data was collected for the purpose of this study. (described below)
We evaluated the model on emotion recognition and sentiment analysis, for downstream tasks.
### Emotion UGC Data Description
Our User-Generated Content (UGC) is comments written on articles collected from 3 major news sites, between January 2020 to August 2020, Total data size of ~150 MB of data, including over 7 million words and 350K sentences.
4000 sentences annotated by crowd members (3-10 annotators per sentence) for 8 emotions (anger, disgust, expectation, fear, happy, sadness, surprise, and trust) and overall sentiment/polarity <br>
In order to validate the annotation, we search for an agreement between raters to emotion in each sentence using Krippendorff's alpha [(krippendorff, 1970)](https://journals.sagepub.com/doi/pdf/10.1177/001316447003000105). We left sentences that got alpha > 0.7. Note that while we found a general agreement between raters about emotions like happiness, trust, and disgust, there are few emotions with general disagreement about them, apparently given the complexity of finding them in the text (e.g. expectation and surprise).
### Performance
#### sentiment analysis
| | precision | recall | f1-score |
|--------------|-----------|--------|----------|
| natural | 0.83 | 0.56 | 0.67 |
| positive | 0.96 | 0.92 | 0.94 |
| negative | 0.97 | 0.99 | 0.98 |
| accuracy | | | 0.97 |
| macro avg | 0.92 | 0.82 | 0.86 |
| weighted avg | 0.96 | 0.97 | 0.96 |
## How to use
### For masked-LM model (can be fine-tunned to any down-stream task)
```
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("avichr/heBERT")
model = AutoModel.from_pretrained("avichr/heBERT")
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model="avichr/heBERT",
tokenizer="avichr/heBERT"
)
fill_mask("ืืงืืจืื ื ืืงืื ืืช [MASK] ืืื ื ืื ื ืฉืืจ ืืืจ.")
```
### For sentiment classification model (polarity ONLY):
```
from transformers import AutoTokenizer, AutoModel, pipeline
tokenizer = AutoTokenizer.from_pretrained("avichr/heBERT_sentiment_analysis") #same as 'avichr/heBERT' tokenizer
model = AutoModel.from_pretrained("avichr/heBERT_sentiment_analysis")
# how to use?
sentiment_analysis = pipeline(
"sentiment-analysis",
model="avichr/heBERT_sentiment_analysis",
tokenizer="avichr/heBERT_sentiment_analysis",
return_all_scores = True
)
>>> sentiment_analysis('ืื ื ืืชืืื ืื ืืืืื ืืืจืืืช ืฆืืจืืื')
[[{'label': 'natural', 'score': 0.9978172183036804},
{'label': 'positive', 'score': 0.0014792329166084528},
{'label': 'negative', 'score': 0.0007035882445052266}]]
>>> sentiment_analysis('ืงืคื ืื ืืขืื')
[[{'label': 'natural', 'score': 0.00047328314394690096},
{'label': 'possitive', 'score': 0.9994067549705505},
{'label': 'negetive', 'score': 0.00011996887042187154}]]
>>> sentiment_analysis('ืื ื ืื ืืืื ืืช ืืขืืื')
[[{'label': 'natural', 'score': 9.214012970915064e-05},
{'label': 'possitive', 'score': 8.876807987689972e-05},
{'label': 'negetive', 'score': 0.9998190999031067}]]
```
Our model is also available on AWS! for more information visit [AWS' git](https://github.com/aws-samples/aws-lambda-docker-serverless-inference/tree/main/hebert-sentiment-analysis-inference-docker-lambda)
## Stay tuned!
We are still working on our model and will edit this page as we progress.<br>
Note that we have released only sentiment analysis (polarity) at this point, emotion detection will be released later on.<br>
our git: https://github.com/avichaychriqui/HeBERT
## If you used this model please cite us as :
Chriqui, A., & Yahav, I. (2021). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. arXiv preprint arXiv:2102.01909.
```
@article{chriqui2021hebert,
title={HeBERT \\\\\\\\\\\\\\\\& HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition},
author={Chriqui, Avihay and Yahav, Inbal},
journal={arXiv preprint arXiv:2102.01909},
year={2021}
}
```
|
{}
|
text-classification
|
avichr/heBERT_sentiment_analysis
|
[
"transformers",
"pytorch",
"jax",
"bert",
"text-classification",
"arxiv:1810.04805",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[
"1810.04805"
] |
[] |
TAGS
#transformers #pytorch #jax #bert #text-classification #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #has_space #region-us
|
HeBERT: Pre-trained BERT for Polarity Analysis and Emotion Recognition
----------------------------------------------------------------------
HeBERT is a Hebrew pre-trained language model. It is based on Google's BERT architecture and it is BERT-Base config (Devlin et al. 2018).
HeBert was trained on three datasets:
1. A Hebrew version of OSCAR (Ortiz, 2019): ~9.8 GB of data, including 1 billion words and over 20.8 million sentences.
2. A Hebrew dump of Wikipedia: ~650 MB of data, including over 63 million words and 3.8 million sentences
3. Emotion UGC data was collected for the purpose of this study. (described below)
We evaluated the model on emotion recognition and sentiment analysis, for downstream tasks.
### Emotion UGC Data Description
Our User-Generated Content (UGC) is comments written on articles collected from 3 major news sites, between January 2020 to August 2020, Total data size of ~150 MB of data, including over 7 million words and 350K sentences.
4000 sentences annotated by crowd members (3-10 annotators per sentence) for 8 emotions (anger, disgust, expectation, fear, happy, sadness, surprise, and trust) and overall sentiment/polarity
In order to validate the annotation, we search for an agreement between raters to emotion in each sentence using Krippendorff's alpha (krippendorff, 1970). We left sentences that got alpha > 0.7. Note that while we found a general agreement between raters about emotions like happiness, trust, and disgust, there are few emotions with general disagreement about them, apparently given the complexity of finding them in the text (e.g. expectation and surprise).
### Performance
#### sentiment analysis
How to use
----------
### For masked-LM model (can be fine-tunned to any down-stream task)
### For sentiment classification model (polarity ONLY):
Our model is also available on AWS! for more information visit AWS' git
Stay tuned!
-----------
We are still working on our model and will edit this page as we progress.
Note that we have released only sentiment analysis (polarity) at this point, emotion detection will be released later on.
our git: URL
If you used this model please cite us as :
------------------------------------------
Chriqui, A., & Yahav, I. (2021). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. arXiv preprint arXiv:2102.01909.
|
[
"### Emotion UGC Data Description\n\n\nOur User-Generated Content (UGC) is comments written on articles collected from 3 major news sites, between January 2020 to August 2020, Total data size of ~150 MB of data, including over 7 million words and 350K sentences.\n4000 sentences annotated by crowd members (3-10 annotators per sentence) for 8 emotions (anger, disgust, expectation, fear, happy, sadness, surprise, and trust) and overall sentiment/polarity \n\nIn order to validate the annotation, we search for an agreement between raters to emotion in each sentence using Krippendorff's alpha (krippendorff, 1970). We left sentences that got alpha > 0.7. Note that while we found a general agreement between raters about emotions like happiness, trust, and disgust, there are few emotions with general disagreement about them, apparently given the complexity of finding them in the text (e.g. expectation and surprise).",
"### Performance",
"#### sentiment analysis\n\n\n\nHow to use\n----------",
"### For masked-LM model (can be fine-tunned to any down-stream task)",
"### For sentiment classification model (polarity ONLY):\n\n\nOur model is also available on AWS! for more information visit AWS' git\n\n\nStay tuned!\n-----------\n\n\nWe are still working on our model and will edit this page as we progress. \n\nNote that we have released only sentiment analysis (polarity) at this point, emotion detection will be released later on. \n\nour git: URL\n\n\nIf you used this model please cite us as :\n------------------------------------------\n\n\nChriqui, A., & Yahav, I. (2021). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. arXiv preprint arXiv:2102.01909."
] |
[
"TAGS\n#transformers #pytorch #jax #bert #text-classification #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"### Emotion UGC Data Description\n\n\nOur User-Generated Content (UGC) is comments written on articles collected from 3 major news sites, between January 2020 to August 2020, Total data size of ~150 MB of data, including over 7 million words and 350K sentences.\n4000 sentences annotated by crowd members (3-10 annotators per sentence) for 8 emotions (anger, disgust, expectation, fear, happy, sadness, surprise, and trust) and overall sentiment/polarity \n\nIn order to validate the annotation, we search for an agreement between raters to emotion in each sentence using Krippendorff's alpha (krippendorff, 1970). We left sentences that got alpha > 0.7. Note that while we found a general agreement between raters about emotions like happiness, trust, and disgust, there are few emotions with general disagreement about them, apparently given the complexity of finding them in the text (e.g. expectation and surprise).",
"### Performance",
"#### sentiment analysis\n\n\n\nHow to use\n----------",
"### For masked-LM model (can be fine-tunned to any down-stream task)",
"### For sentiment classification model (polarity ONLY):\n\n\nOur model is also available on AWS! for more information visit AWS' git\n\n\nStay tuned!\n-----------\n\n\nWe are still working on our model and will edit this page as we progress. \n\nNote that we have released only sentiment analysis (polarity) at this point, emotion detection will be released later on. \n\nour git: URL\n\n\nIf you used this model please cite us as :\n------------------------------------------\n\n\nChriqui, A., & Yahav, I. (2021). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. arXiv preprint arXiv:2102.01909."
] |
[
52,
216,
3,
9,
22,
155
] |
[
"passage: TAGS\n#transformers #pytorch #jax #bert #text-classification #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### Emotion UGC Data Description\n\n\nOur User-Generated Content (UGC) is comments written on articles collected from 3 major news sites, between January 2020 to August 2020, Total data size of ~150 MB of data, including over 7 million words and 350K sentences.\n4000 sentences annotated by crowd members (3-10 annotators per sentence) for 8 emotions (anger, disgust, expectation, fear, happy, sadness, surprise, and trust) and overall sentiment/polarity \n\nIn order to validate the annotation, we search for an agreement between raters to emotion in each sentence using Krippendorff's alpha (krippendorff, 1970). We left sentences that got alpha > 0.7. Note that while we found a general agreement between raters about emotions like happiness, trust, and disgust, there are few emotions with general disagreement about them, apparently given the complexity of finding them in the text (e.g. expectation and surprise).### Performance#### sentiment analysis\n\n\n\nHow to use\n----------### For masked-LM model (can be fine-tunned to any down-stream task)### For sentiment classification model (polarity ONLY):\n\n\nOur model is also available on AWS! for more information visit AWS' git\n\n\nStay tuned!\n-----------\n\n\nWe are still working on our model and will edit this page as we progress. \n\nNote that we have released only sentiment analysis (polarity) at this point, emotion detection will be released later on. \n\nour git: URL\n\n\nIf you used this model please cite us as :\n------------------------------------------\n\n\nChriqui, A., & Yahav, I. (2021). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. arXiv preprint arXiv:2102.01909."
] |
[
-0.018469881266355515,
0.08872266113758087,
-0.00431972648948431,
0.008806414902210236,
0.045311339199543,
0.008756118826568127,
-0.019278302788734436,
0.08189030736684799,
0.17790204286575317,
0.12606756389141083,
0.014074809849262238,
-0.021214300766587257,
0.07994819432497025,
0.04242866113781929,
-0.05814794823527336,
-0.2682320177555084,
-0.011509858071804047,
-0.04488709568977356,
0.08696431666612625,
0.11777646839618683,
0.12380686402320862,
-0.055058859288692474,
0.07725755125284195,
-0.010599271394312382,
0.020002325996756554,
-0.010104344226419926,
-0.0463782474398613,
0.01918133534491062,
0.1104140654206276,
0.03884487971663475,
0.03298243507742882,
0.023178327828645706,
-0.036645110696554184,
-0.23749448359012604,
0.0310496985912323,
0.02464398555457592,
0.055708594620227814,
0.035416506230831146,
0.055664900690317154,
-0.11414783447980881,
0.22362305223941803,
-0.1722259223461151,
0.02859875187277794,
0.09471313655376434,
-0.12643076479434967,
-0.19723977148532867,
-0.14848534762859344,
0.04894879087805748,
0.10172151774168015,
-0.027384793385863304,
-0.08698109537363052,
0.11325637996196747,
-0.08911685645580292,
0.04584350809454918,
0.22803731262683868,
-0.17089207470417023,
-0.01646869070827961,
-0.0267327930778265,
-0.018156563863158226,
-0.01458678673952818,
-0.16121886670589447,
0.04275985062122345,
0.029961660504341125,
0.0013334512477740645,
0.021826626732945442,
-0.004407327622175217,
0.1321435570716858,
-0.023250974714756012,
-0.1427687108516693,
-0.04430485516786575,
0.03737897053360939,
0.1230335384607315,
-0.08290158957242966,
-0.17530079185962677,
-0.00911649875342846,
-0.01688254438340664,
-0.01526060700416565,
-0.046904709190130234,
-0.013218250125646591,
-0.03302605077624321,
0.057509634643793106,
0.0021621924825012684,
-0.11668920516967773,
0.0469539649784565,
-0.003810090711340308,
0.21500949561595917,
-0.0039140768349170685,
0.023207515478134155,
0.09012428671121597,
0.0194719098508358,
-0.1606522798538208,
-0.0873120129108429,
-0.04229922965168953,
-0.05633668228983879,
-0.09290219098329544,
-0.03480472043156624,
-0.07063674926757812,
-0.06961622834205627,
0.010028678923845291,
0.13665898144245148,
-0.15786902606487274,
0.003140353364869952,
0.013051551766693592,
0.011061745695769787,
0.17077088356018066,
0.20465227961540222,
-0.08032412827014923,
-0.03541027009487152,
0.017538612708449364,
0.01475566066801548,
0.07434272766113281,
0.022862816229462624,
0.0040943073108792305,
0.04528156667947769,
0.04571429267525673,
0.04267845302820206,
-0.02809971012175083,
0.07451736927032471,
-0.14009498059749603,
-0.02353196032345295,
0.11795984953641891,
-0.11003885418176651,
0.013473204337060452,
0.10043837875127792,
-0.02495536208152771,
0.08320128172636032,
-0.06433826684951782,
-0.0022123323287814856,
0.009531786665320396,
0.09264791756868362,
-0.03894856572151184,
-0.05581379681825638,
-0.0540987029671669,
-0.08133190870285034,
0.07612583041191101,
0.01900416426360607,
-0.013393380679190159,
-0.09184812009334564,
-0.1085338369011879,
-0.015542911365628242,
0.01879938319325447,
-0.09453342854976654,
-0.02836989238858223,
0.004022769629955292,
0.038088101893663406,
-0.0019059821497648954,
0.014586247503757477,
-0.0007135284831747413,
-0.016517316922545433,
0.06519295275211334,
0.0030219033360481262,
0.12564246356487274,
0.06711041927337646,
-0.021428627893328667,
-0.15643714368343353,
0.0046387482434511185,
-0.1711762547492981,
0.06125790625810623,
-0.12665913999080658,
0.05328808352351189,
-0.08214780688285828,
-0.04974989965558052,
0.06989970803260803,
-0.011481812223792076,
0.006238337606191635,
0.16269293427467346,
-0.10869839787483215,
-0.10162818431854248,
0.08313985168933868,
-0.09921969473361969,
0.004973189439624548,
0.23837247490882874,
0.003379899775609374,
-0.015141559764742851,
0.11388245970010757,
0.14633025228977203,
-0.11394789814949036,
-0.08955975621938705,
-0.08750427514314651,
-0.01977350562810898,
-0.06600596010684967,
0.22502899169921875,
0.04948442801833153,
0.025058163329958916,
-0.01184049528092146,
0.0321989543735981,
-0.014553512446582317,
0.04762597754597664,
-0.05356074124574661,
-0.0640096440911293,
0.0232035294175148,
-0.033918194472789764,
0.1283942461013794,
0.031882669776678085,
-0.10797060281038284,
-0.09824100881814957,
-0.20871293544769287,
-0.2224530279636383,
0.08710446208715439,
-0.0072433603927493095,
0.02321172133088112,
-0.08745715022087097,
0.1390589028596878,
0.03493353724479675,
0.03278724104166031,
-0.08414297550916672,
0.006652966141700745,
0.027450064197182655,
-0.046088747680187225,
0.05597439035773277,
0.04450388252735138,
0.06778150796890259,
-0.04956028610467911,
-0.07953761518001556,
-0.004250434692949057,
-0.04034070298075676,
-0.010837902314960957,
-0.021565895527601242,
-0.19977863132953644,
-0.00003518404992064461,
-0.08984744548797607,
0.15186215937137604,
-0.07079491764307022,
-0.02853824570775032,
0.19181287288665771,
0.10813578963279724,
0.04006604850292206,
-0.04102933406829834,
0.052511733025312424,
0.0091016236692667,
-0.003281358629465103,
-0.019879845902323723,
0.04647020995616913,
0.021962091326713562,
-0.11300169676542282,
0.11050386726856232,
-0.050395574420690536,
-0.2196377068758011,
0.04905998706817627,
-0.009518674574792385,
-0.11466804891824722,
0.05994930863380432,
-0.08560863137245178,
0.039405710995197296,
-0.038467805832624435,
-0.012806609272956848,
0.07739081978797913,
0.11042895913124084,
0.039579086005687714,
-0.044905032962560654,
-0.023851044476032257,
0.01397500280290842,
-0.12884213030338287,
-0.05362456291913986,
0.1204584464430809,
-0.12187385559082031,
-0.16178101301193237,
0.06351877003908157,
0.12303661555051804,
-0.038758326321840286,
0.14035123586654663,
0.034004487097263336,
-0.05937041714787483,
-0.055020593106746674,
0.009920838288962841,
-0.020337630063295364,
0.0692957416176796,
-0.06002088636159897,
0.023305948823690414,
0.038080282509326935,
-0.059710416942834854,
-0.011336328461766243,
-0.04845082759857178,
0.057397741824388504,
0.055933207273483276,
0.008848586119711399,
0.06574015319347382,
0.06816225498914719,
-0.016903534531593323,
0.09802862256765366,
0.061142027378082275,
-0.029188912361860275,
-0.04408539459109306,
-0.01894080452620983,
-0.08035212010145187,
0.1445251852273941,
-0.06587851792573929,
-0.29999610781669617,
-0.012388918548822403,
0.038735281676054,
-0.09467285871505737,
0.00044138325029052794,
0.024422042071819305,
-0.2180033177137375,
-0.12551791965961456,
-0.02110522985458374,
0.10130374878644943,
0.11445679515600204,
0.005772892385721207,
0.012783504091203213,
-0.06395680457353592,
-0.01813858188688755,
-0.09723217040300369,
-0.02016114816069603,
-0.039188504219055176,
-0.10409925132989883,
0.06996576488018036,
0.02090793289244175,
0.07399839907884598,
0.16163679957389832,
0.014485438354313374,
-0.007419686298817396,
-0.045921970158815384,
0.1885046660900116,
-0.10699879378080368,
0.061927203088998795,
0.055693939328193665,
-0.05879668518900871,
0.09715425968170166,
0.09729450196027756,
0.029626717790961266,
-0.09171713143587112,
0.04877745360136032,
0.13645991683006287,
-0.014059841632843018,
-0.20424678921699524,
-0.0916755199432373,
-0.0075444672256708145,
0.03164573013782501,
-0.07230286300182343,
0.02774594910442829,
0.04945790022611618,
0.005280166864395142,
-0.11815311759710312,
-0.12064351886510849,
-0.07670726627111435,
0.10197090357542038,
0.07252676039934158,
-0.07199677079916,
-0.002499130554497242,
-0.009193260222673416,
-0.005141822155565023,
0.13519203662872314,
-0.04619249701499939,
0.10526742041110992,
-0.001522718695923686,
0.24530193209648132,
0.08512016385793686,
0.03487306088209152,
-0.0015622336650267243,
-0.05195382982492447,
-0.12665028870105743,
-0.007801547180861235,
-0.07696186751127243,
-0.05872355028986931,
-0.06001495197415352,
0.0964348316192627,
0.0682249367237091,
0.0743480920791626,
-0.05643922835588455,
-0.1407850831747055,
0.17548812925815582,
0.26647886633872986,
0.10170901566743851,
-0.03589534014463425,
-0.09630904346704483,
0.05545865371823311,
-0.04741881415247917,
-0.005798553582280874,
-0.029567493125796318,
-0.058906190097332,
-0.12149698287248611,
0.09735698997974396,
-0.012710180133581161,
0.04976119473576546,
-0.12060250341892242,
0.013647706247866154,
-0.07541286945343018,
0.050085343420505524,
-0.008462776429951191,
0.07229544222354889,
-0.14164899289608002,
0.2322818785905838,
0.036072276532649994,
0.0159160066395998,
-0.07295475155115128,
-0.03059975989162922,
0.07459115982055664,
-0.0059528653509914875,
0.09752655774354935,
0.03826326131820679,
0.08115456998348236,
-0.1124720647931099,
-0.012388941831886768,
0.026406574994325638,
0.05236903950572014,
-0.0484297089278698,
0.09195244312286377,
0.028826778754591942,
-0.02791033685207367,
-0.04595649614930153,
0.05652304366230965,
-0.1358019858598709,
-0.06773152202367783,
0.04997716471552849,
-0.02444804087281227,
0.011494562961161137,
-0.013887169770896435,
-0.07503895461559296,
-0.09430411458015442,
0.2153325378894806,
0.009662047028541565,
-0.08059221506118774,
-0.08440293371677399,
0.0898812785744667,
0.008669485338032246,
-0.060139141976833344,
-0.062093336135149,
0.014371797442436218,
0.14122802019119263,
-0.029050089418888092,
-0.03064218908548355,
0.031200679019093513,
-0.03605819121003151,
-0.23583929240703583,
-0.021131163462996483,
0.14757266640663147,
0.12030135840177536,
0.05009884014725685,
-0.008511075749993324,
0.021320374682545662,
-0.013737802393734455,
-0.12418758869171143,
0.11614619940519333,
0.08158311247825623,
-0.026707345619797707,
0.06284400075674057,
0.07763691246509552,
-0.03663412481546402,
-0.15848547220230103,
-0.05709914490580559,
0.06777486950159073,
0.3243406116962433,
-0.04732431098818779,
0.10642015933990479,
0.2352781891822815,
-0.048583924770355225,
-0.1666828840970993,
-0.06887905299663544,
0.059910643845796585,
0.018933387473225594,
0.038762256503105164,
-0.09479374438524246,
-0.015691161155700684,
0.016647597774863243,
-0.025875354185700417,
-0.06433030217885971,
-0.09092076122760773,
-0.06909355521202087,
0.1438109576702118,
0.03436289727687836,
0.10046420246362686,
-0.124087855219841,
-0.03152567893266678,
0.004852083045989275,
-0.04206816852092743,
0.11229314655065536,
-0.009070848114788532,
0.04396801069378853,
-0.0031987058464437723,
0.19323986768722534,
0.06753265112638474,
-0.020088229328393936,
0.1696796715259552,
-0.04376557096838951,
0.05240627005696297,
-0.058140695095062256,
-0.014444230124354362,
0.019866937771439552,
-0.052321095019578934,
0.06625093519687653,
-0.0779556930065155,
-0.021227804943919182,
-0.11727240681648254,
-0.06014493107795715,
-0.1282968968153,
0.07189538329839706,
-0.027929894626140594,
-0.07588541507720947,
-0.11811444163322449,
0.11017778515815735,
0.04234279692173004,
-0.02059963159263134,
-0.026476643979549408,
-0.08905748277902603,
-0.015188862569630146,
0.1380765289068222,
0.11432474106550217,
-0.03851637244224548,
-0.10031304508447647,
0.010724886320531368,
-0.03478364273905754,
0.08374007046222687,
-0.1406990885734558,
0.015231715515255928,
0.07087662816047668,
0.02770073711872101,
0.14479584991931915,
-0.01689811795949936,
-0.2107516974210739,
0.045247651636600494,
0.06928102672100067,
-0.13692624866962433,
-0.174218088388443,
-0.04690990597009659,
-0.03683784604072571,
-0.10775000602006912,
-0.02665630914270878,
0.09176822006702423,
-0.02098259888589382,
-0.052023716270923615,
0.004511332605034113,
0.09203916788101196,
0.009730082005262375,
0.010230381973087788,
0.03900448977947235,
0.023545313626527786,
-0.06670113652944565,
-0.0024515059776604176,
0.035248178988695145,
-0.2400333136320114,
0.041780997067689896,
0.09336313605308533,
-0.03380126133561134,
-0.03421579301357269,
0.01578632742166519,
0.1015641987323761,
-0.062331799417734146,
-0.0006708708242513239,
-0.008854697458446026,
-0.0703045129776001,
-0.004541831556707621,
0.16505450010299683,
0.06214079260826111,
0.038478851318359375,
-0.025866087526082993,
0.03951239213347435,
-0.027912048622965813,
0.11929894238710403,
0.09763316810131073,
-0.030033323913812637,
-0.0755780041217804,
-0.07265834510326385,
-0.02877689339220524,
0.016238983720541,
-0.014858446083962917,
-0.05272727832198143,
-0.10513406991958618,
-0.034896913915872574,
-0.11526735126972198,
-0.008129140362143517,
-0.08194988965988159,
0.03477970138192177,
0.002154937479645014,
-0.034743886440992355,
0.02188824489712715,
-0.010501854121685028,
-0.04527922719717026,
-0.02522130496799946,
0.03246781602501869,
0.08921121060848236,
-0.13573187589645386,
-0.05381259322166443,
0.0923105925321579,
-0.06933609396219254,
0.09774618595838547,
-0.005468510091304779,
0.002949703251942992,
0.08046340197324753,
-0.2026442438364029,
0.02432231418788433,
0.050644077360630035,
-0.033103737980127335,
0.014740648679435253,
-0.17825137078762054,
-0.01837047003209591,
-0.04498756676912308,
-0.02627023681998253,
0.014075048267841339,
0.10926270484924316,
-0.07685300707817078,
0.06615127623081207,
0.1279066950082779,
-0.04876832291483879,
-0.10575420409440994,
0.007728312164545059,
0.011446923017501831,
0.09234661608934402,
0.0963020846247673,
-0.06322167813777924,
0.02306346781551838,
-0.12480402737855911,
0.019256658852100372,
0.012439411133527756,
0.03628091886639595,
-0.13112801313400269,
0.04115711525082588,
0.04715653881430626,
-0.008123394101858139,
0.08705652505159378,
-0.011727813631296158,
0.0028618313372135162,
0.034518104046583176,
0.07308197766542435,
-0.029463132843375206,
-0.004699681419879198,
-0.03654126077890396,
-0.026944352313876152,
-0.04959862679243088,
-0.08283120393753052,
-0.006753254681825638,
-0.017959274351596832,
-0.07832054793834686,
0.16871722042560577,
0.08008675277233124,
0.23141366243362427,
0.038092534989118576,
-0.035345759242773056,
-0.007997898384928703,
-0.00892871618270874,
-0.014327849261462688,
-0.05001579970121384,
0.0794394314289093,
-0.026606203988194466,
0.17636431753635406,
0.18708141148090363,
-0.07110970467329025,
0.13274134695529938,
-0.07227090746164322,
-0.03622085973620415,
-0.06536748260259628,
-0.22649572789669037,
-0.06296538561582565,
-0.09328525513410568,
0.044278066605329514,
-0.0815279483795166,
0.07555263489484787,
-0.026008805260062218,
0.02678043209016323,
-0.059050265699625015,
-0.027005761861801147,
0.0019106982508674264,
-0.06354959309101105,
0.14509445428848267,
0.018255025148391724,
-0.050876617431640625,
0.0331399068236351,
0.08043558895587921,
0.016835790127515793,
0.057409919798374176,
0.0577966682612896,
0.07799140363931656,
-0.05448133870959282,
0.02443983219563961,
-0.0831899344921112,
-0.14212091267108917,
0.025815976783633232,
-0.012843425385653973,
0.05306064710021019,
0.10046695917844772,
-0.015582334250211716,
0.010936349630355835,
-0.003904334269464016,
0.1481611430644989,
-0.045930348336696625,
0.04586368054151535,
-0.1597183495759964,
0.22171489894390106,
-0.08713879436254501,
0.01408393308520317,
0.041381824761629105,
-0.14635339379310608,
0.036393020302057266,
0.08009596914052963,
0.02804674208164215,
0.04863756522536278,
0.0036229512188583612,
-0.0983610674738884,
0.03266126662492752,
-0.05654510110616684,
0.010514001362025738,
0.010835448279976845,
0.18481700122356415,
-0.10750648379325867,
0.10401004552841187,
-0.008357871323823929,
-0.05259082093834877,
-0.003978625405579805,
0.062079548835754395,
0.0471905954182148,
0.0027025218587368727,
-0.11156751215457916,
0.12328401952981949,
-0.008430177345871925,
-0.22524963319301605,
0.06778890639543533,
-0.08529812842607498,
-0.07373780012130737,
-0.027067221701145172,
0.02806839346885681,
0.1067836731672287,
0.1244230791926384,
0.05310678854584694,
-0.038171734660863876,
0.1945071518421173,
-0.000734496396034956,
-0.05126558244228363,
-0.06751404702663422,
0.16943669319152832,
-0.04658764973282814,
0.100236676633358,
0.008178501389920712,
0.11862128227949142,
0.1361982375383377,
-0.020132383331656456,
-0.08332982659339905,
0.017263539135456085,
0.014455065131187439,
-0.11272042244672775,
0.000034061322367051616,
0.2545672655105591,
0.030914081260561943,
0.011595100164413452,
0.06885586678981781,
-0.1515055149793625,
0.04414764791727066,
-0.030850479379296303,
-0.02193230390548706,
-0.08514992147684097,
0.18877670168876648,
-0.0857233926653862,
0.07491177320480347,
0.1321016103029251,
-0.020565582439303398,
0.03024827502667904,
-0.0722828060388565,
-0.04069869592785835,
0.03881287947297096,
0.08415322005748749,
0.009455450810492039,
-0.13747425377368927,
0.018857963383197784,
0.10957244038581848,
0.01794426515698433,
-0.1611977070569992,
-0.0439663790166378,
0.0238902997225523,
0.07121455669403076,
0.0007980609079822898,
0.06685927510261536,
0.014633496291935444,
0.017605962231755257,
0.004743434488773346,
-0.15501579642295837,
0.02178235724568367,
0.10476173460483551,
-0.07869353890419006,
-0.0015106601640582085
] |
null | null |
transformers
|
# HebEMO - Emotion Recognition Model for Modern Hebrew
<img align="right" src="https://github.com/avichaychriqui/HeBERT/blob/main/data/heBERT_logo.png?raw=true" width="250">
HebEMO is a tool that detects polarity and extracts emotions from modern Hebrew User-Generated Content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated.
HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification.
Emotion detection reached an F1-score of 0.78-0.97, with the exception of *surprise*, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even when compared to the English language.
## Emotion UGC Data Description
Our UGC data includes comments posted on news articles collected from 3 major Israeli news sites, between January 2020 to August 2020. The total size of the data is ~150 MB, including over 7 million words and 350K sentences.
~2000 sentences were annotated by crowd members (3-10 annotators per sentence) for overall sentiment (polarity) and [eight emotions](https://en.wikipedia.org/wiki/Robert_Plutchik#Plutchik's_wheel_of_emotions): anger, disgust, anticipation , fear, joy, sadness, surprise and trust.
The percentage of sentences in which each emotion appeared is found in the table below.
| | anger | disgust | expectation | fear | happy | sadness | surprise | trust | sentiment |
|------:|------:|--------:|------------:|-----:|------:|--------:|---------:|------:|-----------|
| **ratio** | 0.78 | 0.83 | 0.58 | 0.45 | 0.12 | 0.59 | 0.17 | 0.11 | 0.25 |
## Performance
### Emotion Recognition
| emotion | f1-score | precision | recall |
|-------------|----------|-----------|----------|
| anger | 0.96 | 0.99 | 0.93 |
| disgust | 0.97 | 0.98 | 0.96 |
|anticipation | 0.82 | 0.80 | 0.87 |
| fear | 0.79 | 0.88 | 0.72 |
| joy | 0.90 | 0.97 | 0.84 |
| sadness | 0.90 | 0.86 | 0.94 |
| surprise | 0.40 | 0.44 | 0.37 |
| trust | 0.83 | 0.86 | 0.80 |
*The above metrics is for positive class (meaning, the emotion is reflected in the text).*
### Sentiment (Polarity) Analysis
| | precision | recall | f1-score |
|--------------|-----------|--------|----------|
| neutral | 0.83 | 0.56 | 0.67 |
| positive | 0.96 | 0.92 | 0.94 |
| negative | 0.97 | 0.99 | 0.98 |
| accuracy | | | 0.97 |
| macro avg | 0.92 | 0.82 | 0.86 |
| weighted avg | 0.96 | 0.97 | 0.96 |
*Sentiment (polarity) analysis model is also available on AWS! for more information visit [AWS' git](https://github.com/aws-samples/aws-lambda-docker-serverless-inference/tree/main/hebert-sentiment-analysis-inference-docker-lambda)*
## How to use
### Emotion Recognition Model
An online model can be found at [huggingface spaces](https://huggingface.co/spaces/avichr/HebEMO_demo) or as [colab notebook](https://colab.research.google.com/drive/1Jw3gOWjwVMcZslu-ttXoNeD17lms1-ff?usp=sharing)
```
# !pip install pyplutchik==0.0.7
# !pip install transformers==4.14.1
!git clone https://github.com/avichaychriqui/HeBERT.git
from HeBERT.src.HebEMO import *
HebEMO_model = HebEMO()
HebEMO_model.hebemo(input_path = 'data/text_example.txt')
# return analyzed pandas.DataFrame
hebEMO_df = HebEMO_model.hebemo(text='ืืืืื ืืคืื ืืืืืฉืจืื', plot=True)
```
<img src="https://github.com/avichaychriqui/HeBERT/blob/main/data/hebEMO1.png?raw=true" width="300" height="300" />
### For sentiment classification model (polarity ONLY):
from transformers import AutoTokenizer, AutoModel, pipeline
tokenizer = AutoTokenizer.from_pretrained("avichr/heBERT_sentiment_analysis") #same as 'avichr/heBERT' tokenizer
model = AutoModel.from_pretrained("avichr/heBERT_sentiment_analysis")
# how to use?
sentiment_analysis = pipeline(
"sentiment-analysis",
model="avichr/heBERT_sentiment_analysis",
tokenizer="avichr/heBERT_sentiment_analysis",
return_all_scores = True
)
sentiment_analysis('ืื ื ืืชืืื ืื ืืืืื ืืืจืืืช ืฆืืจืืื')
>>> [[{'label': 'neutral', 'score': 0.9978172183036804},
>>> {'label': 'positive', 'score': 0.0014792329166084528},
>>> {'label': 'negative', 'score': 0.0007035882445052266}]]
sentiment_analysis('ืงืคื ืื ืืขืื')
>>> [[{'label': 'neutral', 'score': 0.00047328314394690096},
>>> {'label': 'possitive', 'score': 0.9994067549705505},
>>> {'label': 'negetive', 'score': 0.00011996887042187154}]]
sentiment_analysis('ืื ื ืื ืืืื ืืช ืืขืืื')
>>> [[{'label': 'neutral', 'score': 9.214012970915064e-05},
>>> {'label': 'possitive', 'score': 8.876807987689972e-05},
>>> {'label': 'negetive', 'score': 0.9998190999031067}]]
## Contact us
[Avichay Chriqui](mailto:[email protected]) <br>
[Inbal yahav](mailto:[email protected]) <br>
The Coller Semitic Languages AI Lab <br>
Thank you, ืชืืื, ุดูุฑุง <br>
## If you used this model please cite us as :
Chriqui, A., & Yahav, I. (2022). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. INFORMS Journal on Data Science, forthcoming.
```
@article{chriqui2021hebert,
title={HeBERT \& HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition},
author={Chriqui, Avihay and Yahav, Inbal},
journal={INFORMS Journal on Data Science},
year={2022}
}
```
|
{}
|
text-classification
|
avichr/hebEMO_anger
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us
|
HebEMO - Emotion Recognition Model for Modern Hebrew
====================================================
<img align="right" src="URL width="250">
HebEMO is a tool that detects polarity and extracts emotions from modern Hebrew User-Generated Content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated.
HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification.
Emotion detection reached an F1-score of 0.78-0.97, with the exception of *surprise*, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even when compared to the English language.
Emotion UGC Data Description
----------------------------
Our UGC data includes comments posted on news articles collected from 3 major Israeli news sites, between January 2020 to August 2020. The total size of the data is ~150 MB, including over 7 million words and 350K sentences.
~2000 sentences were annotated by crowd members (3-10 annotators per sentence) for overall sentiment (polarity) and eight emotions: anger, disgust, anticipation , fear, joy, sadness, surprise and trust.
The percentage of sentences in which each emotion appeared is found in the table below.
Performance
-----------
### Emotion Recognition
*The above metrics is for positive class (meaning, the emotion is reflected in the text).*
### Sentiment (Polarity) Analysis
*Sentiment (polarity) analysis model is also available on AWS! for more information visit AWS' git*
How to use
----------
### Emotion Recognition Model
An online model can be found at huggingface spaces or as colab notebook
<img src="URL width="300" height="300" />
### For sentiment classification model (polarity ONLY):
```
from transformers import AutoTokenizer, AutoModel, pipeline
tokenizer = AutoTokenizer.from_pretrained("avichr/heBERT_sentiment_analysis") #same as 'avichr/heBERT' tokenizer
model = AutoModel.from_pretrained("avichr/heBERT_sentiment_analysis")
# how to use?
sentiment_analysis = pipeline(
"sentiment-analysis",
model="avichr/heBERT_sentiment_analysis",
tokenizer="avichr/heBERT_sentiment_analysis",
return_all_scores = True
)
sentiment_analysis('ืื ื ืืชืืื ืื ืืืืื ืืืจืืืช ืฆืืจืืื')
>>> [[{'label': 'neutral', 'score': 0.9978172183036804},
>>> {'label': 'positive', 'score': 0.0014792329166084528},
>>> {'label': 'negative', 'score': 0.0007035882445052266}]]
sentiment_analysis('ืงืคื ืื ืืขืื')
>>> [[{'label': 'neutral', 'score': 0.00047328314394690096},
>>> {'label': 'possitive', 'score': 0.9994067549705505},
>>> {'label': 'negetive', 'score': 0.00011996887042187154}]]
sentiment_analysis('ืื ื ืื ืืืื ืืช ืืขืืื')
>>> [[{'label': 'neutral', 'score': 9.214012970915064e-05},
>>> {'label': 'possitive', 'score': 8.876807987689972e-05},
>>> {'label': 'negetive', 'score': 0.9998190999031067}]]
```
Contact us
----------
Avichay Chriqui
Inbal yahav
The Coller Semitic Languages AI Lab
Thank you, ืชืืื, ุดูุฑุง
If you used this model please cite us as :
------------------------------------------
Chriqui, A., & Yahav, I. (2022). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. INFORMS Journal on Data Science, forthcoming.
|
[
"### Emotion Recognition\n\n\n\n*The above metrics is for positive class (meaning, the emotion is reflected in the text).*",
"### Sentiment (Polarity) Analysis\n\n\n\n*Sentiment (polarity) analysis model is also available on AWS! for more information visit AWS' git*\n\n\nHow to use\n----------",
"### Emotion Recognition Model\n\n\nAn online model can be found at huggingface spaces or as colab notebook\n\n\n<img src=\"URL width=\"300\" height=\"300\" />",
"### For sentiment classification model (polarity ONLY):\n\n\n\n```\nfrom transformers import AutoTokenizer, AutoModel, pipeline\n\ntokenizer = AutoTokenizer.from_pretrained(\"avichr/heBERT_sentiment_analysis\") #same as 'avichr/heBERT' tokenizer\nmodel = AutoModel.from_pretrained(\"avichr/heBERT_sentiment_analysis\")",
"# how to use?\nsentiment_analysis = pipeline(\n \"sentiment-analysis\",\n model=\"avichr/heBERT_sentiment_analysis\",\n tokenizer=\"avichr/heBERT_sentiment_analysis\",\n return_all_scores = True\n)\n\nsentiment_analysis('ืื ื ืืชืืื ืื ืืืืื ืืืจืืืช ืฆืืจืืื')\t\n>>> [[{'label': 'neutral', 'score': 0.9978172183036804},\n>>> {'label': 'positive', 'score': 0.0014792329166084528},\n>>> {'label': 'negative', 'score': 0.0007035882445052266}]]\n\nsentiment_analysis('ืงืคื ืื ืืขืื')\n>>> [[{'label': 'neutral', 'score': 0.00047328314394690096},\n>>> {'label': 'possitive', 'score': 0.9994067549705505},\n>>> {'label': 'negetive', 'score': 0.00011996887042187154}]]\n\nsentiment_analysis('ืื ื ืื ืืืื ืืช ืืขืืื')\n>>> [[{'label': 'neutral', 'score': 9.214012970915064e-05}, \n>>> {'label': 'possitive', 'score': 8.876807987689972e-05}, \n>>> {'label': 'negetive', 'score': 0.9998190999031067}]]\n\n```\n\nContact us\n----------\n\n\nAvichay Chriqui \n\nInbal yahav \n\nThe Coller Semitic Languages AI Lab \n\nThank you, ืชืืื, ุดูุฑุง \n\n\n\nIf you used this model please cite us as :\n------------------------------------------\n\n\nChriqui, A., & Yahav, I. (2022). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. INFORMS Journal on Data Science, forthcoming."
] |
[
"TAGS\n#transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"### Emotion Recognition\n\n\n\n*The above metrics is for positive class (meaning, the emotion is reflected in the text).*",
"### Sentiment (Polarity) Analysis\n\n\n\n*Sentiment (polarity) analysis model is also available on AWS! for more information visit AWS' git*\n\n\nHow to use\n----------",
"### Emotion Recognition Model\n\n\nAn online model can be found at huggingface spaces or as colab notebook\n\n\n<img src=\"URL width=\"300\" height=\"300\" />",
"### For sentiment classification model (polarity ONLY):\n\n\n\n```\nfrom transformers import AutoTokenizer, AutoModel, pipeline\n\ntokenizer = AutoTokenizer.from_pretrained(\"avichr/heBERT_sentiment_analysis\") #same as 'avichr/heBERT' tokenizer\nmodel = AutoModel.from_pretrained(\"avichr/heBERT_sentiment_analysis\")",
"# how to use?\nsentiment_analysis = pipeline(\n \"sentiment-analysis\",\n model=\"avichr/heBERT_sentiment_analysis\",\n tokenizer=\"avichr/heBERT_sentiment_analysis\",\n return_all_scores = True\n)\n\nsentiment_analysis('ืื ื ืืชืืื ืื ืืืืื ืืืจืืืช ืฆืืจืืื')\t\n>>> [[{'label': 'neutral', 'score': 0.9978172183036804},\n>>> {'label': 'positive', 'score': 0.0014792329166084528},\n>>> {'label': 'negative', 'score': 0.0007035882445052266}]]\n\nsentiment_analysis('ืงืคื ืื ืืขืื')\n>>> [[{'label': 'neutral', 'score': 0.00047328314394690096},\n>>> {'label': 'possitive', 'score': 0.9994067549705505},\n>>> {'label': 'negetive', 'score': 0.00011996887042187154}]]\n\nsentiment_analysis('ืื ื ืื ืืืื ืืช ืืขืืื')\n>>> [[{'label': 'neutral', 'score': 9.214012970915064e-05}, \n>>> {'label': 'possitive', 'score': 8.876807987689972e-05}, \n>>> {'label': 'negetive', 'score': 0.9998190999031067}]]\n\n```\n\nContact us\n----------\n\n\nAvichay Chriqui \n\nInbal yahav \n\nThe Coller Semitic Languages AI Lab \n\nThank you, ืชืืื, ุดูุฑุง \n\n\n\nIf you used this model please cite us as :\n------------------------------------------\n\n\nChriqui, A., & Yahav, I. (2022). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. INFORMS Journal on Data Science, forthcoming."
] |
[
36,
30,
43,
42,
101,
454
] |
[
"passage: TAGS\n#transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n### Emotion Recognition\n\n\n\n*The above metrics is for positive class (meaning, the emotion is reflected in the text).*### Sentiment (Polarity) Analysis\n\n\n\n*Sentiment (polarity) analysis model is also available on AWS! for more information visit AWS' git*\n\n\nHow to use\n----------### Emotion Recognition Model\n\n\nAn online model can be found at huggingface spaces or as colab notebook\n\n\n<img src=\"URL width=\"300\" height=\"300\" />### For sentiment classification model (polarity ONLY):\n\n\n\n```\nfrom transformers import AutoTokenizer, AutoModel, pipeline\n\ntokenizer = AutoTokenizer.from_pretrained(\"avichr/heBERT_sentiment_analysis\") #same as 'avichr/heBERT' tokenizer\nmodel = AutoModel.from_pretrained(\"avichr/heBERT_sentiment_analysis\")"
] |
[
-0.05714952573180199,
0.11110629886388779,
-0.00238785264082253,
0.030166203156113625,
0.10004875808954239,
0.003578263334929943,
0.13375815749168396,
0.07131693512201309,
0.11786022782325745,
0.06436245143413544,
0.03026989847421646,
0.01848757639527321,
0.06968981772661209,
0.005771971307694912,
-0.04110298305749893,
-0.3015744984149933,
-0.037111446261405945,
0.038363151252269745,
0.19287624955177307,
0.10721689462661743,
0.0613904632627964,
-0.06863821297883987,
0.12464040517807007,
0.08453105390071869,
-0.10529478639364243,
0.016964741051197052,
-0.025218775495886803,
-0.0626642182469368,
0.071998730301857,
0.014943886548280716,
0.01185645256191492,
0.011508060619235039,
0.0592644177377224,
-0.2508513927459717,
0.015520672313869,
-0.012714093551039696,
0.027932919561862946,
0.09504154324531555,
0.11821948736906052,
-0.1255655139684677,
0.17186178267002106,
-0.05372054502367973,
0.06846633553504944,
0.03917394205927849,
-0.04998712241649628,
-0.14551544189453125,
-0.048287324607372284,
0.04706742241978645,
0.03753489628434181,
0.05281132459640503,
-0.045090626925230026,
0.21014092862606049,
-0.07574846595525742,
0.060586199164390564,
0.20933230221271515,
-0.12187093496322632,
-0.018357345834374428,
-0.02350684255361557,
-0.05073586851358414,
-0.002743202494457364,
-0.1504358947277069,
0.033678386360406876,
0.02144741266965866,
0.02178831584751606,
0.06206134334206581,
-0.025116538628935814,
0.04233046621084213,
-0.0010931285796687007,
-0.0852745994925499,
0.005963102448731661,
0.1210358738899231,
0.08719753473997116,
-0.031067829579114914,
-0.09670931845903397,
-0.020166272297501564,
-0.0705728679895401,
-0.029231471940875053,
-0.003114991122856736,
0.029646791517734528,
-0.021665174514055252,
-0.045085787773132324,
0.03772739693522453,
-0.12392906844615936,
0.04919584095478058,
-0.05435098707675934,
0.22750426828861237,
-0.07043153047561646,
0.03246469795703888,
0.056103311479091644,
0.020898159593343735,
-0.0989692211151123,
-0.11091220378875732,
-0.02067069336771965,
-0.06519303470849991,
0.009859486483037472,
-0.040591564029455185,
-0.07718770951032639,
-0.1263759881258011,
-0.04162575304508209,
0.023624904453754425,
0.015619133599102497,
0.03410203382372856,
0.023408962413668633,
-0.03583158552646637,
0.15798155963420868,
0.31907522678375244,
-0.041169192641973495,
0.008635057136416435,
-0.008613990619778633,
0.016303490847349167,
0.0389983132481575,
-0.019488299265503883,
-0.06948169320821762,
0.032966889441013336,
0.06531037390232086,
-0.05796249210834503,
-0.16131705045700073,
0.11433148384094238,
-0.14055339992046356,
-0.03655851632356644,
-0.029600918292999268,
-0.06053897365927696,
0.0653640404343605,
0.0642823800444603,
-0.022201981395483017,
0.2159423679113388,
0.03275194391608238,
-0.011150185950100422,
-0.004169536754488945,
0.09930907934904099,
-0.02696658857166767,
0.039299581199884415,
-0.030739840120077133,
-0.0962187647819519,
0.03825491666793823,
0.007158012595027685,
0.06093386560678482,
-0.13912837207317352,
-0.08478449285030365,
-0.015799932181835175,
0.03411271795630455,
-0.0707305371761322,
0.07326676696538925,
-0.054602112621068954,
0.058576617389917374,
0.02969813160598278,
0.03265715017914772,
-0.10108142346143723,
-0.017265543341636658,
-0.03607228398323059,
0.04076690971851349,
0.1539379060268402,
0.04533466324210167,
0.0230806116014719,
-0.20417210459709167,
-0.03615845739841461,
-0.1490575224161148,
0.10328312963247299,
-0.12945491075515747,
0.15024657547473907,
-0.05657362937927246,
-0.04148262366652489,
0.09579368680715561,
-0.009971863590180874,
0.012130624614655972,
0.18902716040611267,
-0.16440202295780182,
-0.1270899623632431,
0.06938919425010681,
-0.08679357171058655,
-0.019908828660845757,
0.15028038620948792,
-0.034142956137657166,
0.07786925882101059,
0.09523604810237885,
0.21709021925926208,
-0.017264416441321373,
-0.11219816654920578,
-0.037877555936574936,
0.09571424126625061,
0.00066460354719311,
0.13471102714538574,
-0.00034640979720279574,
0.06600665301084518,
-0.07069630175828934,
0.06097520887851715,
0.02401112951338291,
0.05582548677921295,
-0.04916468635201454,
-0.04400520399212837,
-0.004304068628698587,
-0.011916105635464191,
0.033191993832588196,
0.028248287737369537,
0.03283471614122391,
-0.06851252913475037,
-0.07446593791246414,
-0.09948024898767471,
0.03688353672623634,
-0.060179587453603745,
0.03121056593954563,
-0.09216148406267166,
0.07842104136943817,
-0.009014283306896687,
0.012966523878276348,
-0.15300238132476807,
0.11455217003822327,
0.02898498810827732,
-0.031007423996925354,
0.04860084876418114,
0.003194626187905669,
0.058442048728466034,
0.0035918070934712887,
0.03371811658143997,
-0.022975008934736252,
0.07020119577646255,
0.04990507289767265,
-0.04215923696756363,
-0.19277051091194153,
0.005603697616606951,
-0.07316403836011887,
0.14732982218265533,
-0.04899526759982109,
-0.002847484312951565,
0.12890982627868652,
0.061536405235528946,
0.03104916773736477,
0.0002760096685960889,
0.02417522482573986,
-0.012345975264906883,
-0.04362119361758232,
-0.03069707378745079,
0.025879116728901863,
0.018307628110051155,
-0.13139156997203827,
0.08631858974695206,
-0.05442635715007782,
-0.02765212580561638,
0.14489158987998962,
-0.06336673349142075,
-0.1034504622220993,
-0.08824540674686432,
-0.008060231804847717,
0.06989827752113342,
0.007297232747077942,
0.03362454101443291,
0.19085641205310822,
0.07332015782594681,
0.06556550413370132,
-0.00957244262099266,
0.030255312100052834,
0.025312067940831184,
-0.13725502789020538,
-0.041280362755060196,
0.09148289263248444,
-0.10350339114665985,
-0.13187247514724731,
0.07460962980985641,
0.15447017550468445,
-0.03210891783237457,
0.1007431223988533,
0.02485879510641098,
-0.03865909203886986,
-0.05131882429122925,
-0.12463521957397461,
-0.04318670555949211,
0.03614585101604462,
-0.11165683716535568,
-0.06405649334192276,
0.03404178470373154,
-0.10538577288389206,
-0.08078263700008392,
-0.09100288152694702,
0.01572766713798046,
0.10150313377380371,
0.062242161482572556,
0.00006127321830717847,
0.015162918716669083,
0.0011884834384545684,
0.06380827724933624,
0.02307678945362568,
0.0001299414288951084,
-0.04117754474282265,
-0.008884834125638008,
-0.10097693651914597,
0.14696277678012848,
-0.11139912903308868,
-0.2494504451751709,
-0.060597844421863556,
-0.08913914114236832,
-0.0721609815955162,
0.048158369958400726,
0.016501890495419502,
-0.22097724676132202,
-0.12226349860429764,
-0.09853415191173553,
0.07074825465679169,
0.11512831598520279,
-0.009843975305557251,
0.036244362592697144,
-0.07569064944982529,
-0.011033756658434868,
-0.08385533839464188,
-0.03435356169939041,
-0.07314208894968033,
0.04282936453819275,
0.10121342539787292,
-0.01960579678416252,
0.06711738556623459,
0.124812550842762,
-0.020396782085299492,
0.03894612565636635,
-0.008883945643901825,
0.1831986904144287,
-0.04651079326868057,
-0.04051648825407028,
0.021148860454559326,
-0.03832155466079712,
0.07234557718038559,
0.09328436851501465,
0.07717116177082062,
-0.06812035292387009,
0.013046244159340858,
0.017308952286839485,
-0.030889468267560005,
-0.10171978920698166,
-0.08448684215545654,
0.01806516759097576,
0.060829732567071915,
0.041249919682741165,
-0.02308112382888794,
0.017580939456820488,
0.08620613813400269,
0.027402451261878014,
-0.04862137883901596,
-0.08799982070922852,
0.1348295509815216,
0.15897208452224731,
-0.04597923532128334,
0.006312469951808453,
-0.002093250397592783,
-0.07156861573457718,
0.1391761600971222,
-0.02606562152504921,
0.03905526548624039,
-0.006347245536744595,
0.13306619226932526,
-0.06507845222949982,
0.10127142816781998,
0.05916126072406769,
0.11035788804292679,
-0.056689176708459854,
-0.04411059617996216,
-0.05994047597050667,
-0.05087381973862648,
-0.11436105519533157,
0.11330374330282211,
-0.0066363574005663395,
0.05523999035358429,
-0.05022811517119408,
-0.051965054124593735,
0.1077115535736084,
0.22793975472450256,
0.0591561533510685,
-0.25323981046676636,
-0.0686786025762558,
0.009947765618562698,
-0.007084956858307123,
-0.0025991182774305344,
-0.01752382703125477,
-0.03765197843313217,
-0.07935363054275513,
0.12352833151817322,
-0.044781215488910675,
0.04465048760175705,
-0.13828526437282562,
0.08113045990467072,
-0.0637948140501976,
0.0654272511601448,
-0.028730688616633415,
0.052809033542871475,
-0.11454065144062042,
0.17555560171604156,
0.04587596282362938,
-0.057071104645729065,
-0.08517764508724213,
-0.016935739666223526,
0.10902922600507736,
0.11880172789096832,
0.07715781778097153,
0.01460183970630169,
0.09450516104698181,
-0.18441644310951233,
-0.05594347044825554,
0.020573992282152176,
0.05104583501815796,
-0.05053224787116051,
0.047349609434604645,
0.000524677918292582,
-0.033798713237047195,
-0.009068838320672512,
0.036170314997434616,
-0.08415994793176651,
-0.1429595649242401,
0.012065151706337929,
0.0094917519018054,
0.010294497013092041,
0.03689603880047798,
-0.12225450575351715,
-0.05125316604971886,
0.16116246581077576,
0.1477653831243515,
-0.028124691918492317,
-0.1124531552195549,
0.09252732992172241,
-0.024481387808918953,
-0.05152057111263275,
-0.08866789191961288,
-0.039120689034461975,
0.16852989792823792,
-0.019151227548718452,
-0.12278773635625839,
0.11279238015413284,
-0.05016443133354187,
-0.05057869479060173,
-0.04117446392774582,
0.035293202847242355,
0.061951201409101486,
0.02523101679980755,
0.038087598979473114,
-0.02076493203639984,
-0.07539035379886627,
-0.10231488943099976,
0.08803560584783554,
0.13238798081874847,
-0.11072815954685211,
0.03893778845667839,
0.039849523454904556,
-0.10440170019865036,
-0.09982553124427795,
0.03690626472234726,
0.10076136887073517,
0.14097817242145538,
-0.03923410922288895,
0.039919182658195496,
0.1715613752603531,
-0.024582477286458015,
-0.18060359358787537,
0.04535749554634094,
0.037998098880052567,
0.01002370472997427,
0.1293017417192459,
-0.09022380411624908,
0.08750459551811218,
-0.0768595039844513,
0.027244605123996735,
-0.11704404652118683,
0.06953798234462738,
-0.06516306847333908,
0.19453643262386322,
0.08216002583503723,
0.07716286927461624,
-0.044351931661367416,
-0.021396581083536148,
-0.06242620199918747,
-0.042115986347198486,
0.17284613847732544,
0.003747866954654455,
0.032461341470479965,
0.008940202184021473,
0.27116674184799194,
0.08280275017023087,
-0.0007950533763505518,
0.07650277763605118,
0.007533969823271036,
0.05447465181350708,
-0.08042380958795547,
0.02754669263958931,
-0.007192419841885567,
-0.025037283077836037,
0.11652127653360367,
-0.09047596901655197,
-0.007830829359591007,
-0.07360092550516129,
-0.03963785618543625,
-0.07356758415699005,
0.03318201005458832,
-0.0026184776797890663,
-0.048998430371284485,
-0.04957396537065506,
0.027963820844888687,
0.0805455893278122,
-0.0510936975479126,
-0.01943330466747284,
-0.035153359174728394,
-0.05594256892800331,
0.23936344683170319,
0.11700337380170822,
-0.02597968466579914,
0.0027199676260352135,
0.016878642141819,
-0.02270723134279251,
0.09989113360643387,
-0.15558630228042603,
0.01254607830196619,
0.05776435136795044,
0.009916920214891434,
0.12556415796279907,
0.008287526667118073,
-0.14069601893424988,
-0.009617261588573456,
0.035642024129629135,
-0.1751815229654312,
-0.030494876205921173,
-0.07503741979598999,
0.049276817589998245,
-0.007170799653977156,
0.006274781655520201,
0.08347580581903458,
-0.07152559608221054,
-0.049931809306144714,
-0.013694355264306068,
0.025345539674162865,
-0.00146165129262954,
-0.0037304325960576534,
-0.045028358697891235,
-0.030609458684921265,
-0.10929816961288452,
-0.02132885903120041,
-0.04100256785750389,
-0.21921983361244202,
0.056166499853134155,
0.06079370528459549,
-0.08246426284313202,
-0.0582834929227829,
0.01936364732682705,
0.29404497146606445,
-0.19307325780391693,
0.02806824818253517,
-0.023906415328383446,
-0.1544886976480484,
-0.022258248180150986,
0.12467177212238312,
0.0954456776380539,
-0.024593379348516464,
-0.1404363214969635,
0.030229542404413223,
-0.02304587885737419,
0.05352003872394562,
0.11052357405424118,
0.004536626860499382,
-0.04704723507165909,
-0.109016053378582,
-0.02120431698858738,
0.013693992048501968,
-0.04667602479457855,
-0.06183773651719093,
-0.07825471460819244,
-0.06904077529907227,
-0.16406649351119995,
-0.012542525306344032,
-0.058146119117736816,
0.07372001558542252,
0.03943605720996857,
0.012213186360895634,
0.06527350097894669,
-0.05074858292937279,
-0.08607477694749832,
0.03815251961350441,
0.022185711190104485,
0.04954727366566658,
-0.070380300283432,
-0.03450341150164604,
0.02945481613278389,
-0.06861342489719391,
0.11098408699035645,
0.061547379940748215,
-0.02315688692033291,
0.05119814723730087,
-0.26901325583457947,
-0.016146553680300713,
0.13711871206760406,
-0.017868056893348694,
0.08060342073440552,
-0.0436381958425045,
-0.016930535435676575,
-0.001965900883078575,
0.015276946127414703,
-0.028847308829426765,
0.1873612403869629,
-0.022948987782001495,
0.09007275849580765,
0.09213138371706009,
-0.08143895864486694,
-0.11221106350421906,
0.019573362544178963,
0.051669321954250336,
0.05131275951862335,
0.12979060411453247,
-0.08743323385715485,
0.05484622344374657,
-0.10270662605762482,
0.010318927466869354,
0.041053082793951035,
-0.061184365302324295,
-0.2136709839105606,
-0.07355303317308426,
0.042940039187669754,
0.007196575403213501,
0.1701645702123642,
0.10899233818054199,
0.08643944561481476,
-0.016447652131319046,
0.16549858450889587,
0.006999568082392216,
-0.005511309020221233,
-0.01422320306301117,
0.032809603959321976,
-0.02959870919585228,
-0.007119777612388134,
0.04312361404299736,
0.07987532764673233,
-0.012161395512521267,
0.010204288177192211,
-0.0335565023124218,
0.05100620910525322,
0.09639780223369598,
0.023876283317804337,
0.09755061566829681,
-0.04609459638595581,
-0.08771442621946335,
-0.06932084262371063,
0.13955934345722198,
-0.03112935833632946,
0.1943405419588089,
0.03199787065386772,
-0.03606764227151871,
0.06716026365756989,
-0.05042349919676781,
-0.06837238371372223,
-0.08097920566797256,
-0.2751479148864746,
-0.06441842764616013,
-0.1637800633907318,
0.03565886244177818,
-0.12541979551315308,
0.028453387320041656,
-0.09813910722732544,
0.05151082202792168,
-0.06654627621173859,
0.056864168494939804,
-0.052406154572963715,
-0.07657787948846817,
0.17868627607822418,
0.009532692842185497,
-0.13943123817443848,
-0.021790076047182083,
0.013793445192277431,
-0.000810281082522124,
0.08483269065618515,
0.041173480451107025,
0.035394493490457535,
-0.019902225583791733,
0.012312018312513828,
-0.0765467956662178,
-0.14773209393024445,
-0.01742302067577839,
-0.052873291075229645,
-0.017484722658991814,
0.04266820102930069,
-0.032132044434547424,
0.0044807312078773975,
-0.0359954871237278,
0.10159332305192947,
-0.09986559301614761,
0.14437665045261383,
-0.12288777530193329,
0.20122291147708893,
-0.1286548525094986,
0.07292997092008591,
-0.015683883801102638,
-0.08267943561077118,
-0.0734853446483612,
0.18168962001800537,
0.08860146254301071,
-0.07054264098405838,
0.0027478784322738647,
-0.10764849185943604,
0.03241332992911339,
-0.061920929700136185,
0.03431762754917145,
0.05082819238305092,
-0.04148537293076515,
-0.07966078072786331,
0.1485104113817215,
-0.04795806109905243,
-0.11011204123497009,
0.02085161954164505,
-0.006817598827183247,
0.08358749747276306,
0.0012338570086285472,
-0.11302261054515839,
0.0686025395989418,
-0.09359396249055862,
-0.11624788492918015,
0.1153474897146225,
-0.11182571947574615,
-0.040194373577833176,
-0.015919415280222893,
0.0893755778670311,
0.14065919816493988,
0.11308817565441132,
0.009414928033947945,
-0.017739620059728622,
0.18110695481300354,
-0.005285756662487984,
-0.14209416508674622,
-0.04643199220299721,
0.13129884004592896,
-0.25397053360939026,
0.03385443612933159,
0.0009518279111944139,
0.003355909138917923,
0.07944285124540329,
0.040329668670892715,
-0.05282524600625038,
0.04989849403500557,
-0.0058122784830629826,
-0.1550990641117096,
-0.02997083030641079,
0.19420774281024933,
0.0075323390774428844,
0.04222850874066353,
-0.002144339494407177,
-0.24399468302726746,
0.03491741046309471,
-0.071846142411232,
-0.01814817450940609,
-0.04334733262658119,
0.04876234382390976,
-0.06094012409448624,
0.0943102166056633,
0.15767870843410492,
-0.016167979687452316,
-0.039723772555589676,
-0.057374801486730576,
-0.015983272343873978,
-0.0038007053080946207,
-0.11902210861444473,
0.017769096419215202,
-0.06841042637825012,
-0.022728830575942993,
0.17090682685375214,
0.02467295154929161,
-0.21318630874156952,
-0.03698364645242691,
-0.050419002771377563,
0.016850251704454422,
-0.010066967457532883,
0.07579634338617325,
0.03157433494925499,
0.06591060012578964,
0.0022785367909818888,
-0.18926464021205902,
0.08003178238868713,
0.10619169473648071,
-0.034325167536735535,
-0.03357170522212982
] |
null | null |
transformers
|
# HebEMO - Emotion Recognition Model for Modern Hebrew
<img align="right" src="https://github.com/avichaychriqui/HeBERT/blob/main/data/heBERT_logo.png?raw=true" width="250">
HebEMO is a tool that detects polarity and extracts emotions from modern Hebrew User-Generated Content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated.
HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification.
Emotion detection reached an F1-score of 0.78-0.97, with the exception of *surprise*, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even when compared to the English language.
## Emotion UGC Data Description
Our UGC data includes comments posted on news articles collected from 3 major Israeli news sites, between January 2020 to August 2020. The total size of the data is ~150 MB, including over 7 million words and 350K sentences.
~2000 sentences were annotated by crowd members (3-10 annotators per sentence) for overall sentiment (polarity) and [eight emotions](https://en.wikipedia.org/wiki/Robert_Plutchik#Plutchik's_wheel_of_emotions): anger, disgust, anticipation , fear, joy, sadness, surprise and trust.
The percentage of sentences in which each emotion appeared is found in the table below.
| | anger | disgust | expectation | fear | happy | sadness | surprise | trust | sentiment |
|------:|------:|--------:|------------:|-----:|------:|--------:|---------:|------:|-----------|
| **ratio** | 0.78 | 0.83 | 0.58 | 0.45 | 0.12 | 0.59 | 0.17 | 0.11 | 0.25 |
## Performance
### Emotion Recognition
| emotion | f1-score | precision | recall |
|-------------|----------|-----------|----------|
| anger | 0.96 | 0.99 | 0.93 |
| disgust | 0.97 | 0.98 | 0.96 |
|anticipation | 0.82 | 0.80 | 0.87 |
| fear | 0.79 | 0.88 | 0.72 |
| joy | 0.90 | 0.97 | 0.84 |
| sadness | 0.90 | 0.86 | 0.94 |
| surprise | 0.40 | 0.44 | 0.37 |
| trust | 0.83 | 0.86 | 0.80 |
*The above metrics is for positive class (meaning, the emotion is reflected in the text).*
### Sentiment (Polarity) Analysis
| | precision | recall | f1-score |
|--------------|-----------|--------|----------|
| neutral | 0.83 | 0.56 | 0.67 |
| positive | 0.96 | 0.92 | 0.94 |
| negative | 0.97 | 0.99 | 0.98 |
| accuracy | | | 0.97 |
| macro avg | 0.92 | 0.82 | 0.86 |
| weighted avg | 0.96 | 0.97 | 0.96 |
*Sentiment (polarity) analysis model is also available on AWS! for more information visit [AWS' git](https://github.com/aws-samples/aws-lambda-docker-serverless-inference/tree/main/hebert-sentiment-analysis-inference-docker-lambda)*
## How to use
### Emotion Recognition Model
An online model can be found at [huggingface spaces](https://huggingface.co/spaces/avichr/HebEMO_demo) or as [colab notebook](https://colab.research.google.com/drive/1Jw3gOWjwVMcZslu-ttXoNeD17lms1-ff?usp=sharing)
```
# !pip install pyplutchik==0.0.7
# !pip install transformers==4.14.1
!git clone https://github.com/avichaychriqui/HeBERT.git
from HeBERT.src.HebEMO import *
HebEMO_model = HebEMO()
HebEMO_model.hebemo(input_path = 'data/text_example.txt')
# return analyzed pandas.DataFrame
hebEMO_df = HebEMO_model.hebemo(text='ืืืืื ืืคืื ืืืืืฉืจืื', plot=True)
```
<img src="https://github.com/avichaychriqui/HeBERT/blob/main/data/hebEMO1.png?raw=true" width="300" height="300" />
### For sentiment classification model (polarity ONLY):
from transformers import AutoTokenizer, AutoModel, pipeline
tokenizer = AutoTokenizer.from_pretrained("avichr/heBERT_sentiment_analysis") #same as 'avichr/heBERT' tokenizer
model = AutoModel.from_pretrained("avichr/heBERT_sentiment_analysis")
# how to use?
sentiment_analysis = pipeline(
"sentiment-analysis",
model="avichr/heBERT_sentiment_analysis",
tokenizer="avichr/heBERT_sentiment_analysis",
return_all_scores = True
)
sentiment_analysis('ืื ื ืืชืืื ืื ืืืืื ืืืจืืืช ืฆืืจืืื')
>>> [[{'label': 'neutral', 'score': 0.9978172183036804},
>>> {'label': 'positive', 'score': 0.0014792329166084528},
>>> {'label': 'negative', 'score': 0.0007035882445052266}]]
sentiment_analysis('ืงืคื ืื ืืขืื')
>>> [[{'label': 'neutral', 'score': 0.00047328314394690096},
>>> {'label': 'possitive', 'score': 0.9994067549705505},
>>> {'label': 'negetive', 'score': 0.00011996887042187154}]]
sentiment_analysis('ืื ื ืื ืืืื ืืช ืืขืืื')
>>> [[{'label': 'neutral', 'score': 9.214012970915064e-05},
>>> {'label': 'possitive', 'score': 8.876807987689972e-05},
>>> {'label': 'negetive', 'score': 0.9998190999031067}]]
## Contact us
[Avichay Chriqui](mailto:[email protected]) <br>
[Inbal yahav](mailto:[email protected]) <br>
The Coller Semitic Languages AI Lab <br>
Thank you, ืชืืื, ุดูุฑุง <br>
## If you used this model please cite us as :
Chriqui, A., & Yahav, I. (2022). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. INFORMS Journal on Data Science, forthcoming.
```
@article{chriqui2021hebert,
title={HeBERT \& HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition},
author={Chriqui, Avihay and Yahav, Inbal},
journal={INFORMS Journal on Data Science},
year={2022}
}
```
|
{}
|
text-classification
|
avichr/hebEMO_anticipation
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[] |
TAGS
#transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us
|
HebEMO - Emotion Recognition Model for Modern Hebrew
====================================================
<img align="right" src="URL width="250">
HebEMO is a tool that detects polarity and extracts emotions from modern Hebrew User-Generated Content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated.
HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification.
Emotion detection reached an F1-score of 0.78-0.97, with the exception of *surprise*, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even when compared to the English language.
Emotion UGC Data Description
----------------------------
Our UGC data includes comments posted on news articles collected from 3 major Israeli news sites, between January 2020 to August 2020. The total size of the data is ~150 MB, including over 7 million words and 350K sentences.
~2000 sentences were annotated by crowd members (3-10 annotators per sentence) for overall sentiment (polarity) and eight emotions: anger, disgust, anticipation , fear, joy, sadness, surprise and trust.
The percentage of sentences in which each emotion appeared is found in the table below.
Performance
-----------
### Emotion Recognition
*The above metrics is for positive class (meaning, the emotion is reflected in the text).*
### Sentiment (Polarity) Analysis
*Sentiment (polarity) analysis model is also available on AWS! for more information visit AWS' git*
How to use
----------
### Emotion Recognition Model
An online model can be found at huggingface spaces or as colab notebook
<img src="URL width="300" height="300" />
### For sentiment classification model (polarity ONLY):
```
from transformers import AutoTokenizer, AutoModel, pipeline
tokenizer = AutoTokenizer.from_pretrained("avichr/heBERT_sentiment_analysis") #same as 'avichr/heBERT' tokenizer
model = AutoModel.from_pretrained("avichr/heBERT_sentiment_analysis")
# how to use?
sentiment_analysis = pipeline(
"sentiment-analysis",
model="avichr/heBERT_sentiment_analysis",
tokenizer="avichr/heBERT_sentiment_analysis",
return_all_scores = True
)
sentiment_analysis('ืื ื ืืชืืื ืื ืืืืื ืืืจืืืช ืฆืืจืืื')
>>> [[{'label': 'neutral', 'score': 0.9978172183036804},
>>> {'label': 'positive', 'score': 0.0014792329166084528},
>>> {'label': 'negative', 'score': 0.0007035882445052266}]]
sentiment_analysis('ืงืคื ืื ืืขืื')
>>> [[{'label': 'neutral', 'score': 0.00047328314394690096},
>>> {'label': 'possitive', 'score': 0.9994067549705505},
>>> {'label': 'negetive', 'score': 0.00011996887042187154}]]
sentiment_analysis('ืื ื ืื ืืืื ืืช ืืขืืื')
>>> [[{'label': 'neutral', 'score': 9.214012970915064e-05},
>>> {'label': 'possitive', 'score': 8.876807987689972e-05},
>>> {'label': 'negetive', 'score': 0.9998190999031067}]]
```
Contact us
----------
Avichay Chriqui
Inbal yahav
The Coller Semitic Languages AI Lab
Thank you, ืชืืื, ุดูุฑุง
If you used this model please cite us as :
------------------------------------------
Chriqui, A., & Yahav, I. (2022). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. INFORMS Journal on Data Science, forthcoming.
|
[
"### Emotion Recognition\n\n\n\n*The above metrics is for positive class (meaning, the emotion is reflected in the text).*",
"### Sentiment (Polarity) Analysis\n\n\n\n*Sentiment (polarity) analysis model is also available on AWS! for more information visit AWS' git*\n\n\nHow to use\n----------",
"### Emotion Recognition Model\n\n\nAn online model can be found at huggingface spaces or as colab notebook\n\n\n<img src=\"URL width=\"300\" height=\"300\" />",
"### For sentiment classification model (polarity ONLY):\n\n\n\n```\nfrom transformers import AutoTokenizer, AutoModel, pipeline\n\ntokenizer = AutoTokenizer.from_pretrained(\"avichr/heBERT_sentiment_analysis\") #same as 'avichr/heBERT' tokenizer\nmodel = AutoModel.from_pretrained(\"avichr/heBERT_sentiment_analysis\")",
"# how to use?\nsentiment_analysis = pipeline(\n \"sentiment-analysis\",\n model=\"avichr/heBERT_sentiment_analysis\",\n tokenizer=\"avichr/heBERT_sentiment_analysis\",\n return_all_scores = True\n)\n\nsentiment_analysis('ืื ื ืืชืืื ืื ืืืืื ืืืจืืืช ืฆืืจืืื')\t\n>>> [[{'label': 'neutral', 'score': 0.9978172183036804},\n>>> {'label': 'positive', 'score': 0.0014792329166084528},\n>>> {'label': 'negative', 'score': 0.0007035882445052266}]]\n\nsentiment_analysis('ืงืคื ืื ืืขืื')\n>>> [[{'label': 'neutral', 'score': 0.00047328314394690096},\n>>> {'label': 'possitive', 'score': 0.9994067549705505},\n>>> {'label': 'negetive', 'score': 0.00011996887042187154}]]\n\nsentiment_analysis('ืื ื ืื ืืืื ืืช ืืขืืื')\n>>> [[{'label': 'neutral', 'score': 9.214012970915064e-05}, \n>>> {'label': 'possitive', 'score': 8.876807987689972e-05}, \n>>> {'label': 'negetive', 'score': 0.9998190999031067}]]\n\n```\n\nContact us\n----------\n\n\nAvichay Chriqui \n\nInbal yahav \n\nThe Coller Semitic Languages AI Lab \n\nThank you, ืชืืื, ุดูุฑุง \n\n\n\nIf you used this model please cite us as :\n------------------------------------------\n\n\nChriqui, A., & Yahav, I. (2022). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. INFORMS Journal on Data Science, forthcoming."
] |
[
"TAGS\n#transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n",
"### Emotion Recognition\n\n\n\n*The above metrics is for positive class (meaning, the emotion is reflected in the text).*",
"### Sentiment (Polarity) Analysis\n\n\n\n*Sentiment (polarity) analysis model is also available on AWS! for more information visit AWS' git*\n\n\nHow to use\n----------",
"### Emotion Recognition Model\n\n\nAn online model can be found at huggingface spaces or as colab notebook\n\n\n<img src=\"URL width=\"300\" height=\"300\" />",
"### For sentiment classification model (polarity ONLY):\n\n\n\n```\nfrom transformers import AutoTokenizer, AutoModel, pipeline\n\ntokenizer = AutoTokenizer.from_pretrained(\"avichr/heBERT_sentiment_analysis\") #same as 'avichr/heBERT' tokenizer\nmodel = AutoModel.from_pretrained(\"avichr/heBERT_sentiment_analysis\")",
"# how to use?\nsentiment_analysis = pipeline(\n \"sentiment-analysis\",\n model=\"avichr/heBERT_sentiment_analysis\",\n tokenizer=\"avichr/heBERT_sentiment_analysis\",\n return_all_scores = True\n)\n\nsentiment_analysis('ืื ื ืืชืืื ืื ืืืืื ืืืจืืืช ืฆืืจืืื')\t\n>>> [[{'label': 'neutral', 'score': 0.9978172183036804},\n>>> {'label': 'positive', 'score': 0.0014792329166084528},\n>>> {'label': 'negative', 'score': 0.0007035882445052266}]]\n\nsentiment_analysis('ืงืคื ืื ืืขืื')\n>>> [[{'label': 'neutral', 'score': 0.00047328314394690096},\n>>> {'label': 'possitive', 'score': 0.9994067549705505},\n>>> {'label': 'negetive', 'score': 0.00011996887042187154}]]\n\nsentiment_analysis('ืื ื ืื ืืืื ืืช ืืขืืื')\n>>> [[{'label': 'neutral', 'score': 9.214012970915064e-05}, \n>>> {'label': 'possitive', 'score': 8.876807987689972e-05}, \n>>> {'label': 'negetive', 'score': 0.9998190999031067}]]\n\n```\n\nContact us\n----------\n\n\nAvichay Chriqui \n\nInbal yahav \n\nThe Coller Semitic Languages AI Lab \n\nThank you, ืชืืื, ุดูุฑุง \n\n\n\nIf you used this model please cite us as :\n------------------------------------------\n\n\nChriqui, A., & Yahav, I. (2022). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. INFORMS Journal on Data Science, forthcoming."
] |
[
36,
30,
43,
42,
101,
454
] |
[
"passage: TAGS\n#transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n### Emotion Recognition\n\n\n\n*The above metrics is for positive class (meaning, the emotion is reflected in the text).*### Sentiment (Polarity) Analysis\n\n\n\n*Sentiment (polarity) analysis model is also available on AWS! for more information visit AWS' git*\n\n\nHow to use\n----------### Emotion Recognition Model\n\n\nAn online model can be found at huggingface spaces or as colab notebook\n\n\n<img src=\"URL width=\"300\" height=\"300\" />### For sentiment classification model (polarity ONLY):\n\n\n\n```\nfrom transformers import AutoTokenizer, AutoModel, pipeline\n\ntokenizer = AutoTokenizer.from_pretrained(\"avichr/heBERT_sentiment_analysis\") #same as 'avichr/heBERT' tokenizer\nmodel = AutoModel.from_pretrained(\"avichr/heBERT_sentiment_analysis\")"
] |
[
-0.05714952573180199,
0.11110629886388779,
-0.00238785264082253,
0.030166203156113625,
0.10004875808954239,
0.003578263334929943,
0.13375815749168396,
0.07131693512201309,
0.11786022782325745,
0.06436245143413544,
0.03026989847421646,
0.01848757639527321,
0.06968981772661209,
0.005771971307694912,
-0.04110298305749893,
-0.3015744984149933,
-0.037111446261405945,
0.038363151252269745,
0.19287624955177307,
0.10721689462661743,
0.0613904632627964,
-0.06863821297883987,
0.12464040517807007,
0.08453105390071869,
-0.10529478639364243,
0.016964741051197052,
-0.025218775495886803,
-0.0626642182469368,
0.071998730301857,
0.014943886548280716,
0.01185645256191492,
0.011508060619235039,
0.0592644177377224,
-0.2508513927459717,
0.015520672313869,
-0.012714093551039696,
0.027932919561862946,
0.09504154324531555,
0.11821948736906052,
-0.1255655139684677,
0.17186178267002106,
-0.05372054502367973,
0.06846633553504944,
0.03917394205927849,
-0.04998712241649628,
-0.14551544189453125,
-0.048287324607372284,
0.04706742241978645,
0.03753489628434181,
0.05281132459640503,
-0.045090626925230026,
0.21014092862606049,
-0.07574846595525742,
0.060586199164390564,
0.20933230221271515,
-0.12187093496322632,
-0.018357345834374428,
-0.02350684255361557,
-0.05073586851358414,
-0.002743202494457364,
-0.1504358947277069,
0.033678386360406876,
0.02144741266965866,
0.02178831584751606,
0.06206134334206581,
-0.025116538628935814,
0.04233046621084213,
-0.0010931285796687007,
-0.0852745994925499,
0.005963102448731661,
0.1210358738899231,
0.08719753473997116,
-0.031067829579114914,
-0.09670931845903397,
-0.020166272297501564,
-0.0705728679895401,
-0.029231471940875053,
-0.003114991122856736,
0.029646791517734528,
-0.021665174514055252,
-0.045085787773132324,
0.03772739693522453,
-0.12392906844615936,
0.04919584095478058,
-0.05435098707675934,
0.22750426828861237,
-0.07043153047561646,
0.03246469795703888,
0.056103311479091644,
0.020898159593343735,
-0.0989692211151123,
-0.11091220378875732,
-0.02067069336771965,
-0.06519303470849991,
0.009859486483037472,
-0.040591564029455185,
-0.07718770951032639,
-0.1263759881258011,
-0.04162575304508209,
0.023624904453754425,
0.015619133599102497,
0.03410203382372856,
0.023408962413668633,
-0.03583158552646637,
0.15798155963420868,
0.31907522678375244,
-0.041169192641973495,
0.008635057136416435,
-0.008613990619778633,
0.016303490847349167,
0.0389983132481575,
-0.019488299265503883,
-0.06948169320821762,
0.032966889441013336,
0.06531037390232086,
-0.05796249210834503,
-0.16131705045700073,
0.11433148384094238,
-0.14055339992046356,
-0.03655851632356644,
-0.029600918292999268,
-0.06053897365927696,
0.0653640404343605,
0.0642823800444603,
-0.022201981395483017,
0.2159423679113388,
0.03275194391608238,
-0.011150185950100422,
-0.004169536754488945,
0.09930907934904099,
-0.02696658857166767,
0.039299581199884415,
-0.030739840120077133,
-0.0962187647819519,
0.03825491666793823,
0.007158012595027685,
0.06093386560678482,
-0.13912837207317352,
-0.08478449285030365,
-0.015799932181835175,
0.03411271795630455,
-0.0707305371761322,
0.07326676696538925,
-0.054602112621068954,
0.058576617389917374,
0.02969813160598278,
0.03265715017914772,
-0.10108142346143723,
-0.017265543341636658,
-0.03607228398323059,
0.04076690971851349,
0.1539379060268402,
0.04533466324210167,
0.0230806116014719,
-0.20417210459709167,
-0.03615845739841461,
-0.1490575224161148,
0.10328312963247299,
-0.12945491075515747,
0.15024657547473907,
-0.05657362937927246,
-0.04148262366652489,
0.09579368680715561,
-0.009971863590180874,
0.012130624614655972,
0.18902716040611267,
-0.16440202295780182,
-0.1270899623632431,
0.06938919425010681,
-0.08679357171058655,
-0.019908828660845757,
0.15028038620948792,
-0.034142956137657166,
0.07786925882101059,
0.09523604810237885,
0.21709021925926208,
-0.017264416441321373,
-0.11219816654920578,
-0.037877555936574936,
0.09571424126625061,
0.00066460354719311,
0.13471102714538574,
-0.00034640979720279574,
0.06600665301084518,
-0.07069630175828934,
0.06097520887851715,
0.02401112951338291,
0.05582548677921295,
-0.04916468635201454,
-0.04400520399212837,
-0.004304068628698587,
-0.011916105635464191,
0.033191993832588196,
0.028248287737369537,
0.03283471614122391,
-0.06851252913475037,
-0.07446593791246414,
-0.09948024898767471,
0.03688353672623634,
-0.060179587453603745,
0.03121056593954563,
-0.09216148406267166,
0.07842104136943817,
-0.009014283306896687,
0.012966523878276348,
-0.15300238132476807,
0.11455217003822327,
0.02898498810827732,
-0.031007423996925354,
0.04860084876418114,
0.003194626187905669,
0.058442048728466034,
0.0035918070934712887,
0.03371811658143997,
-0.022975008934736252,
0.07020119577646255,
0.04990507289767265,
-0.04215923696756363,
-0.19277051091194153,
0.005603697616606951,
-0.07316403836011887,
0.14732982218265533,
-0.04899526759982109,
-0.002847484312951565,
0.12890982627868652,
0.061536405235528946,
0.03104916773736477,
0.0002760096685960889,
0.02417522482573986,
-0.012345975264906883,
-0.04362119361758232,
-0.03069707378745079,
0.025879116728901863,
0.018307628110051155,
-0.13139156997203827,
0.08631858974695206,
-0.05442635715007782,
-0.02765212580561638,
0.14489158987998962,
-0.06336673349142075,
-0.1034504622220993,
-0.08824540674686432,
-0.008060231804847717,
0.06989827752113342,
0.007297232747077942,
0.03362454101443291,
0.19085641205310822,
0.07332015782594681,
0.06556550413370132,
-0.00957244262099266,
0.030255312100052834,
0.025312067940831184,
-0.13725502789020538,
-0.041280362755060196,
0.09148289263248444,
-0.10350339114665985,
-0.13187247514724731,
0.07460962980985641,
0.15447017550468445,
-0.03210891783237457,
0.1007431223988533,
0.02485879510641098,
-0.03865909203886986,
-0.05131882429122925,
-0.12463521957397461,
-0.04318670555949211,
0.03614585101604462,
-0.11165683716535568,
-0.06405649334192276,
0.03404178470373154,
-0.10538577288389206,
-0.08078263700008392,
-0.09100288152694702,
0.01572766713798046,
0.10150313377380371,
0.062242161482572556,
0.00006127321830717847,
0.015162918716669083,
0.0011884834384545684,
0.06380827724933624,
0.02307678945362568,
0.0001299414288951084,
-0.04117754474282265,
-0.008884834125638008,
-0.10097693651914597,
0.14696277678012848,
-0.11139912903308868,
-0.2494504451751709,
-0.060597844421863556,
-0.08913914114236832,
-0.0721609815955162,
0.048158369958400726,
0.016501890495419502,
-0.22097724676132202,
-0.12226349860429764,
-0.09853415191173553,
0.07074825465679169,
0.11512831598520279,
-0.009843975305557251,
0.036244362592697144,
-0.07569064944982529,
-0.011033756658434868,
-0.08385533839464188,
-0.03435356169939041,
-0.07314208894968033,
0.04282936453819275,
0.10121342539787292,
-0.01960579678416252,
0.06711738556623459,
0.124812550842762,
-0.020396782085299492,
0.03894612565636635,
-0.008883945643901825,
0.1831986904144287,
-0.04651079326868057,
-0.04051648825407028,
0.021148860454559326,
-0.03832155466079712,
0.07234557718038559,
0.09328436851501465,
0.07717116177082062,
-0.06812035292387009,
0.013046244159340858,
0.017308952286839485,
-0.030889468267560005,
-0.10171978920698166,
-0.08448684215545654,
0.01806516759097576,
0.060829732567071915,
0.041249919682741165,
-0.02308112382888794,
0.017580939456820488,
0.08620613813400269,
0.027402451261878014,
-0.04862137883901596,
-0.08799982070922852,
0.1348295509815216,
0.15897208452224731,
-0.04597923532128334,
0.006312469951808453,
-0.002093250397592783,
-0.07156861573457718,
0.1391761600971222,
-0.02606562152504921,
0.03905526548624039,
-0.006347245536744595,
0.13306619226932526,
-0.06507845222949982,
0.10127142816781998,
0.05916126072406769,
0.11035788804292679,
-0.056689176708459854,
-0.04411059617996216,
-0.05994047597050667,
-0.05087381973862648,
-0.11436105519533157,
0.11330374330282211,
-0.0066363574005663395,
0.05523999035358429,
-0.05022811517119408,
-0.051965054124593735,
0.1077115535736084,
0.22793975472450256,
0.0591561533510685,
-0.25323981046676636,
-0.0686786025762558,
0.009947765618562698,
-0.007084956858307123,
-0.0025991182774305344,
-0.01752382703125477,
-0.03765197843313217,
-0.07935363054275513,
0.12352833151817322,
-0.044781215488910675,
0.04465048760175705,
-0.13828526437282562,
0.08113045990467072,
-0.0637948140501976,
0.0654272511601448,
-0.028730688616633415,
0.052809033542871475,
-0.11454065144062042,
0.17555560171604156,
0.04587596282362938,
-0.057071104645729065,
-0.08517764508724213,
-0.016935739666223526,
0.10902922600507736,
0.11880172789096832,
0.07715781778097153,
0.01460183970630169,
0.09450516104698181,
-0.18441644310951233,
-0.05594347044825554,
0.020573992282152176,
0.05104583501815796,
-0.05053224787116051,
0.047349609434604645,
0.000524677918292582,
-0.033798713237047195,
-0.009068838320672512,
0.036170314997434616,
-0.08415994793176651,
-0.1429595649242401,
0.012065151706337929,
0.0094917519018054,
0.010294497013092041,
0.03689603880047798,
-0.12225450575351715,
-0.05125316604971886,
0.16116246581077576,
0.1477653831243515,
-0.028124691918492317,
-0.1124531552195549,
0.09252732992172241,
-0.024481387808918953,
-0.05152057111263275,
-0.08866789191961288,
-0.039120689034461975,
0.16852989792823792,
-0.019151227548718452,
-0.12278773635625839,
0.11279238015413284,
-0.05016443133354187,
-0.05057869479060173,
-0.04117446392774582,
0.035293202847242355,
0.061951201409101486,
0.02523101679980755,
0.038087598979473114,
-0.02076493203639984,
-0.07539035379886627,
-0.10231488943099976,
0.08803560584783554,
0.13238798081874847,
-0.11072815954685211,
0.03893778845667839,
0.039849523454904556,
-0.10440170019865036,
-0.09982553124427795,
0.03690626472234726,
0.10076136887073517,
0.14097817242145538,
-0.03923410922288895,
0.039919182658195496,
0.1715613752603531,
-0.024582477286458015,
-0.18060359358787537,
0.04535749554634094,
0.037998098880052567,
0.01002370472997427,
0.1293017417192459,
-0.09022380411624908,
0.08750459551811218,
-0.0768595039844513,
0.027244605123996735,
-0.11704404652118683,
0.06953798234462738,
-0.06516306847333908,
0.19453643262386322,
0.08216002583503723,
0.07716286927461624,
-0.044351931661367416,
-0.021396581083536148,
-0.06242620199918747,
-0.042115986347198486,
0.17284613847732544,
0.003747866954654455,
0.032461341470479965,
0.008940202184021473,
0.27116674184799194,
0.08280275017023087,
-0.0007950533763505518,
0.07650277763605118,
0.007533969823271036,
0.05447465181350708,
-0.08042380958795547,
0.02754669263958931,
-0.007192419841885567,
-0.025037283077836037,
0.11652127653360367,
-0.09047596901655197,
-0.007830829359591007,
-0.07360092550516129,
-0.03963785618543625,
-0.07356758415699005,
0.03318201005458832,
-0.0026184776797890663,
-0.048998430371284485,
-0.04957396537065506,
0.027963820844888687,
0.0805455893278122,
-0.0510936975479126,
-0.01943330466747284,
-0.035153359174728394,
-0.05594256892800331,
0.23936344683170319,
0.11700337380170822,
-0.02597968466579914,
0.0027199676260352135,
0.016878642141819,
-0.02270723134279251,
0.09989113360643387,
-0.15558630228042603,
0.01254607830196619,
0.05776435136795044,
0.009916920214891434,
0.12556415796279907,
0.008287526667118073,
-0.14069601893424988,
-0.009617261588573456,
0.035642024129629135,
-0.1751815229654312,
-0.030494876205921173,
-0.07503741979598999,
0.049276817589998245,
-0.007170799653977156,
0.006274781655520201,
0.08347580581903458,
-0.07152559608221054,
-0.049931809306144714,
-0.013694355264306068,
0.025345539674162865,
-0.00146165129262954,
-0.0037304325960576534,
-0.045028358697891235,
-0.030609458684921265,
-0.10929816961288452,
-0.02132885903120041,
-0.04100256785750389,
-0.21921983361244202,
0.056166499853134155,
0.06079370528459549,
-0.08246426284313202,
-0.0582834929227829,
0.01936364732682705,
0.29404497146606445,
-0.19307325780391693,
0.02806824818253517,
-0.023906415328383446,
-0.1544886976480484,
-0.022258248180150986,
0.12467177212238312,
0.0954456776380539,
-0.024593379348516464,
-0.1404363214969635,
0.030229542404413223,
-0.02304587885737419,
0.05352003872394562,
0.11052357405424118,
0.004536626860499382,
-0.04704723507165909,
-0.109016053378582,
-0.02120431698858738,
0.013693992048501968,
-0.04667602479457855,
-0.06183773651719093,
-0.07825471460819244,
-0.06904077529907227,
-0.16406649351119995,
-0.012542525306344032,
-0.058146119117736816,
0.07372001558542252,
0.03943605720996857,
0.012213186360895634,
0.06527350097894669,
-0.05074858292937279,
-0.08607477694749832,
0.03815251961350441,
0.022185711190104485,
0.04954727366566658,
-0.070380300283432,
-0.03450341150164604,
0.02945481613278389,
-0.06861342489719391,
0.11098408699035645,
0.061547379940748215,
-0.02315688692033291,
0.05119814723730087,
-0.26901325583457947,
-0.016146553680300713,
0.13711871206760406,
-0.017868056893348694,
0.08060342073440552,
-0.0436381958425045,
-0.016930535435676575,
-0.001965900883078575,
0.015276946127414703,
-0.028847308829426765,
0.1873612403869629,
-0.022948987782001495,
0.09007275849580765,
0.09213138371706009,
-0.08143895864486694,
-0.11221106350421906,
0.019573362544178963,
0.051669321954250336,
0.05131275951862335,
0.12979060411453247,
-0.08743323385715485,
0.05484622344374657,
-0.10270662605762482,
0.010318927466869354,
0.041053082793951035,
-0.061184365302324295,
-0.2136709839105606,
-0.07355303317308426,
0.042940039187669754,
0.007196575403213501,
0.1701645702123642,
0.10899233818054199,
0.08643944561481476,
-0.016447652131319046,
0.16549858450889587,
0.006999568082392216,
-0.005511309020221233,
-0.01422320306301117,
0.032809603959321976,
-0.02959870919585228,
-0.007119777612388134,
0.04312361404299736,
0.07987532764673233,
-0.012161395512521267,
0.010204288177192211,
-0.0335565023124218,
0.05100620910525322,
0.09639780223369598,
0.023876283317804337,
0.09755061566829681,
-0.04609459638595581,
-0.08771442621946335,
-0.06932084262371063,
0.13955934345722198,
-0.03112935833632946,
0.1943405419588089,
0.03199787065386772,
-0.03606764227151871,
0.06716026365756989,
-0.05042349919676781,
-0.06837238371372223,
-0.08097920566797256,
-0.2751479148864746,
-0.06441842764616013,
-0.1637800633907318,
0.03565886244177818,
-0.12541979551315308,
0.028453387320041656,
-0.09813910722732544,
0.05151082202792168,
-0.06654627621173859,
0.056864168494939804,
-0.052406154572963715,
-0.07657787948846817,
0.17868627607822418,
0.009532692842185497,
-0.13943123817443848,
-0.021790076047182083,
0.013793445192277431,
-0.000810281082522124,
0.08483269065618515,
0.041173480451107025,
0.035394493490457535,
-0.019902225583791733,
0.012312018312513828,
-0.0765467956662178,
-0.14773209393024445,
-0.01742302067577839,
-0.052873291075229645,
-0.017484722658991814,
0.04266820102930069,
-0.032132044434547424,
0.0044807312078773975,
-0.0359954871237278,
0.10159332305192947,
-0.09986559301614761,
0.14437665045261383,
-0.12288777530193329,
0.20122291147708893,
-0.1286548525094986,
0.07292997092008591,
-0.015683883801102638,
-0.08267943561077118,
-0.0734853446483612,
0.18168962001800537,
0.08860146254301071,
-0.07054264098405838,
0.0027478784322738647,
-0.10764849185943604,
0.03241332992911339,
-0.061920929700136185,
0.03431762754917145,
0.05082819238305092,
-0.04148537293076515,
-0.07966078072786331,
0.1485104113817215,
-0.04795806109905243,
-0.11011204123497009,
0.02085161954164505,
-0.006817598827183247,
0.08358749747276306,
0.0012338570086285472,
-0.11302261054515839,
0.0686025395989418,
-0.09359396249055862,
-0.11624788492918015,
0.1153474897146225,
-0.11182571947574615,
-0.040194373577833176,
-0.015919415280222893,
0.0893755778670311,
0.14065919816493988,
0.11308817565441132,
0.009414928033947945,
-0.017739620059728622,
0.18110695481300354,
-0.005285756662487984,
-0.14209416508674622,
-0.04643199220299721,
0.13129884004592896,
-0.25397053360939026,
0.03385443612933159,
0.0009518279111944139,
0.003355909138917923,
0.07944285124540329,
0.040329668670892715,
-0.05282524600625038,
0.04989849403500557,
-0.0058122784830629826,
-0.1550990641117096,
-0.02997083030641079,
0.19420774281024933,
0.0075323390774428844,
0.04222850874066353,
-0.002144339494407177,
-0.24399468302726746,
0.03491741046309471,
-0.071846142411232,
-0.01814817450940609,
-0.04334733262658119,
0.04876234382390976,
-0.06094012409448624,
0.0943102166056633,
0.15767870843410492,
-0.016167979687452316,
-0.039723772555589676,
-0.057374801486730576,
-0.015983272343873978,
-0.0038007053080946207,
-0.11902210861444473,
0.017769096419215202,
-0.06841042637825012,
-0.022728830575942993,
0.17090682685375214,
0.02467295154929161,
-0.21318630874156952,
-0.03698364645242691,
-0.050419002771377563,
0.016850251704454422,
-0.010066967457532883,
0.07579634338617325,
0.03157433494925499,
0.06591060012578964,
0.0022785367909818888,
-0.18926464021205902,
0.08003178238868713,
0.10619169473648071,
-0.034325167536735535,
-0.03357170522212982
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.