sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-16-finetuned-squad-seed-6 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-16-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-16-finetuned-squad-seed-6
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-16-finetuned-squad-seed-6 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-16-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-16-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 53, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-16-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.10028441250324249, 0.12375818938016891, -0.002191120758652687, 0.08993220329284668, 0.14039431512355804, 0.03116488642990589, 0.0871712788939476, 0.13473212718963623, -0.0846666544675827, 0.05135582387447357, 0.0700601190328598, 0.07098131626844406, 0.04508204758167267, 0.1308826208114624, -0.04175858199596405, -0.21292941272258759, 0.006362016778439283, -0.012617981992661953, -0.06550116091966629, 0.10328768193721771, 0.08922118693590164, -0.11559608578681946, 0.06751952320337296, -0.020332781597971916, -0.15732455253601074, 0.007596482522785664, -0.03216404467821121, -0.025159291923046112, 0.1056666150689125, -0.017478369176387787, 0.09366632252931595, 0.019015248864889145, 0.13757918775081635, -0.2151263952255249, 0.001178185222670436, 0.07643335312604904, 0.04704313725233078, 0.08716952055692673, 0.041878119111061096, 0.021256031468510628, 0.03793083503842354, -0.14823661744594574, 0.09693970531225204, 0.025361552834510803, -0.08841563016176224, -0.13717220723628998, -0.09159789234399796, 0.019911980256438255, 0.08321616053581238, 0.07908771187067032, 0.0069813658483326435, 0.1371794193983078, -0.10461708903312683, 0.08064636588096619, 0.1996423453092575, -0.2849069833755493, -0.06662395596504211, 0.044468723237514496, 0.054437585175037384, 0.07192259281873703, -0.11726407706737518, -0.01502507459372282, 0.020528823137283325, 0.03216544911265373, 0.11184632778167725, -0.020286714658141136, -0.12954674661159515, 0.0062853554263710976, -0.12809211015701294, -0.011964105069637299, 0.10333763808012009, 0.03571397811174393, -0.046321801841259, -0.07846835255622864, -0.06030309945344925, -0.08673930913209915, -0.03484198823571205, -0.017342180013656616, 0.055657852441072464, -0.05685284733772278, -0.0630711019039154, -0.04615127667784691, -0.05678735673427582, -0.08749117702245712, 0.00036531160003505647, 0.13632424175739288, 0.03976886346936226, 0.020507214590907097, -0.03922482952475548, 0.11316628009080887, 0.000959483440965414, -0.12896893918514252, -0.0046386197209358215, 0.0032758954912424088, -0.11279270052909851, -0.05504448339343071, -0.03648627921938896, 0.011798186227679253, 0.016592474654316902, 0.1488477736711502, -0.04341704398393631, 0.0759493038058281, 0.01539455633610487, -0.017304042354226112, -0.01729416847229004, 0.15308694541454315, -0.03319425880908966, -0.040446940809488297, -0.0016420260071754456, 0.09950568526983261, -0.0014237662544474006, -0.006722940132021904, -0.08032292127609253, -0.014854774810373783, 0.07486169785261154, 0.06916370987892151, -0.052920613437891006, 0.03704547509551048, -0.045756757259368896, -0.024277670308947563, 0.02880491316318512, -0.1257050335407257, 0.0389174185693264, 0.005731695331633091, -0.08413106948137283, -0.061534274369478226, 0.006286982912570238, -0.009298662655055523, -0.02629808522760868, 0.08285964280366898, -0.07348649948835373, -0.00046243221731856465, -0.08625256270170212, -0.07929235696792603, 0.0009101650211960077, -0.1475541889667511, -0.010962112806737423, -0.04640187323093414, -0.1933853030204773, -0.033509526401758194, 0.05102559179067612, -0.07901516556739807, -0.03976820781826973, -0.051809780299663544, -0.07731981575489044, 0.010340075939893723, -0.006834110245108604, 0.19161063432693481, -0.060359515249729156, 0.0790058895945549, -0.014551538042724133, 0.04910316690802574, 0.018718328326940536, 0.0493198037147522, -0.08501818031072617, 0.02594643086194992, -0.15237519145011902, 0.08246289938688278, -0.10075763612985611, 0.022418059408664703, -0.1247517317533493, -0.08795904368162155, 0.05198616907000542, -0.021936528384685516, 0.07738024741411209, 0.13903260231018066, -0.19951856136322021, 0.0007121503003872931, 0.11544626206159592, -0.04166330024600029, -0.055713143199682236, 0.07612639665603638, -0.058469612151384354, 0.04554407671093941, 0.0531652607023716, 0.19093091785907745, 0.07144773006439209, -0.14694978296756744, 0.017359726130962372, 0.032346177846193314, 0.056354790925979614, 0.007305578328669071, 0.035453345626592636, -0.0017002638196572661, 0.027251126244664192, 0.00867234542965889, -0.08388524502515793, -0.02396341785788536, -0.09215575456619263, -0.07356204837560654, -0.05099920928478241, -0.0975211039185524, 0.032206300646066666, 0.014327509328722954, 0.022834956645965576, -0.07201976329088211, -0.09793167561292648, 0.10326720774173737, 0.11837143450975418, -0.050449054688215256, 0.016547244042158127, -0.07750397175550461, 0.026665261015295982, -0.016773583367466927, -0.028629347681999207, -0.20082105696201324, -0.12030813843011856, 0.05143566429615021, -0.04772740229964256, 0.02632436715066433, 0.02113407850265503, 0.06656275689601898, 0.05413065478205681, -0.04328133538365364, -0.018858682364225388, -0.06698931753635406, 0.0035752314142882824, -0.11509779095649719, -0.20670467615127563, -0.06650806963443756, -0.03773369640111923, 0.13329510390758514, -0.19347694516181946, 0.002924105618149042, -0.02699512057006359, 0.11181516945362091, 0.01734784245491028, -0.05084935575723648, 0.012521624565124512, 0.03732632100582123, 0.019310085102915764, -0.09546254575252533, 0.056411951780319214, 0.010987131856381893, -0.06893165409564972, -0.04247535020112991, -0.1099427193403244, -0.002385299652814865, 0.06149021163582802, 0.07100928574800491, -0.09955695271492004, -0.015962574630975723, -0.05354491248726845, -0.03671155497431755, -0.07456046342849731, 0.024201586842536926, 0.20408272743225098, 0.02919267863035202, 0.12367422133684158, -0.0659838616847992, -0.08027581870555878, -0.001450671348720789, 0.016830146312713623, 0.03298559784889221, 0.10120511054992676, 0.07667453587055206, -0.07858529686927795, 0.07975219935178757, 0.09311807155609131, -0.03520488366484642, 0.11654629558324814, -0.05360018089413643, -0.07546983659267426, -0.015904685482382774, -0.0022808127105236053, -0.029037583619356155, 0.14920803904533386, -0.08403047919273376, 0.00441389437764883, 0.03872526064515114, 0.02502051368355751, 0.012918468564748764, -0.17826537787914276, -0.007151106838136911, 0.013517203740775585, -0.06242544576525688, -0.05726265162229538, -0.026561971753835678, 0.03692645579576492, 0.09787136316299438, 0.03135789558291435, -0.03017495945096016, 0.0205534640699625, -0.012303248047828674, -0.060233477503061295, 0.19145458936691284, -0.12070660293102264, -0.09020604193210602, -0.0840672180056572, 0.02179826609790325, -0.038172949105501175, -0.035609759390354156, 0.008271722123026848, -0.09956339746713638, -0.054137278348207474, -0.0855768546462059, -0.023814840242266655, -0.007164860609918833, -0.006758806295692921, 0.029723703861236572, -0.012537581846117973, 0.07845547050237656, -0.13315603137016296, 0.0019837250001728535, -0.03597906604409218, -0.09651938825845718, 0.0188998281955719, 0.06783001869916916, 0.08275216072797775, 0.10246492177248001, -0.013231166638433933, 0.015454787760972977, -0.0277544055134058, 0.23933760821819305, -0.06711409240961075, 0.016364706680178642, 0.08980517089366913, -0.00010960135841742158, 0.05398384481668472, 0.13795939087867737, 0.03628145530819893, -0.11425621062517166, 0.026743007823824883, 0.07736178487539291, -0.018198097124695778, -0.25097107887268066, -0.031473707407712936, -0.01986900344491005, -0.0821155533194542, 0.0824962854385376, 0.03624055162072182, -0.053781941533088684, 0.03368591144680977, 0.019282981753349304, -0.005885117221623659, -0.0334637351334095, 0.06599872559309006, 0.08586985617876053, 0.04150775447487831, 0.10080281645059586, -0.024464773014187813, -0.010576861910521984, 0.06368366628885269, 0.02043159306049347, 0.26446548104286194, -0.03859327360987663, 0.12419314682483673, 0.03794121369719505, 0.1439976841211319, -0.028075603768229485, 0.05151776969432831, 0.009063784033060074, -0.006615749094635248, -0.005363343749195337, -0.0490308552980423, -0.017400091513991356, -0.0023681814782321453, -0.03519604355096817, 0.021747073158621788, -0.07693230360746384, 0.0272244643419981, 0.027683354914188385, 0.30392417311668396, 0.03971470147371292, -0.2653544247150421, -0.06770079582929611, 0.0028298606630414724, -0.042405348271131516, -0.07680964469909668, 0.004890234209597111, 0.137825608253479, -0.12626610696315765, 0.03550542891025543, -0.05065314844250679, 0.09322161972522736, -0.034155163913965225, 0.011514496989548206, 0.06671514362096786, 0.14512202143669128, -0.01175596285611391, 0.07098646461963654, -0.21535354852676392, 0.23497594892978668, 0.026748215779662132, 0.1109868586063385, -0.0637122318148613, 0.009345694445073605, 0.0036619447637349367, 0.04740789160132408, 0.11196709424257278, 0.007151155732572079, -0.0025125998072326183, -0.1751227229833603, -0.09681528061628342, 0.05550288036465645, 0.11902055144309998, -0.023929964751005173, 0.08655839413404465, -0.03584418445825577, -0.0027306354604661465, 0.03340434283018112, -0.0817178413271904, -0.1249099150300026, -0.089972585439682, -0.005728224758058786, -0.002722048433497548, -0.034531209617853165, -0.05693644657731056, -0.09017866849899292, -0.02800966240465641, 0.13422466814517975, 0.020742861554026604, -0.054465312510728836, -0.13647285103797913, 0.04173703119158745, 0.13819696009159088, -0.04634389281272888, 0.01785787008702755, 0.006602331064641476, 0.09976546466350555, 0.04599221050739288, -0.07712894678115845, 0.06648661196231842, -0.07527527958154678, -0.16743142902851105, -0.058680929243564606, 0.12020519375801086, 0.08281388878822327, 0.056144535541534424, 0.0023015926126390696, 0.03194583207368851, -0.00553720910102129, -0.08351123332977295, 0.020298315212130547, 0.04311516880989075, 0.09182561188936234, 0.03408350422978401, -0.09581460058689117, 0.06732422858476639, -0.04123963788151741, -0.012073671445250511, 0.1229579895734787, 0.21745309233665466, -0.09458383172750473, 0.10755281150341034, 0.07769415527582169, -0.08106383681297302, -0.1843664050102234, 0.07195539772510529, 0.12233839184045792, 0.014146721921861172, 0.03978200629353523, -0.207720085978508, 0.1317032277584076, 0.1023070365190506, -0.015460536815226078, 0.04325389862060547, -0.30062785744667053, -0.13073347508907318, 0.0753425657749176, 0.10602730512619019, 0.03947602957487106, -0.12563270330429077, -0.02167017012834549, -0.01190720684826374, -0.12975788116455078, 0.1401810646057129, -0.08325441926717758, 0.1150650829076767, -0.006572331767529249, 0.11597099155187607, 0.026764467358589172, -0.038553059101104736, 0.13395892083644867, 0.06946727633476257, 0.09447982907295227, -0.04308554530143738, 0.010939120315015316, 0.05425962805747986, -0.06403356045484543, 0.03639901056885719, -0.030868221074342728, 0.0698181763291359, -0.16105327010154724, 0.00003524993371684104, -0.09460673481225967, 0.036068521440029144, -0.0519532710313797, -0.055721674114465714, -0.01969592645764351, 0.05458633974194527, 0.06928750872612, -0.03950861841440201, 0.02848772518336773, 0.005361577961593866, 0.0774199441075325, 0.08785448968410492, 0.10805957019329071, -0.03692229837179184, -0.10150643438100815, 0.01936250925064087, -0.008649758994579315, 0.05445464700460434, -0.11045960336923599, 0.024493427947163582, 0.1304643750190735, 0.05754679813981056, 0.1152721419930458, 0.029591284692287445, -0.03192920237779617, -0.017457300797104836, 0.015638576820492744, -0.12274625897407532, -0.11700651049613953, 0.04458121210336685, -0.0384088009595871, -0.13834084570407867, 0.008422806859016418, 0.09254568815231323, -0.02982456609606743, -0.020625103265047073, -0.01088833436369896, 0.021661188453435898, -0.019002480432391167, 0.2012145221233368, 0.04369547590613365, 0.07091771066188812, -0.1083175390958786, 0.12603901326656342, 0.04993327707052231, -0.05983754247426987, 0.04991649091243744, 0.06771412491798401, -0.10431340336799622, -0.013285062275826931, 0.12134124338626862, 0.16539789736270905, -0.027968155220150948, -0.017925942316651344, -0.08060858398675919, -0.09304691851139069, 0.06252967566251755, 0.15358738601207733, 0.05145840346813202, -0.017209308221936226, -0.04693928360939026, 0.027653822675347328, -0.12567800283432007, 0.0759158730506897, 0.044169120490550995, 0.06264229863882065, -0.09120163321495056, 0.10876110196113586, -0.00429157167673111, 0.043358806520700455, -0.01903516799211502, 0.02582119219005108, -0.1040634885430336, -0.010481953620910645, -0.14214180409908295, 0.0008597790729254484, -0.004279355052858591, 0.012688173912465572, -0.02098788321018219, -0.053053341805934906, -0.024827001616358757, 0.026599440723657608, -0.09335062652826309, -0.04986688867211342, 0.02316269651055336, 0.0381513349711895, -0.1449967473745346, -0.01590498350560665, 0.021828025579452515, -0.09292908757925034, 0.08094721287488937, 0.05987381562590599, 0.011815610341727734, 0.029724016785621643, -0.1083456501364708, -0.04909722879528999, 0.002813837956637144, 0.023776454851031303, 0.0884898230433464, -0.09343377500772476, -0.021860670298337936, -0.032024942338466644, 0.04636120796203613, 0.018154162913560867, 0.09552284330129623, -0.11542998999357224, 0.009524418041110039, -0.04243413358926773, -0.04599306359887123, -0.06216221675276756, 0.04068829119205475, 0.10818739235401154, 0.045283690094947815, 0.16051240265369415, -0.07267971336841583, 0.036582574248313904, -0.18595260381698608, -0.04426776245236397, -0.00032366058439947665, -0.04844518005847931, -0.08926483988761902, -0.04706355184316635, 0.09877857565879822, -0.05291171371936798, 0.10831722617149353, -0.0006330640753731132, 0.09935937076807022, 0.032346319407224655, -0.009923397563397884, -0.05591154098510742, 0.010125667788088322, 0.15198567509651184, 0.04843670874834061, -0.013847560621798038, 0.11107207089662552, 0.0012820997508242726, 0.04372406750917435, 0.06810284405946732, 0.21391040086746216, 0.15469373762607574, 0.010259022004902363, 0.04860934615135193, 0.060335516929626465, -0.11774436384439468, -0.13539279997348785, 0.13542991876602173, -0.04794517159461975, 0.12360593676567078, -0.07227100431919098, 0.2158624529838562, 0.02453301101922989, -0.1851816475391388, 0.07016431540250778, -0.0626361146569252, -0.12230408936738968, -0.11668746173381805, -0.023559536784887314, -0.07043465226888657, -0.10982085764408112, 0.020787334069609642, -0.1214752197265625, 0.06351582705974579, 0.12304262816905975, 0.01618804596364498, 0.0237907562404871, 0.1640734225511551, -0.03456202149391174, 0.02117963880300522, 0.06801017373800278, 0.016577109694480896, -0.00544528104364872, -0.061400678008794785, -0.0635564774274826, 0.04416004940867424, 0.023409660905599594, 0.0716337338089943, -0.0396854393184185, -0.00009367541497340426, 0.018863463774323463, -0.015587100759148598, -0.07380515336990356, 0.01742791198194027, 0.02424738183617592, 0.04484032094478607, 0.058352358639240265, 0.052046433091163635, 0.009259819984436035, -0.03774765133857727, 0.2910687327384949, -0.07435039430856705, -0.09829413145780563, -0.12957583367824554, 0.22655273973941803, 0.010849042795598507, -0.022927608340978622, 0.0736304521560669, -0.09486768394708633, -0.028876863420009613, 0.18060791492462158, 0.1475575864315033, -0.1067502349615097, -0.02256220020353794, -0.02002178318798542, -0.011259319260716438, -0.04288043826818466, 0.13516421616077423, 0.1086823046207428, -0.015125972218811512, -0.07961264252662659, -0.01905132457613945, -0.017807822674512863, -0.04818309098482132, -0.07360817492008209, 0.0628264769911766, 0.026695460081100464, -0.0026762387715280056, -0.04436107724905014, 0.0593579038977623, -0.006232480052858591, -0.23702962696552277, 0.030921803787350655, -0.1636282205581665, -0.1776723861694336, -0.03959301486611366, 0.05910090357065201, -0.0077471742406487465, 0.042761240154504776, -0.009003271348774433, 0.010454080067574978, 0.13827957212924957, -0.03256360441446304, -0.025634802877902985, -0.12614810466766357, 0.11679733544588089, -0.11145234853029251, 0.20271220803260803, 0.0030176748987287283, 0.07177060097455978, 0.09597166627645493, 0.018899662420153618, -0.13551290333271027, 0.04255502671003342, 0.0732569769024849, -0.1044282540678978, 0.01134493201971054, 0.14668087661266327, -0.04949520155787468, 0.06865845620632172, 0.024626443162560463, -0.11069697886705399, -0.006868886295706034, -0.04647819325327873, -0.038645464926958084, -0.07408901304006577, -0.01294746808707714, -0.06445810198783875, 0.15848322212696075, 0.2233985960483551, -0.02457842230796814, 0.01765170507133007, -0.09351455420255661, 0.01412047166377306, 0.041098445653915405, 0.0467468798160553, -0.053074952214956284, -0.20111048221588135, 0.02869061380624771, 0.04250587895512581, 0.01869903691112995, -0.20735712349414825, -0.07903922349214554, 0.04512142390012741, -0.03135678917169571, -0.0503307469189167, 0.10240962356328964, 0.030163828283548355, 0.044134657829999924, -0.03601668402552605, -0.10708046704530716, -0.03698904067277908, 0.14956921339035034, -0.1564708948135376, -0.04005146399140358 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-16-finetuned-squad-seed-8 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-16-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-16-finetuned-squad-seed-8
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-16-finetuned-squad-seed-8 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-16-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-16-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 53, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-16-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.1011810377240181, 0.12495400756597519, -0.002202283823862672, 0.09034115076065063, 0.1403326541185379, 0.031782157719135284, 0.08669615536928177, 0.1345941722393036, -0.08428491652011871, 0.051100775599479675, 0.07047345489263535, 0.06972163915634155, 0.04486009478569031, 0.13003197312355042, -0.04205455258488655, -0.21238857507705688, 0.00606575096026063, -0.011948831379413605, -0.06338289380073547, 0.10273602604866028, 0.0891326516866684, -0.11565915495157242, 0.06742925941944122, -0.020354721695184708, -0.1564399003982544, 0.007431984879076481, -0.03161210939288139, -0.025721287354826927, 0.10604699701070786, -0.016672030091285706, 0.09393125772476196, 0.018240652978420258, 0.13771525025367737, -0.21522244811058044, 0.0009197426261380315, 0.0766429752111435, 0.047003619372844696, 0.08728188276290894, 0.04067028686404228, 0.022517021745443344, 0.036701176315546036, -0.14848104119300842, 0.09701626747846603, 0.02480778470635414, -0.08807248622179031, -0.13697408139705658, -0.09084688872098923, 0.020956406369805336, 0.08257894217967987, 0.07854019850492477, 0.007984987460076809, 0.13868364691734314, -0.10340394824743271, 0.08103293180465698, 0.199638232588768, -0.2846390902996063, -0.06584601104259491, 0.04342098534107208, 0.05439910665154457, 0.0731610357761383, -0.11612055450677872, -0.01513229962438345, 0.02049199678003788, 0.03192942216992378, 0.11197465658187866, -0.020969979465007782, -0.13119980692863464, 0.006212795618921518, -0.12771223485469818, -0.01248770672827959, 0.10390526801347733, 0.035802192986011505, -0.04680031165480614, -0.07804060727357864, -0.061347778886556625, -0.08808960765600204, -0.03513314947485924, -0.017693370580673218, 0.05505627021193504, -0.05637166276574135, -0.061715997755527496, -0.046218305826187134, -0.05632768198847771, -0.08667346090078354, 0.0005045883008278906, 0.1365533173084259, 0.039910122752189636, 0.02046574465930462, -0.038439176976680756, 0.11286337673664093, -0.0013225453440099955, -0.12868177890777588, -0.004073815885931253, 0.0037101388443261385, -0.11280561238527298, -0.05515206977725029, -0.03689001128077507, 0.010662205517292023, 0.015962131321430206, 0.15053172409534454, -0.042995601892471313, 0.07561162859201431, 0.015849987044930458, -0.016642309725284576, -0.017167886719107628, 0.1541379988193512, -0.03408944979310036, -0.04130256921052933, -0.0006238521309569478, 0.0995434820652008, -0.0006022973684594035, -0.007563686929643154, -0.08137679845094681, -0.015943296253681183, 0.07546184211969376, 0.06827043741941452, -0.053111352026462555, 0.03659326210618019, -0.04578760266304016, -0.02439950220286846, 0.029885275289416313, -0.1254989057779312, 0.038896966725587845, 0.0055091893300414085, -0.08385921269655228, -0.06058071553707123, 0.00737534137442708, -0.008679338730871677, -0.02650572545826435, 0.08203175663948059, -0.07287877798080444, -0.00020476202189456671, -0.08600867539644241, -0.07953838258981705, 0.001042269403114915, -0.14752647280693054, -0.010343039408326149, -0.04767861217260361, -0.19357405602931976, -0.03308362513780594, 0.05109976977109909, -0.07822103798389435, -0.03955472633242607, -0.05084891989827156, -0.07609286904335022, 0.010126381181180477, -0.007432238198816776, 0.18945768475532532, -0.06053905189037323, 0.07865379750728607, -0.014474987983703613, 0.04875163733959198, 0.01694491133093834, 0.04946904629468918, -0.0845244824886322, 0.02593078464269638, -0.15213418006896973, 0.08212394267320633, -0.09986994415521622, 0.022345198318362236, -0.12327105551958084, -0.0878133699297905, 0.05318071320652962, -0.021267829462885857, 0.07841084152460098, 0.13815945386886597, -0.19936096668243408, 0.001183273852802813, 0.11435738205909729, -0.04108419269323349, -0.055636387318372726, 0.07802100479602814, -0.05854625627398491, 0.045194435864686966, 0.05346156656742096, 0.1906212419271469, 0.07286877185106277, -0.14708127081394196, 0.018243854865431786, 0.0338515006005764, 0.057013992220163345, 0.00595087232068181, 0.03535342961549759, -0.0013201727997511625, 0.02730422466993332, 0.008879425935447216, -0.08295103907585144, -0.023257993161678314, -0.09219330549240112, -0.07384105771780014, -0.05122021585702896, -0.09736598283052444, 0.03191496059298515, 0.014755580574274063, 0.023002222180366516, -0.07179341465234756, -0.09851332008838654, 0.10458113253116608, 0.1183253824710846, -0.050754331052303314, 0.016645794734358788, -0.07739704102277756, 0.027246663346886635, -0.016156084835529327, -0.028869474306702614, -0.20022261142730713, -0.11862362176179886, 0.05158331245183945, -0.047235727310180664, 0.0256055798381567, 0.021681763231754303, 0.06578397750854492, 0.05485079810023308, -0.04258996993303299, -0.018101617693901062, -0.0663348138332367, 0.003718162188306451, -0.11628902703523636, -0.20536954700946808, -0.066639244556427, -0.03713441267609596, 0.13325966894626617, -0.19444510340690613, 0.0033656260930001736, -0.027815816923975945, 0.11109142750501633, 0.01687983237206936, -0.05072091892361641, 0.012243659235537052, 0.03821370750665665, 0.018927618861198425, -0.0955962985754013, 0.05650137737393379, 0.011746099218726158, -0.06968878209590912, -0.04372358322143555, -0.11027226597070694, -0.0013746278127655387, 0.061146825551986694, 0.07008963823318481, -0.09946882724761963, -0.01633383147418499, -0.05299990624189377, -0.03668168559670448, -0.0738384872674942, 0.023289881646633148, 0.2050335556268692, 0.029391547664999962, 0.12493671476840973, -0.06583602726459503, -0.07952369004487991, -0.0014329769182950258, 0.0166931115090847, 0.03372976556420326, 0.1002860814332962, 0.07651293277740479, -0.07603645324707031, 0.07876133173704147, 0.09204217791557312, -0.036719419062137604, 0.11590433120727539, -0.05314343050122261, -0.07512197643518448, -0.016142161563038826, -0.002373531460762024, -0.028798570856451988, 0.14915211498737335, -0.08589253574609756, 0.0037794492673128843, 0.0389409102499485, 0.024562403559684753, 0.013340635225176811, -0.17848411202430725, -0.007335633970797062, 0.014388266019523144, -0.06181815266609192, -0.056387558579444885, -0.0273300651460886, 0.03660360723733902, 0.09717690944671631, 0.03090100921690464, -0.030904095619916916, 0.02114449441432953, -0.011906838044524193, -0.06054127588868141, 0.1906633973121643, -0.12056142836809158, -0.0912434458732605, -0.08584827929735184, 0.02225293219089508, -0.03815635293722153, -0.03554186969995499, 0.00857186783105135, -0.09774184226989746, -0.05397271737456322, -0.08603999763727188, -0.02600860968232155, -0.006846528500318527, -0.006602408364415169, 0.030209537595510483, -0.013234205543994904, 0.07911565899848938, -0.13297909498214722, 0.0017474413616582751, -0.03533776476979256, -0.09556246548891068, 0.01939687319099903, 0.06761568784713745, 0.08357050269842148, 0.10293658822774887, -0.014203319326043129, 0.014815209433436394, -0.027395687997341156, 0.23893095552921295, -0.06644455343484879, 0.01633203588426113, 0.09020674973726273, -0.0013413273263722658, 0.05411602184176445, 0.13728028535842896, 0.03643684461712837, -0.11429952085018158, 0.026265226304531097, 0.07617500424385071, -0.018675509840250015, -0.2500510513782501, -0.031420331448316574, -0.019994767382740974, -0.0815524235367775, 0.08269303292036057, 0.036014873534440994, -0.05339889973402023, 0.03413098305463791, 0.019484931603074074, -0.0037276619113981724, -0.03477111831307411, 0.06566557288169861, 0.08631235361099243, 0.04123949632048607, 0.10067371279001236, -0.02391042560338974, -0.010647617280483246, 0.06399595737457275, 0.01965884119272232, 0.2625407576560974, -0.03892078623175621, 0.12497304379940033, 0.036559637635946274, 0.14499671757221222, -0.02782086655497551, 0.0518353208899498, 0.008705556392669678, -0.0068665980361402035, -0.005566325969994068, -0.04905780032277107, -0.01914854906499386, -0.0017604934982955456, -0.03566577658057213, 0.02211545966565609, -0.07717384397983551, 0.02822810597717762, 0.02714305929839611, 0.3037053346633911, 0.039428431540727615, -0.2658859193325043, -0.06819155812263489, 0.0021639501210302114, -0.042218003422021866, -0.07754013687372208, 0.005048459395766258, 0.13927282392978668, -0.12571845948696136, 0.0345824733376503, -0.05000700801610947, 0.09331565350294113, -0.03528577834367752, 0.011893939226865768, 0.06615229696035385, 0.1450570672750473, -0.01149977557361126, 0.07110828906297684, -0.21573753654956818, 0.23359696567058563, 0.02705836482346058, 0.11140912026166916, -0.06384432315826416, 0.009798425249755383, 0.003369159298017621, 0.049108829349279404, 0.11116490513086319, 0.00767676904797554, -0.0012240780051797628, -0.17692676186561584, -0.09736450761556625, 0.05560645833611488, 0.117665134370327, -0.022019490599632263, 0.08637722581624985, -0.03597939386963844, -0.0024771837051957846, 0.033662281930446625, -0.08091674000024796, -0.12460057437419891, -0.09029082208871841, -0.006106715649366379, -0.0012337128864601254, -0.03433069586753845, -0.05681731551885605, -0.08981924504041672, -0.02962062880396843, 0.13427585363388062, 0.021233122795820236, -0.05446961522102356, -0.13630075752735138, 0.04222700372338295, 0.13743345439434052, -0.04641236737370491, 0.017696306109428406, 0.006676944438368082, 0.09957640618085861, 0.045635875314474106, -0.07629682868719101, 0.06646154075860977, -0.07511436939239502, -0.16655701398849487, -0.05924416333436966, 0.11902546882629395, 0.08258885145187378, 0.05624225363135338, 0.0024874054361134768, 0.031558189541101456, -0.005688184406608343, -0.08337269723415375, 0.018991032615303993, 0.04407472163438797, 0.09091086685657501, 0.0340084470808506, -0.09571319818496704, 0.06813372671604156, -0.04068875312805176, -0.011966279707849026, 0.12393306940793991, 0.21729938685894012, -0.09484317898750305, 0.10635087639093399, 0.07858563214540482, -0.08095400780439377, -0.1839701235294342, 0.07157479971647263, 0.12190243601799011, 0.0145229771733284, 0.03958046808838844, -0.20692168176174164, 0.13164690136909485, 0.10361292213201523, -0.015001069754362106, 0.04317827522754669, -0.30052968859672546, -0.13092392683029175, 0.07625392079353333, 0.10583730787038803, 0.042283911257982254, -0.1260545402765274, -0.021563591435551643, -0.012484835460782051, -0.13121165335178375, 0.1389268934726715, -0.08244949579238892, 0.11496774852275848, -0.006514165084809065, 0.11452055722475052, 0.026950940489768982, -0.03879386559128761, 0.1344834566116333, 0.07001020759344101, 0.09443206340074539, -0.04311510547995567, 0.010960109531879425, 0.053888920694589615, -0.06415075808763504, 0.03713383898139, -0.030413327738642693, 0.06980140507221222, -0.1632012277841568, -0.00020135080558247864, -0.09322109073400497, 0.03630708530545235, -0.05152842402458191, -0.05605683848261833, -0.019640745595097542, 0.05348798260092735, 0.06904150545597076, -0.03937383368611336, 0.029023200273513794, 0.005829984787851572, 0.07632485032081604, 0.0896209254860878, 0.10650931298732758, -0.0401805080473423, -0.10139065980911255, 0.019506828859448433, -0.008784661069512367, 0.05512566491961479, -0.10983149707317352, 0.02479415200650692, 0.13092683255672455, 0.05764469876885414, 0.11554065346717834, 0.02852984517812729, -0.03130298852920532, -0.017112109810113907, 0.015041492879390717, -0.12277961522340775, -0.11592905223369598, 0.04396532103419304, -0.03875699266791344, -0.1378357857465744, 0.007368802092969418, 0.09331566840410233, -0.030865969136357307, -0.019977357238531113, -0.011312087066471577, 0.020295854657888412, -0.0189502015709877, 0.20086798071861267, 0.04411998391151428, 0.07068251818418503, -0.10802068561315536, 0.1254631131887436, 0.050253354012966156, -0.059143126010894775, 0.0502941720187664, 0.06694088131189346, -0.10470990836620331, -0.013251136057078838, 0.12102313339710236, 0.16537010669708252, -0.029088115319609642, -0.019040020182728767, -0.08132999390363693, -0.0916576087474823, 0.06226133182644844, 0.1524571180343628, 0.051885321736335754, -0.017473682761192322, -0.047351766377687454, 0.02691151387989521, -0.12575305998325348, 0.07524587213993073, 0.044142697006464005, 0.06292729824781418, -0.09146089851856232, 0.11086807399988174, -0.0039028304163366556, 0.04330422729253769, -0.01902136765420437, 0.025619128718972206, -0.10385317355394363, -0.010227832943201065, -0.14412784576416016, 0.0012568770907819271, -0.004111141432076693, 0.013059549033641815, -0.020942173898220062, -0.05262868106365204, -0.0249747633934021, 0.02642008289694786, -0.09259426593780518, -0.04946122691035271, 0.02350051887333393, 0.03762856870889664, -0.14424914121627808, -0.016118880361318588, 0.02143070660531521, -0.09282372891902924, 0.08110283315181732, 0.059414561837911606, 0.011407430283725262, 0.029171418398618698, -0.10834381729364395, -0.04902096837759018, 0.0028497944585978985, 0.024731528013944626, 0.08854014426469803, -0.09145676344633102, -0.02101288177073002, -0.031584545969963074, 0.04630783572793007, 0.01791648007929325, 0.09599252790212631, -0.11563751846551895, 0.009165779687464237, -0.041820134967565536, -0.04563421756029129, -0.06281445175409317, 0.04040738195180893, 0.10797442495822906, 0.04499697685241699, 0.16033877432346344, -0.072736456990242, 0.03626243770122528, -0.18602316081523895, -0.04449893534183502, -0.00005914671055506915, -0.04800815507769585, -0.08891457319259644, -0.04787513241171837, 0.09860135614871979, -0.05228149890899658, 0.10996402055025101, -0.0007788233342580497, 0.09978347271680832, 0.03178619593381882, -0.011042931117117405, -0.055811550468206406, 0.00932331196963787, 0.1529206931591034, 0.049452926963567734, -0.013813630677759647, 0.10995516926050186, 0.0014620223082602024, 0.04503938928246498, 0.06785105168819427, 0.2114715278148651, 0.15458643436431885, 0.009656286798417568, 0.048973649740219116, 0.05987720564007759, -0.11733423918485641, -0.13568778336048126, 0.1348271518945694, -0.04830546677112579, 0.12424154579639435, -0.07206534594297409, 0.21605104207992554, 0.02447989024221897, -0.1847631186246872, 0.06976804882287979, -0.06211861968040466, -0.12253842502832413, -0.11648224294185638, -0.02287432923913002, -0.07044824957847595, -0.10977070778608322, 0.020343126729130745, -0.12095802277326584, 0.06326460093259811, 0.12370898574590683, 0.01590358093380928, 0.023556750267744064, 0.16329270601272583, -0.034809403121471405, 0.021535750478506088, 0.06783431768417358, 0.01650761254131794, -0.005008730571717024, -0.06257719546556473, -0.06482342630624771, 0.044427353888750076, 0.023446425795555115, 0.07226205617189407, -0.03991934284567833, 0.001871998654678464, 0.019383160397410393, -0.015028928406536579, -0.07412945479154587, 0.017289813607931137, 0.023568859323859215, 0.04469933733344078, 0.05703406408429146, 0.05237948149442673, 0.009613745845854282, -0.03787723183631897, 0.2892577052116394, -0.07381480932235718, -0.09871095418930054, -0.12973283231258392, 0.22532135248184204, 0.01110092829912901, -0.02254789136350155, 0.07364611327648163, -0.09483125060796738, -0.028175214305520058, 0.18102329969406128, 0.14640866219997406, -0.1076650470495224, -0.02269643358886242, -0.019634870812296867, -0.011444210074841976, -0.04405467212200165, 0.1355927288532257, 0.10887053608894348, -0.01626414805650711, -0.07876763492822647, -0.019667042419314384, -0.01808236353099346, -0.048018328845500946, -0.07444643974304199, 0.06180547550320625, 0.026883801445364952, -0.0019208319718018174, -0.04412437230348587, 0.0584319606423378, -0.005224235355854034, -0.2376594990491867, 0.03126765787601471, -0.1636718213558197, -0.17756590247154236, -0.03921743109822273, 0.05928214266896248, -0.007582790218293667, 0.042335394769907, -0.009247872978448868, 0.01095319539308548, 0.13911515474319458, -0.03308584913611412, -0.026064779609441757, -0.1249968558549881, 0.11586083471775055, -0.10990367084741592, 0.2024778425693512, 0.003191656433045864, 0.07245781272649765, 0.09577895700931549, 0.01949000544846058, -0.13466450572013855, 0.04293017461895943, 0.07294513285160065, -0.10344065725803375, 0.010955365374684334, 0.14512740075588226, -0.04946796968579292, 0.06873271614313126, 0.024825958535075188, -0.1105891764163971, -0.007562595419585705, -0.04744870588183403, -0.03872370347380638, -0.07382559031248093, -0.014655848033726215, -0.06401863694190979, 0.1587122231721878, 0.22258467972278595, -0.024312470108270645, 0.017121488228440285, -0.09354541450738907, 0.013948335312306881, 0.041648998856544495, 0.04660120606422424, -0.053137362003326416, -0.20102626085281372, 0.02923477068543434, 0.04204264283180237, 0.01884194277226925, -0.20691485702991486, -0.07944758981466293, 0.04481959715485573, -0.03171474114060402, -0.050013087689876556, 0.10250561684370041, 0.03008568473160267, 0.04449782520532608, -0.03607882186770439, -0.10709910094738007, -0.03747682645916939, 0.1494520902633667, -0.1562909036874771, -0.04057097062468529 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-256-finetuned-squad-seed-0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-256-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-256-finetuned-squad-seed-0
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-0 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09819600731134415, 0.15401935577392578, -0.002162632066756487, 0.0914003849029541, 0.1376272290945053, 0.039442483335733414, 0.08760891109704971, 0.13564392924308777, -0.08111811429262161, 0.0744476318359375, 0.07875176519155502, 0.05380730330944061, 0.05175633355975151, 0.12349574267864227, -0.04741187021136284, -0.20877979695796967, 0.013499371707439423, -0.01912582665681839, -0.05696224048733711, 0.09852772951126099, 0.08201973885297775, -0.10477408766746521, 0.0800950676202774, -0.019909100607037544, -0.1529119461774826, 0.00964865181595087, -0.03902575746178627, -0.02412307634949684, 0.09529120475053787, -0.006497287191450596, 0.09686737507581711, 0.010490470565855503, 0.13798178732395172, -0.21231293678283691, -0.00011678216833388433, 0.0794285386800766, 0.03669172525405884, 0.08976474404335022, 0.045213986188173294, 0.025108853355050087, 0.05180106684565544, -0.1530008167028427, 0.09013760089874268, 0.026205023750662804, -0.07636341452598572, -0.09079311788082123, -0.0904654711484909, 0.018438680097460747, 0.07636591792106628, 0.08375480771064758, 0.008835987187922001, 0.13484551012516022, -0.0912407711148262, 0.08176009356975555, 0.1992817372083664, -0.27246126532554626, -0.0663103386759758, 0.04548696428537369, 0.0511784553527832, 0.06638211011886597, -0.11849767714738846, -0.028029225766658783, 0.028421098366379738, 0.03258559852838516, 0.09433808922767639, -0.018847621977329254, -0.140041783452034, 0.0017183029558509588, -0.13215236365795135, -0.014297103509306908, 0.10903444141149521, 0.04870586097240448, -0.043536122888326645, -0.06427418440580368, -0.07751569896936417, -0.10751312226057053, -0.02382783591747284, -0.020166965201497078, 0.052155233919620514, -0.0549185685813427, -0.05778342857956886, -0.03893502429127693, -0.05866706371307373, -0.08683983236551285, -0.003809453686699271, 0.12089026719331741, 0.04417106509208679, 0.024480758234858513, -0.03482413664460182, 0.10251227766275406, 0.0006259824149310589, -0.1337493360042572, -0.01764618419110775, 0.008108502253890038, -0.12259963154792786, -0.05614696815609932, -0.027924610301852226, 0.011796251870691776, 0.017084142193198204, 0.1479143351316452, -0.04163888469338417, 0.0818413719534874, 0.016628412529826164, -0.020951373502612114, -0.011522716842591763, 0.14356307685375214, -0.03987361118197441, -0.05239371582865715, 0.0057005551643669605, 0.09649783372879028, 0.00017177642439492047, -0.005291367415338755, -0.07310429960489273, -0.01840147189795971, 0.09234675019979477, 0.054802119731903076, -0.054011180996894836, 0.03386601060628891, -0.03137640655040741, -0.025421665981411934, 0.023746246472001076, -0.12403237074613571, 0.03586210310459137, 0.009549056179821491, -0.083847776055336, -0.03763534873723984, 0.012441213242709637, -0.01839769445359707, -0.021304551512002945, 0.09011843800544739, -0.08720403164625168, -0.006132813636213541, -0.07772817462682724, -0.07334695756435394, 0.015066767111420631, -0.1426093429327011, -0.014706814661622047, -0.049562107771635056, -0.2009187638759613, -0.037063296884298325, 0.04336051642894745, -0.07656542956829071, -0.04152190685272217, -0.057109273970127106, -0.08389181643724442, 0.015544634312391281, -0.004691467620432377, 0.16607876121997833, -0.06047708913683891, 0.0774814635515213, -0.014472114853560925, 0.04046276584267616, 0.010561464354395866, 0.04916905611753464, -0.08846136182546616, 0.022484896704554558, -0.14178726077079773, 0.07919548451900482, -0.09635947644710541, 0.009152255952358246, -0.12450727820396423, -0.08833577483892441, 0.039695966988801956, -0.02774994820356369, 0.070114366710186, 0.14391587674617767, -0.1919531226158142, 0.0013534470926970243, 0.11604030430316925, -0.04770471155643463, -0.046922869980335236, 0.07862796634435654, -0.05637575685977936, 0.027983564883470535, 0.05130254477262497, 0.1662900149822235, 0.07463746517896652, -0.15001437067985535, -0.018694456666707993, 0.025439219549298286, 0.049705345183610916, 0.0057834237813949585, 0.04488947242498398, 0.005695257801562548, 0.02572481520473957, 0.004306034184992313, -0.07729434221982956, -0.02538680098950863, -0.09004228562116623, -0.07072761654853821, -0.05323841795325279, -0.08831042796373367, 0.02245214395225048, 0.012485754676163197, 0.02060096338391304, -0.058131612837314606, -0.10357216745615005, 0.10298489034175873, 0.12892434000968933, -0.05319339409470558, 0.007187388371676207, -0.06925629079341888, 0.020693309605121613, -0.030327249318361282, -0.035240426659584045, -0.1953132599592209, -0.13691958785057068, 0.05324004963040352, -0.05280066281557083, 0.03613044321537018, 0.03389989584684372, 0.06361115723848343, 0.06296207010746002, -0.033272888511419296, -0.01844250224530697, -0.0699523314833641, -0.003401534864678979, -0.11263573914766312, -0.19844132661819458, -0.06334403902292252, -0.03285635635256767, 0.14130133390426636, -0.2015025019645691, -0.000806764408480376, -0.025030365213751793, 0.121707022190094, 0.016282375901937485, -0.057649437338113785, 0.008576922118663788, 0.029330860823392868, 0.005883561447262764, -0.09945719689130783, 0.04057636111974716, 0.008624283596873283, -0.054889895021915436, -0.05996844917535782, -0.1084141805768013, -0.003868286730721593, 0.05917350947856903, 0.07921812683343887, -0.10454869270324707, -0.005998486187309027, -0.05068036541342735, -0.04540237411856651, -0.08835210651159286, 0.009637638926506042, 0.19816964864730835, 0.03373580053448677, 0.12147054076194763, -0.061095885932445526, -0.07065247744321823, 0.001815360737964511, 0.023906204849481583, 0.022763244807720184, 0.09109438210725784, 0.10545506328344345, -0.09819739311933517, 0.08827969431877136, 0.0692470446228981, -0.04838727414608002, 0.1192622259259224, -0.04502665996551514, -0.08185356110334396, -0.01890561170876026, 0.004973171278834343, -0.03403493016958237, 0.1398988664150238, -0.08399658650159836, 0.011954526416957378, 0.03409988060593605, 0.024708133190870285, 0.018000829964876175, -0.1692870408296585, -0.00031750445486977696, 0.012164575979113579, -0.06417292356491089, -0.03829468414187431, -0.023722654208540916, 0.037002161145210266, 0.09377506375312805, 0.026155926287174225, -0.04350472614169121, 0.016626553609967232, -0.011949453502893448, -0.06907415390014648, 0.19206799566745758, -0.10840759426355362, -0.09102515876293182, -0.10882622748613358, 0.027072643861174583, -0.045662131160497665, -0.036711741238832474, 0.004594081547111273, -0.08306977152824402, -0.055795613676309586, -0.08862902969121933, -0.02283882349729538, -0.016928095370531082, -0.002609659917652607, 0.023075643926858902, -0.01563708856701851, 0.07272297888994217, -0.13164706528186798, 0.004841977264732122, -0.02936120145022869, -0.10261473059654236, 0.008212125860154629, 0.06352902948856354, 0.0856301337480545, 0.09942629933357239, -0.014798972755670547, 0.012849792838096619, -0.027502665296196938, 0.23862400650978088, -0.05518990010023117, 0.014755172654986382, 0.08337981253862381, -0.006644173990935087, 0.06081174314022064, 0.14227618277072906, 0.03168250620365143, -0.10340439528226852, 0.02661030739545822, 0.08345972746610641, -0.011883707717061043, -0.24791845679283142, -0.028946829959750175, -0.02183734066784382, -0.07184523344039917, 0.08847548812627792, 0.04000632464885712, -0.04628554359078407, 0.038211461156606674, 0.009897831827402115, 0.012948152609169483, -0.05347009003162384, 0.07294807583093643, 0.08700501173734665, 0.045423801988363266, 0.0942206010222435, -0.022170206531882286, -0.012272288091480732, 0.0660434439778328, 0.015956765040755272, 0.2692907750606537, -0.031017674133181572, 0.12685707211494446, 0.02646602690219879, 0.14875783026218414, -0.029446817934513092, 0.04679897427558899, 0.01592198573052883, 0.005892704240977764, -0.006517650559544563, -0.05304516479372978, -0.030477499589323997, 0.010056505911052227, -0.0338994599878788, 0.032069869339466095, -0.07286926358938217, 0.04672945290803909, 0.013347169384360313, 0.3012692332267761, 0.04461236670613289, -0.28258126974105835, -0.061845604330301285, -0.002843074733391404, -0.04586615785956383, -0.07446242868900299, 0.004749499727040529, 0.14560672640800476, -0.12440206855535507, 0.038346339017152786, -0.05497106909751892, 0.08814899623394012, -0.04799135774374008, 0.0023809128906577826, 0.06644199043512344, 0.14749589562416077, -0.009479111060500145, 0.06942708045244217, -0.18855875730514526, 0.22568103671073914, 0.02845834195613861, 0.10978766530752182, -0.06194800138473511, 0.013588291592895985, 0.010121467523276806, 0.026138700544834137, 0.10826633870601654, -0.0007420439505949616, -0.02512289211153984, -0.16898851096630096, -0.11489233374595642, 0.05907158926129341, 0.1164623573422432, -0.015546518377959728, 0.09657063335180283, -0.04188564792275429, -0.002494972897693515, 0.03759072348475456, -0.07353385537862778, -0.12793931365013123, -0.08759579062461853, 0.0017299412284046412, 0.019749635830521584, -0.040375832468271255, -0.04829923436045647, -0.09177621454000473, -0.024930628016591072, 0.13487844169139862, -0.001582660828717053, -0.0431680753827095, -0.1353696882724762, 0.05562152341008186, 0.1435694545507431, -0.05846220254898071, 0.019326789304614067, 0.003260588739067316, 0.10218895971775055, 0.05196874216198921, -0.0837063267827034, 0.052101943641901016, -0.06666036695241928, -0.1596611887216568, -0.06107359007000923, 0.1157301664352417, 0.07957466691732407, 0.05350336804986, -0.0034586102701723576, 0.032741621136665344, 0.0008768316474743187, -0.08646469563245773, 0.007117283996194601, 0.05360502004623413, 0.08987344801425934, 0.05060350522398949, -0.09434588253498077, 0.04792342334985733, -0.0343131422996521, -0.00277906097471714, 0.12688221037387848, 0.21466679871082306, -0.08628435432910919, 0.08754286915063858, 0.0707404762506485, -0.07849154621362686, -0.17758172750473022, 0.06954570859670639, 0.13147930800914764, 0.016199585050344467, 0.03545819967985153, -0.2051147073507309, 0.13704445958137512, 0.11299524456262589, -0.014885315671563148, 0.05431809276342392, -0.29679733514785767, -0.1235114112496376, 0.07071138918399811, 0.10384707152843475, 0.04199618846178055, -0.1281914860010147, -0.02741219475865364, -0.010598069988191128, -0.14567922055721283, 0.14624570310115814, -0.07275210320949554, 0.12257270514965057, -0.008198246359825134, 0.12375647574663162, 0.022397536784410477, -0.04155586659908295, 0.13047745823860168, 0.0752844288945198, 0.08718730509281158, -0.038980089128017426, -0.0015943869948387146, 0.048772282898426056, -0.06623132526874542, 0.04861699417233467, -0.04220542684197426, 0.06714271008968353, -0.16426865756511688, 0.0004041751381009817, -0.08391641825437546, 0.04368025064468384, -0.047734055668115616, -0.04689745977520943, -0.029140369966626167, 0.04707567021250725, 0.06787559390068054, -0.034991681575775146, 0.03089943528175354, 0.021050870418548584, 0.05545903742313385, 0.09318748116493225, 0.0878266766667366, -0.018165601417422295, -0.10910268127918243, 0.011372736655175686, -0.0055466205812990665, 0.05284140631556511, -0.10145966708660126, 0.01630689576268196, 0.13514436781406403, 0.05824561044573784, 0.1257028430700302, 0.02569677121937275, -0.033281803131103516, -0.015502572990953922, 0.015356785617768764, -0.12564992904663086, -0.11793103069067001, 0.0375950001180172, -0.04370252043008804, -0.15552504360675812, 0.005575826391577721, 0.10222597420215607, -0.037922367453575134, -0.012225257232785225, -0.01042212639003992, 0.024026930332183838, -0.012828191742300987, 0.2017975002527237, 0.041305478662252426, 0.06217173486948013, -0.10264046490192413, 0.12626071274280548, 0.057863749563694, -0.04617207497358322, 0.05692310631275177, 0.06755880266427994, -0.09362863749265671, -0.005304123740643263, 0.10788540542125702, 0.16965503990650177, -0.04637343809008598, -0.019556652754545212, -0.07239942252635956, -0.07619135081768036, 0.05760735645890236, 0.1607881486415863, 0.04932352900505066, -0.006157172843813896, -0.04424959793686867, 0.024982823058962822, -0.12660649418830872, 0.0744875967502594, 0.04729773476719856, 0.06757184863090515, -0.10598773509263992, 0.1086457148194313, -0.008761907927691936, 0.03520260751247406, -0.01582617685198784, 0.02882334589958191, -0.09670279920101166, -0.025216180831193924, -0.12395156919956207, 0.020192399621009827, -0.010134195908904076, 0.00743618281558156, -0.010721050202846527, -0.053650692105293274, -0.03793444484472275, 0.025748785585165024, -0.08085265010595322, -0.05493757873773575, 0.016270704567432404, 0.045725926756858826, -0.15568804740905762, -0.012066548690199852, 0.023811141029000282, -0.09351561963558197, 0.07686268538236618, 0.0651814267039299, 0.01637360081076622, 0.027631012722849846, -0.10668185353279114, -0.046590905636548996, 0.013035599142313004, 0.02899736724793911, 0.0842423141002655, -0.08770842850208282, -0.013902553357183933, -0.033852338790893555, 0.049074314534664154, 0.014181500300765038, 0.08895569294691086, -0.1160491332411766, -0.003820637706667185, -0.05685551464557648, -0.03338665887713432, -0.05965958535671234, 0.0343770906329155, 0.11598197370767593, 0.03547497093677521, 0.16918472945690155, -0.06824197620153427, 0.038763437420129776, -0.19385649263858795, -0.03359712287783623, 0.0029116207733750343, -0.04136328399181366, -0.08534237742424011, -0.04223744943737984, 0.09251725673675537, -0.05131055414676666, 0.09317445755004883, -0.007347883656620979, 0.09048344194889069, 0.032261040061712265, -0.007265829481184483, -0.05733870714902878, 0.0017611492658033967, 0.14763200283050537, 0.0597204715013504, -0.018902191892266273, 0.10300745815038681, -0.008646717295050621, 0.054928041994571686, 0.04345012456178665, 0.22635295987129211, 0.14895829558372498, -0.019144758582115173, 0.0640442743897438, 0.07066897302865982, -0.1208527684211731, -0.12473534792661667, 0.14304426312446594, -0.04668189585208893, 0.12317105382680893, -0.054939206689596176, 0.21987082064151764, 0.0227162167429924, -0.17554716765880585, 0.05240674689412117, -0.05672750994563103, -0.11991328746080399, -0.12006925046443939, -0.014877759851515293, -0.08093324303627014, -0.10009211301803589, 0.026066740974783897, -0.1216055229306221, 0.0646291971206665, 0.11937996745109558, 0.016235873103141785, 0.021403349936008453, 0.1543084979057312, -0.04202384874224663, 0.017466692253947258, 0.06070782616734505, 0.023918604478240013, -0.006204670760780573, -0.06041610240936279, -0.06457378715276718, 0.05101453512907028, 0.0354006290435791, 0.08574428409337997, -0.04593770578503609, 0.018587850034236908, 0.03363526612520218, -0.015311641618609428, -0.0736336037516594, 0.012456521391868591, 0.02634706348180771, 0.04002200439572334, 0.0558859147131443, 0.05312859266996384, 0.016749342903494835, -0.03577176108956337, 0.26667848229408264, -0.07270786166191101, -0.08422647416591644, -0.1313142329454422, 0.19909687340259552, 0.016834300011396408, -0.018646661192178726, 0.07583948969841003, -0.10400285571813583, -0.02409570850431919, 0.16807156801223755, 0.1246197298169136, -0.10310599952936172, -0.02975832298398018, -0.01592084765434265, -0.011792131699621677, -0.03887273743748665, 0.1169530525803566, 0.09363944083452225, 0.008634845726191998, -0.0769449844956398, -0.02945549413561821, -0.017371295019984245, -0.04387956112623215, -0.06331046670675278, 0.03730476647615433, 0.014988914132118225, 0.0016101571964100003, -0.03924361243844032, 0.05118577554821968, -0.012710613198578358, -0.24431802332401276, 0.030797164887189865, -0.15699723362922668, -0.18074873089790344, -0.03137269243597984, 0.06295957416296005, -0.005625128746032715, 0.039072539657354355, -0.018671656027436256, 0.003997810184955597, 0.14943765103816986, -0.035234738141298294, -0.04835937172174454, -0.1214136928319931, 0.1021135225892067, -0.09831856191158295, 0.20543627440929413, 0.007282991427928209, 0.08362080901861191, 0.09772340953350067, 0.022782064974308014, -0.13468682765960693, 0.03440191596746445, 0.07474088668823242, -0.11046332865953445, 0.013809367083013058, 0.15163861215114594, -0.05499950423836708, 0.08134657144546509, 0.026311585679650307, -0.10347211360931396, -0.018637975677847862, -0.02751612663269043, -0.03221513703465462, -0.07973327487707138, -0.01567693240940571, -0.06388749927282333, 0.1656382828950882, 0.22119325399398804, -0.024204058572649956, 0.0160406194627285, -0.0867454782128334, 0.016784850507974625, 0.04416806250810623, 0.051875725388526917, -0.04290994629263878, -0.20519496500492096, 0.030049443244934082, 0.022811170667409897, 0.02368064783513546, -0.19848501682281494, -0.0837051197886467, 0.04710150882601738, -0.02864154428243637, -0.05170806869864464, 0.10083667933940887, 0.023135384544730186, 0.04460886865854263, -0.03483352065086365, -0.09501584619283676, -0.044431980699300766, 0.14318566024303436, -0.1624550223350525, -0.05394567549228668 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-256-finetuned-squad-seed-10 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-256-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-256-finetuned-squad-seed-10
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-10 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09899627417325974, 0.15302281081676483, -0.0021053943783044815, 0.09092573821544647, 0.13762281835079193, 0.03939445689320564, 0.0889071449637413, 0.13429999351501465, -0.07999730110168457, 0.07368205487728119, 0.07819972187280655, 0.05526336655020714, 0.05221593752503395, 0.12480566650629044, -0.04650094732642174, -0.21005815267562866, 0.013523543253540993, -0.018251841887831688, -0.05573718249797821, 0.0986824482679367, 0.08213745057582855, -0.10505453497171402, 0.0790775790810585, -0.020477456972002983, -0.15242452919483185, 0.009393660351634026, -0.03959355503320694, -0.023880524560809135, 0.09542108327150345, -0.008157174102962017, 0.0964844673871994, 0.010479043237864971, 0.14024098217487335, -0.21173404157161713, -0.00017075761570595205, 0.07831589132547379, 0.0364689938724041, 0.08949188888072968, 0.04517526552081108, 0.026909714564681053, 0.05150032043457031, -0.15399277210235596, 0.09121526032686234, 0.025443224236369133, -0.07637745887041092, -0.08897635340690613, -0.09116912633180618, 0.019406110048294067, 0.07962069660425186, 0.08279047906398773, 0.007943220436573029, 0.13411375880241394, -0.09190289676189423, 0.08249826729297638, 0.20007188618183136, -0.2739221155643463, -0.06647656112909317, 0.047842588275671005, 0.05424175783991814, 0.06693224608898163, -0.11863245815038681, -0.028978154063224792, 0.02915368787944317, 0.03195108473300934, 0.09476032853126526, -0.019670823588967323, -0.1386813223361969, 0.001190963084809482, -0.13358648121356964, -0.013905758038163185, 0.10846369713544846, 0.0502241775393486, -0.04384920001029968, -0.06537485122680664, -0.07756505161523819, -0.10896530747413635, -0.02518966607749462, -0.021876150742173195, 0.05192534253001213, -0.055940356105566025, -0.05721732974052429, -0.03932026028633118, -0.05772010609507561, -0.08741914480924606, -0.0012633905280381441, 0.11863384395837784, 0.044714927673339844, 0.023080267012119293, -0.03390788286924362, 0.10210143774747849, -0.0011536668753251433, -0.13311143219470978, -0.016401229426264763, 0.008345700800418854, -0.1244770959019661, -0.05755538493394852, -0.027660872787237167, 0.01289716362953186, 0.01573987491428852, 0.1492445468902588, -0.038544412702322006, 0.08216668665409088, 0.018553901463747025, -0.0213436558842659, -0.011973089538514614, 0.14355264604091644, -0.04093053191900253, -0.05493209511041641, 0.004875771701335907, 0.09770579636096954, -0.000518447021022439, -0.00408442597836256, -0.0737590491771698, -0.01896153762936592, 0.093265600502491, 0.054986197501420975, -0.055510520935058594, 0.03398463502526283, -0.030423760414123535, -0.024868464097380638, 0.0241323783993721, -0.12443681061267853, 0.03615438565611839, 0.008612506091594696, -0.08477028459310532, -0.03863224759697914, 0.010915540158748627, -0.017214544117450714, -0.021372821182012558, 0.08904625475406647, -0.08685074746608734, -0.006309602875262499, -0.07798763364553452, -0.07471465319395065, 0.01574871689081192, -0.14718970656394958, -0.013854924589395523, -0.04809610918164253, -0.2042650431394577, -0.03840448334813118, 0.042709749191999435, -0.07547125965356827, -0.04206688702106476, -0.05920036509633064, -0.08426850289106369, 0.01373106800019741, -0.0038233904633671045, 0.16746772825717926, -0.059144385159015656, 0.07674827426671982, -0.014795972034335136, 0.042066238820552826, 0.011088416911661625, 0.04935106262564659, -0.08732178807258606, 0.022905468940734863, -0.14071513712406158, 0.07903455197811127, -0.0963820144534111, 0.01200397964566946, -0.12463647127151489, -0.08888174593448639, 0.03865473344922066, -0.02755005657672882, 0.07043907046318054, 0.14392207562923431, -0.19369401037693024, 0.002742190146818757, 0.11709319800138474, -0.046680793166160583, -0.04623895511031151, 0.07785172760486603, -0.05682481825351715, 0.029845064505934715, 0.05286651477217674, 0.16612876951694489, 0.07597649097442627, -0.14866065979003906, -0.01913694106042385, 0.025003183633089066, 0.04964578524231911, 0.004322868771851063, 0.045140739530324936, 0.006826214026659727, 0.028093744069337845, 0.00397498020902276, -0.07605808973312378, -0.02562078647315502, -0.08993145823478699, -0.0711744949221611, -0.05249299108982086, -0.08885139226913452, 0.02237427979707718, 0.012828964740037918, 0.02079441025853157, -0.05827576294541359, -0.10342048108577728, 0.10333225876092911, 0.12909458577632904, -0.05363203212618828, 0.006323893554508686, -0.06912866234779358, 0.020131411030888557, -0.0308748297393322, -0.03490259870886803, -0.1952667385339737, -0.13445602357387543, 0.05314752086997032, -0.05325330048799515, 0.035620130598545074, 0.036355070769786835, 0.06428494304418564, 0.062757208943367, -0.03269492834806442, -0.019445903599262238, -0.07003313302993774, -0.003575644688680768, -0.11442979425191879, -0.19741056859493256, -0.06515629589557648, -0.03354595974087715, 0.14146311581134796, -0.2033098340034485, 0.0004802021139767021, -0.027093712240457535, 0.1206178069114685, 0.015217864885926247, -0.05783617123961449, 0.009148809127509594, 0.0289671141654253, 0.0066162049770355225, -0.10031194984912872, 0.040668535977602005, 0.00742187537252903, -0.05465174838900566, -0.06212439760565758, -0.1099858507514, -0.006376493722200394, 0.05840635672211647, 0.08098134398460388, -0.10441944003105164, -0.006396980490535498, -0.050733111798763275, -0.04487714171409607, -0.08649390935897827, 0.00932491198182106, 0.1959572583436966, 0.03302992880344391, 0.12081310153007507, -0.061333075165748596, -0.07173848152160645, 0.002154299523681402, 0.025051547214388847, 0.023766521364450455, 0.09142587333917618, 0.1049867644906044, -0.09825760126113892, 0.08771086484193802, 0.07032904028892517, -0.047687046229839325, 0.11798457056283951, -0.04506777971982956, -0.08259644359350204, -0.018757836893200874, 0.0055314237251877785, -0.03467220813035965, 0.13939374685287476, -0.08505252003669739, 0.01018617209047079, 0.03356180712580681, 0.023391954600811005, 0.017527226358652115, -0.16999395191669464, 0.00008712000271771103, 0.011902322992682457, -0.0633949339389801, -0.03968235105276108, -0.024439603090286255, 0.0353957898914814, 0.09307844191789627, 0.02565716579556465, -0.04462975263595581, 0.01613513194024563, -0.011862719431519508, -0.06885240226984024, 0.19264322519302368, -0.10671446472406387, -0.08983124792575836, -0.10738562047481537, 0.02645525522530079, -0.04328130930662155, -0.03697836771607399, 0.004035945516079664, -0.08377157151699066, -0.055101729929447174, -0.08796148002147675, -0.02397453784942627, -0.01667884923517704, -0.0030517964623868465, 0.02495797723531723, -0.01505275722593069, 0.07088243216276169, -0.13151364028453827, 0.005387657321989536, -0.030126672238111496, -0.10256537795066833, 0.007569135632365942, 0.0625382661819458, 0.08572302758693695, 0.10011370480060577, -0.015211588703095913, 0.01312902383506298, -0.02790243551135063, 0.2384514957666397, -0.05566997826099396, 0.016162127256393433, 0.08291159570217133, -0.006549317389726639, 0.06077995151281357, 0.14332421123981476, 0.031107354909181595, -0.10344966500997543, 0.026239804923534393, 0.08279740810394287, -0.011387096717953682, -0.24905337393283844, -0.027795718982815742, -0.021104369312524796, -0.07223430275917053, 0.08937817811965942, 0.039268217980861664, -0.04408739507198334, 0.039784226566553116, 0.009505187161266804, 0.015019292011857033, -0.05227162316441536, 0.07300569862127304, 0.0843420922756195, 0.044309213757514954, 0.09430700540542603, -0.02246721461415291, -0.01326454896479845, 0.06375598162412643, 0.01653946191072464, 0.27089476585388184, -0.02912173978984356, 0.1265098750591278, 0.02577902562916279, 0.14757762849330902, -0.03046802617609501, 0.0497719906270504, 0.016993021592497826, 0.005236736964434385, -0.006469224579632282, -0.05238493159413338, -0.028716323897242546, 0.010623561218380928, -0.033559005707502365, 0.03145766630768776, -0.072422094643116, 0.04650338739156723, 0.012846926227211952, 0.30026358366012573, 0.046353355050086975, -0.28377917408943176, -0.060969606041908264, -0.0025149229913949966, -0.04769912362098694, -0.07458866387605667, 0.0042066858150064945, 0.14444918930530548, -0.12471005320549011, 0.038944706320762634, -0.05555421859025955, 0.0886315107345581, -0.047133252024650574, 0.002745990874245763, 0.06521934270858765, 0.14671555161476135, -0.00930049829185009, 0.07033123075962067, -0.19015176594257355, 0.22535064816474915, 0.02806742489337921, 0.11107238382101059, -0.06268732994794846, 0.01371737290173769, 0.009696751832962036, 0.024894634261727333, 0.11012186855077744, -0.0009790185140445828, -0.025152239948511124, -0.16991205513477325, -0.11471299082040787, 0.0588594451546669, 0.11703379452228546, -0.014559203758835793, 0.09779727458953857, -0.04065265133976936, -0.003476441837847233, 0.037613872438669205, -0.07453273236751556, -0.12917862832546234, -0.0869995504617691, 0.0011966468300670385, 0.018022233620285988, -0.040157563984394073, -0.04793335869908333, -0.09175283461809158, -0.027769658714532852, 0.13335666060447693, -0.0011145997559651732, -0.042929355055093765, -0.13485918939113617, 0.05789497494697571, 0.14413927495479584, -0.057899221777915955, 0.020717989653348923, 0.004597014747560024, 0.10189645737409592, 0.050958067178726196, -0.08211290091276169, 0.05166389048099518, -0.066646508872509, -0.159434512257576, -0.060267701745033264, 0.11733788996934891, 0.0798548087477684, 0.05372031405568123, -0.0018634116277098656, 0.03195776790380478, 0.001087200827896595, -0.08624793589115143, 0.0065838187001645565, 0.05284169316291809, 0.08949671685695648, 0.05000724270939827, -0.09485629200935364, 0.04709721356630325, -0.03529861569404602, -0.0008067346061579883, 0.1276463270187378, 0.2132015973329544, -0.08589248359203339, 0.08634769916534424, 0.0705694928765297, -0.07876066863536835, -0.17684504389762878, 0.07033498585224152, 0.13213099539279938, 0.016934474930167198, 0.03543206676840782, -0.20451582968235016, 0.136703222990036, 0.11271530389785767, -0.014065285213291645, 0.053042616695165634, -0.29721778631210327, -0.12317748367786407, 0.0715777650475502, 0.10428895056247711, 0.039872508496046066, -0.12767581641674042, -0.027380837127566338, -0.011524908244609833, -0.14564228057861328, 0.14557383954524994, -0.07295552641153336, 0.1220991238951683, -0.007462579756975174, 0.12211264669895172, 0.022521592676639557, -0.04204699024558067, 0.12910519540309906, 0.07732179760932922, 0.08751111477613449, -0.038867875933647156, -0.0034280612599104643, 0.051412492990493774, -0.06582829356193542, 0.0500047393143177, -0.04125725105404854, 0.06616269052028656, -0.16375742852687836, -0.0001926847326103598, -0.08382285386323929, 0.042858805507421494, -0.048179205507040024, -0.04673679172992706, -0.02837354503571987, 0.047072429209947586, 0.06762097030878067, -0.034425802528858185, 0.028975019231438637, 0.022207561880350113, 0.05482621118426323, 0.08879289031028748, 0.08902720361948013, -0.016652587801218033, -0.10802239924669266, 0.011666722595691681, -0.005237754434347153, 0.052015192806720734, -0.10303502529859543, 0.015008479356765747, 0.1355186402797699, 0.05856452137231827, 0.12622582912445068, 0.025493772700428963, -0.033693332225084305, -0.01588965207338333, 0.015048588626086712, -0.12310485541820526, -0.11950059235095978, 0.03813892975449562, -0.044968657195568085, -0.1564963012933731, 0.007456466089934111, 0.10001354664564133, -0.038831569254398346, -0.013249670155346394, -0.01153651438653469, 0.02370799519121647, -0.012997102923691273, 0.20347286760807037, 0.04207928851246834, 0.06322971731424332, -0.10291847586631775, 0.125278502702713, 0.05781823769211769, -0.046917859464883804, 0.05640323832631111, 0.06819168478250504, -0.09437438100576401, -0.005559313111007214, 0.10854540020227432, 0.16908247768878937, -0.04301924630999565, -0.019544007256627083, -0.07265399396419525, -0.07574106007814407, 0.05816299468278885, 0.16124121844768524, 0.049453675746917725, -0.0072744861245155334, -0.043734826147556305, 0.02573220431804657, -0.127155140042305, 0.0742294117808342, 0.04777776822447777, 0.06773710995912552, -0.10603280365467072, 0.10999467223882675, -0.008827384561300278, 0.03603869676589966, -0.015293309465050697, 0.029815787449479103, -0.09613595902919769, -0.025384530425071716, -0.12199772894382477, 0.018123673275113106, -0.012103267014026642, 0.007166232448071241, -0.011531086638569832, -0.052691712975502014, -0.03719907999038696, 0.0250241719186306, -0.08071354776620865, -0.0555092990398407, 0.01592441461980343, 0.044496044516563416, -0.15431174635887146, -0.011960435658693314, 0.022838694974780083, -0.09326671063899994, 0.07630770653486252, 0.06400254368782043, 0.01679043658077717, 0.02824779972434044, -0.10626271367073059, -0.04577949643135071, 0.014363003894686699, 0.028768910095095634, 0.08392637223005295, -0.08719441294670105, -0.013661785051226616, -0.03408362716436386, 0.05065039172768593, 0.013558520935475826, 0.08583671599626541, -0.11507310718297958, -0.004388142842799425, -0.058386728167533875, -0.033108532428741455, -0.060499779880046844, 0.035212863236665726, 0.11471434682607651, 0.03420228511095047, 0.1697176992893219, -0.06624399125576019, 0.03905555233359337, -0.19449296593666077, -0.03425237163901329, 0.0022307448089122772, -0.041714418679475784, -0.08464933186769485, -0.04331273213028908, 0.09281247109174728, -0.05104425922036171, 0.09339030832052231, -0.008023485541343689, 0.09168950468301773, 0.03106769174337387, -0.004159982316195965, -0.0574500598013401, 0.002587763126939535, 0.14829230308532715, 0.059578195214271545, -0.019535692408680916, 0.10161074250936508, -0.007636324502527714, 0.055051978677511215, 0.042200472205877304, 0.22369717061519623, 0.14934852719306946, -0.019970005378127098, 0.06442901492118835, 0.07116922736167908, -0.12108270823955536, -0.1231888085603714, 0.1450147032737732, -0.04702764004468918, 0.12182969599962234, -0.05513804405927658, 0.22249366343021393, 0.022729134187102318, -0.17566929757595062, 0.05271832272410393, -0.05563005059957504, -0.12081822752952576, -0.11865558475255966, -0.01637094095349312, -0.0812670961022377, -0.09863834083080292, 0.02674688771367073, -0.12161817401647568, 0.06365501135587692, 0.1197798103094101, 0.01622503250837326, 0.02091297321021557, 0.15546195209026337, -0.04194974526762962, 0.017765434458851814, 0.06134774908423424, 0.023563535884022713, -0.005445914808660746, -0.060589369386434555, -0.06372005492448807, 0.051819805055856705, 0.03416842967271805, 0.08645053952932358, -0.048021335154771805, 0.017603132873773575, 0.03387916088104248, -0.014511496759951115, -0.07334713637828827, 0.012821829877793789, 0.026026152074337006, 0.040715474635362625, 0.054663367569446564, 0.05334704741835594, 0.015987182036042213, -0.036218658089637756, 0.26475760340690613, -0.07303677499294281, -0.085704505443573, -0.13139083981513977, 0.19618704915046692, 0.01842135563492775, -0.01868838258087635, 0.07636210322380066, -0.10420916974544525, -0.021272817626595497, 0.16892629861831665, 0.12432333081960678, -0.100326307117939, -0.03050236590206623, -0.015095849521458149, -0.012279326096177101, -0.04000566527247429, 0.1165037602186203, 0.09432512521743774, 0.005858945660293102, -0.07683194428682327, -0.029023734852671623, -0.01598750613629818, -0.04573478177189827, -0.06333954632282257, 0.036668140441179276, 0.01629621349275112, 0.001390916295349598, -0.037258733063936234, 0.05366704985499382, -0.010518928058445454, -0.24397854506969452, 0.02984105609357357, -0.15564216673374176, -0.18083685636520386, -0.03202323615550995, 0.06257467716932297, -0.003578064264729619, 0.03914331644773483, -0.018408015370368958, 0.004005352966487408, 0.1483214646577835, -0.034478265792131424, -0.048656053841114044, -0.12151851505041122, 0.10222617536783218, -0.09991360455751419, 0.20394137501716614, 0.007015187293291092, 0.08458120375871658, 0.09798981994390488, 0.02101932466030121, -0.13412854075431824, 0.034687552601099014, 0.07500398904085159, -0.10820427536964417, 0.015648994594812393, 0.15202172100543976, -0.054584112018346786, 0.07829757779836655, 0.025238037109375, -0.1043907105922699, -0.01788037270307541, -0.026323385536670685, -0.03175824135541916, -0.08100558072328568, -0.012937393970787525, -0.06292213499546051, 0.16618552803993225, 0.22106698155403137, -0.024782856926321983, 0.01676815189421177, -0.08739461749792099, 0.01570943184196949, 0.04444042965769768, 0.052224740386009216, -0.04296450316905975, -0.2057558298110962, 0.029216589406132698, 0.018857449293136597, 0.024299796670675278, -0.19669115543365479, -0.08264556527137756, 0.046031586825847626, -0.030007624998688698, -0.05261676758527756, 0.0998680591583252, 0.02479231357574463, 0.043899055570364, -0.03436813876032829, -0.09566767513751984, -0.04475254938006401, 0.1445103883743286, -0.16338606178760529, -0.053359899669885635 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-256-finetuned-squad-seed-2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-256-finetuned-squad-seed-2", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-256-finetuned-squad-seed-2
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-2 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09773217141628265, 0.15434561669826508, -0.002176688751205802, 0.09130309522151947, 0.1370958387851715, 0.039450522512197495, 0.08763068914413452, 0.1350013166666031, -0.08115600049495697, 0.07363004237413406, 0.07893723994493484, 0.053475238382816315, 0.051450591534376144, 0.12407264113426208, -0.04645957052707672, -0.21009866893291473, 0.0129769928753376, -0.019811732694506645, -0.05772647261619568, 0.0986359715461731, 0.08296174556016922, -0.10408276319503784, 0.07936573028564453, -0.019655508920550346, -0.1541697382926941, 0.009550623595714569, -0.03853033483028412, -0.022551434114575386, 0.09541783481836319, -0.007062269374728203, 0.09713481366634369, 0.011491799727082253, 0.1398780345916748, -0.2123769223690033, -0.00039122404996305704, 0.0777609795331955, 0.03720564767718315, 0.08943942189216614, 0.0454958938062191, 0.026929447427392006, 0.05109170079231262, -0.15269893407821655, 0.08985103666782379, 0.025638079270720482, -0.07621201127767563, -0.08960612863302231, -0.09076084196567535, 0.019366659224033356, 0.07919102162122726, 0.08167212456464767, 0.008987032808363438, 0.13255083560943604, -0.0915868803858757, 0.08190856873989105, 0.1985885053873062, -0.2740398049354553, -0.06698577851057053, 0.04626866802573204, 0.05218883976340294, 0.06782560050487518, -0.11727578192949295, -0.02825629711151123, 0.029272466897964478, 0.0322447270154953, 0.09430081397294998, -0.019488021731376648, -0.13937470316886902, 0.0012573670828714967, -0.13358381390571594, -0.015775369480252266, 0.10938315838575363, 0.04921581596136093, -0.04472837597131729, -0.06268598884344101, -0.07795683294534683, -0.10644365102052689, -0.02374907396733761, -0.02223231829702854, 0.052306730300188065, -0.05410003662109375, -0.05687427520751953, -0.04167981445789337, -0.05971875786781311, -0.08783352375030518, -0.00273704226128757, 0.12096526473760605, 0.04452517628669739, 0.02460361085832119, -0.034065186977386475, 0.10374034196138382, 0.0011314048897475004, -0.13262027502059937, -0.01706669293344021, 0.00894224550575018, -0.12349898368120193, -0.056905340403318405, -0.028120841830968857, 0.013680060394108295, 0.01663806475698948, 0.14763592183589935, -0.04089832305908203, 0.08120440691709518, 0.017189446836709976, -0.019892079755663872, -0.01170824933797121, 0.14357921481132507, -0.03869707137346268, -0.05164948105812073, 0.005507018882781267, 0.09688359498977661, -0.00019148783758282661, -0.004171453882008791, -0.07396124303340912, -0.019475650042295456, 0.09320010989904404, 0.055875249207019806, -0.0551091693341732, 0.03196410462260246, -0.03262708708643913, -0.02494293823838234, 0.02201738953590393, -0.1244281530380249, 0.03559516742825508, 0.008802715688943863, -0.0831790640950203, -0.03961249440908432, 0.011903250589966774, -0.01707167737185955, -0.019715406000614166, 0.088053397834301, -0.0857691690325737, -0.005285531282424927, -0.07709472626447678, -0.07208443433046341, 0.015160148963332176, -0.1433897763490677, -0.01450892724096775, -0.04920031130313873, -0.2017439752817154, -0.0366717129945755, 0.04350423812866211, -0.07654285430908203, -0.04471447691321373, -0.05807224288582802, -0.08289550244808197, 0.01467339787632227, -0.00452185096219182, 0.1673603057861328, -0.05934417247772217, 0.07774989306926727, -0.01507299579679966, 0.04166920483112335, 0.01099286787211895, 0.048466384410858154, -0.08655580133199692, 0.023892516270279884, -0.14166919887065887, 0.08013179153203964, -0.09553461521863937, 0.008326290175318718, -0.12575748562812805, -0.08812315762042999, 0.03976529464125633, -0.028056465089321136, 0.06916828453540802, 0.1437348872423172, -0.192520409822464, 0.0028523807413876057, 0.11651979386806488, -0.04831567779183388, -0.04556015506386757, 0.07963525503873825, -0.05688337981700897, 0.03199870139360428, 0.050773948431015015, 0.166508287191391, 0.07561836391687393, -0.14858633279800415, -0.01634201966226101, 0.027291348204016685, 0.048862673342227936, 0.005838535260409117, 0.04651150107383728, 0.00537998927757144, 0.023782452568411827, 0.003509162925183773, -0.07929997891187668, -0.025567466393113136, -0.09077846258878708, -0.07172145694494247, -0.05268719419836998, -0.08862724900245667, 0.023545200005173683, 0.01051755528897047, 0.021138498559594154, -0.05742688477039337, -0.10187892615795135, 0.10308090597391129, 0.12996357679367065, -0.05282061919569969, 0.007908322848379612, -0.06959152221679688, 0.019866617396473885, -0.03143713250756264, -0.03578740358352661, -0.19477041065692902, -0.13514581322669983, 0.053873054683208466, -0.05270993337035179, 0.03582732751965523, 0.036269884556531906, 0.06303083896636963, 0.06247885897755623, -0.0326845645904541, -0.019377071410417557, -0.07026756554841995, -0.004213051404803991, -0.11384306102991104, -0.19818425178527832, -0.06383821368217468, -0.03331846371293068, 0.1425940990447998, -0.20221394300460815, -0.0007613177876919508, -0.026437705382704735, 0.12027856707572937, 0.015564888715744019, -0.05722469463944435, 0.007727525662630796, 0.02831418067216873, 0.006079099141061306, -0.09938367456197739, 0.04076487943530083, 0.009100805968046188, -0.055505137890577316, -0.059238992631435394, -0.10712804645299911, -0.004412030801177025, 0.056815728545188904, 0.0799744725227356, -0.10499252378940582, -0.00696562509983778, -0.05085882544517517, -0.04592577740550041, -0.0880383774638176, 0.009680334478616714, 0.19732192158699036, 0.03250550478696823, 0.12136383354663849, -0.0616694837808609, -0.07063579559326172, 0.001299285446293652, 0.0226350799202919, 0.023067642003297806, 0.09086766093969345, 0.10523086041212082, -0.10025005042552948, 0.08652301132678986, 0.07040796428918839, -0.04850098118185997, 0.11793680489063263, -0.04490014538168907, -0.08204072713851929, -0.02044837549328804, 0.007713013794273138, -0.03441780433058739, 0.13860160112380981, -0.08368832617998123, 0.012315060943365097, 0.03330100327730179, 0.024318544194102287, 0.01764598861336708, -0.17064520716667175, -0.000395363662391901, 0.012646318413317204, -0.06524639576673508, -0.03693568706512451, -0.024680517613887787, 0.03630482405424118, 0.09360799938440323, 0.026006102561950684, -0.04433826729655266, 0.017626218497753143, -0.011597255244851112, -0.06974537670612335, 0.1921377032995224, -0.10711531341075897, -0.09110880643129349, -0.10972986370325089, 0.027452891692519188, -0.04361888766288757, -0.036507535725831985, 0.004415955860167742, -0.08223515003919601, -0.05443701893091202, -0.08862854540348053, -0.022413022816181183, -0.01819491945207119, -0.0022983266972005367, 0.024697883054614067, -0.015235465951263905, 0.073374442756176, -0.13089707493782043, 0.0051719690673053265, -0.029469309374690056, -0.10421805828809738, 0.008648411370813847, 0.06324754655361176, 0.08519896864891052, 0.0993838980793953, -0.014622489921748638, 0.012689583003520966, -0.027087781578302383, 0.23895218968391418, -0.05435655638575554, 0.015161674469709396, 0.0833970159292221, -0.00839932356029749, 0.06145518645644188, 0.14265784621238708, 0.030546782538294792, -0.10354557633399963, 0.02690400369465351, 0.08210594207048416, -0.011787861585617065, -0.24847929179668427, -0.02863497845828533, -0.020460400730371475, -0.07202330976724625, 0.08877795189619064, 0.03952356427907944, -0.04862434044480324, 0.03861113265156746, 0.010509045794606209, 0.013515651226043701, -0.05354674533009529, 0.07270308583974838, 0.08602936565876007, 0.044091906398534775, 0.09420207142829895, -0.021907705813646317, -0.013296769000589848, 0.0656939446926117, 0.01679726131260395, 0.27024269104003906, -0.02974727936089039, 0.12578299641609192, 0.02691734954714775, 0.14971201121807098, -0.029689261689782143, 0.04682434722781181, 0.017327938228845596, 0.005877888761460781, -0.0073158699087798595, -0.05200224742293358, -0.030254490673542023, 0.011149942874908447, -0.03244936838746071, 0.03156231343746185, -0.07325738668441772, 0.049158163368701935, 0.012172797694802284, 0.3022304177284241, 0.04568719491362572, -0.2813953757286072, -0.06063332408666611, -0.00209798919968307, -0.04711215943098068, -0.07417362928390503, 0.00460055423900485, 0.14721399545669556, -0.12588275969028473, 0.03630860149860382, -0.0546332411468029, 0.08764344453811646, -0.048113223165273666, 0.001949498662725091, 0.064095638692379, 0.14608441293239594, -0.008609047159552574, 0.07057495415210724, -0.1881282776594162, 0.225938618183136, 0.027910292148590088, 0.10922135412693024, -0.0604667142033577, 0.013835567981004715, 0.009635047055780888, 0.02596115693449974, 0.1101253405213356, 0.00020589851192198694, -0.026333706453442574, -0.17013877630233765, -0.1160028874874115, 0.05891925469040871, 0.1174415647983551, -0.016706380993127823, 0.09674599766731262, -0.04158838465809822, -0.00214829808101058, 0.037276845425367355, -0.07324784994125366, -0.12829507887363434, -0.086454376578331, 0.0006475311238318682, 0.017332058399915695, -0.040461353957653046, -0.04910639300942421, -0.09176009148359299, -0.02316676266491413, 0.13549122214317322, -0.0014440150698646903, -0.04314539209008217, -0.1342252641916275, 0.05678344890475273, 0.14321599900722504, -0.05907853692770004, 0.019276995211839676, 0.004310679621994495, 0.102610282599926, 0.0514894463121891, -0.08221188932657242, 0.05137920752167702, -0.06680648773908615, -0.1602986454963684, -0.06050003319978714, 0.1173732727766037, 0.08004090189933777, 0.05394935980439186, -0.0018842217978090048, 0.03144308552145958, 0.0020469489973038435, -0.08630438894033432, 0.007625184021890163, 0.05372806638479233, 0.0895393118262291, 0.05044113099575043, -0.09478190541267395, 0.05038083344697952, -0.03487950935959816, -0.0030293769668787718, 0.12931807339191437, 0.21659405529499054, -0.08673875778913498, 0.08793332427740097, 0.06975770741701126, -0.0799935832619667, -0.17730623483657837, 0.06848670542240143, 0.13381226360797882, 0.01627965271472931, 0.03757502883672714, -0.20540791749954224, 0.13646382093429565, 0.11270210891962051, -0.01549054030328989, 0.05179774761199951, -0.2984207272529602, -0.12331932038068771, 0.07033468037843704, 0.1040993258357048, 0.04285150393843651, -0.12648388743400574, -0.027775084599852562, -0.009747079573571682, -0.14481298625469208, 0.14462979137897491, -0.070750392973423, 0.12216909229755402, -0.007566405460238457, 0.12320730835199356, 0.022609779611229897, -0.04085785150527954, 0.13153603672981262, 0.07564831525087357, 0.08611419051885605, -0.03838784992694855, -0.0021675967145711184, 0.04844691604375839, -0.06648679822683334, 0.0484820157289505, -0.040885064750909805, 0.06725167483091354, -0.16498848795890808, -0.00030986330239102244, -0.08337869495153427, 0.04293716698884964, -0.048723846673965454, -0.046548303216695786, -0.028693461790680885, 0.046721551567316055, 0.06770709902048111, -0.03406386449933052, 0.02755366824567318, 0.02238379418849945, 0.052935175597667694, 0.09387592226266861, 0.08812907338142395, -0.015366407111287117, -0.1086912527680397, 0.010194720700383186, -0.005435798317193985, 0.0523061528801918, -0.10171890258789062, 0.016598401591181755, 0.13445861637592316, 0.057561226189136505, 0.12632031738758087, 0.02546106092631817, -0.03375120088458061, -0.014562682248651981, 0.014923829585313797, -0.12460891157388687, -0.12101361155509949, 0.0371471531689167, -0.044002193957567215, -0.1565912961959839, 0.004483197350054979, 0.10252877324819565, -0.03819936513900757, -0.012858905829489231, -0.011248503811657429, 0.024226531386375427, -0.013609470799565315, 0.20156434178352356, 0.0408281646668911, 0.06305345892906189, -0.10167256742715836, 0.12531355023384094, 0.05773787200450897, -0.04528846591711044, 0.05636581405997276, 0.06643050163984299, -0.09316642582416534, -0.004908430855721235, 0.1088971346616745, 0.16909100115299225, -0.04583359882235527, -0.019215548411011696, -0.07232020795345306, -0.07590986788272858, 0.05731029063463211, 0.15938514471054077, 0.0504511296749115, -0.006226816214621067, -0.043963052332401276, 0.025251565501093864, -0.1259051412343979, 0.07426322251558304, 0.04881132394075394, 0.06771928071975708, -0.10664647817611694, 0.11039306968450546, -0.009263561107218266, 0.03750142455101013, -0.01567186787724495, 0.028393404558300972, -0.09583114087581635, -0.02552969940006733, -0.12359984964132309, 0.020804651081562042, -0.009485648013651371, 0.007094209082424641, -0.01017631683498621, -0.053490396589040756, -0.03728960081934929, 0.025864019989967346, -0.0809851810336113, -0.05525479093194008, 0.015610471367835999, 0.045730531215667725, -0.1540515273809433, -0.012765347957611084, 0.024440430104732513, -0.09371448308229446, 0.07758641988039017, 0.06475891917943954, 0.01727624423801899, 0.027530761435627937, -0.10433982312679291, -0.04607345163822174, 0.014252658002078533, 0.02882000431418419, 0.08304817974567413, -0.0880194827914238, -0.014829291962087154, -0.03377111628651619, 0.049727343022823334, 0.013561710715293884, 0.08924944698810577, -0.11573031544685364, -0.0035066972486674786, -0.05843992158770561, -0.03408036381006241, -0.060053933411836624, 0.033671215176582336, 0.1138933077454567, 0.036846823990345, 0.16964659094810486, -0.06786263734102249, 0.03892114758491516, -0.19422005116939545, -0.03384898230433464, 0.0023989519104361534, -0.039478134363889694, -0.08585912734270096, -0.043713487684726715, 0.09143628925085068, -0.05103814974427223, 0.09217540919780731, -0.007920085452497005, 0.08942009508609772, 0.031353432685136795, -0.007166740950196981, -0.05513272434473038, 0.0017851843731477857, 0.1467631310224533, 0.05946220085024834, -0.01882075145840645, 0.10259190946817398, -0.00931723602116108, 0.05585822835564613, 0.04186277091503143, 0.22583767771720886, 0.14908497035503387, -0.019565524533391, 0.06424332410097122, 0.0705837681889534, -0.11989389359951019, -0.12563902139663696, 0.14355067908763885, -0.04667629301548004, 0.12147925049066544, -0.053502246737480164, 0.22061322629451752, 0.02319333888590336, -0.17639566957950592, 0.051352377980947495, -0.05549304932355881, -0.12070794403553009, -0.12034031748771667, -0.015175485983490944, -0.08225275576114655, -0.09931410849094391, 0.02614576928317547, -0.12164365500211716, 0.06441907584667206, 0.11963452398777008, 0.015475243330001831, 0.021476682275533676, 0.15276463329792023, -0.04139484465122223, 0.017516212537884712, 0.06060551106929779, 0.02303468808531761, -0.004518431611359119, -0.05953666567802429, -0.06522931903600693, 0.05167735368013382, 0.036228206008672714, 0.0857706218957901, -0.04678601771593094, 0.01883319951593876, 0.03264312446117401, -0.015819091349840164, -0.07348915934562683, 0.012153606861829758, 0.02644813060760498, 0.040322739630937576, 0.05362025648355484, 0.053959548473358154, 0.016164399683475494, -0.0354313887655735, 0.2664763927459717, -0.07231435924768448, -0.0847516655921936, -0.13101743161678314, 0.19904859364032745, 0.016223210841417313, -0.017796721309423447, 0.07709088921546936, -0.10316097736358643, -0.0235085878521204, 0.16702938079833984, 0.12324638664722443, -0.1038978323340416, -0.029990889132022858, -0.015954596921801567, -0.012137099169194698, -0.039021313190460205, 0.1184937134385109, 0.09357115626335144, 0.007276204880326986, -0.07783116400241852, -0.030025649815797806, -0.01788053847849369, -0.04386217147111893, -0.06411340832710266, 0.03679896518588066, 0.0148544330149889, 0.0027255655732005835, -0.0385289192199707, 0.05197775736451149, -0.011555041186511517, -0.24336087703704834, 0.0295147392898798, -0.15496201813220978, -0.18113622069358826, -0.030948635190725327, 0.06331634521484375, -0.005808208603411913, 0.038938090205192566, -0.020206553861498833, 0.004050268791615963, 0.1492832750082016, -0.03536932170391083, -0.04859237000346184, -0.11991424858570099, 0.10324038565158844, -0.0996491089463234, 0.20542941987514496, 0.008103462867438793, 0.08513276278972626, 0.0968661829829216, 0.02208808809518814, -0.13495932519435883, 0.03369820863008499, 0.07440964132547379, -0.10842763632535934, 0.014853538945317268, 0.15244024991989136, -0.05466211587190628, 0.08012402057647705, 0.027094611898064613, -0.10359364002943039, -0.01918765716254711, -0.026669539511203766, -0.03181767463684082, -0.08030202239751816, -0.015854211524128914, -0.06511678546667099, 0.1650298833847046, 0.2205592542886734, -0.025000546127557755, 0.01708901859819889, -0.08647997677326202, 0.016408700495958328, 0.044576577842235565, 0.05442863702774048, -0.04213928431272507, -0.2053743302822113, 0.028823118656873703, 0.0210579801350832, 0.023890312761068344, -0.19783025979995728, -0.08463907241821289, 0.04629027843475342, -0.028737789019942284, -0.05170305073261261, 0.10146062076091766, 0.023272618651390076, 0.043749090284109116, -0.03376885876059532, -0.0973014310002327, -0.045232828706502914, 0.14353880286216736, -0.16235406696796417, -0.05360354110598564 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-256-finetuned-squad-seed-4 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-256-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-256-finetuned-squad-seed-4
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-4 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.098466657102108, 0.15393711626529694, -0.0021470931824296713, 0.09225495159626007, 0.1381899118423462, 0.040056467056274414, 0.08805861324071884, 0.1341075599193573, -0.0818236768245697, 0.07333383709192276, 0.07886374741792679, 0.05307834967970848, 0.05106872320175171, 0.12357530742883682, -0.04623623937368393, -0.20981992781162262, 0.012609981000423431, -0.019316937774419785, -0.05731016397476196, 0.09838426858186722, 0.08194074779748917, -0.10474354028701782, 0.07996905595064163, -0.020141463726758957, -0.15452058613300323, 0.010120649822056293, -0.03896871581673622, -0.022935181856155396, 0.09533975273370743, -0.007122326642274857, 0.09701830893754959, 0.010859298519790173, 0.13985088467597961, -0.2104482650756836, -0.00021444105368573219, 0.0778186097741127, 0.03649325296282768, 0.08908287435770035, 0.045287881046533585, 0.02683170884847641, 0.050181373953819275, -0.15285542607307434, 0.09004425257444382, 0.025392798706889153, -0.07630027830600739, -0.09055844694375992, -0.09051264077425003, 0.01851128786802292, 0.07844704389572144, 0.0828097015619278, 0.008576265536248684, 0.13145756721496582, -0.09183917939662933, 0.08214445412158966, 0.1960049867630005, -0.27496740221977234, -0.06721366196870804, 0.046320680528879166, 0.05201422795653343, 0.06810149550437927, -0.11820325255393982, -0.02778257057070732, 0.02949884720146656, 0.033224161714315414, 0.09449545294046402, -0.019803866744041443, -0.13922977447509766, 0.0015697014750912786, -0.13305780291557312, -0.01420819666236639, 0.1105635017156601, 0.0494857020676136, -0.04463272541761398, -0.06343919783830643, -0.07679936289787292, -0.10757549852132797, -0.02413635142147541, -0.021168453618884087, 0.0525604709982872, -0.05530167371034622, -0.057383943349123, -0.03973611816763878, -0.05934436619281769, -0.08665326982736588, -0.0025007009971886873, 0.11942721903324127, 0.04438989609479904, 0.024384401738643646, -0.03356091305613518, 0.10281870514154434, 0.00123937230091542, -0.13242729008197784, -0.016049034893512726, 0.00848228670656681, -0.12286179512739182, -0.0569223128259182, -0.028527313843369484, 0.015612942166626453, 0.01688683032989502, 0.14810501039028168, -0.04095354303717613, 0.08208068460226059, 0.01789775863289833, -0.021068058907985687, -0.011774259619414806, 0.14195626974105835, -0.04004097357392311, -0.053288888186216354, 0.005246221553534269, 0.09728635847568512, -0.0008922002743929625, -0.004421499092131853, -0.07378964126110077, -0.01875905878841877, 0.09201807528734207, 0.05530339851975441, -0.05639640614390373, 0.03379053622484207, -0.03142315149307251, -0.02461903728544712, 0.022605348378419876, -0.1247371956706047, 0.035215914249420166, 0.008905858732759953, -0.08341724425554276, -0.03874441608786583, 0.011199546046555042, -0.018044766038656235, -0.020382432267069817, 0.08808164298534393, -0.08675365149974823, -0.006326593924313784, -0.07740433514118195, -0.07295642048120499, 0.014666386879980564, -0.14306135475635529, -0.013549204915761948, -0.04878036677837372, -0.2016415297985077, -0.03802341967821121, 0.043407026678323746, -0.07649710774421692, -0.04357921704649925, -0.05786547809839249, -0.08360323309898376, 0.014334645122289658, -0.00445924699306488, 0.1681874692440033, -0.05976671725511551, 0.07676298916339874, -0.01355504896491766, 0.04182007536292076, 0.010659354738891125, 0.04850928485393524, -0.08597330749034882, 0.023113710805773735, -0.14173908531665802, 0.07900940626859665, -0.09623045474290848, 0.010007216595113277, -0.12445975095033646, -0.08949950337409973, 0.040639616549015045, -0.02720584347844124, 0.06860800087451935, 0.14354078471660614, -0.19150228798389435, 0.0025256345979869366, 0.11552674323320389, -0.04740289971232414, -0.04572925344109535, 0.07909982651472092, -0.05694746971130371, 0.030421169474720955, 0.05135497823357582, 0.16653519868850708, 0.07575546950101852, -0.14835608005523682, -0.0176799688488245, 0.026112399995326996, 0.04911305010318756, 0.005484194029122591, 0.045132264494895935, 0.006229943595826626, 0.02415253035724163, 0.00426699360832572, -0.07777632027864456, -0.02566860057413578, -0.08999831229448318, -0.07129894942045212, -0.05190955847501755, -0.08854958415031433, 0.023342709988355637, 0.010968676768243313, 0.021178780123591423, -0.05846371129155159, -0.10210278630256653, 0.10237647593021393, 0.1296471208333969, -0.05332311615347862, 0.006315281614661217, -0.0700889527797699, 0.020392002537846565, -0.0314597487449646, -0.03529680147767067, -0.1942061334848404, -0.13627390563488007, 0.05280975252389908, -0.05067528411746025, 0.03548325598239899, 0.03652585297822952, 0.06392089277505875, 0.06304911524057388, -0.033139556646347046, -0.019670136272907257, -0.06936279684305191, -0.0037510215770453215, -0.11354056745767593, -0.1984696090221405, -0.06428472697734833, -0.03295038267970085, 0.14304304122924805, -0.20333118736743927, -0.00035788633977063, -0.02560589089989662, 0.1198728084564209, 0.015145785175263882, -0.05688675120472908, 0.008564758114516735, 0.029361573979258537, 0.007139472756534815, -0.09930040687322617, 0.04124167189002037, 0.008887682110071182, -0.054060209542512894, -0.06066368892788887, -0.10771824419498444, -0.0026594630908221006, 0.058152198791503906, 0.07922494411468506, -0.10530875623226166, -0.0068078977055847645, -0.05055375397205353, -0.04586179554462433, -0.08650428801774979, 0.009313770569860935, 0.19845585525035858, 0.03179633244872093, 0.12126386165618896, -0.060821447521448135, -0.07029270380735397, 0.0018450767965987325, 0.02416512742638588, 0.024065613746643066, 0.09062279760837555, 0.10414904356002808, -0.09762682020664215, 0.08680173754692078, 0.06957690417766571, -0.04843231290578842, 0.11860979348421097, -0.04533987492322922, -0.0816497653722763, -0.019770409911870956, 0.006621147971600294, -0.03478475287556648, 0.13955533504486084, -0.08453643321990967, 0.011048471555113792, 0.033118732273578644, 0.02382812649011612, 0.017917994409799576, -0.16967308521270752, -0.0002474521170370281, 0.011624990962445736, -0.06428474187850952, -0.03804251551628113, -0.024322697892785072, 0.035825133323669434, 0.09333345293998718, 0.026126304641366005, -0.04527052119374275, 0.017683636397123337, -0.011598317883908749, -0.06933333724737167, 0.19230052828788757, -0.1074274331331253, -0.09016456454992294, -0.10968848317861557, 0.025770725682377815, -0.044704411178827286, -0.03694077581167221, 0.003911891486495733, -0.08396515250205994, -0.05497351288795471, -0.08824675530195236, -0.023555511608719826, -0.01812783069908619, -0.002494610846042633, 0.02477722428739071, -0.015406248159706593, 0.07314811646938324, -0.13068853318691254, 0.0052550723776221275, -0.029734037816524506, -0.10441091656684875, 0.009023788385093212, 0.06383508443832397, 0.08543732762336731, 0.09867328405380249, -0.014311178587377071, 0.012744019739329815, -0.026962261646986008, 0.23984764516353607, -0.05458493530750275, 0.015487924218177795, 0.08349355310201645, -0.007441223133355379, 0.06025945767760277, 0.14251765608787537, 0.03161157667636871, -0.10415191203355789, 0.026606595143675804, 0.08264945447444916, -0.011216379702091217, -0.2484973818063736, -0.02798895724117756, -0.021018780767917633, -0.07226104289293289, 0.0888686254620552, 0.03953084722161293, -0.047895774245262146, 0.03909684717655182, 0.011437221430242062, 0.014892278239130974, -0.05361856892704964, 0.07233205437660217, 0.08799073100090027, 0.043624263256788254, 0.09479481726884842, -0.02219146490097046, -0.013306207954883575, 0.06506897509098053, 0.017089474946260452, 0.271125853061676, -0.02986379712820053, 0.12568028271198273, 0.027202490717172623, 0.1495351344347, -0.029447168111801147, 0.04792901501059532, 0.01668008230626583, 0.005307900253683329, -0.006865920498967171, -0.052102744579315186, -0.029035741463303566, 0.010293680243194103, -0.03388866409659386, 0.030947422608733177, -0.07353205233812332, 0.04728318378329277, 0.012251067906618118, 0.30153071880340576, 0.045358963310718536, -0.28368452191352844, -0.06156764179468155, -0.002787951612845063, -0.046733301132917404, -0.07373254001140594, 0.004795243497937918, 0.1466534286737442, -0.12536348402500153, 0.037480395287275314, -0.054611433297395706, 0.087239570915699, -0.04832728952169418, 0.0028690434992313385, 0.06620117276906967, 0.14688073098659515, -0.009375245310366154, 0.0700221061706543, -0.18820883333683014, 0.22445401549339294, 0.02818034216761589, 0.11004684120416641, -0.06077646464109421, 0.014012456871569157, 0.010321232490241528, 0.027044568210840225, 0.10968595743179321, -0.0003003958554472774, -0.025859955698251724, -0.170199915766716, -0.11496121436357498, 0.06003899499773979, 0.11678969115018845, -0.015517833642661572, 0.09741572290658951, -0.04070666432380676, -0.0026510723400861025, 0.03689400851726532, -0.07488909363746643, -0.12861888110637665, -0.08738730847835541, 0.0001942133967531845, 0.018205245956778526, -0.03984597697854042, -0.04854270815849304, -0.09231199324131012, -0.024886231869459152, 0.13478389382362366, -0.0005342251970432699, -0.04335131496191025, -0.1347472220659256, 0.05571722984313965, 0.14336992800235748, -0.05782138183712959, 0.019640866667032242, 0.005031142849475145, 0.10173960030078888, 0.05256412923336029, -0.08198868483304977, 0.05150981619954109, -0.06726803630590439, -0.1594841629266739, -0.06052718311548233, 0.11684142798185349, 0.07949423789978027, 0.05311722680926323, -0.0022119367495179176, 0.03181728348135948, 0.0013733574887737632, -0.08693879097700119, 0.008363342843949795, 0.05181749910116196, 0.09112662822008133, 0.0495951808989048, -0.09574196487665176, 0.04986283555626869, -0.03416614234447479, -0.0021139259915798903, 0.12717090547084808, 0.21384020149707794, -0.08587879687547684, 0.08619027584791183, 0.07032834738492966, -0.07946524024009705, -0.17665009200572968, 0.0696486234664917, 0.1324092298746109, 0.01678735390305519, 0.03588606044650078, -0.20637111365795135, 0.13787810504436493, 0.11254454404115677, -0.014468871988356113, 0.05398506298661232, -0.29527541995048523, -0.12278173863887787, 0.07015765458345413, 0.10487686842679977, 0.043047789484262466, -0.12688854336738586, -0.02715339884161949, -0.009930893778800964, -0.14508327841758728, 0.14361067116260529, -0.07356823235750198, 0.12213703989982605, -0.007912439294159412, 0.12358645349740982, 0.021886663511395454, -0.04111918807029724, 0.13073016703128815, 0.07665234059095383, 0.08684324473142624, -0.03874978795647621, -0.0016862696502357721, 0.04853008687496185, -0.06567217409610748, 0.04854224622249603, -0.041610829532146454, 0.06663480401039124, -0.16574902832508087, -0.00021306784765329212, -0.08397293835878372, 0.04259762912988663, -0.04867219179868698, -0.04616757109761238, -0.027666307985782623, 0.04695925861597061, 0.06658902019262314, -0.034299030900001526, 0.026247277855873108, 0.021864641457796097, 0.053690411150455475, 0.09288965910673141, 0.08895702660083771, -0.016619563102722168, -0.10964460670948029, 0.011322898790240288, -0.005895086098462343, 0.05217582732439041, -0.10137277096509933, 0.01542446855455637, 0.13527911901474, 0.0569138377904892, 0.12607575953006744, 0.02608952485024929, -0.032640308141708374, -0.01504136435687542, 0.01607612334191799, -0.12494348734617233, -0.11949712783098221, 0.037443600594997406, -0.04786038398742676, -0.15643581748008728, 0.005755642894655466, 0.10223983228206635, -0.0380035862326622, -0.012587335892021656, -0.011310437694191933, 0.02392515353858471, -0.013703604228794575, 0.20238077640533447, 0.041165802627801895, 0.06272093951702118, -0.10279219597578049, 0.12503698468208313, 0.057843003422021866, -0.046306271106004715, 0.056235332041978836, 0.06769983470439911, -0.09434715658426285, -0.005804480519145727, 0.10760977119207382, 0.17057478427886963, -0.04423470422625542, -0.019965805113315582, -0.07342416793107986, -0.0763888731598854, 0.057240091264247894, 0.15786193311214447, 0.04977346956729889, -0.007090540137141943, -0.04411766305565834, 0.024923548102378845, -0.12648490071296692, 0.07390710711479187, 0.047501467168331146, 0.06786788254976273, -0.10645068436861038, 0.10982457548379898, -0.008988503366708755, 0.03660820797085762, -0.01566866971552372, 0.028953906148672104, -0.0963587611913681, -0.025879286229610443, -0.1236119270324707, 0.019827421754598618, -0.010053776204586029, 0.007698704954236746, -0.010660890489816666, -0.05236463248729706, -0.03796008974313736, 0.02616121992468834, -0.08101142197847366, -0.05480168014764786, 0.017346888780593872, 0.04620044678449631, -0.15340644121170044, -0.012149614281952381, 0.023306624963879585, -0.0938725620508194, 0.07753590494394302, 0.0647818073630333, 0.01707855798304081, 0.02816794440150261, -0.1021670326590538, -0.04639391601085663, 0.013597635552287102, 0.02819078229367733, 0.08369582891464233, -0.08747927099466324, -0.014221018180251122, -0.03393610194325447, 0.0501210056245327, 0.01382068358361721, 0.08843542635440826, -0.11521349102258682, -0.0030514057725667953, -0.05753020942211151, -0.0330343022942543, -0.06078813597559929, 0.034188058227300644, 0.11498746275901794, 0.035754475742578506, 0.16972596943378448, -0.06798618286848068, 0.0380968302488327, -0.1944582462310791, -0.03428301587700844, 0.0021764570847153664, -0.04095260426402092, -0.08525579422712326, -0.04338443651795387, 0.09225042909383774, -0.051717858761548996, 0.0938287079334259, -0.008249095641076565, 0.08943179249763489, 0.031133992597460747, -0.0071371858939528465, -0.056772418320178986, 0.002416357398033142, 0.14653466641902924, 0.059081364423036575, -0.019526124000549316, 0.10180220752954483, -0.008340497501194477, 0.05485750734806061, 0.043114129453897476, 0.22400864958763123, 0.14831304550170898, -0.01885618455708027, 0.06405448913574219, 0.07135477662086487, -0.12078732252120972, -0.124625064432621, 0.14477403461933136, -0.046584539115428925, 0.12231122702360153, -0.05454503372311592, 0.21897074580192566, 0.022622890770435333, -0.1755601167678833, 0.05162300169467926, -0.05662725493311882, -0.12085580080747604, -0.11897484213113785, -0.01380206923931837, -0.0814657211303711, -0.09983948618173599, 0.026346851140260696, -0.12222716957330704, 0.06344519555568695, 0.12077264487743378, 0.01617281883955002, 0.020900582894682884, 0.15434105694293976, -0.040476709604263306, 0.018142830580472946, 0.06076844781637192, 0.022830264642834663, -0.004827477037906647, -0.058999888598918915, -0.06441856175661087, 0.05096201226115227, 0.03468357399106026, 0.08546938747167587, -0.04742100089788437, 0.018315806984901428, 0.03315670043230057, -0.014869106002151966, -0.0729929730296135, 0.01218736357986927, 0.026497790589928627, 0.0400417298078537, 0.05469284579157829, 0.05340895801782608, 0.015586006455123425, -0.03570820018649101, 0.2651890218257904, -0.07230691611766815, -0.0832354724407196, -0.1318701058626175, 0.19827976822853088, 0.016129953786730766, -0.01840021088719368, 0.07624798268079758, -0.10257042944431305, -0.022369537502527237, 0.16854321956634521, 0.1251838356256485, -0.10335730761289597, -0.030248334631323814, -0.01535437535494566, -0.012134609743952751, -0.03888601064682007, 0.1188197135925293, 0.09355708956718445, 0.006812563166022301, -0.07751326262950897, -0.02996605448424816, -0.017353888601064682, -0.043718013912439346, -0.06390227377414703, 0.03662668168544769, 0.015628019347786903, 0.0023935099598020315, -0.03796277567744255, 0.0520947240293026, -0.011213932186365128, -0.24388588964939117, 0.03069109097123146, -0.15454721450805664, -0.18164370954036713, -0.03187102824449539, 0.06249966472387314, -0.004964772146195173, 0.039608582854270935, -0.01964382641017437, 0.0037449155934154987, 0.15032748878002167, -0.0354229174554348, -0.04789821058511734, -0.12089766561985016, 0.10340835899114609, -0.09958169609308243, 0.2041902095079422, 0.0075696054846048355, 0.08505003899335861, 0.0973985344171524, 0.021783364936709404, -0.1347663253545761, 0.03430958837270737, 0.07379516959190369, -0.10894311964511871, 0.015313141979277134, 0.15162360668182373, -0.054543957114219666, 0.07924938201904297, 0.025886397808790207, -0.10253030061721802, -0.0186114851385355, -0.026243818923830986, -0.03158832713961601, -0.08026740700006485, -0.015487277880311012, -0.06472977250814438, 0.16538245975971222, 0.2220519334077835, -0.024871690198779106, 0.01679159514605999, -0.08635232597589493, 0.016587350517511368, 0.04514966905117035, 0.05251859873533249, -0.04285082966089249, -0.20565037429332733, 0.02900966815650463, 0.021240750327706337, 0.0234364066272974, -0.1987474113702774, -0.0833844467997551, 0.046058736741542816, -0.028459828346967697, -0.051946256309747696, 0.10121288895606995, 0.0241509098559618, 0.04459133744239807, -0.03429654985666275, -0.09423165768384933, -0.0451827198266983, 0.1431913822889328, -0.16266091167926788, -0.05414127930998802 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-256-finetuned-squad-seed-6 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-256-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-256-finetuned-squad-seed-6
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-6 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09821498394012451, 0.15335752069950104, -0.0021143516059964895, 0.0918867439031601, 0.1385621279478073, 0.03953501954674721, 0.08798553794622421, 0.1347069889307022, -0.08043037354946136, 0.07370304316282272, 0.07819019258022308, 0.0542726032435894, 0.051483966410160065, 0.12303294986486435, -0.0462697371840477, -0.20962809026241302, 0.012890228070318699, -0.019028862938284874, -0.05710376426577568, 0.09860493242740631, 0.08197688311338425, -0.10492590069770813, 0.0791793242096901, -0.02060914784669876, -0.15500155091285706, 0.010302236303687096, -0.039445098489522934, -0.022358488291502, 0.09503266960382462, -0.007796466816216707, 0.09663069993257523, 0.011051248759031296, 0.13966558873653412, -0.21125070750713348, -0.00016282529395539314, 0.07813729345798492, 0.03666534274816513, 0.0892321839928627, 0.0461924783885479, 0.02681669034063816, 0.05187668651342392, -0.15258070826530457, 0.08981378376483917, 0.025990860536694527, -0.07618119567632675, -0.08819875121116638, -0.09090282022953033, 0.01764390617609024, 0.0789322555065155, 0.08351446688175201, 0.008022893220186234, 0.13270284235477448, -0.09251244366168976, 0.08229897171258926, 0.1980440616607666, -0.27331987023353577, -0.0672459602355957, 0.04762018099427223, 0.05200424790382385, 0.06691980361938477, -0.11915113776922226, -0.02881808392703533, 0.029227396473288536, 0.0329451709985733, 0.09320533275604248, -0.019053705036640167, -0.14080362021923065, 0.0012276831548660994, -0.13352924585342407, -0.014421889558434486, 0.10882490128278732, 0.04974987730383873, -0.04388739541172981, -0.06325916945934296, -0.07718811184167862, -0.10643552243709564, -0.02397122047841549, -0.021080907434225082, 0.052443426102399826, -0.05530468001961708, -0.05705755576491356, -0.03957713022828102, -0.059106986969709396, -0.08786569535732269, -0.0021168917883187532, 0.11890815198421478, 0.0443943589925766, 0.02403099834918976, -0.03434458002448082, 0.1027076318860054, 0.001220930484123528, -0.13287334144115448, -0.01689404621720314, 0.009121609851717949, -0.12312058359384537, -0.05698065459728241, -0.02802090160548687, 0.013423754833638668, 0.016471534967422485, 0.1453869640827179, -0.04094027727842331, 0.08252159506082535, 0.017126942053437233, -0.020997634157538414, -0.012283777818083763, 0.14228376746177673, -0.039275795221328735, -0.051077950745821, 0.004382222890853882, 0.09743622690439224, -0.0015108182560652494, -0.0039509134367108345, -0.07327555119991302, -0.018705278635025024, 0.09286226332187653, 0.05508154258131981, -0.055745240300893784, 0.03324708342552185, -0.03193739801645279, -0.024773795157670975, 0.023226650431752205, -0.124441958963871, 0.03549566492438316, 0.008479814976453781, -0.08379945904016495, -0.039895199239254, 0.011313785798847675, -0.018300054594874382, -0.02071205899119377, 0.08900430053472519, -0.08714023977518082, -0.005949352867901325, -0.07832685858011246, -0.07252557575702667, 0.015246884897351265, -0.14464819431304932, -0.013805664144456387, -0.047749895602464676, -0.20211242139339447, -0.038119275122880936, 0.04283933714032173, -0.07681435346603394, -0.04309208318591118, -0.05882944166660309, -0.08446045964956284, 0.014791818335652351, -0.0039210813120007515, 0.16918951272964478, -0.05932249873876572, 0.07752840965986252, -0.013763519003987312, 0.04139011353254318, 0.011184683069586754, 0.04929189011454582, -0.08729861676692963, 0.022776545956730843, -0.14106854796409607, 0.07933063060045242, -0.09725410491228104, 0.009754995815455914, -0.12540404498577118, -0.0887002944946289, 0.039357803761959076, -0.02795264683663845, 0.06953874230384827, 0.1444227397441864, -0.19184844195842743, 0.0029969611205160618, 0.11609335988759995, -0.047922562807798386, -0.046005140990018845, 0.07799742370843887, -0.05666094645857811, 0.030138812959194183, 0.05059331655502319, 0.16698269546031952, 0.07526282966136932, -0.1480533629655838, -0.01911015436053276, 0.025575101375579834, 0.049956273287534714, 0.00500792870298028, 0.04486902058124542, 0.006190320942550898, 0.02574268728494644, 0.004125270992517471, -0.07781559973955154, -0.02592320926487446, -0.09033533185720444, -0.07079961895942688, -0.05271860212087631, -0.088603176176548, 0.02272694557905197, 0.012686747126281261, 0.020809346809983253, -0.05795540660619736, -0.1016785278916359, 0.1021716520190239, 0.1294422447681427, -0.05264892429113388, 0.006490140687674284, -0.06947632133960724, 0.01941653899848461, -0.03228125721216202, -0.03512445464730263, -0.19592539966106415, -0.13716189563274384, 0.053438395261764526, -0.051283154636621475, 0.03603757917881012, 0.03579225391149521, 0.06381642073392868, 0.06187713146209717, -0.033287350088357925, -0.019854947924613953, -0.07021871209144592, -0.0042807357385754585, -0.11372189968824387, -0.19856488704681396, -0.0643693208694458, -0.03383241593837738, 0.14067305624485016, -0.20252373814582825, -0.0007683045114390552, -0.02557724341750145, 0.12067022174596786, 0.01520405150949955, -0.0574355348944664, 0.008851436898112297, 0.029091374948620796, 0.006821172311902046, -0.09955710917711258, 0.041092392057180405, 0.008003047667443752, -0.05386142060160637, -0.06062969192862511, -0.10764697194099426, -0.004987150896340609, 0.05762296915054321, 0.08081134408712387, -0.10534932464361191, -0.006925483699887991, -0.050563450902700424, -0.04605744779109955, -0.08747374266386032, 0.01050608791410923, 0.19786888360977173, 0.0322532020509243, 0.12036620825529099, -0.0611402802169323, -0.07056724280118942, 0.0022968421690165997, 0.024325013160705566, 0.023220693692564964, 0.0919354110956192, 0.10599172115325928, -0.10015297681093216, 0.08783285319805145, 0.07031138986349106, -0.047667551785707474, 0.11889824271202087, -0.04568033665418625, -0.08216365426778793, -0.018245309591293335, 0.0072026909328997135, -0.034578025341033936, 0.13920767605304718, -0.08400712162256241, 0.011596985161304474, 0.032954536378383636, 0.024205053225159645, 0.017794886603951454, -0.1698615401983261, -0.00028533139266073704, 0.01127845048904419, -0.06415732949972153, -0.03853587433695793, -0.02400311641395092, 0.0358048640191555, 0.09358559548854828, 0.025776349008083344, -0.044888559728860855, 0.017034299671649933, -0.011883731931447983, -0.06907161325216293, 0.1931905448436737, -0.10695824772119522, -0.08898291736841202, -0.10835154354572296, 0.0264995489269495, -0.044369690120220184, -0.03719858080148697, 0.00400123093277216, -0.08518843352794647, -0.05482722818851471, -0.08789962530136108, -0.02333015389740467, -0.017549777403473854, -0.0035269134677946568, 0.023902354761958122, -0.015203779563307762, 0.07245906442403793, -0.1312798112630844, 0.005512257572263479, -0.03028498776257038, -0.10457415133714676, 0.008631007745862007, 0.06334147602319717, 0.08555949479341507, 0.0991496816277504, -0.014684333465993404, 0.012791730463504791, -0.026925858110189438, 0.23880507051944733, -0.05501898378133774, 0.014784038998186588, 0.08324408531188965, -0.006412798073142767, 0.060931283980607986, 0.142755389213562, 0.03095448762178421, -0.1040181815624237, 0.027061576023697853, 0.08332289755344391, -0.011609473265707493, -0.24957109987735748, -0.02842443250119686, -0.021291323006153107, -0.0727626159787178, 0.08884013444185257, 0.03991217911243439, -0.04844335839152336, 0.039162777364254, 0.010660254396498203, 0.012953301891684532, -0.05375758558511734, 0.07271802425384521, 0.0857558399438858, 0.04466395452618599, 0.09441892057657242, -0.022266177460551262, -0.012875057756900787, 0.06413968652486801, 0.017509175464510918, 0.2719872295856476, -0.03025089018046856, 0.12532088160514832, 0.026875285431742668, 0.14910995960235596, -0.03008144162595272, 0.04818008095026016, 0.01621090993285179, 0.005219935439527035, -0.006832202896475792, -0.05193387717008591, -0.029076922684907913, 0.010084299370646477, -0.03462223708629608, 0.03144354745745659, -0.07331182807683945, 0.047908373177051544, 0.011829512193799019, 0.3019528090953827, 0.04559113830327988, -0.28259846568107605, -0.06067895516753197, -0.002804908901453018, -0.04689592495560646, -0.07434364408254623, 0.004393258597701788, 0.14576825499534607, -0.12488871812820435, 0.037269171327352524, -0.055071450769901276, 0.08815760910511017, -0.046573251485824585, 0.002218228532001376, 0.06547591090202332, 0.14712034165859222, -0.009130457416176796, 0.07070992141962051, -0.18925468623638153, 0.22645296156406403, 0.02815546654164791, 0.10987547039985657, -0.06124797835946083, 0.013689197599887848, 0.009592296555638313, 0.02512984909117222, 0.11035905033349991, -0.0004285209288354963, -0.02627997286617756, -0.16914401948451996, -0.11427655071020126, 0.05976954475045204, 0.11768484115600586, -0.015613782219588757, 0.09674014151096344, -0.040722474455833435, -0.0025528976693749428, 0.03772120550274849, -0.07471916824579239, -0.1286063939332962, -0.08752871304750443, 0.0004795779241248965, 0.017585977911949158, -0.040823470801115036, -0.048129621893167496, -0.09200536459684372, -0.023348238319158554, 0.1344653218984604, -0.00016478517500218004, -0.04276159405708313, -0.13461242616176605, 0.05683630332350731, 0.14351774752140045, -0.058378297835588455, 0.019402973353862762, 0.004317841492593288, 0.101483553647995, 0.05176210403442383, -0.08249927312135696, 0.05239028483629227, -0.06719579547643661, -0.15986303985118866, -0.0604780837893486, 0.11656897515058517, 0.08004040271043777, 0.05361269414424896, -0.002439321717247367, 0.03201805055141449, 0.001473850104957819, -0.08661004900932312, 0.008650685660541058, 0.051777180284261703, 0.09062923491001129, 0.05053381994366646, -0.09537222981452942, 0.048686958849430084, -0.03504622355103493, -0.002634537871927023, 0.12696775794029236, 0.21464383602142334, -0.08565660566091537, 0.08645670861005783, 0.0709807425737381, -0.07968691736459732, -0.17734026908874512, 0.07040810585021973, 0.13286854326725006, 0.01612928695976734, 0.03663504496216774, -0.20605143904685974, 0.1376979649066925, 0.11179354786872864, -0.014918969012796879, 0.053064681589603424, -0.2962619662284851, -0.12251488119363785, 0.07030364125967026, 0.10487066954374313, 0.0410815104842186, -0.12697887420654297, -0.02723388560116291, -0.009454079903662205, -0.14443658292293549, 0.144710972905159, -0.07162102311849594, 0.12243542820215225, -0.008378240279853344, 0.12424830347299576, 0.02213817462325096, -0.04163791984319687, 0.12914031744003296, 0.07675807923078537, 0.08708322048187256, -0.03862336277961731, -0.0018196989549323916, 0.048703473061323166, -0.06574901938438416, 0.04873214289546013, -0.041834913194179535, 0.06724845618009567, -0.1641690582036972, 0.00023789027181919664, -0.08486547321081161, 0.04308547079563141, -0.048679839819669724, -0.04623357206583023, -0.027783991768956184, 0.04737243056297302, 0.06693211942911148, -0.03453638032078743, 0.02811960130929947, 0.021847080439329147, 0.05544530227780342, 0.09272784739732742, 0.08946187794208527, -0.0161434318870306, -0.10843201726675034, 0.010554618202149868, -0.005149901378899813, 0.052236054092645645, -0.10236266255378723, 0.01499665342271328, 0.13519087433815002, 0.05813158303499222, 0.1258777379989624, 0.02656593918800354, -0.03363727405667305, -0.015028911642730236, 0.015224440023303032, -0.12433688342571259, -0.12049249559640884, 0.03771955892443657, -0.04330342635512352, -0.15711422264575958, 0.006291260942816734, 0.10055773705244064, -0.03872828930616379, -0.012715908698737621, -0.011075417511165142, 0.024427801370620728, -0.012887670658528805, 0.20298771560192108, 0.04136918857693672, 0.06329777836799622, -0.10261063277721405, 0.1254761964082718, 0.05752112716436386, -0.04736680909991264, 0.056400880217552185, 0.06795873492956161, -0.09369539469480515, -0.005846768151968718, 0.10904428362846375, 0.16920603811740875, -0.04454330727458, -0.018485497683286667, -0.07216642051935196, -0.07609396427869797, 0.05756524205207825, 0.15951858460903168, 0.049783628433942795, -0.007329217158257961, -0.04364929720759392, 0.025189116597175598, -0.12726333737373352, 0.07437445968389511, 0.04700693488121033, 0.06826336681842804, -0.10623318701982498, 0.10721645504236221, -0.009124386124312878, 0.03704393282532692, -0.015473444014787674, 0.029515383765101433, -0.0961381122469902, -0.02577422745525837, -0.12099151313304901, 0.019565308466553688, -0.009948872029781342, 0.007208419963717461, -0.011170092038810253, -0.05315891653299332, -0.036918818950653076, 0.026294702664017677, -0.08126325160264969, -0.055418793112039566, 0.01670900732278824, 0.04586092010140419, -0.15402768552303314, -0.012224819511175156, 0.023762637749314308, -0.0931256040930748, 0.07650347799062729, 0.06413962692022324, 0.017047427594661713, 0.028689604252576828, -0.10546071082353592, -0.04621860012412071, 0.014070097357034683, 0.02833569049835205, 0.0837109163403511, -0.08678683638572693, -0.01454269140958786, -0.03416243940591812, 0.050327785313129425, 0.013560126535594463, 0.08769839257001877, -0.11577518284320831, -0.0036498813424259424, -0.0590522326529026, -0.03380395099520683, -0.06007692590355873, 0.03500181809067726, 0.115225650370121, 0.03597096726298332, 0.16941606998443604, -0.06765545904636383, 0.039002057164907455, -0.1943521499633789, -0.03400229662656784, 0.002441501710563898, -0.04083890840411186, -0.0857536569237709, -0.04260144755244255, 0.0924578607082367, -0.051812347024679184, 0.09101930260658264, -0.007918345741927624, 0.09030841290950775, 0.03146897256374359, -0.006334703415632248, -0.05698329582810402, 0.0023559723049402237, 0.14596772193908691, 0.05885656550526619, -0.019074173644185066, 0.1038035899400711, -0.008073828183114529, 0.05428674444556236, 0.04434565082192421, 0.22585590183734894, 0.14960549771785736, -0.020288873463869095, 0.0640576034784317, 0.07163789868354797, -0.12111058086156845, -0.12436577677726746, 0.14457759261131287, -0.045868486166000366, 0.12209441512823105, -0.05503217503428459, 0.21984761953353882, 0.02245238423347473, -0.1751265525817871, 0.05224163830280304, -0.057214103639125824, -0.12067922949790955, -0.11903729289770126, -0.013873711228370667, -0.08147858083248138, -0.09955689311027527, 0.02687247470021248, -0.12230083346366882, 0.06425180286169052, 0.12104509025812149, 0.015888044610619545, 0.02106720767915249, 0.15543782711029053, -0.03981336951255798, 0.018341803923249245, 0.06119799613952637, 0.022877711802721024, -0.00534761231392622, -0.059369828552007675, -0.0636630728840828, 0.052060145884752274, 0.034979309886693954, 0.08539317548274994, -0.04708172008395195, 0.017221149057149887, 0.03278260678052902, -0.01502187643200159, -0.07319606095552444, 0.012372673489153385, 0.02690386027097702, 0.03992481157183647, 0.05510367080569267, 0.053217023611068726, 0.01620575226843357, -0.035856518894433975, 0.2671401798725128, -0.07274377346038818, -0.08318158239126205, -0.13054166734218597, 0.1989666074514389, 0.01714560016989708, -0.018389228731393814, 0.0762026384472847, -0.10349670797586441, -0.022658219560980797, 0.166514053940773, 0.12319792807102203, -0.10252571105957031, -0.029983917251229286, -0.015778131783008575, -0.011927035637199879, -0.038938917219638824, 0.11826004087924957, 0.09412543475627899, 0.007534319534897804, -0.07805885374546051, -0.029383322224020958, -0.0173879973590374, -0.04450646787881851, -0.06285427510738373, 0.036443937569856644, 0.01620538718998432, 0.002021266147494316, -0.03823833912611008, 0.05232945457100868, -0.01180349662899971, -0.24293096363544464, 0.029380034655332565, -0.15581217408180237, -0.1811666637659073, -0.03201354295015335, 0.06230490282177925, -0.004810079466551542, 0.039599087089300156, -0.019670890644192696, 0.00424515875056386, 0.14751330018043518, -0.03520911931991577, -0.048117104917764664, -0.12162864953279495, 0.10258470475673676, -0.10036048293113708, 0.20491164922714233, 0.007587336003780365, 0.08401445299386978, 0.09740037471055984, 0.02176556922495365, -0.13552449643611908, 0.03380872309207916, 0.07418673485517502, -0.10929516702890396, 0.0152245769277215, 0.15286172926425934, -0.05443425104022026, 0.07946272194385529, 0.025680718943476677, -0.10419391095638275, -0.01827673614025116, -0.027176883071660995, -0.030963603407144547, -0.08071091026067734, -0.013539527542889118, -0.06447093933820724, 0.16566915810108185, 0.2221451848745346, -0.02467070333659649, 0.016479453071951866, -0.08698634803295135, 0.016344232484698296, 0.044023122638463974, 0.05374625325202942, -0.0425870418548584, -0.20545019209384918, 0.029370637610554695, 0.02144349366426468, 0.02337518334388733, -0.19916512072086334, -0.08304997533559799, 0.0465521439909935, -0.029401078820228577, -0.05206684768199921, 0.10056854039430618, 0.02430121973156929, 0.04391677677631378, -0.03444304317235947, -0.09635869413614273, -0.04507749527692795, 0.1437794417142868, -0.16280263662338257, -0.053646519780159 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-256-finetuned-squad-seed-8 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-256-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-256-finetuned-squad-seed-8
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-8 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-256-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09908097237348557, 0.15503749251365662, -0.002138739451766014, 0.09228024631738663, 0.13839155435562134, 0.040144700556993484, 0.0875769630074501, 0.13486848771572113, -0.07977592945098877, 0.0737377256155014, 0.07845146954059601, 0.05311594158411026, 0.05123148858547211, 0.12235310673713684, -0.04645726457238197, -0.20914007723331451, 0.012477315962314606, -0.018451541662216187, -0.05469968542456627, 0.09798453748226166, 0.08194024115800858, -0.10498624294996262, 0.07900488376617432, -0.020699264481663704, -0.15377706289291382, 0.01018125656992197, -0.03899291902780533, -0.02286835014820099, 0.09528283774852753, -0.006901023909449577, 0.09643394500017166, 0.010276494547724724, 0.1396164745092392, -0.21186313033103943, -0.00046354823280125856, 0.07841984927654266, 0.03639661520719528, 0.08925646543502808, 0.04512624070048332, 0.02803979255259037, 0.050735436379909515, -0.1529613882303238, 0.08994779735803604, 0.025607898831367493, -0.07595180720090866, -0.08869555592536926, -0.09034096449613571, 0.019084161147475243, 0.07847895473241806, 0.0828939899802208, 0.009000607766211033, 0.1341519057750702, -0.0909920334815979, 0.08288400620222092, 0.1984556019306183, -0.2730787694454193, -0.06627494096755981, 0.04603441432118416, 0.05219099670648575, 0.06839102506637573, -0.11817605048418045, -0.02888605184853077, 0.029291409999132156, 0.0326523631811142, 0.09326788038015366, -0.01982298493385315, -0.1422187089920044, 0.0011185432085767388, -0.13319863379001617, -0.01496373675763607, 0.1091497614979744, 0.04989447817206383, -0.04423457011580467, -0.06317951530218124, -0.07832363247871399, -0.10839762538671494, -0.02427234873175621, -0.021441195160150528, 0.05196714773774147, -0.05488872528076172, -0.055257827043533325, -0.03951027989387512, -0.058556895703077316, -0.08668610453605652, -0.0016084680100902915, 0.11915203928947449, 0.044683534651994705, 0.023961305618286133, -0.0334429107606411, 0.10227508842945099, -0.0009623684454709291, -0.13272063434123993, -0.01655377633869648, 0.009804917499423027, -0.12314565479755402, -0.0570773221552372, -0.028205925598740578, 0.012506281957030296, 0.016051538288593292, 0.14778317511081696, -0.040636103600263596, 0.08229633420705795, 0.017529910430312157, -0.02032030187547207, -0.012028385885059834, 0.14340776205062866, -0.040050361305475235, -0.052405256778001785, 0.005435214843600988, 0.0973953828215599, -0.0005137207335792482, -0.004822243470698595, -0.07409494370222092, -0.01964564248919487, 0.09366950392723083, 0.05447433516383171, -0.05567079782485962, 0.032563842833042145, -0.03186432644724846, -0.02491823583841324, 0.024461165070533752, -0.12440986931324005, 0.03569488972425461, 0.008255882188677788, -0.08337787538766861, -0.03873923048377037, 0.012461462989449501, -0.01768215373158455, -0.021028442308306694, 0.08782386034727097, -0.08630639314651489, -0.005563906393945217, -0.07770644873380661, -0.07262644916772842, 0.015656692907214165, -0.14458270370960236, -0.013220199383795261, -0.04900584742426872, -0.2020963877439499, -0.037926919758319855, 0.04262688010931015, -0.0760258361697197, -0.042831819504499435, -0.0575743243098259, -0.08296322822570801, 0.014584902673959732, -0.00452606612816453, 0.16643878817558289, -0.05952318757772446, 0.0771200880408287, -0.013556651771068573, 0.04104173928499222, 0.009701970033347607, 0.04950006678700447, -0.0866793692111969, 0.022744912654161453, -0.14072956144809723, 0.07882895320653915, -0.09652743488550186, 0.010009740479290485, -0.1240513026714325, -0.08839190751314163, 0.04090701416134834, -0.027270907536149025, 0.07027880102396011, 0.14345526695251465, -0.1915774643421173, 0.003278933698311448, 0.11507164686918259, -0.04749160259962082, -0.046043992042541504, 0.08002986013889313, -0.05651095137000084, 0.029354695230722427, 0.05107142776250839, 0.16628842055797577, 0.07685457915067673, -0.14786379039287567, -0.018247079104185104, 0.0268653966486454, 0.05071447789669037, 0.003721179673448205, 0.04488242417573929, 0.006399409379810095, 0.0262598916888237, 0.00435083732008934, -0.0766182541847229, -0.02531101554632187, -0.0902600809931755, -0.0711093544960022, -0.052941422909498215, -0.08823460340499878, 0.02219018153846264, 0.01311345212161541, 0.020781755447387695, -0.05788339674472809, -0.10237832367420197, 0.10326669365167618, 0.1294090896844864, -0.05301238223910332, 0.006828030105680227, -0.0691499188542366, 0.0200243778526783, -0.03146771341562271, -0.035377129912376404, -0.1952141970396042, -0.1352238655090332, 0.05364637449383736, -0.05109533667564392, 0.03514999896287918, 0.03639879822731018, 0.06297803670167923, 0.06270242482423782, -0.03259808197617531, -0.019157079979777336, -0.06938840448856354, -0.004121726844459772, -0.11503688991069794, -0.19739042222499847, -0.06447543203830719, -0.03323301672935486, 0.14032548666000366, -0.20374557375907898, -0.0002852587786037475, -0.02627687156200409, 0.12013950198888779, 0.01484290324151516, -0.05737036094069481, 0.00869399681687355, 0.029795726761221886, 0.00633704848587513, -0.09973816573619843, 0.04109542816877365, 0.008512904867529869, -0.05458223819732666, -0.06185685843229294, -0.10815677791833878, -0.0037223491817712784, 0.05709175392985344, 0.07978501170873642, -0.10510296374559402, -0.007259323727339506, -0.050070621073246, -0.046140510588884354, -0.08671554177999496, 0.009401839226484299, 0.1984071284532547, 0.032400090247392654, 0.12170722335577011, -0.060890402644872665, -0.0700637549161911, 0.002258682157844305, 0.024206921458244324, 0.023818787187337875, 0.09110643714666367, 0.10556288063526154, -0.097407765686512, 0.08693299442529678, 0.06934667378664017, -0.048772942274808884, 0.11818348616361618, -0.045198988169431686, -0.08188247680664062, -0.018492309376597404, 0.007149082608520985, -0.03436674177646637, 0.13890399038791656, -0.08622772246599197, 0.010831163264811039, 0.03327682986855507, 0.023652832955121994, 0.01820085011422634, -0.16995765268802643, -0.00034288843744434416, 0.012185345403850079, -0.06358638405799866, -0.03719476982951164, -0.024821259081363678, 0.035446520894765854, 0.09294844418764114, 0.025100218132138252, -0.045382604002952576, 0.017630547285079956, -0.011476995423436165, -0.06958593428134918, 0.1922929883003235, -0.10685214400291443, -0.0903286337852478, -0.11013839393854141, 0.026777340099215508, -0.044316280633211136, -0.03718995302915573, 0.004595617298036814, -0.08320412039756775, -0.054781798273324966, -0.08841816335916519, -0.02557639591395855, -0.01741904765367508, -0.003290463937446475, 0.024444580078125, -0.015815194696187973, 0.07329420000314713, -0.1311727613210678, 0.005289497785270214, -0.029418958351016045, -0.10351398587226868, 0.009004103019833565, 0.0634731724858284, 0.0862928107380867, 0.09956040233373642, -0.015469717793166637, 0.012061034329235554, -0.026512451469898224, 0.2382717728614807, -0.054508354514837265, 0.015003594569861889, 0.08360191434621811, -0.00782026257365942, 0.06117503345012665, 0.14206838607788086, 0.031036650761961937, -0.10408555716276169, 0.026460466906428337, 0.08217579126358032, -0.011872424744069576, -0.24888984858989716, -0.02818995527923107, -0.021292777732014656, -0.07190553843975067, 0.08916369825601578, 0.03995506092905998, -0.04762088507413864, 0.039347369223833084, 0.010498840361833572, 0.015126211568713188, -0.055016230791807175, 0.07236631214618683, 0.08625363558530807, 0.04419248178601265, 0.09422629326581955, -0.021695684641599655, -0.01268550381064415, 0.06458127498626709, 0.01658914051949978, 0.2697611451148987, -0.03027268312871456, 0.12650156021118164, 0.025647668167948723, 0.1500188559293747, -0.029905306175351143, 0.048266056925058365, 0.016067197546362877, 0.004955211188644171, -0.006829931400716305, -0.051988255232572556, -0.030551200732588768, 0.010885123163461685, -0.03494493290781975, 0.03178133815526962, -0.07359384000301361, 0.04871596395969391, 0.011438910849392414, 0.3015572726726532, 0.04537012055516243, -0.2827901840209961, -0.06097057834267616, -0.0032927037682384253, -0.04708343744277954, -0.07496734708547592, 0.004618191160261631, 0.1470678150653839, -0.12441196292638779, 0.03656885772943497, -0.05444755405187607, 0.08823809772729874, -0.04799019172787666, 0.0025433662813156843, 0.06511610746383667, 0.14684684574604034, -0.008844609372317791, 0.07089405506849289, -0.18977946043014526, 0.2247994989156723, 0.028396086767315865, 0.10998405516147614, -0.06142406165599823, 0.014298067428171635, 0.009302212856709957, 0.026773015037178993, 0.10950367152690887, 0.000056355878768954426, -0.025590363889932632, -0.17097416520118713, -0.11494677513837814, 0.059653863310813904, 0.11631842702627182, -0.013944454491138458, 0.09659242630004883, -0.04082635045051575, -0.002434183144941926, 0.037893377244472504, -0.07401114702224731, -0.12840618193149567, -0.08781079947948456, 0.00045176484854891896, 0.01910894364118576, -0.04058016836643219, -0.048085711896419525, -0.09169694781303406, -0.025378786027431488, 0.13431541621685028, 0.0000036513054055831162, -0.042832665145397186, -0.13460519909858704, 0.05754242092370987, 0.1428413838148117, -0.05866948515176773, 0.019412115216255188, 0.004522460978478193, 0.10133451223373413, 0.05150418356060982, -0.08149579912424088, 0.052356015890836716, -0.06705383956432343, -0.15944361686706543, -0.06102640554308891, 0.11566846072673798, 0.07982296496629715, 0.053630974143743515, -0.0024367193691432476, 0.03169916570186615, 0.0014325532829388976, -0.08638528734445572, 0.007559343706816435, 0.053144268691539764, 0.089562326669693, 0.05030245706439018, -0.09523051232099533, 0.049612950533628464, -0.03458007052540779, -0.0027412190102040768, 0.1279883235692978, 0.21459895372390747, -0.08589430898427963, 0.08550799638032913, 0.0717003270983696, -0.07969389110803604, -0.1766604632139206, 0.0695982277393341, 0.13229045271873474, 0.01634426787495613, 0.036868494004011154, -0.20513401925563812, 0.13775214552879333, 0.11335627734661102, -0.014395610429346561, 0.053509652614593506, -0.2962064743041992, -0.12276560068130493, 0.07122168689966202, 0.10443928837776184, 0.043351005762815475, -0.1278562843799591, -0.02732032537460327, -0.009967302903532982, -0.14601585268974304, 0.14300253987312317, -0.07059282064437866, 0.12230947613716125, -0.008534829132258892, 0.1222304254770279, 0.02229267545044422, -0.0417599156498909, 0.12976449728012085, 0.07744774967432022, 0.08690173923969269, -0.03869650512933731, -0.0017883410910144448, 0.04804234206676483, -0.06587690114974976, 0.04935743659734726, -0.041476599872112274, 0.06703205406665802, -0.16670086979866028, 0.000030849361792206764, -0.08339288830757141, 0.04324886575341225, -0.04844716563820839, -0.046265609562397, -0.02771306410431862, 0.04608600586652756, 0.06693825125694275, -0.03440382331609726, 0.029194211587309837, 0.02232242561876774, 0.05455370992422104, 0.09463492035865784, 0.08757902681827545, -0.019447455182671547, -0.1087697446346283, 0.010235374793410301, -0.005282856989651918, 0.05261755734682083, -0.10177213698625565, 0.015550968237221241, 0.1356578916311264, 0.05842879042029381, 0.12623818218708038, 0.025297274813055992, -0.033069707453250885, -0.014707610011100769, 0.014670965261757374, -0.12415076047182083, -0.11940477043390274, 0.03701171651482582, -0.04398322105407715, -0.15664535760879517, 0.005333257839083672, 0.10145922005176544, -0.03971082717180252, -0.01225397177040577, -0.011589499190449715, 0.02328549139201641, -0.012722894549369812, 0.20276468992233276, 0.04189770668745041, 0.06315965205430984, -0.10236191004514694, 0.12515898048877716, 0.05778875574469566, -0.04651062935590744, 0.056704580783843994, 0.0676824301481247, -0.09373372793197632, -0.00589748052880168, 0.10877623409032822, 0.1689901053905487, -0.045515142381191254, -0.019590985029935837, -0.07322093099355698, -0.0745294988155365, 0.05742548406124115, 0.158523291349411, 0.050194788724184036, -0.00753781758248806, -0.043957822024822235, 0.024525534361600876, -0.12716560065746307, 0.07391799986362457, 0.0472429133951664, 0.06850866973400116, -0.10661401599645615, 0.10932836681604385, -0.00861737597733736, 0.03695543482899666, -0.015371584333479404, 0.02930484712123871, -0.0958743765950203, -0.02561347186565399, -0.12315668910741806, 0.01991542987525463, -0.009876024909317493, 0.00758181931450963, -0.011136636137962341, -0.05280620604753494, -0.037007831037044525, 0.02619647979736328, -0.08040500432252884, -0.05520191416144371, 0.01698809303343296, 0.04545654356479645, -0.15329301357269287, -0.012453615665435791, 0.023264680057764053, -0.093154177069664, 0.07676132768392563, 0.06349468231201172, 0.016615962609648705, 0.027924787253141403, -0.10531550645828247, -0.04618890583515167, 0.014129932038486004, 0.02911229617893696, 0.08362531661987305, -0.085016168653965, -0.01379463728517294, -0.03374475985765457, 0.050152793526649475, 0.013283252716064453, 0.08757983148097992, -0.11604783684015274, -0.004135532770305872, -0.05863141641020775, -0.033644530922174454, -0.060656800866127014, 0.034462735056877136, 0.11492668837308884, 0.0353487953543663, 0.16918553411960602, -0.06774571537971497, 0.03897226229310036, -0.19459378719329834, -0.03421564772725105, 0.0026747575029730797, -0.04045486077666283, -0.08539541065692902, -0.04309454932808876, 0.09221628308296204, -0.051089730113744736, 0.09297855198383331, -0.008400102145969868, 0.09093863517045975, 0.03103078156709671, -0.00753383943811059, -0.05697173625230789, 0.0015857235994189978, 0.146920308470726, 0.05965614318847656, -0.019030213356018066, 0.10264270752668381, -0.007984005846083164, 0.05581948906183243, 0.043586451560258865, 0.22323176264762878, 0.14960551261901855, -0.020731566473841667, 0.06438615173101425, 0.07091173529624939, -0.12082849442958832, -0.12475832551717758, 0.14405854046344757, -0.04606137424707413, 0.12282347679138184, -0.05477045476436615, 0.21978577971458435, 0.022576505318284035, -0.17476288974285126, 0.051778994500637054, -0.05648370087146759, -0.12079515308141708, -0.11889408528804779, -0.013163655996322632, -0.08153976500034332, -0.09977280348539352, 0.026418378576636314, -0.12185633927583694, 0.06419409811496735, 0.12145821005105972, 0.01561103854328394, 0.02070670761168003, 0.15427495539188385, -0.039934657514095306, 0.018606068566441536, 0.061099112033843994, 0.02298048697412014, -0.004790672101080418, -0.060400448739528656, -0.06483584642410278, 0.052275966852903366, 0.03498419374227524, 0.08597466349601746, -0.04729529097676277, 0.01918383501470089, 0.033428825438022614, -0.014644285663962364, -0.07382351905107498, 0.012342432513833046, 0.0260629765689373, 0.03980789706110954, 0.05379627272486687, 0.05357777699828148, 0.016546770930290222, -0.035980433225631714, 0.2652141749858856, -0.07213620841503143, -0.08338852226734161, -0.13064149022102356, 0.19730030000209808, 0.01771770417690277, -0.01812790147960186, 0.07620590180158615, -0.10367845743894577, -0.021840913221240044, 0.16682130098342896, 0.12171489000320435, -0.10290858149528503, -0.030045246705412865, -0.015278482809662819, -0.012105517089366913, -0.03986654058098793, 0.11845846474170685, 0.09429647773504257, 0.006103482097387314, -0.07698724418878555, -0.03015248104929924, -0.017521856352686882, -0.04455608129501343, -0.06394617259502411, 0.03539413586258888, 0.016341956332325935, 0.0029403804801404476, -0.03795364871621132, 0.051559194922447205, -0.010499541647732258, -0.24369379878044128, 0.029882118105888367, -0.15583108365535736, -0.18108098208904266, -0.03153472766280174, 0.06299027055501938, -0.004282843321561813, 0.03888140618801117, -0.01956014148890972, 0.00472562899813056, 0.14894886314868927, -0.0356619656085968, -0.04868606850504875, -0.12051938474178314, 0.10147132724523544, -0.09904883056879044, 0.20475901663303375, 0.007715881336480379, 0.08456837385892868, 0.09719555079936981, 0.022275131195783615, -0.1347341686487198, 0.03409786522388458, 0.07387279719114304, -0.10844049602746964, 0.014853904023766518, 0.1515907645225525, -0.054155461490154266, 0.07947986572980881, 0.026078885421156883, -0.10394540429115295, -0.019137468189001083, -0.028053853660821915, -0.031201353296637535, -0.08044327050447464, -0.015088100917637348, -0.06390328705310822, 0.1658552885055542, 0.22129406034946442, -0.02459302917122841, 0.015879986807703972, -0.08683796226978302, 0.01611032336950302, 0.044579993933439255, 0.05379660055041313, -0.042482487857341766, -0.2055140882730484, 0.030114738270640373, 0.02073107473552227, 0.023701444268226624, -0.1981792002916336, -0.08360286802053452, 0.0464518778026104, -0.029904522001743317, -0.051993194967508316, 0.10077020525932312, 0.024204524233937263, 0.04413007199764252, -0.03442750126123428, -0.09681825339794159, -0.045448239892721176, 0.1438915878534317, -0.16284047067165375, -0.05395250394940376 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-32-finetuned-squad-seed-0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-32-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-32-finetuned-squad-seed-0
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-0 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 53, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.1005517989397049, 0.12562184035778046, -0.0022013515699654818, 0.0896008312702179, 0.1391366571187973, 0.03136532008647919, 0.08791501820087433, 0.1349555253982544, -0.08526008576154709, 0.05155423283576965, 0.07057338953018188, 0.06986147910356522, 0.04514771327376366, 0.1303384006023407, -0.04329132288694382, -0.21216844022274017, 0.006453644949942827, -0.01214080024510622, -0.06490027904510498, 0.10348270833492279, 0.08867616951465607, -0.11504127085208893, 0.06822643429040909, -0.020631765946745872, -0.15550780296325684, 0.007626758422702551, -0.03131670504808426, -0.026830850169062614, 0.1062653586268425, -0.01671336032450199, 0.09427409619092941, 0.017714500427246094, 0.13711492717266083, -0.2158968448638916, 0.0013703079894185066, 0.07722703367471695, 0.04730764403939247, 0.08734071254730225, 0.0393056683242321, 0.02078128419816494, 0.038976434618234634, -0.1492808759212494, 0.09600624442100525, 0.024949191138148308, -0.08783133327960968, -0.13904385268688202, -0.09084653854370117, 0.02099604904651642, 0.07972253113985062, 0.07924389094114304, 0.008232440799474716, 0.14003270864486694, -0.10261527448892593, 0.08021140843629837, 0.20011694729328156, -0.2854647636413574, -0.06534958630800247, 0.04261753335595131, 0.05338520184159279, 0.0722331777215004, -0.11616769433021545, -0.01439073495566845, 0.019768904894590378, 0.03197160363197327, 0.11221431940793991, -0.020481513813138008, -0.1275019645690918, 0.006439669989049435, -0.12661802768707275, -0.011643046513199806, 0.10440333932638168, 0.035425830632448196, -0.046669188886880875, -0.07824287563562393, -0.060971882194280624, -0.08604691922664642, -0.034758031368255615, -0.016210928559303284, 0.055207833647727966, -0.05614658445119858, -0.0648840069770813, -0.045490507036447525, -0.05615641921758652, -0.08740435540676117, -0.0019367568893358111, 0.13943304121494293, 0.03966253250837326, 0.02114219032227993, -0.039896439760923386, 0.11339204013347626, 0.00025500456104055047, -0.1298506110906601, -0.004651217721402645, 0.0023102639243006706, -0.11115565150976181, -0.05404854193329811, -0.03674650564789772, 0.009819415397942066, 0.016978630796074867, 0.1499619483947754, -0.043638087809085846, 0.07523109018802643, 0.015153205953538418, -0.0172274112701416, -0.016852296888828278, 0.1531485617160797, -0.033503301441669464, -0.042515166103839874, -0.00022848608205094934, 0.09902296215295792, 0.0011832797899842262, -0.00782480463385582, -0.0803643986582756, -0.01588279753923416, 0.0735647901892662, 0.06807871162891388, -0.05278356373310089, 0.037157658487558365, -0.04528267681598663, -0.02432584948837757, 0.028018180280923843, -0.12484195083379745, 0.0387326218187809, 0.0064185503870248795, -0.08467443287372589, -0.05916517227888107, 0.007548449095338583, -0.009339778684079647, -0.02654414251446724, 0.08288897573947906, -0.07354238629341125, -0.0005682640476152301, -0.08612444251775742, -0.08002901822328568, 0.0006460511940531433, -0.1448652595281601, -0.011594296433031559, -0.04815652221441269, -0.19241636991500854, -0.032164059579372406, 0.051529720425605774, -0.07824619114398956, -0.03778070956468582, -0.050499655306339264, -0.07601224631071091, 0.01125297974795103, -0.007627865299582481, 0.1884256899356842, -0.061594776809215546, 0.07956190407276154, -0.014700818806886673, 0.048774171620607376, 0.014984936453402042, 0.04890821501612663, -0.08587566018104553, 0.025421805679798126, -0.1507890224456787, 0.08197315037250519, -0.09941765666007996, 0.020150918513536453, -0.123317651450634, -0.08795949816703796, 0.052017226815223694, -0.02176104113459587, 0.07869833707809448, 0.13794708251953125, -0.19988994300365448, -0.0003370265185367316, 0.11674261093139648, -0.040997039526700974, -0.05590340867638588, 0.07613135874271393, -0.058539070188999176, 0.04389714077115059, 0.05407349020242691, 0.18936002254486084, 0.07095986604690552, -0.14773033559322357, 0.017517106607556343, 0.033649567514657974, 0.05651309713721275, 0.006075439974665642, 0.035765938460826874, -0.0018592230044305325, 0.02584538608789444, 0.008237210102379322, -0.08357153087854385, -0.02301665209233761, -0.09220438450574875, -0.07325204461812973, -0.05151115730404854, -0.09749845415353775, 0.03146658465266228, 0.013846131041646004, 0.022944776341319084, -0.072250135242939, -0.09938003867864609, 0.10503926128149033, 0.11864936351776123, -0.05105191469192505, 0.017000392079353333, -0.07750695198774338, 0.026890940964221954, -0.015186907723546028, -0.029261356219649315, -0.20051750540733337, -0.1199130117893219, 0.05122150853276253, -0.048520997166633606, 0.02687162719666958, 0.019786059856414795, 0.06627529859542847, 0.05538293346762657, -0.04326484724879265, -0.017237845808267593, -0.06739907711744308, 0.003929012920707464, -0.11443740129470825, -0.20596472918987274, -0.06556329876184464, -0.036968592554330826, 0.1330907642841339, -0.19099724292755127, 0.002452875953167677, -0.026977362111210823, 0.11273252964019775, 0.01787812076508999, -0.05109183117747307, 0.011940151453018188, 0.03887331485748291, 0.01874532736837864, -0.09529657661914825, 0.05657017603516579, 0.012273997999727726, -0.07063888758420944, -0.042920179665088654, -0.11046182364225388, -0.00218599708750844, 0.0626850575208664, 0.07049401849508286, -0.0981595516204834, -0.015566009096801281, -0.05314066261053085, -0.036287713795900345, -0.07512886822223663, 0.023956140503287315, 0.20433475077152252, 0.030722396448254585, 0.12461681663990021, -0.06586489826440811, -0.0795382410287857, -0.0026462827809154987, 0.016018453985452652, 0.03312821686267853, 0.09972192347049713, 0.07706151157617569, -0.07865599542856216, 0.07942747324705124, 0.09165079891681671, -0.03717350214719772, 0.1177971363067627, -0.05312100052833557, -0.07547707110643387, -0.016975397244095802, -0.004302885849028826, -0.028876928612589836, 0.15043142437934875, -0.0835055559873581, 0.004812981467694044, 0.039503779262304306, 0.02531813457608223, 0.013023601844906807, -0.1785166710615158, -0.007474974263459444, 0.014271749183535576, -0.06247459724545479, -0.05790004879236221, -0.02573581598699093, 0.03745689615607262, 0.09798555076122284, 0.0317850261926651, -0.029749196022748947, 0.020467568188905716, -0.012572834268212318, -0.05970272794365883, 0.1901649832725525, -0.12155790627002716, -0.09116775542497635, -0.08559561520814896, 0.022591976448893547, -0.039348091930150986, -0.03530474752187729, 0.008106386289000511, -0.09706030040979385, -0.05427265539765358, -0.08572044968605042, -0.024029944092035294, -0.005783144384622574, -0.005609293933957815, 0.029562905430793762, -0.013113954104483128, 0.07867127656936646, -0.13337913155555725, 0.0010078315390273929, -0.03548016399145126, -0.09360907226800919, 0.01817133091390133, 0.06755192577838898, 0.08265446871519089, 0.10266949981451035, -0.01395756658166647, 0.015506958588957787, -0.027707522734999657, 0.23781585693359375, -0.06630244106054306, 0.015650128945708275, 0.09052382409572601, -0.000290108349872753, 0.054097387939691544, 0.1364492028951645, 0.03752604499459267, -0.1135755181312561, 0.027107561007142067, 0.07760511338710785, -0.01874641515314579, -0.24834059178829193, -0.031775880604982376, -0.02036847546696663, -0.08218220621347427, 0.08176689594984055, 0.0357043631374836, -0.05374445766210556, 0.03341514989733696, 0.019805798307061195, -0.005483055952936411, -0.03511521965265274, 0.06596103310585022, 0.08645853400230408, 0.04217267036437988, 0.1004246398806572, -0.025141283869743347, -0.01083102822303772, 0.06548410654067993, 0.019164618104696274, 0.2609206438064575, -0.03964716196060181, 0.12480000406503677, 0.036984365433454514, 0.14451539516448975, -0.027462372556328773, 0.0505695678293705, 0.008944062516093254, -0.0058363922871649265, -0.005389838479459286, -0.05023229867219925, -0.019540240988135338, -0.001998989377170801, -0.03453825041651726, 0.023229600861668587, -0.07622536271810532, 0.027462946251034737, 0.02768169529736042, 0.3043176233768463, 0.03926403447985649, -0.26588281989097595, -0.06892777234315872, 0.0028370546642690897, -0.040858037769794464, -0.07736344635486603, 0.005541075952351093, 0.1387128233909607, -0.1251107007265091, 0.035900719463825226, -0.05032188817858696, 0.09287568926811218, -0.03596777468919754, 0.011365109123289585, 0.06741128861904144, 0.14612692594528198, -0.01195437554270029, 0.0691986232995987, -0.21389970183372498, 0.23353463411331177, 0.026830947026610374, 0.11071215569972992, -0.06417511403560638, 0.009383483789861202, 0.004700257908552885, 0.0482146330177784, 0.109659843146801, 0.006898364517837763, 0.000222077636863105, -0.17438329756259918, -0.09728702157735825, 0.0556478314101696, 0.118385449051857, -0.023035414516925812, 0.08659492433071136, -0.037250034511089325, -0.0018880799179896712, 0.0338095985352993, -0.08113717287778854, -0.1245214119553566, -0.08949992060661316, -0.00548204593360424, 0.0012436717515811324, -0.034670669585466385, -0.05743585526943207, -0.09027433395385742, -0.02771344967186451, 0.13451699912548065, 0.020748546347022057, -0.054646871984004974, -0.136338010430336, 0.040820132941007614, 0.13802550733089447, -0.046225178986787796, 0.01693422719836235, 0.005405760370194912, 0.09970530867576599, 0.04623850807547569, -0.07815999537706375, 0.06618739664554596, -0.0739927738904953, -0.16553322970867157, -0.059154435992240906, 0.11936026066541672, 0.08262555301189423, 0.05596378073096275, 0.0012406072346493602, 0.0318579338490963, -0.005853212904185057, -0.08339796215295792, 0.018199581652879715, 0.043890614062547684, 0.09174062311649323, 0.03490525484085083, -0.09532967954874039, 0.06743216514587402, -0.03954397514462471, -0.011819262057542801, 0.12383399903774261, 0.21693603694438934, -0.09480204433202744, 0.10692992061376572, 0.07722141593694687, -0.07964155077934265, -0.1848379671573639, 0.07122713327407837, 0.1206648200750351, 0.015292405150830746, 0.038301482796669006, -0.2074321210384369, 0.13066326081752777, 0.1028677374124527, -0.015016818419098854, 0.044050831347703934, -0.30163028836250305, -0.13086993992328644, 0.07618608325719833, 0.10611940175294876, 0.042442914098501205, -0.12599873542785645, -0.021818287670612335, -0.013494390062987804, -0.1310449242591858, 0.14156121015548706, -0.08482412248849869, 0.11593753099441528, -0.006606009788811207, 0.11641496419906616, 0.02707727998495102, -0.03868737816810608, 0.13526073098182678, 0.06753560155630112, 0.0951344445347786, -0.04360901191830635, 0.01193995401263237, 0.054206326603889465, -0.06456103175878525, 0.03688427060842514, -0.032571617513895035, 0.07015249878168106, -0.16072456538677216, 0.0001393343845847994, -0.09327056258916855, 0.036331262439489365, -0.05035017430782318, -0.05637144297361374, -0.020452484488487244, 0.05423317849636078, 0.06928236037492752, -0.04011271521449089, 0.03136739507317543, 0.004645512904971838, 0.07641708105802536, 0.0880323126912117, 0.106813944876194, -0.03731968626379967, -0.10122019052505493, 0.01996629126369953, -0.009302294813096523, 0.05548567324876785, -0.11006377637386322, 0.02518383413553238, 0.13026773929595947, 0.05779866874217987, 0.11493153125047684, 0.028549790382385254, -0.030636945739388466, -0.017298821359872818, 0.016199028119444847, -0.12374826520681381, -0.11412826180458069, 0.04446662962436676, -0.039156828075647354, -0.13669517636299133, 0.007981260307133198, 0.09450525790452957, -0.0288886409252882, -0.019441280514001846, -0.010408488102257252, 0.020104311406612396, -0.01985297165811062, 0.19951122999191284, 0.04375927522778511, 0.06914053857326508, -0.10774311423301697, 0.12655788660049438, 0.04923273250460625, -0.05713935196399689, 0.05094589665532112, 0.06675787270069122, -0.1044798344373703, -0.01206629816442728, 0.12019457668066025, 0.1660524159669876, -0.03077625297009945, -0.019229695200920105, -0.08178512752056122, -0.09229741245508194, 0.06180387735366821, 0.15524673461914062, 0.051128145307302475, -0.015936806797981262, -0.048790376633405685, 0.027059683576226234, -0.1253204494714737, 0.0752510130405426, 0.04406600818037987, 0.06204751878976822, -0.09086711704730988, 0.11077942699193954, -0.004191640764474869, 0.04098658263683319, -0.019376371055841446, 0.025203431025147438, -0.10398153215646744, -0.009974459186196327, -0.14763803780078888, 0.0006360822590067983, -0.004302028100937605, 0.012902798131108284, -0.02079079858958721, -0.05298911780118942, -0.025604525581002235, 0.026728233322501183, -0.09251075237989426, -0.049286819994449615, 0.023219963535666466, 0.03779395669698715, -0.14622491598129272, -0.015514451079070568, 0.021634621545672417, -0.09245671331882477, 0.08073122054338455, 0.06102411076426506, 0.011363355442881584, 0.02899681217968464, -0.10782759636640549, -0.04873686283826828, 0.002344829961657524, 0.024977250024676323, 0.08839347958564758, -0.09311279654502869, -0.021014703437685966, -0.03181493654847145, 0.04587918147444725, 0.018823668360710144, 0.098236083984375, -0.11537358909845352, 0.00928814709186554, -0.040822584182024, -0.044964004307985306, -0.061966534703969955, 0.04033929109573364, 0.10980159044265747, 0.046052683144807816, 0.15972214937210083, -0.07338661700487137, 0.035341981798410416, -0.18450580537319183, -0.04367530718445778, 0.0003663946408778429, -0.048282768577337265, -0.0895569920539856, -0.047687072306871414, 0.09862666577100754, -0.05200786516070366, 0.10945181548595428, -0.0009637218317948282, 0.09858562797307968, 0.03257559984922409, -0.011342004872858524, -0.054694466292858124, 0.008728488348424435, 0.15498965978622437, 0.04944273829460144, -0.01401426363736391, 0.11064618080854416, 0.0011140224523842335, 0.04448043555021286, 0.06674664467573166, 0.21395337581634521, 0.1540045440196991, 0.011907080188393593, 0.048776015639305115, 0.0600285679101944, -0.11658184975385666, -0.13583293557167053, 0.1334049552679062, -0.04784710332751274, 0.12334340810775757, -0.07252279669046402, 0.21688662469387054, 0.022912077605724335, -0.18475738167762756, 0.06931470334529877, -0.061510976403951645, -0.12211037427186966, -0.11742118000984192, -0.02373385801911354, -0.06983550637960434, -0.10965414345264435, 0.02017885632812977, -0.12052419781684875, 0.06331679970026016, 0.12192335724830627, 0.016041019931435585, 0.023897167295217514, 0.16344982385635376, -0.03766026720404625, 0.01990189030766487, 0.06818497180938721, 0.01730329543352127, -0.00666010519489646, -0.0628027617931366, -0.06496390700340271, 0.0436147004365921, 0.023579226806759834, 0.07172048836946487, -0.038954272866249084, 0.0015274947509169579, 0.019647032022476196, -0.015322387218475342, -0.07343123853206635, 0.01695678010582924, 0.024317052215337753, 0.045862678438425064, 0.059295397251844406, 0.05255059152841568, 0.009544871747493744, -0.0376615896821022, 0.2891842722892761, -0.07505754381418228, -0.09953559935092926, -0.1297561526298523, 0.2276890128850937, 0.009867405518889427, -0.02278393879532814, 0.07351142168045044, -0.09483209252357483, -0.030131202191114426, 0.179368257522583, 0.14740799367427826, -0.10891900956630707, -0.022131823003292084, -0.020022552460432053, -0.011204109527170658, -0.04383106157183647, 0.13433164358139038, 0.10864589363336563, -0.01452154666185379, -0.07840445637702942, -0.01989828236401081, -0.018355591222643852, -0.04711015895009041, -0.07318542152643204, 0.06285858154296875, 0.025318972766399384, -0.0032820154447108507, -0.045719943940639496, 0.05803734436631203, -0.0070793782360851765, -0.23785732686519623, 0.032578665763139725, -0.1637982726097107, -0.17749379575252533, -0.038292501121759415, 0.059056662023067474, -0.009002498351037502, 0.041949860751628876, -0.009001998230814934, 0.011179889552295208, 0.14039769768714905, -0.03262845799326897, -0.02623562701046467, -0.12545153498649597, 0.11636772751808167, -0.10966740548610687, 0.20140688121318817, 0.002935885451734066, 0.07263243943452835, 0.09601543098688126, 0.02013484761118889, -0.13392828404903412, 0.04429512843489647, 0.07339420914649963, -0.10551624745130539, 0.009271197952330112, 0.14424198865890503, -0.05039425566792488, 0.07192499935626984, 0.024766936898231506, -0.10914565622806549, -0.007897553965449333, -0.04630986601114273, -0.039937231689691544, -0.07425841689109802, -0.015739811584353447, -0.06449826806783676, 0.15917611122131348, 0.22226101160049438, -0.023910047486424446, 0.017328480258584023, -0.09329815208911896, 0.015090567991137505, 0.042166680097579956, 0.04433589428663254, -0.05374787747859955, -0.20015905797481537, 0.0289969090372324, 0.04350961744785309, 0.018857643008232117, -0.20812095701694489, -0.07995837926864624, 0.04541206359863281, -0.030272196978330612, -0.04939708858728409, 0.10211266577243805, 0.028684012591838837, 0.04514503479003906, -0.03621067479252815, -0.10716307908296585, -0.0366402193903923, 0.1482405811548233, -0.15668803453445435, -0.040837738662958145 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-32-finetuned-squad-seed-10 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-32-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-32-finetuned-squad-seed-10
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-10 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 53, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.10132835805416107, 0.12458344548940659, -0.0021574092097580433, 0.0890110582113266, 0.13878482580184937, 0.031667277216911316, 0.08935161679983139, 0.13395492732524872, -0.08412817120552063, 0.05071624368429184, 0.06987441331148148, 0.07127468287944794, 0.045695710927248, 0.13184264302253723, -0.042506564408540726, -0.213563472032547, 0.00665510818362236, -0.011435789056122303, -0.0638638585805893, 0.10369480401277542, 0.08897271007299423, -0.11530616879463196, 0.06721305847167969, -0.02100408263504505, -0.15459582209587097, 0.007394534535706043, -0.031799543648958206, -0.026701511815190315, 0.10625502467155457, -0.018330741673707962, 0.09398000687360764, 0.01789012737572193, 0.1392814964056015, -0.21549373865127563, 0.0012384153669700027, 0.07623425871133804, 0.046984460204839706, 0.08715429157018661, 0.039340682327747345, 0.022037377581000328, 0.038771651685237885, -0.15011830627918243, 0.09719998389482498, 0.024227993562817574, -0.08781401813030243, -0.1375901848077774, -0.09142738580703735, 0.021935563534498215, 0.08293929696083069, 0.07835306972265244, 0.0072207385674119, 0.13946190476417542, -0.1035175696015358, 0.08070071041584015, 0.20075176656246185, -0.28691762685775757, -0.06546946614980698, 0.04484635964035988, 0.05601440742611885, 0.072527676820755, -0.11626515537500381, -0.015445365570485592, 0.02017187885940075, 0.031349338591098785, 0.11268608272075653, -0.02114764228463173, -0.12613193690776825, 0.006113090086728334, -0.12795376777648926, -0.011114610359072685, 0.10405877232551575, 0.03674309700727463, -0.046743590384721756, -0.07963448762893677, -0.06095699593424797, -0.08754264563322067, -0.035884443670511246, -0.01791507378220558, 0.05489587411284447, -0.05718766897916794, -0.06452761590480804, -0.04556628689169884, -0.05528724566102028, -0.08801458775997162, 0.0006322974222712219, 0.13721852004528046, 0.040298331528902054, 0.02001022733747959, -0.03909299895167351, 0.11292418837547302, -0.0015109532978385687, -0.12942038476467133, -0.003644263371825218, 0.0022838134318590164, -0.11310628801584244, -0.05535423755645752, -0.03655232489109039, 0.011042536236345768, 0.015684448182582855, 0.1513611227273941, -0.040708914399147034, 0.07557471096515656, 0.017024854198098183, -0.017740946263074875, -0.017060983926057816, 0.15283793210983276, -0.034664735198020935, -0.04512929543852806, -0.0012755542993545532, 0.10039705038070679, 0.0005283342907205224, -0.006619873456656933, -0.0808417871594429, -0.016171999275684357, 0.07447225600481033, 0.06823836266994476, -0.054295558482408524, 0.037263110280036926, -0.044247597455978394, -0.024068545550107956, 0.028729408979415894, -0.12523595988750458, 0.0391349121928215, 0.0058163912035524845, -0.08580204099416733, -0.05989926680922508, 0.0060431393794715405, -0.008263684809207916, -0.026784105226397514, 0.08224128186702728, -0.07331883162260056, -0.0008458488155156374, -0.08638835698366165, -0.08144640922546387, 0.0012382857967168093, -0.14912725985050201, -0.010856139473617077, -0.04645729064941406, -0.19569595158100128, -0.03324921801686287, 0.05100838467478752, -0.07739522308111191, -0.038195934146642685, -0.05256337672472, -0.0765872672200203, 0.009656568989157677, -0.00680591631680727, 0.18968094885349274, -0.060340382158756256, 0.07876451313495636, -0.014966094866394997, 0.05025837942957878, 0.01568741351366043, 0.04903920739889145, -0.08494779467582703, 0.0256735198199749, -0.1498330682516098, 0.08169061690568924, -0.0994563102722168, 0.022509517148137093, -0.12330735474824905, -0.0885300263762474, 0.05101311206817627, -0.021440397948026657, 0.07877876609563828, 0.13806255161762238, -0.20154520869255066, 0.0007959635113365948, 0.11774516105651855, -0.040354616940021515, -0.055210813879966736, 0.07503936439752579, -0.05900484696030617, 0.04527449980378151, 0.055414605885744095, 0.1889594942331314, 0.07232828438282013, -0.1464075893163681, 0.01670340821146965, 0.03281958028674126, 0.05635856091976166, 0.0047180261462926865, 0.03608406335115433, -0.000603828055318445, 0.028409570455551147, 0.007990719750523567, -0.08245151489973068, -0.023431768640875816, -0.09201636910438538, -0.07369782030582428, -0.05077110230922699, -0.09806565940380096, 0.03160906955599785, 0.014345179311931133, 0.02321358397603035, -0.0723518431186676, -0.09970968216657639, 0.10536117106676102, 0.11885202676057816, -0.05145662650465965, 0.015873800963163376, -0.07758311182260513, 0.02632902003824711, -0.015935659408569336, -0.029011359438300133, -0.20038805902004242, -0.11792796850204468, 0.05102921649813652, -0.048969995230436325, 0.02623981423676014, 0.02225540019571781, 0.06712406873703003, 0.05519931763410568, -0.04296904057264328, -0.018176371231675148, -0.0675092488527298, 0.003732638666406274, -0.11580098420381546, -0.20506128668785095, -0.06745410710573196, -0.03769649192690849, 0.133278951048851, -0.19263307750225067, 0.0037538546603173018, -0.02879600040614605, 0.11214712262153625, 0.017168231308460236, -0.051306817680597305, 0.012685082852840424, 0.03828013315796852, 0.019354848191142082, -0.09586408734321594, 0.05658840388059616, 0.010764379985630512, -0.07019956409931183, -0.04498480260372162, -0.11196862161159515, -0.004354502540081739, 0.0620720200240612, 0.07213548570871353, -0.0978614091873169, -0.015816034749150276, -0.053376454859972, -0.035639286041259766, -0.07344835996627808, 0.023609453812241554, 0.20192378759384155, 0.030119238421320915, 0.12384279817342758, -0.06592443585395813, -0.0807831734418869, -0.0022021743934601545, 0.017425457015633583, 0.033868759870529175, 0.09992532432079315, 0.07703699171543121, -0.07840795069932938, 0.07907265424728394, 0.09273314476013184, -0.03646787256002426, 0.11675021052360535, -0.05314510688185692, -0.07629872113466263, -0.016879215836524963, -0.00411068182438612, -0.029530903324484825, 0.1502518653869629, -0.08450894057750702, 0.003100711153820157, 0.03908054158091545, 0.024213017895817757, 0.012776289135217667, -0.1791526973247528, -0.007056625094264746, 0.013846960850059986, -0.06178116425871849, -0.0596686452627182, -0.026321597397327423, 0.03602689877152443, 0.0973752811551094, 0.031106144189834595, -0.030920112505555153, 0.019891606643795967, -0.012653982266783714, -0.05941493436694145, 0.1905335634946823, -0.11990929394960403, -0.08995035290718079, -0.08410874009132385, 0.022143971174955368, -0.03722618147730827, -0.035603493452072144, 0.007447250187397003, -0.09760969877243042, -0.05363484099507332, -0.0850653275847435, -0.02506631799042225, -0.005703311879187822, -0.0058668931014835835, 0.0312042273581028, -0.012469632551074028, 0.07694291323423386, -0.1332920491695404, 0.0015831389464437962, -0.036297135055065155, -0.09345091134309769, 0.017675179988145828, 0.06657660752534866, 0.08250618726015091, 0.10339201986789703, -0.014215844683349133, 0.016030311584472656, -0.02821963094174862, 0.23743818700313568, -0.06689657270908356, 0.017095457762479782, 0.08977670222520828, -0.00012243467790540308, 0.053866706788539886, 0.13763421773910522, 0.037018489092588425, -0.11365052312612534, 0.026548661291599274, 0.0772540494799614, -0.018030647188425064, -0.24926990270614624, -0.03071584738790989, -0.019718579947948456, -0.08245664834976196, 0.0825699046254158, 0.03509792685508728, -0.05120323225855827, 0.034890852868556976, 0.019439062103629112, -0.00392361031845212, -0.03352254629135132, 0.06594979017972946, 0.08369550108909607, 0.041384633630514145, 0.10064412653446198, -0.025339575484395027, -0.011746044270694256, 0.06337094306945801, 0.019642800092697144, 0.2624169588088989, -0.03801003843545914, 0.12417570501565933, 0.03634238243103027, 0.14332211017608643, -0.028266731649637222, 0.05355988070368767, 0.009897262789309025, -0.006373748183250427, -0.005295357201248407, -0.049630701541900635, -0.017588507384061813, -0.0012361232656985521, -0.03393326699733734, 0.022585181519389153, -0.0756942629814148, 0.026978233829140663, 0.027395330369472504, 0.3032633662223816, 0.041357215493917465, -0.2671400308609009, -0.06801126897335052, 0.0032656360417604446, -0.042716577649116516, -0.07714519649744034, 0.005056730937212706, 0.13738968968391418, -0.12494499236345291, 0.0369110144674778, -0.05109865590929985, 0.09313791245222092, -0.035021234303712845, 0.011693421751260757, 0.06659785658121109, 0.1454167515039444, -0.01179014053195715, 0.07012306898832321, -0.21533474326133728, 0.23314157128334045, 0.02645392343401909, 0.11202280223369598, -0.06512241065502167, 0.009480022825300694, 0.004313252866268158, 0.04679339379072189, 0.111415334045887, 0.00647112587466836, -0.00018836036906577647, -0.17495055496692657, -0.09720481187105179, 0.05559045076370239, 0.11892964690923691, -0.0222105011343956, 0.08794785290956497, -0.03604412451386452, -0.0030806942377239466, 0.033966466784477234, -0.0821072980761528, -0.12565849721431732, -0.08894503116607666, -0.005617708899080753, -0.0003902398166246712, -0.034646473824977875, -0.057118970900774, -0.0903443917632103, -0.030153581872582436, 0.13298733532428741, 0.021045515313744545, -0.05444478243589401, -0.13594195246696472, 0.0429450161755085, 0.1389230191707611, -0.04546139016747475, 0.01814720220863819, 0.006929636001586914, 0.09955114126205444, 0.04551997780799866, -0.07672487199306488, 0.06585708260536194, -0.07399356365203857, -0.1656465232372284, -0.05835495889186859, 0.12098552286624908, 0.08285540342330933, 0.056186869740486145, 0.0026389090344309807, 0.031282179057598114, -0.005553848575800657, -0.0831323191523552, 0.018032051622867584, 0.043416861444711685, 0.09124965220689774, 0.0344034805893898, -0.09566521644592285, 0.06613951921463013, -0.04035336151719093, -0.009675773791968822, 0.12402312457561493, 0.21539804339408875, -0.09445731341838837, 0.10595779120922089, 0.07683411240577698, -0.07963337004184723, -0.1838047057390213, 0.07170554250478745, 0.12113934010267258, 0.015982167795300484, 0.03817592188715935, -0.20686151087284088, 0.13019244372844696, 0.10237027704715729, -0.014251845888793468, 0.042972300201654434, -0.302143394947052, -0.1305028200149536, 0.07693895697593689, 0.10640066117048264, 0.04040975123643875, -0.1254531741142273, -0.021811794489622116, -0.014254768379032612, -0.13084997236728668, 0.14149701595306396, -0.08519478142261505, 0.1153578981757164, -0.006036830134689808, 0.11478279531002045, 0.02714291214942932, -0.039299868047237396, 0.13377645611763, 0.0694870799779892, 0.0953257605433464, -0.0433817021548748, 0.00991878379136324, 0.05692707747220993, -0.06405951827764511, 0.038293007761240005, -0.03164009004831314, 0.06902054697275162, -0.16033178567886353, -0.000494977633934468, -0.09337697923183441, 0.035416122525930405, -0.0506463460624218, -0.05628685653209686, -0.019688019528985023, 0.054353587329387665, 0.0690116435289383, -0.039716511964797974, 0.02954985201358795, 0.005746330600231886, 0.07586632668972015, 0.08364122360944748, 0.10804343968629837, -0.035736631602048874, -0.10002963989973068, 0.0202436912804842, -0.009060999378561974, 0.05467301979660988, -0.11152848601341248, 0.024084312841296196, 0.13061784207820892, 0.057969607412815094, 0.11563778668642044, 0.02846471779048443, -0.03106791153550148, -0.017742855474352837, 0.016152886673808098, -0.12144075334072113, -0.11544656753540039, 0.04493983834981918, -0.040482889860868454, -0.1377372443675995, 0.009920748881995678, 0.09257030487060547, -0.029621107503771782, -0.020436817780137062, -0.011301729828119278, 0.020048856735229492, -0.01992414891719818, 0.20121008157730103, 0.04444239288568497, 0.07016391307115555, -0.10808015614748001, 0.12585847079753876, 0.04923073202371597, -0.057867325842380524, 0.05026974529027939, 0.06745075434446335, -0.10529910027980804, -0.012408333830535412, 0.12039706110954285, 0.1655173897743225, -0.027497923001646996, -0.01933954283595085, -0.08226368576288223, -0.09207988530397415, 0.062495652586221695, 0.15551072359085083, 0.05112891271710396, -0.01692471094429493, -0.04831080883741379, 0.02793026901781559, -0.1257791966199875, 0.07526695728302002, 0.044720783829689026, 0.061960604041814804, -0.09100816398859024, 0.11192825436592102, -0.00428962055593729, 0.04148690775036812, -0.018906259909272194, 0.026328472420573235, -0.1035294383764267, -0.010238622315227985, -0.1457090675830841, -0.0013989738654345274, -0.006395521108061075, 0.012531265616416931, -0.021343056112527847, -0.052241355180740356, -0.025237776339054108, 0.02585107460618019, -0.09255389124155045, -0.04971202462911606, 0.022676939144730568, 0.03642809018492699, -0.1451815515756607, -0.015406048856675625, 0.020470160990953445, -0.09235400706529617, 0.08038278669118881, 0.059974320232868195, 0.011829180642962456, 0.02967204339802265, -0.10735717415809631, -0.04810646176338196, 0.0034547767136245966, 0.02460418827831745, 0.0880739763379097, -0.09275468438863754, -0.02061404660344124, -0.03194967657327652, 0.047286372631788254, 0.01819010265171528, 0.09492120146751404, -0.11422724276781082, 0.0087400758638978, -0.042089659720659256, -0.044905439019203186, -0.06263010948896408, 0.04104316234588623, 0.10883355885744095, 0.044617004692554474, 0.16055577993392944, -0.07144724577665329, 0.035712696611881256, -0.18525825440883636, -0.04414448142051697, -0.00020867185958195478, -0.04855659231543541, -0.08860132098197937, -0.048418156802654266, 0.0989641472697258, -0.05197523906826973, 0.1098828837275505, -0.001600058632902801, 0.0998515859246254, 0.03157533332705498, -0.00851092766970396, -0.054982740432024, 0.009889316745102406, 0.15552634000778198, 0.049356527626514435, -0.01460033468902111, 0.10911153256893158, 0.002018939470872283, 0.04436694085597992, 0.06529805809259415, 0.21181349456310272, 0.15426480770111084, 0.011277761310338974, 0.049108635634183884, 0.060696739703416824, -0.1172838807106018, -0.134285107254982, 0.13554780185222626, -0.04831384867429733, 0.12210482358932495, -0.0726703628897667, 0.21949832141399384, 0.022931518033146858, -0.18483874201774597, 0.06965145468711853, -0.060546256601810455, -0.12289123982191086, -0.11607840657234192, -0.02532340958714485, -0.0700843408703804, -0.10851476341485977, 0.020832760259509087, -0.12052111327648163, 0.06234677881002426, 0.12224740535020828, 0.016241231933236122, 0.023466767743229866, 0.16430692374706268, -0.037663206458091736, 0.020411446690559387, 0.06859614700078964, 0.017154410481452942, -0.0059095886535942554, -0.06281294673681259, -0.06385856121778488, 0.044196102768182755, 0.022458821535110474, 0.07241233438253403, -0.041076984256505966, 0.0004440177872311324, 0.019800176844000816, -0.014399099163711071, -0.07315292954444885, 0.01734786480665207, 0.023852000012993813, 0.04636675491929054, 0.05819619074463844, 0.05270417034626007, 0.008941124193370342, -0.03808837756514549, 0.28732672333717346, -0.07549859583377838, -0.10098765045404434, -0.1302826851606369, 0.22485561668872833, 0.011327306739985943, -0.02275458723306656, 0.07407686114311218, -0.09523385763168335, -0.027505533769726753, 0.1801246851682663, 0.1477097123861313, -0.10591261088848114, -0.022899825125932693, -0.019056443125009537, -0.011652173474431038, -0.044792383909225464, 0.13338550925254822, 0.10896875709295273, -0.016681158915162086, -0.0781116634607315, -0.019431861117482185, -0.01691090501844883, -0.04871279001235962, -0.0726761668920517, 0.06235935539007187, 0.026774410158395767, -0.0036487991455942392, -0.04390724003314972, 0.06025349348783493, -0.004889302887022495, -0.23736369609832764, 0.03188881650567055, -0.16279473900794983, -0.17753276228904724, -0.039010148495435715, 0.05871415510773659, -0.007081418298184872, 0.04210394248366356, -0.008702186867594719, 0.01087475847452879, 0.13958846032619476, -0.03181983157992363, -0.026905614882707596, -0.12571386992931366, 0.11658044904470444, -0.1111331582069397, 0.20011115074157715, 0.002592296339571476, 0.0733925923705101, 0.09628886729478836, 0.01816360279917717, -0.13329631090164185, 0.044477321207523346, 0.07363799959421158, -0.10342350602149963, 0.010887157171964645, 0.14498397707939148, -0.05004919692873955, 0.06928997486829758, 0.023674294352531433, -0.11032514274120331, -0.007189863361418247, -0.04523565247654915, -0.0399288684129715, -0.07529555261135101, -0.013096913695335388, -0.06335283070802689, 0.1596534103155136, 0.22231046855449677, -0.02441261149942875, 0.018140677362680435, -0.09369905292987823, 0.01445895154029131, 0.042266011238098145, 0.04479487985372543, -0.053733229637145996, -0.20076636970043182, 0.02821139059960842, 0.039887685328722, 0.019424496218562126, -0.20625095069408417, -0.07894267141819, 0.044475361704826355, -0.03174674138426781, -0.050333354622125626, 0.10110683739185333, 0.030435306951403618, 0.044791191816329956, -0.03595082834362984, -0.10715276002883911, -0.03681391850113869, 0.14935427904129028, -0.15763118863105774, -0.04016726836562157 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-32-finetuned-squad-seed-2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-32-finetuned-squad-seed-2", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-32-finetuned-squad-seed-2
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-2 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 53, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.10009641945362091, 0.1256990283727646, -0.0022202918771654367, 0.08957543969154358, 0.1384621560573578, 0.03164946660399437, 0.08793316036462784, 0.13433648645877838, -0.08519602566957474, 0.051037292927503586, 0.0708543211221695, 0.06947190314531326, 0.044836271554231644, 0.1309758722782135, -0.0425129272043705, -0.21348276734352112, 0.006172251887619495, -0.013221216388046741, -0.06567734479904175, 0.10354319959878922, 0.08982706069946289, -0.11418122053146362, 0.0676511898636818, -0.020447660237550735, -0.1564837396144867, 0.007333934307098389, -0.03059842437505722, -0.025207631289958954, 0.10625182837247849, -0.01716078817844391, 0.09434441477060318, 0.018817514181137085, 0.13889716565608978, -0.2158467322587967, 0.0010120620718225837, 0.07554474472999573, 0.04773286357522011, 0.0870995819568634, 0.039683181792497635, 0.02224470116198063, 0.038087259978055954, -0.14887826144695282, 0.09557252377271652, 0.024481942877173424, -0.08782567828893661, -0.13786448538303375, -0.09129400551319122, 0.02177400141954422, 0.08249371498823166, 0.07721274346113205, 0.008436211384832859, 0.13775132596492767, -0.10293698310852051, 0.08029644191265106, 0.19952169060707092, -0.28699833154678345, -0.06591468304395676, 0.043566543608903885, 0.054407160729169846, 0.07387355715036392, -0.11468134820461273, -0.01465236023068428, 0.020541967824101448, 0.03151588514447212, 0.11203480511903763, -0.021009348332881927, -0.12634830176830292, 0.00599315669387579, -0.12819376587867737, -0.013189462944865227, 0.10499583929777145, 0.0360863171517849, -0.04778354614973068, -0.07660960406064987, -0.06164253503084183, -0.08494316786527634, -0.034486640244722366, -0.018032286316156387, 0.05529655143618584, -0.055173035711050034, -0.06386242061853409, -0.0481497161090374, -0.05711254104971886, -0.0882980152964592, -0.0008832342573441565, 0.13944149017333984, 0.040166132152080536, 0.021512819454073906, -0.03922472149133682, 0.1144421175122261, 0.000526605814229697, -0.12905658781528473, -0.004150371998548508, 0.0030090156942605972, -0.11194458603858948, -0.05470393970608711, -0.03697570040822029, 0.012039699591696262, 0.016809646040201187, 0.14966662228107452, -0.04304021596908569, 0.07449400424957275, 0.015721693634986877, -0.016140539199113846, -0.016865810379385948, 0.1532638669013977, -0.03223979100584984, -0.04187830537557602, -0.0001599624374648556, 0.09939082711935043, 0.0010744162136688828, -0.006520627532154322, -0.0811205580830574, -0.01681351102888584, 0.07461122423410416, 0.06939172744750977, -0.05378948897123337, 0.03505450114607811, -0.04643914848566055, -0.023940669372677803, 0.026437096297740936, -0.12529875338077545, 0.03839971870183945, 0.005910319276154041, -0.08400501310825348, -0.060758281499147415, 0.007028933148831129, -0.008225430734455585, -0.025065073743462563, 0.08058623224496841, -0.0720924437046051, 0.00025423281476832926, -0.08533116430044174, -0.07885154336690903, 0.0006763481069356203, -0.14554215967655182, -0.011522897519171238, -0.047778695821762085, -0.19312100112438202, -0.03156780079007149, 0.05162077769637108, -0.07851609587669373, -0.04117579758167267, -0.05134261026978493, -0.07511702179908752, 0.010530360974371433, -0.007428572978824377, 0.1893375664949417, -0.060527950525283813, 0.07979770749807358, -0.01511481124907732, 0.04998304694890976, 0.01566019468009472, 0.04815953969955444, -0.08399732410907745, 0.026926040649414062, -0.1507912576198578, 0.08288194239139557, -0.09855280816555023, 0.019090060144662857, -0.12468133121728897, -0.08754651993513107, 0.05240710824728012, -0.02223820611834526, 0.07759786397218704, 0.1379394233226776, -0.2003541737794876, 0.0012528698425740004, 0.11694104224443436, -0.041856084018945694, -0.05460650473833084, 0.07698836922645569, -0.058997273445129395, 0.04760301858186722, 0.05331519618630409, 0.18933971226215363, 0.07171838730573654, -0.1463119238615036, 0.01984562538564205, 0.03544537350535393, 0.05555017292499542, 0.006288336589932442, 0.03757495805621147, -0.0022609566804021597, 0.023892221972346306, 0.007564742583781481, -0.08571929484605789, -0.02324472740292549, -0.09292072802782059, -0.07426901906728745, -0.0511929988861084, -0.0977947860956192, 0.03249606862664223, 0.011641091667115688, 0.023380421102046967, -0.07139216363430023, -0.09779158234596252, 0.10460738837718964, 0.11968865990638733, -0.050767652690410614, 0.017691558226943016, -0.07767672836780548, 0.026326721534132957, -0.01678594946861267, -0.029956022277474403, -0.20002669095993042, -0.11863351613283157, 0.05207568407058716, -0.04868987575173378, 0.02663702704012394, 0.0222602728754282, 0.0655464455485344, 0.05506949499249458, -0.04261299967765808, -0.01805245317518711, -0.06759008020162582, 0.003143914043903351, -0.11542850732803345, -0.20602700114250183, -0.06601178646087646, -0.037369098514318466, 0.13426285982131958, -0.19171802699565887, 0.00225398363545537, -0.028461402282118797, 0.11156661808490753, 0.01718558557331562, -0.05055459961295128, 0.0111332843080163, 0.037356093525886536, 0.01864214614033699, -0.09520181268453598, 0.056563954800367355, 0.012573068030178547, -0.07124949991703033, -0.04211296886205673, -0.10921728610992432, -0.002879437990486622, 0.06021576374769211, 0.07121247053146362, -0.0984601303935051, -0.01619950868189335, -0.05343033745884895, -0.03671104833483696, -0.07499115914106369, 0.023887986317276955, 0.20309992134571075, 0.02943660318851471, 0.1245371401309967, -0.0664711445569992, -0.079588383436203, -0.0029869850259274244, 0.014612858183681965, 0.033195171505212784, 0.09952492266893387, 0.07706950604915619, -0.08073140680789948, 0.07771335542201996, 0.0929347574710846, -0.0371805801987648, 0.11610382795333862, -0.0531219020485878, -0.07560604810714722, -0.01870039477944374, -0.0015297944191843271, -0.029135316610336304, 0.14932076632976532, -0.08308592438697815, 0.005408702418208122, 0.03884296119213104, 0.025305788964033127, 0.012809223495423794, -0.1797635555267334, -0.0074373106472194195, 0.014586894772946835, -0.06372798979282379, -0.056298401206731796, -0.026578858494758606, 0.0368107371032238, 0.09793411195278168, 0.031609516590833664, -0.030763784423470497, 0.021490788087248802, -0.012390240095555782, -0.06053312495350838, 0.19014789164066315, -0.12027613818645477, -0.09113277494907379, -0.08646462857723236, 0.02288532629609108, -0.03767131641507149, -0.0350770428776741, 0.007990594953298569, -0.09594374895095825, -0.05318070203065872, -0.08569919317960739, -0.023466888815164566, -0.007402350194752216, -0.005116356071084738, 0.031118838116526604, -0.012795712798833847, 0.07965879887342453, -0.13265489041805267, 0.001259024953469634, -0.03559283912181854, -0.09516685456037521, 0.018559547141194344, 0.06716232746839523, 0.08208496868610382, 0.10251671075820923, -0.013397909700870514, 0.015459778718650341, -0.027232864871621132, 0.23860488831996918, -0.06538571417331696, 0.016184136271476746, 0.09056106954813004, -0.0020497851073741913, 0.05482897907495499, 0.1370699107646942, 0.0362609401345253, -0.11377136409282684, 0.027301115915179253, 0.07621083408594131, -0.01867121271789074, -0.2488802820444107, -0.03171946853399277, -0.0190589539706707, -0.08254019170999527, 0.08187432587146759, 0.03532128036022186, -0.05601406469941139, 0.03373905271291733, 0.02034243568778038, -0.005086430348455906, -0.035093698650598526, 0.06582296639680862, 0.08572327345609665, 0.041047003120183945, 0.10035405308008194, -0.024779023602604866, -0.011577068828046322, 0.06541457027196884, 0.020029112696647644, 0.2619852125644684, -0.03817179426550865, 0.12371517717838287, 0.03749895468354225, 0.1455680876970291, -0.027627797797322273, 0.05053269863128662, 0.010302959941327572, -0.005603025667369366, -0.0062355827540159225, -0.049322668462991714, -0.018982447683811188, -0.0008374185999855399, -0.03307576850056648, 0.02289816550910473, -0.0766705647110939, 0.03007943369448185, 0.026555072516202927, 0.3049170970916748, 0.04063345119357109, -0.26469337940216064, -0.0675782635807991, 0.003702172078192234, -0.042052797973155975, -0.07683566957712173, 0.0054117487743496895, 0.13990603387355804, -0.12634439766407013, 0.03399163484573364, -0.04998062178492546, 0.092300184071064, -0.03601976856589317, 0.01088815275579691, 0.06508845835924149, 0.14490585029125214, -0.010894747450947762, 0.07044024765491486, -0.21323415637016296, 0.23379169404506683, 0.02622380666434765, 0.10991063714027405, -0.06265577673912048, 0.009594585746526718, 0.004086569882929325, 0.04784107580780983, 0.11157114803791046, 0.007876136340200901, -0.0013480990892276168, -0.17504729330539703, -0.09876994043588638, 0.055433135479688644, 0.11936359107494354, -0.02440183237195015, 0.08683151751756668, -0.037116315215826035, -0.0016396011924371123, 0.03347976505756378, -0.08043002337217331, -0.12491929531097412, -0.08813092857599258, -0.006273162551224232, -0.0012629040284082294, -0.034957405179739, -0.058102793991565704, -0.0901416465640068, -0.025987813249230385, 0.13512678444385529, 0.020706869661808014, -0.05465316027402878, -0.1352880299091339, 0.042002156376838684, 0.13786859810352325, -0.04704613238573074, 0.01681896112859249, 0.006184613797813654, 0.10010534524917603, 0.0459693968296051, -0.07689476013183594, 0.06564117968082428, -0.07409001886844635, -0.16672039031982422, -0.05854608491063118, 0.12105856835842133, 0.08301594853401184, 0.05637793242931366, 0.0027320068329572678, 0.030737759545445442, -0.004731012042611837, -0.08329266309738159, 0.018829867243766785, 0.04458122327923775, 0.09102712571620941, 0.03481481224298477, -0.09572497010231018, 0.06967223435640335, -0.0400235578417778, -0.01206823531538248, 0.1261163204908371, 0.2191571593284607, -0.09529802203178406, 0.10758817940950394, 0.07615401595830917, -0.0810616984963417, -0.18430189788341522, 0.06983577460050583, 0.1230049803853035, 0.015163625590503216, 0.04043407365679741, -0.20735929906368256, 0.13012491166591644, 0.10247843712568283, -0.015754014253616333, 0.041468750685453415, -0.3034607172012329, -0.13068260252475739, 0.07566377520561218, 0.1062498539686203, 0.04392644762992859, -0.12452329695224762, -0.0222803745418787, -0.012570064514875412, -0.13027003407478333, 0.1400810182094574, -0.08257870376110077, 0.11565925925970078, -0.006113535258919001, 0.11590281128883362, 0.02714209258556366, -0.038057226687669754, 0.1364019215106964, 0.06807302683591843, 0.09384085237979889, -0.04293927550315857, 0.011191777884960175, 0.053997233510017395, -0.06489524245262146, 0.03682633489370346, -0.031124765053391457, 0.07043210417032242, -0.16145238280296326, -0.00047615476069040596, -0.09265404939651489, 0.03553445264697075, -0.05140627920627594, -0.05594324320554733, -0.02013472281396389, 0.053712502121925354, 0.06946435570716858, -0.03925511986017227, 0.028139617294073105, 0.006172127090394497, 0.07351104170084, 0.08868281543254852, 0.10675223916769028, -0.03428105264902115, -0.10113218426704407, 0.01864217221736908, -0.009226902388036251, 0.054789379239082336, -0.1103542149066925, 0.025623463094234467, 0.12941919267177582, 0.05691250041127205, 0.11560487002134323, 0.028268972411751747, -0.031263068318367004, -0.016346652060747147, 0.01575295254588127, -0.12281082570552826, -0.11710875481367111, 0.04402993246912956, -0.039517659693956375, -0.1378355622291565, 0.006924228277057409, 0.09521577507257462, -0.02897953800857067, -0.020004786550998688, -0.011363296769559383, 0.020626740530133247, -0.020508071407675743, 0.19918213784694672, 0.04329778626561165, 0.07005398720502853, -0.10676795989274979, 0.12590374052524567, 0.04918823763728142, -0.05601511150598526, 0.050215017050504684, 0.06593455374240875, -0.10418938845396042, -0.011616673320531845, 0.1211290955543518, 0.1654648333787918, -0.030720124021172523, -0.018772421404719353, -0.08163052797317505, -0.09227854758501053, 0.06147613748908043, 0.15395092964172363, 0.052278727293014526, -0.01580904610455036, -0.04840558022260666, 0.027247361838817596, -0.12449229508638382, 0.07528195530176163, 0.045803502202034, 0.062098413705825806, -0.09170711040496826, 0.11187612265348434, -0.004760186653584242, 0.04325992614030838, -0.01926409639418125, 0.02488505281507969, -0.10333438962697983, -0.01053887140005827, -0.14763475954532623, 0.0016126936534419656, -0.003742740023881197, 0.012540261261165142, -0.02020549215376377, -0.05310852453112602, -0.02503214217722416, 0.02697741985321045, -0.09258003532886505, -0.04967428371310234, 0.022274626418948174, 0.03773655369877815, -0.14462488889694214, -0.01627049781382084, 0.02214314416050911, -0.09278017282485962, 0.08176348358392715, 0.060719527304172516, 0.012304472737014294, 0.0287665706127882, -0.10539714246988297, -0.04832151159644127, 0.0034685328137129545, 0.024852922186255455, 0.0873304083943367, -0.09378416836261749, -0.02192421443760395, -0.03165977820754051, 0.04650527611374855, 0.018174903467297554, 0.09850052744150162, -0.11509837955236435, 0.009686687961220741, -0.04234512522816658, -0.0456572026014328, -0.06222290173172951, 0.03936471790075302, 0.10767614841461182, 0.047369588166475296, 0.16022427380084991, -0.0730581283569336, 0.03564288839697838, -0.18490520119667053, -0.04377223551273346, -0.0002203913318226114, -0.04642295464873314, -0.09014840424060822, -0.04888510704040527, 0.09753859043121338, -0.051897529512643814, 0.10854669660329819, -0.0014801181387156248, 0.09758450090885162, 0.03171166032552719, -0.010900492779910564, -0.05235831066966057, 0.008877802640199661, 0.15386012196540833, 0.049229320138692856, -0.013737601228058338, 0.11003366112709045, 0.0002806582779157907, 0.04546027258038521, 0.06462743878364563, 0.21381622552871704, 0.1540675312280655, 0.011402761563658714, 0.04894164949655533, 0.06008307263255119, -0.11591758579015732, -0.13667209446430206, 0.13394859433174133, -0.04772587865591049, 0.12195468693971634, -0.0708659291267395, 0.21715284883975983, 0.02350655011832714, -0.18558500707149506, 0.06806249916553497, -0.06028072163462639, -0.12283246964216232, -0.11794131249189377, -0.02418007329106331, -0.07126043736934662, -0.10904195159673691, 0.02028462663292885, -0.12055277824401855, 0.063176728785038, 0.12203221768140793, 0.01520331297069788, 0.024020100012421608, 0.16145628690719604, -0.03691909834742546, 0.01994401216506958, 0.06773065030574799, 0.01659717597067356, -0.004988509230315685, -0.06134134903550148, -0.06547975540161133, 0.04404482617974281, 0.024512575939297676, 0.07167353481054306, -0.039650946855545044, 0.0020038855727761984, 0.01862630806863308, -0.01591823250055313, -0.07333824783563614, 0.016626210883259773, 0.024359511211514473, 0.045937102288007736, 0.05709584057331085, 0.05331180617213249, 0.00898209773004055, -0.03732350468635559, 0.2889796197414398, -0.07463882863521576, -0.10028880089521408, -0.129481241106987, 0.22777394950389862, 0.009035698138177395, -0.02201039344072342, 0.07478569447994232, -0.09419705718755722, -0.029663901776075363, 0.17855483293533325, 0.14631105959415436, -0.10966060310602188, -0.022454623132944107, -0.02002057060599327, -0.011589515022933483, -0.04377225786447525, 0.1356692612171173, 0.1084570363163948, -0.015344085171818733, -0.07928808033466339, -0.020457709208130836, -0.01899465173482895, -0.046907972544431686, -0.07408825308084488, 0.06250522285699844, 0.02509288117289543, -0.002220905851572752, -0.04506519436836243, 0.05857930704951286, -0.005876694805920124, -0.23662596940994263, 0.03117128647863865, -0.16178786754608154, -0.1778365522623062, -0.03790871053934097, 0.05956155061721802, -0.009176055900752544, 0.04180826619267464, -0.010586831718683243, 0.010982966981828213, 0.14048831164836884, -0.03278452530503273, -0.026790615171194077, -0.12372810393571854, 0.11744919419288635, -0.11110932379961014, 0.2014789581298828, 0.003988184966146946, 0.07411840558052063, 0.09525182843208313, 0.019371148198843002, -0.13442900776863098, 0.04363350570201874, 0.07314509898424149, -0.10353510081768036, 0.010262295603752136, 0.14523202180862427, -0.05003729462623596, 0.0708436518907547, 0.025685453787446022, -0.10925144702196121, -0.008665111847221851, -0.04515756294131279, -0.03981144353747368, -0.07457026839256287, -0.01618810184299946, -0.06576497852802277, 0.15862980484962463, 0.22139032185077667, -0.02484690397977829, 0.018389040604233742, -0.09283095598220825, 0.014935212209820747, 0.04250815138220787, 0.04702004790306091, -0.05274408310651779, -0.20048479735851288, 0.027798008173704147, 0.04186687618494034, 0.019187694415450096, -0.20708279311656952, -0.08119030296802521, 0.044541675597429276, -0.03035042993724346, -0.04951048269867897, 0.10279091447591782, 0.028734315186738968, 0.04429551959037781, -0.03526781499385834, -0.10892102122306824, -0.0376041941344738, 0.14856423437595367, -0.15664267539978027, -0.040619585663080215 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-32-finetuned-squad-seed-4 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-32-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-32-finetuned-squad-seed-4
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-4 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 53, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.10059002041816711, 0.12500929832458496, -0.002197258174419403, 0.09042049944400787, 0.13953039050102234, 0.03228902816772461, 0.08883154392242432, 0.1336555778980255, -0.08569686114788055, 0.050440333783626556, 0.07063678652048111, 0.06907809525728226, 0.04437291994690895, 0.13049477338790894, -0.04212666302919388, -0.21349219977855682, 0.006061105988919735, -0.012758232653141022, -0.0651671290397644, 0.10350096225738525, 0.0885697528719902, -0.11483732610940933, 0.06804893910884857, -0.02110867016017437, -0.15671740472316742, 0.008090401068329811, -0.03130769357085228, -0.025589151307940483, 0.10617996752262115, -0.017329039052128792, 0.0944000855088234, 0.018466001376509666, 0.13890497386455536, -0.21437756717205048, 0.00118600286077708, 0.07565196603536606, 0.04686957970261574, 0.08644416928291321, 0.039501726627349854, 0.02191937156021595, 0.037651177495718, -0.14907366037368774, 0.09597848355770111, 0.024237025529146194, -0.08784418553113937, -0.13886979222297668, -0.09087604284286499, 0.020889880135655403, 0.08224021643400192, 0.07844825088977814, 0.007735928054898977, 0.13666488230228424, -0.1037486344575882, 0.08045489341020584, 0.19679051637649536, -0.2882062494754791, -0.06621301174163818, 0.0435970276594162, 0.05426023155450821, 0.07397052645683289, -0.11543918401002884, -0.01408100500702858, 0.020511049777269363, 0.0327659547328949, 0.11227644234895706, -0.021461354568600655, -0.12640666961669922, 0.006443609017878771, -0.12774136662483215, -0.011568627320230007, 0.10578562319278717, 0.03616495802998543, -0.047660164535045624, -0.07779178023338318, -0.0600939504802227, -0.08611724525690079, -0.034759413450956345, -0.017147010192275047, 0.05545349046587944, -0.05663880705833435, -0.06462231278419495, -0.04602796211838722, -0.05686662346124649, -0.08715031296014786, -0.00029771108529530466, 0.13768641650676727, 0.04011295735836029, 0.021340545266866684, -0.038465715944767, 0.1136484295129776, 0.0005070972256362438, -0.128448024392128, -0.003114357590675354, 0.002195216016843915, -0.11180981248617172, -0.05471282824873924, -0.037329040467739105, 0.013995685614645481, 0.016950085759162903, 0.15015386044979095, -0.04321683198213577, 0.0754149854183197, 0.016563843935728073, -0.01745067909359932, -0.01679408550262451, 0.15103566646575928, -0.033823300153017044, -0.04356583580374718, -0.0008652389515191317, 0.09994656592607498, 0.0002988513733725995, -0.006862661801278591, -0.08097968250513077, -0.015603844076395035, 0.07343853265047073, 0.06896094232797623, -0.05521318316459656, 0.037001751363277435, -0.04501679912209511, -0.023703761398792267, 0.02690150775015354, -0.1253965049982071, 0.03822030872106552, 0.006059171166270971, -0.08427499979734421, -0.05992744490504265, 0.006128645036369562, -0.009171806275844574, -0.026052413508296013, 0.08097204566001892, -0.07293684780597687, -0.0006283841794356704, -0.08564480394124985, -0.0798962339758873, 0.00033404745045118034, -0.1453145295381546, -0.010561134666204453, -0.04722427576780319, -0.19332480430603027, -0.03297758847475052, 0.05158323422074318, -0.0786992534995079, -0.03989722952246666, -0.05125467851758003, -0.07612862437963486, 0.010098005644977093, -0.007531976327300072, 0.19012829661369324, -0.061054445803165436, 0.07863897830247879, -0.013580071739852428, 0.04995693638920784, 0.015374035574495792, 0.04820200428366661, -0.08343925327062607, 0.026073234155774117, -0.15094171464443207, 0.08174706995487213, -0.09934064745903015, 0.02069098874926567, -0.12329398095607758, -0.08919830620288849, 0.05345814675092697, -0.021135292947292328, 0.07693721354007721, 0.13771240413188934, -0.19954609870910645, 0.0007951041334308684, 0.11604355275630951, -0.04104923456907272, -0.054673343896865845, 0.07659357041120529, -0.05901799723505974, 0.04573315009474754, 0.05389771983027458, 0.18921341001987457, 0.07184973359107971, -0.14588770270347595, 0.01811019890010357, 0.033845189958810806, 0.05611693859100342, 0.005813088733702898, 0.03623415529727936, -0.001017163973301649, 0.024667110294103622, 0.008358730003237724, -0.08412498980760574, -0.023593150079250336, -0.09209905564785004, -0.07386372238397598, -0.050012536346912384, -0.09763714671134949, 0.032398857176303864, 0.012383123859763145, 0.02341064251959324, -0.07266122847795486, -0.0985964983701706, 0.10388436168432236, 0.11933119595050812, -0.05141669139266014, 0.015959059819579124, -0.07831346243619919, 0.026911601424217224, -0.01685437746345997, -0.029302846640348434, -0.19932310283184052, -0.12006473541259766, 0.05083897337317467, -0.04622279480099678, 0.026359284296631813, 0.022695045918226242, 0.0665488988161087, 0.055747050791978836, -0.043356433510780334, -0.018644552677869797, -0.06670605391263962, 0.0036521118599921465, -0.11482170224189758, -0.20640161633491516, -0.06686285883188248, -0.03715154528617859, 0.1350163370370865, -0.19306471943855286, 0.002785990247502923, -0.027459831908345222, 0.11110692471265793, 0.016779251396656036, -0.050203435122966766, 0.01216411218047142, 0.038749340921640396, 0.01977268047630787, -0.09491634368896484, 0.05731670930981636, 0.012087896466255188, -0.06957029551267624, -0.043737463653087616, -0.10977467894554138, -0.0010817560832947493, 0.06162510812282562, 0.07037795335054398, -0.0987081527709961, -0.0160350538790226, -0.053242027759552, -0.03663801774382591, -0.07334788143634796, 0.02360227331519127, 0.2040616124868393, 0.028868762776255608, 0.12411990016698837, -0.06534848362207413, -0.07923030853271484, -0.002441795077174902, 0.01640789397060871, 0.0341460295021534, 0.09916742146015167, 0.0762101411819458, -0.07803335785865784, 0.07817701995372772, 0.09188788384199142, -0.03722091391682625, 0.11694423854351044, -0.053368669003248215, -0.07530059665441513, -0.017920074984431267, -0.002702275989577174, -0.02961082011461258, 0.15039660036563873, -0.08396673202514648, 0.003953934647142887, 0.03853581100702286, 0.024729806929826736, 0.013177486136555672, -0.1788855791091919, -0.007344071287661791, 0.013397546485066414, -0.0627397745847702, -0.057695407420396805, -0.026343178004026413, 0.03624516725540161, 0.09757034480571747, 0.0315389446914196, -0.03204445540904999, 0.021617382764816284, -0.012425060383975506, -0.060066238045692444, 0.19031471014022827, -0.12040869146585464, -0.09029687941074371, -0.08615200966596603, 0.021045932546257973, -0.03885277360677719, -0.035623833537101746, 0.00764549570158124, -0.09776926040649414, -0.053593654185533524, -0.0855085477232933, -0.024683931842446327, -0.007120931055396795, -0.005334971006959677, 0.030769506469368935, -0.012786397710442543, 0.0791582465171814, -0.13220520317554474, 0.0014096508966758847, -0.03590104728937149, -0.09551571309566498, 0.01928553357720375, 0.06787048280239105, 0.08222377300262451, 0.10201729089021683, -0.012950857169926167, 0.015666475519537926, -0.02746817283332348, 0.23895584046840668, -0.06562316417694092, 0.01646055094897747, 0.09032239019870758, -0.0009865104220807552, 0.05338729918003082, 0.13724108040332794, 0.03737277165055275, -0.11420917510986328, 0.026858719065785408, 0.07707708328962326, -0.01808900758624077, -0.24893538653850555, -0.03102324716746807, -0.0195135697722435, -0.0822531059384346, 0.08191178739070892, 0.03527218848466873, -0.055124811828136444, 0.03426475077867508, 0.021352095529437065, -0.004073701798915863, -0.03466039150953293, 0.06529715657234192, 0.08739478141069412, 0.04050678387284279, 0.10119279474020004, -0.024982217699289322, -0.01180213876068592, 0.06463414430618286, 0.020470328629016876, 0.2628067433834076, -0.03855793550610542, 0.12316989153623581, 0.0379178486764431, 0.1448792964220047, -0.0274514053016901, 0.05176374316215515, 0.009865088388323784, -0.006273450329899788, -0.005757268518209457, -0.04934978485107422, -0.017538461834192276, -0.0015055579133331776, -0.03412019461393356, 0.02197783812880516, -0.077144093811512, 0.028117772191762924, 0.026902101933956146, 0.3044404089450836, 0.04084156081080437, -0.26719310879707336, -0.06848116219043732, 0.0031137941405177116, -0.04191473498940468, -0.07613120228052139, 0.005637133494019508, 0.1395753175020218, -0.12570707499980927, 0.03544003888964653, -0.05025891214609146, 0.09167872369289398, -0.036050956696271896, 0.011921809986233711, 0.0675676017999649, 0.1454712450504303, -0.011541318148374557, 0.07004246860742569, -0.2133527398109436, 0.23230589926242828, 0.026380019262433052, 0.11097454279661179, -0.06311068683862686, 0.009814193472266197, 0.004738363903015852, 0.048850856721401215, 0.11136776953935623, 0.007109807804226875, -0.0013290437636896968, -0.17514818906784058, -0.0976463332772255, 0.05671287328004837, 0.11867125332355499, -0.023060210049152374, 0.0879461020231247, -0.03605348616838455, -0.0022766755428165197, 0.03296336159110069, -0.08182254433631897, -0.12530481815338135, -0.08915411680936813, -0.006556086707860231, -0.00040460473974235356, -0.03462563455104828, -0.05760754272341728, -0.09086567163467407, -0.027679787948727608, 0.13464365899562836, 0.021704046055674553, -0.054947126656770706, -0.13587480783462524, 0.041206154972314835, 0.13804025948047638, -0.04549798741936684, 0.01690909080207348, 0.007219226099550724, 0.09912148118019104, 0.046990588307380676, -0.07657688111066818, 0.065713070333004, -0.07478193193674088, -0.165762796998024, -0.05848056450486183, 0.12060777097940445, 0.08231721818447113, 0.05565350130200386, 0.0023292924743145704, 0.030954798683524132, -0.004963403567671776, -0.08386486768722534, 0.019814081490039825, 0.04248499870300293, 0.09250757843255997, 0.034227386116981506, -0.09660565108060837, 0.06909237056970596, -0.03931543976068497, -0.01094623003154993, 0.12383905053138733, 0.21649160981178284, -0.09431768208742142, 0.10589268803596497, 0.07672321051359177, -0.08034033328294754, -0.1837453842163086, 0.07079703360795975, 0.12145741283893585, 0.015621431171894073, 0.03870200738310814, -0.20848245918750763, 0.13135120272636414, 0.10207812488079071, -0.014541069976985455, 0.04366525635123253, -0.30036741495132446, -0.1299130916595459, 0.07562733441591263, 0.1070866659283638, 0.04395608603954315, -0.1248866617679596, -0.021580073982477188, -0.012645455077290535, -0.13005468249320984, 0.1393153816461563, -0.08599383383989334, 0.11571727693080902, -0.006379265803843737, 0.11619896441698074, 0.02633262239396572, -0.038383662700653076, 0.13539676368236542, 0.0688379630446434, 0.09456286579370499, -0.043299976736307144, 0.011811107397079468, 0.05412176251411438, -0.06412417441606522, 0.03695206716656685, -0.03213416039943695, 0.06940558552742004, -0.16198821365833282, -0.0005229134694673121, -0.09357430040836334, 0.0350411981344223, -0.05127795785665512, -0.05567916855216026, -0.018774287775158882, 0.05424462631344795, 0.06817369163036346, -0.03949281945824623, 0.02670103870332241, 0.005377188324928284, 0.0745009258389473, 0.08761276304721832, 0.10783840715885162, -0.03560694307088852, -0.10187094658613205, 0.01970287412405014, -0.009754345752298832, 0.05456022918224335, -0.10974452644586563, 0.024309126660227776, 0.13035696744918823, 0.05606812238693237, 0.11557363718748093, 0.029147444292902946, -0.030287200585007668, -0.01686304435133934, 0.01707196608185768, -0.12320024520158768, -0.11573381721973419, 0.04438409209251404, -0.04347489774227142, -0.1376296877861023, 0.008441089652478695, 0.09518033266067505, -0.028820529580116272, -0.019894013181328773, -0.011291293427348137, 0.02044529654085636, -0.020787661895155907, 0.20045213401317596, 0.04321393370628357, 0.06985367089509964, -0.10791021585464478, 0.1256292760372162, 0.04915747791528702, -0.0574176162481308, 0.05017548054456711, 0.06745672971010208, -0.1053123027086258, -0.012912656180560589, 0.1195116862654686, 0.1667962223291397, -0.028805116191506386, -0.019788509234786034, -0.08307371288537979, -0.0928945392370224, 0.06157722696661949, 0.1522766351699829, 0.05160580575466156, -0.016850238665938377, -0.048531945794820786, 0.027022553607821465, -0.12513351440429688, 0.07502993941307068, 0.0444684699177742, 0.06219126656651497, -0.09173046052455902, 0.1113363653421402, -0.004466901998966932, 0.04248248413205147, -0.019271669909358025, 0.025516917929053307, -0.10403763502836227, -0.010619746521115303, -0.14783123135566711, 0.00033544356119818985, -0.004569123964756727, 0.013111601583659649, -0.020429100841283798, -0.05163111165165901, -0.025901777669787407, 0.02709846757352352, -0.09278769791126251, -0.04916081950068474, 0.023943590000271797, 0.03825509548187256, -0.14409571886062622, -0.01569647341966629, 0.020736785605549812, -0.09303688257932663, 0.0818050280213356, 0.06061074137687683, 0.012035947293043137, 0.02946208044886589, -0.1032865047454834, -0.04892808943986893, 0.002930042101070285, 0.02395152859389782, 0.08807691186666489, -0.0934276208281517, -0.021259423345327377, -0.03167952597141266, 0.046848785132169724, 0.01859136112034321, 0.09737221151590347, -0.11421448737382889, 0.009941262193024158, -0.04149554669857025, -0.04489023983478546, -0.06292599439620972, 0.040196459740400314, 0.10869429260492325, 0.046233005821704865, 0.16073332726955414, -0.07325703650712967, 0.0349792018532753, -0.1849963665008545, -0.04421268031001091, -0.0004729267966467887, -0.047729119658470154, -0.08907470107078552, -0.04841586947441101, 0.09840953350067139, -0.052619460970163345, 0.1101486012339592, -0.0018340593669563532, 0.09807279706001282, 0.031395070254802704, -0.011236178688704967, -0.054001014679670334, 0.009934942238032818, 0.15323258936405182, 0.04877496883273125, -0.014654099009931087, 0.10909543186426163, 0.0012013352243229747, 0.04431403428316116, 0.06634540110826492, 0.21220122277736664, 0.15322214365005493, 0.012441147118806839, 0.04904724657535553, 0.06096780672669411, -0.11700411140918732, -0.1355261355638504, 0.1351110339164734, -0.04747864603996277, 0.12284516543149948, -0.07217071205377579, 0.21565546095371246, 0.02280685119330883, -0.18475081026554108, 0.06843054294586182, -0.06157422065734863, -0.1230175569653511, -0.11645405739545822, -0.023146454244852066, -0.07031761854887009, -0.10972028970718384, 0.020541295409202576, -0.12109676748514175, 0.06191620975732803, 0.1231137216091156, 0.01621624082326889, 0.02353762835264206, 0.16299641132354736, -0.03585348278284073, 0.020970480516552925, 0.06787502020597458, 0.01634332910180092, -0.005368741229176521, -0.060646891593933105, -0.06424536556005478, 0.04313809052109718, 0.022826872766017914, 0.07138644903898239, -0.040452416986227036, 0.0011931824265047908, 0.0193207785487175, -0.0149683291092515, -0.072864830493927, 0.016684850677847862, 0.02437201701104641, 0.045844294130802155, 0.0584569051861763, 0.052805155515670776, 0.008148454129695892, -0.037509188055992126, 0.28768619894981384, -0.07484156638383865, -0.09890732169151306, -0.13073121011257172, 0.22731511294841766, 0.00886810664087534, -0.02254064939916134, 0.0739494264125824, -0.09364302456378937, -0.028447313234210014, 0.17987631261348724, 0.14876329898834229, -0.10883186757564545, -0.022800078615546227, -0.01931845210492611, -0.01158073265105486, -0.04384583607316017, 0.1357635259628296, 0.10834918171167374, -0.015397615730762482, -0.07919089496135712, -0.020258266478776932, -0.018091732636094093, -0.04697507992386818, -0.07359025627374649, 0.062287211418151855, 0.026271862909197807, -0.0024520198348909616, -0.04445517435669899, 0.058853041380643845, -0.005754734389483929, -0.23672671616077423, 0.03262536600232124, -0.1612883359193802, -0.17839346826076508, -0.03887354955077171, 0.05889199674129486, -0.008353560231626034, 0.04275421053171158, -0.010211905464529991, 0.010410856455564499, 0.14143167436122894, -0.03277568146586418, -0.026100926101207733, -0.12477956712245941, 0.11771537363529205, -0.11070110648870468, 0.2002178430557251, 0.003147836308926344, 0.07410947978496552, 0.0959596186876297, 0.018856368958950043, -0.1342310756444931, 0.04423155635595322, 0.07260098308324814, -0.10411285609006882, 0.01074159238487482, 0.14485566318035126, -0.05012129247188568, 0.07017149776220322, 0.024347344413399696, -0.10838636755943298, -0.007940764538943768, -0.04470551386475563, -0.039688341319561005, -0.07434465736150742, -0.015584820881485939, -0.06530167907476425, 0.15892496705055237, 0.2230718433856964, -0.024653425440192223, 0.018315467983484268, -0.09279049187898636, 0.0152655728161335, 0.04288771003484726, 0.04548504576086998, -0.0534263476729393, -0.20074622333049774, 0.02804131992161274, 0.04202011600136757, 0.018890999257564545, -0.2085210084915161, -0.07980505377054214, 0.04474843665957451, -0.030072828754782677, -0.05013113468885422, 0.10270582884550095, 0.03008767031133175, 0.04532745108008385, -0.03606759011745453, -0.10601568967103958, -0.03753466159105301, 0.14819596707820892, -0.1569346785545349, -0.04114297032356262 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-32-finetuned-squad-seed-6 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-32-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-32-finetuned-squad-seed-6
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-6 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 53, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.10052882134914398, 0.12482006102800369, -0.002168304054066539, 0.09001113474369049, 0.13981685042381287, 0.031687140464782715, 0.08840201050043106, 0.13435040414333344, -0.08455505967140198, 0.05097340792417526, 0.06992325931787491, 0.0704675242304802, 0.044862050563097, 0.13028568029403687, -0.042196307331323624, -0.21311312913894653, 0.00594720896333456, -0.012349163182079792, -0.06517915427684784, 0.10357366502285004, 0.08876092731952667, -0.11517057567834854, 0.06715679168701172, -0.021483544260263443, -0.15699198842048645, 0.008225343190133572, -0.03179548308253288, -0.025159308686852455, 0.1058829128742218, -0.01785506308078766, 0.0937228575348854, 0.01850675791501999, 0.13859103620052338, -0.21529816091060638, 0.0011870310408994555, 0.0761040449142456, 0.04714938998222351, 0.08669096231460571, 0.040445804595947266, 0.022105658426880836, 0.039046842604875565, -0.1489865928888321, 0.09580399096012115, 0.02484075166285038, -0.0877557247877121, -0.1372213512659073, -0.09138479828834534, 0.02031531184911728, 0.08255931735038757, 0.07905066013336182, 0.007288611959666014, 0.13817010819911957, -0.10391683876514435, 0.08083291351795197, 0.19921453297138214, -0.28635022044181824, -0.06618794798851013, 0.04458383098244667, 0.05434524640440941, 0.07286668568849564, -0.11659448593854904, -0.015042552724480629, 0.020509466528892517, 0.03222865238785744, 0.11115869134664536, -0.020746150985360146, -0.12798281013965607, 0.006053626071661711, -0.1281643807888031, -0.01178035605698824, 0.1042771115899086, 0.036412451416254044, -0.046855878084897995, -0.07776842266321182, -0.06067395955324173, -0.08545485138893127, -0.03472509980201721, -0.017063766717910767, 0.05551072955131531, -0.05670673027634621, -0.06395301222801208, -0.045877598226070404, -0.05646991729736328, -0.08818500488996506, 0.00016560613585170358, 0.13732069730758667, 0.04017366096377373, 0.02081179805099964, -0.039383359253406525, 0.1134718656539917, 0.000925944244954735, -0.12913289666175842, -0.0042073666118085384, 0.0031237483490258455, -0.11200065165758133, -0.05482826754450798, -0.036665551364421844, 0.011835361830890179, 0.01660437323153019, 0.1480293720960617, -0.043222248554229736, 0.07596567273139954, 0.01563335955142975, -0.017349159345030785, -0.017311332747340202, 0.15170063078403473, -0.032734181731939316, -0.041755203157663345, -0.0015547216171398759, 0.09992774575948715, -0.0002932910865638405, -0.006426219362765551, -0.08026974648237228, -0.015705421566963196, 0.07430172711610794, 0.06888432055711746, -0.054218001663684845, 0.03643179312348366, -0.04561012238264084, -0.023887719959020615, 0.027485225349664688, -0.12529323995113373, 0.03852760046720505, 0.005583297926932573, -0.08464492112398148, -0.0611928254365921, 0.006348788272589445, -0.009420379996299744, -0.026285342872142792, 0.08142966032028198, -0.07322689890861511, -0.00038841081550344825, -0.08642522990703583, -0.07945765554904938, 0.0009232826996594667, -0.14682643115520477, -0.010841057635843754, -0.04628153517842293, -0.1936890035867691, -0.03320391848683357, 0.050844211131334305, -0.07875827699899673, -0.039432816207408905, -0.05192267894744873, -0.07664280384778976, 0.01054983027279377, -0.006978638935834169, 0.1910642683506012, -0.06054680794477463, 0.07949158549308777, -0.013884227722883224, 0.04964805766940117, 0.016393104568123817, 0.04897176846861839, -0.0847279503941536, 0.02575090155005455, -0.15029948949813843, 0.08208886533975601, -0.10045262426137924, 0.020799992606043816, -0.12432678043842316, -0.08822702616453171, 0.052256882190704346, -0.0218997523188591, 0.07782424986362457, 0.13862885534763336, -0.19981102645397186, 0.0011202751193195581, 0.11670256406068802, -0.04153421148657799, -0.05516046658158302, 0.07541333884000778, -0.05868598446249962, 0.045533791184425354, 0.053351666778326035, 0.1896381378173828, 0.07145638018846512, -0.14562183618545532, 0.01719255931675434, 0.0333406999707222, 0.05696616694331169, 0.005573966074734926, 0.03586360812187195, -0.0012728030560538173, 0.026134680956602097, 0.008151483722031116, -0.08404062688350677, -0.023656565696001053, -0.092459537088871, -0.0734093189239502, -0.050956904888153076, -0.09770942479372025, 0.03163081780076027, 0.014134228229522705, 0.023027412593364716, -0.07218720763921738, -0.09795243293046951, 0.1038554310798645, 0.11917141079902649, -0.05078161507844925, 0.01631655916571617, -0.07744324207305908, 0.025804219767451286, -0.017153024673461914, -0.029164789244532585, -0.2009994089603424, -0.1206146776676178, 0.05149133875966072, -0.04723415523767471, 0.026644377037882805, 0.021781770512461662, 0.06636754423379898, 0.054615605622529984, -0.04342431575059891, -0.01870853640139103, -0.06737672537565231, 0.0031432954128831625, -0.11525386571884155, -0.20656952261924744, -0.06679800152778625, -0.0379166379570961, 0.13233260810375214, -0.19241079688072205, 0.0025133811868727207, -0.02762620709836483, 0.1119857132434845, 0.01695009134709835, -0.05087978020310402, 0.012476041913032532, 0.038373932242393494, 0.019409233704209328, -0.09536393731832504, 0.05697004497051239, 0.011215250007808208, -0.06943294405937195, -0.04357457160949707, -0.10979991406202316, -0.003158355364575982, 0.06105959415435791, 0.07189111411571503, -0.09897095710039139, -0.016254890710115433, -0.05320193991065025, -0.03691331669688225, -0.07440966367721558, 0.02466360479593277, 0.20339997112751007, 0.029300935566425323, 0.12351255118846893, -0.06575346738100052, -0.07983063906431198, -0.0020161173306405544, 0.016500653699040413, 0.03338823840022087, 0.10077334195375443, 0.07781217992305756, -0.0803699865937233, 0.07931370288133621, 0.092558354139328, -0.036155376583337784, 0.11738145351409912, -0.05385135859251022, -0.07572189718484879, -0.016389425843954086, -0.002158159390091896, -0.029381901025772095, 0.1499292552471161, -0.08362564444541931, 0.00440572015941143, 0.038485098630189896, 0.024894315749406815, 0.01290617324411869, -0.17890627682209015, -0.007413068786263466, 0.013358657248318195, -0.06260371953248978, -0.0578756108880043, -0.026111191138625145, 0.03633474186062813, 0.09786642342805862, 0.031100064516067505, -0.0311429500579834, 0.020846180617809296, -0.01256600022315979, -0.05990620702505112, 0.1911919116973877, -0.12016955763101578, -0.08937789499759674, -0.08468269556760788, 0.02210530824959278, -0.038312822580337524, -0.03590568155050278, 0.007837467826902866, -0.09892436861991882, -0.05348935350775719, -0.08512061834335327, -0.02431858517229557, -0.006626178044825792, -0.006325094029307365, 0.030078008770942688, -0.0125938281416893, 0.07857754826545715, -0.1330949068069458, 0.001713455538265407, -0.036229874938726425, -0.09545407444238663, 0.018731387332081795, 0.06744891405105591, 0.08241043984889984, 0.10243667662143707, -0.013402124866843224, 0.015593516640365124, -0.027366938069462776, 0.23811036348342896, -0.0663028359413147, 0.01593272015452385, 0.09011347591876984, 0.00010873340215766802, 0.054121389985084534, 0.13715241849422455, 0.03668646141886711, -0.11423806846141815, 0.02726663462817669, 0.07771565020084381, -0.01836000569164753, -0.25010961294174194, -0.03129742667078972, -0.01972191222012043, -0.08266647160053253, 0.08196520805358887, 0.03575573116540909, -0.05528688058257103, 0.03411319479346275, 0.02025528810918331, -0.005827226210385561, -0.03480224311351776, 0.06579393893480301, 0.08521094918251038, 0.04145519435405731, 0.1008218452334404, -0.025085724890232086, -0.011169438250362873, 0.06380270421504974, 0.020508142188191414, 0.26362523436546326, -0.03886685520410538, 0.12327172607183456, 0.03754895552992821, 0.14467118680477142, -0.02811155654489994, 0.05177543684840202, 0.009385199286043644, -0.0063384538516402245, -0.005505652166903019, -0.04919564723968506, -0.01773093082010746, -0.0016986490227282047, -0.03498135879635811, 0.02245279774069786, -0.07680689543485641, 0.028358273208141327, 0.02645021304488182, 0.3048763871192932, 0.040694158524274826, -0.2657751739025116, -0.06759385764598846, 0.003025342943146825, -0.04221002757549286, -0.07685813307762146, 0.005243822932243347, 0.13865001499652863, -0.12541426718235016, 0.03519643843173981, -0.05057038739323616, 0.0928003117442131, -0.034561093896627426, 0.011142855510115623, 0.0667862594127655, 0.14554670453071594, -0.011474440805613995, 0.07061544805765152, -0.2145359367132187, 0.23429498076438904, 0.026422660797834396, 0.11063725501298904, -0.06368646025657654, 0.009573977440595627, 0.004028507973998785, 0.04694920405745506, 0.11177174746990204, 0.007066782098263502, -0.0015955656999722123, -0.1745804101228714, -0.09686177223920822, 0.05618797242641449, 0.11950275301933289, -0.02344701811671257, 0.08702192455530167, -0.036034177988767624, -0.00222861603833735, 0.033891379833221436, -0.08212029188871384, -0.1254127323627472, -0.08919387310743332, -0.006175142712891102, -0.001035733730532229, -0.035287175327539444, -0.057271558791399, -0.09059362858533859, -0.026545029133558273, 0.13421045243740082, 0.021765301004052162, -0.05449074134230614, -0.1358126699924469, 0.042165324091911316, 0.1382753551006317, -0.04615769535303116, 0.017041632905602455, 0.006664033513516188, 0.09895168244838715, 0.04623327776789665, -0.07705361396074295, 0.06658434867858887, -0.07468004524707794, -0.16644848883152008, -0.058484382927417755, 0.12035899609327316, 0.08305013179779053, 0.056065648794174194, 0.0020989165641367435, 0.03125719726085663, -0.004959739279001951, -0.08351418375968933, 0.019943319261074066, 0.042665671557188034, 0.09226073324680328, 0.03482582047581673, -0.09624581784009933, 0.06798028200864792, -0.0402526818215847, -0.011745660565793514, 0.12371168285608292, 0.21733316779136658, -0.0942799374461174, 0.10632205009460449, 0.07713823020458221, -0.08080295473337173, -0.18424302339553833, 0.07164408266544342, 0.12200429290533066, 0.014949592761695385, 0.03964357078075409, -0.20823802053928375, 0.13128061592578888, 0.10167764127254486, -0.014983035624027252, 0.04297228902578354, -0.30148425698280334, -0.12997093796730042, 0.07578987628221512, 0.10690674185752869, 0.041472747921943665, -0.12527844309806824, -0.02177148126065731, -0.01212741993367672, -0.12953799962997437, 0.14020897448062897, -0.08378084748983383, 0.11583811789751053, -0.006858828943222761, 0.11641643196344376, 0.02668282389640808, -0.03883525729179382, 0.13395710289478302, 0.06905478239059448, 0.09486362338066101, -0.043139759451150894, 0.011799671687185764, 0.05425090342760086, -0.06412547826766968, 0.03703903406858444, -0.03217121958732605, 0.07008347660303116, -0.16083800792694092, -0.00010164255945710465, -0.09432265162467957, 0.03574617952108383, -0.051387056708335876, -0.055664874613285065, -0.01905347965657711, 0.05456669256091118, 0.06868711113929749, -0.03982272744178772, 0.028888460248708725, 0.005465441849082708, 0.07650412619113922, 0.08755620568990707, 0.10819634050130844, -0.03511077165603638, -0.10107497870922089, 0.018883148208260536, -0.008981687016785145, 0.05461050197482109, -0.11083237826824188, 0.02409370429813862, 0.1302688866853714, 0.057620819658041, 0.11528819799423218, 0.029357310384511948, -0.031121378764510155, -0.016983186826109886, 0.016040358692407608, -0.12249204516410828, -0.11653953045606613, 0.04454527050256729, -0.03915033116936684, -0.13810181617736816, 0.008853649720549583, 0.09327717870473862, -0.029582707211375237, -0.020046401768922806, -0.011108380742371082, 0.020898491144180298, -0.01965218596160412, 0.20108135044574738, 0.04373932629823685, 0.0705147534608841, -0.10775580257177353, 0.12600497901439667, 0.0488567091524601, -0.058256588876247406, 0.05046100169420242, 0.06773344427347183, -0.10440769791603088, -0.012832462787628174, 0.1213042214512825, 0.16537529230117798, -0.029032673686742783, -0.018209589645266533, -0.08172894269227982, -0.09241382777690887, 0.06188327446579933, 0.15413798391819, 0.051525238901376724, -0.016997359693050385, -0.048040151596069336, 0.027392253279685974, -0.1258145272731781, 0.07560430467128754, 0.04428136721253395, 0.06255347281694412, -0.09133567661046982, 0.10935232788324356, -0.004434647969901562, 0.04272494465112686, -0.01907859370112419, 0.025945434346795082, -0.10376594960689545, -0.010511591099202633, -0.14518921077251434, 0.000042950727220159024, -0.0043404595926404, 0.012622218579053879, -0.02113916166126728, -0.0525958351790905, -0.024694157764315605, 0.027265120297670364, -0.0929407849907875, -0.049825672060251236, 0.023378755897283554, 0.03795185312628746, -0.1447650045156479, -0.015825282782316208, 0.021214600652456284, -0.0923682153224945, 0.08060538023710251, 0.05981620028614998, 0.012051002122461796, 0.029736993834376335, -0.10640648007392883, -0.048418089747428894, 0.003254768205806613, 0.024167295545339584, 0.08787989616394043, -0.09272709488868713, -0.021565429866313934, -0.03202430158853531, 0.04697103053331375, 0.018289344385266304, 0.09650254249572754, -0.1150139570236206, 0.009252077899873257, -0.04296417161822319, -0.045659296214580536, -0.06217687577009201, 0.04070952534675598, 0.10894962400197983, 0.04622641205787659, 0.16005998849868774, -0.07283162325620651, 0.035942867398262024, -0.18515123426914215, -0.04409317299723625, -0.00019783545576501638, -0.04781045764684677, -0.089623361825943, -0.047513458877801895, 0.09869877994060516, -0.05271601676940918, 0.10765702277421951, -0.0015367576852440834, 0.09891273081302643, 0.031856656074523926, -0.01053925883024931, -0.05418418347835541, 0.009674035012722015, 0.15307840704917908, 0.048523444682359695, -0.01401597447693348, 0.1112157478928566, 0.0016373813850805163, 0.04392760992050171, 0.06717141717672348, 0.21383866667747498, 0.15467025339603424, 0.010985077358782291, 0.04878098890185356, 0.06075999140739441, -0.1175997406244278, -0.13538049161434174, 0.13490580022335052, -0.046894073486328125, 0.12280464917421341, -0.0725661888718605, 0.21656443178653717, 0.02274814061820507, -0.18448223173618317, 0.06910232454538345, -0.06200496479868889, -0.12283884733915329, -0.11662614345550537, -0.02302098274230957, -0.07031121850013733, -0.10940223187208176, 0.020973892882466316, -0.12126318365335464, 0.06290881335735321, 0.12312200665473938, 0.015895798802375793, 0.023632632568478584, 0.16393902897834778, -0.03521121293306351, 0.020867539569735527, 0.06849190592765808, 0.016614653170108795, -0.005778952967375517, -0.061432018876075745, -0.06385502964258194, 0.044358935207128525, 0.023148665204644203, 0.07124035060405731, -0.040060579776763916, 0.00010579427180346102, 0.0189600121229887, -0.015126382932066917, -0.07324496656656265, 0.0169069766998291, 0.024721600115299225, 0.04577667638659477, 0.058709800243377686, 0.0526089146733284, 0.008934026584029198, -0.03773978352546692, 0.2896776795387268, -0.07511822134256363, -0.09868109971284866, -0.12927359342575073, 0.22767192125320435, 0.010161683894693851, -0.022604970261454582, 0.07394198328256607, -0.09461423754692078, -0.028720855712890625, 0.1780601441860199, 0.1465608924627304, -0.10773784667253494, -0.022445568814873695, -0.019761577248573303, -0.011395973153412342, -0.04372050240635872, 0.13530859351158142, 0.10897859185934067, -0.015058238990604877, -0.07941168546676636, -0.019773365929722786, -0.018231568858027458, -0.04789292812347412, -0.07289446890354156, 0.06225254386663437, 0.026706209406256676, -0.002863576402887702, -0.044550493359565735, 0.059154462069272995, -0.00613563135266304, -0.23631106317043304, 0.03150159865617752, -0.1627092957496643, -0.17792098224163055, -0.0389614999294281, 0.05879536271095276, -0.008110597729682922, 0.042267125099897385, -0.009767197072505951, 0.011196336708962917, 0.13902072608470917, -0.03257486969232559, -0.026306506246328354, -0.1258254200220108, 0.11687542498111725, -0.11169283837080002, 0.20098569989204407, 0.003090954851359129, 0.07296524196863174, 0.09581317007541656, 0.018854107707738876, -0.1349237710237503, 0.043626632541418076, 0.07309430092573166, -0.10456984490156174, 0.01071825623512268, 0.14588652551174164, -0.04983410984277725, 0.07045318186283112, 0.024248166009783745, -0.1098906546831131, -0.007698412984609604, -0.045944374054670334, -0.038987670093774796, -0.07492556422948837, -0.013607712462544441, -0.0649360939860344, 0.15914343297481537, 0.22319228947162628, -0.02451784908771515, 0.017865199595689774, -0.09329322725534439, 0.014869133941829205, 0.04185793921351433, 0.046432171016931534, -0.05313287302851677, -0.2007606327533722, 0.02849491871893406, 0.04201098904013634, 0.018858134746551514, -0.20820800960063934, -0.07960961014032364, 0.045181382447481155, -0.031121762469410896, -0.05006258562207222, 0.10201449692249298, 0.030038243159651756, 0.044476576149463654, -0.036008287221193314, -0.10831131041049957, -0.037354979664087296, 0.14892543852329254, -0.15713347494602203, -0.04044506326317787 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-32-finetuned-squad-seed-8 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-32-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-32-finetuned-squad-seed-8
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-8 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 53, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-32-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.10144220292568207, 0.12606041133403778, -0.0021792296320199966, 0.09042196720838547, 0.13975268602371216, 0.03231623396277428, 0.08792364597320557, 0.1342141330242157, -0.08417509496212006, 0.05072282999753952, 0.07032017409801483, 0.06917747110128403, 0.044641971588134766, 0.12941628694534302, -0.042488183826208115, -0.21258507668972015, 0.005634497385472059, -0.01165358629077673, -0.06302978098392487, 0.10300841182470322, 0.08866897225379944, -0.11523731052875519, 0.06705552339553833, -0.02150716260075569, -0.1560717225074768, 0.00805183220654726, -0.031247219070792198, -0.02571709081530571, 0.10626817494630814, -0.017034368589520454, 0.09398388862609863, 0.017710385844111443, 0.1387321501970291, -0.2153979390859604, 0.0009262315579690039, 0.07631865888834, 0.04711303859949112, 0.08680234104394913, 0.039203617721796036, 0.023387055844068527, 0.03784406930208206, -0.14924375712871552, 0.09586330503225327, 0.024274593219161034, -0.08739788085222244, -0.13703574240207672, -0.09061586856842041, 0.021379824727773666, 0.08190151304006577, 0.07849331200122833, 0.008305384777486324, 0.13969972729682922, -0.10267264395952225, 0.08122430741786957, 0.19919154047966003, -0.28609174489974976, -0.06539701670408249, 0.04352840781211853, 0.0542963370680809, 0.074124276638031, -0.11544991284608841, -0.015145765617489815, 0.020465347915887833, 0.0319938138127327, 0.11128140985965729, -0.021435635164380074, -0.129635289311409, 0.005983553361147642, -0.12777575850486755, -0.01229735929518938, 0.10483256727457047, 0.036496877670288086, -0.04733365401625633, -0.07733747363090515, -0.061737142503261566, -0.0868062973022461, -0.03503180667757988, -0.017398888245224953, 0.05490000545978546, -0.05621665343642235, -0.06259816884994507, -0.04594334214925766, -0.055986978113651276, -0.0873631089925766, 0.00031043426133692265, 0.13756921887397766, 0.04032488912343979, 0.020773127675056458, -0.038586828857660294, 0.11317190527915955, -0.001393242389895022, -0.12884771823883057, -0.003635964123532176, 0.003580667544156313, -0.11199186742305756, -0.05493725463747978, -0.037083808332681656, 0.010686913505196571, 0.01596982218325138, 0.14973172545433044, -0.04280282184481621, 0.07562194019556046, 0.01610334776341915, -0.016684573143720627, -0.017175476998090744, 0.15275627374649048, -0.03363868594169617, -0.04264698177576065, -0.0005156880361028016, 0.0999607965350151, 0.0005494164652191103, -0.007277257740497589, -0.08132638037204742, -0.01681698113679886, 0.07489843666553497, 0.0679742842912674, -0.0544218011200428, 0.03597719594836235, -0.045633744448423386, -0.02400612272322178, 0.02858186513185501, -0.12508192658424377, 0.03851472586393356, 0.005350345280021429, -0.08438272029161453, -0.06022319197654724, 0.007451850920915604, -0.008799034170806408, -0.02650444209575653, 0.0805865004658699, -0.07260987162590027, -0.00012524799967650324, -0.08619198203086853, -0.0797046422958374, 0.0010542678646743298, -0.14678217470645905, -0.010221533477306366, -0.04756306856870651, -0.19387675821781158, -0.032778285443782806, 0.050916437059640884, -0.07795768231153488, -0.0392071008682251, -0.05095621198415756, -0.07537565380334854, 0.010342170484364033, -0.007582666352391243, 0.18885333836078644, -0.060729995369911194, 0.07914135605096817, -0.013800949789583683, 0.04930158331990242, 0.01456707064062357, 0.04912497475743294, -0.08422920852899551, 0.02573929913341999, -0.15004605054855347, 0.0817481055855751, -0.09955727308988571, 0.02071448229253292, -0.12281974405050278, -0.08807928115129471, 0.05345727130770683, -0.021211616694927216, 0.0788729190826416, 0.13773390650749207, -0.19966678321361542, 0.0015927014173939824, 0.11563048511743546, -0.04094218090176582, -0.05508369952440262, 0.07732005417346954, -0.05876002088189125, 0.045167434960603714, 0.05366334319114685, 0.18929705023765564, 0.07290519028902054, -0.14572502672672272, 0.01807500049471855, 0.034878287464380264, 0.05764520540833473, 0.004174611996859312, 0.035763587802648544, -0.0008892834885045886, 0.0261766966432333, 0.008355237543582916, -0.08308733999729156, -0.022934675216674805, -0.09249495714902878, -0.07368648797273636, -0.05117533355951309, -0.09755897521972656, 0.031320732086896896, 0.014575808309018612, 0.023190833628177643, -0.07195554673671722, -0.098538838326931, 0.10521690547466278, 0.11914368718862534, -0.05109883472323418, 0.01641741581261158, -0.07733632624149323, 0.02638240158557892, -0.016517942771315575, -0.029400555416941643, -0.20040133595466614, -0.11891689151525497, 0.05163784325122833, -0.04673410579562187, 0.02593207359313965, 0.022319797426462173, 0.06557941436767578, 0.05535608530044556, -0.04273689165711403, -0.017935408279299736, -0.06670712679624557, 0.0032851265277713537, -0.11646552383899689, -0.20520621538162231, -0.0669328048825264, -0.03730078414082527, 0.13227525353431702, -0.1933799386024475, 0.002955083269625902, -0.028447117656469345, 0.11126432567834854, 0.016478465870022774, -0.05074397101998329, 0.01219271682202816, 0.03929126262664795, 0.019024373963475227, -0.09550510346889496, 0.057064566761255264, 0.011980051174759865, -0.07020583003759384, -0.04485823214054108, -0.11012689769268036, -0.002157654380425811, 0.06071493774652481, 0.07096756994724274, -0.09886484593153, -0.016635209321975708, -0.052638228982686996, -0.03688379377126694, -0.07367295771837234, 0.02374311350286007, 0.20434455573558807, 0.02950003184378147, 0.12479043751955032, -0.06559792906045914, -0.07906051725149155, -0.0020145494490861893, 0.016367480158805847, 0.034146592020988464, 0.0998350977897644, 0.07765866070985794, -0.07779119163751602, 0.07831171154975891, 0.09144659340381622, -0.037705015391111374, 0.1167430430650711, -0.053396303206682205, -0.0753694400191307, -0.01662517711520195, -0.0022665669675916433, -0.029132559895515442, 0.14987175166606903, -0.0855148434638977, 0.0037615185137838125, 0.03870344161987305, 0.024418668821454048, 0.0133367283269763, -0.17912766337394714, -0.007586727850139141, 0.014232931658625603, -0.06199098005890846, -0.05698513239622116, -0.026883583515882492, 0.03599561005830765, 0.09716164320707321, 0.030643247067928314, -0.031878761947155, 0.021437257528305054, -0.012166737578809261, -0.06020653247833252, 0.19038385152816772, -0.12003299593925476, -0.09040739387273788, -0.08649247884750366, 0.022564830258488655, -0.03830002248287201, -0.035832423716783524, 0.00812172144651413, -0.09706118702888489, -0.05332287400960922, -0.08558542281389236, -0.02654339000582695, -0.006282552611082792, -0.006164464633911848, 0.030560748651623726, -0.013299237936735153, 0.07924652099609375, -0.13292016088962555, 0.0014750491827726364, -0.03556758910417557, -0.09447227418422699, 0.01922507956624031, 0.06723641604185104, 0.08323656022548676, 0.10292240232229233, -0.01438967790454626, 0.01494626235216856, -0.026997990906238556, 0.23769454658031464, -0.06563108414411545, 0.015915628522634506, 0.09050846844911575, -0.0011315308511257172, 0.05426228791475296, 0.13644561171531677, 0.03685199096798897, -0.11428641527891159, 0.026787899434566498, 0.07651852071285248, -0.01884118653833866, -0.249144047498703, -0.031249037012457848, -0.019850263372063637, -0.08210175484418869, 0.08215905725955963, 0.035533156245946884, -0.0549081414937973, 0.03455895930528641, 0.02045363187789917, -0.003628107253462076, -0.036136776208877563, 0.06544788926839828, 0.08563458919525146, 0.04118536412715912, 0.10068085044622421, -0.024535031989216805, -0.011243246495723724, 0.06412559747695923, 0.019715040922164917, 0.261646568775177, -0.03920561075210571, 0.12407214194536209, 0.03614617884159088, 0.1456894725561142, -0.027851279824972153, 0.05209507793188095, 0.00899876095354557, -0.00658459821715951, -0.005698167718946934, -0.04923057556152344, -0.019504457712173462, -0.0010865264339372516, -0.035450562834739685, 0.022830281406641006, -0.07704319059848785, 0.029363706707954407, 0.025898030027747154, 0.30465152859687805, 0.0404060035943985, -0.26631906628608704, -0.06809592992067337, 0.002362680621445179, -0.04200637340545654, -0.07761115580797195, 0.005409987177699804, 0.14011961221694946, -0.12484662979841232, 0.034263238310813904, -0.04991942271590233, 0.092899851500988, -0.03573162481188774, 0.011524160392582417, 0.06624175608158112, 0.1455024629831314, -0.01121499389410019, 0.0707356184720993, -0.2149169147014618, 0.23286092281341553, 0.02673470973968506, 0.11106042563915253, -0.06382182240486145, 0.010030310600996017, 0.0037412643432617188, 0.048682864755392075, 0.11093386262655258, 0.007597099989652634, -0.0002785289252642542, -0.17640508711338043, -0.09740886837244034, 0.05628668889403343, 0.11813314259052277, -0.02151484042406082, 0.08685072511434555, -0.036165934056043625, -0.0019726608879864216, 0.03415529802441597, -0.08132398873567581, -0.1250895857810974, -0.08952074497938156, -0.006575750187039375, 0.0005041866097599268, -0.035066165030002594, -0.05715266987681389, -0.09023251384496689, -0.028174065053462982, 0.1342485249042511, 0.022291146218776703, -0.05450151860713959, -0.13563106954097748, 0.04266609624028206, 0.13749517500400543, -0.04622825235128403, 0.016875578090548515, 0.006748109124600887, 0.09876014292240143, 0.04587845504283905, -0.0762089267373085, 0.06656120717525482, -0.07450494170188904, -0.1655513495206833, -0.059046000242233276, 0.1191653311252594, 0.08283092081546783, 0.05615686625242233, 0.0022745300084352493, 0.03086644411087036, -0.005109649617224932, -0.08337388932704926, 0.018604852259159088, 0.04363839700818062, 0.09134052693843842, 0.03475618362426758, -0.09614256024360657, 0.06881260126829147, -0.039681948721408844, -0.011617782525718212, 0.12468784302473068, 0.2171528935432434, -0.09453247487545013, 0.10509498417377472, 0.0780361071228981, -0.08067847788333893, -0.1838492751121521, 0.07124356925487518, 0.12154386937618256, 0.015347760170698166, 0.039434514939785004, -0.20744797587394714, 0.13122418522834778, 0.1029878556728363, -0.014515637420117855, 0.04290315508842468, -0.3013918101787567, -0.1301630288362503, 0.07670971751213074, 0.10672008991241455, 0.04427943378686905, -0.12570489943027496, -0.0216707531362772, -0.012732942588627338, -0.13099779188632965, 0.1389435976743698, -0.08297130465507507, 0.115740567445755, -0.006807747762650251, 0.11495044082403183, 0.02687271498143673, -0.03906890004873276, 0.13448773324489594, 0.06960180401802063, 0.09481970220804214, -0.043173111975193024, 0.011844843626022339, 0.05387372151017189, -0.06424225121736526, 0.037780750542879105, -0.03173457086086273, 0.07007192075252533, -0.1630251556634903, -0.0003366177552379668, -0.0929078459739685, 0.03597741574048996, -0.050949472934007645, -0.05600006505846977, -0.01899442821741104, 0.05345989018678665, 0.06842677295207977, -0.03968806192278862, 0.029444660991430283, 0.005951773840934038, 0.0753851905465126, 0.08932168036699295, 0.10662665218114853, -0.03839932754635811, -0.10095266252756119, 0.01902780309319496, -0.00910947285592556, 0.055296894162893295, -0.11018925905227661, 0.024399952962994576, 0.13073652982711792, 0.0577264241874218, 0.11555159837007523, 0.028278889134526253, -0.030483892187476158, -0.016642646864056587, 0.015444890595972538, -0.12251659482717514, -0.11546587198972702, 0.0439193993806839, -0.039507776498794556, -0.1375783085823059, 0.007798520848155022, 0.09404310584068298, -0.030631065368652344, -0.019389541819691658, -0.011535892263054848, 0.01950918510556221, -0.019612479954957962, 0.20072060823440552, 0.04417601600289345, 0.07027208805084229, -0.10745446383953094, 0.12542597949504852, 0.049184415489435196, -0.05752343684434891, 0.05083918571472168, 0.06695841997861862, -0.1048089861869812, -0.012789416126906872, 0.12098808586597443, 0.16535814106464386, -0.030159451067447662, -0.019344503059983253, -0.08245856314897537, -0.0910029485821724, 0.06161094084382057, 0.15298691391944885, 0.0519549660384655, -0.01726013422012329, -0.04847455397248268, 0.0266439076513052, -0.12588663399219513, 0.07493061572313309, 0.044247545301914215, 0.06283465772867203, -0.09158855676651001, 0.11148276180028915, -0.00404019933193922, 0.04265740141272545, -0.019065016880631447, 0.025738123804330826, -0.10354434698820114, -0.010251100175082684, -0.1472371220588684, 0.0004354696429800242, -0.0041802506893873215, 0.01299790944904089, -0.021101055666804314, -0.052159011363983154, -0.024831127375364304, 0.027083972468972206, -0.09216298162937164, -0.049425143748521805, 0.023720595985651016, 0.03742413595318794, -0.14400693774223328, -0.016033995896577835, 0.020811114460229874, -0.09225837886333466, 0.08075933158397675, 0.05934755131602287, 0.011646587401628494, 0.029182234779000282, -0.10637663304805756, -0.04834016412496567, 0.00328949186950922, 0.025141729041934013, 0.08793123811483383, -0.09070585668087006, -0.020699143409729004, -0.0315885990858078, 0.046916376799345016, 0.018044445663690567, 0.09697521477937698, -0.11522269994020462, 0.008895781822502613, -0.04234340414404869, -0.045283157378435135, -0.06283619999885559, 0.040432512760162354, 0.10873615741729736, 0.045940008014440536, 0.15987905859947205, -0.07289019227027893, 0.035603590309619904, -0.18521495163440704, -0.04432275891304016, 0.00007320403528865427, -0.04736955091357231, -0.08928364515304565, -0.04834206402301788, 0.09852497279644012, -0.05207255110144615, 0.10930557548999786, -0.0016846321523189545, 0.09931956231594086, 0.031285371631383896, -0.011675124987959862, -0.054069634526968, 0.00885610282421112, 0.15405219793319702, 0.04955892264842987, -0.013983708806335926, 0.11008714884519577, 0.001828257692977786, 0.04525415971875191, 0.06691353768110275, 0.21136240661144257, 0.15455754101276398, 0.01039635855704546, 0.04914455488324165, 0.06029805541038513, -0.1171756237745285, -0.1356806606054306, 0.1342892348766327, -0.04725823178887367, 0.12343063950538635, -0.0723663866519928, 0.2167656570672989, 0.022664014250040054, -0.18406042456626892, 0.06870043277740479, -0.06147871911525726, -0.12308130413293839, -0.1164097711443901, -0.022349918261170387, -0.07031869143247604, -0.10934575647115707, 0.020518064498901367, -0.12074104696512222, 0.06263981759548187, 0.12379920482635498, 0.015602867119014263, 0.02338976226747036, 0.16315403580665588, -0.03549828380346298, 0.021229729056358337, 0.06830858439207077, 0.016554495319724083, -0.005335576832294464, -0.06261680275201797, -0.06514368951320648, 0.044622745364904404, 0.02317485399544239, 0.07187381386756897, -0.04029706493020058, 0.0020946937147527933, 0.019490865990519524, -0.014548500068485737, -0.07356590777635574, 0.016769016161561012, 0.02403051033616066, 0.04564681276679039, 0.057375963777303696, 0.05295007303357124, 0.009290207177400589, -0.037872955203056335, 0.2878393828868866, -0.07457678765058517, -0.09910968691110611, -0.12942112982273102, 0.22642560303211212, 0.010419580154120922, -0.022220991551876068, 0.07395975291728973, -0.09458575397729874, -0.0280169490724802, 0.17844964563846588, 0.14537928998470306, -0.10868000984191895, -0.022581415250897408, -0.019373612478375435, -0.01158006489276886, -0.04490998759865761, 0.13574674725532532, 0.10917732119560242, -0.016204969957470894, -0.07854851335287094, -0.02040555700659752, -0.018513042479753494, -0.04772417992353439, -0.0737454891204834, 0.061208900064229965, 0.026890767738223076, -0.002101150108501315, -0.04431559145450592, 0.058220282196998596, -0.005126279313117266, -0.23694656789302826, 0.031865134835243225, -0.1627446413040161, -0.17782677710056305, -0.038580521941185, 0.058969564735889435, -0.007935626432299614, 0.041825518012046814, -0.010013271123170853, 0.01171934511512518, 0.13988587260246277, -0.033096302300691605, -0.02673536166548729, -0.1246478334069252, 0.11592483520507812, -0.11013280600309372, 0.20073041319847107, 0.003261303063482046, 0.07366795092821121, 0.09561944752931595, 0.019454840570688248, -0.1340591013431549, 0.04401428624987602, 0.07276837527751923, -0.10357986390590668, 0.010314544662833214, 0.1443014144897461, -0.04980545863509178, 0.07053174823522568, 0.02444741502404213, -0.10975360125303268, -0.008410735055804253, -0.04692478105425835, -0.0390673466026783, -0.07467864453792572, -0.015338019467890263, -0.064491406083107, 0.15937989950180054, 0.22236473858356476, -0.02425331622362137, 0.0173280518501997, -0.09331300109624863, 0.01469774916768074, 0.04241566359996796, 0.04627872630953789, -0.05319893732666969, -0.20066474378108978, 0.029041381552815437, 0.04153512790799141, 0.019002944231033325, -0.20775164663791656, -0.0800153911113739, 0.0448782742023468, -0.03148364648222923, -0.04973485320806503, 0.10211692005395889, 0.029963910579681396, 0.04484405368566513, -0.03607482090592384, -0.1083478033542633, -0.037855375558137894, 0.1488010436296463, -0.15696027874946594, -0.040981438010931015 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-512-finetuned-squad-seed-0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-512-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-512-finetuned-squad-seed-0
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-0 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09941526502370834, 0.15223988890647888, -0.002179159317165613, 0.0913267731666565, 0.13749800622463226, 0.039959866553545, 0.08920580893754959, 0.13614344596862793, -0.08005421608686447, 0.0744950994849205, 0.07856578379869461, 0.054563313722610474, 0.05285842716693878, 0.12614287436008453, -0.04793182387948036, -0.20833860337734222, 0.013592449948191643, -0.01901666633784771, -0.05571480467915535, 0.09817498177289963, 0.08209393173456192, -0.10510200262069702, 0.08067986369132996, -0.019440677016973495, -0.1519656628370285, 0.009139960631728172, -0.03854852169752121, -0.023866156116127968, 0.09475354105234146, -0.0067938040010631084, 0.09739191830158234, 0.00978887639939785, 0.13858206570148468, -0.21218597888946533, -0.00016220154066104442, 0.07932575047016144, 0.03623782470822334, 0.08994295448064804, 0.04709337279200554, 0.024312609806656837, 0.050366710871458054, -0.15324346721172333, 0.09039080888032913, 0.0267360620200634, -0.07740745693445206, -0.09147169440984726, -0.09209047257900238, 0.019949806854128838, 0.07795243710279465, 0.08355816453695297, 0.009128999896347523, 0.13451142609119415, -0.09057335555553436, 0.08258146047592163, 0.20028585195541382, -0.2727622091770172, -0.06624267995357513, 0.046740829944610596, 0.05240851268172264, 0.06618179380893707, -0.118401437997818, -0.027475759387016296, 0.028994567692279816, 0.03173396363854408, 0.09394770860671997, -0.0189531147480011, -0.13864149153232574, 0.0015350790927186608, -0.13196930289268494, -0.01410258561372757, 0.10965077579021454, 0.04825140908360481, -0.04425780102610588, -0.06489051133394241, -0.07664613425731659, -0.10878723114728928, -0.023735007271170616, -0.020724797621369362, 0.05280468612909317, -0.05465317517518997, -0.056020475924015045, -0.038888461887836456, -0.05890020728111267, -0.08740998804569244, -0.004366336390376091, 0.11902789026498795, 0.043194036930799484, 0.024955395609140396, -0.037026822566986084, 0.10275159776210785, 0.000565594295039773, -0.13360615074634552, -0.01773567497730255, 0.008619713596999645, -0.12248922139406204, -0.05770624428987503, -0.026435382664203644, 0.010228652507066727, 0.016360916197299957, 0.14936314523220062, -0.04004120081663132, 0.08189994096755981, 0.015311949886381626, -0.020280521363019943, -0.010904679074883461, 0.14446544647216797, -0.039370328187942505, -0.05467728525400162, 0.0054671564139425755, 0.09619999676942825, 0.0006609840202145278, -0.005753365810960531, -0.07368934899568558, -0.01906224526464939, 0.09251516312360764, 0.055833350867033005, -0.052260104566812515, 0.033479444682598114, -0.03214659169316292, -0.025708982720971107, 0.0237593911588192, -0.1236988976597786, 0.03721006214618683, 0.010143492370843887, -0.08360117673873901, -0.0366365946829319, 0.012699163518846035, -0.017106207087635994, -0.021078329533338547, 0.09125426411628723, -0.08751461654901505, -0.005739325191825628, -0.07780822366476059, -0.07385499775409698, 0.015713674947619438, -0.14134502410888672, -0.01526591181755066, -0.04901353642344475, -0.2031131237745285, -0.037963852286338806, 0.04391082376241684, -0.07630263268947601, -0.039979368448257446, -0.0572483204305172, -0.08397504687309265, 0.01596413366496563, -0.0043383934535086155, 0.16661451756954193, -0.06071765720844269, 0.07706713676452637, -0.014844200573861599, 0.04104131460189819, 0.01005041878670454, 0.04885638505220413, -0.08767454326152802, 0.02274273708462715, -0.14269480109214783, 0.07786483317613602, -0.09597216546535492, 0.011090160347521305, -0.12406419962644577, -0.08793526142835617, 0.039905209094285965, -0.028189605101943016, 0.07043255120515823, 0.14391876757144928, -0.19383759796619415, 0.0012386677553877234, 0.11529127508401871, -0.04891609027981758, -0.04816652461886406, 0.07755699753761292, -0.056014999747276306, 0.029082704335451126, 0.05156761780381203, 0.1668732911348343, 0.07399710267782211, -0.15183687210083008, -0.018096331506967545, 0.024311523884534836, 0.04920940101146698, 0.005230691749602556, 0.04471135884523392, 0.004695075564086437, 0.02692885510623455, 0.003572773654013872, -0.07689802348613739, -0.025728052482008934, -0.08998031914234161, -0.07102695107460022, -0.0527958869934082, -0.0884854793548584, 0.021457387134432793, 0.01228523999452591, 0.02074521966278553, -0.05789691582322121, -0.10211042314767838, 0.10316547006368637, 0.1281958371400833, -0.05184432491660118, 0.007495982572436333, -0.06903542578220367, 0.020665299147367477, -0.029699811711907387, -0.03598834201693535, -0.19500651955604553, -0.13589021563529968, 0.05296456813812256, -0.054121021181344986, 0.034362152218818665, 0.032803263515233994, 0.0642322227358818, 0.062262002378702164, -0.03330491483211517, -0.01844719611108303, -0.06993676722049713, -0.0028302189894020557, -0.11340732127428055, -0.1994028091430664, -0.06365232914686203, -0.032741133123636246, 0.1406167447566986, -0.20180781185626984, -0.00026725840871222317, -0.024663645774126053, 0.12200839817523956, 0.017523325979709625, -0.058645013719797134, 0.00883437693119049, 0.029871473088860512, 0.005619209725409746, -0.09966167062520981, 0.04050171375274658, 0.007900271564722061, -0.05484101548790932, -0.06059255823493004, -0.10984697192907333, -0.003702482208609581, 0.05904163047671318, 0.07939061522483826, -0.10472561419010162, -0.00738937221467495, -0.05029013380408287, -0.045521631836891174, -0.08808885514736176, 0.00926819909363985, 0.19678261876106262, 0.03376780077815056, 0.12076833844184875, -0.06078872084617615, -0.07119730859994888, 0.0012951225508004427, 0.024156639352440834, 0.02233974263072014, 0.08987540751695633, 0.10671192407608032, -0.0981888398528099, 0.08918775618076324, 0.06980106234550476, -0.04739608243107796, 0.12056245654821396, -0.044490691274404526, -0.08205025643110275, -0.019656119868159294, 0.004588006995618343, -0.03332435339689255, 0.1416999101638794, -0.08396051824092865, 0.011868826113641262, 0.0344419926404953, 0.025088191032409668, 0.01786101795732975, -0.16877421736717224, -0.00031992720323614776, 0.011811871081590652, -0.0638483315706253, -0.03944023326039314, -0.024453165009617805, 0.03716946020722389, 0.09420370310544968, 0.026485148817300797, -0.04275044798851013, 0.01621195673942566, -0.012096312828361988, -0.06960111856460571, 0.1916259229183197, -0.1094459593296051, -0.09162057191133499, -0.10890022665262222, 0.027790110558271408, -0.04536056146025658, -0.036671724170446396, 0.005062581971287727, -0.08252938091754913, -0.05623335391283035, -0.08891036361455917, -0.02407977730035782, -0.01610434055328369, -0.0023581325076520443, 0.023899849504232407, -0.015664147213101387, 0.0720226988196373, -0.1325749009847641, 0.004169304855167866, -0.029444003477692604, -0.10232721269130707, 0.007739291992038488, 0.06367358565330505, 0.08526872098445892, 0.09946291893720627, -0.013454955071210861, 0.013192190788686275, -0.027945393696427345, 0.23901596665382385, -0.056046873331069946, 0.016058575361967087, 0.08308052271604538, -0.00634074816480279, 0.06049178168177605, 0.14343209564685822, 0.03182994946837425, -0.10415538400411606, 0.025661388412117958, 0.08296659588813782, -0.011130424216389656, -0.24839958548545837, -0.028727704659104347, -0.022096484899520874, -0.0705813467502594, 0.0880584865808487, 0.039721038192510605, -0.044129878282547, 0.037695400416851044, 0.009433873929083347, 0.012834975495934486, -0.05198964849114418, 0.07377691566944122, 0.08532468229532242, 0.04485032334923744, 0.09435269236564636, -0.02216145023703575, -0.010854261927306652, 0.06617498397827148, 0.015684377402067184, 0.26909056305885315, -0.028944212943315506, 0.1266472190618515, 0.02575601264834404, 0.14713822305202484, -0.02993549406528473, 0.04742380231618881, 0.015977943316102028, 0.005423222202807665, -0.005773315206170082, -0.05335817486047745, -0.029925426468253136, 0.01000084076076746, -0.03339475765824318, 0.0330144464969635, -0.07241883873939514, 0.04466143622994423, 0.014299692586064339, 0.30001410841941833, 0.04490236937999725, -0.28221219778060913, -0.06140453368425369, -0.0026035059709101915, -0.04526810720562935, -0.07499547302722931, 0.0032095059286803007, 0.14422057569026947, -0.1255587786436081, 0.04000641033053398, -0.05444671958684921, 0.08886795490980148, -0.04728942736983299, 0.002040897263213992, 0.06494122743606567, 0.1454940140247345, -0.010563316754996777, 0.06780153512954712, -0.18990816175937653, 0.22614197432994843, 0.02907489240169525, 0.11094757914543152, -0.06180788576602936, 0.013831517659127712, 0.010352159850299358, 0.027748046442866325, 0.10719691216945648, -0.000029966131478431635, -0.023834455758333206, -0.16916853189468384, -0.11569492518901825, 0.058259524405002594, 0.11615569144487381, -0.016060905531048775, 0.09577427059412003, -0.04158448055386543, -0.0025687848683446646, 0.036550600081682205, -0.07406723499298096, -0.12877163290977478, -0.0859781801700592, 0.0033267727121710777, 0.019347095862030983, -0.03800387308001518, -0.048496443778276443, -0.09165467321872711, -0.024200987070798874, 0.13571399450302124, -0.003875290509313345, -0.04341036453843117, -0.13558891415596008, 0.0532117523252964, 0.14309155941009521, -0.05778728798031807, 0.02013981342315674, 0.0039054309017956257, 0.10195297002792358, 0.05151650309562683, -0.08343532681465149, 0.05232126638293266, -0.06701157987117767, -0.1604679375886917, -0.062000419944524765, 0.11576095223426819, 0.07928947359323502, 0.05342135578393936, -0.002489128615707159, 0.03279673680663109, 0.000682310201227665, -0.086336649954319, 0.007497534155845642, 0.056726448237895966, 0.09000878781080246, 0.05053718760609627, -0.09322959929704666, 0.04535873606801033, -0.03425710275769234, -0.003172459313645959, 0.12612970173358917, 0.21531735360622406, -0.08576030284166336, 0.08893122524023056, 0.0692865177989006, -0.07931508868932724, -0.17650744318962097, 0.07089624553918839, 0.13167931139469147, 0.015451831743121147, 0.035745780915021896, -0.20389613509178162, 0.13628043234348297, 0.1135968565940857, -0.015439056791365147, 0.05631833150982857, -0.29663801193237305, -0.12411943078041077, 0.0700254812836647, 0.10379864275455475, 0.04295116290450096, -0.12949256598949432, -0.027690280228853226, -0.010651328600943089, -0.14884324371814728, 0.1461799144744873, -0.07203696668148041, 0.12186673283576965, -0.008354616351425648, 0.12346691638231277, 0.022797631099820137, -0.04155924171209335, 0.1318701207637787, 0.0747295692563057, 0.08760105818510056, -0.039506345987319946, -0.002743842313066125, 0.04913035035133362, -0.0671236515045166, 0.048201315104961395, -0.04124125838279724, 0.06582514941692352, -0.16524776816368103, 0.0009824370499700308, -0.08322323113679886, 0.04433681443333626, -0.04826401174068451, -0.04740411043167114, -0.02903127670288086, 0.04718456417322159, 0.06728606671094894, -0.03493841364979744, 0.03204341232776642, 0.02095925807952881, 0.05718466639518738, 0.09228786081075668, 0.08919750899076462, -0.019504409283399582, -0.10968121886253357, 0.011408698745071888, -0.006649184972047806, 0.05351962149143219, -0.10034997016191483, 0.016232114285230637, 0.1352083832025528, 0.05833347514271736, 0.12674906849861145, 0.025768470019102097, -0.033144500106573105, -0.015598490834236145, 0.01639687828719616, -0.1256825029850006, -0.11671841144561768, 0.03816775232553482, -0.043587032705545425, -0.1554497927427292, 0.006262763869017363, 0.10219528526067734, -0.03699866682291031, -0.01261820737272501, -0.01000900287181139, 0.024703029543161392, -0.012336711399257183, 0.20148424804210663, 0.04084612429141998, 0.06214427202939987, -0.10241727530956268, 0.1258758157491684, 0.057465825229883194, -0.045717377215623856, 0.0567864365875721, 0.06752996146678925, -0.09309926629066467, -0.0052770632319152355, 0.10884062200784683, 0.1724693775177002, -0.046054158359766006, -0.01963474601507187, -0.07210318744182587, -0.07506605237722397, 0.05754825472831726, 0.16294114291667938, 0.04896555840969086, -0.006311656907200813, -0.04355774074792862, 0.02587798610329628, -0.1253710687160492, 0.07346475124359131, 0.04761701449751854, 0.06779567152261734, -0.1063326746225357, 0.11072100698947906, -0.008983266539871693, 0.03359153866767883, -0.01564883068203926, 0.028582919389009476, -0.09803533554077148, -0.02549617365002632, -0.12318349629640579, 0.019891338422894478, -0.010816339403390884, 0.007428344339132309, -0.010592043399810791, -0.054824523627758026, -0.03818647190928459, 0.02568547986447811, -0.0810096263885498, -0.054864924401044846, 0.016550278291106224, 0.04516798257827759, -0.15625837445259094, -0.012202178128063679, 0.023797370493412018, -0.09331075102090836, 0.0764167383313179, 0.06577790528535843, 0.01717323623597622, 0.02720281295478344, -0.10933323949575424, -0.04561813175678253, 0.012874769978225231, 0.02825341932475567, 0.08435852080583572, -0.08797674626111984, -0.014849362894892693, -0.03369668126106262, 0.048735857009887695, 0.015322345308959484, 0.09012243896722794, -0.1157318577170372, -0.0034617844503372908, -0.05588137358427048, -0.033916864544153214, -0.05924026295542717, 0.034244269132614136, 0.11657381057739258, 0.0352935828268528, 0.16833819448947906, -0.06778517365455627, 0.038980498909950256, -0.19380603730678558, -0.0333947017788887, 0.002046803943812847, -0.04093324765563011, -0.08412955701351166, -0.04184312745928764, 0.09247542172670364, -0.051570963114500046, 0.09301196038722992, -0.007256359327584505, 0.08915497362613678, 0.032221175730228424, -0.0062035066075623035, -0.057732321321964264, 0.0016461829654872417, 0.14755843579769135, 0.05939650535583496, -0.018801482394337654, 0.10239774733781815, -0.007233870681375265, 0.0551518015563488, 0.04248862713575363, 0.22735385596752167, 0.147431418299675, -0.021512677893042564, 0.0640985295176506, 0.06981911510229111, -0.12177982181310654, -0.1251949965953827, 0.13959258794784546, -0.04720662906765938, 0.12290347367525101, -0.055129583925008774, 0.22081837058067322, 0.02375810220837593, -0.1766694337129593, 0.05227532610297203, -0.05584150552749634, -0.119635671377182, -0.12020082026720047, -0.015080612152814865, -0.08003398776054382, -0.09958119690418243, 0.02528679184615612, -0.12121669948101044, 0.06570269167423248, 0.117780402302742, 0.016317203640937805, 0.021486766636371613, 0.15373152494430542, -0.042795468121767044, 0.017678100615739822, 0.0600510835647583, 0.024538759142160416, -0.006632994394749403, -0.06212194636464119, -0.06458031386137009, 0.049871835857629776, 0.03490598872303963, 0.08546072989702225, -0.04537927359342575, 0.017812810838222504, 0.032692801207304, -0.014122534543275833, -0.07415901869535446, 0.0125349722802639, 0.02567332051694393, 0.03873903304338455, 0.05680897831916809, 0.05341317132115364, 0.017893942072987556, -0.035580553114414215, 0.26743966341018677, -0.07260844111442566, -0.08425816148519516, -0.131089985370636, 0.19929231703281403, 0.016856128349900246, -0.019063347950577736, 0.07480539381504059, -0.1044238805770874, -0.023717602714896202, 0.16788426041603088, 0.12468919903039932, -0.10188432037830353, -0.02912547066807747, -0.01644952967762947, -0.011629467830061913, -0.03764792159199715, 0.11606327444314957, 0.09298653155565262, 0.009439806453883648, -0.07607261836528778, -0.026773883029818535, -0.01689523458480835, -0.04459168016910553, -0.06373999267816544, 0.03718294948339462, 0.014482411555945873, 0.001099799876101315, -0.03934725746512413, 0.0522322840988636, -0.012157535180449486, -0.24338872730731964, 0.03200064226984978, -0.15807349979877472, -0.18101777136325836, -0.031049834564328194, 0.0649448111653328, -0.006498979404568672, 0.03885664790868759, -0.017859967425465584, 0.0037804553285241127, 0.14918670058250427, -0.03507878631353378, -0.048150353133678436, -0.12355633825063705, 0.10188248753547668, -0.1007438376545906, 0.206479012966156, 0.007357841823250055, 0.08239957690238953, 0.09776555746793747, 0.02323235757648945, -0.13490726053714752, 0.034034911543130875, 0.07413248717784882, -0.11122461408376694, 0.013489846140146255, 0.1514429748058319, -0.055817555636167526, 0.08087686449289322, 0.02604234218597412, -0.10372836887836456, -0.018681542947888374, -0.02701829932630062, -0.03204270452260971, -0.07916325330734253, -0.015188250690698624, -0.06326913833618164, 0.16548769176006317, 0.21996691823005676, -0.024544507265090942, 0.015869038179516792, -0.08630608767271042, 0.01713457889854908, 0.04446308687329292, 0.05087520182132721, -0.04366718605160713, -0.20603680610656738, 0.030927561223506927, 0.021806834265589714, 0.023999901488423347, -0.19568918645381927, -0.08341196179389954, 0.046098947525024414, -0.028614023700356483, -0.05232914164662361, 0.09963012486696243, 0.02350926212966442, 0.04371105879545212, -0.03461574390530586, -0.09475787729024887, -0.04384653642773628, 0.1439928114414215, -0.16190694272518158, -0.05404648184776306 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-512-finetuned-squad-seed-10 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-512-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-512-finetuned-squad-seed-10
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-10 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.10019687563180923, 0.15129895508289337, -0.0021241654176265, 0.09084924310445786, 0.13746048510074615, 0.03990688920021057, 0.09047441184520721, 0.134832501411438, -0.07892819494009018, 0.07376674562692642, 0.07802602648735046, 0.05600525811314583, 0.053315211087465286, 0.12744149565696716, -0.04702063277363777, -0.20960117876529694, 0.013626058585941792, -0.018175499513745308, -0.05454424396157265, 0.09833437204360962, 0.08221855759620667, -0.10535737127065659, 0.07963892817497253, -0.020019711926579475, -0.15146176517009735, 0.008889822289347649, -0.03912218660116196, -0.023638715967535973, 0.09487303346395493, -0.008424975909292698, 0.0969843715429306, 0.009815801866352558, 0.14080817997455597, -0.211683452129364, -0.00022599393560085446, 0.07822569459676743, 0.03600586950778961, 0.08965414762496948, 0.04704590141773224, 0.026093848049640656, 0.050091929733753204, -0.15422643721103668, 0.09146052598953247, 0.02597680129110813, -0.07742177695035934, -0.08969228714704514, -0.09275902062654495, 0.020961681380867958, 0.08114556223154068, 0.08261577785015106, 0.008216612972319126, 0.1337934285402298, -0.09122228622436523, 0.0832943245768547, 0.2010432630777359, -0.2742118537425995, -0.0664127767086029, 0.04904039576649666, 0.05540548264980316, 0.06673333793878555, -0.11854526400566101, -0.02841019444167614, 0.029708899557590485, 0.031101534143090248, 0.09436846524477005, -0.01974511705338955, -0.1373053789138794, 0.0010028990218415856, -0.13337677717208862, -0.013758435845375061, 0.10904722660779953, 0.049762971699237823, -0.04453388974070549, -0.06604193150997162, -0.076706662774086, -0.11023081094026566, -0.025076974183321, -0.022447943687438965, 0.05256951227784157, -0.055649496614933014, -0.05547945573925972, -0.039242684841156006, -0.0579695999622345, -0.08795081824064255, -0.0018113980768248439, 0.11682265251874924, 0.043737445026636124, 0.023552540689706802, -0.03606127202510834, 0.10230212658643723, -0.0011342588113620877, -0.1330031156539917, -0.01651899889111519, 0.008846603333950043, -0.1243402436375618, -0.05906865373253822, -0.026175236329436302, 0.011385873891413212, 0.015066278167068958, 0.1506841629743576, -0.03702642023563385, 0.08223515003919601, 0.01725117675960064, -0.020696252584457397, -0.011334184557199478, 0.14437951147556305, -0.040426261723041534, -0.05718621984124184, 0.004635311663150787, 0.0974171981215477, -0.000018620616174302995, -0.004570499062538147, -0.07430092990398407, -0.019570782780647278, 0.09345180541276932, 0.056035228073596954, -0.05370664969086647, 0.03358052298426628, -0.03118683397769928, -0.02516765333712101, 0.024141447618603706, -0.12411735206842422, 0.03749941289424896, 0.009209726005792618, -0.0844818577170372, -0.03764905780553818, 0.011162906885147095, -0.015945332124829292, -0.021191561594605446, 0.09016767144203186, -0.0871545597910881, -0.0059504383243620396, -0.0780109092593193, -0.07518968731164932, 0.016407005488872528, -0.14588996767997742, -0.014428720809519291, -0.04756784811615944, -0.2063450813293457, -0.03929247707128525, 0.043267376720905304, -0.07522878050804138, -0.04055585712194443, -0.059324879199266434, -0.08435814082622528, 0.014165914617478848, -0.003491276176646352, 0.1679762899875641, -0.05938722565770149, 0.07634153962135315, -0.015143983066082, 0.042617782950401306, 0.010644487105309963, 0.049038685858249664, -0.08656149357557297, 0.02316044270992279, -0.14156706631183624, 0.07773049175739288, -0.09602906554937363, 0.013881259597837925, -0.12420740723609924, -0.0884738489985466, 0.03887776657938957, -0.027978437021374702, 0.07074569165706635, 0.14394362270832062, -0.19550777971744537, 0.0025859945453703403, 0.11639963090419769, -0.04792841896414757, -0.047502484172582626, 0.07679896801710129, -0.05645640566945076, 0.030874885618686676, 0.05311177670955658, 0.1667034924030304, 0.0753304585814476, -0.15048103034496307, -0.018590040504932404, 0.023854995146393776, 0.0491664782166481, 0.003838528646156192, 0.04495390132069588, 0.005821886006742716, 0.02928897924721241, 0.0032597738318145275, -0.07569364458322525, -0.025972414761781693, -0.08986540883779526, -0.07147687673568726, -0.052063949406147, -0.08900527656078339, 0.021392954513430595, 0.012675397098064423, 0.020914072170853615, -0.05805185064673424, -0.1020120307803154, 0.1034969910979271, 0.12835951149463654, -0.05230694264173508, 0.006632730830460787, -0.06892356276512146, 0.02011171728372574, -0.030240261927247047, -0.03563373535871506, -0.19497425854206085, -0.13348208367824554, 0.05287666618824005, -0.05457191914319992, 0.033845968544483185, 0.03523818776011467, 0.06490391492843628, 0.062052708119153976, -0.032757945358753204, -0.019442016258835793, -0.07003083825111389, -0.002998675685375929, -0.11515389382839203, -0.19838428497314453, -0.06546779721975327, -0.03343033418059349, 0.14081627130508423, -0.20359699428081512, 0.0010145159903913736, -0.0266937967389822, 0.12095719575881958, 0.01646166294813156, -0.05884606018662453, 0.009394115768373013, 0.02949685975909233, 0.00634654751047492, -0.10050264745950699, 0.040586698800325394, 0.006711015477776527, -0.054600633680820465, -0.06270571798086166, -0.11140651255846024, -0.006190374027937651, 0.05829406902194023, 0.08115940541028976, -0.1045733168721199, -0.007763539906591177, -0.050357069820165634, -0.044986240565776825, -0.08624445647001266, 0.008962411433458328, 0.1945723593235016, 0.033086828887462616, 0.12009517848491669, -0.061013028025627136, -0.0722760483622551, 0.0016561512602493167, 0.02530590072274208, 0.023312129080295563, 0.09021250903606415, 0.10622508823871613, -0.09823859483003616, 0.08864761143922806, 0.07084917277097702, -0.04665190726518631, 0.11926672607660294, -0.044542428106069565, -0.08278964459896088, -0.01952158659696579, 0.005148167721927166, -0.033941689878702164, 0.1411692500114441, -0.08501628786325455, 0.010107187554240227, 0.033907949924468994, 0.023769337683916092, 0.01738925091922283, -0.16945555806159973, 0.00009246889385394752, 0.011553490534424782, -0.06309166550636292, -0.040780533105134964, -0.02515890821814537, 0.035571616142988205, 0.09349363297224045, 0.02597811631858349, -0.04383571818470955, 0.015709519386291504, -0.012021574191749096, -0.06937921792268753, 0.19218479096889496, -0.10774527490139008, -0.09048823267221451, -0.10745788365602493, 0.02717406302690506, -0.043015528470277786, -0.03692420572042465, 0.004525115247815847, -0.08321031183004379, -0.055546294897794724, -0.0882563665509224, -0.02520587109029293, -0.0158686526119709, -0.002805408788844943, 0.025766082108020782, -0.015055766329169273, 0.07022585719823837, -0.13243040442466736, 0.0047114547342062, -0.030181771144270897, -0.10226219147443771, 0.007114263717085123, 0.06268820911645889, 0.08537525683641434, 0.10013396292924881, -0.013848785310983658, 0.013466928154230118, -0.028329212218523026, 0.23881936073303223, -0.056530945003032684, 0.017448481172323227, 0.08260469138622284, -0.006255842745304108, 0.06046459823846817, 0.1444827914237976, 0.0312538668513298, -0.10419628769159317, 0.02527981624007225, 0.08233294636011124, -0.010638820938766003, -0.24952542781829834, -0.027595985680818558, -0.02136521227657795, -0.07097925990819931, 0.08899673074483871, 0.039017289876937866, -0.041923560202121735, 0.03926439583301544, 0.009016244672238827, 0.014857475645840168, -0.05079445615410805, 0.07382238656282425, 0.08271732926368713, 0.04375742748379707, 0.09444060921669006, -0.022459493950009346, -0.011844892986118793, 0.0639265775680542, 0.01623408868908882, 0.27069923281669617, -0.02707647532224655, 0.1263483464717865, 0.025087779387831688, 0.1459854394197464, -0.030942223966121674, 0.05033278465270996, 0.01707746647298336, 0.004791476298123598, -0.0057040853425860405, -0.052707739174366, -0.02819843590259552, 0.01057352777570486, -0.03301520273089409, 0.03236820921301842, -0.07197368144989014, 0.04444852098822594, 0.013829250819981098, 0.29907193779945374, 0.04662308096885681, -0.28339165449142456, -0.06054605543613434, -0.0022723469883203506, -0.047112323343753815, -0.0751068964600563, 0.0026798381004482508, 0.14306901395320892, -0.12584108114242554, 0.040605369955301285, -0.05503389611840248, 0.08933725208044052, -0.04647224768996239, 0.002401142381131649, 0.06374742090702057, 0.14466992020606995, -0.010358905419707298, 0.06872400641441345, -0.19142533838748932, 0.22581009566783905, 0.02866353467106819, 0.11221081763505936, -0.06256759911775589, 0.0139816515147686, 0.009922860190272331, 0.02645069733262062, 0.10908842086791992, -0.00027144912746734917, -0.023911328986287117, -0.17006650567054749, -0.11553365737199783, 0.05805160850286484, 0.11672364175319672, -0.015141577459871769, 0.09701205044984818, -0.04037415608763695, -0.003555664326995611, 0.036575403064489365, -0.07503222674131393, -0.12998662889003754, -0.0854448601603508, 0.002822115318849683, 0.01763293333351612, -0.03780870512127876, -0.04814551770687103, -0.09163586050271988, -0.027015121653676033, 0.13424734771251678, -0.003380316309630871, -0.0431966632604599, -0.13509337604045868, 0.05550302565097809, 0.14367784559726715, -0.05723325163125992, 0.021518316119909286, 0.005221781320869923, 0.10169406235218048, 0.05051908642053604, -0.08184905350208282, 0.05187879130244255, -0.06699033826589584, -0.1602734476327896, -0.061186183243989944, 0.11738342046737671, 0.07955999672412872, 0.05361853912472725, -0.0008918426465243101, 0.03204996511340141, 0.0009084322955459356, -0.086133673787117, 0.006985269021242857, 0.055919043719768524, 0.08962317556142807, 0.04988207668066025, -0.09371576458215714, 0.04454328119754791, -0.035252925008535385, -0.0012173937866464257, 0.12688301503658295, 0.2138698250055313, -0.08538205176591873, 0.08775409311056137, 0.06916284561157227, -0.07957430928945541, -0.17578484117984772, 0.07158273458480835, 0.13231061398983002, 0.016169574111700058, 0.03570752963423729, -0.20331402122974396, 0.13593575358390808, 0.11330677568912506, -0.014625935815274715, 0.05502379313111305, -0.29704976081848145, -0.12378233671188354, 0.07089032977819443, 0.10421640425920486, 0.040797505527734756, -0.12900184094905853, -0.027692580595612526, -0.011551332660019398, -0.14877404272556305, 0.14554008841514587, -0.07220599800348282, 0.12138494849205017, -0.007631102576851845, 0.1217806488275528, 0.022922737523913383, -0.04203878715634346, 0.1305117905139923, 0.07675313204526901, 0.08787854760885239, -0.03939038887619972, -0.004559756256639957, 0.05176360160112381, -0.06670495867729187, 0.04957395792007446, -0.04031131789088249, 0.064857117831707, -0.16473932564258575, 0.00035879036295227706, -0.08314228057861328, 0.043509021401405334, -0.048718806356191635, -0.04724888876080513, -0.02826111763715744, 0.047184113413095474, 0.06707454472780228, -0.03437446802854538, 0.03012627549469471, 0.022093607112765312, 0.056575994938611984, 0.0879833921790123, 0.09034118056297302, -0.017985479906201363, -0.10861939936876297, 0.011686976067721844, -0.0063534509390592575, 0.05268535763025284, -0.10191701352596283, 0.014966730959713459, 0.13557665050029755, 0.05866716429591179, 0.12724566459655762, 0.02555393986403942, -0.033554211258888245, -0.01600017584860325, 0.016099223867058754, -0.1231655403971672, -0.11829464137554169, 0.038693636655807495, -0.04484152793884277, -0.15643030405044556, 0.008080324158072472, 0.10002145171165466, -0.03789978474378586, -0.013643397018313408, -0.011105850338935852, 0.024399397894740105, -0.0124781783670187, 0.20311933755874634, 0.041604846715927124, 0.06319767981767654, -0.10270840674638748, 0.12489877641201019, 0.057438209652900696, -0.04649509862065315, 0.05626313015818596, 0.06817375868558884, -0.0938427746295929, -0.005545901134610176, 0.10948114097118378, 0.17182044684886932, -0.042701270431280136, -0.01963008940219879, -0.07233321666717529, -0.07466423511505127, 0.05812728404998779, 0.16331525146961212, 0.04908285662531853, -0.007395837921649218, -0.043038275092840195, 0.02662235125899315, -0.12592551112174988, 0.0732303038239479, 0.04811522737145424, 0.06793369352817535, -0.10635750740766525, 0.11200638115406036, -0.009034289047122002, 0.03440055251121521, -0.015118056908249855, 0.029561510309576988, -0.09747111797332764, -0.02567128837108612, -0.12123104929924011, 0.01785317435860634, -0.012783232145011425, 0.007155572529882193, -0.011389074847102165, -0.05386139824986458, -0.03746401146054268, 0.02496485598385334, -0.08087033033370972, -0.05545056611299515, 0.01617506705224514, 0.043958671391010284, -0.15492598712444305, -0.012085330672562122, 0.022823316976428032, -0.093108169734478, 0.0759011059999466, 0.06460611522197723, 0.0175778791308403, 0.02781246416270733, -0.10884243994951248, -0.04481605067849159, 0.01418033055961132, 0.028039321303367615, 0.08403347432613373, -0.08752239495515823, -0.014581505209207535, -0.03391992673277855, 0.05027509853243828, 0.01470137108117342, 0.08701292425394058, -0.11477163434028625, -0.004027331247925758, -0.05740079656243324, -0.03366968780755997, -0.06006299704313278, 0.03505392745137215, 0.11533981561660767, 0.033991504460573196, 0.16886869072914124, -0.06580386310815811, 0.039282090961933136, -0.19446779787540436, -0.03403735160827637, 0.001392655074596405, -0.04126802086830139, -0.0834403932094574, -0.04290527105331421, 0.09276629239320755, -0.05130871757864952, 0.093236543238163, -0.007965439930558205, 0.09039559960365295, 0.031055763363838196, -0.003149725031107664, -0.05787428468465805, 0.0024932848755270243, 0.14821818470954895, 0.05926106870174408, -0.019437260925769806, 0.10101402550935745, -0.006285306066274643, 0.05524181202054024, 0.041215844452381134, 0.2246885448694229, 0.14783047139644623, -0.022251928225159645, 0.0644628182053566, 0.07031030207872391, -0.12201344966888428, -0.12367753684520721, 0.14161257445812225, -0.04757937788963318, 0.12158846110105515, -0.05531030148267746, 0.22338546812534332, 0.023776475340127945, -0.17678594589233398, 0.05260229855775833, -0.054771553725004196, -0.12051401287317276, -0.11880019307136536, -0.016568684950470924, -0.0803799033164978, -0.09813118726015091, 0.025972213596105576, -0.12123369425535202, 0.06472162157297134, 0.1181812658905983, 0.016320189461112022, 0.02100503258407116, 0.15485577285289764, -0.04270196706056595, 0.01797603815793991, 0.06068425253033638, 0.024184217676520348, -0.005885491147637367, -0.062288105487823486, -0.06371662020683289, 0.05066579952836037, 0.0337214358150959, 0.08617039024829865, -0.047417737543582916, 0.01684059388935566, 0.032960083335638046, -0.013346482068300247, -0.07387632131576538, 0.012907768599689007, 0.025347160175442696, 0.039428070187568665, 0.05565603822469711, 0.05362715944647789, 0.017134834080934525, -0.03602122515439987, 0.26551687717437744, -0.07293473184108734, -0.08574344962835312, -0.1311889886856079, 0.1963656097650528, 0.01843108981847763, -0.01909004896879196, 0.07534568011760712, -0.10461162030696869, -0.02093161828815937, 0.16872800886631012, 0.12438931316137314, -0.09908626973628998, -0.029848869889974594, -0.015592330135405064, -0.01210827101022005, -0.03876782953739166, 0.1155838593840599, 0.09364912658929825, 0.0067258430644869804, -0.07596851885318756, -0.02637322060763836, -0.015520981512963772, -0.04644104838371277, -0.06375417113304138, 0.03661554679274559, 0.01576758734881878, 0.0008839633665047586, -0.037388838827610016, 0.054690033197402954, -0.010005777701735497, -0.24304543435573578, 0.03110678493976593, -0.15675589442253113, -0.18109852075576782, -0.03169457986950874, 0.06455306708812714, -0.0044567035511136055, 0.03891608864068985, -0.017560584470629692, 0.0037822870071977377, 0.14812017977237701, -0.03430190682411194, -0.048464085906744, -0.12363092601299286, 0.10198719799518585, -0.10226491838693619, 0.20500825345516205, 0.007078561931848526, 0.08334916830062866, 0.09803303331136703, 0.021468650549650192, -0.13438090682029724, 0.03431951254606247, 0.0744183138012886, -0.10899709165096283, 0.015319837257266045, 0.15183040499687195, -0.0553937591612339, 0.07784906774759293, 0.024993745610117912, -0.10462933778762817, -0.017936907708644867, -0.025817018002271652, -0.031578339636325836, -0.08042700588703156, -0.01246459037065506, -0.06230755150318146, 0.1660284698009491, 0.21984991431236267, -0.025114988908171654, 0.01656498573720455, -0.08693571388721466, 0.016097744926810265, 0.04471290484070778, 0.05125144496560097, -0.0436912439763546, -0.20659610629081726, 0.030108805745840073, 0.017909293994307518, 0.024633008986711502, -0.19392983615398407, -0.08236671984195709, 0.04507921636104584, -0.029970478266477585, -0.05323033779859543, 0.09868516772985458, 0.025144053623080254, 0.04301299899816513, -0.03415941447019577, -0.09538908302783966, -0.0441507026553154, 0.14530175924301147, -0.1628185659646988, -0.05344719812273979 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-512-finetuned-squad-seed-2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-512-finetuned-squad-seed-2", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-512-finetuned-squad-seed-2
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-2 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09896048903465271, 0.1525704562664032, -0.0021925747860223055, 0.09122615307569504, 0.13698431849479675, 0.03995095193386078, 0.08917948603630066, 0.13551120460033417, -0.08010555058717728, 0.07371117174625397, 0.07876118272542953, 0.05424270033836365, 0.052560340613126755, 0.12672977149486542, -0.04701472073793411, -0.20962285995483398, 0.013064729981124401, -0.019701499491930008, -0.05645009130239487, 0.09828635305166245, 0.08304326236248016, -0.10441876947879791, 0.07994496077299118, -0.019197331741452217, -0.1532125174999237, 0.009033774957060814, -0.03807871788740158, -0.02231532707810402, 0.09485619515180588, -0.007350957486778498, 0.09763666242361069, 0.010789645835757256, 0.14044766128063202, -0.21227379143238068, -0.000445468642283231, 0.07767176628112793, 0.03675922378897667, 0.0896172970533371, 0.04736916720867157, 0.026109768077731133, 0.0496474914252758, -0.15297573804855347, 0.090103879570961, 0.026175888255238533, -0.07726442813873291, -0.09031935036182404, -0.09237568080425262, 0.02088417112827301, 0.08075400441884995, 0.08152078837156296, 0.00926815252751112, 0.13225677609443665, -0.09089789539575577, 0.08273801952600479, 0.19961819052696228, -0.27431026101112366, -0.06691908091306686, 0.04751875624060631, 0.05340488627552986, 0.0676480233669281, -0.1171991154551506, -0.027688898146152496, 0.029856927692890167, 0.03138769418001175, 0.09392158687114716, -0.019564051181077957, -0.13794517517089844, 0.0010715039679780602, -0.13339921832084656, -0.015589375980198383, 0.11000978946685791, 0.048779234290122986, -0.04543110728263855, -0.06334222108125687, -0.0770830363035202, -0.10775817930698395, -0.0236525796353817, -0.022781075909733772, 0.0529562309384346, -0.053844649344682693, -0.055104997009038925, -0.04159623757004738, -0.05993250757455826, -0.08836961537599564, -0.0032808477990329266, 0.11911329627037048, 0.0435529388487339, 0.02506379783153534, -0.036260128021240234, 0.1039644330739975, 0.0010822969488799572, -0.13251540064811707, -0.01717977598309517, 0.009449547156691551, -0.12337647378444672, -0.05846192315220833, -0.026622122153639793, 0.012127546593546867, 0.01591780036687851, 0.14911717176437378, -0.03933969512581825, 0.0812777429819107, 0.015876363962888718, -0.019247470423579216, -0.011078838258981705, 0.14447633922100067, -0.03819164261221886, -0.05395497754216194, 0.005276311654597521, 0.0965859591960907, 0.00029064808040857315, -0.004648847039788961, -0.0745215117931366, -0.020101971924304962, 0.09337262064218521, 0.056923672556877136, -0.053328242152929306, 0.03158791735768318, -0.03337996453046799, -0.025233658030629158, 0.022044485434889793, -0.12411117553710938, 0.03692558780312538, 0.009386599995195866, -0.0829307958483696, -0.03859105333685875, 0.012161683291196823, -0.0158053208142519, -0.019522493705153465, 0.08920355886220932, -0.0860806480050087, -0.004920339677482843, -0.07716325670480728, -0.07260001450777054, 0.015794461593031883, -0.14214228093624115, -0.01507199089974165, -0.048649001866579056, -0.20391662418842316, -0.03758282586932182, 0.044045496731996536, -0.07629308849573135, -0.04317719489336014, -0.05820600315928459, -0.08299361169338226, 0.015102493576705456, -0.004181237425655127, 0.16789257526397705, -0.05959102138876915, 0.07734110951423645, -0.015413504093885422, 0.04223814606666565, 0.010514986701309681, 0.04816918820142746, -0.08578309416770935, 0.02413041703402996, -0.14255835115909576, 0.07880230247974396, -0.09518250823020935, 0.010286001488566399, -0.1253300905227661, -0.08771365135908127, 0.040000248700380325, -0.028513891622424126, 0.06949727237224579, 0.14375026524066925, -0.19437125325202942, 0.002729361644014716, 0.11577228456735611, -0.04950908198952675, -0.046826355159282684, 0.07856693863868713, -0.05651593208312988, 0.03305338695645332, 0.0510454960167408, 0.16710086166858673, 0.07495984435081482, -0.15042449533939362, -0.01576787792146206, 0.026139264926314354, 0.048372283577919006, 0.005317282862961292, 0.046315327286720276, 0.004353204742074013, 0.025001192465424538, 0.0027893499936908484, -0.0788947269320488, -0.02593114599585533, -0.09073152393102646, -0.07201509922742844, -0.052269887179136276, -0.0887942835688591, 0.022529983893036842, 0.0103396475315094, 0.021260278299450874, -0.057199325412511826, -0.10044584423303604, 0.10325384140014648, 0.12923267483711243, -0.05149124562740326, 0.008211418054997921, -0.06936844438314438, 0.01987724006175995, -0.030821766704320908, -0.03653588145971298, -0.19448243081569672, -0.1341259926557541, 0.05359754338860512, -0.054036110639572144, 0.03405112400650978, 0.03515071049332619, 0.06364285200834274, 0.061774659901857376, -0.03272922709584236, -0.019361823797225952, -0.07022866606712341, -0.003627241123467684, -0.11459988355636597, -0.1991611272096634, -0.06412824243307114, -0.0331999771296978, 0.14189817011356354, -0.2025391310453415, -0.00022379134315997362, -0.02607038803398609, 0.12059290707111359, 0.016795342788100243, -0.05822905898094177, 0.007992630824446678, 0.028843626379966736, 0.005820069927722216, -0.09959658980369568, 0.040679868310689926, 0.008362533524632454, -0.05546140298247337, -0.05987454205751419, -0.10857754200696945, -0.004287936259061098, 0.056709662079811096, 0.08015243709087372, -0.10516956448554993, -0.008331558667123318, -0.05046014115214348, -0.046039748936891556, -0.08778123557567596, 0.009300461038947105, 0.19594398140907288, 0.03254972770810127, 0.12067074328660965, -0.06135949864983559, -0.07119569927453995, 0.0007907753461040556, 0.02290605753660202, 0.022637614980340004, 0.08967417478561401, 0.10648936778306961, -0.10022599250078201, 0.08745121955871582, 0.07096128165721893, -0.04748564213514328, 0.11922593414783478, -0.04437382519245148, -0.08224190026521683, -0.02118493989109993, 0.007308514788746834, -0.03369244560599327, 0.14040891826152802, -0.08365296572446823, 0.012228668667376041, 0.033664435148239136, 0.024698244407773018, 0.017515089362859726, -0.17010009288787842, -0.0003877005947288126, 0.012306326068937778, -0.06491052359342575, -0.03806307911872864, -0.02539004199206829, 0.03647533059120178, 0.09402912855148315, 0.026335103437304497, -0.043559953570365906, 0.017209649085998535, -0.011756537482142448, -0.07026827335357666, 0.19168798625469208, -0.10816092789173126, -0.09171050041913986, -0.10977213084697723, 0.02816464938223362, -0.04333861172199249, -0.036469291895627975, 0.004900800995528698, -0.08170995861291885, -0.054913632571697235, -0.08891789615154266, -0.02368106134235859, -0.017407754436135292, -0.0020512868650257587, 0.025537066161632538, -0.015272366814315319, 0.07269003242254257, -0.13183444738388062, 0.004500729031860828, -0.029547108337283134, -0.10390126705169678, 0.0081814955919981, 0.06339468061923981, 0.08486423641443253, 0.09941355139017105, -0.013275633566081524, 0.013034014962613583, -0.02753310464322567, 0.23935729265213013, -0.05523629114031792, 0.016445765271782875, 0.08309023827314377, -0.008073221892118454, 0.061132289469242096, 0.14381898939609528, 0.030688559636473656, -0.10431862622499466, 0.025953762233257294, 0.08163107186555862, -0.011038008145987988, -0.24897339940071106, -0.0284225232899189, -0.020724663510918617, -0.0707658901810646, 0.08836710453033447, 0.039247170090675354, -0.04642176628112793, 0.03808034583926201, 0.010029531084001064, 0.013381707482039928, -0.0520780123770237, 0.07355021685361862, 0.0843670442700386, 0.04353627189993858, 0.09433440864086151, -0.021902009844779968, -0.011848367750644684, 0.06583738327026367, 0.01648692786693573, 0.27008160948753357, -0.027658648788928986, 0.12561944127082825, 0.026215050369501114, 0.14808818697929382, -0.030173281207680702, 0.04741824045777321, 0.01739512011408806, 0.005407729651778936, -0.0065496391616761684, -0.05233270674943924, -0.029696788638830185, 0.011068694293498993, -0.03195236995816231, 0.03250180929899216, -0.07279933243989944, 0.047076787799596786, 0.013146075420081615, 0.3009730875492096, 0.045938827097415924, -0.2810386121273041, -0.06019127368927002, -0.0018683809321373701, -0.04651669040322304, -0.07471029460430145, 0.003055026987567544, 0.14578765630722046, -0.12702466547489166, 0.03798813000321388, -0.05411168932914734, 0.08837953954935074, -0.04741634428501129, 0.001610225299373269, 0.06261120736598969, 0.1440889835357666, -0.009700875729322433, 0.06894052773714066, -0.18947921693325043, 0.226405531167984, 0.02852742373943329, 0.1103932186961174, -0.06035618111491203, 0.01408607978373766, 0.009845548309385777, 0.02755713276565075, 0.10907329618930817, 0.0009013321832753718, -0.025028733536601067, -0.17028950154781342, -0.11681237816810608, 0.05810396000742912, 0.11713329702615738, -0.01726331003010273, 0.09594956785440445, -0.041293296962976456, -0.0022203929256647825, 0.036234308034181595, -0.07376648485660553, -0.12914054095745087, -0.08486288040876389, 0.002256471896544099, 0.016948333010077477, -0.03809606656432152, -0.04929003119468689, -0.09163624048233032, -0.022496649995446205, 0.13634897768497467, -0.0037354726810008287, -0.04340695962309837, -0.13446609675884247, 0.0543861910700798, 0.14274707436561584, -0.05839828774333, 0.020098760724067688, 0.004934961907565594, 0.10236785560846329, 0.05104810371994972, -0.08193442225456238, 0.05160623416304588, -0.06715316325426102, -0.16111771762371063, -0.06142124906182289, 0.11740478128194809, 0.0797603651881218, 0.053861405700445175, -0.0009413051302544773, 0.03152628242969513, 0.0018293826142325997, -0.08618604391813278, 0.007994327694177628, 0.056871525943279266, 0.08968495577573776, 0.05036772042512894, -0.09363982826471329, 0.047783177345991135, -0.034837059676647186, -0.0034498630557209253, 0.12854638695716858, 0.217262402176857, -0.08621593564748764, 0.08931028842926025, 0.06832049787044525, -0.08079566061496735, -0.17621539533138275, 0.06985089927911758, 0.13399696350097656, 0.015516777522861958, 0.037847407162189484, -0.2041638344526291, 0.1356952041387558, 0.11329668015241623, -0.016035865992307663, 0.05380372330546379, -0.2982475459575653, -0.12393644452095032, 0.06964975595474243, 0.10403447598218918, 0.043810710310935974, -0.12780733406543732, -0.028063546866178513, -0.00981133058667183, -0.14799900352954865, 0.14457851648330688, -0.07002902030944824, 0.12146817892789841, -0.007735132239758968, 0.1229071170091629, 0.023012535646557808, -0.04086962342262268, 0.13293087482452393, 0.07511954009532928, 0.08652495592832565, -0.03892330080270767, -0.003283581929281354, 0.048816800117492676, -0.06737486273050308, 0.04808460548520088, -0.03994075581431389, 0.06594525277614594, -0.16598033905029297, 0.00026189029449597, -0.08269107341766357, 0.04359126091003418, -0.04926004633307457, -0.04705997556447983, -0.028596950694918633, 0.046827781945466995, 0.06715118139982224, -0.03401912748813629, 0.028724610805511475, 0.022254327312111855, 0.0546577014029026, 0.09296517074108124, 0.08947992324829102, -0.016724711284041405, -0.1092996671795845, 0.010240268893539906, -0.006537417881190777, 0.05299123004078865, -0.10064227133989334, 0.01652168482542038, 0.13452357053756714, 0.05766476318240166, 0.12735705077648163, 0.025512252002954483, -0.03360888361930847, -0.014683995395898819, 0.015953144058585167, -0.12466071546077728, -0.11977624148130417, 0.03773465380072594, -0.04389285296201706, -0.1565195769071579, 0.005159350577741861, 0.10248719155788422, -0.03726267069578171, -0.013239732012152672, -0.010839066468179226, 0.0249004103243351, -0.01309062447398901, 0.2012481391429901, 0.04038092866539955, 0.0630275160074234, -0.10146450251340866, 0.12493161857128143, 0.05735764652490616, -0.044854555279016495, 0.056237172335386276, 0.06641333550214767, -0.09265051037073135, -0.004882903303951025, 0.10986120998859406, 0.17187869548797607, -0.04552818462252617, -0.019290078431367874, -0.07200140506029129, -0.07478519529104233, 0.05727017670869827, 0.16154049336910248, 0.05008179694414139, -0.006394519470632076, -0.043263182044029236, 0.02613610401749611, -0.12470318377017975, 0.07324833422899246, 0.049126241356134415, 0.06793814152479172, -0.10697328299283981, 0.11242903769016266, -0.009470007382333279, 0.035856179893016815, -0.01549078244715929, 0.028165407478809357, -0.09716138988733292, -0.025803212076425552, -0.12282852828502655, 0.020501302555203438, -0.01015810389071703, 0.00708266394212842, -0.01005313079804182, -0.054664164781570435, -0.03754379227757454, 0.025817450135946274, -0.08113760501146317, -0.05519051104784012, 0.015912577509880066, 0.045174259692430496, -0.15462803840637207, -0.01288582757115364, 0.024409176781773567, -0.09351783990859985, 0.07714413851499557, 0.06534574925899506, 0.018063044175505638, 0.02707984298467636, -0.10699813812971115, -0.04510217532515526, 0.014067392796278, 0.028086388483643532, 0.0831775963306427, -0.0883057564496994, -0.015764541923999786, -0.03361646458506584, 0.04938320443034172, 0.014720261096954346, 0.09039397537708282, -0.11543577909469604, -0.0031559898052364588, -0.0574333481490612, -0.03460747376084328, -0.059620779007673264, 0.0335201732814312, 0.11450278013944626, 0.03663716837763786, 0.16878637671470642, -0.06739930063486099, 0.03914467617869377, -0.19416941702365875, -0.03365321829915047, 0.00154290406499058, -0.03906094282865524, -0.08463627099990845, -0.04329903423786163, 0.09141064435243607, -0.051317308098077774, 0.0920187309384346, -0.007850034162402153, 0.08814462274312973, 0.03133397921919823, -0.006100561004132032, -0.055543433874845505, 0.0016686638118699193, 0.1467006951570511, 0.05914546176791191, -0.018710795789957047, 0.10201012343168259, -0.007920267060399055, 0.05607221648097038, 0.04090427607297897, 0.2268306016921997, 0.1475781500339508, -0.021926304325461388, 0.0642741248011589, 0.06969840824604034, -0.12084785848855972, -0.12609942257404327, 0.1401122808456421, -0.04720032587647438, 0.12125783413648605, -0.05369662493467331, 0.22151154279708862, 0.0242452472448349, -0.17750556766986847, 0.05122889578342438, -0.05462505295872688, -0.12043353915214539, -0.12047421932220459, -0.015386846847832203, -0.08134916424751282, -0.0987972617149353, 0.025393836200237274, -0.12125399708747864, 0.06550829857587814, 0.11803292483091354, 0.015571324154734612, 0.021553929895162582, 0.1522049456834793, -0.04216644912958145, 0.01771533489227295, 0.0599549375474453, 0.023652493953704834, -0.004968385212123394, -0.06127346679568291, -0.06522779911756516, 0.05053035914897919, 0.03573209419846535, 0.08548583090305328, -0.04621020704507828, 0.018053852021694183, 0.031716689467430115, -0.014629310928285122, -0.07401849329471588, 0.01224654819816351, 0.02578665316104889, 0.03904418647289276, 0.05460406839847565, 0.05423756688833237, 0.01731692999601364, -0.03525242581963539, 0.26723915338516235, -0.07221081852912903, -0.08480261266231537, -0.13079752027988434, 0.19921894371509552, 0.016276516020298004, -0.018230101093649864, 0.07604940235614777, -0.10359815508127213, -0.023131053894758224, 0.1668596714735031, 0.12329896539449692, -0.1026468500494957, -0.02935182861983776, -0.016487494111061096, -0.011973035521805286, -0.037797246128320694, 0.1175597533583641, 0.09293139725923538, 0.008060707710683346, -0.07695503532886505, -0.027344753965735435, -0.01740707829594612, -0.04458590969443321, -0.06454966962337494, 0.03670312464237213, 0.014352994970977306, 0.0021981324534863234, -0.038628190755844116, 0.05302206426858902, -0.010999244637787342, -0.24243012070655823, 0.030739257112145424, -0.1560664027929306, -0.18140435218811035, -0.030618911609053612, 0.06531023979187012, -0.006675512995570898, 0.038689177483320236, -0.019366944208741188, 0.003827463136985898, 0.14904356002807617, -0.035210683941841125, -0.04837603121995926, -0.12206985801458359, 0.10299120098352432, -0.10207558423280716, 0.2064913809299469, 0.008180767297744751, 0.08390315622091293, 0.09692217409610748, 0.02254580147564411, -0.1351996660232544, 0.03335266932845116, 0.07381395250558853, -0.10920532047748566, 0.014553550630807877, 0.15226738154888153, -0.055476799607276917, 0.07967071980237961, 0.026822667568922043, -0.10382917523384094, -0.019237732514739037, -0.026185588911175728, -0.03163585811853409, -0.07971859723329544, -0.015361916273832321, -0.06449729204177856, 0.16489432752132416, 0.21933604776859283, -0.025346972048282623, 0.01690429449081421, -0.08604616671800613, 0.01677265390753746, 0.04486215114593506, 0.05340868979692459, -0.042892936617136, -0.20623816549777985, 0.02972445823252201, 0.020090730860829353, 0.024226972833275795, -0.19503293931484222, -0.08434601128101349, 0.04530324414372444, -0.02871193177998066, -0.05232631042599678, 0.10025361180305481, 0.023637238889932632, 0.04284542426466942, -0.03355925902724266, -0.09701137989759445, -0.04463896155357361, 0.14435286819934845, -0.16182750463485718, -0.05369797721505165 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-512-finetuned-squad-seed-4 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-512-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-512-finetuned-squad-seed-4
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-4 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09966001659631729, 0.15220943093299866, -0.002165052341297269, 0.09215453267097473, 0.13804569840431213, 0.04054972156882286, 0.08960509300231934, 0.13466548919677734, -0.08075296133756638, 0.07343575358390808, 0.0786828026175499, 0.05385884642601013, 0.052196282893419266, 0.126234233379364, -0.04678627476096153, -0.20935961604118347, 0.012704918161034584, -0.0192357636988163, -0.056068360805511475, 0.09804561734199524, 0.0820346549153328, -0.10505608469247818, 0.08053681999444962, -0.019672470167279243, -0.15352873504161835, 0.00960222166031599, -0.038497861474752426, -0.022706039249897003, 0.09477122873067856, -0.0074058836326003075, 0.0975036695599556, 0.010169883258640766, 0.14042021334171295, -0.21041348576545715, -0.00026746554067358375, 0.07774300873279572, 0.036039236932992935, 0.08926691114902496, 0.04716551676392555, 0.026001039892435074, 0.04875082150101662, -0.15313035249710083, 0.09030001610517502, 0.025933530181646347, -0.07735767215490341, -0.09127272665500641, -0.09212630242109299, 0.02008129470050335, 0.07996765524148941, 0.08263108134269714, 0.008864750154316425, 0.131179079413414, -0.09113243222236633, 0.08294201642274857, 0.197071373462677, -0.2752186357975006, -0.06713058799505234, 0.04754006862640381, 0.05322122946381569, 0.06790133565664291, -0.11811918020248413, -0.027205146849155426, 0.030074773356318474, 0.032353196293115616, 0.09411422163248062, -0.01986590027809143, -0.13778512179851532, 0.0013736315304413438, -0.13285449147224426, -0.014064356684684753, 0.1111459955573082, 0.04903457313776016, -0.04532456398010254, -0.06411879509687424, -0.0759543627500534, -0.10884923487901688, -0.024030182510614395, -0.021734291687607765, 0.05320807546377182, -0.05501750856637955, -0.05559831112623215, -0.03966689109802246, -0.05957271158695221, -0.08717699348926544, -0.003048204816877842, 0.11760546267032623, 0.043406158685684204, 0.024852050468325615, -0.03575218468904495, 0.10303238779306412, 0.0012051158118993044, -0.13233454525470734, -0.016187047585844994, 0.008980801329016685, -0.12272998690605164, -0.05845564231276512, -0.027013063430786133, 0.014030718244612217, 0.016176780685782433, 0.1495962142944336, -0.0393727570772171, 0.08214591443538666, 0.016575787216424942, -0.0204132292419672, -0.011112288571894169, 0.14284686744213104, -0.03953510895371437, -0.05557180941104889, 0.005002637393772602, 0.09698481112718582, -0.00039002360426820815, -0.004911903757601976, -0.07433242350816727, -0.01938813365995884, 0.09220698475837708, 0.05636081099510193, -0.05456320196390152, 0.03339283913373947, -0.032197125256061554, -0.024928508326411247, 0.022647690027952194, -0.12442096322774887, 0.03656330332159996, 0.00949500035494566, -0.08315524458885193, -0.03772253915667534, 0.011465087532997131, -0.016762226819992065, -0.02019207552075386, 0.08924215286970139, -0.08705513924360275, -0.005969824269413948, -0.07743440568447113, -0.07344028353691101, 0.015321916900575161, -0.14180201292037964, -0.014116620644927025, -0.04824189096689224, -0.20377400517463684, -0.03892144188284874, 0.043949078768491745, -0.0762372836470604, -0.042043328285217285, -0.05797605589032173, -0.08368546515703201, 0.014769353903830051, -0.004116421099752188, 0.16868270933628082, -0.060010410845279694, 0.07636011391878128, -0.013927878811955452, 0.04237302392721176, 0.010204142890870571, 0.0482030063867569, -0.08522050827741623, 0.023359447717666626, -0.14260464906692505, 0.07768642902374268, -0.09586871415376663, 0.011908934451639652, -0.1240435540676117, -0.08906842768192291, 0.04084507375955582, -0.02766989916563034, 0.06892213970422745, 0.14354756474494934, -0.19336554408073425, 0.002385365078225732, 0.11482873558998108, -0.048611391335725784, -0.046989940106868744, 0.07802224159240723, -0.05657326802611351, 0.03147205337882042, 0.05160949006676674, 0.16711470484733582, 0.07509761303663254, -0.15020303428173065, -0.017121881246566772, 0.024944312870502472, 0.04861777648329735, 0.005018238443881273, 0.04495386406779289, 0.0051955003291368484, 0.02539741061627865, 0.0035454381722956896, -0.07739879190921783, -0.026046667248010635, -0.08993244171142578, -0.07160119712352753, -0.05150625854730606, -0.08870459347963333, 0.02233649604022503, 0.010805407539010048, 0.021277068182826042, -0.058218274265527725, -0.10068118572235107, 0.10255446285009384, 0.12891080975532532, -0.05198251083493233, 0.006634147837758064, -0.06988196074962616, 0.020404282957315445, -0.030817218124866486, -0.036036621779203415, -0.193924218416214, -0.1352517455816269, 0.05255378782749176, -0.0520625039935112, 0.03371346369385719, 0.03537900745868683, 0.06453011184930801, 0.062334220856428146, -0.03317844122648239, -0.019651249051094055, -0.06934987753629684, -0.00317585957236588, -0.11426711082458496, -0.19944466650485992, -0.06457191705703735, -0.03283195197582245, 0.14234529435634613, -0.203607976436615, 0.0001841207267716527, -0.025221632793545723, 0.12023179978132248, 0.016392210498452187, -0.057909104973077774, 0.008831894025206566, 0.029860176146030426, 0.006860300898551941, -0.09950869530439377, 0.04114740714430809, 0.008146759122610092, -0.05401112884283066, -0.06125500053167343, -0.10917924344539642, -0.002547134179621935, 0.058039698749780655, 0.07942721247673035, -0.10546071827411652, -0.008170080371201038, -0.05017293989658356, -0.045956388115882874, -0.08627726137638092, 0.008929876610636711, 0.1970568597316742, 0.031860653311014175, 0.12055668979883194, -0.06052636727690697, -0.07086396217346191, 0.001350529957562685, 0.02441892959177494, 0.023600706830620766, 0.08940600603818893, 0.10541684925556183, -0.09763853996992111, 0.08774875849485397, 0.07014866918325424, -0.04737154394388199, 0.11989672482013702, -0.044796258211135864, -0.08185828477144241, -0.020526494830846786, 0.006223208270967007, -0.03404749929904938, 0.14133663475513458, -0.08448724448680878, 0.01097305491566658, 0.033483877778053284, 0.024210063740611076, 0.01778339222073555, -0.1691184937953949, -0.000231937097851187, 0.011296060867607594, -0.06396014243364334, -0.03916468471288681, -0.0250251442193985, 0.036011043936014175, 0.09376409649848938, 0.02645948901772499, -0.04444193094968796, 0.01724371127784252, -0.011772391386330128, -0.06986042857170105, 0.19183386862277985, -0.10847464948892593, -0.09081920236349106, -0.10973808169364929, 0.026527373120188713, -0.04441426694393158, -0.03687955439090729, 0.004396634642034769, -0.08339981734752655, -0.05544544756412506, -0.08854059129953384, -0.024801690131425858, -0.017318399623036385, -0.0022517507895827293, 0.02561561018228531, -0.015422639437019825, 0.07247995585203171, -0.1316290944814682, 0.004571620374917984, -0.02978774718940258, -0.10409142822027206, 0.008548418991267681, 0.06398473680019379, 0.08510599285364151, 0.09870053827762604, -0.012977675534784794, 0.01307336613535881, -0.0273914635181427, 0.24022479355335236, -0.055464860051870346, 0.016777418553829193, 0.08318735659122467, -0.007139922119677067, 0.05995578318834305, 0.14368131756782532, 0.03174428269267082, -0.10489795356988907, 0.02565295435488224, 0.08218108117580414, -0.010469658300280571, -0.2489979863166809, -0.027786821126937866, -0.021290019154548645, -0.07099706679582596, 0.08847323805093765, 0.03927362337708473, -0.04569166526198387, 0.0385587140917778, 0.010914985090494156, 0.0147231575101614, -0.05213556066155434, 0.07318290323019028, 0.08630907535552979, 0.04307786747813225, 0.09491388499736786, -0.022168811410665512, -0.011853022500872612, 0.06524203717708588, 0.016775010153651237, 0.2709018886089325, -0.027774330228567123, 0.12553425133228302, 0.026496684178709984, 0.14792662858963013, -0.02992030791938305, 0.04849877953529358, 0.01676376536488533, 0.004864733666181564, -0.006110796704888344, -0.052436672151088715, -0.02851644903421402, 0.010231032967567444, -0.03335561975836754, 0.031879983842372894, -0.07305830717086792, 0.04520178586244583, 0.013250493444502354, 0.30029183626174927, 0.04561356082558632, -0.2832711338996887, -0.06112014502286911, -0.0025319717824459076, -0.04614933207631111, -0.07427556067705154, 0.0032466037664562464, 0.14520485699176788, -0.12652887403964996, 0.03917689993977547, -0.054091066122055054, 0.0879734605550766, -0.04762985557317734, 0.0025210806634277105, 0.06469283998012543, 0.1448581963777542, -0.010452811606228352, 0.06840676069259644, -0.1895495504140854, 0.22489696741104126, 0.028785832226276398, 0.11117812246084213, -0.060671187937259674, 0.014277487993240356, 0.010537032037973404, 0.028604790568351746, 0.10864710807800293, 0.00040300097316503525, -0.024580879136919975, -0.17034049332141876, -0.11578671634197235, 0.05920439586043358, 0.11649778485298157, -0.01610378362238407, 0.09661505371332169, -0.04044679179787636, -0.0027193191926926374, 0.035854026675224304, -0.07539072632789612, -0.12945306301116943, -0.08581603318452835, 0.0018252598820254207, 0.017781658098101616, -0.037475332617759705, -0.04873034730553627, -0.09218013286590576, -0.02420111559331417, 0.13567040860652924, -0.002865725662559271, -0.04361303523182869, -0.13498662412166595, 0.05331111699342728, 0.14289774000644684, -0.057163745164871216, 0.0204527098685503, 0.005629686638712883, 0.10155630856752396, 0.052106041461229324, -0.08173253387212753, 0.051732465624809265, -0.06760963052511215, -0.16033931076526642, -0.06145937368273735, 0.11688801646232605, 0.07919981330633163, 0.053035933524370193, -0.001258792937733233, 0.03190884739160538, 0.0011750234989449382, -0.08680959790945053, 0.008744730614125729, 0.05499257892370224, 0.09124116599559784, 0.049512334167957306, -0.09459221363067627, 0.04724783077836037, -0.034135330468416214, -0.0025350037030875683, 0.12640784680843353, 0.21451468765735626, -0.08537665754556656, 0.08761562407016754, 0.06888794153928757, -0.08027439564466476, -0.1755870133638382, 0.07095903158187866, 0.1325872391462326, 0.016017083078622818, 0.036179158836603165, -0.20511756837368011, 0.13708263635635376, 0.11314617842435837, -0.01503576897084713, 0.05594577640295029, -0.29511794447898865, -0.1234029084444046, 0.06945284456014633, 0.10479096323251724, 0.04396124556660652, -0.1282176822423935, -0.02746015414595604, -0.009982014074921608, -0.148260697722435, 0.14360396564006805, -0.07279561460018158, 0.12141499668359756, -0.008079038001596928, 0.12325935065746307, 0.022306568920612335, -0.041117846965789795, 0.13212327659130096, 0.07608543336391449, 0.08721240609884262, -0.039292171597480774, -0.002833222271874547, 0.04890643432736397, -0.06655426323413849, 0.048123713582754135, -0.04065606743097305, 0.06534260511398315, -0.16671797633171082, 0.00034680255339480937, -0.08328348398208618, 0.043267957866191864, -0.04921264201402664, -0.046689342707395554, -0.027583876624703407, 0.0470605194568634, 0.06607058644294739, -0.03424680978059769, 0.027470670640468597, 0.021748879924416542, 0.05543002486228943, 0.09202290326356888, 0.09029625356197357, -0.017954645678400993, -0.11022771149873734, 0.011349568143486977, -0.0070024821907281876, 0.05285274237394333, -0.10028666257858276, 0.015385285951197147, 0.1353379786014557, 0.0570400096476078, 0.1271010935306549, 0.02612900920212269, -0.0325230173766613, -0.01516580767929554, 0.01711028441786766, -0.1250055432319641, -0.11830759048461914, 0.03802631050348282, -0.04769841209053993, -0.15635517239570618, 0.006389346439391375, 0.10220877081155777, -0.037059396505355835, -0.01299059484153986, -0.010884345509111881, 0.024617578834295273, -0.013165687210857868, 0.20202726125717163, 0.04069337621331215, 0.06267828494310379, -0.1025850921869278, 0.12467391043901443, 0.05746536701917648, -0.04587482288479805, 0.05610952898859978, 0.0676707923412323, -0.09380531311035156, -0.0057639568112790585, 0.1085953414440155, 0.1733095645904541, -0.04393785446882248, -0.020032957196235657, -0.07308433204889297, -0.07527095079421997, 0.05720575526356697, 0.16001231968402863, 0.04940120875835419, -0.007240422070026398, -0.04340599849820137, 0.025812799111008644, -0.12525323033332825, 0.07290199398994446, 0.0478348471224308, 0.06807563453912735, -0.10677378624677658, 0.1118406280875206, -0.009196361526846886, 0.034962207078933716, -0.015490993857383728, 0.028709614649415016, -0.09766937047243118, -0.026168406009674072, -0.1228296235203743, 0.019555021077394485, -0.010733161121606827, 0.007675709202885628, -0.010533052496612072, -0.05356600135564804, -0.038215041160583496, 0.026105636730790138, -0.08116709440946579, -0.0547514408826828, 0.017602527514100075, 0.04564778506755829, -0.15401820838451385, -0.012269148603081703, 0.023315630853176117, -0.09368530660867691, 0.07710755616426468, 0.06537647545337677, 0.017873041331768036, 0.02773183584213257, -0.10484474152326584, -0.04544182866811752, 0.013417410664260387, 0.0274751428514719, 0.08380039036273956, -0.08779881149530411, -0.015147981233894825, -0.03377440944314003, 0.049741920083761215, 0.014961875975131989, 0.08958198875188828, -0.1149221733212471, -0.002684369683265686, -0.056523457169532776, -0.03358052670955658, -0.0603463351726532, 0.034029021859169006, 0.11558514088392258, 0.03554188460111618, 0.16887690126895905, -0.06751292198896408, 0.038329191505908966, -0.19441814720630646, -0.034069787710905075, 0.0013257261598482728, -0.04051951318979263, -0.08407057821750641, -0.042942773550748825, 0.09219774603843689, -0.051980793476104736, 0.09366534650325775, -0.008188367821276188, 0.08814318478107452, 0.031133420765399933, -0.006072328891605139, -0.05719812959432602, 0.0022951632272452116, 0.14647114276885986, 0.05877910926938057, -0.019422927871346474, 0.10122380405664444, -0.006980814505368471, 0.05505213886499405, 0.04211560636758804, 0.2250090092420578, 0.14681094884872437, -0.021185435354709625, 0.06406230479478836, 0.07047390937805176, -0.12171704322099686, -0.12512849271297455, 0.14133675396442413, -0.04712661728262901, 0.12205696105957031, -0.054729923605918884, 0.21988819539546967, 0.023698318749666214, -0.17668965458869934, 0.051519040018320084, -0.0557587668299675, -0.1205553188920021, -0.1191430538892746, -0.014051279053092003, -0.08057130128145218, -0.09930123388767242, 0.02558492310345173, -0.12183596193790436, 0.06456919759511948, 0.11914625018835068, 0.016252299770712852, 0.020987175405025482, 0.1537276953458786, -0.04128335416316986, 0.018310507759451866, 0.06009745970368385, 0.02346956729888916, -0.005267795640975237, -0.06072842702269554, -0.06441469490528107, 0.04980854317545891, 0.03421756252646446, 0.08519703894853592, -0.046812523156404495, 0.017563773319125175, 0.032217010855674744, -0.013715646229684353, -0.07352891564369202, 0.012273364700376987, 0.02580481953918934, 0.0387406200170517, 0.055680010467767715, 0.05368656665086746, 0.016755135729908943, -0.035511862486600876, 0.2659822404384613, -0.07220644503831863, -0.08327852189540863, -0.13165751099586487, 0.19845330715179443, 0.01617288775742054, -0.018808752298355103, 0.0752326026558876, -0.10300939530134201, -0.022025374695658684, 0.16834795475006104, 0.1252242624759674, -0.1020842120051384, -0.029591167345643044, -0.01588175818324089, -0.011957569047808647, -0.03764400631189346, 0.1178724616765976, 0.09289658069610596, 0.00762938940897584, -0.07663208991289139, -0.027271952480077744, -0.01686769351363182, -0.04443778470158577, -0.06432624906301498, 0.03655987232923508, 0.015092923305928707, 0.0018676294712349772, -0.038086120039224625, 0.05312030762434006, -0.010689923539757729, -0.24298760294914246, 0.03188848868012428, -0.15569210052490234, -0.18190670013427734, -0.031532786786556244, 0.06449554860591888, -0.005829358007758856, 0.03937122970819473, -0.018777167424559593, 0.003520403290167451, 0.15010762214660645, -0.03524013236165047, -0.04770885780453682, -0.12302052229642868, 0.10315456241369247, -0.10200274735689163, 0.20528100430965424, 0.007650632876902819, 0.08379316329956055, 0.09744634479284286, 0.022242719307541847, -0.1350107342004776, 0.033932123333215714, 0.07321755588054657, -0.10971549153327942, 0.014991046860814095, 0.15146900713443756, -0.0553487166762352, 0.07880373299121857, 0.025656983256340027, -0.10277531296014786, -0.018663931638002396, -0.025754086673259735, -0.03140614181756973, -0.07968080788850784, -0.014978645369410515, -0.0641019269824028, 0.16523194313049316, 0.22081373631954193, -0.025210561230778694, 0.016596393659710884, -0.08592212200164795, 0.016949733719229698, 0.04543443024158478, 0.05154825747013092, -0.0435904935002327, -0.20648851990699768, 0.02991086058318615, 0.020267443731427193, 0.023792775347828865, -0.19593128561973572, -0.08310695737600327, 0.04507557302713394, -0.028430601581931114, -0.05255468189716339, 0.10002361983060837, 0.02449454925954342, 0.04368523880839348, -0.03407728672027588, -0.09397220611572266, -0.044574838131666183, 0.1440066695213318, -0.16211247444152832, -0.05421438068151474 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-512-finetuned-squad-seed-6 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-512-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-512-finetuned-squad-seed-6
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-6 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09938522428274155, 0.15168806910514832, -0.0021347582805901766, 0.09179674834012985, 0.13840579986572266, 0.040038228034973145, 0.08954925835132599, 0.13527023792266846, -0.07936917245388031, 0.0738215371966362, 0.07802405953407288, 0.05503440275788307, 0.05260271951556206, 0.1256939321756363, -0.04679461568593979, -0.20917989313602448, 0.012993685901165009, -0.018971389159560204, -0.055875420570373535, 0.09824998676776886, 0.08207226544618607, -0.10523631423711777, 0.07976184785366058, -0.020128881558775902, -0.15398386120796204, 0.009787905029952526, -0.03896987438201904, -0.022142531350255013, 0.09446476399898529, -0.008054855279624462, 0.09709391742944717, 0.010364314541220665, 0.14021418988704681, -0.21125145256519318, -0.00021655253658536822, 0.07806023210287094, 0.036192163825035095, 0.08941151201725006, 0.04805903509259224, 0.02597297541797161, 0.050449006259441376, -0.1528567671775818, 0.09008294343948364, 0.026522168889641762, -0.07724771648645401, -0.08896004408597946, -0.09250917285680771, 0.01925162971019745, 0.08041635900735855, 0.08332756161689758, 0.008315544575452805, 0.13237948715686798, -0.09179893136024475, 0.08307988941669464, 0.1990719735622406, -0.27358704805374146, -0.06715110689401627, 0.04878498986363411, 0.05321338027715683, 0.06675276160240173, -0.11906043440103531, -0.028223278000950813, 0.029799124225974083, 0.03207790106534958, 0.09284670650959015, -0.0191204771399498, -0.13934628665447235, 0.0010447441600263119, -0.13329888880252838, -0.014296181499958038, 0.10941167175769806, 0.049291450530290604, -0.044575467705726624, -0.06397457420825958, -0.07631652802228928, -0.10771448165178299, -0.02385650761425495, -0.0216361116617918, 0.0530819408595562, -0.055009689182043076, -0.05528499558568001, -0.03951699286699295, -0.05933690071105957, -0.08833868056535721, -0.0026505375280976295, 0.11709621548652649, 0.04341864585876465, 0.02451176941394806, -0.03649595007300377, 0.10290251672267914, 0.0012046372285112739, -0.13278751075267792, -0.017023157328367233, 0.00961272232234478, -0.12296188622713089, -0.05848250910639763, -0.026526689529418945, 0.01190057210624218, 0.0157996267080307, 0.1469329595565796, -0.039370737969875336, 0.08258505165576935, 0.0158075001090765, -0.020357251167297363, -0.011604313738644123, 0.14314980804920197, -0.03878336772322655, -0.053389083594083786, 0.0041526914574205875, 0.09714730083942413, -0.0009800087427720428, -0.004467541817575693, -0.0738212987780571, -0.019302653148770332, 0.0930342823266983, 0.05616084113717079, -0.05388835817575455, 0.03284863010048866, -0.032711442559957504, -0.02508571185171604, 0.02327878214418888, -0.1241484135389328, 0.036857523024082184, 0.00908144935965538, -0.08351469039916992, -0.038867197930812836, 0.011576812714338303, -0.017015239223837852, -0.020535258576273918, 0.09014511108398438, -0.08743433654308319, -0.005613011308014393, -0.07832089811563492, -0.07299406081438065, 0.015912773087620735, -0.1433657556772232, -0.0143772903829813, -0.047221072018146515, -0.2041957527399063, -0.03900926932692528, 0.04337874427437782, -0.07655609399080276, -0.04157692939043045, -0.05892046168446541, -0.08453276753425598, 0.015225724317133427, -0.003596886061131954, 0.16964033246040344, -0.05956718325614929, 0.07710956037044525, -0.014133434742689133, 0.041933268308639526, 0.010740099474787712, 0.04897545650601387, -0.0865275114774704, 0.02302921749651432, -0.14192073047161102, 0.07801628857851028, -0.09689681977033615, 0.01165004726499319, -0.12496659904718399, -0.08828428387641907, 0.03958776965737343, -0.028402645140886307, 0.06982622295618057, 0.14441558718681335, -0.19367174804210663, 0.002823098096996546, 0.11539719253778458, -0.04913922771811485, -0.047272689640522, 0.07695362716913223, -0.05628751218318939, 0.03114151768386364, 0.05086155980825424, 0.16753976047039032, 0.07461196929216385, -0.14991065859794617, -0.01855393312871456, 0.02439543977379799, 0.04946271330118179, 0.004589853808283806, 0.04470448940992355, 0.005147486925125122, 0.026986800134181976, 0.0034241920802742243, -0.07743671536445618, -0.02628890424966812, -0.0902489498257637, -0.07111549377441406, -0.05230821669101715, -0.0887347087264061, 0.021737579256296158, 0.012519326992332935, 0.02089383639395237, -0.05772750824689865, -0.10028503090143204, 0.10235355794429779, 0.1286972165107727, -0.051333487033843994, 0.006817708257585764, -0.06928465515375137, 0.01946377567946911, -0.03161539509892464, -0.03586287423968315, -0.19561251997947693, -0.13615739345550537, 0.0531795360147953, -0.05267345905303955, 0.0342748761177063, 0.03463178128004074, 0.06442049890756607, 0.06118517741560936, -0.03333136439323425, -0.019828690215945244, -0.07020695507526398, -0.00368922995403409, -0.11442001909017563, -0.19954560697078705, -0.06466621160507202, -0.033697906881570816, 0.14003896713256836, -0.20281179249286652, -0.00022225134307518601, -0.025178616866469383, 0.12104606628417969, 0.01645190641283989, -0.05846288427710533, 0.009106027893722057, 0.02959083393216133, 0.006543932016938925, -0.0997503250837326, 0.04099868983030319, 0.007272091694176197, -0.05382265895605087, -0.06119980290532112, -0.10912647843360901, -0.004822456743568182, 0.057532403618097305, 0.08100126683712006, -0.10547660291194916, -0.008254081010818481, -0.05019223690032959, -0.046147845685482025, -0.08723043650388718, 0.010094711557030678, 0.19646117091178894, 0.032316904515028, 0.11966366320848465, -0.06083675101399422, -0.07113160938024521, 0.001801409525796771, 0.024568820372223854, 0.022745586931705475, 0.09070082008838654, 0.10722294449806213, -0.10010474175214767, 0.08878139406442642, 0.07088890671730042, -0.046588484197854996, 0.12016676366329193, -0.04513711854815483, -0.08237317204475403, -0.019031140953302383, 0.006781751289963722, -0.03383442014455795, 0.14097461104393005, -0.08395031094551086, 0.01151549257338047, 0.03333301097154617, 0.024572422727942467, 0.017662718892097473, -0.16929206252098083, -0.0002604943874757737, 0.010950617492198944, -0.06384873390197754, -0.039633575826883316, -0.02471771091222763, 0.03600483387708664, 0.09400234371423721, 0.026122797280550003, -0.04403270035982132, 0.016605861485004425, -0.012056460604071617, -0.06961514055728912, 0.19269467890262604, -0.10802953690290451, -0.0897054597735405, -0.10843979567289352, 0.02724086493253708, -0.04409925639629364, -0.037130460143089294, 0.004492780193686485, -0.08460129052400589, -0.055311329662799835, -0.08820530027151108, -0.02455066330730915, -0.016736451536417007, -0.003286543535068631, 0.02475030906498432, -0.015203517861664295, 0.07180484384298325, -0.13221053779125214, 0.004830381833016872, -0.03031158447265625, -0.10424540936946869, 0.008153185248374939, 0.06350855529308319, 0.08522236347198486, 0.09915366768836975, -0.013326100073754787, 0.013118944130837917, -0.02734486386179924, 0.2391972541809082, -0.055902622640132904, 0.016087766736745834, 0.08294591307640076, -0.006146969273686409, 0.06063070520758629, 0.1439129263162613, 0.031100312247872353, -0.10475089401006699, 0.026086457073688507, 0.08286333084106445, -0.010861990042030811, -0.25006091594696045, -0.028228970244526863, -0.02156367339193821, -0.07146900147199631, 0.08845669776201248, 0.03966891020536423, -0.046198442578315735, 0.038613177835941315, 0.010124455206096172, 0.012797706760466099, -0.052251651883125305, 0.07355183362960815, 0.08413912355899811, 0.04410748928785324, 0.09454724937677383, -0.02225085347890854, -0.011430047452449799, 0.06435053795576096, 0.017169402912259102, 0.2717325985431671, -0.02815925143659115, 0.12521572411060333, 0.02618541568517685, 0.14752280712127686, -0.030552774667739868, 0.04871305823326111, 0.016296297311782837, 0.004788742866367102, -0.006069813389331102, -0.052277740091085434, -0.02855929546058178, 0.010027180425822735, -0.034059636294841766, 0.03234920650720596, -0.07284247875213623, 0.04580772668123245, 0.012853845953941345, 0.30068424344062805, 0.045853205025196075, -0.28219088912010193, -0.06024933606386185, -0.0025336588732898235, -0.04631829634308815, -0.07485853135585785, 0.002852414269000292, 0.14433272182941437, -0.1260746419429779, 0.038977980613708496, -0.05454239994287491, 0.08887079358100891, -0.04591735452413559, 0.0018730999436229467, 0.06399189680814743, 0.14508147537708282, -0.010199591517448425, 0.06910015642642975, -0.1905580461025238, 0.22683854401111603, 0.028751302510499954, 0.11098826676607132, -0.06114780902862549, 0.013968859799206257, 0.009819988161325455, 0.026689475402235985, 0.10931307077407837, 0.000279416999546811, -0.02502025105059147, -0.1692919135093689, -0.11512584239244461, 0.05893277749419212, 0.11739374697208405, -0.01620447263121605, 0.09595130383968353, -0.04046744480729103, -0.0026295578572899103, 0.03666966035962105, -0.07520927488803864, -0.1294252872467041, -0.08600933849811554, 0.0021255428437143564, 0.017171606421470642, -0.03844057396054268, -0.04833027720451355, -0.0918874442577362, -0.02268231473863125, 0.1353587508201599, -0.0024773061741143465, -0.04305308684706688, -0.1348579227924347, 0.05442480742931366, 0.1430695652961731, -0.05772765353322029, 0.02023024670779705, 0.004915163852274418, 0.10131708532571793, 0.05132555961608887, -0.08225134760141373, 0.052581675350666046, -0.06752932816743851, -0.16074632108211517, -0.061404433101415634, 0.11665334552526474, 0.07972503453493118, 0.053514670580625534, -0.0014943518908694386, 0.03213369846343994, 0.001289775362238288, -0.08649939298629761, 0.00903804786503315, 0.054943010210990906, 0.09074712544679642, 0.05042213574051857, -0.09421181678771973, 0.04609581083059311, -0.03501271829009056, -0.00304826139472425, 0.12620621919631958, 0.2152780443429947, -0.08515891432762146, 0.08792301267385483, 0.06954451650381088, -0.08049467951059341, -0.17627304792404175, 0.0716429352760315, 0.13302084803581238, 0.015359985642135143, 0.036931052803993225, -0.20480671525001526, 0.13692434132099152, 0.1124112457036972, -0.01547236554324627, 0.05504253879189491, -0.2961054742336273, -0.12314621359109879, 0.06958504766225815, 0.10476340353488922, 0.04194345697760582, -0.1283199042081833, -0.027568578720092773, -0.009508021175861359, -0.1476355642080307, 0.14472666382789612, -0.07085616886615753, 0.1216941773891449, -0.008547171019017696, 0.12389136105775833, 0.02255210280418396, -0.041622281074523926, 0.1305641531944275, 0.07618188858032227, 0.08740385621786118, -0.039173781871795654, -0.0029837151523679495, 0.04907465726137161, -0.0666172057390213, 0.04832148551940918, -0.04088686406612396, 0.06594536453485489, -0.1651737540960312, 0.0007922607474029064, -0.08416906744241714, 0.043731510639190674, -0.049244146794080734, -0.04674053564667702, -0.027702102437615395, 0.04746639356017113, 0.0664224699139595, -0.03447785601019859, 0.02934839390218258, 0.021747056394815445, 0.057167913764715195, 0.09188942611217499, 0.09076666831970215, -0.017481649294495583, -0.10904301702976227, 0.010563774965703487, -0.006271330174058676, 0.05289343371987343, -0.1012546494603157, 0.014985881745815277, 0.1352483332157135, 0.05824211612343788, 0.12690655887126923, 0.026593606919050217, -0.033523425459861755, -0.015150223858654499, 0.01628297194838524, -0.12443606555461884, -0.11930177360773087, 0.03828930854797363, -0.04322982206940651, -0.15702252089977264, 0.0069002388045191765, 0.10056212544441223, -0.03776795044541359, -0.01313331164419651, -0.010646238923072815, 0.02513076923787594, -0.012361006811261177, 0.20260387659072876, 0.04092046245932579, 0.0632404237985611, -0.1024128869175911, 0.12512198090553284, 0.057171329855918884, -0.04693707451224327, 0.056276481598615646, 0.06795741617679596, -0.0931553840637207, -0.005801820196211338, 0.1099809855222702, 0.171928271651268, -0.04423101246356964, -0.01858178898692131, -0.07184908539056778, -0.07499945163726807, 0.05754516273736954, 0.1616055965423584, 0.049400679767131805, -0.007459884975105524, -0.04294200241565704, 0.026073431596159935, -0.12602102756500244, 0.07340093702077866, 0.047346193343400955, 0.0684485211968422, -0.10654241591691971, 0.10924242436885834, -0.009316805750131607, 0.03539629280567169, -0.015298251062631607, 0.029250791296362877, -0.09745907038450241, -0.02607540972530842, -0.12024848908185959, 0.01929716020822525, -0.010651089251041412, 0.007195597980171442, -0.011037543416023254, -0.0543624684214592, -0.03718359395861626, 0.026234088465571404, -0.0814032256603241, -0.05538737028837204, 0.016962025314569473, 0.04532446712255478, -0.15466691553592682, -0.012347258627414703, 0.023776236921548843, -0.0929659977555275, 0.076107919216156, 0.06474912911653519, 0.017839794978499413, 0.028248490765690804, -0.10804776847362518, -0.045268166810274124, 0.0138663649559021, 0.027616946026682854, 0.08381272852420807, -0.08714504539966583, -0.015456786379218102, -0.03400107100605965, 0.04992689564824104, 0.014701693318784237, 0.08885392546653748, -0.11548138409852982, -0.003274933435022831, -0.05802597478032112, -0.0343547984957695, -0.05964023619890213, 0.034833937883377075, 0.11580678075551987, 0.03572980314493179, 0.16856835782527924, -0.0671905055642128, 0.039246175438165665, -0.19432976841926575, -0.03379394859075546, 0.0015888343332335353, -0.04040972888469696, -0.08457359671592712, -0.042152080684900284, 0.09240078926086426, -0.0520687997341156, 0.09091967344284058, -0.007872465997934341, 0.08901319652795792, 0.0314733162522316, -0.005271920934319496, -0.05739486217498779, 0.0022485433146357536, 0.1459052562713623, 0.0585494190454483, -0.018986329436302185, 0.10318879038095474, -0.006756998598575592, 0.054467376321554184, 0.04328714683651924, 0.22681157290935516, 0.14808714389801025, -0.02255120314657688, 0.06406299024820328, 0.07076523452997208, -0.12202142924070358, -0.12486843019723892, 0.14115899801254272, -0.04642342031002045, 0.12185068428516388, -0.055195361375808716, 0.22073230147361755, 0.023527728393673897, -0.17627713084220886, 0.05214143171906471, -0.056326884776353836, -0.12037050724029541, -0.11919742077589035, -0.014134400524199009, -0.08058907091617584, -0.09902966022491455, 0.026106800884008408, -0.12193460017442703, 0.0653689056634903, 0.11941827088594437, 0.015966804698109627, 0.02114577777683735, 0.15480218827724457, -0.04064125940203667, 0.018504973500967026, 0.060510702431201935, 0.023531032726168633, -0.005761665292084217, -0.061060670763254166, -0.0636550709605217, 0.05087986961007118, 0.034540705382823944, 0.08512594550848007, -0.046462204307317734, 0.016499685123562813, 0.03185965493321419, -0.013893328607082367, -0.07373128086328506, 0.012467521242797375, 0.026194192469120026, 0.038623932749032974, 0.056102313101291656, 0.053484901785850525, 0.017363475635647774, -0.035657040774822235, 0.26789718866348267, -0.07263273000717163, -0.08322165161371231, -0.1303585022687912, 0.1991032212972641, 0.01718057505786419, -0.018801914528012276, 0.0751943364739418, -0.10392244160175323, -0.022327326238155365, 0.16636428236961365, 0.12328138202428818, -0.10126281529664993, -0.029328733682632446, -0.016277939081192017, -0.011747827753424644, -0.03767300397157669, 0.1173161044716835, 0.09344495087862015, 0.008376006036996841, -0.07716566324234009, -0.026714326813817024, -0.016912654042243958, -0.04520859569311142, -0.06330473721027374, 0.0364115871489048, 0.015638668090105057, 0.001495819422416389, -0.03835752233862877, 0.05334778130054474, -0.011273865588009357, -0.24205534160137177, 0.030600793659687042, -0.15696588158607483, -0.1814410537481308, -0.03167017176747322, 0.06432055681943893, -0.005671018268913031, 0.03935149684548378, -0.018766529858112335, 0.00400667916983366, 0.14736652374267578, -0.03501074016094208, -0.04794243350625038, -0.12371645867824554, 0.10232842713594437, -0.10275804996490479, 0.2060110867023468, 0.007671484723687172, 0.08277203142642975, 0.09744898974895477, 0.022226519882678986, -0.13576801121234894, 0.03342512995004654, 0.0736277848482132, -0.11005357652902603, 0.014885645359754562, 0.15268252789974213, -0.055218618363142014, 0.07900401204824448, 0.025472311303019524, -0.10438857972621918, -0.01833130046725273, -0.026669325307011604, -0.03079959936439991, -0.08010972291231155, -0.013058532029390335, -0.06385594606399536, 0.16550536453723907, 0.22092154622077942, -0.025023620575666428, 0.016268664970993996, -0.0865335762500763, 0.016708020120859146, 0.04431403800845146, 0.05276259407401085, -0.04330530762672424, -0.20627984404563904, 0.0302711334079504, 0.020473040640354156, 0.02373982034623623, -0.19635483622550964, -0.08277904987335205, 0.04557685926556587, -0.02935543656349182, -0.052675873041152954, 0.09940487891435623, 0.02463161200284958, 0.043011657893657684, -0.034219712018966675, -0.09606406837701797, -0.04446857050061226, 0.14458473026752472, -0.16224467754364014, -0.05371061712503433 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-512-finetuned-squad-seed-8 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-512-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-512-finetuned-squad-seed-8
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-8 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-512-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.10028117150068283, 0.15329673886299133, -0.0021560241002589464, 0.09219719469547272, 0.13824830949306488, 0.04064027592539787, 0.08915290236473083, 0.13539980351924896, -0.07873748242855072, 0.07381702959537506, 0.07827338576316833, 0.05388198047876358, 0.052346039563417435, 0.12504296004772186, -0.04698167368769646, -0.20868314802646637, 0.012573715299367905, -0.018368292599916458, -0.05348511040210724, 0.09764616191387177, 0.08202508836984634, -0.10530125349760056, 0.07958079874515533, -0.020244332030415535, -0.15280106663703918, 0.009678567759692669, -0.03852682560682297, -0.02263079397380352, 0.0947282463312149, -0.007189096882939339, 0.09693874418735504, 0.009595907293260098, 0.14019936323165894, -0.21179533004760742, -0.0005181224551051855, 0.07833365350961685, 0.03594488650560379, 0.0894283577799797, 0.04700343310832977, 0.02720264531672001, 0.049296505749225616, -0.15323470532894135, 0.09021001309156418, 0.026139413937926292, -0.0770123302936554, -0.08940635621547699, -0.09195361286401749, 0.02064315229654312, 0.08004279434680939, 0.08272289484739304, 0.009268229827284813, 0.13383741676807404, -0.09031765908002853, 0.08368551731109619, 0.1994560807943344, -0.2733742594718933, -0.066207155585289, 0.04725056514143944, 0.0534004345536232, 0.06820697337388992, -0.11807696521282196, -0.028296874836087227, 0.029862796887755394, 0.03179096058011055, 0.09290634095668793, -0.019905077293515205, -0.1407725214958191, 0.0009251297451555729, -0.13299815356731415, -0.014809378422796726, 0.10975358635187149, 0.049443092197179794, -0.044938553124666214, -0.06386221200227737, -0.07743526995182037, -0.10966514050960541, -0.02415921352803707, -0.022012969478964806, 0.0526164285838604, -0.05461534857749939, -0.05351817235350609, -0.03945101052522659, -0.058802470564842224, -0.08722677081823349, -0.0021468570921570063, 0.11730475723743439, 0.043704185634851456, 0.024433432146906853, -0.03561810031533241, 0.10249163210391998, -0.0009780015097931027, -0.13260358572006226, -0.016658853739500046, 0.010296420194208622, -0.12303617596626282, -0.058615997433662415, -0.0267128087580204, 0.010968400165438652, 0.015332563780248165, 0.14924868941307068, -0.039059799164533615, 0.08236172050237656, 0.016219612210989, -0.01967667229473591, -0.011378525756299496, 0.14425645768642426, -0.03952524811029434, -0.0546964630484581, 0.005188326351344585, 0.09711414575576782, -0.000017554817532072775, -0.0053025949746370316, -0.07466762512922287, -0.02024814486503601, 0.09385033696889877, 0.055545300245285034, -0.05386853590607643, 0.032165758311748505, -0.03263106197118759, -0.025216907262802124, 0.024444954469799995, -0.12409313023090363, 0.037046194076538086, 0.008844424970448017, -0.0831158235669136, -0.03775439038872719, 0.01270358171314001, -0.01640496961772442, -0.020843492820858955, 0.08893941342830658, -0.08660344779491425, -0.005202861037105322, -0.07775114476680756, -0.07312465459108353, 0.016305092722177505, -0.14331340789794922, -0.013790237717330456, -0.048460666090250015, -0.20425398647785187, -0.038819484412670135, 0.043183062225580215, -0.07577488571405411, -0.04131486639380455, -0.057702142745256424, -0.08305754512548447, 0.015006831847131252, -0.004182631149888039, 0.1669756919145584, -0.05975883826613426, 0.07670599967241287, -0.013911894522607327, 0.04160653427243233, 0.009268560446798801, 0.049187660217285156, -0.08591338247060776, 0.022993532940745354, -0.14161500334739685, 0.0775144025683403, -0.09616193920373917, 0.011913576163351536, -0.12364639341831207, -0.0879812091588974, 0.0411226712167263, -0.027716554701328278, 0.0705888494849205, 0.143466055393219, -0.19343627989292145, 0.003137460444122553, 0.11435277760028839, -0.04871201515197754, -0.04728696867823601, 0.07896067947149277, -0.056147877126932144, 0.030430912971496582, 0.051343344151973724, 0.16687534749507904, 0.07617365568876266, -0.14969952404499054, -0.017677273601293564, 0.02569238469004631, 0.05020974949002266, 0.003252306254580617, 0.044709283858537674, 0.005383246578276157, 0.02747434750199318, 0.003621090203523636, -0.07624232023954391, -0.02569280005991459, -0.09019536525011063, -0.07141811400651932, -0.052503831684589386, -0.08839589357376099, 0.021208852529525757, 0.012933510355651379, 0.020904334262013435, -0.057657208293676376, -0.10097494721412659, 0.10343632847070694, 0.1286713033914566, -0.05168536305427551, 0.007140558212995529, -0.06894344836473465, 0.020018458366394043, -0.030845047906041145, -0.03612290695309639, -0.19491958618164062, -0.13421951234340668, 0.05337816849350929, -0.052449509501457214, 0.033387187868356705, 0.03529121354222298, 0.06359340250492096, 0.061999812722206116, -0.03264870494604111, -0.019158681854605675, -0.06939636170864105, -0.003539129626005888, -0.1157764121890068, -0.19837547838687897, -0.06478932499885559, -0.03312431648373604, 0.1396826207637787, -0.20406462252140045, 0.0002522250288166106, -0.025902530178427696, 0.12047003209590912, 0.016073614358901978, -0.05839235708117485, 0.008950606919825077, 0.030304094776511192, 0.006079723127186298, -0.09994106739759445, 0.0410182848572731, 0.00778299430385232, -0.054536204785108566, -0.062458332628011703, -0.10961038619279861, -0.0036072740331292152, 0.05698411539196968, 0.07998508960008621, -0.10527272522449493, -0.008611523546278477, -0.0496932715177536, -0.0462496355175972, -0.08647964894771576, 0.009022006765007973, 0.19701358675956726, 0.03245050087571144, 0.12099271267652512, -0.060584817081689835, -0.07062938809394836, 0.001752579351887107, 0.024458713829517365, 0.02337873913347721, 0.08989259600639343, 0.10679330676794052, -0.09742508828639984, 0.08787107467651367, 0.06991346925497055, -0.047734592109918594, 0.11945881694555283, -0.044661734253168106, -0.08209212869405746, -0.019268617033958435, 0.006754773668944836, -0.0336361862719059, 0.14071151614189148, -0.08615433424711227, 0.010738802142441273, 0.03363283351063728, 0.024031788110733032, 0.01806481182575226, -0.1694173812866211, -0.00033041168353520334, 0.011845680885016918, -0.0632660984992981, -0.03832162171602249, -0.025552939623594284, 0.035619039088487625, 0.09337012469768524, 0.02544376067817211, -0.04456929489970207, 0.017211901023983955, -0.011639120057225227, -0.07012461125850677, 0.19183076918125153, -0.10789230465888977, -0.0909900888800621, -0.11019173264503479, 0.027538161724805832, -0.04402429983019829, -0.03713959455490112, 0.005082308314740658, -0.08265335112810135, -0.05524492636322975, -0.0887114629149437, -0.026813926175236702, -0.016628526151180267, -0.0030498120468109846, 0.025279901921749115, -0.015821188688278198, 0.07260633260011673, -0.13209235668182373, 0.004615850280970335, -0.0294859167188406, -0.10320545732975006, 0.008536090143024921, 0.06360217183828354, 0.085927315056324, 0.09957833588123322, -0.014110758900642395, 0.012408630922436714, -0.026963602751493454, 0.2386421263217926, -0.05537887290120125, 0.016301125288009644, 0.08328123390674591, -0.007512744516134262, 0.06086106225848198, 0.14322243630886078, 0.031168723478913307, -0.10482848435640335, 0.02550971508026123, 0.08172166347503662, -0.011129224672913551, -0.24938127398490906, -0.02797641046345234, -0.021549025550484657, -0.07064000517129898, 0.08876564353704453, 0.039677415043115616, -0.045410048216581345, 0.038820020854473114, 0.010008003562688828, 0.014970386400818825, -0.053514085710048676, 0.07320529967546463, 0.0845886841416359, 0.04363512620329857, 0.09436329454183578, -0.021685291081666946, -0.011254597455263138, 0.06474141776561737, 0.016286907717585564, 0.2695923447608948, -0.028186511248350143, 0.1263265162706375, 0.02495095692574978, 0.1483798623085022, -0.030392853543162346, 0.048852428793907166, 0.01616777293384075, 0.00450565991923213, -0.0060801198706030846, -0.05232205241918564, -0.030004821717739105, 0.010831319727003574, -0.03439631313085556, 0.03270137310028076, -0.07314163446426392, 0.04664445295929909, 0.0124209588393569, 0.30032235383987427, 0.045664139091968536, -0.2824093997478485, -0.06054146587848663, -0.0030402233824133873, -0.04651014506816864, -0.07548478245735168, 0.0030634840950369835, 0.14565089344978333, -0.12558172643184662, 0.038244862109422684, -0.053933050483465195, 0.08895367383956909, -0.04728405550122261, 0.0021980523597449064, 0.06359908729791641, 0.14480425417423248, -0.00991735514253378, 0.06928113102912903, -0.19109317660331726, 0.22526566684246063, 0.029000815004110336, 0.11115089803934097, -0.06130757927894592, 0.014566400088369846, 0.009526216425001621, 0.028328165411949158, 0.10848471522331238, 0.0007627462618984282, -0.02433038502931595, -0.17111749947071075, -0.11577665060758591, 0.05883128196001053, 0.11602713912725449, -0.014534326270222664, 0.09581562876701355, -0.04054475203156471, -0.002504236064851284, 0.03684775158762932, -0.0744948610663414, -0.12925393879413605, -0.08622860163450241, 0.0020792463328689337, 0.018665283918380737, -0.03822871670126915, -0.04828837141394615, -0.0915767177939415, -0.024661419913172722, 0.1352119892835617, -0.002293797442689538, -0.04310174286365509, -0.1348491907119751, 0.055153291672468185, 0.14237435162067413, -0.05798926576972008, 0.020229792222380638, 0.005147518590092659, 0.10111905634403229, 0.05105477198958397, -0.08123182505369186, 0.05257119610905647, -0.06739558279514313, -0.16028733551502228, -0.061947256326675415, 0.11573214083909988, 0.0795358344912529, 0.05354577675461769, -0.0014597887638956308, 0.03178585693240166, 0.0012527162907645106, -0.08626247197389603, 0.00796129833906889, 0.05626186355948448, 0.08971979469060898, 0.050210967659950256, -0.0940849557518959, 0.04702077433466911, -0.034545328468084335, -0.0031532039865851402, 0.1272302269935608, 0.21526572108268738, -0.08537346124649048, 0.08692321926355362, 0.07027267664670944, -0.08051127195358276, -0.17559297382831573, 0.07091120630502701, 0.13247965276241302, 0.015584648586809635, 0.0371498242020607, -0.20391122996807098, 0.136969655752182, 0.1139543280005455, -0.014957955107092857, 0.05545540899038315, -0.29604053497314453, -0.12338246405124664, 0.07052187621593475, 0.10437630861997604, 0.04426678642630577, -0.12917520105838776, -0.02762432023882866, -0.010013102553784847, -0.14917288720607758, 0.1429995894432068, -0.0698789581656456, 0.12159843742847443, -0.00868162326514721, 0.12191124260425568, 0.022696780040860176, -0.04175250977277756, 0.13116209208965302, 0.07688677310943604, 0.08727474510669708, -0.03922099992632866, -0.0029463907703757286, 0.04844208061695099, -0.06677287071943283, 0.04894509166479111, -0.04052712395787239, 0.06572218239307404, -0.1676861196756363, 0.0005905032157897949, -0.08271430432796478, 0.04391036182641983, -0.048992592841386795, -0.04679277911782265, -0.027606016024947166, 0.04621401056647301, 0.06639743596315384, -0.034357231110334396, 0.030337199568748474, 0.02220434695482254, 0.056269872933626175, 0.09375585615634918, 0.08893147855997086, -0.020740913227200508, -0.10936880856752396, 0.010274206288158894, -0.006401540711522102, 0.05329270660877228, -0.10068738460540771, 0.015501060523092747, 0.135713130235672, 0.058527931571006775, 0.12726901471614838, 0.02535530924797058, -0.032941997051239014, -0.014826207421720028, 0.015712641179561615, -0.12420212477445602, -0.11820757389068604, 0.03759133815765381, -0.043865397572517395, -0.15656884014606476, 0.0059899259358644485, 0.10145171731710434, -0.0387658067047596, -0.012662054039537907, -0.011167104355990887, 0.023974565789103508, -0.01221571583300829, 0.20243385434150696, 0.04141736030578613, 0.06312688440084457, -0.1021478921175003, 0.12479475140571594, 0.05740296468138695, -0.04609167203307152, 0.05659009516239166, 0.06766729056835175, -0.09320720285177231, -0.005876688752323389, 0.10974931716918945, 0.17176960408687592, -0.045178450644016266, -0.01967000961303711, -0.07289957255125046, -0.07342709600925446, 0.05738673731684685, 0.1606569141149521, 0.04982207715511322, -0.007684455253183842, -0.043259814381599426, 0.025422172620892525, -0.12594760954380035, 0.07292136549949646, 0.0475916713476181, 0.06870722770690918, -0.10693207383155823, 0.11137912422418594, -0.00882582925260067, 0.03531147539615631, -0.015198537148535252, 0.029056143015623093, -0.09721287339925766, -0.025892850011587143, -0.12237676978111267, 0.019620757550001144, -0.010572507977485657, 0.0075583625584840775, -0.011006748303771019, -0.053981196135282516, -0.037263769656419754, 0.026141898706555367, -0.08056361973285675, -0.055143456906080246, 0.017253180965781212, 0.04490785300731659, -0.15389502048492432, -0.012578071095049381, 0.023251237347722054, -0.09298168867826462, 0.07633990049362183, 0.06410709768533707, 0.017430292442440987, 0.027486903592944145, -0.10790402442216873, -0.045209575444459915, 0.013941359706223011, 0.0283722635358572, 0.08372607082128525, -0.08536416292190552, -0.014729185961186886, -0.03359116613864899, 0.04979226365685463, 0.014435814693570137, 0.08876383304595947, -0.1157342866063118, -0.00378181179985404, -0.05764156952500343, -0.034191083163022995, -0.060228362679481506, 0.034324001520872116, 0.115529865026474, 0.035142119973897934, 0.16834671795368195, -0.06728014349937439, 0.03919981047511101, -0.19455863535404205, -0.03401396796107292, 0.0018193732248619199, -0.040015459060668945, -0.0841887816786766, -0.04268407076597214, 0.0921683982014656, -0.051363326609134674, 0.09280665963888168, -0.008341951295733452, 0.08965487778186798, 0.0310151819139719, -0.006469620391726494, -0.057378895580768585, 0.0014906905125826597, 0.1468493789434433, 0.05933795124292374, -0.018938224762678146, 0.10204184800386429, -0.006624717731028795, 0.05601010099053383, 0.04260789602994919, 0.22423230111598969, 0.14809708297252655, -0.02303929254412651, 0.06442709267139435, 0.07003801316022873, -0.12176145613193512, -0.12526872754096985, 0.1406463086605072, -0.04659853130578995, 0.1225704625248909, -0.05495253950357437, 0.2206837236881256, 0.023636847734451294, -0.17590121924877167, 0.05167112499475479, -0.05560486018657684, -0.12050708383321762, -0.11903563886880875, -0.013420860283076763, -0.08064254373311996, -0.0992296040058136, 0.025654815137386322, -0.1214645728468895, 0.06528204679489136, 0.11984362453222275, 0.015700500458478928, 0.02079075388610363, 0.15368399024009705, -0.04073386266827583, 0.018794303759932518, 0.06043432652950287, 0.02359757199883461, -0.0052262237295508385, -0.06210031732916832, -0.06482000648975372, 0.05111996456980705, 0.03452300280332565, 0.08570674061775208, -0.046713244169950485, 0.0184150543063879, 0.032500531524419785, -0.013470916077494621, -0.07435096055269241, 0.012428872287273407, 0.025378772988915443, 0.03852894902229309, 0.05478377267718315, 0.0538606233894825, 0.01768406294286251, -0.03578101471066475, 0.2659859359264374, -0.07204615324735641, -0.08345096558332443, -0.13044589757919312, 0.19750085473060608, 0.017734555527567863, -0.01853993721306324, 0.07519116252660751, -0.1041049137711525, -0.02147100307047367, 0.16665545105934143, 0.12178701162338257, -0.10164302587509155, -0.029400737956166267, -0.015788499265909195, -0.0119381258264184, -0.03863513842225075, 0.11751476675271988, 0.09361658245325089, 0.006925847847014666, -0.07613220810890198, -0.027465179562568665, -0.01703525334596634, -0.04529120773077011, -0.06438031792640686, 0.03534063696861267, 0.015822911635041237, 0.0024155795108526945, -0.038066036999225616, 0.052607372403144836, -0.009956558234989643, -0.2427821159362793, 0.031114351004362106, -0.15693651139736176, -0.18134602904319763, -0.031196830794215202, 0.06499140709638596, -0.005172485485672951, 0.03865857049822807, -0.018707960844039917, 0.004496993962675333, 0.14872963726520538, -0.03547303378582001, -0.048483967781066895, -0.12265291810035706, 0.10124168545007706, -0.10145994275808334, 0.20582392811775208, 0.007786461617797613, 0.08335229754447937, 0.09724893420934677, 0.0227223951369524, -0.13498175144195557, 0.033740364015102386, 0.07329615205526352, -0.1092020571231842, 0.014541925862431526, 0.15142755210399628, -0.054976049810647964, 0.07903369516134262, 0.02582641690969467, -0.10418771952390671, -0.01918276585638523, -0.027530299499630928, -0.03101971745491028, -0.07985620200634003, -0.014598403126001358, -0.06329457461833954, 0.1656971275806427, 0.2200639396905899, -0.024936994537711143, 0.015695421025156975, -0.08639485388994217, 0.0164747703820467, 0.04487403482198715, 0.05281610041856766, -0.04321829229593277, -0.20636217296123505, 0.03100254200398922, 0.019740412011742592, 0.02405431494116783, -0.19539874792099, -0.08332385122776031, 0.04547341540455818, -0.029871299862861633, -0.05261373147368431, 0.09958065301179886, 0.024577848613262177, 0.04321998730301857, -0.03421556577086449, -0.09655275195837021, -0.044849976897239685, 0.14469116926193237, -0.16229011118412018, -0.05403633415699005 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-64-finetuned-squad-seed-0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-64-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-64-finetuned-squad-seed-0
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-0 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.10189153999090195, 0.13504299521446228, -0.0019977872725576162, 0.092535100877285, 0.13582339882850647, 0.03338521718978882, 0.08243459463119507, 0.14052695035934448, -0.07978494465351105, 0.054188720881938934, 0.07432279735803604, 0.06005602702498436, 0.04767511039972305, 0.12810060381889343, -0.04354850575327873, -0.2144199162721634, 0.0035577542148530483, -0.013320364989340305, -0.0646466463804245, 0.10329626500606537, 0.08773693442344666, -0.11131848394870758, 0.0696721225976944, -0.021798603236675262, -0.15305489301681519, 0.009339464828372002, -0.032448191195726395, -0.025147559121251106, 0.10533327609300613, -0.007192350458353758, 0.09305493533611298, 0.014558536931872368, 0.14170588552951813, -0.2142014503479004, 0.000604775152169168, 0.07743365317583084, 0.04576592147350311, 0.0903187170624733, 0.035598836839199066, 0.018280139192938805, 0.029011191800236702, -0.15158243477344513, 0.09291800111532211, 0.026705080643296242, -0.0796455666422844, -0.1334059238433838, -0.0902169868350029, 0.025591127574443817, 0.08194795995950699, 0.08134644478559494, 0.008052698336541653, 0.13144001364707947, -0.09840339422225952, 0.08229287713766098, 0.19939954578876495, -0.27965694665908813, -0.06509329378604889, 0.04530337080359459, 0.05044010654091835, 0.07190346717834473, -0.11905530840158463, -0.01827538013458252, 0.02089444361627102, 0.031213004142045975, 0.11134171485900879, -0.019905945286154747, -0.1307142972946167, 0.008764047175645828, -0.12677592039108276, -0.015802737325429916, 0.10770737379789352, 0.04088180512189865, -0.04683304205536842, -0.07874980568885803, -0.06635770201683044, -0.09707817435264587, -0.029156947508454323, -0.010685513727366924, 0.05243480205535889, -0.05559193715453148, -0.06772966682910919, -0.04775116965174675, -0.056918878108263016, -0.0904383435845375, 0.0018848663894459605, 0.12590967118740082, 0.03984014317393303, 0.019476905465126038, -0.03243274241685867, 0.11689813435077667, 0.0009065406629815698, -0.12986725568771362, -0.012054502964019775, 0.004305437207221985, -0.11961483210325241, -0.05124317854642868, -0.031675148755311966, 0.01648375205695629, 0.013656001538038254, 0.15007716417312622, -0.03769778832793236, 0.07556252926588058, 0.013337509706616402, -0.019356241449713707, -0.020352501422166824, 0.16041700541973114, -0.033384378999471664, -0.04668606072664261, 0.001934809610247612, 0.09760890901088715, -0.0010013154242187738, -0.00678316131234169, -0.08092903345823288, -0.01728692092001438, 0.07771067321300507, 0.06558473408222198, -0.054884329438209534, 0.038451943546533585, -0.041725389659404755, -0.025549771264195442, 0.022002901881933212, -0.12835177779197693, 0.03697049617767334, 0.006764869671314955, -0.0815819725394249, -0.05709060654044151, 0.009813621640205383, -0.016444575041532516, -0.027351465076208115, 0.07704159617424011, -0.07190260291099548, -0.0063376761972904205, -0.08776075392961502, -0.07988560199737549, 0.0020619379356503487, -0.13753435015678406, -0.013082184828817844, -0.04742320254445076, -0.19811074435710907, -0.033625528216362, 0.0507870577275753, -0.07669835537672043, -0.04299544543027878, -0.05029236897826195, -0.07798776775598526, 0.010684902779757977, -0.007429386489093304, 0.18781538307666779, -0.058527275919914246, 0.08191829174757004, -0.016386577859520912, 0.04551661014556885, 0.021931925788521767, 0.05172650143504143, -0.08196733146905899, 0.02685321867465973, -0.14720888435840607, 0.08746979385614395, -0.10409978032112122, 0.012538476847112179, -0.12705522775650024, -0.0859798938035965, 0.05697975680232048, -0.02171359211206436, 0.07095526158809662, 0.1399044543504715, -0.1926833838224411, 0.00064880057470873, 0.11915267258882523, -0.03757929429411888, -0.043699078261852264, 0.08005890250205994, -0.05882939323782921, 0.0347222164273262, 0.05496646836400032, 0.18009217083454132, 0.0814899131655693, -0.14418134093284607, 0.0077721248380839825, 0.04293891414999962, 0.061245184391736984, 0.007003753911703825, 0.041096072643995285, 0.0025991094298660755, 0.025255272164940834, 0.009256691671907902, -0.09441330283880234, -0.023267364129424095, -0.08859723061323166, -0.0719902515411377, -0.04995815455913544, -0.09284791350364685, 0.03568781539797783, 0.01277422159910202, 0.01890634559094906, -0.06409595906734467, -0.10910328477621078, 0.09836336225271225, 0.12496712058782578, -0.05824614316225052, 0.011594801209867, -0.07848919928073883, 0.019534897059202194, -0.01837967149913311, -0.027198778465390205, -0.19586573541164398, -0.12712867558002472, 0.05046534165740013, -0.04545991122722626, 0.025347916409373283, 0.02975301630795002, 0.06564393639564514, 0.05525112524628639, -0.044807735830545425, -0.022206509485840797, -0.06878141313791275, -0.0021992740221321583, -0.11295753717422485, -0.2004157453775406, -0.0719904750585556, -0.03728652000427246, 0.14282061159610748, -0.19997839629650116, 0.00525608891621232, -0.02092910185456276, 0.11040671169757843, 0.018509650602936745, -0.05052570626139641, 0.011582513339817524, 0.03285755217075348, 0.014015666209161282, -0.09908656775951385, 0.04976009950041771, 0.010581601411104202, -0.06997356563806534, -0.04418393597006798, -0.1023494303226471, -0.0004332370008341968, 0.05885693058371544, 0.08407427370548248, -0.10068138688802719, -0.017570529133081436, -0.05238662287592888, -0.037354834377765656, -0.08509141951799393, 0.01499699242413044, 0.20576484501361847, 0.03527054190635681, 0.12432265281677246, -0.05825471132993698, -0.08014845103025436, -0.004177701659500599, 0.021617744117975235, 0.033580977469682693, 0.10162261128425598, 0.07550713419914246, -0.07932408154010773, 0.08265920728445053, 0.07997613400220871, -0.042216550558805466, 0.11546921730041504, -0.05455221235752106, -0.07574597746133804, -0.015231222845613956, 0.0011078522074967623, -0.028463954105973244, 0.14919134974479675, -0.08193840831518173, 0.0013549833092838526, 0.038845647126436234, 0.01951003447175026, 0.00796054769307375, -0.17660565674304962, -0.006534046493470669, 0.016585299745202065, -0.06796346604824066, -0.050115328282117844, -0.031708866357803345, 0.03457184135913849, 0.09260953217744827, 0.028771743178367615, -0.0308468546718359, 0.022014208137989044, -0.011835972778499126, -0.06069125607609749, 0.1939125508069992, -0.11300777643918991, -0.0938439592719078, -0.098240926861763, 0.01953873410820961, -0.03847160562872887, -0.03544365614652634, 0.0036590255331248045, -0.09410510212182999, -0.05430149659514427, -0.08733582496643066, -0.019374964758753777, -0.010932432487607002, -0.005805294495075941, 0.022354163229465485, -0.015176981687545776, 0.07772603631019592, -0.1336967796087265, 0.003920016810297966, -0.028844758868217468, -0.10011396557092667, 0.01812758855521679, 0.06188053637742996, 0.08170923590660095, 0.10249863564968109, -0.012491249479353428, 0.016002366319298744, -0.03089500218629837, 0.22840547561645508, -0.06590713560581207, 0.01698721945285797, 0.08872856199741364, -0.0018086530035361648, 0.05537980794906616, 0.13951633870601654, 0.033638324588537216, -0.10760927945375443, 0.02878516912460327, 0.07913684099912643, -0.019298341125249863, -0.2509423494338989, -0.0265609472990036, -0.020579082891345024, -0.0716298520565033, 0.08605030924081802, 0.038764119148254395, -0.05232936143875122, 0.03415272384881973, 0.013269802555441856, 0.00425030617043376, -0.034759633243083954, 0.06832467764616013, 0.0918995663523674, 0.0379919558763504, 0.10180645436048508, -0.02099420502781868, -0.008284289389848709, 0.06320895254611969, 0.025018135085701942, 0.2698497474193573, -0.04413178935647011, 0.1359870433807373, 0.029190247878432274, 0.14870059490203857, -0.02313360758125782, 0.04962814971804619, 0.009661233052611351, -0.000008603637070336845, -0.005003974307328463, -0.04894425347447395, -0.021833574399352074, 0.0012851277133449912, -0.032412633299827576, 0.023880353197455406, -0.0721132755279541, 0.03058258257806301, 0.017612947151064873, 0.3134126663208008, 0.04237670823931694, -0.27302679419517517, -0.07357741892337799, 0.003627902129665017, -0.0464627631008625, -0.07784523069858551, 0.005099647678434849, 0.1455545574426651, -0.12772786617279053, 0.029720624908804893, -0.05652519688010216, 0.09125439822673798, -0.0479554608464241, 0.009342042729258537, 0.06821001321077347, 0.14404486119747162, -0.010022995062172413, 0.07278218120336533, -0.206375390291214, 0.23437027633190155, 0.02684031054377556, 0.10633549094200134, -0.06267699599266052, 0.01289608795195818, 0.007799474056810141, 0.042471639811992645, 0.11788664758205414, 0.002688617678359151, -0.00104280817322433, -0.17844580113887787, -0.10217759013175964, 0.057256847620010376, 0.11087621748447418, -0.028835354372859, 0.0922941043972969, -0.04400116205215454, -0.0055876425467431545, 0.03543175756931305, -0.07977239787578583, -0.11665073037147522, -0.09411992132663727, -0.007494617719203234, 0.0034880905877798796, -0.02487237937748432, -0.05873286724090576, -0.09193208068609238, -0.01522332988679409, 0.13928894698619843, 0.0051148924976587296, -0.053064700216054916, -0.14044101536273956, 0.0541982501745224, 0.13453342020511627, -0.05124804005026817, 0.013852785341441631, 0.007351904641836882, 0.1109313815832138, 0.04823976755142212, -0.07763254642486572, 0.05982396379113197, -0.07233689725399017, -0.16482065618038177, -0.05840849503874779, 0.11986187100410461, 0.08392145484685898, 0.05812297761440277, 0.0016880716430023313, 0.0287303626537323, -0.002685049781575799, -0.08189491927623749, 0.015302201732993126, 0.05681653693318367, 0.08969412744045258, 0.03647753968834877, -0.09751290827989578, 0.06389731168746948, -0.037389758974313736, -0.008730332367122173, 0.12656466662883759, 0.20492179691791534, -0.09563405066728592, 0.10262149572372437, 0.07345885783433914, -0.0797208696603775, -0.1878703385591507, 0.07004610449075699, 0.12546305358409882, 0.023067694157361984, 0.03693896904587746, -0.21153821051120758, 0.13263386487960815, 0.10447949916124344, -0.015867428854107857, 0.04097673296928406, -0.29599082469940186, -0.12503348290920258, 0.0761110857129097, 0.10341069847345352, 0.034059327095746994, -0.12295597791671753, -0.024454746395349503, -0.013193564489483833, -0.13023652136325836, 0.13280178606510162, -0.07908192276954651, 0.11892955750226974, -0.005745396949350834, 0.1196599081158638, 0.02449142187833786, -0.037588298320770264, 0.131451815366745, 0.07148689031600952, 0.09048127382993698, -0.03775682672858238, 0.009497213177382946, 0.05667872354388237, -0.06713996082544327, 0.03909334912896156, -0.04196958988904953, 0.06959149241447449, -0.17034342885017395, -0.004752810578793287, -0.0893944501876831, 0.0398394912481308, -0.04871852323412895, -0.05719366297125816, -0.020368553698062897, 0.054243654012680054, 0.0688127651810646, -0.03981155529618263, 0.02644030749797821, 0.006493748165667057, 0.0637018084526062, 0.09347625076770782, 0.10151359438896179, -0.023205073550343513, -0.11097967624664307, 0.014821489341557026, -0.007698062341660261, 0.05533419921994209, -0.11232516914606094, 0.02291727252304554, 0.13056138157844543, 0.06135445088148117, 0.12028754502534866, 0.02579275332391262, -0.030870411545038223, -0.014893323183059692, 0.009193584322929382, -0.11667275428771973, -0.12432262301445007, 0.03984585031867027, -0.03877151384949684, -0.14788775146007538, 0.00639639375731349, 0.09932107478380203, -0.03290373459458351, -0.01919088326394558, -0.008631899952888489, 0.020713916048407555, -0.016500025987625122, 0.1993287056684494, 0.041056305170059204, 0.07159531116485596, -0.10636816918849945, 0.11908228695392609, 0.05396321415901184, -0.058824874460697174, 0.05188445746898651, 0.0633634477853775, -0.10266818851232529, -0.012194598093628883, 0.11523187905550003, 0.16076624393463135, -0.03479231148958206, -0.014780029654502869, -0.07756488770246506, -0.09246345609426498, 0.06109074503183365, 0.14867742359638214, 0.051659826189279556, -0.011878970079123974, -0.04986210912466049, 0.026112813502550125, -0.12531940639019012, 0.08130452781915665, 0.045238811522722244, 0.061641525477170944, -0.09570786356925964, 0.10448118299245834, -0.006321245338767767, 0.04080956429243088, -0.017298217862844467, 0.024274829775094986, -0.09918004274368286, -0.010886741802096367, -0.14876429736614227, 0.007827789522707462, 0.001041207928210497, 0.013299680314958096, -0.02058437094092369, -0.05047424137592316, -0.02395635098218918, 0.02875036559998989, -0.08865354210138321, -0.05404038354754448, 0.019748693332076073, 0.04150811582803726, -0.14922046661376953, -0.015297147445380688, 0.022845089435577393, -0.09585745632648468, 0.0811380073428154, 0.0594099760055542, 0.012568339705467224, 0.02760310284793377, -0.09841588139533997, -0.04821503162384033, 0.0022796352859586477, 0.02741972915828228, 0.08730435371398926, -0.09241373091936111, -0.016567692160606384, -0.037019532173871994, 0.041251927614212036, 0.017976859584450722, 0.09087690711021423, -0.11464528739452362, 0.005484458524733782, -0.04790490120649338, -0.03873598575592041, -0.06655506789684296, 0.04656193032860756, 0.11034418642520905, 0.046926356852054596, 0.16022183001041412, -0.07157706469297409, 0.03521822765469551, -0.18999843299388885, -0.04023144766688347, 0.002560719382017851, -0.04572850093245506, -0.0884929671883583, -0.05018136277794838, 0.09680752456188202, -0.04932909831404686, 0.0984564945101738, -0.0014294213615357876, 0.09851760417222977, 0.032850250601768494, -0.021307578310370445, -0.05132655054330826, 0.008173191919922829, 0.15464995801448822, 0.050092604011297226, -0.01447750348597765, 0.1125892698764801, -0.006040186621248722, 0.04627048596739769, 0.07098766416311264, 0.21041622757911682, 0.15361978113651276, 0.005802356172353029, 0.04878013953566551, 0.06272279471158981, -0.11903371661901474, -0.14228494465351105, 0.1386934071779251, -0.04774193838238716, 0.1272081434726715, -0.06937524676322937, 0.22355467081069946, 0.022438498213887215, -0.18570899963378906, 0.0666162520647049, -0.061676185578107834, -0.12452349811792374, -0.115000419318676, -0.03204638883471489, -0.07409962266683578, -0.10975632071495056, 0.021397219970822334, -0.12081613391637802, 0.06094811484217644, 0.12780632078647614, 0.018042245879769325, 0.026070430874824524, 0.1581127941608429, -0.03461474925279617, 0.018601069226861, 0.06991230696439743, 0.019629312679171562, -0.005985704716295004, -0.06432300806045532, -0.06121611222624779, 0.04990281164646149, 0.02580653317272663, 0.07621053606271744, -0.04241323471069336, 0.01000306848436594, 0.02217220887541771, -0.015560679137706757, -0.07277786731719971, 0.014088933356106281, 0.02615375630557537, 0.043854787945747375, 0.0626758560538292, 0.05172480270266533, 0.007406160235404968, -0.036909542977809906, 0.2894403040409088, -0.07909709960222244, -0.09324754774570465, -0.1345047950744629, 0.22618454694747925, 0.010452084243297577, -0.021812979131937027, 0.07818164676427841, -0.09549076855182648, -0.025344129651784897, 0.1750507652759552, 0.1393970400094986, -0.10048740357160568, -0.024990009143948555, -0.015404571779072285, -0.012771219946444035, -0.04560910537838936, 0.1290304958820343, 0.10860563814640045, -0.008772485889494419, -0.08057308942079544, -0.022942563518881798, -0.010351010598242283, -0.051902372390031815, -0.06741343438625336, 0.06265116482973099, 0.018697476014494896, 0.00031064680661074817, -0.04370863363146782, 0.05602089315652847, -0.004086431115865707, -0.25121021270751953, 0.036577630788087845, -0.1583879292011261, -0.1779213696718216, -0.03855764865875244, 0.053155653178691864, -0.005327626131474972, 0.03961446136236191, -0.012209341861307621, 0.012417653575539589, 0.15466199815273285, -0.03389331325888634, -0.03300093859434128, -0.12026763707399368, 0.1170508936047554, -0.10434556007385254, 0.2002336084842682, 0.0030716476030647755, 0.07055146247148514, 0.0976194441318512, 0.014264321886003017, -0.13404254615306854, 0.04016564413905144, 0.0760032907128334, -0.10670652985572815, 0.01141999289393425, 0.15231704711914062, -0.053412262350320816, 0.08383263647556305, 0.021576980128884315, -0.10930315405130386, -0.011299739591777325, -0.045292045921087265, -0.03706514835357666, -0.07887106388807297, -0.017088986933231354, -0.06428008526563644, 0.1591486930847168, 0.22837474942207336, -0.023736853152513504, 0.015556824393570423, -0.09305823594331741, 0.012681500054895878, 0.04396886005997658, 0.04787392541766167, -0.0464661531150341, -0.1932387501001358, 0.026192214339971542, 0.034822072833776474, 0.019368767738342285, -0.21155783534049988, -0.0849994570016861, 0.04581523314118385, -0.028705550357699394, -0.04717458412051201, 0.10463796555995941, 0.030252056196331978, 0.045900411903858185, -0.03501629829406738, -0.09728115797042847, -0.0394207127392292, 0.14245612919330597, -0.1603739857673645, -0.04235120490193367 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-64-finetuned-squad-seed-10 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-64-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-64-finetuned-squad-seed-10
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-10 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.1026349738240242, 0.13430117070674896, -0.0019417083822190762, 0.09200722724199295, 0.13570722937583923, 0.03341246023774147, 0.0838303193449974, 0.1393270492553711, -0.0786173865199089, 0.0534355565905571, 0.0735878124833107, 0.06161586195230484, 0.04813551530241966, 0.1295224279165268, -0.04264214262366295, -0.21572233736515045, 0.003625100012868643, -0.01252224575728178, -0.06345254927873611, 0.10345279425382614, 0.08794134110212326, -0.11155374348163605, 0.06859634071588516, -0.022453784942626953, -0.15235275030136108, 0.009199501946568489, -0.03298604488372803, -0.024990985170006752, 0.10524094104766846, -0.00899344403296709, 0.09255240857601166, 0.014534945599734783, 0.14398041367530823, -0.2137140929698944, 0.0004829785320907831, 0.07637742906808853, 0.04538925364613533, 0.09001924842596054, 0.03555804863572121, 0.019878750666975975, 0.02863091416656971, -0.15288051962852478, 0.09411812573671341, 0.02596287615597248, -0.07958585768938065, -0.13143488764762878, -0.0909038558602333, 0.02659689448773861, 0.08533576875925064, 0.080447718501091, 0.007053818553686142, 0.13079816102981567, -0.09916365891695023, 0.08293142914772034, 0.20015087723731995, -0.2809286117553711, -0.06522319465875626, 0.04767625406384468, 0.0535137914121151, 0.07250136882066727, -0.11920876801013947, -0.019203949719667435, 0.021551473066210747, 0.03044798970222473, 0.11174122244119644, -0.02076723985373974, -0.12945257127285004, 0.008153467439115047, -0.1281953901052475, -0.015399886295199394, 0.10733310133218765, 0.04252241179347038, -0.04700601473450661, -0.0801205188035965, -0.06644715368747711, -0.0985654890537262, -0.03051508590579033, -0.012540945783257484, 0.052198152989149094, -0.056722406297922134, -0.06714417785406113, -0.0480252206325531, -0.05597834289073944, -0.09091842174530029, 0.004773192573338747, 0.12343773245811462, 0.04042164608836174, 0.018087048083543777, -0.03151967376470566, 0.11622915416955948, -0.0009753046906553209, -0.1292589008808136, -0.010792787186801434, 0.004507112316787243, -0.12165414541959763, -0.052582163363695145, -0.03136264905333519, 0.017685234546661377, 0.012298541143536568, 0.1515093296766281, -0.03450945019721985, 0.07590843737125397, 0.015158383175730705, -0.020006509497761726, -0.020667748525738716, 0.16009259223937988, -0.034564994275569916, -0.04936501011252403, 0.0010749725624918938, 0.09891223907470703, -0.0015790046891197562, -0.0055374642834067345, -0.0815005823969841, -0.017708251252770424, 0.07867176085710526, 0.06585405021905899, -0.05634962022304535, 0.03845278173685074, -0.04062393307685852, -0.025133688002824783, 0.02266567572951317, -0.12879042327404022, 0.03732871264219284, 0.0058557987213134766, -0.08253418654203415, -0.05797136202454567, 0.008196481503546238, -0.015217555686831474, -0.027588697150349617, 0.07593235373497009, -0.07163383811712265, -0.006551649887114763, -0.0878865197300911, -0.0812210664153099, 0.002863967092707753, -0.14237567782402039, -0.012178230099380016, -0.04568558558821678, -0.2017093449831009, -0.034904852509498596, 0.04994215443730354, -0.0756654366850853, -0.0435517244040966, -0.05234908685088158, -0.07847309112548828, 0.008820995688438416, -0.006510346196591854, 0.18917471170425415, -0.057113390415906906, 0.08099353313446045, -0.016656484454870224, 0.046996768563985825, 0.02249402552843094, 0.05187258869409561, -0.08093773573637009, 0.02720355987548828, -0.14610205590724945, 0.08734355866909027, -0.10425150394439697, 0.015323392115533352, -0.1271747499704361, -0.08652269095182419, 0.056010980159044266, -0.021539650857448578, 0.07112511247396469, 0.1399887055158615, -0.19442729651927948, 0.0020065829157829285, 0.12008138000965118, -0.03663517162203789, -0.042900294065475464, 0.0790402889251709, -0.059253156185150146, 0.03645513579249382, 0.056569185107946396, 0.17981864511966705, 0.08299129456281662, -0.142649844288826, 0.006964285857975483, 0.042215511202812195, 0.06118468940258026, 0.00549284927546978, 0.04143697768449783, 0.003851557383313775, 0.027824565768241882, 0.008986059576272964, -0.09317130595445633, -0.023746225982904434, -0.08833616226911545, -0.07249072939157486, -0.04925665259361267, -0.09333150833845139, 0.03570742905139923, 0.013308881781995296, 0.01911739632487297, -0.0642399936914444, -0.10913185775279999, 0.09865513443946838, 0.12515610456466675, -0.058667056262493134, 0.010643118992447853, -0.07829378545284271, 0.018923763185739517, -0.01919534243643284, -0.026896296069025993, -0.19584621489048004, -0.12479721754789352, 0.050353702157735825, -0.04594551771879196, 0.02483985386788845, 0.03224717825651169, 0.0663183405995369, 0.054954394698143005, -0.04431556165218353, -0.023073410615324974, -0.06893878430128098, -0.0023637174163013697, -0.11468488723039627, -0.19934114813804626, -0.07384508848190308, -0.03803757205605507, 0.14309237897396088, -0.20180679857730865, 0.006648280657827854, -0.023004144430160522, 0.10954627394676208, 0.017425255849957466, -0.05089184269309044, 0.01238451711833477, 0.03227175027132034, 0.014814499765634537, -0.09984540194272995, 0.04978584125638008, 0.009135989472270012, -0.06951884925365448, -0.04649147391319275, -0.10397741943597794, -0.003125972580164671, 0.058105986565351486, 0.08606082946062088, -0.10036662966012955, -0.017790863290429115, -0.052472073584795, -0.03675401583313942, -0.08327249437570572, 0.014629905112087727, 0.20322762429714203, 0.0344773530960083, 0.1235140711069107, -0.05847136303782463, -0.08127181977033615, -0.0036647445522248745, 0.022998850792646408, 0.03439768776297569, 0.10191406309604645, 0.0752573162317276, -0.07943329215049744, 0.08223400264978409, 0.08115372806787491, -0.041229650378227234, 0.11405853182077408, -0.05460270866751671, -0.07655452936887741, -0.015140180476009846, 0.0014180182479321957, -0.02926056832075119, 0.14885234832763672, -0.08304587751626968, -0.0004080412327311933, 0.03838934004306793, 0.018165428191423416, 0.007605720777064562, -0.17717395722866058, -0.006072429474443197, 0.01615784503519535, -0.06710918247699738, -0.051705896854400635, -0.032390251755714417, 0.03300580382347107, 0.09189549088478088, 0.028112076222896576, -0.03192600607872009, 0.021457627415657043, -0.011801992543041706, -0.06056956201791763, 0.1943192183971405, -0.11125649511814117, -0.09270589053630829, -0.09668857604265213, 0.019130930304527283, -0.036160681396722794, -0.03579355403780937, 0.0030624058563262224, -0.09472418576478958, -0.053643446415662766, -0.0866561159491539, -0.020680541172623634, -0.010817628353834152, -0.006197172217071056, 0.024380136281251907, -0.014548498205840588, 0.0758802592754364, -0.13352949917316437, 0.0046084364876151085, -0.02969013713300228, -0.10002576559782028, 0.017340684309601784, 0.06087430939078331, 0.08168955892324448, 0.10299207270145416, -0.012857367284595966, 0.016352221369743347, -0.03141340985894203, 0.22805190086364746, -0.06646527349948883, 0.01841198466718197, 0.08801661431789398, -0.001642080838792026, 0.05525641143321991, 0.14068131148815155, 0.03301572799682617, -0.1076429933309555, 0.02818637154996395, 0.07868103682994843, -0.018703486770391464, -0.25219035148620605, -0.025367125868797302, -0.01977124623954296, -0.07198359817266464, 0.08697284758090973, 0.03806453198194504, -0.04964868724346161, 0.035841260105371475, 0.012795950286090374, 0.0062477136962115765, -0.033461958169937134, 0.06830339878797531, 0.08910513669252396, 0.03700824826955795, 0.10184139758348465, -0.021322332322597504, -0.009220198728144169, 0.06091702729463577, 0.025556711480021477, 0.2714802026748657, -0.042171698063611984, 0.1355372667312622, 0.028419604524970055, 0.14740023016929626, -0.024299820885062218, 0.05267118662595749, 0.010905014351010323, -0.0006051342934370041, -0.004909111652523279, -0.0482804998755455, -0.01981271244585514, 0.0019533815793693066, -0.03195749968290329, 0.023221058771014214, -0.07158979028463364, 0.03022564947605133, 0.017218736931681633, 0.31223064661026, 0.044342998415231705, -0.27408096194267273, -0.07254738360643387, 0.004046306014060974, -0.04847101494669914, -0.0777229517698288, 0.004548665136098862, 0.14428164064884186, -0.12786820530891418, 0.030702201649546623, -0.05724962800741196, 0.09161366522312164, -0.046906813979148865, 0.009636118076741695, 0.06691419333219528, 0.1431138962507248, -0.009779891930520535, 0.07384898513555527, -0.207915261387825, 0.23386867344379425, 0.02647736296057701, 0.10759855061769485, -0.06368149071931839, 0.013054640032351017, 0.007256896700710058, 0.04092636704444885, 0.11989734321832657, 0.0023413989692926407, -0.0013187187723815441, -0.17911967635154724, -0.10219714790582657, 0.05711273476481438, 0.11149770766496658, -0.027989383786916733, 0.09362220764160156, -0.04265616461634636, -0.00672103650867939, 0.03556453436613083, -0.08076124638319016, -0.11806116253137589, -0.09345906227827072, -0.007757855113595724, 0.0018040260765701532, -0.02495996095240116, -0.05826380476355553, -0.09195844829082489, -0.01817806251347065, 0.13754703104496002, 0.005606554448604584, -0.052765436470508575, -0.13994386792182922, 0.056709785014390945, 0.13534609973430634, -0.05054476484656334, 0.015314078889787197, 0.008828401565551758, 0.11060173809528351, 0.04741404578089714, -0.07606837898492813, 0.05941290408372879, -0.07224071025848389, -0.16473886370658875, -0.057503841817379, 0.1217053234577179, 0.08415065705776215, 0.058301590383052826, 0.003194612916558981, 0.028022387996315956, -0.0022784823086112738, -0.08161262422800064, 0.014965180307626724, 0.05621784180402756, 0.08934647589921951, 0.036062419414520264, -0.09786369651556015, 0.0626290813088417, -0.038391731679439545, -0.006617635954171419, 0.1272580921649933, 0.20322303473949432, -0.09524118155241013, 0.10144618898630142, 0.07315714657306671, -0.07988305389881134, -0.1868814080953598, 0.07080382853746414, 0.12600411474704742, 0.023719673976302147, 0.03693694621324539, -0.21081741154193878, 0.13219361007213593, 0.10417120158672333, -0.015004735440015793, 0.03959840163588524, -0.29646167159080505, -0.12471353262662888, 0.0768817663192749, 0.1037161648273468, 0.03160194307565689, -0.12241490930318832, -0.02449459582567215, -0.014119520783424377, -0.1300113946199417, 0.132660374045372, -0.07944094389677048, 0.11836947500705719, -0.004988161381334066, 0.11780502647161484, 0.024554187431931496, -0.0381251722574234, 0.12993663549423218, 0.07373273372650146, 0.09066940099000931, -0.03754138574004173, 0.007464224006980658, 0.059685591608285904, -0.06664356589317322, 0.04059740528464317, -0.04092564806342125, 0.0685061365365982, -0.16995273530483246, -0.00531378760933876, -0.08945631980895996, 0.03891109302639961, -0.04913870617747307, -0.05696145445108414, -0.019614355638623238, 0.054113876074552536, 0.06863868981599808, -0.03937303647398949, 0.024446433410048485, 0.007775365374982357, 0.06302063167095184, 0.08876920491456985, 0.10275106132030487, -0.0214555524289608, -0.1099759116768837, 0.015053888782858849, -0.0074209715239703655, 0.054436516016721725, -0.11407382041215897, 0.02158327028155327, 0.1308491826057434, 0.06171141192317009, 0.12086789309978485, 0.02545093186199665, -0.03128160163760185, -0.01531989686191082, 0.008883285336196423, -0.11400800198316574, -0.12591224908828735, 0.04035389423370361, -0.04024876281619072, -0.1490430384874344, 0.008506912738084793, 0.097144216299057, -0.03375590965151787, -0.020305247977375984, -0.009753873571753502, 0.020588267594575882, -0.016574833542108536, 0.20106561481952667, 0.04187491163611412, 0.07265132665634155, -0.10675752907991409, 0.11836520582437515, 0.053989019244909286, -0.05973352491855621, 0.05136530473828316, 0.06417684257030487, -0.1033744141459465, -0.012545958161354065, 0.1157311350107193, 0.16004139184951782, -0.031235432252287865, -0.014808399602770805, -0.07783347368240356, -0.09192785620689392, 0.061710309237241745, 0.14919520914554596, 0.051707424223423004, -0.013134864158928394, -0.04928331822156906, 0.026782676577568054, -0.1259518265724182, 0.08121275901794434, 0.045769739896059036, 0.06170498579740524, -0.09585519134998322, 0.10570928454399109, -0.006296229083091021, 0.041539277881383896, -0.01675727404654026, 0.025420069694519043, -0.0984850525856018, -0.0111453328281641, -0.14656327664852142, 0.0057468172162771225, -0.0012325223069638014, 0.012982567772269249, -0.021358896046876907, -0.04963160306215286, -0.023409554734826088, 0.027924492955207825, -0.08849024772644043, -0.05465948209166527, 0.01931188814342022, 0.04022044688463211, -0.14790618419647217, -0.015161572955548763, 0.021691346541047096, -0.09556754678487778, 0.08062762022018433, 0.05827433615922928, 0.013037008233368397, 0.02827894501388073, -0.09783093631267548, -0.047456782311201096, 0.0036666998639702797, 0.027067244052886963, 0.08692479133605957, -0.09198439866304398, -0.016203174367547035, -0.037115272134542465, 0.04290967434644699, 0.01734713464975357, 0.087529756128788, -0.11353188008069992, 0.004709188360720873, -0.04941290616989136, -0.0384320504963398, -0.0672788918018341, 0.04729180783033371, 0.10920103639364243, 0.04534902051091194, 0.16082246601581573, -0.06941493600606918, 0.035725317895412445, -0.19078397750854492, -0.04090135172009468, 0.0017702446784824133, -0.04611172527074814, -0.08769426494836807, -0.051017530262470245, 0.09706553816795349, -0.04914449155330658, 0.0988597646355629, -0.002171345055103302, 0.10007933527231216, 0.03171238303184509, -0.01790553331375122, -0.05151825398206711, 0.009230194613337517, 0.15523479878902435, 0.050022780895233154, -0.015146410092711449, 0.11119302362203598, -0.005086872726678848, 0.04631622135639191, 0.06958294659852982, 0.20769745111465454, 0.15396015346050262, 0.004931401461362839, 0.04918014258146286, 0.06329478323459625, -0.11949656158685684, -0.1406882256269455, 0.14097504317760468, -0.04812297597527504, 0.12583212554454803, -0.0695817768573761, 0.22593344748020172, 0.02230994403362274, -0.18575814366340637, 0.06696952879428864, -0.06049029901623726, -0.12540008127689362, -0.11346897482872009, -0.03361692279577255, -0.07445209473371506, -0.10828249156475067, 0.022105498239398003, -0.12083451449871063, 0.059931956231594086, 0.12835019826889038, 0.01798638515174389, 0.025510456413030624, 0.15924063324928284, -0.03455629572272301, 0.018932290375232697, 0.07047019898891449, 0.019397754222154617, -0.0051390016451478004, -0.06447400152683258, -0.060132965445518494, 0.050714749842882156, 0.024695901200175285, 0.07702688127756119, -0.04470467194914818, 0.009083768352866173, 0.022506775334477425, -0.014811379835009575, -0.07251235097646713, 0.01447737030684948, 0.025821542367339134, 0.044565148651599884, 0.06144694983959198, 0.05187665671110153, 0.006683964282274246, -0.037388477474451065, 0.28730425238609314, -0.07941341400146484, -0.09472192078828812, -0.1347973793745041, 0.22294262051582336, 0.012082585133612156, -0.02197165973484516, 0.07878545671701431, -0.09590493142604828, -0.022347651422023773, 0.17583349347114563, 0.13927331566810608, -0.09730663895606995, -0.0257362462580204, -0.014515393413603306, -0.01325082778930664, -0.04670979455113411, 0.12818042933940887, 0.10905063897371292, -0.011574478819966316, -0.0804043784737587, -0.022549282759428024, -0.008739560842514038, -0.05379095673561096, -0.0672663152217865, 0.062040846794843674, 0.02004094608128071, -0.000005589404736383585, -0.04162892326712608, 0.05857761949300766, -0.0016252914210781455, -0.2507243752479553, 0.03563578799366951, -0.15714360773563385, -0.17801301181316376, -0.03923093155026436, 0.05282696709036827, -0.0031362101435661316, 0.039545945823192596, -0.01177615113556385, 0.012364926747977734, 0.15359660983085632, -0.0330301932990551, -0.0335705503821373, -0.12046024203300476, 0.11713612079620361, -0.10594408214092255, 0.19875141978263855, 0.0027433675713837147, 0.07156975567340851, 0.09789308160543442, 0.012319658882915974, -0.1335667073726654, 0.04034435749053955, 0.07635847479104996, -0.10425558686256409, 0.01331592071801424, 0.153011292219162, -0.053042102605104446, 0.08087820559740067, 0.020439013838768005, -0.11032464355230331, -0.010559098795056343, -0.04400858283042908, -0.036691322922706604, -0.08008112013339996, -0.014264167286455631, -0.0632854625582695, 0.1597372144460678, 0.22817127406597137, -0.024423176422715187, 0.01630266010761261, -0.09355558454990387, 0.011612419039011002, 0.0440794974565506, 0.04837862029671669, -0.0463968962430954, -0.19392211735248566, 0.025358691811561584, 0.030828025192022324, 0.020118916407227516, -0.20951399207115173, -0.0838092789053917, 0.044919703155756, -0.030269986018538475, -0.04821840301156044, 0.10358571261167526, 0.031987037509679794, 0.04516834393143654, -0.03459293767809868, -0.09774154424667358, -0.03970703110098839, 0.14373384416103363, -0.16141054034233093, -0.041653458029031754 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-64-finetuned-squad-seed-2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-64-finetuned-squad-seed-2", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-64-finetuned-squad-seed-2
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-2 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.10129622370004654, 0.13538409769535065, -0.00202020350843668, 0.09247631579637527, 0.13511700928211212, 0.03357446566224098, 0.08252904564142227, 0.13997970521450043, -0.07970508933067322, 0.05354825407266617, 0.07442149519920349, 0.05959178879857063, 0.04743950814008713, 0.12875688076019287, -0.042665380984544754, -0.21573208272457123, 0.003211371600627899, -0.014327232725918293, -0.06542910635471344, 0.10337856411933899, 0.08889717608690262, -0.11037412285804749, 0.06901811063289642, -0.02152267098426819, -0.15406061708927155, 0.009146793745458126, -0.031749170273542404, -0.023460831493139267, 0.10525007545948029, -0.0077282460406422615, 0.0931873768568039, 0.015685681253671646, 0.14359284937381744, -0.21432147920131683, 0.00025444888160564005, 0.0758427232503891, 0.04621018096804619, 0.0899588093161583, 0.03597749024629593, 0.01989927887916565, 0.028230303898453712, -0.15134279429912567, 0.09256638586521149, 0.026201393455266953, -0.07954226434230804, -0.13222068548202515, -0.09078467637300491, 0.026530403643846512, 0.08497194200754166, 0.0791136771440506, 0.008253540843725204, 0.12903665006160736, -0.09883061796426773, 0.08234786987304688, 0.19864627718925476, -0.2812919318675995, -0.06563160568475723, 0.04610816016793251, 0.051490455865859985, 0.0734744518995285, -0.11755667626857758, -0.018454905599355698, 0.02171122469007969, 0.030710505321621895, 0.11107312887907028, -0.020410709083080292, -0.1298963725566864, 0.008244561031460762, -0.12820997834205627, -0.017440736293792725, 0.10818619281053543, 0.04151832312345505, -0.04804055020213127, -0.0772315040230751, -0.06689651310443878, -0.09594052284955978, -0.028840040788054466, -0.012812839820981026, 0.05252664536237717, -0.0546223409473896, -0.0666917935013771, -0.05062604695558548, -0.058010268956422806, -0.09138178825378418, 0.003000285942107439, 0.12586823105812073, 0.04024883732199669, 0.019834954291582108, -0.03166642412543297, 0.11804341524839401, 0.0012775888899341226, -0.12873151898384094, -0.011512172408401966, 0.005093670915812254, -0.12059813737869263, -0.051912881433963776, -0.031873442232608795, 0.018536167219281197, 0.013244085013866425, 0.14978662133216858, -0.03695166856050491, 0.07476087659597397, 0.013709938153624535, -0.018264058977365494, -0.02038266323506832, 0.16033315658569336, -0.032145872712135315, -0.04595862329006195, 0.0018807792803272605, 0.09804701805114746, -0.0010310939978808165, -0.005605529062449932, -0.08175085484981537, -0.018461942672729492, 0.07860478013753891, 0.06687119603157043, -0.055873531848192215, 0.03628380224108696, -0.04303726181387901, -0.02516750432550907, 0.020426560193300247, -0.12876032292842865, 0.036794621497392654, 0.0061866119503974915, -0.08084122836589813, -0.05883300304412842, 0.00932830199599266, -0.015042580664157867, -0.02578555978834629, 0.07475774735212326, -0.0703972727060318, -0.005375867709517479, -0.08693857491016388, -0.07852966338396072, 0.002259603701531887, -0.13829416036605835, -0.013055803254246712, -0.046952035278081894, -0.1991156041622162, -0.0330212339758873, 0.050884801894426346, -0.07688375562429428, -0.04644443467259407, -0.05123191699385643, -0.07693392783403397, 0.009826860390603542, -0.007196637336164713, 0.188847616314888, -0.0573652982711792, 0.08220268785953522, -0.017030984163284302, 0.04675392061471939, 0.022432222962379456, 0.050947725772857666, -0.08002177625894547, 0.028372593224048615, -0.14711245894432068, 0.08848188072443008, -0.10319380462169647, 0.011307118460536003, -0.12840035557746887, -0.08563998341560364, 0.05724439397454262, -0.022184163331985474, 0.06976901739835739, 0.13971039652824402, -0.19329823553562164, 0.002201061462983489, 0.11948240548372269, -0.03848491609096527, -0.04223209619522095, 0.08110404759645462, -0.05929850786924362, 0.03864792361855507, 0.0543411485850811, 0.18014298379421234, 0.08252611011266708, -0.14275085926055908, 0.01000241655856371, 0.04469232261180878, 0.060223765671253204, 0.007224125787615776, 0.043026942759752274, 0.002268638927489519, 0.023340769112110138, 0.008451901376247406, -0.09649960696697235, -0.02354050613939762, -0.08923853933811188, -0.07311902940273285, -0.049509089440107346, -0.0931420624256134, 0.036889076232910156, 0.010678567923605442, 0.019383441656827927, -0.06328530609607697, -0.10751386731863022, 0.09809450060129166, 0.12607349455356598, -0.05789107456803322, 0.012442788109183311, -0.07875377684831619, 0.018745386973023415, -0.01975216157734394, -0.027911946177482605, -0.19523192942142487, -0.1255805790424347, 0.05126893147826195, -0.04561462625861168, 0.02498190850019455, 0.032269187271595, 0.06495700031518936, 0.05486258119344711, -0.04429100081324577, -0.023051900789141655, -0.06910989433526993, -0.0029982654377818108, -0.11405026167631149, -0.2003367394208908, -0.07246990501880646, -0.037710145115852356, 0.14430510997772217, -0.20069167017936707, 0.005185991991311312, -0.022316191345453262, 0.10923656076192856, 0.017880504950881004, -0.05019905045628548, 0.010736276395618916, 0.031478703022003174, 0.014081370085477829, -0.09894129633903503, 0.04982214793562889, 0.01098677609115839, -0.07045672088861465, -0.04336925968527794, -0.10103318095207214, -0.001319609466008842, 0.05631878599524498, 0.08505965769290924, -0.10097173601388931, -0.018344512209296227, -0.05264413356781006, -0.03789297118782997, -0.08497513830661774, 0.014860481023788452, 0.20435591042041779, 0.03398260846734047, 0.12415126711130142, -0.05885865166783333, -0.08017084747552872, -0.004665524698793888, 0.020212244242429733, 0.03357265144586563, 0.10126328468322754, 0.07532180845737457, -0.08155672252178192, 0.08093678951263428, 0.08116435259580612, -0.04218316450715065, 0.11391495913267136, -0.054405730217695236, -0.07595805078744888, -0.017015421763062477, 0.003972564358264208, -0.028802042827010155, 0.1479814201593399, -0.08146654069423676, 0.002040722407400608, 0.03816695511341095, 0.0192909836769104, 0.007724328897893429, -0.17791666090488434, -0.006552519742399454, 0.016895370557904243, -0.06924544274806976, -0.04860888794064522, -0.03264154866337776, 0.033994317054748535, 0.09250535070896149, 0.028593139722943306, -0.03169388696551323, 0.02309587597846985, -0.011556166224181652, -0.06157436594367027, 0.19369392096996307, -0.11164899170398712, -0.09390488266944885, -0.09931457787752151, 0.019964108243584633, -0.036624450236558914, -0.03527137264609337, 0.0034755500964820385, -0.09298048913478851, -0.05304092913866043, -0.08735982328653336, -0.01897214911878109, -0.012411040253937244, -0.005382317118346691, 0.024212628602981567, -0.014667465351521969, 0.07859335094690323, -0.13289251923561096, 0.004231974482536316, -0.02896380051970482, -0.10174863040447235, 0.018457219004631042, 0.061583928763866425, 0.081084243953228, 0.10230448842048645, -0.012125218287110329, 0.015967434272170067, -0.03042527288198471, 0.22876036167144775, -0.06493484228849411, 0.017429765313863754, 0.08869262784719467, -0.003714771242812276, 0.056146040558815, 0.14006231725215912, 0.03233190253376961, -0.10768498480319977, 0.028938716277480125, 0.07781043648719788, -0.01919020712375641, -0.2515565752983093, -0.026422742754220963, -0.01911751553416252, -0.0718887522816658, 0.08619992434978485, 0.03828410431742668, -0.05469539016485214, 0.03451671823859215, 0.013741746544837952, 0.004791773855686188, -0.034708600491285324, 0.06805920600891113, 0.09096906334161758, 0.03678582236170769, 0.10166402161121368, -0.020724637433886528, -0.00913334358483553, 0.0630650594830513, 0.02602563612163067, 0.2708764672279358, -0.04276350140571594, 0.13479089736938477, 0.02962687611579895, 0.14960236847400665, -0.023453084751963615, 0.04959743097424507, 0.011168565601110458, 0.00020745354413520545, -0.0058347606100142, -0.04792442172765732, -0.0214151032269001, 0.002547403797507286, -0.030686136335134506, 0.023432496935129166, -0.07252667099237442, 0.03319694474339485, 0.0165077056735754, 0.3142293095588684, 0.04378320649266243, -0.2716812789440155, -0.07217850536108017, 0.004599666688591242, -0.04770994931459427, -0.07736770808696747, 0.004901184234768152, 0.1470649540424347, -0.12914316356182098, 0.027911555022001266, -0.056215621531009674, 0.09056325256824493, -0.04804783686995506, 0.008744494989514351, 0.06564266234636307, 0.1424950808286667, -0.008949673734605312, 0.07406902313232422, -0.20564325153827667, 0.23447257280349731, 0.02625945955514908, 0.1057162657380104, -0.06116572394967079, 0.013192996382713318, 0.007191635202616453, 0.04201418533921242, 0.11987831443548203, 0.003684049705043435, -0.002547483891248703, -0.17934969067573547, -0.10376111418008804, 0.05701525881886482, 0.11186414211988449, -0.03020213358104229, 0.09250934422016144, -0.04379047080874443, -0.005303500685840845, 0.035051390528678894, -0.07923123985528946, -0.11705217510461807, -0.09287779033184052, -0.008270679973065853, 0.0009470771183259785, -0.02526339516043663, -0.05947897583246231, -0.09188858419656754, -0.013420656323432922, 0.14008119702339172, 0.0051790340803563595, -0.05313033610582352, -0.13920028507709503, 0.05545951798558235, 0.1342466026544571, -0.05192245543003082, 0.013685199432075024, 0.0083387466147542, 0.11138490587472916, 0.04785631224513054, -0.07621072232723236, 0.05904722958803177, -0.07234976440668106, -0.16587789356708527, -0.057854149490594864, 0.12170001864433289, 0.0843518078327179, 0.058559808880090714, 0.003264078637585044, 0.027524374425411224, -0.0013299495913088322, -0.08169000595808029, 0.015987081453204155, 0.057445015758275986, 0.0891178548336029, 0.0365133099257946, -0.09780927747488022, 0.06611310690641403, -0.03790285810828209, -0.009011789225041866, 0.1290818303823471, 0.20713159441947937, -0.09613882005214691, 0.10337309539318085, 0.07237772643566132, -0.08114797621965408, -0.1873728483915329, 0.06863455474376678, 0.1278141736984253, 0.022975534200668335, 0.03922151401638985, -0.21152648329734802, 0.131911501288414, 0.10422991961240768, -0.01662343740463257, 0.03836711868643761, -0.2976759374141693, -0.12483040988445282, 0.07557056844234467, 0.10349193960428238, 0.035200100392103195, -0.12133651971817017, -0.02492753230035305, -0.012197241187095642, -0.1294575333595276, 0.13155502080917358, -0.07688860595226288, 0.11856686323881149, -0.0051529970951378345, 0.11900363117456436, 0.02467990852892399, -0.036876529455184937, 0.13273951411247253, 0.07188441604375839, 0.08902537822723389, -0.037103742361068726, 0.008778952993452549, 0.05657283961772919, -0.06750492006540298, 0.0390443354845047, -0.04051314666867256, 0.0696890577673912, -0.17125029861927032, -0.005448474083095789, -0.08882514387369156, 0.03897783160209656, -0.04974443465471268, -0.05678514763712883, -0.020089389756321907, 0.053791970014572144, 0.06889905780553818, -0.03888951241970062, 0.022921279072761536, 0.008144600316882133, 0.060958895832300186, 0.09415125846862793, 0.10172698646783829, -0.020007506012916565, -0.11067263782024384, 0.01344224251806736, -0.0077095963060855865, 0.05469091609120369, -0.11254853755235672, 0.023321954533457756, 0.12970322370529175, 0.06049497425556183, 0.12094072252511978, 0.025417502969503403, -0.03156597539782524, -0.013787501491606236, 0.008822399191558361, -0.11562037467956543, -0.1275942027568817, 0.03937740623950958, -0.039190296083688736, -0.14913876354694366, 0.005211973562836647, 0.09992530941963196, -0.03299615532159805, -0.0198511965572834, -0.009492823854088783, 0.021252689883112907, -0.017202917486429214, 0.1988764852285385, 0.04048500582575798, 0.07248351722955704, -0.10536716133356094, 0.11840087920427322, 0.053958456963300705, -0.05782262235879898, 0.05127796158194542, 0.06233527511358261, -0.10216914117336273, -0.011720545589923859, 0.11591894924640656, 0.160017728805542, -0.03435812518000603, -0.014517746865749359, -0.07735933363437653, -0.09221723675727844, 0.060733862221241, 0.14712224900722504, 0.05275571346282959, -0.011747227050364017, -0.04942992329597473, 0.02632772922515869, -0.12448102980852127, 0.081224225461483, 0.04704391956329346, 0.061660539358854294, -0.09652354568243027, 0.10599275678396225, -0.006875331979244947, 0.04324931651353836, -0.017120813950896263, 0.023939885199069977, -0.09823241829872131, -0.011364326812326908, -0.14851553738117218, 0.008739748038351536, 0.0015542444307357073, 0.012980268336832523, -0.01993856206536293, -0.05054960772395134, -0.0234686192125082, 0.02891519106924534, -0.08873648196458817, -0.05445234477519989, 0.018825389444828033, 0.04147764667868614, -0.14762094616889954, -0.01609252765774727, 0.023480942472815514, -0.09615431725978851, 0.08210301399230957, 0.05915377661585808, 0.013585226610302925, 0.027434546500444412, -0.09595751762390137, -0.047782476991415024, 0.003515668213367462, 0.027242686599493027, 0.08608254045248032, -0.09307456016540527, -0.01746082678437233, -0.036813605576753616, 0.041895315051078796, 0.017429227009415627, 0.0912812277674675, -0.11423833668231964, 0.005818390753120184, -0.04952964931726456, -0.03945169597864151, -0.06688088923692703, 0.0456397719681263, 0.10822625458240509, 0.048293307423591614, 0.1607242375612259, -0.071201853454113, 0.03544691577553749, -0.1904553323984146, -0.04031474143266678, 0.001949421362951398, -0.04366566985845566, -0.08895520120859146, -0.05133894830942154, 0.09558061510324478, -0.04905350133776665, 0.09752116352319717, -0.002083094324916601, 0.09745986759662628, 0.031918611377477646, -0.02094605378806591, -0.04902828484773636, 0.00828892458230257, 0.15343523025512695, 0.04984424635767937, -0.0143346656113863, 0.11201269924640656, -0.007114053703844547, 0.04725605621933937, 0.06901369988918304, 0.2101432979106903, 0.15355363488197327, 0.00522890780121088, 0.04904162511229515, 0.06263521313667297, -0.11823885142803192, -0.14328669011592865, 0.1393013298511505, -0.04777657985687256, 0.12548282742500305, -0.06773623824119568, 0.2240695208311081, 0.02308260090649128, -0.18660558760166168, 0.06542254984378815, -0.060345374047756195, -0.12524467706680298, -0.11548034101724625, -0.03246208280324936, -0.07558275759220123, -0.10897122323513031, 0.021508563309907913, -0.12078487873077393, 0.0608629509806633, 0.12796998023986816, 0.017152564600110054, 0.02617482654750347, 0.1560553014278412, -0.0340123251080513, 0.018723098561167717, 0.06948623061180115, 0.018845614045858383, -0.004197744652628899, -0.06292488425970078, -0.06179990991950035, 0.05056971311569214, 0.026820892468094826, 0.07632603496313095, -0.043144483119249344, 0.01054467260837555, 0.02114051580429077, -0.016160914674401283, -0.07266473770141602, 0.013747104443609715, 0.026193981990218163, 0.044134676456451416, 0.06038234010338783, 0.05265727639198303, 0.006934334523975849, -0.036548394709825516, 0.28901439905166626, -0.07861951738595963, -0.09387557208538055, -0.13438299298286438, 0.22604195773601532, 0.009588980115950108, -0.020993582904338837, 0.07959414273500443, -0.09484849870204926, -0.024892952293157578, 0.1738569438457489, 0.13804395496845245, -0.1011291965842247, -0.02523821033537388, -0.015423225238919258, -0.013131224550306797, -0.04565267264842987, 0.13033972680568695, 0.10830334573984146, -0.009800284169614315, -0.08150629699230194, -0.023560887202620506, -0.010824703611433506, -0.05171875283122063, -0.06828996539115906, 0.06228797510266304, 0.018353354185819626, 0.0015062710735946894, -0.04303066059947014, 0.05674959346652031, -0.0027093240059912205, -0.24997705221176147, 0.03520967438817024, -0.15637077391147614, -0.17833520472049713, -0.037981823086738586, 0.05369963124394417, -0.005626271944493055, 0.03942443057894707, -0.013798028230667114, 0.012386507354676723, 0.15461961925029755, -0.034039899706840515, -0.033563435077667236, -0.11845710873603821, 0.11814011633396149, -0.10565824806690216, 0.2004222571849823, 0.004053378943353891, 0.07213708013296127, 0.096785768866539, 0.01346250344067812, -0.13453544676303864, 0.03944828733801842, 0.07574602961540222, -0.10452525317668915, 0.012477684766054153, 0.15348321199417114, -0.053149912506341934, 0.08263593167066574, 0.02255251631140709, -0.10925553739070892, -0.011988888494670391, -0.04405955970287323, -0.036787569522857666, -0.07929641753435135, -0.01737726852297783, -0.06563732773065567, 0.15849646925926208, 0.22745387256145477, -0.024676088243722916, 0.0166685301810503, -0.09259171038866043, 0.012402277439832687, 0.04432128742337227, 0.050702519714832306, -0.045427288860082626, -0.1935582160949707, 0.024943513795733452, 0.033056583255529404, 0.019817223772406578, -0.21062423288822174, -0.08608153462409973, 0.044976454228162766, -0.028787484392523766, -0.04732616990804672, 0.10535355657339096, 0.03032110072672367, 0.04488835856318474, -0.03389202803373337, -0.09954994171857834, -0.0402875654399395, 0.14268909394741058, -0.16031505167484283, -0.04204968735575676 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-64-finetuned-squad-seed-4 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-64-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-64-finetuned-squad-seed-4
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-4 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.10189717262983322, 0.1348591148853302, -0.0019889138638973236, 0.09340251982212067, 0.13636623322963715, 0.03413691744208336, 0.08314309269189835, 0.13912290334701538, -0.08013676106929779, 0.053176190704107285, 0.07446851581335068, 0.059344902634620667, 0.04683567211031914, 0.12834954261779785, -0.04233553633093834, -0.21552757918834686, 0.003042177064344287, -0.013918033801019192, -0.06482440233230591, 0.10326992720365524, 0.08760318905115128, -0.1111224964261055, 0.06951463222503662, -0.02230260707437992, -0.15450899302959442, 0.009908201172947884, -0.03248876705765724, -0.023870699107646942, 0.10518023371696472, -0.007887695915997028, 0.0929245725274086, 0.015292265452444553, 0.14342477917671204, -0.21266475319862366, 0.0004317720595281571, 0.07581207156181335, 0.045332714915275574, 0.08929572254419327, 0.03580458089709282, 0.01973591186106205, 0.027281705290079117, -0.15156099200248718, 0.09285158663988113, 0.026035141199827194, -0.07961273938417435, -0.1331366002559662, -0.09036742895841599, 0.02559015154838562, 0.0845004990696907, 0.08046423643827438, 0.007606842089444399, 0.12784568965435028, -0.09944945573806763, 0.08266016095876694, 0.19609570503234863, -0.2822944223880768, -0.06593730300664902, 0.046182241290807724, 0.05158363655209541, 0.07387666404247284, -0.11852158606052399, -0.01788092590868473, 0.021907201036810875, 0.03185144439339638, 0.11129708588123322, -0.020898178219795227, -0.1296512484550476, 0.00859907828271389, -0.12785780429840088, -0.015968669205904007, 0.10948089510202408, 0.041835956275463104, -0.047909583896398544, -0.07824552804231644, -0.06543368846178055, -0.09724219888448715, -0.02926536276936531, -0.011750166304409504, 0.052729059010744095, -0.05607578903436661, -0.06729020178318024, -0.04830310866236687, -0.057721883058547974, -0.08996938914060593, 0.003775634802877903, 0.1241091638803482, 0.04026690870523453, 0.01949560083448887, -0.030886845663189888, 0.11705686151981354, 0.001597676775418222, -0.12830883264541626, -0.010392092168331146, 0.004430053289979696, -0.12017279863357544, -0.05182228982448578, -0.032273922115564346, 0.02087574079632759, 0.013744988478720188, 0.15028701722621918, -0.03694593533873558, 0.07579381763935089, 0.014679611660540104, -0.01958082802593708, -0.0203907061368227, 0.15822583436965942, -0.03361016884446144, -0.04773584008216858, 0.0014611538499593735, 0.09855245798826218, -0.0019099544733762741, -0.005817183293402195, -0.08152133971452713, -0.017099162563681602, 0.0775117501616478, 0.0665363073348999, -0.0571952722966671, 0.038250505924224854, -0.04168540611863136, -0.024810051545500755, 0.020971765741705894, -0.12901079654693604, 0.03629038855433464, 0.0062661501578986645, -0.08092139661312103, -0.05795903876423836, 0.008391650393605232, -0.016203787177801132, -0.026616258546710014, 0.07468035072088242, -0.07137113809585571, -0.006457267329096794, -0.08703655004501343, -0.07942360639572144, 0.0018624932272359729, -0.13817524909973145, -0.011967489495873451, -0.04645659774541855, -0.1990516185760498, -0.03457046300172806, 0.050583478063344955, -0.07692574709653854, -0.04541851580142975, -0.05100508779287338, -0.07794032245874405, 0.009419466368854046, -0.007230713963508606, 0.18963240087032318, -0.057878945022821426, 0.08100836724042892, -0.015277385711669922, 0.046741876751184464, 0.022427722811698914, 0.051045868545770645, -0.07935535907745361, 0.027585530653595924, -0.14713692665100098, 0.08732251822948456, -0.10421005636453629, 0.01336990762501955, -0.12715573608875275, -0.08717404305934906, 0.05849588289856911, -0.021212933585047722, 0.06898441910743713, 0.13963839411735535, -0.19219906628131866, 0.001862971344962716, 0.11847485601902008, -0.0374203659594059, -0.04241029545664787, 0.08060694485902786, -0.059237297624349594, 0.03679656609892845, 0.05490544065833092, 0.17999869585037231, 0.08264843374490738, -0.142264723777771, 0.008428839966654778, 0.043278321623802185, 0.06087183579802513, 0.006686486303806305, 0.041564829647541046, 0.003340387949720025, 0.023842619732022285, 0.009451462887227535, -0.09508514404296875, -0.023839250206947327, -0.08845636248588562, -0.07263567298650742, -0.04853526130318642, -0.09292008727788925, 0.036677662283182144, 0.011232107877731323, 0.01936160773038864, -0.06456165760755539, -0.10798116028308868, 0.09708493947982788, 0.12571217119693756, -0.05855879932641983, 0.010715633630752563, -0.07912269234657288, 0.019450554624199867, -0.019969165325164795, -0.027279457077383995, -0.19458289444446564, -0.12711192667484283, 0.05018535256385803, -0.04314018040895462, 0.024651145562529564, 0.03275485709309578, 0.06572804600000381, 0.05538706108927727, -0.04476487636566162, -0.023651642724871635, -0.06807505339384079, -0.002485736971721053, -0.11350615322589874, -0.20074492692947388, -0.07310397177934647, -0.037451665848493576, 0.14484189450740814, -0.20208251476287842, 0.005652885418385267, -0.021406780928373337, 0.10863982141017914, 0.01720740832388401, -0.04983089864253998, 0.01181622501462698, 0.0326593853533268, 0.015244588255882263, -0.09876804798841476, 0.05052913725376129, 0.010608790442347527, -0.06882277131080627, -0.044854555279016495, -0.10162338614463806, 0.0006445262697525322, 0.0576382614672184, 0.08424769341945648, -0.10129719972610474, -0.018028998747467995, -0.05240219458937645, -0.03792759031057358, -0.0832725539803505, 0.014473747462034225, 0.20537233352661133, 0.03323974460363388, 0.12384086847305298, -0.05782784894108772, -0.07983329147100449, -0.004007588140666485, 0.02197444625198841, 0.034528885036706924, 0.10111233592033386, 0.07434099167585373, -0.07888199388980865, 0.08139407634735107, 0.08015374839305878, -0.04195484519004822, 0.11459580063819885, -0.05487833544611931, -0.0755424052476883, -0.016217097640037537, 0.002912241732701659, -0.029352335259318352, 0.1489432454109192, -0.08252053707838058, 0.0005152208614163101, 0.037897899746894836, 0.01866433583199978, 0.008023780770599842, -0.17682790756225586, -0.0064614093862473965, 0.01569473370909691, -0.06828813254833221, -0.04960562661290169, -0.03225104138255119, 0.03332943469285965, 0.09208609908819199, 0.02849947288632393, -0.032946255058050156, 0.023249130696058273, -0.011524281464517117, -0.061172835528850555, 0.19403232634067535, -0.11187224835157394, -0.09316664189100266, -0.09901698678731918, 0.017981810495257378, -0.03786337003111839, -0.035880714654922485, 0.0032660949509590864, -0.09486818313598633, -0.05362791568040848, -0.08706402778625488, -0.0203021802008152, -0.012345656752586365, -0.005606230814009905, 0.024006081745028496, -0.014866065233945847, 0.0782359167933464, -0.13254937529563904, 0.004369062837213278, -0.02918204478919506, -0.10198667645454407, 0.019095301628112793, 0.06221610680222511, 0.0813763439655304, 0.10154193639755249, -0.011450025252997875, 0.01602986454963684, -0.03054692968726158, 0.22957289218902588, -0.06515457481145859, 0.01774510182440281, 0.08857549726963043, -0.0025986123364418745, 0.054806895554065704, 0.14013929665088654, 0.03339089825749397, -0.1082959771156311, 0.028585392981767654, 0.0785263329744339, -0.01862035132944584, -0.2518285810947418, -0.025676675140857697, -0.019610092043876648, -0.07177161425352097, 0.08627986162900925, 0.03837946802377701, -0.05379123240709305, 0.03505250811576843, 0.014691616408526897, 0.005921951029449701, -0.03470338508486748, 0.06759988516569138, 0.09309318661689758, 0.036109842360019684, 0.10250592231750488, -0.020986484363675117, -0.009206496179103851, 0.06225130707025528, 0.026391038671135902, 0.272098571062088, -0.04278147965669632, 0.134741872549057, 0.030175706371665, 0.14916662871837616, -0.02328239195048809, 0.05069812759757042, 0.01077831070870161, -0.00047059881035238504, -0.005321388598531485, -0.04792865738272667, -0.01982734724879265, 0.001707307412289083, -0.03193684294819832, 0.02254505828022957, -0.07298007607460022, 0.03123532608151436, 0.016693277284502983, 0.3136419951915741, 0.04363863170146942, -0.27412527799606323, -0.07305831462144852, 0.0038599157705903053, -0.04762125015258789, -0.07661093771457672, 0.005171905737370253, 0.14650164544582367, -0.12867885828018188, 0.029136423021554947, -0.056329336017370224, 0.08999147266149521, -0.048162270337343216, 0.009762857109308243, 0.06800645589828491, 0.14307913184165955, -0.009654604829847813, 0.07364621013402939, -0.2057456225156784, 0.2330743819475174, 0.026334071531891823, 0.10644539445638657, -0.06152850762009621, 0.013388472609221935, 0.00782795250415802, 0.04302012175321579, 0.11968994140625, 0.0030347981955856085, -0.002419454976916313, -0.17937426269054413, -0.10272246599197388, 0.05826956778764725, 0.11118005216121674, -0.029003532603383064, 0.0934879332780838, -0.04276259243488312, -0.005913987755775452, 0.03456292301416397, -0.0805870071053505, -0.11757874488830566, -0.09388626366853714, -0.008572544902563095, 0.0018614375730976462, -0.024806279689073563, -0.05892939493060112, -0.09260256588459015, -0.015420420095324516, 0.1393755078315735, 0.006244957447052002, -0.05341712385416031, -0.1398877650499344, 0.05454535037279129, 0.1345098465681076, -0.05058056488633156, 0.014043871313333511, 0.009160853922367096, 0.11034069955348969, 0.04905390366911888, -0.07584813237190247, 0.05917029455304146, -0.07306017726659775, -0.16500325500965118, -0.05779392644762993, 0.12132570892572403, 0.08366952836513519, 0.05767875164747238, 0.0028826503548771143, 0.02777007222175598, -0.0017808584962040186, -0.0823979452252388, 0.016920877620577812, 0.05528251826763153, 0.09073658287525177, 0.03569934517145157, -0.09881091117858887, 0.0656629353761673, -0.0373082309961319, -0.008168189786374569, 0.12701484560966492, 0.20436912775039673, -0.09516485035419464, 0.10153063386678696, 0.07280624657869339, -0.0806247740983963, -0.18669171631336212, 0.06965764611959457, 0.12635685503482819, 0.02335948869585991, 0.037450604140758514, -0.21253594756126404, 0.1334388554096222, 0.1039106696844101, -0.015389205887913704, 0.0406763032078743, -0.2945367395877838, -0.12413528561592102, 0.07556511461734772, 0.1043747141957283, 0.03536340221762657, -0.12187375873327255, -0.02426338382065296, -0.012255197390913963, -0.12928901612758636, 0.13039569556713104, -0.07972944527864456, 0.11870507895946503, -0.0055364943109452724, 0.1192093938589096, 0.023719126358628273, -0.03715796023607254, 0.13175269961357117, 0.07301775366067886, 0.08975640684366226, -0.03738085925579071, 0.00935648288577795, 0.05661487579345703, -0.06663321703672409, 0.03912116959691048, -0.04147880896925926, 0.06884779036045074, -0.17200720310211182, -0.0053587728179991245, -0.08975586295127869, 0.038515109568834305, -0.04977262020111084, -0.056269194930791855, -0.018734445795416832, 0.05403291806578636, 0.06779715418815613, -0.03908567130565643, 0.02146090939640999, 0.007381516508758068, 0.06167144328355789, 0.093123659491539, 0.10246346145868301, -0.021308209747076035, -0.11198709905147552, 0.014371106401085854, -0.00820915587246418, 0.0542718842625618, -0.11210111528635025, 0.02191278524696827, 0.13054928183555603, 0.05972540006041527, 0.12082395702600479, 0.02618921920657158, -0.030407559126615524, -0.014333357103168964, 0.010004930198192596, -0.11594611406326294, -0.12618833780288696, 0.03968171775341034, -0.043393511325120926, -0.14906568825244904, 0.006683706305921078, 0.0997561439871788, -0.03281727433204651, -0.019738104194402695, -0.009682847186923027, 0.021007388830184937, -0.017287667840719223, 0.20018446445465088, 0.04061673954129219, 0.0723077729344368, -0.10659251362085342, 0.11807096749544144, 0.05394411459565163, -0.0591011717915535, 0.051175542175769806, 0.06389108300209045, -0.10336893051862717, -0.01299501396715641, 0.11459451168775558, 0.16131453216075897, -0.03251499682664871, -0.015292310155928135, -0.07876919955015182, -0.09278585016727448, 0.06088140606880188, 0.14557667076587677, 0.05211155116558075, -0.01282027829438448, -0.04950988292694092, 0.025889284908771515, -0.1251130849123001, 0.08102437108755112, 0.04573668912053108, 0.06189568713307381, -0.0965539738535881, 0.10514817386865616, -0.006478685420006514, 0.04241861775517464, -0.017085451632738113, 0.024514788761734962, -0.09894760698080063, -0.011640951968729496, -0.148642435669899, 0.007644870784133673, 0.0008806156110949814, 0.013573208823800087, -0.02035074308514595, -0.049149852246046066, -0.02415434829890728, 0.02924269624054432, -0.08886593580245972, -0.054018329828977585, 0.020727762952446938, 0.042240407317876816, -0.14688432216644287, -0.015450939536094666, 0.022132139652967453, -0.09641366451978683, 0.08217281848192215, 0.059096310287714005, 0.01328540500253439, 0.028027597814798355, -0.09358079731464386, -0.04816627502441406, 0.003035284811630845, 0.026359137147665024, 0.08674163371324539, -0.09274792671203613, -0.016858121380209923, -0.036902036517858505, 0.04226144775748253, 0.0177648663520813, 0.0900769904255867, -0.11362186074256897, 0.00604541739448905, -0.048722825944423676, -0.03848050907254219, -0.06753373891115189, 0.0462116077542305, 0.10920916497707367, 0.04700819030404091, 0.1610490381717682, -0.0713484063744545, 0.034815553575754166, -0.19061435759067535, -0.040859244763851166, 0.0016282135620713234, -0.04526696354150772, -0.08810114860534668, -0.05093849077820778, 0.09644156694412231, -0.04977519065141678, 0.09924157708883286, -0.0026324272621423006, 0.0979585275053978, 0.0315803661942482, -0.02088000439107418, -0.05059734359383583, 0.009208998642861843, 0.15291430056095123, 0.049313172698020935, -0.015142890624701977, 0.11129607260227203, -0.006118435878306627, 0.04622425138950348, 0.07035048305988312, 0.20815439522266388, 0.15277479588985443, 0.006093010306358337, 0.04896920174360275, 0.06341923773288727, -0.11928141862154007, -0.14211325347423553, 0.14056554436683655, -0.047453880310058594, 0.12666042149066925, -0.06888401508331299, 0.22216807305812836, 0.02233186922967434, -0.18577487766742706, 0.06567889451980591, -0.06158898025751114, -0.12544482946395874, -0.11387744545936584, -0.031236493960022926, -0.07470438629388809, -0.1097453162074089, 0.02184447832405567, -0.12148310244083405, 0.05958772823214531, 0.12925364077091217, 0.018030941486358643, 0.02558882348239422, 0.1577063947916031, -0.03259210288524628, 0.019461970776319504, 0.0697781965136528, 0.01852749101817608, -0.004633003380149603, -0.06238787621259689, -0.06059873104095459, 0.04966538026928902, 0.025118838995695114, 0.07592210918664932, -0.04393535107374191, 0.00977408979088068, 0.021899035200476646, -0.0153884869068861, -0.07221648097038269, 0.013801825232803822, 0.02630363218486309, 0.04387891665101051, 0.06170288100838661, 0.052062563598155975, 0.006082427687942982, -0.03675119951367378, 0.28760501742362976, -0.07860378921031952, -0.0922626182436943, -0.13531747460365295, 0.22518667578697205, 0.009585075080394745, -0.021724918857216835, 0.07876855880022049, -0.0941278487443924, -0.023532606661319733, 0.17546004056930542, 0.14026330411434174, -0.10021065920591354, -0.025527365505695343, -0.014767667278647423, -0.013159061782062054, -0.045541249215602875, 0.13057759404182434, 0.1083807647228241, -0.010266450233757496, -0.08138089627027512, -0.02350044436752796, -0.010066385380923748, -0.05181138962507248, -0.0680646002292633, 0.06197570636868477, 0.019496304914355278, 0.001183829503133893, -0.0423131138086319, 0.056975968182086945, -0.002598936902359128, -0.25006306171417236, 0.0364559106528759, -0.1557493656873703, -0.1789184957742691, -0.03910483047366142, 0.05298382043838501, -0.004607571288943291, 0.040146443992853165, -0.01328439824283123, 0.011887956410646439, 0.15574803948402405, -0.03405703976750374, -0.032886140048503876, -0.1195300966501236, 0.11834365874528885, -0.1054454818367958, 0.1989412158727646, 0.0033228066749870777, 0.07214460521936417, 0.09743267297744751, 0.013024468906223774, -0.13448871672153473, 0.04004694148898125, 0.07521989196538925, -0.10502822697162628, 0.013125458732247353, 0.15281865000724792, -0.05302167311310768, 0.08185447007417679, 0.021149883046746254, -0.10819029808044434, -0.011297888122498989, -0.04344853386282921, -0.03639456629753113, -0.0791134461760521, -0.01679549179971218, -0.06527851521968842, 0.15889810025691986, 0.22908084094524384, -0.024694137275218964, 0.016355635598301888, -0.09251534193754196, 0.01259488333016634, 0.04483799636363983, 0.04896415024995804, -0.046108026057481766, -0.19395974278450012, 0.025196565315127373, 0.033197786659002304, 0.019456278532743454, -0.2118125706911087, -0.08478032052516937, 0.04500648006796837, -0.02850513346493244, -0.04787092283368111, 0.10523581504821777, 0.031422343105077744, 0.04579976573586464, -0.034606438130140305, -0.09639108180999756, -0.04031059145927429, 0.14243146777153015, -0.16069073975086212, -0.04259832948446274 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-64-finetuned-squad-seed-6 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-64-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-64-finetuned-squad-seed-6
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-6 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.10178697854280472, 0.13452737033367157, -0.00195504748262465, 0.09295835345983505, 0.13667839765548706, 0.03357855603098869, 0.08275282382965088, 0.13979429006576538, -0.07907605171203613, 0.05361323058605194, 0.07364438474178314, 0.0606226846575737, 0.04735708236694336, 0.12789805233478546, -0.04239572584629059, -0.2152659147977829, 0.003005857579410076, -0.013436747714877129, -0.064724862575531, 0.1034029871225357, 0.08779542148113251, -0.11136387288570404, 0.06855007261037827, -0.02272144705057144, -0.15485481917858124, 0.01000349409878254, -0.03295646607875824, -0.023383021354675293, 0.10482914745807648, -0.008440784178674221, 0.09242131561040878, 0.015271816402673721, 0.14320911467075348, -0.21354161202907562, 0.0004353405674919486, 0.07624849677085876, 0.04558388516306877, 0.08955148607492447, 0.03675542026758194, 0.01989748328924179, 0.029022786766290665, -0.15148715674877167, 0.09264672547578812, 0.026607267558574677, -0.0794602781534195, -0.1309981495141983, -0.09082713723182678, 0.024989333003759384, 0.08495844155550003, 0.08120984584093094, 0.007062356919050217, 0.12944325804710388, -0.09982412308454514, 0.08293132483959198, 0.19825603067874908, -0.28045281767845154, -0.06600344926118851, 0.047353096306324005, 0.05164571478962898, 0.07257521152496338, -0.11956136673688889, -0.018872609362006187, 0.021781273186206818, 0.03147568181157112, 0.11001837998628616, -0.020161503925919533, -0.13147756457328796, 0.008186145685613155, -0.12830011546611786, -0.01609671115875244, 0.10773400217294693, 0.04213830456137657, -0.04712290316820145, -0.07819361984729767, -0.06598557531833649, -0.09629219025373459, -0.029191384091973305, -0.011747551150619984, 0.05271834135055542, -0.056159473955631256, -0.06666933000087738, -0.048274606466293335, -0.05735911801457405, -0.09118185192346573, 0.004083259496837854, 0.12369272857904434, 0.0402291938662529, 0.018988575786352158, -0.0318366140127182, 0.11690263450145721, 0.0015342672122642398, -0.12890027463436127, -0.011436504311859608, 0.00527582224458456, -0.12047620117664337, -0.05203229561448097, -0.03160165250301361, 0.01843463070690632, 0.013149769976735115, 0.14778777956962585, -0.037064168602228165, 0.07628846913576126, 0.013711975887417793, -0.019549164921045303, -0.020961564034223557, 0.1588452011346817, -0.03272860124707222, -0.04571383818984032, 0.000626922701485455, 0.09864349663257599, -0.0025248599704355, -0.005350809078663588, -0.08090353012084961, -0.017344405874609947, 0.0784335508942604, 0.06632400304079056, -0.05636508762836456, 0.03768004849553108, -0.04215360805392265, -0.024982310831546783, 0.021599628031253815, -0.12877437472343445, 0.03668750077486038, 0.0057224128395318985, -0.08143457770347595, -0.05924420803785324, 0.008609590120613575, -0.01640939526259899, -0.02703195996582508, 0.07554268836975098, -0.07167105376720428, -0.006127539556473494, -0.0880240872502327, -0.07907713204622269, 0.002476328518241644, -0.13982199132442474, -0.012250993400812149, -0.045452702790498734, -0.19954387843608856, -0.03474361076951027, 0.04993682727217674, -0.07711692899465561, -0.04485483840107918, -0.05185289308428764, -0.07870005816221237, 0.00983777828514576, -0.006672328803688288, 0.19080403447151184, -0.05734734609723091, 0.08189236372709274, -0.0155643867328763, 0.046336930245161057, 0.023090677335858345, 0.051814768463373184, -0.08074094355106354, 0.027209052816033363, -0.14653484523296356, 0.0877414271235466, -0.10518775135278702, 0.013204636983573437, -0.12814448773860931, -0.0862790122628212, 0.05712173879146576, -0.021913688629865646, 0.07004928588867188, 0.14056266844272614, -0.19259323179721832, 0.002309059491381049, 0.11906429380178452, -0.03793745115399361, -0.04286475107073784, 0.07942723482847214, -0.05892074480652809, 0.03663381561636925, 0.054291896522045135, 0.18052764236927032, 0.08217678219079971, -0.14193221926689148, 0.00721267145127058, 0.04272999241948128, 0.06164654344320297, 0.0063917082734405994, 0.04119690880179405, 0.0031953686848282814, 0.025486290454864502, 0.009173755533993244, -0.09496136009693146, -0.023995880037546158, -0.08880896121263504, -0.07214583456516266, -0.04940570145845413, -0.09304323047399521, 0.03594567999243736, 0.013112685643136501, 0.01894543319940567, -0.06406352669000626, -0.10749322921037674, 0.09712271392345428, 0.1255478709936142, -0.057764071971178055, 0.010955153964459896, -0.07840663939714432, 0.01830684021115303, -0.02046005241572857, -0.02709796279668808, -0.1964375376701355, -0.12766766548156738, 0.05075477436184883, -0.04390571638941765, 0.025171173736453056, 0.031755805015563965, 0.06563135981559753, 0.05421000346541405, -0.04496752843260765, -0.023723391816020012, -0.06885866820812225, -0.0030185983050614595, -0.11395760625600815, -0.20079435408115387, -0.07319246232509613, -0.03826318308711052, 0.14226429164409637, -0.20136253535747528, 0.005348519887775183, -0.021626293659210205, 0.1095796450972557, 0.01731887273490429, -0.05040815472602844, 0.012137681245803833, 0.03242392838001251, 0.014891620725393295, -0.09911393374204636, 0.050222430378198624, 0.009663485921919346, -0.06867968291044235, -0.044942457228899, -0.10158337652683258, -0.0018190396949648857, 0.057143472135066986, 0.08593656867742538, -0.10151524096727371, -0.01831558346748352, -0.05232453718781471, -0.03809838742017746, -0.08430156856775284, 0.015634585171937943, 0.20486249029636383, 0.03373727574944496, 0.12305399030447006, -0.058213215321302414, -0.08024140447378159, -0.003535877214744687, 0.022133035585284233, 0.03375992178916931, 0.10260391980409622, 0.07613413780927658, -0.08145351707935333, 0.0824688971042633, 0.08080336451530457, -0.041135065257549286, 0.11496362835168839, -0.05527280271053314, -0.07599583268165588, -0.014571587555110455, 0.003449450945481658, -0.02905985713005066, 0.14857344329357147, -0.08209054917097092, 0.0010526240803301334, 0.037789084017276764, 0.018897665664553642, 0.007821235805749893, -0.1769680678844452, -0.006484889425337315, 0.0155605748295784, -0.06801864504814148, -0.050082094967365265, -0.03202994912862778, 0.033418264240026474, 0.09240349382162094, 0.028149500489234924, -0.03223591297864914, 0.022505300119519234, -0.011733854189515114, -0.060969676822423935, 0.19494366645812988, -0.11151214689016342, -0.09200876206159592, -0.09752289205789566, 0.01912912353873253, -0.03741903975605965, -0.03616069629788399, 0.0033443672582507133, -0.09609381854534149, -0.05344749987125397, -0.08668555319309235, -0.019996097311377525, -0.011743303388357162, -0.00668105436488986, 0.023036271333694458, -0.014637873508036137, 0.07758644968271255, -0.1333221197128296, 0.004723209887742996, -0.029651420190930367, -0.10206028074026108, 0.018548183143138885, 0.06173131987452507, 0.08155632019042969, 0.10211614519357681, -0.012087319977581501, 0.016034306958317757, -0.03049781545996666, 0.2285536676645279, -0.0658491924405098, 0.017126062884926796, 0.08834946155548096, -0.0013880431652069092, 0.05545787885785103, 0.14017106592655182, 0.03269558399915695, -0.10821690410375595, 0.028976941481232643, 0.0791962593793869, -0.018896041437983513, -0.25292274355888367, -0.026111910119652748, -0.01982394978404045, -0.07228690385818481, 0.08627991378307343, 0.03875226899981499, -0.05398934334516525, 0.03504057228565216, 0.013707061298191547, 0.004098162055015564, -0.0347866490483284, 0.0680684745311737, 0.09068682044744492, 0.037209752947092056, 0.10207048058509827, -0.021037397906184196, -0.008656988851726055, 0.0613248310983181, 0.02652699686586857, 0.2727198600769043, -0.043335217982530594, 0.1344069540500641, 0.02969421073794365, 0.14882639050483704, -0.023947186768054962, 0.0508890338242054, 0.010274031199514866, -0.0005880365497432649, -0.0051350826397538185, -0.04778645187616348, -0.02003377303481102, 0.001519824261777103, -0.032782938331365585, 0.02312207594513893, -0.07271959632635117, 0.031665511429309845, 0.016271600499749184, 0.3140765428543091, 0.043670203536748886, -0.2728669345378876, -0.07220618426799774, 0.0037634659092873335, -0.047798968851566315, -0.07743709534406662, 0.00474048824980855, 0.145600363612175, -0.12820474803447723, 0.02897445298731327, -0.056734487414360046, 0.09113533794879913, -0.04633912816643715, 0.00906029250472784, 0.06727561354637146, 0.1433527022600174, -0.009502683766186237, 0.07432280480861664, -0.206979900598526, 0.23511239886283875, 0.026468360796570778, 0.1063610389828682, -0.06213434785604477, 0.01311464048922062, 0.007047990802675486, 0.04121769964694977, 0.1202172264456749, 0.002884287154302001, -0.002565948059782386, -0.17857204377651215, -0.10181332379579544, 0.057889193296432495, 0.11209364235401154, -0.029207831248641014, 0.0926484689116478, -0.04269149526953697, -0.00582997826859355, 0.03551757335662842, -0.0808233693242073, -0.11761835962533951, -0.09391201287508011, -0.00832361914217472, 0.0011879726080223918, -0.025573717430233955, -0.05849851667881012, -0.09225837141275406, -0.014057682827115059, 0.13899314403533936, 0.0065339552238583565, -0.05281426012516022, -0.1397276669740677, 0.05566942319273949, 0.13470712304115295, -0.051139041781425476, 0.013987942598760128, 0.008547977544367313, 0.11005108058452606, 0.04814189672470093, -0.0763128474354744, 0.060113415122032166, -0.07292891293764114, -0.16545213758945465, -0.05774274840950966, 0.12104335427284241, 0.08431129157543182, 0.05821007862687111, 0.0026773419231176376, 0.02798723615705967, -0.0016492749564349651, -0.08198574930429459, 0.01705155149102211, 0.055318597704172134, 0.09041019529104233, 0.03653275966644287, -0.09842777252197266, 0.06437358260154724, -0.03824375569820404, -0.008778220973908901, 0.12673094868659973, 0.2051183581352234, -0.09505273401737213, 0.10173746198415756, 0.07353052496910095, -0.08090225607156754, -0.18734554946422577, 0.07064718008041382, 0.12687934935092926, 0.022719599306583405, 0.03833609074354172, -0.2122189700603485, 0.1332305371761322, 0.10334338247776031, -0.015815546736121178, 0.039717040956020355, -0.2956703007221222, -0.12407661229372025, 0.07568935304880142, 0.10424834489822388, 0.032709185034036636, -0.1221228837966919, -0.024383671581745148, -0.011809062212705612, -0.1286955624818802, 0.13141976296901703, -0.07786092162132263, 0.11883597075939178, -0.0059045529924333096, 0.11965875327587128, 0.024133699014782906, -0.03770161047577858, 0.13019315898418427, 0.07315314561128616, 0.09009998291730881, -0.03726602718234062, 0.009249433875083923, 0.05680684745311737, -0.06665589660406113, 0.03930943086743355, -0.041525598615407944, 0.06954091042280197, -0.17050223052501678, -0.00494551844894886, -0.09060323983430862, 0.03920791670680046, -0.04980095103383064, -0.05637866631150246, -0.018952926620841026, 0.05447951331734657, 0.06813199073076248, -0.039473116397857666, 0.02354426681995392, 0.00735910190269351, 0.06378144025802612, 0.09296930581331253, 0.10310129076242447, -0.02089935541152954, -0.11089524626731873, 0.013740857131779194, -0.007413150742650032, 0.05448048189282417, -0.11318664997816086, 0.021552998572587967, 0.13050560653209686, 0.061276376247406006, 0.12060953676700592, 0.026485919952392578, -0.03138442710042, -0.014433668926358223, 0.008990297093987465, -0.11524983495473862, -0.12710973620414734, 0.039846207946538925, -0.038725461810827255, -0.1495904177427292, 0.007234025280922651, 0.09780296683311462, -0.03367462754249573, -0.01983124390244484, -0.009392916224896908, 0.02146757021546364, -0.01636442169547081, 0.20081132650375366, 0.040976617485284805, 0.07298857718706131, -0.1063975989818573, 0.11846239119768143, 0.05363753065466881, -0.06024082750082016, 0.051443491131067276, 0.06422792375087738, -0.10254913568496704, -0.01300093811005354, 0.11633390933275223, 0.15984266996383667, -0.032749876379966736, -0.013777361251413822, -0.07724275439977646, -0.09238672256469727, 0.06110994517803192, 0.1473919302225113, 0.05204317346215248, -0.013114222325384617, -0.04906123876571655, 0.026262624189257622, -0.12600670754909515, 0.08152158558368683, 0.04536667466163635, 0.06224516034126282, -0.09620247036218643, 0.10307444632053375, -0.0065263984724879265, 0.042702384293079376, -0.01690271869301796, 0.02506001479923725, -0.09861453622579575, -0.011444670148193836, -0.14593134820461273, 0.007256637327373028, 0.0009775384096428752, 0.013066861778497696, -0.02100808545947075, -0.04999744892120361, -0.022955097258090973, 0.029293524101376534, -0.0890115275979042, -0.05469809100031853, 0.020070530474185944, 0.041771478950977325, -0.14754420518875122, -0.01557291392236948, 0.022505396977066994, -0.09561251103878021, 0.08088414371013641, 0.05825292691588402, 0.013284893706440926, 0.028467843309044838, -0.09688286483287811, -0.04787667468190193, 0.0033899194095283747, 0.026605017483234406, 0.08671016246080399, -0.0918751135468483, -0.017143378034234047, -0.03718949109315872, 0.042477358132600784, 0.017496872693300247, 0.08919170498847961, -0.11426883935928345, 0.005390560254454613, -0.05017681419849396, -0.03925253823399544, -0.06683403253555298, 0.04699161648750305, 0.10958242416381836, 0.04712049663066864, 0.16047176718711853, -0.07094845920801163, 0.03574954345822334, -0.19057907164096832, -0.040675658732652664, 0.0018411423079669476, -0.045199450105428696, -0.0886692926287651, -0.050051018595695496, 0.09676174074411392, -0.04991219937801361, 0.09634801745414734, -0.00215091067366302, 0.09896518290042877, 0.032079339027404785, -0.02023780532181263, -0.050905030220746994, 0.009045287035405636, 0.15258993208408356, 0.049119286239147186, -0.014569220133125782, 0.11336664110422134, -0.005630593281239271, 0.04567639157176018, 0.07155520468950272, 0.21001505851745605, 0.15422910451889038, 0.004652600269764662, 0.048872798681259155, 0.063435859978199, -0.11985404044389725, -0.14193937182426453, 0.14029496908187866, -0.046791546046733856, 0.12645947933197021, -0.06946513801813126, 0.22312790155410767, 0.022193901240825653, -0.18533940613269806, 0.0664239376783371, -0.06218860670924187, -0.12530647218227386, -0.1139458417892456, -0.03125303238630295, -0.07467484474182129, -0.1092492863535881, 0.022247955203056335, -0.12154056876897812, 0.060544710606336594, 0.1293284296989441, 0.017719997093081474, 0.025668198242783546, 0.15885432064533234, -0.03212610259652138, 0.01953026093542576, 0.07037326693534851, 0.01875430718064308, -0.0050863600336015224, -0.06307094544172287, -0.0600522942841053, 0.05090200528502464, 0.025401027873158455, 0.07586200535297394, -0.04361617937684059, 0.008596324361860752, 0.021514838561415672, -0.015444464981555939, -0.07253070920705795, 0.014001576229929924, 0.02671385183930397, 0.04388735070824623, 0.062130920588970184, 0.05186883732676506, 0.006781678181141615, -0.03700000047683716, 0.2897214889526367, -0.0790477842092514, -0.09227882325649261, -0.1339585781097412, 0.22593605518341064, 0.010781001299619675, -0.021732516586780548, 0.07874462753534317, -0.09521448612213135, -0.023782672360539436, 0.17349641025066376, 0.13812343776226044, -0.09929634630680084, -0.025229759514331818, -0.015199699439108372, -0.012939919717609882, -0.045650728046894073, 0.13006095588207245, 0.10899478942155838, -0.009643089026212692, -0.08175186067819595, -0.022795887663960457, -0.010183647274971008, -0.052728697657585144, -0.06709479540586472, 0.06184972822666168, 0.02001877874135971, 0.0007621568511240184, -0.04245079681277275, 0.057352758944034576, -0.003056018380448222, -0.24951741099357605, 0.03521096706390381, -0.15718713402748108, -0.17840291559696198, -0.03924965113401413, 0.052761420607566833, -0.004399739671498537, 0.03992800787091255, -0.013017240911722183, 0.012588794343173504, 0.15300697088241577, -0.033853679895401, -0.03302589803934097, -0.12059998512268066, 0.11753617227077484, -0.10622111707925797, 0.19977295398712158, 0.0032808620017021894, 0.07102248072624207, 0.0973600223660469, 0.013045922853052616, -0.13518713414669037, 0.0395343117415905, 0.07569398730993271, -0.105489082634449, 0.013127720914781094, 0.15399721264839172, -0.052866701036691666, 0.08208754658699036, 0.02097046747803688, -0.11001210659742355, -0.010989772155880928, -0.04483554884791374, -0.03575028106570244, -0.07971695065498352, -0.014721278101205826, -0.06489847600460052, 0.15918205678462982, 0.22927746176719666, -0.0244105514138937, 0.015998495742678642, -0.09310869872570038, 0.012250572443008423, 0.0436604879796505, 0.05012783780694008, -0.045818161219358444, -0.19383151829242706, 0.02563047781586647, 0.03313108906149864, 0.019382961094379425, -0.21185345947742462, -0.08442746102809906, 0.04555843025445938, -0.02958833985030651, -0.04783434420824051, 0.1045030876994133, 0.03158152848482132, 0.045010052621364594, -0.03468087315559387, -0.0987190529704094, -0.04017476737499237, 0.14313067495822906, -0.16084438562393188, -0.041968975216150284 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-64-finetuned-squad-seed-8 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-uncased-few-shot-k-64-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/bert-base-uncased-few-shot-k-64-finetuned-squad-seed-8
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-8 This model is a fine-tuned version of bert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 50, 54, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-uncased-few-shot-k-64-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of bert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.10270828753709793, 0.13611020147800446, -0.001973906299099326, 0.09336329251527786, 0.1365167796611786, 0.034212514758110046, 0.08240136504173279, 0.13982652127742767, -0.07842632383108139, 0.05354969948530197, 0.07392475008964539, 0.059349045157432556, 0.047128040343523026, 0.12699416279792786, -0.0426001213490963, -0.21470092236995697, 0.0026061085518449545, -0.012765764258801937, -0.062396131455898285, 0.10278794169425964, 0.08769488334655762, -0.1114441454410553, 0.06844816356897354, -0.022726459428668022, -0.15371505916118622, 0.009873338975012302, -0.032445333898067474, -0.02390219457447529, 0.10519450902938843, -0.007546858862042427, 0.09248554706573486, 0.01447245106101036, 0.14323879778385162, -0.21390721201896667, 0.0001739553117658943, 0.07652726024389267, 0.04541192576289177, 0.08967572450637817, 0.0355348140001297, 0.021184418350458145, 0.02775556594133377, -0.1517845243215561, 0.09272423386573792, 0.02615288272500038, -0.07916498929262161, -0.13126295804977417, -0.09018395841121674, 0.026208577677607536, 0.08417142927646637, 0.08063339442014694, 0.008153118193149567, 0.131033793091774, -0.09831149131059647, 0.08339758962392807, 0.19849008321762085, -0.2801605761051178, -0.06506883352994919, 0.04599471762776375, 0.05161600187420845, 0.07395664602518082, -0.11857220530509949, -0.0190008282661438, 0.021745437756180763, 0.03117845021188259, 0.11003870517015457, -0.020916707813739777, -0.133056178689003, 0.00812370702624321, -0.12785886228084564, -0.01652837172150612, 0.10813209414482117, 0.042205341160297394, -0.04747769236564636, -0.07789870351552963, -0.06719835102558136, -0.09798159450292587, -0.02949550747871399, -0.012029132805764675, 0.05221206694841385, -0.05561676248908043, -0.0651007741689682, -0.048140935599803925, -0.05677315965294838, -0.09011071175336838, 0.004290255717933178, 0.1239088624715805, 0.04041660204529762, 0.018920093774795532, -0.03099486604332924, 0.11642531305551529, -0.0007766128401271999, -0.12877413630485535, -0.01097178366035223, 0.005952898878604174, -0.12036672979593277, -0.05210493877530098, -0.031944576650857925, 0.017296697944402695, 0.012703529559075832, 0.1500042974948883, -0.036733582615852356, 0.07603628188371658, 0.014099447056651115, -0.01886659860610962, -0.02072056569159031, 0.16007626056671143, -0.03363209590315819, -0.04683845862746239, 0.0017139653209596872, 0.09854275733232498, -0.0015384487342089415, -0.006259310990571976, -0.08186856657266617, -0.01837562397122383, 0.07901355624198914, 0.06546062976121902, -0.05636778101325035, 0.03709163889288902, -0.042164068669080734, -0.02511655166745186, 0.02291024662554264, -0.1286419928073883, 0.0367797426879406, 0.0054996078833937645, -0.08104913681745529, -0.0580904521048069, 0.009793262928724289, -0.015782393515110016, -0.027252471074461937, 0.07455786317586899, -0.07095532864332199, -0.005809003487229347, -0.08756688982248306, -0.07923359423875809, 0.0027767957653850317, -0.13968080282211304, -0.011593127623200417, -0.04676637798547745, -0.19948188960552216, -0.03443574905395508, 0.04985511302947998, -0.07628793269395828, -0.0445132739841938, -0.05064542964100838, -0.07719188183546066, 0.009722509421408176, -0.00729722622781992, 0.1881658434867859, -0.05756598338484764, 0.08145546168088913, -0.015408218838274479, 0.04599153622984886, 0.02126121148467064, 0.051993194967508316, -0.08022384345531464, 0.027153633534908295, -0.14617201685905457, 0.0871763750910759, -0.10437505692243576, 0.013292727060616016, -0.1266709268093109, -0.08601014316082001, 0.0584941990673542, -0.02124982699751854, 0.07102834433317184, 0.1395595371723175, -0.1923774927854538, 0.0026547627057880163, 0.11794085055589676, -0.03735816851258278, -0.04285898804664612, 0.08142663538455963, -0.05885031446814537, 0.03598739579319954, 0.05468706414103508, 0.180042564868927, 0.08377782255411148, -0.14195731282234192, 0.008023684844374657, 0.04423832148313522, 0.062438782304525375, 0.005037724040448666, 0.041115447878837585, 0.003438257612287998, 0.025845540687441826, 0.009407369419932365, -0.0937359407544136, -0.023325728252530098, -0.0887671560049057, -0.07243084162473679, -0.04967303201556206, -0.09274308383464813, 0.03549737110733986, 0.013587652705609798, 0.019019322469830513, -0.06386499851942062, -0.10812707990407944, 0.09839994460344315, 0.12546904385089874, -0.05807211622595787, 0.011161998845636845, -0.07823028415441513, 0.01892247051000595, -0.01967807300388813, -0.0273422934114933, -0.19573907554149628, -0.12583059072494507, 0.050958484411239624, -0.04363163188099861, 0.024359984323382378, 0.032264843583106995, 0.06484542787075043, 0.05496462807059288, -0.04423963278532028, -0.022883974015712738, -0.06807821244001389, -0.0028759250417351723, -0.11526293307542801, -0.19951114058494568, -0.0732317864894867, -0.03760756179690361, 0.1419556736946106, -0.20234644412994385, 0.005772524978965521, -0.02220851741731167, 0.10899873822927475, 0.016935499384999275, -0.05033920332789421, 0.011878515593707561, 0.03324083983898163, 0.0144326938316226, -0.09930627793073654, 0.0502568818628788, 0.010330529883503914, -0.0695079043507576, -0.04608691856265068, -0.10214009881019592, -0.0006605929229408503, 0.05677307769656181, 0.08486643433570862, -0.10127586126327515, -0.018539387732744217, -0.051784664392471313, -0.03810560330748558, -0.08348749577999115, 0.01465549599379301, 0.20564748346805573, 0.033907193690538406, 0.12440584599971771, -0.05799012631177902, -0.07958990335464478, -0.0035771450493484735, 0.02200246974825859, 0.03450392186641693, 0.10170592367649078, 0.07582913339138031, -0.0785539373755455, 0.08150627464056015, 0.07979242503643036, -0.04239245131611824, 0.11431794613599777, -0.05479218438267708, -0.07565802335739136, -0.01484937034547329, 0.0032682802993804216, -0.028782710433006287, 0.14837439358234406, -0.08422265201807022, 0.00035528314765542746, 0.038079045712947845, 0.018397146835923195, 0.008257562294602394, -0.1771700233221054, -0.006579573731869459, 0.016482222825288773, -0.06739196926355362, -0.04899383336305618, -0.03281526640057564, 0.03304710239171982, 0.0917145162820816, 0.027601370587944984, -0.032716281712055206, 0.0230349563062191, -0.011352683417499065, -0.06136507913470268, 0.19405685365200043, -0.11143803596496582, -0.09325803071260452, -0.09938577562570572, 0.019395606592297554, -0.03733513504266739, -0.036094408482313156, 0.003756128251552582, -0.09416046738624573, -0.053387146443128586, -0.0871017649769783, -0.022241657599806786, -0.011442501097917557, -0.0064661530777812, 0.023675587028265, -0.015353424474596977, 0.07841069251298904, -0.133207306265831, 0.004447005223482847, -0.028817035257816315, -0.10098741203546524, 0.018976036459207535, 0.06172702834010124, 0.08239049464464188, 0.1025191992521286, -0.012982220388948917, 0.01522161066532135, -0.02998734824359417, 0.22811830043792725, -0.06529422849416733, 0.01726018823683262, 0.08878377825021744, -0.0028106910176575184, 0.055671948939561844, 0.13945691287517548, 0.03289283812046051, -0.10835102945566177, 0.02843506820499897, 0.07805510610342026, -0.019310804083943367, -0.25202885270118713, -0.025941984727978706, -0.019994517788290977, -0.07157306373119354, 0.08655580133199692, 0.0387117862701416, -0.05347024276852608, 0.035301871597766876, 0.0136843491345644, 0.006414861883968115, -0.036223191767930984, 0.0677027627825737, 0.09118133038282394, 0.03688085824251175, 0.10185890644788742, -0.02052166871726513, -0.008627034723758698, 0.0618138313293457, 0.025664804503321648, 0.2704572081565857, -0.04344000294804573, 0.13563762605190277, 0.028321554884314537, 0.14987695217132568, -0.02367890253663063, 0.051033101975917816, 0.009945039637386799, -0.0008778044139035046, -0.005208962131291628, -0.047894835472106934, -0.02169063501060009, 0.0021764093544334173, -0.03328695893287659, 0.023462560027837753, -0.07286331057548523, 0.03256568685173988, 0.015788670629262924, 0.31365495920181274, 0.043354813009500504, -0.2732242941856384, -0.07261013239622116, 0.003149599302560091, -0.04774586856365204, -0.07817709445953369, 0.004947884939610958, 0.14696428179740906, -0.12763498723506927, 0.028208963572978973, -0.05602533742785454, 0.09127239137887955, -0.0477743074297905, 0.009429452940821648, 0.06682460755109787, 0.1431272327899933, -0.009246340952813625, 0.07442205399274826, -0.20740081369876862, 0.23340988159179688, 0.026783598586916924, 0.10656595975160599, -0.062313154339790344, 0.013654480688273907, 0.0068036713637411594, 0.042978446930646896, 0.11921694874763489, 0.003478958969935775, -0.0014914042549207807, -0.18037989735603333, -0.10235966742038727, 0.05784289911389351, 0.1107095405459404, -0.027288751676678658, 0.09245067834854126, -0.042828407138586044, -0.005648661404848099, 0.03576427698135376, -0.08013716340065002, -0.11725606769323349, -0.09429293125867844, -0.00851198099553585, 0.0028789013158529997, -0.02529672533273697, -0.058412835001945496, -0.09182710945606232, -0.015892712399363518, 0.13891004025936127, 0.006802908610552549, -0.052829936146736145, -0.1396554857492447, 0.05627055838704109, 0.13395974040031433, -0.05135694518685341, 0.013874391093850136, 0.0086385328322649, 0.10993974655866623, 0.047885894775390625, -0.07545594871044159, 0.06012837961316109, -0.07273704558610916, -0.16478103399276733, -0.05837515741586685, 0.11987177282571793, 0.08405039459466934, 0.058250561356544495, 0.0026670475490391254, 0.02771095745265484, -0.0018838031683117151, -0.08179368078708649, 0.015801889821887016, 0.05645659193396568, 0.08928623050451279, 0.036301370710134506, -0.09818872064352036, 0.06530612707138062, -0.03770420700311661, -0.008754191920161247, 0.1276935636997223, 0.20491525530815125, -0.09529059380292892, 0.10065493732690811, 0.07434649765491486, -0.08083097636699677, -0.18687807023525238, 0.07005899399518967, 0.12629744410514832, 0.023038780316710472, 0.038223084062337875, -0.2114216685295105, 0.13335587084293365, 0.10479201376438141, -0.015336810611188412, 0.04003491997718811, -0.29552266001701355, -0.12436489015817642, 0.07652557641267776, 0.10382479429244995, 0.03541629761457443, -0.12279336899518967, -0.02442857064306736, -0.012487421743571758, -0.1304469108581543, 0.1299174427986145, -0.07693856209516525, 0.11869735270738602, -0.005995971150696278, 0.11798109114170074, 0.024293823167681694, -0.03788166493177414, 0.1307789534330368, 0.07376176118850708, 0.08999738097190857, -0.03736606612801552, 0.009270576760172844, 0.056292153894901276, -0.06669919937849045, 0.03992808237671852, -0.041127290576696396, 0.06944765895605087, -0.17291711270809174, -0.005156246945261955, -0.08904923498630524, 0.0393851064145565, -0.04944983869791031, -0.05656253919005394, -0.018932756036520004, 0.05324241518974304, 0.0679907500743866, -0.03933895006775856, 0.024500872939825058, 0.007853766903281212, 0.06271031498908997, 0.09487419575452805, 0.10123501718044281, -0.02439822070300579, -0.11090248823165894, 0.013658772222697735, -0.007523144595324993, 0.05509769916534424, -0.11260020732879639, 0.02203848585486412, 0.1310279667377472, 0.0615045502781868, 0.12081588059663773, 0.025277988985180855, -0.03073328733444214, -0.01412923727184534, 0.008418340235948563, -0.11517223715782166, -0.12600739300251007, 0.039224982261657715, -0.03917752951383591, -0.1490560621023178, 0.006154896691441536, 0.09869163483381271, -0.03464686870574951, -0.019237209111452103, -0.00982216838747263, 0.020145205780863762, -0.0162639319896698, 0.20045213401317596, 0.04151908680796623, 0.07272875308990479, -0.1061582863330841, 0.11797121912240982, 0.053992293775081635, -0.05935680866241455, 0.05176747962832451, 0.06369403004646301, -0.10281895846128464, -0.012928018346428871, 0.11605586111545563, 0.15976691246032715, -0.03391829505562782, -0.014876430854201317, -0.07823286950588226, -0.09086251258850098, 0.06092926487326622, 0.14638087153434753, 0.05246242508292198, -0.013332056812942028, -0.0494069829583168, 0.025510288774967194, -0.1259692758321762, 0.08087518066167831, 0.045270390808582306, 0.06256329268217087, -0.09642504155635834, 0.10510646551847458, -0.006071718875318766, 0.04253091290593147, -0.016849679872393608, 0.024860844016075134, -0.09839344769716263, -0.011285142041742802, -0.14812491834163666, 0.007650039624422789, 0.0011514618527144194, 0.013462548144161701, -0.020999761298298836, -0.049657925963401794, -0.02311186119914055, 0.02917802520096302, -0.08815276622772217, -0.054401591420173645, 0.020388323813676834, 0.041269704699516296, -0.14683620631694794, -0.015726355835795403, 0.02214932069182396, -0.09555768966674805, 0.08112334460020065, 0.05770855396986008, 0.012848526239395142, 0.027832236140966415, -0.09690331667661667, -0.04785369709134102, 0.00336113921366632, 0.027583006769418716, 0.08670984208583832, -0.08984341472387314, -0.016347425058484077, -0.03677380457520485, 0.042373597621917725, 0.017210043966770172, 0.08947816491127014, -0.11458141356706619, 0.004962783306837082, -0.049649231135845184, -0.03895160183310509, -0.06744729727506638, 0.04656163603067398, 0.10927758365869522, 0.046670567244291306, 0.16021192073822021, -0.07103707641363144, 0.035561878234148026, -0.19075757265090942, -0.04089360684156418, 0.0021716586779803038, -0.04482494667172432, -0.0883524939417839, -0.050723545253276825, 0.0965770035982132, -0.04919734597206116, 0.09831606596708298, -0.0025396833661943674, 0.09937147051095963, 0.03160246089100838, -0.021325474604964256, -0.05093904212117195, 0.008144098334014416, 0.15370216965675354, 0.050098396837711334, -0.014516901224851608, 0.11218442022800446, -0.005480342544615269, 0.04708466678857803, 0.07099061459302902, 0.20732219517230988, 0.15421122312545776, 0.004211402498185635, 0.049116719514131546, 0.06287860125303268, -0.11938737332820892, -0.14224331080913544, 0.1398431658744812, -0.04723050072789192, 0.12711897492408752, -0.0692330077290535, 0.22312557697296143, 0.022233743220567703, -0.1848905384540558, 0.06599801033735275, -0.06159263104200363, -0.12544861435890198, -0.11378229409456253, -0.030459927394986153, -0.07469718903303146, -0.10937902331352234, 0.021797005087137222, -0.12104131281375885, 0.06044745817780495, 0.12995277345180511, 0.01743420772254467, 0.025395279750227928, 0.15795990824699402, -0.03241199254989624, 0.019810881465673447, 0.07016114890575409, 0.01879902556538582, -0.004577438812702894, -0.06423397362232208, -0.061330534517765045, 0.051182713359594345, 0.025451311841607094, 0.07649748772382736, -0.04381268844008446, 0.010671628639101982, 0.02207520231604576, -0.014950241893529892, -0.07301627099514008, 0.013940303586423397, 0.02591376006603241, 0.04369162768125534, 0.060696519911289215, 0.05218431353569031, 0.007271092385053635, -0.03714478760957718, 0.2877693772315979, -0.07845555245876312, -0.0926148071885109, -0.13402865827083588, 0.2242669314146042, 0.011150028556585312, -0.02142367884516716, 0.0786995142698288, -0.09530562907457352, -0.023031653836369514, 0.17384731769561768, 0.13671216368675232, -0.10003798454999924, -0.025307634845376015, -0.014703488908708096, -0.013097390532493591, -0.046688757836818695, 0.13037142157554626, 0.10923296958208084, -0.011007231660187244, -0.08071427792310715, -0.02365886978805065, -0.01045314408838749, -0.05263800173997879, -0.0680682510137558, 0.060767464339733124, 0.020162496715784073, 0.0016052783466875553, -0.042269520461559296, 0.05639689415693283, -0.0017972156638279557, -0.2503480315208435, 0.03575075417757034, -0.1573444902896881, -0.17830336093902588, -0.0387590155005455, 0.05324121564626694, -0.00404586736112833, 0.039274416863918304, -0.013043595477938652, 0.013123752549290657, 0.15419723093509674, -0.03432421386241913, -0.0335463285446167, -0.11932642757892609, 0.11635847389698029, -0.1048269271850586, 0.19956840574741364, 0.0034215699415653944, 0.07163957506418228, 0.09717336297035217, 0.013691220432519913, -0.1343166083097458, 0.039831098169088364, 0.07537339627742767, -0.10460468381643295, 0.012568607926368713, 0.1524650901556015, -0.05267563834786415, 0.08219067007303238, 0.02133222296833992, -0.10982260853052139, -0.011825503781437874, -0.04573218151926994, -0.035950805991888046, -0.07946667820215225, -0.01644919440150261, -0.06439884752035141, 0.15940400958061218, 0.22842390835285187, -0.02427336387336254, 0.015363684855401516, -0.09300865232944489, 0.011979331262409687, 0.044283948838710785, 0.04997647926211357, -0.04586233198642731, -0.1937662959098816, 0.026331376284360886, 0.03261302784085274, 0.01964849978685379, -0.2111525684595108, -0.08488958328962326, 0.04531213641166687, -0.030029665678739548, -0.04757874459028244, 0.1046685054898262, 0.03140171989798546, 0.04531796649098396, -0.03471580147743225, -0.09904243052005768, -0.04054872319102287, 0.14312304556369781, -0.1607595682144165, -0.04240638390183449 ]
null
null
transformers
Results: {'exact_match': 76.82119205298014, 'f1': 84.69734248389383}
{}
question-answering
anas-awadalla/bert-medium-finetuned-squad
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #endpoints_compatible #region-us
Results: {'exact_match': 76.82119205298014, 'f1': 84.69734248389383}
[]
[ "TAGS\n#transformers #pytorch #bert #question-answering #endpoints_compatible #region-us \n" ]
[ 29 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #endpoints_compatible #region-us \n" ]
[ -0.03135230019688606, 0.019992724061012268, -0.0106701934710145, -0.018308134749531746, 0.09194501489400864, 0.033905480057001114, 0.015166199766099453, 0.09145615994930267, 0.134480282664299, 0.009099881164729595, 0.1723843812942505, 0.20330657064914703, -0.06626442819833755, -0.06713318079710007, -0.10391829162836075, -0.2025584578514099, 0.04793500155210495, 0.10157988965511322, -0.023979786783456802, 0.12151781469583511, 0.03099050000309944, -0.13043755292892456, 0.038694705814123154, -0.03934689983725548, -0.07007598131895065, 0.061426807194948196, 0.002661224454641342, -0.05560101941227913, 0.1275879591703415, 0.01988556981086731, 0.16128244996070862, 0.032734207808971405, -0.13124491274356842, -0.19133411347866058, 0.0434899628162384, -0.02546050027012825, -0.05259579047560692, 0.028877267614006996, 0.052893463522195816, -0.0953020453453064, -0.03832237422466278, 0.07442127913236618, 0.0002482777344994247, 0.06498449295759201, -0.18763136863708496, -0.1596250683069229, -0.05712383985519409, 0.015845056623220444, 0.0636272132396698, 0.09438946843147278, -0.02710471861064434, 0.17875422537326813, -0.18476411700248718, 0.09474390745162964, 0.18092048168182373, -0.31450721621513367, -0.01166314072906971, 0.08102051168680191, 0.09412065893411636, 0.051648981869220734, -0.020864112302660942, 0.06979437917470932, 0.0380079485476017, 0.02188878506422043, -0.11535484343767166, -0.11366855353116989, -0.033182621002197266, 0.10256030410528183, -0.08841803669929504, -0.09839369356632233, 0.2299497276544571, 0.01531962025910616, 0.04654033109545708, 0.04189028963446617, -0.09467408806085587, 0.021009191870689392, 0.02639743499457836, -0.031534597277641296, -0.030764060094952583, 0.050264179706573486, 0.01495309267193079, -0.03456006199121475, -0.11285790801048279, 0.022392652928829193, -0.24631081521511078, 0.24179495871067047, 0.03275267407298088, 0.0936693400144577, -0.2500198483467102, 0.05645543336868286, -0.04845157638192177, -0.07376648485660553, 0.0028497406747192144, -0.07651493698358536, 0.0036522154696285725, -0.008018171414732933, -0.06546273827552795, 0.06301076710224152, 0.060571182519197464, 0.18575403094291687, -0.0070006283931434155, 0.03181932866573334, -0.014564059674739838, 0.09062321484088898, 0.06006910279393196, 0.11936818808317184, -0.021268334239721298, 0.002836136845871806, -0.03208696469664574, -0.14179284870624542, -0.041232071816921234, -0.03558903932571411, -0.08642159402370453, -0.058963969349861145, 0.0002489425241947174, 0.1372518092393875, 0.08277205377817154, 0.003957946319133043, -0.07083798944950104, 0.0008623613393865526, -0.022650524973869324, -0.026950567960739136, -0.014865356497466564, 0.0037242902908474207, 0.019868748262524605, 0.197527214884758, -0.07651297003030777, 0.026126010343432426, -0.041966866701841354, 0.09156736731529236, -0.07137662917375565, -0.019976438954472542, -0.019683154299855232, -0.009521318599581718, 0.07046832889318466, -0.12470054626464844, 0.07528544962406158, -0.11439041793346405, -0.04859017953276634, 0.015044530853629112, 0.03159348666667938, -0.00811055675148964, 0.024456506595015526, 0.0011752002174034715, -0.027929307892918587, -0.04827839136123657, -0.055367715656757355, -0.02931503765285015, -0.0629315972328186, 0.11279169470071793, 0.024471081793308258, 0.03690626099705696, -0.07810340076684952, 0.059454578906297684, -0.0799008384346962, 0.04948350414633751, -0.06193244829773903, -0.04327748715877533, -0.00406288867816329, 0.13943274319171906, -0.0188955869525671, -0.0814240500330925, -0.10613562166690826, 0.034284912049770355, -0.05427347868680954, 0.1935708075761795, -0.00923309288918972, -0.06814873218536377, 0.2118416130542755, -0.040127113461494446, -0.2278028279542923, 0.08400595188140869, 0.0055225868709385395, -0.006558615248650312, 0.07845839112997055, 0.18719437718391418, -0.021085986867547035, -0.08935558795928955, 0.0636000707745552, 0.12111418694257736, -0.12495958805084229, -0.07829990983009338, 0.043070293962955475, -0.07017793506383896, -0.11699909716844559, 0.03349027782678604, 0.013137046247720718, 0.03932749107480049, -0.10104537010192871, -0.031039975583553314, -0.012059801258146763, 0.0038918794598430395, 0.07856530696153641, 0.07118111103773117, 0.06136491149663925, -0.07381823658943176, 0.013349482789635658, -0.02925417199730873, -0.032968953251838684, 0.052713699638843536, 0.02929193526506424, -0.07410431653261185, 0.13964945077896118, -0.11522811651229858, 0.01286560483276844, -0.21762342751026154, -0.1018327847123146, -0.026389047503471375, 0.1203073263168335, -0.02318541333079338, 0.23964986205101013, 0.09678550064563751, -0.14600299298763275, -0.024652112275362015, -0.04226558282971382, 0.10834454745054245, 0.0070869335904717445, -0.03607034310698509, -0.03498968854546547, 0.04036606475710869, -0.07709482312202454, -0.09886907041072845, -0.01497116032987833, -0.030939951539039612, 0.1038946807384491, 0.10997966676950455, -0.008906964212656021, 0.05910978466272354, -0.009353389963507652, 0.04758423939347267, 0.01564851403236389, 0.04256250336766243, 0.10758287459611893, -0.04391014575958252, -0.09051477909088135, 0.10550031810998917, -0.07713214308023453, 0.29826268553733826, 0.17867204546928406, -0.31840789318084717, 0.02676197700202465, -0.049528881907463074, -0.05446058511734009, 0.024229198694229126, 0.07913020253181458, -0.005939568392932415, 0.1239536926150322, 0.046388477087020874, 0.0834580585360527, -0.041127074509859085, -0.06847981363534927, -0.025993147864937782, -0.05089956149458885, -0.04375419393181801, 0.11598169803619385, 0.06533234566450119, -0.18627792596817017, 0.15774103999137878, 0.31001606583595276, 0.058010876178741455, 0.08272289484739304, -0.0744117945432663, -0.045550115406513214, 0.007455171085894108, 0.04436682537198067, -0.05532664805650711, 0.048578739166259766, -0.2567776143550873, -0.002197499154135585, 0.08615592122077942, 0.0150474077090621, 0.0801461935043335, -0.13763967156410217, -0.08460202068090439, 0.00677099684253335, 0.015640581026673317, -0.08960431814193726, 0.10787198692560196, 0.05573767051100731, 0.09508851170539856, 0.03299635648727417, -0.010484343394637108, 0.1108626276254654, -0.009887348860502243, -0.06068798899650574, 0.15392078459262848, -0.10568766295909882, -0.24203269183635712, -0.03854992240667343, -0.09625014662742615, 0.012964913621544838, 0.00018531580280978233, 0.0804150328040123, -0.09665409475564957, -0.01300626341253519, 0.10569056868553162, 0.043230123817920685, -0.19515320658683777, 0.0074298488907516, -0.046658266335725784, 0.041596390306949615, -0.09609968215227127, -0.05583184212446213, -0.0663028135895729, -0.07535520195960999, -0.07003165036439896, 0.11798246949911118, -0.12265362590551376, 0.09397588670253754, 0.11396625638008118, 0.05636340752243996, 0.06993921101093292, -0.01918971538543701, 0.23854759335517883, -0.12224425375461578, -0.04046132415533066, 0.1740262806415558, -0.042808569967746735, 0.10165534913539886, 0.14503295719623566, 0.02203395403921604, -0.08699861168861389, 0.0018511483212932944, -0.019437525421380997, -0.06568467617034912, -0.2527044117450714, -0.05329287797212601, -0.1233673095703125, 0.0628412589430809, -0.00775183504447341, 0.03164323791861534, 0.09978434443473816, 0.06742298603057861, 0.025705672800540924, -0.14536437392234802, -0.047002241015434265, 0.049619875848293304, 0.2609071135520935, -0.062233880162239075, 0.08922796696424484, -0.05042990669608116, -0.11225856095552444, 0.054784633219242096, 0.08798287063837051, 0.14191558957099915, 0.13485278189182281, -0.0012541507603600621, 0.08753865957260132, 0.15189595520496368, 0.13263347744941711, 0.09365297108888626, -0.01275166217237711, -0.05979113653302193, -0.026594338938593864, 0.008423350751399994, -0.057978056371212006, 0.017605869099497795, 0.18533632159233093, -0.13100740313529968, -0.04123637452721596, -0.22012758255004883, 0.08449064940214157, 0.04960712045431137, 0.06855249404907227, -0.06138977035880089, 0.02542274072766304, 0.08517176657915115, -0.022691896185278893, -0.04600032791495323, 0.09733358770608902, 0.018432024866342545, -0.1500939279794693, 0.013220317661762238, -0.03884725272655487, 0.1429862529039383, 0.03140929341316223, 0.09210632741451263, -0.07383108139038086, -0.17207033932209015, 0.06419593840837479, 0.10168318450450897, -0.28792649507522583, 0.31095463037490845, 0.011329254135489464, -0.10282246023416519, -0.0687149316072464, -0.051583193242549896, -0.04170820862054825, 0.14244696497917175, 0.17153170704841614, 0.01912018284201622, -0.016781393438577652, -0.08975808322429657, 0.0813727155327797, 0.05595412105321884, 0.14812445640563965, -0.03946775943040848, -0.019575145095586777, -0.009081060066819191, 0.018597830086946487, -0.03334806114435196, 0.07303453981876373, 0.06333085149526596, -0.10992588102817535, 0.04181332513689995, -0.03497014939785004, 0.03160944581031799, -0.004879975691437721, 0.0007611183100380003, -0.0661424919962883, 0.10216393321752548, -0.05482377111911774, -0.055647995322942734, -0.087758369743824, -0.125993013381958, 0.13307835161685944, -0.09655394405126572, 0.01837206818163395, -0.08865699172019958, -0.08842838555574417, -0.06578792631626129, -0.13334771990776062, 0.13474911451339722, -0.09167075157165527, -0.00372123415581882, -0.03356693685054779, 0.21501420438289642, -0.07080360502004623, 0.026272060349583626, 0.0075701139867305756, 0.038749873638153076, -0.14425958693027496, -0.10025361180305481, 0.026171782985329628, -0.09551046043634415, 0.08756383508443832, 0.06237189844250679, -0.01696663163602352, 0.12272684276103973, -0.00312767899595201, 0.030395150184631348, 0.22212424874305725, 0.2156762182712555, -0.033601753413677216, 0.08700301498174667, 0.17262640595436096, -0.012947848998010159, -0.2656528055667877, -0.053389135748147964, -0.157435804605484, -0.07222622632980347, -0.01569162867963314, -0.10197952389717102, 0.13498151302337646, 0.023410171270370483, -0.03472396731376648, 0.08764279633760452, -0.23221847414970398, -0.02134993113577366, 0.15970177948474884, -0.0018289608415216208, 0.503491222858429, -0.12488686293363571, -0.09662727266550064, 0.04213958978652954, -0.26681509613990784, 0.09501863270998001, 0.023150363937020302, 0.040762800723314285, -0.027052946388721466, 0.11409859359264374, 0.03983669728040695, -0.087588831782341, 0.154712975025177, 0.019638868048787117, 0.008942476473748684, -0.06394541263580322, -0.14411474764347076, 0.02673479914665222, 0.015640057623386383, -0.0205686055123806, 0.05106743797659874, 0.042612675577402115, -0.17278915643692017, -0.01770436391234398, -0.14686651527881622, 0.05070509389042854, 0.015234127640724182, -0.048967428505420685, -0.02123750001192093, -0.02703016623854637, -0.013095390982925892, 0.004948455840349197, 0.26325055956840515, -0.07312103360891342, 0.17537301778793335, -0.0264870747923851, 0.14215585589408875, -0.19738759100437164, -0.11319785565137863, -0.06279365718364716, -0.04668644443154335, 0.08705991506576538, -0.03566458821296692, 0.05618258938193321, 0.19768133759498596, -0.01593010127544403, 0.029327290132641792, 0.10862293839454651, 0.030872980132699013, -0.03635275363922119, 0.08378896117210388, -0.21281634271144867, -0.14595142006874084, -0.020121952518820763, -0.03108396753668785, 0.05637865886092186, 0.0810856968164444, 0.06577019393444061, 0.12356884032487869, -0.027859080582857132, 0.010623176582157612, -0.0415089912712574, -0.05093950033187866, 0.0011893544578924775, 0.08625370264053345, 0.03957598656415939, -0.10335700213909149, 0.048189807683229446, -0.028619252145290375, -0.26291027665138245, -0.04337899759411812, 0.08210968226194382, -0.1047981008887291, -0.1045025959610939, -0.10444848984479904, 0.053661737591028214, -0.1388372927904129, -0.023707421496510506, -0.020813921466469765, -0.10614456236362457, 0.06624601781368256, 0.2284243404865265, 0.09281963109970093, 0.07564294338226318, -0.002429374260827899, -0.03401452675461769, 0.06096583977341652, -0.03658943623304367, -0.041938427835702896, -0.01639465242624283, -0.04779340326786041, -0.07221720367670059, -0.021267537027597427, 0.19879907369613647, -0.07687898725271225, -0.08742836862802505, -0.17992953956127167, 0.10190094262361526, -0.16759216785430908, -0.11017142981290817, -0.11501381546258926, -0.08021751791238785, 0.0074523696675896645, -0.12993402779102325, -0.030433058738708496, -0.04129278287291527, -0.14015986025333405, 0.08424700796604156, 0.06597542017698288, 0.0144586730748415, -0.07749994844198227, -0.049343839287757874, 0.17375698685646057, -0.03013371303677559, 0.09371156990528107, 0.1599135547876358, -0.11322277784347534, 0.10763051360845566, -0.11577168852090836, -0.16121093928813934, 0.0631881058216095, 0.01964796893298626, 0.07204954326152802, 0.04969954863190651, -0.008374828845262527, 0.07370220124721527, 0.048836011439561844, 0.08179794251918793, -0.0492769293487072, -0.1146647185087204, 0.013015234842896461, 0.036680009216070175, -0.1983516365289688, -0.03920695185661316, -0.11963635683059692, 0.10883194953203201, 0.018821001052856445, 0.08767793327569962, 0.030451947823166847, 0.13595004379749298, -0.04663078859448433, 0.016889382153749466, 0.01088773924857378, -0.15472035109996796, 0.042594362050294876, -0.07039690762758255, 0.01914464868605137, -0.019411256536841393, 0.256925493478775, -0.11366448551416397, 0.09016063064336777, 0.05351637303829193, 0.058282043784856796, 0.04103595018386841, -0.00021439496777020395, 0.21260762214660645, 0.08834570646286011, -0.06397779285907745, -0.08060546219348907, 0.07965119928121567, -0.06695281714200974, -0.061735931783914566, 0.15358220040798187, 0.14465074241161346, 0.08401516824960709, 0.061305031180381775, -0.010541096329689026, 0.06096964329481125, -0.03317619860172272, -0.2506944537162781, 0.024842530488967896, 0.013741164468228817, 0.004459200892597437, 0.12087604403495789, 0.1336645632982254, -0.0315852053463459, 0.06568727642297745, -0.05112520232796669, -0.011567851528525352, -0.1471722573041916, -0.06196950376033783, -0.056035030633211136, -0.0801311731338501, 0.05537676438689232, -0.10163131356239319, -0.01644347794353962, 0.12720726430416107, 0.07157047837972641, -0.04949105158448219, 0.1256283074617386, 0.048139408230781555, -0.0648137629032135, 0.016248608008027077, 0.001133329002186656, 0.09110874682664871, 0.03384251520037651, 0.03011697717010975, -0.12861861288547516, -0.08243808150291443, -0.05201524868607521, 0.04190807044506073, -0.12921161949634552, -0.0575026273727417, -0.14889025688171387, -0.09961677342653275, -0.06934770941734314, 0.10918867588043213, -0.048636797815561295, 0.16727615892887115, -0.03501144424080849, 0.04687380790710449, 0.020574437454342842, 0.22149790823459625, -0.07983614504337311, -0.035045426338911057, -0.02953096479177475, 0.19169217348098755, 0.02293289452791214, 0.10123874247074127, 0.0039009263273328543, 0.02663610689342022, -0.05562928318977356, 0.3356931805610657, 0.21145908534526825, -0.07349588721990585, 0.04438743740320206, 0.07307980209589005, 0.051443129777908325, 0.11890368908643723, 0.015651078894734383, 0.10086067020893097, 0.290741890668869, -0.10576304793357849, -0.02907668985426426, -0.017210746183991432, 0.006212418898940086, -0.036074891686439514, 0.05308860167860985, 0.06385476887226105, -0.06612837314605713, -0.07547162473201752, 0.1183580681681633, -0.15669208765029907, 0.10222597420215607, 0.043853580951690674, -0.1995655596256256, -0.05199456587433815, -0.03384201601147652, 0.1678486317396164, -0.016779230907559395, 0.12842759490013123, -0.029464829713106155, -0.12687046825885773, 0.03811600059270859, 0.0530795156955719, -0.2323380559682846, -0.07880351692438126, 0.15334609150886536, 0.029253190383315086, -0.01345739234238863, 0.010100535117089748, 0.0423290953040123, 0.07262477278709412, 0.032937027513980865, -0.029636263847351074, 0.018044499680399895, 0.09700760990381241, -0.12007711827754974, -0.12795883417129517, -0.017589513212442398, 0.059171874076128006, -0.09466255456209183, 0.07944472134113312, -0.19034650921821594, 0.048007190227508545, 0.005575351417064667, -0.024408496916294098, -0.05244743824005127, 0.06626787036657333, -0.07314711064100266, 0.012519342824816704, 0.06918328255414963, 0.0026371274143457413, -0.034837137907743454, -0.03111114725470543, -0.004997910466045141, 0.03914216533303261, -0.08890500664710999, -0.14575104415416718, 0.01178313884884119, -0.06271177530288696, 0.09262482821941376, -0.04425259679555893, -0.08461843430995941, -0.031173918396234512, 0.0015296326018869877, 0.0687042847275734, -0.0828213095664978, 0.010084830224514008, 0.03441310301423073, 0.046000514179468155, 0.02118447609245777, -0.09721404314041138, 0.03851703181862831, 0.05934135988354683, -0.11750422418117523, -0.05397212877869606 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_medium_pretrain_squad This model is a fine-tuned version of [anas-awadalla/bert-medium-pretrained-on-squad](https://huggingface.co/anas-awadalla/bert-medium-pretrained-on-squad) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.0973 - "exact_match": 77.95648060548723 - "f1": 85.85300366384631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert_medium_pretrain_squad", "results": []}]}
question-answering
anas-awadalla/bert-medium-pretrained-finetuned-squad
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# bert_medium_pretrain_squad This model is a fine-tuned version of anas-awadalla/bert-medium-pretrained-on-squad on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.0973 - "exact_match": 77.95648060548723 - "f1": 85.85300366384631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert_medium_pretrain_squad\n\nThis model is a fine-tuned version of anas-awadalla/bert-medium-pretrained-on-squad on the squad dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.0973\n- \"exact_match\": 77.95648060548723\n- \"f1\": 85.85300366384631", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# bert_medium_pretrain_squad\n\nThis model is a fine-tuned version of anas-awadalla/bert-medium-pretrained-on-squad on the squad dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.0973\n- \"exact_match\": 77.95648060548723\n- \"f1\": 85.85300366384631", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 47, 95, 6, 12, 8, 3, 90, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# bert_medium_pretrain_squad\n\nThis model is a fine-tuned version of anas-awadalla/bert-medium-pretrained-on-squad on the squad dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.0973\n- \"exact_match\": 77.95648060548723\n- \"f1\": 85.85300366384631## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.1233932226896286, 0.1558522880077362, -0.002197667956352234, 0.08441988378763199, 0.15989358723163605, 0.03515397012233734, 0.07351044565439224, 0.1337008774280548, -0.10238029062747955, 0.11096196621656418, 0.09586140513420105, 0.029649412259459496, 0.06905315816402435, 0.1230185255408287, -0.012443131767213345, -0.23981580138206482, 0.01794000156223774, 0.010765764862298965, -0.11195509880781174, 0.09368515759706497, 0.12582390010356903, -0.09935491532087326, 0.08649571985006332, 0.02690920978784561, -0.16999270021915436, 0.006742865312844515, -0.024855663999915123, -0.049536947160959244, 0.0710076168179512, 0.048458609730005264, 0.06579045206308365, -0.009801618754863739, 0.07615996897220612, -0.19838957488536835, -0.00636043818667531, 0.06285136193037033, 0.03491349145770073, 0.09750936925411224, 0.05306222289800644, 0.05115644261240959, 0.044710833579301834, -0.13549885153770447, 0.06889424473047256, 0.049976982176303864, -0.10688912123441696, -0.16913223266601562, -0.09784593433141708, 0.08353538066148758, 0.07732003182172775, 0.10271675139665604, -0.004908701870590448, 0.17049966752529144, -0.02341817133128643, 0.05668454244732857, 0.18629902601242065, -0.294206440448761, -0.07899846136569977, 0.018368134275078773, 0.07729438692331314, 0.047053348273038864, -0.11182117462158203, -0.0009378606919199228, 0.05106730759143829, 0.029080908745527267, 0.06841766834259033, -0.012138300575315952, -0.0026435558684170246, -0.0239772517234087, -0.11323683708906174, -0.06816981732845306, 0.23658247292041779, 0.07957533746957779, -0.06013043597340584, -0.1008540540933609, -0.041250891983509064, -0.10764604061841965, -0.024928759783506393, -0.046152252703905106, 0.025990746915340424, -0.04511531814932823, -0.07481016218662262, -0.04119214788079262, -0.07621550559997559, -0.051314063370227814, 0.021906504407525063, 0.13914625346660614, 0.024326082319021225, 0.017825763672590256, -0.01964745856821537, 0.07021690905094147, -0.024763889610767365, -0.15830814838409424, -0.0516655370593071, -0.008514722809195518, -0.07865139096975327, -0.05405231565237045, -0.0528792105615139, -0.012516574002802372, 0.006284318398684263, 0.15737247467041016, -0.036070793867111206, 0.06802112609148026, 0.044359881430864334, -0.01326510775834322, -0.007139316760003567, 0.17140817642211914, -0.07511758804321289, -0.042673662304878235, -0.005036256741732359, 0.10308126360177994, -0.000007775503036100417, -0.01722341775894165, -0.07396101951599121, -0.0381021611392498, 0.10586347430944443, 0.04601162299513817, -0.0004588785523083061, 0.03601047024130821, -0.05054915323853493, -0.04827360436320305, 0.08070231229066849, -0.11297957599163055, 0.04137163981795311, -0.016859378665685654, -0.07801911979913712, -0.0519750751554966, 0.012476475909352303, -0.011838340200483799, -0.041193634271621704, 0.03864305838942528, -0.11132002621889114, -0.04084471985697746, -0.05695101618766785, -0.05546844005584717, 0.010553566738963127, -0.03571813926100731, 0.009545511566102505, -0.07339703291654587, -0.12546125054359436, -0.04467914626002312, 0.019575994461774826, -0.06806168705224991, -0.0880688726902008, 0.010229021310806274, -0.0758017897605896, 0.029127629473805428, -0.0066617317497730255, 0.10764391720294952, -0.017138993367552757, 0.06976254284381866, 0.0675649493932724, 0.023842385038733482, 0.021405017003417015, 0.05358988419175148, -0.0769374743103981, 0.050568837672472, -0.10642819851636887, 0.09344719350337982, -0.09305223077535629, 0.02684338018298149, -0.13916026055812836, -0.10963595658540726, -0.010166416876018047, -0.02462678775191307, 0.09223265200853348, 0.1217341348528862, -0.11244324594736099, -0.024265602231025696, 0.1167801171541214, -0.0518614761531353, -0.13658060133457184, 0.07304459810256958, -0.019096214324235916, 0.011788694187998772, 0.04003486409783363, 0.10840294510126114, 0.15046916902065277, -0.0934176966547966, -0.06530231237411499, 0.02719229832291603, 0.07124676555395126, 0.01623985357582569, 0.09080559760332108, -0.013122637756168842, 0.008894871920347214, 0.01929817907512188, -0.10453514009714127, -0.01947646401822567, -0.08858726918697357, -0.0788254588842392, -0.059478312730789185, -0.07114206999540329, 0.028046337887644768, 0.034191809594631195, 0.02793034352362156, -0.05175367742776871, -0.1176796555519104, 0.09471172839403152, 0.11921321600675583, -0.03311450779438019, 0.003989299293607473, -0.08324195444583893, 0.05030583590269089, -0.07392477989196777, -0.0166748259216547, -0.21630562841892242, -0.1321544498205185, 0.06507480889558792, -0.07477238774299622, 0.019901612773537636, 0.003499305807054043, 0.05963282659649849, 0.05245744436979294, -0.03182854503393173, -0.02281237579882145, -0.10326384007930756, -0.02018291875720024, -0.09646868705749512, -0.1332966685295105, -0.09691497683525085, -0.016859738156199455, 0.17395512759685516, -0.21028219163417816, 0.0008912152261473238, 0.03565867617726326, 0.13019712269306183, -0.0057517350651323795, -0.0660245418548584, 0.00431797793135047, 0.011578502133488655, -0.003824121318757534, -0.09899361431598663, 0.027652272954583168, 0.032179202884435654, -0.08870526403188705, -0.05484803766012192, -0.13986290991306305, 0.0722448006272316, 0.07958795875310898, 0.06660635024309158, -0.08064267039299011, -0.006772748660296202, -0.051981374621391296, -0.043115925043821335, -0.05226101353764534, -0.049340635538101196, 0.17326205968856812, 0.015383969992399216, 0.1251920759677887, -0.06336702406406403, -0.05329778045415878, 0.032854072749614716, 0.012642093002796173, -0.031263045966625214, 0.054493073374032974, 0.01150214858353138, -0.15110944211483002, 0.10465137660503387, 0.08022776991128922, -0.004042459186166525, 0.09908043593168259, -0.056771911680698395, -0.08886303752660751, -0.05175180733203888, 0.016284525394439697, 0.01585862785577774, 0.10542748123407364, -0.08592686057090759, 0.01549304649233818, 0.06141723319888115, 0.019402330741286278, 0.01887321099638939, -0.13118675351142883, 0.004921494051814079, 0.04728151112794876, -0.027887161821126938, 0.0005759469349868596, -0.01912899874150753, 0.0015571461990475655, 0.07241258770227432, 0.06630899012088776, 0.018996959552168846, 0.034837108105421066, -0.012562021613121033, -0.0765770748257637, 0.19328415393829346, -0.10762021690607071, -0.18034608662128448, -0.17512932419776917, 0.058258056640625, -0.07698678225278854, -0.0054013291373848915, 0.011204948648810387, -0.06043161079287529, -0.0668189525604248, -0.05044031888246536, -0.005955409724265337, -0.07191197574138641, -0.0033801421523094177, 0.083075612783432, -0.010740156285464764, 0.11666285246610641, -0.13145452737808228, 0.014741738326847553, 0.013299542479217052, -0.07908366620540619, -0.028448861092329025, 0.030235450714826584, 0.12482884526252747, 0.0700141116976738, -0.014497803524136543, 0.017791742458939552, -0.01559146773070097, 0.29327672719955444, -0.08833201229572296, -0.019209837540984154, 0.12523041665554047, 0.010622086003422737, 0.07172323018312454, 0.10355962812900543, 0.03338710963726044, -0.08591930568218231, 0.019853394478559494, 0.03639213740825653, -0.012263050302863121, -0.22904784977436066, -0.03316430374979973, -0.035628534853458405, -0.0751873254776001, 0.1290876716375351, 0.049387771636247635, 0.038012001663446426, 0.08306895941495895, -0.043907467275857925, 0.07598365098237991, -0.04559304937720299, 0.1023443192243576, 0.13022001087665558, 0.057186923921108246, 0.0998924970626831, -0.027663225308060646, -0.014544590376317501, 0.06637153029441833, -0.0031884245108813047, 0.23648007214069366, -0.0018683102680370212, 0.2032676786184311, 0.016836993396282196, 0.1373898983001709, -0.017549147829413414, 0.05419829115271568, 0.011478510685265064, 0.004077825229614973, 0.010770393535494804, -0.0665309801697731, -0.05193080008029938, 0.009185402654111385, 0.002719240030273795, 0.07387007772922516, -0.10000404715538025, 0.03990575298666954, 0.0029160580597817898, 0.2567162811756134, 0.04415647312998772, -0.3189016878604889, -0.10695404559373856, 0.005700564011931419, -0.007671475410461426, -0.11483187228441238, -0.022947760298848152, 0.10596038401126862, -0.14107047021389008, 0.0631636455655098, -0.05484030023217201, 0.09621097147464752, -0.03550025448203087, 0.005057670641690493, 0.08036437630653381, 0.09515228867530823, 0.005064111202955246, 0.09769928455352783, -0.1729101687669754, 0.20034819841384888, 0.024608580395579338, 0.07764670997858047, -0.05422477424144745, 0.05369550362229347, -0.01200740598142147, 0.06968741118907928, 0.10842087864875793, 0.004234008491039276, -0.016458913683891296, -0.17940053343772888, -0.09011787921190262, 0.025309031829237938, 0.11762920022010803, -0.07385725528001785, 0.09466524422168732, -0.05604064464569092, -0.0017538681859150529, 0.03257614001631737, -0.010311435908079147, -0.12008040398359299, -0.14093294739723206, 0.05070808157324791, -0.005104658659547567, 0.017971208319067955, -0.07362030446529388, -0.08974475413560867, -0.007944824174046516, 0.17847049236297607, -0.011249588802456856, -0.05645006522536278, -0.15350772440433502, 0.10421296954154968, 0.15332703292369843, -0.08207506686449051, 0.03331220895051956, -0.017011793330311775, 0.1643141806125641, 0.04498644173145294, -0.05939139798283577, 0.05266084149479866, -0.05335721746087074, -0.16499632596969604, -0.03211076930165291, 0.14466309547424316, 0.0019989190623164177, 0.042406801134347916, 0.011441608890891075, 0.04111660271883011, -0.003857301315292716, -0.10100057721138, 0.00030041823629289865, 0.003797466866672039, 0.07662709802389145, 0.03175313398241997, -0.027541160583496094, 0.0640629455447197, -0.04320826381444931, 0.02478650026023388, 0.11510619521141052, 0.2257164865732193, -0.09242624789476395, -0.0006618742481805384, 0.048100993037223816, -0.06299074739217758, -0.16684681177139282, 0.03461679071187973, 0.13524885475635529, 0.019387373700737953, 0.04670700058341026, -0.17898106575012207, 0.11424049735069275, 0.09910421073436737, -0.029666872695088387, 0.04334358125925064, -0.25747519731521606, -0.11996035277843475, 0.0589408315718174, 0.08565875142812729, 0.019730011001229286, -0.17216843366622925, -0.08272143453359604, -0.042426466941833496, -0.17783477902412415, 0.09771237522363663, -0.008498966693878174, 0.10380079597234726, -0.015047241933643818, 0.04382199048995972, 0.039200861006975174, -0.03102491982281208, 0.18351733684539795, 0.05101296678185463, 0.04549049958586693, -0.056162234395742416, 0.003919463604688644, 0.11640071868896484, -0.06623323261737823, 0.07815812528133392, -0.013040429912507534, 0.08141575008630753, -0.19800812005996704, -0.012475376948714256, -0.05945756658911705, 0.05487202852964401, -0.07026530057191849, -0.03078574687242508, -0.038465458899736404, 0.03384082391858101, 0.03680850937962532, -0.02295863628387451, 0.09102063626050949, 0.04702926427125931, 0.061539310961961746, 0.1315460205078125, 0.09167306125164032, 0.029437603428959846, -0.17661672830581665, 0.0010595156345516443, -0.012355816550552845, 0.07425157725811005, -0.1218537911772728, 0.03564388304948807, 0.11110047996044159, 0.05133891478180885, 0.11301969736814499, 0.025760123506188393, -0.07035242766141891, -0.011554451659321785, 0.041358742862939835, -0.08501160889863968, -0.18895523250102997, -0.05106130987405777, 0.0032090696040540934, -0.1913813203573227, -0.005859081633388996, 0.0992569774389267, -0.04348437860608101, -0.018346957862377167, -0.009759487584233284, -0.007569759618490934, -0.009522877633571625, 0.17726805806159973, 0.06256434321403503, 0.08311218023300171, -0.08504576236009598, 0.1012183353304863, 0.0893222913146019, -0.043479833751916885, 0.045340895652770996, 0.036975521594285965, -0.08368139714002609, -0.01880466565489769, 0.04348659887909889, 0.085934117436409, -0.04278998449444771, -0.03336688503623009, -0.05332234129309654, -0.08029214292764664, 0.04807206988334656, 0.05399599298834801, 0.05361423268914223, -0.0025466924998909235, -0.014101988635957241, 0.019519006833434105, -0.13703185319900513, 0.08899422734975815, 0.024308860301971436, 0.08936672657728195, -0.14645254611968994, 0.06114908307790756, 0.0017501781694591045, 0.061492715030908585, -0.010266820900142193, -0.0021978046279400587, -0.08815772831439972, -0.04402707889676094, -0.10700137913227081, 0.00840803049504757, -0.03145422786474228, -0.008074671030044556, -0.02978852204978466, -0.06864858418703079, -0.0454847477376461, 0.05528314411640167, -0.05359870567917824, -0.09567108005285263, 0.01366958487778902, 0.05207338556647301, -0.13502345979213715, 0.0011196358827874064, 0.042287975549697876, -0.11027480661869049, 0.0893249362707138, 0.048762958496809006, 0.050000037997961044, 0.005740898195654154, 0.01772479899227619, -0.016331851482391357, 0.012689405120909214, 0.02848801016807556, 0.06283679604530334, -0.11497744917869568, 0.004931551869958639, -0.03692079335451126, 0.0407114215195179, 0.001406557043083012, 0.061347559094429016, -0.1397821605205536, -0.04154947027564049, -0.046984899789094925, -0.014235066249966621, -0.059226103127002716, 0.04585367813706398, 0.10674317926168442, 0.024313660338521004, 0.15587304532527924, -0.03963935002684593, 0.030205655843019485, -0.2307705581188202, -0.022138850763440132, -0.021709082648158073, -0.055328283458948135, -0.06264001131057739, -0.031246419996023178, 0.07906392216682434, -0.046664003282785416, 0.07944644242525101, -0.03543059527873993, 0.12705866992473602, 0.04612541198730469, 0.022568097338080406, -0.001477861194871366, 0.00815378874540329, 0.19416886568069458, 0.09221170842647552, -0.017944682389497757, 0.1074235737323761, 0.0065471637062728405, 0.044027239084243774, 0.03539260849356651, 0.11291159689426422, 0.13431361317634583, -0.05128812417387962, 0.06545491516590118, 0.08054102957248688, -0.08482476323843002, -0.15898039937019348, 0.05847253277897835, -0.029730938374996185, 0.10570928454399109, -0.028181159868836403, 0.10378798842430115, 0.09477156400680542, -0.17583975195884705, 0.05693869665265083, -0.07500059902667999, -0.10633010417222977, -0.09049546718597412, -0.055081795901060104, -0.0873628556728363, -0.11180015653371811, 0.014685207046568394, -0.14239899814128876, 0.024922139942646027, 0.11254389584064484, -0.015850747004151344, -0.008746947161853313, 0.1847265660762787, -0.038886163383722305, -0.003592587076127529, 0.051536258310079575, -0.002710036700591445, 0.012140601873397827, -0.03541704639792442, -0.03209700062870979, 0.055004652589559555, 0.03598969802260399, 0.10209477692842484, -0.029577044770121574, 0.013751118443906307, 0.03890005499124527, -0.011474316008388996, -0.10270152240991592, 0.002554049249738455, 0.02225484699010849, 0.006891228258609772, 0.01935097761452198, 0.021770114079117775, 0.02198815904557705, -0.050626084208488464, 0.2466295212507248, -0.054811205714941025, -0.05001240223646164, -0.14186254143714905, 0.13647069036960602, 0.04356999322772026, -0.012409411370754242, 0.0723583847284317, -0.11277010291814804, -0.011728480458259583, 0.14878900349140167, 0.09767300635576248, -0.04919857159256935, -0.022387070581316948, 0.01630508527159691, -0.01553577370941639, -0.0363537073135376, 0.1064290851354599, 0.08173324167728424, 0.004084173124283552, -0.05346306785941124, 0.007975810207426548, -0.010881895199418068, -0.043863750994205475, -0.05721182003617287, 0.07478726655244827, 0.027639267966151237, 0.02137087658047676, -0.03091072477400303, 0.06350962817668915, 0.026092497631907463, -0.17421123385429382, 0.03280619904398918, -0.16462446749210358, -0.18433816730976105, -0.02930995635688305, 0.03324423357844353, 0.0066176219843328, 0.0754394680261612, 0.01583195850253105, -0.009223760105669498, 0.15001873672008514, -0.005955500993877649, -0.07678642868995667, -0.09863241761922836, 0.10052572190761566, -0.0860753133893013, 0.21181604266166687, 0.004927997011691332, 0.06337545812129974, 0.10965883731842041, 0.010116515681147575, -0.1748954802751541, -0.0001754044642439112, 0.08231106400489807, -0.044916413724422455, 0.046818796545267105, 0.14583711326122284, -0.027817636728286743, 0.0653134435415268, 0.03235111013054848, -0.1474262773990631, -0.04256035387516022, -0.031070349738001823, 0.03468940034508705, -0.08854390680789948, -0.011121424846351147, -0.0693277046084404, 0.1595156192779541, 0.2202308475971222, -0.06333427131175995, -0.042960505932569504, -0.062227360904216766, 0.02685176022350788, 0.059674300253391266, 0.13589781522750854, -0.023734038695693016, -0.2003568708896637, 0.008489873260259628, 0.0073864515870809555, 0.033334068953990936, -0.240797221660614, -0.08830231428146362, 0.060443755239248276, -0.05171990767121315, -0.012142055667936802, 0.1079733744263649, 0.03302174061536789, 0.023924386128783226, -0.04671638831496239, -0.06449228525161743, -0.07354148477315903, 0.14666642248630524, -0.14977575838565826, -0.06404200196266174 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_medium_pretrain_squad This model is a fine-tuned version of [prajjwal1/bert-medium](https://huggingface.co/prajjwal1/bert-medium) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.0973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert_medium_pretrain_squad", "results": []}]}
fill-mask
anas-awadalla/bert-medium-pretrained-on-squad
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "dataset:squad", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #fill-mask #generated_from_trainer #dataset-squad #license-mit #autotrain_compatible #endpoints_compatible #region-us
# bert_medium_pretrain_squad This model is a fine-tuned version of prajjwal1/bert-medium on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.0973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert_medium_pretrain_squad\n\nThis model is a fine-tuned version of prajjwal1/bert-medium on the squad dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.0973", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #generated_from_trainer #dataset-squad #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# bert_medium_pretrain_squad\n\nThis model is a fine-tuned version of prajjwal1/bert-medium on the squad dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.0973", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 54, 54, 6, 12, 8, 3, 90, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #fill-mask #generated_from_trainer #dataset-squad #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# bert_medium_pretrain_squad\n\nThis model is a fine-tuned version of prajjwal1/bert-medium on the squad dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.0973## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09395503997802734, 0.12533560395240784, -0.002293637953698635, 0.10002526640892029, 0.16839690506458282, 0.03386710211634636, 0.07225673645734787, 0.12426257878541946, -0.12222238630056381, 0.06903046369552612, 0.08978105336427689, 0.06466992944478989, 0.04863124340772629, 0.137523353099823, -0.023519938811659813, -0.25853705406188965, 0.010782675817608833, -0.0004944042302668095, -0.05476089194417, 0.095028817653656, 0.08649459481239319, -0.11742611229419708, 0.07568700611591339, 0.005033406894654036, -0.17728711664676666, 0.024377970024943352, -0.01282515563070774, -0.03323754295706749, 0.07597503811120987, 0.017243817448616028, 0.11421196907758713, -0.006811775267124176, 0.13943937420845032, -0.20588193833827972, -0.00420946441590786, 0.08174580335617065, 0.04085221886634827, 0.07099882513284683, 0.04319849610328674, 0.02917642705142498, 0.11133015900850296, -0.16990171372890472, 0.086750827729702, 0.027188625186681747, -0.08257671445608139, -0.14303015172481537, -0.08418785035610199, 0.07695423811674118, 0.08515904098749161, 0.09652131795883179, 0.004213215783238411, 0.15035493671894073, -0.08411762118339539, 0.0791928768157959, 0.22404880821704865, -0.2791368067264557, -0.06833605468273163, 0.0547846183180809, 0.048087794333696365, 0.0297005046159029, -0.10920582711696625, -0.014156322926282883, 0.03619920089840889, 0.03686198964715004, 0.11703148484230042, -0.02895141765475273, -0.07327321171760559, -0.0024789876770228148, -0.141736701130867, -0.028978051617741585, 0.14897973835468292, 0.03073611855506897, -0.03415943682193756, -0.06501458585262299, -0.06461203098297119, -0.0970323383808136, -0.016863666474819183, -0.0275036059319973, 0.0404186025261879, -0.05655888840556145, -0.06315117329359055, -0.028067603707313538, -0.06345952302217484, -0.06900250166654587, -0.01267746277153492, 0.10090169310569763, 0.05849628150463104, 0.014475646428763866, -0.029112230986356735, 0.09106937795877457, -0.008085593581199646, -0.1253632754087448, -0.013902312144637108, -0.0037232092581689358, -0.09059664607048035, -0.06135963648557663, -0.05431605875492096, -0.055424559861421585, -0.009782945737242699, 0.11473019421100616, -0.05606350675225258, 0.0662856176495552, 0.03724753111600876, 0.007020364049822092, -0.005078866612166166, 0.13761916756629944, -0.06634760648012161, -0.031529493629932404, -0.001795959658920765, 0.07257574051618576, 0.009748022072017193, -0.0010534781031310558, -0.0691564679145813, -0.012149697169661522, 0.08877426385879517, 0.04708149656653404, -0.05797961726784706, 0.05148565024137497, -0.033084649592638016, -0.02325083687901497, 0.012464579194784164, -0.12937511503696442, 0.057622238993644714, -0.010516173206269741, -0.09639430046081543, 0.017263591289520264, 0.039481401443481445, -0.03730129823088646, -0.05241534486413002, 0.12264269590377808, -0.09559984505176544, 0.01288585364818573, -0.10589402168989182, -0.1102251335978508, 0.012697398662567139, -0.06695922464132309, -0.02155500091612339, -0.07481852173805237, -0.21206647157669067, -0.040228862315416336, 0.05337405949831009, -0.048821333795785904, -0.02617046982049942, -0.04453859478235245, -0.0641397014260292, 0.011126331053674221, -0.0128073301166296, 0.09920432418584824, -0.04779883846640587, 0.08774366974830627, 0.006334288511425257, 0.04757389426231384, 0.014489149674773216, 0.050153087824583054, -0.07821844518184662, 0.023951886221766472, -0.14145788550376892, 0.047936782240867615, -0.08125172555446625, 0.023088576272130013, -0.10752715915441513, -0.12874673306941986, 0.00889643281698227, -0.012085629627108574, 0.07294034957885742, 0.11470136046409607, -0.19076763093471527, -0.03290224075317383, 0.16053417325019836, -0.07681725174188614, -0.044078703969717026, 0.09584169834852219, -0.051592011004686356, 0.0050814347341656685, 0.06427179276943207, 0.12541769444942474, 0.11532056331634521, -0.15211689472198486, -0.03406951203942299, -0.006248675752431154, 0.050340645015239716, -0.020179003477096558, 0.04153924435377121, 0.013132037594914436, 0.020220749080181122, 0.01983371004462242, -0.0577814057469368, 0.008025245741009712, -0.09886445105075836, -0.07551680505275726, -0.042779289186000824, -0.09156085550785065, 0.03778247535228729, 0.04869770631194115, 0.05074469745159149, -0.06015113368630409, -0.1087024137377739, 0.1503327339887619, 0.11709298193454742, -0.05407574400305748, 0.015606189146637917, -0.06470893323421478, 0.04485243186354637, -0.051522016525268555, -0.02150089666247368, -0.19993658363819122, -0.10519527643918991, 0.04188570752739906, -0.07351614534854889, 0.029713261872529984, 0.031040066853165627, 0.06584479659795761, 0.07285658270120621, -0.044101689010858536, -0.010159976780414581, -0.08045846968889236, -0.00927102379500866, -0.10076943039894104, -0.18348908424377441, -0.07303730398416519, -0.016272589564323425, 0.106772780418396, -0.23003563284873962, 0.0150134963914752, -0.06720738857984543, 0.1290561854839325, 0.012149403803050518, -0.05802765116095543, -0.009254747070372105, 0.07088959217071533, -0.0072624715976417065, -0.0797693133354187, 0.0534781776368618, 0.00021068112982902676, -0.032574400305747986, -0.08538713306188583, -0.12165798991918564, 0.03834730014204979, 0.08152873069047928, 0.007164329290390015, -0.10604618489742279, 0.015662042424082756, -0.05974674969911575, -0.042264800518751144, -0.09753216803073883, 0.002109925262629986, 0.17244167625904083, 0.005966499447822571, 0.13440458476543427, -0.04881520941853523, -0.05664195865392685, 0.015861883759498596, 0.0037701446563005447, -0.00465479725971818, 0.06352736055850983, 0.13074040412902832, -0.08122581988573074, 0.09746837615966797, 0.05937855318188667, -0.07334887236356735, 0.13959182798862457, -0.031568218022584915, -0.08665145188570023, -0.02433200553059578, -0.0033703092485666275, -0.009782624430954456, 0.125203475356102, -0.08399534970521927, -0.012326152995228767, 0.025964021682739258, 0.024238744750618935, 0.024461720138788223, -0.1673356592655182, -0.0009173140861093998, 0.028676511719822884, -0.03494560346007347, -0.04190314561128616, -0.02685859054327011, 0.025381319224834442, 0.08736662566661835, 0.02687225118279457, -0.014116569422185421, 0.012479729019105434, -0.0029875533655285835, -0.07836927473545074, 0.17914733290672302, -0.11831945925951004, -0.15283097326755524, -0.12578678131103516, 0.03379792347550392, -0.06478270143270493, -0.018728502094745636, 0.020387183874845505, -0.07569082081317902, -0.062648244202137, -0.07964616268873215, 0.013219732791185379, -0.041022833436727524, 0.01455481257289648, 0.03598187491297722, -0.006073704920709133, 0.07905389368534088, -0.1340121179819107, 0.0016198927769437432, -0.027461817488074303, -0.09316732734441757, -0.000675843155477196, 0.04480624571442604, 0.11624778062105179, 0.104097381234169, -0.021529467776417732, 0.030618291348218918, -0.030908837914466858, 0.2231401652097702, -0.043732739984989166, 0.0014544457662850618, 0.10990872979164124, 0.014888777397572994, 0.05345072224736214, 0.11446759104728699, 0.02704704739153385, -0.0939510315656662, 0.025773392990231514, 0.07029055804014206, -0.021145815029740334, -0.20613664388656616, -0.0559837706387043, -0.04929708316922188, -0.06590411812067032, 0.10636471956968307, 0.039225444197654724, -0.031836237758398056, 0.03757987916469574, 0.006885036360472441, 0.07068406045436859, -0.05108785256743431, 0.08911076933145523, 0.08739766478538513, 0.04636726155877113, 0.10273177921772003, -0.030771875753998756, -0.02436179108917713, 0.05848204344511032, -0.03428451344370842, 0.2947424352169037, -0.032852351665496826, 0.07305069267749786, 0.05149451643228531, 0.1405174285173416, -0.023991713300347328, 0.06803803890943527, 0.004282075446099043, -0.001022364478558302, 0.009181438013911247, -0.05963240563869476, -0.04464757815003395, 0.003710669232532382, -0.008830209262669086, 0.07200178503990173, -0.12141893059015274, 0.017323268577456474, 0.020658450201153755, 0.2639037072658539, 0.04617215320467949, -0.30578452348709106, -0.08472750335931778, -0.0017541972920298576, -0.03382361680269241, -0.05979705601930618, 0.002111368579789996, 0.13165545463562012, -0.11839595437049866, 0.0628974437713623, -0.05371814966201782, 0.09274683147668839, -0.03906552121043205, 0.00626629963517189, 0.06398846954107285, 0.13334117829799652, 0.00004036716927657835, 0.08393076807260513, -0.21740733087062836, 0.23943248391151428, 0.01892760954797268, 0.12512867152690887, -0.056707777082920074, 0.023606833070516586, 0.011859990656375885, 0.06851182132959366, 0.09695667028427124, 0.007682826370000839, -0.025856226682662964, -0.1835552304983139, -0.05915183201432228, 0.03308374807238579, 0.11080583184957504, 0.012094985693693161, 0.09952066838741302, -0.03903194144368172, -0.00625182781368494, 0.0447816364467144, -0.021787187084555626, -0.16346029937267303, -0.103036068379879, 0.008799359202384949, 0.017226064577698708, -0.06241190806031227, -0.05641147866845131, -0.10632914304733276, -0.035540077835321426, 0.1776880919933319, 0.004751706495881081, -0.03601200506091118, -0.13584363460540771, 0.08966302871704102, 0.11334967613220215, -0.0782240554690361, 0.01620369218289852, 0.014004428870975971, 0.10988988727331161, 0.034921035170555115, -0.08495601266622543, 0.059563662856817245, -0.0710674598813057, -0.1453821212053299, -0.0650966465473175, 0.10503800213336945, 0.0710497573018074, 0.05644316226243973, -0.00891048088669777, 0.03064623661339283, 0.01391658466309309, -0.09274646639823914, -0.0003411492798477411, 0.09583181142807007, 0.09713775664567947, 0.06440283358097076, -0.10195071250200272, -0.005560619290918112, -0.012631532736122608, 0.014848154038190842, 0.11608049273490906, 0.203420951962471, -0.08942735940217972, 0.05977253243327141, 0.06651101261377335, -0.09381980448961258, -0.19211232662200928, 0.07450839877128601, 0.10239490121603012, 0.02034689486026764, 0.0325353778898716, -0.18810714781284332, 0.12809127569198608, 0.11094646155834198, -0.0073195514269173145, 0.035553526133298874, -0.33469054102897644, -0.11846630275249481, 0.06424859166145325, 0.13663029670715332, 0.06400713324546814, -0.14337508380413055, -0.019901584833860397, -0.03819350153207779, -0.16594325006008148, 0.10812937468290329, -0.06399623304605484, 0.11932315677404404, -0.014530640095472336, 0.08341507613658905, 0.021401526406407356, -0.05689289793372154, 0.12097860127687454, 0.05591202154755592, 0.08201106637716293, -0.056813500821590424, 0.006248855032026768, 0.0674581304192543, -0.06287543475627899, 0.07349193841218948, -0.033563610166311264, 0.05398194491863251, -0.1553601175546646, -0.016155168414115906, -0.07795426994562149, 0.06945347040891647, -0.05100918933749199, -0.057386815547943115, -0.04639171063899994, 0.06077206879854202, 0.07945352047681808, -0.027723638340830803, 0.044253651052713394, 0.02553119696676731, 0.09770715981721878, 0.06897120177745819, 0.06380796432495117, -0.0014583923621103168, -0.11445648968219757, 0.004953660536557436, -0.006740991957485676, 0.07166310399770737, -0.10372912138700485, 0.017355307936668396, 0.14257670938968658, 0.04818969964981079, 0.13892732560634613, 0.04847919940948486, -0.04300031438469887, -0.002409640932455659, 0.036825139075517654, -0.12487547844648361, -0.11786241084337234, 0.013628745451569557, -0.05375475436449051, -0.1377498060464859, 0.01859782449901104, 0.0817200243473053, -0.08118616044521332, -0.0050738537684082985, -0.01549468282610178, 0.019291676580905914, -0.033172041177749634, 0.2052852064371109, 0.034758638590574265, 0.06152302771806717, -0.08512099832296371, 0.10289621353149414, 0.06561252474784851, -0.06276273727416992, 0.04538575932383537, 0.07431460916996002, -0.08883566409349442, -0.017426658421754837, 0.0910467803478241, 0.18444682657718658, -0.03243637830018997, -0.02802938036620617, -0.09984466433525085, -0.07959605008363724, 0.06213821470737457, 0.13865333795547485, 0.05707871913909912, -0.023833254352211952, -0.045879051089286804, 0.031656187027692795, -0.15889166295528412, 0.07408151775598526, 0.06665986776351929, 0.06870754063129425, -0.13200075924396515, 0.1604231595993042, 0.01035214401781559, 0.047187384217977524, -0.02253374084830284, 0.026470011100172997, -0.12772947549819946, -0.017919333651661873, -0.10730841010808945, -0.01894722878932953, -0.05283471941947937, -0.007419598288834095, -0.015625623986124992, -0.04161466658115387, -0.04852328076958656, 0.04541993886232376, -0.0712142288684845, -0.06353830546140671, 0.026016542688012123, 0.047624070197343826, -0.1436319351196289, -0.013415414839982986, 0.008866406977176666, -0.08031241595745087, 0.05131441354751587, 0.0488075315952301, 0.018390115350484848, 0.04141046851873398, -0.09056121855974197, -0.03784553334116936, 0.02983185090124607, 0.021675575524568558, 0.08633548021316528, -0.07645957171916962, 0.014097962528467178, -0.01993451453745365, 0.060257550328969955, 0.018257683143019676, 0.0632629320025444, -0.12398501485586166, 0.00895901583135128, -0.06239176169037819, -0.051723234355449677, -0.05281662940979004, 0.04228426143527031, 0.10036758333444595, 0.03450659662485123, 0.17535091936588287, -0.09354844689369202, 0.04820765182375908, -0.1940109133720398, -0.038211923092603683, 0.0009577579912729561, -0.04431939870119095, -0.06066368892788887, -0.036425407975912094, 0.0844535306096077, -0.05401116982102394, 0.10758553445339203, 0.022527100518345833, 0.07764710485935211, 0.037712108343839645, -0.03778478503227234, -0.04986322298645973, -0.00512072304263711, 0.1469685584306717, 0.049459971487522125, -0.0339869000017643, 0.09544456005096436, 0.015467475168406963, 0.06575173884630203, 0.06591986119747162, 0.23671580851078033, 0.14905741810798645, -0.029923386871814728, 0.07026941329240799, 0.051721010357141495, -0.10830917209386826, -0.16152812540531158, 0.05924646183848381, -0.02705307863652706, 0.13490939140319824, -0.04938063398003578, 0.1676386296749115, 0.06897590309381485, -0.1771012842655182, 0.06682981550693512, -0.056057460606098175, -0.11844479292631149, -0.11878347396850586, -0.049897704273462296, -0.07751407474279404, -0.10410446673631668, 0.020492026582360268, -0.11488845199346542, 0.03026369959115982, 0.08501360565423965, 0.0058936611749231815, 0.003179409774020314, 0.16012732684612274, -0.0381975956261158, 0.026571856811642647, 0.04420189931988716, 0.009785962291061878, -0.004362710285931826, -0.06934038549661636, -0.03975563496351242, 0.02226230874657631, -0.0020420467481017113, 0.07802657783031464, -0.034293610602617264, -0.00151549163274467, 0.03666200488805771, -0.009544103406369686, -0.07411748915910721, 0.016092222183942795, 0.018954653292894363, 0.04131009057164192, 0.052335552871227264, 0.0495687797665596, -0.004773124121129513, -0.04983613267540932, 0.23577867448329926, -0.07294831424951553, -0.08756541460752487, -0.1267140656709671, 0.23650071024894714, 0.0717189759016037, -0.021154241636395454, 0.06270794570446014, -0.10944545269012451, -0.024021990597248077, 0.19915705919265747, 0.15870875120162964, -0.04592803865671158, -0.01054500974714756, -0.014473382383584976, -0.014005357399582863, -0.03689117729663849, 0.13852278888225555, 0.10477994382381439, 0.07905824482440948, -0.04344930127263069, -0.02362692914903164, -0.03152473643422127, -0.03287497162818909, -0.0921681746840477, 0.032974548637866974, 0.04274619743227959, 0.011070188134908676, -0.034378938376903534, 0.05715382099151611, -0.01810905896127224, -0.18785959482192993, 0.05945771560072899, -0.1591617614030838, -0.1691354215145111, -0.024995282292366028, 0.07948438078165054, -0.0062093306332826614, 0.06730173528194427, -0.025169512256979942, 0.0033672903664410114, 0.16155971586704254, -0.013264761306345463, -0.06371694058179855, -0.1239878386259079, 0.08466143161058426, -0.06834210455417633, 0.21902599930763245, 0.000596469035372138, 0.06376444548368454, 0.10755182802677155, 0.028544778004288673, -0.12322700023651123, 0.048223044723272324, 0.05794141814112663, -0.08226853609085083, 0.02049431949853897, 0.16265900433063507, -0.058109305799007416, 0.09376679360866547, 0.02045941725373268, -0.1171918734908104, -0.009614141657948494, -0.06524239480495453, -0.01802223175764084, -0.08062184602022171, 0.005987664218991995, -0.06351672112941742, 0.14880803227424622, 0.23106786608695984, -0.019143734127283096, 0.005240160971879959, -0.09839624911546707, 0.0316583625972271, 0.04680272564291954, 0.1017458587884903, -0.04710377752780914, -0.20167572796344757, 0.016240477561950684, -0.022928357124328613, 0.0291612446308136, -0.24026569724082947, -0.08877571672201157, 0.0335383266210556, -0.06338807940483093, -0.059456102550029755, 0.10578518360853195, 0.03879411891102791, 0.04738127067685127, -0.044814664870500565, -0.1158946231007576, -0.04536379128694534, 0.14900939166545868, -0.16297359764575958, -0.06815014779567719 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-finetuned-squad This model is a fine-tuned version of [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small) on the squad dataset. It achieves the following results on the evaluation set: - eval_loss: 1.3138 - eval_runtime: 46.6577 - eval_samples_per_second: 231.13 - eval_steps_per_second: 14.446 - epoch: 4.0 - step: 22132 {'exact_match': 71.05960264900662, 'f1': 80.8260245470904} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-small-finetuned-squad", "results": []}]}
question-answering
anas-awadalla/bert-small-finetuned-squad
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# bert-small-finetuned-squad This model is a fine-tuned version of prajjwal1/bert-small on the squad dataset. It achieves the following results on the evaluation set: - eval_loss: 1.3138 - eval_runtime: 46.6577 - eval_samples_per_second: 231.13 - eval_steps_per_second: 14.446 - epoch: 4.0 - step: 22132 {'exact_match': 71.05960264900662, 'f1': 80.8260245470904} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
[ "# bert-small-finetuned-squad\n\nThis model is a fine-tuned version of prajjwal1/bert-small on the squad dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 1.3138\n- eval_runtime: 46.6577\n- eval_samples_per_second: 231.13\n- eval_steps_per_second: 14.446\n- epoch: 4.0\n- step: 22132\n\n{'exact_match': 71.05960264900662, 'f1': 80.8260245470904}", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 20", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# bert-small-finetuned-squad\n\nThis model is a fine-tuned version of prajjwal1/bert-small on the squad dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 1.3138\n- eval_runtime: 46.6577\n- eval_samples_per_second: 231.13\n- eval_steps_per_second: 14.446\n- epoch: 4.0\n- step: 22132\n\n{'exact_match': 71.05960264900662, 'f1': 80.8260245470904}", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 20", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.0\n- Tokenizers 0.10.3" ]
[ 46, 135, 6, 12, 8, 3, 90, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# bert-small-finetuned-squad\n\nThis model is a fine-tuned version of prajjwal1/bert-small on the squad dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 1.3138\n- eval_runtime: 46.6577\n- eval_samples_per_second: 231.13\n- eval_steps_per_second: 14.446\n- epoch: 4.0\n- step: 22132\n\n{'exact_match': 71.05960264900662, 'f1': 80.8260245470904}## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 20### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.0\n- Tokenizers 0.10.3" ]
[ -0.07704535871744156, 0.08598323911428452, -0.004494743887335062, 0.0968918427824974, 0.14258649945259094, 0.021765757352113724, 0.1290193349123001, 0.11342119425535202, -0.0738651230931282, 0.0829835906624794, 0.06322038173675537, 0.09285782277584076, 0.03779708966612816, 0.10807615518569946, -0.05797439441084862, -0.1897258311510086, -0.004422049503773451, -0.02783249504864216, -0.05088936537504196, 0.10836528241634369, 0.09614472091197968, -0.12053345143795013, 0.05194060876965523, -0.012555248104035854, -0.14799588918685913, 0.035865530371665955, 0.021124375984072685, -0.016048284247517586, 0.118619903922081, 0.013476544991135597, 0.12599121034145355, 0.010338067077100277, 0.13424749672412872, -0.21224407851696014, -0.00891701877117157, 0.09418342262506485, 0.043641671538352966, 0.05997971072793007, 0.06952861696481705, 0.002028093673288822, 0.038600578904151917, -0.1440925896167755, 0.08517420291900635, 0.0126308249309659, -0.13741914927959442, -0.17404505610466003, -0.11894828826189041, 0.0013408479280769825, 0.10887819528579712, 0.0864778459072113, -0.02230302430689335, 0.15682606399059296, -0.0770745798945427, 0.08519744873046875, 0.24292483925819397, -0.29275840520858765, -0.07029061019420624, 0.05330566316843033, 0.04429835081100464, 0.06640390306711197, -0.08894564211368561, 0.009432191029191017, 0.027441179379820824, 0.024773219600319862, 0.10546471923589706, -0.03625136613845825, -0.0982237234711647, 0.01542856264859438, -0.13602064549922943, -0.021468279883265495, 0.06402568519115448, 0.03966399282217026, -0.039184294641017914, -0.05490587651729584, -0.08752409368753433, -0.07976888865232468, -0.006813173647969961, -0.06873776018619537, 0.06890638172626495, -0.04483423009514809, -0.03979824483394623, -0.004648296162486076, -0.06293194741010666, -0.043363846838474274, -0.03393332287669182, 0.1216341182589531, 0.016842765733599663, 0.02542482316493988, -0.03289581462740898, 0.085004061460495, -0.04571249708533287, -0.12825046479701996, -0.018557509407401085, 0.020034288987517357, -0.12782339751720428, -0.07106849551200867, -0.06809528917074203, -0.07405994087457657, -0.028175147250294685, 0.19301551580429077, -0.04192236438393593, 0.08239994198083878, 0.022965876385569572, -0.015171206556260586, -0.04286021739244461, 0.15489710867404938, -0.03063495270907879, -0.08984404057264328, -0.030218392610549927, 0.07584488391876221, 0.004389531444758177, -0.024412300437688828, -0.03989340737462044, 0.01777898147702217, 0.0664944052696228, 0.027682099491357803, -0.040647346526384354, 0.023999661207199097, -0.042246006429195404, -0.01592387817800045, -0.06355724483728409, -0.13470913469791412, 0.06261374801397324, -0.013075740076601505, -0.08700843155384064, -0.01599038578569889, 0.00967093463987112, 0.01415275875478983, -0.02683297172188759, 0.15239308774471283, -0.06704447418451309, 0.03419651463627815, -0.08595829457044601, -0.11367487162351608, 0.00039016781374812126, -0.07345972210168839, -0.02252541296184063, -0.04716495797038078, -0.16054004430770874, -0.06455976516008377, 0.06435831636190414, -0.06358128041028976, -0.004927640315145254, -0.03633136302232742, -0.05168455094099045, 0.026064511388540268, -0.024823157116770744, 0.14064021408557892, -0.05108427256345749, 0.05858822539448738, 0.0228170994669199, 0.05844149738550186, 0.01980329304933548, 0.027672534808516502, -0.06927069276571274, 0.02835480496287346, -0.1809743493795395, 0.0770982950925827, -0.06417248398065567, 0.01354675181210041, -0.1202901154756546, -0.08856194466352463, 0.025862662121653557, -0.017257045954465866, 0.09372348338365555, 0.08602525293827057, -0.20454509556293488, -0.02895691618323326, 0.14687591791152954, -0.05646096542477608, -0.055551882833242416, 0.07829690724611282, -0.07294727861881256, 0.01944022998213768, 0.05916443467140198, 0.17278249561786652, 0.0424526073038578, -0.14636950194835663, -0.008803032338619232, -0.0487021841108799, 0.0555841326713562, 0.07850331813097, 0.03686187416315079, -0.007123315241187811, 0.10353625565767288, -0.013285554014146328, -0.09520668536424637, -0.029545243829488754, -0.08370392769575119, -0.07632669806480408, -0.03333110362291336, -0.06622330099344254, 0.02081090398132801, 0.03521554917097092, 0.028620146214962006, -0.07728850841522217, -0.09616188704967499, 0.1522427499294281, 0.07770126312971115, -0.04621206596493721, 0.026394443586468697, -0.07779742777347565, 0.01128020416945219, -0.0049736835062503815, -0.030646752566099167, -0.22738510370254517, -0.11016666889190674, 0.019289493560791016, -0.07385239005088806, 0.026215141639113426, 0.046374306082725525, 0.07529426366090775, 0.058043114840984344, -0.04358853027224541, 0.019496452063322067, -0.07489442080259323, -0.01596396043896675, -0.1209712103009224, -0.18250896036624908, -0.06105868145823479, -0.007545932661741972, 0.17157945036888123, -0.20819029211997986, -0.004078192636370659, -0.027720291167497635, 0.1323522925376892, 0.011602417565882206, -0.07069411873817444, -0.06270188838243484, 0.052247464656829834, -0.011032694950699806, -0.08123022317886353, 0.04911315441131592, -0.019776739180088043, -0.03683536872267723, -0.08063528686761856, -0.1636916846036911, 0.015048205852508545, 0.08178295940160751, -0.027938563376665115, -0.10555414855480194, 0.03628664091229439, -0.04354734346270561, -0.02333632856607437, -0.10269143432378769, 0.0038919851649552584, 0.20738406479358673, 0.032570626586675644, 0.12028295546770096, -0.041195351630449295, -0.06794535368680954, -0.009306823834776878, 0.002441523829475045, 0.04679068922996521, 0.09128755331039429, 0.08051407337188721, -0.10582858324050903, 0.061111364513635635, 0.08677854388952255, -0.03551354631781578, 0.08537183701992035, -0.028883537277579308, -0.07905726134777069, -0.05905045568943024, -0.002642969135195017, 0.007220105268061161, 0.11124816536903381, -0.049905188381671906, -0.009567360393702984, 0.02418660745024681, 0.03538088500499725, -0.017708495259284973, -0.1856638789176941, -0.0010734322713688016, 0.04183546453714371, -0.031900327652692795, -0.018603594973683357, -0.05489487946033478, 0.036284588277339935, 0.1018771305680275, 0.02541862614452839, -0.030053909868001938, -0.021240899339318275, -0.028603916987776756, -0.08028408139944077, 0.17983049154281616, -0.07342999428510666, -0.10777847468852997, -0.08491232246160507, -0.03528010472655296, -0.052273936569690704, -0.012408281676471233, 0.025725658982992172, -0.07651548087596893, -0.06648935377597809, -0.08772590011358261, 0.0024607751984149218, -1.7872654467510074e-8, -0.0026797479949891567, 0.06328950822353363, -0.021103965118527412, 0.10702728480100632, -0.13030052185058594, -0.0009175497107207775, -0.04773503914475441, -0.06210803613066673, 0.013854826800525188, 0.10163519531488419, 0.09508771449327469, 0.1238497942686081, -0.024095579981803894, 0.019357891753315926, -0.017229722812771797, 0.27437353134155273, -0.0725213885307312, 0.005090401507914066, 0.1072366014122963, -0.009964692406356335, 0.053540267050266266, 0.131081685423851, 0.043355464935302734, -0.12646809220314026, 0.023319264873862267, 0.10607250034809113, -0.0310137327760458, -0.242396742105484, -0.018899474292993546, -0.030486853793263435, -0.09943100064992905, 0.09444277733564377, 0.01061953790485859, -0.04328107088804245, 0.022496651858091354, 0.02533428743481636, 0.05005909875035286, -0.010733101516962051, 0.06926564872264862, 0.12234003841876984, 0.0512874536216259, 0.1381492167711258, -0.013891763053834438, -0.027543535456061363, 0.04897093027830124, -0.047719355672597885, 0.23276396095752716, -0.007480147294700146, 0.07751544564962387, 0.0474674366414547, 0.12406417727470398, -0.045869119465351105, 0.02692430093884468, 0.032233208417892456, -0.024297000840306282, -0.006452842149883509, -0.0566398985683918, -0.017804421484470367, 0.023737456649541855, -0.04916530102491379, 0.024950893595814705, -0.06257527321577072, 0.04055124521255493, 0.047771017998456955, 0.2712963819503784, 0.08360865712165833, -0.29204288125038147, -0.05294131860136986, 0.010911188088357449, -0.037460409104824066, -0.032163724303245544, -0.029074179008603096, 0.10044878721237183, -0.11114896088838577, 0.08445203304290771, -0.056812677532434464, 0.09804914891719818, -0.02867758274078369, 0.029809333384037018, 0.0845951959490776, 0.08856946974992752, 0.00047835856094025075, 0.028219914063811302, -0.2076236605644226, 0.23774370551109314, 0.028493814170360565, 0.09849822521209717, -0.03533390909433365, 0.029975110664963722, 0.0060877990908920765, 0.016235683113336563, 0.0831189975142479, 0.013515098951756954, -0.08405598253011703, -0.18613609671592712, -0.04546363279223442, 0.021725470200181007, 0.1518017202615738, -0.054778605699539185, 0.12199359387159348, -0.04511447623372078, -0.0040566688403487206, 0.035700567066669464, 0.005983341485261917, -0.11162595450878143, -0.07447126507759094, 0.025105822831392288, 0.004626105073839426, -0.06851617246866226, -0.04549261927604675, -0.08534978330135345, -0.0941363275051117, 0.18050731718540192, -0.0031896643340587616, -0.018515178933739662, -0.13779744505882263, 0.11291675269603729, 0.08901109546422958, -0.05936744064092636, 0.005900203250348568, 0.04149458929896355, 0.07524694502353668, 0.03628535941243172, -0.06988299638032913, 0.08678130060434341, -0.04369143024086952, -0.14920943975448608, -0.08694127947092056, 0.11532530188560486, 0.04715798795223236, 0.050878070294857025, -0.004270497709512711, 0.06788657605648041, 0.03403402119874954, -0.08709022402763367, 0.021192220970988274, 0.017824092879891396, 0.05641784518957138, 0.03723521530628204, -0.03244893252849579, 0.03709886968135834, -0.053550589829683304, 0.0030071930959820747, 0.08996959775686264, 0.28452223539352417, -0.09023133665323257, 0.04316253215074539, 0.026603491976857185, -0.08949437737464905, -0.159991055727005, 0.09270240366458893, 0.10983334481716156, -0.002513025188818574, 0.0970027819275856, -0.14116792380809784, 0.1530332714319229, 0.13024890422821045, -0.010595656931400299, 0.02148275077342987, -0.3212284743785858, -0.1535605788230896, 0.0154759231954813, 0.11560490727424622, 0.1013702005147934, -0.153725728392601, -0.03964494541287422, -0.024302439764142036, -0.21676498651504517, 0.06714130938053131, -0.07475162297487259, 0.09804894775152206, 0.0235527902841568, 0.06663282960653305, 0.023395130410790443, -0.03616441413760185, 0.15032139420509338, 0.06712497025728226, 0.09250368177890778, -0.05989891290664673, 0.01908877305686474, 0.07809562236070633, -0.06195901706814766, 0.0077270204201340675, 0.004178553819656372, 0.03924165293574333, -0.1366281807422638, -0.01800110749900341, -0.06234465911984444, 0.02170315943658352, -0.05710125342011452, -0.056960154324769974, -0.03644905611872673, 0.026813484728336334, 0.0745711699128151, -0.022102627903223038, 0.046880051493644714, -0.0071935164742171764, 0.11206942051649094, 0.09917356818914413, 0.04517931491136551, -0.03249982371926308, -0.13158786296844482, 0.019355149939656258, 0.016904979944229126, 0.03173843398690224, -0.11806856095790863, 0.05094771087169647, 0.1604873687028885, 0.06069961562752724, 0.14004334807395935, 0.04739551991224289, -0.02923440746963024, 0.012933610938489437, 0.02174942009150982, -0.1363839954137802, -0.13315144181251526, 0.0544101782143116, -0.09302063286304474, -0.1049959659576416, -0.0015237764455378056, 0.15708521008491516, -0.020397666841745377, -0.0066514769569039345, -0.002344441134482622, 0.016428222879767418, -0.021249959245324135, 0.21138501167297363, -0.009848346002399921, 0.07196555286645889, -0.08976120501756668, 0.09263177961111069, 0.08795551210641861, -0.06712500005960464, 0.019429033622145653, 0.08134598284959793, -0.07863008230924606, 0.0027813680935651064, 0.057760462164878845, 0.1489315927028656, -0.06264336407184601, 0.008078084327280521, -0.1190803200006485, -0.0929560512304306, 0.05435548722743988, 0.13999314606189728, 0.05147559195756912, -0.029721125960350037, -0.02386414259672165, 0.017489822581410408, -0.11068493872880936, 0.06250152736902237, 0.06289642304182053, 0.072780080139637, -0.09259751439094543, 0.1763858199119568, -0.0027368981391191483, 0.007921308279037476, -0.010810486972332, 0.030386365950107574, -0.10061482340097427, 0.000053295640100259334, -0.12649978697299957, -0.015472794882953167, 0.01718783937394619, -0.00787730049341917, -0.006545815616846085, -0.05699644982814789, -0.05804447829723358, 0.03575475886464119, -0.08625391125679016, -0.06572944670915604, 0.02170480228960514, 0.029451079666614532, -0.16321337223052979, -0.02568686567246914, 0.030410001054406166, -0.08761154860258102, 0.06656701862812042, 0.04743694141507149, 0.0214043278247118, 0.029807211831212044, -0.10188134759664536, -0.04204695299267769, 0.019374828785657883, 0.025368284434080124, 0.08508113026618958, -0.10617034137248993, -0.010002929717302322, -0.026551470160484314, 0.09109149128198624, 0.036410145461559296, 0.029657604172825813, -0.10861355066299438, 0.009964554570615292, -0.058313291519880295, -0.07028260082006454, -0.04567563161253929, 0.012568267993628979, 0.0956299751996994, 0.05255897715687752, 0.1544221043586731, -0.07742674648761749, 0.05368059501051903, -0.2417854517698288, -0.04270865023136139, 0.008718917146325111, -0.04693014919757843, -0.06482212245464325, -0.05709806829690933, 0.09639350324869156, -0.06586731225252151, 0.08849279582500458, 0.02913021109998226, 0.14980483055114746, 0.06531313061714172, -0.03831600025296211, -0.06531348079442978, 0.021679095923900604, 0.11937335878610611, 0.0641934722661972, -0.03071405738592148, 0.08668426424264908, 0.014346563257277012, 0.07208327203989029, 0.08140217512845993, 0.23850516974925995, 0.20007628202438354, 0.019705018028616905, 0.055445875972509384, 0.018832318484783173, -0.10494831949472427, -0.18201246857643127, 0.10929428786039352, -0.07471375167369843, 0.12903937697410583, -0.055965278297662735, 0.15330713987350464, 0.04193693771958351, -0.19833649694919586, 0.06295274943113327, -0.09942562878131866, -0.09871653467416763, -0.12688201665878296, 0.019076867029070854, -0.08326311409473419, -0.10317137092351913, 0.020133625715970993, -0.10523022711277008, 0.09425175935029984, 0.14919915795326233, 0.014023895375430584, 0.02311546355485916, 0.11722932755947113, -0.057878460735082626, 0.0177322831004858, 0.04523034766316414, 0.009528720751404762, -0.0034548055846244097, -0.037146665155887604, -0.05689273774623871, 0.033427443355321884, 0.01879415288567543, 0.07753166556358337, -0.03926490619778633, 0.004147226456552744, 0.011237469501793385, -0.016225088387727737, -0.09193965792655945, 0.023062679916620255, 0.02329391799867153, 0.041260335594415665, 0.021895011886954308, 0.05608895793557167, 0.0391138531267643, -0.044626958668231964, 0.2879005968570709, -0.06648281216621399, -0.08385645598173141, -0.1260664463043213, 0.2321896106004715, 0.045223258435726166, 0.0305490642786026, 0.044971562922000885, -0.10843560844659805, -0.01074714120477438, 0.1540302038192749, 0.0926889106631279, -0.1074029952287674, -0.021218959242105484, -0.015044458210468292, -0.006774101871997118, -0.02157733030617237, 0.09992382675409317, 0.08074179291725159, 0.02759571000933647, -0.05332384258508682, -0.0038044091779738665, -0.00933042261749506, -0.03887401521205902, -0.04601472243666649, 0.060896921902894974, 0.01925356313586235, 0.034998927265405655, -0.034508757293224335, 0.06814035028219223, 0.03769765421748161, -0.24084950983524323, 0.0881219431757927, -0.21896924078464508, -0.18966469168663025, 0.004505020100623369, 0.10572094470262527, -0.02695677988231182, 0.07053103297948837, -0.01840919628739357, -0.023921910673379898, 0.12538990378379822, -0.022172201424837112, -0.019616566598415375, -0.13708089292049408, 0.09238196909427643, -0.1594831943511963, 0.21643400192260742, -0.01360892690718174, 0.06780292093753815, 0.11173955351114273, 0.02592519484460354, -0.1031605526804924, 0.03967847675085068, 0.07517416775226593, -0.1246105208992958, 0.009328811429440975, 0.15872399508953094, -0.05176406726241112, 0.10127396881580353, 0.06652676314115524, -0.15451617538928986, 0.006033557467162609, 0.0031309546902775764, -0.022863490507006645, -0.06802638620138168, -0.05013241618871689, -0.0702115148305893, 0.12899185717105865, 0.22666874527931213, -0.005347192287445068, 0.050400182604789734, -0.07629259675741196, 0.005048478953540325, 0.024711135774850845, 0.12512394785881042, -0.05607731267809868, -0.21970166265964508, 0.0589885413646698, 0.00949114840477705, 0.019923876971006393, -0.2150445133447647, -0.11688315123319626, 0.06761416792869568, -0.04949921369552612, -0.02597232721745968, 0.12668377161026, 0.07061871886253357, 0.036514103412628174, -0.04646659269928932, -0.2197270542383194, -0.030409300699830055, 0.17840197682380676, -0.11323605477809906, -0.06394200772047043 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-pretrained-finetuned-squad This model is a fine-tuned version of [anas-awadalla/bert-small-pretrained-on-squad](https://huggingface.co/anas-awadalla/bert-small-pretrained-on-squad) on the squad dataset. - "exact_match": 72.20435193945127 - "f1": 81.31832229156294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-small-pretrained-finetuned-squad", "results": []}]}
question-answering
anas-awadalla/bert-small-pretrained-finetuned-squad
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# bert-small-pretrained-finetuned-squad This model is a fine-tuned version of anas-awadalla/bert-small-pretrained-on-squad on the squad dataset. - "exact_match": 72.20435193945127 - "f1": 81.31832229156294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert-small-pretrained-finetuned-squad\n\nThis model is a fine-tuned version of anas-awadalla/bert-small-pretrained-on-squad on the squad dataset.\n\n- \"exact_match\": 72.20435193945127\n- \"f1\": 81.31832229156294", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# bert-small-pretrained-finetuned-squad\n\nThis model is a fine-tuned version of anas-awadalla/bert-small-pretrained-on-squad on the squad dataset.\n\n- \"exact_match\": 72.20435193945127\n- \"f1\": 81.31832229156294", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 47, 83, 6, 12, 8, 3, 90, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# bert-small-pretrained-finetuned-squad\n\nThis model is a fine-tuned version of anas-awadalla/bert-small-pretrained-on-squad on the squad dataset.\n\n- \"exact_match\": 72.20435193945127\n- \"f1\": 81.31832229156294## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.11670950055122375, 0.1785510629415512, -0.0032913656905293465, 0.09355096518993378, 0.12930350005626678, 0.015284237451851368, 0.09072671830654144, 0.14223608374595642, -0.05523882061243057, 0.09121296554803848, 0.10865246504545212, 0.04218291491270065, 0.059647198766469955, 0.1260816603899002, -0.03707541525363922, -0.19072674214839935, 0.006892846431583166, 0.02454482950270176, -0.004481730982661247, 0.10469619929790497, 0.11524523794651031, -0.09785117954015732, 0.08106999844312668, 0.02083676867187023, -0.12530235946178436, 0.0070235892198979855, -0.01718793995678425, -0.05185333266854286, 0.08301793038845062, 0.03170431777834892, 0.08778412640094757, -0.01113979984074831, 0.07969052344560623, -0.19123734533786774, -0.004072011914104223, 0.05579715222120285, 0.03301721811294556, 0.088020458817482, 0.030370676890015602, 0.029426954686641693, 0.051149290055036545, -0.10861935466527939, 0.09212452918291092, 0.022177021950483322, -0.10581300407648087, -0.13306012749671936, -0.08501846343278885, 0.05674603208899498, 0.08459212630987167, 0.10700559616088867, 0.0023347889073193073, 0.17505066096782684, -0.0304147657006979, 0.06421258300542831, 0.1485280841588974, -0.27694782614707947, -0.06074501946568489, 0.00658432999625802, 0.06163568049669266, 0.06666211038827896, -0.09398398548364639, -0.021020323038101196, 0.032339125871658325, 0.03720563277602196, 0.09098095446825027, -0.013719817623496056, -0.012358911335468292, -0.02916235476732254, -0.10808715224266052, -0.07545290887355804, 0.1898135095834732, 0.06209608539938927, -0.05812123045325279, -0.12272266298532486, -0.04712618514895439, -0.09848007559776306, -0.023991374298930168, -0.03332485631108284, 0.0049111507833004, -0.049198027700185776, -0.03813663870096207, -0.04692479223012924, -0.07721974700689316, -0.0375232957303524, 0.012215621769428253, 0.10330269485712051, 0.023158196359872818, 0.021636763587594032, -0.025917716324329376, 0.07411831617355347, -0.04433343932032585, -0.1514737606048584, -0.01668516919016838, -0.011645474471151829, -0.05766008421778679, -0.05444369465112686, -0.039977967739105225, -0.06234199181199074, -0.014770127832889557, 0.1431100070476532, -0.023373974487185478, 0.061892736703157425, 0.01726282387971878, -0.00569780170917511, -0.017764277756214142, 0.16162501275539398, -0.02889767475426197, -0.0606202557682991, 0.010284370742738247, 0.14415355026721954, 0.022976523265242577, -0.02813597396016121, -0.0941636860370636, -0.028401987627148628, 0.088733971118927, 0.039581093937158585, -0.007274155505001545, 0.016620973125100136, -0.05488551780581474, -0.04909825325012207, 0.10189130902290344, -0.11721171438694, 0.03785090520977974, -0.023157229647040367, -0.07264957576990128, -0.08849567919969559, 0.003842197125777602, 0.0019199175294488668, -0.046600472182035446, 0.06263397634029388, -0.09100725501775742, -0.031717024743556976, -0.06872738897800446, -0.07010886073112488, 0.005057021509855986, -0.07437720149755478, 0.011438317596912384, -0.08424703776836395, -0.15167765319347382, -0.03845898434519768, 0.036953095346689224, -0.06305024027824402, -0.0728062093257904, -0.013737309724092484, -0.05143902823328972, 0.027941588312387466, -0.008092778734862804, 0.10190962255001068, -0.04496922343969345, 0.07342315465211868, 0.04360560327768326, 0.02014368213713169, -0.004058490041643381, 0.05144022777676582, -0.08964695781469345, 0.046162333339452744, -0.08125688135623932, 0.07764634490013123, -0.0784766674041748, 0.02953028678894043, -0.12007477134466171, -0.10270772874355316, -0.011432358995079994, -0.038180895149707794, 0.09930293262004852, 0.10310325026512146, -0.14233040809631348, -0.01259113010019064, 0.11033942550420761, -0.05151032283902168, -0.11581429839134216, 0.10394992679357529, -0.038577206432819366, 0.010631939396262169, 0.05035192891955376, 0.15793630480766296, 0.15475590527057648, -0.11660712212324142, -0.03198111057281494, 0.011081741191446781, 0.07806053757667542, -0.01716664247214794, 0.0774715393781662, 0.0005241780309006572, 0.030639776960015297, 0.0096462806686759, -0.052960820496082306, -0.0006918123690411448, -0.06620202213525772, -0.09026272594928741, -0.04744629189372063, -0.09413006901741028, 0.03929811343550682, 0.047779131680727005, 0.017710616812109947, -0.07862114161252975, -0.12120197713375092, 0.03922916576266289, 0.1066308468580246, -0.03331504017114639, -0.003290522377938032, -0.09748117625713348, 0.09091456234455109, -0.07345452159643173, -0.027956025674939156, -0.20169629156589508, -0.08896147459745407, 0.06409996747970581, -0.028248341754078865, 0.01820790395140648, -0.003279269440099597, 0.06096022203564644, 0.0632275715470314, -0.03337779641151428, -0.018833588808774948, -0.09140784293413162, -0.008075054734945297, -0.11977202445268631, -0.11143679171800613, -0.07195675373077393, -0.028707675635814667, 0.16169127821922302, -0.21295084059238434, -0.002330475952476263, 0.006603142246603966, 0.11127715557813644, 0.020484965294599533, -0.07400292903184891, 0.007912582717835903, 0.04415658488869667, -0.0013478165492415428, -0.08346520364284515, 0.050612691789865494, 0.015236455015838146, -0.08170374482870102, -0.059278689324855804, -0.15294650197029114, 0.08834679424762726, 0.07608145475387573, 0.0922032967209816, -0.07094504684209824, 0.0023108224850147963, -0.05057043582201004, -0.02425537258386612, -0.050163384526968, -0.020403645932674408, 0.19908331334590912, 0.027459679171442986, 0.1374920904636383, -0.06573290377855301, -0.051959194242954254, 0.02845734916627407, 0.014384743757545948, -0.019051359966397285, 0.07240093499422073, 0.011982778087258339, -0.1496153026819229, 0.08932680636644363, 0.0974433571100235, -0.020831666886806488, 0.10010939836502075, -0.0332445427775383, -0.09536483883857727, -0.03864763677120209, 0.005658946465700865, 0.011186003684997559, 0.12383298575878143, -0.0762542188167572, 0.007692473009228706, 0.06306633353233337, 0.009421845898032188, 0.005171394441276789, -0.15511870384216309, -0.005786164663732052, 0.05558473989367485, -0.03016488626599312, -0.034239448606967926, -0.02236335165798664, 0.008968062698841095, 0.07636649161577225, 0.04662609100341797, -0.019889147952198982, 0.017096074298024178, -0.018762119114398956, -0.06748782098293304, 0.1554459035396576, -0.08008000254631042, -0.18745490908622742, -0.1551247090101242, 0.026046575978398323, -0.055414747446775436, -0.0011522838613018394, 0.019283650442957878, -0.041378386318683624, -0.059621661901474, -0.09305031597614288, -0.07270720601081848, -0.04097726196050644, -0.01915810815989971, 0.06833980232477188, -0.013456359505653381, 0.1004861369729042, -0.12710697948932648, -0.0013114373432472348, 0.005089375656098127, -0.03230339288711548, -0.0129188671708107, 0.038662541657686234, 0.12424419075250626, 0.0740010142326355, -0.028136160224676132, 0.022377921268343925, -0.03226645290851593, 0.2871969938278198, -0.08316616714000702, -0.020611565560102463, 0.13839077949523926, -0.018654629588127136, 0.07200398296117783, 0.10865479707717896, 0.028260163962841034, -0.09529304504394531, 0.016278639435768127, 0.03678221255540848, -0.03130758926272392, -0.20766355097293854, -0.03874905779957771, -0.03844483569264412, -0.0842168778181076, 0.1399722695350647, 0.03834328055381775, 0.011324204504489899, 0.07208829373121262, -0.012630382552742958, 0.05869803577661514, -0.049109503626823425, 0.08776198327541351, 0.11966110020875931, 0.04943421110510826, 0.10926315933465958, -0.03288349136710167, -0.024000639095902443, 0.05900822952389717, 0.01838892139494419, 0.2130778580904007, -0.02509363554418087, 0.1734740436077118, 0.005081551149487495, 0.1592588871717453, -0.01539965532720089, 0.03818804770708084, -0.01037687063217163, 0.003337935544550419, -0.002029571682214737, -0.057190120220184326, -0.07884349673986435, 0.02166557125747204, 0.028166767209768295, 0.04776957631111145, -0.08203594386577606, 0.02378873899579048, -0.005840483587235212, 0.2443886250257492, 0.05122017860412598, -0.3310337960720062, -0.10152608901262283, 0.0034955849405378103, -0.02254827693104744, -0.09214899688959122, -0.006859912071377039, 0.12160021811723709, -0.11473505944013596, 0.042576756328344345, -0.052071139216423035, 0.10148423165082932, -0.060121070593595505, 0.004162895958870649, 0.05098234489560127, 0.07237149775028229, 0.004005229100584984, 0.0889003574848175, -0.18146733939647675, 0.20765690505504608, 0.028409022837877274, 0.0975889042019844, -0.07855521142482758, 0.03430357202887535, -0.011468591168522835, 0.04528481513261795, 0.11664269119501114, 0.003997910302132368, -0.006296195089817047, -0.19200752675533295, -0.10085105895996094, 0.020883891731500626, 0.082643523812294, -0.041942473500967026, 0.08960657566785812, -0.04778693616390228, 0.003011047374457121, 0.02787184715270996, -0.006837458349764347, -0.0947793647646904, -0.15041178464889526, 0.0474715530872345, 0.03892866522073746, -0.04356745630502701, -0.062187787145376205, -0.08528672158718109, -0.0034401393495500088, 0.15350276231765747, 0.03384898602962494, -0.06235329061746597, -0.13653193414211273, 0.060019105672836304, 0.1279379427433014, -0.07090070098638535, 0.016903799027204514, -0.0028845840133726597, 0.13626046478748322, 0.019727623090147972, -0.05653424561023712, 0.04701067879796028, -0.05629201978445053, -0.12338478863239288, -0.048173002898693085, 0.1518804430961609, 0.019113963469862938, 0.05912329629063606, 0.01302550733089447, 0.038177452981472015, -0.008770924061536789, -0.07143764942884445, 0.030743250623345375, 0.01528329961001873, 0.08692518621683121, 0.0001734120596665889, -0.024931784719228745, 0.05520237982273102, -0.06769222021102905, 0.012333949096500874, 0.13770753145217896, 0.21792715787887573, -0.08276814222335815, 0.05279746279120445, 0.04740848019719124, -0.060240957885980606, -0.1462864875793457, 0.013711797073483467, 0.11700359731912613, 0.027328945696353912, 0.05539632961153984, -0.15465545654296875, 0.05728113278746605, 0.08943761885166168, -0.021561339497566223, 0.08093144744634628, -0.2936083674430847, -0.12185975909233093, 0.06927245110273361, 0.1001158133149147, 0.043205469846725464, -0.1422473043203354, -0.06507173180580139, -0.025725550949573517, -0.19019000232219696, 0.10527017712593079, 0.019264906644821167, 0.09957398474216461, -0.010641236789524555, 0.08381002396345139, 0.041538041085004807, -0.04258083179593086, 0.16154836118221283, 0.011736112646758556, 0.04580182582139969, -0.06715147942304611, 0.006032160017639399, 0.09970717877149582, -0.0733640119433403, 0.07075788825750351, -0.029663139954209328, 0.06616830080747604, -0.20215381681919098, -0.02603982761502266, -0.06119661033153534, 0.031097382307052612, -0.04261055588722229, -0.04466073587536812, -0.026085373014211655, 0.034679848700761795, 0.06761330366134644, -0.026923974975943565, 0.08242419362068176, 0.02506129816174507, 0.08364955335855484, 0.12283477187156677, 0.0962139368057251, -0.03013577312231064, -0.15121625363826752, -0.0020695962011814117, -0.01825433410704136, 0.0681658685207367, -0.10217095166444778, 0.03669210523366928, 0.12683911621570587, 0.03967638313770294, 0.11399029195308685, 0.013625705614686012, -0.046942900866270065, 0.0013771620579063892, 0.030738959088921547, -0.10848229378461838, -0.1595517247915268, -0.02842579409480095, 0.030141327530145645, -0.17095936834812164, -0.044014476239681244, 0.11549940705299377, -0.0418725349009037, -0.022492581978440285, -0.010551610961556435, -0.0004922195803374052, 0.0023183426819741726, 0.1696818619966507, 0.03948037326335907, 0.07301852852106094, -0.0689544826745987, 0.08210037648677826, 0.09553376585245132, -0.08932233601808548, 0.06306366622447968, 0.025742223486304283, -0.0883498340845108, -0.02357681468129158, 0.01347633358091116, 0.11491662263870239, -0.030390268191695213, -0.0332031324505806, -0.07242552936077118, -0.05634821578860283, 0.061165861785411835, 0.05924633890390396, 0.049730222672224045, -0.02334219217300415, -0.03538856655359268, 0.0022955185268074274, -0.12806428968906403, 0.1032966747879982, 0.02127000130712986, 0.07438335567712784, -0.12792979180812836, 0.04628642275929451, -0.005140184890478849, 0.036768559366464615, -0.008427542634308338, 0.008743558079004288, -0.06107919290661812, -0.012354426085948944, -0.12345398962497711, 0.01889774762094021, -0.03011559508740902, 0.006485919002443552, -0.0344473235309124, -0.06741561740636826, -0.045770157128572464, 0.04029655084013939, -0.06282714754343033, -0.07313033193349838, 0.014144014567136765, 0.038608551025390625, -0.13365215063095093, -0.021300628781318665, 0.034366775304079056, -0.0885300487279892, 0.06999541074037552, 0.04128442704677582, 0.01315951719880104, -0.014316768385469913, -0.0035807988606393337, -0.014392546378076077, 0.0037212420720607042, 0.04347503185272217, 0.06741338223218918, -0.11202236264944077, 0.005676819942891598, -0.00977611355483532, 0.016326867043972015, 0.019417637959122658, 0.10597691684961319, -0.13301138579845428, -0.04326152056455612, -0.0017494019120931625, -0.04841151833534241, -0.058380208909511566, 0.0467471182346344, 0.09883028268814087, 0.03379390016198158, 0.17281736433506012, -0.053325727581977844, 0.049298517405986786, -0.19762836396694183, -0.036774929612874985, -0.00011879517842317, -0.0425543338060379, -0.04340455308556557, -0.04640069231390953, 0.07450303435325623, -0.05655129626393318, 0.09579193592071533, -0.007321928162127733, 0.12933935225009918, 0.04526948556303978, 0.003599601797759533, 0.003495212411507964, -0.015109593980014324, 0.180931955575943, 0.0657259002327919, -0.03787200525403023, 0.1033748909831047, -0.015174247324466705, 0.04887383431196213, 0.07876846939325333, 0.11821587383747101, 0.14296002686023712, 0.032322973012924194, 0.048590440303087234, 0.04674259573221207, -0.06681804358959198, -0.18179188668727875, 0.046908505260944366, -0.028874101117253304, 0.11761602014303207, -0.02860233187675476, 0.1539555788040161, 0.08105672150850296, -0.16865399479866028, 0.0706987977027893, -0.08141694962978363, -0.10272131860256195, -0.07433081418275833, -0.10954530537128448, -0.07952841371297836, -0.0766521692276001, 0.01930442452430725, -0.11721404641866684, 0.03148610517382622, 0.09917861223220825, -0.01559713389724493, -0.007877970114350319, 0.16729073226451874, -0.04662245139479637, 0.012087670154869556, 0.05313970521092415, 0.001231611706316471, 0.0021878574043512344, -0.05292407423257828, -0.039609644562006, 0.04886044189333916, 0.017267927527427673, 0.09686756134033203, -0.033522829413414, 0.009793570265173912, 0.02025916799902916, 0.003875116351991892, -0.08736136555671692, 0.0013374518603086472, 0.024613499641418457, 0.04095472767949104, 0.04669412225484848, 0.03557993471622467, 0.032122064381837845, -0.041709937155246735, 0.24308037757873535, -0.05013219267129898, -0.06011267751455307, -0.13308104872703552, 0.15799030661582947, 0.03575575351715088, -0.019336648285388947, 0.07044472545385361, -0.09839288890361786, 0.015487448312342167, 0.16089721024036407, 0.12255016714334488, -0.07898452132940292, -0.02378566563129425, -0.000361424230504781, -0.0034834786783903837, -0.03960135579109192, 0.10095840692520142, 0.09534551948308945, 0.016997357830405235, -0.061181049793958664, -0.010343194007873535, -0.02980067953467369, -0.022190449759364128, -0.05358247458934784, 0.08617785573005676, 0.021429890766739845, 0.0206854697316885, -0.04493227228522301, 0.05576522275805473, 0.038202252238988876, -0.1587209850549698, 0.030637966468930244, -0.19403673708438873, -0.18902362883090973, -0.012333609163761139, 0.06804350018501282, -0.012318823486566544, 0.06356758624315262, -0.001479469588957727, 0.007856203243136406, 0.10245677083730698, -0.020128533244132996, -0.04915156215429306, -0.08987487852573395, 0.09528133273124695, -0.07677321881055832, 0.22088110446929932, 0.0036870173644274473, 0.07110115885734558, 0.1092686802148819, 0.024525541812181473, -0.14934566617012024, 0.03413945436477661, 0.09254482388496399, -0.026319650933146477, 0.035201799124479294, 0.15544763207435608, -0.03226269781589508, 0.1041695848107338, 0.04246325045824051, -0.11900016665458679, -0.03057916834950447, -0.04948694258928299, 0.018992731347680092, -0.06388919055461884, -0.015495885163545609, -0.06468131393194199, 0.17339611053466797, 0.18962760269641876, -0.0471690408885479, -0.03036576695740223, -0.06241700425744057, 0.023591969162225723, 0.06061606854200363, 0.09027939289808273, -0.04998685047030449, -0.18476983904838562, 0.0036042132414877415, 0.030847355723381042, 0.025982331484556198, -0.26782217621803284, -0.086907759308815, 0.0524047389626503, -0.04708603397011757, -0.026253074407577515, 0.1042914167046547, 0.032989658415317535, 0.026002854108810425, -0.050227247178554535, -0.08009910583496094, -0.056280769407749176, 0.13190478086471558, -0.13703131675720215, -0.052856143563985825 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_small_pretrain_squad This model is a fine-tuned version of [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.1410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert_small_pretrain_squad", "results": []}]}
fill-mask
anas-awadalla/bert-small-pretrained-on-squad
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "dataset:squad", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #fill-mask #generated_from_trainer #dataset-squad #license-mit #autotrain_compatible #endpoints_compatible #region-us
# bert_small_pretrain_squad This model is a fine-tuned version of prajjwal1/bert-small on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.1410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# bert_small_pretrain_squad\n\nThis model is a fine-tuned version of prajjwal1/bert-small on the squad dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.1410", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #generated_from_trainer #dataset-squad #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# bert_small_pretrain_squad\n\nThis model is a fine-tuned version of prajjwal1/bert-small on the squad dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.1410", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 54, 55, 6, 12, 8, 3, 90, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #fill-mask #generated_from_trainer #dataset-squad #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# bert_small_pretrain_squad\n\nThis model is a fine-tuned version of prajjwal1/bert-small on the squad dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.1410## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.0942181721329689, 0.12960481643676758, -0.0023906801361590624, 0.10627450793981552, 0.1645430028438568, 0.031261008232831955, 0.08066241443157196, 0.13322220742702484, -0.11473816633224487, 0.06875798851251602, 0.09241696447134018, 0.0508587583899498, 0.04859087988734245, 0.14206042885780334, -0.020979877561330795, -0.26321646571159363, 0.004650499206036329, 0.0028407967183738947, -0.05594542622566223, 0.09088215231895447, 0.09222868829965591, -0.11842761188745499, 0.07965681701898575, 0.006474012974649668, -0.16230125725269318, 0.024816513061523438, -0.008494694717228413, -0.035019710659980774, 0.07435385137796402, 0.01634066365659237, 0.11055087298154831, -0.008129904046654701, 0.13978946208953857, -0.19248148798942566, -0.0048156967386603355, 0.07672657072544098, 0.04214782267808914, 0.0726819559931755, 0.04152785241603851, 0.032048169523477554, 0.10259813815355301, -0.17635200917720795, 0.08171498030424118, 0.02297123707830906, -0.07872117310762405, -0.14735101163387299, -0.07645164430141449, 0.06803224980831146, 0.07273148000240326, 0.09687112271785736, 0.010510187596082687, 0.14869926869869232, -0.08985582739114761, 0.07650940865278244, 0.22946521639823914, -0.27261853218078613, -0.0687568262219429, 0.04577399790287018, 0.04431171342730522, 0.03523769602179527, -0.11114342510700226, -0.015492107719182968, 0.03657212853431702, 0.04132026061415672, 0.11764495819807053, -0.027307067066431046, -0.08075910806655884, -0.007863707840442657, -0.13193535804748535, -0.03393252193927765, 0.14978648722171783, 0.025686796754598618, -0.03668427839875221, -0.06416823714971542, -0.06285113841295242, -0.10208212584257126, -0.02785041183233261, -0.028198502957820892, 0.0455843061208725, -0.05654246360063553, -0.05634569749236107, -0.03201303631067276, -0.07122025638818741, -0.06588563323020935, -0.008935394696891308, 0.09794726967811584, 0.05407358705997467, 0.01858559623360634, -0.035612139850854874, 0.08276841044425964, -0.012232965789735317, -0.12573474645614624, -0.015760714188218117, -0.0013658985262736678, -0.0702035054564476, -0.05997268855571747, -0.052233342081308365, -0.046671733260154724, -0.006667733192443848, 0.10570219159126282, -0.05592242255806923, 0.05985106900334358, 0.036355629563331604, 0.00808296911418438, -0.014025718905031681, 0.1387990415096283, -0.05739179253578186, -0.02977726422250271, 0.013388865627348423, 0.07745381444692612, 0.015051141381263733, 0.005828578025102615, -0.07335259020328522, -0.021055886521935463, 0.09385566413402557, 0.044599857181310654, -0.05476587265729904, 0.05081579461693764, -0.02450132928788662, -0.02115633338689804, 0.009154122322797775, -0.1290743052959442, 0.05711173266172409, -0.007529009133577347, -0.09221208095550537, 0.010529258288443089, 0.03483528643846512, -0.04560147970914841, -0.04983842745423317, 0.114311084151268, -0.09542237222194672, 0.011980172246694565, -0.09874091297388077, -0.11002040654420853, 0.01611468568444252, -0.05842584744095802, -0.020328344777226448, -0.0807880088686943, -0.21054507791996002, -0.04002198949456215, 0.04592485725879669, -0.046881694346666336, -0.02999139577150345, -0.04605904594063759, -0.06822061538696289, 0.01152368076145649, -0.009409582242369652, 0.09643667936325073, -0.04924825206398964, 0.08632826060056686, 0.000356436416041106, 0.04908743500709534, 0.008381475694477558, 0.05068596079945564, -0.08536770194768906, 0.015142054297029972, -0.14822523295879364, 0.044239070266485214, -0.08196210861206055, 0.016284558922052383, -0.10155842453241348, -0.13141174614429474, 0.003580149495974183, -0.011116966605186462, 0.07011484354734421, 0.12205836921930313, -0.2012062668800354, -0.03187011182308197, 0.1634465754032135, -0.07965829223394394, -0.030520470812916756, 0.10268718004226685, -0.050345540046691895, 0.01019340567290783, 0.0721309706568718, 0.13037200272083282, 0.12825888395309448, -0.14141643047332764, -0.03193788602948189, 0.006038075778633356, 0.05564849451184273, -0.028957536444067955, 0.044573135673999786, 0.015402121469378471, 0.00780697213485837, 0.023387687280774117, -0.06055324152112007, 0.004929238930344582, -0.09902574867010117, -0.07040658593177795, -0.04311465471982956, -0.09071588516235352, 0.042761608958244324, 0.051195867359638214, 0.056385498493909836, -0.06521766632795334, -0.10406450182199478, 0.13528093695640564, 0.1187206357717514, -0.05173230171203613, 0.010649575851857662, -0.061737310141325, 0.057483330368995667, -0.05425596982240677, -0.02631058357656002, -0.19356074929237366, -0.09751823544502258, 0.04895729944109917, -0.07140830904245377, 0.029800821095705032, 0.04454620182514191, 0.07271510362625122, 0.0703461617231369, -0.04548149183392525, -0.0016601610695943236, -0.07622534781694412, -0.011798810213804245, -0.10443686693906784, -0.17476221919059753, -0.07065197825431824, -0.01833786442875862, 0.10206165909767151, -0.22771593928337097, 0.010132052935659885, -0.06683341413736343, 0.11381006240844727, 0.016800416633486748, -0.056920960545539856, -0.007083360105752945, 0.061711590737104416, -0.005687065422534943, -0.081071637570858, 0.055685169994831085, 0.004163632169365883, -0.024272015318274498, -0.08689657598733902, -0.11635582894086838, 0.030392739921808243, 0.07595163583755493, 0.016346408054232597, -0.10401502996683121, 0.022957488894462585, -0.060452137142419815, -0.03406469151377678, -0.09518607705831528, -0.001041003386490047, 0.17194372415542603, 0.00219068955630064, 0.13409703969955444, -0.055771604180336, -0.05453524366021156, 0.019428247585892677, 0.0003333158965688199, 0.0026655339170247316, 0.0638260692358017, 0.12135513126850128, -0.0763736292719841, 0.095310278236866, 0.05580757558345795, -0.07052722573280334, 0.1362713873386383, -0.029797766357660294, -0.08377590775489807, -0.01867884024977684, -0.0008625423652119935, -0.011509989388287067, 0.12312780320644379, -0.07609640061855316, -0.00742822652682662, 0.030236102640628815, 0.025013556703925133, 0.022190915420651436, -0.1676693856716156, -0.001077721593901515, 0.031162425875663757, -0.040282659232616425, -0.03617134317755699, -0.024463597685098648, 0.029286332428455353, 0.09581322222948074, 0.029659057036042213, -0.024748049676418304, 0.010565273463726044, -0.002495633438229561, -0.07225822657346725, 0.1780218631029129, -0.11370792239904404, -0.16755767166614532, -0.1267269253730774, 0.04030636325478554, -0.06077703461050987, -0.010960444808006287, 0.023065650835633278, -0.07239164412021637, -0.06061285361647606, -0.0818757489323616, 0.00932666752487421, -0.03505301848053932, 0.013403378427028656, 0.036611076444387436, -0.008032813668251038, 0.08135739713907242, -0.1353226900100708, -0.004542794544249773, -0.030675575137138367, -0.0984150618314743, -0.0015103894984349608, 0.046972211450338364, 0.09922496229410172, 0.09335824102163315, -0.03197875991463661, 0.02571319043636322, -0.03313397616147995, 0.22188912332057953, -0.03715498372912407, 0.005726546980440617, 0.11619775742292404, 0.014215829782187939, 0.05359343811869621, 0.1105692982673645, 0.02582015097141266, -0.09228390455245972, 0.02035648189485073, 0.0650375559926033, -0.01985199563205242, -0.20076265931129456, -0.05666989088058472, -0.04850957170128822, -0.05586431547999382, 0.11466104537248611, 0.04222871735692024, -0.03536919131875038, 0.039589811116456985, 0.005595085211098194, 0.07570141553878784, -0.056680236011743546, 0.08755597472190857, 0.09104307740926743, 0.04467768967151642, 0.09610062837600708, -0.03207896277308464, -0.029375679790973663, 0.06486426293849945, -0.04443125054240227, 0.2797042727470398, -0.03235166147351265, 0.06901522725820541, 0.046074725687503815, 0.13290973007678986, -0.017380425706505775, 0.07640422880649567, 0.003836238058283925, -0.0007520249928347766, 0.001207109191454947, -0.05951373651623726, -0.052185408771038055, -0.004104819614440203, -0.017251402139663696, 0.07493153214454651, -0.1330249309539795, 0.021077191457152367, 0.011800793930888176, 0.27195173501968384, 0.053293436765670776, -0.3051462471485138, -0.0916316956281662, -0.003587219165638089, -0.03836320713162422, -0.06646815687417984, 0.010466406121850014, 0.14426106214523315, -0.11739753186702728, 0.05335504189133644, -0.05097077786922455, 0.0844942107796669, -0.04497307538986206, 0.015062673948705196, 0.06005235016345978, 0.13244159519672394, 0.003849290544167161, 0.08494526147842407, -0.20780526101589203, 0.23567229509353638, 0.01730518601834774, 0.12224528938531876, -0.064432293176651, 0.022183187305927277, 0.017066147178411484, 0.0639442503452301, 0.10361521691083908, 0.012429601512849331, -0.022274954244494438, -0.18020497262477875, -0.07343346625566483, 0.03674799203872681, 0.10177237540483475, 0.007477793376892805, 0.09549777209758759, -0.043795157223939896, -0.00704383896663785, 0.044372279196977615, -0.033931322395801544, -0.1571243405342102, -0.09819428622722626, 0.007656520698219538, 0.02428482472896576, -0.06486523896455765, -0.05756104364991188, -0.10892914980649948, -0.03728931397199631, 0.17618656158447266, 0.0225999616086483, -0.03739430755376816, -0.13169455528259277, 0.09760040044784546, 0.11016657948493958, -0.07930117845535278, 0.01791868358850479, 0.012376378290355206, 0.11406035721302032, 0.03917359933257103, -0.08642058819532394, 0.0499340295791626, -0.07184306532144547, -0.14390814304351807, -0.059143953025341034, 0.10568668693304062, 0.061152324080467224, 0.06213226914405823, -0.0015951499808579683, 0.025904173031449318, 0.014053398743271828, -0.08839450031518936, -0.008072554133832455, 0.09700420498847961, 0.09434203803539276, 0.06208266690373421, -0.10756734758615494, -0.007569457869976759, -0.008227543905377388, 0.0245591402053833, 0.1332051157951355, 0.20856806635856628, -0.09554889798164368, 0.06257364898920059, 0.05947255343198776, -0.09088167548179626, -0.20300905406475067, 0.06980136781930923, 0.10427998006343842, 0.019574245437979698, 0.03489699959754944, -0.18182237446308136, 0.12592482566833496, 0.10553205013275146, -0.009342806413769722, 0.03988390043377876, -0.32583147287368774, -0.11210128664970398, 0.06442884355783463, 0.12933427095413208, 0.08156830072402954, -0.13900350034236908, -0.018073538318276405, -0.033432912081480026, -0.14697717130184174, 0.10915733873844147, -0.038658905774354935, 0.12550345063209534, -0.01922045834362507, 0.08419100940227509, 0.02705775946378708, -0.05324891209602356, 0.11727791279554367, 0.04570971801877022, 0.08164827525615692, -0.05568447709083557, -0.001598501461558044, 0.06824829429388046, -0.06243392825126648, 0.06863357126712799, -0.0294262133538723, 0.054186899214982986, -0.16050580143928528, -0.014648650772869587, -0.08346783369779587, 0.07405651360750198, -0.045219387859106064, -0.05348261445760727, -0.04447358101606369, 0.06058952212333679, 0.07976564764976501, -0.022899558767676353, 0.04051173850893974, 0.02324340119957924, 0.09404885768890381, 0.05696331337094307, 0.0706646591424942, 0.0016444866778329015, -0.1078634262084961, 0.010410553775727749, -0.00452640512958169, 0.06505227833986282, -0.10540013760328293, 0.021426787599921227, 0.13797295093536377, 0.04673071950674057, 0.13066089153289795, 0.04696039482951164, -0.0315687358379364, -0.006629068870097399, 0.03963576257228851, -0.12549138069152832, -0.11989285796880722, 0.008672057650983334, -0.05155128613114357, -0.1443580836057663, 0.010005922988057137, 0.08099009096622467, -0.0837567001581192, -0.010463719256222248, -0.019620589911937714, 0.019446037709712982, -0.03303706273436546, 0.19784747064113617, 0.03043963760137558, 0.057686977088451385, -0.08543024957180023, 0.10363715142011642, 0.06609802693128586, -0.05411481112241745, 0.04683275148272514, 0.07393816858530045, -0.08818051964044571, -0.017798656597733498, 0.1066955104470253, 0.18758249282836914, -0.0162295363843441, -0.024125227704644203, -0.10060027241706848, -0.07714284956455231, 0.060057781636714935, 0.13063684105873108, 0.05560232698917389, -0.021314268931746483, -0.04831381142139435, 0.033310748636722565, -0.1580902338027954, 0.07540721446275711, 0.0692208930850029, 0.06740265339612961, -0.1274479329586029, 0.1610230952501297, -0.0005771223804913461, 0.05148438736796379, -0.02235260233283043, 0.030972709879279137, -0.12002106755971909, -0.02527831867337227, -0.11055951565504074, -0.004413661081343889, -0.039308812469244, -0.006307078059762716, -0.015994267538189888, -0.0376582071185112, -0.049216531217098236, 0.041709739714860916, -0.07651735097169876, -0.06080877035856247, 0.02459600940346718, 0.052762530744075775, -0.12974758446216583, -0.012161016464233398, 0.006171273998916149, -0.07738509774208069, 0.05732153356075287, 0.05011620372533798, 0.018871784210205078, 0.03699205070734024, -0.08843053877353668, -0.04550721496343613, 0.030104495584964752, 0.02429264411330223, 0.08389166742563248, -0.07202328741550446, 0.01830315962433815, -0.015213658101856709, 0.05749938264489174, 0.013330177403986454, 0.06930268555879593, -0.12234562635421753, 0.017443198710680008, -0.05535939708352089, -0.0471155159175396, -0.05186653137207031, 0.03302144631743431, 0.09473538398742676, 0.030494118109345436, 0.17123284935951233, -0.09491413086652756, 0.04997989907860756, -0.19872289896011353, -0.03854350000619888, -0.0033269007690250874, -0.05014095827937126, -0.0746481642127037, -0.03688279539346695, 0.08854309469461441, -0.04409398138523102, 0.09596891701221466, 0.03286992385983467, 0.0784212276339531, 0.031590837985277176, -0.04214213415980339, -0.03966708108782768, -0.01246542390435934, 0.14689888060092926, 0.04470163956284523, -0.04392022639513016, 0.09930658340454102, 0.0102123087272048, 0.07244949787855148, 0.07046875357627869, 0.24362292885780334, 0.15397702157497406, -0.032784126698970795, 0.06839470565319061, 0.048272207379341125, -0.10016949474811554, -0.16405805945396423, 0.05401768162846565, -0.016657385975122452, 0.13424834609031677, -0.0560537688434124, 0.16647416353225708, 0.05897602438926697, -0.17048506438732147, 0.07169532030820847, -0.06474296003580093, -0.11128029972314835, -0.1254585236310959, -0.05994153767824173, -0.08204924315214157, -0.09943760186433792, 0.01719498075544834, -0.1167827844619751, 0.03176667541265488, 0.07962703704833984, 0.0028786335606127977, -0.0025912539567798376, 0.16208530962467194, -0.05597670003771782, 0.025608422234654427, 0.052676863968372345, 0.00910247303545475, -0.00010041610948974267, -0.07629787921905518, -0.04717431962490082, 0.021175669506192207, 0.0036003340501338243, 0.07852353155612946, -0.036086443811655045, 0.006938312668353319, 0.03170012682676315, -0.01348194107413292, -0.07665613293647766, 0.013855382800102234, 0.014948652125895023, 0.04614191874861717, 0.05669433996081352, 0.047372397035360336, -0.005685428623110056, -0.04387791082262993, 0.23398970067501068, -0.07399441301822662, -0.09493653476238251, -0.11880367249250412, 0.24210427701473236, 0.06376350671052933, -0.01990453526377678, 0.060546599328517914, -0.10617934167385101, -0.022958017885684967, 0.2094690352678299, 0.16445156931877136, -0.04301370307803154, -0.007098956033587456, -0.01611391082406044, -0.01415157224982977, -0.040541719645261765, 0.1461300551891327, 0.10102222859859467, 0.0737023577094078, -0.04722205549478531, -0.022262126207351685, -0.025405239313840866, -0.01772410422563553, -0.10005941241979599, 0.036502670496702194, 0.03920130804181099, 0.015163317322731018, -0.03326767683029175, 0.05055960640311241, -0.011157134547829628, -0.19348184764385223, 0.05069497600197792, -0.16422642767429352, -0.16669699549674988, -0.021733365952968597, 0.0715346410870552, -0.0007113463361747563, 0.07030460238456726, -0.02840009145438671, 0.00371415913105011, 0.14901527762413025, -0.02142462134361267, -0.06198146566748619, -0.11814189702272415, 0.08649031817913055, -0.07738897204399109, 0.2264963835477829, 0.00373974721878767, 0.05831548571586609, 0.10668550431728363, 0.027178719639778137, -0.13078048825263977, 0.04213649034500122, 0.0556427463889122, -0.07824565470218658, 0.020674988627433777, 0.1641807109117508, -0.0592210590839386, 0.0867791473865509, 0.01979600079357624, -0.10855861753225327, -0.012297251261770725, -0.052069924771785736, -0.01703421212732792, -0.0756978988647461, 0.0029170529451221228, -0.062404438853263855, 0.14886368811130524, 0.22653579711914062, -0.019150881096720695, -0.0011228426592424512, -0.09979116171598434, 0.03351445123553276, 0.053953103721141815, 0.0936090499162674, -0.050205297768116, -0.20366685092449188, 0.011553938500583172, -0.018460778519511223, 0.033703241497278214, -0.24095121026039124, -0.08283066749572754, 0.02503681369125843, -0.06043732538819313, -0.06295827776193619, 0.09936409443616867, 0.02971530146896839, 0.043632395565509796, -0.04056220129132271, -0.10955049097537994, -0.04914730414748192, 0.15296010673046112, -0.16424524784088135, -0.06899701058864594 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-finetuned-squad This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-tiny-finetuned-squad", "results": []}]}
question-answering
anas-awadalla/bert-tiny-finetuned-squad
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# bert-tiny-finetuned-squad This model is a fine-tuned version of prajjwal1/bert-tiny on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
[ "# bert-tiny-finetuned-squad\n\nThis model is a fine-tuned version of prajjwal1/bert-tiny on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 64\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2.0", "### Training results", "### Framework versions\n\n- Transformers 4.17.0\n- Pytorch 1.11.0+cu113\n- Datasets 2.0.0\n- Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# bert-tiny-finetuned-squad\n\nThis model is a fine-tuned version of prajjwal1/bert-tiny on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 64\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2.0", "### Training results", "### Framework versions\n\n- Transformers 4.17.0\n- Pytorch 1.11.0+cu113\n- Datasets 2.0.0\n- Tokenizers 0.11.6" ]
[ 51, 36, 6, 12, 8, 3, 100, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# bert-tiny-finetuned-squad\n\nThis model is a fine-tuned version of prajjwal1/bert-tiny on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 64\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2.0### Training results### Framework versions\n\n- Transformers 4.17.0\n- Pytorch 1.11.0+cu113\n- Datasets 2.0.0\n- Tokenizers 0.11.6" ]
[ -0.10047151893377304, 0.10441913455724716, -0.001686163479462266, 0.07668919861316681, 0.1577901393175125, 0.019957955926656723, 0.0929708331823349, 0.12590736150741577, -0.12909378111362457, 0.06386756896972656, 0.1096818596124649, 0.0654943659901619, 0.03457073122262955, 0.09272246062755585, -0.016825295984745026, -0.27704572677612305, 0.006979868281632662, 0.0327601283788681, -0.08932238817214966, 0.0976361408829689, 0.12062659114599228, -0.11490932106971741, 0.07004581391811371, 0.03691703826189041, -0.18554769456386566, 0.01850135438144207, -0.02964213490486145, -0.057365696877241135, 0.09336482733488083, 0.037953343242406845, 0.106146901845932, -0.005511973984539509, 0.1153830960392952, -0.20429421961307526, 0.005818516947329044, 0.06513635069131851, 0.04424017667770386, 0.08531773090362549, 0.04388860613107681, 0.031325411051511765, 0.09880237281322479, -0.11771853268146515, 0.07573486119508743, 0.033162884414196014, -0.07905358821153641, -0.19511911273002625, -0.08891517668962479, 0.10705619305372238, 0.08161245286464691, 0.08937803655862808, -0.00471047917380929, 0.1574348658323288, -0.10040797293186188, 0.06081047281622887, 0.19342276453971863, -0.30123603343963623, -0.09422994405031204, 0.06161249801516533, 0.06983590871095657, 0.03938383609056473, -0.10608243942260742, -0.021055253222584724, 0.06551811099052429, 0.0478571318089962, 0.07901550829410553, -0.012143395841121674, -0.04367810860276222, 0.013666207902133465, -0.14044153690338135, -0.03567369654774666, 0.1910402923822403, 0.04282834380865097, -0.05834348499774933, -0.10130579024553299, -0.029345031827688217, -0.08366233110427856, -0.020801154896616936, -0.046060770750045776, 0.022555818781256676, -0.042612507939338684, -0.11239435523748398, -0.04458718001842499, -0.10132695734500885, -0.07505200803279877, 0.0006445765611715615, 0.12050352245569229, 0.056698478758335114, 0.018406691029667854, -0.05695248022675514, 0.10590437799692154, -0.007311569061130285, -0.11745886504650116, -0.032734304666519165, -0.012720571830868721, -0.03058731183409691, -0.07372423261404037, -0.0580412782728672, 0.0008378649363294244, 0.015245258808135986, 0.1603892296552658, -0.045539505779743195, 0.04750559478998184, 0.05468377470970154, 0.011451886966824532, 0.0036877449601888657, 0.14320982992649078, -0.06504514813423157, 0.0035357919987291098, -0.008073593489825726, 0.0869024395942688, -0.011517680250108242, 0.01229250617325306, -0.07645586878061295, -0.008018717169761658, 0.08666753768920898, 0.04076065868139267, -0.06057155504822731, 0.03211414813995361, -0.017260875552892685, -0.03743633255362511, 0.013783276081085205, -0.09853966534137726, 0.03514324873685837, -0.007521762512624264, -0.0878591388463974, 0.03731900081038475, -0.01599697396159172, 0.006796061992645264, -0.034722644835710526, 0.10344339162111282, -0.10431092232465744, -0.011723987758159637, -0.0940055176615715, -0.06883648037910461, 0.017004938796162605, -0.04354260489344597, 0.0029499996453523636, -0.08869325369596481, -0.15332767367362976, -0.03380655124783516, 0.03893473371863365, -0.05121341347694397, -0.06920599192380905, -0.020325472578406334, -0.08085831999778748, 0.011836778372526169, -0.014486006461083889, 0.1376689076423645, -0.03974801301956177, 0.08317997306585312, 0.040696680545806885, 0.027926545590162277, 0.01850993186235428, 0.0373641736805439, -0.07260533422231674, 0.03194484859704971, -0.09732279926538467, 0.048734571784734726, -0.0956282988190651, 0.02957378514111042, -0.1210988461971283, -0.12478155642747879, 0.01595746912062168, 0.0019456101581454277, 0.07197257876396179, 0.10067737102508545, -0.13897064328193665, -0.0474417619407177, 0.16840127110481262, -0.07410813868045807, -0.0995231568813324, 0.11276219040155411, -0.03931102156639099, 0.04564712196588516, 0.06412792950868607, 0.1044873371720314, 0.1180121973156929, -0.12717409431934357, -0.035391923040151596, 0.023550812155008316, 0.08008618652820587, -0.021461982280015945, 0.08792738616466522, 0.009711452759802341, 0.001730801071971655, 0.024863671511411667, -0.07684899121522903, -0.005572714377194643, -0.11129935830831528, -0.07825277000665665, -0.04584409296512604, -0.09371078759431839, 0.019389333203434944, 0.041469622403383255, 0.07326672971248627, -0.0793958306312561, -0.11090944707393646, 0.13134333491325378, 0.14135943353176117, -0.0457444004714489, 0.002853857818990946, -0.0954970046877861, 0.062936931848526, -0.06356889009475708, -0.031290628015995026, -0.17979510128498077, -0.08411945402622223, 0.03462211415171623, -0.04394686967134476, 0.014799225144088268, 0.05732766166329384, 0.0678999200463295, 0.06076538562774658, -0.043792735785245895, -0.008599997498095036, -0.10932735353708267, -0.02302391827106476, -0.10982419550418854, -0.1587621420621872, -0.08798643946647644, -0.03367951139807701, 0.15327851474285126, -0.23343175649642944, 0.018479473888874054, -0.011150223203003407, 0.13685978949069977, 0.022016944363713264, -0.041112739592790604, -0.03149106353521347, 0.05667312815785408, -0.019062595441937447, -0.07096385210752487, 0.059468671679496765, 0.015109418891370296, -0.04464182257652283, -0.08781597018241882, -0.07390519231557846, 0.07154683768749237, 0.09670175611972809, 0.010034395381808281, -0.08058590441942215, -0.01930742710828781, -0.08128098398447037, -0.028098292648792267, -0.08515872061252594, -0.014459917321801186, 0.15661850571632385, 0.003674035659059882, 0.1392173022031784, -0.07346659153699875, -0.07386268675327301, 0.019799191504716873, -0.015860212966799736, -0.015703653916716576, 0.073992520570755, 0.09854604303836823, -0.0972679853439331, 0.11201728135347366, 0.07158306241035461, -0.06486549228429794, 0.14942623674869537, -0.056378915905952454, -0.0958557203412056, -0.02072724513709545, 0.018895868211984634, -0.005068584810942411, 0.11815597862005234, -0.1230461522936821, -0.0178862102329731, 0.039421338587999344, 0.0221762303262949, 0.05171364173293114, -0.18882067501544952, -0.016315260902047157, 0.025183988735079765, -0.02810942940413952, -0.01999656669795513, -0.016963204368948936, 0.005551359616219997, 0.08841091394424438, 0.041624341160058975, 0.0004097841738257557, 0.024464042857289314, 0.004103188402950764, -0.06713756918907166, 0.19259990751743317, -0.08335786312818527, -0.14463557302951813, -0.1460161805152893, 0.045326199382543564, -0.05150095745921135, -0.01328320149332285, 0.029604574665427208, -0.09652481228113174, -0.041368432343006134, -0.06541906297206879, 0.026011906564235687, -0.04906214028596878, -0.005275583826005459, 0.04885365441441536, 0.014406032860279083, 0.07662234455347061, -0.14847348630428314, 0.02098758891224861, -0.029000626876950264, -0.09956862777471542, -0.0002906567242462188, 0.0360584631562233, 0.08822765201330185, 0.09859849512577057, -0.004990830086171627, 0.025604235008358955, -0.031655605882406235, 0.25342848896980286, -0.06238308921456337, -0.036522626876831055, 0.13766533136367798, 0.02130221202969551, 0.03595825657248497, 0.06705817580223083, 0.04153023287653923, -0.09696418792009354, 0.029504146426916122, 0.07375138998031616, -0.015164602547883987, -0.23423974215984344, -0.03185971453785896, -0.040306445211172104, -0.03519342839717865, 0.11869567632675171, 0.047490451484918594, -0.02149185538291931, 0.08932686597108841, -0.01937483809888363, 0.06993945688009262, -0.0649101510643959, 0.09530840069055557, 0.09419593214988708, 0.03341536968946457, 0.11081969738006592, -0.041482098400592804, -0.060441698879003525, 0.0629323273897171, -0.0013542938977479935, 0.24328961968421936, -0.00903354026377201, 0.10109807550907135, 0.05889474228024483, 0.17138266563415527, -0.01014798879623413, 0.05422516539692879, -0.012536614201962948, -0.027253028005361557, 0.0017296257428824902, -0.04639890789985657, -0.04056793823838234, 0.017802562564611435, -0.0032699101138859987, 0.06747754663228989, -0.11512669920921326, 0.019144883379340172, 0.013270595110952854, 0.2936836779117584, 0.05427630990743637, -0.291949063539505, -0.11515958607196808, 0.01792166195809841, -0.05530759319663048, -0.060532622039318085, 0.02729872055351734, 0.1496218591928482, -0.13123410940170288, 0.020853452384471893, -0.060727111995220184, 0.10636866092681885, -0.029859723523259163, 0.007946562953293324, 0.08154062181711197, 0.11118336021900177, 0.006567210890352726, 0.09944523125886917, -0.21405352652072906, 0.20887257158756256, 0.006960866041481495, 0.12167637050151825, -0.07145887613296509, 0.03356916084885597, -0.00009709385631140321, 0.05334391072392464, 0.08203089237213135, -0.002640239428728819, -0.01256086491048336, -0.16748495399951935, -0.04971173405647278, 0.04978494718670845, 0.10990632325410843, -0.04423372820019722, 0.10982540994882584, -0.04804109036922455, 0.021737074479460716, 0.04097054898738861, -0.008647463284432888, -0.14050057530403137, -0.1173412874341011, 0.01071128062903881, -0.0013241693377494812, -0.03316045179963112, -0.0899139791727066, -0.11108197271823883, -0.05266008898615837, 0.17257919907569885, -0.014781692996621132, -0.027394933626055717, -0.12663157284259796, 0.10159377753734589, 0.10829430818557739, -0.06559591740369797, 0.008179237134754658, 0.009185655042529106, 0.13636696338653564, 0.03900834545493126, -0.0606561042368412, 0.04959578439593315, -0.07614342868328094, -0.1829896867275238, -0.040627822279930115, 0.13531050086021423, 0.04141569882631302, 0.03813159093260765, 0.010676738806068897, 0.01058189943432808, -0.006336333695799112, -0.09815045446157455, 0.011043122038245201, 0.034909818321466446, 0.08339400589466095, 0.03371935337781906, -0.07339594513177872, 0.034390684217214584, -0.023897508159279823, -0.006154888309538364, 0.14645908772945404, 0.21954764425754547, -0.07877229154109955, 0.014031744562089443, 0.0688956081867218, -0.059673018753528595, -0.17567089200019836, 0.052674971520900726, 0.11859147995710373, 0.02221887744963169, 0.004744200501590967, -0.20263518393039703, 0.14721184968948364, 0.13046982884407043, -0.017617549747228622, 0.04544129967689514, -0.3205985724925995, -0.11935626715421677, 0.07238849997520447, 0.11889579147100449, 0.0545276515185833, -0.1506822258234024, -0.03541375324130058, -0.022638263180851936, -0.19724005460739136, 0.14159797132015228, -0.12119682133197784, 0.11320210248231888, -0.006785290781408548, 0.09877757728099823, 0.016603665426373482, -0.04973028600215912, 0.14991261065006256, 0.0400337390601635, 0.06638757139444351, -0.04077250137925148, -0.01842535100877285, 0.08394402265548706, -0.03645751252770424, 0.04266571253538132, -0.030732247978448868, 0.0598960816860199, -0.18218515813350677, -0.03605147451162338, -0.07898343354463577, 0.053224921226501465, -0.06068573147058487, -0.06781338155269623, -0.048430994153022766, 0.061872806400060654, 0.027993187308311462, -0.022038642317056656, 0.1026989221572876, 0.026102453470230103, 0.1415822058916092, 0.0826893076300621, 0.09725984930992126, -0.011761638335883617, -0.09778487682342529, -0.015580051578581333, -0.015846561640501022, 0.08108493685722351, -0.12688866257667542, 0.021792391315102577, 0.12475868314504623, 0.05683359131217003, 0.13235270977020264, 0.0542106032371521, -0.05441436544060707, 0.014355012215673923, 0.04175738990306854, -0.10679768025875092, -0.16350823640823364, -0.009821292944252491, -0.0073730237782001495, -0.15173009037971497, 0.053692158311605453, 0.10505750775337219, -0.06809715926647186, -0.0314398892223835, -0.01955125667154789, -0.006420218385756016, -0.05219230055809021, 0.19685521721839905, 0.04901653155684471, 0.06899465620517731, -0.0843261331319809, 0.08609173446893692, 0.05147262290120125, -0.08588578552007675, 0.024249598383903503, 0.05036197230219841, -0.07143453508615494, -0.030139567330479622, 0.06009585037827492, 0.13523687422275543, -0.05318276211619377, -0.036529291421175, -0.09028531610965729, -0.10431913286447525, 0.0671461820602417, 0.06335604190826416, 0.07404226809740067, -0.013383669778704643, -0.04808373376727104, 0.05262446776032448, -0.1546144038438797, 0.08058803528547287, 0.05663880705833435, 0.07198881357908249, -0.14643532037734985, 0.14109894633293152, -0.00386550254188478, 0.044458698481321335, -0.015866391360759735, 0.010315530933439732, -0.11918655782938004, -0.013387413695454597, -0.1722337156534195, -0.007801779545843601, -0.05317562445998192, 0.0036146536003798246, 0.000618124264292419, -0.053049687296152115, -0.06294756382703781, 0.0369061678647995, -0.08654426038265228, -0.04611532762646675, 0.02691986784338951, 0.0648043304681778, -0.11969362944364548, 0.026990404352545738, 0.024979956448078156, -0.09066399186849594, 0.07749155163764954, 0.05154228210449219, 0.029990341514348984, 0.04241200536489487, -0.052556879818439484, -0.01995769888162613, 0.015383802354335785, 0.023415159434080124, 0.07236111164093018, -0.07904442399740219, 0.015331314876675606, -0.01612759381532669, 0.07091895490884781, 0.019770987331867218, 0.05908619612455368, -0.12815378606319427, -0.033742550760507584, -0.037837136536836624, -0.06302402168512344, -0.0710291787981987, 0.030550021678209305, 0.09168583899736404, 0.03835657611489296, 0.182097926735878, -0.0752282366156578, 0.0237113144248724, -0.19950032234191895, -0.01873978041112423, -0.008306968957185745, -0.04819261655211449, -0.0646461546421051, -0.03088214248418808, 0.06427411735057831, -0.05464615300297737, 0.1104489266872406, -0.021356457844376564, 0.0683983713388443, 0.04383634775876999, -0.05577106028795242, 0.0077316719107329845, 0.01350216381251812, 0.21823348104953766, 0.070076584815979, -0.010281570255756378, 0.043941155076026917, 0.0009009025525301695, 0.058774709701538086, 0.06011972576379776, 0.1854664385318756, 0.15560905635356903, -0.04836452379822731, 0.07781139016151428, 0.06938528269529343, -0.08441388607025146, -0.14540088176727295, 0.06755581498146057, -0.02162926085293293, 0.09964369237422943, -0.051331643015146255, 0.14876681566238403, 0.11657091230154037, -0.17124149203300476, 0.03287065774202347, -0.08589164167642593, -0.09571000933647156, -0.10849820077419281, -0.05671299993991852, -0.08008850365877151, -0.12512899935245514, 0.030090518295764923, -0.1382676064968109, 0.0060273706912994385, 0.10161537677049637, 0.013962406665086746, -0.013236326165497303, 0.1416308581829071, -0.02227729558944702, 0.005971586797386408, 0.06266531348228455, 0.0018749834271147847, 0.009351130574941635, -0.08971764892339706, -0.05092455819249153, 0.023951034992933273, 0.0002411387104075402, 0.08369988203048706, -0.0498717799782753, -0.020707931369543076, 0.023725366219878197, -0.009080296382308006, -0.06974256783723831, 0.0070305559784173965, 0.0249579269438982, 0.04561770334839821, 0.028047211468219757, 0.0202537402510643, 0.00161594373639673, -0.03834382817149162, 0.2619609832763672, -0.07634956389665604, -0.08141403645277023, -0.1593601405620575, 0.21497635543346405, 0.026189438998699188, 0.001429842901416123, 0.07731277495622635, -0.09541086107492447, -0.019468501210212708, 0.21025799214839935, 0.15848156809806824, -0.06114349141716957, -0.02087409980595112, 0.01927962712943554, -0.017028771340847015, -0.06395592540502548, 0.13012497127056122, 0.11829783022403717, 0.06271999329328537, -0.06353291869163513, -0.028491323813796043, -0.013532343320548534, -0.031835418194532394, -0.0626143217086792, 0.06908062100410461, 0.03333652392029762, -0.0020415806211531162, -0.04563062638044357, 0.060455720871686935, -0.03254379704594612, -0.14416660368442535, 0.04843306541442871, -0.12352368980646133, -0.18787595629692078, -0.031442612409591675, 0.0653943344950676, -0.004578650929033756, 0.08548994362354279, -0.020261777564883232, -0.009891982190310955, 0.1310425102710724, -0.011446631513535976, -0.060581982135772705, -0.09759306162595749, 0.13280849158763885, -0.055924251675605774, 0.2105790674686432, -0.010576268658041954, 0.0738014504313469, 0.1259901523590088, 0.014425008557736874, -0.13145042955875397, 0.008824467658996582, 0.07280968129634857, -0.08050195872783661, 0.01771186850965023, 0.1363714337348938, -0.038136076182127, 0.09179943054914474, 0.038145434111356735, -0.16790570318698883, -0.017930755391716957, -0.0170981977134943, 0.0072108069434762, -0.10212347656488419, 0.012321507558226585, -0.08227484673261642, 0.14537295699119568, 0.22169943153858185, -0.05150991305708885, -0.020472876727581024, -0.07448222488164902, 0.06224077194929123, 0.053859893232584, 0.09055310487747192, -0.03514475002884865, -0.23567324876785278, -0.0012208069674670696, -0.025965271517634392, -0.0016332302475348115, -0.26393845677375793, -0.07183686643838882, 0.050415098667144775, -0.04290909692645073, -0.0488017313182354, 0.09230375289916992, 0.07887163758277893, 0.047386594116687775, -0.04611595720052719, -0.10144944489002228, -0.08161783963441849, 0.14580833911895752, -0.13646799325942993, -0.06562451273202896 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-1024-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-1024-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-1024-finetuned-squad-seed-0
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-1024-finetuned-squad-seed-0 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-1024-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-1024-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-1024-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.07839290797710419, 0.10040147602558136, -0.0026020014192909002, 0.0767892375588417, 0.13187457621097565, 0.0338105745613575, 0.10717862099409103, 0.12349247932434082, -0.12725725769996643, 0.06837628036737442, 0.09249667078256607, 0.08599116653203964, 0.03349749371409416, 0.1307498663663864, -0.039742663502693176, -0.2316565215587616, 0.008515499532222748, -0.017045199871063232, -0.0658365935087204, 0.10207400470972061, 0.08847477287054062, -0.09731566160917282, 0.08143222332000732, -0.002681369660422206, -0.1842210441827774, 0.02734282985329628, -0.02109898068010807, -0.051270242780447006, 0.09856371581554413, -0.004617601167410612, 0.0827663242816925, 0.0068703629076480865, 0.1184915155172348, -0.19260503351688385, 0.013520503416657448, 0.0734999030828476, 0.03256107121706009, 0.09532392770051956, 0.02073756419122219, -0.003862750716507435, 0.1658039689064026, -0.1344180405139923, 0.09986226260662079, 0.029588785022497177, -0.0872376561164856, -0.16998521983623505, -0.09676899760961533, 0.01643209531903267, 0.03568662330508232, 0.08813085407018661, 0.008415351621806622, 0.1781684160232544, -0.09182095527648926, 0.08021606504917145, 0.2389495074748993, -0.27752459049224854, -0.07858394086360931, 0.04331827163696289, 0.04961766302585602, 0.07793421298265457, -0.11904466152191162, -0.01571093685925007, 0.020882314071059227, 0.029618162661790848, 0.09225510060787201, -0.024934161454439163, -0.08464393764734268, -0.0069521949626505375, -0.11898276954889297, 0.003873489797115326, 0.11340601742267609, 0.04482133314013481, -0.05048747360706329, -0.0506938211619854, -0.057776231318712234, -0.0742797702550888, -0.0342695452272892, -0.034661486744880676, 0.043262094259262085, -0.05671168863773346, -0.12068501114845276, -0.03356906771659851, -0.04839744418859482, -0.07752041518688202, -0.02054368518292904, 0.20469290018081665, 0.048513151705265045, 0.032817911356687546, -0.05161401256918907, 0.08198737353086472, 0.011566976085305214, -0.12916049361228943, -0.030316518619656563, 0.002740905387327075, -0.0800829753279686, -0.0386672206223011, -0.055249523371458054, 0.015523442067205906, 0.04323913902044296, 0.21398651599884033, -0.05373941361904144, 0.08355483412742615, 0.0312372874468565, -0.020061064511537552, -0.020996445789933205, 0.12509123980998993, -0.02029295451939106, -0.07896685600280762, 0.028271574527025223, 0.05778408795595169, 0.025079334154725075, 0.0017964477883651853, -0.056108973920345306, -0.0323033332824707, 0.08336780965328217, 0.03228024020791054, -0.05977940931916237, 0.025930456817150116, 0.002390463137999177, -0.01937483251094818, 0.006224527955055237, -0.11398684233427048, 0.017370980232954025, -0.006425009109079838, -0.07405875623226166, -0.014646251685917377, 0.01053900457918644, -0.015808574855327606, 0.010288916528224945, 0.09980709105730057, -0.08953619003295898, -0.022128969430923462, -0.07584605365991592, -0.07046966999769211, -0.0008335163001902401, -0.14848698675632477, 0.012703810818493366, -0.07364411652088165, -0.15463349223136902, -0.034013886004686356, 0.04277687147259712, -0.07085391879081726, -0.0278532262891531, -0.03859875351190567, -0.07727445662021637, 0.026186570525169373, 0.003103397088125348, 0.1870780885219574, -0.0529368557035923, 0.08025332540273666, 0.01931452751159668, 0.05030602589249611, -0.022266024723649025, 0.03097325749695301, -0.08863802254199982, 0.004209475591778755, -0.16744990646839142, 0.061304934322834015, -0.0758587047457695, 0.01721116714179516, -0.12939096987247467, -0.086798295378685, -0.02688921056687832, -0.02831815369427204, 0.08337132632732391, 0.10129451006650925, -0.13877946138381958, -0.027526771649718285, 0.11442960053682327, -0.07756934314966202, -0.05868307873606682, 0.0666746199131012, -0.06717648357152939, 0.051427073776721954, 0.05753794312477112, 0.1829075664281845, 0.07255235314369202, -0.11715236306190491, -0.02298741228878498, 0.0005343612283468246, 0.02835788205265999, -0.010266796685755253, 0.05067776143550873, 0.009397093206644058, 0.023301174864172935, 0.01602841541171074, -0.03775850310921669, 0.0031856787391006947, -0.09744174778461456, -0.06257680058479309, -0.05760643631219864, -0.0817771852016449, -0.03674999624490738, 0.013284478336572647, 0.037391580641269684, -0.08115575462579727, -0.08469657599925995, 0.08174511045217514, 0.1415146440267563, -0.043168094009160995, 0.021362530067563057, -0.07324288785457611, 0.02054334431886673, -0.05285545438528061, -0.03096715919673443, -0.2044067680835724, -0.06543150544166565, 0.03248688578605652, -0.02665981836616993, 0.056147363036870956, 0.0034906112123280764, 0.07254915684461594, 0.03738412633538246, -0.03730112686753273, 0.005821467377245426, -0.09001988172531128, -0.006163017358630896, -0.09336762875318527, -0.22228321433067322, -0.03849262371659279, -0.03095233626663685, 0.128301203250885, -0.16390524804592133, -0.008262615650892258, -0.03246210888028145, 0.12040139734745026, 0.030233953148126602, -0.06365353614091873, -0.015241095796227455, 0.03037160076200962, 0.0015411644708365202, -0.09292076528072357, 0.03176833316683769, 0.017264513298869133, -0.07235458493232727, -0.057721156626939774, -0.117962546646595, 0.005702725145965815, 0.079527847468853, 0.06321550905704498, -0.09785053879022598, 0.006072587799280882, -0.06501951068639755, -0.033160123974084854, -0.05705547705292702, 0.04012204706668854, 0.17604580521583557, 0.006882655434310436, 0.10741596668958664, -0.07924424111843109, -0.07390854507684708, 0.021759718656539917, 0.005395143758505583, 0.042550768703222275, 0.09152007848024368, 0.1107153445482254, -0.1267699897289276, 0.06585091352462769, 0.08175598084926605, -0.06111617758870125, 0.12543796002864838, -0.03836941719055176, -0.07988378405570984, -0.03504659980535507, -0.0184178464114666, -0.013770808465778828, 0.1370290368795395, -0.05276646837592125, 0.024981295689940453, 0.030507726594805717, 0.03953920677304268, 0.02020210772752762, -0.15211161971092224, -0.0029271431267261505, 0.009044129401445389, -0.04292230308055878, -0.017225317656993866, 0.02237674966454506, 0.019334381446242332, 0.09739287942647934, 0.03444338217377663, -0.015596030279994011, -0.007359963376075029, -0.004052153322845697, -0.05270509049296379, 0.1903393268585205, -0.0906919315457344, -0.04165501520037651, -0.07781557738780975, -0.0010427441447973251, -0.03762088343501091, -0.04188108816742897, 0.02803593873977661, -0.08801589161157608, -0.03888573870062828, -0.0739477202296257, -0.0020199620630592108, -0.04775642231106758, 0.025886723771691322, 0.030051618814468384, 0.00456268573179841, 0.06108753755688667, -0.1352079063653946, 0.004410086665302515, -0.0727168470621109, -0.10469431430101395, 0.01621825061738491, 0.06353534013032913, 0.0912233293056488, 0.058630481362342834, -0.028685761615633965, 0.0222913920879364, -0.031815774738788605, 0.25312361121177673, -0.05651918426156044, -0.001512865419499576, 0.10771351307630539, 0.023990575224161148, 0.045452605932950974, 0.09275035560131073, 0.034865766763687134, -0.10211307555437088, 0.029932651668787003, 0.08538265526294708, -0.03494918346405029, -0.239464670419693, -0.005426750052720308, -0.03541893884539604, -0.11337142437696457, 0.08317967504262924, 0.05072414502501488, -0.039841677993535995, 0.06397836655378342, 0.00841299444437027, 0.023453906178474426, -0.04973483085632324, 0.09369343519210815, 0.10014273226261139, 0.07370416820049286, 0.10190390795469284, -0.04784025996923447, -0.019886046648025513, 0.06975258141756058, -0.005576256196945906, 0.293157696723938, -0.02614900842308998, 0.06964129954576492, 0.05347675830125809, 0.13807526230812073, -0.02193751372396946, 0.036365218460559845, 0.006522177252918482, -0.004189241677522659, -0.025410616770386696, -0.05789407342672348, -0.02863500639796257, -0.0013969294959679246, -0.07810098677873611, 0.05557052791118622, -0.06140986084938049, 0.06254077702760696, 0.02062060311436653, 0.26135680079460144, -0.002683020429685712, -0.28113287687301636, -0.07921171933412552, -0.022053753957152367, -0.03874930366873741, -0.04552493244409561, 0.012368898838758469, 0.0983218103647232, -0.1045011579990387, 0.05189075693488121, -0.056722115725278854, 0.08140844106674194, -0.02812632918357849, -0.0046783084981143475, 0.03052421286702156, 0.18210183084011078, -0.016588857397437096, 0.04909621924161911, -0.1994953453540802, 0.216246098279953, 0.018201328814029694, 0.13304473459720612, -0.05033222213387489, 0.008294920437037945, 0.023747557774186134, -0.0007350771338678896, 0.07633481919765472, -0.0055730449967086315, -0.07437612116336823, -0.1256931722164154, -0.07464917749166489, 0.07956452667713165, 0.13966140151023865, -0.016165152192115784, 0.10244238376617432, -0.049537673592567444, 0.019147425889968872, 0.04044171795248985, -0.06785240769386292, -0.15593327581882477, -0.09747891128063202, -0.01630968414247036, 0.03697005659341812, -0.09208932518959045, -0.04698064178228378, -0.07538168877363205, -0.011460105888545513, 0.11596307903528214, 0.02382081001996994, -0.01926012523472309, -0.13747833669185638, 0.08681868016719818, 0.14979220926761627, -0.07303944230079651, 0.024438396096229553, -0.007483903784304857, 0.06476334482431412, 0.04294167459011078, -0.09367740899324417, 0.04739735275506973, -0.05735950917005539, -0.1611415296792984, -0.047078315168619156, 0.0910760909318924, 0.07253993302583694, 0.039876457303762436, -0.0046683745458722115, 0.05084788054227829, -0.021676640957593918, -0.09996051341295242, 0.012648474425077438, 0.03754901885986328, 0.05090729892253876, 0.03582929074764252, -0.08203883469104767, 0.05991366133093834, -0.033070288598537445, -0.005869539454579353, 0.11330936849117279, 0.2431897222995758, -0.08948231488466263, 0.086145780980587, 0.05705966055393219, -0.06770708411931992, -0.142137810587883, 0.0629468634724617, 0.10361591726541519, -0.0008360369829460979, 0.05601397901773453, -0.1945982724428177, 0.14043597877025604, 0.11480838060379028, -0.012441698461771011, 0.03872417286038399, -0.2727086544036865, -0.11853276193141937, 0.0597168393433094, 0.1316683292388916, 0.11953864246606827, -0.1341419816017151, -0.013626452535390854, -0.01798405312001705, -0.12732505798339844, 0.10758428275585175, -0.11352250725030899, 0.1342424899339676, -0.03370572626590729, 0.10871128737926483, 0.005262936465442181, -0.03027486428618431, 0.10816767066717148, 0.04951129108667374, 0.09747393429279327, -0.042596235871315, 0.01111266016960144, 0.060094840824604034, -0.04864427447319031, 0.01335013099014759, -0.07194177806377411, 0.082926444709301, -0.12138836830854416, -0.007106054108589888, -0.07866387069225311, 0.05077033117413521, -0.036933258175849915, -0.0527067705988884, -0.053997136652469635, 0.03667420148849487, 0.05647891014814377, -0.03676113113760948, 0.055555764585733414, -0.0014194573741406202, 0.09318364411592484, 0.02278883010149002, 0.06814694404602051, -0.0008320464985445142, -0.04854697361588478, 0.020318172872066498, -0.009753894060850143, 0.06053655594587326, -0.1385958194732666, 0.0054748570546507835, 0.1059432402253151, 0.05221761390566826, 0.09751544892787933, 0.043507181107997894, -0.04749462753534317, 0.011940151453018188, 0.038127221167087555, -0.11386335641145706, -0.10024270415306091, 0.048376038670539856, -0.040351271629333496, -0.1387064903974533, 0.04583805426955223, 0.11413039267063141, -0.048493750393390656, -0.02259608544409275, -0.018029820173978806, 0.006375768221914768, -0.021737467497587204, 0.1845378577709198, 0.04231279715895653, 0.04078283905982971, -0.10217037796974182, 0.12999697029590607, 0.030068131163716316, -0.02283567003905773, 0.05932841822504997, 0.08534426987171173, -0.09471634775400162, 0.0027753233443945646, 0.09347745776176453, 0.1751978099346161, -0.07129640132188797, -0.01523328386247158, -0.10405495017766953, -0.0705350786447525, 0.061894603073596954, 0.15959006547927856, 0.05591485649347305, -0.016775265336036682, -0.04998815059661865, 0.04173224791884422, -0.14170783758163452, 0.061512961983680725, 0.032565806061029434, 0.06992559134960175, -0.0873696580529213, 0.05891580134630203, 0.007899190299212933, 0.003625989891588688, -0.01673797331750393, 0.013953674584627151, -0.09305468946695328, -0.02893771231174469, -0.07604765892028809, 0.010651993565261364, -0.01336622517555952, 0.016028722748160362, -0.010175925679504871, -0.0682191401720047, -0.06991801410913467, 0.03635216876864433, -0.07709942758083344, -0.052755746990442276, 0.012452048249542713, 0.04274865239858627, -0.13395395874977112, 0.006392099894583225, 0.01594160869717598, -0.08974496275186539, 0.08561913669109344, 0.08989871293306351, 0.026278268545866013, 0.03349792957305908, -0.1305071860551834, -0.03249185532331467, 0.013650506734848022, 0.0017342130886390805, 0.0651046484708786, -0.09644884616136551, -0.004054935183376074, -0.021191006526350975, 0.07527746260166168, 0.011002589017152786, 0.08125048130750656, -0.13120946288108826, 0.008507528342306614, -0.08329000324010849, -0.04329854995012283, -0.065910704433918, 0.01600133813917637, 0.1024523377418518, 0.053003475069999695, 0.16270853579044342, -0.07706914097070694, 0.01882566511631012, -0.20856967568397522, -0.0276393610984087, -0.0054622613824903965, -0.0532669723033905, -0.13529539108276367, -0.03993338719010353, 0.07711835205554962, -0.038582660257816315, 0.10042440891265869, -0.022091098129749298, 0.060773227363824844, 0.03951001912355423, -0.03199350833892822, -0.06351178139448166, -0.029045049101114273, 0.19824160635471344, 0.07782670855522156, -0.016047228127717972, 0.1076679602265358, -0.005533072166144848, 0.05204212665557861, 0.029840441420674324, 0.20375312864780426, 0.20622844994068146, 0.005970880389213562, 0.07020926475524902, 0.06063377112150192, -0.08151860535144806, -0.06742750108242035, 0.178653746843338, -0.02665477991104126, 0.07224993407726288, -0.02922075428068638, 0.18776385486125946, 0.11384011059999466, -0.15109406411647797, 0.03179248794913292, -0.03165822476148605, -0.07658365368843079, -0.1406024694442749, 0.001290812506340444, -0.09622848033905029, -0.11842317134141922, 0.04512028023600578, -0.12007013708353043, 0.05638077110052109, 0.08040690422058105, 0.01318612601608038, 0.03384881466627121, 0.12662461400032043, -0.02631462551653385, 0.004306369461119175, 0.040255725383758545, 0.007467054761946201, -0.029430389404296875, -0.04251401871442795, -0.07689718157052994, 0.05030199885368347, 0.0061344243586063385, 0.08827453851699829, -0.04416654258966446, -0.009230561554431915, 0.042057476937770844, -0.028988240286707878, -0.07660653442144394, 0.025202617049217224, 0.0367162860929966, 0.05652669817209244, 0.04738342761993408, 0.044507283717393875, -0.006261172704398632, -0.03305346891283989, 0.2806588411331177, -0.05862996727228165, -0.09665626287460327, -0.11487144231796265, 0.20474034547805786, 0.04114154353737831, -0.030015937983989716, 0.03786754980683327, -0.08355828374624252, -0.011701710522174835, 0.15623115003108978, 0.15601646900177002, -0.06086764857172966, -0.024090010672807693, -0.011307193897664547, -0.01660405471920967, -0.03962250426411629, 0.11397874355316162, 0.09516459703445435, 0.0023644957691431046, -0.05297841876745224, -0.02658740244805813, -0.03549858182668686, -0.014608890749514103, -0.041347406804561615, 0.025269929319620132, 0.014371499419212341, -0.022944319993257523, -0.034607045352458954, 0.06278715282678604, -0.0012520031305029988, -0.2431611269712448, 0.06241032853722572, -0.14451706409454346, -0.16823260486125946, -0.025070631876587868, 0.04852493479847908, -0.010233016684651375, 0.050207968801259995, -0.022198928520083427, -0.004929376300424337, 0.08128216862678528, -0.01977778598666191, -0.05674632266163826, -0.12476897239685059, 0.11163229495286942, -0.057398516684770584, 0.18130658566951752, -0.017407190054655075, 0.06820771098136902, 0.1182430237531662, 0.04354972019791603, -0.1396481841802597, 0.04667516425251961, 0.04729028418660164, -0.1136208027601242, 0.01824261248111725, 0.1433202475309372, -0.04624611884355545, 0.08588363975286484, 0.044084563851356506, -0.0956353172659874, -0.009871484711766243, -0.0474247932434082, -0.026441078633069992, -0.07093550264835358, -0.012633057311177254, -0.06753399968147278, 0.1703486293554306, 0.19655741751194, -0.02556782215833664, 0.013200763612985611, -0.09387961030006409, 0.028910862281918526, 0.06859221309423447, 0.03636574000120163, -0.050534412264823914, -0.20811986923217773, 0.019408093765378, 0.04999992623925209, -0.002881812397390604, -0.23207040131092072, -0.0784924328327179, 0.04083404690027237, -0.03424215316772461, -0.0557892881333828, 0.09604617953300476, 0.03556210547685623, 0.04796294867992401, -0.03692609816789627, -0.14837850630283356, -0.03715681657195091, 0.15512977540493011, -0.1789735108613968, -0.04989899322390556 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-1024-finetuned-squad-seed-10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-1024-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-1024-finetuned-squad-seed-10
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-1024-finetuned-squad-seed-10 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-1024-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-1024-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-1024-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.07886964827775955, 0.09789744764566422, -0.0025399387814104557, 0.07672044634819031, 0.13214616477489471, 0.03407711908221245, 0.10750025510787964, 0.12184839695692062, -0.12593485414981842, 0.06748748570680618, 0.09142174571752548, 0.0871812030673027, 0.03380478173494339, 0.13115394115447998, -0.039088040590286255, -0.23252056539058685, 0.00841349083930254, -0.01677027903497219, -0.0646953359246254, 0.1020253449678421, 0.0887673869729042, -0.09780201315879822, 0.08084610104560852, -0.002700232435017824, -0.18440483510494232, 0.027452338486909866, -0.020800625905394554, -0.050111137330532074, 0.09892381727695465, -0.0061830440536141396, 0.08251297473907471, 0.006467795465141535, 0.12049267441034317, -0.19099564850330353, 0.01356901042163372, 0.07312244921922684, 0.032653260976076126, 0.09488007426261902, 0.02043868415057659, -0.0028516645543277264, 0.16517946124076843, -0.1348954439163208, 0.1002219170331955, 0.028959164395928383, -0.08734767138957977, -0.16900701820850372, -0.09689563512802124, 0.01594087854027748, 0.03725761920213699, 0.08720483630895615, 0.008087340742349625, 0.1781577616930008, -0.092220239341259, 0.08033434301614761, 0.2396310716867447, -0.2786039412021637, -0.07852883636951447, 0.0450984463095665, 0.05140208825469017, 0.07881741225719452, -0.11870085448026657, -0.01646529510617256, 0.02133561484515667, 0.02938833460211754, 0.09319189190864563, -0.02537619322538376, -0.08453480154275894, -0.007292384747415781, -0.12033711373806, 0.005550628527998924, 0.1124173030257225, 0.04506835713982582, -0.050139814615249634, -0.0506882444024086, -0.05850130692124367, -0.07426075637340546, -0.035605285316705704, -0.03551280498504639, 0.04370642453432083, -0.05690903589129448, -0.11931062489748001, -0.0332174152135849, -0.04745646193623543, -0.07794897258281708, -0.020334450528025627, 0.20397445559501648, 0.048813872039318085, 0.0324825793504715, -0.05139657109975815, 0.08121109753847122, 0.008717119693756104, -0.1292150318622589, -0.02907995879650116, 0.002974693663418293, -0.08129677176475525, -0.03954916074872017, -0.0559450201690197, 0.015568983741104603, 0.04247326776385307, 0.21387776732444763, -0.051146626472473145, 0.08380855619907379, 0.0327899344265461, -0.02030770480632782, -0.020885419100522995, 0.12541563808918, -0.020687159150838852, -0.08069942146539688, 0.028082234784960747, 0.05818125233054161, 0.025163713842630386, 0.0026822153013199568, -0.05689084529876709, -0.032361917197704315, 0.08367589861154556, 0.03204019367694855, -0.06154685840010643, 0.026276694610714912, 0.002702486701309681, -0.019136451184749603, 0.007479575462639332, -0.1145835816860199, 0.01795921102166176, -0.00688618840649724, -0.07483457028865814, -0.014447338879108429, 0.008990234695374966, -0.014919256791472435, 0.010650694370269775, 0.09900926053524017, -0.08968013525009155, -0.02163536101579666, -0.07652842998504639, -0.07153015583753586, -0.0008876444189809263, -0.1509554386138916, 0.013262788765132427, -0.07251862436532974, -0.1568448394536972, -0.034526098519563675, 0.04211416468024254, -0.07039057463407516, -0.027888232842087746, -0.03960621356964111, -0.07743482291698456, 0.024898186326026917, 0.0038487608544528484, 0.18858453631401062, -0.05239921063184738, 0.07898475229740143, 0.019165363162755966, 0.051667358726263046, -0.02291492186486721, 0.031159428879618645, -0.08784977346658707, 0.004211977124214172, -0.1682419329881668, 0.06101342290639877, -0.07606607675552368, 0.019097531214356422, -0.12870414555072784, -0.08647723495960236, -0.0272930096834898, -0.027974024415016174, 0.08331416547298431, 0.10095565766096115, -0.1414700150489807, -0.026450807228684425, 0.1149725466966629, -0.07727713137865067, -0.057899534702301025, 0.06526965647935867, -0.06748280674219131, 0.05215158313512802, 0.05885833874344826, 0.18291467428207397, 0.07267803698778152, -0.11672844737768173, -0.02246638387441635, 0.0006177459727041423, 0.028131503611803055, -0.011892544105648994, 0.05017242580652237, 0.0101384948939085, 0.024392500519752502, 0.01605243608355522, -0.03660322725772858, 0.0025258956011384726, -0.09715229272842407, -0.06245160475373268, -0.05785951390862465, -0.08264589309692383, -0.0368366464972496, 0.013360636308789253, 0.037540607154369354, -0.08155526220798492, -0.08400092273950577, 0.08315014839172363, 0.14131231606006622, -0.04300525784492493, 0.020567970350384712, -0.07291507720947266, 0.02002118155360222, -0.053172409534454346, -0.03111332096159458, -0.20472225546836853, -0.06458462029695511, 0.032868318259716034, -0.027627237141132355, 0.0561288483440876, 0.005799661390483379, 0.07308568060398102, 0.037192750722169876, -0.03662661463022232, 0.006102686282247305, -0.08925562351942062, -0.006001344416290522, -0.09506011009216309, -0.22184669971466064, -0.03899925574660301, -0.031095784157514572, 0.1276537925004959, -0.16423749923706055, -0.007934770546853542, -0.034725021570920944, 0.12013132870197296, 0.029412241652607918, -0.06328541785478592, -0.015457781963050365, 0.029914431273937225, 0.002306628040969372, -0.09310230612754822, 0.03200488165020943, 0.01605621911585331, -0.07157707959413528, -0.059199970215559006, -0.11899419873952866, 0.003984816838055849, 0.07901924103498459, 0.06377612054347992, -0.09751187264919281, 0.006960894446820021, -0.06469567120075226, -0.032409682869911194, -0.05591869726777077, 0.039834342896938324, 0.17483210563659668, 0.006259332410991192, 0.10700281709432602, -0.07946684956550598, -0.07471539825201035, 0.021610554307699203, 0.006187676917761564, 0.04385941103100777, 0.09138091653585434, 0.11137256026268005, -0.1263429820537567, 0.06520999222993851, 0.08377623558044434, -0.06103892996907234, 0.12376735359430313, -0.038532715290784836, -0.0801403820514679, -0.03490410000085831, -0.01958651840686798, -0.014654658734798431, 0.13670314848423004, -0.05344193056225777, 0.023542633280158043, 0.02986280433833599, 0.03909417241811752, 0.0199020653963089, -0.15289197862148285, -0.002579356776550412, 0.008502375334501266, -0.0421573631465435, -0.018097981810569763, 0.02205611579120159, 0.01851600408554077, 0.09741426259279251, 0.03359677642583847, -0.016729658469557762, -0.008081335574388504, -0.004309884738177061, -0.05209474265575409, 0.19058793783187866, -0.09033993631601334, -0.039433252066373825, -0.07597069442272186, -0.0015882749576121569, -0.03659006208181381, -0.041937414556741714, 0.02715017832815647, -0.0880882516503334, -0.03897020220756531, -0.07379695028066635, -0.0024844645522534847, -0.04713805019855499, 0.02583475038409233, 0.03122669644653797, 0.004446478560566902, 0.060151513665914536, -0.13540637493133545, 0.004347480367869139, -0.07385849952697754, -0.10493774712085724, 0.01562744937837124, 0.06358405947685242, 0.0907042920589447, 0.060233570635318756, -0.028655802831053734, 0.022216467186808586, -0.03144388273358345, 0.253728985786438, -0.05644179508090019, 0.0002390784356975928, 0.10777200013399124, 0.024075781926512718, 0.04543423280119896, 0.09390763938426971, 0.03484807536005974, -0.1025114357471466, 0.029597973451018333, 0.08478076010942459, -0.034401942044496536, -0.23980803787708282, -0.0055383360013365746, -0.03506312519311905, -0.11545806378126144, 0.08293118327856064, 0.05031954497098923, -0.039541784673929214, 0.06495441496372223, 0.009056911803781986, 0.02436770871281624, -0.04964751377701759, 0.09289155155420303, 0.09887824207544327, 0.07308845967054367, 0.10234130173921585, -0.048227228224277496, -0.020729679614305496, 0.06857620924711227, -0.0058023324236273766, 0.2939237654209137, -0.024633698165416718, 0.06867070496082306, 0.05318827927112579, 0.13742657005786896, -0.022228442132472992, 0.03825140371918678, 0.0069753145799040794, -0.005087577737867832, -0.025697333738207817, -0.05770571529865265, -0.026878155767917633, -0.0013775703264400363, -0.07844909280538559, 0.05538693815469742, -0.06068265438079834, 0.061828743666410446, 0.0202416330575943, 0.2597048878669739, -0.0011539163533598185, -0.2814692556858063, -0.0779697597026825, -0.021703019738197327, -0.03972243517637253, -0.044945668429136276, 0.01214817725121975, 0.09665703773498535, -0.10395035892724991, 0.05280974879860878, -0.05650889128446579, 0.08169639110565186, -0.027161022648215294, -0.004029210656881332, 0.02980278618633747, 0.1834140419960022, -0.016308899968862534, 0.049186527729034424, -0.2000165432691574, 0.21561941504478455, 0.018247440457344055, 0.13367317616939545, -0.051016341894865036, 0.007867006585001945, 0.023852385580539703, -0.0009406033786945045, 0.0764092281460762, -0.005531142931431532, -0.07505778968334198, -0.12572450935840607, -0.07441407442092896, 0.07952383905649185, 0.14035776257514954, -0.014877868816256523, 0.10273203998804092, -0.048931047320365906, 0.018299084156751633, 0.04088890925049782, -0.06886216253042221, -0.1570400595664978, -0.09661497175693512, -0.017021890729665756, 0.035899631679058075, -0.09353287518024445, -0.04631663113832474, -0.07539840042591095, -0.01387769915163517, 0.11431840807199478, 0.02585316076874733, -0.01930190995335579, -0.13698002696037292, 0.0870438888669014, 0.1503138244152069, -0.07279729843139648, 0.025299083441495895, -0.006935546174645424, 0.06500287353992462, 0.04303227365016937, -0.0935853123664856, 0.04771239683032036, -0.05738777294754982, -0.16060896217823029, -0.04657365009188652, 0.09200119972229004, 0.07304854691028595, 0.03999674692749977, -0.0034832521341741085, 0.05103779584169388, -0.02204452082514763, -0.10012656450271606, 0.01203582901507616, 0.037490881979465485, 0.04990437254309654, 0.03594467416405678, -0.08294980227947235, 0.0586630143225193, -0.03300568833947182, -0.004256852436810732, 0.11288870126008987, 0.2409517914056778, -0.08943602442741394, 0.08553814888000488, 0.05647725611925125, -0.06795433163642883, -0.14206574857234955, 0.06399526447057724, 0.10370459407567978, -0.000735256529878825, 0.05656209588050842, -0.1931518018245697, 0.14179910719394684, 0.11466493457555771, -0.012003546580672264, 0.03841893747448921, -0.2733202278614044, -0.11848971992731094, 0.060139670968055725, 0.1321936994791031, 0.11989010125398636, -0.13375353813171387, -0.013272294774651527, -0.019082967191934586, -0.12735728919506073, 0.10773511230945587, -0.11450454592704773, 0.13387379050254822, -0.03349518030881882, 0.10814746469259262, 0.005075610242784023, -0.030374053865671158, 0.10691282153129578, 0.05157681927084923, 0.09799802303314209, -0.04283071681857109, 0.010060494765639305, 0.061672404408454895, -0.04798256233334541, 0.014020097441971302, -0.07115878909826279, 0.08239042013883591, -0.11997717618942261, -0.007066350430250168, -0.07817395031452179, 0.05006181448698044, -0.03668747469782829, -0.05230848863720894, -0.05372312664985657, 0.036394089460372925, 0.05591845139861107, -0.03677039220929146, 0.05403253436088562, -0.00039223581552505493, 0.0926993191242218, 0.019536912441253662, 0.06896616518497467, -0.0015524134505540133, -0.04733264818787575, 0.02076529711484909, -0.009419208392500877, 0.05957625433802605, -0.13934776186943054, 0.005051913671195507, 0.10608406364917755, 0.052299413830041885, 0.09721596539020538, 0.04358994960784912, -0.04741239547729492, 0.011341420002281666, 0.03779216483235359, -0.11237434297800064, -0.10201580822467804, 0.04932523891329765, -0.041395511478185654, -0.13865099847316742, 0.0476180836558342, 0.11253948509693146, -0.04854816198348999, -0.023213718086481094, -0.018888888880610466, 0.006032301113009453, -0.02173912152647972, 0.18585282564163208, 0.0431993193924427, 0.040677208453416824, -0.10289355367422104, 0.12925802171230316, 0.029879113659262657, -0.021399687975645065, 0.058325741440057755, 0.08619214594364166, -0.09555719792842865, 0.002697213087230921, 0.09501016139984131, 0.17641520500183105, -0.06954853981733322, -0.0148512227460742, -0.10406151413917542, -0.07131548225879669, 0.062052372843027115, 0.16059863567352295, 0.05660346895456314, -0.01810990460216999, -0.04975240305066109, 0.042063143104314804, -0.14139071106910706, 0.06097641587257385, 0.0326564759016037, 0.07018399983644485, -0.08700414001941681, 0.05947858840227127, 0.008000952191650867, 0.004074648953974247, -0.016875404864549637, 0.015114960260689259, -0.0928681418299675, -0.029568789526820183, -0.0759502425789833, 0.009068597108125687, -0.013958721421658993, 0.01590154506266117, -0.010473543778061867, -0.06825003772974014, -0.06968189030885696, 0.03581995889544487, -0.07727422565221786, -0.052918609231710434, 0.012086480855941772, 0.04157959669828415, -0.13339687883853912, 0.00626583443954587, 0.015236549079418182, -0.08898791670799255, 0.0851019099354744, 0.08901694416999817, 0.02693389169871807, 0.034661076962947845, -0.1313468962907791, -0.03244657814502716, 0.014205421321094036, 0.002208466175943613, 0.06571749597787857, -0.0953989252448082, -0.004114123526960611, -0.02089976705610752, 0.07716094702482224, 0.010358983650803566, 0.07892803847789764, -0.13024665415287018, 0.00883533526211977, -0.08437248319387436, -0.0433768555521965, -0.06611461937427521, 0.015712114050984383, 0.10162725299596786, 0.05224024876952171, 0.1633007973432541, -0.07591398060321808, 0.018837006762623787, -0.20931221544742584, -0.0279606431722641, -0.005967502947896719, -0.053888458758592606, -0.13498930633068085, -0.040746282786130905, 0.07758712023496628, -0.03855239227414131, 0.1019834578037262, -0.021405883133411407, 0.06164567917585373, 0.03887895867228508, -0.028006136417388916, -0.06358363479375839, -0.02847663126885891, 0.19821695983409882, 0.07781165093183517, -0.016102932393550873, 0.10689716786146164, -0.004622564185410738, 0.05220073461532593, 0.0277244932949543, 0.2034175992012024, 0.20599228143692017, 0.004923942498862743, 0.06998598575592041, 0.06143491715192795, -0.08142592012882233, -0.06603424996137619, 0.18038028478622437, -0.02778504602611065, 0.0709189623594284, -0.02924761176109314, 0.1903221160173416, 0.11244592070579529, -0.15094660222530365, 0.03215596824884415, -0.0314013846218586, -0.07721572369337082, -0.1400851607322693, 0.0007008836837485433, -0.09676893800497055, -0.11804590374231339, 0.04503757879137993, -0.11983876675367355, 0.05603146553039551, 0.08145666122436523, 0.01301872543990612, 0.03338243439793587, 0.12723490595817566, -0.02651466801762581, 0.005040737334638834, 0.0401083379983902, 0.007301053963601589, -0.029029155150055885, -0.0422995388507843, -0.07604221999645233, 0.050319869071245193, 0.005616583861410618, 0.08801912516355515, -0.04547445848584175, -0.010540798306465149, 0.0415164977312088, -0.028343580663204193, -0.0763329342007637, 0.025465311482548714, 0.03638092428445816, 0.05598358064889908, 0.04613450914621353, 0.045072462409734726, -0.006501555442810059, -0.03338463231921196, 0.2790498733520508, -0.05853315815329552, -0.09822198748588562, -0.114003986120224, 0.20342442393302917, 0.041487183421850204, -0.029783114790916443, 0.0381850004196167, -0.08337179571390152, -0.010497042909264565, 0.15722213685512543, 0.1562253087759018, -0.061097871512174606, -0.02430197410285473, -0.011403960175812244, -0.01708560809493065, -0.04013179615139961, 0.11445114016532898, 0.09565869718790054, 0.0006540176691487432, -0.052743520587682724, -0.026324881240725517, -0.034884121268987656, -0.01510623749345541, -0.04213029891252518, 0.024105533957481384, 0.015569915063679218, -0.022954409942030907, -0.03300248831510544, 0.06380512565374374, 0.00003708790973178111, -0.24295677244663239, 0.06054706871509552, -0.14383935928344727, -0.16848058998584747, -0.025475822389125824, 0.04892319440841675, -0.008748812600970268, 0.05020482465624809, -0.0224311463534832, -0.004656652454286814, 0.08098464459180832, -0.01975669525563717, -0.05688492953777313, -0.12508000433444977, 0.11208127439022064, -0.0598507821559906, 0.180231973528862, -0.017360106110572815, 0.06909316778182983, 0.11800980567932129, 0.04243599995970726, -0.13887178897857666, 0.04739275574684143, 0.04692875221371651, -0.11292597651481628, 0.019341522827744484, 0.14283140003681183, -0.04573266953229904, 0.08249185979366302, 0.04359188303351402, -0.09593627601861954, -0.009197727777063847, -0.04655349999666214, -0.026779040694236755, -0.07129506021738052, -0.011354190297424793, -0.06747352331876755, 0.1706400215625763, 0.1965746134519577, -0.025606833398342133, 0.013848605565726757, -0.0942525565624237, 0.02800106257200241, 0.06852104514837265, 0.036651939153671265, -0.051047779619693756, -0.20847512781620026, 0.019027236849069595, 0.048822756856679916, -0.0027891728095710278, -0.2300223410129547, -0.07771068066358566, 0.039256751537323, -0.035287629812955856, -0.05599404498934746, 0.0950988158583641, 0.03670458868145943, 0.048079997301101685, -0.036737363785505295, -0.14914315938949585, -0.03734571114182472, 0.155757874250412, -0.17948000133037567, -0.04940410330891609 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-1024-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-1024-finetuned-squad-seed-2", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-1024-finetuned-squad-seed-2
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-1024-finetuned-squad-seed-2 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-1024-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-1024-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-1024-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.07802659273147583, 0.09948325157165527, -0.0026417432818561792, 0.07692567259073257, 0.13131004571914673, 0.03439343720674515, 0.10732249170541763, 0.12274336814880371, -0.1267111450433731, 0.06776710599660873, 0.0918915644288063, 0.08612226694822311, 0.03334876149892807, 0.13058683276176453, -0.03928334265947342, -0.23267784714698792, 0.008252945728600025, -0.018124006688594818, -0.06660693883895874, 0.10207771509885788, 0.08936261385679245, -0.09672965109348297, 0.08088182657957077, -0.002468029735609889, -0.18493452668190002, 0.02752065844833851, -0.019915038719773293, -0.04980606213212013, 0.09868568927049637, -0.005334279499948025, 0.08270541578531265, 0.007487569935619831, 0.12023352086544037, -0.1919022500514984, 0.013257491402328014, 0.07228871434926987, 0.03290898725390434, 0.09517323970794678, 0.021008599549531937, -0.0027918003033846617, 0.1652510166168213, -0.13389936089515686, 0.09957735985517502, 0.029086364433169365, -0.08709680289030075, -0.1694875806570053, -0.09713035076856613, 0.0167557280510664, 0.037528205662965775, 0.08634517341852188, 0.008858587592840195, 0.1772051453590393, -0.09194815158843994, 0.08001895248889923, 0.23877348005771637, -0.2792491316795349, -0.07884812355041504, 0.043738625943660736, 0.05030488967895508, 0.07938344031572342, -0.11780824512243271, -0.016017910093069077, 0.021166695281863213, 0.029458820819854736, 0.09214577823877335, -0.025489144027233124, -0.08462963253259659, -0.007445469498634338, -0.12016253173351288, 0.003779831575229764, 0.1127428486943245, 0.04462498053908348, -0.05116097629070282, -0.04923730343580246, -0.058932531625032425, -0.07209229469299316, -0.034403786063194275, -0.03610405698418617, 0.04370134323835373, -0.05603434890508652, -0.11916299164295197, -0.035137202590703964, -0.04879825562238693, -0.07852292060852051, -0.02062852308154106, 0.20532359182834625, 0.04890033230185509, 0.033806268125772476, -0.051189374178647995, 0.08249678462743759, 0.010766404680907726, -0.12884247303009033, -0.029665522277355194, 0.0032149325124919415, -0.08083701133728027, -0.03907309100031853, -0.05551016703248024, 0.016356421634554863, 0.04284336417913437, 0.21330995857715607, -0.053688421845436096, 0.08324531465768814, 0.03174147009849548, -0.019519958645105362, -0.020669864490628242, 0.12504532933235168, -0.01909446157515049, -0.07812490314245224, 0.028210395947098732, 0.05773553624749184, 0.02560247853398323, 0.0025931682903319597, -0.05674811080098152, -0.03284255415201187, 0.08457718789577484, 0.03309885412454605, -0.06096986308693886, 0.024288592860102654, 0.0014011182356625795, -0.019363364204764366, 0.005997275002300739, -0.11459381878376007, 0.01794389635324478, -0.0063977534882724285, -0.07353389263153076, -0.015591961331665516, 0.009738236665725708, -0.01481624972075224, 0.011170115321874619, 0.09808921813964844, -0.08839602023363113, -0.02093661017715931, -0.07509704679250717, -0.06961999088525772, -0.000883219763636589, -0.14818260073661804, 0.0127076031640172, -0.07328303158283234, -0.15480414032936096, -0.03311898931860924, 0.042838942259550095, -0.07176532596349716, -0.03024153783917427, -0.03848958760499954, -0.07641933858394623, 0.02602849155664444, 0.0030591501854360104, 0.18825428187847137, -0.05244583263993263, 0.07996851205825806, 0.019333837553858757, 0.05134012550115585, -0.022506214678287506, 0.030262239277362823, -0.08713372051715851, 0.005121165886521339, -0.16848385334014893, 0.06152864173054695, -0.07520923018455505, 0.01599411480128765, -0.1298762708902359, -0.08588326722383499, -0.02618350274860859, -0.028950631618499756, 0.08253388106822968, 0.10114941745996475, -0.1396133303642273, -0.02631058171391487, 0.11417809873819351, -0.07891474664211273, -0.057656459510326385, 0.06641745567321777, -0.06730198860168457, 0.05370006710290909, 0.05710497498512268, 0.18280954658985138, 0.07300063222646713, -0.1170889362692833, -0.020671557635068893, 0.0021207842510193586, 0.02783086523413658, -0.010271639563143253, 0.051687564700841904, 0.009346920065581799, 0.022014783695340157, 0.015791917219758034, -0.03872443363070488, 0.002432922599837184, -0.09780319035053253, -0.06320001184940338, -0.05781397596001625, -0.08212366700172424, -0.03573136404156685, 0.011935168877243996, 0.03785369545221329, -0.08081723004579544, -0.08339996635913849, 0.08231621235609055, 0.1418331265449524, -0.04249882325530052, 0.021749716252088547, -0.0732247531414032, 0.019994203001260757, -0.053840428590774536, -0.03156571835279465, -0.2045152336359024, -0.06525731086730957, 0.03347114846110344, -0.027568470686674118, 0.05612872540950775, 0.00584162212908268, 0.0723409652709961, 0.037432942539453506, -0.03693942725658417, 0.00582378963008523, -0.08987151831388474, -0.006563416216522455, -0.09450002759695053, -0.22258634865283966, -0.03866906091570854, -0.031136464327573776, 0.12841954827308655, -0.1637348085641861, -0.009001918137073517, -0.03367457538843155, 0.12001819908618927, 0.02972600795328617, -0.06302861869335175, -0.01614399440586567, 0.0290105901658535, 0.001725932233966887, -0.09235428273677826, 0.03194582462310791, 0.017334409058094025, -0.07222379744052887, -0.057019930332899094, -0.11700339615345001, 0.00520941661670804, 0.07765225321054459, 0.06355299055576324, -0.09770455211400986, 0.006107720546424389, -0.06503038853406906, -0.03317127749323845, -0.05719396099448204, 0.04015791788697243, 0.17536954581737518, 0.0060127307660877705, 0.10723738372325897, -0.07960927486419678, -0.07412590086460114, 0.021486077457666397, 0.004318669438362122, 0.04274318739771843, 0.09123505651950836, 0.11114130169153214, -0.1280432790517807, 0.06457220017910004, 0.08337648957967758, -0.06102267652750015, 0.12342450022697449, -0.038531381636857986, -0.07986900210380554, -0.03624073043465614, -0.017334487289190292, -0.014191524125635624, 0.13631942868232727, -0.052332159131765366, 0.025403402745723724, 0.030017027631402016, 0.039813145995140076, 0.0197443887591362, -0.15351322293281555, -0.002754736226052046, 0.008890864439308643, -0.04373795911669731, -0.016170185059309006, 0.021509401500225067, 0.0194665789604187, 0.09785261005163193, 0.034266188740730286, -0.01640070602297783, -0.0068381838500499725, -0.004218742251396179, -0.053228959441185, 0.18994544446468353, -0.0901264026761055, -0.04138310253620148, -0.07766850292682648, -0.0009253804455511272, -0.03658343851566315, -0.04173652082681656, 0.02773997187614441, -0.08706299215555191, -0.03835226222872734, -0.07399817556142807, -0.0014599512796849012, -0.04804607480764389, 0.026451749727129936, 0.03156571835279465, 0.004653341602534056, 0.062270089983940125, -0.1347445845603943, 0.004428672604262829, -0.07337348908185959, -0.10591171681880951, 0.016604505479335785, 0.06389304995536804, 0.09026359021663666, 0.05918121337890625, -0.027994785457849503, 0.022029154002666473, -0.03100329264998436, 0.2540542185306549, -0.0557192862033844, -0.0006216666079126298, 0.10807774215936661, 0.022746341302990913, 0.046019501984119415, 0.09365236014127731, 0.03419056534767151, -0.10236196964979172, 0.029806792736053467, 0.08441659808158875, -0.034795165061950684, -0.23972494900226593, -0.005764233414083719, -0.034380264580249786, -0.1145855188369751, 0.08287583291530609, 0.05054950714111328, -0.042758308351039886, 0.06391455978155136, 0.00944790430366993, 0.0233150701969862, -0.04942190274596214, 0.09291898459196091, 0.09976644068956375, 0.07318339496850967, 0.1019495502114296, -0.04755783453583717, -0.0206751711666584, 0.07005389034748077, -0.004849878139793873, 0.29306063055992126, -0.02512115240097046, 0.06784813851118088, 0.05346149951219559, 0.13875392079353333, -0.02239062264561653, 0.036461759358644485, 0.007283901795744896, -0.004277628380805254, -0.02596931718289852, -0.05768788605928421, -0.027914339676499367, -0.00038191903149709105, -0.07737254351377487, 0.055231641978025436, -0.06155877932906151, 0.06424174457788467, 0.019866332411766052, 0.26151013374328613, -0.0009659511270001531, -0.2795619070529938, -0.07788196951150894, -0.021099425852298737, -0.039600178599357605, -0.04474887251853943, 0.01214990857988596, 0.09876825660467148, -0.1048407107591629, 0.05156651884317398, -0.056255411356687546, 0.08093688637018204, -0.02784736268222332, -0.004920946899801493, 0.029083307832479477, 0.1815953254699707, -0.01529714372009039, 0.049699146300554276, -0.1980976015329361, 0.21595150232315063, 0.01808422990143299, 0.13223662972450256, -0.04957273602485657, 0.00837748497724533, 0.023099170997738838, -0.0008508849423378706, 0.07695402950048447, -0.004628437105566263, -0.0758441910147667, -0.12591564655303955, -0.07572971284389496, 0.07933390140533447, 0.14052142202854156, -0.01623721793293953, 0.10235770791769028, -0.049575913697481155, 0.019032299518585205, 0.0403265617787838, -0.06764915585517883, -0.15645790100097656, -0.09604191780090332, -0.016630547121167183, 0.03473818302154541, -0.09396521002054214, -0.04744835942983627, -0.07546140998601913, -0.009907849133014679, 0.11636415868997574, 0.024778243154287338, -0.019490445032715797, -0.13673391938209534, 0.0870724692940712, 0.14976507425308228, -0.0736614316701889, 0.024126240983605385, -0.007161407265812159, 0.06544609367847443, 0.042968787252902985, -0.09379096329212189, 0.04762304201722145, -0.05721199885010719, -0.16195710003376007, -0.04669087380170822, 0.09255553781986237, 0.07275404781103134, 0.04028678312897682, -0.0034109936095774174, 0.0504562184214592, -0.02083183079957962, -0.09985926747322083, 0.013285416178405285, 0.03776205703616142, 0.04982202127575874, 0.035772524774074554, -0.08258745819330215, 0.06118517369031906, -0.032736197113990784, -0.005627034232020378, 0.1143670529127121, 0.24422261118888855, -0.08985751867294312, 0.08741088211536407, 0.05641040951013565, -0.06857693195343018, -0.1423136293888092, 0.06191030517220497, 0.10542717576026917, -0.0014638676075264812, 0.05784499645233154, -0.19381164014339447, 0.14096102118492126, 0.11444994062185287, -0.013196409679949284, 0.037414681166410446, -0.2742822468280792, -0.11854829639196396, 0.05906837061047554, 0.13193871080875397, 0.12156718969345093, -0.13316768407821655, -0.014164013788104057, -0.017588168382644653, -0.12727373838424683, 0.10681313276290894, -0.11270380765199661, 0.13390350341796875, -0.03348156809806824, 0.10883903503417969, 0.005278219003230333, -0.029670339077711105, 0.10873015224933624, 0.04993932321667671, 0.0965319499373436, -0.04227552190423012, 0.010681670159101486, 0.05964149162173271, -0.048812925815582275, 0.01333571132272482, -0.07086890935897827, 0.08311212807893753, -0.12101580947637558, -0.007397642824798822, -0.07807581126689911, 0.04984113201498985, -0.03748997300863266, -0.05225122347474098, -0.0536331981420517, 0.03615355119109154, 0.056152407079935074, -0.0366799458861351, 0.05359872430562973, 0.00012496237468440086, 0.09141844511032104, 0.024093717336654663, 0.0678219348192215, 0.00021377357188612223, -0.04832082986831665, 0.019313860684633255, -0.009573782794177532, 0.05992387607693672, -0.13851338624954224, 0.00635835574939847, 0.10532739758491516, 0.051667194813489914, 0.09750866889953613, 0.043254826217889786, -0.04801870882511139, 0.012377559207379818, 0.03766154870390892, -0.1135781779885292, -0.10258205235004425, 0.048629842698574066, -0.04045303910970688, -0.13901293277740479, 0.04552011936903, 0.11507067829370499, -0.047970712184906006, -0.02316940575838089, -0.018722044304013252, 0.007023909594863653, -0.02208271063864231, 0.18469828367233276, 0.041988275945186615, 0.04127528518438339, -0.10174119472503662, 0.12935154139995575, 0.02990218810737133, -0.02078438550233841, 0.058355558663606644, 0.08544615656137466, -0.09459759294986725, 0.003155748127028346, 0.09474769979715347, 0.175324946641922, -0.07132080942392349, -0.014544608071446419, -0.10386443138122559, -0.07146516442298889, 0.0614682137966156, 0.15905028581619263, 0.05697823315858841, -0.01723705232143402, -0.0496511310338974, 0.041724976152181625, -0.14040927588939667, 0.06161278486251831, 0.03344061225652695, 0.07015740126371384, -0.0879540741443634, 0.059142742305994034, 0.007603875827044249, 0.0055827125906944275, -0.01713026873767376, 0.01404655072838068, -0.09278750419616699, -0.02947768196463585, -0.07752519100904465, 0.011235145851969719, -0.012688078917562962, 0.015871888026595116, -0.009723012335598469, -0.06882961839437485, -0.06962567567825317, 0.036661356687545776, -0.07720398902893066, -0.052884653210639954, 0.011407801881432533, 0.04216879606246948, -0.13352279365062714, 0.0055754538625478745, 0.016389429569244385, -0.08991430699825287, 0.08633525669574738, 0.08984939008951187, 0.026951342821121216, 0.03407788649201393, -0.12946216762065887, -0.0326525941491127, 0.01458264235407114, 0.002129636937752366, 0.06515828520059586, -0.0971536785364151, -0.004774930886924267, -0.020686285570263863, 0.07643413543701172, 0.010532882064580917, 0.08207748085260391, -0.13104525208473206, 0.00898839347064495, -0.08473673462867737, -0.04507572948932648, -0.06581816077232361, 0.015107019804418087, 0.10106749832630157, 0.053749989718198776, 0.1632676124572754, -0.07714943587779999, 0.019124427810311317, -0.20904316008090973, -0.02771104872226715, -0.005869786720722914, -0.05181426927447319, -0.13553577661514282, -0.0405513197183609, 0.07651003450155258, -0.038452982902526855, 0.10039272159337997, -0.021959902718663216, 0.06039540842175484, 0.03914911672472954, -0.030839674174785614, -0.06203388795256615, -0.02869330905377865, 0.19664721190929413, 0.07789746671915054, -0.01573123037815094, 0.10733415931463242, -0.006131739355623722, 0.05287311226129532, 0.0277967881411314, 0.20476557314395905, 0.20609118044376373, 0.005494064651429653, 0.07009027898311615, 0.06131841242313385, -0.0809139832854271, -0.06808653473854065, 0.17884854972362518, -0.027407819405198097, 0.07104161381721497, -0.02826474979519844, 0.18839699029922485, 0.11349672079086304, -0.1516745388507843, 0.030876867473125458, -0.031416598707437515, -0.07734610140323639, -0.14135180413722992, 0.0016078782500699162, -0.09753336012363434, -0.11833085864782333, 0.04489108920097351, -0.11979575455188751, 0.05644409731030464, 0.08050879091024399, 0.012350868433713913, 0.034201718866825104, 0.12488394230604172, -0.025700310245156288, 0.0048421709798276424, 0.03945476934313774, 0.007579747121781111, -0.028279433026909828, -0.04069286957383156, -0.07670695334672928, 0.05022671818733215, 0.0074706049636006355, 0.0877755805850029, -0.044346291571855545, -0.009374664165079594, 0.04103432968258858, -0.02918780967593193, -0.07665438950061798, 0.02505110576748848, 0.036299072206020355, 0.056202806532382965, 0.04509381949901581, 0.04535121098160744, -0.006181024946272373, -0.03296465426683426, 0.28046509623527527, -0.05830603837966919, -0.09750723093748093, -0.11423555016517639, 0.20563556253910065, 0.039903923869132996, -0.028928032144904137, 0.03926113247871399, -0.08314531296491623, -0.01216390822082758, 0.15546146035194397, 0.15552350878715515, -0.06277225911617279, -0.024170557036995888, -0.011684589087963104, -0.016839945688843727, -0.039229728281497955, 0.11539053171873093, 0.09488628059625626, 0.0023819045163691044, -0.05347974970936775, -0.02690327726304531, -0.03616868332028389, -0.014462059363722801, -0.04236986115574837, 0.025055205449461937, 0.014362344518303871, -0.021614711731672287, -0.03441880643367767, 0.06289634108543396, 0.00012635828170459718, -0.24230161309242249, 0.061140988022089005, -0.1431395709514618, -0.16896256804466248, -0.0244733989238739, 0.049595821648836136, -0.010618691332638264, 0.050237253308296204, -0.02337850071489811, -0.005020121578127146, 0.0813775509595871, -0.019949812442064285, -0.057254817336797714, -0.12404686212539673, 0.11284615099430084, -0.05915207043290138, 0.18139460682868958, -0.01649872399866581, 0.06976883113384247, 0.11745277047157288, 0.042971283197402954, -0.13984254002571106, 0.04624452069401741, 0.04703705385327339, -0.11316227167844772, 0.018603358417749405, 0.14376148581504822, -0.04603554680943489, 0.08441166579723358, 0.0450497530400753, -0.09551502019166946, -0.010943354107439518, -0.04637448862195015, -0.026741761714220047, -0.07069344818592072, -0.013242701068520546, -0.06872305274009705, 0.16966284811496735, 0.19586992263793945, -0.025861164554953575, 0.01425524614751339, -0.09374244511127472, 0.028812702745199203, 0.06852016597986221, 0.03822701424360275, -0.04989440366625786, -0.2085990309715271, 0.018734874203801155, 0.049791570752859116, -0.0023839829955250025, -0.23120947182178497, -0.07950048893690109, 0.03987240046262741, -0.03420990705490112, -0.055800653994083405, 0.0965661108493805, 0.03517165780067444, 0.04750911146402359, -0.03641407936811447, -0.1502823531627655, -0.03791264444589615, 0.15511369705200195, -0.1789587140083313, -0.049595046788454056 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-1024-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-1024-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-1024-finetuned-squad-seed-4
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-1024-finetuned-squad-seed-4 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-1024-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-1024-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-1024-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.07837171107530594, 0.09832243621349335, -0.0026014791801571846, 0.0778467059135437, 0.1325543224811554, 0.034790925681591034, 0.10770206153392792, 0.12202980369329453, -0.12676450610160828, 0.0673133134841919, 0.09197584539651871, 0.08613269031047821, 0.03260539844632149, 0.13021376729011536, -0.03917759284377098, -0.23263980448246002, 0.007809036877006292, -0.017510689795017242, -0.06609777361154556, 0.10211953520774841, 0.08847824484109879, -0.0973258838057518, 0.08140780031681061, -0.0027519825380295515, -0.18590159714221954, 0.02790413796901703, -0.020524607971310616, -0.049562208354473114, 0.0989077165722847, -0.005243822932243347, 0.08310067653656006, 0.0067190020345151424, 0.12008300423622131, -0.19043362140655518, 0.013535791076719761, 0.07254602015018463, 0.032485660165548325, 0.09476659446954727, 0.020500196143984795, -0.003182904329150915, 0.1640348881483078, -0.134297177195549, 0.09948055446147919, 0.028991306200623512, -0.08735398948192596, -0.17016993463039398, -0.09660717844963074, 0.015377836301922798, 0.03654830902814865, 0.08729296177625656, 0.008525155484676361, 0.17666883766651154, -0.09212631732225418, 0.08039910346269608, 0.2372220903635025, -0.2799191176891327, -0.07921633869409561, 0.04425247013568878, 0.05034049227833748, 0.07966476678848267, -0.11831767112016678, -0.015234563499689102, 0.021401679143309593, 0.03030155971646309, 0.09242303669452667, -0.025833332911133766, -0.08474359661340714, -0.007001756690442562, -0.11999210715293884, 0.0053115966729819775, 0.11336710304021835, 0.044810228049755096, -0.050797391682863235, -0.049402397125959396, -0.058226633816957474, -0.07336375117301941, -0.03482953459024429, -0.035133350640535355, 0.04382065311074257, -0.056918032467365265, -0.11955226957798004, -0.03355354443192482, -0.048367250710725784, -0.07748103141784668, -0.020806003361940384, 0.2044505774974823, 0.04869409278035164, 0.03353533893823624, -0.050971053540706635, 0.0817435085773468, 0.010350840166211128, -0.12864963710308075, -0.028627993538975716, 0.002697241259738803, -0.08039553463459015, -0.038999296724796295, -0.056168850511312485, 0.01754661090672016, 0.04305047541856766, 0.21349915862083435, -0.05376528203487396, 0.08387257158756256, 0.03234371542930603, -0.020126355811953545, -0.02066984586417675, 0.12407595664262772, -0.0205275546759367, -0.07963395118713379, 0.028292737901210785, 0.05772020295262337, 0.024994194507598877, 0.002393250120803714, -0.057015299797058105, -0.032016903162002563, 0.08328940719366074, 0.03259578347206116, -0.062035221606492996, 0.02625383995473385, 0.0023467272985726595, -0.01895335502922535, 0.00585538474842906, -0.11437821388244629, 0.017649473622441292, -0.006658175960183144, -0.0736813023686409, -0.014682683162391186, 0.00928327813744545, -0.01563011109828949, 0.010881082154810429, 0.09861422330141068, -0.08929304033517838, -0.021520964801311493, -0.07569995522499084, -0.07065387070178986, -0.0014657736755907536, -0.14811864495277405, 0.013698805123567581, -0.0730532631278038, -0.1551254689693451, -0.03430502489209175, 0.04266606271266937, -0.07156632095575333, -0.028889916837215424, -0.0384991392493248, -0.07725195586681366, 0.025684403255581856, 0.0032325484789907932, 0.18887965381145477, -0.05282016098499298, 0.07892709970474243, 0.02028687112033367, 0.051317889243364334, -0.023141218349337578, 0.03040640987455845, -0.0869247168302536, 0.004440594464540482, -0.16905897855758667, 0.06078696623444557, -0.07589387148618698, 0.017839644104242325, -0.12871819734573364, -0.08695974946022034, -0.025295253843069077, -0.02779713273048401, 0.08219832926988602, 0.1005130261182785, -0.13942000269889832, -0.02634311653673649, 0.1134568601846695, -0.07763715833425522, -0.057766299694776535, 0.06631287932395935, -0.06761195510625839, 0.052690885961055756, 0.057505346834659576, 0.18308378756046295, 0.07296900451183319, -0.11663031578063965, -0.021480081602931023, 0.0013038866454735398, 0.0281026903539896, -0.01087472215294838, 0.050126541405916214, 0.010315782390534878, 0.02209552749991417, 0.016313867643475533, -0.03749043866991997, 0.0024016452953219414, -0.09738967567682266, -0.06271200627088547, -0.0572366863489151, -0.0820135846734047, -0.036428917199373245, 0.012395113706588745, 0.037709563970565796, -0.08173765987157822, -0.08377842605113983, 0.08167169988155365, 0.14149194955825806, -0.04295312613248825, 0.020630590617656708, -0.07348060607910156, 0.02054290845990181, -0.053784508258104324, -0.031074220314621925, -0.20425201952457428, -0.06612329930067062, 0.032443080097436905, -0.025468526408076286, 0.05632752552628517, 0.006101751234382391, 0.07290943711996078, 0.037645719945430756, -0.03720909357070923, 0.005632034037262201, -0.08861417323350906, -0.006066279020160437, -0.09429438412189484, -0.22302861511707306, -0.03886876627802849, -0.030939986929297447, 0.12846402823925018, -0.16426262259483337, -0.008670528419315815, -0.03357967361807823, 0.11949405074119568, 0.02935832180082798, -0.06244960054755211, -0.015490229241549969, 0.030487047508358955, 0.002516313688829541, -0.09234198182821274, 0.03250188007950783, 0.017028585076332092, -0.07107102125883102, -0.05834011361002922, -0.1174655556678772, 0.006526813842356205, 0.07875271886587143, 0.062330834567546844, -0.09818483889102936, 0.0064653209410607815, -0.06453391164541245, -0.0329948328435421, -0.055449776351451874, 0.04012150689959526, 0.17641788721084595, 0.005455199629068375, 0.10714582353830338, -0.07891909033060074, -0.07370468229055405, 0.021631214767694473, 0.005414155311882496, 0.043928537517786026, 0.09120793640613556, 0.11044225841760635, -0.12644392251968384, 0.06487684696912766, 0.08281741291284561, -0.061464156955480576, 0.12410265952348709, -0.03864814341068268, -0.0792556181550026, -0.03570995479822159, -0.018505943939089775, -0.014572449028491974, 0.1370178759098053, -0.052791424095630646, 0.024365531280636787, 0.029661521315574646, 0.03938915580511093, 0.020042547956109047, -0.15258218348026276, -0.002726297825574875, 0.008166939951479435, -0.042709607630968094, -0.01690664142370224, 0.02214112877845764, 0.018947159871459007, 0.09751536697149277, 0.034151818603277206, -0.01746555231511593, -0.0068320645950734615, -0.004108417313545942, -0.052317071706056595, 0.19028203189373016, -0.09060418605804443, -0.04021541774272919, -0.0773942843079567, -0.0027910657227039337, -0.03765596076846123, -0.04217282310128212, 0.027401618659496307, -0.08828327059745789, -0.03870569169521332, -0.07367262989282608, -0.0021021224092692137, -0.047966498881578445, 0.026284897699952126, 0.03093637153506279, 0.004116298630833626, 0.06176205724477768, -0.13457784056663513, 0.004554091952741146, -0.07365605235099792, -0.10591398924589157, 0.01706642657518387, 0.064534492790699, 0.09096077084541321, 0.05883416533470154, -0.02801605500280857, 0.02208837680518627, -0.030873622745275497, 0.25489145517349243, -0.05587515980005264, -0.00040364006417803466, 0.10785487294197083, 0.023511061444878578, 0.045053403824567795, 0.09372693300247192, 0.035172365605831146, -0.10276442021131516, 0.029487237334251404, 0.08492723852396011, -0.03440818563103676, -0.2396230548620224, -0.005349263548851013, -0.03485141694545746, -0.11474793404340744, 0.08242106437683105, 0.05045672133564949, -0.042231567203998566, 0.0645127147436142, 0.0103509072214365, 0.024066559970378876, -0.050202127546072006, 0.09259364753961563, 0.10142830014228821, 0.07271867245435715, 0.10267051309347153, -0.04789765924215317, -0.020969165489077568, 0.06938160955905914, -0.00472659058868885, 0.29375624656677246, -0.02537846565246582, 0.06756291538476944, 0.0539393424987793, 0.13821136951446533, -0.02180304378271103, 0.037038654088974, 0.00667544174939394, -0.004959261976182461, -0.02595043182373047, -0.057444535195827484, -0.026868922635912895, -0.0013864111388102174, -0.0788833275437355, 0.05499541759490967, -0.061533086001873016, 0.06284648925065994, 0.020217837765812874, 0.26075977087020874, -0.0015637788455933332, -0.2816687226295471, -0.07838238030672073, -0.021803870797157288, -0.03908461704850197, -0.04437991604208946, 0.012468870729207993, 0.09816136956214905, -0.10429411381483078, 0.05220774561166763, -0.05617605894804001, 0.08081542700529099, -0.027871206402778625, -0.0038764735218137503, 0.03104487992823124, 0.18317009508609772, -0.016251729801297188, 0.04921228811144829, -0.19876481592655182, 0.21493177115917206, 0.018374161794781685, 0.1328285038471222, -0.04969325289130211, 0.008151582442224026, 0.023935623466968536, 0.0005833861068822443, 0.07652536779642105, -0.005220294930040836, -0.07562398165464401, -0.12598879635334015, -0.07458892464637756, 0.08030108362436295, 0.14005599915981293, -0.015102341771125793, 0.10299085825681686, -0.04885837808251381, 0.01855727843940258, 0.040218789130449295, -0.06883063167333603, -0.15654191374778748, -0.09663692116737366, -0.017512260004878044, 0.036228325217962265, -0.09374281764030457, -0.04657571390271187, -0.07575266063213348, -0.011581354774534702, 0.1155897006392479, 0.026329437270760536, -0.019544146955013275, -0.13715502619743347, 0.08616970479488373, 0.14976362884044647, -0.07278116047382355, 0.024292122572660446, -0.006805011536926031, 0.0643463134765625, 0.04392950236797333, -0.09364058077335358, 0.04786597564816475, -0.05783754587173462, -0.16063907742500305, -0.04680079594254494, 0.09157387912273407, 0.07232007384300232, 0.03956719860434532, -0.0039313253946602345, 0.05048207566142082, -0.021655134856700897, -0.10046223551034927, 0.013403463177382946, 0.036238353699445724, 0.05060320347547531, 0.03576631844043732, -0.0835539922118187, 0.06105545908212662, -0.03207513689994812, -0.004739605356007814, 0.11295295506715775, 0.2418098747730255, -0.08943011611700058, 0.08531766384840012, 0.0564643070101738, -0.0681108757853508, -0.14201374351978302, 0.06333836168050766, 0.10392527282238007, -0.0010979799553751945, 0.05633390322327614, -0.1944044679403305, 0.14196276664733887, 0.11395719647407532, -0.01216895878314972, 0.03921902924776077, -0.27178776264190674, -0.1178240180015564, 0.05929281562566757, 0.13260534405708313, 0.12270452082157135, -0.13372722268104553, -0.01346105057746172, -0.017794722691178322, -0.1270129382610321, 0.10619551688432693, -0.11520305275917053, 0.13410261273384094, -0.033877331763505936, 0.1094624474644661, 0.0045790765434503555, -0.029679978266358376, 0.1078375056385994, 0.05079146847128868, 0.09768978506326675, -0.0427112840116024, 0.011657798662781715, 0.05964370444417, -0.048064153641462326, 0.012997311539947987, -0.07163821160793304, 0.08260359615087509, -0.12121900171041489, -0.007215667981654406, -0.0786302387714386, 0.04982674494385719, -0.03730621561408043, -0.0520988367497921, -0.05300908908247948, 0.03628665208816528, 0.0551036112010479, -0.03693530708551407, 0.052492547780275345, -0.0007919789641164243, 0.09193731099367142, 0.02279367670416832, 0.06844945251941681, -0.0013174605555832386, -0.0486951544880867, 0.020607467740774155, -0.010092084296047688, 0.059927504509687424, -0.13819250464439392, 0.005080344155430794, 0.10591371357440948, 0.05097398906946182, 0.097067691385746, 0.04401935264468193, -0.04710277169942856, 0.01174959260970354, 0.038469187915325165, -0.11388308554887772, -0.10152916610240936, 0.048884764313697815, -0.04355713725090027, -0.13837221264839172, 0.04681605100631714, 0.11486436426639557, -0.04777701571583748, -0.022848477587103844, -0.018679436296224594, 0.006295592989772558, -0.02210000716149807, 0.185195192694664, 0.04254329204559326, 0.04073292762041092, -0.10271178185939789, 0.12899532914161682, 0.029757240787148476, -0.02120950259268284, 0.05832904204726219, 0.08650463819503784, -0.09547144919633865, 0.0022455293219536543, 0.09401259571313858, 0.17709305882453918, -0.07081585377454758, -0.01522546075284481, -0.10493292659521103, -0.07182559370994568, 0.061345212161540985, 0.15866559743881226, 0.056776680052280426, -0.018432259559631348, -0.04985366761684418, 0.041276976466178894, -0.14113959670066833, 0.06124595180153847, 0.03231225907802582, 0.07059107720851898, -0.08794401586055756, 0.05842875689268112, 0.007462202571332455, 0.004853290971368551, -0.017095662653446198, 0.014639783650636673, -0.09338793903589249, -0.029561862349510193, -0.07745250314474106, 0.01031596027314663, -0.012647153809666634, 0.01643478497862816, -0.01002135593444109, -0.06785867363214493, -0.07024963200092316, 0.03674706071615219, -0.0773310735821724, -0.05249942094087601, 0.013125881552696228, 0.042631592601537704, -0.13283590972423553, 0.005875828675925732, 0.01526302844285965, -0.08950145542621613, 0.0860297903418541, 0.08966095745563507, 0.026650220155715942, 0.03430354595184326, -0.1286671906709671, -0.033162012696266174, 0.0140140475705266, 0.0015245453687384725, 0.065943643450737, -0.0960443988442421, -0.0042524393647909164, -0.02096637152135372, 0.07692737877368927, 0.01072115357965231, 0.08122992515563965, -0.13038946688175201, 0.009611942805349827, -0.08391276001930237, -0.043650805950164795, -0.0664370059967041, 0.015441840514540672, 0.10186775773763657, 0.05332145467400551, 0.16321980953216553, -0.07710553705692291, 0.01851690001785755, -0.20903247594833374, -0.02806982956826687, -0.006001665256917477, -0.053328659385442734, -0.13503585755825043, -0.040615275502204895, 0.07713141292333603, -0.03911115229129791, 0.10209358483552933, -0.021783698350191116, 0.06051107123494148, 0.03870163857936859, -0.03052501380443573, -0.06309837847948074, -0.02839021198451519, 0.19620588421821594, 0.07734153419733047, -0.01628505066037178, 0.10712514817714691, -0.004854035098105669, 0.05215137079358101, 0.029021041467785835, 0.20322665572166443, 0.205516055226326, 0.006393582560122013, 0.07007439434528351, 0.061823442578315735, -0.08134276419878006, -0.06668591499328613, 0.17979386448860168, -0.027019783854484558, 0.07158506661653519, -0.0292730163782835, 0.1871863603591919, 0.11258335411548615, -0.15062710642814636, 0.031187448650598526, -0.032352183014154434, -0.07739948481321335, -0.14029793441295624, 0.002870141062885523, -0.0969613566994667, -0.11888958513736725, 0.04491206631064415, -0.12023243308067322, 0.05563066527247429, 0.08162978291511536, 0.012860282324254513, 0.033694952726364136, 0.12639780342578888, -0.024936972185969353, 0.005612930748611689, 0.039668694138526917, 0.007209986913949251, -0.028704136610031128, -0.04071710258722305, -0.07624232023954391, 0.04959488660097122, 0.005999820772558451, 0.08708648383617401, -0.04484463483095169, -0.0098541509360075, 0.04161207377910614, -0.02883152663707733, -0.07628129422664642, 0.024896850809454918, 0.036896560341119766, 0.0558246374130249, 0.04606591910123825, 0.04494428262114525, -0.007039562799036503, -0.03303902596235275, 0.27956390380859375, -0.058299824595451355, -0.09650824218988419, -0.1145726814866066, 0.20528429746627808, 0.039621155709028244, -0.02944580279290676, 0.03808869794011116, -0.0823078602552414, -0.011148780584335327, 0.15664871037006378, 0.15740583837032318, -0.06310901790857315, -0.024417787790298462, -0.011304806917905807, -0.01684996299445629, -0.03944046422839165, 0.11582932621240616, 0.09526103734970093, 0.0015456678811460733, -0.05340665951371193, -0.026780899614095688, -0.0356353260576725, -0.014198093675076962, -0.042463432997465134, 0.024492036551237106, 0.015405064448714256, -0.02204938977956772, -0.03367491438984871, 0.06283008307218552, -0.000537228537723422, -0.2422819882631302, 0.06177148222923279, -0.1429269164800644, -0.16920150816440582, -0.0255315862596035, 0.049146492034196854, -0.009868254885077477, 0.05076372250914574, -0.023419279605150223, -0.005228140857070684, 0.0819663479924202, -0.020357763394713402, -0.05629755184054375, -0.12482188642024994, 0.1126413568854332, -0.05955716222524643, 0.18034496903419495, -0.017016146332025528, 0.06941591948270798, 0.11808996647596359, 0.04265660047531128, -0.1395210474729538, 0.04682905599474907, 0.04639768972992897, -0.11374947428703308, 0.019033094868063927, 0.14281359314918518, -0.04590432718396187, 0.0837521106004715, 0.04397356137633324, -0.09469857066869736, -0.010067093186080456, -0.04630451649427414, -0.02669411338865757, -0.07065777480602264, -0.013260409235954285, -0.06852459907531738, 0.17007088661193848, 0.19722911715507507, -0.02565886825323105, 0.014177229255437851, -0.0937165841460228, 0.02870573103427887, 0.06899075210094452, 0.036870408803224564, -0.050676655024290085, -0.20841248333454132, 0.019081654027104378, 0.05071026459336281, -0.0027992762625217438, -0.2320736050605774, -0.07834679633378983, 0.03972028195858002, -0.034023065119981766, -0.05599227920174599, 0.09634395688772202, 0.036142461001873016, 0.04842698574066162, -0.036872539669275284, -0.14820757508277893, -0.03788754343986511, 0.15496376156806946, -0.1790139228105545, -0.05022982507944107 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-1024-finetuned-squad-seed-42 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results {'exact_match': 66.90633869441817, 'f1': 77.54482247690522} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-1024-finetuned-squad-seed-42", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-1024-finetuned-squad-seed-42
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-1024-finetuned-squad-seed-42 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results {'exact_match': 66.90633869441817, 'f1': 77.54482247690522} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "# roberta-base-few-shot-k-1024-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10", "### Training results\n\n{'exact_match': 66.90633869441817, 'f1': 77.54482247690522}", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-1024-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10", "### Training results\n\n{'exact_match': 66.90633869441817, 'f1': 77.54482247690522}", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ 52, 46, 6, 12, 8, 3, 105, 35, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-1024-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10### Training results\n\n{'exact_match': 66.90633869441817, 'f1': 77.54482247690522}### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ -0.09826037287712097, 0.09277694672346115, -0.002391536021605134, 0.07818219810724258, 0.14819078147411346, 0.04446703940629959, 0.12166230380535126, 0.10845138132572174, -0.09997343271970749, 0.06589320302009583, 0.06757728010416031, 0.07498832792043686, 0.042413946241140366, 0.13263021409511566, -0.05138673260807991, -0.23718562722206116, -0.0009666557889431715, 0.00017652643145993352, -0.12706655263900757, 0.10548562556505203, 0.10597943514585495, -0.09409990906715393, 0.08092797547578812, 0.005610298365354538, -0.19301095604896545, 0.036943744868040085, -0.0041224597953259945, -0.03892757371068001, 0.10578668862581253, 0.02249351516366005, 0.10043583065271378, 0.007411791477352381, 0.11492300778627396, -0.18037787079811096, 0.014257028698921204, 0.09033671766519547, 0.024922911077737808, 0.10212204605340958, 0.04536442458629608, -0.03944724425673485, 0.12311089038848877, -0.1203368529677391, 0.07447987794876099, 0.04536781460046768, -0.09854276478290558, -0.21042223274707794, -0.10829571634531021, 0.046919383108615875, 0.047954969108104706, 0.08594821393489838, 0.010013366118073463, 0.1659352332353592, -0.06413434445858002, 0.07918427884578705, 0.24572736024856567, -0.28098124265670776, -0.08473639190196991, 0.05460905656218529, 0.04523221775889397, 0.04270993173122406, -0.10686107724905014, -0.0042828405275940895, 0.025974173098802567, 0.028362859040498734, 0.0830388218164444, -0.0355742871761322, -0.12136291712522507, -0.005757697857916355, -0.11634610593318939, 0.014651340432465076, 0.11478476226329803, 0.04917412996292114, -0.052220992743968964, -0.03146963566541672, -0.07372859865427017, -0.07349079847335815, -0.02141503244638443, -0.03919408097863197, 0.04881913959980011, -0.06018480658531189, -0.11020401865243912, -0.04049227386713028, -0.05313308537006378, -0.07885351032018661, -0.034395188093185425, 0.2268049269914627, 0.029265716671943665, 0.0426003560423851, -0.05764191970229149, 0.10388302803039551, -0.02549068070948124, -0.13558098673820496, -0.01994481310248375, -0.002728254534304142, -0.10008623450994492, -0.03651630878448486, -0.05803797394037247, 0.01312266755849123, 0.023947808891534805, 0.23900489509105682, -0.07497120648622513, 0.08187773823738098, 0.040206264704465866, -0.01764175482094288, -0.030803903937339783, 0.1323060244321823, -0.06182406097650528, -0.0790335163474083, 0.011890839785337448, 0.0536203496158123, 0.023163367062807083, 0.00023543126008007675, -0.055843252688646317, -0.03935522958636284, 0.05840586498379707, 0.0334775485098362, -0.036187030375003815, 0.03191839158535004, -0.002377989236265421, -0.03147229552268982, 0.019957784563302994, -0.11003002524375916, 0.01726633310317993, -0.0016726787434890866, -0.09871319681406021, -0.02609821781516075, 0.029344316571950912, 0.001002845587208867, 0.0023985847365111113, 0.10361849516630173, -0.0965307205915451, -0.007827097550034523, -0.09040752053260803, -0.09429434686899185, -0.0028452470432966948, -0.13510486483573914, 0.006151446606963873, -0.05925745889544487, -0.159810870885849, -0.038582731038331985, 0.04879963397979736, -0.06894247233867645, -0.02522437460720539, -0.00193815550301224, -0.08844497054815292, 0.026397718116641045, -0.00011015603377018124, 0.2012365609407425, -0.04665372893214226, 0.06451728194952011, 0.031803570687770844, 0.044914428144693375, -0.03170621767640114, 0.027087755501270294, -0.081035315990448, 0.018939727917313576, -0.1730431765317917, 0.05482945591211319, -0.08880694210529327, 0.010802357457578182, -0.13099420070648193, -0.08842309564352036, -0.0021900602150708437, -0.016709523275494576, 0.08850026875734329, 0.10615314543247223, -0.14370110630989075, -0.02470654621720314, 0.10504423826932907, -0.07455728948116302, -0.08728732913732529, 0.05132775381207466, -0.0501285195350647, 0.04898703098297119, 0.03546430915594101, 0.1455293446779251, 0.09329085052013397, -0.11991778016090393, -0.03381279855966568, 0.002423606114462018, 0.03203146159648895, -0.0015298834769055247, 0.049554355442523956, -0.003646186552941799, 0.029613588005304337, 0.008640487678349018, -0.07173831015825272, -0.0141220111399889, -0.09898146986961365, -0.062088433653116226, -0.05832919478416443, -0.0867449939250946, -0.010744280181825161, 0.024520915001630783, 0.028380705043673515, -0.07373419404029846, -0.10364947468042374, 0.11235323548316956, 0.13550256192684174, -0.03878233581781387, 0.0175143051892519, -0.07951072603464127, -0.011812358163297176, -0.02194357104599476, -0.03398789092898369, -0.21399104595184326, -0.11463349312543869, 0.010055997408926487, -0.04184378683567047, 0.04861443489789963, -0.019529271870851517, 0.08554946631193161, 0.036013662815093994, -0.049534622579813004, 0.004397208336740732, -0.08040058612823486, -0.014130529947578907, -0.08982445299625397, -0.21587032079696655, -0.08249396830797195, -0.015750275924801826, 0.17391516268253326, -0.1769692599773407, 0.006882813759148121, -0.016853634268045425, 0.145027294754982, 0.024051859974861145, -0.052660539746284485, -0.016587017104029655, 0.030812757089734077, 0.002998847048729658, -0.0962805449962616, 0.027127353474497795, 0.00851449090987444, -0.07205557078123093, -0.04541059583425522, -0.1496613621711731, 0.04362058639526367, 0.08188185095787048, 0.04683569446206093, -0.09630528092384338, 0.004833058454096317, -0.06109997630119324, -0.042818620800971985, -0.05307940021157265, 0.02314675599336624, 0.1433742344379425, 0.017944637686014175, 0.10291074216365814, -0.06392772495746613, -0.06877247989177704, 0.01127247791737318, 0.007309648208320141, 0.041346561163663864, 0.08772262930870056, 0.09488002955913544, -0.10801605135202408, 0.08042716234922409, 0.06207509711384773, -0.07586418837308884, 0.1241861879825592, -0.0377633161842823, -0.06361082941293716, -0.0437314547598362, -0.030096886679530144, -0.009701848030090332, 0.14657801389694214, -0.03721651807427406, 0.03218403458595276, 0.038297127932310104, 0.019633663818240166, 0.03245704621076584, -0.16378498077392578, -0.0014367165276780725, 0.0036531880032271147, -0.0380977988243103, -0.0288544874638319, 0.003169178729876876, 0.03715474531054497, 0.09303693473339081, 0.027056995779275894, -0.0034400050062686205, -0.000545389368198812, -0.0038291537202894688, -0.06700713187456131, 0.22433724999427795, -0.0980796292424202, -0.05328121408820152, -0.10664643347263336, 0.021555406972765923, -0.054155319929122925, -0.04728308692574501, 0.005210948642343283, -0.08045956492424011, -0.05590404197573662, -0.0597061887383461, -0.0005678175366483629, -0.013253606855869293, 0.003598528914153576, 0.01891985535621643, -0.0017002193490043283, 0.07974644750356674, -0.14440274238586426, 0.014132427982985973, -0.058003831654787064, -0.11108400672674179, 0.010439596138894558, 0.07699496299028397, 0.09009288251399994, 0.08790876716375351, -0.024913519620895386, 0.02368570677936077, -0.018353542312979698, 0.2523992955684662, -0.07256507873535156, 0.012780692428350449, 0.13805194199085236, 0.026374686509370804, 0.045272909104824066, 0.09570483863353729, 0.0500328429043293, -0.08939627557992935, 0.028032343834638596, 0.10442592203617096, -0.03196367621421814, -0.26376545429229736, -0.016707995906472206, -0.019192999228835106, -0.10227957367897034, 0.07231421023607254, 0.03824901208281517, -0.006890513002872467, 0.07473073899745941, -0.012244329787790775, 0.008642110973596573, -0.03580465167760849, 0.07752706855535507, 0.09708120673894882, 0.07880837470293045, 0.12290144711732864, -0.04570909962058067, -0.006659029982984066, 0.06317982822656631, 0.0026003792881965637, 0.26820775866508484, -0.035185400396585464, 0.07840146869421005, 0.05154880881309509, 0.1312180459499359, -0.033707182854413986, 0.05395650863647461, 0.014449147507548332, -0.01838797703385353, 0.0021574371494352818, -0.06605303287506104, 0.0021730028092861176, 0.007559353951364756, -0.07972127199172974, 0.05964566394686699, -0.05682648718357086, 0.05396118387579918, 0.020051119849085808, 0.27049684524536133, 0.005266278050839901, -0.2869894206523895, -0.09031736850738525, -0.014409102499485016, -0.009315147064626217, -0.06353543698787689, -0.012042602524161339, 0.10289973020553589, -0.11958523094654083, 0.07766038924455643, -0.06462620198726654, 0.09232980012893677, 0.005274526309221983, -0.006379222963005304, 0.07106433063745499, 0.18083566427230835, -0.022779393941164017, 0.04200347140431404, -0.19722920656204224, 0.22698736190795898, 0.029524128884077072, 0.12230014055967331, -0.03521811589598656, 0.014286192134022713, 0.033686913549900055, 0.023558827117085457, 0.04971982538700104, -0.0035679317079484463, -0.052314627915620804, -0.13294434547424316, -0.047645650804042816, 0.0659237802028656, 0.14007267355918884, -0.03030550293624401, 0.1040436252951622, -0.04070301726460457, 0.0035482062958180904, 0.0418923981487751, -0.05741847679018974, -0.1542574167251587, -0.0804755762219429, 0.003004674334079027, 0.015576834790408611, -0.05045256018638611, -0.060554251074790955, -0.08780612051486969, -0.004503726959228516, 0.12795251607894897, -0.02774842455983162, -0.03995838388800621, -0.14639979600906372, 0.08536767959594727, 0.1630188673734665, -0.07754526287317276, 0.03221774846315384, 0.0002631166425999254, 0.08576542139053345, 0.03485202416777611, -0.11076401174068451, 0.06565040349960327, -0.06606041640043259, -0.1721700131893158, -0.026851825416088104, 0.10083867609500885, 0.07120037078857422, 0.03589488938450813, -0.01822970062494278, 0.05325889587402344, -0.01717262528836727, -0.10136089473962784, 0.015457072295248508, 0.003871844382956624, 0.04035552591085434, 0.06048844754695892, -0.05026514455676079, 0.03375215083360672, -0.02913854643702507, 0.005738188978284597, 0.08385691046714783, 0.23290245234966278, -0.09793559461832047, 0.03674681857228279, 0.03695668280124664, -0.06599779427051544, -0.16299450397491455, 0.09976579993963242, 0.11988998204469681, -0.008159693330526352, 0.053201571106910706, -0.2078145146369934, 0.16611982882022858, 0.13018211722373962, -0.025446036830544472, 0.06836534291505814, -0.24922813475131989, -0.14240190386772156, 0.07402174919843674, 0.11072538793087006, 0.07718050479888916, -0.153092160820961, -0.02725799009203911, -0.03186293691396713, -0.2037912905216217, 0.1544003039598465, -0.14562296867370605, 0.10679392516613007, -0.020613111555576324, 0.09810822457075119, 0.014387661591172218, -0.030092786997556686, 0.13092100620269775, 0.059743426740169525, 0.11091695725917816, -0.02954108454287052, 0.00912100076675415, 0.06802086532115936, -0.0466308668255806, 0.01476253941655159, -0.039326850324869156, 0.07622141391038895, -0.12346012890338898, 0.007655580062419176, -0.09243589639663696, 0.07140180468559265, -0.05056961625814438, -0.04800541326403618, -0.043753258883953094, 0.03896275907754898, 0.01541421003639698, -0.03773416206240654, 0.08181485533714294, 0.0002752969739958644, 0.14272239804267883, 0.09198659658432007, 0.0832751914858818, -0.02434844896197319, -0.06528829783201218, 0.026464195922017097, -0.011698581278324127, 0.06322738528251648, -0.13517342507839203, 0.016960734501481056, 0.12109890580177307, 0.07409286499023438, 0.09169391542673111, 0.04910879582166672, -0.052081748843193054, 0.0012019657297059894, 0.042355503886938095, -0.1175202876329422, -0.11480919271707535, 0.0214646328240633, -0.06160842999815941, -0.12983490526676178, 0.06013362109661102, 0.12728473544120789, -0.03366396576166153, -0.019394634291529655, -0.008839468471705914, 0.002909056842327118, -0.024256078526377678, 0.20301851630210876, 0.06235363706946373, 0.0638195052742958, -0.10940469801425934, 0.12537208199501038, 0.03488650918006897, -0.04249487817287445, 0.03765164688229561, 0.10179968178272247, -0.08141886442899704, 0.0011830262374132872, 0.067408986389637, 0.12483926117420197, -0.1171661913394928, -0.03427911922335625, -0.11303478479385376, -0.09602716565132141, 0.041685800999403, 0.21201829612255096, 0.05375136435031891, -0.019049782305955887, -0.01680481806397438, 0.03778994083404541, -0.13548339903354645, 0.056122079491615295, 0.044270094484090805, 0.08703465759754181, -0.09630956500768661, 0.1132209450006485, 0.014330744743347168, 0.019643040373921394, -0.014309671707451344, 0.012808527797460556, -0.10627207159996033, -0.03322862088680267, -0.1232604831457138, -0.010905159637331963, -0.010247558355331421, 0.007801351603120565, -0.019084356725215912, -0.07383547723293304, -0.08026184886693954, 0.04839685931801796, -0.08252149820327759, -0.05208093672990799, 0.02005528099834919, 0.0171072855591774, -0.15397557616233826, 0.009881807491183281, 0.028933165594935417, -0.08585695922374725, 0.08129510283470154, 0.09277230501174927, 0.04062008485198021, 0.032944709062576294, -0.1256210058927536, -0.04458450898528099, -0.003347172401845455, 0.0016070368001237512, 0.0719400942325592, -0.10452447086572647, -0.0037128336261957884, -0.039336685091257095, 0.08418954908847809, 0.006367153022438288, 0.09971246123313904, -0.12790797650814056, 0.01508051436394453, -0.06866810470819473, -0.022994529455900192, -0.07286015897989273, 0.02962503209710121, 0.11081760376691818, 0.05303482338786125, 0.14714521169662476, -0.07079111039638519, 0.011018308810889721, -0.22571709752082825, -0.02450084686279297, -0.021002881228923798, -0.05926521122455597, -0.10534865409135818, -0.014180667698383331, 0.08208710700273514, -0.05004536360502243, 0.09382043778896332, -0.01668590120971203, 0.07179584354162216, 0.047949258238077164, -0.016011977568268776, -0.06822352856397629, -0.004565382841974497, 0.16999711096286774, 0.0695752501487732, -0.0013493805890902877, 0.10726470500230789, 0.022072307765483856, 0.03672393038868904, 0.02481946162879467, 0.2202777862548828, 0.16904541850090027, -0.025584103539586067, 0.06965101510286331, 0.07809031009674072, -0.11384530365467072, -0.06948207318782806, 0.1328028291463852, -0.03140765428543091, 0.07536238431930542, -0.047690197825431824, 0.15096156299114227, 0.11297659575939178, -0.15952332317829132, 0.04258184880018234, -0.04921315610408783, -0.08215968310832977, -0.14539143443107605, 0.027066467329859734, -0.08231515437364578, -0.12985847890377045, 0.03288416191935539, -0.13395394384860992, 0.06155357137322426, 0.14062651991844177, 0.008143887855112553, 0.035591017454862595, 0.1426917016506195, -0.04800545051693916, -0.0022500574123114347, 0.02902616746723652, 0.014091401360929012, -0.008911622688174248, -0.023350294679403305, -0.06655821949243546, 0.05655466392636299, 0.01176667120307684, 0.07567788660526276, -0.050938017666339874, -0.012412980198860168, 0.03919763118028641, -0.018437305465340614, -0.08191299438476562, 0.018305214121937752, 0.04462772235274315, 0.05196910724043846, 0.04092561826109886, 0.03349395841360092, 0.015268468298017979, -0.044211529195308685, 0.31121668219566345, -0.07133358716964722, -0.10180628299713135, -0.13214989006519318, 0.24755129218101501, 0.025720449164509773, -0.024175520986318588, 0.04959241300821304, -0.0910671129822731, -0.020658308640122414, 0.13033893704414368, 0.15830616652965546, -0.06504015624523163, -0.023306595161557198, -0.0037608228158205748, -0.018102318048477173, -0.029519587755203247, 0.11973059922456741, 0.0924350693821907, 0.039986204355955124, -0.06703741103410721, -0.014133986085653305, -0.014416846446692944, -0.028123289346694946, -0.04905662313103676, 0.060355644673109055, 0.00892766285687685, -0.015214699320495129, -0.015567605383694172, 0.067191943526268, -0.0014521757839247584, -0.21958476305007935, 0.07212783396244049, -0.16519853472709656, -0.18288719654083252, -0.03663714975118637, 0.04377191141247749, -0.015093786641955376, 0.06147467717528343, -0.012756330892443657, -0.023714669048786163, 0.10183744132518768, -0.010273636318743229, -0.055602673441171646, -0.1499561071395874, 0.11021604388952255, -0.11563409864902496, 0.19434189796447754, -0.03016829676926136, 0.06717388331890106, 0.12174658477306366, 0.022745858877897263, -0.14633429050445557, 0.023514067754149437, 0.05261407047510147, -0.13858899474143982, 0.016584007069468498, 0.1356945037841797, -0.04548861086368561, 0.08819715678691864, 0.033382631838321686, -0.14303068816661835, -0.015002213418483734, -0.017565470188856125, -0.029277615249156952, -0.07336214184761047, -0.024541469290852547, -0.07235131412744522, 0.15302036702632904, 0.2167034149169922, -0.029646296054124832, 0.01800421252846718, -0.09373574703931808, 0.021108413115143776, 0.07222285866737366, 0.07503771781921387, -0.04625643417239189, -0.21958371996879578, 0.05292560160160065, 0.033587969839572906, -0.006716154515743256, -0.23308458924293518, -0.05535319074988365, 0.04078212007880211, -0.04808225855231285, -0.022264936938881874, 0.09504608064889908, 0.06220424920320511, 0.05828741937875748, -0.03805069997906685, -0.13129207491874695, -0.04404667019844055, 0.1627892702817917, -0.1801033616065979, -0.057325053960084915 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-1024-finetuned-squad-seed-6 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-1024-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-1024-finetuned-squad-seed-6
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-1024-finetuned-squad-seed-6 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-1024-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-1024-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-1024-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.07831566035747528, 0.09802919626235962, -0.0025687559973448515, 0.0775735154747963, 0.13272961974143982, 0.034277863800525665, 0.10747580975294113, 0.12228147685527802, -0.12623465061187744, 0.0677027478814125, 0.09150905162096024, 0.08669858425855637, 0.03309624269604683, 0.12999247014522552, -0.03904004395008087, -0.23222599923610687, 0.008330538868904114, -0.01731536164879799, -0.06575145572423935, 0.10199610143899918, 0.08851628005504608, -0.09755734354257584, 0.0807613879442215, -0.003091010032221675, -0.1860070675611496, 0.028167951852083206, -0.020814722403883934, -0.049336813390254974, 0.09869252145290375, -0.0056634871289134026, 0.08268345892429352, 0.006945311091840267, 0.11986391246318817, -0.1908724009990692, 0.013499009422957897, 0.07290536165237427, 0.03263096138834953, 0.09493016451597214, 0.021434446796774864, -0.0027443624567240477, 0.1652471274137497, -0.13380147516727448, 0.09923916310071945, 0.029409348964691162, -0.08726051449775696, -0.16855348646640778, -0.09711141139268875, 0.014816241338849068, 0.037091709673404694, 0.08788561820983887, 0.008047440089285374, 0.17744605243206024, -0.09272074699401855, 0.08042964339256287, 0.23873503506183624, -0.27866971492767334, -0.07914502918720245, 0.04480017349123955, 0.05023091658949852, 0.07877179235219955, -0.11910542100667953, -0.016351839527487755, 0.021504312753677368, 0.029964439570903778, 0.09162572771310806, -0.025206435471773148, -0.08582647144794464, -0.007379377260804176, -0.1203220784664154, 0.004998097196221352, 0.11232495307922363, 0.04495035111904144, -0.050389889627695084, -0.049273259937763214, -0.05855514854192734, -0.0727735161781311, -0.0345044881105423, -0.03500664606690407, 0.04393456131219864, -0.05677402392029762, -0.11912011355161667, -0.03344166651368141, -0.04831337556242943, -0.07836679369211197, -0.02038857527077198, 0.20406293869018555, 0.04879011958837509, 0.03336681053042412, -0.05150603875517845, 0.08167676627635956, 0.010681210085749626, -0.12883001565933228, -0.02949354611337185, 0.003376246662810445, -0.08046291768550873, -0.03911083936691284, -0.05592677742242813, 0.01652236469089985, 0.0425434336066246, 0.21182411909103394, -0.053522247821092606, 0.0841071680188179, 0.03165014833211899, -0.020074142143130302, -0.02127760462462902, 0.12418156862258911, -0.01957845129072666, -0.07779166102409363, 0.027620676904916763, 0.05792228877544403, 0.024668985977768898, 0.002793353982269764, -0.05645624175667763, -0.032157693058252335, 0.08388832211494446, 0.03227423503994942, -0.061697158962488174, 0.02571721561253071, 0.0019159362418577075, -0.01915794052183628, 0.006507304031401873, -0.11425658315420151, 0.017568621784448624, -0.0070627727545797825, -0.07396106421947479, -0.015482005663216114, 0.009401406161487103, -0.015871286392211914, 0.010625401511788368, 0.09869785606861115, -0.08977814763784409, -0.021486520767211914, -0.07642559707164764, -0.0703384131193161, -0.001091420534066856, -0.14959336817264557, 0.013343611732125282, -0.0722474604845047, -0.15533015131950378, -0.03433100879192352, 0.04220503941178322, -0.0715920627117157, -0.0287161935120821, -0.03902895748615265, -0.07771095633506775, 0.025935957208275795, 0.003556953277438879, 0.1895713061094284, -0.05247248709201813, 0.07958575338125229, 0.020224565640091896, 0.05118978023529053, -0.022417891770601273, 0.030981460586190224, -0.08777832984924316, 0.004303798079490662, -0.16837233304977417, 0.06095125898718834, -0.07655753940343857, 0.0176909901201725, -0.12943845987319946, -0.08636019378900528, -0.02648247964680195, -0.028415847569704056, 0.08288168162107468, 0.101236991584301, -0.13936302065849304, -0.026110779494047165, 0.11380600929260254, -0.07840238511562347, -0.05771040916442871, 0.06543231755495071, -0.06733570247888565, 0.05239558592438698, 0.05701198801398277, 0.18308240175247192, 0.07247133553028107, -0.11615002900362015, -0.022620512172579765, 0.0008236428839154541, 0.02869309112429619, -0.011450006626546383, 0.05013328418135643, 0.010115932673215866, 0.022925397381186485, 0.01626509428024292, -0.03757760673761368, 0.0022913143038749695, -0.09745527058839798, -0.06210760399699211, -0.057830121368169785, -0.08211026340723038, -0.03675239533185959, 0.013365413062274456, 0.03755959868431091, -0.0813823938369751, -0.0832531526684761, 0.0817883163690567, 0.14146754145622253, -0.042445436120033264, 0.020837079733610153, -0.07290433347225189, 0.019454048946499825, -0.0546288937330246, -0.031127262860536575, -0.2051810920238495, -0.06661128997802734, 0.033062148839235306, -0.02578563243150711, 0.0562206469476223, 0.005890147294849157, 0.07270999252796173, 0.036974355578422546, -0.03717736527323723, 0.005496557801961899, -0.08948264271020889, -0.006661755498498678, -0.09458411484956741, -0.22277192771434784, -0.039091404527425766, -0.03147432953119278, 0.12664686143398285, -0.16380637884140015, -0.008846414275467396, -0.033559203147888184, 0.11989197134971619, 0.029342077672481537, -0.06299111247062683, -0.01546973455697298, 0.02984819933772087, 0.0021454307716339827, -0.09267579764127731, 0.032377488911151886, 0.01641729287803173, -0.07071275264024734, -0.05824364721775055, -0.11767998337745667, 0.005072372034192085, 0.07844309508800507, 0.06370808184146881, -0.09821218252182007, 0.006577790714800358, -0.06467227637767792, -0.03337443619966507, -0.05658299848437309, 0.04077354818582535, 0.17576389014720917, 0.005715875420719385, 0.10673356801271439, -0.0793600007891655, -0.07397963106632233, 0.022202521562576294, 0.00550835533067584, 0.043296895921230316, 0.09185819327831268, 0.11193765699863434, -0.12787863612174988, 0.0655319094657898, 0.08339925855398178, -0.06079655885696411, 0.12447672337293625, -0.03880874067544937, -0.07978326827287674, -0.03468102216720581, -0.01789737492799759, -0.014433711767196655, 0.13662520051002502, -0.052451591938734055, 0.024721957743167877, 0.029559936374425888, 0.03977212682366371, 0.02007845789194107, -0.15286976099014282, -0.0028130721766501665, 0.008014791645109653, -0.04270423948764801, -0.01732778549194336, 0.022053590044379234, 0.01889151707291603, 0.09763132780790329, 0.033827926963567734, -0.017191892489790916, -0.0072258710861206055, -0.004126593470573425, -0.05240200459957123, 0.19097702205181122, -0.0903232991695404, -0.039318062365055084, -0.0766068547964096, -0.002018180675804615, -0.0374523289501667, -0.042178936302661896, 0.027541467919945717, -0.0892564058303833, -0.038695015013217926, -0.07363267987966537, -0.0020975430961698294, -0.048089273273944855, 0.025543171912431717, 0.030463339760899544, 0.004374985583126545, 0.06121865659952164, -0.13520821928977966, 0.004608182702213526, -0.07402762025594711, -0.10626225173473358, 0.016752559691667557, 0.0640200600028038, 0.09063590317964554, 0.05891536548733711, -0.028206318616867065, 0.02196338400244713, -0.03102535754442215, 0.2538876533508301, -0.056023936718702316, -0.0008907181909307837, 0.1079995259642601, 0.024387193843722343, 0.0456567108631134, 0.0937986820936203, 0.03446201607584953, -0.10283436626195908, 0.030045464634895325, 0.08531787246465683, -0.03468463569879532, -0.24060697853565216, -0.005340357776731253, -0.0350441075861454, -0.11501707136631012, 0.08278592675924301, 0.05072171986103058, -0.04239490628242493, 0.06456194818019867, 0.00940057821571827, 0.023100202903151512, -0.05032946914434433, 0.09305739402770996, 0.09986494481563568, 0.07337409257888794, 0.10259620100259781, -0.047868113964796066, -0.020447028800845146, 0.06872943043708801, -0.004597989842295647, 0.2949173152446747, -0.025372980162501335, 0.06783269345760345, 0.05357075110077858, 0.13839465379714966, -0.022259138524532318, 0.03763166442513466, 0.006550253368914127, -0.004987536929547787, -0.025867585092782974, -0.057317283004522324, -0.027098597958683968, -0.0014259854797273874, -0.07939993590116501, 0.05529754236340523, -0.06157984212040901, 0.06318319588899612, 0.019378170371055603, 0.2613871097564697, -0.0013915469171479344, -0.28088417649269104, -0.07782940566539764, -0.02199469320476055, -0.03943922370672226, -0.04498637095093727, 0.012248540297150612, 0.09790370613336563, -0.10396456718444824, 0.051648836582899094, -0.05652175471186638, 0.081486776471138, -0.026772692799568176, -0.004546423442661762, 0.030105292797088623, 0.18326228857040405, -0.016070300713181496, 0.04975070431828499, -0.19926469027996063, 0.21668195724487305, 0.0182656142860651, 0.13269543647766113, -0.0499923974275589, 0.00819060392677784, 0.023258518427610397, -0.0013353109825402498, 0.07684347033500671, -0.005137294065207243, -0.07620354741811752, -0.12557756900787354, -0.07408318668603897, 0.0800393596291542, 0.14072395861148834, -0.01548776775598526, 0.1024726927280426, -0.048969414085149765, 0.018789013847708702, 0.040921855717897415, -0.06851888447999954, -0.15677978098392487, -0.09676206111907959, -0.017097346484661102, 0.035606320947408676, -0.09451381117105484, -0.046515364199876785, -0.07565054297447205, -0.010576745495200157, 0.11546829342842102, 0.02636021003127098, -0.019178904592990875, -0.13702167570590973, 0.08678080886602402, 0.14998175203800201, -0.07309350371360779, 0.024267269298434258, -0.007120953407138586, 0.06427866965532303, 0.04308968782424927, -0.09386114776134491, 0.048486921936273575, -0.057841695845127106, -0.16114991903305054, -0.046732813119888306, 0.09139132499694824, 0.07268821448087692, 0.039837926626205444, -0.004076710436493158, 0.050857771188020706, -0.021601373329758644, -0.10025738924741745, 0.013649959117174149, 0.036450181156396866, 0.05065341666340828, 0.036058247089385986, -0.08316148817539215, 0.06015168875455856, -0.032752860337495804, -0.005291207227855921, 0.1126965656876564, 0.24284282326698303, -0.08929266780614853, 0.08561702072620392, 0.05679263547062874, -0.06840071082115173, -0.14229600131511688, 0.06368527561426163, 0.10450805723667145, -0.0014875404303893447, 0.0570504330098629, -0.19440679252147675, 0.14202407002449036, 0.11394678801298141, -0.01245474349707365, 0.03839944303035736, -0.2722442150115967, -0.11783981323242188, 0.05919967219233513, 0.1324119120836258, 0.12130937725305557, -0.13340331614017487, -0.01337104756385088, -0.017449818551540375, -0.1264839768409729, 0.10692109167575836, -0.11357207596302032, 0.13440996408462524, -0.03421180322766304, 0.10949728637933731, 0.004712828900665045, -0.030068721622228622, 0.10686063021421432, 0.05097272992134094, 0.09775908291339874, -0.04233326017856598, 0.01139714103192091, 0.059877097606658936, -0.04820217937231064, 0.013178929686546326, -0.07178054004907608, 0.08301492035388947, -0.12040592730045319, -0.006885865703225136, -0.0791037455201149, 0.05013106018304825, -0.03725204989314079, -0.05197904258966446, -0.05306514725089073, 0.03648946061730385, 0.055632371455430984, -0.037124138325452805, 0.05358012393116951, -0.0004107025742996484, 0.09323256462812424, 0.023126639425754547, 0.06874963641166687, -0.0007835288415662944, -0.04789804294705391, 0.019830184057354927, -0.009422542527318, 0.060023363679647446, -0.1389552503824234, 0.004861701745539904, 0.10577105730772018, 0.05177406966686249, 0.09698210656642914, 0.04445236548781395, -0.047739528119564056, 0.01177914347499609, 0.03766288235783577, -0.11329739540815353, -0.10228176414966583, 0.04903896525502205, -0.04026925563812256, -0.13904337584972382, 0.046980686485767365, 0.11355968564748764, -0.048611707985401154, -0.022956322878599167, -0.018593376502394676, 0.0066942791454494, -0.021528473123908043, 0.18583343923091888, 0.042500089854002, 0.04129355773329735, -0.10249876976013184, 0.12946563959121704, 0.029507864266633987, -0.021826516836881638, 0.05846009775996208, 0.08621029555797577, -0.09492150694131851, 0.0024302073288708925, 0.09509160369634628, 0.17584849894046783, -0.07057375460863113, -0.014038711786270142, -0.10414604097604752, -0.07146887481212616, 0.06167963892221451, 0.15958821773529053, 0.056664276868104935, -0.018209706991910934, -0.04966399446129799, 0.04167281091213226, -0.14155468344688416, 0.06139229238033295, 0.03203078359365463, 0.07073517143726349, -0.08758485317230225, 0.05720153823494911, 0.00770128658041358, 0.0050706625916063786, -0.01687709055840969, 0.014931363984942436, -0.09306154400110245, -0.029673617333173752, -0.07546992599964142, 0.010216325521469116, -0.012684658169746399, 0.015909982845187187, -0.010430222377181053, -0.0681195929646492, -0.06943226605653763, 0.03685726597905159, -0.07754578441381454, -0.05297556519508362, 0.012548168189823627, 0.04236100986599922, -0.13314253091812134, 0.006033703219145536, 0.015590718016028404, -0.08927087485790253, 0.08524539321660995, 0.08921214938163757, 0.026970788836479187, 0.034523606300354004, -0.13032546639442444, -0.03284066915512085, 0.014284864999353886, 0.0016177636571228504, 0.06566763669252396, -0.09562709927558899, -0.004565778188407421, -0.021019861102104187, 0.07697679847478867, 0.010341066867113113, 0.08049681782722473, -0.13096970319747925, 0.008751634508371353, -0.08490004390478134, -0.04428362846374512, -0.06586670875549316, 0.01572478748857975, 0.10199844092130661, 0.05345754325389862, 0.1630898267030716, -0.07682804763317108, 0.01913268305361271, -0.20918233692646027, -0.02790805697441101, -0.005891728214919567, -0.053279899060726166, -0.13540878891944885, -0.03997969999909401, 0.0772811770439148, -0.03892729803919792, 0.09991627186536789, -0.021686341613531113, 0.06101437658071518, 0.03883754089474678, -0.030144235119223595, -0.06326649338006973, -0.02856556326150894, 0.19633163511753082, 0.07723144441843033, -0.015841910615563393, 0.10857177525758743, -0.004853746388107538, 0.0520513579249382, 0.03000856749713421, 0.2047373205423355, 0.20634417235851288, 0.005157736595720053, 0.07032521814107895, 0.06175218150019646, -0.0818057656288147, -0.06666165590286255, 0.17986688017845154, -0.026439229026436806, 0.07145323604345322, -0.029314210638403893, 0.18767252564430237, 0.11275763809680939, -0.15050667524337769, 0.03159407153725624, -0.03252135589718819, -0.07708431780338287, -0.14034223556518555, 0.0029039077926427126, -0.09687582403421402, -0.11882486194372177, 0.045360881835222244, -0.12056321650743484, 0.05612574890255928, 0.08192005753517151, 0.012763641774654388, 0.033816978335380554, 0.12701451778411865, -0.024375855922698975, 0.005420073866844177, 0.03988061100244522, 0.007147608790546656, -0.02881692722439766, -0.040976494550704956, -0.0761134997010231, 0.05074235796928406, 0.006026634480804205, 0.08728731423616409, -0.04480172321200371, -0.010498834773898125, 0.0413215272128582, -0.028653105720877647, -0.0764695256948471, 0.025065172463655472, 0.03700675070285797, 0.055837295949459076, 0.04663587361574173, 0.04479648172855377, -0.006393906194716692, -0.033171284943819046, 0.2805931866168976, -0.058562975376844406, -0.09600777179002762, -0.11370038241147995, 0.20569975674152374, 0.040586069226264954, -0.02944309078156948, 0.03807602450251579, -0.08294986933469772, -0.011472459882497787, 0.1553265005350113, 0.15553715825080872, -0.061941374093294144, -0.024198953062295914, -0.011564145796000957, -0.01683427393436432, -0.039195410907268524, 0.11564141511917114, 0.09553518146276474, 0.001909524668008089, -0.0536511056125164, -0.026714632287621498, -0.035639408975839615, -0.014777567237615585, -0.04167455434799194, 0.024376273155212402, 0.015621259808540344, -0.022324202582240105, -0.0337594710290432, 0.06279456615447998, -0.00041767285438254476, -0.24176448583602905, 0.061086978763341904, -0.14368580281734467, -0.1687733680009842, -0.025401625782251358, 0.04890485480427742, -0.00992540642619133, 0.050772298127412796, -0.023376859724521637, -0.00466610211879015, 0.08039263635873795, -0.020244203507900238, -0.056709565222263336, -0.1255219429731369, 0.11210471391677856, -0.05993294343352318, 0.18063822388648987, -0.017082586884498596, 0.06872937083244324, 0.11798236519098282, 0.042911332100629807, -0.14019882678985596, 0.046598922461271286, 0.046598825603723526, -0.11393415182828903, 0.018825631588697433, 0.1436590552330017, -0.045820023864507675, 0.08394169062376022, 0.04363667964935303, -0.09631800651550293, -0.00985125731676817, -0.04690048471093178, -0.026020633056759834, -0.07113640755414963, -0.011812569573521614, -0.06844735890626907, 0.17021243274211884, 0.19743359088897705, -0.02562999166548252, 0.013572380878031254, -0.09399967640638351, 0.028515366837382317, 0.0681905746459961, 0.03770916536450386, -0.05036025866866112, -0.20847313106060028, 0.0192379392683506, 0.050537023693323135, -0.0029716496355831623, -0.2319372445344925, -0.07808493077754974, 0.0399833545088768, -0.03497854247689247, -0.05615091696381569, 0.09571909159421921, 0.036007825285196304, 0.0479174368083477, -0.03689778596162796, -0.14981454610824585, -0.03775971755385399, 0.1553279459476471, -0.1791277527809143, -0.04985203221440315 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-1024-finetuned-squad-seed-8 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-1024-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-1024-finetuned-squad-seed-8
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-1024-finetuned-squad-seed-8 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-1024-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-1024-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-1024-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.0788477435708046, 0.09874749183654785, -0.0025827717036008835, 0.07803294062614441, 0.1329260915517807, 0.03475825488567352, 0.10673870891332626, 0.12214697897434235, -0.12631137669086456, 0.0674501359462738, 0.09161190688610077, 0.0862944945693016, 0.03298954665660858, 0.12941649556159973, -0.03939071297645569, -0.2321317046880722, 0.007660465780645609, -0.017204558476805687, -0.06445813179016113, 0.10158168524503708, 0.08855926990509033, -0.09773233532905579, 0.0807623565196991, -0.003468698589131236, -0.18561968207359314, 0.02794070914387703, -0.020440781489014626, -0.049408890306949615, 0.09896913915872574, -0.005088993813842535, 0.08267581462860107, 0.006168887950479984, 0.12011684477329254, -0.19135180115699768, 0.0133528346195817, 0.07314825057983398, 0.0326194129884243, 0.09492836892604828, 0.020532840862870216, -0.0020381449721753597, 0.16477730870246887, -0.13420411944389343, 0.0992715060710907, 0.029181156307458878, -0.08704214543104172, -0.1689000129699707, -0.09662237763404846, 0.015683284029364586, 0.03692193701863289, 0.08728374540805817, 0.008898542262613773, 0.17795392870903015, -0.09171251207590103, 0.08101323992013931, 0.23914757370948792, -0.2781316637992859, -0.07850367575883865, 0.044266704469919205, 0.05009093135595322, 0.07993417978286743, -0.11831086128950119, -0.016225306317210197, 0.02130574733018875, 0.02973584085702896, 0.09204764664173126, -0.025890791788697243, -0.08741962164640427, -0.007446248549968004, -0.12007807195186615, 0.004855351522564888, 0.11263331770896912, 0.04526689648628235, -0.050514496862888336, -0.048749327659606934, -0.058965958654880524, -0.07343024015426636, -0.034948863089084625, -0.03503921627998352, 0.04362070560455322, -0.05659949779510498, -0.1181129664182663, -0.033702217042446136, -0.04782206192612648, -0.07748883217573166, -0.02002144046127796, 0.20396563410758972, 0.04903654381632805, 0.03321133181452751, -0.05076614022254944, 0.08142726123332977, 0.009140056557953358, -0.12868723273277283, -0.029095256701111794, 0.003828716930001974, -0.0805981457233429, -0.0393165722489357, -0.05597672611474991, 0.015540230087935925, 0.042458005249500275, 0.21280239522457123, -0.05320827662944794, 0.08396938443183899, 0.03184402734041214, -0.019493594765663147, -0.02120467834174633, 0.12497565895318985, -0.02010856568813324, -0.07896187156438828, 0.028606737032532692, 0.057649169117212296, 0.02522038109600544, 0.0021864569280296564, -0.05745413154363632, -0.0325099378824234, 0.08400581032037735, 0.032015345990657806, -0.061647966504096985, 0.025256995111703873, 0.0018544035265222192, -0.019282257184386253, 0.006807961966842413, -0.11429063975811005, 0.017800476402044296, -0.007042379584163427, -0.07383071631193161, -0.015067007392644882, 0.009989583864808083, -0.015182310715317726, 0.010561949573457241, 0.09817496687173843, -0.08899553120136261, -0.02095624804496765, -0.0763622522354126, -0.07052211463451385, -0.0009272310417145491, -0.1491001844406128, 0.013849182985723019, -0.07322296500205994, -0.15555936098098755, -0.03422931209206581, 0.04233555868268013, -0.07109656184911728, -0.028549516573548317, -0.03841940313577652, -0.07686097919940948, 0.025496216490864754, 0.0033539212308824062, 0.18849802017211914, -0.05265706405043602, 0.07918931543827057, 0.02002781257033348, 0.05079328641295433, -0.023534296080470085, 0.03120042011141777, -0.08705678582191467, 0.004215538036078215, -0.16861236095428467, 0.060996800661087036, -0.0760820209980011, 0.018274223431944847, -0.12843157351016998, -0.08619680255651474, -0.0253300741314888, -0.027978233993053436, 0.08328187465667725, 0.10030945390462875, -0.1395987570285797, -0.025858471170067787, 0.1132524311542511, -0.07770803570747375, -0.057821039110422134, 0.06682613492012024, -0.0674605742096901, 0.05203895643353462, 0.05750390142202377, 0.1829068660736084, 0.07340425252914429, -0.11590076237916946, -0.021382033824920654, 0.0019391898531466722, 0.02931755781173706, -0.012373732402920723, 0.04992020130157471, 0.010259607806801796, 0.02308143675327301, 0.016441047191619873, -0.03677910566329956, 0.002879892010241747, -0.09750735014677048, -0.062432412058115005, -0.05804600939154625, -0.08210718631744385, -0.03752776235342026, 0.013699358329176903, 0.037542909383773804, -0.08116606622934341, -0.08348053693771362, 0.08281989395618439, 0.14143267273902893, -0.04267947003245354, 0.021035365760326385, -0.0723952203989029, 0.019978441298007965, -0.053469642996788025, -0.03114156797528267, -0.20486052334308624, -0.06539332121610641, 0.033028390258550644, -0.025823917239904404, 0.05588797479867935, 0.00606633210554719, 0.07182866334915161, 0.0374307781457901, -0.0367109477519989, 0.006413315422832966, -0.08886074274778366, -0.006295406259596348, -0.09542272239923477, -0.22225643694400787, -0.039068713784217834, -0.0310573261231184, 0.12707379460334778, -0.1649017632007599, -0.008521904237568378, -0.034422826021909714, 0.11939491331577301, 0.028915995731949806, -0.06292065232992172, -0.015709511935710907, 0.03054598532617092, 0.0019657504744827747, -0.09288350492715836, 0.032407376915216446, 0.016990626230835915, -0.07146691530942917, -0.05930573120713234, -0.11763735860586166, 0.005574549548327923, 0.07798702269792557, 0.06229938194155693, -0.09827669709920883, 0.006065301597118378, -0.0641942024230957, -0.03329283744096756, -0.055950138717889786, 0.0399942547082901, 0.17636710405349731, 0.005910596344619989, 0.10798900574445724, -0.07909733802080154, -0.07353495061397552, 0.021989336237311363, 0.005503733642399311, 0.04407428205013275, 0.0916265919804573, 0.11174028366804123, -0.12607695162296295, 0.06493926793336868, 0.08258871734142303, -0.061866581439971924, 0.12355971336364746, -0.03858426958322525, -0.07944390177726746, -0.03486551344394684, -0.018058929592370987, -0.01437944546341896, 0.1363837867975235, -0.05370122566819191, 0.0240446999669075, 0.029689494520425797, 0.03937177360057831, 0.02024945802986622, -0.1529252529144287, -0.0027967768255621195, 0.008656404912471771, -0.042293086647987366, -0.016177885234355927, 0.021329371258616447, 0.018653908744454384, 0.0973050519824028, 0.03363645821809769, -0.017573298886418343, -0.006749571301043034, -0.004078228492289782, -0.052570343017578125, 0.19055378437042236, -0.09042137861251831, -0.040197793394327164, -0.07763804495334625, -0.002001674845814705, -0.03748088702559471, -0.042400941252708435, 0.027822768315672874, -0.08781997859477997, -0.03871475160121918, -0.07403404265642166, -0.003444843227043748, -0.047965507954359055, 0.025296969339251518, 0.03058822639286518, 0.004023936111479998, 0.06160326302051544, -0.1350710242986679, 0.004513579420745373, -0.07347474992275238, -0.10571800917387009, 0.017002282664179802, 0.06415195763111115, 0.09097550809383392, 0.059628404676914215, -0.02868855930864811, 0.02160600945353508, -0.030601318925619125, 0.2536318600177765, -0.055555786937475204, -0.0005750462878495455, 0.10805761069059372, 0.023391535505652428, 0.04587757587432861, 0.09324193000793457, 0.03490735962986946, -0.10283582657575607, 0.029787909239530563, 0.08471280336380005, -0.03504220396280289, -0.24011410772800446, -0.005378181114792824, -0.035280924290418625, -0.11489317566156387, 0.0824776217341423, 0.050724953413009644, -0.04190400615334511, 0.064642034471035, 0.009816144593060017, 0.024448592215776443, -0.051135387271642685, 0.09279137849807739, 0.10036744922399521, 0.07294690608978271, 0.10228876024484634, -0.0475630983710289, -0.020221905782818794, 0.0690780058503151, -0.005420295055955648, 0.29351410269737244, -0.025514541193842888, 0.0684117004275322, 0.05299689620733261, 0.1388196051120758, -0.022432012483477592, 0.037108127027750015, 0.006210753694176674, -0.005185981746762991, -0.02602616511285305, -0.057318974286317825, -0.02799103409051895, -0.0009785351576283574, -0.08003076165914536, 0.055904168635606766, -0.06155721843242645, 0.0637412965297699, 0.019133534282445908, 0.2612374722957611, -0.0016170523595064878, -0.2806655466556549, -0.0779598131775856, -0.022146202623844147, -0.03961458057165146, -0.04529758542776108, 0.0123123899102211, 0.09866500645875931, -0.10385487973690033, 0.050937872380018234, -0.05585892125964165, 0.08171965181827545, -0.027832936495542526, -0.00421377457678318, 0.029690155759453773, 0.18371297419071198, -0.015968572348356247, 0.04986977204680443, -0.2003004401922226, 0.21562156081199646, 0.018478523939847946, 0.13280418515205383, -0.04994985833764076, 0.008618691936135292, 0.023281648755073547, 0.00027818852686323225, 0.07606366276741028, -0.004781847819685936, -0.07528109848499298, -0.12682193517684937, -0.07434903085231781, 0.07993001490831375, 0.13977569341659546, -0.014033795334398746, 0.10207563638687134, -0.04924054816365242, 0.018846523016691208, 0.040953975170850754, -0.06790005415678024, -0.15673504769802094, -0.09701173007488251, -0.017518367618322372, 0.036452315747737885, -0.09422564506530762, -0.04638311639428139, -0.07527434825897217, -0.012131608091294765, 0.1157456561923027, 0.026850156486034393, -0.019208932295441628, -0.13699010014533997, 0.08751803636550903, 0.14925317466259003, -0.07333194464445114, 0.024418437853455544, -0.007222621701657772, 0.06410028785467148, 0.04318402707576752, -0.09309528768062592, 0.04848342761397362, -0.05771861970424652, -0.16067799925804138, -0.04703214019536972, 0.0907154455780983, 0.07264801859855652, 0.03995087370276451, -0.0038118967786431313, 0.0506092794239521, -0.021943381056189537, -0.1002620980143547, 0.01252483855932951, 0.03733768314123154, 0.050236884504556656, 0.036411792039871216, -0.08341002464294434, 0.06091758608818054, -0.03249240294098854, -0.005588397849351168, 0.1137382984161377, 0.24248924851417542, -0.08964341133832932, 0.08476002514362335, 0.05714899301528931, -0.06856410205364227, -0.14178188145160675, 0.0637555941939354, 0.10407271236181259, -0.0014090348267927766, 0.05725586414337158, -0.1938856542110443, 0.14226531982421875, 0.11500643938779831, -0.012153931893408298, 0.038489293307065964, -0.27233415842056274, -0.11800922453403473, 0.05989134684205055, 0.13243839144706726, 0.12274657934904099, -0.13411276042461395, -0.013364946469664574, -0.018066972494125366, -0.12750355899333954, 0.10578128695487976, -0.11300302296876907, 0.13421815633773804, -0.03404507040977478, 0.10836630314588547, 0.00477339094504714, -0.03012019954621792, 0.10725041478872299, 0.05155828967690468, 0.09777958691120148, -0.04274721071124077, 0.011599461548030376, 0.059307970106601715, -0.04836873710155487, 0.013510160148143768, -0.0714912861585617, 0.08309661597013474, -0.12205720692873001, -0.006927581038326025, -0.078008271753788, 0.05024342983961105, -0.03711957111954689, -0.05199649557471275, -0.05305707827210426, 0.035769373178482056, 0.055488184094429016, -0.03690236061811447, 0.054474860429763794, -0.0003605110105127096, 0.09272866696119308, 0.023919565603137016, 0.06756506860256195, -0.0032531896140426397, -0.04789679870009422, 0.019755670800805092, -0.009466108866035938, 0.05994079262018204, -0.13892152905464172, 0.0054094367660582066, 0.10613074153661728, 0.05193204805254936, 0.09760132431983948, 0.04350200667977333, -0.04712708666920662, 0.012001554481685162, 0.0372493639588356, -0.11287205666303635, -0.10142184048891068, 0.04871909320354462, -0.040989384055137634, -0.13869619369506836, 0.04616706445813179, 0.11379214376211166, -0.049267951399087906, -0.0224833395332098, -0.018858816474676132, 0.00587654672563076, -0.021645450964570045, 0.18521326780319214, 0.04337342083454132, 0.04100431501865387, -0.10239682346582413, 0.12907744944095612, 0.029903709888458252, -0.020780105143785477, 0.05854310095310211, 0.08629349619150162, -0.09501231461763382, 0.002180113922804594, 0.09521647542715073, 0.17592152953147888, -0.07127823680639267, -0.014873229898512363, -0.10454479604959488, -0.07061723619699478, 0.06139064207673073, 0.1589186042547226, 0.05696690455079079, -0.018495410680770874, -0.04983767122030258, 0.041257958859205246, -0.14158612489700317, 0.061252981424331665, 0.03196365758776665, 0.07106827944517136, -0.08770886808633804, 0.05885685980319977, 0.008188015781342983, 0.00518425926566124, -0.016767125576734543, 0.01468848530203104, -0.09309954941272736, -0.029425084590911865, -0.077218197286129, 0.010440973564982414, -0.012353869155049324, 0.0162087120115757, -0.010462849400937557, -0.06803881376981735, -0.06928158551454544, 0.036905042827129364, -0.07711786776781082, -0.05289449915289879, 0.012870410457253456, 0.0422929972410202, -0.13257986307144165, 0.005694922525435686, 0.015217742882668972, -0.08888446539640427, 0.08550813794136047, 0.0885268896818161, 0.026654133573174477, 0.03427280858159065, -0.1309066116809845, -0.03259309381246567, 0.014246788807213306, 0.00232084933668375, 0.06583035737276077, -0.09426984190940857, -0.004050717689096928, -0.020831184461712837, 0.07683662325143814, 0.010098869912326336, 0.08059211075305939, -0.13116179406642914, 0.008904542773962021, -0.08489199727773666, -0.044321753084659576, -0.06620205193758011, 0.015577920712530613, 0.1014697328209877, 0.052955351769924164, 0.16279444098472595, -0.07670027762651443, 0.018993590027093887, -0.2091914415359497, -0.02812574990093708, -0.005755698774009943, -0.05310884490609169, -0.1354321986436844, -0.04094310477375984, 0.07715609669685364, -0.03859417140483856, 0.10144021362066269, -0.02144559472799301, 0.06127215921878815, 0.03859877958893776, -0.030751753598451614, -0.06310815364122391, -0.02900119125843048, 0.19651557505130768, 0.07783355563879013, -0.015675364062190056, 0.10782550275325775, -0.004633908625692129, 0.052943672984838486, 0.02950296550989151, 0.20297357439994812, 0.206537663936615, 0.0047024874947965145, 0.0700855702161789, 0.06148204952478409, -0.08149174600839615, -0.06680824607610703, 0.17944207787513733, -0.026594536378979683, 0.07212284952402115, -0.029444027692079544, 0.187968909740448, 0.11241555213928223, -0.15040738880634308, 0.03145967423915863, -0.03198906034231186, -0.07729937136173248, -0.14043621718883514, 0.003652291838079691, -0.09697864204645157, -0.11869587749242783, 0.04479619488120079, -0.12010679394006729, 0.05634472519159317, 0.08261468261480331, 0.012506779283285141, 0.03363654762506485, 0.12605313956737518, -0.024269025772809982, 0.005599082447588444, 0.03988198935985565, 0.007077632937580347, -0.028493870049715042, -0.04208867624402046, -0.07678233832120895, 0.050452254712581635, 0.006217234302312136, 0.08772008121013641, -0.04489525035023689, -0.00915710348635912, 0.04173300415277481, -0.028542565181851387, -0.07676918059587479, 0.02515791356563568, 0.036397043615579605, 0.05572612211108208, 0.04550198093056679, 0.04507437348365784, -0.006339129526168108, -0.0332443043589592, 0.2798646092414856, -0.05810375511646271, -0.096404530107975, -0.11343052238225937, 0.20486688613891602, 0.04080010578036308, -0.029415877535939217, 0.037957966327667236, -0.08303162455558777, -0.010624325834214687, 0.15582755208015442, 0.15483656525611877, -0.06287740916013718, -0.024179331958293915, -0.011234700679779053, -0.016965901479125023, -0.04002588242292404, 0.1160912960767746, 0.09579779952764511, 0.0006981123005971313, -0.05272721126675606, -0.02691478654742241, -0.035780347883701324, -0.014712967909872532, -0.042904287576675415, 0.02360580675303936, 0.01565578393638134, -0.02174801379442215, -0.03330935910344124, 0.06241992488503456, 0.00011194615944987163, -0.24271564185619354, 0.061096321791410446, -0.14365264773368835, -0.168901726603508, -0.02549566887319088, 0.049111735075712204, -0.009270327165722847, 0.05005626007914543, -0.02327127754688263, -0.004250696860253811, 0.08124497532844543, -0.020626604557037354, -0.056797608733177185, -0.12498236447572708, 0.11171916872262955, -0.059341203421354294, 0.18049277365207672, -0.01704486832022667, 0.0689782127737999, 0.11772063374519348, 0.04310264810919762, -0.13935531675815582, 0.04683578386902809, 0.04630478471517563, -0.11337748914957047, 0.01879100501537323, 0.1424664556980133, -0.045783787965774536, 0.08378108590841293, 0.044049546122550964, -0.09580733627080917, -0.01030724123120308, -0.04773576930165291, -0.026472236961126328, -0.07086555659770966, -0.012933239340782166, -0.06814952939748764, 0.17039532959461212, 0.19711092114448547, -0.025489242747426033, 0.013291622512042522, -0.09417272359132767, 0.028039876371622086, 0.06851852685213089, 0.037935350090265274, -0.05071847513318062, -0.208385169506073, 0.019811542704701424, 0.05019861087203026, -0.0027787326835095882, -0.23131322860717773, -0.07848234474658966, 0.039771053940057755, -0.035099610686302185, -0.05587464198470116, 0.09584721177816391, 0.036295074969530106, 0.04809622839093208, -0.03697903826832771, -0.15011775493621826, -0.03820544481277466, 0.15545344352722168, -0.17899608612060547, -0.05008389800786972 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-128-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-128-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-0
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-128-finetuned-squad-seed-0 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-128-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-128-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-128-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08095823228359222, 0.0852503702044487, -0.002478597220033407, 0.08370379358530045, 0.13653603196144104, 0.03219567984342575, 0.10040277987718582, 0.13986769318580627, -0.1149863675236702, 0.04331861063838005, 0.08906418830156326, 0.08170413225889206, 0.0315076969563961, 0.13667702674865723, -0.03383384644985199, -0.25429388880729675, -0.0055573927238583565, -0.01906982809305191, -0.09605054557323456, 0.10952239483594894, 0.09837917983531952, -0.10029860585927963, 0.072549968957901, -0.014115771278738976, -0.17804011702537537, 0.016671529039740562, -0.012697580270469189, -0.052256107330322266, 0.11855349689722061, -0.00900032464414835, 0.07657024264335632, 0.009751135483384132, 0.12193533778190613, -0.19133062660694122, 0.01639603264629841, 0.07613987475633621, 0.04642181843519211, 0.09744089096784592, 0.008602033369243145, -0.011816460639238358, 0.1323339343070984, -0.12792237102985382, 0.09998342394828796, 0.032076455652713776, -0.09528183937072754, -0.20624785125255585, -0.09538143873214722, 0.00823470763862133, 0.04330406337976456, 0.08529260754585266, 0.010156798176467419, 0.15995191037654877, -0.09822437912225723, 0.08252694457769394, 0.23087851703166962, -0.2740166187286377, -0.0794408842921257, 0.05319635570049286, 0.05968784540891647, 0.08120010793209076, -0.12685273587703705, -0.009277819655835629, 0.006361129228025675, 0.02562081068754196, 0.1039217859506607, -0.03182261437177658, -0.08747614175081253, 0.002601564396172762, -0.10461250692605972, 0.0057657030411064625, 0.10998530685901642, 0.03404351323843002, -0.05263500288128853, -0.07243534177541733, -0.042769625782966614, -0.05434262007474899, -0.03434319794178009, -0.01969732716679573, 0.038408972322940826, -0.05957089737057686, -0.1397208422422409, -0.04809824004769325, -0.049616869539022446, -0.08978229761123657, -0.0063020773231983185, 0.21865972876548767, 0.036064259707927704, 0.03096810169517994, -0.05221787095069885, 0.10313740372657776, 0.013654351234436035, -0.1277635097503662, -0.030032966285943985, -0.005357202608138323, -0.09058087319135666, -0.03594774752855301, -0.05922117829322815, 0.019577305763959885, 0.035217877477407455, 0.21511228382587433, -0.0433029904961586, 0.07785136252641678, 0.03261028230190277, -0.017322368919849396, -0.027273597195744514, 0.13863533735275269, -0.021548008546233177, -0.07378096878528595, 0.011756801046431065, 0.06334684044122696, 0.009661135263741016, -0.005500479135662317, -0.06254652887582779, -0.04012309014797211, 0.06448879837989807, 0.04753383621573448, -0.05954708158969879, 0.031022384762763977, -0.006863785907626152, -0.023707980290055275, 0.0012270172592252493, -0.1149839237332344, 0.015538770705461502, -0.00870039127767086, -0.08201029896736145, -0.04557465389370918, 0.008318141102790833, -0.011314325965940952, 0.011262951418757439, 0.0974297747015953, -0.07351227104663849, -0.02468218095600605, -0.07990054041147232, -0.07519999891519547, -0.01643318124115467, -0.1564638465642929, 0.019107429310679436, -0.06359101086854935, -0.15938003361225128, -0.030466653406620026, 0.056008946150541306, -0.08094269782304764, -0.027619250118732452, -0.03244781494140625, -0.07873354107141495, 0.02144445665180683, 0.0017616543918848038, 0.21539518237113953, -0.049829430878162384, 0.08924830704927444, 0.008334198035299778, 0.05671153962612152, -0.008405941538512707, 0.03628399223089218, -0.08756622672080994, 0.008990226313471794, -0.17665508389472961, 0.07539930939674377, -0.07984726876020432, 0.017370112240314484, -0.13992124795913696, -0.08602981269359589, -0.011312154121696949, -0.02194075472652912, 0.0802985429763794, 0.10438566654920578, -0.142584428191185, -0.022303259000182152, 0.11679136753082275, -0.06490267813205719, -0.05628107860684395, 0.057226646691560745, -0.07605793327093124, 0.08552774786949158, 0.05455183610320091, 0.19150251150131226, 0.0876104012131691, -0.10707733780145645, 0.013314320705831051, 0.013192584738135338, 0.03466062247753143, 0.00342720584012568, 0.05016563832759857, 0.0050756074488162994, 0.02994326502084732, 0.01634981669485569, -0.07197511941194534, 0.008280882611870766, -0.09122844785451889, -0.05960732325911522, -0.04861357808113098, -0.0837659016251564, -0.006014547310769558, 0.013478567823767662, 0.03546413779258728, -0.07994074374437332, -0.08456949144601822, 0.07544022053480148, 0.13661707937717438, -0.0476268008351326, 0.018381979316473007, -0.07580608129501343, -0.0026550055481493473, -0.03061908483505249, -0.023881638422608376, -0.20368380844593048, -0.057126909494400024, 0.03230473771691322, -0.00738324411213398, 0.04519279673695564, 0.0006871952209621668, 0.08454346656799316, 0.02621583454310894, -0.054867688566446304, -0.0006956983706913888, -0.08664927631616592, -0.007071345113217831, -0.09379097819328308, -0.22039794921875, -0.05268796160817146, -0.03856198862195015, 0.1365993320941925, -0.16605034470558167, -0.003546495223417878, -0.018034610897302628, 0.11621010303497314, 0.04326123744249344, -0.05195290595293045, -0.0045325844548642635, 0.029146384447813034, 0.012388844974339008, -0.09764739871025085, 0.03818521276116371, 0.016307853162288666, -0.09428181499242783, -0.027953360229730606, -0.10361451655626297, -0.010292758233845234, 0.07104083895683289, 0.06985977292060852, -0.10235398262739182, -0.014747144654393196, -0.06288262456655502, -0.028446635231375694, -0.05442212522029877, 0.038782838732004166, 0.18155723810195923, 0.018718171864748, 0.1096113994717598, -0.07467129826545715, -0.08310586214065552, 0.01899777539074421, 0.008759203366935253, 0.061090774834156036, 0.10229378193616867, 0.07492205500602722, -0.10942256450653076, 0.058127231895923615, 0.09146293252706528, -0.052153266966342926, 0.13778063654899597, -0.04670077562332153, -0.07328125834465027, -0.03144922852516174, -0.00887386966496706, -0.006462298333644867, 0.15071037411689758, -0.03723939135670662, 0.017590006813406944, 0.034319981932640076, 0.03753789886832237, 0.004545844160020351, -0.161299467086792, -0.015177879482507706, 0.014783020131289959, -0.047942742705345154, -0.02313872240483761, 0.01543796993792057, 0.01641768217086792, 0.095157690346241, 0.04206511378288269, -0.0033865810837596655, 0.007083449512720108, -0.010120537132024765, -0.04305266961455345, 0.20053794980049133, -0.09128046035766602, -0.04423923045396805, -0.07586602121591568, -0.000568892399314791, -0.02370358258485794, -0.04024490714073181, 0.015841709449887276, -0.0948447659611702, -0.025517968460917473, -0.07208289206027985, -0.00016685928858350962, -0.04109245911240578, 0.015024910680949688, 0.0031516142189502716, 0.014564864337444305, 0.05890187621116638, -0.13236182928085327, 0.010078764520585537, -0.0669173151254654, -0.11026014387607574, 0.02848133258521557, 0.060453400015830994, 0.08059130609035492, 0.057913556694984436, -0.032633502036333084, 0.019088292494416237, -0.04212802276015282, 0.23077392578125, -0.07851270586252213, 0.011940324679017067, 0.12324845790863037, 0.027101047337055206, 0.03953488543629646, 0.10454342514276505, 0.033322207629680634, -0.0993834137916565, 0.03909729793667793, 0.07743887603282928, -0.041357140988111496, -0.24464742839336395, 0.0077258930541574955, -0.03883965685963631, -0.09445704519748688, 0.08902652561664581, 0.050784170627593994, -0.0423780120909214, 0.06417225301265717, 0.009767544455826283, 0.010278169997036457, -0.023704467341303825, 0.08875417709350586, 0.09020736068487167, 0.06663074344396591, 0.10733974725008011, -0.0384654738008976, -0.01694338768720627, 0.06422758847475052, 0.028278814628720284, 0.30333587527275085, -0.04957485571503639, 0.08711323887109756, 0.049211811274290085, 0.1395425945520401, -0.021617397665977478, 0.04508736729621887, 0.0077449544332921505, -0.006143317092210054, -0.029535649344325066, -0.05429606884717941, -0.02041984722018242, 0.0020403617527335882, -0.07774460315704346, 0.04575258120894432, -0.05243568867444992, 0.04983409494161606, 0.019865624606609344, 0.2913056015968323, 0.0016796966083347797, -0.26306575536727905, -0.09510429203510284, -0.01572701334953308, -0.03698642551898956, -0.05263872444629669, 0.011812643148005009, 0.12151811271905899, -0.12400896102190018, 0.03698783740401268, -0.07146015018224716, 0.08059949427843094, -0.029708176851272583, -0.0020154512021690607, 0.04259783774614334, 0.1713908165693283, -0.022030629217624664, 0.05531204864382744, -0.22390080988407135, 0.22865378856658936, 0.014392255805432796, 0.12873980402946472, -0.05900200456380844, 0.008759508840739727, 0.026431048288941383, 0.004178130067884922, 0.08851506561040878, -0.00450399424880743, -0.0644308477640152, -0.13581861555576324, -0.052247971296310425, 0.07353987544775009, 0.14238326251506805, -0.04222971573472023, 0.09688957035541534, -0.05814274773001671, 0.014881191775202751, 0.037001486867666245, -0.0879499688744545, -0.13331928849220276, -0.0985792726278305, -0.02204338274896145, 0.015399351716041565, -0.06953247636556625, -0.057013142853975296, -0.06891966611146927, 0.03110099770128727, 0.1049962267279625, 0.013779657892882824, -0.031415704637765884, -0.1477304995059967, 0.07736589014530182, 0.15617778897285461, -0.06713826209306717, 0.02596461772918701, -0.003938506823033094, 0.07528161257505417, 0.03835450857877731, -0.0826021283864975, 0.060412630438804626, -0.06466817855834961, -0.17910973727703094, -0.04872662201523781, 0.09425555914640427, 0.07004373520612717, 0.04183795675635338, -0.0035818787291646004, 0.05249081179499626, -0.025966696441173553, -0.09308037906885147, 0.02405882440507412, 0.02137126959860325, 0.03668910637497902, 0.036263227462768555, -0.08473791927099228, 0.07607156783342361, -0.03818168863654137, -0.014459338039159775, 0.11402036994695663, 0.23188956081867218, -0.10134202986955643, 0.09859848022460938, 0.06175022944808006, -0.06121717020869255, -0.16073216497898102, 0.07137687504291534, 0.10298056155443192, 0.007597919087857008, 0.07035559415817261, -0.2106252759695053, 0.12813325226306915, 0.10327299684286118, -0.01649526320397854, 0.04077823832631111, -0.27267563343048096, -0.12035831063985825, 0.044819388538599014, 0.12851905822753906, 0.09442409127950668, -0.12538081407546997, -0.013945778831839561, -0.016130661591887474, -0.11606726795434952, 0.09493045508861542, -0.11325689405202866, 0.13565649092197418, -0.028716688975691795, 0.11081702262163162, 0.011080297641456127, -0.026294857263565063, 0.10320524126291275, 0.04636731371283531, 0.10212793201208115, -0.042454179376363754, 0.0039532920345664024, 0.06309807300567627, -0.04868278279900551, 0.0027359493542462587, -0.07619061321020126, 0.08765789866447449, -0.13158512115478516, -0.003410520264878869, -0.09181852638721466, 0.046593427658081055, -0.03871740400791168, -0.06928528845310211, -0.04224119707942009, 0.05715607851743698, 0.04894071817398071, -0.03579717501997948, 0.04852161929011345, -0.01932714134454727, 0.10401628911495209, 0.03695176914334297, 0.08637471497058868, 0.013925721868872643, -0.04607369005680084, 0.023602476343512535, -0.010158000513911247, 0.06457143276929855, -0.1650364100933075, 0.011646240018308163, 0.09984758496284485, 0.060739196836948395, 0.09762772917747498, 0.04399627074599266, -0.04551352933049202, 0.017362361773848534, 0.030052348971366882, -0.10147471725940704, -0.10529332607984543, 0.04666883498430252, -0.02841067686676979, -0.13962435722351074, 0.04910619929432869, 0.12123649567365646, -0.04412786662578583, -0.026923341676592827, -0.016769476234912872, 0.0043762424029409885, -0.02338845282793045, 0.1818738579750061, 0.04929890111088753, 0.05533160641789436, -0.10168193280696869, 0.12871797382831573, 0.029161937534809113, -0.021933823823928833, 0.052248161286115646, 0.08272708207368851, -0.10293660312891006, -0.0029495309572666883, 0.08251453191041946, 0.13715827465057373, -0.05848625674843788, -0.006042656023055315, -0.10440012812614441, -0.08331286162137985, 0.05051104724407196, 0.14396649599075317, 0.04843546077609062, -0.015678133815526962, -0.05397672578692436, 0.03999381884932518, -0.14141549170017242, 0.07155430316925049, 0.024843472987413406, 0.06333314627408981, -0.07643458992242813, 0.060966894030570984, 0.007595478091388941, 0.012818891555070877, -0.01660645753145218, 0.007630022708326578, -0.09344477206468582, -0.015684930607676506, -0.08032657206058502, -0.0023927611764520407, -0.00043427638593129814, 0.016741523519158363, -0.020739661529660225, -0.07109616696834564, -0.04842740669846535, 0.036737456917762756, -0.0875508189201355, -0.04996496066451073, 0.009295403957366943, 0.04104652628302574, -0.12388423085212708, -0.005305162630975246, 0.02182283066213131, -0.09319493174552917, 0.09487314522266388, 0.07326332479715347, 0.016644945368170738, 0.030086608603596687, -0.12482309341430664, -0.033201996237039566, -0.010821599513292313, -0.00879092887043953, 0.06188134476542473, -0.09510772675275803, -0.008890880271792412, -0.038043178617954254, 0.06944078207015991, 0.01351337693631649, 0.0688156709074974, -0.13427932560443878, 0.019245052710175514, -0.07465685158967972, -0.04651060700416565, -0.07517395913600922, 0.03585714474320412, 0.09772498160600662, 0.05966666713356972, 0.1511869579553604, -0.07693839073181152, 0.02400226891040802, -0.2058669626712799, -0.03469616919755936, -0.006113504525274038, -0.060908228158950806, -0.15145350992679596, -0.047067031264305115, 0.0811309888958931, -0.03781253099441528, 0.09137352555990219, -0.01846296340227127, 0.07636621594429016, 0.038264378905296326, -0.048044655472040176, -0.05174947530031204, -0.015910066664218903, 0.1995052993297577, 0.07288957387208939, -0.01652732491493225, 0.11152162402868271, 0.0013617894146591425, 0.029438909143209457, 0.052794020622968674, 0.18159228563308716, 0.21378140151500702, 0.03279925882816315, 0.0554632768034935, 0.06356524676084518, -0.07464095205068588, -0.07097627967596054, 0.1782524734735489, -0.015132625587284565, 0.07095585763454437, -0.04905132204294205, 0.19711408019065857, 0.1090121865272522, -0.1679404228925705, 0.04597318544983864, -0.04340926557779312, -0.08064094185829163, -0.12563632428646088, -0.012409058399498463, -0.08549658209085464, -0.12586553394794464, 0.03741913288831711, -0.11669890582561493, 0.05339465290307999, 0.10847759991884232, 0.013587219640612602, 0.036781784147024155, 0.12704282999038696, -0.020726744085550308, 0.002262219786643982, 0.06488431990146637, 0.00550650293007493, -0.01296313013881445, -0.03749856352806091, -0.07930111885070801, 0.04977920651435852, 0.0015500931767746806, 0.07851526886224747, -0.046550873667001724, -0.015125835314393044, 0.026483403518795967, -0.027776362374424934, -0.08056288212537766, 0.027689212933182716, 0.04100954905152321, 0.057035256177186966, 0.049449384212493896, 0.04607293754816055, -0.008641136810183525, -0.0331542044878006, 0.32023948431015015, -0.06681720167398453, -0.10049169510602951, -0.12236709147691727, 0.22080953419208527, 0.030223077163100243, -0.031145691871643066, 0.03338417783379555, -0.08338841795921326, -0.010287458077073097, 0.15907816588878632, 0.16706517338752747, -0.0711793303489685, -0.022459857165813446, -0.00555562786757946, -0.017750250175595284, -0.03692977502942085, 0.1266910284757614, 0.08883703500032425, -0.023500697687268257, -0.06269393861293793, -0.012493819929659367, -0.018938560038805008, -0.031691618263721466, -0.0399896539747715, 0.04233792796730995, 0.014681038446724415, -0.025823522359132767, -0.0423959344625473, 0.07395746558904648, 0.004233479965478182, -0.2577477693557739, 0.06770122796297073, -0.15843477845191956, -0.17050766944885254, -0.04391898587346077, 0.03659236803650856, -0.0008409243891946971, 0.05695297196507454, -0.01644243113696575, 0.00857994519174099, 0.07899037003517151, -0.017058394849300385, -0.031080879271030426, -0.12505985796451569, 0.12387683987617493, -0.06383154541254044, 0.1719907969236374, -0.02869318053126335, 0.04842078313231468, 0.11582093685865402, 0.029199903830885887, -0.13581791520118713, 0.0414654016494751, 0.05448148399591446, -0.10574173182249069, 0.015234604477882385, 0.15180076658725739, -0.04647952318191528, 0.0945357233285904, 0.042757242918014526, -0.10840967297554016, 0.005115070380270481, -0.057209793478250504, -0.03401236608624458, -0.08099089562892914, -0.013946090824902058, -0.05925055220723152, 0.16887108981609344, 0.21919117867946625, -0.030093105509877205, 0.011119619943201542, -0.10189121961593628, 0.016565322875976562, 0.07000552862882614, 0.027987420558929443, -0.057372383773326874, -0.18844082951545715, 0.011936072260141373, 0.06828322261571884, -0.007183293346315622, -0.24170345067977905, -0.07593516260385513, 0.04023966193199158, -0.03626246005296707, -0.040022414177656174, 0.10365518927574158, 0.04013961926102638, 0.05204091966152191, -0.03027372620999813, -0.15854360163211823, -0.0310093741863966, 0.15423890948295593, -0.17482605576515198, -0.03625543788075447 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-128-finetuned-squad-seed-10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-128-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-10
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-128-finetuned-squad-seed-10 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-128-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-128-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-128-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08136138319969177, 0.08274868130683899, -0.002413117792457342, 0.08361946791410446, 0.13672661781311035, 0.03251417353749275, 0.10084348171949387, 0.13830195367336273, -0.11379057914018631, 0.04250169172883034, 0.08806810528039932, 0.08288288861513138, 0.03181825205683708, 0.13705673813819885, -0.033244431018829346, -0.25504064559936523, -0.005587031599134207, -0.01875055395066738, -0.09472031891345978, 0.10939588397741318, 0.09858385473489761, -0.10073868185281754, 0.07218112796545029, -0.014091232791543007, -0.17821873724460602, 0.01688745804131031, -0.012415391393005848, -0.05115538090467453, 0.11885421723127365, -0.010624135844409466, 0.07635244727134705, 0.009239030070602894, 0.12391789257526398, -0.1896999180316925, 0.016437392681837082, 0.0756903737783432, 0.0464383140206337, 0.09698348492383957, 0.008293251506984234, -0.010720590129494667, 0.13206207752227783, -0.1286015808582306, 0.10034335404634476, 0.03138351067900658, -0.0953255370259285, -0.20502769947052002, -0.095509372651577, 0.007672055624425411, 0.044757626950740814, 0.08430822193622589, 0.009866621345281601, 0.1601210981607437, -0.09851747751235962, 0.08271186798810959, 0.2316460758447647, -0.27531641721725464, -0.07939004898071289, 0.05493041127920151, 0.061307329684495926, 0.08208290487527847, -0.12651115655899048, -0.010042914189398289, 0.006811671890318394, 0.02542901784181595, 0.1047973781824112, -0.032267920672893524, -0.08739472180604935, 0.0023070513270795345, -0.10599867254495621, 0.007485856767743826, 0.10906953364610672, 0.03437679260969162, -0.052339162677526474, -0.07229606807231903, -0.04355653002858162, -0.05451027303934097, -0.03558994457125664, -0.020641667768359184, 0.038873061537742615, -0.059744007885456085, -0.13844694197177887, -0.04777944087982178, -0.04870585352182388, -0.09025370329618454, -0.006224858108907938, 0.21797394752502441, 0.03642785921692848, 0.030717749148607254, -0.052055079489946365, 0.10228107124567032, 0.010801447555422783, -0.12772926688194275, -0.02883133664727211, -0.005054600071161985, -0.09174267202615738, -0.03688443824648857, -0.05979686975479126, 0.019352249801158905, 0.034479301422834396, 0.21494139730930328, -0.040929265320301056, 0.07814819365739822, 0.03411456197500229, -0.01758589595556259, -0.02714073657989502, 0.1388525515794754, -0.021895339712500572, -0.07554920762777328, 0.011706176213920116, 0.06369058787822723, 0.00998377613723278, -0.004569927230477333, -0.06330785900354385, -0.04026985913515091, 0.06499031186103821, 0.04713743180036545, -0.06147978454828262, 0.031321652233600616, -0.006476237438619137, -0.02336227335035801, 0.0023677607532590628, -0.11554437130689621, 0.01619100011885166, -0.009203549474477768, -0.0827273577451706, -0.04510030895471573, 0.006851537618786097, -0.010472445748746395, 0.011682385578751564, 0.09684080630540848, -0.07374944537878036, -0.024160509929060936, -0.08059658110141754, -0.07620645314455032, -0.016381924971938133, -0.15873374044895172, 0.019581496715545654, -0.06248875707387924, -0.16159644722938538, -0.030920173972845078, 0.05532504990696907, -0.0804520845413208, -0.027534890919923782, -0.033560242503881454, -0.07889936119318008, 0.020262937992811203, 0.0025876611471176147, 0.21670924127101898, -0.04934156686067581, 0.08803420513868332, 0.008269852958619595, 0.05809815227985382, -0.009272602386772633, 0.03633994981646538, -0.08681482076644897, 0.00890921801328659, -0.1775384396314621, 0.07496356964111328, -0.0799441859126091, 0.01917969435453415, -0.1391465812921524, -0.08575311303138733, -0.012006823904812336, -0.021584782749414444, 0.08026260882616043, 0.10405522584915161, -0.14527137577533722, -0.021262871101498604, 0.11738644540309906, -0.06480128318071365, -0.05543096736073494, 0.05601724237203598, -0.07631008327007294, 0.08615382760763168, 0.055948518216609955, 0.191459521651268, 0.08753730356693268, -0.10680587589740753, 0.013528046198189259, 0.013190699741244316, 0.0342412032186985, 0.0015559401363134384, 0.04962844401597977, 0.005912043619900942, 0.031016385182738304, 0.016308056190609932, -0.070571169257164, 0.007621516939252615, -0.09090153127908707, -0.05952886492013931, -0.04895945265889168, -0.08460160344839096, -0.006314801052212715, 0.013517247512936592, 0.03576068952679634, -0.0804046094417572, -0.0839066356420517, 0.07681199908256531, 0.13650310039520264, -0.04744613915681839, 0.017698684707283974, -0.07553120702505112, -0.003106052055954933, -0.031075546517968178, -0.02405659481883049, -0.20391406118869781, -0.05621521547436714, 0.032654792070388794, -0.008561506867408752, 0.04531129449605942, 0.0031101058702915907, 0.08512113988399506, 0.02605542540550232, -0.05418434739112854, -0.0003222624945919961, -0.08595762401819229, -0.006937407422810793, -0.09540990740060806, -0.2199777513742447, -0.05306578800082207, -0.03870250657200813, 0.13569873571395874, -0.1663251668214798, -0.003260185942053795, -0.020210007205605507, 0.11592700332403183, 0.04248986020684242, -0.05167526751756668, -0.0047813705168664455, 0.028791479766368866, 0.013157297857105732, -0.09778349846601486, 0.03838646784424782, 0.01516887079924345, -0.09339305758476257, -0.029720086604356766, -0.10468502342700958, -0.011946658603847027, 0.07056394219398499, 0.07044614106416702, -0.10207076370716095, -0.013827095739543438, -0.06252526491880417, -0.027790691703557968, -0.05333998426795006, 0.03843402490019798, 0.18034754693508148, 0.01811290718615055, 0.10917336493730545, -0.07489129155874252, -0.08386705070734024, 0.018847482278943062, 0.009574277326464653, 0.062290310859680176, 0.1020030826330185, 0.0757269486784935, -0.10925256460905075, 0.057462178170681, 0.0933358371257782, -0.05233778432011604, 0.1363227665424347, -0.046797726303339005, -0.07356557995080948, -0.03137887641787529, -0.00994966272264719, -0.007373030297458172, 0.1503981649875641, -0.037984851747751236, 0.01615222543478012, 0.033616699278354645, 0.037099260836839676, 0.004342611879110336, -0.16202601790428162, -0.014737778343260288, 0.014181491918861866, -0.04720836132764816, -0.02384069189429283, 0.015337248332798481, 0.015604358166456223, 0.09513881802558899, 0.04120736941695213, -0.004615143407136202, 0.006373300217092037, -0.010246001183986664, -0.0424414686858654, 0.20065699517726898, -0.09091050177812576, -0.04194079712033272, -0.07420198619365692, -0.0009864873718470335, -0.022828437387943268, -0.040450651198625565, 0.015000776387751102, -0.09491436183452606, -0.025634994730353355, -0.07192624360322952, -0.0006869949284009635, -0.04056943207979202, 0.015105812810361385, 0.0044341618195176125, 0.014395400881767273, 0.05792495980858803, -0.1325955092906952, 0.0099378926679492, -0.0680755004286766, -0.11051038652658463, 0.027816712856292725, 0.060539960861206055, 0.08004540950059891, 0.059296734631061554, -0.03270459920167923, 0.01910031959414482, -0.04173143580555916, 0.2314155399799347, -0.07818403840065002, 0.013576720841228962, 0.12311871349811554, 0.027294861152768135, 0.03961695358157158, 0.10549671947956085, 0.03337223455309868, -0.09975527971982956, 0.038698505610227585, 0.07696481794118881, -0.040744829922914505, -0.24487042427062988, 0.007671289145946503, -0.038462862372398376, -0.09658867120742798, 0.08875170350074768, 0.05046717822551727, -0.04216613247990608, 0.06512273848056793, 0.010511981323361397, 0.011252688243985176, -0.02378501184284687, 0.08809782564640045, 0.08903464674949646, 0.06615845859050751, 0.10767868161201477, -0.038873787969350815, -0.01788594201207161, 0.06310216337442398, 0.027996646240353584, 0.3039777874946594, -0.04791533574461937, 0.08596964925527573, 0.048798657953739166, 0.13881686329841614, -0.021937374025583267, 0.047039344906806946, 0.00803367793560028, -0.007008370477706194, -0.029855867847800255, -0.054186221212148666, -0.018728259950876236, 0.0021413867361843586, -0.0782441571354866, 0.04571637883782387, -0.051647886633872986, 0.04937337711453438, 0.019498925656080246, 0.2896275222301483, 0.00310305692255497, -0.2634669840335846, -0.09374789893627167, -0.015444695949554443, -0.0380854494869709, -0.052039485424757004, 0.011612205766141415, 0.11986389756202698, -0.12329290807247162, 0.03793516755104065, -0.07132340967655182, 0.08076813817024231, -0.028902221471071243, -0.001465434324927628, 0.04172397404909134, 0.1728760451078415, -0.021752336993813515, 0.05532163009047508, -0.2242121547460556, 0.22802262008190155, 0.014559837989509106, 0.12954701483249664, -0.059700366109609604, 0.008336193859577179, 0.02657352201640606, 0.003916772548109293, 0.08858856558799744, -0.004498685244470835, -0.06527900695800781, -0.13577882945537567, -0.05214359983801842, 0.07354793697595596, 0.1430199146270752, -0.0405765064060688, 0.09712395071983337, -0.057475533336400986, 0.014069855213165283, 0.0374179482460022, -0.08882810920476913, -0.1345830112695694, -0.09760195761919022, -0.022732073441147804, 0.014730810187757015, -0.0711069330573082, -0.05629372596740723, -0.06901716440916061, 0.028638619929552078, 0.10338177531957626, 0.01593562588095665, -0.031387317925691605, -0.1470964103937149, 0.07756661623716354, 0.15660536289215088, -0.06690123677253723, 0.026729729026556015, -0.0034123060759156942, 0.07542634010314941, 0.03838157281279564, -0.08255929499864578, 0.06062404438853264, -0.06457819789648056, -0.17836590111255646, -0.048194192349910736, 0.09506811201572418, 0.07062337547540665, 0.04187173768877983, -0.0024398821406066418, 0.05261203646659851, -0.026297559961676598, -0.09330984950065613, 0.023374799638986588, 0.021362442523241043, 0.03579393029212952, 0.036316972225904465, -0.08570144325494766, 0.07492458820343018, -0.03798452392220497, -0.012794366106390953, 0.11361829191446304, 0.22976264357566833, -0.10124022513628006, 0.09789448231458664, 0.06115515157580376, -0.06140134483575821, -0.16044972836971283, 0.07234013825654984, 0.10301761329174042, 0.007702952716499567, 0.07083037495613098, -0.209148570895195, 0.1294567734003067, 0.10321428626775742, -0.016070643439888954, 0.040425486862659454, -0.2731599509716034, -0.12024188786745071, 0.04534771665930748, 0.12909169495105743, 0.09518931806087494, -0.1250169277191162, -0.013549371622502804, -0.017243262380361557, -0.11600102484226227, 0.0951790139079094, -0.11429838091135025, 0.13535526394844055, -0.028637805953621864, 0.11048349738121033, 0.01086809579282999, -0.026430461555719376, 0.1018804982304573, 0.048376213759183884, 0.10272979736328125, -0.042717330157756805, 0.0029387930408120155, 0.06468772888183594, -0.04814442619681358, 0.003522759536281228, -0.07554860413074493, 0.08708541840314865, -0.13031615316867828, -0.0033029592595994473, -0.09127399325370789, 0.0459546223282814, -0.03839462250471115, -0.06886868923902512, -0.04210793599486351, 0.05679035931825638, 0.0483221635222435, -0.03584905341267586, 0.047048117965459824, -0.018147967755794525, 0.10341579467058182, 0.033650897443294525, 0.08717432618141174, 0.013074728660285473, -0.044797156006097794, 0.0241396427154541, -0.00983980018645525, 0.06368503719568253, -0.16553007066249847, 0.011121327057480812, 0.09998676180839539, 0.06073905900120735, 0.09734933823347092, 0.04404287412762642, -0.045499298721551895, 0.01670643500983715, 0.02985098399221897, -0.1001780703663826, -0.1067822203040123, 0.047614935785532, -0.02943071722984314, -0.1395198553800583, 0.050909895449876785, 0.11967428028583527, -0.04423443600535393, -0.027509981766343117, -0.01754351146519184, 0.0040188138373196125, -0.023476392030715942, 0.1831013262271881, 0.050091713666915894, 0.055143047124147415, -0.10227568447589874, 0.1279734969139099, 0.028847938403487206, -0.020383434370160103, 0.05142940580844879, 0.08358006924390793, -0.10371987521648407, -0.0029243240132927895, 0.08401773124933243, 0.13889065384864807, -0.056911177933216095, -0.005755973514169455, -0.10443279892206192, -0.08380689471960068, 0.05059569329023361, 0.1450759470462799, 0.049124203622341156, -0.016942746937274933, -0.05380028858780861, 0.04036799445748329, -0.14106707274913788, 0.07090406119823456, 0.024959245696663857, 0.06356938183307648, -0.07620730996131897, 0.06154727190732956, 0.007602136582136154, 0.013143882155418396, -0.01668383553624153, 0.008876100182533264, -0.0933002457022667, -0.016432160511612892, -0.07999801635742188, -0.0039061028510332108, -0.0011444415431469679, 0.01664557494223118, -0.02096310630440712, -0.07113566249608994, -0.048365168273448944, 0.03615792095661163, -0.08770056813955307, -0.050068456679582596, 0.009042125195264816, 0.039882395416498184, -0.12335674464702606, -0.00537294102832675, 0.021030226722359657, -0.0924212709069252, 0.09420781582593918, 0.0724504142999649, 0.01735473796725273, 0.031266797333955765, -0.12557029724121094, -0.03306672349572182, -0.010080105625092983, -0.008386013098061085, 0.062417760491371155, -0.09412368386983871, -0.008959447965025902, -0.03765074908733368, 0.07144768536090851, 0.012908002361655235, 0.06671763956546783, -0.13327686488628387, 0.019523752853274345, -0.07585511356592178, -0.046598855406045914, -0.07535544782876968, 0.03549492731690407, 0.09714967012405396, 0.05890417471528053, 0.1518380492925644, -0.07589755952358246, 0.023898225277662277, -0.20654623210430145, -0.03491424396634102, -0.006521587260067463, -0.061454012989997864, -0.15103286504745483, -0.047825928777456284, 0.08152977377176285, -0.037827782332897186, 0.09292730689048767, -0.017796803265810013, 0.07695619761943817, 0.037672221660614014, -0.044257745146751404, -0.05210644751787186, -0.015511893667280674, 0.19951796531677246, 0.0728764608502388, -0.016605518758296967, 0.11077996343374252, 0.0021902238950133324, 0.02967253513634205, 0.05070333927869797, 0.18143121898174286, 0.21343250572681427, 0.03150881826877594, 0.055515799671411514, 0.06443288922309875, -0.07449449598789215, -0.06952434778213501, 0.18006284534931183, -0.01617536135017872, 0.06955260783433914, -0.04901772737503052, 0.1997033953666687, 0.10782360285520554, -0.1676589399576187, 0.046169862151145935, -0.042929235845804214, -0.08129660785198212, -0.1252882331609726, -0.013046779669821262, -0.08606735616922379, -0.1254584789276123, 0.037457793951034546, -0.11643977463245392, 0.05314028263092041, 0.10908154398202896, 0.01346628088504076, 0.036302804946899414, 0.12767945230007172, -0.021049946546554565, 0.0030664599034935236, 0.06466837972402573, 0.00537356361746788, -0.012660798616707325, -0.03719473257660866, -0.07853289693593979, 0.049729228019714355, 0.0010896536987274885, 0.07831095904111862, -0.047836363315582275, -0.016265252605080605, 0.025954488664865494, -0.027081286534667015, -0.0802159234881401, 0.02790476754307747, 0.04072609916329384, 0.056532859802246094, 0.04816709831357002, 0.046625904738903046, -0.008959450758993626, -0.03350451961159706, 0.31833890080451965, -0.06676765531301498, -0.10200120508670807, -0.12148986756801605, 0.21931298077106476, 0.030575083568692207, -0.03093426488339901, 0.033595554530620575, -0.08321797847747803, -0.009089463390409946, 0.1599670797586441, 0.16711175441741943, -0.0712156891822815, -0.02267272025346756, -0.005738536827266216, -0.01821937784552574, -0.03748960793018341, 0.1269543170928955, 0.08917223662137985, -0.025172783061861992, -0.0624174140393734, -0.012292678467929363, -0.01845906674861908, -0.03202506899833679, -0.040741246193647385, 0.04113396257162094, 0.015842346474528313, -0.02587086893618107, -0.04083295911550522, 0.0748528465628624, 0.005662040784955025, -0.25751402974128723, 0.06588057428598404, -0.15762412548065186, -0.17062599956989288, -0.044115930795669556, 0.036959435790777206, 0.0004790982056874782, 0.056915033608675, -0.016750715672969818, 0.00875411368906498, 0.07853339612483978, -0.01706628128886223, -0.03145662695169449, -0.1254425346851349, 0.12417581677436829, -0.06610187143087387, 0.17088927328586578, -0.028518136590719223, 0.049410734325647354, 0.1156260147690773, 0.02815369889140129, -0.13503694534301758, 0.04226095974445343, 0.053948868066072464, -0.10519395023584366, 0.01621348224580288, 0.15136153995990753, -0.04602030664682388, 0.09118463844060898, 0.042147669941186905, -0.10855890810489655, 0.005658193491399288, -0.05628965422511101, -0.03431947901844978, -0.0813540443778038, -0.012651403434574604, -0.05921993777155876, 0.1692480593919754, 0.21906527876853943, -0.03001358173787594, 0.01179471705108881, -0.10225692391395569, 0.015794022008776665, 0.06997158378362656, 0.027994032949209213, -0.057895876467227936, -0.18892468512058258, 0.011535167694091797, 0.06714348495006561, -0.007096181157976389, -0.2395968735218048, -0.07521307468414307, 0.038740191608667374, -0.03716933727264404, -0.04038168117403984, 0.10260829329490662, 0.04123678803443909, 0.052171822637319565, -0.030073339119553566, -0.15922857820987701, -0.031165074557065964, 0.1548350751399994, -0.1754707545042038, -0.03582720458507538 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-128-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-128-finetuned-squad-seed-2", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-2
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-128-finetuned-squad-seed-2 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-128-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-128-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-128-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08036793023347855, 0.08442381769418716, -0.00251922314055264, 0.08376204967498779, 0.13586518168449402, 0.0328560397028923, 0.10077176988124847, 0.13914747536182404, -0.11453327536582947, 0.04278719797730446, 0.08845371752977371, 0.08181539177894592, 0.03142099827528, 0.13642512261867523, -0.033323608338832855, -0.2552852928638458, -0.005683843977749348, -0.020081622526049614, -0.09653037041425705, 0.10947085171937943, 0.09916021674871445, -0.09970349818468094, 0.07215513288974762, -0.013807184062898159, -0.17864809930324554, 0.016939451918005943, -0.011581978760659695, -0.05085508152842522, 0.11858944594860077, -0.00979677215218544, 0.07657603919506073, 0.010316815227270126, 0.12360503524541855, -0.19073013961315155, 0.01612808369100094, 0.07494032382965088, 0.04664304107427597, 0.09726399928331375, 0.008871646597981453, -0.010718279518187046, 0.13213267922401428, -0.12762778997421265, 0.09981464594602585, 0.03152845799922943, -0.09506993740797043, -0.20551301538944244, -0.09575606882572174, 0.008551735430955887, 0.0449751541018486, 0.08350509405136108, 0.010630988515913486, 0.1592433750629425, -0.09837347269058228, 0.08232248574495316, 0.23073206841945648, -0.27597153186798096, -0.0796658992767334, 0.053483910858631134, 0.06025843322277069, 0.08262106776237488, -0.12555727362632751, -0.009569748304784298, 0.006613634992390871, 0.025542350485920906, 0.10379723459482193, -0.03234497085213661, -0.08751419186592102, 0.0021484007593244314, -0.105800099670887, 0.005769337527453899, 0.10933361202478409, 0.033826783299446106, -0.053289853036403656, -0.07094087451696396, -0.04394926503300667, -0.05216675251722336, -0.034425366669893265, -0.021258344873785973, 0.03884708136320114, -0.05890249088406563, -0.13821811974048615, -0.04967014491558075, -0.049944087862968445, -0.09074096381664276, -0.006550842896103859, 0.21942280232906342, 0.03646666556596756, 0.03204931318759918, -0.05179537460207939, 0.10348029434680939, 0.012786949053406715, -0.12734763324260712, -0.02936858870089054, -0.004905286710709333, -0.09125993400812149, -0.03636965900659561, -0.05935971066355705, 0.020136334002017975, 0.03486897051334381, 0.21440498530864716, -0.043360717594623566, 0.07760154455900192, 0.03302523493766785, -0.016832612454891205, -0.026892127469182014, 0.13843271136283875, -0.020362596958875656, -0.07295691221952438, 0.011762568727135658, 0.06329265981912613, 0.010470516048371792, -0.004782109521329403, -0.06316500157117844, -0.04066194221377373, 0.06573694944381714, 0.048211824148893356, -0.06075281277298927, 0.029374592006206512, -0.007783893030136824, -0.02366509661078453, 0.0010907823452726007, -0.1155444011092186, 0.0161940548568964, -0.008681202307343483, -0.08148074150085449, -0.04630640894174576, 0.007524465210735798, -0.010303881950676441, 0.012152258306741714, 0.09596533328294754, -0.07246820628643036, -0.023465396836400032, -0.07923293858766556, -0.0743575245141983, -0.016412418335676193, -0.15599532425403595, 0.019041163846850395, -0.0632551908493042, -0.15961122512817383, -0.029524734243750572, 0.05605785548686981, -0.08182164281606674, -0.029846707358956337, -0.03246622532606125, -0.07786004990339279, 0.021330401301383972, 0.0017785187810659409, 0.21625694632530212, -0.04943973198533058, 0.08889704197645187, 0.008291754871606827, 0.05777299031615257, -0.00891124177724123, 0.035475678741931915, -0.08610052615404129, 0.009823059663176537, -0.1777302473783493, 0.07544763386249542, -0.07916548103094101, 0.016022788360714912, -0.14024101197719574, -0.08522962778806686, -0.010892022401094437, -0.02253025770187378, 0.07950705289840698, 0.10408683121204376, -0.14355234801769257, -0.021191319450736046, 0.11655651777982712, -0.06642767041921616, -0.055282194167375565, 0.05711393803358078, -0.07611484080553055, 0.08752870559692383, 0.05417867377400398, 0.1914793998003006, 0.0880097895860672, -0.10718470066785812, 0.015295171178877354, 0.014590106904506683, 0.03397996351122856, 0.0033137549180537462, 0.051136162132024765, 0.005146474111825228, 0.028756991028785706, 0.016081485897302628, -0.07260282337665558, 0.0075436849147081375, -0.0914965495467186, -0.06023184210062027, -0.04886017367243767, -0.08404982835054398, -0.005161067936569452, 0.012169872410595417, 0.03597075492143631, -0.07968801259994507, -0.0833730399608612, 0.07614871859550476, 0.13694141805171967, -0.046925146132707596, 0.018840765580534935, -0.07588057219982147, -0.003079795278608799, -0.03163595125079155, -0.02447926439344883, -0.20365838706493378, -0.05702550709247589, 0.03325433284044266, -0.008446712046861649, 0.0453522615134716, 0.0030474599916487932, 0.08436237275600433, 0.026294726878404617, -0.05448785796761513, -0.0006170691922307014, -0.08655352145433426, -0.007445221301168203, -0.0947599709033966, -0.22070148587226868, -0.05273428186774254, -0.038712047040462494, 0.1365828812122345, -0.16575177013874054, -0.004294774495065212, -0.019145822152495384, 0.11592117697000504, 0.04278390854597092, -0.05139638110995293, -0.005466389004141092, 0.027919655665755272, 0.012609634548425674, -0.09699322283267975, 0.038407836109399796, 0.016417372971773148, -0.09400127828121185, -0.02748848870396614, -0.10291873663663864, -0.010791580192744732, 0.06929057091474533, 0.07018031179904938, -0.10210313647985458, -0.014632653445005417, -0.06286809593439102, -0.028493337333202362, -0.05454454943537712, 0.03880387172102928, 0.18093045055866241, 0.01784905232489109, 0.10933525115251541, -0.07501532137393951, -0.08331865072250366, 0.018717559054493904, 0.007723816204816103, 0.06115902215242386, 0.10180024802684784, 0.07545936107635498, -0.11082277446985245, 0.05686619132757187, 0.09300719946622849, -0.052258990705013275, 0.135982945561409, -0.04674520343542099, -0.07326225191354752, -0.03267751261591911, -0.007910053245723248, -0.006893314886838198, 0.1500592827796936, -0.03689815476536751, 0.018017850816249847, 0.03377394750714302, 0.03782409429550171, 0.0042396062053740025, -0.1626286506652832, -0.014888142235577106, 0.014530826359987259, -0.04870142042636871, -0.022098876535892487, 0.01469701062887907, 0.01657727360725403, 0.09557640552520752, 0.041946906596422195, -0.004229498561471701, 0.007523389533162117, -0.010245030745863914, -0.04359593242406845, 0.199918732047081, -0.09079619497060776, -0.04388128221035004, -0.0757785215973854, -0.00032868204289115965, -0.02289132960140705, -0.040249474346637726, 0.015571856871247292, -0.09386356174945831, -0.025085728615522385, -0.07213576883077621, 0.0002897153317462653, -0.04141562432050705, 0.0156391728669405, 0.004827980417758226, 0.01461368054151535, 0.059986136853694916, -0.13193681836128235, 0.010002389550209045, -0.06760627031326294, -0.11140576750040054, 0.02876059152185917, 0.06087033823132515, 0.07967337220907211, 0.05842379480600357, -0.032026153057813644, 0.018926236778497696, -0.04125381261110306, 0.23169419169425964, -0.07757783681154251, 0.01272303145378828, 0.12339796870946884, 0.025894850492477417, 0.040158532559871674, 0.10531653463840485, 0.03272208198904991, -0.09959761798381805, 0.03891780227422714, 0.07662145793437958, -0.04114655777812004, -0.24476996064186096, 0.007306466344743967, -0.03781146556138992, -0.09564635157585144, 0.08860115706920624, 0.05065475404262543, -0.04530469700694084, 0.06403883546590805, 0.0108658317476511, 0.010109980590641499, -0.023387234658002853, 0.08806439489126205, 0.08996714651584625, 0.0662628561258316, 0.10731890052556992, -0.03826656937599182, -0.017765086144208908, 0.06453990191221237, 0.028912698850035667, 0.30296432971954346, -0.04843399301171303, 0.08512575924396515, 0.049160875380039215, 0.14004483819007874, -0.02206607721745968, 0.045214492827653885, 0.008351773954927921, -0.006190972402691841, -0.030062422156333923, -0.054161280393600464, -0.019820384681224823, 0.0031566075049340725, -0.07706419378519058, 0.0455053336918354, -0.05247354507446289, 0.051700592041015625, 0.019277270883321762, 0.2913191616535187, 0.0032912632450461388, -0.261576384305954, -0.09366296976804733, -0.014778800308704376, -0.0378149077296257, -0.05178208276629448, 0.011635564267635345, 0.1218528226017952, -0.12413815408945084, 0.036892376840114594, -0.07102862745523453, 0.0800555944442749, -0.029525509104132652, -0.002296567428857088, 0.041139476001262665, 0.17108118534088135, -0.020725157111883163, 0.05588226020336151, -0.22232311964035034, 0.228200763463974, 0.014406584203243256, 0.12812019884586334, -0.058298259973526, 0.008814780041575432, 0.025808259844779968, 0.004061133600771427, 0.08910536020994186, -0.003643434029072523, -0.06604847311973572, -0.13593851029872894, -0.05341634899377823, 0.07339812815189362, 0.14329424500465393, -0.04188959673047066, 0.0967777892947197, -0.0581628754734993, 0.014805231243371964, 0.03689415007829666, -0.08766045421361923, -0.13403359055519104, -0.09717490524053574, -0.022336158901453018, 0.013490368612110615, -0.07159730046987534, -0.05739928036928177, -0.06905075162649155, 0.032410718500614166, 0.10547307133674622, 0.014813525602221489, -0.031583379954099655, -0.14686639606952667, 0.0774509608745575, 0.15600137412548065, -0.06769603490829468, 0.02556207962334156, -0.0036114929243922234, 0.07593603432178497, 0.038328975439071655, -0.08281015604734421, 0.06057175248861313, -0.06442318111658096, -0.17970705032348633, -0.04829491674900055, 0.09558619558811188, 0.07033094763755798, 0.04220890998840332, -0.002411414170637727, 0.05212469398975372, -0.025033650919795036, -0.09304404258728027, 0.024641485884785652, 0.021723495796322823, 0.03565921261906624, 0.036076415330171585, -0.08533140271902084, 0.07732797414064407, -0.037748415023088455, -0.014043043367564678, 0.11504954099655151, 0.23287785053253174, -0.10165679454803467, 0.09991221874952316, 0.06117568165063858, -0.06200939416885376, -0.16083554923534393, 0.07025858759880066, 0.10458908975124359, 0.006942973006516695, 0.07210785150527954, -0.20973658561706543, 0.12863096594810486, 0.10299041122198105, -0.017228800803422928, 0.039344701915979385, -0.2740517854690552, -0.12033510953187943, 0.044239018112421036, 0.1288098841905594, 0.09657342731952667, -0.12443362921476364, -0.014456371776759624, -0.015741858631372452, -0.11598136276006699, 0.0943882018327713, -0.1126767173409462, 0.13529439270496368, -0.028571898117661476, 0.11101685464382172, 0.011079246178269386, -0.025742188096046448, 0.10369422286748886, 0.046651389449834824, 0.10117540508508682, -0.04224015399813652, 0.003565044840797782, 0.06273769587278366, -0.04891897737979889, 0.0028416900895535946, -0.07518292218446732, 0.0877695083618164, -0.13122063875198364, -0.0036498638801276684, -0.09117268770933151, 0.045683640986680984, -0.03917238861322403, -0.06884686648845673, -0.0419640839099884, 0.05664055794477463, 0.04866357892751694, -0.035751670598983765, 0.04679747298359871, -0.01769115962088108, 0.1022709310054779, 0.03821327164769173, 0.08620823174715042, 0.014696680009365082, -0.04561031237244606, 0.022735238075256348, -0.0100207244977355, 0.06402010470628738, -0.16467735171318054, 0.012490272521972656, 0.09927155822515488, 0.060096003115177155, 0.09755797684192657, 0.043780095875263214, -0.04615079239010811, 0.017792075872421265, 0.029722725972533226, -0.10138200223445892, -0.10748333483934402, 0.04695213586091995, -0.028471192345023155, -0.1398153156042099, 0.04880871623754501, 0.12216707319021225, -0.04362540692090988, -0.027454126626253128, -0.01731676422059536, 0.0050117927603423595, -0.023852547630667686, 0.18187400698661804, 0.048906415700912476, 0.05570165812969208, -0.1011452004313469, 0.12810823321342468, 0.02892952784895897, -0.01987319439649582, 0.051457058638334274, 0.08284848928451538, -0.10284868627786636, -0.00250235921703279, 0.08376608043909073, 0.13768331706523895, -0.05849640443921089, -0.005568890366703272, -0.10427384078502655, -0.08408339321613312, 0.05002332851290703, 0.14352160692214966, 0.04943959414958954, -0.016154594719409943, -0.05363137274980545, 0.0401146300137043, -0.14010171592235565, 0.07159310579299927, 0.025556284934282303, 0.0635019838809967, -0.07709931582212448, 0.06109646335244179, 0.007311682682484388, 0.014663529582321644, -0.01701565831899643, 0.007818805053830147, -0.09325123578310013, -0.016288207843899727, -0.08167166262865067, -0.0018522734753787518, 0.00002916994708357379, 0.016643265262246132, -0.02027549035847187, -0.07170619070529938, -0.04836980625987053, 0.03698519617319107, -0.08757635205984116, -0.05000489577651024, 0.008323724381625652, 0.04045139253139496, -0.12356487661600113, -0.006054968573153019, 0.022166995331645012, -0.09329936653375626, 0.0954023227095604, 0.07324419915676117, 0.017389880493283272, 0.030769014731049538, -0.12372957915067673, -0.03333901986479759, -0.009762306697666645, -0.0084049291908741, 0.06194501742720604, -0.09583289921283722, -0.009633657522499561, -0.0374574288725853, 0.07056912034749985, 0.013117731548845768, 0.06980269402265549, -0.13397149741649628, 0.019773948937654495, -0.07613646239042282, -0.048344455659389496, -0.07503608614206314, 0.03493291139602661, 0.09651761502027512, 0.060348957777023315, 0.15180256962776184, -0.07709058374166489, 0.02420066110789776, -0.20625700056552887, -0.03467579558491707, -0.0064045279286801815, -0.05938934534788132, -0.15152297914028168, -0.047597359865903854, 0.080476313829422, -0.03772468492388725, 0.09148633480072021, -0.0182869341224432, 0.07578102499246597, 0.03799417242407799, -0.046885084360837936, -0.050654035061597824, -0.015652311965823174, 0.19783620536327362, 0.07293852418661118, -0.016256511211395264, 0.11116141825914383, 0.0006428438355214894, 0.030231988057494164, 0.05065201222896576, 0.18275512754917145, 0.21347163617610931, 0.0322367399930954, 0.05547664314508438, 0.06440349668264389, -0.07401344180107117, -0.0716339647769928, 0.17859584093093872, -0.015899980440735817, 0.06969013065099716, -0.04808983951807022, 0.1977710872888565, 0.10882502794265747, -0.1683979630470276, 0.04498067870736122, -0.0430128239095211, -0.08135267347097397, -0.12653562426567078, -0.012185215950012207, -0.08679132908582687, -0.12580221891403198, 0.03726973012089729, -0.11641374230384827, 0.05346818268299103, 0.10830950736999512, 0.01274713221937418, 0.03715694695711136, 0.1253347247838974, -0.020351707935333252, 0.0029728219378739595, 0.06395316869020462, 0.0056567504070699215, -0.011940021067857742, -0.035716764628887177, -0.07910808175802231, 0.04958048090338707, 0.0028821390587836504, 0.0780431404709816, -0.0466858446598053, -0.015121664851903915, 0.025448501110076904, -0.027909018099308014, -0.08054274320602417, 0.02753717266023159, 0.040607936680316925, 0.056714218109846115, 0.047094929963350296, 0.04690570384263992, -0.008655322715640068, -0.03305778652429581, 0.3197321593761444, -0.06650818139314651, -0.10129676014184952, -0.12176346778869629, 0.22162508964538574, 0.028963133692741394, -0.03000848926603794, 0.034726582467556, -0.083041712641716, -0.010770957916975021, 0.15821944177150726, 0.1665867269039154, -0.07295717298984528, -0.022495510056614876, -0.005963696166872978, -0.017947839573025703, -0.03662748262286186, 0.1279257833957672, 0.08850197494029999, -0.02336038462817669, -0.0631180852651596, -0.012886998243629932, -0.019755858927965164, -0.03145479038357735, -0.04093458876013756, 0.042046211659908295, 0.014695245772600174, -0.024538323283195496, -0.04223066195845604, 0.07395751029253006, 0.005547812674194574, -0.2567841112613678, 0.06644336879253387, -0.1570926010608673, -0.17112509906291962, -0.043166663497686386, 0.037767741829156876, -0.0014516511000692844, 0.05702150613069534, -0.017651628702878952, 0.008355730213224888, 0.07896365225315094, -0.017261475324630737, -0.03172576427459717, -0.12432236224412918, 0.12491635233163834, -0.06544945389032364, 0.17214339971542358, -0.027728095650672913, 0.05002523586153984, 0.11509889364242554, 0.02870142087340355, -0.13594533503055573, 0.04110647737979889, 0.054139021784067154, -0.10539022833108902, 0.015392377972602844, 0.15223707258701324, -0.046329058706760406, 0.09312380850315094, 0.04373233765363693, -0.10817231237888336, 0.0039956532418727875, -0.056152649223804474, -0.03435251861810684, -0.08070684969425201, -0.014433850534260273, -0.060467205941677094, 0.16824349761009216, 0.21831093728542328, -0.030248064547777176, 0.012174106203019619, -0.10177476704120636, 0.01656036265194416, 0.06990941613912582, 0.029780343174934387, -0.05672059208154678, -0.1890006959438324, 0.01128421351313591, 0.06806330382823944, -0.006683614570647478, -0.24087941646575928, -0.07697436958551407, 0.039352353662252426, -0.03614848479628563, -0.04015108197927475, 0.1040765792131424, 0.03976983204483986, 0.051575712859630585, -0.029850447550415993, -0.16043800115585327, -0.03172304853796959, 0.15414893627166748, -0.17487895488739014, -0.036013275384902954 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-128-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-128-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-4
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-128-finetuned-squad-seed-4 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-128-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-128-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-128-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08074939996004105, 0.08326296508312225, -0.0024755450431257486, 0.08468569815158844, 0.1370745301246643, 0.03320882096886635, 0.10110161453485489, 0.13839173316955566, -0.1145801693201065, 0.0423574298620224, 0.08859833329916, 0.08181970566511154, 0.030597276985645294, 0.13613656163215637, -0.033255744725465775, -0.25512999296188354, -0.006136881187558174, -0.019502591341733932, -0.09599366784095764, 0.10943789035081863, 0.09826112538576126, -0.1003284901380539, 0.07271284610033035, -0.014062217436730862, -0.17969666421413422, 0.017333999276161194, -0.01219107024371624, -0.050604112446308136, 0.11880922317504883, -0.00968946237117052, 0.07688413560390472, 0.009527619928121567, 0.12345702201128006, -0.18914823234081268, 0.016408242285251617, 0.07509555667638779, 0.046227436512708664, 0.096894271671772, 0.008347020484507084, -0.01099756546318531, 0.13096001744270325, -0.12796783447265625, 0.09961962699890137, 0.03139353170990944, -0.095280222594738, -0.2061282992362976, -0.09522518515586853, 0.007178287487477064, 0.044009167701005936, 0.08433897793292999, 0.010335221886634827, 0.15875642001628876, -0.09843296557664871, 0.08275066316127777, 0.22921593487262726, -0.2766142785549164, -0.08004350960254669, 0.05405723676085472, 0.06025722995400429, 0.08291245251893997, -0.1260690987110138, -0.008795286528766155, 0.006920092739164829, 0.026343848556280136, 0.10406723618507385, -0.03273389860987663, -0.08765582740306854, 0.002548362361267209, -0.10567785054445267, 0.0072780391201376915, 0.1100628525018692, 0.03404795750975609, -0.05297374352812767, -0.0710364431142807, -0.043321896344423294, -0.05342941731214523, -0.034857217222452164, -0.020324530079960823, 0.039010077714920044, -0.05974253639578819, -0.13860197365283966, -0.04808507859706879, -0.0495477057993412, -0.08967549353837967, -0.006725548766553402, 0.21854399144649506, 0.036312248557806015, 0.03176305070519447, -0.0516253300011158, 0.10270503163337708, 0.012389776296913624, -0.1271803379058838, -0.02834862843155861, -0.005309786647558212, -0.09073520451784134, -0.036356475204229355, -0.06003131344914436, 0.021384933963418007, 0.03517116606235504, 0.21467989683151245, -0.04345494881272316, 0.07821563631296158, 0.03360079973936081, -0.017441438511013985, -0.026900405064225197, 0.1374734789133072, -0.021668797358870506, -0.07450512051582336, 0.011963210999965668, 0.06325535476207733, 0.009860082529485226, -0.004868195857852697, -0.06345732510089874, -0.03983859717845917, 0.06451790779829025, 0.047682806849479675, -0.06189672648906708, 0.031282659620046616, -0.006821638438850641, -0.023227466270327568, 0.0009266905835829675, -0.11534861475229263, 0.01583823375403881, -0.008986865170300007, -0.0816149041056633, -0.04535554721951485, 0.007046493701636791, -0.01113093551248312, 0.01191942859441042, 0.09637846052646637, -0.073377825319767, -0.024038638919591904, -0.07981617748737335, -0.07533371448516846, -0.016949161887168884, -0.1559145152568817, 0.020052578300237656, -0.06305055320262909, -0.1599096804857254, -0.030660033226013184, 0.05590242147445679, -0.08156206458806992, -0.028577759861946106, -0.03246879577636719, -0.0786357969045639, 0.0209896769374609, 0.0019851403776556253, 0.2168775051832199, -0.049795087426900864, 0.08784905076026917, 0.009335079230368137, 0.05781036615371704, -0.009551582857966423, 0.03556150197982788, -0.08588714152574539, 0.009131981991231441, -0.17832109332084656, 0.07470405101776123, -0.079792320728302, 0.01789913885295391, -0.1391131728887558, -0.08621951192617416, -0.010012563318014145, -0.02140934392809868, 0.07911461591720581, 0.10354360193014145, -0.14331835508346558, -0.021201975643634796, 0.11583880335092545, -0.06515093147754669, -0.055396951735019684, 0.057056769728660583, -0.07642509043216705, 0.08664362132549286, 0.05459078401327133, 0.1917695701122284, 0.08791225403547287, -0.10669034719467163, 0.014498849399387836, 0.013826405629515648, 0.03423884138464928, 0.0026436017360538244, 0.04953857138752937, 0.006112989503890276, 0.028781911358237267, 0.01660168170928955, -0.07136116921901703, 0.00751535315066576, -0.0911114290356636, -0.059759099036455154, -0.04830368980765343, -0.0839623436331749, -0.005958911497145891, 0.012475975789129734, 0.03588854521512985, -0.08061909675598145, -0.08358396589756012, 0.0754300132393837, 0.13668952882289886, -0.047388527542352676, 0.017741495743393898, -0.0761328637599945, -0.0025349839124828577, -0.03168065845966339, -0.02399914525449276, -0.20344842970371246, -0.05779974162578583, 0.032273292541503906, -0.006463557947427034, 0.045526452362537384, 0.003363260067999363, 0.0848788246512413, 0.026516180485486984, -0.054677996784448624, -0.0007702043512836099, -0.08523213863372803, -0.007011776324361563, -0.09458725899457932, -0.22114254534244537, -0.052836041897535324, -0.03856166824698448, 0.1364533007144928, -0.16630153357982635, -0.003964981995522976, -0.019105875864624977, 0.11535287648439407, 0.04241421818733215, -0.05079831928014755, -0.004884908441454172, 0.02931123599410057, 0.013369218446314335, -0.09698433429002762, 0.03890153020620346, 0.01610281504690647, -0.09284335374832153, -0.028824767097830772, -0.103282131254673, -0.00937715545296669, 0.07034848630428314, 0.06901010125875473, -0.10258006304502487, -0.014276417903602123, -0.06237630918622017, -0.02832442708313465, -0.052836671471595764, 0.03878645598888397, 0.18200936913490295, 0.017226051539182663, 0.10927629470825195, -0.07439560443162918, -0.08290643990039825, 0.01886809803545475, 0.008798220194876194, 0.06234278157353401, 0.101760633289814, 0.07478498667478561, -0.10937851667404175, 0.057119693607091904, 0.09247495979070663, -0.05269403010606766, 0.13660486042499542, -0.04689858481287956, -0.07261213660240173, -0.0321909636259079, -0.009013760834932327, -0.007303756661713123, 0.15072381496429443, -0.03726588562130928, 0.01697961986064911, 0.033386219292879105, 0.03738706558942795, 0.004513708874583244, -0.16171446442604065, -0.014830953441560268, 0.013823427259922028, -0.047725412994623184, -0.022679023444652557, 0.015386506915092468, 0.015973735600709915, 0.09522820264101028, 0.04175780713558197, -0.005371488630771637, 0.0075477370992302895, -0.010064555332064629, -0.04266760125756264, 0.2003190666437149, -0.09120769053697586, -0.04267709702253342, -0.07550633698701859, -0.0022425467614084482, -0.023925133049488068, -0.040688056498765945, 0.015286457724869251, -0.09503529965877533, -0.02545601688325405, -0.07181552797555923, -0.0003946351644117385, -0.04134773835539818, 0.015568859875202179, 0.004312665667384863, 0.014018295332789421, 0.05952432006597519, -0.1317920982837677, 0.010109925642609596, -0.06791841983795166, -0.11139735579490662, 0.029228411614894867, 0.061523910611867905, 0.08035831153392792, 0.05790194496512413, -0.03209543600678444, 0.01897677220404148, -0.04112733528017998, 0.23258155584335327, -0.07764837145805359, 0.012959669344127178, 0.12317093461751938, 0.026670370250940323, 0.03923948481678963, 0.10532024502754211, 0.03370233625173569, -0.10003239661455154, 0.03861341252923012, 0.07706243544816971, -0.04075096920132637, -0.24461650848388672, 0.007754290010780096, -0.038257449865341187, -0.0959169790148735, 0.08822917193174362, 0.05061180889606476, -0.044775817543268204, 0.06462357938289642, 0.01181792188435793, 0.010984697379171848, -0.024291759356856346, 0.08779095113277435, 0.09169742465019226, 0.06585859507322311, 0.10802441090345383, -0.03860686346888542, -0.018099548295140266, 0.06389816105365753, 0.028989113867282867, 0.3037879168987274, -0.04856019839644432, 0.08492833375930786, 0.0496085025370121, 0.13957637548446655, -0.02144990861415863, 0.04580650478601456, 0.007707667071372271, -0.006868524942547083, -0.030115116387605667, -0.05393160879611969, -0.018689896911382675, 0.002118200995028019, -0.07869482785463333, 0.04526856169104576, -0.05241204798221588, 0.050404615700244904, 0.019564202055335045, 0.2905523478984833, 0.0026233261451125145, -0.2636806070804596, -0.09412795305252075, -0.015537366271018982, -0.0374077744781971, -0.051359787583351135, 0.01197919249534607, 0.12128196656703949, -0.12355411797761917, 0.03743667155504227, -0.07092952728271484, 0.079932801425457, -0.02959439717233181, -0.001253359718248248, 0.04296485707163811, 0.17270709574222565, -0.02166086621582508, 0.05532433092594147, -0.22297479212284088, 0.227240189909935, 0.014716505073010921, 0.1286940574645996, -0.05838339775800705, 0.00859815627336502, 0.0266877468675375, 0.0054541584104299545, 0.08864607661962509, -0.00419956399127841, -0.06595290452241898, -0.1359563171863556, -0.052333518862724304, 0.07436154782772064, 0.14278411865234375, -0.040777575224637985, 0.09739616513252258, -0.057418566197156906, 0.01433262787759304, 0.03678428754210472, -0.08878904581069946, -0.1341479867696762, -0.09770035743713379, -0.02326130121946335, 0.015085420571267605, -0.07141545414924622, -0.056525819003582, -0.06936462968587875, 0.03075699508190155, 0.1045764833688736, 0.0164283849298954, -0.031558673828840256, -0.14724160730838776, 0.07658811658620834, 0.1560024619102478, -0.06688520312309265, 0.025726119056344032, -0.0032884052488952875, 0.07480129599571228, 0.03925963491201401, -0.08269517868757248, 0.06078910827636719, -0.0650663748383522, -0.17838071286678314, -0.04839693009853363, 0.09455815702676773, 0.06992500275373459, 0.04143763333559036, -0.0028751373756676912, 0.05214333161711693, -0.02591158263385296, -0.09366750717163086, 0.024683430790901184, 0.020184140652418137, 0.036482393741607666, 0.03600388392806053, -0.08634994179010391, 0.07718843966722488, -0.037067096680402756, -0.013187670148909092, 0.1135990247130394, 0.2305755466222763, -0.10119825601577759, 0.09779983758926392, 0.06124631687998772, -0.06161611154675484, -0.16042041778564453, 0.07163187861442566, 0.1031341552734375, 0.007293387316167355, 0.07063285261392593, -0.2103283703327179, 0.1297101229429245, 0.10249175131320953, -0.01621920056641102, 0.04116560146212578, -0.2715425193309784, -0.11961178481578827, 0.04446132108569145, 0.12943817675113678, 0.09789153933525085, -0.12493832409381866, -0.013716467656195164, -0.01592971570789814, -0.11563689261674881, 0.09370089322328568, -0.11508060991764069, 0.13550783693790436, -0.029002739116549492, 0.1117204949259758, 0.010354535654187202, -0.02572636678814888, 0.102805495262146, 0.0475754588842392, 0.10238800942897797, -0.04262065142393112, 0.004512168932706118, 0.06269882619380951, -0.04816659912467003, 0.0025449469685554504, -0.07604275643825531, 0.08731585741043091, -0.13142342865467072, -0.003478654893115163, -0.09161162376403809, 0.045686524361371994, -0.03898380696773529, -0.06863013654947281, -0.04136718809604645, 0.056688714772462845, 0.0475911945104599, -0.035981129854917526, 0.04565620422363281, -0.01846625842154026, 0.1026783436536789, 0.036873091012239456, 0.08673848956823349, 0.013203158043324947, -0.04598976671695709, 0.023981977254152298, -0.010522757656872272, 0.06402812898159027, -0.1643865555524826, 0.01118785422295332, 0.0998411700129509, 0.05936385318636894, 0.09713968634605408, 0.04450207203626633, -0.04520886018872261, 0.01716289483010769, 0.03050833009183407, -0.10172759741544724, -0.10640738159418106, 0.04723039269447327, -0.03156979754567146, -0.13918228447437286, 0.050137970596551895, 0.12194596976041794, -0.04348365217447281, -0.027142653241753578, -0.017313893884420395, 0.0042525529861450195, -0.023830898106098175, 0.1824081391096115, 0.04942740872502327, 0.05516374111175537, -0.10211458057165146, 0.12772446870803833, 0.028773389756679535, -0.020238829776644707, 0.05143234133720398, 0.08388080447912216, -0.10372179746627808, -0.003364975331351161, 0.08311746269464493, 0.13962005078792572, -0.0580935999751091, -0.006197922397404909, -0.10532067716121674, -0.08432944118976593, 0.04990527033805847, 0.14322270452976227, 0.049340590834617615, -0.017346030101180077, -0.05388399586081505, 0.039634399116039276, -0.14076536893844604, 0.07120853662490845, 0.024500444531440735, 0.06397223472595215, -0.0770777016878128, 0.060356076806783676, 0.007149709854274988, 0.013911382295191288, -0.016964256763458252, 0.008382569998502731, -0.09381502866744995, -0.01646796055138111, -0.0815432220697403, -0.0026612861547619104, 0.00009322731784777716, 0.017208049073815346, -0.02054382674396038, -0.07075860351324081, -0.04900025576353073, 0.03710418567061424, -0.08772293478250504, -0.049622759222984314, 0.010070313699543476, 0.0409441739320755, -0.12281031161546707, -0.005750461481511593, 0.021027645096182823, -0.09287437051534653, 0.09511683136224747, 0.07303418964147568, 0.01706923358142376, 0.03092561475932598, -0.1228371188044548, -0.0338086374104023, -0.010279879905283451, -0.008977432735264301, 0.06268946826457977, -0.0947350487112999, -0.009122407995164394, -0.03766557574272156, 0.07117591053247452, 0.013252802193164825, 0.06896607577800751, -0.1333470493555069, 0.02033974416553974, -0.07536985725164413, -0.046905744820833206, -0.07565050572156906, 0.03513574227690697, 0.09732209146022797, 0.059952814131975174, 0.1517815887928009, -0.07704798132181168, 0.023512039333581924, -0.20623783767223358, -0.035021647810935974, -0.006531955674290657, -0.06096290796995163, -0.15113787353038788, -0.047714393585920334, 0.08102891594171524, -0.03838128224015236, 0.09317617118358612, -0.01813902147114277, 0.07580281794071198, 0.03752506896853447, -0.046617548912763596, -0.051740363240242004, -0.015439636074006557, 0.19745762646198273, 0.07239901274442673, -0.01676134020090103, 0.11092983186244965, 0.00192981434520334, 0.029605844989418983, 0.05183299630880356, 0.1811966747045517, 0.21291591227054596, 0.033013127744197845, 0.055527735501527786, 0.0648098737001419, -0.07442964613437653, -0.07020580768585205, 0.17952843010425568, -0.015544122084975243, 0.07026417553424835, -0.048999588936567307, 0.19653275609016418, 0.10795184969902039, -0.16733220219612122, 0.04520426318049431, -0.0438663475215435, -0.08138258010149002, -0.12551440298557281, -0.010936065576970577, -0.08628612756729126, -0.12631016969680786, 0.0372982881963253, -0.11688628047704697, 0.052698057144880295, 0.10935389250516891, 0.013264786452054977, 0.036646079272031784, 0.12680353224277496, -0.019568726420402527, 0.0036746824625879526, 0.06416486203670502, 0.005230995360761881, -0.012383067049086094, -0.035684239119291306, -0.0787276104092598, 0.04892924055457115, 0.001393522834405303, 0.07734599709510803, -0.047219350934028625, -0.015532568097114563, 0.026026686653494835, -0.027569212019443512, -0.08013952523469925, 0.027383944019675255, 0.04118905961513519, 0.05636363849043846, 0.04799366369843483, 0.04649130254983902, -0.009518933482468128, -0.03309193626046181, 0.3187480568885803, -0.06645750999450684, -0.10029507428407669, -0.12204000353813171, 0.22118043899536133, 0.028708137571811676, -0.030537685379385948, 0.03353431820869446, -0.08208640664815903, -0.009773560799658298, 0.15938952565193176, 0.16835176944732666, -0.07324180752038956, -0.022761650383472443, -0.005674745887517929, -0.017991285771131516, -0.03682376816868782, 0.12833799421787262, 0.08885599672794342, -0.024286756291985512, -0.06300857663154602, -0.012828541919589043, -0.019285133108496666, -0.03110790252685547, -0.041067130863666534, 0.04140234738588333, 0.015689609572291374, -0.024983583018183708, -0.04148021712899208, 0.07382968813180923, 0.005016830284148455, -0.25676971673965454, 0.06706243008375168, -0.15678425133228302, -0.17133860290050507, -0.044157326221466064, 0.03730707988142967, -0.000689864216838032, 0.057447027415037155, -0.01774260587990284, 0.008178041316568851, 0.07949379086494446, -0.017701406031847, -0.030857058241963387, -0.12511664628982544, 0.12474773079156876, -0.06587155163288116, 0.1710255742073059, -0.028189165517687798, 0.04975955933332443, 0.11571578681468964, 0.028363676741719246, -0.13566257059574127, 0.04167572408914566, 0.05343937501311302, -0.10601303726434708, 0.015863539651036263, 0.151230588555336, -0.04617714136838913, 0.09245361387729645, 0.04262680932879448, -0.10727467387914658, 0.004805786069482565, -0.055989399552345276, -0.03422364592552185, -0.08066266775131226, -0.014481631107628345, -0.06030212342739105, 0.16868959367275238, 0.21958155930042267, -0.030050814151763916, 0.012103961780667305, -0.10168343037366867, 0.016515936702489853, 0.07044481486082077, 0.02830660343170166, -0.05754556506872177, -0.18886534869670868, 0.011601944454014301, 0.06892302632331848, -0.00716285640373826, -0.2416258454322815, -0.07586292177438736, 0.039153747260570526, -0.03594289720058441, -0.040373485535383224, 0.10385346412658691, 0.040770433843135834, 0.05249466747045517, -0.03025597520172596, -0.1583404392004013, -0.03172263875603676, 0.15396440029144287, -0.17495623230934143, -0.036655623465776443 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-128-finetuned-squad-seed-42 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results {'exact_match': 39.04446546830653, 'f1': 49.90230650794353} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-128-finetuned-squad-seed-42", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-42
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-128-finetuned-squad-seed-42 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results {'exact_match': 39.04446546830653, 'f1': 49.90230650794353} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "# roberta-base-few-shot-k-128-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results\n\n{'exact_match': 39.04446546830653, 'f1': 49.90230650794353}", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-128-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results\n\n{'exact_match': 39.04446546830653, 'f1': 49.90230650794353}", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ 52, 46, 6, 12, 8, 3, 104, 33, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-128-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results\n\n{'exact_match': 39.04446546830653, 'f1': 49.90230650794353}### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ -0.09683026373386383, 0.07495033740997314, -0.0027644417714327574, 0.0821521133184433, 0.14331397414207458, 0.04113554209470749, 0.10319000482559204, 0.12183528393507004, -0.10625623166561127, 0.049156997352838516, 0.06629222631454468, 0.0790088027715683, 0.047030895948410034, 0.12207284569740295, -0.043230149894952774, -0.2594362199306488, -0.01061440259218216, -0.004642900079488754, -0.11639925092458725, 0.11530039459466934, 0.1061239093542099, -0.09240435063838959, 0.07421748340129852, 0.0058064647018909454, -0.17529666423797607, 0.03627760335803032, 0.001035825232975185, -0.041979625821113586, 0.11209416389465332, -0.0024179783649742603, 0.10164962708950043, 0.012457893230021, 0.13042671978473663, -0.1707635223865509, 0.015504387207329273, 0.08962677419185638, 0.03731533885002136, 0.10551467537879944, 0.05577554926276207, -0.03247649222612381, 0.13315530121326447, -0.1219235435128212, 0.08097949624061584, 0.049164049327373505, -0.10032746940851212, -0.2195560783147812, -0.1113223135471344, 0.03318513557314873, 0.05285964533686638, 0.08529046177864075, 0.01410412136465311, 0.14304909110069275, -0.0675027146935463, 0.0846589207649231, 0.2528340518474579, -0.30065563321113586, -0.08721216022968292, 0.06911230832338333, 0.05360430106520653, 0.0570196658372879, -0.11087542772293091, -0.0016684859292581677, 0.01026533916592598, 0.03971705213189125, 0.10085030645132065, -0.03958170488476753, -0.11348936706781387, -0.008093264885246754, -0.11813132464885712, 0.01338738389313221, 0.08259782940149307, 0.03709530457854271, -0.06084325909614563, -0.034771960228681564, -0.06413744390010834, -0.07831040769815445, -0.026477869600057602, -0.04605768248438835, 0.05576581135392189, -0.05812658742070198, -0.10179208219051361, -0.066741444170475, -0.05687885358929634, -0.08794384449720383, -0.035602569580078125, 0.22104153037071228, 0.030537815764546394, 0.04522472992539406, -0.048232048749923706, 0.10891380161046982, -0.0206924881786108, -0.13012954592704773, -0.017311228439211845, -0.006711774971336126, -0.09564047306776047, -0.030903691425919533, -0.06237173080444336, -0.009213188663125038, 0.008523880504071712, 0.20627263188362122, -0.09406294673681259, 0.08198410272598267, 0.0395105816423893, -0.010212847962975502, -0.05040643736720085, 0.14605319499969482, -0.05381214618682861, -0.08255670219659805, 0.007201717235147953, 0.062273766845464706, 0.014660668559372425, 0.005532819777727127, -0.055598169565200806, -0.05506889522075653, 0.05132686346769333, 0.041657183319330215, -0.05149583891034126, 0.033156801015138626, -0.004877518862485886, -0.033484138548374176, 0.019789820536971092, -0.11264557391405106, 0.014054836705327034, -0.014283332042396069, -0.10620735585689545, -0.039968155324459076, 0.03058534860610962, 0.0010713479714468122, -0.005161052569746971, 0.1084897369146347, -0.08201730996370316, 0.0017620634753257036, -0.0908709466457367, -0.08968950062990189, -0.016012970358133316, -0.15641865134239197, -0.004216338973492384, -0.05373499169945717, -0.17082473635673523, -0.04170358553528786, 0.05076432228088379, -0.07711844891309738, -0.017284510657191277, -0.0044250525534152985, -0.08083374798297882, 0.015601346269249916, -0.000891400792170316, 0.22091197967529297, -0.045204948633909225, 0.07673588395118713, 0.018151091411709785, 0.05560844764113426, -0.028121596202254295, 0.03338248282670975, -0.07781149446964264, 0.012366808019578457, -0.1869659423828125, 0.06265268474817276, -0.08394725620746613, 0.0026360347401350737, -0.1369277685880661, -0.10088492929935455, -0.010674478486180305, -0.02037445828318596, 0.09567468613386154, 0.1008254811167717, -0.15902884304523468, -0.009495865553617477, 0.10991063714027405, -0.07643298804759979, -0.0688413679599762, 0.051064085215330124, -0.04683392122387886, 0.06079194322228432, 0.03714919835329056, 0.16829411685466766, 0.08530988544225693, -0.11993720382452011, 0.0026531266048550606, 0.007598105352371931, 0.017411591485142708, -0.006722957827150822, 0.04838940501213074, -0.008012650534510612, 0.03759891167283058, 0.01262324396520853, -0.0678820088505745, -0.019434576854109764, -0.09702783823013306, -0.05842691287398338, -0.05518316477537155, -0.09415844827890396, 0.003739100880920887, 0.021468689665198326, 0.035065460950136185, -0.07731376588344574, -0.09232427924871445, 0.08547218888998032, 0.1284228265285492, -0.030774708837270737, 0.021450763568282127, -0.08138330280780792, -0.0168266911059618, -0.019404735416173935, -0.03471506014466286, -0.2275509387254715, -0.08808152377605438, 0.011502603068947792, -0.03154193237423897, 0.05004153773188591, -0.00790676660835743, 0.09486962109804153, 0.03310941532254219, -0.05861695110797882, 0.003119649598374963, -0.07713747769594193, -0.01694880612194538, -0.09937265515327454, -0.20448750257492065, -0.08093255758285522, -0.014195980504155159, 0.1296488493680954, -0.16840101778507233, 0.004072227980941534, -0.025178954005241394, 0.13414974510669708, 0.02824467420578003, -0.05146075412631035, -0.006512963678687811, 0.032773107290267944, 0.020847972482442856, -0.09468584507703781, 0.04355674609541893, 0.00906346458941698, -0.07531481981277466, -0.02441391348838806, -0.13178230822086334, 0.032642628997564316, 0.06691056489944458, 0.047592371702194214, -0.1038631722331047, 0.003585502039641142, -0.06326841562986374, -0.04061703756451607, -0.04917779192328453, 0.03990504890680313, 0.17039690911769867, 0.02334289811551571, 0.11155915260314941, -0.07123107463121414, -0.07108954340219498, 0.011646651662886143, 0.00720469793304801, 0.05123605579137802, 0.09285333007574081, 0.0642695501446724, -0.11097466200590134, 0.061627306044101715, 0.08250582963228226, -0.0778122991323471, 0.12666016817092896, -0.03683197498321533, -0.06722100079059601, -0.03806965798139572, -0.02539500594139099, -0.014012644067406654, 0.14475424587726593, -0.015725497156381607, 0.033203087747097015, 0.03806529939174652, 0.03273129463195801, 0.02726767584681511, -0.1740749031305313, -0.0037858604919165373, 0.00728100910782814, -0.0496676079928875, -0.030044380575418472, 0.011455771513283253, 0.03845833241939545, 0.10182694345712662, 0.02802445739507675, -0.004968919325619936, -0.0028627358842641115, -0.007196164224296808, -0.05242122709751129, 0.20963841676712036, -0.09653924405574799, -0.058812204748392105, -0.09947607666254044, 0.027519606053829193, -0.04820016399025917, -0.04631604999303818, 0.007398214656859636, -0.08230498433113098, -0.04069798067212105, -0.06345370411872864, -0.013553333468735218, -0.021887417882680893, 0.0015389543259516358, 0.009723486378788948, 0.0030552081298083067, 0.08801258355379105, -0.13933664560317993, 0.010000421665608883, -0.0708703026175499, -0.12173443287611008, 0.011466491967439651, 0.08427219837903976, 0.08260651677846909, 0.07649944722652435, -0.042404938489198685, 0.021104643121361732, -0.028910228982567787, 0.2394266128540039, -0.06758540123701096, 0.018969064578413963, 0.1610306352376938, 0.030972223728895187, 0.053034037351608276, 0.08860429376363754, 0.04448852315545082, -0.087288998067379, 0.02538706175982952, 0.09573131799697876, -0.033939678221940994, -0.27172380685806274, -0.005411392543464899, -0.017259448766708374, -0.10086365789175034, 0.07538699358701706, 0.036038003861904144, -0.021008776500821114, 0.07093539088964462, 0.0035244461614638567, -0.004151005297899246, -0.031962089240550995, 0.07268954068422318, 0.09747131913900375, 0.07000897079706192, 0.12496212869882584, -0.043284762650728226, -0.00389271043241024, 0.06846774369478226, 0.015082299709320068, 0.2643793821334839, -0.04904412105679512, 0.06414848566055298, 0.050093721598386765, 0.13911238312721252, -0.030092891305685043, 0.0566580556333065, 0.005117675755172968, -0.01934117265045643, -0.007439779583364725, -0.060000088065862656, -0.016080647706985474, -0.0008095814846456051, -0.07352638244628906, 0.05186903476715088, -0.058346979320049286, 0.05362837016582489, 0.013649821281433105, 0.2929653823375702, -0.004904154688119888, -0.27428412437438965, -0.09174051135778427, -0.024411197751760483, -0.01720503717660904, -0.06431131064891815, -0.004721763078123331, 0.11773144453763962, -0.1249227374792099, 0.0684124082326889, -0.0732313022017479, 0.0907386988401413, -0.0003236572374589741, 0.0001800468162400648, 0.07664944231510162, 0.18584215641021729, -0.01970015838742256, 0.0438307523727417, -0.20631450414657593, 0.23329070210456848, 0.023217979818582535, 0.12206396460533142, -0.03504890576004982, 0.01054622232913971, 0.03666339069604874, 0.02321206033229828, 0.06604479253292084, -0.0018669767305254936, -0.06561153382062912, -0.13572397828102112, -0.043026238679885864, 0.058012474328279495, 0.15450994670391083, -0.02802181802690029, 0.09032079577445984, -0.04788618162274361, 0.007680526468902826, 0.03209623694419861, -0.08549033105373383, -0.14796237647533417, -0.06910400092601776, -0.005477454047650099, 0.015307052992284298, -0.049789752811193466, -0.06033655256032944, -0.08141858875751495, 0.008226362057030201, 0.12583187222480774, -0.01605406031012535, -0.04068336263298988, -0.15506938099861145, 0.08017786592245102, 0.16420167684555054, -0.07033218443393707, 0.029585687443614006, -0.0006097013829275966, 0.07510533183813095, 0.03705368563532829, -0.10239510238170624, 0.062277864664793015, -0.06772974878549576, -0.1744893491268158, -0.03402687981724739, 0.10567674040794373, 0.059786852449178696, 0.03900895640254021, -0.014972629956901073, 0.04890485107898712, -0.01481675449758768, -0.10001334547996521, 0.024201957508921623, -0.0028630790766328573, 0.05500440672039986, 0.05117417126893997, -0.06556697934865952, 0.04420708492398262, -0.03139243647456169, 0.004831769969314337, 0.09475262463092804, 0.22585424780845642, -0.10636699944734573, 0.06224292144179344, 0.03788688778877258, -0.061912454664707184, -0.1663103997707367, 0.08576840907335281, 0.1321427971124649, -0.005432726349681616, 0.07636293768882751, -0.20252852141857147, 0.14120393991470337, 0.12964923679828644, -0.02961411513388157, 0.06243027001619339, -0.25957798957824707, -0.13643261790275574, 0.05402657762169838, 0.1286718249320984, 0.08185843378305435, -0.14484627544879913, -0.026007255539298058, -0.01437024399638176, -0.17140266299247742, 0.12566159665584564, -0.11418573558330536, 0.11859527230262756, -0.030153000727295876, 0.10856332629919052, 0.017739104107022285, -0.027161890640854836, 0.11757738888263702, 0.037205636501312256, 0.10978561639785767, -0.03704783320426941, 0.027138348668813705, 0.060200728476047516, -0.05187585949897766, 0.0209273099899292, -0.03555229306221008, 0.0868472158908844, -0.1240517720580101, 0.012179955840110779, -0.09808164089918137, 0.05597195029258728, -0.04442790150642395, -0.05430617928504944, -0.027612851932644844, 0.04924270510673523, 0.015999022871255875, -0.0424584224820137, 0.06776157021522522, -0.015710661187767982, 0.14214842021465302, 0.09287245571613312, 0.0899890884757042, -0.012577377259731293, -0.06586158275604248, 0.01919264905154705, -0.005768475588411093, 0.059298671782016754, -0.1391768902540207, 0.014413024298846722, 0.11955448240041733, 0.0657716765999794, 0.0836837887763977, 0.045595817267894745, -0.0435231551527977, 0.0022011667024344206, 0.042609259486198425, -0.11437791585922241, -0.10413751006126404, 0.027332277968525887, -0.052345383912324905, -0.12543219327926636, 0.05993613600730896, 0.12470551580190659, -0.03234226629137993, -0.02362358197569847, -0.009553385898470879, 0.00865627359598875, -0.023136060684919357, 0.20063304901123047, 0.05947958678007126, 0.063052237033844, -0.10356658697128296, 0.13318303227424622, 0.03310493007302284, -0.041005585342645645, 0.03315829113125801, 0.11214353889226913, -0.08802848309278488, -0.0003966978401876986, 0.06701388210058212, 0.1072394996881485, -0.09731823951005936, -0.027803201228380203, -0.10594809800386429, -0.09461610019207001, 0.04365646094083786, 0.19592493772506714, 0.05505480244755745, -0.022519484162330627, -0.02813779003918171, 0.03507983312010765, -0.1300373375415802, 0.06079528108239174, 0.0345042422413826, 0.08165702223777771, -0.09293508529663086, 0.10800404101610184, 0.014283445663750172, 0.03059033676981926, -0.015680823475122452, 0.017662206664681435, -0.09295118600130081, -0.029620597139000893, -0.11851475387811661, -0.015239492990076542, 0.0017887785797938704, 0.00833513680845499, -0.02323967032134533, -0.07501894235610962, -0.06934207677841187, 0.05019231140613556, -0.08696673810482025, -0.05019199848175049, 0.01411941647529602, 0.015403148718178272, -0.14332658052444458, 0.004438014235347509, 0.02019612491130829, -0.07543585449457169, 0.07699210941791534, 0.08228541910648346, 0.033268243074417114, 0.03082393668591976, -0.12568044662475586, -0.036820292472839355, -0.011085583828389645, -0.005101577378809452, 0.06695917248725891, -0.0880371555685997, -0.005622981581836939, -0.03928080573678017, 0.07928343862295151, 0.007193460129201412, 0.09516437351703644, -0.13542789220809937, 0.02291698195040226, -0.06046437472105026, -0.020928381010890007, -0.07548784464597702, 0.02918914519250393, 0.1048964336514473, 0.06652901321649551, 0.14531309902668, -0.07392605394124985, 0.020500250160694122, -0.2237108200788498, -0.029541367664933205, -0.017700709402561188, -0.06164846941828728, -0.11248509585857391, -0.02741655893623829, 0.08561646193265915, -0.045325540006160736, 0.08078762143850327, 0.0013833320699632168, 0.09073175489902496, 0.045922812074422836, -0.02864227257668972, -0.06420929729938507, -0.010727254673838615, 0.1529632806777954, 0.0557214729487896, -0.00990376342087984, 0.11987192928791046, 0.023809701204299927, 0.022584890946745872, 0.03411667421460152, 0.2163928896188736, 0.17772066593170166, -0.015112301334738731, 0.06366536766290665, 0.06542804092168808, -0.09228815883398056, -0.08158186823129654, 0.13642075657844543, -0.02265312895178795, 0.06845154613256454, -0.054005201905965805, 0.16877107322216034, 0.10433714091777802, -0.16707640886306763, 0.05651181563735008, -0.0452946312725544, -0.07953796535730362, -0.13896597921848297, 0.011879993602633476, -0.0749829038977623, -0.12466804683208466, 0.029060043394565582, -0.12540102005004883, 0.07594176381826401, 0.13827107846736908, 0.00788513757288456, 0.03417176380753517, 0.14041544497013092, -0.05718225613236427, -0.0016817788127809763, 0.04714909568428993, 0.01626015082001686, 0.0023435745388269424, -0.01646300218999386, -0.07227329164743423, 0.05586317181587219, 0.014235056936740875, 0.07599407434463501, -0.055273570120334625, -0.026715680956840515, 0.016879025846719742, -0.019407929852604866, -0.07808591425418854, 0.02110598050057888, 0.04713693633675575, 0.059619076550006866, 0.04897885397076607, 0.04005344957113266, 0.011189418844878674, -0.04396137595176697, 0.3418039381504059, -0.07327049225568771, -0.10381869226694107, -0.1219564750790596, 0.2699993848800659, 0.03615836054086685, -0.03186441957950592, 0.045690447092056274, -0.08866865932941437, -0.013747052289545536, 0.14451371133327484, 0.15730923414230347, -0.07933473587036133, -0.026651382446289062, -0.007018826436251402, -0.017344223335385323, -0.023418935015797615, 0.12657800316810608, 0.09563569724559784, 0.023335613310337067, -0.07098198682069778, -0.0019384011393412948, -0.015073585323989391, -0.02720450796186924, -0.05060889199376106, 0.06731603294610977, 0.006525497883558273, -0.013067391701042652, -0.020320987328886986, 0.07319450378417969, 0.00692108366638422, -0.2321661114692688, 0.06673683971166611, -0.16264884173870087, -0.18366190791130066, -0.03229901194572449, 0.05168384313583374, -0.01303055603057146, 0.05847581475973129, -0.007739055901765823, -0.010507943108677864, 0.0862555280327797, -0.01859297789633274, -0.03598783537745476, -0.1439666599035263, 0.10877866297960281, -0.1158771738409996, 0.19479955732822418, -0.025640493258833885, 0.05688592046499252, 0.10849116742610931, 0.025895483791828156, -0.14512860774993896, 0.03262989595532417, 0.043595653027296066, -0.13710099458694458, 0.01632053405046463, 0.15623965859413147, -0.03989109396934509, 0.06696870177984238, 0.028993070125579834, -0.1450299471616745, -0.01044373121112585, -0.028632864356040955, -0.03867968171834946, -0.05900173261761665, -0.015529485419392586, -0.06347420811653137, 0.15729522705078125, 0.22823964059352875, -0.022619707509875298, 0.02487138658761978, -0.10561589151620865, 0.01178103405982256, 0.06729321926832199, 0.06704822182655334, -0.04824874922633171, -0.19665467739105225, 0.04053124785423279, 0.05135400965809822, -0.01478610374033451, -0.22816963493824005, -0.06289772689342499, 0.04107281193137169, -0.04936880245804787, -0.02830391190946102, 0.09340143203735352, 0.04630260542035103, 0.05813615024089813, -0.024730583652853966, -0.13792704045772552, -0.033184148371219635, 0.16266082227230072, -0.1855178326368332, -0.047069430351257324 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-128-finetuned-squad-seed-6 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-128-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-6
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-128-finetuned-squad-seed-6 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-128-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-128-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-128-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08073229342699051, 0.08282189816236496, -0.0024415303487330675, 0.08443990349769592, 0.13730266690254211, 0.032723840326070786, 0.10084681212902069, 0.13862013816833496, -0.11403364688158035, 0.04270759969949722, 0.08809870481491089, 0.0823967307806015, 0.031139317899942398, 0.13587012887001038, -0.03310273215174675, -0.25478434562683105, -0.005657122004777193, -0.01927383430302143, -0.09570574015378952, 0.109385184943676, 0.09829937666654587, -0.10054352879524231, 0.07203478366136551, -0.014452210627496243, -0.17978446185588837, 0.017574183642864227, -0.012424025684595108, -0.05033361539244652, 0.11862523853778839, -0.010104126296937466, 0.07654465734958649, 0.00976764690130949, 0.12331180274486542, -0.18958766758441925, 0.01637813076376915, 0.07552402466535568, 0.046387143433094025, 0.09702137112617493, 0.009250737726688385, -0.010607706382870674, 0.13214614987373352, -0.12746481597423553, 0.09937620162963867, 0.031839195638895035, -0.09524855017662048, -0.2046143263578415, -0.09574383497238159, 0.006590524688363075, 0.04455399140715599, 0.08497745543718338, 0.00983912218362093, 0.15947142243385315, -0.099094457924366, 0.08275600522756577, 0.23068207502365112, -0.2753770053386688, -0.07998471707105637, 0.054602157324552536, 0.0601053312420845, 0.08201809227466583, -0.12687425315380096, -0.009907092899084091, 0.006969383917748928, 0.02599397487938404, 0.10323719680309296, -0.03208085894584656, -0.08873690664768219, 0.0021810410544276237, -0.10596481710672379, 0.007002983707934618, 0.10891303420066833, 0.034224770963191986, -0.05250737443566322, -0.07084819674491882, -0.043620575219392776, -0.052902791649103165, -0.0345546193420887, -0.02011146768927574, 0.03909013047814369, -0.05962595343589783, -0.13817648589611053, -0.04788706824183464, -0.0495062917470932, -0.09063784033060074, -0.0063610379584133625, 0.21814939379692078, 0.036370035260915756, 0.031627412885427475, -0.05215178802609444, 0.1026860848069191, 0.012622336857020855, -0.12735195457935333, -0.02919606864452362, -0.0046793632209300995, -0.0908513069152832, -0.03640199080109596, -0.05977465584874153, 0.020362813025712967, 0.0345788300037384, 0.21287748217582703, -0.04317149147391319, 0.07843250036239624, 0.03296919912099838, -0.017355145886540413, -0.02755145914852619, 0.13762010633945465, -0.020839331671595573, -0.07265667617321014, 0.011235217563807964, 0.06347998231649399, 0.009507467970252037, -0.00449464563280344, -0.06289827078580856, -0.04000364989042282, 0.06503752619028091, 0.047342244535684586, -0.06156539171934128, 0.03080659732222557, -0.00728691928088665, -0.023413993418216705, 0.001626469544135034, -0.11521898210048676, 0.01574806310236454, -0.009339995682239532, -0.08192568272352219, -0.04616537690162659, 0.007180133368819952, -0.011382125318050385, 0.01165984757244587, 0.09652121365070343, -0.07384316623210907, -0.024032479152083397, -0.0805448517203331, -0.07506664842367172, -0.016647592186927795, -0.15739747881889343, 0.019703660160303116, -0.06219290941953659, -0.16011656820774078, -0.030734580010175705, 0.055450040847063065, -0.08164654672145844, -0.02836637571454048, -0.03298836946487427, -0.07912269979715347, 0.02124280296266079, 0.0022799011785537004, 0.21768876910209656, -0.04944614693522453, 0.08854977041482925, 0.00928155705332756, 0.057656124234199524, -0.008902397006750107, 0.03616637736558914, -0.08671142905950546, 0.009000289253890514, -0.1776394248008728, 0.07484441250562668, -0.08045972883701324, 0.017764372751116753, -0.13986369967460632, -0.0856785923242569, -0.01118921022862196, -0.02201593667268753, 0.07985847443342209, 0.10424529016017914, -0.14334028959274292, -0.020965326577425003, 0.11619787663221359, -0.0659007802605629, -0.055286988615989685, 0.0561230406165123, -0.07613406330347061, 0.08634517341852188, 0.0540909506380558, 0.1917358636856079, 0.08742082118988037, -0.10616259276866913, 0.013397319242358208, 0.013344957493245602, 0.034851450473070145, 0.002055071759968996, 0.04954526573419571, 0.005906227510422468, 0.029594020918011665, 0.01655755564570427, -0.07150426506996155, 0.0073909396305680275, -0.09119345992803574, -0.05913829803466797, -0.04887382313609123, -0.08407314121723175, -0.006192153785377741, 0.013525509275496006, 0.035688988864421844, -0.08025341480970383, -0.08313746005296707, 0.07546346634626389, 0.1366281807422638, -0.04685106873512268, 0.017903609201312065, -0.07557071000337601, -0.0036785320844501257, -0.03244958817958832, -0.024040963500738144, -0.20435704290866852, -0.058274541050195694, 0.032855287194252014, -0.006670587696135044, 0.0454210489988327, 0.003194990335032344, 0.08474534004926682, 0.02579333260655403, -0.05471263453364372, -0.0009098047739826143, -0.08611422032117844, -0.007588138338178396, -0.09489987790584564, -0.22091127932071686, -0.053102586418390274, -0.039052512496709824, 0.13472403585910797, -0.1658788025379181, -0.004163431469351053, -0.01907968334853649, 0.11567448824644089, 0.04238784313201904, -0.051320720463991165, -0.00486726826056838, 0.02873154543340206, 0.013053247705101967, -0.09728791564702988, 0.03879842534661293, 0.015493452548980713, -0.09251955896615982, -0.028692469000816345, -0.10349363088607788, -0.010904159396886826, 0.07003406435251236, 0.07034566253423691, -0.10264474153518677, -0.014201757498085499, -0.0625266581773758, -0.028671005740761757, -0.0538807213306427, 0.039445891976356506, 0.18131904304027557, 0.017532343044877052, 0.10882547497749329, -0.0747586190700531, -0.08314426243305206, 0.019453879445791245, 0.008921543136239052, 0.06177708879113197, 0.10247469693422318, 0.07624589651823044, -0.11068636924028397, 0.05775344371795654, 0.09300586581230164, -0.05200890079140663, 0.1369590312242508, -0.047064151614904404, -0.07317018508911133, -0.031127529218792915, -0.00844374019652605, -0.007131799124181271, 0.15038172900676727, -0.036975979804992676, 0.017311181873083115, 0.03333597630262375, 0.037751927971839905, 0.004500760696828365, -0.16202937066555023, -0.014969034120440483, 0.013671491295099258, -0.047719940543174744, -0.023223746567964554, 0.015232997946441174, 0.015946464613080025, 0.09538450092077255, 0.04144958034157753, -0.0050614881329238415, 0.0071215396746993065, -0.010126756504178047, -0.042743980884552, 0.20102450251579285, -0.0909012034535408, -0.041698161512613297, -0.07470357418060303, -0.001469254377298057, -0.023645762354135513, -0.04070484638214111, 0.015363607555627823, -0.09610413759946823, -0.0254057627171278, -0.07177563011646271, -0.00034804490860551596, -0.04138655960559845, 0.01480616070330143, 0.003770515788346529, 0.014322346076369286, 0.058975186198949814, -0.1324211061000824, 0.010184766724705696, -0.06834106892347336, -0.11182327568531036, 0.028972379863262177, 0.06096704304218292, 0.08001236617565155, 0.058115117251873016, -0.0322478711605072, 0.018843475729227066, -0.04129090905189514, 0.2315138429403305, -0.07782933115959167, 0.012495960108935833, 0.12337258458137512, 0.027575848624110222, 0.03979838639497757, 0.1054743081331253, 0.032999102026224136, -0.10007850080728531, 0.03917371854186058, 0.0774763822555542, -0.04104842245578766, -0.24565570056438446, 0.00777687830850482, -0.03845309093594551, -0.09616419672966003, 0.08855560421943665, 0.050845809280872345, -0.04502655938267708, 0.06469695270061493, 0.010863439179956913, 0.00997143518179655, -0.0243564173579216, 0.08817005902528763, 0.09001114219427109, 0.06647384166717529, 0.10796932876110077, -0.03858331963419914, -0.017580214887857437, 0.06323809921741486, 0.0291727464646101, 0.3049585819244385, -0.04870744049549103, 0.0851709321141243, 0.04925566166639328, 0.13972100615501404, -0.02191426046192646, 0.04643171653151512, 0.007583585102111101, -0.006929642055183649, -0.0300157330930233, -0.053787875920534134, -0.01896171271800995, 0.0020423477981239557, -0.07920004427433014, 0.04558601975440979, -0.05248653143644333, 0.05068083480000496, 0.018715063109993935, 0.29124167561531067, 0.0028523923829197884, -0.2628921866416931, -0.09363379329442978, -0.01574154756963253, -0.037671539932489395, -0.051993176341056824, 0.011760023422539234, 0.12103404104709625, -0.12321042269468307, 0.036863502115011215, -0.0712369903922081, 0.08059628307819366, -0.028476789593696594, -0.0018964930204674602, 0.04207388684153557, 0.17277362942695618, -0.02149340882897377, 0.055900588631629944, -0.22348713874816895, 0.22906705737113953, 0.014574223197996616, 0.12856799364089966, -0.058685220777988434, 0.008590915240347385, 0.025992166250944138, 0.003563478123396635, 0.08897340297698975, -0.004122155252844095, -0.06637568771839142, -0.13563665747642517, -0.05177034065127373, 0.07409005612134933, 0.14343684911727905, -0.041190437972545624, 0.09691140800714493, -0.05754305422306061, 0.014531799592077732, 0.03750166296958923, -0.08849143236875534, -0.13430148363113403, -0.09783046692609787, -0.022862309589982033, 0.014388060197234154, -0.07218361645936966, -0.05650560185313225, -0.06924153864383698, 0.03185891732573509, 0.10445856302976608, 0.0164363794028759, -0.031234633177518845, -0.14713861048221588, 0.07722922414541245, 0.15624438226222992, -0.06719274818897247, 0.025647228583693504, -0.003613509237766266, 0.0747087374329567, 0.038440559059381485, -0.08287703990936279, 0.06148506700992584, -0.06505095213651657, -0.1789296716451645, -0.04836604371666908, 0.09442305564880371, 0.07029199600219727, 0.041743963956832886, -0.0030148623045533895, 0.05248650908470154, -0.02585335075855255, -0.0934484675526619, 0.024981413036584854, 0.020357750356197357, 0.03647218272089958, 0.0363583043217659, -0.0859321728348732, 0.07628215849399567, -0.03773124888539314, -0.013737511821091175, 0.11331755667924881, 0.23158566653728485, -0.10109370946884155, 0.09800857305526733, 0.06156129762530327, -0.06182054430246353, -0.16078391671180725, 0.07203347980976105, 0.10373176634311676, 0.006923883222043514, 0.07128243893384933, -0.2103153020143509, 0.12971794605255127, 0.10250301659107208, -0.016521774232387543, 0.04043104872107506, -0.2720085382461548, -0.11961539089679718, 0.04437718540430069, 0.12927034497261047, 0.0965636596083641, -0.12462622672319412, -0.013629334047436714, -0.015627797693014145, -0.11517715454101562, 0.09438654035329819, -0.11346440017223358, 0.1357993483543396, -0.029317017644643784, 0.11172646284103394, 0.010499415919184685, -0.02612215094268322, 0.10179606080055237, 0.047766584903001785, 0.10244906693696976, -0.04227902367711067, 0.0041983360424637794, 0.06294967979192734, -0.04831613600254059, 0.0026700205635279417, -0.07611008733510971, 0.0877053365111351, -0.13062678277492523, -0.0031409154180437326, -0.09217759221792221, 0.04595837742090225, -0.03893938660621643, -0.06853377819061279, -0.04139888286590576, 0.05693964660167694, 0.04806315526366234, -0.036170877516269684, 0.04661446064710617, -0.018205193802714348, 0.10404175519943237, 0.03718053549528122, 0.08706415444612503, 0.013775210827589035, -0.04518347233533859, 0.023263486102223396, -0.009843643754720688, 0.06411907076835632, -0.16517230868339539, 0.010957900434732437, 0.0997346043586731, 0.060195617377758026, 0.09702549874782562, 0.044957105070352554, -0.0458296574652195, 0.01718461513519287, 0.029729878529906273, -0.10105209797620773, -0.1071465015411377, 0.04742395877838135, -0.028269266709685326, -0.1398937851190567, 0.050316184759140015, 0.1206163838505745, -0.0442715547978878, -0.027241874486207962, -0.017215417698025703, 0.004657536745071411, -0.023303283378481865, 0.18306347727775574, 0.04944521188735962, 0.0557570643723011, -0.10192904621362686, 0.12813478708267212, 0.028519509360194206, -0.020808247849345207, 0.05148843303322792, 0.08362920582294464, -0.1031617522239685, -0.0031953901052474976, 0.0841686874628067, 0.13823556900024414, -0.0578421913087368, -0.004989957436919212, -0.10451634228229523, -0.08406060189008713, 0.0502169132232666, 0.14411868155002594, 0.049168895930051804, -0.017115110531449318, -0.05366640165448189, 0.04001390188932419, -0.1412208527326584, 0.0713297426700592, 0.02416776306927204, 0.06409647315740585, -0.07667587697505951, 0.05920160189270973, 0.007361515425145626, 0.014171329326927662, -0.016738824546337128, 0.00871706660836935, -0.09350232034921646, -0.01650485396385193, -0.07960931956768036, -0.0028125422541052103, 0.00010747152555268258, 0.016670240089297295, -0.02097717672586441, -0.07103876769542694, -0.04813902825117111, 0.03719152882695198, -0.08796966075897217, -0.05005980655550957, 0.009473428130149841, 0.040643706917762756, -0.12314473092556, -0.005598185583949089, 0.021377364173531532, -0.09261573106050491, 0.09434836357831955, 0.07258196920156479, 0.017383117228746414, 0.031199883669614792, -0.12459225952625275, -0.033508531749248505, -0.01007008831948042, -0.008898003958165646, 0.0624430850148201, -0.09424379467964172, -0.009413322433829308, -0.03778665512800217, 0.07121458649635315, 0.012883033603429794, 0.06820745021104813, -0.13392913341522217, 0.019525442272424698, -0.07634413987398148, -0.04756360128521919, -0.07506407797336578, 0.03550579771399498, 0.0974075123667717, 0.06009819731116295, 0.15157659351825714, -0.07679159939289093, 0.024163737893104553, -0.20644603669643402, -0.034880440682172775, -0.0064193750731647015, -0.06086516007781029, -0.15145868062973022, -0.04707341641187668, 0.08124496787786484, -0.038177162408828735, 0.09095039963722229, -0.018024617806077003, 0.07632923871278763, 0.03765039145946503, -0.04626261815428734, -0.05185459926724434, -0.015582817606627941, 0.19756343960762024, 0.0723080039024353, -0.016343429684638977, 0.11238711327314377, 0.0019132968736812472, 0.029435276985168457, 0.05290643870830536, 0.18272502720355988, 0.21372006833553314, 0.03188936039805412, 0.055742230266332626, 0.06478888541460037, -0.07489743083715439, -0.07014954835176468, 0.17955443263053894, -0.014988112263381481, 0.0700579509139061, -0.04907330125570297, 0.19708316028118134, 0.10809314996004105, -0.1672007292509079, 0.04563020542263985, -0.04410691559314728, -0.08112822473049164, -0.1255199909210205, -0.010898929089307785, -0.08619049936532974, -0.12625442445278168, 0.03773486614227295, -0.11718299984931946, 0.0531674325466156, 0.10973428934812546, 0.013174057938158512, 0.03677988424897194, 0.12745000422000885, -0.018933365121483803, 0.0035160137340426445, 0.06441017240285873, 0.005176191683858633, -0.01248262356966734, -0.03595054894685745, -0.07856319844722748, 0.0501289963722229, 0.0014184159226715565, 0.07753732800483704, -0.047152116894721985, -0.016300901770591736, 0.02575237676501274, -0.027332661673426628, -0.08035251498222351, 0.027525627985596657, 0.04130861163139343, 0.05639851093292236, 0.04859277978539467, 0.04634465277194977, -0.008832654915750027, -0.03323245421051979, 0.3198454678058624, -0.06675674021244049, -0.09984426945447922, -0.12115282565355301, 0.2217135727405548, 0.02962491102516651, -0.030524110421538353, 0.03350114822387695, -0.08276413381099701, -0.0100486995652318, 0.1581011861562729, 0.1665382981300354, -0.07214049994945526, -0.022530794143676758, -0.005907644517719746, -0.017960714176297188, -0.03658943623304367, 0.12818914651870728, 0.08914346247911453, -0.023897001519799232, -0.06330730766057968, -0.012705602683126926, -0.019229186698794365, -0.03170512616634369, -0.04021485894918442, 0.04134335368871689, 0.01598099246621132, -0.02523595094680786, -0.04160207137465477, 0.07387145608663559, 0.005128599237650633, -0.2562701404094696, 0.06642013788223267, -0.15757527947425842, -0.17095205187797546, -0.04409563168883324, 0.03699590265750885, -0.0006808391190133989, 0.05751332640647888, -0.01772194541990757, 0.008754495531320572, 0.07792546600103378, -0.017567027360200882, -0.031223680824041367, -0.1258479356765747, 0.12421957403421402, -0.06619187444448471, 0.17132435739040375, -0.02829854190349579, 0.04902768135070801, 0.11558302491903305, 0.028585214167833328, -0.1363046020269394, 0.041523244231939316, 0.0536215640604496, -0.10619659721851349, 0.015650827437639236, 0.1520717740058899, -0.04612116888165474, 0.0926055759191513, 0.04229074716567993, -0.10895620286464691, 0.005091724917292595, -0.05656895413994789, -0.03360709175467491, -0.08118242770433426, -0.013055120594799519, -0.06019951403141022, 0.1688179075717926, 0.2198750376701355, -0.03002629242837429, 0.011521010659635067, -0.10200022161006927, 0.01625567488372326, 0.06963881850242615, 0.029215266928076744, -0.0572354681789875, -0.1888507604598999, 0.011757811531424522, 0.06880400329828262, -0.0073136924766004086, -0.24157968163490295, -0.07551239430904388, 0.039368126541376114, -0.03692300617694855, -0.04048380255699158, 0.10323195904493332, 0.04060003533959389, 0.05204012617468834, -0.03028942085802555, -0.16001006960868835, -0.03152058273553848, 0.1543722152709961, -0.17508509755134583, -0.036296140402555466 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-128-finetuned-squad-seed-8 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-128-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-8
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-128-finetuned-squad-seed-8 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-128-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-128-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-128-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08128967136144638, 0.08359725773334503, -0.0024582992773503065, 0.08485375344753265, 0.13737520575523376, 0.0331815630197525, 0.100110724568367, 0.13857029378414154, -0.11415614187717438, 0.04244435206055641, 0.08820167183876038, 0.08194875717163086, 0.031014369800686836, 0.1353217512369156, -0.03347517549991608, -0.2546077370643616, -0.0063606384210288525, -0.019146421924233437, -0.0944574624300003, 0.10899489372968674, 0.09839246422052383, -0.10068284720182419, 0.07207230478525162, -0.014728403650224209, -0.17932240664958954, 0.017404137179255486, -0.01203838735818863, -0.05044900253415108, 0.11891387403011322, -0.009521746076643467, 0.07652470469474792, 0.008993725292384624, 0.12355496734380722, -0.19006004929542542, 0.016232328489422798, 0.07574444264173508, 0.04639199376106262, 0.09705323725938797, 0.008332588709890842, -0.009949645958840847, 0.13168928027153015, -0.12787172198295593, 0.09942259639501572, 0.031606320291757584, -0.09497137367725372, -0.2049909085035324, -0.09528597444295883, 0.007513225544244051, 0.04439370334148407, 0.08434940874576569, 0.010680735111236572, 0.1599687933921814, -0.09805377572774887, 0.08328841626644135, 0.2312125712633133, -0.27486392855644226, -0.0793096125125885, 0.054004646837711334, 0.059926584362983704, 0.0831507220864296, -0.12605831027030945, -0.009741170331835747, 0.006837903521955013, 0.0257697906345129, 0.10374238342046738, -0.03270593285560608, -0.09029167890548706, 0.0021489288192242384, -0.1056719422340393, 0.006782286334782839, 0.10927563160657883, 0.03449433296918869, -0.052727457135915756, -0.07043082267045975, -0.044020600616931915, -0.05362807959318161, -0.03494948521256447, -0.020180944353342056, 0.03880031779408455, -0.05947800725698471, -0.13714011013507843, -0.04826834797859192, -0.04906662926077843, -0.08978573232889175, -0.0059456913731992245, 0.2181154489517212, 0.036630697548389435, 0.03148128464818001, -0.051402319222688675, 0.1025368869304657, 0.01109606958925724, -0.12718448042869568, -0.02884601801633835, -0.0042526922188699245, -0.09092282503843307, -0.036570508033037186, -0.059820786118507385, 0.01938161626458168, 0.034476298838853836, 0.21386249363422394, -0.04289982467889786, 0.07823485136032104, 0.033152781426906586, -0.016803525388240814, -0.027465814724564552, 0.13840387761592865, -0.0212686937302351, -0.07375848293304443, 0.012248607352375984, 0.06322550028562546, 0.010097017511725426, -0.005076112225651741, -0.06384793668985367, -0.04039343073964119, 0.0652080774307251, 0.04713521525263786, -0.06154746189713478, 0.030359044671058655, -0.007302920334041119, -0.023530617356300354, 0.0019111180445179343, -0.11527163535356522, 0.01594988815486431, -0.009338456206023693, -0.08185187727212906, -0.0458153672516346, 0.007816643454134464, -0.010647074319422245, 0.011615239083766937, 0.09600386768579483, -0.07306469976902008, -0.023540474474430084, -0.0804675742983818, -0.07518786191940308, -0.016484707593917847, -0.15692494809627533, 0.020169196650385857, -0.06322217732667923, -0.16038092970848083, -0.03056364692747593, 0.055569231510162354, -0.08110414445400238, -0.02821592427790165, -0.0323856882750988, -0.07825178653001785, 0.020825505256652832, 0.0020584187004715204, 0.21660777926445007, -0.04963644593954086, 0.08818384259939194, 0.009080047719180584, 0.057216826826334, -0.009939892217516899, 0.03636988624930382, -0.08604926615953445, 0.008946949616074562, -0.17787553369998932, 0.074872687458992, -0.07999255508184433, 0.018288254737854004, -0.13883425295352936, -0.0855223536491394, -0.010057277046144009, -0.021550046280026436, 0.08021209388971329, 0.10334347933530807, -0.14349322021007538, -0.0207439623773098, 0.11559391021728516, -0.06520724296569824, -0.05545201897621155, 0.05750003084540367, -0.07624748349189758, 0.08601631224155426, 0.05456145480275154, 0.191519632935524, 0.0884065330028534, -0.10605736076831818, 0.01460630539804697, 0.014505266211926937, 0.035415299236774445, 0.001118829706683755, 0.04937010258436203, 0.006016705185174942, 0.029725022614002228, 0.01674235798418522, -0.07079122215509415, 0.007922121323645115, -0.09120369702577591, -0.059493135660886765, -0.04913411661982536, -0.08411984890699387, -0.006935108918696642, 0.013786436058580875, 0.03570264205336571, -0.0800437331199646, -0.08342195302248001, 0.0764516144990921, 0.1366519331932068, -0.04710637032985687, 0.018129337579011917, -0.0750972330570221, -0.0030896218959242105, -0.03130365535616875, -0.024107813835144043, -0.20403090119361877, -0.057061657309532166, 0.032770924270153046, -0.006795873399823904, 0.045108016580343246, 0.0033149663358926773, 0.08386719226837158, 0.026264062151312828, -0.05425536632537842, 1.6383120282625896e-7, -0.08556237816810608, -0.0072560301050543785, -0.09566410630941391, -0.22035561501979828, -0.05308375135064125, -0.03862305358052254, 0.13524681329727173, -0.1668984591960907, -0.003832095768302679, -0.01996796578168869, 0.11518833041191101, 0.04197513312101364, -0.05126403272151947, -0.005066609941422939, 0.029356444254517555, 0.01284276694059372, -0.09747027605772018, 0.03880513831973076, 0.016042539849877357, -0.09325452893972397, -0.029726136475801468, -0.10343585163354874, -0.01036168448626995, 0.06956624239683151, 0.06911826133728027, -0.10267907381057739, -0.014774397015571594, -0.062082257121801376, -0.02859107404947281, -0.05332037806510925, 0.038645241409540176, 0.18199722468852997, 0.017729923129081726, 0.11011932790279388, -0.07458572089672089, -0.08276649564504623, 0.01923074759542942, 0.008875187486410141, 0.06248939782381058, 0.10218621045351028, 0.0760665237903595, -0.1089041531085968, 0.057154007256031036, 0.09225304424762726, -0.053133610635995865, 0.13607437908649445, -0.046820271760225296, -0.0728486031293869, -0.031280517578125, -0.008610423654317856, -0.007089048624038696, 0.1501912623643875, -0.03817034140229225, 0.016655344516038895, 0.033459827303886414, 0.03734787181019783, 0.0047146049328148365, -0.16207255423069, -0.014942223206162453, 0.014304662123322487, -0.047323618084192276, -0.02211005613207817, 0.014583409763872623, 0.01577644981443882, 0.09505997598171234, 0.04123039171099663, -0.005446098279207945, 0.0076025002636015415, -0.010075210593640804, -0.04290972650051117, 0.20058587193489075, -0.09104293584823608, -0.04268449544906616, -0.07577753067016602, -0.0013272261712700129, -0.023721732199192047, -0.04091835767030716, 0.015634896233677864, -0.09461688250303268, -0.025434769690036774, -0.07218845188617706, -0.0015559043968096375, -0.041237011551856995, 0.014571844600141048, 0.00385991670191288, 0.013996554538607597, 0.05937696620821953, -0.13232754170894623, 0.01007819827646017, -0.06774292886257172, -0.11124475300312042, 0.02915153093636036, 0.06114970147609711, 0.08035416156053543, 0.05880436673760414, -0.03277727589011192, 0.018512580543756485, -0.04087728261947632, 0.23121806979179382, -0.07738129794597626, 0.012744567357003689, 0.12343834340572357, 0.02659354731440544, 0.04000183194875717, 0.10482034087181091, 0.03343817964196205, -0.10008691251277924, 0.038929879665374756, 0.07689563930034637, -0.041392069309949875, -0.24511198699474335, 0.007708874065428972, -0.03864168003201485, -0.09601522237062454, 0.08828505873680115, 0.05083800479769707, -0.0444876104593277, 0.06479355692863464, 0.01124754548072815, 0.011250853538513184, -0.02514900080859661, 0.08792468905448914, 0.0905207172036171, 0.06601183116436005, 0.10763909667730331, -0.03829342871904373, -0.01735144481062889, 0.06360824406147003, 0.028350830078125, 0.30342501401901245, -0.04889874532818794, 0.08571915328502655, 0.04870371147990227, 0.14021140336990356, -0.022074338048696518, 0.04591662436723709, 0.007226202171295881, -0.007117546629160643, -0.03015696071088314, -0.05380445718765259, -0.0199327003210783, 0.0025234350468963385, -0.07979944348335266, 0.046203624457120895, -0.052497491240501404, 0.051203809678554535, 0.01845409721136093, 0.29109424352645874, 0.002637606579810381, -0.2626953721046448, -0.0937444269657135, -0.015866117551922798, -0.03782772272825241, -0.05233890563249588, 0.011828897520899773, 0.12171074002981186, -0.12313251197338104, 0.036184974014759064, -0.07063547521829605, 0.08080989122390747, -0.0295421089977026, -0.0016314660897478461, 0.041658900678157806, 0.17319847643375397, -0.021418171003460884, 0.05601280555129051, -0.22446346282958984, 0.22799591720104218, 0.014789595268666744, 0.12865473330020905, -0.05867135897278786, 0.009041893295943737, 0.026016460731625557, 0.005133417434990406, 0.08824120461940765, -0.003805422456935048, -0.06541753560304642, -0.13682246208190918, -0.052099812775850296, 0.07399440556764603, 0.14246919751167297, -0.0398205928504467, 0.09649576991796494, -0.05784020945429802, 0.014625485055148602, 0.037465259432792664, -0.08788664638996124, -0.13427706062793732, -0.0980578288435936, -0.023271845653653145, 0.015205278992652893, -0.07188135385513306, -0.05637663975358009, -0.0688961073756218, 0.0302828811109066, 0.1047566756606102, 0.01690082997083664, -0.031310517340898514, -0.14707423746585846, 0.07789915055036545, 0.15553857386112213, -0.06739865243434906, 0.02583380602300167, -0.00367863685823977, 0.07462801784276962, 0.0385269932448864, -0.08216391503810883, 0.06134210154414177, -0.06494738161563873, -0.17849700152873993, -0.048600759357213974, 0.09384465962648392, 0.07022815942764282, 0.041830163449048996, -0.002756374189630151, 0.052204594016075134, -0.026163993403315544, -0.0934029370546341, 0.02387627772986889, 0.021305643022060394, 0.036087516695261, 0.03667560592293739, -0.08612184226512909, 0.07711058109998703, -0.03750529885292053, -0.013993971049785614, 0.11433296650648117, 0.23120583593845367, -0.10144384950399399, 0.09725628793239594, 0.06184433028101921, -0.06200971454381943, -0.16022662818431854, 0.07204761356115341, 0.10331054776906967, 0.007053372450172901, 0.07151934504508972, -0.20979060232639313, 0.12994857132434845, 0.1035279780626297, -0.016266513615846634, 0.040495507419109344, -0.2721276581287384, -0.11982512474060059, 0.04515429958701134, 0.12931711971759796, 0.09790465235710144, -0.12523211538791656, -0.013605804182589054, -0.016238270327448845, -0.11620611697435379, 0.09331651777029037, -0.11287322640419006, 0.13558706641197205, -0.029175443574786186, 0.11071385443210602, 0.01060877088457346, -0.02615487203001976, 0.1022498607635498, 0.048241183161735535, 0.10245294123888016, -0.04270024597644806, 0.004448867402970791, 0.06232969090342522, -0.04848715662956238, 0.0031088278628885746, -0.0759044662117958, 0.08777705579996109, -0.13226816058158875, -0.0032180913258343935, -0.09105737507343292, 0.04615001007914543, -0.038796115666627884, -0.06860359758138657, -0.0414358526468277, 0.056201644241809845, 0.0478515625, -0.03599739447236061, 0.04759759455919266, -0.01812633126974106, 0.10352932661771774, 0.03791295364499092, 0.08595115691423416, 0.011340372264385223, -0.045283399522304535, 0.02317856065928936, -0.009855040349066257, 0.06405142694711685, -0.165140300989151, 0.011539972387254238, 0.10009744018316269, 0.0603756457567215, 0.09763384610414505, 0.043972235172986984, -0.04528898000717163, 0.017452208325266838, 0.029358699917793274, -0.10068237036466599, -0.10627312958240509, 0.04703608155250549, -0.029004091396927834, -0.1395203322172165, 0.049515146762132645, 0.12090004980564117, -0.0449637696146965, -0.02679520845413208, -0.017470311373472214, 0.003853950649499893, -0.023415766656398773, 0.1824398636817932, 0.05026554688811302, 0.05546226352453232, -0.10180269926786423, 0.12784382700920105, 0.028894372284412384, -0.019803928211331367, 0.05158865079283714, 0.08357825130224228, -0.10321535170078278, -0.0034168134443461895, 0.08431532979011536, 0.1383044421672821, -0.05858122557401657, -0.0058610341511666775, -0.1049441322684288, -0.0832103043794632, 0.049937304109334946, 0.14341579377651215, 0.049502983689308167, -0.017381422221660614, -0.05385298654437065, 0.03959984332323074, -0.14121723175048828, 0.0712113305926323, 0.02416878752410412, 0.06438292562961578, -0.07687097787857056, 0.06080766022205353, 0.007858914323151112, 0.01430421881377697, -0.01662829890847206, 0.00846023578196764, -0.09342166781425476, -0.016249172389507294, -0.08135771751403809, -0.0025559680070728064, 0.0004806222568731755, 0.016971206292510033, -0.020967785269021988, -0.07094001770019531, -0.04801660031080246, 0.03725504130125046, -0.08754171431064606, -0.04997008293867111, 0.009804143570363522, 0.04056931659579277, -0.12263448536396027, -0.00594030087813735, 0.021035533398389816, -0.09226342290639877, 0.09462518990039825, 0.07193277776241302, 0.01710989885032177, 0.031041566282510757, -0.1251053661108017, -0.03323066607117653, -0.010083126835525036, -0.008200501091778278, 0.06260376423597336, -0.09296772629022598, -0.008920307271182537, -0.03758835047483444, 0.07101664692163467, 0.012643113732337952, 0.06830380111932755, -0.1341119110584259, 0.019641390070319176, -0.07622026652097702, -0.04752585291862488, -0.07543980330228806, 0.03533313050866127, 0.0968935564160347, 0.05965500324964523, 0.1513255536556244, -0.07663944363594055, 0.02400342747569084, -0.20639029145240784, -0.035073794424533844, -0.006313784047961235, -0.06068209558725357, -0.15149402618408203, -0.04801106080412865, 0.08109497278928757, -0.03785211965441704, 0.09248364716768265, -0.01774914562702179, 0.07658669352531433, 0.037408459931612015, -0.046877723187208176, -0.05162845551967621, -0.016006452962756157, 0.1977606564760208, 0.07283982634544373, -0.01616096682846546, 0.11163633316755295, 0.002153022913262248, 0.030331604182720184, 0.05235985293984413, 0.1810900717973709, 0.2138766199350357, 0.03142125532031059, 0.05553237348794937, 0.06456201523542404, -0.07462836802005768, -0.07034756243228912, 0.179053395986557, -0.015124223195016384, 0.07075832039117813, -0.0492112971842289, 0.19743488729000092, 0.10779597610235214, -0.16711562871932983, 0.04552865028381348, -0.0435698926448822, -0.08129672706127167, -0.12565451860427856, -0.010230143554508686, -0.08626147359609604, -0.12617096304893494, 0.037203967571258545, -0.11670857667922974, 0.053328946232795715, 0.11035821586847305, 0.012922507710754871, 0.03658745065331459, 0.126522958278656, -0.018950264900922775, 0.0036222038324922323, 0.06440772116184235, 0.005181069951504469, -0.01218409277498722, -0.037084367126226425, -0.07918856292963028, 0.04984838142991066, 0.0015877321129664779, 0.0779549777507782, -0.04728524759411812, -0.014996654354035854, 0.02612902782857418, -0.027219559997320175, -0.08060433715581894, 0.027592694386839867, 0.04067596420645714, 0.056311991065740585, 0.04747188836336136, 0.04663584753870964, -0.008772328495979309, -0.03335937485098839, 0.3192375898361206, -0.06629769504070282, -0.10019999742507935, -0.12094305455684662, 0.2209051102399826, 0.029837308451533318, -0.03052767924964428, 0.03346749395132065, -0.0828702375292778, -0.009248404763638973, 0.15857815742492676, 0.16589879989624023, -0.072990283370018, -0.022485798224806786, -0.005639892071485519, -0.018077697604894638, -0.037448689341545105, 0.12862277030944824, 0.08940702676773071, -0.025006869807839394, -0.06238722428679466, -0.01287445891648531, -0.019343659281730652, -0.03158276900649071, -0.04139260575175285, 0.04067352041602135, 0.015896977856755257, -0.024677179753780365, -0.04115280508995056, 0.07348956912755966, 0.005700216628611088, -0.2573004364967346, 0.06634379923343658, -0.15753182768821716, -0.17105737328529358, -0.044188737869262695, 0.03723384439945221, -0.00008182684541679919, 0.05680076405405998, -0.017603576183319092, 0.00912314560264349, 0.07883697003126144, -0.017951659858226776, -0.03135204687714577, -0.125352680683136, 0.12389285862445831, -0.06562238186597824, 0.1712745577096939, -0.028239339590072632, 0.0493302196264267, 0.11528794467449188, 0.028752008453011513, -0.13546699285507202, 0.04170512035489082, 0.05335265025496483, -0.10561179369688034, 0.0156415868550539, 0.1509256213903427, -0.04602878540754318, 0.09246711432933807, 0.042681530117988586, -0.10845036059617996, 0.004606799688190222, -0.0574222207069397, -0.03407584875822067, -0.08088939636945724, -0.01410111878067255, -0.05993427336215973, 0.16899573802947998, 0.2195274382829666, -0.0298863984644413, 0.011244122870266438, -0.10218600928783417, 0.01587303914129734, 0.0699932724237442, 0.029394790530204773, -0.0574813075363636, -0.18874892592430115, 0.01229208055883646, 0.06848310679197311, -0.0072021777741611, -0.24098728597164154, -0.0759255588054657, 0.03920120745897293, -0.037018779665231705, -0.04016116261482239, 0.10334458947181702, 0.04092060402035713, 0.05219609662890434, -0.030341938138008118, -0.1601894199848175, -0.032015491276979446, 0.15444765985012054, -0.17496028542518616, -0.03648695349693298 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-16-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-16-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-16-finetuned-squad-seed-0
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-16-finetuned-squad-seed-0 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-16-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-16-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 45, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-16-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08850991725921631, 0.09592525660991669, -0.002588411560282111, 0.07781397551298141, 0.14014296233654022, 0.029093438759446144, 0.09593384712934494, 0.13814058899879456, -0.11403363943099976, 0.04612983018159866, 0.09688562154769897, 0.07723534107208252, 0.0300371702760458, 0.14543655514717102, -0.030259491875767708, -0.24381820857524872, -0.007211707998067141, -0.022151969373226166, -0.10591453313827515, 0.11311041563749313, 0.10015224665403366, -0.09869678318500519, 0.06751739233732224, -0.018808484077453613, -0.17451830208301544, 0.013607329688966274, -0.0187673419713974, -0.05385793745517731, 0.11669987440109253, -0.0011436400236561894, 0.07847148180007935, 0.009916692040860653, 0.11478772014379501, -0.1952952891588211, 0.01834406517446041, 0.07266465574502945, 0.0443740114569664, 0.09472742676734924, 0.005671121180057526, -0.022588269785046577, 0.11930078268051147, -0.129579097032547, 0.09935250133275986, 0.0329376757144928, -0.09885028749704361, -0.2060803472995758, -0.09693314880132675, 0.013025077991187572, 0.04240919277071953, 0.08975350856781006, 0.006672861985862255, 0.14845681190490723, -0.10702993720769882, 0.08003448694944382, 0.23094631731510162, -0.26451170444488525, -0.08228425681591034, 0.046400874853134155, 0.06122535467147827, 0.08414468914270401, -0.12352227419614792, -0.012838130816817284, 0.010047685354948044, 0.01998135633766651, 0.10154759138822556, -0.026690179482102394, -0.0763450562953949, 0.013195635750889778, -0.11081978678703308, -0.0009480025037191808, 0.11554738879203796, 0.0371609628200531, -0.05448922514915466, -0.08110641688108444, -0.03738364577293396, -0.062283288687467575, -0.03446212410926819, -0.014361554756760597, 0.035921916365623474, -0.06193838641047478, -0.14272034168243408, -0.04702044650912285, -0.04971378296613693, -0.09174902737140656, 0.0004982319078408182, 0.20940864086151123, 0.03783810883760452, 0.021008813753724098, -0.04941033944487572, 0.10564873367547989, 0.01607503369450569, -0.12417036294937134, -0.03489962965250015, -0.006208226550370455, -0.09479629248380661, -0.0344897136092186, -0.055795978754758835, 0.03019738383591175, 0.039891064167022705, 0.2297898679971695, -0.02732313796877861, 0.07322711497545242, 0.03575568273663521, -0.013269190676510334, -0.02761046029627323, 0.14854063093662262, -0.02836727164685726, -0.07626985758543015, 0.009404991753399372, 0.06392460316419601, 0.00489626731723547, -0.006644113454967737, -0.06186749413609505, -0.04380141198635101, 0.061942119151353836, 0.05774151533842087, -0.04832213744521141, 0.027877550572156906, -0.009484892711043358, -0.024111105129122734, 0.0014235678827390075, -0.11896925419569016, 0.008874248713254929, -0.008429407142102718, -0.07919818162918091, -0.053447987884283066, 0.014295756816864014, -0.012314341962337494, 0.00919497199356556, 0.09186894446611404, -0.07387660443782806, -0.03740599751472473, -0.07932469993829727, -0.07472727447748184, -0.014727877452969551, -0.16053473949432373, 0.02131941169500351, -0.07013298571109772, -0.1523655503988266, -0.03216217830777168, 0.051002539694309235, -0.07973355799913406, -0.03423362597823143, -0.03258400782942772, -0.08135058730840683, 0.01813950203359127, 0.0007250155322253704, 0.21436183154582977, -0.049011364579200745, 0.09596073627471924, 0.013404199853539467, 0.0533035472035408, 0.007215498015284538, 0.03824195638298988, -0.08000761270523071, 0.013724729418754578, -0.1762344092130661, 0.07650014758110046, -0.08956431597471237, 0.029251856729388237, -0.14591270685195923, -0.08764830231666565, -0.0033846902661025524, -0.019801480695605278, 0.08248409628868103, 0.10589029639959335, -0.1255379617214203, -0.024380631744861603, 0.12517905235290527, -0.05634058639407158, -0.05778186395764351, 0.06513570249080658, -0.07357004284858704, 0.08167769759893417, 0.04877883940935135, 0.18934999406337738, 0.09859295934438705, -0.1092209666967392, 0.0246573593467474, 0.017228489741683006, 0.03744751960039139, 0.003915551118552685, 0.05702229589223862, -0.0005045156576670706, 0.02283683978021145, 0.015669668093323708, -0.08347366005182266, 0.016026565805077553, -0.09229987114667892, -0.06252257525920868, -0.04151551425457001, -0.08969443291425705, 0.0075975204817950726, 0.009261069819331169, 0.028616849333047867, -0.07950210571289062, -0.08860821276903152, 0.06231151521205902, 0.14014603197574615, -0.04579055681824684, 0.011236418038606644, -0.07997318357229233, 0.004309577401727438, -0.028572237119078636, -0.02172655425965786, -0.19520483911037445, -0.0606086440384388, 0.024861345067620277, 0.01057251263409853, 0.04425446316599846, -0.008389851078391075, 0.0805058628320694, 0.021760523319244385, -0.05022476240992546, -0.004385763313621283, -0.09074045717716217, -0.010206171311438084, -0.08964373171329498, -0.21737974882125854, -0.05509652942419052, -0.03907175734639168, 0.15447857975959778, -0.17277204990386963, 0.001019212300889194, -0.018000265583395958, 0.10974160581827164, 0.043003182858228683, -0.051037270575761795, -0.00015285010158549994, 0.029098080471158028, 0.014890243299305439, -0.09978427737951279, 0.033912256360054016, 0.016273964196443558, -0.09937010705471039, -0.023941107094287872, -0.10280788689851761, 0.0030173449777066708, 0.07584146410226822, 0.07354340702295303, -0.1074858084321022, -0.018493125215172768, -0.06309487670660019, -0.02839227207005024, -0.047285255044698715, 0.03425775095820427, 0.17285801470279694, 0.01797599531710148, 0.1128951832652092, -0.07527477294206619, -0.08620180934667587, 0.018630163744091988, 0.009113048203289509, 0.058137446641922, 0.11380665749311447, 0.0756601020693779, -0.09747549146413803, 0.05914841219782829, 0.08757482469081879, -0.04803953319787979, 0.1405019462108612, -0.048817966133356094, -0.07933975756168365, -0.029822077602148056, 0.001507653039880097, -0.00032929438748396933, 0.1510060727596283, -0.04754428192973137, 0.010493728332221508, 0.03552675247192383, 0.030236568301916122, 0.008537841960787773, -0.16121454536914825, -0.024216217920184135, 0.020934084430336952, -0.048384714871644974, -0.028683731332421303, 0.012151733040809631, 0.013612557202577591, 0.09129782766103745, 0.05005418509244919, 0.0024175874423235655, 0.005030160769820213, -0.013630555011332035, -0.049306776374578476, 0.20142267644405365, -0.09218969196081161, -0.046942561864852905, -0.0846376121044159, -0.0008986970060504973, -0.010909069329500198, -0.03526534140110016, 0.01732555404305458, -0.10153178870677948, -0.023581627756357193, -0.0655178502202034, 0.005440044682472944, -0.04795670509338379, 0.010938233695924282, 0.00019289088959340006, 0.019529299810528755, 0.05704568326473236, -0.13430027663707733, 0.01443130150437355, -0.06194081902503967, -0.11227954924106598, 0.03035140037536621, 0.05160922557115555, 0.0879863053560257, 0.06260601431131363, -0.025914542376995087, 0.017587829381227493, -0.046727124601602554, 0.2328469455242157, -0.08747783303260803, 0.004539259243756533, 0.1240365132689476, 0.024101803079247475, 0.03678961843252182, 0.10105134546756744, 0.02777235209941864, -0.09944631904363632, 0.04387553781270981, 0.07502458244562149, -0.04431185871362686, -0.25447678565979004, 0.008757372386753559, -0.04436095803976059, -0.08211394399404526, 0.08952078223228455, 0.04886554554104805, -0.03702676296234131, 0.06460753083229065, 0.0013151022139936686, 0.007708823774009943, -0.02074701525270939, 0.08869727700948715, 0.0849519819021225, 0.05548249930143356, 0.10558527708053589, -0.04062140733003616, -0.017357347533106804, 0.06531835347414017, 0.02786029502749443, 0.3082790672779083, -0.04829832911491394, 0.1017623320221901, 0.05318981036543846, 0.1465628743171692, -0.02106841839849949, 0.03682412952184677, 0.011628272943198681, -0.00502023147419095, -0.028551964089274406, -0.05399854853749275, -0.02583238296210766, 0.005510326474905014, -0.06800556182861328, 0.04158627614378929, -0.05654400587081909, 0.04414566978812218, 0.017706383019685745, 0.2909254729747772, 0.000561184308025986, -0.2647410035133362, -0.10125022381544113, -0.01237967424094677, -0.03753010928630829, -0.05041371285915375, 0.013161401264369488, 0.118198923766613, -0.13136820495128632, 0.02539251744747162, -0.06604573130607605, 0.08500971645116806, -0.02787863090634346, -0.005616997834295034, 0.039214469492435455, 0.16209116578102112, -0.02214888483285904, 0.06102178990840912, -0.22307385504245758, 0.2313433140516281, 0.008208787068724632, 0.12241668254137039, -0.054267752915620804, 0.006446379702538252, 0.024090060964226723, -0.00039690459379926324, 0.09574205428361893, -0.0031515269074589014, -0.04625702649354935, -0.13984069228172302, -0.052405599504709244, 0.07039632648229599, 0.13893139362335205, -0.052862364798784256, 0.10164953023195267, -0.05969380959868431, 0.010616401210427284, 0.03659664839506149, -0.08128591626882553, -0.11951705068349838, -0.10375764966011047, -0.018712539225816727, -0.0011688562808558345, -0.05978092551231384, -0.06455718725919724, -0.06632262468338013, 0.02426721528172493, 0.11566309630870819, -0.002973778871819377, -0.03440900519490242, -0.14964598417282104, 0.0730895921587944, 0.15502354502677917, -0.06776546686887741, 0.033647168427705765, 0.0025164762046188116, 0.0806235820055008, 0.03487002104520798, -0.07751329988241196, 0.06285088509321213, -0.06719823181629181, -0.1804850846529007, -0.04838024452328682, 0.10251648724079132, 0.07088834792375565, 0.04171374440193176, -0.006431076675653458, 0.04802862927317619, -0.027881355956196785, -0.09112979471683502, 0.029146065935492516, 0.03152218833565712, 0.03565400838851929, 0.04224245250225067, -0.07600883394479752, 0.08393488079309464, -0.044710125774145126, -0.02022961527109146, 0.12079346179962158, 0.23170483112335205, -0.10469632595777512, 0.09672403335571289, 0.057872477918863297, -0.06020079180598259, -0.16642865538597107, 0.07237720489501953, 0.10511795431375504, 0.013157933950424194, 0.0585329644382, -0.21661128103733063, 0.12086433917284012, 0.10248883068561554, -0.013962398283183575, 0.040167562663555145, -0.27810555696487427, -0.12061326950788498, 0.05014453083276749, 0.12407885491847992, 0.08320126682519913, -0.12618738412857056, -0.018786011263728142, -0.015112701803445816, -0.12813597917556763, 0.07908517122268677, -0.11327054351568222, 0.1312694400548935, -0.023753572255373, 0.10954534262418747, 0.012869873084127903, -0.02724733017385006, 0.1081605851650238, 0.04956973344087601, 0.09634766727685928, -0.042610280215740204, 0.0004233588115312159, 0.06001058965921402, -0.04890365153551102, -0.00039382491377182305, -0.06700300425291061, 0.08860893547534943, -0.13712234795093536, -0.007712442893534899, -0.0887966975569725, 0.042587801814079285, -0.0410446971654892, -0.06666000187397003, -0.04212349280714989, 0.05759578198194504, 0.04550183564424515, -0.032797615975141525, 0.03981657698750496, -0.026620887219905853, 0.10414326936006546, 0.025376128032803535, 0.08661969006061554, 0.018749719485640526, -0.05557645484805107, 0.022651394829154015, -0.012353727594017982, 0.06426116824150085, -0.16914410889148712, 0.009595382958650589, 0.09861908853054047, 0.06861484795808792, 0.1019015684723854, 0.041604503989219666, -0.047773584723472595, 0.016914555802941322, 0.028276974335312843, -0.09683757275342941, -0.11393698304891586, 0.039510082453489304, -0.036523979157209396, -0.14730414748191833, 0.042055219411849976, 0.11863593757152557, -0.039533581584692, -0.03114093840122223, -0.019331198185682297, 0.0034610929433256388, -0.0207868330180645, 0.1804952174425125, 0.060547295957803726, 0.06004924699664116, -0.10297952592372894, 0.12044733017683029, 0.03507380560040474, -0.02879875712096691, 0.05170908570289612, 0.081732839345932, -0.10054277628660202, -0.006197901908308268, 0.07625044882297516, 0.1254441738128662, -0.05437513068318367, 0.0006292662001214921, -0.10122150927782059, -0.08718529343605042, 0.059191882610321045, 0.1422145515680313, 0.04905310273170471, -0.015537681058049202, -0.045612260699272156, 0.04609726741909981, -0.1403421312570572, 0.07440387457609177, 0.03313461318612099, 0.06336881965398788, -0.07708218693733215, 0.06484654545783997, 0.003676291322335601, 0.017205432057380676, -0.014502947218716145, 0.0022952700965106487, -0.0969112291932106, -0.006947945803403854, -0.08263345807790756, 0.0017447032732889056, -0.00031273465720005333, 0.01844358630478382, -0.024341316893696785, -0.07113654166460037, -0.0447208397090435, 0.03626512736082077, -0.08623364567756653, -0.050783514976501465, 0.0069953384809195995, 0.04324384406208992, -0.12462758272886276, -0.004215283319354057, 0.029076170176267624, -0.09864626824855804, 0.09883235394954681, 0.07350311428308487, 0.02036958746612072, 0.02815386652946472, -0.12119071185588837, -0.03444874659180641, -0.014953555539250374, -0.010210945270955563, 0.059836775064468384, -0.0998619943857193, -0.004878828767687082, -0.046180032193660736, 0.06120631471276283, 0.013541383668780327, 0.061403583735227585, -0.14072446525096893, 0.014584504999220371, -0.06839441508054733, -0.04450589045882225, -0.07868147641420364, 0.040720656514167786, 0.09359587728977203, 0.05892816558480263, 0.14040257036685944, -0.07489526271820068, 0.025779392570257187, -0.2041417509317398, -0.03658390790224075, -0.01305236667394638, -0.05642455443739891, -0.1443793773651123, -0.04617200419306755, 0.08267071843147278, -0.03979330137372017, 0.08996334671974182, -0.026744088158011436, 0.0736493468284607, 0.03797418251633644, -0.051058776676654816, -0.03299935534596443, -0.00845472700893879, 0.20292668044567108, 0.07175440341234207, -0.014685788191854954, 0.10210898518562317, 0.00011990576604148373, 0.03042728640139103, 0.04704828932881355, 0.17066657543182373, 0.22205933928489685, 0.04222540929913521, 0.04946558550000191, 0.062485020607709885, -0.07744301855564117, -0.07014515995979309, 0.1739172488451004, -0.011105811223387718, 0.06824930757284164, -0.04612618312239647, 0.19249092042446136, 0.12070480734109879, -0.167790949344635, 0.04874574393033981, -0.04607568681240082, -0.08121580630540848, -0.11852922290563583, -0.010074258781969547, -0.08267281949520111, -0.123606838285923, 0.03677390143275261, -0.11905384063720703, 0.046428337693214417, 0.10863767564296722, 0.015594171360135078, 0.03543157875537872, 0.12678202986717224, -0.010268954560160637, -0.006768518593162298, 0.06824326515197754, 0.004708088468760252, -0.010554404929280281, -0.04181757941842079, -0.07500124722719193, 0.05930020287632942, 0.0012399429688230157, 0.08202080428600311, -0.045498792082071304, -0.015155799686908722, 0.0311999823898077, -0.03074297308921814, -0.0798128992319107, 0.02577117271721363, 0.044954799115657806, 0.053495436906814575, 0.051682621240615845, 0.0414775125682354, -0.01070205308496952, -0.03304709866642952, 0.3272559642791748, -0.06667064875364304, -0.10304644703865051, -0.1257704496383667, 0.214475616812706, 0.03319982439279556, -0.02786954492330551, 0.03158556669950485, -0.08659689873456955, -0.001113763079047203, 0.1700095236301422, 0.17754711210727692, -0.06495033204555511, -0.02039284259080887, 0.0001234860683325678, -0.015870630741119385, -0.03130597993731499, 0.12411560863256454, 0.09714636206626892, -0.012029646895825863, -0.061253685504198074, -0.015936417505145073, -0.01527772843837738, -0.03364350274205208, -0.04149196669459343, 0.050040118396282196, 0.02025149017572403, -0.027342762798070908, -0.043464239686727524, 0.07667684555053711, 0.002947293920442462, -0.25556251406669617, 0.06377829611301422, -0.15678654611110687, -0.17606566846370697, -0.05133282020688057, 0.030019117519259453, 0.0047641475684940815, 0.05698412284255028, -0.013701936230063438, 0.002934875898063183, 0.0879664272069931, -0.01033307146281004, -0.03358525037765503, -0.12111914157867432, 0.12307662516832352, -0.04587695747613907, 0.17090174555778503, -0.03188690170645714, 0.0412963405251503, 0.11675063520669937, 0.03071623295545578, -0.13516680896282196, 0.035995908081531525, 0.06286466121673584, -0.09702028334140778, 0.020449623465538025, 0.14946088194847107, -0.04775761440396309, 0.09933620691299438, 0.04613492637872696, -0.10950657725334167, 0.001924662385135889, -0.06796343624591827, -0.03401311859488487, -0.08627274632453918, -0.010346700437366962, -0.06411435455083847, 0.16623006761074066, 0.221623033285141, -0.037680886685848236, 0.007967598736286163, -0.09826860576868057, 0.01206981111317873, 0.06967660784721375, 0.03567114099860191, -0.049654316157102585, -0.18157878518104553, 0.0054659792222082615, 0.05984645336866379, -0.001686923555098474, -0.2527238726615906, -0.07216276973485947, 0.03742041066288948, -0.029043326154351234, -0.032944247126579285, 0.11009949445724487, 0.04711711406707764, 0.05041249841451645, -0.031313564628362656, -0.14968256652355194, -0.033044926822185516, 0.15644219517707825, -0.1730484813451767, -0.03590825945138931 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-16-finetuned-squad-seed-10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-16-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-16-finetuned-squad-seed-10
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-16-finetuned-squad-seed-10 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-16-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-16-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 45, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-16-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08896119892597198, 0.09363608062267303, -0.0025207488797605038, 0.077954962849617, 0.14026294648647308, 0.02931234985589981, 0.09642365574836731, 0.13668292760849, -0.112643763422966, 0.045270103961229324, 0.0957537367939949, 0.0785556510090828, 0.030203048139810562, 0.14601145684719086, -0.029646286740899086, -0.24451008439064026, -0.007303339429199696, -0.021803010255098343, -0.10444213449954987, 0.1130623146891594, 0.10027880221605301, -0.09918568283319473, 0.06729517132043839, -0.018750181421637535, -0.17469987273216248, 0.013936720788478851, -0.018516935408115387, -0.052764978259801865, 0.11705074459314346, -0.002718597184866667, 0.0780564397573471, 0.00942118652164936, 0.11669529974460602, -0.19382889568805695, 0.01837502047419548, 0.07209312170743942, 0.04429565742611885, 0.09434331953525543, 0.00539025291800499, -0.021495722234249115, 0.11896906048059464, -0.13032056391239166, 0.09965751320123672, 0.032286714762449265, -0.0989128053188324, -0.20487141609191895, -0.09716739505529404, 0.01253506075590849, 0.04375699535012245, 0.08864624053239822, 0.006424002815037966, 0.14875492453575134, -0.10732950270175934, 0.08035474270582199, 0.2321067452430725, -0.26591596007347107, -0.08196520060300827, 0.048103492707014084, 0.06299091875553131, 0.08495861291885376, -0.12325441837310791, -0.013591405004262924, 0.010652446188032627, 0.019655099138617516, 0.10247600823640823, -0.02730497159063816, -0.07634314894676208, 0.012863531708717346, -0.11218065768480301, 0.0007330378866754472, 0.11464697122573853, 0.0376911424100399, -0.054260049015283585, -0.08113913238048553, -0.038176167756319046, -0.06271906197071075, -0.03563231602311134, -0.015170326456427574, 0.036473147571086884, -0.06231282651424408, -0.14163967967033386, -0.046467557549476624, -0.04868347570300102, -0.09204305708408356, 0.0006475611007772386, 0.20868012309074402, 0.03836394473910332, 0.02071264199912548, -0.049288347363471985, 0.10478855669498444, 0.013387062586843967, -0.12415144592523575, -0.03370034322142601, -0.005777149926871061, -0.09584338217973709, -0.035465944558382034, -0.0564434789121151, 0.030134228989481926, 0.03915240243077278, 0.2298850566148758, -0.025140130892395973, 0.07354556769132614, 0.037319958209991455, -0.013614647090435028, -0.027416057884693146, 0.14892806112766266, -0.02891870029270649, -0.07794057577848434, 0.00931836012750864, 0.06421075761318207, 0.005358952097594738, -0.005616362672299147, -0.06281057000160217, -0.0440601110458374, 0.06244878098368645, 0.05734220892190933, -0.05046940594911575, 0.028324011713266373, -0.009207114577293396, -0.023750262334942818, 0.002719262382015586, -0.11954953521490097, 0.00957330223172903, -0.008915943093597889, -0.0801343247294426, -0.053403183817863464, 0.012822465971112251, -0.01145110186189413, 0.009654698893427849, 0.09093879908323288, -0.07418055087327957, -0.03673642873764038, -0.0798860415816307, -0.0758143961429596, -0.014665549620985985, -0.16292807459831238, 0.02193046733736992, -0.06896478682756424, -0.1546320617198944, -0.03271638974547386, 0.05012490227818489, -0.07913833856582642, -0.03413628414273262, -0.03375491872429848, -0.08137116581201553, 0.01689682900905609, 0.0016684259753674269, 0.2155941128730774, -0.0485498309135437, 0.0946606919169426, 0.013400336727499962, 0.05487570911645889, 0.0063476599752902985, 0.03833528980612755, -0.07954718172550201, 0.0136622479185462, -0.17682936787605286, 0.07603403180837631, -0.08950231224298477, 0.031141692772507668, -0.14504322409629822, -0.08736873418092728, -0.0038989062886685133, -0.01947912573814392, 0.082339346408844, 0.10547088831663132, -0.12818892300128937, -0.02337959036231041, 0.1258825659751892, -0.056123264133930206, -0.05707038193941116, 0.06382545828819275, -0.07381612807512283, 0.08223326504230499, 0.05028235912322998, 0.18947981297969818, 0.09865706413984299, -0.1087777391076088, 0.02477126568555832, 0.017271431162953377, 0.037032876163721085, 0.002126130275428295, 0.056362900882959366, 0.00039804467814974487, 0.02424602024257183, 0.015711171552538872, -0.08173540234565735, 0.015429620631039143, -0.09191102534532547, -0.06249970570206642, -0.04193820804357529, -0.0905032679438591, 0.007187223993241787, 0.00928869005292654, 0.02889086864888668, -0.08007246255874634, -0.08782333880662918, 0.06360597163438797, 0.1399877667427063, -0.04564313217997551, 0.010674458928406239, -0.07965879142284393, 0.0037667297292500734, -0.028945310041308403, -0.021911855787038803, -0.19537685811519623, -0.05949276685714722, 0.025430776178836823, 0.008874213322997093, 0.044355735182762146, -0.006093383301049471, 0.08104780316352844, 0.021578921005129814, -0.049551114439964294, -0.004101974423974752, -0.09004103392362595, -0.010126802138984203, -0.09133259952068329, -0.21707768738269806, -0.0554826520383358, -0.039172977209091187, 0.15343284606933594, -0.17303620278835297, 0.0013296095421537757, -0.02011839859187603, 0.10943575203418732, 0.04214612767100334, -0.05079703405499458, -0.00014110482879914343, 0.028727492317557335, 0.01551912073045969, -0.0999346598982811, 0.03412167727947235, 0.015050629153847694, -0.09860347956418991, -0.025363631546497345, -0.10417067259550095, 0.001317672897130251, 0.07521337270736694, 0.07444633543491364, -0.10721609741449356, -0.017863508313894272, -0.06278127431869507, -0.027877693995833397, -0.04617929458618164, 0.0340442955493927, 0.17173656821250916, 0.01717822253704071, 0.11251705884933472, -0.07559669017791748, -0.08712930232286453, 0.01845697872340679, 0.009850943461060524, 0.05938352644443512, 0.1136302724480629, 0.07626160234212875, -0.09720147401094437, 0.05849844217300415, 0.08935178071260452, -0.04795563220977783, 0.13914552330970764, -0.048948053270578384, -0.07957135885953903, -0.029793977737426758, 0.000489121419377625, -0.0013826574431732297, 0.15054580569267273, -0.04805842414498329, 0.00906570628285408, 0.03482562676072121, 0.029751431196928024, 0.008225487545132637, -0.16195206344127655, -0.023777535185217857, 0.020496675744652748, -0.047773830592632294, -0.02953401766717434, 0.012043285183608532, 0.012836473993957043, 0.09129378199577332, 0.049101900309324265, 0.0012216606410220265, 0.00436367467045784, -0.013677084818482399, -0.048684053122997284, 0.20163626968860626, -0.09180764108896255, -0.04494138062000275, -0.08289652317762375, -0.0013667859602719545, -0.010052008554339409, -0.035570815205574036, 0.016522321850061417, -0.1016841009259224, -0.023660236969590187, -0.06544952094554901, 0.004785343538969755, -0.047226741909980774, 0.011014256626367569, 0.0015282925451174378, 0.019364068284630775, 0.05606947839260101, -0.1346871703863144, 0.014298489317297935, -0.06305323541164398, -0.11249681562185287, 0.029697541147470474, 0.051728349179029465, 0.08753377944231033, 0.0638347864151001, -0.025993233546614647, 0.017549602314829826, -0.046295542269945145, 0.23340435326099396, -0.08702484518289566, 0.006200749892741442, 0.12377025932073593, 0.02427944913506508, 0.03695045784115791, 0.10217439383268356, 0.027762198820710182, -0.09983663260936737, 0.04355580732226372, 0.07457640767097473, -0.04375981539487839, -0.25477364659309387, 0.008776670321822166, -0.04379652068018913, -0.08420008420944214, 0.08931205421686172, 0.04859695956110954, -0.03650930896401405, 0.0655420646071434, 0.0020960993133485317, 0.008843684569001198, -0.020897705107927322, 0.08802857249975204, 0.08372361958026886, 0.05512385815382004, 0.10591036826372147, -0.04105222225189209, -0.018288297578692436, 0.06407243013381958, 0.02775445766746998, 0.30884432792663574, -0.04674471169710159, 0.10101491957902908, 0.05272746458649635, 0.1458660364151001, -0.021424194797873497, 0.03874208778142929, 0.011882760562002659, -0.005932833068072796, -0.028804121538996696, -0.05384916812181473, -0.02378239668905735, 0.005594349000602961, -0.06860331445932388, 0.041686899960041046, -0.05578075721859932, 0.043612800538539886, 0.017431506887078285, 0.28904610872268677, 0.0021289722062647343, -0.2651471197605133, -0.09981615841388702, -0.012195334769785404, -0.03869399428367615, -0.04976317659020424, 0.012962568551301956, 0.11669215559959412, -0.13085117936134338, 0.026416443288326263, -0.0658039078116417, 0.08521713316440582, -0.027203481644392014, -0.0050586205907166, 0.038354918360710144, 0.1635170876979828, -0.021931210532784462, 0.06111978366971016, -0.22377321124076843, 0.23058883845806122, 0.00833803415298462, 0.12301638722419739, -0.054937418550252914, 0.005974969360977411, 0.024199996143579483, -0.0007205987349152565, 0.09575364738702774, -0.0030497193802148104, -0.04676111042499542, -0.14000582695007324, -0.052326057106256485, 0.07034847140312195, 0.13953635096549988, -0.051113538444042206, 0.10188967734575272, -0.058938197791576385, 0.009741760790348053, 0.03696485236287117, -0.08213333785533905, -0.12074276804924011, -0.10273034870624542, -0.019482459872961044, -0.00175497867166996, -0.06123762205243111, -0.06379354745149612, -0.06647653877735138, 0.02166934311389923, 0.11383384466171265, -0.0006605132366530597, -0.034520503133535385, -0.14892727136611938, 0.07337512075901031, 0.15544119477272034, -0.06766029447317123, 0.03446783870458603, 0.0030698964837938547, 0.08077444136142731, 0.034907326102256775, -0.07753557711839676, 0.06308607012033463, -0.06695237755775452, -0.17998425662517548, -0.047923147678375244, 0.10343056172132492, 0.07158853858709335, 0.04176715388894081, -0.005288620013743639, 0.048085980117321014, -0.028275417163968086, -0.09122341126203537, 0.028401024639606476, 0.031474769115448, 0.03474299609661102, 0.04231664910912514, -0.07692135125398636, 0.08297613263130188, -0.044647663831710815, -0.01860332116484642, 0.12047677487134933, 0.2294992059469223, -0.10463407635688782, 0.0961325392127037, 0.05702925845980644, -0.06050132215023041, -0.16603052616119385, 0.0732986181974411, 0.10522719472646713, 0.01323288306593895, 0.059199973940849304, -0.2150542438030243, 0.1222420185804367, 0.10242149233818054, -0.013461233116686344, 0.0400700718164444, -0.278601735830307, -0.12063183635473251, 0.0506134107708931, 0.1246161237359047, 0.08359009027481079, -0.1258520931005478, -0.018377842381596565, -0.016225066035985947, -0.12802310287952423, 0.07927967607975006, -0.11398320645093918, 0.13091668486595154, -0.02381480485200882, 0.10930304229259491, 0.01266076322644949, -0.027289196848869324, 0.10671505331993103, 0.05170908570289612, 0.09707698225975037, -0.042921051383018494, -0.0005926643498241901, 0.06149458885192871, -0.04838396981358528, 0.0005298068863339722, -0.06666624546051025, 0.0881626307964325, -0.13572958111763, -0.007532564457505941, -0.08835769444704056, 0.04205762594938278, -0.04080735146999359, -0.06621040403842926, -0.04202670231461525, 0.0570732057094574, 0.0450093112885952, -0.032898299396038055, 0.038559675216674805, -0.025277039036154747, 0.10355543345212936, 0.0220941212028265, 0.08737164735794067, 0.018105026334524155, -0.05443925783038139, 0.023018285632133484, -0.012000064365565777, 0.06327956914901733, -0.16968446969985962, 0.009106743149459362, 0.09880238771438599, 0.06873589754104614, 0.10163716971874237, 0.041581470519304276, -0.047803591936826706, 0.016208749264478683, 0.028037790209054947, -0.09536398202180862, -0.11521953344345093, 0.040459249168634415, -0.03782447800040245, -0.14717501401901245, 0.043905727565288544, 0.11688891798257828, -0.039718471467494965, -0.03189578652381897, -0.020188841968774796, 0.0031632136087864637, -0.020704563707113266, 0.1817055195569992, 0.061483368277549744, 0.059831131249666214, -0.10367985814809799, 0.11992768198251724, 0.03465482220053673, -0.027406498789787292, 0.05102724954485893, 0.08259375393390656, -0.10133281350135803, -0.006106511224061251, 0.07794221490621567, 0.12711119651794434, -0.05280034616589546, 0.0008528917678631842, -0.101495161652565, -0.0874769389629364, 0.05929653346538544, 0.14358112215995789, 0.04981492459774017, -0.016674453392624855, -0.0453154481947422, 0.046281151473522186, -0.13999417424201965, 0.07391291856765747, 0.03316757455468178, 0.06369082629680634, -0.07689593732357025, 0.06542711704969406, 0.0037304472643882036, 0.01761235110461712, -0.014551601372659206, 0.003492261515930295, -0.09683296084403992, -0.007839172147214413, -0.08250850439071655, 0.0002524630108382553, -0.0011078543029725552, 0.01837875321507454, -0.024669520556926727, -0.07117721438407898, -0.04464573413133621, 0.0358111672103405, -0.08639559894800186, -0.05097600445151329, 0.0068153077736496925, 0.042110465466976166, -0.12414591014385223, -0.004382525570690632, 0.02822520211338997, -0.09777972847223282, 0.09807424247264862, 0.0727190226316452, 0.02097637578845024, 0.029400857165455818, -0.1220167800784111, -0.0341043546795845, -0.014112082310020924, -0.00993102602660656, 0.060338910669088364, -0.09904111176729202, -0.005073036998510361, -0.045800261199474335, 0.06312969326972961, 0.012809053994715214, 0.05935249105095863, -0.13978977501392365, 0.014776972122490406, -0.0695488303899765, -0.04452535882592201, -0.07891193777322769, 0.04040098190307617, 0.09285678714513779, 0.058112673461437225, 0.14111603796482086, -0.07382199913263321, 0.02565949410200119, -0.2048773169517517, -0.036956340074539185, -0.013505605980753899, -0.057022251188755035, -0.1442723274230957, -0.04680360481142998, 0.08295177668333054, -0.039880167692899704, 0.09177859872579575, -0.02606208436191082, 0.0740729421377182, 0.037232790142297745, -0.046977899968624115, -0.03348281979560852, -0.00811292789876461, 0.20308341085910797, 0.07153096795082092, -0.014803050085902214, 0.10147559642791748, 0.0010808644583448768, 0.03080538846552372, 0.04499157890677452, 0.1700935661792755, 0.22152584791183472, 0.040812645107507706, 0.049536895006895065, 0.06333807855844498, -0.07733791321516037, -0.06872683018445969, 0.1754837930202484, -0.012152327224612236, 0.06684265285730362, -0.046104222536087036, 0.19521008431911469, 0.1194043830037117, -0.16756786406040192, 0.049108777195215225, -0.04539920762181282, -0.08194170892238617, -0.11816642433404922, -0.010885944589972496, -0.08327297121286392, -0.12326062470674515, 0.03677443414926529, -0.11893139034509659, 0.0462477020919323, 0.10924772918224335, 0.015348738059401512, 0.0349796824157238, 0.1274981051683426, -0.010670498013496399, -0.0061475918628275394, 0.06797324866056442, 0.00459248898550868, -0.010267853736877441, -0.041257623583078384, -0.07409639656543732, 0.05934502184391022, 0.000664964783936739, 0.08179786056280136, -0.04683484137058258, -0.016154156997799873, 0.03070160560309887, -0.030246522277593613, -0.07950688153505325, 0.026021050289273262, 0.04458143562078476, 0.05303703993558884, 0.05009813234210014, 0.0420977920293808, -0.011020942591130733, -0.033443983644247055, 0.32558107376098633, -0.06663180887699127, -0.10427127033472061, -0.12485188245773315, 0.213270366191864, 0.03377579525113106, -0.02774164266884327, 0.031917162239551544, -0.08639572560787201, 0.00011782233195845038, 0.1708536148071289, 0.17761629819869995, -0.06464128941297531, -0.020590774714946747, -0.00021089227811899036, -0.01632482185959816, -0.03171127289533615, 0.12437503039836884, 0.09754367917776108, -0.013988266699016094, -0.06090907007455826, -0.01566496677696705, -0.01477386336773634, -0.03409179672598839, -0.04220312088727951, 0.0489262193441391, 0.021317269653081894, -0.027416858822107315, -0.041939105838537216, 0.07737798988819122, 0.0045424820855259895, -0.25523439049720764, 0.061911266297101974, -0.15600289404392242, -0.1760374903678894, -0.0515945702791214, 0.030259180814027786, 0.006361193023622036, 0.056887779384851456, -0.013793818652629852, 0.003334395121783018, 0.08747126907110214, -0.010335641913115978, -0.03422703966498375, -0.12152411043643951, 0.1232801154255867, -0.04863015562295914, 0.16963714361190796, -0.03173375502228737, 0.042390964925289154, 0.1165323331952095, 0.02975192479789257, -0.1344204545021057, 0.03681659325957298, 0.062307070940732956, -0.09630126506090164, 0.021388797089457512, 0.14898793399333954, -0.047141436487436295, 0.09585653990507126, 0.045540858060121536, -0.10945965349674225, 0.002526325173676014, -0.06705864518880844, -0.034140147268772125, -0.08671854436397552, -0.008959409780800343, -0.06391624361276627, 0.16669948399066925, 0.22167745232582092, -0.03772199526429176, 0.008670441806316376, -0.09872022271156311, 0.011109610088169575, 0.06972788274288177, 0.03535236045718193, -0.05014149844646454, -0.18203379213809967, 0.00516925286501646, 0.0586317703127861, -0.0015637401957064867, -0.25052884221076965, -0.07131898403167725, 0.03579742833971977, -0.030224086716771126, -0.03331661969423294, 0.10906938463449478, 0.04819870740175247, 0.05060264840722084, -0.03105449676513672, -0.15013131499290466, -0.03308022767305374, 0.15707963705062866, -0.17381681501865387, -0.03557932749390602 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-16-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-16-finetuned-squad-seed-2", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-16-finetuned-squad-seed-2
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-16-finetuned-squad-seed-2 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-16-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-16-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 45, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-16-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08786017447710037, 0.0952954813838005, -0.002628184389322996, 0.0779949501156807, 0.1394018977880478, 0.029689522460103035, 0.09614623337984085, 0.13754698634147644, -0.11348170042037964, 0.04549141973257065, 0.09615317732095718, 0.07721036672592163, 0.029819918796420097, 0.14525194466114044, -0.029653947800397873, -0.24480952322483063, -0.007414630148559809, -0.02323228120803833, -0.10631149262189865, 0.11301741749048233, 0.10084141045808792, -0.09805667400360107, 0.06724324822425842, -0.01845160685479641, -0.17521049082279205, 0.014026522636413574, -0.017707135528326035, -0.05240299180150032, 0.11673913896083832, -0.0018426079768687487, 0.07836445420980453, 0.010454242117702961, 0.11651650816202164, -0.19486157596111298, 0.01806141436100006, 0.0714450404047966, 0.044461432844400406, 0.09458745270967484, 0.005957134999334812, -0.021550629287958145, 0.11918627470731735, -0.1293475478887558, 0.0990762934088707, 0.0324757881462574, -0.09852030873298645, -0.2053312510251999, -0.09723027795553207, 0.013516229577362537, 0.04394666850566864, 0.08778636902570724, 0.007215395104140043, 0.14762462675571442, -0.10713176429271698, 0.07990187406539917, 0.2310466319322586, -0.2664209008216858, -0.08233988285064697, 0.04654531180858612, 0.06185125559568405, 0.08545396476984024, -0.12217824161052704, -0.01308087445795536, 0.010323829017579556, 0.019816173240542412, 0.10145792365074158, -0.02734207734465599, -0.0767187774181366, 0.012751458212733269, -0.11197718232870102, -0.0009969767415896058, 0.1148386225104332, 0.03697315976023674, -0.05520903691649437, -0.0795925036072731, -0.03863368183374405, -0.060072146356105804, -0.03444242849946022, -0.015755191445350647, 0.036442194133996964, -0.061288073658943176, -0.14130954444408417, -0.0487893708050251, -0.04998618736863136, -0.09266844391822815, 0.00029440512298606336, 0.21026645600795746, 0.038296349346637726, 0.022110160440206528, -0.04896923899650574, 0.10599374771118164, 0.01521973218768835, -0.12365274131298065, -0.034304432570934296, -0.005638814065605402, -0.09539037942886353, -0.0348215252161026, -0.05598582699894905, 0.03095136024057865, 0.03952451050281525, 0.22912609577178955, -0.0273788720369339, 0.0728708952665329, 0.03615458309650421, -0.012770946137607098, -0.027244525030255318, 0.14833877980709076, -0.027310535311698914, -0.07526058703660965, 0.009534083306789398, 0.06370332092046738, 0.005837190896272659, -0.00586630217730999, -0.06274301558732986, -0.04444978013634682, 0.06300103664398193, 0.05845852196216583, -0.04965326935052872, 0.026297030970454216, -0.010440858080983162, -0.0240461565554142, 0.0013450593687593937, -0.11949314177036285, 0.009544513188302517, -0.008394090458750725, -0.07872235029935837, -0.05452785640954971, 0.013649464584887028, -0.011276311241090298, 0.010132321156561375, 0.09007201343774796, -0.07281050831079483, -0.03603207319974899, -0.07855583727359772, -0.07393000274896622, -0.01474830787628889, -0.160072922706604, 0.021272702142596245, -0.06981314718723297, -0.1526150405406952, -0.031212499365210533, 0.050922803580760956, -0.08052455633878708, -0.0364488884806633, -0.032622311264276505, -0.08040269464254379, 0.017898255959153175, 0.0008852778119035065, 0.21514441072940826, -0.048571690917015076, 0.09550086408853531, 0.013258122839033604, 0.05441589280962944, 0.006725577637553215, 0.03744039312005043, -0.0787179097533226, 0.014609633944928646, -0.17712056636810303, 0.07661626487970352, -0.08873797953128815, 0.02786160260438919, -0.1461806744337082, -0.0868929997086525, -0.0027237730100750923, -0.02036081813275814, 0.08158929646015167, 0.10554356127977371, -0.126431405544281, -0.023264123126864433, 0.12495609372854233, -0.05775190889835358, -0.05672029033303261, 0.0650380402803421, -0.07358499616384506, 0.08365759998559952, 0.04837517440319061, 0.1894228160381317, 0.09909754246473312, -0.1090705543756485, 0.0266096293926239, 0.01864704303443432, 0.03685897961258888, 0.003818983444944024, 0.05792751908302307, -0.0004576154169626534, 0.02179398573935032, 0.015433329157531261, -0.08418008685112, 0.015353057533502579, -0.09247785806655884, -0.06313817203044891, -0.04187474772334099, -0.08998754620552063, 0.008348424918949604, 0.007879512384533882, 0.02908424101769924, -0.07924885302782059, -0.08735772967338562, 0.06304590404033661, 0.1404876559972763, -0.04509872943162918, 0.011859171092510223, -0.08000448346138, 0.0037967669777572155, -0.02954067289829254, -0.022312484681606293, -0.1950756460428238, -0.06041545048356056, 0.02593120001256466, 0.009311888366937637, 0.044456832110881805, -0.006343585439026356, 0.08027330785989761, 0.02184179797768593, -0.04984460026025772, -0.004432269837707281, -0.09076230973005295, -0.010631203651428223, -0.09051092714071274, -0.21765995025634766, -0.055290523916482925, -0.03914325311779976, 0.15433581173419952, -0.17243221402168274, 0.00033806930878199637, -0.019103122875094414, 0.10954450815916061, 0.04248911142349243, -0.050510771572589874, -0.0008684965432621539, 0.027766363695263863, 0.014995613135397434, -0.09917503595352173, 0.03410344198346138, 0.016371916979551315, -0.09927918016910553, -0.023134492337703705, -0.10222676396369934, 0.0024051221553236246, 0.07386848330497742, 0.07398131489753723, -0.10719256103038788, -0.01851004548370838, -0.06311465054750443, -0.028534870594739914, -0.04751572757959366, 0.03428811579942703, 0.1724165678024292, 0.01703762076795101, 0.11266832798719406, -0.07566982507705688, -0.08646886050701141, 0.018321773037314415, 0.008053364232182503, 0.05824795737862587, 0.11331592500209808, 0.07616652548313141, -0.09888668358325958, 0.05783771723508835, 0.08901538699865341, -0.048096321523189545, 0.13890400528907776, -0.04883594438433647, -0.07922594249248505, -0.031014207750558853, 0.0025458759628236294, -0.0008697110461071134, 0.15017817914485931, -0.04689539596438408, 0.010891390964388847, 0.03494320437312126, 0.03041261062026024, 0.008126693777740002, -0.16250745952129364, -0.023893892765045166, 0.020769720897078514, -0.04936564341187477, -0.027764195576310158, 0.011427766643464565, 0.013779370114207268, 0.09172296524047852, 0.04981672763824463, 0.0017342332284897566, 0.005515426862984896, -0.013681122101843357, -0.049818772822618484, 0.20086152851581573, -0.09172750264406204, -0.04663011059165001, -0.08459588140249252, -0.0004841713234782219, -0.01014886237680912, -0.03532549366354942, 0.017017100006341934, -0.10054602473974228, -0.02309897169470787, -0.06566261500120163, 0.006003599613904953, -0.048142917454242706, 0.011511672288179398, 0.0016011119587346911, 0.019593670964241028, 0.058133989572525024, -0.13394543528556824, 0.014358011074364185, -0.06251607090234756, -0.11362956464290619, 0.030561523512005806, 0.05214248225092888, 0.08710182458162308, 0.06291277706623077, -0.025354374200105667, 0.017361339181661606, -0.04579942673444748, 0.23351989686489105, -0.08635347336530685, 0.005432181525975466, 0.12409348785877228, 0.022801488637924194, 0.03747875615954399, 0.10194133967161179, 0.027094276621937752, -0.0996115654706955, 0.043797336518764496, 0.07423606514930725, -0.04415927454829216, -0.25466111302375793, 0.008369090035557747, -0.04322454705834389, -0.08323460817337036, 0.08912646025419235, 0.04878497123718262, -0.04006120190024376, 0.06445551663637161, 0.002359688049182296, 0.007627812214195728, -0.02054162323474884, 0.0879879966378212, 0.08473807573318481, 0.05520924553275108, 0.10551223158836365, -0.04045399650931358, -0.018193090334534645, 0.06562023609876633, 0.028528297320008278, 0.30795541405677795, -0.04737510904669762, 0.10012597590684891, 0.05308030918240547, 0.1470678299665451, -0.021484380587935448, 0.03684761002659798, 0.012217415496706963, -0.004969597794115543, -0.029050981625914574, -0.053791627287864685, -0.025047848001122475, 0.006697852164506912, -0.06731251627206802, 0.04143824055790901, -0.05661080777645111, 0.046066831797361374, 0.01713971421122551, 0.29092565178871155, 0.002069284440949559, -0.2631206214427948, -0.09976524859666824, -0.01138981431722641, -0.03841936215758324, -0.04956342652440071, 0.012987788766622543, 0.11889519542455673, -0.13168957829475403, 0.025249799713492393, -0.06555988639593124, 0.08447331935167313, -0.027722777798771858, -0.005924155004322529, 0.03768875449895859, 0.16191422939300537, -0.02086888626217842, 0.06163337081670761, -0.2215680629014969, 0.23086535930633545, 0.00825225654989481, 0.12157387286424637, -0.053496889770030975, 0.006484241224825382, 0.023568477481603622, -0.0004556526255328208, 0.09637042880058289, -0.002176777459681034, -0.047836702316999435, -0.13995333015918732, -0.05354355275630951, 0.07026895880699158, 0.13979926705360413, -0.05258195847272873, 0.10146238654851913, -0.059773121029138565, 0.01044840645045042, 0.036417558789253235, -0.08095037192106247, -0.12019876390695572, -0.10230343043804169, -0.01915774866938591, -0.0029730438254773617, -0.06168811395764351, -0.06491481512784958, -0.06646685302257538, 0.025853179395198822, 0.11618860065937042, -0.001801953767426312, -0.03473189100623131, -0.14872871339321136, 0.0731562003493309, 0.15485072135925293, -0.06844829022884369, 0.03335244953632355, 0.0028646374121308327, 0.08140089362859726, 0.03483527898788452, -0.07777565717697144, 0.06299693137407303, -0.06699930131435394, -0.18124040961265564, -0.0479501411318779, 0.10381223261356354, 0.07117839902639389, 0.042138706892728806, -0.005274030379951, 0.04768288508057594, -0.026974299922585487, -0.09105108678340912, 0.029679426923394203, 0.03199926018714905, 0.03454853966832161, 0.04215939715504646, -0.07673118263483047, 0.08537523448467255, -0.0442475751042366, -0.019912807270884514, 0.1219387948513031, 0.23260535299777985, -0.10513335466384888, 0.09812293201684952, 0.057003963738679886, -0.061131250113248825, -0.1664896160364151, 0.0712215006351471, 0.10669053345918655, 0.012579078786075115, 0.060430437326431274, -0.2157745361328125, 0.12133048474788666, 0.10214895009994507, -0.014698716811835766, 0.03873297944664955, -0.27927955985069275, -0.12071608006954193, 0.0494951456785202, 0.1243346631526947, 0.08503267168998718, -0.1251666247844696, -0.01927279308438301, -0.014690269716084003, -0.12777365744113922, 0.07860065251588821, -0.11266770958900452, 0.1308109313249588, -0.023569071665406227, 0.10992997139692307, 0.012874331325292587, -0.026556098833680153, 0.10853683203458786, 0.04987919703125954, 0.09541551768779755, -0.04241808131337166, 0.00013285722525324672, 0.05950044468045235, -0.04911913722753525, -0.00019531459838617593, -0.06624994426965714, 0.08885305374860764, -0.13670285046100616, -0.007874906063079834, -0.08817613124847412, 0.041862353682518005, -0.041492264717817307, -0.06624837964773178, -0.04183858633041382, 0.05696883052587509, 0.04527343437075615, -0.03273998200893402, 0.03811733052134514, -0.024907175451517105, 0.10240600258111954, 0.026737535372376442, 0.08660715818405151, 0.019771361723542213, -0.055041152983903885, 0.021712182089686394, -0.012234511785209179, 0.06368886679410934, -0.16879907250404358, 0.010537082329392433, 0.09801791608333588, 0.0680718868970871, 0.10179891437292099, 0.04134155437350273, -0.04844922199845314, 0.017322693020105362, 0.027874315157532692, -0.09667588025331497, -0.11617062985897064, 0.039704181253910065, -0.036632239818573, -0.14748640358448029, 0.0416521392762661, 0.11942573636770248, -0.039233624935150146, -0.031819190829992294, -0.019865527749061584, 0.004155534785240889, -0.02115645445883274, 0.18034480512142181, 0.06023193150758743, 0.06039504334330559, -0.10245323181152344, 0.11999929696321487, 0.03474798798561096, -0.026757534593343735, 0.051088809967041016, 0.08188214898109436, -0.10040919482707977, -0.005771077703684568, 0.07761740684509277, 0.12591947615146637, -0.05447424203157425, 0.0010802140459418297, -0.10125395655632019, -0.08775530755519867, 0.05863740295171738, 0.14176975190639496, 0.050111573189496994, -0.016015302389860153, -0.04520795866847038, 0.04609755799174309, -0.13895204663276672, 0.0745292380452156, 0.033867012709379196, 0.06351295113563538, -0.07774297147989273, 0.06504681706428528, 0.0034535368904471397, 0.019167762249708176, -0.014902218244969845, 0.002518960740417242, -0.09664979577064514, -0.007666787598282099, -0.08408395200967789, 0.0023662059102207422, 0.00027157471049577, 0.018400009721517563, -0.023939257487654686, -0.07176205515861511, -0.0446765273809433, 0.03660878166556358, -0.08627639710903168, -0.05093632638454437, 0.006061204709112644, 0.04267912358045578, -0.12431629002094269, -0.005052523221820593, 0.02946523204445839, -0.09870673716068268, 0.09935443103313446, 0.07347770780324936, 0.02107950672507286, 0.028878023847937584, -0.12005434930324554, -0.03452937677502632, -0.013860754668712616, -0.009878485463559628, 0.059801507741212845, -0.10059107840061188, -0.0056801438331604, -0.045606520026922226, 0.06222075968980789, 0.0129854129627347, 0.06245124712586403, -0.14038363099098206, 0.015046409331262112, -0.06991436332464218, -0.04617712274193764, -0.07856450229883194, 0.039792872965335846, 0.09217651188373566, 0.05975496768951416, 0.1410263627767563, -0.07504139840602875, 0.025975961238145828, -0.20452232658863068, -0.03658704459667206, -0.013411125168204308, -0.054935164749622345, -0.144736185669899, -0.04669416695833206, 0.08183903992176056, -0.0397329181432724, 0.0902058556675911, -0.026569945737719536, 0.07295098155736923, 0.037650130689144135, -0.04964417964220047, -0.03189816325902939, -0.008279473520815372, 0.20129944384098053, 0.07162187248468399, -0.014425266534090042, 0.1017700806260109, -0.0006287938449531794, 0.031312406063079834, 0.044922828674316406, 0.17165298759937286, 0.22154195606708527, 0.041665155440568924, 0.04944118857383728, 0.06345032155513763, -0.07688994705677032, -0.07079999148845673, 0.17401306331157684, -0.011746407486498356, 0.06697718054056168, -0.0452614352107048, 0.19327642023563385, 0.12048991024494171, -0.1682981699705124, 0.04784160107374191, -0.045474156737327576, -0.08185908198356628, -0.11950697749853134, -0.00984023604542017, -0.08397911489009857, -0.1236082911491394, 0.03654945269227028, -0.1188095435500145, 0.04655259847640991, 0.10836544632911682, 0.014642585068941116, 0.03590626269578934, 0.1250593513250351, -0.0099891796708107, -0.0062090554274618626, 0.0673106238245964, 0.004845684859901667, -0.009486161172389984, -0.03981393203139305, -0.07479256391525269, 0.05920320749282837, 0.0025150475557893515, 0.08150777220726013, -0.04561382159590721, -0.014995931647717953, 0.03018469735980034, -0.031086904928088188, -0.07982758432626724, 0.025530701503157616, 0.044533662497997284, 0.053127825260162354, 0.04917260631918907, 0.04235472530126572, -0.010744837112724781, -0.03292487934231758, 0.326882541179657, -0.06640700995922089, -0.10356033593416214, -0.1251021921634674, 0.21535587310791016, 0.031945858150720596, -0.026849601417779922, 0.03296785056591034, -0.08620791137218475, -0.0016253353096544743, 0.16897743940353394, 0.1771453469991684, -0.06652777642011642, -0.020366782322525978, -0.0003948130179196596, -0.01607140339910984, -0.030892690643668175, 0.12540994584560394, 0.09677106887102127, -0.012077100574970245, -0.06166650354862213, -0.016346219927072525, -0.01605166122317314, -0.03349415585398674, -0.042412348091602325, 0.04983877018094063, 0.020027978345751762, -0.026051461696624756, -0.04324014484882355, 0.07644621282815933, 0.004143407568335533, -0.254589706659317, 0.0623449869453907, -0.15546537935733795, -0.17649787664413452, -0.050697777420282364, 0.030975166708230972, 0.004428437910974026, 0.05701398476958275, -0.014861796982586384, 0.002883953507989645, 0.08814997225999832, -0.01054928544908762, -0.03447337821125984, -0.12039955705404282, 0.12407344579696655, -0.04771975800395012, 0.17097218334674835, -0.030895516276359558, 0.04286041110754013, 0.11594689637422562, 0.030235953629016876, -0.13534551858901978, 0.035599175840616226, 0.0625014379620552, -0.09655643999576569, 0.02052842080593109, 0.14994902908802032, -0.04762071743607521, 0.097834013402462, 0.04706641286611557, -0.10923779755830765, 0.0007903294754214585, -0.06703943759202957, -0.034285008907318115, -0.08608700335025787, -0.010806094855070114, -0.06530987471342087, 0.16560696065425873, 0.220872700214386, -0.037897445261478424, 0.008963117375969887, -0.09824646264314651, 0.011987187899649143, 0.06971351057291031, 0.037384167313575745, -0.04886792600154877, -0.18195569515228271, 0.004848325625061989, 0.05968151241540909, -0.0011631451779976487, -0.25181853771209717, -0.07316582649946213, 0.036512937396764755, -0.029019223526120186, -0.03307740017771721, 0.11051476001739502, 0.046922244131565094, 0.049997031688690186, -0.030822833999991417, -0.15151333808898926, -0.033668529242277145, 0.15626749396324158, -0.17311713099479675, -0.0356961153447628 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-16-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-16-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-16-finetuned-squad-seed-4
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-16-finetuned-squad-seed-4 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-16-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-16-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 45, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-16-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08829128742218018, 0.09424453973770142, -0.0025848792865872383, 0.07893981039524078, 0.1406514048576355, 0.0300140343606472, 0.09653345495462418, 0.13670441508293152, -0.11372396349906921, 0.04505102336406708, 0.09637835621833801, 0.07725822180509567, 0.028914062306284904, 0.14503149688243866, -0.029656672850251198, -0.24452170729637146, -0.007900665514171124, -0.022657571360468864, -0.10568590462207794, 0.11298897117376328, 0.09995067864656448, -0.09878174215555191, 0.0677877739071846, -0.018744029104709625, -0.17629863321781158, 0.01446867361664772, -0.018357738852500916, -0.052225902676582336, 0.11693944782018661, -0.0018291237065568566, 0.07857466489076614, 0.009755467996001244, 0.1163235455751419, -0.19313272833824158, 0.01832183636724949, 0.07148460298776627, 0.04406142607331276, 0.09423822164535522, 0.005478594917804003, -0.02174585871398449, 0.11780648678541183, -0.1297878623008728, 0.09888813644647598, 0.032326776534318924, -0.09876459836959839, -0.20605428516864777, -0.09692326933145523, 0.012139586731791496, 0.043085649609565735, 0.08864012360572815, 0.006887967232614756, 0.14719082415103912, -0.10720398277044296, 0.08035692572593689, 0.22948192059993744, -0.26728516817092896, -0.08273375034332275, 0.04697822779417038, 0.06187056005001068, 0.08577610552310944, -0.12270735204219818, -0.012264001183211803, 0.010782493278384209, 0.020619938150048256, 0.10175737738609314, -0.0276939794421196, -0.07668986916542053, 0.013155274093151093, -0.11189282685518265, 0.0006016312981955707, 0.1156604066491127, 0.03737575560808182, -0.05499960109591484, -0.07978003472089767, -0.037876904010772705, -0.0613800585269928, -0.03487889841198921, -0.014807400293648243, 0.03667807579040527, -0.06230362877249718, -0.1418614685535431, -0.04707975685596466, -0.04954928904771805, -0.09141801297664642, 0.0002939733967650682, 0.20934797823429108, 0.03828045725822449, 0.021762272343039513, -0.04862724989652634, 0.10522700846195221, 0.01501147449016571, -0.12348845601081848, -0.03322165459394455, -0.0059804185293614864, -0.0947776734828949, -0.03489871695637703, -0.05665002763271332, 0.032492611557245255, 0.039900943636894226, 0.2295115441083908, -0.02756955660879612, 0.07350149005651474, 0.036721233278512955, -0.013480213470757008, -0.027277614921331406, 0.14742296934127808, -0.028704965487122536, -0.07694938033819199, 0.009810306131839752, 0.06373690813779831, 0.00528031587600708, -0.0058493283577263355, -0.0629550889134407, -0.043649546802043915, 0.06190216913819313, 0.05800453945994377, -0.05091603472828865, 0.028118440881371498, -0.009465585462749004, -0.023534666746854782, 0.0013602502876892686, -0.1193840354681015, 0.009133142419159412, -0.008752839639782906, -0.07886768132448196, -0.05355604737997055, 0.01307595893740654, -0.012105743400752544, 0.009874477982521057, 0.09037633240222931, -0.07374143600463867, -0.03668205067515373, -0.07906293123960495, -0.07487870752811432, -0.015267695300281048, -0.16001376509666443, 0.022371504455804825, -0.06954806298017502, -0.15286292135715485, -0.03232128918170929, 0.05065528675913811, -0.08033368736505508, -0.03541965037584305, -0.03257613629102707, -0.08127246797084808, 0.017484180629253387, 0.0010267430916428566, 0.2159806489944458, -0.04893165081739426, 0.09441213309764862, 0.014643717557191849, 0.054472632706165314, 0.00611577183008194, 0.03749283403158188, -0.07838702201843262, 0.01390688307583332, -0.17776428163051605, 0.07578878104686737, -0.08939949423074722, 0.029893487691879272, -0.145064115524292, -0.08796240389347076, -0.001576053793542087, -0.019394250586628914, 0.08120350539684296, 0.10502995550632477, -0.12595920264720917, -0.023241441696882248, 0.12417630851268768, -0.05632871761918068, -0.05690794065594673, 0.06501763314008713, -0.07390758395195007, 0.08261601626873016, 0.048876333981752396, 0.18963569402694702, 0.09883508086204529, -0.10858586430549622, 0.025790659710764885, 0.017913971096277237, 0.03713492676615715, 0.0031283244024962187, 0.05633743107318878, 0.000544012407772243, 0.02177804335951805, 0.01599958725273609, -0.08277911692857742, 0.015316641889512539, -0.09217411279678345, -0.06269164383411407, -0.04129699617624283, -0.08997532725334167, 0.007561652921140194, 0.008056815713644028, 0.029024334624409676, -0.0803724154829979, -0.08758775889873505, 0.06219393014907837, 0.1402582973241806, -0.04556821286678314, 0.010715625248849392, -0.0802333652973175, 0.004423291888087988, -0.02971855364739895, -0.021899130195379257, -0.19476261734962463, -0.06118500605225563, 0.024984341114759445, 0.011466111987829208, 0.044557128101587296, -0.005968804005533457, 0.08077029883861542, 0.022180289030075073, -0.05010940879583359, -0.004590648226439953, -0.08944043517112732, -0.010224323719739914, -0.09040689468383789, -0.21815955638885498, -0.05536225438117981, -0.038979947566986084, 0.1543026864528656, -0.17303414642810822, 0.0006372433854267001, -0.019106131047010422, 0.1089320182800293, 0.0420074425637722, -0.04991177096962929, -0.00028493459103628993, 0.029119452461600304, 0.015798794105648994, -0.09916768968105316, 0.03458608314394951, 0.01606675423681736, -0.09806188195943832, -0.024487076327204704, -0.10249872505664825, 0.0039391410537064075, 0.07496614754199982, 0.07286914438009262, -0.10770708322525024, -0.018075332045555115, -0.06264372915029526, -0.028426019474864006, -0.04573037475347519, 0.03428012505173683, 0.17350968718528748, 0.016337048262357712, 0.11265531927347183, -0.07507890462875366, -0.08609746396541595, 0.018465155735611916, 0.009164134040474892, 0.05948793888092041, 0.11330900341272354, 0.07524608820676804, -0.09731380641460419, 0.05806463584303856, 0.08848592638969421, -0.04847954213619232, 0.13933417201042175, -0.049064505845308304, -0.07860229164361954, -0.030544567853212357, 0.0014505441067740321, -0.0013536635087803006, 0.1509035974740982, -0.04727110266685486, 0.009865508414804935, 0.03458046913146973, 0.02989550307393074, 0.00837920606136322, -0.16162559390068054, -0.023876242339611053, 0.020014988258481026, -0.04839244484901428, -0.02827814407646656, 0.012084569782018661, 0.013198849745094776, 0.0913330465555191, 0.04966972395777702, 0.00046298594679683447, 0.0056342193856835365, -0.013466169126331806, -0.04887022078037262, 0.20123030245304108, -0.09206246584653854, -0.04537307098507881, -0.08427785336971283, -0.002624526619911194, -0.011191672645509243, -0.0358722060918808, 0.01675633154809475, -0.10182815045118332, -0.023498283699154854, -0.0652933269739151, 0.00510739628225565, -0.04823349416255951, 0.011422974988818169, 0.0013408857630565763, 0.01897905394434929, 0.057799771428108215, -0.13379359245300293, 0.014514757320284843, -0.06284800916910172, -0.1135907918214798, 0.031036464497447014, 0.05295873433351517, 0.08777792751789093, 0.06224749609827995, -0.025459859520196915, 0.01738808862864971, -0.045688558369874954, 0.23454728722572327, -0.08638226985931396, 0.0055444128811359406, 0.12389862537384033, 0.023630475625395775, 0.03653666377067566, 0.10183537751436234, 0.028090182691812515, -0.10011082887649536, 0.04345891997218132, 0.0747038871049881, -0.04367872700095177, -0.2546314001083374, 0.008908601477742195, -0.04358711466193199, -0.08356309682130814, 0.08876088261604309, 0.04869813472032547, -0.039492253214120865, 0.06506279855966568, 0.003325592027977109, 0.008558765985071659, -0.02150704897940159, 0.08776181191205978, 0.08661573380231857, 0.05470374971628189, 0.10628864914178848, -0.04080251231789589, -0.018558837473392487, 0.06490743905305862, 0.0287020206451416, 0.30881017446517944, -0.04741932451725006, 0.09994331747293472, 0.053538814187049866, 0.146734818816185, -0.021003015339374542, 0.03739865496754646, 0.01169654168188572, -0.005685565993189812, -0.029061932116746902, -0.05356641858816147, -0.023696117103099823, 0.005578805226832628, -0.06893482059240341, 0.04123537614941597, -0.05659792944788933, 0.044714778661727905, 0.017352547496557236, 0.29024821519851685, 0.0015063780592754483, -0.2653180956840515, -0.1002042144536972, -0.01221553049981594, -0.03814339637756348, -0.0490216501057148, 0.013327013701200485, 0.11814043670892715, -0.13110555708408356, 0.025855479761958122, -0.06543460488319397, 0.08432641625404358, -0.027824610471725464, -0.00487125338986516, 0.039475005120038986, 0.16357317566871643, -0.021763883531093597, 0.0611078180372715, -0.22225339710712433, 0.2298143208026886, 0.008518774062395096, 0.12223297357559204, -0.05350126326084137, 0.00627705967053771, 0.02438315935432911, 0.0008982216822914779, 0.09586499631404877, -0.0028115613386034966, -0.04753795266151428, -0.139890655875206, -0.052595485001802444, 0.07130004465579987, 0.13920648396015167, -0.051322732120752335, 0.10214199125766754, -0.05891034007072449, 0.009960649535059929, 0.03631485626101494, -0.08214832097291946, -0.12051378935575485, -0.10284113883972168, -0.020093444734811783, -0.0014609784120693803, -0.06165926530957222, -0.06407550722360611, -0.06689678132534027, 0.02383917197585106, 0.11531385034322739, 0.00006291324825724587, -0.034764230251312256, -0.14906907081604004, 0.072408527135849, 0.15490500628948212, -0.06754690408706665, 0.033484719693660736, 0.0032323142513632774, 0.08019682765007019, 0.035834357142448425, -0.07753726840019226, 0.06313146650791168, -0.06757824122905731, -0.18003013730049133, -0.048005253076553345, 0.1029396578669548, 0.07081311196088791, 0.041319604963064194, -0.005731005687266588, 0.04765864461660385, -0.027904637157917023, -0.09165828675031662, 0.02983364276587963, 0.03023446910083294, 0.035614974796772, 0.04199051856994629, -0.07769577205181122, 0.08542532473802567, -0.043703366070985794, -0.019078504294157028, 0.12052955478429794, 0.2304730862379074, -0.1046009212732315, 0.09595474600791931, 0.0570150725543499, -0.060665640980005264, -0.16588552296161652, 0.07258480787277222, 0.10529709607362747, 0.012903428636491299, 0.05894938483834267, -0.21639296412467957, 0.12254509329795837, 0.10163731127977371, -0.013638412579894066, 0.04070005193352699, -0.2765659689903259, -0.11997430771589279, 0.0497463159263134, 0.12502378225326538, 0.08637390285730362, -0.1256362497806549, -0.01850811205804348, -0.014903657138347626, -0.12746015191078186, 0.0776708796620369, -0.11509428173303604, 0.13105103373527527, -0.0240650437772274, 0.1107068806886673, 0.012100441381335258, -0.026583628728985786, 0.10773162543773651, 0.05084993317723274, 0.09662209451198578, -0.04271683841943741, 0.0011847694404423237, 0.05944046005606651, -0.048365168273448944, -0.0005207308568060398, -0.06718260049819946, 0.08837637305259705, -0.13686953485012054, -0.007715118583291769, -0.08866269141435623, 0.041801050305366516, -0.04137028753757477, -0.06588476151227951, -0.04121747985482216, 0.05695115774869919, 0.04417751356959343, -0.03295949473977089, 0.03696909919381142, -0.025577956810593605, 0.10273971408605576, 0.02533356472849846, 0.08709793537855148, 0.01829688437283039, -0.05549323931336403, 0.022891690954566002, -0.01279356423765421, 0.06357599794864655, -0.1685003936290741, 0.009158688597381115, 0.09855856746435165, 0.06731445342302322, 0.10135358572006226, 0.04201394319534302, -0.04747772216796875, 0.016696926206350327, 0.028604431077837944, -0.09701754152774811, -0.11502417922019958, 0.03999779745936394, -0.040070563554763794, -0.14694130420684814, 0.043032076209783554, 0.11923639476299286, -0.03907104954123497, -0.03159172460436821, -0.019941003993153572, 0.0034042231272906065, -0.02121650241315365, 0.18104052543640137, 0.060846805572509766, 0.05988823249936104, -0.10348469018936157, 0.11960726231336594, 0.034603919833898544, -0.027019064873456955, 0.05103883892297745, 0.08290965855121613, -0.10128585994243622, -0.006599146872758865, 0.07687490433454514, 0.12789729237556458, -0.05400210618972778, 0.00041392073035240173, -0.10243918001651764, -0.08798141032457352, 0.05861248821020126, 0.14134350419044495, 0.05001463368535042, -0.017255106940865517, -0.0454389713704586, 0.04562659189105034, -0.13971294462680817, 0.07418964058160782, 0.03283616527915001, 0.06406152993440628, -0.07775622606277466, 0.06430134922266006, 0.0033097316045314074, 0.01852579601109028, -0.014818009920418262, 0.0031221946701407433, -0.09714821726083755, -0.007860132493078709, -0.08419256657361984, 0.0015547614311799407, 0.0003062008472625166, 0.018979208543896675, -0.024238629266619682, -0.07076292484998703, -0.045306168496608734, 0.036847006529569626, -0.08640575408935547, -0.05060402676463127, 0.007926300168037415, 0.043189410120248795, -0.12347927689552307, -0.004743657074868679, 0.028246283531188965, -0.09834005683660507, 0.09911660850048065, 0.07323315739631653, 0.020748235285282135, 0.029010239988565445, -0.11891670525074005, -0.035030242055654526, -0.014356519095599651, -0.01054112333804369, 0.06055191159248352, -0.09966754913330078, -0.005231559742242098, -0.04582265391945839, 0.06294693052768707, 0.013115622103214264, 0.06161922588944435, -0.13980494439601898, 0.015446215867996216, -0.06909127533435822, -0.04482496902346611, -0.07915095239877701, 0.04000406712293625, 0.09295377135276794, 0.059256020933389664, 0.14096634089946747, -0.07500068843364716, 0.025219960138201714, -0.20448972284793854, -0.036965031176805496, -0.013641797937452793, -0.05654935911297798, -0.14438104629516602, -0.04670265316963196, 0.08245505392551422, -0.04044071584939957, 0.09204501658678055, -0.026568040251731873, 0.07299534976482391, 0.03717025741934776, -0.04943946376442909, -0.033021971583366394, -0.007986187934875488, 0.20100292563438416, 0.07100570946931839, -0.014941872097551823, 0.10157693177461624, 0.000630303518846631, 0.03075190633535385, 0.04601804539561272, 0.16992555558681488, 0.22102582454681396, 0.04235542565584183, 0.04952998831868172, 0.0638069435954094, -0.0774231031537056, -0.06934370845556259, 0.17506296932697296, -0.011302887462079525, 0.06764449179172516, -0.046063780784606934, 0.1919204294681549, 0.11958927661180496, -0.16718822717666626, 0.04798618331551552, -0.046322502195835114, -0.08195261657238007, -0.1183990091085434, -0.00829053670167923, -0.08350180834531784, -0.12409617006778717, 0.03668184578418732, -0.11933566629886627, 0.04576738178730011, 0.10950073599815369, 0.015183289535343647, 0.03526189178228378, 0.12648612260818481, -0.008913286030292511, -0.005538778379559517, 0.06754852831363678, 0.00438815588131547, -0.00990733690559864, -0.03972009941935539, -0.07444223761558533, 0.05857076495885849, 0.001068409881554544, 0.0808522179722786, -0.046273790299892426, -0.015460718423128128, 0.03081594593822956, -0.030659155920147896, -0.07944949716329575, 0.025455867871642113, 0.04517759755253792, 0.05296430364251137, 0.050094690173864365, 0.04190322011709213, -0.011544675566256046, -0.03303314000368118, 0.32582029700279236, -0.06633603572845459, -0.10248540341854095, -0.12544231116771698, 0.21495944261550903, 0.03170743212103844, -0.02748723141849041, 0.03185740113258362, -0.08521465957164764, -0.0005547911860048771, 0.1702137291431427, 0.1789214164018631, -0.06682812422513962, -0.020736128091812134, -0.00017963474965654314, -0.016172656789422035, -0.031061267480254173, 0.12580133974552155, 0.09720540791749954, -0.013400107622146606, -0.061581894755363464, -0.016342194750905037, -0.015604546293616295, -0.03310627117753029, -0.04265468940138817, 0.04916590452194214, 0.021083718165755272, -0.026496626436710358, -0.042455196380615234, 0.0763072669506073, 0.0038994215428829193, -0.2545676529407501, 0.06296167522668839, -0.15499736368656158, -0.17688003182411194, -0.05163931846618652, 0.030504733324050903, 0.005205760709941387, 0.05739719048142433, -0.014898868277668953, 0.002746041864156723, 0.08879656344652176, -0.011033517308533192, -0.03353242203593254, -0.12112035602331161, 0.12401002645492554, -0.048206645995378494, 0.16981738805770874, -0.031366731971502304, 0.04273315519094467, 0.1166052594780922, 0.02986903488636017, -0.13513441383838654, 0.03611808642745018, 0.061788469552993774, -0.09715165942907333, 0.021114062517881393, 0.14900116622447968, -0.04738568142056465, 0.09702986478805542, 0.04588352516293526, -0.10818907618522644, 0.0014726790832355618, -0.06677239388227463, -0.03411601483821869, -0.08605284988880157, -0.010834243148565292, -0.06519370526075363, 0.16610953211784363, 0.22218585014343262, -0.037816815078258514, 0.00893666222691536, -0.09811265021562576, 0.011911273002624512, 0.0702797919511795, 0.035788461565971375, -0.04967247694730759, -0.18200351297855377, 0.005150472745299339, 0.06054938957095146, -0.0016588501166552305, -0.2527018189430237, -0.07193884998559952, 0.03628889098763466, -0.02882974222302437, -0.033364128321409225, 0.11031137406826019, 0.0478380024433136, 0.050893791019916534, -0.031182261183857918, -0.1492566466331482, -0.03376762941479683, 0.15606103837490082, -0.17327676713466644, -0.03627558425068855 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-16-finetuned-squad-seed-42 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results {'exact_match': 8.618732261116367, 'f1': 14.074017518582023} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-16-finetuned-squad-seed-42", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-16-finetuned-squad-seed-42
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-16-finetuned-squad-seed-42 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results {'exact_match': 8.618732261116367, 'f1': 14.074017518582023} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "# roberta-base-few-shot-k-16-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results\n\n{'exact_match': 8.618732261116367, 'f1': 14.074017518582023}", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-16-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results\n\n{'exact_match': 8.618732261116367, 'f1': 14.074017518582023}", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ 52, 45, 6, 12, 8, 3, 104, 35, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-16-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results\n\n{'exact_match': 8.618732261116367, 'f1': 14.074017518582023}### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ -0.10042857378721237, 0.0593213252723217, -0.0027756583876907825, 0.0753999575972557, 0.15026803314685822, 0.04035438969731331, 0.11276142299175262, 0.11698906123638153, -0.1115158349275589, 0.0468350350856781, 0.058662038296461105, 0.07495419681072235, 0.04551253840327263, 0.11679694056510925, -0.036872874945402145, -0.26056158542633057, -0.009722687304019928, -0.0014742835192009807, -0.1384553760290146, 0.11120376735925674, 0.11417648941278458, -0.09086572378873825, 0.06604188680648804, 0.011839660815894604, -0.1865473836660385, 0.03105016052722931, 0.003564528888091445, -0.04577411711215973, 0.12160971015691757, 0.012491496279835701, 0.09205509722232819, 0.011819788254797459, 0.12064646929502487, -0.18055202066898346, 0.016580626368522644, 0.09086809307336807, 0.03768131881952286, 0.10214084386825562, 0.04996652901172638, -0.029916154220700264, 0.12886759638786316, -0.11446920782327652, 0.07957197725772858, 0.05324133113026619, -0.10419979691505432, -0.24431830644607544, -0.10610619187355042, 0.04402570798993111, 0.050428491085767746, 0.08640773594379425, 0.0128564378246665, 0.14461423456668854, -0.06763165444135666, 0.08058124035596848, 0.24171122908592224, -0.28578221797943115, -0.09149663895368576, 0.056917160749435425, 0.054379384964704514, 0.04589217156171799, -0.11718802899122238, -0.0030150311067700386, 0.014485570602118969, 0.037168845534324646, 0.09655005484819412, -0.03406675159931183, -0.11538272351026535, -0.009858679957687855, -0.10904218256473541, 0.01205469947308302, 0.10298971831798553, 0.03513345494866371, -0.05900980904698372, -0.045446816831827164, -0.057913556694984436, -0.06614314764738083, -0.02434339001774788, -0.0449201762676239, 0.04243210330605507, -0.056181956082582474, -0.10635128617286682, -0.06413155049085617, -0.05843259021639824, -0.08730479329824448, -0.014928054995834827, 0.2356489598751068, 0.02734183706343174, 0.04097563773393631, -0.055964887142181396, 0.11097551137208939, -0.014231430366635323, -0.13384966552257538, -0.01670646481215954, -0.0033459514379501343, -0.09601392596960068, -0.0339849516749382, -0.05839477851986885, 0.015243055298924446, 0.021010970696806908, 0.21934910118579865, -0.09905412048101425, 0.07693550735712051, 0.03925038501620293, -0.009839617647230625, -0.047218240797519684, 0.14180167019367218, -0.047811031341552734, -0.07104790955781937, 0.009650898166000843, 0.06150004267692566, 0.008272819221019745, 0.000032630319765303284, -0.056499868631362915, -0.048393744975328445, 0.06459108740091324, 0.04428539052605629, -0.03745542839169502, 0.027286291122436523, 0.0029520855750888586, -0.03218667954206467, 0.019835276529192924, -0.11465437710285187, 0.013784302398562431, -0.0033675802405923605, -0.10260576009750366, -0.039373308420181274, 0.02208230271935463, -0.0014967687893658876, -0.0006564257782883942, 0.1007087305188179, -0.08189006894826889, -0.006204082630574703, -0.08953408896923065, -0.08613018691539764, -0.014300740323960781, -0.13465340435504913, 0.006140151526778936, -0.053981974720954895, -0.1641564965248108, -0.03926364704966545, 0.05410544574260712, -0.07076503336429596, -0.033251795917749405, 0.001568472944200039, -0.08786569535732269, 0.021658143028616905, 0.000289925723336637, 0.21617794036865234, -0.0424814336001873, 0.0759986862540245, 0.024909278377890587, 0.04251359775662422, -0.019388576969504356, 0.03137916326522827, -0.07730704545974731, 0.015175783075392246, -0.18269486725330353, 0.05897196754813194, -0.08773161470890045, 0.01102286484092474, -0.13198742270469666, -0.09726475924253464, -0.0048205978237092495, -0.01912461407482624, 0.08648484945297241, 0.10201101005077362, -0.14219412207603455, -0.027316682040691376, 0.10030382126569748, -0.07813000679016113, -0.07630420476198196, 0.05244490131735802, -0.04802742972970009, 0.06237535923719406, 0.034267764538526535, 0.15042740106582642, 0.11150778084993362, -0.11357495933771133, 0.00024820311227813363, 0.008634323254227638, 0.03088337928056717, 0.010520592331886292, 0.05052868276834488, -0.008589733392000198, 0.0264630988240242, 0.016243906691670418, -0.07797212153673172, -0.01688206195831299, -0.09796860814094543, -0.06060899794101715, -0.055173110216856, -0.08323115855455399, 0.003413132391870022, 0.026880204677581787, 0.030394719913601875, -0.0749552771449089, -0.10587695986032486, 0.09833719581365585, 0.13256455957889557, -0.02944672293961048, 0.020612504333257675, -0.07671105861663818, -0.015575945377349854, -0.003804681356996298, -0.028805328533053398, -0.22235740721225739, -0.10830797255039215, 0.01307481899857521, -0.03466112166643143, 0.04464923217892647, -0.005969423335045576, 0.08835183829069138, 0.03701532259583473, -0.055675093084573746, 0.0009915019618347287, -0.09207330644130707, -0.02063947729766369, -0.08081416040658951, -0.21946381032466888, -0.08847790211439133, -0.018074216321110725, 0.15806898474693298, -0.17240960896015167, 0.01154622994363308, -0.010621007531881332, 0.1278257966041565, 0.02212233655154705, -0.04612596705555916, -0.018793022260069847, 0.031282830983400345, 0.010895706713199615, -0.09426594525575638, 0.0386611670255661, 0.017399806529283524, -0.07270239293575287, -0.031176958233118057, -0.13550478219985962, 0.03211880102753639, 0.07161497324705124, 0.047719452530145645, -0.09900557994842529, -0.00847200769931078, -0.07051736861467361, -0.039267219603061676, -0.04724277928471565, 0.03134695440530777, 0.16151055693626404, 0.020124338567256927, 0.10806572437286377, -0.06737305223941803, -0.07691206783056259, 0.014722170308232307, 0.00789918564260006, 0.05057472735643387, 0.08813601732254028, 0.06071358919143677, -0.0920528993010521, 0.06982028484344482, 0.06221943348646164, -0.06528954207897186, 0.13559557497501373, -0.04031532630324364, -0.05793169513344765, -0.03938477486371994, -0.018678124994039536, -0.0074667432345449924, 0.1544055938720703, -0.04223110154271126, 0.026075927540659904, 0.0357489213347435, 0.025440726429224014, 0.02971772663295269, -0.17301036417484283, -0.003607085905969143, 0.004844407085329294, -0.047102782875299454, -0.013854312710464, 0.005466552451252937, 0.03936908021569252, 0.094873808324337, 0.034602269530296326, 0.003368297591805458, 0.00042980059515684843, -0.005487862508744001, -0.058682795614004135, 0.21881626546382904, -0.09540926665067673, -0.05815686658024788, -0.11150307208299637, 0.02864193171262741, -0.05619096755981445, -0.04643188789486885, 0.007576889358460903, -0.08521523326635361, -0.03661276772618294, -0.047551531344652176, 0.006889597978442907, -0.024236265569925308, -0.0007967378478497267, 0.013655368238687515, 0.011264506727457047, 0.0869903415441513, -0.14386314153671265, 0.013927784748375416, -0.05862625688314438, -0.1297009140253067, 0.009120432659983635, 0.08844519406557083, 0.07656271755695343, 0.0871472880244255, -0.03207605332136154, 0.021913748234510422, -0.028606349602341652, 0.2398955225944519, -0.07783817499876022, 0.019271017983555794, 0.1569998860359192, 0.029506227001547813, 0.04776402935385704, 0.09329444169998169, 0.05127305909991264, -0.08212246000766754, 0.02447252720594406, 0.09789788722991943, -0.03187604248523712, -0.2662908732891083, -0.007860775105655193, -0.019296547397971153, -0.10077834874391556, 0.0730099231004715, 0.042509716004133224, 0.0006530751707032323, 0.07172553241252899, -0.01698007807135582, 0.0005840971716679633, -0.015864165499806404, 0.0791865810751915, 0.10041923820972443, 0.06766115874052048, 0.11914639174938202, -0.03639962896704674, -0.004482898395508528, 0.06127206236124039, 0.011782025918364525, 0.271716833114624, -0.041325345635414124, 0.07192753255367279, 0.05581982806324959, 0.1343173384666443, -0.0337284617125988, 0.052081089466810226, 0.009914040565490723, -0.017253287136554718, 0.0028536017052829266, -0.06337950378656387, -0.001565778162330389, 0.00038369756657630205, -0.08606016635894775, 0.06701891869306564, -0.06440988183021545, 0.04980244114995003, 0.01972600631415844, 0.28995880484580994, -0.006182532291859388, -0.26457348465919495, -0.10679665207862854, -0.02214827388525009, -0.013426559045910835, -0.0688696950674057, -0.007305472157895565, 0.10576067864894867, -0.12825532257556915, 0.0634070336818695, -0.07380460202693939, 0.08963143080472946, 0.011203676462173462, -0.0015844147419556975, 0.08377550542354584, 0.18512003123760223, -0.016917960718274117, 0.05252081900835037, -0.20386868715286255, 0.23377835750579834, 0.02195931226015091, 0.12519894540309906, -0.040823813527822495, 0.024084104225039482, 0.03623856231570244, 0.0271298885345459, 0.06059804931282997, -0.004803477320820093, -0.05972889065742493, -0.13648712635040283, -0.03353405371308327, 0.057898785918951035, 0.14961247146129608, -0.042618077248334885, 0.09558220207691193, -0.05180372670292854, 0.009396916255354881, 0.035436615347862244, -0.07332787662744522, -0.15173090994358063, -0.07770707458257675, -0.00039824677514843643, 0.00047409924445673823, -0.04305476322770119, -0.07179175317287445, -0.08301837742328644, 0.008477441035211086, 0.13031348586082458, -0.022184932604432106, -0.041923269629478455, -0.15249010920524597, 0.08346797525882721, 0.15996932983398438, -0.07271494716405869, 0.03302542865276337, -0.004375365562736988, 0.09730441868305206, 0.02475869469344616, -0.09946615248918533, 0.05519919469952583, -0.07281287014484406, -0.1839265674352646, -0.025390349328517914, 0.11410776525735855, 0.06662617623806, 0.03555653989315033, -0.013129256665706635, 0.047733474522829056, -0.01682986132800579, -0.10225033015012741, 0.019534414634108543, -0.01298101432621479, 0.03353598341345787, 0.038090355694293976, -0.06334785372018814, 0.042756736278533936, -0.041344206780195236, 0.004125949461013079, 0.08593782782554626, 0.22808443009853363, -0.10857284814119339, 0.05121520906686783, 0.04455544427037239, -0.06477631628513336, -0.16167594492435455, 0.09437090903520584, 0.1272548884153366, -0.007858623750507832, 0.058054935187101364, -0.2151884287595749, 0.14628997445106506, 0.12608180940151215, -0.03048509731888771, 0.07270493358373642, -0.2514934837818146, -0.13851965963840485, 0.06459229439496994, 0.11542092263698578, 0.06583668291568756, -0.15214331448078156, -0.02850441262125969, -0.015382413752377033, -0.16681599617004395, 0.128451868891716, -0.1273554116487503, 0.11005735397338867, -0.027091648429632187, 0.09570056945085526, 0.0164044052362442, -0.023845864459872246, 0.12517231702804565, 0.03794506937265396, 0.108184814453125, -0.032317016273736954, 0.011889259330928326, 0.07718779891729355, -0.049668002873659134, 0.008895023725926876, -0.030955061316490173, 0.08066242188215256, -0.12534336745738983, 0.007767374161630869, -0.10871883481740952, 0.07247720658779144, -0.057154301553964615, -0.058059804141521454, -0.03252474218606949, 0.05449632555246353, 0.005050309002399445, -0.03961554169654846, 0.0707974061369896, -0.010253963991999626, 0.1632542610168457, 0.09361627697944641, 0.08656448125839233, -0.01522573921829462, -0.0711335763335228, 0.03023066557943821, -0.006495099514722824, 0.0638962984085083, -0.13995994627475739, 0.014728140085935593, 0.1149580180644989, 0.07602161169052124, 0.08759486675262451, 0.04998549073934555, -0.05464008450508118, 0.0009675371693447232, 0.043221015483140945, -0.11132108420133591, -0.11589019000530243, 0.00870973989367485, -0.040346235036849976, -0.12793205678462982, 0.05813327804207802, 0.12112739682197571, -0.03952312842011452, -0.021862277761101723, -0.009523884393274784, 0.001716217608191073, -0.02683044783771038, 0.1954585611820221, 0.06128506734967232, 0.07538747042417526, -0.10252974182367325, 0.12762196362018585, 0.037805113941431046, -0.037624064832925797, 0.026080001145601273, 0.11010871082544327, -0.08310141414403915, -0.0023484930861741304, 0.06349891424179077, 0.10431811213493347, -0.09179918467998505, -0.030363239347934723, -0.11087030172348022, -0.10662314295768738, 0.038676775991916656, 0.1904592365026474, 0.05082910135388374, -0.01954944245517254, -0.023321136832237244, 0.04850750416517258, -0.13696624338626862, 0.06452850252389908, 0.03352902829647064, 0.0760168731212616, -0.09678491204977036, 0.11284568905830383, 0.021335110068321228, 0.032968129962682724, -0.012602869421243668, 0.004899513442069292, -0.0971641018986702, -0.026340419426560402, -0.1155434250831604, -0.022734204307198524, -0.0045372252352535725, 0.00898203905671835, -0.024570925161242485, -0.07421658933162689, -0.06632228195667267, 0.05251895636320114, -0.08300073444843292, -0.05271239951252937, 0.011384932324290276, 0.01781492866575718, -0.14233125746250153, 0.009888256900012493, 0.028102470561861992, -0.09006306529045105, 0.08333905786275864, 0.08635903149843216, 0.03948343172669411, 0.038825057446956635, -0.11462560296058655, -0.036488525569438934, -0.014024154283106327, -0.00510079599916935, 0.06757476180791855, -0.10961276292800903, -0.005421763751655817, -0.04643360525369644, 0.07650412619113922, 0.004624869674444199, 0.08087830990552902, -0.13509531319141388, 0.022637536749243736, -0.05336600914597511, -0.03015834279358387, -0.07092878222465515, 0.03208104893565178, 0.10533886402845383, 0.055346015840768814, 0.14448991417884827, -0.07421348243951797, 0.02481171116232872, -0.23290002346038818, -0.027994755655527115, -0.023621417582035065, -0.05854255333542824, -0.11486926674842834, -0.023489177227020264, 0.07999451458454132, -0.044596582651138306, 0.0766860842704773, -0.009150001220405102, 0.09221670031547546, 0.05000774934887886, -0.03835618868470192, -0.0722515806555748, -0.004511849023401737, 0.163150355219841, 0.06751059740781784, -0.000964607170317322, 0.12021093815565109, 0.019864603877067566, 0.022329092025756836, 0.026982229202985764, 0.21230639517307281, 0.17519734799861908, -0.009595682844519615, 0.058642495423555374, 0.08556535094976425, -0.10463296622037888, -0.07876074314117432, 0.13882601261138916, -0.017362697049975395, 0.06711938977241516, -0.05454041063785553, 0.15101464092731476, 0.13138967752456665, -0.17458456754684448, 0.0605996809899807, -0.048551809042692184, -0.08069442957639694, -0.14159637689590454, 0.021771496161818504, -0.0720561072230339, -0.13132569193840027, 0.03195580840110779, -0.1299632340669632, 0.06126425042748451, 0.13480064272880554, 0.007499708794057369, 0.03334922716021538, 0.14598101377487183, -0.035871606320142746, -0.005097236949950457, 0.045962873846292496, 0.014089450240135193, 0.001374320941977203, -0.031197065487504005, -0.06707687675952911, 0.054070599377155304, 0.00728706456720829, 0.07146783918142319, -0.050775498151779175, -0.024121467024087906, 0.02575855329632759, -0.01870131306350231, -0.07879399508237839, 0.02814495749771595, 0.03909933194518089, 0.05445954203605652, 0.042517855763435364, 0.03243504837155342, 0.00860557146370411, -0.04371199756860733, 0.33440521359443665, -0.06939318031072617, -0.11668580770492554, -0.1234879270195961, 0.2605817914009094, 0.024866297841072083, -0.03420699015259743, 0.04727790504693985, -0.08489495515823364, -0.016065841540694237, 0.13976027071475983, 0.16464905440807343, -0.05580173060297966, -0.019774941727519035, -0.0002608227077871561, -0.020873039960861206, -0.031111663207411766, 0.12689554691314697, 0.09711319208145142, 0.027890799567103386, -0.06738930195569992, -0.00434762891381979, -0.013557957485318184, -0.02667955867946148, -0.04960339516401291, 0.07594604045152664, 0.008326164446771145, -0.011553824879229069, -0.021497027948498726, 0.07451285421848297, 0.004171174019575119, -0.23204286396503448, 0.07450315356254578, -0.15989024937152863, -0.18320977687835693, -0.04279683157801628, 0.04956299811601639, -0.018580801784992218, 0.0671631321310997, -0.004442919045686722, -0.015316152013838291, 0.0903770849108696, -0.012572310864925385, -0.032533612102270126, -0.1504071056842804, 0.12146025151014328, -0.10390547662973404, 0.19833789765834808, -0.036355357617139816, 0.0561135895550251, 0.112879678606987, 0.019825365394353867, -0.1492232084274292, 0.01991993747651577, 0.049166254699230194, -0.13786514103412628, 0.010079591535031796, 0.1464078277349472, -0.03677027300000191, 0.07746320962905884, 0.0311130303889513, -0.15152926743030548, -0.007022629491984844, -0.0214468315243721, -0.03644520416855812, -0.06587975472211838, -0.011719828471541405, -0.06333520263433456, 0.15320414304733276, 0.22600504755973816, -0.028527522459626198, 0.01688595861196518, -0.10851216316223145, 0.01396643090993166, 0.07395574450492859, 0.08358696103096008, -0.049336329102516174, -0.21377162635326385, 0.043154966086149216, 0.04944361746311188, -0.01720174215734005, -0.23952674865722656, -0.0648108646273613, 0.05891406536102295, -0.05028630048036575, -0.02222689986228943, 0.09493691474199295, 0.0502161979675293, 0.05899934470653534, -0.029840003699064255, -0.13464713096618652, -0.04204757511615753, 0.1670490950345993, -0.18601956963539124, -0.042701587080955505 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-16-finetuned-squad-seed-6 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-16-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-16-finetuned-squad-seed-6
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-16-finetuned-squad-seed-6 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-16-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-16-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 45, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-16-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08826947957277298, 0.09365250915288925, -0.002546914154663682, 0.0787024050951004, 0.140910804271698, 0.02948620542883873, 0.09625988453626633, 0.13694807887077332, -0.11293583363294601, 0.0453825369477272, 0.09575197845697403, 0.07800549268722534, 0.02943969890475273, 0.14466628432273865, -0.029559897258877754, -0.24421456456184387, -0.007391039747744799, -0.022406956180930138, -0.10545090585947037, 0.11299506574869156, 0.10000143945217133, -0.098972849547863, 0.06712470948696136, -0.01916772499680519, -0.17652343213558197, 0.01475241407752037, -0.01846650242805481, -0.05186961218714714, 0.11676783114671707, -0.0022141430526971817, 0.07831869274377823, 0.010034997016191483, 0.1160968542098999, -0.19353969395160675, 0.01832597330212593, 0.07195395976305008, 0.04426601901650429, 0.09431993961334229, 0.006349383853375912, -0.021347615867853165, 0.11919672787189484, -0.12919498980045319, 0.09860803186893463, 0.03276379778981209, -0.09875518083572388, -0.20445360243320465, -0.09736859053373337, 0.01134977862238884, 0.043496571481227875, 0.08935772627592087, 0.006388442125171423, 0.14812035858631134, -0.10784053802490234, 0.0803675428032875, 0.23095771670341492, -0.2658348083496094, -0.08266652375459671, 0.04782068729400635, 0.061720460653305054, 0.08493249118328094, -0.12351914495229721, -0.013365611433982849, 0.010751430876553059, 0.020306026563048363, 0.10081504285335541, -0.02712332457304001, -0.07794246077537537, 0.01275709830224514, -0.11217719316482544, 0.00025090534472838044, 0.11445207893848419, 0.0374794639647007, -0.05448012053966522, -0.07942891120910645, -0.038324497640132904, -0.060762159526348114, -0.03461766242980957, -0.014678438194096088, 0.03675374761223793, -0.06212163344025612, -0.14141295850276947, -0.046808190643787384, -0.04952014237642288, -0.09248918294906616, 0.0003906970960088074, 0.2090480923652649, 0.03826187923550606, 0.021654024720191956, -0.04934133589267731, 0.10517360270023346, 0.015198751352727413, -0.12376673519611359, -0.03410891816020012, -0.0053682648576796055, -0.09492140263319016, -0.03495156392455101, -0.05649959295988083, 0.031109726056456566, 0.03931890428066254, 0.22750194370746613, -0.027456974610686302, 0.07378087192773819, 0.03611264377832413, -0.013331609778106213, -0.027896447107195854, 0.14761123061180115, -0.02777961455285549, -0.07489082962274551, 0.00898546539247036, 0.06390690058469772, 0.004866942297667265, -0.005489954724907875, -0.06236666813492775, -0.043847329914569855, 0.062424398958683014, 0.057541314512491226, -0.0505530908703804, 0.027707574889063835, -0.009965511038899422, -0.023768188431859016, 0.001936818240210414, -0.11921899765729904, 0.009029925800859928, -0.009123341180384159, -0.0792534127831459, -0.05445050075650215, 0.013161377049982548, -0.012394694611430168, 0.009664464741945267, 0.09061673283576965, -0.07424779236316681, -0.036616649478673935, -0.07991581410169601, -0.07465185970067978, -0.014989761635661125, -0.16154585778713226, 0.02207379974424839, -0.06873509287834167, -0.15303072333335876, -0.032432496547698975, 0.05030152201652527, -0.08034361153841019, -0.035056691616773605, -0.033101391047239304, -0.08166978508234024, 0.017788251861929893, 0.001337332185357809, 0.216785728931427, -0.04859566688537598, 0.09517612308263779, 0.01449776440858841, 0.05434282124042511, 0.006628979928791523, 0.038128335028886795, -0.07943007349967957, 0.01371685042977333, -0.17713454365730286, 0.0759912058711052, -0.09007380157709122, 0.02958623692393303, -0.14588947594165802, -0.08732719719409943, -0.0029415329918265343, -0.019902031868696213, 0.08198302239179611, 0.10573034733533859, -0.12614096701145172, -0.022987959906458855, 0.12452857196331024, -0.05721208453178406, -0.05680413171648979, 0.06402279436588287, -0.07365047186613083, 0.0824529156088829, 0.04838404059410095, 0.18981724977493286, 0.09845931828022003, -0.10801216214895248, 0.02461457997560501, 0.017480704933404922, 0.0376613475382328, 0.002558885607868433, 0.056267209351062775, 0.0003834573144558817, 0.022539932280778885, 0.015965312719345093, -0.0828980952501297, 0.015178862027823925, -0.09226071834564209, -0.06204140558838844, -0.041935935616493225, -0.09004057198762894, 0.007253758143633604, 0.009258282370865345, 0.028839875012636185, -0.07988043874502182, -0.08694251626729965, 0.062273263931274414, 0.1401752084493637, -0.04496532678604126, 0.01087479293346405, -0.079707071185112, 0.003194264369085431, -0.030469851568341255, -0.021898727864027023, -0.1959550678730011, -0.06164269149303436, 0.025590579956769943, 0.010933097451925278, 0.04454190284013748, -0.006070353090763092, 0.08063165098428726, 0.02122892066836357, -0.050118062645196915, -0.004681035410612822, -0.09025990962982178, -0.010835240595042706, -0.09075450897216797, -0.21791517734527588, -0.05551190674304962, -0.03951995447278023, 0.15237204730510712, -0.17241494357585907, 0.00036080952850170434, -0.01901928521692753, 0.10923131555318832, 0.041978832334280014, -0.05039943754673004, -0.0002892963821068406, 0.028629295527935028, 0.015465744771063328, -0.09944585710763931, 0.034493811428546906, 0.015411424450576305, -0.09773179143667221, -0.024270661175251007, -0.10271041840314865, 0.0023404662497341633, 0.07466678321361542, 0.07428852468729019, -0.10776714235544205, -0.01806740276515484, -0.06273258477449417, -0.02873530052602291, -0.046757493168115616, 0.03513139858841896, 0.17294640839099884, 0.016579745337367058, 0.11211173236370087, -0.07549752295017242, -0.08620486408472061, 0.019075114279985428, 0.009221859276294708, 0.05891595780849457, 0.11412512511014938, 0.07691799104213715, -0.09895335137844086, 0.0586920864880085, 0.08904684334993362, -0.047784239053726196, 0.13977757096290588, -0.049244340509176254, -0.07908356934785843, -0.029471848160028458, 0.002016922691836953, -0.001175810699351132, 0.15049053728580475, -0.04695805907249451, 0.010319831781089306, 0.03449056297540665, 0.03038048930466175, 0.008415982127189636, -0.16189409792423248, -0.023976046591997147, 0.019867710769176483, -0.04834834858775139, -0.028809165582060814, 0.012056087143719196, 0.013150873593986034, 0.09153977036476135, 0.04927785322070122, 0.0007699506240896881, 0.005155875347554684, -0.013536402024328709, -0.04891175031661987, 0.20210717618465424, -0.09174955636262894, -0.04442981258034706, -0.08338311314582825, -0.0018166752997785807, -0.010965420864522457, -0.035845622420310974, 0.016885949298739433, -0.10288166999816895, -0.023428838700056076, -0.06527766585350037, 0.005228633992373943, -0.048138272017240524, 0.010666175745427608, 0.0006592601421289146, 0.019244983792304993, 0.05719306692481041, -0.13447868824005127, 0.014528943225741386, -0.06338212639093399, -0.11406148225069046, 0.03083515539765358, 0.052302513271570206, 0.08747583627700806, 0.06253699958324432, -0.025682199746370316, 0.017227595672011375, -0.04577936977148056, 0.23351292312145233, -0.08659670501947403, 0.005089182406663895, 0.12417130172252655, 0.024672435596585274, 0.03710009530186653, 0.10207223147153854, 0.027385441586375237, -0.10012979805469513, 0.044065363705158234, 0.07510203868150711, -0.04407074302434921, -0.2556643486022949, 0.008794838562607765, -0.04379875585436821, -0.08396321535110474, 0.08900760114192963, 0.048986271023750305, -0.03972325474023819, 0.06515911966562271, 0.0024626636877655983, 0.0074882954359054565, -0.02168377861380577, 0.08806836605072021, 0.08486898988485336, 0.055454254150390625, 0.10620437562465668, -0.04082321375608444, -0.018014859408140182, 0.06422062963247299, 0.028889168053865433, 0.31001120805740356, -0.0476064532995224, 0.1000155359506607, 0.05324980616569519, 0.1468239724636078, -0.021300315856933594, 0.038050729781389236, 0.011485550552606583, -0.0057947225868701935, -0.029037311673164368, -0.05339263007044792, -0.024081245064735413, 0.005412245634943247, -0.06954937428236008, 0.04154197499155998, -0.0566389374434948, 0.04505528509616852, 0.01652509532868862, 0.2907753586769104, 0.0016368004726246, -0.2645053565502167, -0.09964778274297714, -0.012472025118768215, -0.03828461840748787, -0.0497412271797657, 0.013081531040370464, 0.11792590469121933, -0.13072316348552704, 0.025281623005867004, -0.06573043018579483, 0.08502916991710663, -0.02661256305873394, -0.0054620010778307915, 0.03860027715563774, 0.16363093256950378, -0.02162117138504982, 0.06171038746833801, -0.2229626625776291, 0.23178383708000183, 0.008403271436691284, 0.12203315645456314, -0.053802940994501114, 0.0061970921233296394, 0.023702092468738556, -0.0009079509763978422, 0.09614884108304977, -0.0026928146835416555, -0.04813937470316887, -0.13963350653648376, -0.0519208200275898, 0.0710524171590805, 0.13990122079849243, -0.05170737951993942, 0.10157418996095657, -0.05901845172047615, 0.010196628049015999, 0.037018269300460815, -0.08182074874639511, -0.12056191265583038, -0.10294700413942337, -0.019766652956604958, -0.0021042670123279095, -0.06242762506008148, -0.0640064924955368, -0.06666705012321472, 0.025215718895196915, 0.11501684784889221, 0.00009890004730550572, -0.034326571971178055, -0.14895088970661163, 0.07304647564888, 0.15511299669742584, -0.06800216436386108, 0.03330863267183304, 0.002821339527145028, 0.07999145984649658, 0.03497416898608208, -0.07791344821453094, 0.0639711245894432, -0.06748698651790619, -0.1804516464471817, -0.04799564182758331, 0.10259280353784561, 0.07122304290533066, 0.04163262993097305, -0.005852058529853821, 0.048003338277339935, -0.027816174551844597, -0.09144426137208939, 0.030038965865969658, 0.030347025021910667, 0.03544141352176666, 0.04249662160873413, -0.07723208516836166, 0.08428842574357986, -0.04435203969478607, -0.019612392410635948, 0.12012224644422531, 0.23134951293468475, -0.10445297509431839, 0.09613119810819626, 0.05756187066435814, -0.06093998998403549, -0.16645582020282745, 0.07310107350349426, 0.10587991774082184, 0.012434879317879677, 0.05968965217471123, -0.21634604036808014, 0.12254747003316879, 0.10163421183824539, -0.013986978679895401, 0.039861973375082016, -0.2772581875324249, -0.11997090280056, 0.04959737882018089, 0.1249200627207756, 0.08516565710306168, -0.1253783106803894, -0.018411992117762566, -0.01455470360815525, -0.12692977488040924, 0.07839410752058029, -0.11335595697164536, 0.13137294352054596, -0.02441721223294735, 0.11071912199258804, 0.012263141572475433, -0.026983320713043213, 0.10665245354175568, 0.051048360764980316, 0.09680265933275223, -0.04242125153541565, 0.0008030617609620094, 0.059671372175216675, -0.04851177707314491, -0.0003831486974377185, -0.06724375486373901, 0.08889355510473251, -0.1359378546476364, -0.0073730009607970715, -0.08925200253725052, 0.04216904565691948, -0.04129071906208992, -0.06584298610687256, -0.04130923002958298, 0.057237230241298676, 0.04462851211428642, -0.03318339213728905, 0.038041748106479645, -0.02538708783686161, 0.10419046878814697, 0.02572757378220558, 0.08739491552114487, 0.018781917169690132, -0.05469613894820213, 0.0222307201474905, -0.01203833892941475, 0.06375493854284286, -0.16931360960006714, 0.008913093246519566, 0.09847177565097809, 0.0681692361831665, 0.10118985921144485, 0.042510759085416794, -0.04813612252473831, 0.016770750284194946, 0.027815664187073708, -0.0963275134563446, -0.11573757231235504, 0.0402163602411747, -0.036473166197538376, -0.1475297510623932, 0.04327625036239624, 0.11785668134689331, -0.0398615263402462, -0.03159072995185852, -0.019855935126543045, 0.0037732613272964954, -0.02055766060948372, 0.18163976073265076, 0.06077154353260994, 0.06046322360634804, -0.10335573554039001, 0.1200672909617424, 0.03437676280736923, -0.0278752651065588, 0.05107831954956055, 0.08263475447893143, -0.10074364393949509, -0.006479913368821144, 0.07808353006839752, 0.1265607625246048, -0.053905073553323746, 0.0016779415309429169, -0.1015046089887619, -0.08774729073047638, 0.058867115527391434, 0.14253194630146027, 0.0499124675989151, -0.01698201708495617, -0.0452391691505909, 0.045904356986284256, -0.14019620418548584, 0.07424265891313553, 0.03238886222243309, 0.06421931087970734, -0.07732030749320984, 0.0629189983010292, 0.003518822370097041, 0.018712127581238747, -0.014624999836087227, 0.0033841636031866074, -0.09688498824834824, -0.007910031825304031, -0.08206424117088318, 0.001419175649061799, 0.00042626840877346694, 0.018417099490761757, -0.02467612363398075, -0.07110178470611572, -0.04448733478784561, 0.03690827637910843, -0.08673158288002014, -0.05098595470190048, 0.007276229094713926, 0.0428798645734787, -0.12383051216602325, -0.004626845940947533, 0.028589822351932526, -0.09795232862234116, 0.09825449436903, 0.07283060997724533, 0.021028736606240273, 0.029385562986135483, -0.12101446837186813, -0.034732162952423096, -0.014132540673017502, -0.010377208702266216, 0.06033676490187645, -0.09900601953268051, -0.005498679354786873, -0.0458555743098259, 0.06301075220108032, 0.012761988677084446, 0.06080865114927292, -0.14040958881378174, 0.01479923352599144, -0.0701168105006218, -0.04546847566962242, -0.07861220091581345, 0.04037880524992943, 0.09315455704927444, 0.059462208300828934, 0.14078958332538605, -0.07476102560758591, 0.025828685611486435, -0.20473355054855347, -0.03684413060545921, -0.013452713377773762, -0.056516293436288834, -0.14484578371047974, -0.04611089453101158, 0.08267048746347427, -0.040260735899209976, 0.0897064134478569, -0.026208916679024696, 0.07348726689815521, 0.03729574382305145, -0.04909645393490791, -0.033153850585222244, -0.008195783942937851, 0.2010374665260315, 0.07097500562667847, -0.01443951204419136, 0.10319852828979492, 0.0007397759472951293, 0.030461663380265236, 0.0472513847053051, 0.17154298722743988, 0.22193783521652222, 0.041186150163412094, 0.049737680703401566, 0.06374591588973999, -0.07770213484764099, -0.06926584988832474, 0.17494048178195953, -0.010896466672420502, 0.06735869497060776, -0.046137869358062744, 0.19247157871723175, 0.11964566260576248, -0.16703090071678162, 0.04853387549519539, -0.04664462432265282, -0.08169623464345932, -0.11845622956752777, -0.008397877216339111, -0.08347418159246445, -0.1240638792514801, 0.037057891488075256, -0.1196179911494255, 0.046321433037519455, 0.1100226640701294, 0.015027343295514584, 0.03544915094971657, 0.12722350656986237, -0.008450638502836227, -0.0056700799614191055, 0.06776806712150574, 0.0042700315825641155, -0.010133970528841019, -0.039929550141096115, -0.07424503564834595, 0.059784095734357834, 0.0010776215931400657, 0.08099131286144257, -0.04608422890305519, -0.016257451847195625, 0.030511489138007164, -0.030504880473017693, -0.07962893694639206, 0.025574585422873497, 0.045285411179065704, 0.052903901785612106, 0.05060030519962311, 0.04179464653134346, -0.01091034710407257, -0.03312939405441284, 0.3271574378013611, -0.06659171730279922, -0.1020965650677681, -0.12437672168016434, 0.21582894027233124, 0.032728083431720734, -0.0273496825248003, 0.031818270683288574, -0.08586812764406204, -0.0009119988535530865, 0.16877597570419312, 0.1770215928554535, -0.06574545055627823, -0.02047206647694111, -0.00043754387297667563, -0.01611470989882946, -0.030869588255882263, 0.12578365206718445, 0.09751762449741364, -0.012724791653454304, -0.06191810593008995, -0.016107797622680664, -0.015598705969750881, -0.03368614986538887, -0.04172007367014885, 0.04907054826617241, 0.021407706663012505, -0.026788363233208656, -0.04264840856194496, 0.07636930793523788, 0.003902614815160632, -0.2541002929210663, 0.06232401356101036, -0.15591491758823395, -0.1763627976179123, -0.0515911765396595, 0.030254626646637917, 0.0052026426419615746, 0.05751308798789978, -0.014957377687096596, 0.003364293137565255, 0.08678531646728516, -0.010884638875722885, -0.033961761742830276, -0.12193848937749863, 0.1234760656952858, -0.04865715280175209, 0.17013269662857056, -0.03147700056433678, 0.04197582229971886, 0.11646153032779694, 0.03011048585176468, -0.13573141396045685, 0.036099307239055634, 0.06192294508218765, -0.09746985882520676, 0.020927794277668, 0.14979863166809082, -0.04728787764906883, 0.09726450592279434, 0.04562488570809364, -0.10988105833530426, 0.0018747284775599837, -0.0674610584974289, -0.033391643315553665, -0.08656822890043259, -0.009354772046208382, -0.06508143246173859, 0.16622544825077057, 0.22247016429901123, -0.037655431777238846, 0.008420797064900398, -0.0985039547085762, 0.011664996854960918, 0.0694054663181305, 0.03668040782213211, -0.04942822456359863, -0.18190421164035797, 0.005366261582821608, 0.06045999750494957, -0.0018884111195802689, -0.25268444418907166, -0.07157571613788605, 0.036469824612140656, -0.02986500971019268, -0.03336765989661217, 0.10966367274522781, 0.04766155406832695, 0.05043015629053116, -0.031252458691596985, -0.15104660391807556, -0.03350096195936203, 0.1565546840429306, -0.17338965833187103, -0.036020420491695404 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-16-finetuned-squad-seed-8 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-16-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-16-finetuned-squad-seed-8
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-16-finetuned-squad-seed-8 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-16-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-16-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 45, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-16-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08897849172353745, 0.09449239075183868, -0.0025626488495618105, 0.07911036908626556, 0.14089491963386536, 0.029943155124783516, 0.09560944885015488, 0.13690441846847534, -0.11306044459342957, 0.04514902085065842, 0.09593816846609116, 0.07744467258453369, 0.029222702607512474, 0.14419570565223694, -0.029914425686001778, -0.2440173476934433, -0.008123977109789848, -0.02215053141117096, -0.10409248620271683, 0.11259618401527405, 0.10013575106859207, -0.09914033859968185, 0.06715784966945648, -0.019340569153428078, -0.1758774220943451, 0.014524750411510468, -0.018093788996338844, -0.05202614143490791, 0.11705979704856873, -0.0016616766806691885, 0.07822990417480469, 0.009193328209221363, 0.11635525524616241, -0.19397512078285217, 0.018146678805351257, 0.07210232317447662, 0.044252172112464905, 0.0944104865193367, 0.005402953829616308, -0.020609688013792038, 0.11861006170511246, -0.12955346703529358, 0.09869275242090225, 0.03251520171761513, -0.09847885370254517, -0.20476388931274414, -0.09692994505167007, 0.012378783896565437, 0.04341704398393631, 0.08870398253202438, 0.007240116596221924, 0.14860619604587555, -0.10682833194732666, 0.0809374451637268, 0.2315046489238739, -0.2653957009315491, -0.08201059699058533, 0.047048404812812805, 0.061516743153333664, 0.08602852374315262, -0.12272302806377411, -0.013274594210088253, 0.010671841911971569, 0.020051471889019012, 0.10131631046533585, -0.027728978544473648, -0.07930238544940948, 0.012730238027870655, -0.11192115396261215, 0.00009330282773589715, 0.11473702639341354, 0.03776658698916435, -0.05472202226519585, -0.07914955914020538, -0.03873975947499275, -0.0618484765291214, -0.035122115164995193, -0.014766396023333073, 0.03646257892251015, -0.06196916475892067, -0.14040371775627136, -0.04715878888964653, -0.04903033748269081, -0.09165170788764954, 0.0008795703761279583, 0.20898091793060303, 0.038534410297870636, 0.021430728957057, -0.04867259040474892, 0.10506581515073776, 0.013656972907483578, -0.12359325587749481, -0.03378298133611679, -0.004812759812921286, -0.09491255134344101, -0.035156141966581345, -0.05646946281194687, 0.03018687292933464, 0.03922801837325096, 0.2288445085287094, -0.027032487094402313, 0.07356388866901398, 0.036445554345846176, -0.012837025336921215, -0.027829639613628387, 0.14856891334056854, -0.02826724387705326, -0.07626131176948547, 0.010066408663988113, 0.06370224058628082, 0.005517171695828438, -0.006068473216146231, -0.06325310468673706, -0.04437333345413208, 0.0627940371632576, 0.057287245988845825, -0.05054083839058876, 0.02723408304154873, -0.009979022666811943, -0.02387266419827938, 0.002428300678730011, -0.11928845942020416, 0.009265684522688389, -0.009241205640137196, -0.07913385331630707, -0.05405424162745476, 0.013825987465679646, -0.011611184105277061, 0.009647334925830364, 0.09017722308635712, -0.07353446632623672, -0.03613167628645897, -0.07977558672428131, -0.07462967187166214, -0.014785557053983212, -0.16107024252414703, 0.0225005391985178, -0.06974910199642181, -0.15332208573818207, -0.032270535826683044, 0.05027635395526886, -0.079750657081604, -0.03490389138460159, -0.03250445798039436, -0.08071595430374146, 0.017463672906160355, 0.001074913190677762, 0.21552544832229614, -0.04878894239664078, 0.09481299668550491, 0.014403347857296467, 0.053885024040937424, 0.005503335501998663, 0.03835202008485794, -0.07873708754777908, 0.013705069199204445, -0.17734533548355103, 0.07589595019817352, -0.08961532264947891, 0.030265413224697113, -0.14474304020404816, -0.08716268837451935, -0.0018540540477260947, -0.01943156309425831, 0.08242923021316528, 0.10473448038101196, -0.1262761503458023, -0.02280481904745102, 0.1240217462182045, -0.056488651782274246, -0.05707983300089836, 0.06545467674732208, -0.07371643930673599, 0.0820823535323143, 0.048877306282520294, 0.1895265132188797, 0.09951853007078171, -0.10795323550701141, 0.025870569050312042, 0.01863519847393036, 0.03830433264374733, 0.0014492090558633208, 0.05609968677163124, 0.0004157305520493537, 0.022888058796525, 0.016177713871002197, -0.08204857259988785, 0.0157491322606802, -0.09225873649120331, -0.062404289841651917, -0.042147472500801086, -0.09011655300855637, 0.006458087358623743, 0.00947142019867897, 0.028873803094029427, -0.07974280416965485, -0.08723127096891403, 0.06329745799303055, 0.14026473462581635, -0.04522141441702843, 0.011132122948765755, -0.07928153872489929, 0.0037921047769486904, -0.029349319636821747, -0.022006805986166, -0.1955030858516693, -0.060316622257232666, 0.025435764342546463, 0.01104202214628458, 0.044183891266584396, -0.00600671349093318, 0.07979811728000641, 0.021702107042074203, -0.04960411414504051, -0.0037484189961105585, -0.08960315585136414, -0.01052574161440134, -0.09160987287759781, -0.217259019613266, -0.055492330342531204, -0.03902740031480789, 0.15296009182929993, -0.17343194782733917, 0.0007162298425100744, -0.01991233229637146, 0.10871343314647675, 0.04167479649186134, -0.05041460692882538, -0.00047193674254231155, 0.029334647580981255, 0.015221468172967434, -0.09965639561414719, 0.034500300884246826, 0.015960844233632088, -0.09844808280467987, -0.025446536019444466, -0.10257513076066971, 0.003182763233780861, 0.07420189678668976, 0.07306872308254242, -0.10779500007629395, -0.01862812414765358, -0.062299687415361404, -0.028657661750912666, -0.04617060720920563, 0.03427696228027344, 0.17348100244998932, 0.016821635887026787, 0.11347188800573349, -0.07533484697341919, -0.08589013665914536, 0.018747147172689438, 0.009162467904388905, 0.05962658300995827, 0.11379291862249374, 0.07670103758573532, -0.09697328507900238, 0.05802800878882408, 0.0882202759385109, -0.0490032322704792, 0.13884267210960388, -0.04899415001273155, -0.07883167266845703, -0.029574433341622353, 0.001825522631406784, -0.001049100887030363, 0.15036803483963013, -0.04831719398498535, 0.009600451216101646, 0.03463956341147423, 0.029934823513031006, 0.00866115465760231, -0.16199944913387299, -0.024018175899982452, 0.020562054589390755, -0.04797745123505592, -0.027678195387125015, 0.011426541954278946, 0.012938033789396286, 0.09119073301553726, 0.049021895974874496, 0.00027061012224294245, 0.00559447193518281, -0.013391788117587566, -0.049095164984464645, 0.20150160789489746, -0.09185749292373657, -0.04539509862661362, -0.08458293974399567, -0.0017720804316923022, -0.010966192930936813, -0.0360492542386055, 0.017160391435027122, -0.10130750387907028, -0.023441985249519348, -0.06566648185253143, 0.0038382788188755512, -0.04791899025440216, 0.010523408651351929, 0.0009077252470888197, 0.018904533237218857, 0.05772647634148598, -0.13437166810035706, 0.014433507807552814, -0.06277674436569214, -0.11335708945989609, 0.030962035059928894, 0.05248843505978584, 0.0879150927066803, 0.06328440457582474, -0.026183949783444405, 0.01690380461513996, -0.045341912657022476, 0.23328588902950287, -0.08615683019161224, 0.005312077701091766, 0.124308742582798, 0.023685498163104057, 0.037302225828170776, 0.10134750604629517, 0.027808768674731255, -0.10024159401655197, 0.04378780350089073, 0.07446494698524475, -0.04437733069062233, -0.25499027967453003, 0.008780800737440586, -0.044002167880535126, -0.08375908434391022, 0.08886554837226868, 0.0489811934530735, -0.03911112621426582, 0.06529835611581802, 0.002826412906870246, 0.00891309417784214, -0.022521289065480232, 0.08783849328756332, 0.08532794564962387, 0.05501227453351021, 0.1059509888291359, -0.040489327162504196, -0.017833726480603218, 0.0646096020936966, 0.0279867984354496, 0.3082430064678192, -0.04781418666243553, 0.10080569237470627, 0.05261795595288277, 0.14739945530891418, -0.02145645208656788, 0.03754621371626854, 0.011127009987831116, -0.006054471712559462, -0.02910328470170498, -0.05340911075472832, -0.025126835331320763, 0.005832923110574484, -0.0701122134923935, 0.04216773808002472, -0.056628573685884476, 0.045645572245121, 0.016230110079050064, 0.29051029682159424, 0.0014898310182616115, -0.26436683535575867, -0.0998016968369484, -0.01266718003898859, -0.038492150604724884, -0.050098028033971786, 0.01324003841727972, 0.11851461231708527, -0.13056057691574097, 0.02458794228732586, -0.06511025130748749, 0.08527129143476486, -0.027802271768450737, -0.0052635520696640015, 0.0382511131465435, 0.16401615738868713, -0.021561918780207634, 0.06174076348543167, -0.22388136386871338, 0.23058542609214783, 0.008561399765312672, 0.12215426564216614, -0.053769301623106, 0.006677819415926933, 0.023729264736175537, 0.0006661284132860601, 0.09528093785047531, -0.002403741469606757, -0.04697206988930702, -0.14085015654563904, -0.05237682908773422, 0.07088048756122589, 0.13883936405181885, -0.05029356852173805, 0.10117098689079285, -0.059329453855752945, 0.010271989740431309, 0.03702442720532417, -0.0813392698764801, -0.12055817991495132, -0.10317949205636978, -0.02013203874230385, -0.0010792558314278722, -0.06210354343056679, -0.06394419819116592, -0.06633282452821732, 0.023467492312192917, 0.11520074307918549, 0.0006325424765236676, -0.034382399171590805, -0.14895577728748322, 0.0736757218837738, 0.15443481504917145, -0.0682108998298645, 0.033525802195072174, 0.002857823856174946, 0.07997865974903107, 0.03508531302213669, -0.07705704122781754, 0.06376540660858154, -0.06739559769630432, -0.18003283441066742, -0.048275191336870193, 0.10208557546138763, 0.07111804932355881, 0.04169575497508049, -0.005612098146229982, 0.04762334004044533, -0.028157249093055725, -0.09139031916856766, 0.028844168409705162, 0.03138506039977074, 0.03495534136891365, 0.04257919639348984, -0.07731073349714279, 0.08518952131271362, -0.04411274567246437, -0.01988474279642105, 0.12112016975879669, 0.23104530572891235, -0.10476337373256683, 0.09534166753292084, 0.05769256129860878, -0.061037588864564896, -0.16578489542007446, 0.07297028601169586, 0.10546897351741791, 0.012601504102349281, 0.05989083647727966, -0.21567685902118683, 0.12285500764846802, 0.10278241336345673, -0.013713900931179523, 0.040095459669828415, -0.2773910462856293, -0.12022878974676132, 0.050492338836193085, 0.1249474361538887, 0.08652304112911224, -0.12597507238388062, -0.018442224711179733, -0.015202295035123825, -0.1282137930393219, 0.07713199406862259, -0.11258784681558609, 0.13118460774421692, -0.024368196725845337, 0.10965917259454727, 0.012317942455410957, -0.027007868513464928, 0.1071203425526619, 0.05160406604409218, 0.0968041718006134, -0.04280310124158859, 0.0009974086424335837, 0.058985959738492966, -0.04867379367351532, 0.000052342376875458285, -0.06699438393115997, 0.08890911191701889, -0.1376911699771881, -0.007457916624844074, -0.0880306139588356, 0.04224095493555069, -0.04115236923098564, -0.06587381660938263, -0.04137076810002327, 0.05641121789813042, 0.044343605637550354, -0.03300477936863899, 0.0390789657831192, -0.025287646800279617, 0.10350871831178665, 0.026329223066568375, 0.08617927879095078, 0.01607373170554638, -0.05477985739707947, 0.02203836478292942, -0.01205514371395111, 0.06363420188426971, -0.16918039321899414, 0.009483755566179752, 0.09881393611431122, 0.06844610720872879, 0.10173878073692322, 0.041456859558820724, -0.047490935772657394, 0.016994645819067955, 0.027508987113833427, -0.09590573608875275, -0.11471029371023178, 0.03977064788341522, -0.037295740097761154, -0.14725427329540253, 0.04253878816962242, 0.11817964166402817, -0.04054833576083183, -0.03115263022482395, -0.020141901448369026, 0.0028902620542794466, -0.020701313391327858, 0.18116457760334015, 0.06166934594511986, 0.060145508497953415, -0.10319654643535614, 0.11964992433786392, 0.03465871140360832, -0.026616420596837997, 0.0511050745844841, 0.08252044767141342, -0.10079894214868546, -0.006616515573114157, 0.07812238484621048, 0.12664078176021576, -0.05466276407241821, 0.0007849952671676874, -0.10199923068284988, -0.08676699548959732, 0.058697961270809174, 0.1417839229106903, 0.050298500806093216, -0.017209285870194435, -0.04547687992453575, 0.04550414904952049, -0.14013421535491943, 0.0740218460559845, 0.03249482065439224, 0.06459514051675797, -0.07761073857545853, 0.06461259722709656, 0.003936434630304575, 0.01872156746685505, -0.014506010338664055, 0.0031409289222210646, -0.09675312042236328, -0.007656671106815338, -0.08383837342262268, 0.0016666611190885305, 0.0006319325766526163, 0.01876586303114891, -0.024627340957522392, -0.07102742791175842, -0.04439385607838631, 0.036936305463314056, -0.08621680736541748, -0.05092566832900047, 0.0076248967088758945, 0.04271905869245529, -0.12335021793842316, -0.004862355999648571, 0.02827823907136917, -0.09763700515031815, 0.09852009266614914, 0.07212615758180618, 0.020815176889300346, 0.02912437729537487, -0.12143848091363907, -0.03447943925857544, -0.014132566750049591, -0.00972711481153965, 0.060540180653333664, -0.09768764674663544, -0.004977663047611713, -0.045671042054891586, 0.06283926963806152, 0.012561737559735775, 0.060849208384752274, -0.14067493379116058, 0.014845182187855244, -0.06997073441743851, -0.04540560767054558, -0.07898830622434616, 0.040166061371564865, 0.09272948652505875, 0.05897066369652748, 0.14054352045059204, -0.07462476193904877, 0.025589918717741966, -0.2047332227230072, -0.03698755428195, -0.013357259333133698, -0.05629434064030647, -0.14483685791492462, -0.046988457441329956, 0.08250477910041809, -0.03983870521187782, 0.09125298261642456, -0.0260888934135437, 0.07369998097419739, 0.03700781241059303, -0.04975702613592148, -0.03291542828083038, -0.008656565099954605, 0.20145845413208008, 0.0715239942073822, -0.014307886362075806, 0.10238739848136902, 0.0009936373680830002, 0.031491249799728394, 0.04665624722838402, 0.16975581645965576, 0.2220512479543686, 0.04060947149991989, 0.04963763803243637, 0.06336470693349838, -0.0773809477686882, -0.06949321180582047, 0.17447611689567566, -0.01109266746789217, 0.06796605885028839, -0.04623553901910782, 0.19280867278575897, 0.1194143071770668, -0.1668972223997116, 0.04831039905548096, -0.04601018875837326, -0.08188049495220184, -0.1185380294919014, -0.007712105754762888, -0.08351694792509079, -0.12403383105993271, 0.03654125705361366, -0.1191638931632042, 0.046391576528549194, 0.11053867638111115, 0.01484399102628231, 0.03522884100675583, 0.1263372004032135, -0.008523521013557911, -0.0055083464831113815, 0.06778661906719208, 0.004319800529628992, -0.00980112049728632, -0.04115239903330803, -0.07496143132448196, 0.05946394056081772, 0.001178314327262342, 0.08145392686128616, -0.046348948031663895, -0.014992552809417248, 0.03088892437517643, -0.03025720827281475, -0.07990012317895889, 0.02567409537732601, 0.04463065043091774, 0.05290041118860245, 0.049408555030822754, 0.042080022394657135, -0.010770442895591259, -0.03327565640211105, 0.3264743387699127, -0.06611686944961548, -0.10252929478883743, -0.12426585704088211, 0.2147088199853897, 0.03303946182131767, -0.027359995990991592, 0.03171057626605034, -0.08598106354475021, -0.0000069145753514021635, 0.1693010777235031, 0.17629779875278473, -0.06664244085550308, -0.020438270643353462, -0.000166578363860026, -0.016246693208813667, -0.03175199776887894, 0.12613321840763092, 0.09772748500108719, -0.013853035867214203, -0.060872457921504974, -0.016429590061306953, -0.015711285173892975, -0.0336148701608181, -0.042860180139541626, 0.048323940485715866, 0.02134063094854355, -0.02617153897881508, -0.04222419112920761, 0.0759769156575203, 0.00454928120598197, -0.25498902797698975, 0.06229766830801964, -0.15581659972667694, -0.1765640676021576, -0.05156635120511055, 0.03053186647593975, 0.005830977112054825, 0.05678310617804527, -0.014725148677825928, 0.0037773512303829193, 0.08776471763849258, -0.011286494322121143, -0.03404180705547333, -0.12132053822278976, 0.12306404858827591, -0.04788092151284218, 0.170121431350708, -0.03144697844982147, 0.04221511632204056, 0.11619550734758377, 0.030338609591126442, -0.1348983347415924, 0.0362924225628376, 0.06161404028534889, -0.09673701226711273, 0.020943375304341316, 0.14855580031871796, -0.047117095440626144, 0.09709218144416809, 0.045984022319316864, -0.10941258817911148, 0.0013493925798684359, -0.0683213546872139, -0.033785946667194366, -0.08634613454341888, -0.010435055010020733, -0.06475481390953064, 0.16643661260604858, 0.2219986915588379, -0.037586405873298645, 0.00811247993260622, -0.09853712469339371, 0.011327224783599377, 0.06978166848421097, 0.03685074299573898, -0.049691662192344666, -0.18182697892189026, 0.005838286597281694, 0.060057323426008224, -0.001846238854341209, -0.25204041600227356, -0.0720270499587059, 0.036300115287303925, -0.030021946877241135, -0.03307727351784706, 0.10983352363109589, 0.04799850285053253, 0.050611454993486404, -0.031236005946993828, -0.15108317136764526, -0.033992867916822433, 0.15664342045783997, -0.1733272671699524, -0.036146361380815506 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-256-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-256-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-256-finetuned-squad-seed-0
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-256-finetuned-squad-seed-0 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-256-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-256-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-256-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.07800672203302383, 0.10225936770439148, -0.0025845039635896683, 0.07721872627735138, 0.1317368596792221, 0.03332017734646797, 0.10688326507806778, 0.12336620688438416, -0.1277405172586441, 0.0674908384680748, 0.09154348820447922, 0.0851438045501709, 0.03286808729171753, 0.13002271950244904, -0.03910963982343674, -0.23300927877426147, 0.007463006768375635, -0.017066413536667824, -0.0678229108452797, 0.10217814147472382, 0.08780647814273834, -0.09788112342357635, 0.08093499392271042, -0.003006358863785863, -0.18468394875526428, 0.028195058926939964, -0.020846785977482796, -0.05209976062178612, 0.09860927611589432, -0.004651134368032217, 0.08289556950330734, 0.00763333635404706, 0.11822425574064255, -0.1920214593410492, 0.013423536904156208, 0.07358050346374512, 0.033951207995414734, 0.09502726048231125, 0.020134922116994858, -0.003044219221919775, 0.16614067554473877, -0.13582424819469452, 0.09836411476135254, 0.028821319341659546, -0.08560315519571304, -0.16798467934131622, -0.0952569842338562, 0.014026900753378868, 0.03487040475010872, 0.08733347058296204, 0.00848271045833826, 0.17905782163143158, -0.09203272312879562, 0.07981416583061218, 0.23622186481952667, -0.27732986211776733, -0.07873233407735825, 0.04161493107676506, 0.04674601927399635, 0.07760562002658844, -0.11872677505016327, -0.01560475304722786, 0.019967323169112206, 0.02972780168056488, 0.09339321404695511, -0.025527456775307655, -0.0879148319363594, -0.006956905592232943, -0.11906731873750687, 0.004192133899778128, 0.1121354028582573, 0.04411734640598297, -0.05031663551926613, -0.04939214885234833, -0.058049216866493225, -0.07049362361431122, -0.03471026569604874, -0.033994004130363464, 0.043172743171453476, -0.057843081653118134, -0.12233486771583557, -0.034097351133823395, -0.048184510320425034, -0.07745031267404556, -0.020854230970144272, 0.20718641579151154, 0.0491451695561409, 0.03291608393192291, -0.050910353660583496, 0.08158791810274124, 0.0119320098310709, -0.12920315563678741, -0.029794437810778618, 0.002689796034246683, -0.07982254028320312, -0.03793743997812271, -0.0559835322201252, 0.015021334402263165, 0.04344067722558975, 0.21058784425258636, -0.055348291993141174, 0.0834747701883316, 0.031206853687763214, -0.020529404282569885, -0.02139771170914173, 0.12499166280031204, -0.019650109112262726, -0.0769800916314125, 0.02857978828251362, 0.05823469161987305, 0.025852683931589127, 0.0025900332257151604, -0.05575761944055557, -0.03192440792918205, 0.08218612521886826, 0.031471528112888336, -0.06123236566781998, 0.026312755420804024, 0.0028670444153249264, -0.020019015297293663, 0.005030014552175999, -0.11393914371728897, 0.01683136448264122, -0.006466306280344725, -0.07522640377283096, -0.014285795390605927, 0.008937866427004337, -0.015955952927470207, 0.010155296884477139, 0.09985122084617615, -0.08921109139919281, -0.021294686943292618, -0.07645150274038315, -0.07033924758434296, -0.0008787085535004735, -0.14917325973510742, 0.012793418951332569, -0.07379869371652603, -0.15422414243221283, -0.03211406245827675, 0.0426563061773777, -0.07064593583345413, -0.028641078621149063, -0.03835519403219223, -0.07654482126235962, 0.026336301118135452, 0.003033855464309454, 0.18640850484371185, -0.05295064300298691, 0.08038045465946198, 0.020015377551317215, 0.0501866340637207, -0.022318601608276367, 0.03125868737697601, -0.08995363116264343, 0.003613400738686323, -0.1693422645330429, 0.06247539073228836, -0.07646699249744415, 0.01562226191163063, -0.1295938938856125, -0.08716829121112823, -0.026911864057183266, -0.02856355533003807, 0.08397065103054047, 0.10174284130334854, -0.13821811974048615, -0.027750827372074127, 0.11250318586826324, -0.07718920707702637, -0.057288289070129395, 0.06705307960510254, -0.06719391793012619, 0.05058109760284424, 0.0571860671043396, 0.18408752977848053, 0.07495664805173874, -0.11410631984472275, -0.023295368999242783, 0.002527422271668911, 0.029860569164156914, -0.010841771960258484, 0.05099882557988167, 0.010240238159894943, 0.02079443261027336, 0.016786346212029457, -0.03919301927089691, 0.004026554059237242, -0.09714383631944656, -0.06249191612005234, -0.057342011481523514, -0.08213990181684494, -0.034704919904470444, 0.0135071175172925, 0.0379941463470459, -0.08080829679965973, -0.08426616340875626, 0.08145315945148468, 0.14160683751106262, -0.04373607039451599, 0.020982909947633743, -0.07303290069103241, 0.019271880388259888, -0.05329539626836777, -0.03059256263077259, -0.20457015931606293, -0.06660483777523041, 0.0335550419986248, -0.027738414704799652, 0.05741046369075775, 0.0025820983573794365, 0.07140097767114639, 0.037598080933094025, -0.0373920239508152, 0.006147291976958513, -0.08993794023990631, -0.0071127950213849545, -0.0932881310582161, -0.2215956747531891, -0.03817354515194893, -0.03059385158121586, 0.12722188234329224, -0.16183745861053467, -0.009286727756261826, -0.032653070986270905, 0.12040399760007858, 0.029637999832630157, -0.06223716586828232, -0.01451119314879179, 0.031485412269830704, 0.0023130958434194326, -0.09228924661874771, 0.03206043690443039, 0.017375245690345764, -0.07259120792150497, -0.05731379613280296, -0.11572571843862534, 0.0057244328781962395, 0.07866473495960236, 0.06267692148685455, -0.09643501788377762, 0.006379707250744104, -0.0646083801984787, -0.033672261983156204, -0.057725582271814346, 0.04153924435377121, 0.17789915204048157, 0.0061117480508983135, 0.10706009715795517, -0.08014638721942902, -0.0728408619761467, 0.021963227540254593, 0.005709188524633646, 0.04248011112213135, 0.09227990359067917, 0.11140455305576324, -0.1270526796579361, 0.06486964970827103, 0.08241984248161316, -0.06283439695835114, 0.12615327537059784, -0.03935469314455986, -0.07921804487705231, -0.034268248826265335, -0.018311146646738052, -0.01474323496222496, 0.13733533024787903, -0.05202512443065643, 0.025284437462687492, 0.030053094029426575, 0.0391962006688118, 0.020326167345046997, -0.1529851108789444, -0.002503100549802184, 0.00843567494302988, -0.04356488212943077, -0.017621716484427452, 0.022538434714078903, 0.019482025876641273, 0.09757302701473236, 0.03364189714193344, -0.01627814956009388, -0.006669192109256983, -0.0037636368069797754, -0.05211666598916054, 0.19125297665596008, -0.09105036407709122, -0.04285011440515518, -0.07735612988471985, 0.0011712867999449372, -0.039168741554021835, -0.04288351163268089, 0.02688075229525566, -0.08817027509212494, -0.03812696784734726, -0.0738954246044159, -0.0003017642884515226, -0.04709676653146744, 0.02590418979525566, 0.029123803600668907, 0.003658316796645522, 0.06176386773586273, -0.13393598794937134, 0.00490594794973731, -0.07247789204120636, -0.10374826937913895, 0.016797229647636414, 0.06481671333312988, 0.09209024906158447, 0.05812736973166466, -0.030178211629390717, 0.021605318412184715, -0.03205633535981178, 0.25148600339889526, -0.0556563101708889, -0.001455457415431738, 0.1078583300113678, 0.02446012943983078, 0.04580707848072052, 0.0918811559677124, 0.03503842651844025, -0.1008211150765419, 0.03070993721485138, 0.08604692667722702, -0.03541106730699539, -0.23802919685840607, -0.006145552732050419, -0.035236794501543045, -0.11332448571920395, 0.08263682574033737, 0.050322338938713074, -0.04363701492547989, 0.06449198722839355, 0.009407518431544304, 0.023440087214112282, -0.051724083721637726, 0.0923539251089096, 0.10137689113616943, 0.07506328821182251, 0.10233888775110245, -0.04814610630273819, -0.021240277215838432, 0.0695979967713356, -0.004439075011759996, 0.2922068238258362, -0.028658397495746613, 0.06913888454437256, 0.053251199424266815, 0.14037834107875824, -0.02161249704658985, 0.03614475578069687, 0.006530426908284426, -0.003716247621923685, -0.02547358348965645, -0.058054640889167786, -0.02881595492362976, -0.0016398148145526648, -0.07827887684106827, 0.05568530037999153, -0.06179637461900711, 0.0651247426867485, 0.020118726417422295, 0.26245418190956116, -0.0025927622336894274, -0.2807259261608124, -0.07909581810235977, -0.02181602269411087, -0.03824927657842636, -0.044207409024238586, 0.013453575782477856, 0.1000497043132782, -0.10370311141014099, 0.05177287757396698, -0.058509424328804016, 0.08081280440092087, -0.028534352779388428, -0.0043068621307611465, 0.032318148761987686, 0.1846705675125122, -0.015649979934096336, 0.0500909760594368, -0.19975098967552185, 0.21578387916088104, 0.01847701147198677, 0.1325729638338089, -0.05097654461860657, 0.008038468658924103, 0.02415861375629902, -0.0013842687476426363, 0.07535786926746368, -0.005846268963068724, -0.07620719820261002, -0.12579302489757538, -0.07325536757707596, 0.08111783117055893, 0.14055226743221283, -0.015364636667072773, 0.10265272855758667, -0.049021270126104355, 0.01916327141225338, 0.04078218713402748, -0.06805813312530518, -0.15689454972743988, -0.09724682569503784, -0.01747671514749527, 0.03841447830200195, -0.0948728546500206, -0.04662425071001053, -0.07560817152261734, -0.010788053274154663, 0.11439413577318192, 0.024435900151729584, -0.019412804394960403, -0.13718119263648987, 0.08837238699197769, 0.1495472937822342, -0.07359297573566437, 0.023189686238765717, -0.007849818095564842, 0.06448496133089066, 0.04336687549948692, -0.09547756612300873, 0.04740587994456291, -0.05768342688679695, -0.1601824164390564, -0.04619917646050453, 0.08972310274839401, 0.07195397466421127, 0.039756275713443756, -0.005911511834710836, 0.04974231868982315, -0.020455680787563324, -0.0999801754951477, 0.01224841084331274, 0.03518061712384224, 0.05020906403660774, 0.03715069219470024, -0.08316083997488022, 0.060648903250694275, -0.03306252136826515, -0.00475799897685647, 0.11388582736253738, 0.2419988363981247, -0.08963356167078018, 0.08532404154539108, 0.05873668193817139, -0.06751914322376251, -0.1442885845899582, 0.06376736611127853, 0.10342554748058319, 0.00011852945317514241, 0.05601217597723007, -0.1968754529953003, 0.1415814310312271, 0.11357633769512177, -0.012154651805758476, 0.03710774704813957, -0.2740436792373657, -0.11809521913528442, 0.059390123933553696, 0.1318347454071045, 0.11858437210321426, -0.13242384791374207, -0.013534250669181347, -0.017352184280753136, -0.12329516559839249, 0.10859999805688858, -0.11469127237796783, 0.13443879783153534, -0.033810343593358994, 0.11005197465419769, 0.004888499155640602, -0.030043404549360275, 0.10710491240024567, 0.04926195740699768, 0.09750523418188095, -0.041566185653209686, 0.012916278094053268, 0.05988967418670654, -0.04817540943622589, 0.014037348330020905, -0.07422438263893127, 0.08441169559955597, -0.12118180841207504, -0.006677201949059963, -0.07936465740203857, 0.05145619437098503, -0.036451589316129684, -0.05288419872522354, -0.05349843204021454, 0.03682694584131241, 0.055661894381046295, -0.03703819587826729, 0.0546269454061985, -0.00020921956456732005, 0.09144553542137146, 0.02390259876847267, 0.06828057765960693, 0.0005175601108931005, -0.047422055155038834, 0.020479535683989525, -0.00874223094433546, 0.060991447418928146, -0.13925085961818695, 0.005285789258778095, 0.10690641403198242, 0.05244826525449753, 0.09596865624189377, 0.04310653731226921, -0.04742608219385147, 0.01251245941966772, 0.03738115727901459, -0.11417794227600098, -0.10134880244731903, 0.04714600741863251, -0.03939148783683777, -0.13886894285678864, 0.04685831069946289, 0.11486299335956573, -0.04946766793727875, -0.022206101566553116, -0.018340134993195534, 0.005662701558321714, -0.021459022536873817, 0.18510274589061737, 0.04276663810014725, 0.04067656397819519, -0.10208074003458023, 0.13190899789333344, 0.02934652753174305, -0.02396462671458721, 0.05910515412688255, 0.08553171157836914, -0.09545121341943741, 0.0023411514703184366, 0.09330868721008301, 0.17376792430877686, -0.07204730808734894, -0.015499729663133621, -0.10448800027370453, -0.07152210175991058, 0.06171703338623047, 0.15906988084316254, 0.0559961199760437, -0.01768953539431095, -0.051292240619659424, 0.0407424196600914, -0.14177174866199493, 0.06300480663776398, 0.031659964472055435, 0.0700208768248558, -0.08742039650678635, 0.05774618312716484, 0.007694486994296312, 0.005257704760879278, -0.016897404566407204, 0.014123204164206982, -0.09263341873884201, -0.02910575643181801, -0.07633289694786072, 0.01068426575511694, -0.013368427753448486, 0.01591932587325573, -0.010275989770889282, -0.067447230219841, -0.0700102299451828, 0.03672854229807854, -0.076960489153862, -0.05271568149328232, 0.012259600684046745, 0.04343514144420624, -0.1335192620754242, 0.0059754205867648125, 0.015720343217253685, -0.0891558900475502, 0.08596930652856827, 0.08910129964351654, 0.026006311178207397, 0.03429507091641426, -0.128076434135437, -0.03251941129565239, 0.013662472367286682, 0.002672768197953701, 0.06480336934328079, -0.09481322765350342, -0.003558133030310273, -0.02128974162042141, 0.0762256607413292, 0.010139629244804382, 0.0818251371383667, -0.13136322796344757, 0.00870649702847004, -0.08364242315292358, -0.04309651628136635, -0.06605789810419083, 0.016873257234692574, 0.10191860795021057, 0.052827391773462296, 0.16357718408107758, -0.07748238742351532, 0.01809750497341156, -0.20785856246948242, -0.02784031629562378, -0.004957671742886305, -0.054128292948007584, -0.13755927979946136, -0.04011814668774605, 0.07743506878614426, -0.03869186341762543, 0.0988655686378479, -0.020522497594356537, 0.06271863728761673, 0.039292555302381516, -0.03305970877408981, -0.0628407672047615, -0.028349537402391434, 0.19770027697086334, 0.07777154445648193, -0.016177063807845116, 0.10778378695249557, -0.005842720158398151, 0.051668211817741394, 0.03197834640741348, 0.20413321256637573, 0.2083648145198822, 0.007396540138870478, 0.07109919935464859, 0.06206300109624863, -0.08104204386472702, -0.0683097392320633, 0.1804201304912567, -0.026639718562364578, 0.07408735156059265, -0.029279401525855064, 0.18721066415309906, 0.11145743727684021, -0.15033848583698273, 0.03162262216210365, -0.03217759728431702, -0.07701067626476288, -0.14028477668762207, 0.0002861622197087854, -0.09635642170906067, -0.11898075044155121, 0.04472830891609192, -0.12026321142911911, 0.055273137986660004, 0.0818696916103363, 0.01224046666175127, 0.03297588974237442, 0.12793949246406555, -0.026052411645650864, 0.003911532927304506, 0.042503226548433304, 0.0074637774378061295, -0.029052818194031715, -0.040473781526088715, -0.07725971192121506, 0.05037815496325493, 0.006516792345792055, 0.08783672749996185, -0.04516245797276497, -0.009310093708336353, 0.042384784668684006, -0.029337013140320778, -0.0762895792722702, 0.025352979078888893, 0.0363219752907753, 0.05724254250526428, 0.045620061457157135, 0.04441911727190018, -0.006788288708776236, -0.033183399587869644, 0.28052207827568054, -0.05894406512379646, -0.09522764384746552, -0.11471950262784958, 0.20627672970294952, 0.040380749851465225, -0.02935570478439331, 0.03894908353686333, -0.0834268108010292, -0.012894882820546627, 0.15524809062480927, 0.1558327078819275, -0.06307315826416016, -0.02482568472623825, -0.012418752536177635, -0.01675749197602272, -0.04044617712497711, 0.11571679264307022, 0.09525801986455917, 0.001787399291060865, -0.05367812514305115, -0.028083493933081627, -0.036142196506261826, -0.014594447799026966, -0.04065786674618721, 0.025067923590540886, 0.014640436507761478, -0.023067597299814224, -0.035142682492733, 0.062265899032354355, -0.0022960465867072344, -0.24155636131763458, 0.06154067814350128, -0.14415466785430908, -0.16838455200195312, -0.025666555389761925, 0.04763016477227211, -0.01027949620038271, 0.05024024844169617, -0.023523878306150436, -0.003706259187310934, 0.08028218150138855, -0.01994950696825981, -0.056329939514398575, -0.12370803207159042, 0.11167098581790924, -0.057045191526412964, 0.17958815395832062, -0.01730264723300934, 0.0697442963719368, 0.11812880635261536, 0.04354031756520271, -0.13954439759254456, 0.046252988278865814, 0.047519657760858536, -0.11371850222349167, 0.018184734508395195, 0.1434333622455597, -0.045539986342191696, 0.0880122035741806, 0.04450581967830658, -0.09450887888669968, -0.009906685911118984, -0.04731505736708641, -0.025782445445656776, -0.0711614117026329, -0.012813249602913857, -0.06856255233287811, 0.17033281922340393, 0.19717423617839813, -0.024601314216852188, 0.013696021400392056, -0.09343873709440231, 0.028973234817385674, 0.06781232357025146, 0.038356103003025055, -0.05003027245402336, -0.20765437185764313, 0.018465150147676468, 0.049651920795440674, -0.003219098784029484, -0.23446591198444366, -0.07863464951515198, 0.04153510555624962, -0.03406267240643501, -0.055379293859004974, 0.09689565002918243, 0.03570907562971115, 0.04812879487872124, -0.03726647049188614, -0.14999723434448242, -0.03816652297973633, 0.1541234254837036, -0.17911072075366974, -0.049851831048727036 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-256-finetuned-squad-seed-10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-256-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-256-finetuned-squad-seed-10
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-256-finetuned-squad-seed-10 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-256-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-256-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-256-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.07857115566730499, 0.0995291993021965, -0.002512991428375244, 0.07720760256052017, 0.1320650726556778, 0.03357489034533501, 0.10722466558218002, 0.1215781643986702, -0.12644945085048676, 0.06649031490087509, 0.09044034779071808, 0.08635005354881287, 0.03307117894291878, 0.1304900199174881, -0.03848272189497948, -0.23383140563964844, 0.00732323806732893, -0.016733212396502495, -0.06658872961997986, 0.10213585942983627, 0.08811930567026138, -0.09842346608638763, 0.0803515687584877, -0.003057358553633094, -0.18505246937274933, 0.028352348133921623, -0.020460912957787514, -0.050875891000032425, 0.09898851811885834, -0.006293712183833122, 0.08269225805997849, 0.0071686445735394955, 0.12031349539756775, -0.19012843072414398, 0.01347630750387907, 0.07316257059574127, 0.03411687910556793, 0.09459874033927917, 0.019791487604379654, -0.0020146742463111877, 0.16548694670200348, -0.13628539443016052, 0.09866844117641449, 0.028147317469120026, -0.08569592237472534, -0.16694945096969604, -0.09536970406770706, 0.013402318581938744, 0.036490537226200104, 0.08638148009777069, 0.00815226137638092, 0.179075226187706, -0.09246789664030075, 0.0799817368388176, 0.23690500855445862, -0.27839794754981995, -0.07872989028692245, 0.0434994138777256, 0.0485604852437973, 0.07862316071987152, -0.11835338920354843, -0.016363093629479408, 0.020471371710300446, 0.029496334493160248, 0.09440633654594421, -0.026043744757771492, -0.08795607089996338, -0.00729382922872901, -0.12050538510084152, 0.0060594407841563225, 0.1111225113272667, 0.044393863528966904, -0.04999321699142456, -0.049202580004930496, -0.058802198618650436, -0.070428267121315, -0.036142755299806595, -0.034876223653554916, 0.04366951435804367, -0.05807918682694435, -0.12101195752620697, -0.03376428037881851, -0.047204308211803436, -0.0779697522521019, -0.020692875608801842, 0.2064579427242279, 0.04945015907287598, 0.032600585371255875, -0.05075102671980858, 0.08079444617033005, 0.008907876908779144, -0.12917490303516388, -0.028459206223487854, 0.002968032844364643, -0.0810713991522789, -0.03887408226728439, -0.056749649345874786, 0.015061602927744389, 0.04263504222035408, 0.2103932797908783, -0.052760906517505646, 0.08366618305444717, 0.03285878151655197, -0.02078249678015709, -0.021371686831116676, 0.1254025250673294, -0.020027803257107735, -0.07882662117481232, 0.02847268246114254, 0.0585787259042263, 0.025935566052794456, 0.0035748265217989683, -0.05660266801714897, -0.03206373006105423, 0.08250156044960022, 0.0311068557202816, -0.0631859302520752, 0.026633245870471, 0.0032245845068246126, -0.019724177196621895, 0.006240164861083031, -0.11450307071208954, 0.01742682047188282, -0.007018020376563072, -0.07603629678487778, -0.014039570465683937, 0.00736479414626956, -0.015049098059535027, 0.010603656992316246, 0.09898164123296738, -0.08937793225049973, -0.020679989829659462, -0.0772453248500824, -0.07146895676851273, -0.0010461276397109032, -0.15171079337596893, 0.01341897901147604, -0.0726465955376625, -0.15655399858951569, -0.03262549266219139, 0.04194488003849983, -0.07017408311367035, -0.028677156195044518, -0.039356209337711334, -0.07668070495128632, 0.024969760328531265, 0.0038073230534791946, 0.18804293870925903, -0.05239412561058998, 0.07906144857406616, 0.019960129633545876, 0.05157819390296936, -0.023163899779319763, 0.031441379338502884, -0.08915600925683975, 0.0035802172496914864, -0.17035004496574402, 0.0621865950524807, -0.07664244621992111, 0.017637910321354866, -0.1288856416940689, -0.08679507672786713, -0.027308762073516846, -0.028194047510623932, 0.08397476375102997, 0.10134061425924301, -0.14099884033203125, -0.02659505046904087, 0.11301884800195694, -0.07686746120452881, -0.056446392089128494, 0.06560097634792328, -0.06752610206604004, 0.05142636224627495, 0.058623362332582474, 0.18417462706565857, 0.07497746497392654, -0.11362799257040024, -0.02262463979423046, 0.002707377541810274, 0.02960553765296936, -0.012694412842392921, 0.05043092742562294, 0.011050628498196602, 0.02176740951836109, 0.016821764409542084, -0.03802664205431938, 0.003368748351931572, -0.09689841419458389, -0.06232045963406563, -0.05761811137199402, -0.08309493213891983, -0.0348518043756485, 0.013513821177184582, 0.038225091993808746, -0.0812424048781395, -0.08344040811061859, 0.08297792077064514, 0.14142240583896637, -0.04356420785188675, 0.02017979696393013, -0.07264392077922821, 0.01866038329899311, -0.05371963605284691, -0.03080431930720806, -0.20491346716880798, -0.0655796155333519, 0.033894266933202744, -0.02852640300989151, 0.05743313580751419, 0.004994167014956474, 0.07194827497005463, 0.03737044706940651, -0.036692287772893906, 0.00650907913222909, -0.08909883350133896, -0.006950327195227146, -0.09515393525362015, -0.2211424559354782, -0.03863990306854248, -0.03072606958448887, 0.12654046714305878, -0.16224442422389984, -0.008998263627290726, -0.035144608467817307, 0.1200094223022461, 0.028774762526154518, -0.06183139979839325, -0.0147626381367445, 0.031052427366375923, 0.003151813754811883, -0.09249773621559143, 0.03230268508195877, 0.016177948564291, -0.07178280502557755, -0.058874815702438354, -0.11664170771837234, 0.00400208355858922, 0.07809653133153915, 0.0631568655371666, -0.09616223722696304, 0.007313213311135769, -0.06421902030706406, -0.03291511908173561, -0.056615978479385376, 0.04133932292461395, 0.17666979134082794, 0.005398293491452932, 0.10665538907051086, -0.08037562668323517, -0.07359519600868225, 0.021748507395386696, 0.00645951833575964, 0.043971966952085495, 0.09216751158237457, 0.11206629127264023, -0.12665782868862152, 0.06410479545593262, 0.08447727560997009, -0.06296468526124954, 0.1243441104888916, -0.03950118646025658, -0.07947413623332977, -0.034111566841602325, -0.01959298551082611, -0.01571729965507984, 0.1370495706796646, -0.05265205353498459, 0.023823825642466545, 0.029360594227910042, 0.03874368965625763, 0.02001481130719185, -0.15383797883987427, -0.002169556450098753, 0.007877438329160213, -0.04275032505393028, -0.018441475927829742, 0.022173121571540833, 0.018606694415211678, 0.09762069582939148, 0.032712485641241074, -0.01752951182425022, -0.00741634052246809, -0.003940120805054903, -0.05148947611451149, 0.19153697788715363, -0.09062764048576355, -0.04034334793686867, -0.07537547498941422, 0.000588557100854814, -0.038032542914152145, -0.04296153411269188, 0.025940382853150368, -0.08819644898176193, -0.03818833455443382, -0.0737476795911789, -0.0008345829555764794, -0.046486373990774155, 0.025899237021803856, 0.030297037214040756, 0.003454966004937887, 0.06082191318273544, -0.13409541547298431, 0.004859926179051399, -0.07373741269111633, -0.10402270406484604, 0.016193171963095665, 0.06484408676624298, 0.09153218567371368, 0.05976584181189537, -0.03021438978612423, 0.021518394351005554, -0.03171154484152794, 0.25217553973197937, -0.05550939217209816, 0.00030736031476408243, 0.10789626836776733, 0.024637071415781975, 0.04573385417461395, 0.0929899737238884, 0.03501603752374649, -0.10125402361154556, 0.030375901609659195, 0.0853915885090828, -0.034857917577028275, -0.23831778764724731, -0.006193847395479679, -0.03482861816883087, -0.11555887013673782, 0.08229847997426987, 0.04983648285269737, -0.043385330587625504, 0.06555529683828354, 0.01019413210451603, 0.02448471449315548, -0.05173787474632263, 0.09148934483528137, 0.10003571212291718, 0.07444258779287338, 0.10285157710313797, -0.04857012256979942, -0.022101914510130882, 0.0683693140745163, -0.004694959614425898, 0.29302194714546204, -0.027157682925462723, 0.06796494126319885, 0.05296490713953972, 0.1397315263748169, -0.02190747670829296, 0.03804484009742737, 0.006994210183620453, -0.004698783624917269, -0.025805912911891937, -0.05785024166107178, -0.0269645806401968, -0.0016783615574240685, -0.07880723476409912, 0.05556359514594078, -0.06102626398205757, 0.06448496878147125, 0.019653569906949997, 0.26075279712677, -0.001013750210404396, -0.2811518907546997, -0.07783323526382446, -0.02152146026492119, -0.03920277953147888, -0.043597180396318436, 0.013228489086031914, 0.0984041765332222, -0.1030513346195221, 0.05263359472155571, -0.058262087404727936, 0.08112183213233948, -0.027492567896842957, -0.0036503123119473457, 0.031504422426223755, 0.18616227805614471, -0.015383629128336906, 0.050104036927223206, -0.20034079253673553, 0.2151772379875183, 0.01854247972369194, 0.13328105211257935, -0.051553890109062195, 0.007518360391259193, 0.024259870871901512, -0.0014919622335582972, 0.07531587034463882, -0.005801195744425058, -0.07687510550022125, -0.12579315900802612, -0.07294704765081406, 0.08112574368715286, 0.14118492603302002, -0.013925982639193535, 0.1029033362865448, -0.048368941992521286, 0.01831216923892498, 0.041268281638622284, -0.06912332773208618, -0.15809620916843414, -0.09618105739355087, -0.018351076170802116, 0.03747459873557091, -0.09647826105356216, -0.045917440205812454, -0.07560741901397705, -0.013252835720777512, 0.11258021742105484, 0.026672115549445152, -0.019370343536138535, -0.1366555243730545, 0.0887279212474823, 0.15004314482212067, -0.07333199679851532, 0.02403515949845314, -0.007253821473568678, 0.06460419297218323, 0.04350707679986954, -0.09535286575555801, 0.047750022262334824, -0.05769865959882736, -0.15948592126369476, -0.045655928552150726, 0.09050819277763367, 0.07252474129199982, 0.03987604007124901, -0.004695604555308819, 0.04985640570521355, -0.020867548882961273, -0.10013808310031891, 0.011553244665265083, 0.03513545170426369, 0.04918818920850754, 0.03733106330037117, -0.08408188819885254, 0.059358298778533936, -0.032966192811727524, -0.0031203278340399265, 0.11341802030801773, 0.23963336646556854, -0.0895833969116211, 0.0845586284995079, 0.0581236369907856, -0.06777788698673248, -0.14416538178920746, 0.06503661721944809, 0.10356981307268143, 0.00026770669501274824, 0.05660867318511009, -0.19528500735759735, 0.1431216448545456, 0.11345517635345459, -0.011694665998220444, 0.03672868758440018, -0.27460381388664246, -0.11803906410932541, 0.05984973907470703, 0.13248880207538605, 0.11908333748579025, -0.1319638192653656, -0.013098087161779404, -0.018512215465307236, -0.12326588481664658, 0.1085963174700737, -0.11581834405660629, 0.13408192992210388, -0.0335947722196579, 0.10956189036369324, 0.004639487247914076, -0.030109236016869545, 0.10577038675546646, 0.05142433941364288, 0.09815900772809982, -0.04174520820379257, 0.011909362860023975, 0.061464615166187286, -0.0475037656724453, 0.014665180817246437, -0.07340759038925171, 0.08391384035348892, -0.11971389502286911, -0.006602378562092781, -0.07885142415761948, 0.05070088058710098, -0.0361286997795105, -0.052448734641075134, -0.05320320278406143, 0.03650086745619774, 0.05497503653168678, -0.03707059100270271, 0.05290243774652481, 0.0007926475373096764, 0.09085476398468018, 0.020420659333467484, 0.06906701624393463, -0.0002924890723079443, -0.046120163053274155, 0.020965613424777985, -0.008356409147381783, 0.06002090126276016, -0.14008474349975586, 0.004803364630788565, 0.10700321942567825, 0.05249477177858353, 0.09564359486103058, 0.04317006468772888, -0.04722989723086357, 0.011910505592823029, 0.03699066489934921, -0.1125960424542427, -0.10301288962364197, 0.04815465584397316, -0.04050423577427864, -0.13881412148475647, 0.0487828254699707, 0.11327957361936569, -0.04955689236521721, -0.022841060534119606, -0.01929314434528351, 0.005228416528552771, -0.0215643011033535, 0.18654665350914001, 0.04370186850428581, 0.04052860662341118, -0.10281805694103241, 0.13109280169010162, 0.029081838205456734, -0.02237502485513687, 0.058033935725688934, 0.08637121319770813, -0.09630367159843445, 0.0022742890287190676, 0.09498190134763718, 0.1751888394355774, -0.070380300283432, -0.015090999193489552, -0.10450322180986404, -0.07226244360208511, 0.061831723898649216, 0.16020211577415466, 0.056784093379974365, -0.019125016406178474, -0.05109403282403946, 0.0410185270011425, -0.1414838433265686, 0.062399741262197495, 0.03176209703087807, 0.07034514099359512, -0.08706200122833252, 0.05837366729974747, 0.007772509474307299, 0.0057004583068192005, -0.017061999067664146, 0.015340304002165794, -0.09244368970394135, -0.02971608377993107, -0.07631068676710129, 0.009115341119468212, -0.01388424914330244, 0.01580769568681717, -0.010579701513051987, -0.06750016659498215, -0.06980443000793457, 0.03619217500090599, -0.07715613394975662, -0.05280027538537979, 0.011954146437346935, 0.042219918221235275, -0.1328398585319519, 0.005853477865457535, 0.01492292620241642, -0.0882803425192833, 0.08537091314792633, 0.08824890851974487, 0.026697445660829544, 0.03543923422694206, -0.1290377825498581, -0.032451946288347244, 0.014278982765972614, 0.00308838183991611, 0.06547222286462784, -0.09364030510187149, -0.003624900011345744, -0.020962359383702278, 0.07832169532775879, 0.009473978541791439, 0.07946054637432098, -0.13035894930362701, 0.009009555913507938, -0.08483925461769104, -0.04312526434659958, -0.06627975404262543, 0.0165487639605999, 0.10109781473875046, 0.05215216800570488, 0.16413068771362305, -0.07634526491165161, 0.018029849976301193, -0.2086159735918045, -0.028171846643090248, -0.0055110035464167595, -0.05476381629705429, -0.13736148178577423, -0.04100094735622406, 0.07793467491865158, -0.03863581642508507, 0.10043196380138397, -0.019724350422620773, 0.06366199254989624, 0.03860565274953842, -0.02901754528284073, -0.06285784393548965, -0.027800260111689568, 0.19770926237106323, 0.07773570716381073, -0.016191888600587845, 0.10708453506231308, -0.0047667017206549644, 0.05194834619760513, 0.02997933328151703, 0.20379605889320374, 0.2082032561302185, 0.006192685104906559, 0.07094884663820267, 0.06280338019132614, -0.08086460828781128, -0.0667833462357521, 0.1821836233139038, -0.02780863456428051, 0.07267347723245621, -0.029315916821360588, 0.18981653451919556, 0.10999523848295212, -0.15013694763183594, 0.03192107379436493, -0.0318940170109272, -0.07771560549736023, -0.1397451013326645, -0.00022170724696479738, -0.09693748503923416, -0.11866258829832077, 0.04463914781808853, -0.12000562250614166, 0.05486057698726654, 0.08302223682403564, 0.012054359540343285, 0.03247437998652458, 0.12855076789855957, -0.026175200939178467, 0.00472252769395709, 0.04237266629934311, 0.007242466323077679, -0.028647134080529213, -0.04024842754006386, -0.0764416754245758, 0.0504741445183754, 0.0059895901940763, 0.0875886008143425, -0.046613991260528564, -0.010684490203857422, 0.04182474687695503, -0.0286557599902153, -0.0760030522942543, 0.02561814896762371, 0.036052100360393524, 0.05674850940704346, 0.04422531649470329, 0.045008737593889236, -0.007083727978169918, -0.033519454300403595, 0.2789667844772339, -0.05886776000261307, -0.09689751267433167, -0.1138029471039772, 0.20503012835979462, 0.040720365941524506, -0.02914864383637905, 0.039214685559272766, -0.08318758755922318, -0.01158177200704813, 0.1562732458114624, 0.1560022234916687, -0.06343196332454681, -0.025096677243709564, -0.012626047246158123, -0.01728888601064682, -0.04102502763271332, 0.11623768508434296, 0.09576810151338577, -0.00012988645175937563, -0.053449928760528564, -0.027806557714939117, -0.035534657537937164, -0.015099394135177135, -0.04146614298224449, 0.02373272180557251, 0.01588710956275463, -0.02305733598768711, -0.03345830366015434, 0.06333375722169876, -0.0008813735330477357, -0.24132928252220154, 0.05962963402271271, -0.14331643283367157, -0.1686410754919052, -0.026066318154335022, 0.04801677539944649, -0.008775142952799797, 0.05020170286297798, -0.023872319608926773, -0.0033487274777144194, 0.0798589214682579, -0.02001078799366951, -0.05642447620630264, -0.1240670457482338, 0.11215180903673172, -0.059578586369752884, 0.17837552726268768, -0.017265427857637405, 0.07073259353637695, 0.1178826168179512, 0.04242881387472153, -0.13874094188213348, 0.04707074910402298, 0.047017812728881836, -0.11300971359014511, 0.019370393827557564, 0.14288334548473358, -0.04505617171525955, 0.0845082551240921, 0.0439501591026783, -0.09482884407043457, -0.009237382560968399, -0.04648584499955177, -0.02611572854220867, -0.0715450793504715, -0.011642360128462315, -0.06854595243930817, 0.17064562439918518, 0.19714803993701935, -0.02462238259613514, 0.014425000175833702, -0.09381499141454697, 0.0280157383531332, 0.06773727387189865, 0.038594700396060944, -0.05058317631483078, -0.208017036318779, 0.018059832975268364, 0.04854461923241615, -0.003212078008800745, -0.23235340416431427, -0.07779455184936523, 0.039885520935058594, -0.03515893220901489, -0.05556362867355347, 0.0959298387169838, 0.03690638393163681, 0.04827573150396347, -0.03707360476255417, -0.15088960528373718, -0.03838245943188667, 0.1547456830739975, -0.17965735495090485, -0.04940100386738777 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-256-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-256-finetuned-squad-seed-2", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-256-finetuned-squad-seed-2
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-256-finetuned-squad-seed-2 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-256-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-256-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-256-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.07763452082872391, 0.10131627321243286, -0.00262382160872221, 0.07735952734947205, 0.1311645656824112, 0.03391896188259125, 0.10704534500837326, 0.12260692566633224, -0.1272030770778656, 0.06684882193803787, 0.09093352407217026, 0.0852588415145874, 0.032711613923311234, 0.12985217571258545, -0.03863689675927162, -0.2340312898159027, 0.007202270440757275, -0.018133612349629402, -0.06858200579881668, 0.10218631476163864, 0.08868930488824844, -0.09728636592626572, 0.08037887513637543, -0.0027885353192687035, -0.18539871275424957, 0.028375931084156036, -0.019638968631625175, -0.05063241347670555, 0.09872696548700333, -0.005383909679949284, 0.08285216987133026, 0.008248614147305489, 0.11996427923440933, -0.19127902388572693, 0.013159165158867836, 0.07237877696752548, 0.03431396186351776, 0.09487965703010559, 0.02038010209798813, -0.0019782758317887783, 0.16557522118091583, -0.1353139728307724, 0.09807024896144867, 0.02830614149570465, -0.08544953912496567, -0.16748180985450745, -0.09561719000339508, 0.014352651312947273, 0.03669770434498787, 0.08554313331842422, 0.008924520574510098, 0.17809706926345825, -0.09218002110719681, 0.07960614562034607, 0.23600271344184875, -0.27908793091773987, -0.07899387925863266, 0.042012955993413925, 0.04740038514137268, 0.0790691152215004, -0.11747010797262192, -0.015907704830169678, 0.020247215405106544, 0.029567541554570198, 0.09328994154930115, -0.026098402217030525, -0.08793734014034271, -0.007452081888914108, -0.12023531645536423, 0.0041311862878501415, 0.11148487031459808, 0.043915875256061554, -0.050995901226997375, -0.04790712893009186, -0.05919985845685005, -0.06829923391342163, -0.03484594076871872, -0.03542506694793701, 0.04360958933830261, -0.05717494338750839, -0.12082114815711975, -0.03567393496632576, -0.04859023541212082, -0.07846899330615997, -0.020953970029950142, 0.20781727135181427, 0.04953451082110405, 0.0339212492108345, -0.05048780143260956, 0.08209861814975739, 0.011090440675616264, -0.12886224687099457, -0.029127279296517372, 0.0031584668904542923, -0.08057413250207901, -0.03833629935979843, -0.056254174560308456, 0.01583690568804741, 0.04302925243973732, 0.20986559987068176, -0.05528905615210533, 0.08315588533878326, 0.03172118589282036, -0.01998128555715084, -0.021072272211313248, 0.1249396950006485, -0.018459603190422058, -0.0761328786611557, 0.028532614931464195, 0.05818672478199005, 0.02639600820839405, 0.00339300069026649, -0.056398872286081314, -0.032485973089933395, 0.08340834826231003, 0.03226618468761444, -0.06244784593582153, 0.024685900658369064, 0.00188945431727916, -0.02000344730913639, 0.004798715468496084, -0.1145344227552414, 0.017418144270777702, -0.006429366301745176, -0.0747104063630104, -0.015233571641147137, 0.008142640814185143, -0.01495977584272623, 0.011036819778382778, 0.09813929349184036, -0.08808229118585587, -0.020089630037546158, -0.07572738826274872, -0.06948982924222946, -0.0009427565964870155, -0.14884328842163086, 0.012807857245206833, -0.07344299554824829, -0.1544175148010254, -0.03119904361665249, 0.042725928127765656, -0.07155702263116837, -0.031030116602778435, -0.038245730102062225, -0.07569511979818344, 0.026173608377575874, 0.002994018141180277, 0.18760302662849426, -0.05245635285973549, 0.08010168373584747, 0.02004770003259182, 0.05120674520730972, -0.022610455751419067, 0.030537379905581474, -0.08845602720975876, 0.0045234751887619495, -0.17041239142417908, 0.06269454956054688, -0.07581768929958344, 0.01437497790902853, -0.1300613433122635, -0.08624684810638428, -0.02622394450008869, -0.029173636808991432, 0.08314661681652069, 0.10157332569360733, -0.13905617594718933, -0.026532767340540886, 0.11225271224975586, -0.0785352885723114, -0.0562467984855175, 0.06678542494773865, -0.06731942296028137, 0.052859481424093246, 0.05675370991230011, 0.18400344252586365, 0.07538371533155441, -0.11403826624155045, -0.020981932058930397, 0.004124464001506567, 0.029312949627637863, -0.010892483405768871, 0.05200204998254776, 0.010213250294327736, 0.019469808787107468, 0.016554173082113266, -0.040153663605451584, 0.0032650029752403498, -0.09750142693519592, -0.06310286372900009, -0.05754393711686134, -0.08250388503074646, -0.03367017209529877, 0.012152132578194141, 0.03847675770521164, -0.08047878742218018, -0.08298803120851517, 0.08204789459705353, 0.1419244259595871, -0.043057411909103394, 0.02137358859181404, -0.07301471382379532, 0.018699323758482933, -0.05428118631243706, -0.031200913712382317, -0.20466488599777222, -0.06642118841409683, 0.03452694043517113, -0.028622455894947052, 0.05741099640727043, 0.004948028828948736, 0.07120022922754288, 0.037639789283275604, -0.0370456799864769, 0.006149537395685911, -0.08980654925107956, -0.007504240144044161, -0.09444160759449005, -0.22187000513076782, -0.03834352269768715, -0.03076786920428276, 0.12737080454826355, -0.1616523712873459, -0.010030661709606647, -0.03389260545372963, 0.11999859660863876, 0.029130151495337486, -0.061601508408784866, -0.015418441034853458, 0.03014158084988594, 0.002521762391552329, -0.09170511364936829, 0.03225473314523697, 0.01746201701462269, -0.07244516164064407, -0.056628771126270294, -0.1147584617137909, 0.005207796581089497, 0.07679019868373871, 0.06301701813936234, -0.0962878167629242, 0.006430336274206638, -0.06460987776517868, -0.0336737297475338, -0.05784790590405464, 0.041577182710170746, 0.17721419036388397, 0.005245919805020094, 0.10687419027090073, -0.0804959163069725, -0.07304399460554123, 0.021681219339370728, 0.004618486389517784, 0.04267747327685356, 0.09197728335857391, 0.1118222177028656, -0.12832054495811462, 0.06358098983764648, 0.08402594178915024, -0.06279413402080536, 0.12412947416305542, -0.03950805589556694, -0.07920617610216141, -0.035467445850372314, -0.017255444079637527, -0.015175867825746536, 0.13665151596069336, -0.05159486457705498, 0.025706376880407333, 0.029561197385191917, 0.03946604207158089, 0.019872164353728294, -0.1543971449136734, -0.002328547416254878, 0.008253630250692368, -0.04436193406581879, -0.016582628712058067, 0.02166835032403469, 0.019617237150669098, 0.09803424030542374, 0.03346271812915802, -0.017089270055294037, -0.006134229712188244, -0.00392485037446022, -0.05263303592801094, 0.19084271788597107, -0.09048981964588165, -0.04253675788640976, -0.07719884067773819, 0.0013238027459010482, -0.038130879402160645, -0.04275460168719292, 0.02656910941004753, -0.08718360215425491, -0.03758024051785469, -0.07394775748252869, 0.00024977661087177694, -0.04738657549023628, 0.026460492983460426, 0.030634749680757523, 0.003744886489585042, 0.06294673681259155, -0.1334538459777832, 0.00492143165320158, -0.07315099239349365, -0.10497675836086273, 0.01719135046005249, 0.06517758965492249, 0.09110576659440994, 0.05869004875421524, -0.029501620680093765, 0.021353956311941147, -0.031243227422237396, 0.25239261984825134, -0.05484010651707649, -0.0005625178455375135, 0.10820179432630539, 0.023232536390423775, 0.046364910900592804, 0.09277375042438507, 0.03436867520213127, -0.1010437086224556, 0.03057900071144104, 0.08509909361600876, -0.035243645310401917, -0.23825319111347198, -0.0064867036417126656, -0.03419563174247742, -0.11454727500677109, 0.08229655027389526, 0.05013071373105049, -0.04657382145524025, 0.06444063037633896, 0.010477579198777676, 0.023299815133213997, -0.05140675976872444, 0.09156221896409988, 0.10099246352910995, 0.07454193383455276, 0.10238045454025269, -0.04786955192685127, -0.022038675844669342, 0.0698913186788559, -0.003702564164996147, 0.2920796871185303, -0.027667509391903877, 0.06729652732610703, 0.0532359704375267, 0.1410570591688156, -0.0220661461353302, 0.03623754903674126, 0.007288065738976002, -0.003803573315963149, -0.026048006489872932, -0.05784285441040993, -0.028107529506087303, -0.0006255954504013062, -0.0775592252612114, 0.05536169558763504, -0.06193749979138374, 0.066841721534729, 0.019361495971679688, 0.26262709498405457, -0.0008370282594114542, -0.2791512608528137, -0.07777796685695648, -0.02085677720606327, -0.03908611461520195, -0.04342971369624138, 0.013239394873380661, 0.10048985481262207, -0.10402751713991165, 0.05144635587930679, -0.058043576776981354, 0.08032338321208954, -0.028252117335796356, -0.00455103674903512, 0.0308523066341877, 0.18418455123901367, -0.014355838298797607, 0.05069946497678757, -0.19837063550949097, 0.215473935008049, 0.01836223155260086, 0.13178597390651703, -0.05020689591765404, 0.008098466321825981, 0.023507598787546158, -0.001484308042563498, 0.07595875859260559, -0.004892537370324135, -0.07766976207494736, -0.12600591778755188, -0.07433158904314041, 0.08088740706443787, 0.1413889229297638, -0.015381881967186928, 0.10257167369127274, -0.049049053341150284, 0.019045906141400337, 0.040663763880729675, -0.06784043461084366, -0.15744008123874664, -0.09578553587198257, -0.017810216173529625, 0.036208558827638626, -0.09678009152412415, -0.0470929853618145, -0.07568006962537766, -0.009220664389431477, 0.11478176712989807, 0.025418326258659363, -0.019635967910289764, -0.13641777634620667, 0.08862186968326569, 0.14949552714824677, -0.07420787960290909, 0.022847428917884827, -0.007525166962295771, 0.06515111774206161, 0.0433969721198082, -0.09559629112482071, 0.04764080047607422, -0.05752193555235863, -0.16096505522727966, -0.04581074044108391, 0.09118271619081497, 0.07216646522283554, 0.04015858471393585, -0.0046619391068816185, 0.04933112487196922, -0.019597776234149933, -0.09986119717359543, 0.012898539192974567, 0.035387031733989716, 0.04910873994231224, 0.0370943583548069, -0.08371423184871674, 0.06191646307706833, -0.03270838409662247, -0.004493026062846184, 0.11493942141532898, 0.24297943711280823, -0.09000682085752487, 0.08656849712133408, 0.05810121074318886, -0.06837195158004761, -0.14447849988937378, 0.06273411214351654, 0.10523257404565811, -0.0005053016357123852, 0.05782735347747803, -0.19607645273208618, 0.1421061009168625, 0.11322334408760071, -0.012912408448755741, 0.0357995368540287, -0.2755998969078064, -0.1180969625711441, 0.05874814838171005, 0.13212648034095764, 0.12064164131879807, -0.1314307153224945, -0.014061611145734787, -0.01694273203611374, -0.1232391968369484, 0.10783781856298447, -0.11389650404453278, 0.13410457968711853, -0.033585354685783386, 0.11020335555076599, 0.004899301566183567, -0.029442835599184036, 0.10763842612504959, 0.049684684723615646, 0.09656451642513275, -0.04124557599425316, 0.012466197833418846, 0.05946363881230354, -0.04834766685962677, 0.014021876268088818, -0.07313219457864761, 0.08459161967039108, -0.12081349641084671, -0.006956850178539753, -0.07879441976547241, 0.05052397772669792, -0.03699062019586563, -0.052430346608161926, -0.053111482411623, 0.03632063791155815, 0.05529845878481865, -0.036961380392313004, 0.05264510586857796, 0.0013365221675485373, 0.08964820951223373, 0.02520955726504326, 0.06794679164886475, 0.0015705586411058903, -0.04716996103525162, 0.019476016983389854, -0.008570127189159393, 0.060389116406440735, -0.13914822041988373, 0.006166979670524597, 0.10628101229667664, 0.05188479274511337, 0.09596052020788193, 0.04285140335559845, -0.04795383661985397, 0.012965267524123192, 0.036915142089128494, -0.113885797560215, -0.10367521643638611, 0.047400329262018204, -0.03950170800089836, -0.13916060328483582, 0.04656374827027321, 0.1158246174454689, -0.04894295707345009, -0.02278944104909897, -0.01902664825320244, 0.006298219785094261, -0.021837947890162468, 0.18524706363677979, 0.04244229942560196, 0.04115898534655571, -0.10164476186037064, 0.131278395652771, 0.02916533686220646, -0.021877333521842957, 0.058141715824604034, 0.08562988042831421, -0.09533807635307312, 0.002713143825531006, 0.09457681328058243, 0.1739223599433899, -0.07205914705991745, -0.014822614379227161, -0.1042875200510025, -0.07246241718530655, 0.061279457062482834, 0.15849724411964417, 0.057049620896577835, -0.018164383247494698, -0.050961319357156754, 0.04073427990078926, -0.1404801607131958, 0.06310944259166718, 0.03252185136079788, 0.07025611400604248, -0.08800925314426422, 0.057970643043518066, 0.007388454396277666, 0.007218943443149328, -0.01728816144168377, 0.014217043295502663, -0.09236522018909454, -0.029633846133947372, -0.07783140987157822, 0.01125736441463232, -0.012684048153460026, 0.015762513503432274, -0.009825113229453564, -0.06806037575006485, -0.0697348341345787, 0.037032581865787506, -0.07706792652606964, -0.05282876268029213, 0.011223534122109413, 0.04284550994634628, -0.13307619094848633, 0.00514640100300312, 0.016146866604685783, -0.08930865675210953, 0.08669041842222214, 0.08907578885555267, 0.02668733149766922, 0.034887686371803284, -0.12700334191322327, -0.032678619027137756, 0.014582882635295391, 0.0030526428017765284, 0.06485900282859802, -0.09549403190612793, -0.004275203682482243, -0.02078910358250141, 0.07740544527769089, 0.009666641242802143, 0.08267930895090103, -0.13118606805801392, 0.009184535592794418, -0.08508671075105667, -0.044867634773254395, -0.06597530841827393, 0.015991756692528725, 0.10053064674139023, 0.05357666686177254, 0.16413092613220215, -0.07757723331451416, 0.0183730348944664, -0.20831362903118134, -0.027900708839297295, -0.005360706243664026, -0.05266194045543671, -0.1378163993358612, -0.040736615657806396, 0.07683146744966507, -0.03856243938207626, 0.09881911426782608, -0.02037920616567135, 0.06232428923249245, 0.038924627006053925, -0.031920675188302994, -0.06138106435537338, -0.027984468266367912, 0.19609664380550385, 0.0778299942612648, -0.01587076298892498, 0.1074431985616684, -0.006435849703848362, 0.05249602720141411, 0.029962208122015, 0.20516768097877502, 0.2082124948501587, 0.0069220298901200294, 0.07100413739681244, 0.06274782121181488, -0.08041351288557053, -0.06896402686834335, 0.1806400716304779, -0.027407493442296982, 0.07286003232002258, -0.028332507237792015, 0.18785372376441956, 0.11109022796154022, -0.15089881420135498, 0.030702224001288414, -0.03193676844239235, -0.07778274267911911, -0.14101697504520416, 0.0005747857503592968, -0.09765848517417908, -0.11889077723026276, 0.04450086131691933, -0.1199798732995987, 0.0553300678730011, 0.08197461813688278, 0.01140151359140873, 0.03331703320145607, 0.12618914246559143, -0.025429124012589455, 0.004471505526453257, 0.041705772280693054, 0.007573411799967289, -0.027911003679037094, -0.03865095227956772, -0.0770648792386055, 0.05030889809131622, 0.00786665640771389, 0.08733706176280975, -0.045338574796915054, -0.009467074647545815, 0.04135502129793167, -0.029506610706448555, -0.0763331726193428, 0.025189630687236786, 0.03590871021151543, 0.05693957582116127, 0.04330293834209442, 0.045272815972566605, -0.006720621604472399, -0.03309809789061546, 0.28033149242401123, -0.05862616002559662, -0.09608869254589081, -0.11408165842294693, 0.20720413327217102, 0.039109159260988235, -0.02825601026415825, 0.040349092334508896, -0.08301892131567001, -0.013349991291761398, 0.15448948740959167, 0.1553475707769394, -0.06501545757055283, -0.024910438805818558, -0.012806575745344162, -0.017000248655676842, -0.04007235914468765, 0.11713593453168869, 0.09495551884174347, 0.001789228874258697, -0.05418949946761131, -0.028381843119859695, -0.03681323304772377, -0.014440136030316353, -0.041674572974443436, 0.02486429549753666, 0.01463642530143261, -0.021743375808000565, -0.034963298588991165, 0.06235259398818016, -0.0009161303169094026, -0.24069681763648987, 0.060261379927396774, -0.1427571326494217, -0.16911357641220093, -0.025071581825613976, 0.048697054386138916, -0.010667615570127964, 0.050286032259464264, -0.024720191955566406, -0.003785064211115241, 0.08038586378097534, -0.020129753276705742, -0.056831348687410355, -0.12298955768346786, 0.11287573724985123, -0.058781832456588745, 0.17966873943805695, -0.016390003263950348, 0.07132772356271744, 0.11733588576316833, 0.04294774681329727, -0.13972902297973633, 0.04584416747093201, 0.047243472188711166, -0.11323995888233185, 0.018531113862991333, 0.1438630074262619, -0.04533648490905762, 0.0865369662642479, 0.045461639761924744, -0.09439826011657715, -0.010981541126966476, -0.04624298959970474, -0.02609952725470066, -0.07092337310314178, -0.013434569351375103, -0.06975290179252625, 0.16964425146579742, 0.19647540152072906, -0.02489010989665985, 0.014756796881556511, -0.09329258650541306, 0.028865577653050423, 0.06772947311401367, 0.0402328297495842, -0.049376752227544785, -0.20810389518737793, 0.017797265201807022, 0.049460481852293015, -0.002724174177274108, -0.23362977802753448, -0.0796213373541832, 0.040552038699388504, -0.03403262421488762, -0.05537790432572365, 0.09740979969501495, 0.03532468527555466, 0.047683682292699814, -0.03675813227891922, -0.15189482271671295, -0.038932688534259796, 0.1540987193584442, -0.17908763885498047, -0.049549564719200134 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-256-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-256-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-256-finetuned-squad-seed-4
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-256-finetuned-squad-seed-4 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-256-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-256-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-256-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.07799851894378662, 0.10011155158281326, -0.002582166576758027, 0.07830294221639633, 0.13243073225021362, 0.034323520958423615, 0.10743747651576996, 0.1218603253364563, -0.12725605070590973, 0.06637881696224213, 0.09100772440433502, 0.08527607470750809, 0.0319521389901638, 0.12948033213615417, -0.03853053227066994, -0.23399026691913605, 0.006752045825123787, -0.017520667985081673, -0.0680660754442215, 0.10222575813531876, 0.08780426532030106, -0.09789375960826874, 0.08091052621603012, -0.0030807447619736195, -0.1864018440246582, 0.028770316392183304, -0.020244110375642776, -0.05036713182926178, 0.09895728528499603, -0.005295535083860159, 0.0832478478550911, 0.007470903918147087, 0.11983887851238251, -0.18976932764053345, 0.013441700488328934, 0.07262472063302994, 0.033891018480062485, 0.09447340667247772, 0.019881876185536385, -0.0023764106445014477, 0.16435259580612183, -0.1356995850801468, 0.09797044098377228, 0.02821146324276924, -0.08570771664381027, -0.16817247867584229, -0.09508395940065384, 0.01293761283159256, 0.035743001848459244, 0.08649186789989471, 0.008588379248976707, 0.17754553258419037, -0.09235930442810059, 0.08000578731298447, 0.23444944620132446, -0.2797504961490631, -0.07937777042388916, 0.04256241023540497, 0.047451041638851166, 0.07937397807836533, -0.11796946078538895, -0.015122023411095142, 0.020488444715738297, 0.03041793219745159, 0.09357341378927231, -0.026458553969860077, -0.08805236965417862, -0.007004170212894678, -0.12007833272218704, 0.005694457795470953, 0.11208085715770721, 0.04410398006439209, -0.0506364107131958, -0.04804873466491699, -0.05849277973175049, -0.06957581639289856, -0.03528785705566406, -0.034452103078365326, 0.04374207183718681, -0.05806542932987213, -0.12121457606554031, -0.03408181667327881, -0.048144519329071045, -0.07743723690509796, -0.02112806960940361, 0.20693330466747284, 0.04932722821831703, 0.0336538664996624, -0.05028904229402542, 0.08134376257658005, 0.010650013573467731, -0.1286628544330597, -0.028068462386727333, 0.002646060660481453, -0.08015873283147812, -0.038276687264442444, -0.056931231170892715, 0.017041852697730064, 0.04323938488960266, 0.21006745100021362, -0.05537814274430275, 0.08378628641366959, 0.03233691677451134, -0.02059190906584263, -0.02108832076191902, 0.12397568672895432, -0.019885659217834473, -0.07766953855752945, 0.028612608090043068, 0.05816052109003067, 0.02577722631394863, 0.0032087985891848803, -0.05669105798006058, -0.03165169805288315, 0.08209668099880219, 0.03175463154911995, -0.06354574114084244, 0.02664562501013279, 0.002835439285263419, -0.01958448626101017, 0.004630800802260637, -0.11431204527616501, 0.01712442748248577, -0.006698674988001585, -0.0748567208647728, -0.014310210943222046, 0.0076797292567789555, -0.015772666782140732, 0.010764684528112411, 0.09865686297416687, -0.08897508680820465, -0.02064334787428379, -0.07635416835546494, -0.07054038345813751, -0.0015412474749609828, -0.148790180683136, 0.013808360323309898, -0.0731959342956543, -0.15476040542125702, -0.03239870071411133, 0.042559221386909485, -0.07137303054332733, -0.029669301584362984, -0.03825845569372177, -0.07651720196008682, 0.025813139975070953, 0.003169011790305376, 0.18825064599514008, -0.05283357948064804, 0.07903961837291718, 0.021010149270296097, 0.05120709910988808, -0.023258309811353683, 0.03068414330482483, -0.08823707699775696, 0.0038353749550879, -0.17102432250976562, 0.06195734441280365, -0.07649676501750946, 0.016256429255008698, -0.12890422344207764, -0.08732829988002777, -0.025302467867732048, -0.02800997532904148, 0.08280986547470093, 0.1009359359741211, -0.13888561725616455, -0.02655823901295662, 0.11151629686355591, -0.07725891470909119, -0.05635080859065056, 0.06667938828468323, -0.06763772666454315, 0.051871467381715775, 0.05717160552740097, 0.18428510427474976, 0.07534770667552948, -0.11356619745492935, -0.021751202642917633, 0.003305671503767371, 0.029589641839265823, -0.011515891179442406, 0.05042409524321556, 0.011187535710632801, 0.019532546401023865, 0.017074793577194214, -0.038919419050216675, 0.00323889241553843, -0.09709302335977554, -0.06261289864778519, -0.0569571852684021, -0.08240213245153427, -0.034380316734313965, 0.012592434883117676, 0.03834546357393265, -0.08140712976455688, -0.08334150910377502, 0.08140625059604645, 0.1415822058916092, -0.04351837560534477, 0.020251698791980743, -0.07326658815145493, 0.01923774555325508, -0.05424055829644203, -0.030712543055415154, -0.20441275835037231, -0.06727471947669983, 0.033484481275081635, -0.026496637612581253, 0.05760518088936806, 0.005224874243140221, 0.07177504152059555, 0.037852998822927475, -0.03731266409158707, 0.005963706877082586, -0.08852028846740723, -0.0070066070184111595, -0.09425543248653412, -0.22234012186527252, -0.0385468527674675, -0.030579719692468643, 0.12741097807884216, -0.16220302879810333, -0.009704498574137688, -0.03383014351129532, 0.11945170164108276, 0.028757372871041298, -0.06101977452635765, -0.014769277535378933, 0.03162737563252449, 0.0033224087674170732, -0.09170077741146088, 0.03281401842832565, 0.017144715413451195, -0.07128660380840302, -0.05797329545021057, -0.11520165950059891, 0.006549069192260504, 0.07787923514842987, 0.061774738132953644, -0.09678611159324646, 0.006793313194066286, -0.06410002708435059, -0.03349911794066429, -0.056114792823791504, 0.04156628996133804, 0.17828112840652466, 0.004670122172683477, 0.1067817434668541, -0.07980020344257355, -0.07261280715465546, 0.021811919286847115, 0.005708799697458744, 0.04390138015151024, 0.09196639060974121, 0.11113759875297546, -0.12671135365962982, 0.06386492401361465, 0.08347062766551971, -0.06326887011528015, 0.12478786706924438, -0.039621759206056595, -0.07858321815729141, -0.03493497148156166, -0.018440978601574898, -0.01556699350476265, 0.1373569518327713, -0.05204739421606064, 0.024665486067533493, 0.02919781766831875, 0.039039209485054016, 0.02016414701938629, -0.15346987545490265, -0.002306433627381921, 0.00752777885645628, -0.04332950338721275, -0.01731189899146557, 0.02229277789592743, 0.019085213541984558, 0.09769868850708008, 0.03332475945353508, -0.018194589763879776, -0.006133678834885359, -0.0038014953024685383, -0.0517236702144146, 0.19118666648864746, -0.09095345437526703, -0.04132873937487602, -0.07690749317407608, -0.0005813681636936963, -0.03919944539666176, -0.04319486767053604, 0.026231346651911736, -0.08842141181230545, -0.03794512525200844, -0.0736197754740715, -0.0004022752109449357, -0.04730253666639328, 0.026309330016374588, 0.03001578338444233, 0.003191941184923053, 0.062438949942588806, -0.13327957689762115, 0.005049822852015495, -0.07345597445964813, -0.10498537868261337, 0.0176592655479908, 0.06581711769104004, 0.09179544448852539, 0.05834576115012169, -0.029508953914046288, 0.021417303010821342, -0.031115006655454636, 0.2532626986503601, -0.05499355494976044, -0.0003387394535820931, 0.10798339545726776, 0.024005426093935966, 0.04538753628730774, 0.09285344928503036, 0.03535760939121246, -0.10146838426589966, 0.03025694563984871, 0.0855979472398758, -0.03485991805791855, -0.23815035820007324, -0.006060242187231779, -0.03465544804930687, -0.1147361546754837, 0.08183895796537399, 0.05003364756703377, -0.046054430305957794, 0.06504595279693604, 0.01141416560858488, 0.024066144600510597, -0.05219211429357529, 0.09122844785451889, 0.10264992713928223, 0.07407915592193604, 0.10312250256538391, -0.048212930560112, -0.022329378873109818, 0.06920722126960754, -0.003590768203139305, 0.2927989363670349, -0.027909405529499054, 0.06698773056268692, 0.05371631681919098, 0.14049533009529114, -0.021479107439517975, 0.03683127835392952, 0.006674715783447027, -0.004505302291363478, -0.026031775400042534, -0.057596445083618164, -0.027025338262319565, -0.001638896414078772, -0.0791013091802597, 0.05511821061372757, -0.061908308416604996, 0.0654543861746788, 0.019707292318344116, 0.2618490159511566, -0.001432169578038156, -0.2812874913215637, -0.07827134430408478, -0.021573506295681, -0.03856739401817322, -0.0430489256978035, 0.013554001227021217, 0.09988700598478317, -0.10346804559230804, 0.052085258066654205, -0.057956498116254807, 0.08020849525928497, -0.028265908360481262, -0.003498875303193927, 0.03282751888036728, 0.18578240275382996, -0.015317688696086407, 0.05018460750579834, -0.19904598593711853, 0.2144569754600525, 0.018655473366379738, 0.13238529860973358, -0.05031025409698486, 0.007866945117712021, 0.02434609644114971, -0.000032171014026971534, 0.07551631331443787, -0.005485346540808678, -0.07745079696178436, -0.12608766555786133, -0.07317448407411575, 0.08186732977628708, 0.14091657102108002, -0.014238541945815086, 0.10320372879505157, -0.04831261560320854, 0.01855984888970852, 0.04055766761302948, -0.06904866546392441, -0.15752272307872772, -0.09634815901517868, -0.018713295459747314, 0.03771305829286575, -0.09656031429767609, -0.04621336609125137, -0.07597922533750534, -0.01090418640524149, 0.1139785647392273, 0.027009448036551476, -0.019678283482789993, -0.13684609532356262, 0.08773612231016159, 0.14949935674667358, -0.0733199492096901, 0.023017441853880882, -0.00715038413181901, 0.06402281671762466, 0.04436922073364258, -0.0954386442899704, 0.04788980633020401, -0.05815718322992325, -0.15962888300418854, -0.04591451585292816, 0.09018252789974213, 0.0717439129948616, 0.039440177381038666, -0.005179577507078648, 0.049350589513778687, -0.02042578160762787, -0.10047703981399536, 0.013003585860133171, 0.03386309742927551, 0.04989086836576462, 0.03709733486175537, -0.08467955887317657, 0.06178012862801552, -0.0320420041680336, -0.003599872812628746, 0.11350507289171219, 0.2405543327331543, -0.08957506716251373, 0.08446025848388672, 0.05814872309565544, -0.06791797280311584, -0.1441516876220703, 0.06419919431209564, 0.1037420928478241, -0.00013585647684521973, 0.05633491277694702, -0.1966618001461029, 0.14315001666545868, 0.11272645741701126, -0.011875146068632603, 0.037599943578243256, -0.2731051743030548, -0.11737246811389923, 0.058977313339710236, 0.13280758261680603, 0.1218208372592926, -0.13198566436767578, -0.013347131200134754, -0.01716669276356697, -0.12297041714191437, 0.10718371719121933, -0.1164252907037735, 0.13430465757846832, -0.033978551626205444, 0.11083894222974777, 0.004185252357274294, -0.029450125992298126, 0.10674722492694855, 0.05056885629892349, 0.09774886816740036, -0.04166841879487038, 0.013467174954712391, 0.05943044647574425, -0.04759368672966957, 0.013677709735929966, -0.07391276210546494, 0.08407721668481827, -0.12100663036108017, -0.006773077417165041, -0.07933766394853592, 0.05048930644989014, -0.03680223599076271, -0.05226665362715721, -0.052473537623882294, 0.03644656389951706, 0.054239530116319656, -0.03722254931926727, 0.05149118974804878, 0.00040751867345534265, 0.09015525877475739, 0.023869037628173828, 0.06857778877019882, 0.000012606166819750797, -0.04756445065140724, 0.020780419930815697, -0.009079056791961193, 0.0603911429643631, -0.13883599638938904, 0.00487684179097414, 0.10686548054218292, 0.051173679530620575, 0.09552380442619324, 0.04362351447343826, -0.047008316963911057, 0.012334423139691353, 0.037719592452049255, -0.11417271196842194, -0.10260903090238571, 0.0476728230714798, -0.04263342544436455, -0.1385163813829422, 0.04789385944604874, 0.11562340706586838, -0.048743654042482376, -0.022461840882897377, -0.018997475504875183, 0.005567850545048714, -0.02186429128050804, 0.18577784299850464, 0.0429970845580101, 0.040618132799863815, -0.102627232670784, 0.1308954358100891, 0.029007326811552048, -0.022284887731075287, 0.058100540190935135, 0.08670847117900848, -0.09621798992156982, 0.0018003262812271714, 0.09385278075933456, 0.1757415235042572, -0.07157200574874878, -0.015499116852879524, -0.10537712275981903, -0.07282207161188126, 0.06114831194281578, 0.15814484655857086, 0.05687318742275238, -0.019380517303943634, -0.05117398872971535, 0.04027082026004791, -0.14121344685554504, 0.062723807990551, 0.03140304237604141, 0.07069994509220123, -0.08799407631158829, 0.057259365916252136, 0.007251985836774111, 0.006480289623141289, -0.017258156090974808, 0.014818659983575344, -0.09298529475927353, -0.02971099130809307, -0.07778653502464294, 0.010331816971302032, -0.012644157744944096, 0.016338126733899117, -0.010121689178049564, -0.0670907124876976, -0.07035940140485764, 0.03711789473891258, -0.07720271497964859, -0.05243483558297157, 0.012955568730831146, 0.04330655559897423, -0.13237610459327698, 0.005453029647469521, 0.015001729130744934, -0.08887997269630432, 0.08637936413288116, 0.08888290822505951, 0.02638450264930725, 0.03510396182537079, -0.12623043358325958, -0.03318706527352333, 0.014023132622241974, 0.002430941676720977, 0.06566459685564041, -0.09438002109527588, -0.0037585098762065172, -0.021067913621664047, 0.07793377339839935, 0.009860904887318611, 0.08182282745838165, -0.13052044808864594, 0.009821772575378418, -0.08428330719470978, -0.04342839866876602, -0.06659665703773499, 0.016313424333930016, 0.1013321503996849, 0.05316418036818504, 0.16408506035804749, -0.07754141837358475, 0.01776871085166931, -0.20831115543842316, -0.02826438844203949, -0.0055008539929986, -0.05417421832680702, -0.13732333481311798, -0.04082278162240982, 0.07746313512325287, -0.03922443091869354, 0.1005273088812828, -0.020181354135274887, 0.062456972897052765, 0.0384640172123909, -0.03158573433756828, -0.06243107467889786, -0.027684679254889488, 0.19563817977905273, 0.07726721465587616, -0.016410144045948982, 0.10723886638879776, -0.005125104449689388, 0.051793988794088364, 0.0311985332518816, 0.20362085103988647, 0.20763951539993286, 0.0077979727648198605, 0.07099631428718567, 0.06324449181556702, -0.08084625005722046, -0.0675334632396698, 0.181590735912323, -0.02703113853931427, 0.07340435683727264, -0.02934085763990879, 0.18664276599884033, 0.11016160249710083, -0.14984358847141266, 0.031000645831227303, -0.03286316618323326, -0.07784510403871536, -0.13995927572250366, 0.0018650422571226954, -0.09709405153989792, -0.11947315186262131, 0.04451964423060417, -0.12041649222373962, 0.0545012392103672, 0.08312332630157471, 0.011918371543288231, 0.03281576186418533, 0.12770716845989227, -0.02464352920651436, 0.005262316204607487, 0.04191502556204796, 0.007190992124378681, -0.028328148648142815, -0.03866128250956535, -0.076602503657341, 0.04967273399233818, 0.006386360619217157, 0.08663994073867798, -0.04585675150156021, -0.009961193427443504, 0.04193371906876564, -0.029147207736968994, -0.07595831155776978, 0.0250401608645916, 0.03652302920818329, 0.05655933544039726, 0.04426758736371994, 0.04486677795648575, -0.007588587701320648, -0.03317451477050781, 0.2794242799282074, -0.05862506851553917, -0.0951036661863327, -0.11441953480243683, 0.2068721204996109, 0.038820281624794006, -0.028779756277799606, 0.039155542850494385, -0.08216186612844467, -0.012318000197410583, 0.155678391456604, 0.1572461873292923, -0.06537596881389618, -0.025168946012854576, -0.012439525686204433, -0.01701868511736393, -0.040285468101501465, 0.1175813153386116, 0.09534592181444168, 0.0009377124952152371, -0.05412089079618454, -0.028257960453629494, -0.03627894073724747, -0.014181581325829029, -0.04177144169807434, 0.02426527440547943, 0.015693124383687973, -0.02216929942369461, -0.034200169146060944, 0.062312062829732895, -0.0015640902565792203, -0.2406623363494873, 0.06091172993183136, -0.142507866024971, -0.1693558394908905, -0.026129957288503647, 0.04826170951128006, -0.009913568384945393, 0.05080800876021385, -0.024780571460723877, -0.0039966413751244545, 0.0809566006064415, -0.0205573458224535, -0.05586385354399681, -0.12378431111574173, 0.11268088221549988, -0.05921437591314316, 0.17859290540218353, -0.01690680719912052, 0.07098536938428879, 0.11797428131103516, 0.042633045464754105, -0.13940629363059998, 0.046441130340099335, 0.0465814471244812, -0.11384280771017075, 0.018979834392666817, 0.14290551841259003, -0.04521559178829193, 0.0858636349439621, 0.04437074065208435, -0.09358254075050354, -0.01010148786008358, -0.04618123918771744, -0.026051118969917297, -0.07088097184896469, -0.013476723805069923, -0.06956391781568527, 0.17004644870758057, 0.1978384554386139, -0.02468613162636757, 0.014694761484861374, -0.09326376765966415, 0.02876228466629982, 0.06820397078990936, 0.03885526582598686, -0.050181273370981216, -0.20793978869915009, 0.018149036914110184, 0.0503927506506443, -0.003157437779009342, -0.23447996377944946, -0.07846594601869583, 0.040395066142082214, -0.03384670242667198, -0.05557958781719208, 0.0971875712275505, 0.03631213307380676, 0.048603605479002, -0.03721830993890762, -0.14983168244361877, -0.03890904411673546, 0.153950035572052, -0.1791551411151886, -0.050196655094623566 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-256-finetuned-squad-seed-6 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-256-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-256-finetuned-squad-seed-6
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-256-finetuned-squad-seed-6 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-256-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-256-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-256-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.07794936001300812, 0.09976553171873093, -0.002547850599512458, 0.07803469151258469, 0.1326141208410263, 0.0338125117123127, 0.1072097048163414, 0.12209510803222656, -0.12671734392642975, 0.0667562410235405, 0.09053675830364227, 0.08585679531097412, 0.0324351042509079, 0.12925034761428833, -0.03840840235352516, -0.2335662543773651, 0.007274987176060677, -0.017316026613116264, -0.06767795979976654, 0.10210557281970978, 0.0878438651561737, -0.09813012927770615, 0.08026673644781113, -0.003435867838561535, -0.1865406036376953, 0.029047993943095207, -0.020511476323008537, -0.05013324320316315, 0.09875036031007767, -0.005734311416745186, 0.08284489810466766, 0.007688915356993675, 0.11963530629873276, -0.19016408920288086, 0.013401688076555729, 0.07298579066991806, 0.03404629975557327, 0.09463559091091156, 0.020802132785320282, -0.0019239152316004038, 0.16557739675045013, -0.13519945740699768, 0.09771210700273514, 0.02862728200852871, -0.08561892807483673, -0.16655512154102325, -0.09560035914182663, 0.012351509183645248, 0.03629429638385773, 0.08708737045526505, 0.008102993480861187, 0.1783384382724762, -0.09295165538787842, 0.08004265278577805, 0.23598651587963104, -0.27850398421287537, -0.07930732518434525, 0.043136559426784515, 0.047350745648145676, 0.0784936249256134, -0.11876054853200912, -0.016245806589722633, 0.02059955708682537, 0.030083635821938515, 0.09276456385850906, -0.025835106149315834, -0.08916337043046951, -0.007388478610664606, -0.12042661011219025, 0.005398558918386698, 0.11105015873908997, 0.04425540566444397, -0.0502295084297657, -0.047881316393613815, -0.0588434673845768, -0.06897737830877304, -0.03496820107102394, -0.034336671233177185, 0.04386604204773903, -0.05792348459362984, -0.12077003717422485, -0.03396758809685707, -0.04809899628162384, -0.07835546135902405, -0.020733991637825966, 0.20654310286045074, 0.04942038282752037, 0.03348929062485695, -0.05083634704351425, 0.081277996301651, 0.010947276838123798, -0.1288294941186905, -0.02892548218369484, 0.0033273056615144014, -0.0802183672785759, -0.03838970512151718, -0.05669356882572174, 0.016017993912100792, 0.042723432183265686, 0.208348348736763, -0.05512743443250656, 0.08402266353368759, 0.03165937960147858, -0.020536018535494804, -0.02171149104833603, 0.12408796697854996, -0.018934456631541252, -0.07581563293933868, 0.027943843975663185, 0.058351144194602966, 0.025443589314818382, 0.0036178366281092167, -0.056129712611436844, -0.03182140365242958, 0.08271727710962296, 0.031401246786117554, -0.06323537975549698, 0.026118382811546326, 0.002415923634544015, -0.019771935418248177, 0.0052833156660199165, -0.11419245600700378, 0.017032045871019363, -0.007114851847290993, -0.0751420110464096, -0.015109044499695301, 0.007796265184879303, -0.016016066074371338, 0.010521396063268185, 0.09873548895120621, -0.08946722745895386, -0.020605476573109627, -0.07710077613592148, -0.07024253904819489, -0.001190885086543858, -0.15027980506420135, 0.01346423476934433, -0.07237912714481354, -0.1549665629863739, -0.03242937847971916, 0.042093776166439056, -0.07138808071613312, -0.029487719759345055, -0.038792096078395844, -0.07698583602905273, 0.02606542967259884, 0.0034988129045814276, 0.18897351622581482, -0.052485108375549316, 0.07970336824655533, 0.02096834033727646, 0.05107899010181427, -0.02258303575217724, 0.031255755573511124, -0.08908261358737946, 0.003706460352987051, -0.17034274339675903, 0.0621144063770771, -0.07716376334428787, 0.016101490706205368, -0.12961764633655548, -0.08671724051237106, -0.026491234079003334, -0.028628552332520485, 0.08350472897291183, 0.10164761543273926, -0.13884305953979492, -0.02630334533751011, 0.11187553405761719, -0.07802385091781616, -0.05629146471619606, 0.0657728835940361, -0.06736189126968384, 0.05159248411655426, 0.05668090283870697, 0.18430346250534058, 0.07483319193124771, -0.11310087144374847, -0.022892383858561516, 0.002839887049049139, 0.03016825020313263, -0.01211770810186863, 0.05041803792119026, 0.010996459051966667, 0.02036367729306221, 0.01702866703271866, -0.03901011869311333, 0.003113086801022291, -0.0971662700176239, -0.061991699039936066, -0.057567257434129715, -0.08250351995229721, -0.034707289189100266, 0.013564287684857845, 0.03819773718714714, -0.08105337619781494, -0.08279578387737274, 0.0815301164984703, 0.14155761897563934, -0.04300027713179588, 0.020451711490750313, -0.0726868212223053, 0.018136322498321533, -0.05509888753294945, -0.030775798484683037, -0.2053523063659668, -0.06774963438510895, 0.03410141542553902, -0.026771875098347664, 0.0575016513466835, 0.005045863799750805, 0.0715838149189949, 0.03716456890106201, -0.03727615624666214, 0.005835407879203558, -0.0893888920545578, -0.007604388985782862, -0.09456861019134521, -0.22207289934158325, -0.038761019706726074, -0.031115107238292694, 0.125573068857193, -0.16175000369548798, -0.009883254766464233, -0.03381733223795891, 0.11982782185077667, 0.02872982993721962, -0.06154733523726463, -0.014767080545425415, 0.03097440116107464, 0.002958497731015086, -0.09203527122735977, 0.03269493579864502, 0.016531741246581078, -0.07091232389211655, -0.05788174271583557, -0.11542201042175293, 0.005051909945905209, 0.07756824791431427, 0.06315626949071884, -0.09682904928922653, 0.006893878802657127, -0.06423311680555344, -0.03387467935681343, -0.057233769446611404, 0.04222162812948227, 0.17761318385601044, 0.004922271706163883, 0.10636325925588608, -0.08024050295352936, -0.07287933677434921, 0.02238723635673523, 0.005795445293188095, 0.04329020902514458, 0.09262006729841232, 0.11263065040111542, -0.12817804515361786, 0.06450590491294861, 0.08406417071819305, -0.06262216717004776, 0.12513862550258636, -0.03978780284523964, -0.0791097953915596, -0.03389574587345123, -0.017835697159171104, -0.015440446324646473, 0.1369692087173462, -0.051707420498132706, 0.025017714127898216, 0.029086625203490257, 0.0394291877746582, 0.020199287682771683, -0.15376952290534973, -0.0023963560815900564, 0.007368029095232487, -0.043308623135089874, -0.017733845859766006, 0.022210977971553802, 0.019026078283786774, 0.09782485663890839, 0.032994795590639114, -0.01794142834842205, -0.006531302351504564, -0.0038210884667932987, -0.05180098116397858, 0.19189482927322388, -0.09066139161586761, -0.040342725813388824, -0.0760970339179039, 0.00016486515232827514, -0.038978271186351776, -0.04319682717323303, 0.02636118233203888, -0.08939094841480255, -0.03791818395256996, -0.07357964664697647, -0.00041804462671279907, -0.0474296435713768, 0.025569912046194077, 0.029531758278608322, 0.003438932355493307, 0.0618881918489933, -0.1339133232831955, 0.005097632296383381, -0.07385678589344025, -0.1053539291024208, 0.017348507419228554, 0.06529242545366287, 0.09146702289581299, 0.05844492092728615, -0.02971719019114971, 0.02129238285124302, -0.03126673772931099, 0.2522682547569275, -0.05513015389442444, -0.0008324691443704069, 0.10813511162996292, 0.0248945914208889, 0.0459878072142601, 0.09292855858802795, 0.03463907167315483, -0.10154999047517776, 0.03082503378391266, 0.08598265796899796, -0.035138215869665146, -0.23913677036762238, -0.006042200140655041, -0.03484063968062401, -0.11503410339355469, 0.08218296617269516, 0.050288207828998566, -0.046252258121967316, 0.06511587649583817, 0.010481557808816433, 0.023108378052711487, -0.05233609676361084, 0.09168864041566849, 0.10107836872339249, 0.07472534477710724, 0.10304083675146103, -0.04818427562713623, -0.021807797253131866, 0.06853874027729034, -0.0034485117066651583, 0.2939909100532532, -0.027907973155379295, 0.06721167266368866, 0.05335652828216553, 0.14067858457565308, -0.021941984072327614, 0.03743250295519829, 0.006551275961101055, -0.004542797803878784, -0.025961147621273994, -0.057466086000204086, -0.027249492704868317, -0.001688309945166111, -0.0796639695763588, 0.05542939156293869, -0.06195249408483505, 0.06580910831689835, 0.0188409686088562, 0.26248428225517273, -0.0012598747853189707, -0.280504047870636, -0.07770427316427231, -0.021773111075162888, -0.038908038288354874, -0.04366867244243622, 0.013330871239304543, 0.09963371604681015, -0.10311296582221985, 0.0515163391828537, -0.058292318135499954, 0.08087923377752304, -0.02714601531624794, -0.0041695330291986465, 0.03185589239001274, 0.1858973503112793, -0.015135597437620163, 0.05072320997714996, -0.1995549201965332, 0.21624329686164856, 0.01855219341814518, 0.13225893676280975, -0.05059404671192169, 0.00789498258382082, 0.02365376427769661, -0.001945378608070314, 0.07583419978618622, -0.00539950979873538, -0.0780300423502922, -0.1256544291973114, -0.07264050096273422, 0.08161770552396774, 0.14159606397151947, -0.01460442878305912, 0.10267717391252518, -0.04842990264296532, 0.018803421407938004, 0.04127190262079239, -0.06872326135635376, -0.15776947140693665, -0.09644758701324463, -0.0183255672454834, 0.03710184618830681, -0.09737496823072433, -0.04613811522722244, -0.075862355530262, -0.009891732595860958, 0.1138487458229065, 0.02704518474638462, -0.019292855635285378, -0.1366962194442749, 0.08834585547447205, 0.1497071087360382, -0.07363594323396683, 0.02298366278409958, -0.007467408198863268, 0.06393589824438095, 0.04352527856826782, -0.09565619379281998, 0.048538077622652054, -0.058151617646217346, -0.16012413799762726, -0.045843929052352905, 0.08997668325901031, 0.07211961597204208, 0.03970950469374657, -0.005316943395882845, 0.04972407594323158, -0.020386284217238426, -0.10026707500219345, 0.013257413171231747, 0.03408236429095268, 0.04994695633649826, 0.037389494478702545, -0.08430132269859314, 0.060858000069856644, -0.032719049602746964, -0.004155560862272978, 0.11324380338191986, 0.24160631000995636, -0.08943910151720047, 0.08471672981977463, 0.05847851559519768, -0.0682113915681839, -0.14443369209766388, 0.06457899510860443, 0.10432937741279602, -0.0005287467502057552, 0.05705222114920616, -0.19663476943969727, 0.14321762323379517, 0.11271672695875168, -0.012168439105153084, 0.03677056357264519, -0.27353736758232117, -0.11739014834165573, 0.0588906966149807, 0.13264207541942596, 0.12045235931873322, -0.13165047764778137, -0.013240478932857513, -0.016831815242767334, -0.12245114892721176, 0.10789041966199875, -0.11482460796833038, 0.1346203237771988, -0.034310102462768555, 0.11089765280485153, 0.004315542988479137, -0.029839826747775078, 0.10575170814990997, 0.05076270177960396, 0.09784567356109619, -0.04129771143198013, 0.013184725306928158, 0.05968521535396576, -0.04774002358317375, 0.013849682174623013, -0.07404157519340515, 0.08450479805469513, -0.12017378956079483, -0.006432706024497747, -0.07982248812913895, 0.05079558119177818, -0.036735933274030685, -0.052146222442388535, -0.052539799362421036, 0.03664268180727959, 0.05475442856550217, -0.03742070868611336, 0.05255885049700737, 0.000778075132984668, 0.09145176410675049, 0.02418501488864422, 0.0688801258802414, 0.0005385145777836442, -0.04672825336456299, 0.02001224458217621, -0.008396592922508717, 0.06048581376671791, -0.13961724936962128, 0.004639995750039816, 0.10671783238649368, 0.05197231099009514, 0.0954279750585556, 0.04406629502773285, -0.047642532736063004, 0.012370234355330467, 0.03690722957253456, -0.11358623951673508, -0.10335268825292587, 0.047839224338531494, -0.039316147565841675, -0.13919726014137268, 0.04807602986693382, 0.11430314183235168, -0.049578942358493805, -0.022565139457583427, -0.018922174349427223, 0.0059522418305277824, -0.021308599039912224, 0.1864260584115982, 0.04295939579606056, 0.04117584601044655, -0.10241138190031052, 0.13134139776229858, 0.02873811312019825, -0.02287992648780346, 0.05822078883647919, 0.08640238642692566, -0.09566840529441833, 0.0019914607983082533, 0.09496353566646576, 0.17450730502605438, -0.07133762538433075, -0.014301842078566551, -0.10457542538642883, -0.07245376706123352, 0.06146654859185219, 0.15909208357334137, 0.05677233263850212, -0.019164342433214188, -0.05097215995192528, 0.04066072404384613, -0.1416299045085907, 0.06284777075052261, 0.031099170446395874, 0.07085957378149033, -0.08764726668596268, 0.05603983253240585, 0.0074813952669501305, 0.0067101879976689816, -0.017042815685272217, 0.015125708654522896, -0.09264975041151047, -0.02982085756957531, -0.07578878849744797, 0.0102412523701787, -0.012651816941797733, 0.0158094372600317, -0.010532533749938011, -0.06735146045684814, -0.06954292953014374, 0.03723164275288582, -0.07742972671985626, -0.05289356783032417, 0.01238833088427782, 0.043021999299526215, -0.13266931474208832, 0.005609192885458469, 0.015320935286581516, -0.08863313496112823, 0.08557306975126266, 0.08843645453453064, 0.026711316779255867, 0.03533979877829552, -0.12794306874275208, -0.03286302462220192, 0.014309252612292767, 0.0025249584577977657, 0.06539270281791687, -0.09392372518777847, -0.004079279489815235, -0.0211196206510067, 0.07801180332899094, 0.009479472413659096, 0.08109191805124283, -0.13109764456748962, 0.008956719189882278, -0.08528363704681396, -0.04406864568591118, -0.0660230740904808, 0.016594743356108665, 0.10148068517446518, 0.053320981562137604, 0.16394135355949402, -0.07726778835058212, 0.01836857758462429, -0.2084577977657318, -0.028101569041609764, -0.0053879874758422375, -0.05412646010518074, -0.13769011199474335, -0.040194205939769745, 0.07761341333389282, -0.03903799131512642, 0.09833803027868271, -0.0200689435005188, 0.06295198947191238, 0.03859490156173706, -0.03120320849120617, -0.06260283291339874, -0.027869155630469322, 0.1957666575908661, 0.07714861631393433, -0.015963828191161156, 0.10870268940925598, -0.005097614135593176, 0.05169743299484253, 0.03220994025468826, 0.20515196025371552, 0.2084578275680542, 0.006525406613945961, 0.07124265283346176, 0.06318297237157822, -0.08129395544528961, -0.06748919188976288, 0.18165355920791626, -0.026449499651789665, 0.07325482368469238, -0.029399381950497627, 0.18715257942676544, 0.11033625900745392, -0.14970487356185913, 0.031403325498104095, -0.033051393926143646, -0.07753963768482208, -0.14000871777534485, 0.0019257699605077505, -0.09701784700155258, -0.11940789222717285, 0.044976856559515, -0.12073848396539688, 0.05499919876456261, 0.08343624323606491, 0.011814870871603489, 0.03293650969862938, 0.12833142280578613, -0.02406427264213562, 0.005079064983874559, 0.04212227836251259, 0.007120397873222828, -0.028459329158067703, -0.038929857313632965, -0.07647596299648285, 0.050846196711063385, 0.0063995434902608395, 0.08683335781097412, -0.04582304134964943, -0.01062504667788744, 0.04161985591053963, -0.02896539680659771, -0.07614030689001083, 0.02519977279007435, 0.03664879500865936, 0.056581199169158936, 0.04482075572013855, 0.04471909627318382, -0.006948661990463734, -0.03331043943762779, 0.2804725766181946, -0.058892298489809036, -0.09461770206689835, -0.11352406442165375, 0.20730890333652496, 0.03978331387042999, -0.028774499893188477, 0.039130281656980515, -0.08280519396066666, -0.012626112438738346, 0.15433254837989807, 0.15535323321819305, -0.06421466171741486, -0.02494325488805771, -0.012718322686851025, -0.017004186287522316, -0.040059227496385574, 0.1174105778336525, 0.09562027454376221, 0.0012837001122534275, -0.054372455924749374, -0.028177451342344284, -0.03628426790237427, -0.014748483896255493, -0.04097532853484154, 0.024142717942595482, 0.015921084210276604, -0.02244274504482746, -0.0342836007475853, 0.062272846698760986, -0.0014233059482648969, -0.2401382029056549, 0.06020908057689667, -0.1432594656944275, -0.16891597211360931, -0.025999052450060844, 0.04800527170300484, -0.009971209801733494, 0.05082609876990318, -0.024763595312833786, -0.0034205911215394735, 0.07933096587657928, -0.02045273780822754, -0.05628274381160736, -0.12448906898498535, 0.11215090751647949, -0.05961890146136284, 0.17887789011001587, -0.016976453363895416, 0.07031750679016113, 0.11786755174398422, 0.04288628324866295, -0.14007630944252014, 0.04623840004205704, 0.04676241800189018, -0.11402896791696548, 0.018779097124934196, 0.14374089241027832, -0.04513787478208542, 0.08601706475019455, 0.044024694710969925, -0.09521331638097763, -0.009876211173832417, -0.04678067937493324, -0.02537612058222294, -0.07137414813041687, -0.01203152071684599, -0.06950382143259048, 0.1701977699995041, 0.19803518056869507, -0.02464929223060608, 0.014103802852332592, -0.0935637429356575, 0.028556667268276215, 0.06740210950374603, 0.03968053683638573, -0.04986898973584175, -0.2079949676990509, 0.01829865388572216, 0.05025823041796684, -0.003341470379382372, -0.23434774577617645, -0.0781913697719574, 0.04064011201262474, -0.03480996564030647, -0.055731531232595444, 0.096546970307827, 0.036183442920446396, 0.04810049757361412, -0.037246253341436386, -0.1514635682106018, -0.038778871297836304, 0.1543208807706833, -0.17928031086921692, -0.04982885345816612 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-256-finetuned-squad-seed-8 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-256-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-256-finetuned-squad-seed-8
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-256-finetuned-squad-seed-8 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-256-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-256-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-256-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.07847407460212708, 0.10049767792224884, -0.0025630139280110598, 0.07848971337080002, 0.13280680775642395, 0.03429205343127251, 0.10644543915987015, 0.12196626514196396, -0.1268104761838913, 0.06651689112186432, 0.09063773602247238, 0.08545344322919846, 0.032331615686416626, 0.12867344915866852, -0.03877321258187294, -0.23347921669483185, 0.006594144273549318, -0.0172086451202631, -0.06640029698610306, 0.10167934745550156, 0.08789556473493576, -0.09830693900585175, 0.08026155829429626, -0.0038018205668777227, -0.1861306130886078, 0.028808625414967537, -0.020138004794716835, -0.050210971385240555, 0.09902256727218628, -0.00514856306836009, 0.08283329755067825, 0.0069067711010575294, 0.11986790597438812, -0.19066761434078217, 0.013255957514047623, 0.07322720438241959, 0.034040387719869614, 0.09463435411453247, 0.019901039078831673, -0.0012168304529041052, 0.16510644555091858, -0.13562433421611786, 0.09775028377771378, 0.028395600616931915, -0.08539223670959473, -0.16689984500408173, -0.09510459005832672, 0.013229217380285263, 0.036108750849962234, 0.0864666998386383, 0.00897032581269741, 0.17884282767772675, -0.09192803502082825, 0.08062929660081863, 0.23639999330043793, -0.2779447138309479, -0.07866157591342926, 0.042593296617269516, 0.04721233993768692, 0.07965458929538727, -0.1179642304778099, -0.01611141487956047, 0.02038973942399025, 0.02985263243317604, 0.09320142865180969, -0.026525424793362617, -0.09077539294958115, -0.007454110309481621, -0.1201775074005127, 0.005248700734227896, 0.11136040836572647, 0.04455746337771416, -0.050351861864328384, -0.047362327575683594, -0.05925983563065529, -0.06962461769580841, -0.03542288392782211, -0.03436395153403282, 0.04353959485888481, -0.05774426832795143, -0.11975084990262985, -0.034249547868967056, -0.04759090021252632, -0.07744500786066055, -0.020356042310595512, 0.20646505057811737, 0.049668196588754654, 0.03332702815532684, -0.05008837580680847, 0.08103181421756744, 0.009402678348124027, -0.12869615852832794, -0.028531255200505257, 0.003787221619859338, -0.08034905046224594, -0.03859493136405945, -0.056737612932920456, 0.01501611527055502, 0.0426432341337204, 0.2093675136566162, -0.054820578545331955, 0.08388108015060425, 0.03184255212545395, -0.019956840202212334, -0.021630359813570976, 0.1248885989189148, -0.01946215331554413, -0.07700113952159882, 0.028960561379790306, 0.05807230994105339, 0.026011833921074867, 0.0030017257668077946, -0.05711796134710312, -0.03216997906565666, 0.08283129334449768, 0.031156163662672043, -0.06316185742616653, 0.02565392293035984, 0.0023457841016352177, -0.019908012822270393, 0.005593206267803907, -0.1142326295375824, 0.01726928912103176, -0.007098200730979443, -0.07500948011875153, -0.01468206662684679, 0.00838614720851183, -0.015316583216190338, 0.010453945957124233, 0.09823135286569595, -0.0886797308921814, -0.02007581666111946, -0.07702885568141937, -0.0704180970788002, -0.0010172250913456082, -0.14977748692035675, 0.013959634117782116, -0.07337193936109543, -0.15518836677074432, -0.032318614423274994, 0.0422191247344017, -0.07088863849639893, -0.02933361940085888, -0.03817138075828552, -0.07612252980470657, 0.02563171088695526, 0.003292290261015296, 0.18786892294883728, -0.05266940966248512, 0.07930118590593338, 0.020754896104335785, 0.05067102611064911, -0.023690879344940186, 0.0314788818359375, -0.08836212754249573, 0.0036223279312253, -0.17059996724128723, 0.0621730275452137, -0.07668961584568024, 0.016687309369444847, -0.12860476970672607, -0.08655211329460144, -0.025328291580080986, -0.028204739093780518, 0.08390694111585617, 0.1007196456193924, -0.1390698403120041, -0.026057248935103416, 0.1113055944442749, -0.07731351256370544, -0.05640186741948128, 0.06719325482845306, -0.0674908459186554, 0.05121937021613121, 0.05717480182647705, 0.18411116302013397, 0.07578887045383453, -0.11284786462783813, -0.02163492888212204, 0.003970704041421413, 0.030807681381702423, -0.013023304753005505, 0.050204284489154816, 0.011134369298815727, 0.02051484026014805, 0.017205165699124336, -0.03821278363466263, 0.0037167652044445276, -0.09721700847148895, -0.062325622886419296, -0.05778869614005089, -0.08249689638614655, -0.035490889102220535, 0.01390075497329235, 0.038177479058504105, -0.08082354813814163, -0.0830182358622551, 0.08257942646741867, 0.14153191447257996, -0.04324071481823921, 0.02066086418926716, -0.07216348499059677, 0.01867966167628765, -0.053919531404972076, -0.03078235313296318, -0.2050308883190155, -0.06653441488742828, 0.03406968712806702, -0.02684374712407589, 0.057176101952791214, 0.00519341928884387, 0.0706852450966835, 0.03763185814023018, -0.03681149706244469, 0.006767757702618837, -0.08875937759876251, -0.007236899808049202, -0.09539365023374557, -0.22155024111270905, -0.03873439505696297, -0.03068581596016884, 0.12601706385612488, -0.16283009946346283, -0.009556842036545277, -0.034685488790273666, 0.11935009807348251, 0.028305619955062866, -0.06147536635398865, -0.015002721920609474, 0.03168323263525963, 0.002774636959657073, -0.09225121885538101, 0.03271765261888504, 0.01711120270192623, -0.07167859375476837, -0.058946382254362106, -0.11537019163370132, 0.005556879565119743, 0.07710739970207214, 0.06172104924917221, -0.09688092768192291, 0.006379980593919754, -0.06374742835760117, -0.033793769776821136, -0.056602559983730316, 0.041429854929447174, 0.17822317779064178, 0.00512633565813303, 0.10763420909643173, -0.07998519390821457, -0.07243708521127701, 0.02216850034892559, 0.005797354504466057, 0.04405539110302925, 0.09238999336957932, 0.11244069039821625, -0.12635648250579834, 0.06391195952892303, 0.08323375880718231, -0.06369419395923615, 0.12422583997249603, -0.03956161439418793, -0.07875947654247284, -0.034082431346178055, -0.01799658127129078, -0.015378052368760109, 0.13671226799488068, -0.052955493330955505, 0.02434636279940605, 0.029223240911960602, 0.039022136479616165, 0.020371083170175552, -0.15381263196468353, -0.0023711444810032845, 0.008018550463020802, -0.04290856048464775, -0.016560401767492294, 0.021492980420589447, 0.01879703253507614, 0.09749703854322433, 0.03281028941273689, -0.01830482855439186, -0.0060531096532940865, -0.003770118113607168, -0.051963210105895996, 0.19146089255809784, -0.09078726917505264, -0.04126840457320213, -0.07714280486106873, 0.00019903508655261248, -0.03902966529130936, -0.043418038636446, 0.026638614013791084, -0.08792781084775925, -0.037944067269563675, -0.07397687435150146, -0.0017509142635390162, -0.04731110855937004, 0.025314969941973686, 0.029647374525666237, 0.0030761915259063244, 0.062281202524900436, -0.1337786614894867, 0.005008141975849867, -0.07327607274055481, -0.10479526966810226, 0.017596010118722916, 0.06544949859380722, 0.0918220803141594, 0.05915703997015953, -0.030209993943572044, 0.020920461043715477, -0.03083420917391777, 0.2520211637020111, -0.05466263368725777, -0.0005001317476853728, 0.10819149017333984, 0.023890385404229164, 0.046221885830163956, 0.09236655384302139, 0.03509300574660301, -0.10154739767313004, 0.030561910942196846, 0.08537203818559647, -0.03549152985215187, -0.23863546550273895, -0.006094730459153652, -0.035092275589704514, -0.11490244418382645, 0.08187147229909897, 0.05029423162341118, -0.04574236273765564, 0.06518049538135529, 0.01087406650185585, 0.024470198899507523, -0.053142331540584564, 0.09142401069402695, 0.10161007940769196, 0.07430541515350342, 0.10273347795009613, -0.04787196218967438, -0.021581709384918213, 0.0689009353518486, -0.004292864818125963, 0.2925480008125305, -0.02805548720061779, 0.06782001256942749, 0.05277140811085701, 0.14112424850463867, -0.022107508033514023, 0.03689183294773102, 0.006196259520947933, -0.004727722145617008, -0.02611546777188778, -0.05746544897556305, -0.028168966993689537, -0.00124235893599689, -0.08028101921081543, 0.05603930354118347, -0.06191584840416908, 0.0663546472787857, 0.01860693097114563, 0.26232853531837463, -0.001505268388427794, -0.2802633047103882, -0.07783804833889008, -0.02191237546503544, -0.03908393532037735, -0.04398150369524956, 0.01339290663599968, 0.10039286315441132, -0.10301907360553741, 0.050807882100343704, -0.05764084681868553, 0.08111977577209473, -0.02822643704712391, -0.0038399414625018835, 0.031458236277103424, 0.18636584281921387, -0.015032917261123657, 0.05084212124347687, -0.2006053924560547, 0.21514591574668884, 0.018770476803183556, 0.13235940039157867, -0.05056298151612282, 0.008330619893968105, 0.023690395057201385, -0.0003225051914341748, 0.07502895593643188, -0.005044286604970694, -0.0771014541387558, -0.126919686794281, -0.07291596382856369, 0.08149600028991699, 0.1406404823064804, -0.013149118050932884, 0.10227163136005402, -0.0487123504281044, 0.0188596248626709, 0.04129769653081894, -0.06811337172985077, -0.15773025155067444, -0.09671362489461899, -0.01873595640063286, 0.03796492516994476, -0.09706021845340729, -0.046004608273506165, -0.07548639923334122, -0.011473871767520905, 0.11412354558706284, 0.027528464794158936, -0.01933850161731243, -0.1366766393184662, 0.08907855302095413, 0.14897994697093964, -0.0738837718963623, 0.02315218187868595, -0.007575604133307934, 0.06377467513084412, 0.04361947998404503, -0.09489857405424118, 0.04850776493549347, -0.05803651362657547, -0.15965056419372559, -0.04613744467496872, 0.08929663151502609, 0.07207802683115005, 0.03981993347406387, -0.005062983371317387, 0.049481283873319626, -0.020731894299387932, -0.10027868300676346, 0.012097600847482681, 0.03498375415802002, 0.0495278462767601, 0.03775455802679062, -0.08455459773540497, 0.06163787841796875, -0.03245658800005913, -0.004448975436389446, 0.1142885684967041, 0.24125798046588898, -0.08979640156030655, 0.08387021720409393, 0.058820758014917374, -0.06836950778961182, -0.14392228424549103, 0.06463354825973511, 0.10388865321874619, -0.0004486620891839266, 0.05726506561040878, -0.1961136907339096, 0.14345382153987885, 0.11378180980682373, -0.011863785795867443, 0.036868613213300705, -0.2736418545246124, -0.11756523698568344, 0.059574831277132034, 0.13265001773834229, 0.12187428772449493, -0.13236719369888306, -0.013243031688034534, -0.017448430880904198, -0.12346039712429047, 0.10675492137670517, -0.11422161012887955, 0.13442115485668182, -0.034148167818784714, 0.10976281017065048, 0.004380637779831886, -0.029883740469813347, 0.10615915805101395, 0.05134228616952896, 0.09785739332437515, -0.04171181097626686, 0.013419026508927345, 0.05910392478108406, -0.04790404811501503, 0.014181378297507763, -0.07375319302082062, 0.0845930278301239, -0.1218462660908699, -0.00647423230111599, -0.07871556282043457, 0.05091971158981323, -0.03660736605525017, -0.05216272547841072, -0.052538733929395676, 0.035912130028009415, 0.05461382493376732, -0.03719169646501541, 0.05348336324095726, 0.0008414069307036698, 0.0909472182393074, 0.024984370917081833, 0.06768535822629929, -0.0019457923481240869, -0.04673963785171509, 0.019932515919208527, -0.00843821745365858, 0.060400962829589844, -0.13955488801002502, 0.005209051072597504, 0.10708307474851608, 0.052138883620500565, 0.09605088829994202, 0.043093785643577576, -0.04702970013022423, 0.012586005963385105, 0.03648149222135544, -0.11317121982574463, -0.10248465836048126, 0.047508399933576584, -0.040056012570858, -0.13883362710475922, 0.04723459109663963, 0.11453871428966522, -0.050239019095897675, -0.022096293047070503, -0.01918407715857029, 0.005136324092745781, -0.021412251517176628, 0.18579745292663574, 0.04384390264749527, 0.04088233783841133, -0.10230869054794312, 0.13096477091312408, 0.029158342629671097, -0.021836474537849426, 0.0583001971244812, 0.08648353815078735, -0.0957530215382576, 0.0017466775607317686, 0.09508643299341202, 0.17455753684043884, -0.07204966247081757, -0.015140264295041561, -0.10497574508190155, -0.0715959221124649, 0.061180323362350464, 0.15840445458889008, 0.05706850066781044, -0.019452357664704323, -0.051155637949705124, 0.040248069912195206, -0.1416555494070053, 0.06272736191749573, 0.031046733260154724, 0.07119327038526535, -0.08776574581861496, 0.05770406872034073, 0.007973933592438698, 0.006822666618973017, -0.01693449541926384, 0.014879414811730385, -0.09267548471689224, -0.029575573280453682, -0.07755187153816223, 0.010470760054886341, -0.012315199710428715, 0.016108548268675804, -0.010566681623458862, -0.0672791451215744, -0.06938805431127548, 0.03727826476097107, -0.07698878645896912, -0.052823811769485474, 0.012702234089374542, 0.04295777902007103, -0.13210901618003845, 0.005262884311378002, 0.01495827455073595, -0.0882529765367508, 0.0858420580625534, 0.08774538338184357, 0.026389073580503464, 0.035079363733530045, -0.12851402163505554, -0.03262600675225258, 0.014261918142437935, 0.0032469644211232662, 0.06555581837892532, -0.09256969392299652, -0.0035572166088968515, -0.020926302298903465, 0.07786204665899277, 0.00922755990177393, 0.08117325603961945, -0.13130244612693787, 0.009113911539316177, -0.08526556938886642, -0.04410579800605774, -0.06636051833629608, 0.016437726095318794, 0.10094032436609268, 0.05280757695436478, 0.16364938020706177, -0.07713579386472702, 0.01823701709508896, -0.2084597945213318, -0.028321504592895508, -0.005257160868495703, -0.053966421633958817, -0.13772736489772797, -0.04115733131766319, 0.07748693227767944, -0.03869815915822983, 0.09987061470746994, -0.01981833390891552, 0.06321427971124649, 0.03836071491241455, -0.03181666508316994, -0.06243421137332916, -0.02831334061920643, 0.19595088064670563, 0.07777060568332672, -0.015787966549396515, 0.1079498901963234, -0.004881834611296654, 0.052594952285289764, 0.031682468950748444, 0.20338410139083862, 0.20866207778453827, 0.00607614079490304, 0.07099776715040207, 0.06290095299482346, -0.0809878259897232, -0.06764129549264908, 0.18122205138206482, -0.026604320853948593, 0.07394012808799744, -0.029522256925702095, 0.18744122982025146, 0.10999105870723724, -0.14962150156497955, 0.031278736889362335, -0.032508138567209244, -0.07775532454252243, -0.14010973274707794, 0.002672145375981927, -0.09711694717407227, -0.11927285045385361, 0.044398482888936996, -0.12028791010379791, 0.05522390082478523, 0.08411990851163864, 0.01154742669314146, 0.032752763479948044, 0.1273568719625473, -0.023984616622328758, 0.0052417246624827385, 0.04213116690516472, 0.007066449616104364, -0.028127919882535934, -0.04004518687725067, -0.0771697610616684, 0.050534747540950775, 0.006600784137845039, 0.08727168291807175, -0.04591349884867668, -0.009257277473807335, 0.04204142093658447, -0.02886541374027729, -0.0764436200261116, 0.02529929392039776, 0.036031678318977356, 0.05646263062953949, 0.043685127049684525, 0.044990405440330505, -0.00688124168664217, -0.03338417783379555, 0.2797430157661438, -0.058417610824108124, -0.09501496702432632, -0.11324846744537354, 0.20645862817764282, 0.04000512510538101, -0.028752541169524193, 0.03902490809559822, -0.0828913077712059, -0.011790349148213863, 0.15484605729579926, 0.1546514481306076, -0.06515821069478989, -0.02492580935359001, -0.012390711344778538, -0.017134476453065872, -0.04087870195508003, 0.1178615391254425, 0.09588655829429626, 0.00006467298226198182, -0.053431130945682526, -0.02838888205587864, -0.03642889857292175, -0.014679031446576118, -0.04222980514168739, 0.023360472172498703, 0.01593668945133686, -0.02186688594520092, -0.033820297569036484, 0.06188883259892464, -0.0009040150907821953, -0.2411041259765625, 0.060216426849365234, -0.14322763681411743, -0.16905640065670013, -0.026092762127518654, 0.04821169376373291, -0.009310920722782612, 0.0500895231962204, -0.024644318968057632, -0.002998755779117346, 0.08021891117095947, -0.02083868533372879, -0.056356608867645264, -0.12393838167190552, 0.11176474392414093, -0.05901198461651802, 0.17873039841651917, -0.016936924308538437, 0.07055871933698654, 0.11760096251964569, 0.043081048876047134, -0.13922344148159027, 0.04645586758852005, 0.0464823953807354, -0.11347667127847672, 0.018744124099612236, 0.1425505429506302, -0.04509136080741882, 0.08586849272251129, 0.04444495961070061, -0.09468886256217957, -0.010347390547394753, -0.04762958362698555, -0.025826267898082733, -0.07109658420085907, -0.013149624690413475, -0.06920411437749863, 0.17037905752658844, 0.19771035015583038, -0.024504901841282845, 0.013819887302815914, -0.09373825788497925, 0.028081022202968597, 0.06773246824741364, 0.039924997836351395, -0.05022956803441048, -0.2079043686389923, 0.018870582804083824, 0.04989565908908844, -0.003150674281641841, -0.23369187116622925, -0.0785973072052002, 0.04042933136224747, -0.03492206707596779, -0.05545482784509659, 0.0966842845082283, 0.036453742533922195, 0.048271797597408295, -0.03732091933488846, -0.1517672836780548, -0.03923807293176651, 0.15444345772266388, -0.17914408445358276, -0.05004579573869705 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-32-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-32-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-32-finetuned-squad-seed-0
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-32-finetuned-squad-seed-0 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-32-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-32-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 45, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-32-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08864407241344452, 0.09784232825040817, -0.00256283744238317, 0.07781636714935303, 0.13956768810749054, 0.029662882909178734, 0.09692434221506119, 0.13775894045829773, -0.11378856003284454, 0.0459609255194664, 0.0967826321721077, 0.07696039229631424, 0.02955995686352253, 0.1449601799249649, -0.030807897448539734, -0.24399776756763458, -0.007745009381324053, -0.02193952351808548, -0.10543512552976608, 0.1134868711233139, 0.09968055784702301, -0.09868741780519485, 0.06709038466215134, -0.019971759989857674, -0.17466408014297485, 0.01436395850032568, -0.018334094434976578, -0.05374659225344658, 0.11690156906843185, -0.0016207268927246332, 0.07865128666162491, 0.009228293783962727, 0.1157296672463417, -0.19539065659046173, 0.01831740140914917, 0.07220780849456787, 0.04449032247066498, 0.09419722855091095, 0.004327976610511541, -0.02183959260582924, 0.12065167725086212, -0.13060827553272247, 0.09767971187829971, 0.032469846308231354, -0.09809523075819016, -0.2060137689113617, -0.09684836864471436, 0.01401386596262455, 0.04170791432261467, 0.08989401161670685, 0.006969246082007885, 0.14951717853546143, -0.10647694021463394, 0.08027603477239609, 0.23023681342601776, -0.2662705183029175, -0.08158142119646072, 0.046028949320316315, 0.06087154522538185, 0.08466355502605438, -0.1228194460272789, -0.012886526994407177, 0.010034988634288311, 0.019984114915132523, 0.10067155957221985, -0.02732682228088379, -0.0747516006231308, 0.013012521900236607, -0.11086197942495346, -0.0007921176147647202, 0.11642817407846451, 0.03795453906059265, -0.05487893149256706, -0.08024127781391144, -0.03773960471153259, -0.060565583407878876, -0.034301016479730606, -0.013886809349060059, 0.03559210151433945, -0.0617915503680706, -0.14369787275791168, -0.046560801565647125, -0.04942861199378967, -0.09216044098138809, 0.0003670846053864807, 0.21092990040779114, 0.03837208449840546, 0.021448982879519463, -0.04949463903903961, 0.10583887249231339, 0.016246477141976357, -0.12444843351840973, -0.034261636435985565, -0.006187611725181341, -0.0934901013970375, -0.034284163266420364, -0.05603623762726784, 0.03029094636440277, 0.040087729692459106, 0.2285301834344864, -0.027531849220395088, 0.0733555257320404, 0.03655265271663666, -0.013331491500139236, -0.027269231155514717, 0.14692023396492004, -0.02783242240548134, -0.07789505273103714, 0.009610055014491081, 0.06400682032108307, 0.00622128788381815, -0.006224116776138544, -0.06169171631336212, -0.04458543285727501, 0.061297714710235596, 0.057482197880744934, -0.04982795938849449, 0.027303962036967278, -0.009358425624668598, -0.023639706894755363, -0.0003783086722251028, -0.11884212493896484, 0.008712545968592167, -0.008441358804702759, -0.07978150248527527, -0.05328932777047157, 0.014117554761469364, -0.012435603886842728, 0.008859481662511826, 0.09040189534425735, -0.07369542866945267, -0.03727478161454201, -0.07947509735822678, -0.07482670992612839, -0.014721004292368889, -0.15994898974895477, 0.021435976028442383, -0.06982365250587463, -0.15211418271064758, -0.031904615461826324, 0.050818055868148804, -0.07927175611257553, -0.034065477550029755, -0.03263991326093674, -0.08062121272087097, 0.018556833267211914, 0.0006777389207854867, 0.2133820354938507, -0.049251947551965714, 0.09634438902139664, 0.014347203075885773, 0.05344314128160477, 0.004868769086897373, 0.037952374666929245, -0.07963069528341293, 0.013737081550061703, -0.1737469732761383, 0.07609042525291443, -0.08939612656831741, 0.0273971538990736, -0.14574605226516724, -0.08793266862630844, -0.0027273152954876423, -0.01967528648674488, 0.08297263830900192, 0.10524384677410126, -0.1252318173646927, -0.024089915677905083, 0.12686510384082794, -0.056039582937955856, -0.05725488439202309, 0.06418859958648682, -0.07383856922388077, 0.0814836174249649, 0.04892770200967789, 0.18745313584804535, 0.09882435202598572, -0.10742183774709702, 0.024402914568781853, 0.01830768771469593, 0.03794723376631737, 0.0022157200146466494, 0.057293765246868134, -0.0001875434973044321, 0.02181876450777054, 0.01519798580557108, -0.0834275633096695, 0.016348714008927345, -0.09251649677753448, -0.06223874166607857, -0.04159877449274063, -0.08974589407444, 0.007015796843916178, 0.009082915261387825, 0.028856150805950165, -0.07957777380943298, -0.08862336724996567, 0.06317241489887238, 0.14079231023788452, -0.04621821641921997, 0.010818012058734894, -0.07993358373641968, 0.0034718778915703297, -0.028770748525857925, -0.022319884970784187, -0.19564644992351532, -0.06059151887893677, 0.024917012080550194, 0.011259682476520538, 0.044729627668857574, -0.0075352732092142105, 0.08014345914125443, 0.02222706563770771, -0.05021326616406441, -0.004348761402070522, -0.0912383645772934, -0.010512182489037514, -0.08986970037221909, -0.21701116859912872, -0.05539451912045479, -0.039097029715776443, 0.15330757200717926, -0.17170436680316925, 0.0005148820928297937, -0.018406078219413757, 0.11008185148239136, 0.042292915284633636, -0.050940800458192825, -0.00021939596626907587, 0.030217904597520828, 0.015109039843082428, -0.09945381432771683, 0.03459492325782776, 0.016546251252293587, -0.09964775294065475, -0.02498781308531761, -0.10276665538549423, 0.0019347632769495249, 0.07522745430469513, 0.07420825958251953, -0.10671789944171906, -0.01878899522125721, -0.06286929547786713, -0.028579087927937508, -0.04723767563700676, 0.034786757081747055, 0.17235605418682098, 0.018105270341038704, 0.11264261603355408, -0.07496019452810287, -0.08572084456682205, 0.017957625910639763, 0.008737805299460888, 0.058628782629966736, 0.11341266334056854, 0.07696588337421417, -0.10017827153205872, 0.058862511068582535, 0.08738578855991364, -0.04908990114927292, 0.14098067581653595, -0.049352601170539856, -0.07956066727638245, -0.03038983792066574, 0.0015850591007620096, -0.0009958044392988086, 0.1515493392944336, -0.047154445201158524, 0.010343740694224834, 0.03536411002278328, 0.02997482195496559, 0.008513862267136574, -0.1618170291185379, -0.02424849011003971, 0.02066221460700035, -0.048402413725852966, -0.029220610857009888, 0.012456510215997696, 0.013225789181888103, 0.09124094247817993, 0.0499076172709465, 0.0015248944982886314, 0.005446381401270628, -0.013869750313460827, -0.04905027523636818, 0.20125220715999603, -0.0917687714099884, -0.046002406626939774, -0.08511870354413986, -0.00041827227687463164, -0.010993880219757557, -0.03559720143675804, 0.01681559346616268, -0.10067292302846909, -0.02296740561723709, -0.0650702640414238, 0.005161145236343145, -0.0476163774728775, 0.011143064126372337, 0.0005074051441624761, 0.01927180401980877, 0.05699591711163521, -0.13411211967468262, 0.014163713902235031, -0.06197468936443329, -0.11066345870494843, 0.030228300020098686, 0.05141833424568176, 0.08752278983592987, 0.06263597309589386, -0.026298394426703453, 0.017662763595581055, -0.04626720771193504, 0.23142008483409882, -0.08647258579730988, 0.004175597336143255, 0.12448040395975113, 0.02421015128493309, 0.037110257893800735, 0.10003145039081573, 0.02816995047032833, -0.0992683693766594, 0.044346898794174194, 0.07550747692584991, -0.04424731805920601, -0.25332021713256836, 0.008720523677766323, -0.044189825654029846, -0.08258120715618134, 0.08903659135103226, 0.048257481306791306, -0.03901390731334686, 0.06499283760786057, 0.002256476553156972, 0.007653376087546349, -0.022204674780368805, 0.08830732107162476, 0.08439584076404572, 0.05539507418870926, 0.10551503300666809, -0.041330303996801376, -0.017955342307686806, 0.06548389792442322, 0.027634194120764732, 0.30681857466697693, -0.04847605153918266, 0.10078930854797363, 0.05297311022877693, 0.14732244610786438, -0.02119525708258152, 0.036857083439826965, 0.012191184796392918, -0.00462328502908349, -0.028488565236330032, -0.054117925465106964, -0.026487838476896286, 0.0061135911382734776, -0.06749244034290314, 0.042362578213214874, -0.05623878538608551, 0.04564923048019409, 0.01637236215174198, 0.2922035753726959, 0.0018120546592399478, -0.26490849256515503, -0.1014583632349968, -0.012158144265413284, -0.037405773997306824, -0.050349220633506775, 0.013532178476452827, 0.1192038506269455, -0.13064910471439362, 0.024936456233263016, -0.06614450365304947, 0.0846901535987854, -0.02828093059360981, -0.00607228884473443, 0.0392582044005394, 0.16266058385372162, -0.02164488285779953, 0.06077911704778671, -0.2218470573425293, 0.23058541119098663, 0.007936200127005577, 0.12179610133171082, -0.05436166003346443, 0.006769230123609304, 0.024451306089758873, -0.0008643636247143149, 0.0951826348900795, -0.00317506049759686, -0.04559830576181412, -0.13899332284927368, -0.052373819053173065, 0.07105099409818649, 0.13974182307720184, -0.05240297317504883, 0.10224728286266327, -0.05999571457505226, 0.011181918904185295, 0.037043988704681396, -0.08125726878643036, -0.12020495533943176, -0.10286101698875427, -0.019354023039340973, 0.0008230130770243704, -0.06075986847281456, -0.06478069722652435, -0.0666278526186943, 0.025688331574201584, 0.11616834253072739, -0.002204709453508258, -0.03446604311466217, -0.14901438355445862, 0.0740949958562851, 0.1547592282295227, -0.06783957779407501, 0.03274663910269737, 0.0023831722792237997, 0.07974593341350555, 0.03532900661230087, -0.07747786492109299, 0.06298493593931198, -0.06644658744335175, -0.17953284084796906, -0.04799830541014671, 0.10283250361680984, 0.07124915719032288, 0.04136540740728378, -0.006696648430079222, 0.04750434681773186, -0.027309367433190346, -0.09116373211145401, 0.028934650123119354, 0.03112991340458393, 0.03670824319124222, 0.04308873414993286, -0.07667835056781769, 0.08458705246448517, -0.04370874539017677, -0.019863862544298172, 0.12216692417860031, 0.23095540702342987, -0.10428136587142944, 0.09531548619270325, 0.05665893107652664, -0.05984436348080635, -0.16662749648094177, 0.07187940925359726, 0.10487248003482819, 0.014151203446090221, 0.058228831738233566, -0.21714022755622864, 0.12075797468423843, 0.1017771065235138, -0.013385512866079807, 0.03973018005490303, -0.27901193499565125, -0.11983589082956314, 0.0504537932574749, 0.12525585293769836, 0.08487514406442642, -0.12577109038829803, -0.01889139786362648, -0.01549072377383709, -0.12831692397594452, 0.07933223247528076, -0.11390722543001175, 0.13178211450576782, -0.024050770327448845, 0.11012432724237442, 0.012681386433541775, -0.027520224452018738, 0.10787320882081985, 0.04899272695183754, 0.09662759304046631, -0.04275589436292648, 0.0010175135685130954, 0.060005370527505875, -0.04895162582397461, 0.00014458743680734187, -0.06881872564554214, 0.08911973237991333, -0.13738171756267548, -0.007689903024584055, -0.08854804933071136, 0.04237891733646393, -0.040582627058029175, -0.0664578527212143, -0.0413687564432621, 0.05739028751850128, 0.04503615200519562, -0.03305838629603386, 0.040765173733234406, -0.026328597217798233, 0.10318753123283386, 0.02516166865825653, 0.08668675273656845, 0.021040156483650208, -0.05527082085609436, 0.02187936380505562, -0.0126187764108181, 0.06416648626327515, -0.1696183681488037, 0.009354747831821442, 0.09852340072393417, 0.0690511018037796, 0.1017366498708725, 0.041292402893304825, -0.04693710058927536, 0.017250020056962967, 0.028589162975549698, -0.09678571671247482, -0.1136201024055481, 0.039511583745479584, -0.03688264265656471, -0.14694145321846008, 0.042486101388931274, 0.11947400122880936, -0.0390293151140213, -0.030778560787439346, -0.019657449796795845, 0.0025873659178614616, -0.02151319570839405, 0.18021732568740845, 0.06054641306400299, 0.05961396545171738, -0.10230900347232819, 0.12060334533452988, 0.03390192613005638, -0.02721443399786949, 0.05225576087832451, 0.08186683058738708, -0.10068869590759277, -0.005808683577924967, 0.07689748704433441, 0.12520228326320648, -0.05553784593939781, 0.00019617275393102318, -0.10217360407114029, -0.08652643859386444, 0.05872217193245888, 0.14305399358272552, 0.04910176992416382, -0.015373635105788708, -0.046880096197128296, 0.045557454228401184, -0.14025822281837463, 0.07418794929981232, 0.03310380503535271, 0.0631815642118454, -0.07720158249139786, 0.06558053940534592, 0.003424703376367688, 0.016446365043520927, -0.01460103690624237, 0.002368328860029578, -0.09653706103563309, -0.007146604359149933, -0.0860045775771141, 0.001170040457509458, -0.0005905759171582758, 0.01829317770898342, -0.02468947134912014, -0.0704532191157341, -0.044591013342142105, 0.037055015563964844, -0.0858222022652626, -0.050933729857206345, 0.007225187495350838, 0.04301803186535835, -0.12431107461452484, -0.00396468723192811, 0.028492063283920288, -0.09799177944660187, 0.0984954833984375, 0.0736762210726738, 0.02075456827878952, 0.02823779173195362, -0.1187606230378151, -0.033752404153347015, -0.014369807206094265, -0.009735196828842163, 0.059095948934555054, -0.09920170903205872, -0.004534258972853422, -0.046276163309812546, 0.06171487644314766, 0.01365596242249012, 0.0627467930316925, -0.1401141732931137, 0.014445709995925426, -0.0687832236289978, -0.04429515451192856, -0.07889734208583832, 0.04069012030959129, 0.09444978088140488, 0.05964626371860504, 0.14001132547855377, -0.07510800659656525, 0.025104442611336708, -0.20300287008285522, -0.03622276708483696, -0.012911025434732437, -0.05566999316215515, -0.14527377486228943, -0.04655720666050911, 0.0824638232588768, -0.03958054259419441, 0.08899229019880295, -0.0276944637298584, 0.07297864556312561, 0.037563081830739975, -0.05168696865439415, -0.03131691738963127, -0.008760298602283001, 0.20423810184001923, 0.07161695510149002, -0.015036491677165031, 0.10222168266773224, 0.0004599676176439971, 0.03038969077169895, 0.04592592269182205, 0.1709226369857788, 0.2222365140914917, 0.043091848492622375, 0.04959990456700325, 0.06287022680044174, -0.07739373296499252, -0.0703001394867897, 0.17309877276420593, -0.010226615704596043, 0.06747176498174667, -0.0465773306787014, 0.19338996708393097, 0.11853992938995361, -0.16699723899364471, 0.04752297326922417, -0.04578106477856636, -0.08174643665552139, -0.11836151778697968, -0.009646723046898842, -0.08259943127632141, -0.12293816357851028, 0.03708041459321976, -0.11888650804758072, 0.04575340077280998, 0.10838087648153305, 0.015024027787148952, 0.03491898253560066, 0.12650971114635468, -0.011373440735042095, -0.007468742318451405, 0.06867103278636932, 0.004887626506388187, -0.011022606864571571, -0.041796233505010605, -0.0751602053642273, 0.05938882753252983, 0.0009728763834573328, 0.08174893260002136, -0.04590649902820587, -0.015048683620989323, 0.03103523887693882, -0.030399981886148453, -0.07918225973844528, 0.025243369862437248, 0.04557127133011818, 0.05444492772221565, 0.05164002254605293, 0.04192344844341278, -0.010989886708557606, -0.03319127485156059, 0.3258166015148163, -0.06743109226226807, -0.1031891480088234, -0.12543916702270508, 0.21612440049648285, 0.032540541142225266, -0.027447490021586418, 0.032130166888237, -0.08651480823755264, -0.0010332614183425903, 0.16699637472629547, 0.17622190713882446, -0.06613525748252869, -0.02008405141532421, 0.00040069103124551475, -0.015945756807923317, -0.031999215483665466, 0.12404046952724457, 0.09730277955532074, -0.012169444933533669, -0.06111849844455719, -0.01674445904791355, -0.015823841094970703, -0.03347295895218849, -0.04075295850634575, 0.04954598471522331, 0.019951054826378822, -0.027761582285165787, -0.043764930218458176, 0.07633571326732635, 0.0030194211285561323, -0.2548550069332123, 0.06445083022117615, -0.1559857726097107, -0.17628876864910126, -0.050634920597076416, 0.029463069513440132, 0.004640849307179451, 0.05652492120862007, -0.014220990240573883, 0.0036445145960897207, 0.08887779712677002, -0.010041608475148678, -0.03449932485818863, -0.12049316614866257, 0.1230430155992508, -0.046800240874290466, 0.16888996958732605, -0.03186154365539551, 0.042896345257759094, 0.11674642562866211, 0.030692383646965027, -0.13422469794750214, 0.03720245882868767, 0.06284024566411972, -0.09719192981719971, 0.019612908363342285, 0.1486099511384964, -0.047948163002729416, 0.10098210722208023, 0.04585620015859604, -0.10868619382381439, 0.0009951312094926834, -0.06708969175815582, -0.03431606665253639, -0.08727108687162399, -0.010921305976808071, -0.06472951918840408, 0.16699489951133728, 0.2215237021446228, -0.037648726254701614, 0.008174135349690914, -0.09783699363470078, 0.012911401689052582, 0.07021857798099518, 0.035346873104572296, -0.04968913272023201, -0.1812686324119568, 0.00533993449062109, 0.058828551322221756, -0.0015500761801376939, -0.2532603442668915, -0.07262808084487915, 0.03749667853116989, -0.028567921370267868, -0.03270462527871132, 0.10973606258630753, 0.04684299975633621, 0.05065753310918808, -0.03134768083691597, -0.15146523714065552, -0.033448848873376846, 0.15582744777202606, -0.1734907478094101, -0.03617288917303085 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-32-finetuned-squad-seed-10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-32-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-32-finetuned-squad-seed-10
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-32-finetuned-squad-seed-10 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-32-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-32-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 45, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-32-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08913476020097733, 0.09544762969017029, -0.0024918289855122566, 0.07797182351350784, 0.13971301913261414, 0.029876135289669037, 0.09744683653116226, 0.13623309135437012, -0.11241256445646286, 0.04504432901740074, 0.09562183171510696, 0.07830988615751266, 0.029696308076381683, 0.1455574929714203, -0.030198708176612854, -0.24465151131153107, -0.007827820256352425, -0.021566811949014664, -0.10393026471138, 0.11343705654144287, 0.09980769455432892, -0.09920801967382431, 0.06688990443944931, -0.01990699954330921, -0.17488795518875122, 0.014705432578921318, -0.018066851422190666, -0.05264003574848175, 0.11725584417581558, -0.003245994448661804, 0.07825826108455658, 0.008716678246855736, 0.11769183725118637, -0.19380992650985718, 0.01835167407989502, 0.07162576168775558, 0.044421687722206116, 0.09382418543100357, 0.004030486103147268, -0.020749414339661598, 0.12029780447483063, -0.13134709000587463, 0.09798453003168106, 0.031801458448171616, -0.09815775603055954, -0.2047460526227951, -0.09707007557153702, 0.013438967056572437, 0.04307997226715088, 0.08877576142549515, 0.006722795311361551, 0.14984405040740967, -0.10680267959833145, 0.08060847967863083, 0.23141933977603912, -0.26768240332603455, -0.08125988394021988, 0.04777728393673897, 0.06266796588897705, 0.08551643788814545, -0.12253543734550476, -0.01364986039698124, 0.010672672651708126, 0.019660938531160355, 0.10162712633609772, -0.02796580083668232, -0.07479242980480194, 0.01268053986132145, -0.11225005984306335, 0.000963796628639102, 0.11553234606981277, 0.03848208487033844, -0.05467139557003975, -0.08020160347223282, -0.03854086995124817, -0.061004262417554855, -0.0355030782520771, -0.014713468961417675, 0.03617348149418831, -0.062180619686841965, -0.1426309198141098, -0.046001136302948, -0.04838100075721741, -0.0924815982580185, 0.00050178705714643, 0.21018297970294952, 0.038896095007658005, 0.02115764282643795, -0.04940551146864891, 0.1049661636352539, 0.013454906642436981, -0.12438953667879105, -0.033017028123140335, -0.0057421582750976086, -0.09456213563680649, -0.03529275208711624, -0.05671033635735512, 0.03020109422504902, 0.039321377873420715, 0.22859837114810944, -0.025329148396849632, 0.07364820688962936, 0.03814990445971489, -0.0136901019141078, -0.02709881216287613, 0.14736224710941315, -0.028395947068929672, -0.07960230857133865, 0.009543024934828281, 0.06427111476659775, 0.006687615532428026, -0.005167899187654257, -0.06269107013940811, -0.04486256092786789, 0.061806827783584595, 0.057035915553569794, -0.05206169933080673, 0.02777203731238842, -0.00905192643404007, -0.023267775774002075, 0.0009372358908876777, -0.11940661817789078, 0.009414758533239365, -0.008953831158578396, -0.08074281364679337, -0.053227659314870834, 0.012616285122931004, -0.011558299884200096, 0.00934243481606245, 0.08947191387414932, -0.07400782406330109, -0.03656425327062607, -0.0800844132900238, -0.07596397399902344, -0.014696566388010979, -0.1624152809381485, 0.022072747349739075, -0.06864394247531891, -0.15446758270263672, -0.032446619123220444, 0.04992302134633064, -0.07865946739912033, -0.03393344208598137, -0.03383408859372139, -0.08065156638622284, 0.017274046316742897, 0.0016360909212380648, 0.21465560793876648, -0.04878990724682808, 0.09501230716705322, 0.01436309702694416, 0.05504132807254791, 0.003910001367330551, 0.038044724613428116, -0.0791732594370842, 0.01365233026444912, -0.1743859201669693, 0.07561617344617844, -0.08928097039461136, 0.0293433740735054, -0.14484530687332153, -0.08764485269784927, -0.0032609652262181044, -0.019344091415405273, 0.08285707235336304, 0.1047930046916008, -0.12797501683235168, -0.02305656485259533, 0.12752166390419006, -0.055812232196331024, -0.05651693418622017, 0.06285831332206726, -0.07409150898456573, 0.08206132054328918, 0.05047786980867386, 0.1876334697008133, 0.09884658455848694, -0.1069740578532219, 0.024546490982174873, 0.018365267664194107, 0.037484657019376755, 0.0003479876322671771, 0.05660302937030792, 0.000749311177060008, 0.02324337139725685, 0.015245006419718266, -0.08167381584644318, 0.01571519859135151, -0.09213583171367645, -0.06219383329153061, -0.042034294456243515, -0.09058548510074615, 0.006593972444534302, 0.009083684533834457, 0.029158547520637512, -0.08017555624246597, -0.08779294788837433, 0.06451254338026047, 0.14063319563865662, -0.046067625284194946, 0.010246578603982925, -0.07962595671415329, 0.002926238812506199, -0.029203934594988823, -0.022526849061250687, -0.19582197070121765, -0.05939050391316414, 0.02546926774084568, 0.009601493366062641, 0.04485104978084564, -0.005168223287910223, 0.08070025593042374, 0.022038785740733147, -0.04951335862278938, -0.004037461243569851, -0.09051468968391418, -0.010431419126689434, -0.09161555022001266, -0.21669672429561615, -0.05576787143945694, -0.039197273552417755, 0.1522262543439865, -0.17199356853961945, 0.0008286038064397871, -0.02060595713555813, 0.10972364991903305, 0.041421983391046524, -0.05067989602684975, -0.00022510666167363524, 0.029836339876055717, 0.015753058716654778, -0.09961748123168945, 0.03479796648025513, 0.01532234251499176, -0.09887926280498505, -0.026461970061063766, -0.1041388213634491, 0.00022262804850470275, 0.07460544258356094, 0.07506453990936279, -0.10644450038671494, -0.018110590055584908, -0.06254885345697403, -0.028039557859301567, -0.046128615736961365, 0.034605760127305984, 0.17123301327228546, 0.017269199714064598, 0.1122766062617302, -0.07529464364051819, -0.0866328701376915, 0.017769554629921913, 0.009456248953938484, 0.059921011328697205, 0.11322232335805893, 0.07755019515752792, -0.09986578673124313, 0.058156050741672516, 0.08921235054731369, -0.049060240387916565, 0.13956771790981293, -0.04946143180131912, -0.07979178428649902, -0.030352193862199783, 0.0005106287426315248, -0.002077146666124463, 0.1511155366897583, -0.04765719547867775, 0.008902234025299549, 0.034639522433280945, 0.029502546414732933, 0.008205022662878036, -0.16259054839611053, -0.02379823662340641, 0.020220236852765083, -0.04776537045836449, -0.03009628877043724, 0.01232309639453888, 0.012431193143129349, 0.0912468358874321, 0.04892878979444504, 0.0002889569732360542, 0.0047555845230817795, -0.013894224539399147, -0.04841964319348335, 0.20146621763706207, -0.09135783463716507, -0.043906185775995255, -0.08333415538072586, -0.0009001709404401481, -0.010104852728545666, -0.03589553385972977, 0.015990346670150757, -0.10085029155015945, -0.023048564791679382, -0.06500735878944397, 0.004492027685046196, -0.046895623207092285, 0.011246786452829838, 0.0018766539869830012, 0.019085563719272614, 0.056019335985183716, -0.13448412716388702, 0.01403612270951271, -0.06315223127603531, -0.1109173446893692, 0.02955249883234501, 0.05154819414019585, 0.08705531060695648, 0.06388043612241745, -0.026416735723614693, 0.017628589645028114, -0.045842040330171585, 0.23199449479579926, -0.08599097281694412, 0.005840931087732315, 0.12420619279146194, 0.024408157914876938, 0.03723769634962082, 0.10115998983383179, 0.02815401926636696, -0.09967995434999466, 0.04402288794517517, 0.07503701746463776, -0.04369296878576279, -0.2535930275917053, 0.00875521544367075, -0.04360680654644966, -0.08471663296222687, 0.08879439532756805, 0.04795355722308159, -0.038476020097732544, 0.06596001237630844, 0.0030915962997823954, 0.00885040033608675, -0.02238932065665722, 0.08761801570653915, 0.08311334252357483, 0.05505133792757988, 0.10585054010152817, -0.04177876561880112, -0.01889660395681858, 0.06421550363302231, 0.02751900628209114, 0.30740293860435486, -0.04692083224654198, 0.09998823702335358, 0.05251263827085495, 0.14659588038921356, -0.02154146321117878, 0.03881044313311577, 0.012448916211724281, -0.005578945390880108, -0.028765860944986343, -0.05395881459116936, -0.024385491386055946, 0.006163540296256542, -0.06816088408231735, 0.04249485954642296, -0.055476777255535126, 0.04513945430517197, 0.01609547808766365, 0.2902465760707855, 0.003411072539165616, -0.2653742730617523, -0.10001667588949203, -0.011993380263447762, -0.038547974079847336, -0.04967978596687317, 0.013329851441085339, 0.11767508089542389, -0.13008145987987518, 0.025962991639971733, -0.06589408963918686, 0.08489341288805008, -0.027575857937335968, -0.005487607792019844, 0.038366831839084625, 0.16417710483074188, -0.021430715918540955, 0.060849107801914215, -0.22261404991149902, 0.2298145592212677, 0.008086256682872772, 0.12245360016822815, -0.05501233786344528, 0.006251305807381868, 0.024549078196287155, -0.0011490487959235907, 0.09515424817800522, -0.0030810609459877014, -0.046097464859485626, -0.13914285600185394, -0.05227081850171089, 0.07101879268884659, 0.1403331756591797, -0.050570663064718246, 0.10248871147632599, -0.05922742933034897, 0.010309925302863121, 0.03742160275578499, -0.08211734890937805, -0.12147238105535507, -0.10176357626914978, -0.02017735131084919, 0.0002826714189723134, -0.062291987240314484, -0.0639856681227684, -0.06676425039768219, 0.02300890162587166, 0.11427634209394455, 0.00016461646009702235, -0.034531768411397934, -0.14828340709209442, 0.07443398237228394, 0.1551593542098999, -0.06771042197942734, 0.03355518355965614, 0.002960746642202139, 0.07986282557249069, 0.035385213792324066, -0.07750127464532852, 0.06320800632238388, -0.06619958579540253, -0.17897184193134308, -0.04751934856176376, 0.10370320826768875, 0.07196514308452606, 0.04142921045422554, -0.005543692037463188, 0.04753020405769348, -0.027718426659703255, -0.09124454855918884, 0.02815883792936802, 0.03111560456454754, 0.03578091785311699, 0.043182842433452606, -0.07759839296340942, 0.08359028398990631, -0.04363015294075012, -0.018203014507889748, 0.12181201577186584, 0.22869013249874115, -0.10420988500118256, 0.09467804431915283, 0.05580632761120796, -0.06013962998986244, -0.16621267795562744, 0.07290465384721756, 0.10497341305017471, 0.014249227941036224, 0.058902595192193985, -0.21550555527210236, 0.12218447029590607, 0.10170313715934753, -0.012862592935562134, 0.03962477669119835, -0.27948272228240967, -0.11985842883586884, 0.0509418323636055, 0.12582187354564667, 0.08531492948532104, -0.12539197504520416, -0.018441326916217804, -0.01663956232368946, -0.12818947434425354, 0.07950186729431152, -0.11470314115285873, 0.1314334124326706, -0.02410302311182022, 0.10991746932268143, 0.012456512078642845, -0.027556898072361946, 0.10638365894556046, 0.05118721351027489, 0.09741401672363281, -0.04305471107363701, -0.000008731316484045237, 0.06154107302427292, -0.048429735004901886, 0.0010680722771212459, -0.06846121698617935, 0.08866497874259949, -0.13591596484184265, -0.007494866847991943, -0.08808243274688721, 0.04183310642838478, -0.040311627089977264, -0.06599339842796326, -0.04126794636249542, 0.05684224143624306, 0.044503677636384964, -0.033171165734529495, 0.03942287340760231, -0.024979205802083015, 0.1025385856628418, 0.021746117621660233, 0.08747149258852005, 0.020345717668533325, -0.054057687520980835, 0.02229420840740204, -0.012235301546752453, 0.06317684054374695, -0.17018289864063263, 0.008841226808726788, 0.09870124608278275, 0.06914311647415161, 0.1014670729637146, 0.041274696588516235, -0.04692921042442322, 0.016548344865441322, 0.028336476534605026, -0.09527748078107834, -0.11486166715621948, 0.04050247743725777, -0.03824298456311226, -0.14680129289627075, 0.04444032907485962, 0.11772125214338303, -0.039226844906806946, -0.031528327614068985, -0.020542005077004433, 0.0022589031141251326, -0.021468915045261383, 0.18147405982017517, 0.06149901822209358, 0.05936835706233978, -0.10303244739770889, 0.12008132040500641, 0.03344893828034401, -0.02576986514031887, 0.05155928060412407, 0.08269046247005463, -0.10150977224111557, -0.005705587100237608, 0.07864762842655182, 0.1269695907831192, -0.053958430886268616, 0.0004094488103874028, -0.10247019678354263, -0.08678876608610153, 0.05881601572036743, 0.1444595754146576, 0.04990042746067047, -0.016544463112950325, -0.04659942165017128, 0.045730940997600555, -0.13993680477142334, 0.07365503162145615, 0.03312542662024498, 0.06352602690458298, -0.0770215317606926, 0.0662110447883606, 0.00346630928106606, 0.01685480587184429, -0.014658010564744473, 0.0035929977893829346, -0.09644494205713272, -0.00803763885051012, -0.08587157726287842, -0.00033140924642793834, -0.0013761199079453945, 0.018235066905617714, -0.025014303624629974, -0.07049666345119476, -0.044544070959091187, 0.03659383952617645, -0.08598276972770691, -0.05110012739896774, 0.007061101961880922, 0.041839923709630966, -0.1237926110625267, -0.0041185724548995495, 0.027588894590735435, -0.09707379341125488, 0.09769897907972336, 0.0729011669754982, 0.02136627770960331, 0.02950066514313221, -0.11966244131326675, -0.03341834992170334, -0.01350855641067028, -0.009467816911637783, 0.0596398301422596, -0.09831097722053528, -0.004740309435874224, -0.04586959257721901, 0.06370949000120163, 0.012912388890981674, 0.06066577509045601, -0.13913941383361816, 0.0146340848878026, -0.06995847076177597, -0.04427425563335419, -0.07913347333669662, 0.04037444666028023, 0.09370600432157516, 0.05884822458028793, 0.14073649048805237, -0.0740254670381546, 0.02494976297020912, -0.2037368267774582, -0.036612652242183685, -0.013375836424529552, -0.056274935603141785, -0.1452118307352066, -0.0472220815718174, 0.08276136964559555, -0.03966706246137619, 0.0908302590250969, -0.026962097734212875, 0.07344897091388702, 0.036789391189813614, -0.04752756655216217, -0.03181425482034683, -0.008421488106250763, 0.20440217852592468, 0.07137291133403778, -0.015155081637203693, 0.10158953070640564, 0.0014825069811195135, 0.03081975318491459, 0.04390967637300491, 0.17034859955310822, 0.2217106968164444, 0.04160204529762268, 0.04970654472708702, 0.06369432806968689, -0.07726548612117767, -0.06883611530065536, 0.17471261322498322, -0.01132223755121231, 0.06603942066431046, -0.04654908925294876, 0.19613492488861084, 0.117213174700737, -0.166750967502594, 0.04787040874361992, -0.04507811367511749, -0.08249092102050781, -0.11798622459173203, -0.010467298328876495, -0.08321511745452881, -0.12260279059410095, 0.03707408532500267, -0.11875887215137482, 0.04556163400411606, 0.10900576412677765, 0.014773466624319553, 0.03445837274193764, 0.1272628754377365, -0.011769942939281464, -0.0068089659325778484, 0.068386010825634, 0.004746271297335625, -0.010744805447757244, -0.04122781753540039, -0.07424788177013397, 0.059454042464494705, 0.0003756377554964274, 0.08154323697090149, -0.04730398207902908, -0.01605544053018093, 0.03053753264248371, -0.02989238314330578, -0.07886174321174622, 0.025502780452370644, 0.045197248458862305, 0.05399606004357338, 0.049977466464042664, 0.04255933314561844, -0.011339474469423294, -0.03358699381351471, 0.32413560152053833, -0.06739386916160583, -0.10445805639028549, -0.12450997531414032, 0.2149120718240738, 0.0331357941031456, -0.027330921962857246, 0.03244313225150108, -0.08630695194005966, 0.00025232622283510864, 0.16789624094963074, 0.17630748450756073, -0.06586920469999313, -0.020305713638663292, 0.00001596123183844611, -0.01641855016350746, -0.03244045004248619, 0.12431022524833679, 0.09769898653030396, -0.014221089892089367, -0.0607595331966877, -0.016480768099427223, -0.015328912064433098, -0.03392661735415459, -0.04145227000117302, 0.048388876020908356, 0.02102622762322426, -0.027838926762342453, -0.04220286011695862, 0.07704256474971771, 0.004678658675402403, -0.2545279264450073, 0.06254333257675171, -0.1551569253206253, -0.176242396235466, -0.0508931465446949, 0.029708635061979294, 0.006250095088034868, 0.05643242225050926, -0.014365315437316895, 0.004054322838783264, 0.08832284808158875, -0.010075857862830162, -0.03512272983789444, -0.12089656293392181, 0.123240165412426, -0.04961573705077171, 0.1675845831632614, -0.031716488301754, 0.044017668813467026, 0.11653278023004532, 0.029731474816799164, -0.1334586888551712, 0.0380709283053875, 0.06222527101635933, -0.09645560383796692, 0.02058366872370243, 0.1481228470802307, -0.04734810069203377, 0.09742799401283264, 0.04524178430438042, -0.10867010802030563, 0.001614108681678772, -0.06617451459169388, -0.0344562754034996, -0.08771397173404694, -0.009557974524796009, -0.06453852355480194, 0.1674763560295105, 0.2215500771999359, -0.037674132734537125, 0.00891915149986744, -0.09830385446548462, 0.011933460831642151, 0.07027080655097961, 0.0350007601082325, -0.05018829181790352, -0.1817372888326645, 0.005034797824919224, 0.057619206607341766, -0.0014575350796803832, -0.2510373592376709, -0.07175316661596298, 0.035851236432790756, -0.02978796884417534, -0.03308430686593056, 0.10868161171674728, 0.04795171320438385, 0.05087984353303909, -0.031095106154680252, -0.1518801599740982, -0.03348475694656372, 0.1564728021621704, -0.1742827147245407, -0.03587208315730095 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-32-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-32-finetuned-squad-seed-2", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-32-finetuned-squad-seed-2
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-32-finetuned-squad-seed-2 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-32-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-32-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 45, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-32-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.0879976898431778, 0.09718496352434158, -0.0026020670775324106, 0.07800676673650742, 0.13880573213100433, 0.03026161901652813, 0.09714936465024948, 0.13715897500514984, -0.11323046684265137, 0.045300357043743134, 0.09603630751371384, 0.0769207552075386, 0.029322495684027672, 0.14477483928203583, -0.030198918655514717, -0.24498310685157776, -0.007950776256620884, -0.023030878975987434, -0.10584819316864014, 0.11339537799358368, 0.10037600994110107, -0.09803757816553116, 0.06681615859270096, -0.01961318962275982, -0.17538896203041077, 0.014800057746469975, -0.017234131693840027, -0.05227106064558029, 0.11694195866584778, -0.0023401190992444754, 0.07855606079101562, 0.009777959436178207, 0.11749623715877533, -0.19491694867610931, 0.01803014613687992, 0.07097706943750381, 0.044591497629880905, 0.09406158328056335, 0.004609425086528063, -0.02079479768872261, 0.1205313429236412, -0.1303708702325821, 0.09738212078809738, 0.032000888139009476, -0.09775396436452866, -0.20524345338344574, -0.09714517742395401, 0.014492022804915905, 0.043263502418994904, 0.08790000528097153, 0.007516517769545317, 0.14867475628852844, -0.10658612102270126, 0.08013064414262772, 0.2303152233362198, -0.26820501685142517, -0.08163132518529892, 0.04616459459066391, 0.06148263439536095, 0.08600687980651855, -0.12144900858402252, -0.013125579804182053, 0.010322964750230312, 0.019815785810351372, 0.10057922452688217, -0.027992460876703262, -0.07513955235481262, 0.012554613873362541, -0.11203227937221527, -0.0008169942884705961, 0.11569591611623764, 0.03776293247938156, -0.05560990795493126, -0.0786607414484024, -0.03901102766394615, -0.05830463767051697, -0.03428403660655022, -0.015307623893022537, 0.03612872585654259, -0.06112112104892731, -0.14228230714797974, -0.04835947975516319, -0.04971671104431152, -0.09310474991798401, 0.0001501058432040736, 0.21179446578025818, 0.03883180394768715, 0.022582603618502617, -0.04905633628368378, 0.10619188845157623, 0.015346970409154892, -0.12390740215778351, -0.03364677354693413, -0.005600940901786089, -0.09408851712942123, -0.03460877761244774, -0.056244105100631714, 0.031039441004395485, 0.03970218822360039, 0.22781065106391907, -0.027602778747677803, 0.07297168672084808, 0.036956608295440674, -0.012827049940824509, -0.02690950594842434, 0.14671404659748077, -0.02674918621778488, -0.07688254863023758, 0.009758997708559036, 0.06377376616001129, 0.007185284048318863, -0.00542818708345294, -0.06259918957948685, -0.04525468498468399, 0.06235501915216446, 0.05817786231637001, -0.051203757524490356, 0.02569413371384144, -0.010318666696548462, -0.023572612553834915, -0.0004664425796363503, -0.11935849487781525, 0.009405076503753662, -0.008412257768213749, -0.07929737120866776, -0.05436960235238075, 0.013461700640618801, -0.0113849937915802, 0.009815394878387451, 0.08856320381164551, -0.07262063771486282, -0.035857222974300385, -0.07871554791927338, -0.07401861250400543, -0.014751484617590904, -0.15946358442306519, 0.021387489512562752, -0.06950995326042175, -0.15236611664295197, -0.030925555154681206, 0.05073636397719383, -0.08008063584566116, -0.036302536725997925, -0.0326659120619297, -0.07966044545173645, 0.018308544531464577, 0.0008415891206823289, 0.21418200433254242, -0.04880780354142189, 0.0958852544426918, 0.014219719916582108, 0.05456630140542984, 0.004333741497248411, 0.0371411107480526, -0.07833240926265717, 0.014624608680605888, -0.1746557056903839, 0.07621229439973831, -0.08854229748249054, 0.02597525343298912, -0.14600342512130737, -0.08717060089111328, -0.002068551257252693, -0.020232925191521645, 0.08207853883504868, 0.10487663745880127, -0.12614819407463074, -0.022958064451813698, 0.12664388120174408, -0.05747483670711517, -0.05615648254752159, 0.06409560143947601, -0.07385393977165222, 0.08348831534385681, 0.04852854833006859, 0.18753570318222046, 0.0993000715970993, -0.10726143419742584, 0.02639137953519821, 0.01975540816783905, 0.03734106943011284, 0.0020788749679923058, 0.058214157819747925, -0.00011981734132859856, 0.020735614001750946, 0.014948696829378605, -0.08414351940155029, 0.015642240643501282, -0.09270414710044861, -0.06285279989242554, -0.04197200760245323, -0.0900486409664154, 0.007777315564453602, 0.007671361323446035, 0.02934929169714451, -0.07933573424816132, -0.08735983073711395, 0.06393187493085861, 0.14113983511924744, -0.0455038920044899, 0.011457127518951893, -0.07996424287557602, 0.002940727863460779, -0.029768168926239014, -0.022931333631277084, -0.19551631808280945, -0.060353875160217285, 0.02599175088107586, 0.010005318559706211, 0.04494226723909378, -0.0054365359246730804, 0.07990909367799759, 0.02231544628739357, -0.0498289093375206, -0.004374540410935879, -0.09127986431121826, -0.010950853116810322, -0.09077034890651703, -0.21728156507015228, -0.05558684468269348, -0.03916841000318527, 0.15316298604011536, -0.17136415839195251, -0.00017458100046496838, -0.019553065299987793, 0.10987138748168945, 0.041773486882448196, -0.050404127687215805, -0.0009647400584071875, 0.028870701789855957, 0.015224057249724865, -0.09882792085409164, 0.034784819930791855, 0.016655143350362778, -0.09954223036766052, -0.024171726778149605, -0.10214781016111374, 0.0013208715245127678, 0.07322622090578079, 0.07463277876377106, -0.10641557723283768, -0.018787004053592682, -0.06288371235132217, -0.02871253341436386, -0.047492027282714844, 0.03483402729034424, 0.1719023436307907, 0.017146922647953033, 0.11241220682859421, -0.0753568485379219, -0.08597137033939362, 0.01762547343969345, 0.0076429941691458225, 0.05875176563858986, 0.11289221048355103, 0.07746949046850204, -0.10160654038190842, 0.05751849710941315, 0.08886027336120605, -0.04917420446872711, 0.1393367499113083, -0.04935692250728607, -0.0794614851474762, -0.03160126134753227, 0.002597438869997859, -0.0015617100289091468, 0.15071354806423187, -0.046488206833601, 0.010751784779131413, 0.03476794809103012, 0.030170563608407974, 0.008104592561721802, -0.163146510720253, -0.023921886458992958, 0.020489593967795372, -0.04939775913953781, -0.02830849029123783, 0.011698049493134022, 0.013396845199167728, 0.09168322384357452, 0.049655381590127945, 0.0008362553780898452, 0.005928331520408392, -0.013908937573432922, -0.049568600952625275, 0.20067188143730164, -0.0912884995341301, -0.045658111572265625, -0.08508148044347763, 0.000022739553969586268, -0.010199597105383873, -0.03565608710050583, 0.016497772186994553, -0.09966515004634857, -0.022468287497758865, -0.06522585451602936, 0.0057371798902750015, -0.04781264439225197, 0.011735216714441776, 0.0019414123380556703, 0.019337235018610954, 0.058107130229473114, -0.1337350606918335, 0.014093047939240932, -0.06256978213787079, -0.11203033477067947, 0.03043888509273529, 0.05196375027298927, 0.08660456538200378, 0.06295111775398254, -0.02575424313545227, 0.017429977655410767, -0.045328766107559204, 0.23207491636276245, -0.08531160652637482, 0.005066482350230217, 0.12454455345869064, 0.022905079647898674, 0.03779856488108635, 0.1009184792637825, 0.02748456969857216, -0.09943496435880661, 0.04426376149058342, 0.07470934838056564, -0.04409134387969971, -0.25348663330078125, 0.008345047943294048, -0.04302544519305229, -0.08373288810253143, 0.08861428499221802, 0.0481608621776104, -0.042091429233551025, 0.06484512239694595, 0.0033299687784165144, 0.007567217107862234, -0.022015834227204323, 0.08756469190120697, 0.08416679501533508, 0.05511682480573654, 0.10544834285974503, -0.04116712883114815, -0.018805095925927162, 0.06580185145139694, 0.028296738862991333, 0.3064804673194885, -0.04756120964884758, 0.09910792857408524, 0.05285273864865303, 0.1478373408317566, -0.021612640470266342, 0.03686448931694031, 0.012806090526282787, -0.004578373860567808, -0.02900775335729122, -0.053895749151706696, -0.025688882917165756, 0.007309796754270792, -0.0667908564209938, 0.04222796484827995, -0.0563085712492466, 0.04761603847146034, 0.015791086480021477, 0.29219916462898254, 0.0033740494400262833, -0.2632700502872467, -0.09996748715639114, -0.01116466149687767, -0.03830595314502716, -0.049489375203847885, 0.013361051678657532, 0.11993207037448883, -0.1309528797864914, 0.024777496233582497, -0.0656491070985794, 0.0841425359249115, -0.02810586430132389, -0.006386023946106434, 0.037698324769735336, 0.162503182888031, -0.020344126969575882, 0.061394039541482925, -0.22031551599502563, 0.2301151156425476, 0.007983415387570858, 0.1209564357995987, -0.05355685204267502, 0.0067963614128530025, 0.023923750966787338, -0.0009035093826241791, 0.0957910567522049, -0.0021859901025891304, -0.04720673710107803, -0.1390782594680786, -0.053537845611572266, 0.0709245577454567, 0.14061041176319122, -0.05210753530263901, 0.10205065459012985, -0.06007935106754303, 0.011017482727766037, 0.03686942905187607, -0.08091909438371658, -0.1209041029214859, -0.10135464370250702, -0.01982143148779869, -0.0009746249997988343, -0.06272122263908386, -0.06514202058315277, -0.0667719691991806, 0.027313290163874626, 0.11670198291540146, -0.0009803872089833021, -0.03476716950535774, -0.148079976439476, 0.07420007139444351, 0.15456368029117584, -0.06852174550294876, 0.03241504728794098, 0.002742880955338478, 0.08052054792642593, 0.035305336117744446, -0.0777459442615509, 0.06313509494066238, -0.06622806936502457, -0.1802700012922287, -0.04756302013993263, 0.10413354635238647, 0.07153350114822388, 0.04180007800459862, -0.0055290646851062775, 0.04713885113596916, -0.026377324014902115, -0.09106642007827759, 0.02947995252907276, 0.03160828724503517, 0.03559334576129913, 0.04300302639603615, -0.07740278542041779, 0.08604808896780014, -0.04322943836450577, -0.01954813301563263, 0.12332703918218613, 0.23187249898910522, -0.10472529381513596, 0.09671091288328171, 0.055770792067050934, -0.06077980995178223, -0.16668906807899475, 0.07073689997196198, 0.10646755248308182, 0.013581359758973122, 0.0601406991481781, -0.21627900004386902, 0.12124168127775192, 0.10144096612930298, -0.014126632362604141, 0.03827391937375069, -0.28019821643829346, -0.11993472278118134, 0.04978165775537491, 0.12552706897258759, 0.08675897866487503, -0.12471437454223633, -0.019375666975975037, -0.015058950521051884, -0.12793657183647156, 0.07883212715387344, -0.11331522464752197, 0.13132333755493164, -0.023857850581407547, 0.11053192615509033, 0.012677903287112713, -0.02681051939725876, 0.10825499147176743, 0.04929499328136444, 0.09569932520389557, -0.04255438596010208, 0.0007273665978573263, 0.05949590355157852, -0.049174241721630096, 0.00033361624809913337, -0.06804513186216354, 0.08936171978712082, -0.13693249225616455, -0.007851636037230492, -0.0879155844449997, 0.04163582623004913, -0.04101292043924332, -0.0660385861992836, -0.041073936969041824, 0.056744061410427094, 0.04478093981742859, -0.03301415219902992, 0.03901353105902672, -0.024599438533186913, 0.10139697045087814, 0.02652580291032791, 0.08665421605110168, 0.022069159895181656, -0.0546964593231678, 0.020932553336024284, -0.012491190806031227, 0.06358761340379715, -0.16927917301654816, 0.01031066756695509, 0.0979071632027626, 0.06848698109388351, 0.10163039714097977, 0.041022103279829025, -0.04759594425559044, 0.017676537856459618, 0.028184285387396812, -0.09659450501203537, -0.1158694475889206, 0.03971121087670326, -0.03700881451368332, -0.14711986482143402, 0.04209299385547638, 0.1202925518155098, -0.03873137757182121, -0.031469110399484634, -0.020200004801154137, 0.0032812999561429024, -0.021923542022705078, 0.18007130920886993, 0.06022027134895325, 0.059942714869976044, -0.1017753928899765, 0.12015897035598755, 0.03355509415268898, -0.025127004832029343, 0.051615744829177856, 0.08200839161872864, -0.10054737329483032, -0.005377392750233412, 0.0783001258969307, 0.12570330500602722, -0.055644501000642776, 0.0006506245699711144, -0.10220856219530106, -0.08708954602479935, 0.05816038325428963, 0.14260706305503845, 0.05018046498298645, -0.01586730033159256, -0.046481262892484665, 0.04555581137537956, -0.13885807991027832, 0.07429569214582443, 0.03384711220860481, 0.06333201378583908, -0.0778769999742508, 0.06582178920507431, 0.003186830785125494, 0.018433550372719765, -0.015008926391601562, 0.0025992412120103836, -0.09625127911567688, -0.007876234129071236, -0.08750410377979279, 0.0018082752358168364, 0.000002889187726395903, 0.018240993842482567, -0.024269452318549156, -0.07109362632036209, -0.0445626862347126, 0.03739962726831436, -0.08587684482336044, -0.051075227558612823, 0.00626890454441309, 0.042440496385097504, -0.1239885464310646, -0.004805035889148712, 0.028872016817331314, -0.0980328619480133, 0.09902264177799225, 0.07367440313100815, 0.021484164521098137, 0.02896447293460369, -0.1176103875041008, -0.03383351117372513, -0.013256246224045753, -0.009400594979524612, 0.059060219675302505, -0.09991634637117386, -0.005335207097232342, -0.04568381607532501, 0.0627567246556282, 0.013092542067170143, 0.06382638961076736, -0.1397523730993271, 0.014895937405526638, -0.07034609466791153, -0.045987945050001144, -0.0787712037563324, 0.03975101187825203, 0.09300912916660309, 0.060494810342788696, 0.14063973724842072, -0.07527115195989609, 0.02529139630496502, -0.20339010655879974, -0.0362199991941452, -0.013272816315293312, -0.05414048582315445, -0.14565162360668182, -0.047102559357881546, 0.08162381500005722, -0.03950420022010803, 0.08922974020242691, -0.027503708377480507, 0.07227322459220886, 0.03723080828785896, -0.05027088150382042, -0.030193133279681206, -0.008581426925957203, 0.2025860846042633, 0.07147324085235596, -0.014771531336009502, 0.10188695788383484, -0.00028672016924247146, 0.031309738755226135, 0.043815728276968, 0.1719457358121872, 0.2217269390821457, 0.042508937418460846, 0.049602121114730835, 0.06382904201745987, -0.07681534439325333, -0.07096630334854126, 0.17321544885635376, -0.01089178491383791, 0.06616055965423584, -0.045703016221523285, 0.1941891461610794, 0.11829915642738342, -0.16749806702136993, 0.04659229516983032, -0.045169562101364136, -0.08240044862031937, -0.11934815347194672, -0.009400426410138607, -0.08393307775259018, -0.12295840680599213, 0.036845315247774124, -0.1186303198337555, 0.04587880149483681, 0.10811575502157211, 0.01406293548643589, 0.035389967262744904, 0.12476272135972977, -0.01108783483505249, -0.0068974569439888, 0.06771981716156006, 0.005016293376684189, -0.009937569499015808, -0.039763811975717545, -0.07495737075805664, 0.05931016430258751, 0.002270527882501483, 0.08124223351478577, -0.04603444039821625, -0.014889060519635677, 0.03000451624393463, -0.03074970468878746, -0.07919563353061676, 0.024991922080516815, 0.04514507204294205, 0.05408833920955658, 0.04909124970436096, 0.042819879949092865, -0.01104029268026352, -0.03306415304541588, 0.32546067237854004, -0.06717339903116226, -0.10371829569339752, -0.12477662414312363, 0.21704337000846863, 0.031256869435310364, -0.026414716616272926, 0.0335274413228035, -0.08612051606178284, -0.0015450756764039397, 0.16594889760017395, 0.17580223083496094, -0.06776472926139832, -0.02006252110004425, -0.00013401565956883132, -0.016158225014805794, -0.0315907746553421, 0.12534701824188232, 0.09690259397029877, -0.012255815789103508, -0.06153719499707222, -0.017179420217871666, -0.016610579565167427, -0.033313341438770294, -0.04167976602911949, 0.049356698989868164, 0.019705049693584442, -0.026457451283931732, -0.043540000915527344, 0.07609660923480988, 0.004266852512955666, -0.25387513637542725, 0.06300891190767288, -0.154635488986969, -0.17671740055084229, -0.04997099190950394, 0.030433326959609985, 0.004294283222407103, 0.056558821350336075, -0.015417180955410004, 0.003604323137551546, 0.0890708789229393, -0.010270983912050724, -0.03539789095520973, -0.11975807696580887, 0.12405355274677277, -0.048678092658519745, 0.16895101964473724, -0.03086242452263832, 0.04449784755706787, 0.1159232035279274, 0.030213698744773865, -0.13439594209194183, 0.03682178631424904, 0.062452420592308044, -0.0967227965593338, 0.01967977173626423, 0.149102583527565, -0.047827765345573425, 0.09945399314165115, 0.046798694878816605, -0.1084412932395935, -0.00016229608445428312, -0.06615227460861206, -0.0346134752035141, -0.0870874747633934, -0.011419783346354961, -0.06594914197921753, 0.16636091470718384, 0.22075428068637848, -0.03785784915089607, 0.009194504469633102, -0.0978061854839325, 0.012829671613872051, 0.0702529177069664, 0.03708045557141304, -0.04889349639415741, -0.1816476732492447, 0.004707708489149809, 0.05866874381899834, -0.001028002006933093, -0.25234949588775635, -0.0736408457159996, 0.03657907992601395, -0.028550341725349426, -0.03284131735563278, 0.110158272087574, 0.04664801433682442, 0.05024883151054382, -0.030842892825603485, -0.15334196388721466, -0.03407273069024086, 0.15564534068107605, -0.17356078326702118, -0.03596390038728714 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-32-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-32-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-32-finetuned-squad-seed-4
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-32-finetuned-squad-seed-4 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-32-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-32-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 45, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-32-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08843725174665451, 0.09612832218408585, -0.002557982224971056, 0.07896751910448074, 0.14009228348731995, 0.03059105947613716, 0.0975375771522522, 0.13629421591758728, -0.11348827183246613, 0.0448499396443367, 0.09626322239637375, 0.07697127759456635, 0.028417499735951424, 0.14454975724220276, -0.030195899307727814, -0.24469105899333954, -0.008438709191977978, -0.022453708574175835, -0.10520239174365997, 0.11335954070091248, 0.09947342425584793, -0.09878018498420715, 0.06737486273050308, -0.019917042925953865, -0.1764935553073883, 0.015247734263539314, -0.01791580393910408, -0.052101247012615204, 0.11714305728673935, -0.0023203508462756872, 0.0787595734000206, 0.009072591550648212, 0.11729640513658524, -0.19318322837352753, 0.018296049907803535, 0.0710197389125824, 0.04417738690972328, 0.09370680898427963, 0.004135549068450928, -0.020998548716306686, 0.11913049221038818, -0.1308080404996872, 0.0972050130367279, 0.031854577362537384, -0.09800811111927032, -0.20598161220550537, -0.09683314710855484, 0.013105749152600765, 0.042398612946271896, 0.0887787789106369, 0.007181915920227766, 0.14822937548160553, -0.10666479170322418, 0.08059803396463394, 0.22874294221401215, -0.2690609097480774, -0.0820331946015358, 0.046615418046712875, 0.06151149794459343, 0.08633480966091156, -0.12198691815137863, -0.012303230352699757, 0.01078332681208849, 0.020636705681681633, 0.10088403522968292, -0.028347766026854515, -0.07512400299310684, 0.012970507144927979, -0.11194560676813126, 0.0007996275089681149, 0.11653966456651688, 0.03816772252321243, -0.05539863556623459, -0.07886452972888947, -0.03822359815239906, -0.05965018272399902, -0.034720346331596375, -0.014342984184622765, 0.03636707365512848, -0.062158115208148956, -0.14284741878509521, -0.04662764444947243, -0.049267567694187164, -0.09182600677013397, 0.0001601414114702493, 0.2108396291732788, 0.03881519287824631, 0.022215334698557854, -0.0487084798514843, 0.10541831701993942, 0.015153669752180576, -0.12374718487262726, -0.03255084529519081, -0.005953247658908367, -0.0934719517827034, -0.03469724953174591, -0.056912437081336975, 0.03261460363864899, 0.04009080305695534, 0.22822310030460358, -0.027797477319836617, 0.07362259179353714, 0.037524957209825516, -0.013539697974920273, -0.026945844292640686, 0.14579476416110992, -0.028171025216579437, -0.07859794050455093, 0.01002640463411808, 0.06380592286586761, 0.0066041164100170135, -0.005417628213763237, -0.06282034516334534, -0.04442789778113365, 0.06124483793973923, 0.05773404985666275, -0.05246745049953461, 0.027543745934963226, -0.009328571148216724, -0.02305573597550392, -0.000448803388280794, -0.11925201863050461, 0.008984053507447243, -0.00876997783780098, -0.07944945991039276, -0.05338755622506142, 0.012887605465948582, -0.012223401106894016, 0.00955134816467762, 0.08888442069292068, -0.0735585018992424, -0.036521852016448975, -0.07923220843076706, -0.07498503476381302, -0.015271036885678768, -0.15941251814365387, 0.02249874733388424, -0.06924127787351608, -0.15262511372566223, -0.032060276716947556, 0.05047203227877617, -0.07988766580820084, -0.03525787591934204, -0.03263164311647415, -0.08054935932159424, 0.01788146235048771, 0.000977297080680728, 0.2150397151708603, -0.04917115718126297, 0.09477878361940384, 0.015607540495693684, 0.05463027209043503, 0.0037326891906559467, 0.03719688206911087, -0.07799288630485535, 0.013905011117458344, -0.17531625926494598, 0.0753750428557396, -0.08921191096305847, 0.028049379587173462, -0.14488404989242554, -0.08825654536485672, -0.0008974570664577186, -0.01925935596227646, 0.08168753236532211, 0.10437178611755371, -0.12567387521266937, -0.02293856255710125, 0.12583094835281372, -0.05602763965725899, -0.05635533481836319, 0.06407690793275833, -0.07417400181293488, 0.0824408009648323, 0.04904233664274216, 0.18775734305381775, 0.09903539717197418, -0.10678036510944366, 0.02555631473660469, 0.01900106482207775, 0.037619613111019135, 0.0014018254587426782, 0.05659151077270508, 0.0008825481636449695, 0.020736202597618103, 0.015533569268882275, -0.08273591101169586, 0.015615255571901798, -0.09239207953214645, -0.06240073963999748, -0.041377052664756775, -0.09003731608390808, 0.006976606324315071, 0.007854669354856014, 0.02928219735622406, -0.08046688139438629, -0.08759407699108124, 0.06306060403585434, 0.1408974975347519, -0.04598333314061165, 0.010303795337677002, -0.08019936829805374, 0.0035848652478307486, -0.029940377920866013, -0.02250824309885502, -0.19519907236099243, -0.06114516779780388, 0.025023095309734344, 0.012186233885586262, 0.045041803270578384, -0.00507794925943017, 0.08041027188301086, 0.02265462838113308, -0.05009789019823074, -0.004541044123470783, -0.08992861956357956, -0.010525018908083439, -0.09065378457307816, -0.2178008109331131, -0.055656448006629944, -0.03900134190917015, 0.15314319729804993, -0.1719789057970047, 0.00013292963558342308, -0.01953655295073986, 0.10925038158893585, 0.04128841310739517, -0.04979992285370827, -0.0003737152146641165, 0.030244499444961548, 0.016035111621022224, -0.09882959723472595, 0.03527186065912247, 0.016343751922249794, -0.09832806140184402, -0.025544771924614906, -0.10244280844926834, 0.002884311368688941, 0.0743483453989029, 0.07349520921707153, -0.10694729536771774, -0.018342340365052223, -0.06240974739193916, -0.028607847169041634, -0.0456865057349205, 0.034818630665540695, 0.17302580177783966, 0.016440151259303093, 0.11239893734455109, -0.07474883645772934, -0.08559882640838623, 0.01777784898877144, 0.008770703338086605, 0.06000197306275368, 0.11289594322443008, 0.07654249668121338, -0.10000810027122498, 0.05775858461856842, 0.08832062780857086, -0.04955872893333435, 0.13978229463100433, -0.04958757758140564, -0.07881738245487213, -0.03111894056200981, 0.0014972827630117536, -0.002046325709670782, 0.151463121175766, -0.046877890825271606, 0.009710604324936867, 0.03439953550696373, 0.029644623398780823, 0.008361236192286015, -0.1622411161661148, -0.02390579879283905, 0.019724814221262932, -0.04840734228491783, -0.028828084468841553, 0.012364927679300308, 0.012806539423763752, 0.09128206223249435, 0.049512460827827454, -0.0004462658835109323, 0.006049284245818853, -0.013693277724087238, -0.04861925169825554, 0.20105044543743134, -0.09163990616798401, -0.044397760182619095, -0.08475003391504288, -0.0021687892731279135, -0.011261803098022938, -0.03621317073702812, 0.016242241486907005, -0.10099012404680252, -0.022883543744683266, -0.06485647708177567, 0.004832015372812748, -0.04789864644408226, 0.011636973358690739, 0.0016674516955390573, 0.01871366612613201, 0.05776585265994072, -0.1335844248533249, 0.014253654517233372, -0.06289950013160706, -0.11200100183486938, 0.030913928523659706, 0.05278034880757332, 0.08729559183120728, 0.062281228601932526, -0.025837119668722153, 0.017463941127061844, -0.0452239066362381, 0.2331276535987854, -0.08536002784967422, 0.005191906820982695, 0.12433163076639175, 0.023738885298371315, 0.03684170916676521, 0.10082361102104187, 0.028495341539382935, -0.0999467596411705, 0.043923188000917435, 0.07518433034420013, -0.043607328087091446, -0.2534596025943756, 0.008883918635547161, -0.043398331850767136, -0.08405642956495285, 0.0882520005106926, 0.048082996159791946, -0.04150573909282684, 0.06545914709568024, 0.004308260511606932, 0.008513625711202621, -0.0229803379625082, 0.08734691888093948, 0.08606039732694626, 0.05459693819284439, 0.10622789710760117, -0.0415164977312088, -0.01916087605059147, 0.06507692486047745, 0.028474675491452217, 0.3073534071445465, -0.047602057456970215, 0.09892413765192032, 0.05332992970943451, 0.14750023186206818, -0.021130649372935295, 0.03742561489343643, 0.012270990759134293, -0.00530243618413806, -0.02901308611035347, -0.05367204174399376, -0.024305468425154686, 0.006171341985464096, -0.06843850016593933, 0.04201700910925865, -0.056301236152648926, 0.04622791334986687, 0.01601908542215824, 0.2915027141571045, 0.0027832265477627516, -0.2655085325241089, -0.1004113033413887, -0.011997788213193417, -0.038013994693756104, -0.04893215000629425, 0.013696499168872833, 0.11916212737560272, -0.13037605583667755, 0.02539549395442009, -0.06552108377218246, 0.08399287611246109, -0.02821187488734722, -0.005312229041010141, 0.039527926594018936, 0.16416673362255096, -0.02125893346965313, 0.06085015833377838, -0.22103342413902283, 0.22903746366500854, 0.008252746425569057, 0.12162914872169495, -0.053568121045827866, 0.0065852440893650055, 0.024749787524342537, 0.0004785115597769618, 0.09528280049562454, -0.0028311561327427626, -0.04689442738890648, -0.1390378177165985, -0.05256718769669533, 0.07197131961584091, 0.14000679552555084, -0.05083558335900307, 0.10273659229278564, -0.05919664725661278, 0.010524813085794449, 0.036756619811058044, -0.08212514966726303, -0.12122766673564911, -0.10191305726766586, -0.020765384659171104, 0.0005425070412456989, -0.06266197562217712, -0.06429067254066467, -0.06720346212387085, 0.02525566890835762, 0.11580958962440491, 0.0008829626603983343, -0.034804023802280426, -0.14843320846557617, 0.07343725860118866, 0.15462380647659302, -0.06760654598474503, 0.03256520256400108, 0.0031240435782819986, 0.0792953222990036, 0.036316417157649994, -0.07750044018030167, 0.0632682666182518, -0.0668274536728859, -0.17905402183532715, -0.04761544242501259, 0.10323850065469742, 0.07118124514818192, 0.040974367409944534, -0.005991905461996794, 0.04712127149105072, -0.02732919342815876, -0.09169322997331619, 0.029637260362505913, 0.0298408605158329, 0.03667472302913666, 0.04283788427710533, -0.07837862521409988, 0.08608680218458176, -0.04268690198659897, -0.01870475336909294, 0.12189633399248123, 0.2296982705593109, -0.10418146103620529, 0.09453270584344864, 0.055799778550863266, -0.060314878821372986, -0.16608062386512756, 0.07212948054075241, 0.10504552721977234, 0.013904502615332603, 0.0586591511964798, -0.216910257935524, 0.12247567623853683, 0.10092068463563919, -0.013051627203822136, 0.04027713090181351, -0.27745819091796875, -0.11919115483760834, 0.05004312843084335, 0.126220241189003, 0.08808401972055435, -0.12520171701908112, -0.01859399862587452, -0.015277768485248089, -0.1276179552078247, 0.07788555324077606, -0.11578702926635742, 0.13155655562877655, -0.024351149797439575, 0.11132225394248962, 0.011893579736351967, -0.026843661442399025, 0.10743898153305054, 0.05028621107339859, 0.096908800303936, -0.04286254942417145, 0.0017846293048933148, 0.059427037835121155, -0.048411447554826736, 0.000004148526841163402, -0.0689903125166893, 0.08886831998825073, -0.13710083067417145, -0.007683999370783567, -0.088404081761837, 0.041575878858566284, -0.04090281203389168, -0.06566743552684784, -0.04043911024928093, 0.05674009397625923, 0.043685432523489, -0.03323013707995415, 0.037847571074962616, -0.025288263335824013, 0.10174928605556488, 0.02510548010468483, 0.08717626333236694, 0.020568855106830597, -0.05517401918768883, 0.022138621658086777, -0.013059111312031746, 0.06347563862800598, -0.1689758598804474, 0.008912023156881332, 0.09845297783613205, 0.0677175372838974, 0.10118669271469116, 0.04170701280236244, -0.04661881923675537, 0.017045531421899796, 0.028923822566866875, -0.09695276618003845, -0.11468957364559174, 0.040009550750255585, -0.04049297422170639, -0.14656661450862885, 0.04348750039935112, 0.12009115517139435, -0.038564372807741165, -0.0312308631837368, -0.020270485430955887, 0.0025330057833343744, -0.021976912394165993, 0.1807812750339508, 0.06085314229130745, 0.0594375804066658, -0.10282335430383682, 0.1197650209069252, 0.03341573849320412, -0.02541504241526127, 0.051576048135757446, 0.08305861055850983, -0.10144401341676712, -0.006221548654139042, 0.07752779871225357, 0.127714604139328, -0.05515923351049423, -0.00002753112312348094, -0.10340999811887741, -0.08731724321842194, 0.05813044309616089, 0.14216269552707672, 0.05007334426045418, -0.01712176576256752, -0.04671395570039749, 0.045084185898303986, -0.13963595032691956, 0.07396192848682404, 0.0328061506152153, 0.06388155370950699, -0.07787995785474777, 0.06505487114191055, 0.003059371840208769, 0.017779476940631866, -0.014921565540134907, 0.0032128063030540943, -0.09677686542272568, -0.008062980137765408, -0.08759880065917969, 0.0009718751534819603, 0.00003504600317683071, 0.018835095688700676, -0.024580093100667, -0.07008258253335953, -0.04519181698560715, 0.03764202445745468, -0.08600468933582306, -0.050745777785778046, 0.008168132044374943, 0.04295588284730911, -0.123142309486866, -0.004488672595471144, 0.027639469131827354, -0.09766705334186554, 0.09878253936767578, 0.0734136700630188, 0.021137123927474022, 0.02910442464053631, -0.116468146443367, -0.034338485449552536, -0.013768261298537254, -0.0100805489346385, 0.05983167514204979, -0.09899390488862991, -0.004897209350019693, -0.0459117516875267, 0.06349288672208786, 0.013229651376605034, 0.06297528743743896, -0.13916856050491333, 0.015323988161981106, -0.06949715316295624, -0.04460657015442848, -0.07936539500951767, 0.039973411709070206, 0.09379862248897552, 0.05998528376221657, 0.14057420194149017, -0.07523386180400848, 0.024538176134228706, -0.20335270464420319, -0.036607835441827774, -0.01350303366780281, -0.055777549743652344, -0.1452852189540863, -0.04710948094725609, 0.08225822448730469, -0.0402316190302372, 0.09109203517436981, -0.027495183050632477, 0.07232614606618881, 0.036750320345163345, -0.05005843937397003, -0.0313422828912735, -0.008285488933324814, 0.20228512585163116, 0.07084402441978455, -0.015291010960936546, 0.10168168693780899, 0.0009928509825840592, 0.03073311224579811, 0.044915858656167984, 0.17018988728523254, 0.22119516134262085, 0.043201811611652374, 0.049678437411785126, 0.06418552249670029, -0.07737093418836594, -0.06947880238294601, 0.17426703870296478, -0.0104440962895751, 0.0668618381023407, -0.04651820287108421, 0.19280341267585754, 0.11739438772201538, -0.16638301312923431, 0.04674206301569939, -0.04602187126874924, -0.08249367028474808, -0.11822760105133057, -0.0078369015827775, -0.08344090729951859, -0.12345033884048462, 0.036977604031562805, -0.11916794627904892, 0.045082785189151764, 0.10926307737827301, 0.014616642147302628, 0.03474627807736397, 0.12621942162513733, -0.009994006715714931, -0.006219435483217239, 0.06796713918447495, 0.004551923368126154, -0.010372036136686802, -0.039686284959316254, -0.07458533346652985, 0.05864992365241051, 0.0008078760001808405, 0.08058005571365356, -0.04669652506709099, -0.015372976660728455, 0.030647173523902893, -0.030316321179270744, -0.07881137728691101, 0.024922387674450874, 0.04580298811197281, 0.05391785129904747, 0.050031837075948715, 0.04235148802399635, -0.01185053400695324, -0.03317929431796074, 0.32438233494758606, -0.06710174679756165, -0.10262488573789597, -0.12512049078941345, 0.2166324108839035, 0.031025921925902367, -0.027072584256529808, 0.03239494189620018, -0.08512371778488159, -0.0004578018852043897, 0.16722598671913147, 0.17762599885463715, -0.06806100159883499, -0.020435085520148277, 0.00008089662878774107, -0.016255710273981094, -0.03175836801528931, 0.1257488876581192, 0.09736081212759018, -0.013577328063547611, -0.06145930662751198, -0.017152365297079086, -0.016158493235707283, -0.03293439373373985, -0.041922423988580704, 0.048667363822460175, 0.020782597362995148, -0.026903266087174416, -0.042748648673295975, 0.07597681134939194, 0.00399530865252018, -0.25386741757392883, 0.06363601237535477, -0.15416626632213593, -0.17710477113723755, -0.05093511939048767, 0.029968779534101486, 0.0050774915143847466, 0.056948620826005936, -0.015447426587343216, 0.003451922442764044, 0.08972670137882233, -0.010762788355350494, -0.03443284332752228, -0.1204977035522461, 0.12398770451545715, -0.049167606979608536, 0.16779100894927979, -0.031345538794994354, 0.04435598850250244, 0.11659975349903107, 0.029836444184184074, -0.134189635515213, 0.03733875975012779, 0.061731625348329544, -0.09732876718044281, 0.020275874063372612, 0.14814306795597076, -0.047588083893060684, 0.09864719957113266, 0.0455971397459507, -0.10737992823123932, 0.0005432441830635071, -0.06588766723871231, -0.03443165495991707, -0.08704662322998047, -0.011437208391726017, -0.0658266618847847, 0.1668688803911209, 0.22208112478256226, -0.03778131306171417, 0.009162978269159794, -0.09767719358205795, 0.012752228416502476, 0.07081875205039978, 0.03545556217432022, -0.04971013963222504, -0.1817074418067932, 0.005020522512495518, 0.05954338610172272, -0.0015342208789661527, -0.25324389338493347, -0.07239488512277603, 0.03636655583977699, -0.028354478999972343, -0.03313075751066208, 0.10994939506053925, 0.04757631942629814, 0.05115566775202751, -0.031214825809001923, -0.1510341912508011, -0.03417595475912094, 0.1554444134235382, -0.17372852563858032, -0.03655309975147247 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-32-finetuned-squad-seed-6 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-32-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-32-finetuned-squad-seed-6
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-32-finetuned-squad-seed-6 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-32-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-32-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 45, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-32-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08843699842691422, 0.09544404596090317, -0.002517079468816519, 0.07874304801225662, 0.14037106931209564, 0.030055314302444458, 0.0972435250878334, 0.13649006187915802, -0.1127064973115921, 0.04514065384864807, 0.09562571346759796, 0.07775098085403442, 0.028897788375616074, 0.14418336749076843, -0.030119040980935097, -0.2443312257528305, -0.007935840636491776, -0.022191526368260384, -0.10495684295892715, 0.11337257921695709, 0.09951993823051453, -0.09898421168327332, 0.066706083714962, -0.020351119339466095, -0.1768132746219635, 0.015565712936222553, -0.01799716241657734, -0.051708269864320755, 0.11696847528219223, -0.002744469093158841, 0.07853132486343384, 0.00934427697211504, 0.11710384488105774, -0.19348639249801636, 0.018300065770745277, 0.07146940380334854, 0.04440363869071007, 0.0937955230474472, 0.00501444423571229, -0.020589260384440422, 0.12051303684711456, -0.13019531965255737, 0.09689510613679886, 0.032281890511512756, -0.097980797290802, -0.20430348813533783, -0.09727045148611069, 0.012214625254273415, 0.04282744228839874, 0.08949317783117294, 0.006681571248918772, 0.14918003976345062, -0.10732632875442505, 0.08062055706977844, 0.2302507907152176, -0.2675956189632416, -0.08198506385087967, 0.04749981313943863, 0.0613541305065155, 0.08549152314662933, -0.12279009073972702, -0.01342371478676796, 0.010780702345073223, 0.020325900986790657, 0.09993720054626465, -0.027792232111096382, -0.07648245245218277, 0.012558589689433575, -0.11226540803909302, 0.0005034273490309715, 0.1153247207403183, 0.0382721908390522, -0.05488666892051697, -0.07840727269649506, -0.0387040376663208, -0.058996569365262985, -0.034482620656490326, -0.014234081842005253, 0.036476343870162964, -0.06198347359895706, -0.14240257441997528, -0.046361155807971954, -0.0492406003177166, -0.09294962882995605, 0.00022432846890296787, 0.21056848764419556, 0.03878689557313919, 0.02211199700832367, -0.049465250223875046, 0.1053517535328865, 0.015276649966835976, -0.12398819625377655, -0.03342283517122269, -0.0053084599785506725, -0.0936426967382431, -0.034772224724292755, -0.05677175149321556, 0.031203141435980797, 0.03949110954999924, 0.22613084316253662, -0.02769695594906807, 0.07388971745967865, 0.036937009543180466, -0.013396348804235458, -0.027609093114733696, 0.1460065245628357, -0.027233105152845383, -0.07648079842329025, 0.00921241007745266, 0.06395317614078522, 0.006183465011417866, -0.005012911278754473, -0.06225244328379631, -0.04465527832508087, 0.061784777790308, 0.05721786245703697, -0.05217638239264488, 0.027118096128106117, -0.009823290631175041, -0.023268692195415497, 0.00010752339585451409, -0.11907167732715607, 0.008860546164214611, -0.009180405177175999, -0.07985153049230576, -0.05429598316550255, 0.012952777557075024, -0.012513846158981323, 0.009384037926793098, 0.089134581387043, -0.07408027350902557, -0.03640850633382797, -0.08012411743402481, -0.07477101683616638, -0.015032944269478321, -0.16098171472549438, 0.02222151681780815, -0.0684180036187172, -0.15283015370368958, -0.03214956447482109, 0.05008891969919205, -0.07990074902772903, -0.03489059582352638, -0.03317370265722275, -0.08096346259117126, 0.0181623212993145, 0.0013049861881881952, 0.2159283459186554, -0.04883387312293053, 0.09553223103284836, 0.01550988294184208, 0.05450563505291939, 0.004183790180832148, 0.03783616051077843, -0.07905778288841248, 0.013697922229766846, -0.17471641302108765, 0.07556967437267303, -0.08988378196954727, 0.0277653057128191, -0.1457080990076065, -0.08759898692369461, -0.00226980890147388, -0.019781412556767464, 0.08249904215335846, 0.10505812615156174, -0.1258888989686966, -0.022642510011792183, 0.12615276873111725, -0.056924231350421906, -0.05623016133904457, 0.06305603682994843, -0.07392130047082901, 0.08230036497116089, 0.048552706837654114, 0.18798716366291046, 0.09863683581352234, -0.10618358850479126, 0.024402258917689323, 0.018615858629345894, 0.03813820704817772, 0.000745172263123095, 0.056498195976018906, 0.000753836240619421, 0.021462904289364815, 0.015507608652114868, -0.08286668360233307, 0.015471586026251316, -0.09250839054584503, -0.06171765178442001, -0.04204120859503746, -0.09013937413692474, 0.006659332197159529, 0.009045221842825413, 0.0291223656386137, -0.0799887627363205, -0.08687818050384521, 0.06316792219877243, 0.14082778990268707, -0.04535254091024399, 0.010448237881064415, -0.07965613156557083, 0.0023308000527322292, -0.030776502564549446, -0.022528190165758133, -0.19642138481140137, -0.061571959406137466, 0.025625668466091156, 0.011719527654349804, 0.04504575580358505, -0.005125370342284441, 0.08027464896440506, 0.021670952439308167, -0.05009216442704201, -0.004611919168382883, -0.0907294824719429, -0.011163419112563133, -0.09104696661233902, -0.21753984689712524, -0.05579035356640816, -0.039553653448820114, 0.15115267038345337, -0.17135144770145416, -0.0001709935604594648, -0.019529933109879494, 0.10951316356658936, 0.041239820420742035, -0.050270725041627884, -0.0003836150572169572, 0.029742196202278137, 0.01570993661880493, -0.09911098331212997, 0.03518086299300194, 0.015689479187130928, -0.09797324985265732, -0.02535487525165081, -0.102598175406456, 0.0012787478044629097, 0.07401705533266068, 0.07488232851028442, -0.1070210263133049, -0.0183111522346735, -0.062480561435222626, -0.028912069275975227, -0.046741239726543427, 0.035727955400943756, 0.17247970402240753, 0.01664714328944683, 0.11185760796070099, -0.07519649714231491, -0.0856982097029686, 0.018378959968686104, 0.00882041361182928, 0.05947467312216759, 0.11373438686132431, 0.0782490149140358, -0.10167497396469116, 0.058338746428489685, 0.08889809250831604, -0.04892827197909355, 0.14018896222114563, -0.04975683242082596, -0.07929421961307526, -0.030019229277968407, 0.002051795832812786, -0.0019055213779211044, 0.15103739500045776, -0.046534039080142975, 0.01018158346414566, 0.034279514104127884, 0.030139943584799767, 0.008401293307542801, -0.16254951059818268, -0.024022113531827927, 0.019575655460357666, -0.048356469720602036, -0.029351545497775078, 0.012328016571700573, 0.012748275883495808, 0.09150976687669754, 0.04907470569014549, -0.00019140623044222593, 0.005559076555073261, -0.013735895976424217, -0.04863825812935829, 0.20195409655570984, -0.0912800207734108, -0.043356288224458694, -0.08380727469921112, -0.0013586736749857664, -0.011011007241904736, -0.03619746118783951, 0.016357416287064552, -0.10206594318151474, -0.022792601957917213, -0.06483937799930573, 0.004932967014610767, -0.0478455014526844, 0.010898709297180176, 0.00097063829889521, 0.018948940560221672, 0.057174984365701675, -0.1342637836933136, 0.014284402132034302, -0.06350106000900269, -0.11250892281532288, 0.030710510909557343, 0.05213557556271553, 0.08699643611907959, 0.06256251037120819, -0.026119401678442955, 0.017292218282818794, -0.04532152786850929, 0.23210473358631134, -0.08552765846252441, 0.004690759815275669, 0.12460923939943314, 0.024820121005177498, 0.037388451397418976, 0.10104912519454956, 0.02777409739792347, -0.09998708963394165, 0.0445394404232502, 0.07556159049272537, -0.044001586735248566, -0.2545084059238434, 0.008780557662248611, -0.04358748346567154, -0.08452807366847992, 0.0884704440832138, 0.048342954367399216, -0.041801635175943375, 0.06558685004711151, 0.0035003856755793095, 0.007454142905771732, -0.023231875151395798, 0.08763186633586884, 0.08429073542356491, 0.05537886545062065, 0.10617117583751678, -0.04154890775680542, -0.018627207726240158, 0.06435605138540268, 0.02865973673760891, 0.3085970878601074, -0.047810252755880356, 0.09891177713871002, 0.05303072929382324, 0.14760084450244904, -0.0214239489287138, 0.038088567554950714, 0.01207063626497984, -0.005448387004435062, -0.02900957129895687, -0.053473275154829025, -0.024670492857694626, 0.005978001747280359, -0.06913230568170547, 0.04236733540892601, -0.05633952096104622, 0.04663464426994324, 0.015148484148085117, 0.2920225262641907, 0.0029255191329866648, -0.2647104859352112, -0.09983084350824356, -0.012291780672967434, -0.038138147443532944, -0.04963834583759308, 0.013459058478474617, 0.118961863219738, -0.1299193799495697, 0.024796949699521065, -0.06581025570631027, 0.08470289409160614, -0.026951342821121216, -0.005908529739826918, 0.03861430287361145, 0.1643192321062088, -0.021106218919157982, 0.06145806983113289, -0.22176994383335114, 0.23106476664543152, 0.00815577618777752, 0.12144992500543594, -0.05382617563009262, 0.006459476891905069, 0.02404589019715786, -0.0013216349761933088, 0.09555618464946747, -0.0027185664512217045, -0.04752637445926666, -0.13875268399715424, -0.05185674503445625, 0.07175786793231964, 0.14070288836956024, -0.05116273835301399, 0.10213980823755264, -0.05930519849061966, 0.010767667554318905, 0.037485722452402115, -0.08183418214321136, -0.12130863219499588, -0.10193698853254318, -0.020485106855630875, -0.00005579256685450673, -0.06353279203176498, -0.06419210135936737, -0.0669684112071991, 0.026638396084308624, 0.1154748946428299, 0.0009834904922172427, -0.034309271723032, -0.14829610288143158, 0.0741313025355339, 0.15482376515865326, -0.06806084513664246, 0.032363418489694595, 0.002711283741518855, 0.0790560245513916, 0.035470906645059586, -0.07788293063640594, 0.06411757320165634, -0.06674043834209442, -0.17941533029079437, -0.0475924089550972, 0.1028376966714859, 0.07160337269306183, 0.041295524686574936, -0.006103952415287495, 0.04744233191013336, -0.027247745543718338, -0.09147216379642487, 0.029838817194104195, 0.02993389405310154, 0.03648314252495766, 0.043374527245759964, -0.07792741805315018, 0.08491984009742737, -0.04333191365003586, -0.019243545830249786, 0.1214771494269371, 0.23059190809726715, -0.1040443405508995, 0.09463132917881012, 0.05632487311959267, -0.060611095279455185, -0.16664087772369385, 0.07273612171411514, 0.10566117614507675, 0.01342983078211546, 0.059420742094516754, -0.21681001782417297, 0.12253279983997345, 0.1009102538228035, -0.013395338319242, 0.03939933329820633, -0.27812835574150085, -0.1191755011677742, 0.04990338161587715, 0.12615124881267548, 0.08694697171449661, -0.12489522993564606, -0.018459733575582504, -0.014928067103028297, -0.1270270198583603, 0.07856699079275131, -0.11406905949115753, 0.13189882040023804, -0.024707958102226257, 0.11139342188835144, 0.012036403641104698, -0.02724057249724865, 0.10631435364484787, 0.05051429197192192, 0.09715785086154938, -0.04252960905432701, 0.0014249465893954039, 0.05964907258749008, -0.04854608327150345, 0.00012467970373108983, -0.0690426304936409, 0.08942167460918427, -0.13610075414180756, -0.007325637154281139, -0.08899924904108047, 0.04195544123649597, -0.040780209004879, -0.06560639292001724, -0.04053560271859169, 0.05699148029088974, 0.04408913850784302, -0.03346027061343193, 0.03885899484157562, -0.025111597031354904, 0.10318827629089355, 0.025436609983444214, 0.08747643977403641, 0.02102035842835903, -0.054310575127601624, 0.021492544561624527, -0.012271474115550518, 0.06364519894123077, -0.16982749104499817, 0.00863697100430727, 0.0983639806509018, 0.0685688853263855, 0.10100347548723221, 0.042216137051582336, -0.04723525792360306, 0.017134495079517365, 0.028101162984967232, -0.09624050557613373, -0.11538317054510117, 0.04025213420391083, -0.036852918565273285, -0.14717110991477966, 0.04378661885857582, 0.11869388818740845, -0.03939446434378624, -0.031226765364408493, -0.020214976742863655, 0.0028738749679178, -0.021329781040549278, 0.18143336474895477, 0.06077340990304947, 0.06000159680843353, -0.10269390046596527, 0.12020363658666611, 0.03314460813999176, -0.026237212121486664, 0.05158664658665657, 0.08274126052856445, -0.1008930429816246, -0.006100249011069536, 0.0788213461637497, 0.12643346190452576, -0.055094391107559204, 0.001260525779798627, -0.1024758368730545, -0.08704819530248642, 0.05837356299161911, 0.14342370629310608, 0.05002042278647423, -0.01689258962869644, -0.046514157205820084, 0.04534132778644562, -0.14013728499412537, 0.0739779844880104, 0.03234977647662163, 0.06407927721738815, -0.07746369391679764, 0.06367481499910355, 0.0032496508210897446, 0.01798238977789879, -0.0147391427308321, 0.003507450921460986, -0.09648805856704712, -0.008112248033285141, -0.0854322612285614, 0.0008668474620208144, 0.00021664171072188765, 0.018282825127243996, -0.025003446266055107, -0.07043787837028503, -0.0443945936858654, 0.037705931812524796, -0.08634165674448013, -0.05109314247965813, 0.007532937917858362, 0.04261596128344536, -0.12346361577510834, -0.00437504705041647, 0.027947288006544113, -0.0972244068980217, 0.09787047654390335, 0.07299867272377014, 0.02142825908958912, 0.029487086459994316, -0.11867762356996536, -0.03405848518013954, -0.013505886308848858, -0.009921880438923836, 0.059636496007442474, -0.09826305508613586, -0.005177868530154228, -0.045908425003290176, 0.06363231688737869, 0.01285617146641016, 0.062153901904821396, -0.13976770639419556, 0.014643983915448189, -0.07057411223649979, -0.045248303562402725, -0.07881765067577362, 0.04032943397760391, 0.09401945024728775, 0.06023179739713669, 0.14040729403495789, -0.07499255239963531, 0.025117889046669006, -0.20359420776367188, -0.036490313708782196, -0.013330573216080666, -0.05575188621878624, -0.14580421149730682, -0.046528395265340805, 0.08247175067663193, -0.04006115347146988, 0.08872228860855103, -0.027074120938777924, 0.07287033647298813, 0.03685986250638962, -0.04968481883406639, -0.031470488756895065, -0.008501662872731686, 0.20229415595531464, 0.07080277800559998, -0.014766364358365536, 0.10336042195558548, 0.0011553249787539244, 0.03049565851688385, 0.04622720181941986, 0.17185115814208984, 0.22213585674762726, 0.041945334523916245, 0.04991555213928223, 0.0641031563282013, -0.07764291763305664, -0.06936671584844589, 0.17417897284030914, -0.010045601986348629, 0.06656210869550705, -0.04658569023013115, 0.1933811753988266, 0.11743339896202087, -0.16617019474506378, 0.047269973903894424, -0.04635947197675705, -0.08225101977586746, -0.11828555911779404, -0.007877455092966557, -0.08343925327062607, -0.12344437092542648, 0.03735871985554695, -0.11944101005792618, 0.045632198452949524, 0.10983701795339584, 0.014438485726714134, 0.03493388742208481, 0.12696892023086548, -0.009471521712839603, -0.006315527483820915, 0.06818989664316177, 0.004395836032927036, -0.010612421669065952, -0.03989808261394501, -0.07440576702356339, 0.05992646887898445, 0.0008099148981273174, 0.08071703463792801, -0.0465581901371479, -0.016191665083169937, 0.030332326889038086, -0.030167950317263603, -0.07899525761604309, 0.025045614689588547, 0.04594586789608002, 0.0538642555475235, 0.05046011134982109, 0.04225354269146919, -0.011220023036003113, -0.033270932734012604, 0.32576239109039307, -0.06736640632152557, -0.10223957151174545, -0.12400991469621658, 0.21754081547260284, 0.03205016255378723, -0.02692732959985733, 0.03234200179576874, -0.0857575535774231, -0.0007866788073442876, 0.16577686369419098, 0.17568454146385193, -0.0670134499669075, -0.020192284137010574, -0.0002320458006579429, -0.016213703900575638, -0.03159087523818016, 0.12575672566890717, 0.09768746048212051, -0.012981262058019638, -0.061801519244909286, -0.01694480888545513, -0.01617581769824028, -0.03350016474723816, -0.04094896838068962, 0.04850298538804054, 0.021127140149474144, -0.027180328965187073, -0.042916249483823776, 0.07602863013744354, 0.0040382626466453075, -0.2533597946166992, 0.06295288354158401, -0.1550413966178894, -0.1765722781419754, -0.050888024270534515, 0.029718894511461258, 0.005081530660390854, 0.05705815181136131, -0.01558011770248413, 0.004096664022654295, 0.08761408925056458, -0.010657376609742641, -0.03486694395542145, -0.12135346978902817, 0.12344875931739807, -0.04964999109506607, 0.16806338727474213, -0.0314546637237072, 0.043626196682453156, 0.11644309014081955, 0.030083931982517242, -0.13479182124137878, 0.037341248244047165, 0.061822857707738876, -0.09765145927667618, 0.020127970725297928, 0.14894694089889526, -0.047505397349596024, 0.09886787086725235, 0.045315101742744446, -0.1091127097606659, 0.0009426118922419846, -0.06661784648895264, -0.03369516879320145, -0.08756396919488907, -0.00997872930020094, -0.0657370537519455, 0.16699565947055817, 0.22236165404319763, -0.03759389743208885, 0.008672795258462429, -0.0980934351682663, 0.012500466778874397, 0.0699242502450943, 0.03636903688311577, -0.049476731568574905, -0.18161405622959137, 0.005215798504650593, 0.05950938165187836, -0.0018065419280901551, -0.2532327473163605, -0.07200147211551666, 0.036526553332805634, -0.029419779777526855, -0.03313320875167847, 0.109281025826931, 0.04742247238755226, 0.05070851743221283, -0.031293079257011414, -0.15287154912948608, -0.033907078206539154, 0.1559305340051651, -0.17384400963783264, -0.03631192818284035 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-32-finetuned-squad-seed-8 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-32-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-32-finetuned-squad-seed-8
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-32-finetuned-squad-seed-8 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-32-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-32-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 45, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-32-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.0891522541642189, 0.09635492414236069, -0.0025335673708468676, 0.07914844900369644, 0.14034374058246613, 0.03052675910294056, 0.09659172594547272, 0.13647045195102692, -0.11281874775886536, 0.044926904141902924, 0.09579838067293167, 0.07716978341341019, 0.02869790606200695, 0.1437007337808609, -0.030467508360743523, -0.2441672533750534, -0.008674286305904388, -0.021920522674918175, -0.10355369746685028, 0.11295624822378159, 0.0996590405702591, -0.09915105253458023, 0.0667346715927124, -0.020519189536571503, -0.1760922372341156, 0.015310353599488735, -0.017636949196457863, -0.051866564899683, 0.11726441234350204, -0.002170493360608816, 0.07842939347028732, 0.008488263934850693, 0.11734837293624878, -0.19397997856140137, 0.01811865344643593, 0.0716266930103302, 0.044381603598594666, 0.09388316422700882, 0.0040459646843373775, -0.0198359414935112, 0.119957335293293, -0.13057339191436768, 0.09698464721441269, 0.03203308954834938, -0.0977046862244606, -0.20464594662189484, -0.09682386368513107, 0.013295849785208702, 0.04273444414138794, 0.08883483707904816, 0.007544731255620718, 0.1496783047914505, -0.1062767431139946, 0.08119678497314453, 0.2307872176170349, -0.26716718077659607, -0.0813087597489357, 0.04670379310846329, 0.06114928424358368, 0.0866113007068634, -0.12200406193733215, -0.01332859043031931, 0.010681800544261932, 0.020068097859621048, 0.10043526440858841, -0.02839658409357071, -0.07780596613883972, 0.012535344809293747, -0.11199549585580826, 0.00032286212081089616, 0.11560633778572083, 0.038561079651117325, -0.05512417480349541, -0.07816331833600998, -0.03912748396396637, -0.06011858209967613, -0.03498631715774536, -0.014311938546597958, 0.03616093471646309, -0.06182292103767395, -0.14137452840805054, -0.046718183904886246, -0.04873374104499817, -0.09208126366138458, 0.0007281096186488867, 0.2104937881231308, 0.03907385841012001, 0.021886684000492096, -0.04876904934644699, 0.10525000840425491, 0.013707062229514122, -0.12382641434669495, -0.03309803456068039, -0.004742263350635767, -0.09360954165458679, -0.03497619554400444, -0.05674366652965546, 0.030266523361206055, 0.03939995914697647, 0.22753402590751648, -0.027270730584859848, 0.07367720454931259, 0.03727708384394646, -0.012895875610411167, -0.02751704305410385, 0.14697860181331635, -0.02772713266313076, -0.07789842039346695, 0.010310450568795204, 0.06375758349895477, 0.0068467240780591965, -0.005617571994662285, -0.06312886625528336, -0.04518958181142807, 0.06216916814446449, 0.05696863681077957, -0.052139267325401306, 0.026649942621588707, -0.00982277188450098, -0.023384137079119682, 0.0006217416375875473, -0.11914736032485962, 0.009108280763030052, -0.009292714297771454, -0.07973068952560425, -0.05388691648840904, 0.013641154393553734, -0.011720607057213783, 0.009342397563159466, 0.08868535608053207, -0.07334887981414795, -0.035935528576374054, -0.07998209446668625, -0.07474171370267868, -0.014813169836997986, -0.1604934185743332, 0.022638333961367607, -0.069443479180336, -0.15310567617416382, -0.03200313821434975, 0.050074994564056396, -0.07929354906082153, -0.03473399952054024, -0.03257003799080849, -0.0799664631485939, 0.017852891236543655, 0.001038864254951477, 0.21458737552165985, -0.04902924224734306, 0.0951705127954483, 0.01539844274520874, 0.054040417075157166, 0.0030328843276947737, 0.03806532174348831, -0.0783485621213913, 0.013699290342628956, -0.1749175637960434, 0.07547585666179657, -0.08942045271396637, 0.028429917991161346, -0.14454233646392822, -0.08742933720350266, -0.001173820230178535, -0.019292322918772697, 0.08294656872749329, 0.10403982549905777, -0.1260276436805725, -0.02246430143713951, 0.12564599514007568, -0.05618228390812874, -0.0565192848443985, 0.06452005356550217, -0.07398709654808044, 0.08190940320491791, 0.04905356094241142, 0.18767258524894714, 0.09973956644535065, -0.10611404478549957, 0.025652606040239334, 0.019774002954363823, 0.038795728236436844, -0.0003647196281235665, 0.056337565183639526, 0.0007654586806893349, 0.02183418907225132, 0.015718013048171997, -0.08199673891067505, 0.016048185527324677, -0.09249318391084671, -0.06209666281938553, -0.0422460101544857, -0.09020853787660599, 0.005838470067828894, 0.009271930903196335, 0.02914595790207386, -0.07983338832855225, -0.08719043433666229, 0.06420981138944626, 0.14092551171779633, -0.04562729597091675, 0.010717356577515602, -0.07922698557376862, 0.0029427059926092625, -0.02960977889597416, -0.022629667073488235, -0.19595909118652344, -0.06024383008480072, 0.025474591180682182, 0.011789349839091301, 0.04468434303998947, -0.005089337006211281, 0.07942747324705124, 0.02215912751853466, -0.049583349376916885, -0.0036728810518980026, -0.09006515890359879, -0.010842074640095234, -0.0919124037027359, -0.21686170995235443, -0.05578088015317917, -0.03904597833752632, 0.15174663066864014, -0.1723785698413849, 0.00019728411280084401, -0.020404288545250893, 0.10900583118200302, 0.040939316153526306, -0.05028533190488815, -0.000566652393899858, 0.03046913631260395, 0.015459525398910046, -0.09932616353034973, 0.03519276902079582, 0.016239721328020096, -0.09871569275856018, -0.026555456221103668, -0.10249455273151398, 0.002094142371788621, 0.0735551118850708, 0.07367242127656937, -0.1070285364985466, -0.018896128982305527, -0.06204141303896904, -0.028836600482463837, -0.04612740874290466, 0.03484293073415756, 0.17300398647785187, 0.016902199015021324, 0.11322810500860214, -0.0750158503651619, -0.0853712186217308, 0.01804281584918499, 0.00877103116363287, 0.060172874480485916, 0.1133817732334137, 0.07802273333072662, -0.09965483099222183, 0.057672467082738876, 0.08804681152105331, -0.05016103759407997, 0.13926614820957184, -0.049505721777677536, -0.07904095202684402, -0.030126284807920456, 0.0018585561774671078, -0.0017519822577014565, 0.15092168748378754, -0.04793884605169296, 0.009451130405068398, 0.034444548189640045, 0.029684146866202354, 0.00866020005196333, -0.16263911128044128, -0.024040576070547104, 0.020273273810744286, -0.04797865450382233, -0.028198199346661568, 0.011700689792633057, 0.012526318430900574, 0.09114455431699753, 0.048838309943675995, -0.0006760179530829191, 0.006003981921821833, -0.013603627681732178, -0.04883107542991638, 0.2013292908668518, -0.09141430258750916, -0.0443449541926384, -0.08504753559827805, -0.001312400447204709, -0.011032702401280403, -0.03639485314488411, 0.016632497310638428, -0.10043306648731232, -0.02281232364475727, -0.06523362547159195, 0.00351528637111187, -0.04760197177529335, 0.01074914075434208, 0.0012117325095459819, 0.01860758289694786, 0.057713545858860016, -0.13415959477424622, 0.014178360812366009, -0.06285999715328217, -0.11178475618362427, 0.030834903940558434, 0.05232331156730652, 0.08744607865810394, 0.06332670152187347, -0.02661163918673992, 0.016969691962003708, -0.04486657679080963, 0.23187197744846344, -0.08510682731866837, 0.004947258625179529, 0.12473440915346146, 0.023806096985936165, 0.037610433995723724, 0.10031718760728836, 0.02820603922009468, -0.10009551793336868, 0.04425572603940964, 0.07492202520370483, -0.044307298958301544, -0.2537969648838043, 0.008757230825722218, -0.043804850429296494, -0.08429496735334396, 0.08833523094654083, 0.04835555702447891, -0.04115518182516098, 0.06571395695209503, 0.00383811560459435, 0.008903831243515015, -0.024061357602477074, 0.08740727603435516, 0.08474507182836533, 0.05492755398154259, 0.10588885843753815, -0.04120835289359093, -0.01843581162393093, 0.06475929170846939, 0.027745947241783142, 0.30676794052124023, -0.04801204800605774, 0.09975705295801163, 0.052394039928913116, 0.1481948345899582, -0.021575674414634705, 0.037580061703920364, 0.011681986041367054, -0.0056900205090641975, -0.029061011970043182, -0.05350267142057419, -0.025744924321770668, 0.006411911454051733, -0.0696655884385109, 0.042989540845155716, -0.05632905662059784, 0.04720933735370636, 0.014861894771456718, 0.29175323247909546, 0.002769261598587036, -0.2645728886127472, -0.09999296814203262, -0.012470231391489506, -0.03834201768040657, -0.050025824457407, 0.013618942350149155, 0.11953939497470856, -0.12977182865142822, 0.02409985661506653, -0.06518956273794174, 0.08495086431503296, -0.02819736674427986, -0.0057047288864851, 0.038286615163087845, 0.16469059884548187, -0.021047575399279594, 0.06148851662874222, -0.22270509600639343, 0.2298070639371872, 0.008314506150782108, 0.12156696617603302, -0.053809754550457, 0.006959525868296623, 0.024081319570541382, 0.0002773957676254213, 0.09466026723384857, -0.0024200675543397665, -0.04633382707834244, -0.13998547196388245, -0.052324824035167694, 0.07157120853662491, 0.1396302431821823, -0.04974553361535072, 0.10175302624702454, -0.05961541831493378, 0.010845569893717766, 0.037480488419532776, -0.08132476359605789, -0.12129662930965424, -0.10221341997385025, -0.02084612473845482, 0.0009916065027937293, -0.06315382570028305, -0.06413684040307999, -0.06662441790103912, 0.024857526645064354, 0.11565839499235153, 0.0015090068336576223, -0.03438121825456619, -0.14830425381660461, 0.07474149018526077, 0.15413211286067963, -0.06828273087739944, 0.03259076923131943, 0.0027496207039803267, 0.07905098795890808, 0.03556985780596733, -0.07700999081134796, 0.06390876322984695, -0.06663762778043747, -0.17900371551513672, -0.04787307232618332, 0.1023290604352951, 0.07149697840213776, 0.041348669677972794, -0.0058715431950986385, 0.047066155821084976, -0.027597302570939064, -0.09141609817743301, 0.02861250378191471, 0.031008923426270485, 0.035980015993118286, 0.043448008596897125, -0.0780085027217865, 0.08584117889404297, -0.04309260472655296, -0.01950622908771038, 0.12247911095619202, 0.2302624136209488, -0.10434935986995697, 0.09385168552398682, 0.05647919327020645, -0.06069497764110565, -0.1659679263830185, 0.07255282253026962, 0.10522382706403732, 0.013607025146484375, 0.0596124492585659, -0.21614599227905273, 0.12281906604766846, 0.10207507014274597, -0.013123484328389168, 0.0396517738699913, -0.2782701253890991, -0.11944873631000519, 0.05081342160701752, 0.12616485357284546, 0.08826880156993866, -0.12551997601985931, -0.018513957038521767, -0.015596447512507439, -0.12835311889648438, 0.07730473577976227, -0.11327894032001495, 0.13170720636844635, -0.024668212980031967, 0.1102992445230484, 0.012099015526473522, -0.027263130992650986, 0.10680606961250305, 0.051079168915748596, 0.09713638573884964, -0.04292990639805794, 0.0016177017241716385, 0.05895764008164406, -0.048720549792051315, 0.0005749400006607175, -0.06878919154405594, 0.08942882716655731, -0.13792617619037628, -0.0074110631830990314, -0.08775833249092102, 0.042021170258522034, -0.04065361246466637, -0.06564100831747055, -0.04059560224413872, 0.056165050715208054, 0.04381983354687691, -0.03327765315771103, 0.03994234278798103, -0.024996666237711906, 0.10249394923448563, 0.02606576681137085, 0.08623459190130234, 0.01827789843082428, -0.05441780388355255, 0.021288102492690086, -0.012291052378714085, 0.06353625655174255, -0.16965435445308685, 0.009225737303495407, 0.09871339052915573, 0.06884903460741043, 0.10156495869159698, 0.04113825410604477, -0.04660402983427048, 0.017347345128655434, 0.02780027687549591, -0.09582190960645676, -0.1143624559044838, 0.039788324385881424, -0.037687718868255615, -0.1468833088874817, 0.043028801679611206, 0.11901821941137314, -0.04007524251937866, -0.030784495174884796, -0.020496482029557228, 0.001982701476663351, -0.021475231274962425, 0.1809244155883789, 0.06168878450989723, 0.05968666821718216, -0.10252939909696579, 0.11980088800191879, 0.03345385566353798, -0.02497018128633499, 0.051618292927742004, 0.08264031261205673, -0.1009562686085701, -0.006233898922801018, 0.07884135097265244, 0.1264987736940384, -0.055855050683021545, 0.00034331035567447543, -0.10297306627035141, -0.08606085181236267, 0.05820880085229874, 0.1426336169242859, 0.05039047449827194, -0.017103858292102814, -0.04676156863570213, 0.044942840933799744, -0.14006802439689636, 0.07376546412706375, 0.032450754195451736, 0.06444092839956284, -0.07774201035499573, 0.06538006663322449, 0.003673496190458536, 0.017976293340325356, -0.014610185287892818, 0.0032461166847497225, -0.09635688364505768, -0.007857023738324642, -0.08724769204854965, 0.001100493362173438, 0.0003995899751316756, 0.018629398196935654, -0.024965135380625725, -0.0703497901558876, -0.0442827045917511, 0.03773130103945732, -0.0858086496591568, -0.051057081669569016, 0.007876033894717693, 0.04246365651488304, -0.12298049032688141, -0.004606145899742842, 0.027640899643301964, -0.09692440181970596, 0.09815610945224762, 0.07229170203208923, 0.02121231146156788, 0.02922269143164158, -0.11906526982784271, -0.03380369395017624, -0.013533114455640316, -0.00925578735768795, 0.05983438715338707, -0.09693552553653717, -0.004642761778086424, -0.045739032328128815, 0.06343435496091843, 0.012651098892092705, 0.062193579971790314, -0.14004269242286682, 0.014702140353620052, -0.07039693742990494, -0.045171938836574554, -0.07920801639556885, 0.04012598842382431, 0.09357749670743942, 0.059720929712057114, 0.14015451073646545, -0.07485897839069366, 0.024876300245523453, -0.2035859078168869, -0.03663022443652153, -0.013221746310591698, -0.05552137643098831, -0.14578424394130707, -0.04741688445210457, 0.0823112428188324, -0.03962450847029686, 0.09028556942939758, -0.026983048766851425, 0.07305796444416046, 0.036569736897945404, -0.05037030577659607, -0.031233113259077072, -0.00897741038352251, 0.20275302231311798, 0.07136518508195877, -0.014639904722571373, 0.10252013057470322, 0.001400244189426303, 0.031507786363363266, 0.04560723155736923, 0.17001929879188538, 0.2222408503293991, 0.04140239953994751, 0.04980413243174553, 0.06372646987438202, -0.07730916142463684, -0.0696038082242012, 0.17369677126407623, -0.010239259339869022, 0.06717085093259811, -0.04669395834207535, 0.1937091052532196, 0.1172008067369461, -0.16605697572231293, 0.04705817252397537, -0.04571159556508064, -0.08243800699710846, -0.11836209148168564, -0.007239619269967079, -0.0834728255867958, -0.1233949214220047, 0.03683166205883026, -0.1189839318394661, 0.045704130083322525, 0.11034566164016724, 0.014256451278924942, 0.03470384702086449, 0.12607410550117493, -0.009595613926649094, -0.006161858327686787, 0.06820549070835114, 0.004468101542443037, -0.010268563404679298, -0.04112518951296806, -0.07513157278299332, 0.05957992002367973, 0.0008965579909272492, 0.08118832856416702, -0.046809837222099304, -0.01489614974707365, 0.030717758461833, -0.0298993531614542, -0.0792662650346756, 0.02514616958796978, 0.04526205360889435, 0.05386471003293991, 0.049287065863609314, 0.0425403006374836, -0.011080718599259853, -0.033423494547605515, 0.32505545020103455, -0.06687931716442108, -0.10268661379814148, -0.12390195578336716, 0.2163950502872467, 0.03237871825695038, -0.026941834017634392, 0.03223881497979164, -0.08588948845863342, 0.0001261866418644786, 0.16629044711589813, 0.17494921386241913, -0.06791245192289352, -0.020147230476140976, 0.00006306044815573841, -0.016337884590029716, -0.0324733592569828, 0.12609735131263733, 0.09789382666349411, -0.01409501489251852, -0.0607345774769783, -0.01725677214562893, -0.016286123543977737, -0.03342796489596367, -0.042124535888433456, 0.04776861146092415, 0.021048763766884804, -0.026560908183455467, -0.042501721531152725, 0.0756290927529335, 0.004672402516007423, -0.25427281856536865, 0.06293732672929764, -0.15495064854621887, -0.1767832338809967, -0.050865527242422104, 0.030000722035765648, 0.0057207075878977776, 0.056314412504434586, -0.015321260318160057, 0.004520514979958534, 0.08865088224411011, -0.011045736260712147, -0.03494136407971382, -0.12069854140281677, 0.12302341312170029, -0.048851821571588516, 0.16806823015213013, -0.03142106160521507, 0.04385971650481224, 0.11618296056985855, 0.030318159610033035, -0.13394233584403992, 0.03754451498389244, 0.061517804861068726, -0.09691169857978821, 0.02012532204389572, 0.14769184589385986, -0.04731994494795799, 0.0986928641796112, 0.04568320885300636, -0.10861295461654663, 0.00040896059363149107, -0.06747785955667496, -0.034101057797670364, -0.0873488113284111, -0.011059444397687912, -0.06539427489042282, 0.16721341013908386, 0.22188355028629303, -0.03753472492098808, 0.008356836624443531, -0.09811878949403763, 0.012156248092651367, 0.07031723856925964, 0.03653609752655029, -0.04974229261279106, -0.1815183460712433, 0.005707030650228262, 0.059069957584142685, -0.001754727796651423, -0.25256580114364624, -0.07246705144643784, 0.03636093810200691, -0.029580263420939445, -0.03283146768808365, 0.10945906490087509, 0.04776095971465111, 0.05088432505726814, -0.031279291957616806, -0.15289609134197235, -0.034413356333971024, 0.1560264378786087, -0.17379316687583923, -0.036445170640945435 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-512-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-512-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-512-finetuned-squad-seed-0
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-512-finetuned-squad-seed-0 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-512-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-512-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-512-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.07879433780908585, 0.09980728477239609, -0.002623827662318945, 0.07672523707151413, 0.1317494660615921, 0.03377878665924072, 0.10729403793811798, 0.12379603087902069, -0.12692274153232574, 0.06787534803152084, 0.09202756732702255, 0.08603614568710327, 0.033828288316726685, 0.13209135830402374, -0.0404028482735157, -0.23211216926574707, 0.007520322222262621, -0.01732252910733223, -0.06680455058813095, 0.10207121819257736, 0.08782333880662918, -0.09770467877388, 0.08116422593593597, -0.0027911392971873283, -0.1832943856716156, 0.027748599648475647, -0.020646413788199425, -0.051221173256635666, 0.09803745150566101, -0.004423639737069607, 0.08332253247499466, 0.007371523883193731, 0.11873217672109604, -0.19249269366264343, 0.013513962738215923, 0.07337410748004913, 0.032907549291849136, 0.09546847641468048, 0.021193617954850197, -0.0038126641884446144, 0.16390879452228546, -0.13466131687164307, 0.09924081712961197, 0.02976052276790142, -0.0868385061621666, -0.16854813694953918, -0.09644417464733124, 0.015267579816281796, 0.03607628494501114, 0.08749455213546753, 0.008739179000258446, 0.1786167025566101, -0.09216268360614777, 0.08010043948888779, 0.23765021562576294, -0.2770881950855255, -0.07868573814630508, 0.042919646948575974, 0.048641204833984375, 0.07730372250080109, -0.1188054010272026, -0.015744775533676147, 0.02083089016377926, 0.029324054718017578, 0.09192299097776413, -0.02516329288482666, -0.08407571911811829, -0.007386139128357172, -0.11886562407016754, 0.003863124642521143, 0.11291361600160599, 0.04420469328761101, -0.05072584003210068, -0.049598004668951035, -0.057830583304166794, -0.07380286604166031, -0.034833263605833054, -0.0343967080116272, 0.04329977557063103, -0.05698323994874954, -0.12083972990512848, -0.03338988125324249, -0.0484706312417984, -0.07785088568925858, -0.02095629833638668, 0.20442500710487366, 0.04840986803174019, 0.03331614285707474, -0.05275619029998779, 0.08191031217575073, 0.010918387211859226, -0.12879909574985504, -0.030197951942682266, 0.002839891705662012, -0.08061347156763077, -0.0392596460878849, -0.054547786712646484, 0.01442230399698019, 0.04274918511509895, 0.21400678157806396, -0.05250467732548714, 0.08363610506057739, 0.03051254339516163, -0.019636323675513268, -0.020884500816464424, 0.12511372566223145, -0.019704176113009453, -0.0786224827170372, 0.028430158272385597, 0.058321308344602585, 0.025026703253388405, 0.002592360367998481, -0.05605711415410042, -0.03260612115263939, 0.08276247978210449, 0.03244572877883911, -0.05978008732199669, 0.02584456466138363, 0.0020512891933321953, -0.019793245941400528, 0.005260919686406851, -0.11360426992177963, 0.017338775098323822, -0.0062055522575974464, -0.07443668693304062, -0.013836863450706005, 0.00987780187278986, -0.015551568940281868, 0.010859252884984016, 0.10033504664897919, -0.08912225067615509, -0.021869337186217308, -0.0766756683588028, -0.07058030366897583, -0.0008697014418430626, -0.1473134309053421, 0.012574556283652782, -0.07344947010278702, -0.15559570491313934, -0.033246252685785294, 0.04321664199233055, -0.07075733691453934, -0.02766926772892475, -0.03850860148668289, -0.07655968517065048, 0.026293406262993813, 0.0031867579091340303, 0.18773652613162994, -0.052773408591747284, 0.08054985105991364, 0.019989721477031708, 0.051098231226205826, -0.022170290350914, 0.03118763491511345, -0.08912631869316101, 0.003759908489882946, -0.16945092380046844, 0.06159704923629761, -0.07593252509832382, 0.016923412680625916, -0.12957170605659485, -0.08649704605340958, -0.026972046121954918, -0.028930148109793663, 0.08366966992616653, 0.10114303231239319, -0.13954615592956543, -0.027705607935786247, 0.1124851182103157, -0.07795953750610352, -0.05792250856757164, 0.06606210768222809, -0.06678807735443115, 0.05209674313664436, 0.05709443613886833, 0.18329855799674988, 0.07356511056423187, -0.11637123674154282, -0.02235189639031887, 0.0009092492982745171, 0.02850898541510105, -0.01065665204077959, 0.050931666046381, 0.009816058911383152, 0.021800458431243896, 0.015940604731440544, -0.03841439634561539, 0.003048479091376066, -0.09762208163738251, -0.06254386156797409, -0.056870248168706894, -0.08201594650745392, -0.036465246230363846, 0.01322055421769619, 0.03795396536588669, -0.08047761768102646, -0.08357162773609161, 0.08097919821739197, 0.141106978058815, -0.0424160435795784, 0.02114786207675934, -0.07321105897426605, 0.019514985382556915, -0.053263310343027115, -0.031287189573049545, -0.20433548092842102, -0.06518340110778809, 0.03292154520750046, -0.027204137295484543, 0.05620569735765457, 0.003757856087759137, 0.07271289825439453, 0.03724442794919014, -0.03734292462468147, 0.005748927593231201, -0.09001358598470688, -0.0067503987811505795, -0.09381762146949768, -0.22212201356887817, -0.03833065181970596, -0.030930940061807632, 0.1260913908481598, -0.16237589716911316, -0.008433694019913673, -0.03273790702223778, 0.12005984038114548, 0.030615629628300667, -0.06314484775066376, -0.014689687639474869, 0.03074139729142189, 0.0016639948589727283, -0.09227408468723297, 0.03196856379508972, 0.016566799953579903, -0.07244345545768738, -0.057907748967409134, -0.11689706146717072, 0.006520294118672609, 0.07859497517347336, 0.06362401694059372, -0.09763152152299881, 0.005942050833255053, -0.06494081020355225, -0.03330518305301666, -0.057863716036081314, 0.040809113532304764, 0.17768695950508118, 0.006782218813896179, 0.10696861147880554, -0.07935066521167755, -0.07359636574983597, 0.021726761013269424, 0.005702963098883629, 0.04273911938071251, 0.09147277474403381, 0.11254560947418213, -0.12682503461837769, 0.06592100113630295, 0.08226508647203445, -0.06133834272623062, 0.12644967436790466, -0.038326431065797806, -0.07988464832305908, -0.03474457561969757, -0.01827928051352501, -0.013754161074757576, 0.13804559409618378, -0.05127746984362602, 0.026123331859707832, 0.030377497896552086, 0.03971969708800316, 0.020207475870847702, -0.15255922079086304, -0.0030015590600669384, 0.008680708706378937, -0.04292330518364906, -0.018911326304078102, 0.022013157606124878, 0.019833920523524284, 0.09784609824419022, 0.03407156467437744, -0.01553086657077074, -0.007298098877072334, -0.003986267372965813, -0.05243712663650513, 0.1905655860900879, -0.09067784994840622, -0.04256126657128334, -0.07711224257946014, 0.0008725055959075689, -0.03709989786148071, -0.04225001484155655, 0.02777845785021782, -0.08852114528417587, -0.03883513808250427, -0.0736054852604866, -0.00130745442584157, -0.04698812961578369, 0.026318229734897614, 0.03034505620598793, 0.00437470106408, 0.06111453101038933, -0.1345565766096115, 0.004517021588981152, -0.07315249741077423, -0.10466686636209488, 0.016982246190309525, 0.06381475925445557, 0.09123523533344269, 0.05782271549105644, -0.029502540826797485, 0.022114498540759087, -0.032235343009233475, 0.2522353231906891, -0.05642715469002724, -0.000861810811329633, 0.1071716696023941, 0.025232696905732155, 0.04558490216732025, 0.09357919543981552, 0.034855011850595474, -0.10192765295505524, 0.030060861259698868, 0.08539710938930511, -0.03462650254368782, -0.23926550149917603, -0.0051353247836232185, -0.035622868686914444, -0.11248134076595306, 0.08310603350400925, 0.05023295059800148, -0.04179217666387558, 0.06378988921642303, 0.008464885875582695, 0.023678649216890335, -0.04998210817575455, 0.09338754415512085, 0.09893392771482468, 0.07422308623790741, 0.10222014039754868, -0.04762214049696922, -0.019931064918637276, 0.06974361091852188, -0.00394422048702836, 0.2926509976387024, -0.02624116651713848, 0.06917637586593628, 0.052475910633802414, 0.13773445785045624, -0.021396063268184662, 0.03682830184698105, 0.006471645087003708, -0.004264747258275747, -0.025456715375185013, -0.0575895793735981, -0.028868773952126503, -0.0017335653537884355, -0.07729405909776688, 0.05584156885743141, -0.061627499759197235, 0.06297466158866882, 0.020757228136062622, 0.2609296441078186, -0.0024645496159791946, -0.2802160084247589, -0.07895255088806152, -0.022112354636192322, -0.03831176832318306, -0.044777628034353256, 0.01248670183122158, 0.09796424210071564, -0.10453325510025024, 0.05251685157418251, -0.05775068327784538, 0.08156322687864304, -0.02772108092904091, -0.004698731936514378, 0.030273187905550003, 0.18268486857414246, -0.01672898605465889, 0.04881025105714798, -0.2010529637336731, 0.21659567952156067, 0.01866634003818035, 0.13302195072174072, -0.05024099722504616, 0.008155963383615017, 0.024021951481699944, -0.00047029025154188275, 0.0752108097076416, -0.005644663702696562, -0.07546845078468323, -0.12641757726669312, -0.07481250166893005, 0.08020173013210297, 0.13950061798095703, -0.016293711960315704, 0.10208471119403839, -0.049480509012937546, 0.019038725644350052, 0.04005826264619827, -0.069692462682724, -0.1572706401348114, -0.09662441909313202, -0.01617906428873539, 0.03669186681509018, -0.09251373261213303, -0.046830132603645325, -0.07556012272834778, -0.009491296485066414, 0.11550373584032059, 0.022562798112630844, -0.01924065314233303, -0.13754694163799286, 0.08750737458467484, 0.1490672379732132, -0.07298769801855087, 0.02395295351743698, -0.007616058457642794, 0.06455215811729431, 0.04249058663845062, -0.09471812844276428, 0.0477592833340168, -0.05784673988819122, -0.1609412133693695, -0.047333598136901855, 0.09048806130886078, 0.0719648003578186, 0.04023420438170433, -0.005031404551118612, 0.04983774572610855, -0.02116408199071884, -0.09926898032426834, 0.013057602569460869, 0.03723709657788277, 0.0506359338760376, 0.0366332121193409, -0.08240114897489548, 0.05836832523345947, -0.033036842942237854, -0.0051370663568377495, 0.11346657574176788, 0.24332644045352936, -0.08906049281358719, 0.08664223551750183, 0.057009294629096985, -0.06767415255308151, -0.14318405091762543, 0.06377311050891876, 0.10420748591423035, -0.0004922719672322273, 0.056358836591243744, -0.19537389278411865, 0.13973121345043182, 0.11462467908859253, -0.012445586733520031, 0.03912093862891197, -0.2734343707561493, -0.11835777014493942, 0.058375295251607895, 0.13134953379631042, 0.12024206668138504, -0.13337644934654236, -0.013260651379823685, -0.017195427790284157, -0.1259465515613556, 0.1075652539730072, -0.11160645633935928, 0.13433758914470673, -0.034072145819664, 0.10996437817811966, 0.005183063447475433, -0.03039836511015892, 0.10771309584379196, 0.04876434803009033, 0.09765283763408661, -0.04167017713189125, 0.011533831246197224, 0.06037867069244385, -0.04877980798482895, 0.01276681013405323, -0.07241897284984589, 0.08308129757642746, -0.12152323871850967, -0.0067305779084563255, -0.07865557819604874, 0.05125760659575462, -0.036738160997629166, -0.0530417263507843, -0.053528327494859695, 0.03676949068903923, 0.05598711594939232, -0.036740582436323166, 0.05547759309411049, -0.0010786900529637933, 0.09271547943353653, 0.02294703759253025, 0.06912648677825928, -0.00011821782391052693, -0.04891705885529518, 0.020548202097415924, -0.009456126019358635, 0.06135552003979683, -0.13885727524757385, 0.005532585084438324, 0.10664188116788864, 0.05224642902612686, 0.09721759706735611, 0.04350114241242409, -0.04739580675959587, 0.012435094453394413, 0.03782200440764427, -0.11334742605686188, -0.10089432448148727, 0.048444461077451706, -0.03846260532736778, -0.13853059709072113, 0.04656246304512024, 0.11395107209682465, -0.04893195629119873, -0.022845447063446045, -0.017932897433638573, 0.006506636738777161, -0.021148795261979103, 0.18524061143398285, 0.041907407343387604, 0.04095498472452164, -0.10175976157188416, 0.13061589002609253, 0.02894287370145321, -0.02305946871638298, 0.059064220637083054, 0.08510088920593262, -0.09460129588842392, 0.002496575703844428, 0.09477715939283371, 0.17589613795280457, -0.07143654674291611, -0.014445466920733452, -0.10404547303915024, -0.06999840587377548, 0.06213189661502838, 0.16080529987812042, 0.05556904524564743, -0.01776663027703762, -0.05013415589928627, 0.04149400070309639, -0.1413133591413498, 0.06177595257759094, 0.031910061836242676, 0.06997643411159515, -0.08696930855512619, 0.05824492126703262, 0.007808128837496042, 0.0034256845247000456, -0.01692246086895466, 0.014078708365559578, -0.0933699756860733, -0.028925715014338493, -0.07488219439983368, 0.010793047025799751, -0.012998297810554504, 0.015815652906894684, -0.01019431371241808, -0.06827152520418167, -0.07013878226280212, 0.036562301218509674, -0.07735287398099899, -0.052389971911907196, 0.012260285206139088, 0.04247358441352844, -0.13352009654045105, 0.006199282128363848, 0.01604403741657734, -0.08933701366186142, 0.0852738618850708, 0.08957023173570633, 0.026681305840611458, 0.0333307608962059, -0.13085800409317017, -0.032771527767181396, 0.013567083515226841, 0.0019377616699784994, 0.06517449021339417, -0.09578784555196762, -0.0040917894802987576, -0.021362101659178734, 0.0757846087217331, 0.01082452479749918, 0.08274079859256744, -0.13150793313980103, 0.009229307994246483, -0.08288402110338211, -0.04340264946222305, -0.06587862968444824, 0.016090355813503265, 0.10188813507556915, 0.05309765040874481, 0.16273976862430573, -0.07713973522186279, 0.01873123086988926, -0.20830263197422028, -0.02753509022295475, -0.0056768255308270454, -0.053165074437856674, -0.13609974086284637, -0.039861585944890976, 0.0771130844950676, -0.03873619809746742, 0.09919097274541855, -0.0213454682379961, 0.061247535049915314, 0.03958698734641075, -0.03269030898809433, -0.0634763091802597, -0.028966302052140236, 0.19766154885292053, 0.07779984176158905, -0.015795545652508736, 0.10753617435693741, -0.00503700552508235, 0.05232769995927811, 0.030486857518553734, 0.20488175749778748, 0.20640447735786438, 0.005054190754890442, 0.07026126980781555, 0.060268837958574295, -0.08186807483434677, -0.06852486729621887, 0.1783214807510376, -0.026941414922475815, 0.07263711094856262, -0.028973698616027832, 0.18799535930156708, 0.11345047503709793, -0.1507856696844101, 0.031861696392297745, -0.03190622478723526, -0.07651782035827637, -0.1405555009841919, 0.0004828931705560535, -0.09620188176631927, -0.11852090060710907, 0.04478222504258156, -0.11984162777662277, 0.056392718106508255, 0.08030953258275986, 0.012895838357508183, 0.03404269739985466, 0.12643331289291382, -0.02647947520017624, 0.0042160311713814735, 0.040620286017656326, 0.007633236702531576, -0.029473889619112015, -0.04212844371795654, -0.0773097574710846, 0.049991633743047714, 0.005495171528309584, 0.08794856071472168, -0.04450983181595802, -0.009854072704911232, 0.041791245341300964, -0.02829502895474434, -0.07695047557353973, 0.02482285350561142, 0.03623690456151962, 0.05631566792726517, 0.04662115126848221, 0.04424610733985901, -0.005585740320384502, -0.032777972519397736, 0.2807771563529968, -0.058605656027793884, -0.09558548033237457, -0.1149626150727272, 0.20687483251094818, 0.04095669835805893, -0.02945122867822647, 0.03799726814031601, -0.08364863693714142, -0.012224256061017513, 0.15570156276226044, 0.1558440774679184, -0.061337608844041824, -0.024484924972057343, -0.01229771040380001, -0.016634738072752953, -0.03912048041820526, 0.11436444520950317, 0.094927117228508, 0.0014529029140248895, -0.053512342274188995, -0.02682086080312729, -0.035579342395067215, -0.015271738171577454, -0.04058969393372536, 0.024958442896604538, 0.014077103696763515, -0.022923802956938744, -0.035101860761642456, 0.06298161298036575, -0.0009172607096843421, -0.24246859550476074, 0.06275534629821777, -0.14478261768817902, -0.16854965686798096, -0.025291619822382927, 0.04944189637899399, -0.011083442717790604, 0.05039128661155701, -0.022899337112903595, -0.0045812735334038734, 0.08083367347717285, -0.019977983087301254, -0.05655217170715332, -0.12530164420604706, 0.11137498915195465, -0.0582270473241806, 0.18059417605400085, -0.017136452719569206, 0.0678299069404602, 0.11803020536899567, 0.04360607638955116, -0.13948124647140503, 0.04660340026021004, 0.04718143120408058, -0.11380642652511597, 0.01792064867913723, 0.14436352252960205, -0.04664007946848869, 0.08801448345184326, 0.043908823281526566, -0.09647171944379807, -0.010072331875562668, -0.04806714132428169, -0.02615230157971382, -0.07028744369745255, -0.011855301447212696, -0.0673305094242096, 0.17009970545768738, 0.19612711668014526, -0.025107616558670998, 0.013502119109034538, -0.09387847781181335, 0.029296236112713814, 0.06853202730417252, 0.03764726221561432, -0.051251377910375595, -0.2082255482673645, 0.0190826915204525, 0.04939199239015579, -0.0030189692042768, -0.23189041018486023, -0.07801882177591324, 0.04012114927172661, -0.0340297557413578, -0.05607854574918747, 0.09632018208503723, 0.035237498581409454, 0.04773775115609169, -0.036842916160821915, -0.14961813390254974, -0.037304218858480453, 0.15479357540607452, -0.17862802743911743, -0.04967663809657097 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-512-finetuned-squad-seed-10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-512-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-512-finetuned-squad-seed-10
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-512-finetuned-squad-seed-10 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-512-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-512-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-512-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.07933445274829865, 0.09717181324958801, -0.002555482555180788, 0.07669408619403839, 0.1320524364709854, 0.034033019095659256, 0.1076090857386589, 0.12205290794372559, -0.12560544908046722, 0.06692679971456528, 0.09094814956188202, 0.08723532408475876, 0.03404821828007698, 0.13252535462379456, -0.039763759821653366, -0.23295623064041138, 0.007395423017442226, -0.017015304416418076, -0.06562792509794235, 0.10202254354953766, 0.08813626319169998, -0.0982276052236557, 0.08056842535734177, -0.0028356038965284824, -0.18361595273017883, 0.027879994362592697, -0.020297924056649208, -0.050026122480630875, 0.09841710329055786, -0.006037972867488861, 0.08309127390384674, 0.006940846331417561, 0.12078189849853516, -0.19071201980113983, 0.013560520485043526, 0.07296141237020493, 0.03305552527308464, 0.0950247198343277, 0.02087114192545414, -0.0027817650698125362, 0.16329583525657654, -0.13511742651462555, 0.09957187622785568, 0.029104337096214294, -0.08692698180675507, -0.16755633056163788, -0.09654717147350311, 0.014700109139084816, 0.03766995668411255, 0.08655332773923874, 0.008399292826652527, 0.17863290011882782, -0.09257879108190536, 0.08025328814983368, 0.2383178174495697, -0.27816465497016907, -0.07867498695850372, 0.04477845877408981, 0.05043615400791168, 0.07826948910951614, -0.11845079809427261, -0.016498848795890808, 0.021314436569809914, 0.029099322855472565, 0.0929226353764534, -0.025637686252593994, -0.08410061150789261, -0.007718271110206842, -0.1202811673283577, 0.0056611341424286366, 0.11188112199306488, 0.04448475316166878, -0.05038008838891983, -0.049495697021484375, -0.05857827514410019, -0.07374747842550278, -0.0362405888736248, -0.03529137745499611, 0.043778594583272934, -0.057206813246011734, -0.1195121705532074, -0.03304363042116165, -0.04751328006386757, -0.07832470536231995, -0.020776143297553062, 0.2037287801504135, 0.0487167127430439, 0.03299146145582199, -0.05253361538052559, 0.08110696077346802, 0.007979664020240307, -0.1288110613822937, -0.028889091685414314, 0.003095407271757722, -0.08184248954057693, -0.04017644748091698, -0.05529552698135376, 0.014490733854472637, 0.04199136793613434, 0.21381530165672302, -0.04997221380472183, 0.08384884893894196, 0.03215381130576134, -0.019902734085917473, -0.02083519659936428, 0.12546902894973755, -0.020091451704502106, -0.0804111436009407, 0.028287576511502266, 0.05867692083120346, 0.02510198950767517, 0.003533089067786932, -0.056864187121391296, -0.032699085772037506, 0.08309539407491684, 0.03211944177746773, -0.06167025491595268, 0.02615104801952839, 0.0024015873204916716, -0.019523432478308678, 0.00647336570546031, -0.1141822561621666, 0.0179299283772707, -0.00673631438985467, -0.07522204518318176, -0.013612615875899792, 0.008291169069707394, -0.01464842353016138, 0.011262908577919006, 0.09947781264781952, -0.08928197622299194, -0.021305209025740623, -0.07739925384521484, -0.0716724842786789, -0.000989283318631351, -0.14983625710010529, 0.013178586959838867, -0.07231223583221436, -0.15782487392425537, -0.0337585024535656, 0.04252946004271507, -0.07029999047517776, -0.027727343142032623, -0.03950941190123558, -0.07671099156141281, 0.02495248056948185, 0.003942498005926609, 0.1893187165260315, -0.05222557485103607, 0.07924427837133408, 0.01990765519440174, 0.05247456952929497, -0.022915421053767204, 0.03137240558862686, -0.08832371234893799, 0.003740564687177539, -0.17037229239940643, 0.06131923943758011, -0.07613352686166763, 0.018894188106060028, -0.12888924777507782, -0.08614428341388702, -0.027352893725037575, -0.02856840007007122, 0.08364555984735489, 0.10078464448451996, -0.1422545313835144, -0.026579901576042175, 0.11302343755960464, -0.07765264064073563, -0.05712040141224861, 0.06464582681655884, -0.06711573898792267, 0.05287950113415718, 0.05850121006369591, 0.18335701525211334, 0.07361669838428497, -0.1159132719039917, -0.021739931777119637, 0.0010698819532990456, 0.028285415843129158, -0.012430802918970585, 0.050382211804389954, 0.010601495392620564, 0.022800887003540993, 0.015977395698428154, -0.03726094588637352, 0.002395468298345804, -0.09737494587898254, -0.06239175796508789, -0.05714348331093788, -0.08294074982404709, -0.036580927670001984, 0.013262576423585415, 0.038158517330884933, -0.08090968430042267, -0.08280112594366074, 0.08245440572500229, 0.14091847836971283, -0.04225960001349449, 0.020341195166110992, -0.07283958047628403, 0.018931547179818153, -0.05365799367427826, -0.031471673399209976, -0.2046850025653839, -0.06424102932214737, 0.03327856957912445, -0.028052547946572304, 0.056206442415714264, 0.00612990278750658, 0.07325519621372223, 0.0370330810546875, -0.03665661811828613, 0.006090518552809954, -0.08918783068656921, -0.0065843937918543816, -0.09562662988901138, -0.2216818928718567, -0.038819100707769394, -0.031070156022906303, 0.12542970478534698, -0.1627795547246933, -0.00814042892307043, -0.035153232514858246, 0.11971773952245712, 0.02976207435131073, -0.0627562552690506, -0.014939527958631516, 0.03029577247798443, 0.0024832545313984156, -0.09247755259275436, 0.032200586050748825, 0.01537315733730793, -0.07165797054767609, -0.05943355709314346, -0.11782710999250412, 0.004835099913179874, 0.0780402198433876, 0.06412051618099213, -0.09733454138040543, 0.006849692668765783, -0.0645696148276329, -0.032551154494285583, -0.05674581602215767, 0.040599275380373, 0.17644312977790833, 0.0061026024632155895, 0.10655549168586731, -0.07957293093204498, -0.07436495274305344, 0.021544838324189186, 0.006469871383160353, 0.04416794329881668, 0.09136516600847244, 0.1131809800863266, -0.12641668319702148, 0.06519544124603271, 0.08429541438817978, -0.06139301136136055, 0.12466322630643845, -0.03849530965089798, -0.08013797551393509, -0.034592945128679276, -0.01951625756919384, -0.014705426059663296, 0.13771681487560272, -0.05194360390305519, 0.02467016875743866, 0.029704546555876732, 0.03926439955830574, 0.0198979414999485, -0.1533777266740799, -0.002668749075382948, 0.008134950883686543, -0.04213320463895798, -0.019713839516043663, 0.02166571095585823, 0.018967490643262863, 0.09787939488887787, 0.033166371285915375, -0.01674545556306839, -0.008042927831411362, -0.004184408579021692, -0.05181088298559189, 0.19085487723350525, -0.09026286005973816, -0.04015441611409187, -0.07516606897115707, 0.0002697127347346395, -0.03601944446563721, -0.04232126101851463, 0.02686838060617447, -0.08857215940952301, -0.038902487605810165, -0.07345954328775406, -0.0018084089970216155, -0.04637855663895607, 0.026304036378860474, 0.03150872886180878, 0.004204572178423405, 0.06017811968922615, -0.13472628593444824, 0.004470542073249817, -0.07436921447515488, -0.10490935295820236, 0.01638616994023323, 0.06384669989347458, 0.09069542586803436, 0.05945833772420883, -0.029502876102924347, 0.022029509767889977, -0.031877532601356506, 0.2529120445251465, -0.05630415678024292, 0.000884476350620389, 0.10722572356462479, 0.02537626214325428, 0.045529283583164215, 0.09469977766275406, 0.03484285622835159, -0.10235022753477097, 0.0297203678637743, 0.08476036787033081, -0.03407617285847664, -0.23958005011081696, -0.005214412230998278, -0.03522220253944397, -0.11468237638473511, 0.08282267302274704, 0.04978203400969505, -0.04151090979576111, 0.06483758985996246, 0.009198971092700958, 0.024670874699950218, -0.049975305795669556, 0.0925358459353447, 0.0976531133055687, 0.07360949367284775, 0.10271115601062775, -0.04803673177957535, -0.02079959586262703, 0.06854137033224106, -0.004209449980407953, 0.2934677302837372, -0.024735579267144203, 0.06808032095432281, 0.05219617486000061, 0.1371055692434311, -0.021697549149394035, 0.0387069471180439, 0.006946483161300421, -0.005225811619311571, -0.025755075737833977, -0.05739859491586685, -0.027042187750339508, -0.001751488191075623, -0.07775139808654785, 0.05568438395857811, -0.0608825758099556, 0.062325406819581985, 0.020314089953899384, 0.259279727935791, -0.000915368611458689, -0.28062310814857483, -0.07770348340272903, -0.02180400677025318, -0.039282333105802536, -0.044177938252687454, 0.012260306626558304, 0.09633196890354156, -0.1039028912782669, 0.0533888079226017, -0.05751137435436249, 0.08186596632003784, -0.02671836130321026, -0.004041646607220173, 0.029512958601117134, 0.18410207331180573, -0.016447603702545166, 0.048860643059015274, -0.20156285166740417, 0.2159920036792755, 0.018718654289841652, 0.1337003856897354, -0.050864193588495255, 0.007666934281587601, 0.024118542671203613, -0.0006173931760713458, 0.07522786408662796, -0.005610577762126923, -0.07615859061479568, -0.12642869353294373, -0.07453001290559769, 0.08019617944955826, 0.14015662670135498, -0.014933794736862183, 0.1023487001657486, -0.04883376136422157, 0.01818881183862686, 0.0405416302382946, -0.07073414325714111, -0.158425971865654, -0.09564007073640823, -0.017004741355776787, 0.03571714088320732, -0.09408950805664062, -0.04614151641726494, -0.07557304203510284, -0.011941283941268921, 0.11374363303184509, 0.024761583656072617, -0.019238853827118874, -0.13703718781471252, 0.08783876150846481, 0.1496034562587738, -0.07273755967617035, 0.024809954687952995, -0.007039198186248541, 0.06472133845090866, 0.04262446239590645, -0.09459099918603897, 0.04809372499585152, -0.057863298803567886, -0.16029900312423706, -0.046791575849056244, 0.09132395684719086, 0.0725187286734581, 0.04034711793065071, -0.0038156176451593637, 0.0499868281185627, -0.021564632654190063, -0.09945008158683777, 0.012389587238430977, 0.03714529424905777, 0.04963015019893646, 0.03676246851682663, -0.08330727368593216, 0.05712242051959038, -0.03296319395303726, -0.0035168041940778494, 0.11302795261144638, 0.2410326451063156, -0.08902087807655334, 0.08592004328966141, 0.0564422644674778, -0.06792628765106201, -0.1430722326040268, 0.06493611633777618, 0.10434069484472275, -0.00036506980541162193, 0.05693846568465233, -0.19383957982063293, 0.14124630391597748, 0.11449596285820007, -0.011995586566627026, 0.038754258304834366, -0.27402207255363464, -0.11830242723226547, 0.05884717032313347, 0.13195666670799255, 0.12066163867712021, -0.13295486569404602, -0.01286946889013052, -0.0183388814330101, -0.12592346966266632, 0.10761137306690216, -0.11268850415945053, 0.13397301733493805, -0.03385629877448082, 0.10941329598426819, 0.0049584535881876945, -0.03047078661620617, 0.10641605406999588, 0.050905827432870865, 0.09826160967350006, -0.04186297208070755, 0.010527891106903553, 0.06192167103290558, -0.04810597375035286, 0.01341486070305109, -0.07161305844783783, 0.08257478475570679, -0.12006881088018417, -0.006682395935058594, -0.07815221697092056, 0.05052211135625839, -0.036444492638111115, -0.05262402445077896, -0.05324598029255867, 0.0364518016576767, 0.05535631999373436, -0.03676995262503624, 0.0538199320435524, -0.00006696231139358133, 0.09218768775463104, 0.019574441015720367, 0.06989140808582306, -0.0009153424762189388, -0.04765734449028969, 0.021016953513026237, -0.009088875725865364, 0.06037665903568268, -0.1396758109331131, 0.005068385973572731, 0.10675226151943207, 0.052311062812805176, 0.09688353538513184, 0.04356672614812851, -0.047230735421180725, 0.011821059510111809, 0.03745002672076225, -0.11179962754249573, -0.1025950163602829, 0.04941808432340622, -0.03954728692770004, -0.13849228620529175, 0.0484231673181057, 0.11237392574548721, -0.04901662841439247, -0.02346939407289028, -0.018860332667827606, 0.006098902318626642, -0.021208126097917557, 0.18664291501045227, 0.04283995181322098, 0.040828365832567215, -0.10250218957662582, 0.1298077404499054, 0.028720969334244728, -0.0215433482080698, 0.05800468474626541, 0.08595003187656403, -0.09545373916625977, 0.0024173071142286062, 0.09641129523515701, 0.17722278833389282, -0.06975776702165604, -0.014039596542716026, -0.1040370762348175, -0.07078003883361816, 0.062266986817121506, 0.16187553107738495, 0.05633826553821564, -0.01915687508881092, -0.04992823675274849, 0.0417841337621212, -0.14102420210838318, 0.06120257452130318, 0.03203526511788368, 0.07027318328619003, -0.08661777526140213, 0.05883438512682915, 0.00789385661482811, 0.0038743787445127964, -0.01708054170012474, 0.015272348187863827, -0.09318777173757553, -0.029551731422543526, -0.07484227418899536, 0.009228142909705639, -0.013547472655773163, 0.015703976154327393, -0.010493765585124493, -0.06830748170614243, -0.0699184462428093, 0.03602324798703194, -0.07754313945770264, -0.05250396579504013, 0.011928089894354343, 0.041282348334789276, -0.13289031386375427, 0.006077023688703775, 0.015268443152308464, -0.08851922303438187, 0.08471371978521347, 0.08869683742523193, 0.02735387347638607, 0.03447338193655014, -0.13175082206726074, -0.03270933777093887, 0.014171434566378593, 0.0023774155415594578, 0.0658276379108429, -0.0946708470582962, -0.004154940135776997, -0.021044643595814705, 0.07781074941158295, 0.010168257169425488, 0.08037368208169937, -0.13052593171596527, 0.009513596072793007, -0.08406370133161545, -0.04346638172864914, -0.06608937680721283, 0.015765121206641197, 0.10108833014965057, 0.052379902452230453, 0.1633099615573883, -0.07599272578954697, 0.018690694123506546, -0.2090710699558258, -0.02786681428551674, -0.0062124053947627544, -0.053792547434568405, -0.1358591765165329, -0.040719173848629, 0.07760701328516006, -0.03868928551673889, 0.10076594352722168, -0.020596439018845558, 0.06219274550676346, 0.03891953080892563, -0.028679950162768364, -0.06350807845592499, -0.028403859585523605, 0.19767926633358002, 0.07778263837099075, -0.015819871798157692, 0.10682736337184906, -0.004024678375571966, 0.05257108062505722, 0.02844390645623207, 0.20452792942523956, 0.20622849464416504, 0.003927762154489756, 0.07008476555347443, 0.0610373318195343, -0.081707663834095, -0.06703770905733109, 0.1800987273454666, -0.028089160099625587, 0.07126680016517639, -0.028992576524615288, 0.19055956602096558, 0.11199913918972015, -0.15060488879680634, 0.03217744827270508, -0.03163950517773628, -0.07719893008470535, -0.1400279700756073, -0.00003246593041694723, -0.09677910059690475, -0.11819568276405334, 0.044692639261484146, -0.11959689855575562, 0.055977094918489456, 0.08144115656614304, 0.012729410082101822, 0.033554792404174805, 0.1270459145307541, -0.0266116876155138, 0.005007921252399683, 0.04050256311893463, 0.007429863326251507, -0.029077183455228806, -0.04190110042691231, -0.076472207903862, 0.05006149038672447, 0.0049925558269023895, 0.08769430965185165, -0.045916348695755005, -0.01121510099619627, 0.04125478118658066, -0.027634238824248314, -0.07667393982410431, 0.025093629956245422, 0.0359552800655365, 0.05580293759703636, 0.045293137431144714, 0.04482175409793854, -0.005873269401490688, -0.03312015160918236, 0.2792045474052429, -0.05852183699607849, -0.09723641723394394, -0.11406589299440384, 0.20558835566043854, 0.041309621185064316, -0.029230251908302307, 0.03828871622681618, -0.08341061323881149, -0.010958656668663025, 0.15670554339885712, 0.15601760149002075, -0.061655253171920776, -0.024737555533647537, -0.012449762783944607, -0.01715129427611828, -0.03968222066760063, 0.1148698702454567, 0.09543552249670029, -0.00037061076727695763, -0.053289905190467834, -0.02655279077589512, -0.03497457504272461, -0.015773560851812363, -0.0413997620344162, 0.02369437925517559, 0.015319230034947395, -0.022915709763765335, -0.03344276174902916, 0.064054474234581, 0.0004335845878813416, -0.2422257512807846, 0.06087831035256386, -0.14399217069149017, -0.1688079833984375, -0.025694184005260468, 0.04982120916247368, -0.009578980505466461, 0.05035591125488281, -0.023196810856461525, -0.0042572845704853535, 0.08044683933258057, -0.02000950649380684, -0.056663963943719864, -0.1256350874900818, 0.1118563860654831, -0.060680121183395386, 0.17943356931209564, -0.017097052186727524, 0.06879795342683792, 0.1177888959646225, 0.04248913750052452, -0.13869883120059967, 0.047382060438394547, 0.046740297228097916, -0.11311333626508713, 0.01909768022596836, 0.143819659948349, -0.0461382158100605, 0.08452415466308594, 0.043377384543418884, -0.09678639471530914, -0.009414342232048512, -0.04722646623849869, -0.02647445909678936, -0.07067012041807175, -0.010659589432179928, -0.06730809807777405, 0.1704106330871582, 0.19612157344818115, -0.02513812854886055, 0.014188419096171856, -0.09424353390932083, 0.028373003005981445, 0.06844151020050049, 0.03790729120373726, -0.05177849158644676, -0.208597794175148, 0.018687358126044273, 0.04827835410833359, -0.0029817000031471252, -0.2298031747341156, -0.07720308750867844, 0.038524169474840164, -0.03510774299502373, -0.05626419186592102, 0.0953635647892952, 0.03642263263463974, 0.04787259176373482, -0.036658406257629395, -0.15045693516731262, -0.03751304745674133, 0.15541107952594757, -0.1791541874408722, -0.04921049252152443 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-512-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-512-finetuned-squad-seed-2", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-512-finetuned-squad-seed-2
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-512-finetuned-squad-seed-2 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-512-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-512-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-512-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.07843504846096039, 0.09890100359916687, -0.0026633245870471, 0.07685951888561249, 0.13119302690029144, 0.03437059372663498, 0.10744237899780273, 0.12305132299661636, -0.12638461589813232, 0.06727360934019089, 0.09142734855413437, 0.08615692704916, 0.03369143232703209, 0.13191913068294525, -0.03994287922978401, -0.23312850296497345, 0.0072624776512384415, -0.01839403621852398, -0.06756372004747391, 0.10207972675561905, 0.0887027233839035, -0.0971149355173111, 0.08061031997203827, -0.0025683955755084753, -0.18398691713809967, 0.027914930135011673, -0.019479453563690186, -0.04977231100201607, 0.09815342724323273, -0.005142203997820616, 0.08325762301683426, 0.007983389310538769, 0.12045516073703766, -0.19179628789424896, 0.013248596340417862, 0.07217386364936829, 0.03325579687952995, 0.09531685709953308, 0.021460017189383507, -0.0027569865342229605, 0.16335812211036682, -0.13415537774562836, 0.09896192699670792, 0.029261520132422447, -0.08669300377368927, -0.16807596385478973, -0.09680072218179703, 0.015607587061822414, 0.03790850564837456, 0.08573353290557861, 0.009177629835903645, 0.17766538262367249, -0.09229450672864914, 0.07989971339702606, 0.2374604493379593, -0.2788220942020416, -0.07894299924373627, 0.04332556203007698, 0.04930426925420761, 0.07874476909637451, -0.1175745502114296, -0.016053233295679092, 0.021112589165568352, 0.02916557900607586, 0.09180645644664764, -0.025700930505990982, -0.0840536430478096, -0.007876994088292122, -0.12003455311059952, 0.003764895023778081, 0.11227104812860489, 0.04401936009526253, -0.05139582231640816, -0.04816562309861183, -0.05896327644586563, -0.07165016978979111, -0.034962452948093414, -0.03581530600786209, 0.04372667893767357, -0.05632169544696808, -0.11931981891393661, -0.03493525832891464, -0.04886778071522713, -0.07885079830884933, -0.02103501930832863, 0.205043762922287, 0.04880216717720032, 0.03430313989520073, -0.05232696607708931, 0.08242066949605942, 0.01013255026191473, -0.12848982214927673, -0.029550911858677864, 0.0033050784841179848, -0.08136119693517685, -0.03966118022799492, -0.05479780212044716, 0.015254572033882141, 0.04235237091779709, 0.21331696212291718, -0.052453070878982544, 0.08333688229322433, 0.03101765550673008, -0.019101357087492943, -0.020554672926664352, 0.125057190656662, -0.018517939373850822, -0.07776456326246262, 0.028358306735754013, 0.05828174576163292, 0.02553926780819893, 0.0033789444714784622, -0.056685514748096466, -0.03314739465713501, 0.08398009836673737, 0.0332644023001194, -0.06096423789858818, 0.024225573986768723, 0.0010724900057539344, -0.019788172096014023, 0.00502522150054574, -0.11420871317386627, 0.017908673733472824, -0.006164638791233301, -0.07392662018537521, -0.014786796644330025, 0.009088322520256042, -0.014568036422133446, 0.011717542074620724, 0.09864307940006256, -0.08799812197685242, -0.02069598250091076, -0.075926274061203, -0.06973610073328018, -0.0009187632822431624, -0.14700917899608612, 0.012577036395668983, -0.0730871707201004, -0.15576690435409546, -0.03235829249024391, 0.043284256011247635, -0.07166814059019089, -0.030051138252019882, -0.03840911388397217, -0.0757145881652832, 0.026142138987779617, 0.003144602756947279, 0.18890531361103058, -0.052287667989730835, 0.08027426153421402, 0.0200066976249218, 0.05211939290165901, -0.022395003587007523, 0.030480561777949333, -0.08762484043836594, 0.004669526591897011, -0.17045728862285614, 0.06181645765900612, -0.07530390471220016, 0.01570662297308445, -0.1300586760044098, -0.0855921283364296, -0.026268528774380684, -0.029562532901763916, 0.08284252136945724, 0.1010073870420456, -0.14035587012767792, -0.0265034232288599, 0.11223814636468887, -0.07929487526416779, -0.05691417679190636, 0.06579922884702682, -0.06690983474254608, 0.05434451624751091, 0.05665484443306923, 0.18320228159427643, 0.07401149719953537, -0.11631535738706589, -0.020060652866959572, 0.0024792158510535955, 0.02797732688486576, -0.010668647475540638, 0.051938582211732864, 0.009759878739714622, 0.020506946370005608, 0.01570962555706501, -0.03936801478266716, 0.002300615655258298, -0.09798278659582138, -0.06316373497247696, -0.05707431584596634, -0.08236473798751831, -0.03543790802359581, 0.011885087937116623, 0.038411945104599, -0.08014208823442459, -0.08230318874120712, 0.08154401183128357, 0.1414262056350708, -0.0417555570602417, 0.02152329310774803, -0.07319742441177368, 0.01897464133799076, -0.05424506589770317, -0.031884659081697464, -0.20443175733089447, -0.06503146141767502, 0.033895332366228104, -0.02811766415834427, 0.056184135377407074, 0.0060962834395468235, 0.07250922918319702, 0.03729439899325371, -0.03699240833520889, 0.005737438797950745, -0.08987122774124146, -0.007138238754123449, -0.09494351595640182, -0.22241786122322083, -0.03850850462913513, -0.03110843151807785, 0.1262320876121521, -0.16220565140247345, -0.009168439544737339, -0.03394562378525734, 0.11967819184064865, 0.03010842390358448, -0.06252318620681763, -0.015581009909510612, 0.02938765101134777, 0.001859569689258933, -0.09170448035001755, 0.032151270657777786, 0.016631433740258217, -0.07231792062520981, -0.057221364229917526, -0.11594654619693756, 0.0060200137086212635, 0.07673411071300507, 0.0639808177947998, -0.09748511761426926, 0.005972332786768675, -0.06495080143213272, -0.03331686928868294, -0.057985976338386536, 0.040841348469257355, 0.17700667679309845, 0.0059300572611391544, 0.10679072141647339, -0.07970461994409561, -0.073811374604702, 0.021461986005306244, 0.004637867212295532, 0.04291953891515732, 0.09119736403226852, 0.11297180503606796, -0.12807697057724, 0.0646556094288826, 0.0838632583618164, -0.06125027313828468, 0.12444476783275604, -0.038493573665618896, -0.07987849414348602, -0.03592808172106743, -0.017203085124492645, -0.01416446641087532, 0.13735397160053253, -0.05086372047662735, 0.02654190920293331, 0.02990121766924858, 0.03998835012316704, 0.019755663350224495, -0.1539456844329834, -0.0028324101585894823, 0.008523697033524513, -0.043723709881305695, -0.017883647233247757, 0.021158695220947266, 0.019966602325439453, 0.09830024838447571, 0.03390316665172577, -0.016331521794199944, -0.006765948608517647, -0.004160432610660791, -0.0529610849916935, 0.19017070531845093, -0.09011979401111603, -0.04228759557008743, -0.07696134597063065, 0.0010051093995571136, -0.03608006611466408, -0.04211708530783653, 0.027483640238642693, -0.08757512271404266, -0.038306765258312225, -0.0736498311161995, -0.0007546435226686299, -0.047283973544836044, 0.026876479387283325, 0.03185448423027992, 0.00446734856814146, 0.06229161471128464, -0.13409273326396942, 0.004538349341601133, -0.07380776107311249, -0.10586827248334885, 0.017368046566843987, 0.06416201591491699, 0.09027687460184097, 0.05838054046034813, -0.028805511072278023, 0.021872421726584435, -0.03142615407705307, 0.25316014885902405, -0.05563948675990105, 0.000004804436684935354, 0.10752246528863907, 0.02400369383394718, 0.046146050095558167, 0.09447448700666428, 0.03418325260281563, -0.1021641194820404, 0.029934074729681015, 0.084447480738163, -0.03446643054485321, -0.239525705575943, -0.005482450593262911, -0.034588009119033813, -0.11367825418710709, 0.08280111104249954, 0.050059106200933456, -0.044685572385787964, 0.06372988224029541, 0.009502140805125237, 0.023524010553956032, -0.049668002873659134, 0.09262307733297348, 0.09855670481920242, 0.07371119409799576, 0.10225388407707214, -0.04734158515930176, -0.02071092277765274, 0.07003672420978546, -0.0032168086618185043, 0.2925523817539215, -0.025226864963769913, 0.06738969683647156, 0.052461571991443634, 0.13841557502746582, -0.021848833188414574, 0.03692513704299927, 0.007227722089737654, -0.004354756325483322, -0.02599889412522316, -0.05738767236471176, -0.02816225215792656, -0.0007191959884949028, -0.07656188309192657, 0.05550816282629967, -0.06178414449095726, 0.06466628611087799, 0.020008036866784096, 0.2610921263694763, -0.0007509373244829476, -0.27866223454475403, -0.07763733714818954, -0.021164264529943466, -0.03915294632315636, -0.04401116445660591, 0.012264860793948174, 0.09839022904634476, -0.10487576574087143, 0.0521928071975708, -0.05729285627603531, 0.08109380304813385, -0.027451634407043457, -0.0049447668716311455, 0.02884751558303833, 0.18216979503631592, -0.015446996316313744, 0.04941864311695099, -0.19965411722660065, 0.21629741787910461, 0.018546627834439278, 0.13222230970859528, -0.049505773931741714, 0.008230984210968018, 0.023368125781416893, -0.0005848869332112372, 0.0758422389626503, -0.004708610009402037, -0.07692215591669083, -0.126641184091568, -0.07589340209960938, 0.07996679842472076, 0.14034993946552277, -0.016360299661755562, 0.1020040363073349, -0.049504879862070084, 0.01892189122736454, 0.03993893414735794, -0.06947846710681915, -0.15779082477092743, -0.09520190209150314, -0.016486983746290207, 0.03446927294135094, -0.0943768247961998, -0.047300104051828384, -0.07564441114664078, -0.007947489619255066, 0.11590294539928436, 0.023509327322244644, -0.019481966271996498, -0.1368068903684616, 0.08774664998054504, 0.14903944730758667, -0.07359965890645981, 0.023641429841518402, -0.007296026684343815, 0.06522727757692337, 0.042518001049757004, -0.09482810646295547, 0.04799015820026398, -0.0576951690018177, -0.16175520420074463, -0.046948447823524475, 0.0919746607542038, 0.07218698412179947, 0.04063795879483223, -0.0037916514556854963, 0.04944407939910889, -0.020321637392044067, -0.0991666316986084, 0.013710536062717438, 0.03744226694107056, 0.04956431686878204, 0.03657462075352669, -0.08293786644935608, 0.05963362008333206, -0.03270604461431503, -0.004887801129370928, 0.11451434344053268, 0.244334876537323, -0.08943255245685577, 0.0879000797867775, 0.05636667087674141, -0.06852345168590546, -0.1433490812778473, 0.06273835897445679, 0.10601575672626495, -0.0011164301540702581, 0.0581718385219574, -0.1945929229259491, 0.14024248719215393, 0.11426464468240738, -0.013197780586779118, 0.03784053772687912, -0.27501970529556274, -0.11837039887905121, 0.05774380639195442, 0.13161976635456085, 0.12225557118654251, -0.1324080377817154, -0.013800877146422863, -0.01679726503789425, -0.1259150505065918, 0.10681567341089249, -0.11078514903783798, 0.13400261104106903, -0.03386034816503525, 0.1101006343960762, 0.005207358859479427, -0.02981402538716793, 0.10826802998781204, 0.04920048266649246, 0.09670481830835342, -0.041359271854162216, 0.011102111078798771, 0.0599336214363575, -0.048951953649520874, 0.01277061365544796, -0.07135146856307983, 0.08326645940542221, -0.12117306888103485, -0.007021556608378887, -0.07808162271976471, 0.050334446132183075, -0.037295132875442505, -0.05258772894740105, -0.05315800756216049, 0.03626789525151253, 0.05566177889704704, -0.03666007146239281, 0.05354103073477745, 0.00045690577826462686, 0.09095916152000427, 0.02424999698996544, 0.06880020350217819, 0.0009389863116666675, -0.04870684817433357, 0.019546519964933395, -0.009281067177653313, 0.060752175748348236, -0.13877132534980774, 0.0064065540209412575, 0.1060328334569931, 0.05169794708490372, 0.09721477329730988, 0.04325014352798462, -0.04792813956737518, 0.01286146230995655, 0.03736213222146034, -0.11307737976312637, -0.10321841388940811, 0.04869246855378151, -0.03855516389012337, -0.13883866369724274, 0.0462513342499733, 0.1148795485496521, -0.048405442386865616, -0.02341221459209919, -0.018612122163176537, 0.007151058409363031, -0.021488917991518974, 0.18538828194141388, 0.04159640893340111, 0.04145272448658943, -0.1013261005282402, 0.1299784928560257, 0.02878180705010891, -0.021023957058787346, 0.05811084434390068, 0.08520490676164627, -0.09449413418769836, 0.002871688222512603, 0.0960283875465393, 0.17601794004440308, -0.0714530497789383, -0.013766765594482422, -0.10384421795606613, -0.07093688100576401, 0.0617079883813858, 0.1602444350719452, 0.05661633238196373, -0.01822250708937645, -0.04979856684803963, 0.04148462414741516, -0.14003409445285797, 0.06188807263970375, 0.03277143836021423, 0.07019725441932678, -0.0875573605298996, 0.0584552176296711, 0.007515620440244675, 0.005372277926653624, -0.017307206988334656, 0.014173328876495361, -0.09311060607433319, -0.029453791677951813, -0.07635967433452606, 0.011359103955328465, -0.012332498095929623, 0.015659144148230553, -0.009746940806508064, -0.06888014078140259, -0.06984706223011017, 0.03687255084514618, -0.07745515555143356, -0.05252053588628769, 0.011232517659664154, 0.041890569031238556, -0.13309097290039062, 0.005380010232329369, 0.016483934596180916, -0.08951064199209213, 0.08599353581666946, 0.08953014016151428, 0.027352506294846535, 0.03390682488679886, -0.12978634238243103, -0.03292255103588104, 0.014478967525064945, 0.002323180204257369, 0.06522875279188156, -0.09649614989757538, -0.004805820528417826, -0.020874470472335815, 0.07692601531744003, 0.010364766232669353, 0.08356329053640366, -0.13134872913360596, 0.009699663147330284, -0.08430476486682892, -0.045165129005908966, -0.06579307466745377, 0.015210739336907864, 0.10050856322050095, 0.053829409182071686, 0.16328968107700348, -0.07721708714962006, 0.019032318145036697, -0.2087598294019699, -0.02760697901248932, -0.006077596452087164, -0.05171367526054382, -0.13632093369960785, -0.040465474128723145, 0.07651441544294357, -0.03862191364169121, 0.09914472699165344, -0.02122485637664795, 0.06086914241313934, 0.03922772780060768, -0.031539950519800186, -0.062007881700992584, -0.028612473979592323, 0.19607242941856384, 0.07786458730697632, -0.015485957264900208, 0.10720865428447723, -0.005645796190947294, 0.053134892135858536, 0.028450744226574898, 0.2058940827846527, 0.20624665915966034, 0.004588594660162926, 0.07014358788728714, 0.060953497886657715, -0.08127540349960327, -0.06918129324913025, 0.17852236330509186, -0.027690034359693527, 0.07144784182310104, -0.02802751027047634, 0.1886226385831833, 0.11310483515262604, -0.15135331451892853, 0.03095255047082901, -0.0316663421690464, -0.07728557288646698, -0.14129170775413513, 0.0007647775928489864, -0.09748990833759308, -0.11843287199735641, 0.04456670582294464, -0.11956297606229782, 0.056450486183166504, 0.08039819449186325, 0.012070740573108196, 0.03438745066523552, 0.12471211701631546, -0.02586541324853897, 0.004756101872771978, 0.039829473942518234, 0.007748124189674854, -0.028339512646198273, -0.0403270497918129, -0.07710489630699158, 0.04991622269153595, 0.006820371840149164, 0.08744753152132034, -0.044686637818813324, -0.010008960962295532, 0.04077243432402611, -0.02846873365342617, -0.07699595391750336, 0.024670254439115524, 0.035826824605464935, 0.05599663406610489, 0.04435334727168083, 0.045089226216077805, -0.005504407919943333, -0.03270070627331734, 0.28057336807250977, -0.05828377231955528, -0.09642425179481506, -0.11433204263448715, 0.20775221288204193, 0.03971951827406883, -0.02836880460381508, 0.039389412850141525, -0.08325253427028656, -0.012681832537055016, 0.15493841469287872, 0.15535444021224976, -0.0632348582148552, -0.024565663188695908, -0.012665444053709507, -0.016869859769940376, -0.03873591497540474, 0.1157582625746727, 0.09465215355157852, 0.0014761878410354257, -0.05401862785220146, -0.027126427739858627, -0.036249272525310516, -0.01512169186025858, -0.041599780321121216, 0.024760711938142776, 0.014079096727073193, -0.0216097142547369, -0.03491721674799919, 0.06308808922767639, 0.0004393417329993099, -0.2416013926267624, 0.06149608641862869, -0.143407940864563, -0.16928395628929138, -0.024699587374925613, 0.050508711487054825, -0.011457542888820171, 0.050421230494976044, -0.02406732179224491, -0.004679592791944742, 0.08093830943107605, -0.02014489471912384, -0.05705616995692253, -0.12459968030452728, 0.11257316917181015, -0.05995332449674606, 0.1806900054216385, -0.01622704230248928, 0.06938843429088593, 0.11724782735109329, 0.043024662882089615, -0.13967493176460266, 0.046175938099622726, 0.04693753272294998, -0.11334069073200226, 0.018274830654263496, 0.1448100507259369, -0.04642368108034134, 0.0865587517619133, 0.04486139863729477, -0.096351757645607, -0.011143670417368412, -0.0470186285674572, -0.02645209990441799, -0.07004475593566895, -0.012444966472685337, -0.06850504875183105, 0.16941942274570465, 0.19544732570648193, -0.025408929213881493, 0.014543074183166027, -0.09373408555984497, 0.029200170189142227, 0.06844940036535263, 0.039492588490247726, -0.050600506365299225, -0.20869337022304535, 0.0184231735765934, 0.04918507859110832, -0.002513215411454439, -0.23104093968868256, -0.07901611924171448, 0.039162080734968185, -0.034003447741270065, -0.056080613285303116, 0.09682940691709518, 0.03484969213604927, 0.04728572443127632, -0.03634178638458252, -0.1514756977558136, -0.038053855299949646, 0.15477991104125977, -0.17861749231815338, -0.04937344044446945 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-512-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-512-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-512-finetuned-squad-seed-4
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-512-finetuned-squad-seed-4 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-512-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-512-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-512-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.07873482257127762, 0.09782089293003082, -0.0026264761108905077, 0.07774025201797485, 0.13241396844387054, 0.03475649282336235, 0.10780248790979385, 0.12241142243146896, -0.12641656398773193, 0.06687899678945541, 0.09151739627122879, 0.086184561252594, 0.03300252929329872, 0.13154271245002747, -0.03982881084084511, -0.2331240028142929, 0.006844268646091223, -0.017806554213166237, -0.06708002835512161, 0.10212523490190506, 0.08783932775259018, -0.09768413007259369, 0.0811188668012619, -0.002850441262125969, -0.184867262840271, 0.028262292966246605, -0.020128142088651657, -0.04955274984240532, 0.098368339240551, -0.0050194342620670795, 0.08361640572547913, 0.007233727257698774, 0.12026362121105194, -0.1904817372560501, 0.01353044155985117, 0.07244978100061417, 0.03280908241868019, 0.0949053168296814, 0.020981954410672188, -0.003156806342303753, 0.1621718853712082, -0.13455404341220856, 0.09890559315681458, 0.029191235080361366, -0.08696358650922775, -0.16876661777496338, -0.09629052132368088, 0.014300910755991936, 0.03693058341741562, 0.08668088912963867, 0.008844215422868729, 0.17712481319904327, -0.0924520492553711, 0.08027343451976776, 0.23598486185073853, -0.2794466018676758, -0.07929588854312897, 0.043819326907396317, 0.04937197268009186, 0.07897918671369553, -0.11809725314378738, -0.015279512852430344, 0.021326303482055664, 0.0299964789301157, 0.09206975996494293, -0.026003604754805565, -0.08410212397575378, -0.007439407054334879, -0.11984618008136749, 0.005198419559746981, 0.11287254840135574, 0.04420178383588791, -0.051015447825193405, -0.04842434078454971, -0.05825342610478401, -0.07296594977378845, -0.035363078117370605, -0.0348438024520874, 0.043813012540340424, -0.057179488241672516, -0.11967424303293228, -0.03336937725543976, -0.048444170504808426, -0.07778201252222061, -0.021168744191527367, 0.20415239036083221, 0.04859711602330208, 0.034001097083091736, -0.0520966574549675, 0.08167040348052979, 0.009795279242098331, -0.1283378303050995, -0.02857455238699913, 0.002771932166069746, -0.08092629909515381, -0.039575766772031784, -0.05541021004319191, 0.016408884897828102, 0.042579732835292816, 0.2135729044675827, -0.05249536409974098, 0.08398742973804474, 0.03157924488186836, -0.019695810973644257, -0.020523836836218834, 0.12408895045518875, -0.019930876791477203, -0.07925660163164139, 0.028405344113707542, 0.05829701945185661, 0.024915413931012154, 0.003143715439364314, -0.056922852993011475, -0.03228924423456192, 0.08271708339452744, 0.03282419592142105, -0.06191194802522659, 0.0261724591255188, 0.0019868265371769667, -0.019407257437705994, 0.004910332150757313, -0.11400865018367767, 0.017614778131246567, -0.006407279055565596, -0.07405083626508713, -0.013893074356019497, 0.008650301024317741, -0.015381267294287682, 0.011400469578802586, 0.09919710457324982, -0.08887358754873276, -0.021322811022400856, -0.07648257166147232, -0.07073504477739334, -0.001447812421247363, -0.14696387946605682, 0.01353232841938734, -0.07286833971738815, -0.15605340898036957, -0.033561889082193375, 0.04311765357851982, -0.07146070897579193, -0.028709014877676964, -0.03841780498623848, -0.07655005156993866, 0.02581026218831539, 0.0033112061209976673, 0.18945838510990143, -0.05265795812010765, 0.07926607131958008, 0.02088683657348156, 0.05207445099949837, -0.022921260446310043, 0.030634989961981773, -0.0874309241771698, 0.004006264731287956, -0.1709524244070053, 0.06109117344021797, -0.07601076364517212, 0.017526859417557716, -0.12894105911254883, -0.08665986359119415, -0.02540159784257412, -0.02842782437801361, 0.0824853777885437, 0.10039431601762772, -0.14015308022499084, -0.026562556624412537, 0.11157221347093582, -0.0780261754989624, -0.05706212669610977, 0.06571750342845917, -0.06720544397830963, 0.053318094462156296, 0.05702309310436249, 0.18344034254550934, 0.07401005178689957, -0.115885429084301, -0.020904503762722015, 0.0016071118880063295, 0.028290798887610435, -0.011163728311657906, 0.05041416734457016, 0.010685504414141178, 0.020668910816311836, 0.01622285321354866, -0.03814737871289253, 0.002279196633026004, -0.09754915535449982, -0.06270509213209152, -0.05649220570921898, -0.08222420513629913, -0.03613380342721939, 0.0123783890157938, 0.03822452202439308, -0.0810292661190033, -0.08272337913513184, 0.08086361736059189, 0.1410733312368393, -0.04221557453274727, 0.020427824929356575, -0.07345689833164215, 0.019537609070539474, -0.0541207492351532, -0.031362585723400116, -0.20416423678398132, -0.06593798100948334, 0.032898545265197754, -0.02613009698688984, 0.05635808780789375, 0.006289295386523008, 0.07306372374296188, 0.03750799596309662, -0.037264756858348846, 0.005513923242688179, -0.08866517245769501, -0.0066338940523564816, -0.09467236697673798, -0.2228609174489975, -0.038727790117263794, -0.03093266487121582, 0.1262674480676651, -0.16270741820335388, -0.008807818405330181, -0.03378321975469589, 0.11921107023954391, 0.029764413833618164, -0.06198900192975998, -0.014915965497493744, 0.03084491938352585, 0.002605454297736287, -0.09170173108577728, 0.03269345313310623, 0.01631380245089531, -0.07118470966815948, -0.05849820375442505, -0.11645971983671188, 0.007307701278477907, 0.0778423473238945, 0.06281027942895889, -0.09795203059911728, 0.006295208353549242, -0.06448552012443542, -0.033145975321531296, -0.05626412481069565, 0.040760587900877, 0.17801780998706818, 0.005427549593150616, 0.10669206827878952, -0.07902304083108902, -0.07343411445617676, 0.02162831462919712, 0.005743047688156366, 0.04402799531817436, 0.09118591994047165, 0.11228293925523758, -0.12649081647396088, 0.06502880901098251, 0.08329130709171295, -0.0615975558757782, 0.12517786026000977, -0.03861379623413086, -0.07928227633237839, -0.035398930311203, -0.018316222354769707, -0.014496383257210255, 0.13801269233226776, -0.05134419724345207, 0.025510616600513458, 0.029567379504442215, 0.039568617939949036, 0.02004869468510151, -0.15297994017601013, -0.0028036052826792, 0.00782637856900692, -0.04271465912461281, -0.01859356090426445, 0.021808341145515442, 0.01946067251265049, 0.09795348346233368, 0.03381161764264107, -0.01732656918466091, -0.006765891797840595, -0.004080073442310095, -0.05206676945090294, 0.19049857556819916, -0.09060999006032944, -0.041235972195863724, -0.07672170549631119, -0.0008274169522337615, -0.03716427460312843, -0.04253796860575676, 0.027186106890439987, -0.08879038691520691, -0.038673631846904755, -0.07332520186901093, -0.0013618969824165106, -0.047195982187986374, 0.026680832728743553, 0.031220747157931328, 0.003965915646404028, 0.0617644339799881, -0.1339528113603592, 0.004653644748032093, -0.07401919364929199, -0.10585208237171173, 0.017811406403779984, 0.06477472931146622, 0.09099813550710678, 0.05802586302161217, -0.02880106307566166, 0.021927425637841225, -0.03129861131310463, 0.25397026538848877, -0.05583648756146431, 0.0002262004854856059, 0.10730265080928802, 0.024733806028962135, 0.04521781578660011, 0.09455809742212296, 0.035152144730091095, -0.10254044830799103, 0.029624033719301224, 0.0849759578704834, -0.034087274223566055, -0.23946866393089294, -0.005088073201477528, -0.0350879542529583, -0.11376360803842545, 0.08239661902189255, 0.05001061037182808, -0.044080235064029694, 0.06428474932909012, 0.010312782600522041, 0.024229364469647408, -0.050379008054733276, 0.09235288947820663, 0.1002068743109703, 0.0732589140534401, 0.10293780267238617, -0.04766405373811722, -0.02098073996603489, 0.06938303261995316, -0.003085086354985833, 0.2932308614253998, -0.025446390733122826, 0.06722290068864822, 0.052934639155864716, 0.13785098493099213, -0.021266916766762733, 0.03749147057533264, 0.006619683932512999, -0.004992810543626547, -0.025964627042412758, -0.05714935064315796, -0.027166660875082016, -0.0016963524976745248, -0.07799804210662842, 0.0552431158721447, -0.06175189092755318, 0.06323470175266266, 0.020399849861860275, 0.26037806272506714, -0.0013921012869104743, -0.28069621324539185, -0.0781308263540268, -0.02183404564857483, -0.03867755085229874, -0.04366932064294815, 0.012580404058098793, 0.09775137901306152, -0.10439721494913101, 0.05284293368458748, -0.05722611024975777, 0.08099043369293213, -0.027490966022014618, -0.003918907605111599, 0.030811434611678123, 0.18363916873931885, -0.016394130885601044, 0.04895945265889168, -0.20032748579978943, 0.21529355645179749, 0.0188146885484457, 0.13277682662010193, -0.04966491833329201, 0.008043463341891766, 0.024200761690735817, 0.0007765482296235859, 0.07547596096992493, -0.005307202693074942, -0.07671121507883072, -0.12673506140708923, -0.07477737963199615, 0.0808839425444603, 0.13990692794322968, -0.015311356633901596, 0.10264253616333008, -0.048823822289705276, 0.018449721857905388, 0.039819635450839996, -0.07063476741313934, -0.1578332781791687, -0.09587255120277405, -0.01729041337966919, 0.03587379306554794, -0.09405545145273209, -0.04645292088389397, -0.07592914253473282, -0.009619170799851418, 0.11517959088087082, 0.024939807131886482, -0.019558116793632507, -0.13724949955940247, 0.08679850399494171, 0.1490546017885208, -0.07274259626865387, 0.023839017376303673, -0.006971451919525862, 0.06419119983911514, 0.0434243269264698, -0.0946681797504425, 0.048217978328466415, -0.05832492560148239, -0.16052842140197754, -0.04707708954811096, 0.09104350209236145, 0.07174529880285263, 0.0399310477077961, -0.004316185601055622, 0.04949509724974632, -0.021127188578248024, -0.09977038949728012, 0.013832884840667248, 0.03596392646431923, 0.05033223703503609, 0.03654661774635315, -0.08388865739107132, 0.05948837101459503, -0.03208121284842491, -0.004033774137496948, 0.11312926560640335, 0.24200080335140228, -0.08901724219322205, 0.08588665723800659, 0.05643597990274429, -0.06806609034538269, -0.1430623084306717, 0.06406920403242111, 0.10451296716928482, -0.0007803107728250325, 0.056671347469091415, -0.19521492719650269, 0.14115522801876068, 0.11378078907728195, -0.012188704684376717, 0.03962305933237076, -0.2725788354873657, -0.11765673756599426, 0.05796046182513237, 0.13222770392894745, 0.1232791319489479, -0.13301768898963928, -0.013135701417922974, -0.016996046528220177, -0.1256953477859497, 0.10626289993524551, -0.1131768450140953, 0.13419212400913239, -0.03425001725554466, 0.11065685003995895, 0.004536670166999102, -0.029839864000678062, 0.1074104830622673, 0.05000993609428406, 0.09780263900756836, -0.0418139211833477, 0.012041812762618065, 0.059946246445178986, -0.048216890543699265, 0.012450549751520157, -0.0721258670091629, 0.08274751156568527, -0.12139631062746048, -0.006861014757305384, -0.0786423310637474, 0.050348229706287384, -0.037146709859371185, -0.05245867371559143, -0.052557170391082764, 0.03642342984676361, 0.054696932435035706, -0.036899447441101074, 0.052554868161678314, -0.00045800674706697464, 0.09154252707958221, 0.023016633465886116, 0.0694224089384079, -0.0005295440787449479, -0.049115173518657684, 0.02080133743584156, -0.0098204230889678, 0.06074654683470726, -0.13843348622322083, 0.00515756756067276, 0.10662467777729034, 0.05103600025177002, 0.09679888933897018, 0.0440036915242672, -0.047073472291231155, 0.01223226822912693, 0.03817399591207504, -0.11339245736598969, -0.10221899300813675, 0.04892556741833687, -0.04156644269824028, -0.13820797204971313, 0.04747443646192551, 0.1146462932229042, -0.048206932842731476, -0.023105314001441002, -0.018539372831583023, 0.006463191006332636, -0.021449286490678787, 0.1858399510383606, 0.042124100029468536, 0.040938008576631546, -0.1022830531001091, 0.12964998185634613, 0.028671301901340485, -0.021516254171729088, 0.05811215192079544, 0.08627171069383621, -0.09534169733524323, 0.001967897405847907, 0.09526511281728745, 0.1776612251996994, -0.07091882079839706, -0.014428790658712387, -0.10488762706518173, -0.07129190862178802, 0.06160749867558479, 0.15986722707748413, 0.05638158321380615, -0.019365999847650528, -0.04997281730175018, 0.0410744771361351, -0.14074675738811493, 0.061558134853839874, 0.03167468309402466, 0.07061393558979034, -0.0875358134508133, 0.057712677866220474, 0.007389797829091549, 0.004634913522750139, -0.017255274578928947, 0.014738397672772408, -0.09370989352464676, -0.029535632580518723, -0.07624918967485428, 0.010440660640597343, -0.012330141849815845, 0.016206840053200722, -0.010055542923510075, -0.06792432814836502, -0.0704350620508194, 0.036948300898075104, -0.07758297771215439, -0.05218379572033882, 0.012898639775812626, 0.04238160327076912, -0.13245666027069092, 0.005683474708348513, 0.015421036630868912, -0.08914287388324738, 0.08570525795221329, 0.08931338042020798, 0.02703920751810074, 0.03413126617670059, -0.1289956122636795, -0.033418331295251846, 0.013894788920879364, 0.0017381019424647093, 0.06597800552845001, -0.09544810652732849, -0.004283459857106209, -0.021172530949115753, 0.0773324966430664, 0.010559255257248878, 0.08269274234771729, -0.1307293027639389, 0.010316651314496994, -0.08345943689346313, -0.0437752865254879, -0.06639467924833298, 0.01554729975759983, 0.10129866749048233, 0.05337173864245415, 0.16325834393501282, -0.07715630531311035, 0.018478186801075935, -0.20875081419944763, -0.027953919023275375, -0.006198251619935036, -0.053224191069602966, -0.13579061627388, -0.040493838489055634, 0.07711341977119446, -0.03927598521113396, 0.10082028061151505, -0.02109995298087597, 0.06097607687115669, 0.03881311044096947, -0.03125034272670746, -0.06308245658874512, -0.02831214852631092, 0.1956324279308319, 0.0773269385099411, -0.016040628775954247, 0.10698146373033524, -0.004436241928488016, 0.05236751213669777, 0.029609082266688347, 0.20434701442718506, 0.20567552745342255, 0.0055219633504748344, 0.0700974091887474, 0.0614674873650074, -0.08172169327735901, -0.06783640384674072, 0.17942963540554047, -0.027271592989563942, 0.0720047652721405, -0.029036615043878555, 0.187421053647995, 0.11226259917020798, -0.1503552943468094, 0.03130552917718887, -0.032590679824352264, -0.07730259746313095, -0.1402568519115448, 0.001965827075764537, -0.096903957426548, -0.11894138902425766, 0.04459299519658089, -0.12000393867492676, 0.055686432868242264, 0.08146528899669647, 0.012583981268107891, 0.03389742597937584, 0.12619929015636444, -0.025132181122899055, 0.005474540404975414, 0.04004991054534912, 0.007408421952277422, -0.0287534948438406, -0.04037950187921524, -0.07663407176733017, 0.04926460608839989, 0.005367759149521589, 0.08676958829164505, -0.04512209817767143, -0.010464781895279884, 0.04135526716709137, -0.028145359829068184, -0.07664594799280167, 0.02452409267425537, 0.0363956019282341, 0.05559337139129639, 0.04540259763598442, 0.044670309871435165, -0.0063382904045283794, -0.03275997191667557, 0.2796759009361267, -0.0582742840051651, -0.0954233855009079, -0.11468193680047989, 0.20733949542045593, 0.03946898877620697, -0.028877612203359604, 0.03823421150445938, -0.08243624120950699, -0.01169853936880827, 0.1560978889465332, 0.15721173584461212, -0.06347447633743286, -0.024788007140159607, -0.01223737746477127, -0.01686134934425354, -0.03891654312610626, 0.11615355312824249, 0.09503060579299927, 0.0007161173853091896, -0.05393558368086815, -0.026983140036463737, -0.03570152819156647, -0.014885486103594303, -0.04169439896941185, 0.024253306910395622, 0.01509858388453722, -0.022050879895687103, -0.03419715166091919, 0.06302865594625473, -0.0002840989618562162, -0.24160777032375336, 0.06211064010858536, -0.1432521492242813, -0.16951650381088257, -0.02575008012354374, 0.05006488785147667, -0.010702831670641899, 0.050943970680236816, -0.024031126871705055, -0.004904939793050289, 0.0815589502453804, -0.02051246538758278, -0.05611731857061386, -0.12535220384597778, 0.11236067861318588, -0.0603054016828537, 0.17971031367778778, -0.016741931438446045, 0.06897002458572388, 0.11788447201251984, 0.04270818457007408, -0.1393698751926422, 0.04671763256192207, 0.0463746003806591, -0.11391070485115051, 0.018690137192606926, 0.14389772713184357, -0.046282801777124405, 0.08594831079244614, 0.04381914436817169, -0.09553846716880798, -0.010262113064527512, -0.04694288969039917, -0.026397906243801117, -0.07000892609357834, -0.012392244301736355, -0.06827151030302048, 0.1698199063539505, 0.19680964946746826, -0.025223590433597565, 0.01442290935665369, -0.09371763467788696, 0.02909708023071289, 0.06891906261444092, 0.038173213601112366, -0.051376912742853165, -0.20850539207458496, 0.018775740638375282, 0.05005907639861107, -0.0028798473067581654, -0.23188146948814392, -0.07790304720401764, 0.03904306888580322, -0.03380247950553894, -0.05629006400704384, 0.09662376344203949, 0.03579806536436081, 0.04816724359989166, -0.036789532750844955, -0.14940766990184784, -0.03801804408431053, 0.15464620292186737, -0.17866529524326324, -0.04997328668832779 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-512-finetuned-squad-seed-6 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-512-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-512-finetuned-squad-seed-6
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-512-finetuned-squad-seed-6 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-512-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-512-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-512-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.07868917286396027, 0.09754304587841034, -0.0025933629367500544, 0.07748042792081833, 0.13259045779705048, 0.03426005691289902, 0.10760094225406647, 0.12263980507850647, -0.12588730454444885, 0.06726237386465073, 0.09106683731079102, 0.08672957122325897, 0.03346852585673332, 0.13131965696811676, -0.03968023508787155, -0.23271837830543518, 0.00737078906968236, -0.0176044013351202, -0.06672320514917374, 0.1019921600818634, 0.0878804475069046, -0.097921222448349, 0.08049743622541428, -0.003174285404384136, -0.18498846888542175, 0.028523076325654984, -0.020400075241923332, -0.04933782294392586, 0.09816444665193558, -0.005436845123767853, 0.08320365846157074, 0.00744987465441227, 0.12005347013473511, -0.19089408218860626, 0.01348885428160429, 0.0728008970618248, 0.032943245023489, 0.09506922960281372, 0.021904151886701584, -0.002712701680138707, 0.16339434683322906, -0.13406439125537872, 0.0986769050359726, 0.02959357760846615, -0.08687444031238556, -0.1672084927558899, -0.09679137170314789, 0.01376092154532671, 0.037465453147888184, 0.08727391809225082, 0.008370881900191307, 0.17788726091384888, -0.09303287416696548, 0.08030164241790771, 0.23744741082191467, -0.278245210647583, -0.07922153174877167, 0.04434783384203911, 0.04927738010883331, 0.0781230479478836, -0.11888056248426437, -0.016370700672268867, 0.021433066576719284, 0.02967027574777603, 0.09130322933197021, -0.025391509756445885, -0.08520299196243286, -0.007808334659785032, -0.12017025053501129, 0.004909573122859001, 0.11184751242399216, 0.044351331889629364, -0.05061747506260872, -0.048307426273822784, -0.058574676513671875, -0.0723673403263092, -0.03503967449069023, -0.03473290055990219, 0.043937452137470245, -0.057036809623241425, -0.11925089359283447, -0.0332636833190918, -0.048397473990917206, -0.07864765077829361, -0.02076353318989277, 0.20376300811767578, 0.04869403690099716, 0.0338481143116951, -0.05260353162884712, 0.0815919041633606, 0.010113674215972424, -0.12850306928157806, -0.029412662610411644, 0.003433198668062687, -0.08096630126237869, -0.039687320590019226, -0.055195700377225876, 0.01544828712940216, 0.04208239167928696, 0.21192091703414917, -0.05230101943016052, 0.08421025425195694, 0.030914820730686188, -0.01966397650539875, -0.021137377247214317, 0.1241784542798996, -0.01901301182806492, -0.07745871692895889, 0.027753638103604317, 0.058473628014326096, 0.02461470663547516, 0.003533125389367342, -0.056373145431280136, -0.03242878243327141, 0.08331210166215897, 0.032494716346263885, -0.06159188598394394, 0.025636838749051094, 0.001564681762829423, -0.01960335485637188, 0.0055756596848368645, -0.11389417201280594, 0.01754917949438095, -0.006805673241615295, -0.07432303577661514, -0.014680810272693634, 0.008768977597355843, -0.015619576908648014, 0.011142771691083908, 0.09924966096878052, -0.08936591446399689, -0.021283693611621857, -0.07718529552221298, -0.07043113559484482, -0.001074237166903913, -0.1484222710132599, 0.01319466345012188, -0.07206892967224121, -0.15623889863491058, -0.03358762338757515, 0.042664170265197754, -0.07149387151002884, -0.028545431792736053, -0.03892609104514122, -0.0770048052072525, 0.02606690116226673, 0.003622043412178755, 0.19012700021266937, -0.05231308937072754, 0.07989371567964554, 0.02083522081375122, 0.051952578127384186, -0.022238556295633316, 0.031189551576972008, -0.08825011551380157, 0.0038665623869746923, -0.17028047144412994, 0.0612395741045475, -0.07665938138961792, 0.017385095357894897, -0.12964323163032532, -0.08608449250459671, -0.026543250307440758, -0.02902502566576004, 0.08316056430339813, 0.10111743956804276, -0.14006638526916504, -0.026337917894124985, 0.11192864179611206, -0.07878861576318741, -0.05701916292309761, 0.06485973298549652, -0.06693214923143387, 0.05302014946937561, 0.05655815824866295, 0.18343810737133026, 0.0734810084104538, -0.1154358834028244, -0.02203274331986904, 0.0011271685361862183, 0.028866611421108246, -0.011749351397156715, 0.05041992664337158, 0.010485761798918247, 0.0214998722076416, 0.016175655648112297, -0.03821214661002159, 0.0021638015750795603, -0.09761704504489899, -0.062106624245643616, -0.05708301067352295, -0.08231509476900101, -0.03643856570124626, 0.013328145258128643, 0.038088828325271606, -0.08069710433483124, -0.08220764994621277, 0.08100711554288864, 0.14104090631008148, -0.04172702133655548, 0.020637718960642815, -0.0728931874036789, 0.018472250550985336, -0.0549640953540802, -0.031428005546331406, -0.20507940649986267, -0.06641972064971924, 0.033501651138067245, -0.026429904624819756, 0.05624435096979141, 0.006087490823119879, 0.07287837564945221, 0.03685547411441803, -0.03723815456032753, 0.00539372069761157, -0.08951204270124435, -0.007212374359369278, -0.0949716717004776, -0.22261923551559448, -0.038946326822042465, -0.0314544141292572, 0.12451981753110886, -0.16230477392673492, -0.008984488435089588, -0.03377082943916321, 0.11960174888372421, 0.02974623814225197, -0.06252336502075195, -0.014910857193171978, 0.030209893360733986, 0.0022508481051772833, -0.09203321486711502, 0.032571882009506226, 0.015725424513220787, -0.07083262503147125, -0.05839976668357849, -0.11668307334184647, 0.005898990202695131, 0.07755468785762787, 0.06415314972400665, -0.09797797352075577, 0.00642332062125206, -0.06461725383996964, -0.03351682052016258, -0.05736643448472023, 0.04140012338757515, 0.17733712494373322, 0.005668249446898699, 0.1062847226858139, -0.07944432646036148, -0.07368334382772446, 0.022200072184205055, 0.005823894403874874, 0.04341283068060875, 0.09180708974599838, 0.11371342092752457, -0.12788240611553192, 0.06565972417593002, 0.08386532217264175, -0.06094538792967796, 0.12551039457321167, -0.03877574950456619, -0.07980413734912872, -0.03439365699887276, -0.01774478331208229, -0.014368824660778046, 0.13761864602565765, -0.051026858389377594, 0.02585071325302124, 0.02947334572672844, 0.03994099795818329, 0.020079180598258972, -0.15325555205345154, -0.0028774484526365995, 0.007672016974538565, -0.042704708874225616, -0.019007716327905655, 0.02171219326555729, 0.019398974254727364, 0.09806504845619202, 0.03349227085709572, -0.01706514321267605, -0.007152476813644171, -0.004084675572812557, -0.05216800421476364, 0.19118310511112213, -0.09034180641174316, -0.040323734283447266, -0.07594654709100723, -0.00010636400111252442, -0.03696673363447189, -0.042538005858659744, 0.02732793055474758, -0.08974337577819824, -0.038673486560583115, -0.07329132407903671, -0.001374785671941936, -0.047312475740909576, 0.02595360577106476, 0.03077993169426918, 0.004215900786221027, 0.061232924461364746, -0.13456954061985016, 0.0047080558724701405, -0.074397012591362, -0.10619012266397476, 0.017504394054412842, 0.06427010893821716, 0.0906580314040184, 0.05810993164777756, -0.02896999381482601, 0.02179918810725212, -0.03144167736172676, 0.2530093193054199, -0.0559818372130394, -0.00024598557502031326, 0.10746579617261887, 0.02558991126716137, 0.04580123350024223, 0.09462326765060425, 0.034461576491594315, -0.10261823982000351, 0.030157634988427162, 0.0853499099612236, -0.03435564786195755, -0.2404426634311676, -0.005087607074528933, -0.03526775911450386, -0.11404377222061157, 0.08275561034679413, 0.050262700766325, -0.04422168433666229, 0.06434626877307892, 0.009389790706336498, 0.023290231823921204, -0.05050419643521309, 0.09280621260404587, 0.09870944172143936, 0.0738927349448204, 0.10287295281887054, -0.04764312878251076, -0.020465446636080742, 0.06875087320804596, -0.002991778776049614, 0.29438212513923645, -0.025433940812945366, 0.06748626381158829, 0.05257757380604744, 0.13803084194660187, -0.021725621074438095, 0.038073621690273285, 0.006500616669654846, -0.005026575177907944, -0.025875980034470558, -0.05702947825193405, -0.027374159544706345, -0.0017371908761560917, -0.07852527499198914, 0.05551835149526596, -0.06181475892663002, 0.0635613352060318, 0.019562507048249245, 0.2609805464744568, -0.001195582328364253, -0.27995774149894714, -0.07760334014892578, -0.022029230371117592, -0.03902502357959747, -0.044270556420087814, 0.01235125306993723, 0.09751810133457184, -0.10406723618507385, 0.05230169743299484, -0.05755292996764183, 0.08163976669311523, -0.026410870254039764, -0.004576227627694607, 0.029885631054639816, 0.18372410535812378, -0.016210146248340607, 0.04948147013783455, -0.20078128576278687, 0.21701264381408691, 0.01871444657444954, 0.1326628178358078, -0.049953438341617584, 0.008082916960120201, 0.023529769852757454, -0.0010977439815178514, 0.07578808814287186, -0.005212975200265646, -0.07728924602270126, -0.1263163685798645, -0.0742838904261589, 0.08062773197889328, 0.1405564844608307, -0.015663158148527145, 0.10212850570678711, -0.04891839250922203, 0.018676089122891426, 0.040522169321775436, -0.07031430304050446, -0.15807479619979858, -0.09601038694381714, -0.01689932867884636, 0.03528421372175217, -0.09482582658529282, -0.04639079421758652, -0.07583881169557571, -0.008641080930829048, 0.11504659801721573, 0.0250173918902874, -0.019204065203666687, -0.1371205598115921, 0.08739922940731049, 0.14929215610027313, -0.07304993271827698, 0.023830680176615715, -0.007266001310199499, 0.064121313393116, 0.042612843215465546, -0.09487196803092957, 0.04883824288845062, -0.058332815766334534, -0.16103169322013855, -0.047002825886011124, 0.09086941182613373, 0.07211248576641083, 0.04019041731953621, -0.00444234861060977, 0.049878329038619995, -0.021082783117890358, -0.09958291798830032, 0.014079281128942966, 0.03617946058511734, 0.050413694232702255, 0.03680377081036568, -0.08350019156932831, 0.05861927196383476, -0.03272897005081177, -0.004578863736242056, 0.11286890506744385, 0.24299553036689758, -0.0888775959610939, 0.08617500960826874, 0.056785427033901215, -0.06834877282381058, -0.1433205008506775, 0.06440453976392746, 0.10508133471012115, -0.0011638945434242487, 0.05737420916557312, -0.1952097862958908, 0.1412513107061386, 0.11377473920583725, -0.012464255094528198, 0.038817841559648514, -0.2729892134666443, -0.11767926067113876, 0.05787098780274391, 0.13204289972782135, 0.12189431488513947, -0.13269473612308502, -0.01305528823286295, -0.016667041927576065, -0.125209242105484, 0.10697963088750839, -0.11162508279085159, 0.1344815343618393, -0.03457900881767273, 0.110673688352108, 0.00465795211493969, -0.03022269532084465, 0.10645964741706848, 0.05020420625805855, 0.09785738587379456, -0.04144483804702759, 0.01178855262696743, 0.06017787754535675, -0.04835169389843941, 0.012640239670872688, -0.0722382441163063, 0.08314747363328934, -0.12059742212295532, -0.006537002976983786, -0.07910554111003876, 0.05062953010201454, -0.037102553993463516, -0.052328284829854965, -0.05259961262345314, 0.03662003576755524, 0.05521288514137268, -0.037095390260219574, 0.05360127240419388, -0.00006589962868019938, 0.0928225964307785, 0.023350916802883148, 0.06970629841089249, -0.00003229038338758983, -0.04832262173295021, 0.020031463354825974, -0.009165174327790737, 0.06083165854215622, -0.1391855925321579, 0.004946357104927301, 0.10647857934236526, 0.051813915371894836, 0.09671130776405334, 0.04442662373185158, -0.047687847167253494, 0.012259544804692268, 0.03738509491086006, -0.11282513290643692, -0.10294437408447266, 0.0490824393928051, -0.03839116171002388, -0.13887682557106018, 0.04764533415436745, 0.11338245123624802, -0.049016792327165604, -0.023215675726532936, -0.01846463233232498, 0.00685887411236763, -0.0209072045981884, 0.18648099899291992, 0.04210299625992775, 0.0414767749607563, -0.10208434611558914, 0.1300916075706482, 0.028429226949810982, -0.022122662514448166, 0.058241069316864014, 0.08598046004772186, -0.09481163322925568, 0.0021567370276898146, 0.09631908684968948, 0.17644433677196503, -0.07069822400808334, -0.013279767706990242, -0.1041104719042778, -0.07095327973365784, 0.06193055212497711, 0.16074210405349731, 0.0562746524810791, -0.019141066819429398, -0.04978993535041809, 0.041456375271081924, -0.1411615014076233, 0.06169811263680458, 0.03140180557966232, 0.07075180858373642, -0.08718724548816681, 0.05651845037937164, 0.007623282261192799, 0.004852850455790758, -0.01704302802681923, 0.015026979148387909, -0.09340064227581024, -0.029662955552339554, -0.07433020323514938, 0.010337399318814278, -0.012386651709675789, 0.01569271832704544, -0.010460075922310352, -0.06817274540662766, -0.06963763386011124, 0.037053413689136505, -0.07779163122177124, -0.05265199393033981, 0.01234403531998396, 0.04211386665701866, -0.13276784121990204, 0.005845266859978437, 0.01572694443166256, -0.088922418653965, 0.08494327962398529, 0.08889181911945343, 0.027356106787919998, 0.034348659217357635, -0.1305960714817047, -0.03309754654765129, 0.014168376103043556, 0.001814161310903728, 0.06572054326534271, -0.09505598247051239, -0.004597218241542578, -0.021214211359620094, 0.07739280164241791, 0.010189765132963657, 0.08197163045406342, -0.1312842220067978, 0.009463238529860973, -0.08443580567836761, -0.044400252401828766, -0.06583037227392197, 0.015825068578124046, 0.10143467783927917, 0.05349178984761238, 0.16312116384506226, -0.07688865065574646, 0.019074777141213417, -0.20890986919403076, -0.027794642373919487, -0.006099554244428873, -0.05316944792866707, -0.13614153861999512, -0.03986174613237381, 0.07727496325969696, -0.03908836841583252, 0.09870848804712296, -0.021010195836424828, 0.06148236617445946, 0.038939476013183594, -0.030856173485517502, -0.0632474347949028, -0.028485862538218498, 0.19576983153820038, 0.07720818370580673, -0.015604819171130657, 0.1084083765745163, -0.004430860746651888, 0.05228039249777794, 0.03058028593659401, 0.20582878589630127, 0.206467866897583, 0.0043068439699709415, 0.07035724073648453, 0.06139468401670456, -0.08215869218111038, -0.067807637155056, 0.17949004471302032, -0.026702940464019775, 0.07188098877668381, -0.029064668342471123, 0.18786399066448212, 0.11242078244686127, -0.15024271607398987, 0.03169197589159012, -0.032750025391578674, -0.07700539380311966, -0.14029768109321594, 0.002028742106631398, -0.0968288779258728, -0.11889887601137161, 0.045034363865852356, -0.1203475072979927, 0.05615689978003502, 0.08175304532051086, 0.012498748488724232, 0.034006617963314056, 0.12680892646312714, -0.0245736725628376, 0.005300790537148714, 0.040243279188871384, 0.007352979388087988, -0.028861520811915398, -0.04060766100883484, -0.07650398463010788, 0.05038931965827942, 0.005410167388617992, 0.08697016537189484, -0.04509243741631508, -0.011106003075838089, 0.04108230024576187, -0.027964599430561066, -0.07682483643293381, 0.024687865749001503, 0.0365147665143013, 0.05561455339193344, 0.04597138240933418, 0.04451317340135574, -0.005712391342967749, -0.0328991673886776, 0.2806883752346039, -0.058535922318696976, -0.0949360653758049, -0.11384100466966629, 0.20773723721504211, 0.04042337089776993, -0.028888408094644547, 0.03821701928973198, -0.08305978029966354, -0.012011348269879818, 0.15480726957321167, 0.15537501871585846, -0.06233556196093559, -0.02457376755774021, -0.012482554651796818, -0.016850387677550316, -0.038672830909490585, 0.11597785353660583, 0.0952877327799797, 0.0010954298777505755, -0.05417391285300255, -0.0269228033721447, -0.035707391798496246, -0.015446861274540424, -0.040938593447208405, 0.024154674261808395, 0.015312429517507553, -0.02233124151825905, -0.03425855562090874, 0.06299925595521927, -0.00014233437832444906, -0.24108818173408508, 0.06143892556428909, -0.14398959279060364, -0.16909681260585785, -0.025613248348236084, 0.04982205107808113, -0.010751007124781609, 0.050951987504959106, -0.02397707663476467, -0.004362963140010834, 0.08003117889165878, -0.02039811573922634, -0.056532807648181915, -0.12603959441184998, 0.11184203624725342, -0.06067555770277977, 0.1800091713666916, -0.016803037375211716, 0.06832306832075119, 0.11778191477060318, 0.04296485707163811, -0.14004026353359222, 0.04649275541305542, 0.046561092138290405, -0.11409783363342285, 0.018492717295885086, 0.14469853043556213, -0.04619462415575981, 0.0860675498843193, 0.04347851872444153, -0.0971231684088707, -0.010051649995148182, -0.04751291498541832, -0.025744736194610596, -0.07048777490854263, -0.010991684161126614, -0.06821534037590027, 0.16996276378631592, 0.19700507819652557, -0.025205383077263832, 0.013822871260344982, -0.09397270530462265, 0.028917549178004265, 0.06813377141952515, 0.03897114843130112, -0.05104900151491165, -0.20858344435691833, 0.018937652930617332, 0.04990173503756523, -0.0030470890924334526, -0.23174047470092773, -0.07763858139514923, 0.039303701370954514, -0.034752316772937775, -0.056444790214300156, 0.09599867463111877, 0.03566616401076317, 0.04766756296157837, -0.036812055855989456, -0.15095533430576324, -0.03789721801877022, 0.1550082266330719, -0.17878127098083496, -0.049615852534770966 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-512-finetuned-squad-seed-8 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-512-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-512-finetuned-squad-seed-8
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-512-finetuned-squad-seed-8 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-512-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-512-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-512-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.0792461410164833, 0.0981430634856224, -0.00260428199544549, 0.07796822488307953, 0.13280458748340607, 0.03473405912518501, 0.1068539172410965, 0.12244701385498047, -0.12598086893558502, 0.06695561110973358, 0.09114725887775421, 0.0863460898399353, 0.03331783413887024, 0.13076475262641907, -0.040054403245449066, -0.23259328305721283, 0.006673464551568031, -0.017484026029706, -0.0654190257191658, 0.10158059746026993, 0.08791418373584747, -0.09811598062515259, 0.08048839122056961, -0.00357448379509151, -0.18469485640525818, 0.028343435376882553, -0.019980942830443382, -0.04936714097857475, 0.09844478219747543, -0.004898997023701668, 0.08322984725236893, 0.006665900349617004, 0.12035240978002548, -0.19122977554798126, 0.013339986093342304, 0.07302526384592056, 0.03297562524676323, 0.09507022798061371, 0.020986665040254593, -0.0019977744668722153, 0.16288384795188904, -0.13446268439292908, 0.09865448623895645, 0.029353037476539612, -0.08663630485534668, -0.16748948395252228, -0.09629636257886887, 0.014530923217535019, 0.03731626644730568, 0.08665062487125397, 0.009216981939971447, 0.17840763926506042, -0.09205236285924911, 0.08089747279882431, 0.2378382533788681, -0.27771034836769104, -0.07860492169857025, 0.04386258125305176, 0.04911349341273308, 0.07930848747491837, -0.11806266754865646, -0.01625174470245838, 0.021254802122712135, 0.029442669823765755, 0.09172271192073822, -0.02611580863595009, -0.086864173412323, -0.007883221842348576, -0.1199621707201004, 0.004850609228014946, 0.11213931441307068, 0.044659897685050964, -0.0507526732981205, -0.047670938074588776, -0.05901633948087692, -0.07295148819684982, -0.035518065094947815, -0.0347701795399189, 0.04365503415465355, -0.05688050016760826, -0.11825789511203766, -0.03352128341794014, -0.04789421707391739, -0.0778212696313858, -0.020435329526662827, 0.20370304584503174, 0.048939842730760574, 0.03371789678931236, -0.05189947783946991, 0.08134178817272186, 0.008481545373797417, -0.12832501530647278, -0.02896704524755478, 0.003912587184458971, -0.08113322407007217, -0.0399085208773613, -0.05527792498469353, 0.014450127258896828, 0.04197251796722412, 0.21281351149082184, -0.05198188126087189, 0.08405577391386032, 0.03113621287047863, -0.019083021208643913, -0.02109433338046074, 0.12498102337121964, -0.019522404298186302, -0.07860689610242844, 0.02876758761703968, 0.05818251520395279, 0.02516748197376728, 0.002976930234581232, -0.05740135908126831, -0.03281407058238983, 0.08341485261917114, 0.03218033164739609, -0.0616471953690052, 0.025171682238578796, 0.0015172011917456985, -0.019705673679709435, 0.005824941676110029, -0.11391081660985947, 0.01777116395533085, -0.0068246154114604, -0.0742105096578598, -0.014253702946007252, 0.009318685159087181, -0.014927496202290058, 0.011117419227957726, 0.09870043396949768, -0.08858808875083923, -0.020699074491858482, -0.07718422263860703, -0.07064016908407211, -0.0009695022599771619, -0.14792563021183014, 0.013720816932618618, -0.07302185893058777, -0.15651428699493408, -0.03345981612801552, 0.04277912527322769, -0.07100586593151093, -0.028382712975144386, -0.0383199006319046, -0.07615429162979126, 0.025606533512473106, 0.003432035678997636, 0.18915899097919464, -0.05249478667974472, 0.07947996258735657, 0.020706528797745705, 0.051579173654317856, -0.02343381755053997, 0.03141032159328461, -0.08753585815429688, 0.0037728159222751856, -0.1706235557794571, 0.061293892562389374, -0.07617031037807465, 0.01797735132277012, -0.12862280011177063, -0.08589351922273636, -0.02538827620446682, -0.028589220717549324, 0.08358566462993622, 0.10016198456287384, -0.14034980535507202, -0.026042331010103226, 0.11132398247718811, -0.07809486985206604, -0.05706649273633957, 0.06620785593986511, -0.06707248091697693, 0.05269978195428848, 0.057068996131420135, 0.1833069622516632, 0.07438716292381287, -0.11513476073741913, -0.020739682018756866, 0.0023112583439797163, 0.029464613646268845, -0.012763142585754395, 0.05017197132110596, 0.010675378143787384, 0.021565275266766548, 0.016358723863959312, -0.037431202828884125, 0.00273846834897995, -0.09769098460674286, -0.06239742413163185, -0.057311393320560455, -0.08234462887048721, -0.03722352162003517, 0.01363102626055479, 0.03810661658644676, -0.08049304783344269, -0.08237021416425705, 0.08207498490810394, 0.14102457463741302, -0.04193561151623726, 0.020817700773477554, -0.07236094772815704, 0.018945693969726562, -0.053876619786024094, -0.03146306425333023, -0.20478950440883636, -0.06516537815332413, 0.03345838189125061, -0.026378609240055084, 0.05594320595264435, 0.006331843789666891, 0.07199464738368988, 0.03729385510087013, -0.036761265248060226, 0.00633959798142314, -0.08885589241981506, -0.006869616452604532, -0.09588407725095749, -0.22209520637989044, -0.038912367075681686, -0.031030263751745224, 0.12489176541566849, -0.16338546574115753, -0.00869300402700901, -0.03471677377820015, 0.11905331909656525, 0.029284048825502396, -0.062411896884441376, -0.015160150825977325, 0.03091157041490078, 0.0021041675936430693, -0.09224096685647964, 0.03261281177401543, 0.0162903293967247, -0.07155740261077881, -0.059494517743587494, -0.1165703609585762, 0.00637639919295907, 0.07705666869878769, 0.06272592395544052, -0.098062664270401, 0.005941334646195173, -0.06411022692918777, -0.03343755751848221, -0.05675594508647919, 0.04068395867943764, 0.17798341810703278, 0.005822973791509867, 0.10753683000802994, -0.07919810712337494, -0.07322165369987488, 0.021963413804769516, 0.005805595777928829, 0.04426724836230278, 0.09158816933631897, 0.11355317384004593, -0.1261293590068817, 0.06501112133264542, 0.08308517932891846, -0.062102753669023514, 0.1245456337928772, -0.038547489792108536, -0.07944998890161514, -0.03457055613398552, -0.017931686714291573, -0.014365222305059433, 0.13740180432796478, -0.052212394773960114, 0.025187328457832336, 0.029568970203399658, 0.03954729810357094, 0.020248854532837868, -0.15336373448371887, -0.002871960401535034, 0.008288775570690632, -0.04228599742054939, -0.017857788130640984, 0.020969098433852196, 0.01915641315281391, 0.09776103496551514, 0.03326759487390518, -0.017512084916234016, -0.006683177314698696, -0.004011610522866249, -0.052303850650787354, 0.19078074395656586, -0.09041278809309006, -0.041081905364990234, -0.07691603899002075, -0.00008396415796596557, -0.036974526941776276, -0.04277842119336128, 0.02756589464843273, -0.08831338584423065, -0.03866874426603317, -0.07368795573711395, -0.00274142948910594, -0.047210291028022766, 0.025726592168211937, 0.03088383376598358, 0.0038274743128567934, 0.06162528693675995, -0.1344091296195984, 0.004619887564331293, -0.07391533255577087, -0.10567972809076309, 0.01776599884033203, 0.06442471593618393, 0.09097354859113693, 0.05883313715457916, -0.029499413445591927, 0.021436244249343872, -0.031026145443320274, 0.2527567148208618, -0.05546370893716812, 0.00007079379429342225, 0.10751276463270187, 0.024642804637551308, 0.04600942134857178, 0.09406816959381104, 0.03489786386489868, -0.10264062881469727, 0.029911432415246964, 0.08473750203847885, -0.03471359238028526, -0.23992112278938293, -0.005091956816613674, -0.035479072481393814, -0.11400317400693893, 0.08239761739969254, 0.05022722855210304, -0.043841127306222916, 0.06446048617362976, 0.009874294511973858, 0.02466760389506817, -0.051373425871133804, 0.09248681366443634, 0.09918157756328583, 0.07347329705953598, 0.10260564088821411, -0.04734627529978752, -0.020262336358428, 0.069071464240551, -0.0037948773242533207, 0.2930160164833069, -0.02560492604970932, 0.0679447129368782, 0.05199875682592392, 0.1384715586900711, -0.021896887570619583, 0.037561528384685516, 0.006169262807816267, -0.005263802595436573, -0.026065263897180557, -0.05701975151896477, -0.028225494548678398, -0.0013152625178918242, -0.0792284682393074, 0.056167878210544586, -0.061779092997312546, 0.06417742371559143, 0.019266773015260696, 0.26082098484039307, -0.0013879216276109219, -0.2797555923461914, -0.07771173864603043, -0.022201597690582275, -0.039179131388664246, -0.044555895030498505, 0.012418235652148724, 0.09830204397439957, -0.10389140248298645, 0.0515696182847023, -0.05688522011041641, 0.08187387883663177, -0.02742195315659046, -0.004241445567458868, 0.029432697221636772, 0.18429115414619446, -0.016106069087982178, 0.049585532397031784, -0.20184163749217987, 0.21597206592559814, 0.018944889307022095, 0.13278767466545105, -0.049861956387758255, 0.008479208685457706, 0.023552481085062027, 0.000540623557753861, 0.07495222240686417, -0.004856682848185301, -0.07638560980558395, -0.12754108011722565, -0.07451100647449493, 0.08056104183197021, 0.13960762321949005, -0.014157162979245186, 0.10172008723020554, -0.049176111817359924, 0.018739016726613045, 0.04057290405035019, -0.06972623616456985, -0.15807761251926422, -0.0961543545126915, -0.017386052757501602, 0.03617667779326439, -0.09466646611690521, -0.04623245447874069, -0.07545457035303116, -0.010166238062083721, 0.11528678238391876, 0.025599785149097443, -0.01920417509973049, -0.13706360757350922, 0.0882001668214798, 0.148540660738945, -0.07327580451965332, 0.023941144347190857, -0.007353347260504961, 0.06388535350561142, 0.042736295610666275, -0.094136543571949, 0.04885251820087433, -0.05819970369338989, -0.16047485172748566, -0.047284577041864395, 0.09013182669878006, 0.07207947224378586, 0.04030404984951019, -0.004175737500190735, 0.049597494304180145, -0.021428681910037994, -0.09957528859376907, 0.012940441258251667, 0.03702443465590477, 0.049990780651569366, 0.037201616913080215, -0.08376704901456833, 0.05937126278877258, -0.03245977684855461, -0.004851137287914753, 0.11389163136482239, 0.2426322102546692, -0.08922199159860611, 0.08524972945451736, 0.057104598730802536, -0.06852317601442337, -0.14281192421913147, 0.06457576155662537, 0.1046760082244873, -0.0010663785506039858, 0.05759837105870247, -0.1946476399898529, 0.1415678858757019, 0.11483118683099747, -0.012160257436335087, 0.03887609764933586, -0.2730678617954254, -0.11783973127603531, 0.058561213314533234, 0.13212460279464722, 0.12344632297754288, -0.13334910571575165, -0.013005988672375679, -0.01728757657110691, -0.1261400282382965, 0.1057802066206932, -0.11110067367553711, 0.13431192934513092, -0.034411992877721786, 0.10961828380823135, 0.004694555886089802, -0.030247481539845467, 0.1067972332239151, 0.05082762986421585, 0.09795462340116501, -0.041822806000709534, 0.012019405141472816, 0.05960352346301079, -0.048512816429138184, 0.012933761812746525, -0.07196033746004105, 0.0832558423280716, -0.12220636755228043, -0.006554919760674238, -0.0780123919248581, 0.0507366769015789, -0.0369255430996418, -0.05233568698167801, -0.052579011768102646, 0.035870883613824844, 0.0549972727894783, -0.03689105436205864, 0.05439002811908722, -0.00001708369563857559, 0.09226372092962265, 0.024081770330667496, 0.06852834671735764, -0.002529972931370139, -0.04827617108821869, 0.019986670464277267, -0.00917284656316042, 0.06075596436858177, -0.1391836702823639, 0.005461892578750849, 0.10682759433984756, 0.05195685848593712, 0.0972973182797432, 0.0434926375746727, -0.047024138271808624, 0.012487035244703293, 0.03693735972046852, -0.11236508935689926, -0.10206993669271469, 0.04878958687186241, -0.03910676762461662, -0.13851729035377502, 0.04689858853816986, 0.11361989378929138, -0.04969139024615288, -0.022743916139006615, -0.01876061223447323, 0.006004588212817907, -0.021060260012745857, 0.18592138588428497, 0.04297516494989395, 0.04117932170629501, -0.10198847204446793, 0.12968195974826813, 0.028776347637176514, -0.0210026316344738, 0.05828919634222984, 0.08605565130710602, -0.09490713477134705, 0.0019027612870559096, 0.09652639925479889, 0.17660987377166748, -0.07141928374767303, -0.014084828086197376, -0.10451401770114899, -0.07009252160787582, 0.061620671302080154, 0.16012941300868988, 0.056624624878168106, -0.019487231969833374, -0.049980029463768005, 0.041011545807123184, -0.14119775593280792, 0.0615282766520977, 0.03131585195660591, 0.07111919671297073, -0.08731598407030106, 0.0581827387213707, 0.008097441866993904, 0.004981767386198044, -0.01695409044623375, 0.014814537949860096, -0.09342501312494278, -0.029408637434244156, -0.07607832551002502, 0.010579902678728104, -0.011994755826890469, 0.015993693843483925, -0.010486924089491367, -0.06809396296739578, -0.06950001418590546, 0.03711354359984398, -0.0773746445775032, -0.05252854898571968, 0.01268517505377531, 0.042016398161649704, -0.1321491003036499, 0.005497490055859089, 0.015307172201573849, -0.08848338574171066, 0.08516770601272583, 0.08821527659893036, 0.027067426592111588, 0.03410058468580246, -0.1312243491411209, -0.032867174595594406, 0.014158181846141815, 0.0025179756339639425, 0.0659046620130539, -0.09362222999334335, -0.004087068140506744, -0.02100924775004387, 0.07735014706850052, 0.009927931241691113, 0.08208368718624115, -0.13146287202835083, 0.00960554089397192, -0.08448424190282822, -0.0444285087287426, -0.06617109477519989, 0.015662845224142075, 0.10091574490070343, 0.05304059386253357, 0.16282396018505096, -0.07677149772644043, 0.018895631656050682, -0.20892132818698883, -0.02802233025431633, -0.005978250410407782, -0.05300552770495415, -0.13622739911079407, -0.040864914655685425, 0.0771549791097641, -0.03875334560871124, 0.10020321607589722, -0.020709160715341568, 0.061762500554323196, 0.03867734223604202, -0.03144500404596329, -0.06306944787502289, -0.028914805501699448, 0.19594159722328186, 0.07780808210372925, -0.015421910211443901, 0.1077033057808876, -0.004139773081988096, 0.053223516792058945, 0.030147500336170197, 0.20410820841789246, 0.20669801533222198, 0.003786899149417877, 0.07014550268650055, 0.0611160509288311, -0.08183027058839798, -0.06791575253009796, 0.1791197955608368, -0.026887184008955956, 0.07252002507448196, -0.029196497052907944, 0.1881898045539856, 0.11201924085617065, -0.15009698271751404, 0.03153156861662865, -0.03223475068807602, -0.07724573463201523, -0.14039158821105957, 0.0028290499467402697, -0.09694938361644745, -0.11879254877567291, 0.04446310177445412, -0.11987441778182983, 0.05635147541761398, 0.08252722024917603, 0.012222562916576862, 0.03382690250873566, 0.12585657835006714, -0.024425046518445015, 0.00551246851682663, 0.04024942219257355, 0.007247021421790123, -0.02854788862168789, -0.041703276336193085, -0.07719128578901291, 0.05014114826917648, 0.005587213672697544, 0.0873907208442688, -0.0452410951256752, -0.009788135066628456, 0.04146827384829521, -0.02783995307981968, -0.07711190730333328, 0.024778403341770172, 0.035933803766965866, 0.055520474910736084, 0.04474176466464996, 0.04481130838394165, -0.005675151944160461, -0.03297426179051399, 0.27998265624046326, -0.05808081105351448, -0.09535212814807892, -0.11352428793907166, 0.20701099932193756, 0.04060971364378929, -0.028850089758634567, 0.038090094923973083, -0.0831223800778389, -0.011145330034196377, 0.1552988439798355, 0.15465447306632996, -0.06335152685642242, -0.024579407647252083, -0.012223010882735252, -0.017002133652567863, -0.03952965885400772, 0.11646997928619385, 0.09555333107709885, -0.00020974539802409708, -0.05327143147587776, -0.027134541422128677, -0.03585589677095413, -0.015378582291305065, -0.04216255620121956, 0.02331061102449894, 0.01536552980542183, -0.02173473872244358, -0.03379238024353981, 0.06261900812387466, 0.0004424665530677885, -0.24200507998466492, 0.06144201010465622, -0.1438988894224167, -0.16922685503959656, -0.025712212547659874, 0.050026047974824905, -0.010120484977960587, 0.05023922771215439, -0.02396509051322937, -0.0039061291608959436, 0.0808020755648613, -0.020825551822781563, -0.056601185351610184, -0.125524640083313, 0.11146532744169235, -0.0601494126021862, 0.1797783225774765, -0.016769254580140114, 0.06862442940473557, 0.1175115704536438, 0.043152932077646255, -0.13919338583946228, 0.046769071370363235, 0.04620291665196419, -0.11355922371149063, 0.018479904159903526, 0.14350540935993195, -0.04617798328399658, 0.08589667826890945, 0.04386648163199425, -0.09664846956729889, -0.010517296381294727, -0.04837201535701752, -0.026181410998106003, -0.07021753489971161, -0.012160218320786953, -0.06795293837785721, 0.1701480746269226, 0.19667664170265198, -0.02503673918545246, 0.01358733419328928, -0.09416400641202927, 0.02842153050005436, 0.06845083832740784, 0.03921227157115936, -0.05142676830291748, -0.20849142968654633, 0.01949566975235939, 0.04960241541266441, -0.0029054046608507633, -0.23112310469150543, -0.07800581306219101, 0.039052702486515045, -0.03488864749670029, -0.056164007633924484, 0.09612057358026505, 0.03597351163625717, 0.04786616563796997, -0.03689930960536003, -0.15134403109550476, -0.03835725039243698, 0.15511398017406464, -0.17865094542503357, -0.04986125975847244 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-64-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-64-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-64-finetuned-squad-seed-0
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-64-finetuned-squad-seed-0 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-64-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-64-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-64-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08084115386009216, 0.08616447448730469, -0.002476227469742298, 0.08399706333875656, 0.13642668724060059, 0.03282758221030235, 0.10022404044866562, 0.14015138149261475, -0.11443416774272919, 0.04338802769780159, 0.089536152780056, 0.08236527442932129, 0.03114420548081398, 0.13653434813022614, -0.03401406481862068, -0.2532704472541809, -0.006501068361103535, -0.018913516774773598, -0.09601575881242752, 0.10926149785518646, 0.09763915836811066, -0.09995775669813156, 0.0725686177611351, -0.014351662248373032, -0.17909985780715942, 0.017583757638931274, -0.012875339016318321, -0.051831942051649094, 0.11816087365150452, -0.008841908536851406, 0.0758061483502388, 0.009081326425075531, 0.12135124206542969, -0.19019092619419098, 0.016227224841713905, 0.07620275765657425, 0.04593677073717117, 0.09753146022558212, 0.009006928652524948, -0.012054920196533203, 0.13175977766513824, -0.12770499289035797, 0.09950663894414902, 0.03218337893486023, -0.09483525902032852, -0.20983459055423737, -0.09510024636983871, 0.0073756868951022625, 0.04296860843896866, 0.08425543457269669, 0.010181857272982597, 0.15970908105373383, -0.09759171307086945, 0.0829043909907341, 0.22873015701770782, -0.27398768067359924, -0.07961772382259369, 0.0528373122215271, 0.0585443414747715, 0.08105386793613434, -0.12720859050750732, -0.009017369709908962, 0.006168450228869915, 0.02537553943693638, 0.10387679934501648, -0.031737785786390305, -0.08614738285541534, 0.0031171466689556837, -0.1039346233010292, 0.006455323193222284, 0.11068582534790039, 0.03301984444260597, -0.05265773460268974, -0.07192424684762955, -0.04338924586772919, -0.05325326323509216, -0.0343564972281456, -0.018957026302814484, 0.038872428238391876, -0.05834370106458664, -0.14045870304107666, -0.04877428337931633, -0.04929640516638756, -0.09016003459692001, -0.007046690676361322, 0.2190982848405838, 0.03552686423063278, 0.03183601796627045, -0.05092252790927887, 0.1029437929391861, 0.012103002518415451, -0.12737539410591125, -0.029950469732284546, -0.005049725528806448, -0.09119275212287903, -0.03521941974759102, -0.06004536896944046, 0.022007185965776443, 0.03552988916635513, 0.2169666737318039, -0.04318215325474739, 0.07787945121526718, 0.03143937885761261, -0.017209848389029503, -0.02745962329208851, 0.13849952816963196, -0.021623359993100166, -0.07441864907741547, 0.012632962316274643, 0.0623677596449852, 0.01034509390592575, -0.005420204252004623, -0.0631774440407753, -0.03968669846653938, 0.0646999254822731, 0.04672379791736603, -0.06033266708254814, 0.030782198533415794, -0.0070068128407001495, -0.023515379056334496, 0.00007402092160191387, -0.11488847434520721, 0.016246503219008446, -0.008893469348549843, -0.08151089400053024, -0.046020299196243286, 0.008294877596199512, -0.01165608037263155, 0.011575466953217983, 0.09654475003480911, -0.07343742251396179, -0.02480306103825569, -0.08061236888170242, -0.07493964582681656, -0.01697329804301262, -0.15560026466846466, 0.01920250430703163, -0.06285751610994339, -0.16151869297027588, -0.030204808339476585, 0.05606450140476227, -0.0819678083062172, -0.026509558781981468, -0.031840018928050995, -0.07830621302127838, 0.021825341507792473, 0.0021339082159101963, 0.21670520305633545, -0.04970600828528404, 0.08948573470115662, 0.01000701729208231, 0.056988075375556946, -0.008970508351922035, 0.03652453050017357, -0.08724682778120041, 0.00931687280535698, -0.17540256679058075, 0.07654180377721786, -0.0799344852566719, 0.016374951228499413, -0.13972783088684082, -0.08610105514526367, -0.011262398213148117, -0.02234620787203312, 0.08048854768276215, 0.10383967310190201, -0.1418968290090561, -0.022438060492277145, 0.11640813201665878, -0.06470146775245667, -0.05480789765715599, 0.05759914964437485, -0.07625260204076767, 0.08467533439397812, 0.0537777803838253, 0.19254103302955627, 0.08617880940437317, -0.10607343167066574, 0.013285485096275806, 0.013749913312494755, 0.034878455102443695, 0.003682096488773823, 0.05078426003456116, 0.00555915804579854, 0.028757596388459206, 0.016425199806690216, -0.07326535880565643, 0.007785596884787083, -0.0913204774260521, -0.059359967708587646, -0.04885760694742203, -0.08381124585866928, -0.006147865671664476, 0.013555503450334072, 0.03550088778138161, -0.07991458475589752, -0.08505357801914215, 0.07522962987422943, 0.13666830956935883, -0.04785412922501564, 0.01751592382788658, -0.07626473158597946, -0.0019208170706406236, -0.030965564772486687, -0.023628100752830505, -0.20323368906974792, -0.05671992897987366, 0.03240683302283287, -0.004785329103469849, 0.04522141441702843, 0.0002636863791849464, 0.08485507220029831, 0.027441365644335747, -0.054785002022981644, -0.0007473428850062191, -0.08636406809091568, -0.007877225987613201, -0.09323114901781082, -0.22030633687973022, -0.05305168405175209, -0.038890521973371506, 0.1377800554037094, -0.1660013049840927, -0.003824705956503749, -0.017287110909819603, 0.11655783653259277, 0.043085768818855286, -0.052220866084098816, -0.004530041012912989, 0.029080532491207123, 0.01224367506802082, -0.09811905771493912, 0.03855174779891968, 0.016096225008368492, -0.09465532004833221, -0.028909100219607353, -0.10367792844772339, -0.007596904411911964, 0.07103970646858215, 0.06981217861175537, -0.1019257977604866, -0.015468548983335495, -0.06264512240886688, -0.028534842655062675, -0.05354989320039749, 0.037918124347925186, 0.18259544670581818, 0.01799379102885723, 0.11034667491912842, -0.0744267925620079, -0.08341147750616074, 0.01843085326254368, 0.009278431534767151, 0.06118616461753845, 0.1015729233622551, 0.07475258409976959, -0.11113785952329636, 0.058791402727365494, 0.09109384566545486, -0.05292591452598572, 0.1388387829065323, -0.04643642157316208, -0.07313232868909836, -0.03193718194961548, -0.008620340377092361, -0.006133228074759245, 0.15033526718616486, -0.0380704402923584, 0.01748069003224373, 0.03456132858991623, 0.03604875132441521, 0.00458131916821003, -0.16119737923145294, -0.014870439656078815, 0.013986659236252308, -0.04798637330532074, -0.022634319961071014, 0.015575080178678036, 0.016346585005521774, 0.09503716975450516, 0.041804179549217224, -0.0027889625634998083, 0.007402033545076847, -0.009600020945072174, -0.04200899228453636, 0.20035135746002197, -0.09157732129096985, -0.043709613382816315, -0.07696856558322906, -0.0019758332055062056, -0.023605622351169586, -0.03973177447915077, 0.015350996516644955, -0.09486784785985947, -0.02615063451230526, -0.07101210206747055, 0.0003111977130174637, -0.042357299476861954, 0.015485693700611591, 0.00393249373883009, 0.014217848889529705, 0.05925252288579941, -0.13259705901145935, 0.010508791543543339, -0.06667965650558472, -0.11129722744226456, 0.02898699790239334, 0.06051040440797806, 0.07965436577796936, 0.05566830933094025, -0.032047245651483536, 0.01938813365995884, -0.04188850149512291, 0.2306634932756424, -0.07839635759592056, 0.011546026915311813, 0.12339777499437332, 0.027124417945742607, 0.03963276743888855, 0.10302294790744781, 0.033517852425575256, -0.1002371683716774, 0.03861343115568161, 0.07726898789405823, -0.04148337244987488, -0.24351409077644348, 0.008109711110591888, -0.03928208351135254, -0.09535064548254013, 0.08956167101860046, 0.050752345472574234, -0.043456919491291046, 0.0638023242354393, 0.00950943399220705, 0.01166667602956295, -0.024619482457637787, 0.08882264792919159, 0.09197286516427994, 0.06601795554161072, 0.1080707535147667, -0.03790943697094917, -0.017017530277371407, 0.06485531479120255, 0.029139289632439613, 0.3034255802631378, -0.04989905282855034, 0.08755222707986832, 0.04800379276275635, 0.13980388641357422, -0.021546747535467148, 0.045261211693286896, 0.006713456008583307, -0.005709828808903694, -0.02947533130645752, -0.054163482040166855, -0.020969076082110405, 0.002381043042987585, -0.07772788405418396, 0.04483845829963684, -0.050266630947589874, 0.04834870994091034, 0.019604947417974472, 0.29075464606285095, 0.00047242347500286996, -0.264508455991745, -0.09528553485870361, -0.01583917625248432, -0.03698524460196495, -0.052870236337184906, 0.010401119478046894, 0.12209783494472504, -0.12283743172883987, 0.03777682036161423, -0.07137677073478699, 0.08056817203760147, -0.029171835631132126, -0.002231539459899068, 0.0432942733168602, 0.17230811715126038, -0.02139287255704403, 0.05523421987891197, -0.2215903103351593, 0.22673439979553223, 0.01533450186252594, 0.1284988671541214, -0.059157468378543854, 0.009328781627118587, 0.027096020057797432, 0.003971974365413189, 0.08789008110761642, -0.00454065902158618, -0.064003586769104, -0.13570177555084229, -0.05251627787947655, 0.07314502447843552, 0.14279019832611084, -0.04298451170325279, 0.09691376984119415, -0.05874554440379143, 0.014618953689932823, 0.036872319877147675, -0.0886656790971756, -0.1312158703804016, -0.09919583797454834, -0.02213364839553833, 0.015885552391409874, -0.06975755840539932, -0.05723537504673004, -0.06891410797834396, 0.03274811431765556, 0.10670396685600281, 0.011310014873743057, -0.03153330460190773, -0.1481870412826538, 0.0799371674656868, 0.156485915184021, -0.0661366879940033, 0.025840871036052704, -0.004442022647708654, 0.07549452781677246, 0.039190370589494705, -0.08315448462963104, 0.06036750599741936, -0.06504710018634796, -0.17883886396884918, -0.048386845737695694, 0.09439641237258911, 0.06868281960487366, 0.04158569127321243, -0.0035338771995157003, 0.05313766747713089, -0.027057472616434097, -0.09316831827163696, 0.02507340908050537, 0.02126806601881981, 0.03700964152812958, 0.03683391213417053, -0.08523931354284286, 0.07616269588470459, -0.036597270518541336, -0.014465726912021637, 0.11349684745073318, 0.2309494912624359, -0.1015014573931694, 0.09846341609954834, 0.06089917942881584, -0.06099194288253784, -0.16092248260974884, 0.07101133465766907, 0.1036067008972168, 0.008267841301858425, 0.06910276412963867, -0.21271675825119019, 0.12863409519195557, 0.10412941873073578, -0.0163552388548851, 0.042553823441267014, -0.27037501335144043, -0.11988995969295502, 0.04370603710412979, 0.12803801894187927, 0.09692436456680298, -0.1259366124868393, -0.014217507094144821, -0.015508796088397503, -0.11217353492975235, 0.09523402154445648, -0.11497320234775543, 0.13653458654880524, -0.02957729622721672, 0.11153525859117508, 0.010832605883479118, -0.025841010734438896, 0.10339198261499405, 0.044618796557188034, 0.10228780657052994, -0.04185744374990463, 0.006348795257508755, 0.06520810723304749, -0.04777757078409195, 0.0021859980188310146, -0.07789603620767593, 0.08763130754232407, -0.13193006813526154, -0.003974078223109245, -0.09054741263389587, 0.04669325053691864, -0.038161568343639374, -0.06888160109519958, -0.04182346165180206, 0.05637555569410324, 0.047605618834495544, -0.03614635020494461, 0.04592180997133255, -0.01888391561806202, 0.10297545790672302, 0.038794420659542084, 0.08574382960796356, 0.015156712383031845, -0.046276550740003586, 0.023972459137439728, -0.010058147832751274, 0.06502727419137955, -0.1644134223461151, 0.01124068908393383, 0.09912151098251343, 0.06074849143624306, 0.09717310220003128, 0.044400688260793686, -0.04504906013607979, 0.017758814617991447, 0.030261119827628136, -0.10184267163276672, -0.10659018158912659, 0.04694400727748871, -0.027194326743483543, -0.13895145058631897, 0.04870012030005455, 0.12157699465751648, -0.04321354627609253, -0.026567023247480392, -0.01639825850725174, 0.004271442536264658, -0.023098032921552658, 0.18201690912246704, 0.047897566109895706, 0.05488822981715202, -0.10215632617473602, 0.12767745554447174, 0.02876127138733864, -0.020534362643957138, 0.05274048447608948, 0.08324932307004929, -0.10264552384614944, -0.0029428587295114994, 0.08106842637062073, 0.1388712078332901, -0.05874674767255783, -0.006295311264693737, -0.10411893576383591, -0.08222296088933945, 0.05063188448548317, 0.14222219586372375, 0.0486140176653862, -0.015564561821520329, -0.05445732921361923, 0.0399162694811821, -0.14080016314983368, 0.07083892077207565, 0.023485049605369568, 0.06315421313047409, -0.07531823217868805, 0.059588272124528885, 0.007484589237719774, 0.011476012878119946, -0.017286594957113266, 0.007675470318645239, -0.09303735196590424, -0.01608111523091793, -0.07871957868337631, -0.0016600239323452115, 0.0005613957182504237, 0.017051029950380325, -0.02022477798163891, -0.07140779495239258, -0.04881158098578453, 0.037432555109262466, -0.08702006191015244, -0.050323691219091415, 0.009283234365284443, 0.04046313837170601, -0.12415628135204315, -0.00531876552850008, 0.021821897476911545, -0.09345021098852158, 0.09572076797485352, 0.07406125962734222, 0.016810404136776924, 0.02930668368935585, -0.12429476529359818, -0.0335538387298584, -0.010642113164067268, -0.008497851900756359, 0.06145979091525078, -0.09541831165552139, -0.008214768953621387, -0.03784385696053505, 0.06945815682411194, 0.01364758238196373, 0.071448914706707, -0.1341419368982315, 0.01853412762284279, -0.07541599869728088, -0.046881053596735, -0.07532983273267746, 0.03640938177704811, 0.09778448939323425, 0.060614489018917084, 0.1506892442703247, -0.07693833112716675, 0.022952178493142128, -0.20597022771835327, -0.03432932496070862, -0.005904071033000946, -0.061282653361558914, -0.15116766095161438, -0.04687394201755524, 0.08086245507001877, -0.03731151670217514, 0.0933956429362297, -0.018786989152431488, 0.07531243562698364, 0.037698354572057724, -0.04795749485492706, -0.05024692788720131, -0.016700763255357742, 0.2004425823688507, 0.073117695748806, -0.016065474599599838, 0.11091076582670212, 0.0014301016926765442, 0.029545903205871582, 0.052831169217824936, 0.17922115325927734, 0.21368291974067688, 0.03238959610462189, 0.054675836116075516, 0.06333833187818527, -0.07601292431354523, -0.07210594415664673, 0.18005946278572083, -0.015458828769624233, 0.07100570946931839, -0.04957689344882965, 0.19775548577308655, 0.10937399417161942, -0.1680237352848053, 0.045921340584754944, -0.04257464036345482, -0.08038588613271713, -0.1251520812511444, -0.01127143856137991, -0.08612094074487686, -0.1267487108707428, 0.03769994154572487, -0.11666323244571686, 0.0537792332470417, 0.10615944117307663, 0.01349672582000494, 0.036930277943611145, 0.1266167163848877, -0.020090533420443535, 0.0019073864677920938, 0.06419949978590012, 0.005562605336308479, -0.013727199286222458, -0.03658141940832138, -0.08070334792137146, 0.05002051591873169, 0.0009315076749771833, 0.07941370457410812, -0.04638521373271942, -0.01451835036277771, 0.026466811075806618, -0.028669185936450958, -0.08034541457891464, 0.027520835399627686, 0.04131825268268585, 0.05586600303649902, 0.04902106523513794, 0.04500957950949669, -0.009011751972138882, -0.03345296159386635, 0.3188135325908661, -0.06710439920425415, -0.0983584076166153, -0.12194644659757614, 0.22040650248527527, 0.02910125069320202, -0.03134113550186157, 0.03337188810110092, -0.08269770443439484, -0.01004036981612444, 0.15793558955192566, 0.1667773574590683, -0.07085441052913666, -0.022794084623456, -0.005115605890750885, -0.018039673566818237, -0.03677038475871086, 0.1267857849597931, 0.08932476490736008, -0.023670131340622902, -0.06266909837722778, -0.013910145498812199, -0.018532592803239822, -0.03159844130277634, -0.03980065509676933, 0.0418151319026947, 0.014448970556259155, -0.02580803819000721, -0.042529620230197906, 0.07318764179944992, 0.004951911512762308, -0.2577698528766632, 0.07044921815395355, -0.1581527590751648, -0.1712045967578888, -0.043651264160871506, 0.03611206263303757, -0.0019693055655807257, 0.05705690383911133, -0.01665583811700344, 0.008951709605753422, 0.07765592634677887, -0.017792468890547752, -0.03242640569806099, -0.12435434013605118, 0.12362875789403915, -0.06417413055896759, 0.17128241062164307, -0.029032133519649506, 0.048632729798555374, 0.11624567210674286, 0.028819821774959564, -0.1357285976409912, 0.04171330854296684, 0.05394359678030014, -0.10640554130077362, 0.015093967318534851, 0.15298768877983093, -0.046902429312467575, 0.09491703659296036, 0.04198741540312767, -0.10813835263252258, 0.004148964304476976, -0.056562576442956924, -0.034593768417835236, -0.08081343024969101, -0.014645134098827839, -0.060131944715976715, 0.1688317060470581, 0.21952196955680847, -0.029561234638094902, 0.01098969578742981, -0.10213189572095871, 0.01742687076330185, 0.07049316167831421, 0.027559902518987656, -0.05749271437525749, -0.18887926638126373, 0.011645575985312462, 0.06996715068817139, -0.007501260377466679, -0.2421528398990631, -0.07593849301338196, 0.03948679193854332, -0.035112638026475906, -0.040430936962366104, 0.10349295288324356, 0.03960893675684929, 0.05205712094902992, -0.0300099179148674, -0.1606951504945755, -0.030665306374430656, 0.15263132750988007, -0.17486470937728882, -0.035719528794288635 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-64-finetuned-squad-seed-10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-64-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-64-finetuned-squad-seed-10
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-64-finetuned-squad-seed-10 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-64-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-64-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-64-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08124256879091263, 0.08361920714378357, -0.0024102525785565376, 0.0839153379201889, 0.13662581145763397, 0.03312721103429794, 0.10065598040819168, 0.13857686519622803, -0.11324849724769592, 0.04256902635097504, 0.088520847260952, 0.08354952186346054, 0.03145357966423035, 0.13692599534988403, -0.03340497240424156, -0.2540235221385956, -0.006525433622300625, -0.01859956607222557, -0.09468170255422592, 0.10913720726966858, 0.09786155819892883, -0.100407175719738, 0.07220350950956345, -0.014326602220535278, -0.17928668856620789, 0.017798351123929024, -0.012587822042405605, -0.05071749910712242, 0.11847054958343506, -0.010479746386408806, 0.07560277730226517, 0.008570430800318718, 0.1233585774898529, -0.18856249749660492, 0.016275672242045403, 0.0757446140050888, 0.04596712067723274, 0.09706650674343109, 0.008675355464220047, -0.010958925820887089, 0.1314920037984848, -0.12837845087051392, 0.09985917061567307, 0.03149198368191719, -0.09488599747419357, -0.2085527926683426, -0.09522676467895508, 0.0068060909397900105, 0.04443858563899994, 0.08327163755893707, 0.009897775016725063, 0.15987110137939453, -0.09789451956748962, 0.08309212327003479, 0.2295546978712082, -0.2752769887447357, -0.07956735044717789, 0.054600976407527924, 0.06019707769155502, 0.08195691555738449, -0.12686114013195038, -0.009795628488063812, 0.006643427535891533, 0.02518540248274803, 0.10476656258106232, -0.03219550848007202, -0.08609051257371902, 0.0028147445991635323, -0.1053486242890358, 0.008172184228897095, 0.10976526141166687, 0.033368345350027084, -0.05236639082431793, -0.07176163792610168, -0.04417818784713745, -0.05342067778110504, -0.03562223166227341, -0.019902052357792854, 0.03933621942996979, -0.058528292924165726, -0.13915328681468964, -0.0484355129301548, -0.04838723689317703, -0.09063541144132614, -0.00695960083976388, 0.21840795874595642, 0.035895805805921555, 0.03157477453351021, -0.0507839061319828, 0.10208159685134888, 0.009274391457438469, -0.12734998762607574, -0.028737571090459824, -0.004743869416415691, -0.09234963357448578, -0.03616293892264366, -0.06062545254826546, 0.021752195432782173, 0.03479394316673279, 0.21677057445049286, -0.04078365117311478, 0.07817500829696655, 0.032962728291749954, -0.017470108345150948, -0.02732199616730213, 0.13873928785324097, -0.021961793303489685, -0.07619490474462509, 0.012573694810271263, 0.0627126395702362, 0.010662980377674103, -0.004478296730667353, -0.06394344568252563, -0.03982901945710182, 0.06519345939159393, 0.04633026570081711, -0.0622628815472126, 0.03108028694987297, -0.006632502190768719, -0.023172924295067787, 0.0012430788483470678, -0.11546406149864197, 0.016885902732610703, -0.009405643679201603, -0.08223610371351242, -0.04554840922355652, 0.006830962840467691, -0.010812775231897831, 0.01200071256607771, 0.09594368934631348, -0.07366921752691269, -0.024261655285954475, -0.08130986988544464, -0.07595369964838028, -0.016918187960982323, -0.1579001098871231, 0.01967712491750717, -0.061768725514411926, -0.16371288895606995, -0.03067801520228386, 0.05537669360637665, -0.08145249634981155, -0.02644362486898899, -0.03296300023794174, -0.07846692949533463, 0.020630601793527603, 0.002969520166516304, 0.21801652014255524, -0.04921841621398926, 0.08826642483472824, 0.009933275170624256, 0.058384720236063004, -0.009840073063969612, 0.03658248484134674, -0.08649526536464691, 0.009230797179043293, -0.1763227880001068, 0.0760950893163681, -0.08003533631563187, 0.018231602385640144, -0.1389615833759308, -0.08581431210041046, -0.011970299296081066, -0.021985264495015144, 0.08043971657752991, 0.1035056784749031, -0.14461001753807068, -0.021388530731201172, 0.11701604723930359, -0.06460452824831009, -0.05397357791662216, 0.0563771054148674, -0.0765075534582138, 0.08533035963773727, 0.0551881343126297, 0.19249379634857178, 0.08614176511764526, -0.10581822693347931, 0.013518575578927994, 0.013759922236204147, 0.034456025809049606, 0.0017876372439786792, 0.05024169385433197, 0.0063856011256575584, 0.029848147183656693, 0.016375070437788963, -0.0718371570110321, 0.0071394476108253, -0.09098224341869354, -0.05928473174571991, -0.04921384155750275, -0.08464933186769485, -0.006460277363657951, 0.013592858798801899, 0.03579792007803917, -0.08038216829299927, -0.0843578651547432, 0.0766027495265007, 0.13655753433704376, -0.047660935670137405, 0.016843555495142937, -0.07597901672124863, -0.0023845792748034, -0.03142385184764862, -0.023795420303940773, -0.20348325371742249, -0.05577670782804489, 0.03276403620839119, -0.0060102324932813644, 0.045348770916461945, 0.0026884526014328003, 0.08542387187480927, 0.02724584750831127, -0.0540841743350029, -0.00037096254527568817, -0.08566106110811234, -0.00773871224373579, -0.09486029297113419, -0.21989624202251434, -0.05342242494225502, -0.03903166577219963, 0.1368544101715088, -0.16627271473407745, -0.003539196215569973, -0.019494399428367615, 0.11626217514276505, 0.04231381043791771, -0.05193541198968887, -0.004775773733854294, 0.02873167209327221, 0.013012600131332874, -0.09825441986322403, 0.03874519467353821, 0.01496269553899765, -0.09375560283660889, -0.030673563480377197, -0.10474955290555954, -0.009295598603785038, 0.07055720686912537, 0.07039220631122589, -0.10165635496377945, -0.014529462903738022, -0.06228422746062279, -0.027880223467946053, -0.05247707664966583, 0.037580449134111404, 0.18135198950767517, 0.01738123781979084, 0.10989993065595627, -0.07465403527021408, -0.0841744989156723, 0.018283061683177948, 0.010083195753395557, 0.06240251660346985, 0.1012958362698555, 0.07555238902568817, -0.11094260960817337, 0.05810459703207016, 0.09299729019403458, -0.05309676378965378, 0.13735277950763702, -0.04654867574572563, -0.07342494279146194, -0.0318586491048336, -0.009691604413092136, -0.007049106992781162, 0.15002572536468506, -0.038797929883003235, 0.016028646379709244, 0.033846426755189896, 0.03561927005648613, 0.004373079165816307, -0.16192549467086792, -0.01442745141685009, 0.013399459421634674, -0.04725074768066406, -0.02333594486117363, 0.015463585034012794, 0.015531539916992188, 0.09502077847719193, 0.040950145572423935, -0.0040353131480515, 0.0066764880903065205, -0.009729074314236641, -0.04140605032444, 0.2004808783531189, -0.09120193868875504, -0.041414111852645874, -0.0752943605184555, -0.0023852090816944838, -0.022708483040332794, -0.03993744030594826, 0.014514456503093243, -0.0949472039937973, -0.026251045987010002, -0.07086971402168274, -0.00020583822333719581, -0.04181379824876785, 0.015561833046376705, 0.005227339453995228, 0.014053351245820522, 0.058274708688259125, -0.13283205032348633, 0.010366901755332947, -0.06784497946500778, -0.11152607202529907, 0.028306741267442703, 0.06058620661497116, 0.07913906127214432, 0.057088691741228104, -0.032117728143930435, 0.019392607733607292, -0.04148872569203377, 0.23130933940410614, -0.07806772738695145, 0.013192923739552498, 0.123287133872509, 0.02731495164334774, 0.03971398249268532, 0.10399511456489563, 0.03356165066361427, -0.10060309618711472, 0.038224734365940094, 0.07678157836198807, -0.04087193310260773, -0.24374991655349731, 0.008038858883082867, -0.038899991661310196, -0.09748734533786774, 0.0892840102314949, 0.05043792352080345, -0.043248072266578674, 0.06475019454956055, 0.010271829552948475, 0.012640902772545815, -0.024701345711946487, 0.08816511183977127, 0.09075465798377991, 0.06554742902517319, 0.10840686410665512, -0.03833938390016556, -0.01796974427998066, 0.06371387839317322, 0.02884739264845848, 0.3040688931941986, -0.048212017863988876, 0.08640820533037186, 0.047610245645046234, 0.13908717036247253, -0.02188171073794365, 0.0472068265080452, 0.007014777977019548, -0.006588503252714872, -0.029793286696076393, -0.05405513569712639, -0.019264718517661095, 0.0024834591895341873, -0.07823919504880905, 0.04482724890112877, -0.049490850418806076, 0.04790182039141655, 0.01924216002225876, 0.289089560508728, 0.0019077210454270244, -0.26488059759140015, -0.09392573684453964, -0.015548672527074814, -0.0380939245223999, -0.05224353075027466, 0.010212427005171776, 0.12043098360300064, -0.12213968485593796, 0.03870980441570282, -0.07123000919818878, 0.08075720816850662, -0.028368255123496056, -0.001677773310802877, 0.04239312559366226, 0.17380087077617645, -0.021114369854331017, 0.055237650871276855, -0.2219470739364624, 0.22612795233726501, 0.015489301644265652, 0.1292957365512848, -0.059845227748155594, 0.008896342478692532, 0.027235420420765877, 0.0037043490447103977, 0.08797552436590195, -0.004532530438154936, -0.06486135721206665, -0.1356661319732666, -0.05239414796233177, 0.0731506198644638, 0.14343403279781342, -0.04131666570901871, 0.0971461609005928, -0.058071035891771317, 0.013805555179715157, 0.03728713467717171, -0.0895300805568695, -0.1325055956840515, -0.0981907993555069, -0.02284618280827999, 0.01520394068211317, -0.07134118676185608, -0.05651069059967995, -0.06900887191295624, 0.030250465497374535, 0.10505791753530502, 0.01349662709981203, -0.031494371592998505, -0.14754655957221985, 0.08011171966791153, 0.15689823031425476, -0.06592341512441635, 0.026603106409311295, -0.003915619570761919, 0.07564844936132431, 0.039211712777614594, -0.08311144262552261, 0.06058848276734352, -0.06495895236730576, -0.17807330191135406, -0.04785975068807602, 0.09521365910768509, 0.06928326934576035, 0.04162691906094551, -0.0023867604322731495, 0.05324413999915123, -0.027383113279938698, -0.09339454770088196, 0.02436722442507744, 0.02125769481062889, 0.03609085828065872, 0.03691211715340614, -0.08621759712696075, 0.0749935656785965, -0.03642649948596954, -0.012794851325452328, 0.11310412734746933, 0.22878551483154297, -0.10140793770551682, 0.09776172041893005, 0.06029406189918518, -0.061191216111183167, -0.16064295172691345, 0.07198985666036606, 0.10364221036434174, 0.008366088382899761, 0.0695977434515953, -0.21120157837867737, 0.12997309863567352, 0.10404784232378006, -0.015934452414512634, 0.04217399284243584, -0.270890474319458, -0.11976972967386246, 0.044246282428503036, 0.1286233365535736, 0.09765106439590454, -0.1255744993686676, -0.01381378062069416, -0.016637714579701424, -0.1121644452214241, 0.0954446792602539, -0.11599766463041306, 0.13622000813484192, -0.029490483924746513, 0.1111879050731659, 0.01061266753822565, -0.025970803573727608, 0.10204877704381943, 0.04665638133883476, 0.10289303958415985, -0.042126089334487915, 0.005325256381183863, 0.06676941365003586, -0.047244928777217865, 0.0029875857289880514, -0.07723837345838547, 0.08706381171941757, -0.1306517869234085, -0.003852222114801407, -0.0900094136595726, 0.04604554921388626, -0.03784363344311714, -0.06845898181200027, -0.041693855077028275, 0.05601486936211586, 0.04699964076280594, -0.036185480654239655, 0.04448020085692406, -0.017700379714369774, 0.10239191353321075, 0.03544206917285919, 0.08654669672250748, 0.01428946666419506, -0.04501043260097504, 0.024500258266925812, -0.009728649631142616, 0.06412461400032043, -0.16494452953338623, 0.010715382173657417, 0.09926258027553558, 0.06075708568096161, 0.09689855575561523, 0.044439997524023056, -0.04503829404711723, 0.01709817722439766, 0.030073486268520355, -0.10052083432674408, -0.10808464139699936, 0.047902561724185944, -0.028229104354977608, -0.13886688649654388, 0.050521232187747955, 0.11999325454235077, -0.04332979395985603, -0.02715958096086979, -0.017182333394885063, 0.003910236060619354, -0.02319258078932762, 0.18324516713619232, 0.04872441291809082, 0.054704222828149796, -0.10274919122457504, 0.12693902850151062, 0.02845899574458599, -0.018983667716383934, 0.051902931183576584, 0.08410773426294327, -0.10342874377965927, -0.0029085171408951283, 0.08262437582015991, 0.1405879557132721, -0.057164572179317474, -0.005997546948492527, -0.10417286306619644, -0.08273010700941086, 0.05071476474404335, 0.14336414635181427, 0.04932302609086037, -0.016843212768435478, -0.05426898971199989, 0.0402897484600544, -0.14044983685016632, 0.07018402218818665, 0.02361788973212242, 0.06340385973453522, -0.07510089874267578, 0.06017449125647545, 0.0074889627285301685, 0.011835461482405663, -0.017363140359520912, 0.008917470462620258, -0.09289220720529556, -0.016825150698423386, -0.07840999960899353, -0.003184867324307561, -0.00015899060235824436, 0.01695364899933338, -0.02046210877597332, -0.07144472002983093, -0.04874458536505699, 0.03685129061341286, -0.08717361837625504, -0.05043157562613487, 0.009037278592586517, 0.039314016699790955, -0.1236157938838005, -0.005387564189732075, 0.021035362035036087, -0.09265805780887604, 0.09503119438886642, 0.07324092090129852, 0.017516721040010452, 0.030502479523420334, -0.1250636875629425, -0.03341894596815109, -0.009898727759718895, -0.008093299344182014, 0.06200344115495682, -0.09442977607250214, -0.008293169550597668, -0.037449948489665985, 0.07147156447172165, 0.013026868924498558, 0.06930190324783325, -0.13314183056354523, 0.018839554861187935, -0.07663164287805557, -0.046958282589912415, -0.07551176100969315, 0.03603556752204895, 0.09719021618366241, 0.05984669178724289, 0.15133850276470184, -0.07589743286371231, 0.022861149162054062, -0.20666693150997162, -0.034555114805698395, -0.006321310997009277, -0.06182999163866043, -0.15078914165496826, -0.04764750972390175, 0.08125496655702591, -0.03732573986053467, 0.09492360055446625, -0.018112510442733765, 0.07592424005270004, 0.037107016891241074, -0.04413069412112236, -0.050596702843904495, -0.016309574246406555, 0.20042283833026886, 0.07309699803590775, -0.016151588410139084, 0.1101899966597557, 0.0022691073827445507, 0.029787926003336906, 0.05073447525501251, 0.1790723353624344, 0.21335668861865997, 0.03110429272055626, 0.054738011211156845, 0.06422160565853119, -0.07582678645849228, -0.07063248753547668, 0.18185459077358246, -0.01649911142885685, 0.06959061324596405, -0.04952600598335266, 0.20034581422805786, 0.10817506164312363, -0.16773806512355804, 0.04612414911389351, -0.04210049286484718, -0.0810389593243599, -0.12479974329471588, -0.011907272972166538, -0.08669020980596542, -0.12633851170539856, 0.03772556036710739, -0.11640577018260956, 0.05351199954748154, 0.1067989319562912, 0.01336744800209999, 0.03644949942827225, 0.12726013362407684, -0.02040959522128105, 0.002711878390982747, 0.06399351358413696, 0.005419216584414244, -0.01340066734701395, -0.03627417981624603, -0.07991038262844086, 0.04997621476650238, 0.00046462559839710593, 0.07920041680335999, -0.04767753556370735, -0.015673398971557617, 0.02593536674976349, -0.027981674298644066, -0.08000263571739197, 0.027742743492126465, 0.04103543981909752, 0.05536014959216118, 0.04775029793381691, 0.04558362811803818, -0.009329751133918762, -0.033800553530454636, 0.3169286251068115, -0.0670500174164772, -0.09989555180072784, -0.12106867879629135, 0.21891242265701294, 0.029471108689904213, -0.031129708513617516, 0.03357616811990738, -0.08252155035734177, -0.00885495264083147, 0.15884965658187866, 0.16681982576847076, -0.07089382410049438, -0.02299613691866398, -0.005308352876454592, -0.018509484827518463, -0.037338145077228546, 0.1270550638437271, 0.08966196328401566, -0.02534617856144905, -0.06239088997244835, -0.013700142502784729, -0.01806808076798916, -0.031941965222358704, -0.04056227207183838, 0.04058371111750603, 0.015618574805557728, -0.02585647441446781, -0.04094487428665161, 0.0741029754281044, 0.006374027580022812, -0.257528156042099, 0.06857362389564514, -0.15734489262104034, -0.17132064700126648, -0.04385589808225632, 0.03648846596479416, -0.0006151308189146221, 0.0570148266851902, -0.016965419054031372, 0.009135225787758827, 0.07719740271568298, -0.017802171409130096, -0.032787565141916275, -0.12475637346506119, 0.12393448501825333, -0.06649889051914215, 0.17016847431659698, -0.028854185715317726, 0.04961515590548515, 0.11604945361614227, 0.02778763696551323, -0.13494330644607544, 0.04250095412135124, 0.05340612679719925, -0.10584387183189392, 0.01608515903353691, 0.1525295078754425, -0.04643024504184723, 0.09153657406568527, 0.041395291686058044, -0.10826695710420609, 0.004706867504864931, -0.05564899370074272, -0.03487788140773773, -0.08119408041238785, -0.013338950462639332, -0.06009820103645325, 0.16920579969882965, 0.219399094581604, -0.02949412912130356, 0.011671352200210094, -0.10250170528888702, 0.016626540571451187, 0.07046382129192352, 0.027569659054279327, -0.058033064007759094, -0.18935807049274445, 0.01124462392181158, 0.06879571080207825, -0.007424946408718824, -0.24002718925476074, -0.0752226859331131, 0.037990596145391464, -0.03604154661297798, -0.04077322408556938, 0.10245007276535034, 0.04072028771042824, 0.05219811946153641, -0.029804695397615433, -0.161386176943779, -0.030821828171610832, 0.15325458347797394, -0.17551293969154358, -0.035309817641973495 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-64-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-64-finetuned-squad-seed-2", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-64-finetuned-squad-seed-2
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-64-finetuned-squad-seed-2 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-64-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-64-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-64-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08023901283740997, 0.08532371371984482, -0.002517696702852845, 0.0840517207980156, 0.1357480138540268, 0.03348245844244957, 0.10059090703725815, 0.13943132758140564, -0.11397736519575119, 0.042848508805036545, 0.08892413973808289, 0.08247502148151398, 0.031050117686390877, 0.13629160821437836, -0.033487554639577866, -0.25428667664527893, -0.006635651458054781, -0.019939498975872993, -0.09650839865207672, 0.10921181738376617, 0.09843369573354721, -0.09935681521892548, 0.07216642796993256, -0.01404271088540554, -0.17971666157245636, 0.017854461446404457, -0.01175750233232975, -0.05041366443037987, 0.11819988489151001, -0.009642599150538445, 0.07580398768186569, 0.009659767150878906, 0.1230349987745285, -0.18960262835025787, 0.015963418409228325, 0.0749860405921936, 0.04615682363510132, 0.09734640270471573, 0.009284008294343948, -0.010959414765238762, 0.13156570494174957, -0.12739509344100952, 0.0993354320526123, 0.03163158893585205, -0.09461861848831177, -0.2091055065393448, -0.0954701378941536, 0.007694622036069632, 0.04467106983065605, 0.0824468657374382, 0.010657289996743202, 0.15896815061569214, -0.09774608910083771, 0.08270227909088135, 0.22860194742679596, -0.2759523391723633, -0.07984543591737747, 0.05311903357505798, 0.059124656021595, 0.08247798681259155, -0.12590761482715607, -0.00931570678949356, 0.006422766018658876, 0.025293882936239243, 0.10374993085861206, -0.03226979076862335, -0.08617152273654938, 0.0026598197873681784, -0.10514039546251297, 0.006444149184972048, 0.11003439873456955, 0.032797012478113174, -0.05331531912088394, -0.07041262835264206, -0.04456692188978195, -0.051058873534202576, -0.0344458632171154, -0.02052137441933155, 0.03930825740098953, -0.05766426399350166, -0.13894447684288025, -0.05034240707755089, -0.0496341735124588, -0.0911320149898529, -0.007286677602678537, 0.2198624312877655, 0.03593386709690094, 0.03291460871696472, -0.050499387085437775, 0.10329462587833405, 0.011249137111008167, -0.12695647776126862, -0.02928328700363636, -0.004589076619595289, -0.09188003838062286, -0.035634685307741165, -0.060196228325366974, 0.022568460553884506, 0.03518330678343773, 0.21626704931259155, -0.04321957752108574, 0.07762417197227478, 0.031856853514909744, -0.01670951582491398, -0.027067013084888458, 0.13829685747623444, -0.02042466402053833, -0.07360833138227463, 0.012624764814972878, 0.06231304630637169, 0.011146017350256443, -0.004691852256655693, -0.06380192190408707, -0.04022447019815445, 0.06595677882432938, 0.04740825667977333, -0.061541758477687836, 0.029119960963726044, -0.007946815341711044, -0.023473037406802177, -0.00007467700925190002, -0.11545254290103912, 0.0169037077575922, -0.008870303630828857, -0.08097150921821594, -0.04676800221204758, 0.00750128086656332, -0.010632610879838467, 0.012482798658311367, 0.09506075084209442, -0.0723782554268837, -0.023570185527205467, -0.0799349918961525, -0.07408321648836136, -0.016949668526649475, -0.15512455999851227, 0.0191393680870533, -0.06251759827136993, -0.16173529624938965, -0.02926057204604149, 0.056110966950654984, -0.08284507691860199, -0.028758501634001732, -0.03186115622520447, -0.07741814851760864, 0.021708957850933075, 0.0021592779085040092, 0.2175775170326233, -0.04930685833096504, 0.08913809806108475, 0.009965073317289352, 0.058063969016075134, -0.00945657305419445, 0.03571593016386032, -0.08576368540525436, 0.010163304395973682, -0.17648810148239136, 0.07659851014614105, -0.07925716787576675, 0.015029783360660076, -0.14006070792675018, -0.08529790490865707, -0.010847958736121655, -0.022939633578062057, 0.07967832684516907, 0.10352945327758789, -0.1428692787885666, -0.021322807297110558, 0.11619197577238083, -0.0662359818816185, -0.05380193144083023, 0.057490743696689606, -0.07630821317434311, 0.08670367300510406, 0.05339822173118591, 0.19251157343387604, 0.08659209311008453, -0.1061706393957138, 0.015282714739441872, 0.015158380381762981, 0.03420567512512207, 0.003573263995349407, 0.05177943781018257, 0.005622876342386007, 0.02755836211144924, 0.016148971393704414, -0.07390997558832169, 0.007050638552755117, -0.09158888459205627, -0.059998031705617905, -0.0490945465862751, -0.08408989757299423, -0.005289931315928698, 0.01223659235984087, 0.036005210131406784, -0.07965636253356934, -0.08384286612272263, 0.07592407613992691, 0.13699014484882355, -0.04714573919773102, 0.017977822571992874, -0.07634617388248444, -0.002358023077249527, -0.03198079764842987, -0.02422170899808407, -0.20321069657802582, -0.056598905473947525, 0.033365435898303986, -0.005859894212335348, 0.04538435861468315, 0.002621253952383995, 0.08467087149620056, 0.02751333639025688, -0.05438849329948425, -0.0006785595323890448, -0.08626876026391983, -0.008255582302808762, -0.09420303255319595, -0.2206188291311264, -0.05309855937957764, -0.03904702514410019, 0.13777387142181396, -0.16569219529628754, -0.004577221814543009, -0.018392493948340416, 0.1162685826420784, 0.04261269420385361, -0.05165563523769379, -0.00547008728608489, 0.027850117534399033, 0.012461538426578045, -0.09744860976934433, 0.038772501051425934, 0.016199380159378052, -0.09436593949794769, -0.02843027375638485, -0.10297288000583649, -0.008081729523837566, 0.06926538050174713, 0.07013063132762909, -0.10167964547872543, -0.015370454639196396, -0.06263086944818497, -0.028583761304616928, -0.05367019400000572, 0.03793634846806526, 0.1819518804550171, 0.01711212657392025, 0.11006614565849304, -0.07477668672800064, -0.08362308889627457, 0.01814642734825611, 0.008238599635660648, 0.06125633791089058, 0.10108058899641037, 0.07530111819505692, -0.11255938559770584, 0.05751495808362961, 0.092662014067173, -0.05301603674888611, 0.13703420758247375, -0.04648924246430397, -0.07312287390232086, -0.03318116441369057, -0.007638663053512573, -0.006569644436240196, 0.14966309070587158, -0.03773041069507599, 0.01790342852473259, 0.034010086208581924, 0.03632907569408417, 0.004270182456821203, -0.16253896057605743, -0.014585188589990139, 0.013741469010710716, -0.04875355213880539, -0.021590672433376312, 0.01482963003218174, 0.01650124229490757, 0.09545501321554184, 0.041685670614242554, -0.003636639565229416, 0.007839183323085308, -0.009723702445626259, -0.04255286604166031, 0.19973617792129517, -0.09108835458755493, -0.04335413873195648, -0.07688919454813004, -0.0017430160660296679, -0.022766439244151115, -0.039736226201057434, 0.015092318877577782, -0.09387929737567902, -0.02570039965212345, -0.0710635781288147, 0.0007886118837632239, -0.042673513293266296, 0.01611238531768322, 0.005628375336527824, 0.014276535250246525, 0.06033608689904213, -0.1321648508310318, 0.0104390699416399, -0.06736386567354202, -0.1124487891793251, 0.02927217073738575, 0.060921162366867065, 0.0787472203373909, 0.05617797374725342, -0.031424712389707565, 0.019225917756557465, -0.041011992841959, 0.23158632218837738, -0.07746081799268723, 0.012322020716965199, 0.12354326993227005, 0.02589673548936844, 0.04026765376329422, 0.1038040742278099, 0.03291212022304535, -0.10044966638088226, 0.03843977302312851, 0.07643596827983856, -0.04127134382724762, -0.2436371147632599, 0.007686898577958345, -0.03824537247419357, -0.09653590619564056, 0.08914853632450104, 0.05062827467918396, -0.04641205817461014, 0.06365688890218735, 0.010618660598993301, 0.011502438224852085, -0.02429053746163845, 0.08812331408262253, 0.09171564877033234, 0.06563616544008255, 0.10805395245552063, -0.03770921006798744, -0.01785692572593689, 0.0651615709066391, 0.02978222630918026, 0.3030675947666168, -0.048744551837444305, 0.08555670827627182, 0.04796284809708595, 0.1403084695339203, -0.02200148068368435, 0.045391324907541275, 0.007317407056689262, -0.005758936516940594, -0.030005235224962234, -0.05402090772986412, -0.020358912646770477, 0.0035154353827238083, -0.07702794671058655, 0.044578664004802704, -0.0503004789352417, 0.050228483974933624, 0.019013842567801476, 0.29077911376953125, 0.002085615647956729, -0.2629886269569397, -0.0938270315527916, -0.014883953146636486, -0.03783170506358147, -0.0519905649125576, 0.010227535851299763, 0.12243387848138809, -0.12298282980918884, 0.03767498955130577, -0.0709371343255043, 0.08002746850252151, -0.02898634783923626, -0.002515509957447648, 0.041815515607595444, 0.17197997868061066, -0.02007407695055008, 0.055808402597904205, -0.21999500691890717, 0.22629649937152863, 0.015339924022555351, 0.1278550773859024, -0.05844366177916527, 0.00938491616398096, 0.026474833488464355, 0.0038471927400678396, 0.08849447965621948, -0.003675672225654125, -0.06563536822795868, -0.13583128154277802, -0.05368999019265175, 0.07299594581127167, 0.14371949434280396, -0.042662542313337326, 0.09680798649787903, -0.05876808613538742, 0.014539070427417755, 0.03676316514611244, -0.08836613595485687, -0.13192139565944672, -0.09778453409671783, -0.0224301815032959, 0.013934369198977947, -0.07182037085294724, -0.05762966349720955, -0.06904866546392441, 0.034073397517204285, 0.10716241598129272, 0.012334411963820457, -0.03169647604227066, -0.1473126858472824, 0.08002350479364395, 0.15630203485488892, -0.06671421229839325, 0.025436321273446083, -0.004106747917830944, 0.07616410404443741, 0.039162199944257736, -0.08336193859577179, 0.060532938688993454, -0.06480399519205093, -0.17943790555000305, -0.04795864596962929, 0.09574596583843231, 0.06896543502807617, 0.04196375608444214, -0.0023499818053096533, 0.052763983607292175, -0.026120001450181007, -0.09312792122364044, 0.02565889246761799, 0.021615730598568916, 0.03595610707998276, 0.03665263205766678, -0.0858500525355339, 0.07742844521999359, -0.03617570921778679, -0.014050851576030254, 0.11454914510250092, 0.23194891214370728, -0.10182838141918182, 0.09979677200317383, 0.06029871106147766, -0.06179282069206238, -0.1610351949930191, 0.06986962258815765, 0.10523945093154907, 0.007607916835695505, 0.07088446617126465, -0.21183502674102783, 0.1291368156671524, 0.10383941233158112, -0.01709521934390068, 0.041097451001405716, -0.2717690169811249, -0.1198568120598793, 0.043126482516527176, 0.12833242118358612, 0.09905233979225159, -0.12499456852674484, -0.01473125722259283, -0.015110092237591743, -0.11208946257829666, 0.09467799961566925, -0.11438003927469254, 0.13616585731506348, -0.02942771650850773, 0.11171510815620422, 0.01082755345851183, -0.025275832042098045, 0.10387896746397018, 0.04489756003022194, 0.1013154610991478, -0.04163959622383118, 0.00595996156334877, 0.06483175605535507, -0.04800769314169884, 0.0022862597834318876, -0.07688972353935242, 0.08773858100175858, -0.131573885679245, -0.004216426983475685, -0.0898960530757904, 0.04576563090085983, -0.03862329199910164, -0.06843701750040054, -0.04154188930988312, 0.055851321667432785, 0.04732881486415863, -0.03609069436788559, 0.044185131788253784, -0.017230821773409843, 0.10122368484735489, 0.04006671905517578, 0.0855778232216835, 0.01595303975045681, -0.045824043452739716, 0.023083563894033432, -0.009917888790369034, 0.06446290016174316, -0.16406650841236115, 0.012091239914298058, 0.09854021668434143, 0.06010917201638222, 0.09711258113384247, 0.04418308660387993, -0.04569585248827934, 0.018194857984781265, 0.029946118593215942, -0.1017346903681755, -0.10883501917123795, 0.04722142592072487, -0.02723984234035015, -0.13915285468101501, 0.04839159920811653, 0.12250108271837234, -0.042710475623607635, -0.027105500921607018, -0.01695011556148529, 0.00491111958399415, -0.02356562949717045, 0.18202047049999237, 0.04750582203269005, 0.05526357144117355, -0.101612888276577, 0.12705251574516296, 0.02852834202349186, -0.01846194826066494, 0.05193566158413887, 0.08338149636983871, -0.10254864394664764, -0.0024927002377808094, 0.08231686800718307, 0.13939401507377625, -0.058751001954078674, -0.0058072772808372974, -0.1040012389421463, -0.08299141377210617, 0.050152525305747986, 0.14177072048187256, 0.049638532102108, -0.016045374795794487, -0.05410366505384445, 0.04004238173365593, -0.13946028053760529, 0.07088497281074524, 0.024207351729273796, 0.06332552433013916, -0.07597542554140091, 0.05971495062112808, 0.00719679007306695, 0.013345480896532536, -0.01769634708762169, 0.007851003669202328, -0.09283427894115448, -0.01668677106499672, -0.08006307482719421, -0.0011165555333718657, 0.0010221924167126417, 0.016953937709331512, -0.019749853760004044, -0.07201942801475525, -0.048753522336483, 0.03768254071474075, -0.08705481886863708, -0.05036930739879608, 0.008299443870782852, 0.03987899050116539, -0.12383097410202026, -0.006072127725929022, 0.0221872441470623, -0.0935521051287651, 0.09625857323408127, 0.0740380510687828, 0.017562754452228546, 0.02999209053814411, -0.12317643314599991, -0.03369215875864029, -0.009574737399816513, -0.008118446916341782, 0.06151224300265312, -0.09615406394004822, -0.008959684520959854, -0.037258490920066833, 0.0705886259675026, 0.013244707137346268, 0.07243403792381287, -0.13383640348911285, 0.01908057928085327, -0.07692301273345947, -0.04872722178697586, -0.07518969476222992, 0.0354742594063282, 0.09654518216848373, 0.061307139694690704, 0.15131360292434692, -0.07708962261676788, 0.023160021752119064, -0.20636644959449768, -0.03430967405438423, -0.006199914030730724, -0.05974975600838661, -0.15123941004276276, -0.04741542413830757, 0.08018375933170319, -0.037221845239400864, 0.09351220726966858, -0.018617672845721245, 0.07471645623445511, 0.03742500767111778, -0.04678044095635414, -0.04912891983985901, -0.016444627195596695, 0.19875475764274597, 0.07317007333040237, -0.015794288367033005, 0.11053697764873505, 0.0007104991236701608, 0.030346661806106567, 0.05068057402968407, 0.1803746074438095, 0.2133781760931015, 0.03183349221944809, 0.05468206852674484, 0.06418589502573013, -0.0753643810749054, -0.07278183102607727, 0.18040534853935242, -0.016217555850744247, 0.06972331553697586, -0.048600465059280396, 0.1984187364578247, 0.10920503735542297, -0.16849187016487122, 0.044923752546310425, -0.04217012971639633, -0.08109155297279358, -0.12605342268943787, -0.01103727426379919, -0.08742688596248627, -0.1266958862543106, 0.037543319165706635, -0.11637977510690689, 0.05384741351008415, 0.10598691552877426, 0.012651648372411728, 0.03731703758239746, 0.12489743530750275, -0.019708871841430664, 0.002611251547932625, 0.06326570361852646, 0.005701940506696701, -0.01268518902361393, -0.034782275557518005, -0.08049493283033371, 0.049823109060525894, 0.0022545321844518185, 0.07893721759319305, -0.0465206615626812, -0.014531513676047325, 0.025420477613806725, -0.028818275779485703, -0.0803261548280716, 0.027367113158106804, 0.04090789705514908, 0.05553167313337326, 0.04665454104542732, 0.04584856703877449, -0.009026835672557354, -0.033347297459840775, 0.3183007836341858, -0.06678764522075653, -0.0991612896323204, -0.12134383618831635, 0.2212219536304474, 0.027841972187161446, -0.03019060008227825, 0.034723225980997086, -0.08233904838562012, -0.010534771718084812, 0.15706714987754822, 0.166286438703537, -0.0726330429315567, -0.022819891571998596, -0.005516988690942526, -0.01823290064930916, -0.03646296635270119, 0.1280255913734436, 0.08898596465587616, -0.02351837046444416, -0.06309620290994644, -0.014309519901871681, -0.019357595592737198, -0.03136393055319786, -0.04074445739388466, 0.04151042923331261, 0.014466345310211182, -0.024513939395546913, -0.04235678166151047, 0.0732019767165184, 0.006271726451814175, -0.25679731369018555, 0.06916496902704239, -0.15680739283561707, -0.17183056473731995, -0.04289821535348892, 0.03730477765202522, -0.002571833785623312, 0.05712883919477463, -0.017865480855107307, 0.008723038248717785, 0.07762446999549866, -0.01798953488469124, -0.033081941306591034, -0.12360996007919312, 0.12467952072620392, -0.06580941379070282, 0.17142607271671295, -0.028060026466846466, 0.050239674746990204, 0.11551639437675476, 0.02832110784947872, -0.13585250079631805, 0.041337449103593826, 0.053603462874889374, -0.10603565722703934, 0.015250510536134243, 0.15343576669692993, -0.04674915596842766, 0.09349115192890167, 0.04297492280602455, -0.10789250582456589, 0.0030360626988112926, -0.05549832060933113, -0.03492894396185875, -0.0805354118347168, -0.015128177590668201, -0.06135847419500351, 0.168192520737648, 0.21863986551761627, -0.029720770195126534, 0.012051914818584919, -0.10201411694288254, 0.01741715334355831, 0.07039999216794968, 0.029377074912190437, -0.05684669688344002, -0.18943195044994354, 0.01097894087433815, 0.06973092257976532, -0.007000093813985586, -0.24131883680820465, -0.07699087262153625, 0.03860323876142502, -0.034996021538972855, -0.04055893421173096, 0.10392949730157852, 0.03924938663840294, 0.05158844217658043, -0.02957790531218052, -0.162637397646904, -0.031379107385873795, 0.15253742039203644, -0.17491793632507324, -0.03547542542219162 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-64-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-64-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-64-finetuned-squad-seed-4
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-64-finetuned-squad-seed-4 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-64-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-64-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-64-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08062123507261276, 0.08416745066642761, -0.0024736877530813217, 0.0849875882267952, 0.13697010278701782, 0.033841878175735474, 0.10092262923717499, 0.13866369426250458, -0.11402437090873718, 0.04241468757390976, 0.08906381577253342, 0.08248081058263779, 0.030224042013287544, 0.1359824538230896, -0.03340746834874153, -0.2541303336620331, -0.007090881932526827, -0.019356612116098404, -0.09598001092672348, 0.10917629301548004, 0.09752266854047775, -0.09998884797096252, 0.07273636013269424, -0.014306738041341305, -0.18076109886169434, 0.01824941113591194, -0.012369051575660706, -0.05016699060797691, 0.11842489242553711, -0.009537865407764912, 0.07611528038978577, 0.00885868351906538, 0.12288864701986313, -0.1880091428756714, 0.0162445567548275, 0.07514043897390366, 0.0457395538687706, 0.09697892516851425, 0.00874787662178278, -0.011233541183173656, 0.1303708255290985, -0.12774239480495453, 0.09914176911115646, 0.03150113299489021, -0.09483416378498077, -0.2097155600786209, -0.09493747353553772, 0.006305807735770941, 0.04368869587779045, 0.08329974859952927, 0.010363134555518627, 0.15847690403461456, -0.09780572354793549, 0.08312824368476868, 0.2270815223455429, -0.27659550309181213, -0.08022336661815643, 0.053706031292676926, 0.059129748493433, 0.08278747648000717, -0.1264258176088333, -0.008535215631127357, 0.006735104601830244, 0.026106927543878555, 0.10402682423591614, -0.03266540914773941, -0.0863105058670044, 0.0030678249895572662, -0.10501234233379364, 0.007965102791786194, 0.1107684075832367, 0.03302675113081932, -0.05299420282244682, -0.07051641494035721, -0.043936002999544144, -0.052338723093271255, -0.03488076478242874, -0.01957656629383564, 0.03947843983769417, -0.05851934850215912, -0.13932739198207855, -0.04874396696686745, -0.04923476278781891, -0.09004950523376465, -0.007459952961653471, 0.2189689725637436, 0.035778723657131195, 0.03262285888195038, -0.050329551100730896, 0.10250668972730637, 0.010865213349461555, -0.1267956644296646, -0.02825349196791649, -0.005001217592507601, -0.09134231507778168, -0.03562209755182266, -0.06087544187903404, 0.023827744647860527, 0.03549204394221306, 0.21653532981872559, -0.043320026248693466, 0.07825061678886414, 0.032442182302474976, -0.017328990623354912, -0.027078593149781227, 0.13733340799808502, -0.021744202822446823, -0.07516416907310486, 0.012819799594581127, 0.062270596623420715, 0.010534104891121387, -0.004781284835189581, -0.06409560889005661, -0.03939369320869446, 0.06471901386976242, 0.04687974601984024, -0.06269693374633789, 0.031047143042087555, -0.006977001205086708, -0.023034699261188507, -0.00022709087352268398, -0.11526473611593246, 0.016539467498660088, -0.009173210710287094, -0.08110857754945755, -0.045801836997270584, 0.007017213851213455, -0.011470361612737179, 0.012241898104548454, 0.09547381103038788, -0.07329876720905304, -0.02415177971124649, -0.08051979541778564, -0.07506653666496277, -0.017484016716480255, -0.155037522315979, 0.020158641040325165, -0.06231440231204033, -0.16201531887054443, -0.03040720336139202, 0.055960699915885925, -0.08258043229579926, -0.027485115453600883, -0.03185822069644928, -0.07819809019565582, 0.02136661298573017, 0.0023631302174180746, 0.21819941699504852, -0.04966561868786812, 0.0880768746137619, 0.011013926938176155, 0.058103419840335846, -0.010101709514856339, 0.03579976409673691, -0.08554902672767639, 0.009457340463995934, -0.17709149420261383, 0.07583856582641602, -0.0798862874507904, 0.016931749880313873, -0.1389186829328537, -0.0863015428185463, -0.009949542582035065, -0.021812306717038155, 0.07927361130714417, 0.10298621654510498, -0.14262717962265015, -0.021335069090127945, 0.11546505242586136, -0.06494488567113876, -0.053926076740026474, 0.057425446808338165, -0.07661977410316467, 0.08579980581998825, 0.0538148507475853, 0.19279661774635315, 0.08649375289678574, -0.10568761825561523, 0.014489160850644112, 0.014389256946742535, 0.03446640446782112, 0.0029017894994467497, 0.050168149173259735, 0.006588655058294535, 0.02759210579097271, 0.0166736152023077, -0.07264944911003113, 0.0070198290050029755, -0.09119130671024323, -0.059521473944187164, -0.048535432666540146, -0.08399607986211777, -0.006090075708925724, 0.012542779557406902, 0.03592348098754883, -0.08059606701135635, -0.08405276387929916, 0.07519830763339996, 0.13673050701618195, -0.04761454835534096, 0.01687437854707241, -0.07659108191728592, -0.0018082897877320647, -0.03201785683631897, -0.02373691461980343, -0.20299598574638367, -0.05738455429673195, 0.03237259387969971, -0.0038826812524348497, 0.04555925726890564, 0.002942364662885666, 0.0851919874548912, 0.027734652161598206, -0.054582394659519196, -0.0008262930787168443, -0.08494403958320618, -0.007814619690179825, -0.09402529895305634, -0.22106315195560455, -0.05319816991686821, -0.038890305906534195, 0.13764366507530212, -0.1662461757659912, -0.0042433962225914, -0.018357811495661736, 0.1156914010643959, 0.04223925620317459, -0.05105528607964516, -0.004884902387857437, 0.029249291867017746, 0.01323248352855444, -0.09744218736886978, 0.03927009180188179, 0.0158877894282341, -0.09320128709077835, -0.02977241389453411, -0.10334677249193192, -0.006662933621555567, 0.0703408494591713, 0.06894703209400177, -0.10216113179922104, -0.01500089280307293, -0.06213536113500595, -0.028411664068698883, -0.05195104330778122, 0.037916384637355804, 0.18303968012332916, 0.01648542657494545, 0.11000949144363403, -0.07415198534727097, -0.08320822566747665, 0.018305562436580658, 0.009318175725638866, 0.06245169788599014, 0.10104133933782578, 0.0746089443564415, -0.11107311397790909, 0.05776991695165634, 0.0921335443854332, -0.05344796180725098, 0.13764767348766327, -0.04664859548211098, -0.07246579229831696, -0.03268935903906822, -0.008760849945247173, -0.006985380779951811, 0.15033569931983948, -0.038101207464933395, 0.016858676448464394, 0.033621326088905334, 0.035894930362701416, 0.004547840915620327, -0.1616070717573166, -0.014524484984576702, 0.013029959984123707, -0.04776822403073311, -0.022179214283823967, 0.015520814806222916, 0.015899742022156715, 0.09510080516338348, 0.04150313138961792, -0.004783314652740955, 0.007862924598157406, -0.00954488292336464, -0.04162490740418434, 0.20014508068561554, -0.09150692820549011, -0.04215250164270401, -0.07661861181259155, -0.0036765215918421745, -0.023810038343071938, -0.040176063776016235, 0.01480066031217575, -0.09507322311401367, -0.02607857622206211, -0.07074432820081711, 0.00009722202958073467, -0.04260498657822609, 0.016036180779337883, 0.005114639177918434, 0.01367922406643629, 0.0598742701113224, -0.13202403485774994, 0.010545257478952408, -0.06767775863409042, -0.11243456602096558, 0.0297395009547472, 0.06158466637134552, 0.07943286746740341, 0.05566154792904854, -0.031490687280893326, 0.019271768629550934, -0.04087885096669197, 0.23248736560344696, -0.07753774523735046, 0.012566917575895786, 0.12332160025835037, 0.0266837440431118, 0.03933944180607796, 0.10381375998258591, 0.03390796482563019, -0.10088728368282318, 0.03813422843813896, 0.07688293606042862, -0.040867678821086884, -0.24349647760391235, 0.008135619573295116, -0.0386955700814724, -0.09681018441915512, 0.08877534419298172, 0.0505831241607666, -0.045871637761592865, 0.06424682587385178, 0.01158248819410801, 0.012380699627101421, -0.02519911341369152, 0.08784971386194229, 0.09346921741962433, 0.06522919237613678, 0.10875760763883591, -0.038054171949625015, -0.018190087750554085, 0.06451663374900818, 0.02985936962068081, 0.3038875162601471, -0.04886121302843094, 0.08537547290325165, 0.04841264337301254, 0.13983947038650513, -0.021388374269008636, 0.0459861122071743, 0.006678713019937277, -0.006442470941692591, -0.030056092888116837, -0.05379645526409149, -0.019215915352106094, 0.00246533565223217, -0.07867501676082611, 0.044339101761579514, -0.050246790051460266, 0.04891301319003105, 0.019304854795336723, 0.289997398853302, 0.0014130555791780353, -0.26510584354400635, -0.0943029597401619, -0.01564211957156658, -0.03742154315114021, -0.051562972366809845, 0.010576681233942509, 0.12185470014810562, -0.12240368127822876, 0.03822673112154007, -0.07083966583013535, 0.07990583777427673, -0.02906305156648159, -0.0014647665666416287, 0.04365864768624306, 0.173611581325531, -0.02101769670844078, 0.05524802953004837, -0.22065873444080353, 0.2253260612487793, 0.015652325004339218, 0.12842997908592224, -0.05852967128157616, 0.009166310541331768, 0.02735799551010132, 0.005251079797744751, 0.0880310907959938, -0.004231962375342846, -0.06553233414888382, -0.135846808552742, -0.05259663239121437, 0.07397241145372391, 0.14320217072963715, -0.041537582874298096, 0.09742928296327591, -0.0580148845911026, 0.01406119018793106, 0.0366484597325325, -0.08950560539960861, -0.13204526901245117, -0.09832039475440979, -0.02336331456899643, 0.015540248714387417, -0.07162471860647202, -0.05674709007143974, -0.06936787068843842, 0.032391756772994995, 0.10626406222581863, 0.013966950587928295, -0.031679123640060425, -0.14769457280635834, 0.07913797348737717, 0.15630662441253662, -0.06589717417955399, 0.025601450353860855, -0.003785629291087389, 0.07502862066030502, 0.0401025153696537, -0.08324761688709259, 0.06075068190693855, -0.065449558198452, -0.1781042516231537, -0.0480615459382534, 0.09471618384122849, 0.06856425106525421, 0.04118669033050537, -0.002823485527187586, 0.0527820847928524, -0.027005601674318314, -0.09376244992017746, 0.02569895051419735, 0.020062904804944992, 0.03680167719721794, 0.03656967356801033, -0.08687523752450943, 0.07728977501392365, -0.03549417108297348, -0.013184506446123123, 0.11308268457651138, 0.2296084314584732, -0.10136165469884872, 0.0976703092455864, 0.06038475036621094, -0.06139973923563957, -0.1606096476316452, 0.07125189155340195, 0.10376626253128052, 0.007959000766277313, 0.06939783692359924, -0.21243558824062347, 0.1302306354045868, 0.10333709418773651, -0.016074609011411667, 0.042933475226163864, -0.26924362778663635, -0.11913246661424637, 0.0433388277888298, 0.1289631873369217, 0.10036668181419373, -0.12549585103988647, -0.013989282771945, -0.015305266715586185, -0.11177802830934525, 0.09398094564676285, -0.11680437624454498, 0.13637755811214447, -0.029860110953450203, 0.11243245750665665, 0.010096096433699131, -0.02526918612420559, 0.1029866635799408, 0.045837514102458954, 0.10253607481718063, -0.04202667996287346, 0.006907076109200716, 0.06478310376405716, -0.04725199192762375, 0.001996551873162389, -0.07775166630744934, 0.0872812420129776, -0.13177596032619476, -0.004039104096591473, -0.09034255892038345, 0.0457640178501606, -0.03844036906957626, -0.06821531057357788, -0.04093778133392334, 0.055903397500514984, 0.04625990614295006, -0.03632482886314392, 0.043056655675172806, -0.018008938059210777, 0.10163947939872742, 0.03871487081050873, 0.08611392229795456, 0.014430556446313858, -0.04622174799442291, 0.024342261254787445, -0.010423459112644196, 0.06447157263755798, -0.16377533972263336, 0.010783394798636436, 0.09912113100290298, 0.059369802474975586, 0.09668797254562378, 0.044911518692970276, -0.04474388062953949, 0.017557064071297646, 0.03073767200112343, -0.10208514332771301, -0.1077360212802887, 0.047503646463155746, -0.03038726933300495, -0.13851982355117798, 0.04973170533776283, 0.12228315323591232, -0.04256243258714676, -0.026791533455252647, -0.016945673152804375, 0.004149203654378653, -0.02354421652853489, 0.1825515478849411, 0.04804236441850662, 0.05472389981150627, -0.10259141027927399, 0.12666992843151093, 0.02837890200316906, -0.018843254074454308, 0.05190594121813774, 0.08442696928977966, -0.1034349799156189, -0.003359731985256076, 0.08166820555925369, 0.14132824540138245, -0.058345768600702286, -0.006442980375140905, -0.10506223142147064, -0.08324622362852097, 0.05002807453274727, 0.1414649486541748, 0.049534495919942856, -0.017247531563043594, -0.05435684695839882, 0.03955753892660141, -0.14013248682022095, 0.07049509882926941, 0.023136386647820473, 0.06379769742488861, -0.07595683634281158, 0.05897383391857147, 0.007040439639240503, 0.012591084465384483, -0.01764543727040291, 0.008417855016887188, -0.093404121696949, -0.016870958730578423, -0.07994785904884338, -0.0019413646077737212, 0.001080216490663588, 0.01752268709242344, -0.020031550899147987, -0.0710606649518013, -0.049386583268642426, 0.037801340222358704, -0.08719760924577713, -0.049986422061920166, 0.010064849629998207, 0.04037272557616234, -0.12307199090719223, -0.00576202105730772, 0.02103564143180847, -0.09312506020069122, 0.0959656611084938, 0.07382421940565109, 0.017233887687325478, 0.030155355110764503, -0.12226715683937073, -0.03416360914707184, -0.010100013576447964, -0.00868925079703331, 0.062263090163469315, -0.09505397826433182, -0.008453154936432838, -0.037469759583473206, 0.07120189815759659, 0.01338049117475748, 0.07158307731151581, -0.13321234285831451, 0.01965673826634884, -0.07613514363765717, -0.04727530479431152, -0.07580915838479996, 0.03567465394735336, 0.0973551794886589, 0.0608927458524704, 0.15128730237483978, -0.077043816447258, 0.022473420947790146, -0.2063504308462143, -0.0346590057015419, -0.006325291004031897, -0.06133156269788742, -0.15085875988006592, -0.04753004387021065, 0.0807480663061142, -0.03788458928465843, 0.09522127360105515, -0.018475113436579704, 0.07474275678396225, 0.0369594544172287, -0.046501774340867996, -0.05022796615958214, -0.016229994595050812, 0.19836996495723724, 0.07262669503688812, -0.016307283192873, 0.11031199991703033, 0.00200655753724277, 0.02971057780086994, 0.05185960605740547, 0.17880725860595703, 0.21281284093856812, 0.0326245054602623, 0.05473129078745842, 0.06459739059209824, -0.07577653974294662, -0.07133758068084717, 0.1813403069972992, -0.015863610431551933, 0.07030735164880753, -0.04951227456331253, 0.19716191291809082, 0.10831655561923981, -0.16741536557674408, 0.045149508863687515, -0.0430319644510746, -0.08112411946058273, -0.12502002716064453, -0.009770890697836876, -0.08691371977329254, -0.12720605731010437, 0.03756893053650856, -0.11685709655284882, 0.05306820943951607, 0.10705595463514328, 0.013177284970879555, 0.03680054470896721, 0.12637732923030853, -0.018912706524133682, 0.003310565836727619, 0.06347596645355225, 0.0052817203104496, -0.01312557328492403, -0.0347440242767334, -0.08010353893041611, 0.04915874823927879, 0.0007616303046233952, 0.07823053002357483, -0.04705405980348587, -0.014944665133953094, 0.026002725586295128, -0.028472013771533966, -0.07991806417703629, 0.027212314307689667, 0.04149635136127472, 0.05517782270908356, 0.04756512865424156, 0.04542591795325279, -0.00989344622939825, -0.033385660499334335, 0.3173099756240845, -0.06674089282751083, -0.098155178129673, -0.12162671983242035, 0.2207726091146469, 0.027592118829488754, -0.030725939199328423, 0.03352337330579758, -0.08138002455234528, -0.009535975754261017, 0.15826629102230072, 0.16807183623313904, -0.072920061647892, -0.02308887243270874, -0.0052179680205881596, -0.018275858834385872, -0.03665066510438919, 0.1284475326538086, 0.08934102207422256, -0.024445893242955208, -0.06298696994781494, -0.014251098968088627, -0.018889294937253, -0.03101579286158085, -0.04088640213012695, 0.040869370102882385, 0.015459255315363407, -0.024967260658740997, -0.04159783199429512, 0.07307326793670654, 0.005738324485719204, -0.2567862570285797, 0.06978940963745117, -0.15649531781673431, -0.17204490303993225, -0.04389948025345802, 0.03684207797050476, -0.0017978879623115063, 0.05755462124943733, -0.01794571802020073, 0.00854162871837616, 0.07818259298801422, -0.01843142881989479, -0.03220280259847641, -0.12441319227218628, 0.12451109290122986, -0.06624314934015274, 0.17030036449432373, -0.028519727289676666, 0.049976348876953125, 0.11613427102565765, 0.027983054518699646, -0.1355617791414261, 0.041910868138074875, 0.05290668085217476, -0.10666777193546295, 0.015726003795862198, 0.1524055004119873, -0.04658786579966545, 0.09280171990394592, 0.04186100512742996, -0.10697851330041885, 0.0038490896113216877, -0.05533082038164139, -0.03479985147714615, -0.08049055933952332, -0.015179167501628399, -0.061188433319330215, 0.1686372458934784, 0.21992656588554382, -0.029526930302381516, 0.011974974535405636, -0.10191960632801056, 0.017364682629704475, 0.07094511389732361, 0.027870090678334236, -0.0576825886964798, -0.18930797278881073, 0.011300649493932724, 0.0705970823764801, -0.007484897039830685, -0.24206776916980743, -0.07586685568094254, 0.038407228887081146, -0.03479153662919998, -0.04077509418129921, 0.10369911044836044, 0.040244512259960175, 0.052514344453811646, -0.02998601272702217, -0.1604943722486496, -0.03137868270277977, 0.15236157178878784, -0.1750003546476364, -0.036127276718616486 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-64-finetuned-squad-seed-6 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-64-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-64-finetuned-squad-seed-6
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-64-finetuned-squad-seed-6 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-64-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-64-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-64-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08059658855199814, 0.08370451629161835, -0.002440281677991152, 0.08472847193479538, 0.1371995210647583, 0.033336203545331955, 0.10067257285118103, 0.13889913260936737, -0.11346834152936935, 0.04277197644114494, 0.08855082094669342, 0.0830727219581604, 0.030774781480431557, 0.13571293652057648, -0.03325862064957619, -0.25378212332725525, -0.0065861959010362625, -0.01913357526063919, -0.09569036960601807, 0.10913310199975967, 0.0975719541311264, -0.10020466148853302, 0.07205340266227722, -0.014694556593894958, -0.18084923923015594, 0.018484290689229965, -0.012601073831319809, -0.049892205744981766, 0.11823330819606781, -0.009964088909327984, 0.07578834891319275, 0.009113199077546597, 0.12274385988712311, -0.18847449123859406, 0.016216877847909927, 0.07557478547096252, 0.04590384662151337, 0.09709960967302322, 0.009653046727180481, -0.010861365124583244, 0.13157309591770172, -0.12723559141159058, 0.09890121221542358, 0.03195871040225029, -0.09481561183929443, -0.2081286758184433, -0.09545867145061493, 0.005725516472011805, 0.04424511268734932, 0.08395789563655853, 0.009863442741334438, 0.15920723974704742, -0.09848512709140778, 0.0831226259469986, 0.22858694195747375, -0.27534759044647217, -0.08016376942396164, 0.05426045134663582, 0.05899161472916603, 0.08188074827194214, -0.12723161280155182, -0.009655565023422241, 0.0067855739034712315, 0.025763124227523804, 0.10318195819854736, -0.03200008347630501, -0.08740651607513428, 0.0026820253115147352, -0.10530833154916763, 0.0076703885570168495, 0.10960176587104797, 0.03322180360555649, -0.05252986401319504, -0.07032153755426407, -0.04423033818602562, -0.05180910602211952, -0.03457282856106758, -0.019374780356884003, 0.039554525166749954, -0.0584053210914135, -0.1388808637857437, -0.0485357865691185, -0.04920352250337601, -0.0910165011882782, -0.007090267259627581, 0.21858017146587372, 0.03583313524723053, 0.0324815958738327, -0.05088053271174431, 0.10248067229986191, 0.011135085485875607, -0.1269739419221878, -0.02910700812935829, -0.00437696510925889, -0.09145495295524597, -0.035675570368766785, -0.06061102822422981, 0.022753430530428886, 0.034887898713350296, 0.21468304097652435, -0.043025121092796326, 0.07846477627754211, 0.03180870786309242, -0.01723872683942318, -0.02772834338247776, 0.13746802508831024, -0.020903946831822395, -0.07326480001211166, 0.012062662281095982, 0.0625147894024849, 0.010164640843868256, -0.004404278472065926, -0.06352950632572174, -0.039558812975883484, 0.06524667888879776, 0.04654573276638985, -0.06234116852283478, 0.030567388981580734, -0.007451884914189577, -0.023233098909258842, 0.00048483232967555523, -0.11512927711009979, 0.016435544937849045, -0.009530564770102501, -0.08142605423927307, -0.04660777002573013, 0.007150908932089806, -0.011717562563717365, 0.011975022964179516, 0.09564243257045746, -0.0737684816122055, -0.02413882315158844, -0.08124642819166183, -0.07479505985975266, -0.017175685614347458, -0.15655134618282318, 0.019802125170826912, -0.061457641422748566, -0.16219913959503174, -0.0304887518286705, 0.05551997944712639, -0.08265301585197449, -0.027275148779153824, -0.03239721804857254, -0.07870350778102875, 0.021622205153107643, 0.002665623789653182, 0.21900881826877594, -0.04931419715285301, 0.08878245204687119, 0.010937055572867393, 0.05794112756848335, -0.00944503303617239, 0.036408450454473495, -0.08638880401849747, 0.009321719408035278, -0.17641332745552063, 0.0759713351726532, -0.08055634796619415, 0.016796177253127098, -0.13969282805919647, -0.08574994653463364, -0.011150299571454525, -0.022417603060603142, 0.08001526445150375, 0.1037057638168335, -0.14266051352024078, -0.021091721951961517, 0.11583638936281204, -0.06570862978696823, -0.053831253200769424, 0.05647392198443413, -0.07632416486740112, 0.08551241457462311, 0.05330466479063034, 0.19274531304836273, 0.08601921051740646, -0.10517334938049316, 0.013357950374484062, 0.01389654353260994, 0.035071566700935364, 0.002307811053469777, 0.05017221346497536, 0.0063682664185762405, 0.028434839099645615, 0.016620757058262825, -0.07277987897396088, 0.006889554671943188, -0.09127428382635117, -0.05889953672885895, -0.04911340773105621, -0.08410931378602982, -0.006311163306236267, 0.013601905666291714, 0.035721659660339355, -0.08021895587444305, -0.08360597491264343, 0.07522760331630707, 0.1366652250289917, -0.0470585934817791, 0.017045127227902412, -0.07603182643651962, -0.0029664444737136364, -0.03280598297715187, -0.023781057447195053, -0.20393064618110657, -0.05786208063364029, 0.03296041116118431, -0.004132754635065794, 0.04546089470386505, 0.0027773550245910883, 0.08505874872207642, 0.026973696425557137, -0.05461954325437546, -0.0009723424445837736, -0.08584418147802353, -0.008395267650485039, -0.09433798491954803, -0.22083327174186707, -0.053465817123651505, -0.03938902169466019, 0.1358896940946579, -0.16579747200012207, -0.004444899968802929, -0.018332352861762047, 0.1160193383693695, 0.04221801087260246, -0.05158110707998276, -0.004863389302045107, 0.028663955628871918, 0.01291535422205925, -0.09773920476436615, 0.03917378932237625, 0.015273749828338623, -0.09286954253911972, -0.029633108526468277, -0.10356488078832626, -0.008253016509115696, 0.07002831250429153, 0.0703003853559494, -0.10222792625427246, -0.014920883812010288, -0.062296025454998016, -0.0287574864923954, -0.0530015304684639, 0.03860244154930115, 0.182328999042511, 0.016812046989798546, 0.10953369736671448, -0.07451950013637543, -0.08344960957765579, 0.018907390534877777, 0.00943340826779604, 0.061868827790021896, 0.10175623744726181, 0.07609155029058456, -0.11239694803953171, 0.0584053136408329, 0.09268736839294434, -0.052734509110450745, 0.1379873901605606, -0.04681262746453285, -0.0730314776301384, -0.03161315992474556, -0.008174356073141098, -0.006803391966968775, 0.1499854326248169, -0.03779378533363342, 0.017192455008625984, 0.033565450459718704, 0.03628382459282875, 0.004537607543170452, -0.16191959381103516, -0.01466626487672329, 0.012879648245871067, -0.047757912427186966, -0.022738322615623474, 0.015369056724011898, 0.01587485894560814, 0.09526046365499496, 0.04120182991027832, -0.004482271149754524, 0.007431270554661751, -0.009620939381420612, -0.041706036776304245, 0.2008497565984726, -0.0911920964717865, -0.04117321968078613, -0.07579702883958817, -0.002879105741158128, -0.02353729121387005, -0.040193989872932434, 0.014883413910865784, -0.09615257382392883, -0.026018746197223663, -0.07070261985063553, 0.00014073635975364596, -0.04264365881681442, 0.015258656814694405, 0.004568359814584255, 0.013995175249874592, 0.059321075677871704, -0.13265478610992432, 0.01061057299375534, -0.06811239570379257, -0.11285889893770218, 0.029470035806298256, 0.06100928783416748, 0.07909545302391052, 0.05589780583977699, -0.03164996951818466, 0.019140837714076042, -0.04104007035493851, 0.23140326142311096, -0.07772056013345718, 0.01209147647023201, 0.12354429066181183, 0.027591245248913765, 0.039900150150060654, 0.10398998111486435, 0.033195361495018005, -0.10092495381832123, 0.03870845586061478, 0.0773070901632309, -0.04116468504071236, -0.24455834925174713, 0.008142424747347832, -0.03889329358935356, -0.09706520289182663, 0.08909659832715988, 0.05082181841135025, -0.046111416071653366, 0.06432059407234192, 0.010620580054819584, 0.011331208050251007, -0.025266362354159355, 0.08823542296886444, 0.0917319506406784, 0.06586726754903793, 0.10868613421916962, -0.03803490474820137, -0.017665458843111992, 0.06383242458105087, 0.030039161443710327, 0.30506476759910583, -0.04898671433329582, 0.08560362458229065, 0.04807782545685768, 0.139964759349823, -0.021852489560842514, 0.04661004990339279, 0.006567822303622961, -0.006512593477964401, -0.029955703765153885, -0.05365332216024399, -0.01949544996023178, 0.002387366956099868, -0.07917886972427368, 0.04467954859137535, -0.050346896052360535, 0.049211516976356506, 0.01845160499215126, 0.2907175123691559, 0.001657690852880478, -0.2642911374568939, -0.09379810094833374, -0.01584620587527752, -0.03768559545278549, -0.052196748554706573, 0.01035935990512371, 0.1215781718492508, -0.12206766754388809, 0.037643913179636, -0.07115402072668076, 0.080573171377182, -0.027931638062000275, -0.0021029049530625343, 0.042747862637043, 0.17367447912693024, -0.020849352702498436, 0.05583073943853378, -0.2212112545967102, 0.22719810903072357, 0.01550295203924179, 0.12830644845962524, -0.05882779881358147, 0.009154057130217552, 0.026644373312592506, 0.003335807006806135, 0.08839033544063568, -0.004152805078774691, -0.06595505028963089, -0.135506272315979, -0.05202898383140564, 0.07369658350944519, 0.14387869834899902, -0.041957125067710876, 0.09694620221853256, -0.058139726519584656, 0.01425999030470848, 0.03737255930900574, -0.08917436003684998, -0.132219597697258, -0.0984470471739769, -0.022953037172555923, 0.014820615760982037, -0.07240323722362518, -0.056726645678281784, -0.06923755258321762, 0.03350649029016495, 0.10614117980003357, 0.01399566326290369, -0.031341906636953354, -0.1475856751203537, 0.07974711805582047, 0.15653757750988007, -0.06621173769235611, 0.025515848770737648, -0.004121850244700909, 0.07493054121732712, 0.03926553949713707, -0.08342566341161728, 0.06146176904439926, -0.06542923301458359, -0.1786474734544754, -0.04804031178355217, 0.09458606690168381, 0.06894392520189285, 0.041500817984342575, -0.002963419770821929, 0.053121160715818405, -0.02692686766386032, -0.09352818131446838, 0.026001762598752975, 0.020238900557160378, 0.03678122162818909, 0.03693647310137749, -0.08644680678844452, 0.07636160403490067, -0.03618438541889191, -0.013734486885368824, 0.11280450969934464, 0.2306234985589981, -0.1012536883354187, 0.09788327664136887, 0.06071031466126442, -0.06160523742437363, -0.16097503900527954, 0.07166134566068649, 0.10437088459730148, 0.007567704189568758, 0.07005009800195694, -0.21239520609378815, 0.13022354245185852, 0.10332594811916351, -0.016385892406105995, 0.042163506150245667, -0.26974737644195557, -0.11912770569324493, 0.04325459152460098, 0.1287948489189148, 0.09902238100767136, -0.1251765489578247, -0.013901815749704838, -0.015007756650447845, -0.11135631799697876, 0.09468185156583786, -0.115142323076725, 0.13666145503520966, -0.03016856499016285, 0.11242713034152985, 0.010246890597045422, -0.02567330189049244, 0.10196167975664139, 0.04604697227478027, 0.10259661078453064, -0.041691042482852936, 0.006561569403856993, 0.0650145560503006, -0.047411780804395676, 0.002128194784745574, -0.0778026208281517, 0.08767440915107727, -0.1309535801410675, -0.0036925955209881067, -0.09093187749385834, 0.04604469612240791, -0.038399774581193924, -0.06812281161546707, -0.04096004366874695, 0.05616273358464241, 0.046749670058488846, -0.03650471568107605, 0.044057004153728485, -0.017762839794158936, 0.10304324328899384, 0.03901218995451927, 0.08646096289157867, 0.01500017661601305, -0.04540843144059181, 0.023607691749930382, -0.00974167138338089, 0.06455922871828079, -0.16458269953727722, 0.010549020953476429, 0.09901537746191025, 0.06020843982696533, 0.09657833725214005, 0.04537274315953255, -0.04538118839263916, 0.017578057944774628, 0.029958348721265793, -0.1013980433344841, -0.10848422348499298, 0.04770493507385254, -0.02704385109245777, -0.13925553858280182, 0.04991908371448517, 0.12093612551689148, -0.0433613583445549, -0.02689306065440178, -0.016844339668750763, 0.0045578680001199245, -0.023014437407255173, 0.1831909418106079, 0.04806528240442276, 0.05532555654644966, -0.1023966446518898, 0.12710291147232056, 0.028134293854236603, -0.019439147785305977, 0.05195885896682739, 0.08416109532117844, -0.10286904126405716, -0.0031880056485533714, 0.08275102823972702, 0.13991214334964752, -0.05808489769697189, -0.005215022712945938, -0.1042458713054657, -0.08299224823713303, 0.05034272000193596, 0.14239773154258728, 0.04935668036341667, -0.017016638070344925, -0.05412682145833969, 0.03994149714708328, -0.14059510827064514, 0.07061101496219635, 0.022804221138358116, 0.0639265850186348, -0.07556888461112976, 0.05780386924743652, 0.007246172986924648, 0.012867332436144352, -0.01740710809826851, 0.008754323236644268, -0.09308534115552902, -0.01690082624554634, -0.07800551503896713, -0.0020995738450437784, 0.0010901862988248467, 0.016971971839666367, -0.020471777766942978, -0.07134474813938141, -0.04851432517170906, 0.03787684068083763, -0.08746064454317093, -0.05042972043156624, 0.009463006630539894, 0.040079884231090546, -0.12341137230396271, -0.005606821738183498, 0.0213879756629467, -0.09286154806613922, 0.09517969191074371, 0.07336869835853577, 0.017545755952596664, 0.030452551320195198, -0.12406932562589645, -0.03387334942817688, -0.009890233166515827, -0.008613578043878078, 0.06202177703380585, -0.09455174207687378, -0.008757386356592178, -0.03759229555726051, 0.07123394310474396, 0.0130052724853158, 0.07079553604125977, -0.13379867374897003, 0.018849052488803864, -0.07710760831832886, -0.047935303300619125, -0.07521899789571762, 0.03604881837964058, 0.09745081514120102, 0.06102912127971649, 0.15108570456504822, -0.07678297907114029, 0.023143518716096878, -0.20655642449855804, -0.03451396897435188, -0.006213814485818148, -0.061223167926073074, -0.1511915624141693, -0.0468829870223999, 0.08096177130937576, -0.03768981993198395, 0.09292301535606384, -0.018353158608078957, 0.07529770582914352, 0.03709638491272926, -0.04613817110657692, -0.05036788806319237, -0.016365133225917816, 0.19844558835029602, 0.07253886759281158, -0.015889592468738556, 0.11179865896701813, 0.001981081673875451, 0.02952430583536625, 0.052938736975193024, 0.18038450181484222, 0.21363165974617004, 0.03149332106113434, 0.05495600402355194, 0.06459382176399231, -0.07622383534908295, -0.07128551602363586, 0.1813548058271408, -0.015292181633412838, 0.07009226083755493, -0.04958578944206238, 0.19770637154579163, 0.10846076160669327, -0.16727106273174286, 0.045590221881866455, -0.0432884618639946, -0.08086273074150085, -0.12503063678741455, -0.009752674959599972, -0.08681049942970276, -0.1271323412656784, 0.0380089245736599, -0.11714853346347809, 0.05354943871498108, 0.10746224969625473, 0.013078862801194191, 0.036935560405254364, 0.12703163921833038, -0.018281802535057068, 0.0031592464074492455, 0.06373663991689682, 0.005216161720454693, -0.013223403133451939, -0.035024579614400864, -0.07991451025009155, 0.05036631599068642, 0.0007974770851433277, 0.07841718941926956, -0.04697595164179802, -0.01572941057384014, 0.02572278119623661, -0.02824164740741253, -0.08014575392007828, 0.027360832318663597, 0.04161413758993149, 0.05521625280380249, 0.04818526282906532, 0.045289792120456696, -0.009198962710797787, -0.03352448716759682, 0.31844738125801086, -0.06704674661159515, -0.09772301465272903, -0.12073193490505219, 0.22133375704288483, 0.028521763160824776, -0.030702706426382065, 0.033488985151052475, -0.08206584304571152, -0.0098248440772295, 0.15696410834789276, 0.16624368727207184, -0.07181277871131897, -0.022844156250357628, -0.005450626835227013, -0.01824219338595867, -0.0364222452044487, 0.12829062342643738, 0.0896248146891594, -0.024039044976234436, -0.06329867988824844, -0.014097397215664387, -0.018829889595508575, -0.03161374852061272, -0.04002196341753006, 0.040816113352775574, 0.015759805217385292, -0.02522226795554161, -0.041724834591150284, 0.07312489300966263, 0.005829094909131527, -0.2562592029571533, 0.06909951567649841, -0.15730629861354828, -0.17164871096611023, -0.04384377598762512, 0.036525554955005646, -0.0017714209388941526, 0.05764154717326164, -0.017926448956131935, 0.009109909646213055, 0.07659348845481873, -0.018288549035787582, -0.0325593464076519, -0.12515975534915924, 0.12398397922515869, -0.0665791854262352, 0.1706075221300125, -0.02862200327217579, 0.049222126603126526, 0.11600109934806824, 0.028212131932377815, -0.13621139526367188, 0.04174463078379631, 0.05308866128325462, -0.10683853179216385, 0.0155170364305377, 0.15325728058815002, -0.04652974382042885, 0.09295890480279922, 0.0415349081158638, -0.10868149995803833, 0.0041511100716888905, -0.05591093748807907, -0.03417301923036575, -0.08101348578929901, -0.013717709109187126, -0.06107627600431442, 0.1687680333852768, 0.2202230989933014, -0.029507171362638474, 0.011389265768229961, -0.1022409126162529, 0.017093317583203316, 0.07012710720300674, 0.028798244893550873, -0.05737840756773949, -0.1892736703157425, 0.011465894058346748, 0.07046841830015182, -0.007633979432284832, -0.24203070998191833, -0.07551436126232147, 0.03862794116139412, -0.03578481078147888, -0.04088654741644859, 0.10306244343519211, 0.04008388891816139, 0.05206197500228882, -0.030025625601410866, -0.16214540600776672, -0.03117171861231327, 0.15279296040534973, -0.17512543499469757, -0.03577091917395592 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-64-finetuned-squad-seed-8 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "roberta-base-few-shot-k-64-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/roberta-base-few-shot-k-64-finetuned-squad-seed-8
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us
# roberta-base-few-shot-k-64-finetuned-squad-seed-8 This model is a fine-tuned version of roberta-base on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# roberta-base-few-shot-k-64-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n", "# roberta-base-few-shot-k-64-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 48, 46, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #question-answering #generated_from_trainer #dataset-squad #license-mit #endpoints_compatible #region-us \n# roberta-base-few-shot-k-64-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of roberta-base on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08115996420383453, 0.08448737859725952, -0.002456140238791704, 0.0851537361741066, 0.13728004693984985, 0.03380529209971428, 0.09992329776287079, 0.1388428509235382, -0.11359760165214539, 0.04251246899366379, 0.08865329623222351, 0.08261726051568985, 0.030644120648503304, 0.13516560196876526, -0.03363615646958351, -0.25359153747558594, -0.007311038672924042, -0.018998945131897926, -0.09442020207643509, 0.10873066633939743, 0.0976584330201149, -0.10034681111574173, 0.07208932191133499, -0.01497737132012844, -0.18039162456989288, 0.01832088641822338, -0.012211519293487072, -0.04999798908829689, 0.11852416396141052, -0.009368502534925938, 0.07575493305921555, 0.008321593515574932, 0.12298454344272614, -0.1889374852180481, 0.01606791652739048, 0.07579832524061203, 0.04590589180588722, 0.09713518619537354, 0.008732178248465061, -0.010185683146119118, 0.13112029433250427, -0.12764482200145721, 0.09894125908613205, 0.031719133257865906, -0.0945313349366188, -0.20855404436588287, -0.09499579668045044, 0.0066437916830182076, 0.04406974837183952, 0.0833093598484993, 0.010709049180150032, 0.15970121324062347, -0.09742677956819534, 0.08367352187633514, 0.22910846769809723, -0.2748223841190338, -0.07948609441518784, 0.05366350710391998, 0.058803584426641464, 0.08302739262580872, -0.1264169067144394, -0.009488214738667011, 0.006656978745013475, 0.025532927364110947, 0.10369810461997986, -0.032634783536195755, -0.08897479623556137, 0.0026663574390113354, -0.10501345992088318, 0.007465735077857971, 0.10995616018772125, 0.03347565233707428, -0.05274935066699982, -0.06989135593175888, -0.044642750173807144, -0.05253376066684723, -0.03497619926929474, -0.019439848139882088, 0.03926631063222885, -0.058249522000551224, -0.13785140216350555, -0.04892521724104881, -0.0487448126077652, -0.09015504270792007, -0.006677438970655203, 0.2185525745153427, 0.03609003871679306, 0.032336924225091934, -0.050116054713726044, 0.10233241319656372, 0.00956419762223959, -0.1268008053302765, -0.028757311403751373, -0.003927114885300398, -0.09152902662754059, -0.03584374487400055, -0.06065988168120384, 0.021802624687552452, 0.03479817509651184, 0.21571822464466095, -0.04276347905397415, 0.07826756685972214, 0.03198276087641716, -0.01668510027229786, -0.0276455357670784, 0.13827331364154816, -0.021328480914235115, -0.07441620528697968, 0.013108039274811745, 0.062244951725006104, 0.010773799382150173, -0.004990557674318552, -0.06448470801115036, -0.039943840354681015, 0.06542149186134338, 0.04632735252380371, -0.06233511120080948, 0.03010769747197628, -0.007463809568434954, -0.023338433355093002, 0.0007629350875504315, -0.11518529057502747, 0.016656115651130676, -0.009533394128084183, -0.08134179562330246, -0.04626185819506645, 0.007794675882905722, -0.010988152585923672, 0.01193300448358059, 0.0951157957315445, -0.07298204302787781, -0.023638257756829262, -0.08117999881505966, -0.07492353022098541, -0.017016369849443436, -0.15606723725795746, 0.020269855856895447, -0.06249123066663742, -0.16248789429664612, -0.030318139120936394, 0.055624332278966904, -0.08211976289749146, -0.027113813906908035, -0.03178328648209572, -0.07781177014112473, 0.02120056562125683, 0.002440324053168297, 0.21792127192020416, -0.049506980925798416, 0.08841688185930252, 0.010753555223345757, 0.05750004202127457, -0.010504388250410557, 0.03661801293492317, -0.08572273701429367, 0.009267671033740044, -0.17664936184883118, 0.07600615918636322, -0.08009256422519684, 0.017328433692455292, -0.13864536583423615, -0.08558467030525208, -0.010004017502069473, -0.021950876340270042, 0.08038170635700226, 0.10278283804655075, -0.14281681180000305, -0.02087133750319481, 0.11521308869123459, -0.0650089830160141, -0.05397839844226837, 0.05787350609898567, -0.07644332200288773, 0.08517342805862427, 0.05378943681716919, 0.1925426572561264, 0.08699125051498413, -0.10503785312175751, 0.014589243568480015, 0.015071379952132702, 0.035649750381708145, 0.00136714824475348, 0.04999162629246712, 0.0064877914264798164, 0.02854110486805439, 0.016811786219477654, -0.0720692053437233, 0.007429772987961769, -0.09128478914499283, -0.059249259531497955, -0.04937855899333954, -0.084152951836586, -0.00709275109693408, 0.013861827552318573, 0.03572488948702812, -0.08001532405614853, -0.0838816910982132, 0.07623234391212463, 0.13669776916503906, -0.047324247658252716, 0.01727122999727726, -0.07554757595062256, -0.002363203326240182, -0.03164556622505188, -0.02384631521999836, -0.20359639823436737, -0.056624483317136765, 0.03287264332175255, -0.004226437769830227, 0.04514759033918381, 0.002882179571315646, 0.08416874706745148, 0.027465444058179855, -0.054154861718416214, -0.00004439988697413355, -0.08526890724897385, -0.00806351937353611, -0.09511086344718933, -0.22027677297592163, -0.053444553166627884, -0.03895697742700577, 0.13640397787094116, -0.1668446958065033, -0.004114287439733744, -0.019223589450120926, 0.11552860587835312, 0.04180263355374336, -0.05152176693081856, -0.00507315481081605, 0.029299777001142502, 0.012690131552517414, -0.09793461114168167, 0.03917135298252106, 0.01582702249288559, -0.09361521154642105, -0.030687443912029266, -0.10350556671619415, -0.007678750436753035, 0.06954921036958694, 0.06904423981904984, -0.10226120799779892, -0.015495505183935165, -0.06183499097824097, -0.02867933362722397, -0.052444688975811005, 0.03778304159641266, 0.18301120400428772, 0.016993185505270958, 0.11085210740566254, -0.07434260845184326, -0.08307025581598282, 0.018663913011550903, 0.009395836852490902, 0.0625975951552391, 0.10147681087255478, 0.07591813802719116, -0.11060827225446701, 0.057802774012088776, 0.09191323071718216, -0.053893327713012695, 0.1371140480041504, -0.04656016081571579, -0.07270147651433945, -0.03176713362336159, -0.008349052630364895, -0.006761870346963406, 0.14979961514472961, -0.039006609469652176, 0.016535403206944466, 0.033690501004457474, 0.03585902974009514, 0.004747722763568163, -0.16197016835212708, -0.014630841091275215, 0.013520467095077038, -0.047365088015794754, -0.021594403311610222, 0.014707875438034534, 0.015697676688432693, 0.09493555128574371, 0.04096757993102074, -0.004864073824137449, 0.007913850247859955, -0.009557174518704414, -0.04186781123280525, 0.20041300356388092, -0.09133308380842209, -0.042158689349889755, -0.07688722759485245, -0.0027580689638853073, -0.023602614179253578, -0.040405549108982086, 0.01515701599419117, -0.09464164823293686, -0.02605649083852768, -0.07112114876508713, -0.001071745646186173, -0.04249046742916107, 0.01503359992057085, 0.004652244504541159, 0.013654577545821667, 0.05973256379365921, -0.13256770372390747, 0.010510780848562717, -0.06749996542930603, -0.11228054016828537, 0.02965031936764717, 0.06121155992150307, 0.07943685352802277, 0.05657076835632324, -0.0321807861328125, 0.018799133598804474, -0.04062367230653763, 0.23111701011657715, -0.07726986706256866, 0.012352356687188148, 0.12358955293893814, 0.026599250733852386, 0.04010744392871857, 0.1033121794462204, 0.03364015370607376, -0.10094399005174637, 0.0384550616145134, 0.07671850174665451, -0.04151562228798866, -0.243988037109375, 0.008086267858743668, -0.03908229246735573, -0.09691254794597626, 0.08882778882980347, 0.05081617087125778, -0.04558192566037178, 0.06441439688205719, 0.01100344117730856, 0.012649795971810818, -0.0260719433426857, 0.08798644691705704, 0.09226130694150925, 0.06539355963468552, 0.1083686351776123, -0.03774365782737732, -0.017435748130083084, 0.06422383338212967, 0.029205061495304108, 0.3035115599632263, -0.04919357970356941, 0.0861610546708107, 0.04750926047563553, 0.1404726356267929, -0.022011272609233856, 0.04609198868274689, 0.006190111394971609, -0.006695488467812538, -0.03009803779423237, -0.05366787314414978, -0.020466050133109093, 0.0028708376921713352, -0.07979460060596466, 0.04529943689703941, -0.050328757613897324, 0.04971602186560631, 0.018192626535892487, 0.2905438244342804, 0.001424329588189721, -0.26410502195358276, -0.09391313791275024, -0.015970060601830482, -0.037845056504011154, -0.052546169608831406, 0.010425104759633541, 0.12228092551231384, -0.12197090685367584, 0.036962587386369705, -0.07054278999567032, 0.08079639822244644, -0.029003320261836052, -0.0018379745306447148, 0.04234467074275017, 0.17412053048610687, -0.020779289305210114, 0.05593901500105858, -0.22218525409698486, 0.22608475387096405, 0.01572798378765583, 0.12838803231716156, -0.058817822486162186, 0.009607023559510708, 0.026683900505304337, 0.004921878222376108, 0.08761856704950333, -0.003838617354631424, -0.06499971449375153, -0.13671447336673737, -0.052354808896780014, 0.07359865307807922, 0.14288997650146484, -0.04057609289884567, 0.09652421623468399, -0.058440543711185455, 0.01435790490359068, 0.03733241930603981, -0.08859214931726456, -0.13217908143997192, -0.09866712242364883, -0.023379482328891754, 0.015672434121370316, -0.07210008054971695, -0.05659393593668938, -0.06888951361179352, 0.031916432082653046, 0.10643145442008972, 0.014442283660173416, -0.03140658140182495, -0.1475241780281067, 0.08046352118253708, 0.15582719445228577, -0.06641753017902374, 0.025707604363560677, -0.004178350325673819, 0.07484250515699387, 0.03936181589961052, -0.08271464705467224, 0.06130977347493172, -0.06532955914735794, -0.1782185584306717, -0.048267483711242676, 0.09398489445447922, 0.06887778639793396, 0.041584562510252, -0.0027072669472545385, 0.05284397304058075, -0.02725793793797493, -0.09349415451288223, 0.024877779185771942, 0.02119954116642475, 0.036384448409080505, 0.03726606070995331, -0.08663848787546158, 0.07719024270772934, -0.035940930247306824, -0.013997972942888737, 0.11381138116121292, 0.23024354875087738, -0.10160953551530838, 0.0971204861998558, 0.06098587065935135, -0.061800964176654816, -0.16041582822799683, 0.07168178260326385, 0.10393694043159485, 0.007716638967394829, 0.07030016928911209, -0.21187524497509003, 0.1304783821105957, 0.10437341034412384, -0.01612403430044651, 0.04225730150938034, -0.26983627676963806, -0.11934354156255722, 0.04404017701745033, 0.12884216010570526, 0.10037405788898468, -0.12579715251922607, -0.01387543324381113, -0.015623677521944046, -0.11234299093484879, 0.0935937836766243, -0.11458264291286469, 0.1364590972661972, -0.030033648014068604, 0.11141383647918701, 0.010353180579841137, -0.025692876428365707, 0.10242170095443726, 0.046509694308042526, 0.10261344909667969, -0.042107727378606796, 0.00683947280049324, 0.064395971596241, -0.04757590591907501, 0.002556087914854288, -0.07761628180742264, 0.08774520456790924, -0.13261212408542633, -0.0037721379194408655, -0.08978234976530075, 0.046231720596551895, -0.03824976831674576, -0.0681840181350708, -0.04101093113422394, 0.05541128292679787, 0.04652237147092819, -0.036337368190288544, 0.04502204805612564, -0.01768130250275135, 0.10250651091337204, 0.039749808609485626, 0.08532308042049408, 0.012548662722110748, -0.04550385847687721, 0.023531407117843628, -0.00974743440747261, 0.0644938200712204, -0.16453756392002106, 0.011141412891447544, 0.09937403351068497, 0.06039123237133026, 0.09718833118677139, 0.044376738369464874, -0.04482831060886383, 0.017846381291747093, 0.029583757743239403, -0.10103250294923782, -0.10759109258651733, 0.04731755331158638, -0.02779114991426468, -0.13886377215385437, 0.049109313637018204, 0.12122474610805511, -0.04405496269464493, -0.02644204907119274, -0.017098084092140198, 0.0037481263279914856, -0.023130059242248535, 0.18257999420166016, 0.04888267070055008, 0.05502655729651451, -0.10227591544389725, 0.12679444253444672, 0.02850627526640892, -0.018411656841635704, 0.05205818638205528, 0.08412789553403854, -0.10291577875614166, -0.0034080378245562315, 0.08289438486099243, 0.14001572132110596, -0.05884065479040146, -0.006099378224462271, -0.1046886071562767, -0.0821182131767273, 0.050063032656908035, 0.1416940689086914, 0.04970288276672363, -0.017282214015722275, -0.05432555451989174, 0.03952848166227341, -0.14058953523635864, 0.07049315422773361, 0.02281070128083229, 0.0642179399728775, -0.0757499411702156, 0.05942544341087341, 0.007748454809188843, 0.012986338697373867, -0.017305122688412666, 0.008500626310706139, -0.09301568567752838, -0.01664717122912407, -0.07976441085338593, -0.0018300468800589442, 0.001479474944062531, 0.017284898087382317, -0.020453378558158875, -0.07124905288219452, -0.048391297459602356, 0.03794810175895691, -0.08701744675636292, -0.050337813794612885, 0.009796669706702232, 0.03999623283743858, -0.12289367616176605, -0.005947264842689037, 0.021047353744506836, -0.09250092506408691, 0.09546412527561188, 0.07270806282758713, 0.017270509153604507, 0.030269237235188484, -0.1245931088924408, -0.033592961728572845, -0.00990353338420391, -0.007912113331258297, 0.062180232256650925, -0.093268483877182, -0.008251671679317951, -0.037387460470199585, 0.07104656100273132, 0.012762150727212429, 0.0709020346403122, -0.13398492336273193, 0.018960338085889816, -0.07699918746948242, -0.047902803868055344, -0.07559382170438766, 0.03586998209357262, 0.09692484140396118, 0.06059792637825012, 0.1508316546678543, -0.07663784921169281, 0.0229679923504591, -0.20650747418403625, -0.03470934182405472, -0.006109299603849649, -0.06104932352900505, -0.15124231576919556, -0.04783026874065399, 0.08081279695034027, -0.03735126554965973, 0.09449765831232071, -0.018069246783852577, 0.07553748786449432, 0.03684196621179581, -0.04676709324121475, -0.05011948570609093, -0.016806084662675858, 0.19866542518138885, 0.0730648934841156, -0.0157020166516304, 0.11102985590696335, 0.0022336936090141535, 0.030443070456385612, 0.05239611491560936, 0.17871485650539398, 0.21379871666431427, 0.031018296256661415, 0.054737985134124756, 0.06434228271245956, -0.07597315311431885, -0.07147540152072906, 0.18086068332195282, -0.015438989736139774, 0.07080039381980896, -0.04973131790757179, 0.19807541370391846, 0.10815983265638351, -0.16719019412994385, 0.04547926411032677, -0.04273844510316849, -0.08103197067975998, -0.12516823410987854, -0.009066850878298283, -0.08689090609550476, -0.12706422805786133, 0.03747016191482544, -0.11667530238628387, 0.0537106990814209, 0.10808238387107849, 0.012827110476791859, 0.036740560084581375, 0.12608662247657776, -0.01829940639436245, 0.0032654821407049894, 0.06372673064470291, 0.005228996742516756, -0.01292486023157835, -0.03615584596991539, -0.08057078719139099, 0.050086382776498795, 0.0009568947134539485, 0.07884661853313446, -0.04711670055985451, -0.014398133382201195, 0.026108382269740105, -0.02813149429857731, -0.08039356768131256, 0.027433570474386215, 0.04097554087638855, 0.055129896849393845, 0.04705449938774109, 0.04557569697499275, -0.009139930829405785, -0.033651068806648254, 0.31781747937202454, -0.06658177077770233, -0.09807242453098297, -0.12050989270210266, 0.22050738334655762, 0.028729714453220367, -0.030715350061655045, 0.033440928906202316, -0.08217179030179977, -0.009004480205476284, 0.15743707120418549, 0.16559074819087982, -0.07266835123300552, -0.022806445136666298, -0.005191870499402285, -0.018363313749432564, -0.037281326949596405, 0.12873101234436035, 0.08989742398262024, -0.025168543681502342, -0.062359560281038284, -0.014295588247478008, -0.018945535644888878, -0.03149406239390373, -0.041212745010852814, 0.04011671990156174, 0.015672096982598305, -0.024655083194375038, -0.04127315804362297, 0.0727323666214943, 0.006417648866772652, -0.2573140263557434, 0.06905579566955566, -0.15725082159042358, -0.17175817489624023, -0.043930064886808395, 0.03677654638886452, -0.0011801280779764056, 0.05689859017729759, -0.017815440893173218, 0.00949773471802473, 0.07750380039215088, -0.01869003102183342, -0.03269120305776596, -0.12465515732765198, 0.1236458271741867, -0.06600455939769745, 0.170551598072052, -0.02857203409075737, 0.0495290532708168, 0.11571045964956284, 0.028380388393998146, -0.13536813855171204, 0.041939396411180496, 0.05280708894133568, -0.10626641660928726, 0.015506389550864697, 0.15210367739200592, -0.04643615707755089, 0.09283150732517242, 0.04192269593477249, -0.1081656962633133, 0.003648574696853757, -0.05677710846066475, -0.03464784100651741, -0.08072412014007568, -0.014795854687690735, -0.06081723794341087, 0.16895006597042084, 0.2198711484670639, -0.029358619824051857, 0.011114922352135181, -0.10243074595928192, 0.016716651618480682, 0.07048354297876358, 0.02898446097970009, -0.057621877640485764, -0.18918325006961823, 0.012003219686448574, 0.07014651596546173, -0.007531095761805773, -0.24142806231975555, -0.07592915743589401, 0.038462281227111816, -0.035876888781785965, -0.04056418687105179, 0.10318733006715775, 0.04040515422821045, 0.05221635103225708, -0.03007686510682106, -0.162374809384346, -0.03166843205690384, 0.1528569757938385, -0.1750006377696991, -0.035959597676992416 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-0 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-0
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-0 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09576744586229324, 0.11468048393726349, -0.002340586157515645, 0.09170104563236237, 0.11954128742218018, 0.022045468911528587, 0.10058967769145966, 0.12874136865139008, -0.09696414321660995, 0.08775705099105835, 0.08829329162836075, 0.039408113807439804, 0.04770467430353165, 0.1452750414609909, -0.020159533247351646, -0.25885388255119324, 0.01115094218403101, -0.003743123495951295, -0.03348991274833679, 0.1117706298828125, 0.08511916548013687, -0.11039765179157257, 0.08658658713102341, 0.014995593577623367, -0.15353001654148102, 0.018911249935626984, -0.03725937753915787, -0.03517088666558266, 0.1133965253829956, -0.03238152712583542, 0.10844819992780685, 0.02465556003153324, 0.13305774331092834, -0.2104494273662567, 0.005048088729381561, 0.07441086322069168, 0.04536287486553192, 0.10051100701093674, 0.051707666367292404, 0.014792181551456451, 0.09041202813386917, -0.15287652611732483, 0.09309655427932739, 0.03002357855439186, -0.09199938178062439, -0.13158193230628967, -0.09657733142375946, 0.026137614622712135, 0.05122321471571922, 0.0696895569562912, 0.0013820300810039043, 0.1519215852022171, -0.05922378972172737, 0.07902445644140244, 0.2681562304496765, -0.3262445628643036, -0.06388477981090546, 0.03223168104887009, 0.06075282022356987, 0.052377644926309586, -0.12314010411500931, -0.006122417747974396, 0.02694045566022396, 0.02974182553589344, 0.11769794672727585, -0.016491420567035675, -0.11205166578292847, -0.013216042891144753, -0.12751396000385284, -0.0010968464193865657, 0.07111147046089172, 0.035508934408426285, -0.05174647644162178, -0.09549855440855026, -0.07555346190929413, -0.09446857869625092, -0.024501321837306023, -0.06418273597955704, 0.05643945187330246, -0.0546041838824749, -0.08073177188634872, -0.035804178565740585, -0.05660358443856239, -0.07573144137859344, -0.018928667530417442, 0.15718460083007812, 0.03972969576716423, 0.02063017524778843, -0.03294786065816879, 0.10832837969064713, 0.003569032996892929, -0.1422768533229828, -0.015915781259536743, -0.0014421081868931651, -0.09647668153047562, -0.04635391756892204, -0.050379183143377304, -0.01855849288403988, 0.010900917463004589, 0.1778838038444519, -0.0804692804813385, 0.07591865211725235, 0.00956409890204668, -0.028975404798984528, -0.006472093518823385, 0.1481758952140808, -0.04389249533414841, -0.046963997185230255, -0.01022338680922985, 0.07325030863285065, 0.003038321156054735, -0.015933450311422348, -0.06456021964550018, -0.026796681806445122, 0.10251335054636002, 0.04585769772529602, -0.05816284567117691, 0.04026048257946968, -0.02315027453005314, -0.028204740956425667, 0.017413029447197914, -0.11504321545362473, 0.044632311910390854, -0.0014059711247682571, -0.08408794552087784, -0.0010101625230163336, 0.001389809069223702, -0.005594128742814064, -0.008373178541660309, 0.1113344207406044, -0.09988167881965637, -0.0028121534269303083, -0.06384032219648361, -0.08359146118164062, 0.009141416288912296, -0.15549664199352264, -0.016696136444807053, -0.057876043021678925, -0.16920380294322968, -0.0329129695892334, 0.0371868871152401, -0.07387363910675049, -0.007608313113451004, -0.048677463084459305, -0.06598801165819168, 0.025565272197127342, -0.014459178782999516, 0.17321917414665222, -0.054066937416791916, 0.07280470430850983, -0.0012879067799076438, 0.04555352032184601, 0.014661324210464954, 0.035707250237464905, -0.10519411414861679, 0.025329353287816048, -0.13651645183563232, 0.06847735494375229, -0.08447595685720444, -0.00245445198379457, -0.13278378546237946, -0.09779989719390869, 0.010126858949661255, -0.021985504776239395, 0.09096921235322952, 0.13858626782894135, -0.193800687789917, -0.018663959577679634, 0.12813739478588104, -0.075081966817379, -0.0647541731595993, 0.06233410909771919, -0.060866471379995346, 0.02907785028219223, 0.05196687951683998, 0.2105502337217331, 0.037970203906297684, -0.1683908849954605, -0.03344261273741722, -0.007554526906460524, 0.04005330055952072, 0.027521811425685883, 0.03957563638687134, 0.0035858836490660906, 0.06530531495809555, 0.013945075683295727, -0.07525838166475296, -0.03252128139138222, -0.09140635281801224, -0.06487278640270233, -0.055063776671886444, -0.07174380123615265, 0.0400124192237854, 0.0037195920012891293, 0.0417894683778286, -0.06497275829315186, -0.10231924057006836, 0.12001815438270569, 0.09613519161939621, -0.04814758524298668, 0.037381336092948914, -0.0791458934545517, 0.020592479035258293, -0.019058464094996452, -0.03888219594955444, -0.20632989704608917, -0.13035888969898224, 0.05182681977748871, -0.05731307342648506, 0.03355761244893074, 0.005443235393613577, 0.08136522024869919, 0.06144070625305176, -0.043206751346588135, -0.011722821742296219, -0.09376531094312668, 0.0036585961934179068, -0.1170228123664856, -0.18907423317432404, -0.07752088457345963, -0.03981639817357063, 0.09406571090221405, -0.17406098544597626, -0.006709451321512461, 0.015986988320946693, 0.1446373611688614, 0.02780107781291008, -0.06902378052473068, -0.0035002187360078096, 0.03819539025425911, 0.0017507752636447549, -0.09567268937826157, 0.04477517306804657, 0.00834619253873825, -0.09280639886856079, -0.06241526082158089, -0.1369103193283081, -0.011343017220497131, 0.061018284410238266, 0.05224481225013733, -0.09696532785892487, -0.04532743990421295, -0.07089703530073166, -0.04032226651906967, -0.07593759894371033, 0.012528233230113983, 0.20080234110355377, 0.03627773001790047, 0.11314623802900314, -0.06679286062717438, -0.07781931012868881, -0.003220879938453436, 0.02216663770377636, 0.01219023484736681, 0.07684972882270813, 0.0407971553504467, -0.053316812962293625, 0.0752822682261467, 0.09822073578834534, -0.022366859018802643, 0.12467356771230698, -0.046263620257377625, -0.08378750085830688, -0.0337945856153965, -0.02462536096572876, -0.027731705456972122, 0.12382517009973526, -0.040028639137744904, 0.005372073035687208, 0.036830294877290726, 0.045054271817207336, 0.017082374542951584, -0.16134953498840332, 0.008214647881686687, 0.02196124754846096, -0.05320782586932182, -0.03644939884543419, -0.00025640736566856503, 0.027403971180319786, 0.0921863541007042, 0.031915534287691116, -0.012552307918667793, 0.002429254585877061, -0.012160375714302063, -0.06179340183734894, 0.18459093570709229, -0.09907373785972595, -0.0852588340640068, -0.07580708712339401, 0.004912218544632196, -0.06004919856786728, -0.03580336645245552, 0.016856037080287933, -0.08728981763124466, -0.039594102650880814, -0.08759178221225739, -0.01813201792538166, -0.01789945922791958, 0.02048475109040737, 0.030663222074508667, -0.022537225857377052, 0.08054482936859131, -0.14004011452198029, 0.0009506485075689852, -0.05143725126981735, -0.09198423475027084, -0.0008936800877563655, 0.07482413947582245, 0.09820643067359924, 0.07998987287282944, -0.016398828476667404, 0.029887249693274498, -0.03414296358823776, 0.24251458048820496, -0.04612403362989426, 0.010578268207609653, 0.103849396109581, -0.013427114114165306, 0.05662493407726288, 0.09505375474691391, 0.03781062364578247, -0.09412509948015213, 0.020580654963850975, 0.08343600481748581, -0.029081784188747406, -0.2292943149805069, -0.025762589648365974, -0.005233811214566231, -0.07908666133880615, 0.10590609163045883, 0.0323156975209713, -0.03586707264184952, 0.04477357491850853, 0.020118365064263344, 0.0014803686644881964, -0.05540580675005913, 0.08223947882652283, 0.07610295712947845, 0.05698460340499878, 0.09955929219722748, -0.008871247991919518, -0.027319425716996193, 0.062125783413648605, 0.006479670759290457, 0.24681751430034637, -0.024863041937351227, 0.10090005397796631, 0.03327678516507149, 0.1508781760931015, -0.02676442638039589, 0.06397991627454758, 0.0029745076317340136, -0.009304975159466267, -0.014476358890533447, -0.06736817955970764, -0.0254717618227005, 0.023031998425722122, -0.046476393938064575, 0.02990473248064518, -0.08133634924888611, 0.02426956780254841, 0.028678249567747116, 0.27965784072875977, 0.033760931342840195, -0.27394023537635803, -0.06671545654535294, -0.013327234424650669, -0.041547901928424835, -0.06454471498727798, 0.00596475088968873, 0.11976215988397598, -0.133131742477417, 0.06502876430749893, -0.07571874558925629, 0.09010512381792068, -0.03870095685124397, 0.011022737249732018, 0.04706767946481705, 0.15289835631847382, -0.018693316727876663, 0.04960223287343979, -0.1853923499584198, 0.24264970421791077, 0.024709507822990417, 0.10775819420814514, -0.06425792723894119, 0.010279903188347816, 0.01909187063574791, 0.007051264401525259, 0.10861487686634064, 0.0011829260038211942, -0.06677377969026566, -0.13772888481616974, -0.09963234513998032, 0.046286728233098984, 0.14156083762645721, -0.03471921756863594, 0.0993356704711914, -0.028711309656500816, 0.012835296802222729, 0.033704452216625214, -0.028955549001693726, -0.1561288982629776, -0.07345131784677505, 0.010794148780405521, 0.027870291844010353, -0.014579524286091328, -0.05177300423383713, -0.10377950966358185, -0.03993266075849533, 0.11950032413005829, 0.0015958313597366214, -0.0458303801715374, -0.15095043182373047, 0.082959845662117, 0.14594630897045135, -0.05825057625770569, 0.016029465943574905, 0.01339106447994709, 0.1114502027630806, 0.03260643407702446, -0.08569825440645218, 0.06709466129541397, -0.053077343851327896, -0.17454031109809875, -0.058872733265161514, 0.11887817084789276, 0.07981962710618973, 0.04500146582722664, 0.00029080986860208213, 0.05841121822595596, 0.0008379808277823031, -0.0971808061003685, 0.0363629013299942, 0.005616332869976759, 0.05213777348399162, 0.028099285438656807, -0.08441117405891418, 0.07668805867433548, -0.03421638533473015, 0.017507219687104225, 0.12852779030799866, 0.2340824156999588, -0.09927263855934143, 0.10320127010345459, 0.0796542838215828, -0.07600070536136627, -0.15863117575645447, 0.06071452423930168, 0.1251213252544403, 0.004235071130096912, 0.08290187269449234, -0.19910404086112976, 0.13364839553833008, 0.10774104297161102, -0.013913869857788086, 0.022518960759043694, -0.27156469225883484, -0.13256096839904785, 0.06535875797271729, 0.10953164100646973, 0.04948001354932785, -0.12354845553636551, -0.03541599214076996, -0.010978924110531807, -0.12185461819171906, 0.12949667870998383, -0.07633496075868607, 0.11738789081573486, -0.021618958562612534, 0.12236003577709198, 0.024610906839370728, -0.037353869527578354, 0.1137278750538826, 0.07072025537490845, 0.08591299504041672, -0.04028743505477905, -0.0037318149115890265, 0.06461486220359802, -0.06269741803407669, 0.03525133430957794, -0.03731700778007507, 0.06251677125692368, -0.14833714067935944, 0.00715581513941288, -0.07829436659812927, 0.060317836701869965, -0.04663687199354172, -0.0652814731001854, -0.028331469744443893, 0.047279294580221176, 0.07351109385490417, -0.03555982932448387, 0.047408610582351685, 0.0075376094318926334, 0.09246858954429626, 0.10081774741411209, 0.07206286489963531, -0.023720690980553627, -0.08330341428518295, 0.01431850902736187, 0.004174280911684036, 0.0472787581384182, -0.08468317240476608, 0.015806833282113075, 0.14624203741550446, 0.06027130410075188, 0.10237377136945724, 0.046008482575416565, -0.04363885521888733, 0.005611601751297712, 0.01759812980890274, -0.1436263918876648, -0.09843015670776367, 0.028681360185146332, -0.05812222510576248, -0.15329639613628387, 0.03269435465335846, 0.12335292249917984, -0.03649122267961502, -0.016074245795607567, -0.006131071597337723, 0.009253283962607384, -0.01157807931303978, 0.18378590047359467, 0.0421026274561882, 0.05424177274107933, -0.09121686220169067, 0.1140940859913826, 0.036468036472797394, -0.04184512794017792, 0.05461817979812622, 0.06840144097805023, -0.09891267865896225, 0.013750866986811161, 0.07209935039281845, 0.1500062197446823, -0.06723038107156754, -0.012985272333025932, -0.09151598066091537, -0.0764756128191948, 0.04487452283501625, 0.14586767554283142, 0.0525674968957901, -0.003954110201448202, -0.060453422367572784, 0.03601637855172157, -0.1181236281991005, 0.0678531751036644, 0.05284116789698601, 0.08183112740516663, -0.10757846385240555, 0.1251089721918106, -0.006982486229389906, 0.022331029176712036, -0.02788824774324894, 0.018086010590195656, -0.10143543034791946, -0.034105755388736725, -0.10883224010467529, -0.01411820761859417, -0.01793917641043663, -0.0035015575122088194, -0.019481725990772247, -0.07561437785625458, -0.043097835034132004, 0.03262104466557503, -0.07683594524860382, -0.048855800181627274, 0.017537016421556473, 0.0399819016456604, -0.16210144758224487, 0.0031869281083345413, 0.026455018669366837, -0.08794190734624863, 0.08768825232982635, 0.06994185596704483, 0.015386300161480904, 0.027664758265018463, -0.12523603439331055, -0.03320692479610443, -0.00016337547276634723, 0.010297550819814205, 0.07761885225772858, -0.09408155083656311, -0.029526451602578163, -0.031056847423315048, 0.04815998673439026, 0.01557888276875019, 0.10278592258691788, -0.11910045146942139, -0.013048570603132248, -0.04505518451333046, -0.03825640305876732, -0.056896816939115524, 0.02627047523856163, 0.11480523645877838, 0.04493294283747673, 0.15714223682880402, -0.07065059244632721, 0.054968129843473434, -0.2042478322982788, -0.032477691769599915, 0.011365530081093311, -0.04750712215900421, -0.07341066747903824, -0.04434286430478096, 0.08415554463863373, -0.05037878081202507, 0.12207378447055817, -0.016033165156841278, 0.09185023605823517, 0.04451938718557358, -0.004643712658435106, -0.07221046090126038, -0.01199114415794611, 0.18418771028518677, 0.05745857208967209, -0.021155159920454025, 0.12054263800382614, 0.0036336821503937244, 0.042104579508304596, 0.06711295247077942, 0.2349616140127182, 0.15127965807914734, -0.01134763564914465, 0.07448845356702805, 0.06631748378276825, -0.07533697038888931, -0.1406802237033844, 0.12120454013347626, -0.020967556163668633, 0.1066109910607338, -0.05313962697982788, 0.18958573043346405, 0.03908335044980049, -0.17661131918430328, 0.054480183869600296, -0.025139791890978813, -0.10727158188819885, -0.12582597136497498, -0.016335008665919304, -0.08140986412763596, -0.11591697484254837, 0.027955064550042152, -0.12324239313602448, 0.06947451084852219, 0.09487960487604141, 0.007695368491113186, 0.035590045154094696, 0.18336203694343567, -0.057933684438467026, 0.01076994463801384, 0.07160687446594238, 0.021379973739385605, -0.004547245800495148, -0.040591537952423096, -0.06688924133777618, 0.036498550325632095, 0.043631959706544876, 0.07137754559516907, -0.04949859902262688, 0.009864810854196548, 0.015284990891814232, -0.010367963463068008, -0.07820659130811691, 0.008213866502046585, 0.014584175311028957, 0.048828307539224625, 0.037393391132354736, 0.04725881665945053, 0.008776976726949215, -0.05348455160856247, 0.2754664421081543, -0.06778807193040848, -0.06276202201843262, -0.12310342490673065, 0.19430038332939148, 0.03339528292417526, -0.019158542156219482, 0.05487499386072159, -0.09304685145616531, -0.013204065151512623, 0.16282930970191956, 0.13523630797863007, -0.09053792804479599, -0.02071254514157772, -0.023693779483437538, -0.00851933192461729, -0.012484564445912838, 0.10371909290552139, 0.07122514396905899, 0.0027720278594642878, -0.06591907143592834, -0.013082691468298435, -0.029779788106679916, -0.046912435442209244, -0.0630667582154274, 0.05939329043030739, 0.026529423892498016, -0.006819199770689011, -0.05927903205156326, 0.06283263862133026, -0.00525028258562088, -0.23642463982105255, 0.03886676952242851, -0.17377841472625732, -0.1733560711145401, -0.013540208339691162, 0.07051293551921844, 0.001175587298348546, 0.05626104772090912, -0.005502867046743631, 0.009372676722705364, 0.11615694314241409, -0.016597378998994827, -0.013855354860424995, -0.11780870705842972, 0.10873064398765564, -0.10812806338071823, 0.21342246234416962, -0.0017340714111924171, 0.06375201046466827, 0.09940726310014725, 0.03820689767599106, -0.13495604693889618, 0.018982160836458206, 0.06226719543337822, -0.1272907555103302, 0.0008397088386118412, 0.14506250619888306, -0.03458708897233009, 0.062431253492832184, 0.03154336288571358, -0.14906641840934753, -0.0025668530724942684, 0.027744406834244728, -0.03766250982880592, -0.06896806508302689, -0.010325399227440357, -0.055701564997434616, 0.1657790094614029, 0.20699484646320343, -0.02885548397898674, 0.011708828620612621, -0.08458098024129868, 0.02161383256316185, 0.04824792221188545, 0.05716715380549431, -0.039775408804416656, -0.21632502973079681, 0.022660288959741592, 0.07289789617061615, -0.002774752676486969, -0.19449937343597412, -0.09607469290494919, 0.042696017771959305, -0.035917699337005615, -0.04611362889409065, 0.09121909737586975, 0.023737553507089615, 0.03708309307694435, -0.019346049055457115, -0.11458270251750946, -0.026861337944865227, 0.146287202835083, -0.17550520598888397, -0.04278471693396568 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-10 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-10
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-10 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09655676782131195, 0.1142968162894249, -0.002274144673720002, 0.0911821499466896, 0.11933670192956924, 0.02208700403571129, 0.1010490283370018, 0.12764598429203033, -0.0960942879319191, 0.08643737435340881, 0.08722340315580368, 0.04003063216805458, 0.0482400543987751, 0.14665091037750244, -0.019209817051887512, -0.2597530484199524, 0.011037024669349194, -0.0029997341334819794, -0.032051410526037216, 0.11163952946662903, 0.08557623624801636, -0.11047720909118652, 0.08578779548406601, 0.015030854381620884, -0.1530047208070755, 0.019259896129369736, -0.037601813673973083, -0.03494279459118843, 0.11333432793617249, -0.03384075686335564, 0.10811575502157211, 0.02445901930332184, 0.1351083517074585, -0.20948560535907745, 0.005059713032096624, 0.0735098272562027, 0.045345619320869446, 0.10020213574171066, 0.05110027268528938, 0.015657462179660797, 0.08978472650051117, -0.15365652740001678, 0.09390510618686676, 0.029088586568832397, -0.09155835211277008, -0.12946920096874237, -0.09647271037101746, 0.026942988857626915, 0.05351684242486954, 0.069142185151577, 0.0009595334413461387, 0.1519186794757843, -0.05999792739748955, 0.0789649710059166, 0.2675192356109619, -0.32697105407714844, -0.06377194821834564, 0.03405250981450081, 0.06244570016860962, 0.05280574783682823, -0.12340003252029419, -0.006995449308305979, 0.02747231535613537, 0.029044969007372856, 0.11876724660396576, -0.016980275511741638, -0.11176177114248276, -0.0134039968252182, -0.1283845454454422, -0.0002989306522067636, 0.07162509858608246, 0.036298878490924835, -0.05178166553378105, -0.09700250625610352, -0.07525802403688431, -0.09501292556524277, -0.02545638382434845, -0.06538581103086472, 0.05628334730863571, -0.055146943777799606, -0.0802718847990036, -0.03605605289340019, -0.05599287524819374, -0.07625481486320496, -0.01719222404062748, 0.15533600747585297, 0.040043905377388, 0.019739296287298203, -0.03245508670806885, 0.10817588120698929, 0.0013899237383157015, -0.14190369844436646, -0.014995411038398743, -0.0016505037201568484, -0.09803329408168793, -0.047541048377752304, -0.05064080283045769, -0.017919551581144333, 0.009506071917712688, 0.1785968840122223, -0.0774223580956459, 0.07591091841459274, 0.011443659663200378, -0.029733875766396523, -0.006006614770740271, 0.14821453392505646, -0.04470027610659599, -0.049144815653562546, -0.01058581005781889, 0.0743015855550766, 0.002584741683676839, -0.01471169013530016, -0.06539276987314224, -0.027355702593922615, 0.10281965136528015, 0.04570762813091278, -0.059668730944395065, 0.04043359309434891, -0.022265667095780373, -0.028100337833166122, 0.018610596656799316, -0.11568168550729752, 0.044851336628198624, -0.002150028944015503, -0.08522476255893707, -0.0022061988711357117, 0.0000320594226650428, -0.004525577183812857, -0.008354878053069115, 0.11001361906528473, -0.09959185123443604, -0.003242950886487961, -0.0642910897731781, -0.08416473865509033, 0.009265333414077759, -0.15872086584568024, -0.015402058139443398, -0.05694787576794624, -0.17260807752609253, -0.033663585782051086, 0.03626579791307449, -0.07302627712488174, -0.00833052396774292, -0.04985859990119934, -0.06576365232467651, 0.02387521229684353, -0.013830466195940971, 0.1741776168346405, -0.05310210958123207, 0.07169263809919357, -0.0014257048023864627, 0.04643426090478897, 0.015038599260151386, 0.036048226058483124, -0.10474056750535965, 0.02511974237859249, -0.13545389473438263, 0.0686909407377243, -0.08472664654254913, -0.0006865188479423523, -0.13241855800151825, -0.09795979410409927, 0.008412966504693031, -0.02180613949894905, 0.0906757041811943, 0.13863040506839752, -0.1948315054178238, -0.017716815695166588, 0.12937040627002716, -0.07456348836421967, -0.06402880698442459, 0.06125136837363243, -0.06134530529379845, 0.030464615672826767, 0.053593408316373825, 0.21001993119716644, 0.040484052151441574, -0.16764231026172638, -0.03383199870586395, -0.007318513933569193, 0.03988488391041756, 0.02577435038983822, 0.039643749594688416, 0.004954935051500797, 0.06645344942808151, 0.014055228792130947, -0.0745544582605362, -0.03257332369685173, -0.09073987603187561, -0.0652792677283287, -0.0546397902071476, -0.07265562564134598, 0.04041657969355583, 0.004168370272964239, 0.04212876781821251, -0.06510581821203232, -0.10221676528453827, 0.12070085108280182, 0.09683629870414734, -0.048086997121572495, 0.035938896238803864, -0.07918824255466461, 0.020114073529839516, -0.01986716128885746, -0.039008788764476776, -0.2061450183391571, -0.1286170780658722, 0.05218609422445297, -0.05762225389480591, 0.03336821123957634, 0.007564500439912081, 0.08204235136508942, 0.06105874106287956, -0.04295025020837784, -0.012282575480639935, -0.09372847527265549, 0.0035631379578262568, -0.11796290427446365, -0.18761079013347626, -0.07849137485027313, -0.04034708812832832, 0.09497299790382385, -0.17540961503982544, -0.005858704913407564, 0.014237714000046253, 0.14422862231731415, 0.027103254571557045, -0.0691009908914566, -0.0026222558226436377, 0.03727811574935913, 0.0025178203359246254, -0.09606505930423737, 0.04449110105633736, 0.007305992301553488, -0.09256128966808319, -0.06405869871377945, -0.1379978507757187, -0.012958473525941372, 0.06036977097392082, 0.054744746536016464, -0.09668396413326263, -0.04583190381526947, -0.07082682102918625, -0.03970113396644592, -0.07484474778175354, 0.011961935088038445, 0.19999487698078156, 0.03538147360086441, 0.11257809400558472, -0.06686614453792572, -0.07886402308940887, -0.0034119300544261932, 0.02365736849606037, 0.012835294008255005, 0.076418437063694, 0.04058687016367912, -0.053327564150094986, 0.07470706850290298, 0.09915832430124283, -0.02182777225971222, 0.12407203763723373, -0.04650173708796501, -0.08449742197990417, -0.03346618264913559, -0.02500254474580288, -0.02878105640411377, 0.12351522594690323, -0.04038692265748978, 0.0036945445463061333, 0.036412958055734634, 0.043787505477666855, 0.017038637772202492, -0.16168789565563202, 0.0085074994713068, 0.022071927785873413, -0.05234319344162941, -0.03782987594604492, -0.0011868939036503434, 0.02628861926496029, 0.09154237806797028, 0.03128354623913765, -0.01316425297409296, 0.001810763729736209, -0.011960819363594055, -0.06138022243976593, 0.18460281193256378, -0.09795370697975159, -0.08409031480550766, -0.07519474625587463, 0.005675516091287136, -0.058151762932538986, -0.035847801715135574, 0.01564619690179825, -0.08737270534038544, -0.0390474870800972, -0.08716695010662079, -0.01900274120271206, -0.017732184380292892, 0.01976367086172104, 0.03219614550471306, -0.021832119673490524, 0.07879237085580826, -0.14018845558166504, 0.0016016410663723946, -0.05192828178405762, -0.09171155095100403, -0.001502276281826198, 0.07381415367126465, 0.0984451174736023, 0.08052003383636475, -0.016969915479421616, 0.03003048151731491, -0.03474801778793335, 0.24188180267810822, -0.046693019568920135, 0.012025197967886925, 0.10355167835950851, -0.013120725750923157, 0.056232452392578125, 0.09585316479206085, 0.037069566547870636, -0.09385720640420914, 0.020293472334742546, 0.08262812346220016, -0.028562339022755623, -0.22987858951091766, -0.025194335728883743, -0.004532423336058855, -0.08041118830442429, 0.10660703480243683, 0.03183137997984886, -0.033835507929325104, 0.04643998667597771, 0.019877580925822258, 0.0028281144332140684, -0.054063793271780014, 0.08179961144924164, 0.07384154200553894, 0.056111857295036316, 0.09982184320688248, -0.009112720377743244, -0.028460588306188583, 0.06066161394119263, 0.007190467789769173, 0.2477087527513504, -0.02382506988942623, 0.10072091966867447, 0.03227335214614868, 0.15026190876960754, -0.02742813713848591, 0.06626944243907928, 0.0038886922411620617, -0.009679373353719711, -0.01445452868938446, -0.06708047538995743, -0.0242607444524765, 0.02354622073471546, -0.045712973922491074, 0.029683474451303482, -0.08070281893014908, 0.02393912523984909, 0.02804134041070938, 0.27840739488601685, 0.035271722823381424, -0.2749309837818146, -0.06608931720256805, -0.012933557853102684, -0.042547427117824554, -0.06439752131700516, 0.005627673584967852, 0.11872388422489166, -0.1330571323633194, 0.06578907370567322, -0.07572033256292343, 0.09029319137334824, -0.03804074227809906, 0.011131970211863518, 0.045843854546546936, 0.15262895822525024, -0.018526585772633553, 0.05073036998510361, -0.18557170033454895, 0.24147510528564453, 0.024666104465723038, 0.10904230922460556, -0.06540003418922424, 0.010449192486703396, 0.019120559096336365, 0.006581815425306559, 0.10987275093793869, 0.0008522681891918182, -0.06691478192806244, -0.13824184238910675, -0.09987321496009827, 0.04625946283340454, 0.1416676789522171, -0.034400977194309235, 0.09988708794116974, -0.027875572443008423, 0.011894013732671738, 0.03395295888185501, -0.030384371057152748, -0.1573973000049591, -0.0733533501625061, 0.010229254141449928, 0.02671194262802601, -0.014646355994045734, -0.0513669028878212, -0.10381575673818588, -0.04195301979780197, 0.11815192550420761, 0.0027564193587750196, -0.046004604548215866, -0.1507955640554428, 0.08452200144529343, 0.146275594830513, -0.05778365209698677, 0.016607264056801796, 0.014764751307666302, 0.11233446002006531, 0.0320916548371315, -0.08526650071144104, 0.06627144664525986, -0.05311663821339607, -0.17334246635437012, -0.05800341069698334, 0.1201423928141594, 0.08025762438774109, 0.045287180691957474, 0.0017582663567736745, 0.05776466801762581, 0.0008891233592294157, -0.09685297310352325, 0.035837721079587936, 0.005389383528381586, 0.051567867398262024, 0.02829589694738388, -0.0853777676820755, 0.07522588968276978, -0.03480226919054985, 0.01946762204170227, 0.12873464822769165, 0.23083153367042542, -0.09908635169267654, 0.10251915454864502, 0.07948490977287292, -0.07644954323768616, -0.15836948156356812, 0.061480604112148285, 0.12516728043556213, 0.005018298048526049, 0.08318722248077393, -0.19878245890140533, 0.13378213346004486, 0.10713660717010498, -0.013334267772734165, 0.021239610388875008, -0.2715395390987396, -0.13208909332752228, 0.06653444468975067, 0.10964275151491165, 0.047214657068252563, -0.12274809926748276, -0.035249415785074234, -0.01152511965483427, -0.12179099768400192, 0.12898555397987366, -0.07734493166208267, 0.11648885160684586, -0.020951755344867706, 0.1213105171918869, 0.024618063122034073, -0.037446971982717514, 0.11213061958551407, 0.07241645455360413, 0.08613365143537521, -0.04003742337226868, -0.004720533266663551, 0.06704948842525482, -0.06237984448671341, 0.03698628395795822, -0.03634254261851311, 0.06219482421875, -0.14817547798156738, 0.00648076506331563, -0.07776428759098053, 0.060070496052503586, -0.046349138021469116, -0.0655345618724823, -0.027855148538947105, 0.04732652008533478, 0.07316963374614716, -0.03563035652041435, 0.045293405652046204, 0.008793516084551811, 0.09173333644866943, 0.09699300676584244, 0.07331421226263046, -0.022639764472842216, -0.08242933452129364, 0.01422884687781334, 0.0043785893358290195, 0.04671351611614227, -0.08533425629138947, 0.015247552655637264, 0.14626073837280273, 0.06070985645055771, 0.10263718664646149, 0.04546493664383888, -0.043794531375169754, 0.005097848363220692, 0.016980573534965515, -0.14122609794139862, -0.09982508420944214, 0.02852538786828518, -0.05912083759903908, -0.15389792621135712, 0.03385663032531738, 0.12138621509075165, -0.03727427497506142, -0.016960563138127327, -0.0071968939155340195, 0.008846103213727474, -0.01114825252443552, 0.18505725264549255, 0.04287080839276314, 0.054373279213905334, -0.0916857123374939, 0.11366163939237595, 0.03677797317504883, -0.042152877897024155, 0.05436941236257553, 0.06788895279169083, -0.09964878112077713, 0.013409162871539593, 0.0732845887541771, 0.15039180219173431, -0.06413473933935165, -0.013329347595572472, -0.09130685776472092, -0.07654933631420135, 0.04522421211004257, 0.1452883929014206, 0.05275622010231018, -0.005207688082009554, -0.060072559863328934, 0.036435190588235855, -0.11862315982580185, 0.06786469370126724, 0.05294281244277954, 0.08168663829565048, -0.10783739387989044, 0.12532387673854828, -0.006884168833494186, 0.02283874899148941, -0.02786053717136383, 0.018872268497943878, -0.10059616714715958, -0.03449539840221405, -0.1073734387755394, -0.015512961894273758, -0.01930192857980728, -0.0033648659009486437, -0.020105386152863503, -0.07508838921785355, -0.04279998317360878, 0.03224962577223778, -0.07658733427524567, -0.04896465688943863, 0.017090212553739548, 0.03920554369688034, -0.16117677092552185, 0.0031873316038399935, 0.02576652355492115, -0.08748999983072281, 0.08705393970012665, 0.06923524290323257, 0.016140103340148926, 0.028340451419353485, -0.12454245239496231, -0.03269321098923683, 0.0007295922259800136, 0.010715765878558159, 0.07721380144357681, -0.09382983297109604, -0.029016464948654175, -0.030837107449769974, 0.04918981343507767, 0.014761790633201599, 0.10002005100250244, -0.11811891198158264, -0.013947946950793266, -0.046179499477148056, -0.03771438077092171, -0.057342760264873505, 0.026935327798128128, 0.11427950859069824, 0.04343843832612038, 0.15773552656173706, -0.06892465800046921, 0.05488250032067299, -0.20500852167606354, -0.033011797815561295, 0.010663315653800964, -0.047487515956163406, -0.07316212356090546, -0.045086007565259933, 0.084307961165905, -0.049928631633520126, 0.12306999415159225, -0.016046978533267975, 0.09278962016105652, 0.04364306852221489, -0.0015729316510260105, -0.07178542017936707, -0.011271283030509949, 0.1846543550491333, 0.057704951614141464, -0.021706795319914818, 0.11967649310827255, 0.0041313632391393185, 0.0424150675535202, 0.06562824547290802, 0.23236455023288727, 0.15140433609485626, -0.01224974263459444, 0.07445278018712997, 0.06714604049921036, -0.07554677873849869, -0.13951502740383148, 0.12248189002275467, -0.021711498498916626, 0.10481464117765427, -0.05289587378501892, 0.1918489933013916, 0.03872223198413849, -0.1766454428434372, 0.05507589504122734, -0.02441570535302162, -0.10811862349510193, -0.12460999935865402, -0.018108537420630455, -0.08169450610876083, -0.11475399881601334, 0.028259525075554848, -0.123287133872509, 0.0678190365433693, 0.09508740901947021, 0.007678062655031681, 0.03490441292524338, 0.18458931148052216, -0.05855691805481911, 0.011090565472841263, 0.07186628878116608, 0.020957300439476967, -0.004008536692708731, -0.04100349172949791, -0.06597316265106201, 0.037665653973817825, 0.04283337667584419, 0.07205107063055038, -0.051731500774621964, 0.009274226613342762, 0.015172052197158337, -0.009540324099361897, -0.07759495079517365, 0.008363412693142891, 0.014142759144306183, 0.04872775822877884, 0.036310527473688126, 0.047522444278001785, 0.008258833549916744, -0.053881410509347916, 0.27407199144363403, -0.06774858385324478, -0.0636899322271347, -0.12348965555429459, 0.19162721931934357, 0.03438650816679001, -0.019165586680173874, 0.05578188970685005, -0.09338720887899399, -0.01101021096110344, 0.16370277106761932, 0.13545264303684235, -0.08834148943424225, -0.02123868837952614, -0.023290477693080902, -0.0088788578286767, -0.013240150175988674, 0.10323993861675262, 0.07160294055938721, 0.0004514638858381659, -0.0657193586230278, -0.012425029650330544, -0.028241155669093132, -0.048142366111278534, -0.06287968903779984, 0.05929866433143616, 0.027491627261042595, -0.007176809478551149, -0.05747884511947632, 0.06440304964780807, -0.0031037554144859314, -0.2364090532064438, 0.03760731965303421, -0.1727810502052307, -0.17349298298358917, -0.014186456799507141, 0.0702594667673111, 0.0029078717343509197, 0.056175608187913895, -0.005286484491080046, 0.009663810022175312, 0.11558406054973602, -0.01593758910894394, -0.014448380097746849, -0.11786253750324249, 0.10896269232034683, -0.1093774065375328, 0.21236370503902435, -0.0019762562587857246, 0.06471572071313858, 0.0992664098739624, 0.036588117480278015, -0.1347723752260208, 0.019392361864447594, 0.06241032853722572, -0.12519709765911102, 0.002356364391744137, 0.1455184817314148, -0.03433641791343689, 0.06020020693540573, 0.030773967504501343, -0.14933015406131744, -0.0021936490666121244, 0.027858443558216095, -0.03712736442685127, -0.06985677033662796, -0.007788433227688074, -0.05495218187570572, 0.16645380854606628, 0.2068076878786087, -0.02927565574645996, 0.01223505474627018, -0.08507630974054337, 0.021004701033234596, 0.04859060049057007, 0.05734763666987419, -0.039560165256261826, -0.21601133048534393, 0.021495450288057327, 0.07028377801179886, -0.0022229335736483335, -0.19377832114696503, -0.09509687125682831, 0.04157397150993347, -0.03728793188929558, -0.04617106914520264, 0.09046480804681778, 0.025379303842782974, 0.03709986433386803, -0.019064391031861305, -0.11485963314771652, -0.027141345664858818, 0.1462976187467575, -0.1764112412929535, -0.041901834309101105 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-2 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-2", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-2
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-2 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09537152945995331, 0.11522786319255829, -0.0023674124386161566, 0.09151331335306168, 0.1189081072807312, 0.022435875609517097, 0.1006641611456871, 0.1284085363149643, -0.09668318182229996, 0.08684852719306946, 0.08791568130254745, 0.03883175551891327, 0.04760359227657318, 0.1457030177116394, -0.019375143572688103, -0.25984492897987366, 0.01072352658957243, -0.004423913080245256, -0.03382154926657677, 0.11159126460552216, 0.08617935329675674, -0.10952968150377274, 0.08611846715211868, 0.015378325246274471, -0.15407417714595795, 0.01925625093281269, -0.03667648881673813, -0.03421207144856453, 0.11318020522594452, -0.03310689702630043, 0.10843156278133392, 0.025437206029891968, 0.1348515897989273, -0.21004162728786469, 0.004727584309875965, 0.07272573560476303, 0.04578942805528641, 0.10055487602949142, 0.05172029137611389, 0.01570984721183777, 0.08923088014125824, -0.15309785306453705, 0.0928201824426651, 0.029408104717731476, -0.0914284810423851, -0.13047249615192413, -0.09688850492238998, 0.027081923559308052, 0.05337892845273018, 0.06805142760276794, 0.001805038540624082, 0.1506359875202179, -0.05927414074540138, 0.0786842629313469, 0.26761943101882935, -0.3276502192020416, -0.06417758017778397, 0.03266332671046257, 0.061119645833969116, 0.053718626499176025, -0.12186717987060547, -0.0062570697627961636, 0.027482418343424797, 0.029323549941182137, 0.11779041588306427, -0.016850057989358902, -0.11172528564929962, -0.013465107418596745, -0.1284620612859726, -0.002034260891377926, 0.0720604658126831, 0.03571267053484917, -0.052808523178100586, -0.09468313306570053, -0.07592093199491501, -0.09281162917613983, -0.024174416437745094, -0.06583026051521301, 0.056586772203445435, -0.05385099723935127, -0.07996463030576706, -0.03828735277056694, -0.057347241789102554, -0.0765811875462532, -0.018091602250933647, 0.15722282230854034, 0.04004046693444252, 0.021168576553463936, -0.03208121284842491, 0.10934635996818542, 0.0030678538605570793, -0.14154645800590515, -0.015610688365995884, -0.0009793530916795135, -0.09699046611785889, -0.04691849276423454, -0.05057539418339729, -0.0172871183604002, 0.010287817567586899, 0.17744562029838562, -0.0797448605298996, 0.07514434307813644, 0.010013207793235779, -0.028540020808577538, -0.006056307815015316, 0.14809535443782806, -0.04276123270392418, -0.046041183173656464, -0.010074586607515812, 0.07334291934967041, 0.0033940968569368124, -0.01490476168692112, -0.06547844409942627, -0.028017297387123108, 0.10355070233345032, 0.046939242631196976, -0.05927489697933197, 0.03835679590702057, -0.02387099713087082, -0.028089744970202446, 0.01677061803638935, -0.11572354286909103, 0.04462360218167305, -0.0019207886653020978, -0.0836344063282013, -0.0025172012392431498, 0.0009563873754814267, -0.0044708168134093285, -0.007321964018046856, 0.10890552401542664, -0.09840328246355057, -0.0020777147728949785, -0.06283485889434814, -0.08208674192428589, 0.009176990017294884, -0.1555469036102295, -0.016215553507208824, -0.05779077485203743, -0.17020869255065918, -0.03174523264169693, 0.03703991696238518, -0.07457821816205978, -0.010607539676129818, -0.04873814061284065, -0.06494689732789993, 0.02508053183555603, -0.014526808634400368, 0.1738819032907486, -0.053185224533081055, 0.07269660383462906, -0.0010953373275697231, 0.04626210033893585, 0.01476144790649414, 0.03513211011886597, -0.10383866727352142, 0.02621135674417019, -0.1365681290626526, 0.06918410956859589, -0.08372204005718231, -0.003747009439393878, -0.1337445080280304, -0.09747519344091415, 0.010158007964491844, -0.02283298224210739, 0.09006386995315552, 0.13852359354496002, -0.19340050220489502, -0.01725887879729271, 0.12805843353271484, -0.07606134563684464, -0.0638587474822998, 0.06265906244516373, -0.06112358346581459, 0.032193977385759354, 0.05146513134241104, 0.21024034917354584, 0.03964880108833313, -0.16780665516853333, -0.031552642583847046, -0.005575479939579964, 0.03956415504217148, 0.02728271484375, 0.04130621999502182, 0.0035669743083417416, 0.06373708695173264, 0.013748357072472572, -0.07699760049581528, -0.03275948762893677, -0.09171165525913239, -0.06593754142522812, -0.05513029173016548, -0.07226239144802094, 0.04151234030723572, 0.002101401798427105, 0.04249276593327522, -0.06440328061580658, -0.10111576318740845, 0.1199679747223854, 0.09720493108034134, -0.04770669341087341, 0.037564340978860855, -0.07940937578678131, 0.020206129178404808, -0.02083873189985752, -0.03968749940395355, -0.2059641182422638, -0.1295323222875595, 0.052824776619672775, -0.057807233184576035, 0.033481888473033905, 0.007667251862585545, 0.08101174235343933, 0.06128619611263275, -0.04304657131433487, -0.012188727967441082, -0.09407373517751694, 0.003152415156364441, -0.11752624809741974, -0.18830056488513947, -0.07804398983716965, -0.04018646478652954, 0.09525101631879807, -0.17435629665851593, -0.0069603584706783295, 0.015163357369601727, 0.1441309005022049, 0.02723792940378189, -0.06856735050678253, -0.003893190296366811, 0.0364711694419384, 0.0018699439242482185, -0.09537900984287262, 0.044683028012514114, 0.008536753244698048, -0.0935157984495163, -0.06208283454179764, -0.13560549914836884, -0.012032631784677505, 0.05893433466553688, 0.053426750004291534, -0.09688419848680496, -0.04614819586277008, -0.07103581726551056, -0.04055601358413696, -0.07608165591955185, 0.01214717049151659, 0.20026373863220215, 0.03509090840816498, 0.11291942745447159, -0.06725558638572693, -0.07810628414154053, -0.003638908267021179, 0.02129870094358921, 0.011942229233682156, 0.07624421268701553, 0.04061175137758255, -0.05511137843132019, 0.07380270212888718, 0.09967520833015442, -0.022163718938827515, 0.12324646860361099, -0.04650265723466873, -0.08414339274168015, -0.035093311220407486, -0.022725874558091164, -0.028214672580361366, 0.12283487617969513, -0.039264023303985596, 0.0056982459500432014, 0.03649413213133812, 0.04486491158604622, 0.01686755195260048, -0.1624891757965088, 0.008348883129656315, 0.022279253229498863, -0.054209765046834946, -0.03519504517316818, -0.0011631408706307411, 0.02720082737505436, 0.0919867753982544, 0.031926218420267105, -0.012922864407300949, 0.003505147062242031, -0.012071473523974419, -0.062353748828172684, 0.18382160365581512, -0.09802639484405518, -0.08539586514234543, -0.0768265426158905, 0.0057265316136181355, -0.05869238078594208, -0.03559267893433571, 0.016520541161298752, -0.08611823618412018, -0.03862028196454048, -0.08754406124353409, -0.017792657017707825, -0.0191205944865942, 0.020767681300640106, 0.03275309130549431, -0.02209819294512272, 0.08134579658508301, -0.13945433497428894, 0.0012399767292663455, -0.05153898522257805, -0.09312644600868225, -0.0007829934475012124, 0.0746997520327568, 0.0979100838303566, 0.0795753076672554, -0.01627679541707039, 0.02976500615477562, -0.03384603559970856, 0.2428482323884964, -0.045291975140571594, 0.011005695909261703, 0.10421228408813477, -0.014701214618980885, 0.05711044371128082, 0.09533049911260605, 0.03679579496383667, -0.09389398992061615, 0.020617740228772163, 0.08205817639827728, -0.029089948162436485, -0.22968338429927826, -0.025782886892557144, -0.003963626455515623, -0.07992992550134659, 0.10613354295492172, 0.03194580227136612, -0.03779718279838562, 0.0452701561152935, 0.020722443237900734, 0.0016799949808046222, -0.054801035672426224, 0.08197027444839478, 0.07557584345340729, 0.056265175342559814, 0.09942799806594849, -0.008672242052853107, -0.028380680829286575, 0.06230245158076286, 0.007730789016932249, 0.24712979793548584, -0.024025673046708107, 0.1000915914773941, 0.03292198106646538, 0.15197975933551788, -0.02721567265689373, 0.06418277323246002, 0.004091322887688875, -0.008944697678089142, -0.015106228180229664, -0.0670945942401886, -0.025248060002923012, 0.02424168586730957, -0.04517089203000069, 0.02990126982331276, -0.08176358044147491, 0.02638229727745056, 0.02770962379872799, 0.2800525724887848, 0.03493005782365799, -0.27274689078330994, -0.0657491385936737, -0.012287931516766548, -0.04232519865036011, -0.06392890959978104, 0.005712657701224089, 0.1206023246049881, -0.13402007520198822, 0.0641203448176384, -0.07534389197826385, 0.08948948234319687, -0.03862487152218819, 0.010471731424331665, 0.04510798677802086, 0.151736781001091, -0.01737850345671177, 0.05100656673312187, -0.18361608684062958, 0.2421043962240219, 0.024509062990546227, 0.10714725404977798, -0.06370336562395096, 0.010675077326595783, 0.018407732248306274, 0.0069021545350551605, 0.11007858067750931, 0.0018711434677243233, -0.0681585744023323, -0.13803963363170624, -0.1010977029800415, 0.04598475620150566, 0.1422237604856491, -0.035807497799396515, 0.09927324205636978, -0.028684768825769424, 0.012755471281707287, 0.0334952138364315, -0.028617074713110924, -0.15668915212154388, -0.0726025402545929, 0.010448778979480267, 0.025875752791762352, -0.01516345888376236, -0.052490267902612686, -0.10394182056188583, -0.03832893446087837, 0.12018182128667831, 0.002358557190746069, -0.04623871669173241, -0.15017864108085632, 0.08412006497383118, 0.14581076800823212, -0.058863695710897446, 0.01572081819176674, 0.014144734479486942, 0.1124909445643425, 0.032482899725437164, -0.08545602113008499, 0.066264308989048, -0.052935704588890076, -0.1750272661447525, -0.058110278099775314, 0.12071224302053452, 0.07970338314771652, 0.045520782470703125, 0.0016189217567443848, 0.057439886033535004, 0.0019606323912739754, -0.09688818454742432, 0.03697141632437706, 0.005866435822099447, 0.051329247653484344, 0.028414040803909302, -0.08513349294662476, 0.0782322809100151, -0.03446858376264572, 0.0175543911755085, 0.1306374967098236, 0.23487278819084167, -0.09975562989711761, 0.10413111001253128, 0.07902128249406815, -0.07693260908126831, -0.158255934715271, 0.05950519070029259, 0.12674854695796967, 0.003964267671108246, 0.0848328173160553, -0.1990954577922821, 0.13335345685482025, 0.1071438416838646, -0.014596676453948021, 0.02014963887631893, -0.2726287245750427, -0.13224458694458008, 0.06513106822967529, 0.10954294353723526, 0.05059703066945076, -0.12232144176959991, -0.03616506978869438, -0.010269462130963802, -0.12193238735198975, 0.1284090131521225, -0.07530135661363602, 0.11691273003816605, -0.021155469119548798, 0.12245280295610428, 0.024746686220169067, -0.036611929535865784, 0.11450853198766708, 0.07095754146575928, 0.08460047096014023, -0.039758119732141495, -0.003817156422883272, 0.06487591564655304, -0.06305240094661713, 0.03590167686343193, -0.03583729639649391, 0.06291007995605469, -0.14891210198402405, 0.006493810564279556, -0.07744639366865158, 0.05976345017552376, -0.047100458294153214, -0.06520679593086243, -0.02795107290148735, 0.04674875736236572, 0.07338003069162369, -0.03534592688083649, 0.04497446492314339, 0.009480264037847519, 0.09019305557012558, 0.1016479879617691, 0.0721774697303772, -0.021233657374978065, -0.08305364102125168, 0.01283068023622036, 0.00402118731290102, 0.04671959951519966, -0.08443524688482285, 0.01654953695833683, 0.14541606605052948, 0.05985216423869133, 0.10268911719322205, 0.04545527324080467, -0.04428669810295105, 0.006196765694767237, 0.016837215051054955, -0.14288146793842316, -0.10075518488883972, 0.02788730338215828, -0.05814502760767937, -0.15423542261123657, 0.03200370445847511, 0.12409103661775589, -0.03650215268135071, -0.016791801899671555, -0.0069403876550495625, 0.009610538370907307, -0.011826816014945507, 0.18334214389324188, 0.04185981675982475, 0.05481581762433052, -0.090377077460289, 0.11374612897634506, 0.03665408119559288, -0.04042666405439377, 0.05411496385931969, 0.06730931997299194, -0.09872697293758392, 0.014019225724041462, 0.07266446202993393, 0.14957626163959503, -0.06701455265283585, -0.012717798352241516, -0.09115651249885559, -0.076540008187294, 0.04430265724658966, 0.14403332769870758, 0.053544364869594574, -0.004452838562428951, -0.06002368777990341, 0.036091383546590805, -0.11744143813848495, 0.06818883121013641, 0.05362345278263092, 0.08191383630037308, -0.10874117910861969, 0.12529459595680237, -0.0074400040321052074, 0.024522168561816216, -0.02812589891254902, 0.017897579818964005, -0.10035132616758347, -0.03457850590348244, -0.10917993634939194, -0.013357988558709621, -0.01743483543395996, -0.003542493563145399, -0.019089415669441223, -0.07609665393829346, -0.042773496359586716, 0.03320744261145592, -0.07660995423793793, -0.0490536205470562, 0.0166569072753191, 0.03991961479187012, -0.16106060147285461, 0.0024062544107437134, 0.026976019144058228, -0.08819588273763657, 0.08843956887722015, 0.06996705383062363, 0.016302864998579025, 0.02781936153769493, -0.1230948343873024, -0.03298802301287651, 0.0008303190697915852, 0.010578887537121773, 0.07676902413368225, -0.09514041990041733, -0.03021899238228798, -0.03049432300031185, 0.04873894527554512, 0.015010270290076733, 0.10324862599372864, -0.11896590143442154, -0.013545344583690166, -0.04650135710835457, -0.03905094787478447, -0.057129375636577606, 0.02571115642786026, 0.11358010023832321, 0.04571467265486717, 0.15736576914787292, -0.0703035295009613, 0.055294815450906754, -0.2044670283794403, -0.032595328986644745, 0.010636523365974426, -0.04566558450460434, -0.07390214502811432, -0.045174937695264816, 0.08308587968349457, -0.05009450018405914, 0.1218709796667099, -0.016494523733854294, 0.09127447009086609, 0.043980106711387634, -0.004016538616269827, -0.07011979818344116, -0.011787589639425278, 0.1835806518793106, 0.05763944983482361, -0.021033337339758873, 0.12017758190631866, 0.0026107714511454105, 0.043054427951574326, 0.06539781391620636, 0.23428183794021606, 0.15126098692417145, -0.011855191551148891, 0.0745588168501854, 0.06686023622751236, -0.07466766983270645, -0.14146466553211212, 0.12114766240119934, -0.02073172852396965, 0.10513101518154144, -0.05185164883732796, 0.1899210661649704, 0.03934028372168541, -0.1771068125963211, 0.05341821163892746, -0.024417860433459282, -0.1080889105796814, -0.12617450952529907, -0.01657763309776783, -0.08254808932542801, -0.11539068073034286, 0.02794845588505268, -0.1231381967663765, 0.06893002241849899, 0.09464026987552643, 0.006709713954478502, 0.035662971436977386, 0.18198469281196594, -0.057835791260004044, 0.011039024218916893, 0.07108569145202637, 0.02095491625368595, -0.003184927860274911, -0.03929128125309944, -0.0670294389128685, 0.03720281645655632, 0.04496787488460541, 0.0713290199637413, -0.05013596639037132, 0.010523884557187557, 0.014236249029636383, -0.01072878297418356, -0.07814337313175201, 0.00791256781667471, 0.014415471814572811, 0.048709869384765625, 0.035274688154459, 0.04778303951025009, 0.00859216321259737, -0.053331222385168076, 0.2754289209842682, -0.06751391291618347, -0.06303989142179489, -0.12302717566490173, 0.19377999007701874, 0.032486189156770706, -0.01846833899617195, 0.05651307478547096, -0.09293632954359055, -0.012845118530094624, 0.16179896891117096, 0.13449610769748688, -0.09095559269189835, -0.02095208317041397, -0.023738201707601547, -0.008820557966828346, -0.012355263344943523, 0.1043679490685463, 0.07108056545257568, 0.0016597093781456351, -0.06666329503059387, -0.013135312125086784, -0.030005479231476784, -0.04684159904718399, -0.06398794054985046, 0.05948108434677124, 0.026180796325206757, -0.005694949068129063, -0.05875154212117195, 0.06309767067432404, -0.0034975316375494003, -0.23576746881008148, 0.037594061344861984, -0.17238734662532806, -0.1737850308418274, -0.012994285672903061, 0.07099970430135727, 0.001002514734864235, 0.05613124743103981, -0.006832482758909464, 0.009464162401854992, 0.1164155974984169, -0.016497429460287094, -0.014615094289183617, -0.1163015067577362, 0.10977046191692352, -0.10916221141815186, 0.21337740123271942, -0.0008279558969661593, 0.06534311920404434, 0.09867575019598007, 0.03738902136683464, -0.135698601603508, 0.018261343240737915, 0.06232991814613342, -0.12546472251415253, 0.0016272899229079485, 0.14624238014221191, -0.03450412675738335, 0.06174150109291077, 0.032320473343133926, -0.14908789098262787, -0.004009720403701067, 0.02879532426595688, -0.03726779296994209, -0.06899265199899673, -0.010557841509580612, -0.056852784007787704, 0.16537627577781677, 0.20591653883457184, -0.02972402237355709, 0.01253075897693634, -0.0843191146850586, 0.021719040349125862, 0.04858938977122307, 0.05890055373311043, -0.0385332889854908, -0.21614082157611847, 0.021423233672976494, 0.0720965787768364, -0.0019958389457315207, -0.19460469484329224, -0.09710768610239029, 0.041994236409664154, -0.03593037277460098, -0.04613456502556801, 0.09174981713294983, 0.023997275158762932, 0.0364212729036808, -0.018581481650471687, -0.11623378843069077, -0.027848944067955017, 0.14572682976722717, -0.17581817507743835, -0.0421922393143177 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-4 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-4
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-4 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09596126526594162, 0.1143331527709961, -0.002329719951376319, 0.09232183545827866, 0.11995401233434677, 0.02276361919939518, 0.10132038593292236, 0.1276458501815796, -0.09687690436840057, 0.08633413165807724, 0.08798981457948685, 0.038543857634067535, 0.04693625494837761, 0.14547991752624512, -0.01917804218828678, -0.25983333587646484, 0.01051914133131504, -0.0038871292490512133, -0.033146731555461884, 0.11173943430185318, 0.08520353585481644, -0.11010416597127914, 0.08663345128297806, 0.01511739008128643, -0.1547684222459793, 0.019711658358573914, -0.03735457360744476, -0.034119393676519394, 0.11336778849363327, -0.033082831650972366, 0.1087113544344902, 0.02515527978539467, 0.1347205936908722, -0.20862558484077454, 0.004966778680682182, 0.07266971468925476, 0.04521679878234863, 0.100022092461586, 0.051377762109041214, 0.015478132292628288, 0.08836019039154053, -0.15303170680999756, 0.09292130172252655, 0.02915908209979534, -0.09161300212144852, -0.1308704912662506, -0.09623943269252777, 0.025993207469582558, 0.052734971046447754, 0.06903070956468582, 0.001257681054994464, 0.1499153971672058, -0.05982646346092224, 0.07893817871809006, 0.2652408182621002, -0.32876014709472656, -0.06453162431716919, 0.03296501189470291, 0.061390120536088943, 0.05380171164870262, -0.12266981601715088, -0.0056751323863863945, 0.027579238638281822, 0.03024299442768097, 0.11820436269044876, -0.017142251133918762, -0.111529141664505, -0.01303855050355196, -0.1283216029405594, -0.00046201684745028615, 0.07265476882457733, 0.0359392948448658, -0.052547577768564224, -0.09544926881790161, -0.0748697817325592, -0.09408663958311081, -0.024604152888059616, -0.06502678245306015, 0.05659610033035278, -0.05483013391494751, -0.08054061233997345, -0.03637227788567543, -0.057202018797397614, -0.0755976140499115, -0.017917964607477188, 0.15585701167583466, 0.039948802441358566, 0.020883161574602127, -0.03168986737728119, 0.10882922261953354, 0.002964173210784793, -0.1412876546382904, -0.014507031068205833, -0.0016646116273477674, -0.09683430194854736, -0.046935439109802246, -0.051248129457235336, -0.01561307068914175, 0.010458573698997498, 0.1776067018508911, -0.07990594953298569, 0.07582991570234299, 0.01113746128976345, -0.029386891052126884, -0.005934050772339106, 0.1468154788017273, -0.04423222318291664, -0.04769732803106308, -0.010401318781077862, 0.0738644078373909, 0.002557690953835845, -0.014949328266084194, -0.06548299640417099, -0.02701386623084545, 0.1025664284825325, 0.046267323195934296, -0.06044115871191025, 0.04013146832585335, -0.022899288684129715, -0.027826381847262383, 0.017178496345877647, -0.11553626507520676, 0.04431961476802826, -0.0019009154057130218, -0.08390256017446518, -0.0017585369059816003, 0.00018998501764144748, -0.005320255178958178, -0.007724236696958542, 0.10917358845472336, -0.09932518750429153, -0.0029088736046105623, -0.06325092166662216, -0.08312738686800003, 0.008605302311480045, -0.15537849068641663, -0.01524820365011692, -0.057356275618076324, -0.17058904469013214, -0.03325209021568298, 0.036873724311590195, -0.07446126639842987, -0.009585481137037277, -0.04882624372839928, -0.06558295339345932, 0.024639161303639412, -0.014550723135471344, 0.17446112632751465, -0.053606320172548294, 0.07169510424137115, 0.00004513439489528537, 0.046194493770599365, 0.014455415308475494, 0.035197507590055466, -0.1036529690027237, 0.025527501478791237, -0.13648073375225067, 0.06860251724720001, -0.08427383005619049, -0.0020595428068190813, -0.13258004188537598, -0.09864386916160583, 0.010899519547820091, -0.021715687587857246, 0.08958160132169724, 0.13831259310245514, -0.1930670291185379, -0.017523860558867455, 0.12747091054916382, -0.07506698369979858, -0.06398197263479233, 0.062398407608270645, -0.061355046927928925, 0.03099150024354458, 0.0521574392914772, 0.21027104556560516, 0.03988534212112427, -0.16723212599754333, -0.03281866014003754, -0.0064790151081979275, 0.039929747581481934, 0.026634858921170235, 0.03988917917013168, 0.004931105300784111, 0.06401815265417099, 0.014426537789404392, -0.07599365711212158, -0.03274446725845337, -0.09117808938026428, -0.06553104519844055, -0.05425507202744484, -0.0721784383058548, 0.04109122231602669, 0.0026701989118009806, 0.04251322150230408, -0.0654325857758522, -0.10160446166992188, 0.11946048587560654, 0.0969405248761177, -0.04824817553162575, 0.036131035536527634, -0.07979079335927963, 0.020745975896716118, -0.020863067358732224, -0.03916085883975029, -0.20550942420959473, -0.13066406548023224, 0.05176985263824463, -0.05534984543919563, 0.033381007611751556, 0.008078006096184254, 0.0818040519952774, 0.06160900369286537, -0.04345274716615677, -0.012669188901782036, -0.09298579394817352, 0.0034862328320741653, -0.11726479977369308, -0.18874329328536987, -0.07851462066173553, -0.040041234344244, 0.09569712728261948, -0.1755329966545105, -0.006564476061612368, 0.015501696616411209, 0.14331306517124176, 0.026808666065335274, -0.06812480837106705, -0.0029889759607613087, 0.037750374525785446, 0.0027817802038043737, -0.09520403295755386, 0.04529449716210365, 0.008410455659031868, -0.09243407845497131, -0.06313011050224304, -0.13602231442928314, -0.01037169061601162, 0.06003110110759735, 0.0527057908475399, -0.09726153314113617, -0.04612147808074951, -0.07078717648983002, -0.04056550934910774, -0.07442990690469742, 0.012137874029576778, 0.20121213793754578, 0.03467699512839317, 0.11264032870531082, -0.06640548259019852, -0.0776980072259903, -0.003535515395924449, 0.022696318104863167, 0.0129954032599926, 0.07609578967094421, 0.03947287052869797, -0.05300580710172653, 0.07410498708486557, 0.09874220192432404, -0.022518252953886986, 0.12405296415090561, -0.04672912880778313, -0.08362749963998795, -0.034456875175237656, -0.023721659556031227, -0.02872340939939022, 0.12358049303293228, -0.03971223905682564, 0.004412135109305382, 0.03616567701101303, 0.04419945925474167, 0.01719474047422409, -0.1616497039794922, 0.008326453156769276, 0.021543167531490326, -0.053215689957141876, -0.03633498400449753, -0.0007871789857745171, 0.026573091745376587, 0.09157931059598923, 0.03172881156206131, -0.014223050326108932, 0.0033659343607723713, -0.011907501146197319, -0.0617372989654541, 0.18433170020580292, -0.09813131392002106, -0.08428121358156204, -0.07661177963018417, 0.004064805340021849, -0.0596722736954689, -0.036012209951877594, 0.01608293130993843, -0.08756376802921295, -0.03878806531429291, -0.0872238501906395, -0.01879681833088398, -0.01879953406751156, 0.020614590495824814, 0.031918346881866455, -0.02241511270403862, 0.08081948757171631, -0.13914401829242706, 0.0014883343828842044, -0.05179676413536072, -0.09313903003931046, -0.00018238552729599178, 0.0750017836689949, 0.09820375591516495, 0.07941416651010513, -0.016034167259931564, 0.02980506792664528, -0.03403031826019287, 0.2435649037361145, -0.04544690623879433, 0.0111238406971097, 0.10407253354787827, -0.013868413865566254, 0.055965714156627655, 0.0953805074095726, 0.037721000611782074, -0.09429676830768585, 0.020430535078048706, 0.0825016126036644, -0.02861892245709896, -0.2294429987668991, -0.02518756315112114, -0.004313449375331402, -0.07992294430732727, 0.10606071352958679, 0.03189126029610634, -0.03727889433503151, 0.04603647068142891, 0.021544622257351875, 0.002587200840935111, -0.05505082383751869, 0.08149431645870209, 0.07694397866725922, 0.055734988301992416, 0.10042832046747208, -0.00876685231924057, -0.028672227635979652, 0.061502620577812195, 0.007949932478368282, 0.24772433936595917, -0.024340001866221428, 0.0997902974486351, 0.03345414996147156, 0.15140531957149506, -0.02671985700726509, 0.06499704718589783, 0.003580323187634349, -0.009597968310117722, -0.014853518456220627, -0.06691650301218033, -0.024057133123278618, 0.023349057883024216, -0.04621275141835213, 0.02931530773639679, -0.0818491131067276, 0.024868281558156013, 0.02786167524755001, 0.27961114048957825, 0.0349104069173336, -0.27526816725730896, -0.06657631695270538, -0.01307192724198103, -0.04196356609463692, -0.06347287446260452, 0.005902323871850967, 0.12010128796100616, -0.1333867758512497, 0.06484667956829071, -0.0754135325551033, 0.08913761377334595, -0.03871801495552063, 0.011421076953411102, 0.04710124805569649, 0.15273532271385193, -0.018241677433252335, 0.05059095844626427, -0.18403922021389008, 0.2409457415342331, 0.024622783064842224, 0.10789231956005096, -0.06388410180807114, 0.010555031709372997, 0.019291384145617485, 0.008147495798766613, 0.1097169741988182, 0.0012418740661814809, -0.06776823848485947, -0.1378914713859558, -0.10023844987154007, 0.04719002544879913, 0.14132508635520935, -0.03487919643521309, 0.10008452087640762, -0.02778276428580284, 0.012363585643470287, 0.03317135572433472, -0.029660912230610847, -0.15682610869407654, -0.07317664474248886, 0.009736011736094952, 0.027078254148364067, -0.014722759835422039, -0.05181373655796051, -0.10444246232509613, -0.03973587229847908, 0.11947011947631836, 0.0036652113776654005, -0.0464598573744297, -0.15070325136184692, 0.08346021920442581, 0.14597001671791077, -0.0577610544860363, 0.015664802864193916, 0.014915168285369873, 0.11160849779844284, 0.03345461189746857, -0.08513401448726654, 0.06631605327129364, -0.05361340194940567, -0.1737956702709198, -0.05808984115719795, 0.11986076086759567, 0.07941433787345886, 0.04479377716779709, 0.0013875743607059121, 0.05732147395610809, 0.0011415499029681087, -0.09747403860092163, 0.03730057552456856, 0.003953092265874147, 0.05222562327980995, 0.027997365221381187, -0.08591341227293015, 0.0780654177069664, -0.03385843709111214, 0.018511207774281502, 0.12880352139472961, 0.23208928108215332, -0.09899970144033432, 0.10221922397613525, 0.0794612318277359, -0.07650747895240784, -0.15784652531147003, 0.060474321246147156, 0.12564387917518616, 0.00471431203186512, 0.08340564370155334, -0.19993208348751068, 0.1344640851020813, 0.10658686608076096, -0.013594293966889381, 0.021997250616550446, -0.2699555456638336, -0.1315331608057022, 0.06548555195331573, 0.11026512086391449, 0.05141165107488632, -0.1227010041475296, -0.03555232286453247, -0.010356953367590904, -0.12134116142988205, 0.12762786448001862, -0.07789695262908936, 0.11698747426271439, -0.02149706520140171, 0.12283752858638763, 0.024024397134780884, -0.036677949130535126, 0.11362010985612869, 0.07182581722736359, 0.0856102705001831, -0.0398876927793026, -0.003079627873376012, 0.06481841206550598, -0.062364108860492706, 0.03583380952477455, -0.03690223768353462, 0.06232098117470741, -0.1492937207221985, 0.006492446176707745, -0.07828296720981598, 0.059505611658096313, -0.046887192875146866, -0.06499078869819641, -0.027021687477827072, 0.04706646874547005, 0.07231899350881577, -0.03547220304608345, 0.04362206161022186, 0.008540170267224312, 0.09058196097612381, 0.1004130095243454, 0.07283755391836166, -0.022418741136789322, -0.08388479799032211, 0.013986410573124886, 0.0036498040426522493, 0.046697650104761124, -0.08404338359832764, 0.015263602137565613, 0.14612317085266113, 0.0591457299888134, 0.10239855945110321, 0.04627217352390289, -0.04332051798701286, 0.005710342898964882, 0.017897913232445717, -0.14301088452339172, -0.09957325458526611, 0.02808302454650402, -0.06156246364116669, -0.1540113240480423, 0.03307672590017319, 0.12398099899291992, -0.03636815398931503, -0.01657278463244438, -0.006915832869708538, 0.008969293907284737, -0.011977249756455421, 0.18454225361347198, 0.042002446949481964, 0.05440301448106766, -0.09146088361740112, 0.1131364032626152, 0.036548782140016556, -0.04105493798851967, 0.0540541373193264, 0.06802644580602646, -0.09971363842487335, 0.013057519681751728, 0.07183147221803665, 0.15089847147464752, -0.06590919196605682, -0.013590668328106403, -0.09240183234214783, -0.07701028138399124, 0.04432080313563347, 0.14287374913692474, 0.05329762026667595, -0.005176045000553131, -0.06035948544740677, 0.03559105098247528, -0.11807172000408173, 0.06778419017791748, 0.052838992327451706, 0.08216691762208939, -0.10881125926971436, 0.12464533001184464, -0.007519882172346115, 0.023747015744447708, -0.028134047985076904, 0.018424106761813164, -0.10104840993881226, -0.03464164212346077, -0.10926461964845657, -0.014267992228269577, -0.017829162999987602, -0.003025304526090622, -0.019393321126699448, -0.0748099833726883, -0.043421823531389236, 0.0332174189388752, -0.07689507305622101, -0.04844609647989273, 0.018284987658262253, 0.04050762206315994, -0.1604376584291458, 0.002786741591989994, 0.025813136249780655, -0.08813635259866714, 0.08826640993356705, 0.06991613656282425, 0.016078930348157883, 0.02819424867630005, -0.12149621546268463, -0.03351833298802376, 0.00036739165079779923, 0.00986559595912695, 0.07729997485876083, -0.09440791606903076, -0.029581744223833084, -0.030689066275954247, 0.048995643854141235, 0.015244247391819954, 0.102435402572155, -0.1181907132267952, -0.013198906555771828, -0.04571767896413803, -0.037793245166540146, -0.057605646550655365, 0.026199132204055786, 0.11428701877593994, 0.0451384000480175, 0.1578049212694168, -0.07031004875898361, 0.0544419027864933, -0.2047322690486908, -0.03295276686549187, 0.010495468974113464, -0.04695760831236839, -0.07319019734859467, -0.045163121074438095, 0.08381794393062592, -0.050624433904886246, 0.12338085472583771, -0.01672869175672531, 0.09168501943349838, 0.043445490300655365, -0.0037739980034530163, -0.07119008153676987, -0.01120741106569767, 0.18332606554031372, 0.05720141902565956, -0.021702652797102928, 0.11992364376783371, 0.003811078378930688, 0.042235273867845535, 0.0666567012667656, 0.2325117588043213, 0.15041834115982056, -0.011153262108564377, 0.07477675378322601, 0.06754112243652344, -0.07512501627206802, -0.14022955298423767, 0.1220535933971405, -0.02070641703903675, 0.10574483871459961, -0.05272252857685089, 0.18877346813678741, 0.03857462480664253, -0.17625866830348969, 0.05381551384925842, -0.02525276504456997, -0.10824910551309586, -0.1249711737036705, -0.015693742781877518, -0.08189234137535095, -0.11599445343017578, 0.028088320046663284, -0.1236438900232315, 0.06756597757339478, 0.09574401378631592, 0.00750691955909133, 0.035179540514945984, 0.1835053563117981, -0.05673655495047569, 0.011702210642397404, 0.07140899449586868, 0.020427772775292397, -0.003521523205563426, -0.0390792042016983, -0.06624434888362885, 0.036643195897340775, 0.043478768318891525, 0.07087808847427368, -0.051051583141088486, 0.009855539537966251, 0.014913653954863548, -0.009934957139194012, -0.07772476971149445, 0.007700514979660511, 0.014660494402050972, 0.04842457175254822, 0.0362536646425724, 0.04732527211308479, 0.007761369459331036, -0.05349385738372803, 0.27434855699539185, -0.06751198321580887, -0.06179691106081009, -0.12385555356740952, 0.1934623420238495, 0.03234100341796875, -0.019058678299188614, 0.05561412498354912, -0.09205586463212967, -0.011738892644643784, 0.16305387020111084, 0.13636481761932373, -0.09097540378570557, -0.021297579631209373, -0.023259064182639122, -0.0088167330250144, -0.012523045763373375, 0.1047237291932106, 0.071053147315979, 0.0011955132940784097, -0.06668560206890106, -0.013032066635787487, -0.029397640377283096, -0.046811893582344055, -0.06359818577766418, 0.05895936116576195, 0.027329137548804283, -0.006066365633159876, -0.05809426307678223, 0.06329743564128876, -0.003819589503109455, -0.23558297753334045, 0.03851013258099556, -0.17183572053909302, -0.17422127723693848, -0.01410029549151659, 0.070277139544487, 0.0017772603314369917, 0.05689642205834389, -0.006720739882439375, 0.009276424534618855, 0.11697383970022202, -0.016752813011407852, -0.01376529224216938, -0.11709676682949066, 0.10990546643733978, -0.1088789701461792, 0.21214768290519714, -0.0015199299668893218, 0.0653330460190773, 0.0991201177239418, 0.03702859580516815, -0.13544563949108124, 0.0189223513007164, 0.06155338138341904, -0.1259951889514923, 0.002197730354964733, 0.14538390934467316, -0.03434816002845764, 0.06094251200556755, 0.03114289976656437, -0.148182675242424, -0.0031924350187182426, 0.029010288417339325, -0.03708065673708916, -0.06904306262731552, -0.010246618650853634, -0.05643734335899353, 0.16590487957000732, 0.20745010673999786, -0.029552463442087173, 0.012404218316078186, -0.08422175794839859, 0.02193223312497139, 0.049104999750852585, 0.05763004347681999, -0.03934469446539879, -0.21612654626369476, 0.02154294215142727, 0.07260294258594513, -0.0025369899813085794, -0.19568760693073273, -0.09594545513391495, 0.04205050691962242, -0.03580727055668831, -0.04635120928287506, 0.09167402982711792, 0.02490544691681862, 0.037487804889678955, -0.01906224898993969, -0.1138903796672821, -0.027783002704381943, 0.14543525874614716, -0.1761440485715866, -0.04290812462568283 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-42 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results {'exact_match': 64.02081362346263, 'f1': 75.36439229517165} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-42", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-42
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-42 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results {'exact_match': 64.02081362346263, 'f1': 75.36439229517165} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10", "### Training results\n\n{'exact_match': 64.02081362346263, 'f1': 75.36439229517165}", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10", "### Training results\n\n{'exact_match': 64.02081362346263, 'f1': 75.36439229517165}", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ 46, 56, 6, 12, 8, 3, 105, 34, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10### Training results\n\n{'exact_match': 64.02081362346263, 'f1': 75.36439229517165}### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ -0.10709252953529358, 0.09730905294418335, -0.002101187827065587, 0.09354621171951294, 0.1368592530488968, 0.03701057285070419, 0.10579690337181091, 0.11050187051296234, -0.10211030393838882, 0.07659182697534561, 0.06730978935956955, 0.03477101027965546, 0.05278867110610008, 0.11574182659387589, -0.022511033341288567, -0.26376551389694214, -0.005049781873822212, 0.00597648648545146, -0.11629259586334229, 0.11273546516895294, 0.1083906963467598, -0.09721342474222183, 0.07631727308034897, 0.017353862524032593, -0.16293108463287354, 0.03451918438076973, -0.02309415303170681, -0.02417457103729248, 0.10952084511518478, 0.013205391354858875, 0.11893612891435623, 0.019446833059191704, 0.13812430202960968, -0.20038829743862152, 0.005195613019168377, 0.08814048767089844, 0.040516458451747894, 0.09671099483966827, 0.07046946883201599, 0.008865226060152054, 0.10875992476940155, -0.1391628533601761, 0.07370320707559586, 0.03740094602108002, -0.09730739891529083, -0.15397733449935913, -0.09758220613002777, 0.06668798625469208, 0.06498172879219055, 0.07917049527168274, -0.000743347336538136, 0.13463899493217468, -0.051201265305280685, 0.0874801054596901, 0.24365046620368958, -0.30128952860832214, -0.08567409962415695, 0.053075894713401794, 0.06140807271003723, 0.04527641460299492, -0.11378519982099533, -0.0011501444969326258, 0.03302106633782387, 0.026381926611065865, 0.08694107085466385, -0.021118776872754097, -0.11998628079891205, -0.014059100300073624, -0.1277374029159546, 0.011308600194752216, 0.10122934728860855, 0.05526898428797722, -0.045569341629743576, -0.06947499513626099, -0.0694560632109642, -0.09003804624080658, -0.011206120252609253, -0.06652999669313431, 0.045831143856048584, -0.055661968886852264, -0.07576120644807816, -0.05284503847360611, -0.06643404811620712, -0.0813450962305069, -0.013264649547636509, 0.15752357244491577, 0.030031684786081314, 0.01959240436553955, -0.025804094970226288, 0.11283406615257263, 0.0037896085996180773, -0.13486889004707336, -0.0036544068716466427, 0.003169640898704529, -0.1137247234582901, -0.051500432193279266, -0.053295861929655075, 0.00012925939518027008, -0.0059014856815338135, 0.1595398634672165, -0.09652407467365265, 0.0773385614156723, 0.033096835017204285, -0.018983738496899605, -0.02812841720879078, 0.14163193106651306, -0.08022944629192352, -0.04183351621031761, -0.023281754925847054, 0.08328350633382797, -0.007306980900466442, -0.00786706805229187, -0.06090111285448074, -0.04520125687122345, 0.08919142931699753, 0.04844329506158829, -0.04545855522155762, 0.042000144720077515, -0.020220236852765083, -0.03876075893640518, 0.014534922316670418, -0.12103579193353653, 0.039632152765989304, 0.004277696367353201, -0.10578778386116028, -0.012643546797335148, 0.017760299146175385, -0.00250156014226377, -0.01408575102686882, 0.08623049408197403, -0.09718737751245499, 0.0008786096004769206, -0.07901671528816223, -0.0915873721241951, -0.0012136095901951194, -0.1255333125591278, -0.010407686233520508, -0.04759453982114792, -0.16826583445072174, -0.050060924142599106, 0.04099511727690697, -0.07152190804481506, -0.031542934477329254, -0.028286408632993698, -0.0757487490773201, 0.013508803211152554, -0.0043103969655931, 0.19716478884220123, -0.03929326310753822, 0.06774090975522995, 0.009961205534636974, 0.038732051849365234, 0.011310549452900887, 0.032971955835819244, -0.08482160419225693, 0.035072144120931625, -0.12939739227294922, 0.07508350163698196, -0.09281529486179352, 0.0037634088657796383, -0.13249044120311737, -0.1036902368068695, 0.00905323214828968, -0.00969064049422741, 0.08917403966188431, 0.11953701078891754, -0.20004291832447052, -0.015350252389907837, 0.11640243232250214, -0.07175039499998093, -0.07791230082511902, 0.05620298534631729, -0.04532002657651901, 0.03748335316777229, 0.04172191396355629, 0.15764914453029633, 0.09921679645776749, -0.1434449404478073, -0.02358270436525345, 0.01232914812862873, 0.05183987691998482, 0.040440190583467484, 0.03985310345888138, -0.0010317983105778694, 0.04930783063173294, 0.006170037668198347, -0.10638012737035751, -0.03146824613213539, -0.10012169927358627, -0.07097877562046051, -0.05392971634864807, -0.09153292328119278, 0.03828269988298416, 0.030588772147893906, 0.04071468859910965, -0.060936443507671356, -0.11991863697767258, 0.1231388971209526, 0.11676405370235443, -0.05215391889214516, 0.021837998181581497, -0.07521016150712967, -0.005270545836538076, 0.016039211302995682, -0.03671892732381821, -0.21093754470348358, -0.1481400579214096, 0.027014704421162605, -0.057097066193819046, 0.037056814879179, 0.028366852551698685, 0.08655623346567154, 0.05856042727828026, -0.051818378269672394, -0.00991850346326828, -0.09012717008590698, -0.004340906161814928, -0.10015524923801422, -0.20120836794376373, -0.10155434161424637, -0.01823018677532673, 0.14813658595085144, -0.2179170846939087, 0.0055129737593233585, -0.0000751353072701022, 0.15074923634529114, 0.005966576281934977, -0.057388897985219955, -0.010910376906394958, 0.036043357104063034, 0.0008286294178105891, -0.0959918200969696, 0.0417105071246624, 0.00648757116869092, -0.09765831381082535, -0.06118408963084221, -0.1477392464876175, -0.005581910256296396, 0.05609998479485512, 0.03808407485485077, -0.11305548250675201, -0.029518060386180878, -0.06731458008289337, -0.05015729367733002, -0.0591670498251915, 0.0032119080424308777, 0.1819952428340912, 0.025697268545627594, 0.10426173359155655, -0.056324552744627, -0.07310685515403748, -0.015117165632545948, 0.018932083621621132, 0.008135262876749039, 0.09353628754615784, 0.04488670453429222, -0.07871904969215393, 0.07934556901454926, 0.06924475729465485, -0.055934444069862366, 0.1282336711883545, -0.05189156159758568, -0.0802483931183815, -0.034348227083683014, -0.004396404139697552, -0.018006302416324615, 0.1220862939953804, -0.0328902006149292, 0.014902994967997074, 0.029665915295481682, 0.019124895334243774, 0.02797410450875759, -0.16769886016845703, 0.003116765059530735, 0.022857841104269028, -0.04955001175403595, -0.024604566395282745, -0.020379746332764626, 0.03523917496204376, 0.09086693823337555, 0.01835392601788044, -0.005741009954363108, 0.005656504072248936, -0.009947500191628933, -0.07125944644212723, 0.20714066922664642, -0.09562423825263977, -0.09394211322069168, -0.10671623051166534, 0.0566268190741539, -0.06624855846166611, -0.03748701885342598, -0.009219340980052948, -0.08471456170082092, -0.04129723086953163, -0.07116411626338959, 0.004057013429701328, -0.01889394409954548, -0.0027608161326497793, 0.03292762488126755, -0.0032227844931185246, 0.10515540093183517, -0.1458021104335785, 0.024282807484269142, -0.037297189235687256, -0.12225872278213501, -0.00990310125052929, 0.07352147251367569, 0.09560242295265198, 0.10406971722841263, -0.017411349341273308, 0.01847533881664276, -0.02021498791873455, 0.23632802069187164, -0.06299155205488205, 0.018611103296279907, 0.12077263742685318, -0.008794684894382954, 0.048239726573228836, 0.0919986143708229, 0.044812846928834915, -0.08905663341283798, 0.023135242983698845, 0.1024496853351593, -0.021494891494512558, -0.24558280408382416, -0.02582133188843727, -0.003038461785763502, -0.07996485382318497, 0.09841464459896088, 0.02223026752471924, -0.015368839725852013, 0.06085249409079552, -0.004583916161209345, 0.013396530412137508, -0.03640693053603172, 0.060132093727588654, 0.08100009709596634, 0.051801178604364395, 0.11576827615499496, -0.017152998596429825, -0.02020244300365448, 0.0520084984600544, 0.00766667490825057, 0.25181591510772705, -0.04100002348423004, 0.11025843769311905, 0.03772785887122154, 0.14441365003585815, -0.033548690378665924, 0.06122744828462601, 0.00830170139670372, -0.020364301279187202, 0.015618357807397842, -0.06374453008174896, -0.010191740468144417, 0.014754361473023891, -0.03444354608654976, 0.04228091239929199, -0.076856330037117, 0.04997139051556587, 0.018897274509072304, 0.2780091464519501, 0.02863999642431736, -0.2713560163974762, -0.08536460250616074, -0.011661466211080551, -0.01906885951757431, -0.07141309976577759, -0.00885463785380125, 0.13126061856746674, -0.13368871808052063, 0.0664854496717453, -0.06738028675317764, 0.09553420543670654, -0.023010337725281715, 0.0001486793626099825, 0.07539528608322144, 0.15664994716644287, -0.012535428628325462, 0.06396820396184921, -0.18953894078731537, 0.2462725192308426, 0.0201544351875782, 0.10757219791412354, -0.04737916216254234, 0.021484078839421272, 0.01668829284608364, 0.030538568273186684, 0.0908123031258583, 0.0021299454383552074, -0.05279276520013809, -0.15107879042625427, -0.06826862692832947, 0.04024331644177437, 0.14358100295066833, -0.04321378096938133, 0.09536667168140411, -0.03653721511363983, 0.008719084784388542, 0.046352941542863846, -0.054788440465927124, -0.16817957162857056, -0.08267408609390259, 0.011193085461854935, -0.007186434231698513, -0.023787563666701317, -0.06539522111415863, -0.10172253847122192, -0.03519841656088829, 0.14078769087791443, -0.024918051436543465, -0.049658600240945816, -0.14424993097782135, 0.1056993305683136, 0.16676375269889832, -0.06517446041107178, 0.012922178022563457, 0.02046990767121315, 0.11846526712179184, 0.04227312281727791, -0.08665939420461655, 0.06206470727920532, -0.0661773681640625, -0.17410415410995483, -0.03461272642016411, 0.1327686458826065, 0.08059556782245636, 0.04264715313911438, -0.0015801142435520887, 0.04089173674583435, 0.008280586451292038, -0.10074224323034286, 0.02536151558160782, -0.023618826642632484, 0.031034620478749275, 0.04385564476251602, -0.08037224411964417, 0.058399587869644165, -0.03915363550186157, 0.00792076624929905, 0.10490132868289948, 0.20997269451618195, -0.10477736592292786, 0.04440606012940407, 0.06548099219799042, -0.0848456397652626, -0.16533713042736053, 0.08551112562417984, 0.15214598178863525, 0.005831976421177387, 0.07907998561859131, -0.21529950201511383, 0.14889246225357056, 0.12969960272312164, -0.013695010915398598, 0.05389077588915825, -0.2757767140865326, -0.14134936034679413, 0.08482358604669571, 0.10436765849590302, 0.0003445317561272532, -0.14952826499938965, -0.0444999597966671, -0.015348202548921108, -0.17044812440872192, 0.13964369893074036, -0.09038202464580536, 0.10204680263996124, -0.0058442880399525166, 0.09939739853143692, 0.03142663463950157, -0.023626897484064102, 0.1339363157749176, 0.06323855370283127, 0.0903211310505867, -0.0413094088435173, 0.0021258227061480284, 0.0800706073641777, -0.0526922233402729, 0.026354635134339333, -0.017182258889079094, 0.06649770587682724, -0.13603109121322632, 0.007353374268859625, -0.09189099073410034, 0.07513067871332169, -0.06815623492002487, -0.05444274842739105, -0.02834758721292019, 0.05465511232614517, 0.03902420401573181, -0.03505545109510422, 0.04333033412694931, 0.007983529940247536, 0.1325104683637619, 0.11024180054664612, 0.08628682792186737, 0.00035392690915614367, -0.09787295013666153, 0.019521037116646767, 0.009756888262927532, 0.054544977843761444, -0.0795716717839241, 0.023056993260979652, 0.14500802755355835, 0.07129331678152084, 0.10494217276573181, 0.04367876797914505, -0.04643935710191727, -0.010345779359340668, 0.025921136140823364, -0.1200595274567604, -0.1296454817056656, 0.002731884364038706, -0.07355017960071564, -0.14888343214988708, 0.029521645978093147, 0.11849573254585266, -0.03329910337924957, -0.009657331742346287, -0.00651159230619669, 0.0067899879068136215, -0.024329014122486115, 0.20290106534957886, 0.05669889599084854, 0.07279320061206818, -0.08547516167163849, 0.10699985921382904, 0.04575938358902931, -0.04361989349126816, 0.03572433069348335, 0.07956363260746002, -0.08028127253055573, 0.003958493005484343, 0.061974409967660904, 0.11156284064054489, -0.08597882091999054, -0.02632201462984085, -0.08990051597356796, -0.10125900059938431, 0.03231891989707947, 0.14653842151165009, 0.04835387319326401, -0.0070779891684651375, -0.03499235212802887, 0.04065345600247383, -0.13353756070137024, 0.06636104732751846, 0.06108270585536957, 0.0877632424235344, -0.12573930621147156, 0.1671285629272461, 0.004891699180006981, 0.029385915026068687, -0.01543651707470417, 0.025487683713436127, -0.10665372759103775, -0.034085649996995926, -0.1226997897028923, -0.03007560595870018, -0.01363105047494173, 0.0004001292400062084, -0.017214259132742882, -0.07242199033498764, -0.05035527050495148, 0.04864783585071564, -0.07335411757230759, -0.058280427008867264, 0.01710026152431965, 0.03117927722632885, -0.16052575409412384, 0.0038598249666392803, 0.03271059691905975, -0.09081193059682846, 0.0754004493355751, 0.06685853749513626, 0.04022107645869255, 0.033801134675741196, -0.12955690920352936, -0.02475569397211075, -0.007714908570051193, 0.017137013375759125, 0.06918644160032272, -0.10563315451145172, -0.0178622305393219, -0.04266852140426636, 0.06935140490531921, 0.007917521521449089, 0.07983498275279999, -0.11815103143453598, -0.006528399884700775, -0.04948867857456207, -0.0289005097001791, -0.06501986086368561, 0.04328880459070206, 0.10995073616504669, 0.055856961756944656, 0.15289343893527985, -0.0687728002667427, 0.04354479908943176, -0.22217310965061188, -0.02990412525832653, -0.00297369621694088, -0.03946691006422043, -0.04405780881643295, -0.03199080377817154, 0.09110818803310394, -0.06241808086633682, 0.09327846020460129, -0.019693342968821526, 0.10123893618583679, 0.04523419588804245, -0.010787888430058956, -0.06058419868350029, 0.01309781800955534, 0.17799034714698792, 0.050338976085186005, -0.0049431356601417065, 0.10968314111232758, 0.009625494480133057, 0.030542811378836632, 0.04328892007470131, 0.23462118208408356, 0.1311374455690384, -0.06987270712852478, 0.06444678455591202, 0.09101908653974533, -0.11121797561645508, -0.11910834908485413, 0.11183715611696243, -0.03576330840587616, 0.09673692286014557, -0.05854790657758713, 0.17100924253463745, 0.061237167567014694, -0.18738165497779846, 0.060386743396520615, -0.051537372171878815, -0.12285060435533524, -0.12146645784378052, -0.0037900605238974094, -0.07251021265983582, -0.11781012266874313, 0.025262901559472084, -0.13550500571727753, 0.06245312839746475, 0.12461730092763901, 0.011382518336176872, 0.028338687494397163, 0.18851254880428314, -0.05049467086791992, 0.004528720863163471, 0.06035536527633667, 0.021262140944600105, 0.005442644935101271, -0.045560602098703384, -0.059832584112882614, 0.0496281199157238, 0.03721284121274948, 0.06122637167572975, -0.06880366057157516, -0.0066299340687692165, 0.014925449155271053, -0.002029101364314556, -0.07002445310354233, 0.008210570551455021, 0.012576127424836159, 0.043789394199848175, 0.03769499436020851, 0.0419100858271122, 0.018919654190540314, -0.060926344245672226, 0.29404574632644653, -0.07095380127429962, -0.08290513604879379, -0.13640248775482178, 0.20072057843208313, 0.018462063744664192, -0.018587937578558922, 0.06735577434301376, -0.09643853455781937, -0.00430376548320055, 0.1489730030298233, 0.14251691102981567, -0.09100357443094254, -0.021555442363023758, -0.01659158617258072, -0.01183544471859932, -0.022539036348462105, 0.1176198422908783, 0.0890941470861435, 0.01544789969921112, -0.06739477813243866, -0.0100306561216712, -0.0191311314702034, -0.043689895421266556, -0.06724943220615387, 0.07752656191587448, 0.03204108029603958, 0.0066177453845739365, -0.033798616379499435, 0.07219100743532181, 0.0010364762274548411, -0.23450273275375366, 0.04723648726940155, -0.16943144798278809, -0.1816864311695099, -0.04095715656876564, 0.07046559453010559, -0.009848436340689659, 0.061762139201164246, -0.004639483988285065, -0.008768124505877495, 0.12293685227632523, -0.008720796555280685, -0.026575636118650436, -0.13636833429336548, 0.10592801123857498, -0.11691164970397949, 0.21526412665843964, -0.01878557913005352, 0.06470894068479538, 0.09920880943536758, 0.019159525632858276, -0.13488730788230896, 0.01308837067335844, 0.06811632215976715, -0.12810753285884857, 0.018409354612231255, 0.14280414581298828, -0.037465423345565796, 0.07022960484027863, 0.02683143876492977, -0.16735567152500153, -0.008770459331572056, 0.022393235936760902, -0.027004199102520943, -0.07361938804388046, -0.004661316052079201, -0.06774649769067764, 0.16120636463165283, 0.2392021119594574, -0.036505017429590225, 0.007457788567990065, -0.09119325131177902, 0.012881084345281124, 0.05387165769934654, 0.10484284162521362, -0.03316648676991463, -0.22097431123256683, 0.029493751004338264, 0.0363537073135376, 0.010500257834792137, -0.20020852982997894, -0.08068457990884781, 0.054914142936468124, -0.05557232350111008, -0.02492726780474186, 0.0997740626335144, 0.0542256124317646, 0.053301215171813965, -0.022610504180192947, -0.10271554440259933, -0.041544560343027115, 0.1502676010131836, -0.17518717050552368, -0.046219535171985626 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-6 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-6
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-6 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09602359682321548, 0.11403444409370422, -0.002287903567776084, 0.09204193949699402, 0.12012409418821335, 0.02230750396847725, 0.10095051676034927, 0.1280750334262848, -0.09618483483791351, 0.08673408627510071, 0.08719637244939804, 0.03934064134955406, 0.047412674874067307, 0.14536984264850616, -0.019161295145750046, -0.25941383838653564, 0.010798902250826359, -0.003591503482311964, -0.03308134526014328, 0.11174536496400833, 0.08519860357046127, -0.11032954603433609, 0.08588489145040512, 0.014609341509640217, -0.15494251251220703, 0.019969336688518524, -0.03762827813625336, -0.033781230449676514, 0.1132134273648262, -0.033547040075063705, 0.10833442956209183, 0.02527593821287155, 0.13465943932533264, -0.20926938951015472, 0.004998847376555204, 0.07325180619955063, 0.045367252081632614, 0.10020134598016739, 0.05219171941280365, 0.015646230429410934, 0.09011658281087875, -0.1527780443429947, 0.09277531504631042, 0.02972399815917015, -0.09148178994655609, -0.12913408875465393, -0.09670611470937729, 0.025290174409747124, 0.05337013304233551, 0.06970780342817307, 0.0008215959533117712, 0.15086646378040314, -0.06032782793045044, 0.07915542274713516, 0.2668960392475128, -0.32730069756507874, -0.0644877478480339, 0.0339968241751194, 0.06122317910194397, 0.052840735763311386, -0.12353474646806717, -0.006582735572010279, 0.027604447677731514, 0.029910346493124962, 0.11724846810102463, -0.016706988215446472, -0.11299920827150345, -0.01340639777481556, -0.1286354809999466, -0.0005270008696243167, 0.07106462866067886, 0.035989243537187576, -0.051993705332279205, -0.09523230791091919, -0.07534641027450562, -0.09351636469364166, -0.02443019673228264, -0.06496067345142365, 0.05679786205291748, -0.054892685264348984, -0.08000554889440536, -0.03621389716863632, -0.056941088289022446, -0.07671207934617996, -0.017687112092971802, 0.15557049214839935, 0.0399353988468647, 0.020713917911052704, -0.03243628889322281, 0.10865380614995956, 0.0029707103967666626, -0.14145852625370026, -0.015508178621530533, -0.0009906506165862083, -0.09720853716135025, -0.047159675508737564, -0.050719719380140305, -0.017361357808113098, 0.01001316774636507, 0.17587298154830933, -0.08011547476053238, 0.07626672834157944, 0.010198576375842094, -0.02948307991027832, -0.00655368110165, 0.1469932496547699, -0.043318070471286774, -0.046236053109169006, -0.01106297504156828, 0.07384166121482849, 0.0020614182576537132, -0.014606200158596039, -0.06489357352256775, -0.02713019587099552, 0.1029982641339302, 0.04612622782588005, -0.059944137930870056, 0.03980008140206337, -0.023129602894186974, -0.027964025735855103, 0.01748640090227127, -0.11540838330984116, 0.04450107738375664, -0.0023382024373859167, -0.08431589603424072, -0.002823854563757777, 0.00038606609450653195, -0.005609926767647266, -0.008071525022387505, 0.10987528413534164, -0.09967470169067383, -0.0026782590430229902, -0.06424310058355331, -0.08296934515237808, 0.009056736715137959, -0.15698975324630737, -0.015644699335098267, -0.05659773200750351, -0.1710270494222641, -0.0333654060959816, 0.036522481590509415, -0.07449010759592056, -0.00896498467773199, -0.049424394965171814, -0.06615936011075974, 0.02493048645555973, -0.014162139967083931, 0.17542970180511475, -0.053337711840867996, 0.07235673815011978, -0.00020801776554435492, 0.04595017805695534, 0.014947397634387016, 0.035819556564092636, -0.10456864535808563, 0.02527010068297386, -0.1359810084104538, 0.06867338716983795, -0.0852123275399208, -0.002220617840066552, -0.1334993690252304, -0.09794629365205765, 0.00971130095422268, -0.022223303094506264, 0.09033747762441635, 0.13901309669017792, -0.19340312480926514, -0.017190484330058098, 0.12793606519699097, -0.07585535198450089, -0.06400597095489502, 0.06143057718873024, -0.061053935438394547, 0.030595680698752403, 0.05173148214817047, 0.21059080958366394, 0.03921876847743988, -0.1670125275850296, -0.0338839516043663, -0.0070694913156330585, 0.04041451960802078, 0.02609335072338581, 0.03966672345995903, 0.004840199835598469, 0.06508847326040268, 0.014146591536700726, -0.07583948969841003, -0.03301706165075302, -0.09135212004184723, -0.06492733210325241, -0.054762788116931915, -0.07229705899953842, 0.04051564261317253, 0.003898506984114647, 0.04218365624547005, -0.06499538570642471, -0.10113795101642609, 0.11947987228631973, 0.0969177782535553, -0.04764465615153313, 0.036394163966178894, -0.07934512943029404, 0.01964837685227394, -0.021320408210158348, -0.03908552601933479, -0.20684917271137238, -0.1309492439031601, 0.05219730734825134, -0.05594620108604431, 0.03351713716983795, 0.00753630930557847, 0.08170084655284882, 0.06078125908970833, -0.043589163571596146, -0.012656508944928646, -0.09371501952409744, 0.0030557725112885237, -0.11776850372552872, -0.18885715305805206, -0.07859326899051666, -0.04070039466023445, 0.09350238740444183, -0.17500653862953186, -0.006867642048746347, 0.015540390275418758, 0.14391686022281647, 0.027060145512223244, -0.0686083659529686, -0.0029753188136965036, 0.03751236945390701, 0.002481995150446892, -0.09547087550163269, 0.04511179402470589, 0.007554813753813505, -0.09198254346847534, -0.06323914229869843, -0.13634318113327026, -0.012043188326060772, 0.05972624570131302, 0.05408328399062157, -0.09744595736265182, -0.04610829055309296, -0.07073606550693512, -0.04073692485690117, -0.0756063312292099, 0.013122432865202427, 0.20066212117671967, 0.03496741130948067, 0.11218766868114471, -0.06657087802886963, -0.0779109075665474, -0.0030181468464434147, 0.02298414707183838, 0.012553134933114052, 0.07708731293678284, 0.04122301563620567, -0.05476631969213486, 0.07486360520124435, 0.09923520684242249, -0.02193814143538475, 0.12439640611410141, -0.04687870666384697, -0.0840546265244484, -0.033145543187856674, -0.023399565368890762, -0.028603101149201393, 0.12339998036623001, -0.03941163420677185, 0.0047925966791808605, 0.0359947495162487, 0.044663988053798676, 0.01722012273967266, -0.16179829835891724, 0.008351861499249935, 0.02135860174894333, -0.05307597666978836, -0.037055741995573044, -0.000826735922601074, 0.026527704671025276, 0.09191633760929108, 0.03143337741494179, -0.013888811692595482, 0.0027184158097952604, -0.011940671131014824, -0.06176424026489258, 0.1851557493209839, -0.09776317328214645, -0.08321300148963928, -0.07532214373350143, 0.004849317949265242, -0.059247978031635284, -0.036293040961027145, 0.0162500012665987, -0.08858539909124374, -0.03882497549057007, -0.08719966560602188, -0.01857634261250496, -0.01859932951629162, 0.019822461530566216, 0.03125438839197159, -0.022106127813458443, 0.08007000386714935, -0.1398768424987793, 0.0016920219641178846, -0.052263617515563965, -0.09334983676671982, -0.0004939445643685758, 0.07463383674621582, 0.09811413288116455, 0.07966348528862, -0.01641707494854927, 0.029864130541682243, -0.0341421402990818, 0.24236136674880981, -0.045942068099975586, 0.010691838338971138, 0.10391727089881897, -0.012803320772945881, 0.056379284709692, 0.09563601016998291, 0.03704984113574028, -0.09433124214410782, 0.020738180726766586, 0.08320894092321396, -0.028927577659487724, -0.23048120737075806, -0.025375349447131157, -0.004482151474803686, -0.08006966859102249, 0.10606112331151962, 0.032201431691646576, -0.03730250522494316, 0.04585708677768707, 0.020910456776618958, 0.0012864315649494529, -0.05498944967985153, 0.08181736618280411, 0.07484336942434311, 0.05646544694900513, 0.10011260211467743, -0.008800610899925232, -0.028047075495123863, 0.06085721403360367, 0.007950816303491592, 0.24882981181144714, -0.024625860154628754, 0.0995255559682846, 0.03301096335053444, 0.15109184384346008, -0.02724761888384819, 0.06545720249414444, 0.0033421057742089033, -0.009703920222818851, -0.014676177874207497, -0.06673465669155121, -0.02419653721153736, 0.023317761719226837, -0.046890947967767715, 0.029453570023179054, -0.08171006292104721, 0.025213835760951042, 0.02734048292040825, 0.28025713562965393, 0.035002004355192184, -0.274269163608551, -0.06585120409727097, -0.013311351649463177, -0.04227099567651749, -0.06407379359006882, 0.0057271006517112255, 0.11969728767871857, -0.13298916816711426, 0.06465829163789749, -0.07583650946617126, 0.0900479331612587, -0.037446193397045135, 0.010768186300992966, 0.04645361378788948, 0.15289826691150665, -0.01821131259202957, 0.05099192634224892, -0.1850925236940384, 0.2429511547088623, 0.024744266644120216, 0.1080249547958374, -0.06416165828704834, 0.010363471694290638, 0.018697619438171387, 0.006623168475925922, 0.11019129306077957, 0.0012009484926238656, -0.06843778491020203, -0.13768291473388672, -0.09954261034727097, 0.04696739837527275, 0.14218740165233612, -0.034935835748910904, 0.09952692687511444, -0.027761677280068398, 0.012435238808393478, 0.03393643721938133, -0.02978694811463356, -0.15719762444496155, -0.07308056205511093, 0.01001923531293869, 0.02650831826031208, -0.015459554269909859, -0.051490575075149536, -0.10420314967632294, -0.03860589489340782, 0.11911201477050781, 0.0036169178783893585, -0.04585646092891693, -0.15072131156921387, 0.08426423370838165, 0.1460174024105072, -0.058126747608184814, 0.015574075281620026, 0.014627117663621902, 0.11122171580791473, 0.03258290886878967, -0.08563894033432007, 0.06724783033132553, -0.053632449358701706, -0.17411033809185028, -0.05801774561405182, 0.11937690526247025, 0.0800362080335617, 0.04519207030534744, 0.0011909090681001544, 0.05772159993648529, 0.001406815485097468, -0.09718676656484604, 0.03756730630993843, 0.004228139296174049, 0.0521480068564415, 0.02849463000893593, -0.08547045290470123, 0.07675771415233612, -0.034450042992830276, 0.017967721447348595, 0.12842291593551636, 0.23301860690116882, -0.09889925271272659, 0.10259053111076355, 0.0799330621957779, -0.07688435167074203, -0.1585405319929123, 0.06137142330408096, 0.12594719231128693, 0.004197145812213421, 0.08413106203079224, -0.19981275498867035, 0.1344214528799057, 0.10642403364181519, -0.013932344503700733, 0.021208012476563454, -0.2707490921020508, -0.13155829906463623, 0.06542593240737915, 0.11013205349445343, 0.04936648905277252, -0.12262903153896332, -0.03535997495055199, -0.010070516727864742, -0.12094859033823013, 0.12835894525051117, -0.07673697918653488, 0.11719129979610443, -0.02181944251060486, 0.12293810397386551, 0.024189632385969162, -0.03719676285982132, 0.11224839836359024, 0.07193931937217712, 0.08588811755180359, -0.03965448588132858, -0.003293768037110567, 0.0648765116930008, -0.06250230967998505, 0.03598310425877571, -0.03699520230293274, 0.0627206489443779, -0.1481391340494156, 0.006865167524665594, -0.07877637445926666, 0.06000366806983948, -0.04680624604225159, -0.06500281393527985, -0.027147997170686722, 0.04750816896557808, 0.07274003326892853, -0.03590485453605652, 0.044939715415239334, 0.008574707433581352, 0.0922415629029274, 0.1005576029419899, 0.07333541661500931, -0.022195708006620407, -0.08281805366277695, 0.013462990522384644, 0.004370127338916063, 0.04686139523983002, -0.08500370383262634, 0.01507571805268526, 0.14623799920082092, 0.06024520844221115, 0.10227334499359131, 0.04666744917631149, -0.04393574222922325, 0.005751105956733227, 0.017087062820792198, -0.14230717718601227, -0.10045989602804184, 0.0284141693264246, -0.05808994546532631, -0.15436583757400513, 0.03360128402709961, 0.1226072609424591, -0.037293121218681335, -0.01660998724400997, -0.006703418679535389, 0.009525066241621971, -0.011396746151149273, 0.18518418073654175, 0.04204562306404114, 0.05498350411653519, -0.09131846576929092, 0.11355132609605789, 0.03610886633396149, -0.042228132486343384, 0.054247502237558365, 0.06828612089157104, -0.0991193875670433, 0.013037599623203278, 0.07337064296007156, 0.15001800656318665, -0.06594546139240265, -0.012340625748038292, -0.09138315171003342, -0.0767349824309349, 0.044620953500270844, 0.14459873735904694, 0.05313485860824585, -0.0052820127457380295, -0.060028981417417526, 0.036056455224752426, -0.11861133575439453, 0.06805030256509781, 0.05241674184799194, 0.08236395567655563, -0.10844319313764572, 0.12338896095752716, -0.00734080420807004, 0.023945920169353485, -0.028061510995030403, 0.01882787048816681, -0.10083997994661331, -0.03458574786782265, -0.10729243606328964, -0.014467097818851471, -0.017896797508001328, -0.0034967223182320595, -0.019866744056344032, -0.07521750032901764, -0.042639438062906265, 0.03328600898385048, -0.07712841033935547, -0.048938751220703125, 0.017649859189987183, 0.04005033150315285, -0.16087165474891663, 0.0029281761962920427, 0.025967616587877274, -0.08755463361740112, 0.08729709684848785, 0.06922927498817444, 0.01615118607878685, 0.02851938270032406, -0.12396485358476639, -0.033166058361530304, 0.0006036445265635848, 0.009918643161654472, 0.07728192210197449, -0.09377701580524445, -0.029898136854171753, -0.03089229390025139, 0.049126919358968735, 0.01506563276052475, 0.10172645002603531, -0.1186690703034401, -0.013909920118749142, -0.04703284427523613, -0.03846688196063042, -0.05701981112360954, 0.026729613542556763, 0.11463794857263565, 0.04526182636618614, 0.15745708346366882, -0.07009848952293396, 0.055109307169914246, -0.20471733808517456, -0.03285461291670799, 0.010785563848912716, -0.04676811397075653, -0.0736604556441307, -0.04443634673953056, 0.08418973535299301, -0.050679102540016174, 0.1211005374789238, -0.016166921705007553, 0.09234297275543213, 0.04383096471428871, -0.003656962886452675, -0.07162211090326309, -0.011329824104905128, 0.18290406465530396, 0.05698656290769577, -0.02119220420718193, 0.1215188279747963, 0.0040638078935444355, 0.04188327491283417, 0.06809653341770172, 0.23453693091869354, 0.15155792236328125, -0.01212401781231165, 0.07488168776035309, 0.06730151921510696, -0.07573826611042023, -0.140097513794899, 0.12197063863277435, -0.020391253754496574, 0.10563764721155167, -0.053066354244947433, 0.18945781886577606, 0.03851446881890297, -0.17596624791622162, 0.05442046746611595, -0.02568230591714382, -0.10807112604379654, -0.1250578761100769, -0.015601986087858677, -0.08182837814092636, -0.11584349721670151, 0.02844526804983616, -0.12385156005620956, 0.06830892711877823, 0.09606166929006577, 0.007525863125920296, 0.035400837659835815, 0.18418560922145844, -0.05648822337388992, 0.011748998425900936, 0.07176593691110611, 0.020577020943164825, -0.0039061878342181444, -0.03938121348619461, -0.06586938351392746, 0.03773704916238785, 0.04336928948760033, 0.07099542766809464, -0.05092169716954231, 0.008807743899524212, 0.014761250466108322, -0.009901494719088078, -0.07784368842840195, 0.007925037294626236, 0.014980918727815151, 0.048601217567920685, 0.036900974810123444, 0.04724889621138573, 0.0082479203119874, -0.05358163267374039, 0.276041179895401, -0.06787721067667007, -0.06160334125161171, -0.12299491465091705, 0.19426767528057098, 0.03337680548429489, -0.018991868942975998, 0.05551685020327568, -0.09289601445198059, -0.012001519091427326, 0.16161750257015228, 0.13467296957969666, -0.08994685858488083, -0.021074289456009865, -0.02364164963364601, -0.008686423301696777, -0.012359682470560074, 0.10439932346343994, 0.07137981057167053, 0.0019259589025750756, -0.06694447994232178, -0.012805274687707424, -0.02938486449420452, -0.04761163517832756, -0.06263997405767441, 0.05909192934632301, 0.027706684544682503, -0.0065283696167171, -0.058292414993047714, 0.06357713788747787, -0.003986557014286518, -0.23520193994045258, 0.03783419355750084, -0.17287085950374603, -0.1737671047449112, -0.014048131182789803, 0.07020930200815201, 0.0018710417207330465, 0.056631941348314285, -0.006559076253324747, 0.009776200167834759, 0.11498554795980453, -0.01662139594554901, -0.014038083143532276, -0.11834955215454102, 0.10924083739519119, -0.1094801053404808, 0.21268585324287415, -0.001641039620153606, 0.06447994709014893, 0.09912193566560745, 0.03714968264102936, -0.13597255945205688, 0.018682172521948814, 0.061845581978559494, -0.12661334872245789, 0.0020432663150131702, 0.14641274511814117, -0.03440523147583008, 0.06127898395061493, 0.030796241015195847, -0.149760901927948, -0.002777398331090808, 0.02794860117137432, -0.036670517176389694, -0.06961273401975632, -0.008562020026147366, -0.05621180683374405, 0.16597458720207214, 0.2076471447944641, -0.02926386334002018, 0.012206965126097202, -0.08473123610019684, 0.02166404202580452, 0.048080332577228546, 0.05845894664525986, -0.03915943577885628, -0.21618425846099854, 0.021930847316980362, 0.0724245235323906, -0.0027249353006482124, -0.19537392258644104, -0.09554769098758698, 0.0422537736594677, -0.03673449158668518, -0.04639749601483345, 0.09106805175542831, 0.025066886097192764, 0.03693581372499466, -0.01918955147266388, -0.11601366102695465, -0.027418462559580803, 0.14596427977085114, -0.1762307584285736, -0.04254068806767464 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-8 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-8
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-8 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09651055932044983, 0.11489236354827881, -0.0023121130652725697, 0.09244512021541595, 0.12019168585538864, 0.022948764264583588, 0.10058419406414032, 0.12800709903240204, -0.09582960605621338, 0.08633457124233246, 0.08745722472667694, 0.03864460438489914, 0.04735307767987251, 0.14467661082744598, -0.01930258981883526, -0.2595095634460449, 0.010338992811739445, -0.0030823987908661366, -0.03125064820051193, 0.11128278821706772, 0.08525780588388443, -0.11038938164710999, 0.08583197742700577, 0.014446195214986801, -0.15427853167057037, 0.01980714686214924, -0.03710166737437248, -0.03429446741938591, 0.1135481670498848, -0.032938264310359955, 0.10836541652679443, 0.02454250305891037, 0.13471640646457672, -0.2099476009607315, 0.004805531352758408, 0.07352003455162048, 0.045233841985464096, 0.1002681627869606, 0.051025401800870895, 0.016531724482774734, 0.08917680382728577, -0.15329067409038544, 0.09299921989440918, 0.029346400871872902, -0.09131509065628052, -0.12951180338859558, -0.09590884298086166, 0.026436040177941322, 0.052775319665670395, 0.0690864771604538, 0.001794564537703991, 0.1524430215358734, -0.05909525230526924, 0.07952765375375748, 0.2671598792076111, -0.3270939886569977, -0.06372502446174622, 0.03298599272966385, 0.061073221266269684, 0.0540500283241272, -0.12272349745035172, -0.006406786385923624, 0.02725137770175934, 0.02978338859975338, 0.11777770519256592, -0.017452389001846313, -0.11443718522787094, -0.01354705635458231, -0.12812121212482452, -0.0009715126943774521, 0.07154244184494019, 0.03617028146982193, -0.05220673605799675, -0.095294289290905, -0.07603389024734497, -0.09431635588407516, -0.024902988225221634, -0.06533795595169067, 0.056252386420965195, -0.05453312024474144, -0.0791691318154335, -0.03633914887905121, -0.056455761194229126, -0.0759180560708046, -0.017398923635482788, 0.1555422991514206, 0.04005901888012886, 0.020635709166526794, -0.031674306839704514, 0.10829463601112366, 0.0010953241726383567, -0.1415235996246338, -0.015101272612810135, -0.0007481934735551476, -0.097306989133358, -0.04735776409506798, -0.05095502734184265, -0.01838734745979309, 0.009620527736842632, 0.1773107647895813, -0.07975802570581436, 0.07601028680801392, 0.01064213365316391, -0.02892869897186756, -0.006154731847345829, 0.14776252210140228, -0.043995484709739685, -0.04712778329849243, -0.010137009434401989, 0.07351084798574448, 0.002941910410299897, -0.015505814924836159, -0.06590157002210617, -0.027884377166628838, 0.10368698835372925, 0.04561476781964302, -0.05990627035498619, 0.03928975388407707, -0.02325861155986786, -0.028162216767668724, 0.018336711451411247, -0.11525555700063705, 0.04469949007034302, -0.002391690155491233, -0.08400660753250122, -0.00206960691139102, 0.0011026527499780059, -0.004906964488327503, -0.008356361649930477, 0.10901074856519699, -0.09886666387319565, -0.0022322640288621187, -0.06386715918779373, -0.0831521600484848, 0.009393257088959217, -0.15694214403629303, -0.014892193488776684, -0.05777556449174881, -0.17127260565757751, -0.03289288282394409, 0.03668834641575813, -0.07392727583646774, -0.008671008050441742, -0.048370614647865295, -0.06489238888025284, 0.024768101051449776, -0.014752967283129692, 0.17344848811626434, -0.05355125293135643, 0.07197415828704834, -0.00018527092470321804, 0.0455673485994339, 0.01368686929345131, 0.03588765487074852, -0.10414065420627594, 0.025115296244621277, -0.1360604465007782, 0.06857398897409439, -0.08457347750663757, -0.002112370915710926, -0.13223733007907867, -0.09788975119590759, 0.010726094245910645, -0.021596936509013176, 0.09098321944475174, 0.13832563161849976, -0.1934223473072052, -0.01699468120932579, 0.1271265298128128, -0.07555390894412994, -0.06420112401247025, 0.06290701031684875, -0.061225175857543945, 0.03052590601146221, 0.05228348821401596, 0.2104388028383255, 0.04077884927392006, -0.16706494987010956, -0.033204928040504456, -0.005885894875973463, 0.04102808237075806, 0.025060057640075684, 0.03953350707888603, 0.005206963513046503, 0.0655537098646164, 0.014446224085986614, -0.07477697730064392, -0.032226357609033585, -0.09122881293296814, -0.06531360000371933, -0.055010441690683365, -0.07202216237783432, 0.04017854481935501, 0.00452013686299324, 0.042193617671728134, -0.06480597704648972, -0.10165861248970032, 0.12095854431390762, 0.09658796340227127, -0.04798872768878937, 0.03644715994596481, -0.07896920293569565, 0.020183630287647247, -0.020573504269123077, -0.039001014083623886, -0.20641125738620758, -0.1297999620437622, 0.05238107591867447, -0.05581120029091835, 0.03302439674735069, 0.007912230677902699, 0.08106120675802231, 0.06121198087930679, -0.043066516518592834, -0.011897648684680462, -0.09316934645175934, 0.003331569256260991, -0.11852403730154037, -0.1877591609954834, -0.07876364141702652, -0.04019896313548088, 0.09395509213209152, -0.17581835389137268, -0.006340041756629944, 0.0151937585324049, 0.14331337809562683, 0.026683956384658813, -0.06853298097848892, -0.002966369967907667, 0.03817187249660492, 0.0022897536400705576, -0.09575161337852478, 0.045270923525094986, 0.008154802955687046, -0.09278133511543274, -0.06425698101520538, -0.1366974264383316, -0.011096515692770481, 0.05947359651327133, 0.05322916433215141, -0.09733697772026062, -0.04671027138829231, -0.07022473961114883, -0.04054996743798256, -0.07489410042762756, 0.012214883230626583, 0.20153656601905823, 0.03527074679732323, 0.11316312104463577, -0.06643359363079071, -0.07732800394296646, -0.0029428417328745127, 0.022913306951522827, 0.013172069564461708, 0.07615111023187637, 0.04071914404630661, -0.05266827344894409, 0.07411058992147446, 0.09844939410686493, -0.022896338254213333, 0.12375755608081818, -0.04655088111758232, -0.08362951129674911, -0.033336203545331955, -0.023669645190238953, -0.028396055102348328, 0.12340638041496277, -0.040918923914432526, 0.004173817113041878, 0.036255426704883575, 0.04424188286066055, 0.0173382256180048, -0.16174833476543427, 0.008240040391683578, 0.02219218946993351, -0.05262118577957153, -0.03613952919840813, -0.0014599990099668503, 0.02619507908821106, 0.09115926176309586, 0.0310880858451128, -0.014225911349058151, 0.003394033759832382, -0.011662881821393967, -0.062052078545093536, 0.18449148535728455, -0.0977545976638794, -0.08455163240432739, -0.07662785053253174, 0.005214780569076538, -0.05934656783938408, -0.03632647916674614, 0.01659066416323185, -0.08690289407968521, -0.03865980729460716, -0.0875859335064888, -0.020335566252470016, -0.01797953061759472, 0.019776811823248863, 0.0315500944852829, -0.022583123296499252, 0.08064797520637512, -0.13970044255256653, 0.0014710439136251807, -0.051658131182193756, -0.0925174355506897, -0.00008783170051174238, 0.07455488294363022, 0.09894480556249619, 0.08012282848358154, -0.017140580341219902, 0.02955351211130619, -0.03390245512127876, 0.24217359721660614, -0.045449912548065186, 0.01104879379272461, 0.10428223013877869, -0.013798369094729424, 0.05660329386591911, 0.09510628879070282, 0.037358082830905914, -0.0942741185426712, 0.020259516313672066, 0.08213873952627182, -0.029479824006557465, -0.22964338958263397, -0.02528994530439377, -0.004619326908141375, -0.07988280802965164, 0.10633224993944168, 0.03212898224592209, -0.0367809496819973, 0.04631250724196434, 0.0210247989743948, 0.0028243842534720898, -0.05577157437801361, 0.08173523843288422, 0.07550700753927231, 0.056389790028333664, 0.09994923323392868, -0.008427080698311329, -0.028097977861762047, 0.061138466000556946, 0.007361532188951969, 0.24682649970054626, -0.024834323674440384, 0.1004018560051918, 0.031974535435438156, 0.1516903042793274, -0.027194807305932045, 0.0655914843082428, 0.00307602621614933, -0.009989495389163494, -0.014895710162818432, -0.06692469120025635, -0.02562810480594635, 0.023873748257756233, -0.04750958830118179, 0.029830653220415115, -0.08194892108440399, 0.025900855660438538, 0.027095554396510124, 0.2797911465167999, 0.03479083999991417, -0.2744758725166321, -0.0661311224102974, -0.013589544221758842, -0.0421350821852684, -0.06457154452800751, 0.005616558250039816, 0.12053684145212173, -0.1326657235622406, 0.06420990079641342, -0.07521988451480865, 0.09012715518474579, -0.038507018238306046, 0.01112598367035389, 0.04568425193428993, 0.1529356837272644, -0.01791692152619362, 0.05124792456626892, -0.18573524057865143, 0.24140821397304535, 0.025077728554606438, 0.10831288993358612, -0.06452829390764236, 0.01091326680034399, 0.018376031890511513, 0.00828136969357729, 0.10938160866498947, 0.0015527267241850495, -0.06730934232473373, -0.1390317976474762, -0.09991362690925598, 0.04698743298649788, 0.14094853401184082, -0.03344583138823509, 0.09912402182817459, -0.027885790914297104, 0.01252071000635624, 0.03419069945812225, -0.029052693396806717, -0.1571914702653885, -0.0737464502453804, 0.009623176418244839, 0.02771325781941414, -0.015142655000090599, -0.0512908473610878, -0.10388519614934921, -0.04001612216234207, 0.11930135637521744, 0.004398828838020563, -0.04607471823692322, -0.1506967395544052, 0.08478119224309921, 0.14527077972888947, -0.05834414064884186, 0.015489007346332073, 0.014602613635361195, 0.1113986000418663, 0.0323355458676815, -0.08478730171918869, 0.06724918633699417, -0.05339569225907326, -0.17330266535282135, -0.05837076157331467, 0.1185627281665802, 0.07957139611244202, 0.04533335939049721, 0.0016659238608554006, 0.057451289147138596, 0.001305237878113985, -0.09723854809999466, 0.03633579611778259, 0.00488761393353343, 0.051272451877593994, 0.028393995016813278, -0.08554169535636902, 0.07764539122581482, -0.034114379435777664, 0.01818975992500782, 0.12957677245140076, 0.23259936273097992, -0.09927694499492645, 0.10179659724235535, 0.0807129293680191, -0.0767718255519867, -0.15817712247371674, 0.06094227358698845, 0.12535780668258667, 0.004233983810991049, 0.08433353155851364, -0.19922232627868652, 0.13440342247486115, 0.10743245482444763, -0.013511271215975285, 0.02096935361623764, -0.270698606967926, -0.13177715241909027, 0.06618624180555344, 0.11017318814992905, 0.05146479979157448, -0.12323398888111115, -0.03531815856695175, -0.010785169899463654, -0.12213174253702164, 0.1274871528148651, -0.07642774283885956, 0.11697868257761002, -0.021649204194545746, 0.12154102325439453, 0.02431141398847103, -0.03740308806300163, 0.11258979886770248, 0.07257147878408432, 0.08579985797405243, -0.039925526827573776, -0.0029625960160046816, 0.06466495245695114, -0.06269840151071548, 0.036745935678482056, -0.036871492862701416, 0.06273798644542694, -0.1498524695634842, 0.006686953827738762, -0.07752517610788345, 0.06053423881530762, -0.046496860682964325, -0.06529578566551208, -0.027026722207665443, 0.046472400426864624, 0.07263320684432983, -0.03576034680008888, 0.04592971131205559, 0.008899588137865067, 0.09151219576597214, 0.1020217314362526, 0.07196135073900223, -0.025377606973052025, -0.08295638859272003, 0.01348577719181776, 0.004129427019506693, 0.047157809138298035, -0.08462870121002197, 0.015595432370901108, 0.1463545709848404, 0.060296230018138885, 0.10256565362215042, 0.04564403370022774, -0.04339597746729851, 0.005875890608876944, 0.016616955399513245, -0.142181858420372, -0.09957714378833771, 0.02786666713654995, -0.05837983265519142, -0.15394863486289978, 0.03267967328429222, 0.12314363569021225, -0.038007911294698715, -0.01599428430199623, -0.006968461908400059, 0.00827631726861, -0.011286984197795391, 0.18475568294525146, 0.04264337569475174, 0.05478941649198532, -0.09122677892446518, 0.11311209201812744, 0.03655043989419937, -0.04130511358380318, 0.054599858820438385, 0.06785238534212112, -0.09941793233156204, 0.012868151068687439, 0.07333500683307648, 0.14992555975914001, -0.06671956926584244, -0.013374908827245235, -0.0919203907251358, -0.0757000744342804, 0.0441652275621891, 0.1435656100511551, 0.05350428819656372, -0.005579205695539713, -0.06033182889223099, 0.03533780202269554, -0.11875826865434647, 0.06752332299947739, 0.05208532512187958, 0.08265510201454163, -0.10872504115104675, 0.12475791573524475, -0.006676832213997841, 0.023902347311377525, -0.028002437204122543, 0.018441511318087578, -0.10082191973924637, -0.03437873348593712, -0.1086505576968193, -0.014221441000699997, -0.017814604565501213, -0.0030693900771439075, -0.019958456978201866, -0.07498955726623535, -0.04264984279870987, 0.03316492214798927, -0.07642124593257904, -0.04876630753278732, 0.01801559142768383, 0.039679691195487976, -0.1604156643152237, 0.002602939959615469, 0.025606559589505196, -0.08743385225534439, 0.0876106545329094, 0.06862358003854752, 0.015728957951068878, 0.02815340645611286, -0.12420576810836792, -0.033140793442726135, 0.00066627241903916, 0.010770997032523155, 0.0773136243224144, -0.0921817421913147, -0.029073769226670265, -0.030474117025732994, 0.04903598502278328, 0.014960048720240593, 0.10211271047592163, -0.11883927881717682, -0.013773921877145767, -0.046794790774583817, -0.038462597876787186, -0.05744193121790886, 0.02669113129377365, 0.11446379125118256, 0.044485192745923996, 0.15741442143917084, -0.06998547166585922, 0.05496079474687576, -0.2049826979637146, -0.03306929022073746, 0.010987723246216774, -0.04655025154352188, -0.07355372607707977, -0.045277442783117294, 0.08387618511915207, -0.05011129751801491, 0.12287533283233643, -0.016172245144844055, 0.09295495599508286, 0.043426018208265305, -0.004229375161230564, -0.07156679034233093, -0.012007688172161579, 0.18375690281391144, 0.05810698866844177, -0.021199466660618782, 0.12071645259857178, 0.00433950312435627, 0.042960457503795624, 0.06744363158941269, 0.2321886271238327, 0.15151020884513855, -0.012874910607933998, 0.07492109388113022, 0.06714549660682678, -0.0752476304769516, -0.1401236355304718, 0.12159740179777145, -0.020483186468482018, 0.10602232068777084, -0.0530410073697567, 0.1894761323928833, 0.03848165646195412, -0.1758425235748291, 0.05408987030386925, -0.024994296953082085, -0.10826270282268524, -0.12518931925296783, -0.015024777501821518, -0.08191123604774475, -0.11587663739919662, 0.027992412447929382, -0.12329567223787308, 0.06791272759437561, 0.0963556095957756, 0.007033678237348795, 0.03519127890467644, 0.18350152671337128, -0.05651002749800682, 0.012086720205843449, 0.07149581611156464, 0.020448219031095505, -0.003550863591954112, -0.04043424502015114, -0.06668893247842789, 0.03765368461608887, 0.04352155327796936, 0.07152799516916275, -0.050979554653167725, 0.010707307606935501, 0.015141531825065613, -0.009636358357965946, -0.07831219583749771, 0.007872811518609524, 0.01438892725855112, 0.04832826554775238, 0.03574605658650398, 0.04752589389681816, 0.008376035839319229, -0.053748056292533875, 0.2744973301887512, -0.06720882654190063, -0.0621747225522995, -0.12290892004966736, 0.1932094544172287, 0.03376134857535362, -0.018745796754956245, 0.05546993389725685, -0.09288733452558517, -0.01129121333360672, 0.1618739515542984, 0.13404172658920288, -0.0906316339969635, -0.021021658554673195, -0.02334371581673622, -0.008824142627418041, -0.01338718831539154, 0.10494251549243927, 0.07149655371904373, 0.0008121988503262401, -0.06617716699838638, -0.012933852151036263, -0.02949635311961174, -0.04759383201599121, -0.06383403390645981, 0.05837661772966385, 0.027823472395539284, -0.005816074088215828, -0.05787239223718643, 0.06309860199689865, -0.0031133925076574087, -0.23578733205795288, 0.03797318786382675, -0.17316262423992157, -0.17363452911376953, -0.013871260918676853, 0.07049989700317383, 0.0021076181437820196, 0.056238431483507156, -0.006466049700975418, 0.010177153162658215, 0.11570871621370316, -0.016897499561309814, -0.014452215284109116, -0.11722814291715622, 0.1085842177271843, -0.1083015501499176, 0.21240799129009247, -0.0015900768339633942, 0.06512191891670227, 0.09908886253833771, 0.0375124029815197, -0.13523916900157928, 0.01894933544099331, 0.06153193116188049, -0.1256890445947647, 0.0017884995322674513, 0.14497733116149902, -0.03440570831298828, 0.06110619008541107, 0.03123955987393856, -0.14942526817321777, -0.0034573283046483994, 0.026849906891584396, -0.036690790206193924, -0.06923389434814453, -0.010001523420214653, -0.05561031028628349, 0.1660299450159073, 0.20677940547466278, -0.029016844928264618, 0.011630896478891373, -0.08483988791704178, 0.021473469212651253, 0.04857071489095688, 0.05830385908484459, -0.03937371447682381, -0.2159700095653534, 0.022419476881623268, 0.07233622670173645, -0.002503053518012166, -0.19506029784679413, -0.09609966725111008, 0.04220804199576378, -0.03712766245007515, -0.046137843281030655, 0.09112869203090668, 0.02512785978615284, 0.03722890466451645, -0.01926391012966633, -0.11617231369018555, -0.027886787429451942, 0.14598138630390167, -0.1762675940990448, -0.042751703411340714 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-0 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-0
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-0 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09758219867944717, 0.10821618139743805, -0.002388017950579524, 0.09534620493650436, 0.12083656340837479, 0.015378996729850769, 0.09843062609434128, 0.13116255402565002, -0.10562213510274887, 0.06923670321702957, 0.08847587555646896, 0.034827135503292084, 0.04414544627070427, 0.14951978623867035, -0.007591812871396542, -0.27283063530921936, 0.0003327816375531256, -0.00039440393447875977, -0.04240413382649422, 0.1208961009979248, 0.08812495321035385, -0.11064637452363968, 0.0777917355298996, 0.01037674117833376, -0.1536208838224411, 0.01859124004840851, -0.03164030238986015, -0.037242766469717026, 0.12240584194660187, -0.03612391650676727, 0.10709116607904434, 0.029986141249537468, 0.13542447984218597, -0.20859743654727936, 0.0067203473299741745, 0.07758653163909912, 0.05253630131483078, 0.10033750534057617, 0.04668427258729935, 0.00936218537390232, 0.08942350745201111, -0.14871586859226227, 0.09295710921287537, 0.030236447229981422, -0.09195791184902191, -0.15362964570522308, -0.09241383522748947, 0.03115967847406864, 0.048224374651908875, 0.07241727411746979, 0.00256110611371696, 0.14818236231803894, -0.06320550292730331, 0.08388303220272064, 0.2645421624183655, -0.3212214410305023, -0.067087821662426, 0.029009142890572548, 0.05626509711146355, 0.05963699519634247, -0.11985224485397339, -0.002809792524203658, 0.01954205520451069, 0.02805420011281967, 0.1272263079881668, -0.01578284613788128, -0.10785438865423203, -0.009537527337670326, -0.12398356199264526, -0.0025474061258137226, 0.05909619852900505, 0.025682920590043068, -0.05274220183491707, -0.10714352875947952, -0.06776148080825806, -0.08537375926971436, -0.02203672006726265, -0.05456779524683952, 0.051197126507759094, -0.05503080040216446, -0.09808491170406342, -0.039263661950826645, -0.05751848593354225, -0.07966219633817673, -0.009265866130590439, 0.16743707656860352, 0.03564560040831566, 0.020158778876066208, -0.031103456392884254, 0.11833414435386658, 0.022133950144052505, -0.14047692716121674, -0.00985109992325306, -0.004559408873319626, -0.09251529723405838, -0.04051556810736656, -0.052592817693948746, -0.0130785396322608, 0.005850983317941427, 0.16802625358104706, -0.08200955390930176, 0.07450489699840546, 0.013072602450847626, -0.023658512160182, -0.013022640720009804, 0.1527220755815506, -0.04006973281502724, -0.0379696786403656, -0.016557304188609123, 0.0799078419804573, 0.004026374313980341, -0.01993231475353241, -0.06588918715715408, -0.027485961094498634, 0.09405140578746796, 0.055593252182006836, -0.061347074806690216, 0.039648838341236115, -0.029897507280111313, -0.026223452761769295, 0.018210412934422493, -0.11902918666601181, 0.041494496166706085, -0.0029873966705054045, -0.08164861053228378, -0.006909526418894529, -0.0013642851263284683, -0.009284492582082748, -0.010717793367803097, 0.10022132843732834, -0.0876181349158287, -0.0007728585042059422, -0.06958853453397751, -0.08085144311189651, -0.0005423931288532913, -0.15473665297031403, -0.015157459303736687, -0.059860847890377045, -0.16394005715847015, -0.03338237479329109, 0.04413069784641266, -0.07521285861730576, -0.011428351514041424, -0.04350588843226433, -0.06261442601680756, 0.01776430569589138, -0.013188617303967476, 0.1909642070531845, -0.053049977868795395, 0.08180827647447586, -0.008253796957433224, 0.05019902437925339, 0.02704150788486004, 0.03578978776931763, -0.10410767048597336, 0.028123777359724045, -0.1403024047613144, 0.07698586583137512, -0.08499991148710251, -0.004913673270493746, -0.13671068847179413, -0.10203137248754501, 0.01450824923813343, -0.020342012867331505, 0.09438876807689667, 0.1338587999343872, -0.19891387224197388, -0.020256362855434418, 0.12567923963069916, -0.07557309418916702, -0.052458565682172775, 0.060605503618717194, -0.06149714067578316, 0.039675477892160416, 0.05138295143842697, 0.21239694952964783, 0.05383900925517082, -0.15755176544189453, -0.010649214498698711, 0.00488569401204586, 0.04474763572216034, 0.027866117656230927, 0.03746788948774338, 0.0021801518741995096, 0.058112822473049164, 0.01571401208639145, -0.08956973999738693, -0.024587851017713547, -0.09020864218473434, -0.0661546066403389, -0.05077080801129341, -0.07488047331571579, 0.05428772792220116, 0.00800466537475586, 0.04088165983557701, -0.06527337431907654, -0.104131780564785, 0.11322564631700516, 0.09490818530321121, -0.05173078551888466, 0.03917568549513817, -0.08064775913953781, 0.013551129028201103, -0.0034181231167167425, -0.03553272783756256, -0.2113080471754074, -0.11618861556053162, 0.050897225737571716, -0.04567993804812431, 0.025434846058487892, 0.0008331835269927979, 0.08389885723590851, 0.05599695071578026, -0.05093934014439583, -0.014820082113146782, -0.09715709835290909, 0.002031163312494755, -0.11376775056123734, -0.19101718068122864, -0.08431976288557053, -0.04223514720797539, 0.09278519451618195, -0.16682405769824982, -0.005232529249042273, 0.022474635392427444, 0.1385059505701065, 0.028485935181379318, -0.06787613779306412, 0.0007535105687566102, 0.04713066667318344, 0.012739693745970726, -0.09665219485759735, 0.05441415309906006, 0.013189231976866722, -0.10394404083490372, -0.0465426966547966, -0.13239260017871857, -0.01791536808013916, 0.05498010292649269, 0.05909787490963936, -0.10374962538480759, -0.05910874903202057, -0.07303626090288162, -0.03740842640399933, -0.07879600673913956, 0.0229659266769886, 0.21261464059352875, 0.03990853950381279, 0.11342844367027283, -0.06554478406906128, -0.08403654396533966, -0.007372202817350626, 0.025762498378753662, 0.02203458361327648, 0.08610179275274277, 0.023721501231193542, -0.03762134909629822, 0.06909209489822388, 0.10185027867555618, -0.026409290730953217, 0.13280270993709564, -0.05544070899486542, -0.08093535155057907, -0.031227780506014824, -0.022142458707094193, -0.02481485903263092, 0.12977293133735657, -0.027914689853787422, 0.0009592402493581176, 0.035112302750349045, 0.03904775157570839, 0.011039807461202145, -0.16881729662418365, 0.0024406833108514547, 0.028117196634411812, -0.05555659532546997, -0.0403178371489048, -0.005557413678616285, 0.022036051377654076, 0.08914025872945786, 0.030587848275899887, -0.006594200152903795, 0.008232559077441692, -0.01154331211000681, -0.05851596221327782, 0.1880473792552948, -0.09717382490634918, -0.08160897344350815, -0.07155643403530121, 0.02117142826318741, -0.051317885518074036, -0.03837243840098381, 0.008849333971738815, -0.09304852038621902, -0.030195822939276695, -0.0888613685965538, -0.02622503787279129, -0.01880491152405739, 0.01990230195224285, 0.023443622514605522, -0.01705390028655529, 0.08542934060096741, -0.13819928467273712, 0.004726677667349577, -0.04840265214443207, -0.09413855522871017, 0.008563726209104061, 0.07635058462619781, 0.09202983975410461, 0.0820910707116127, -0.019151223823428154, 0.02808571234345436, -0.039046645164489746, 0.23277252912521362, -0.053749267011880875, 0.012462303973734379, 0.11452530324459076, -0.010921229608356953, 0.05512373149394989, 0.0923275426030159, 0.03892543166875839, -0.09052121639251709, 0.02410721592605114, 0.07785248011350632, -0.03798171505331993, -0.22560113668441772, -0.01885944791138172, -0.001575630740262568, -0.07575222849845886, 0.1070035994052887, 0.03240464627742767, -0.048425909131765366, 0.04342622309923172, 0.02245449274778366, -0.009901014156639576, -0.04593590274453163, 0.07491966336965561, 0.07159345597028732, 0.052100181579589844, 0.10580801218748093, -0.005597590934485197, -0.025792686268687248, 0.056323111057281494, 0.01592138595879078, 0.25262659788131714, -0.04398757591843605, 0.10263166576623917, 0.03248166665434837, 0.1539078652858734, -0.01967962272465229, 0.06570340692996979, 0.0006447845953516662, -0.009738380089402199, -0.010909166187047958, -0.06626518070697784, -0.025209255516529083, 0.016912607476115227, -0.04671163484454155, 0.024714849889278412, -0.0766887217760086, 0.023936372250318527, 0.027965296059846878, 0.2919485867023468, 0.027503041550517082, -0.2596564292907715, -0.07380881160497665, -0.016086848452687263, -0.04457888752222061, -0.06160932406783104, 0.008066610433161259, 0.13406936824321747, -0.1399020552635193, 0.053109414875507355, -0.07854057103395462, 0.08859807252883911, -0.04606757313013077, 0.012556822970509529, 0.047267403453588486, 0.15051253139972687, -0.019276512786746025, 0.05090964958071709, -0.19969598948955536, 0.2527761459350586, 0.02032661810517311, 0.10649437457323074, -0.06493477523326874, 0.010762924328446388, 0.020010290667414665, 0.01050761342048645, 0.11087825149297714, 0.0029175393283367157, -0.06485205143690109, -0.14681021869182587, -0.09041287004947662, 0.04534618929028511, 0.14101597666740417, -0.038957368582487106, 0.08936174213886261, -0.029317021369934082, 0.012158006429672241, 0.029942231252789497, -0.04081818088889122, -0.1517394334077835, -0.07819594442844391, 0.0013031436828896403, 0.015187901444733143, -0.005839366931468248, -0.06143244728446007, -0.10496987402439117, -0.019354023039340973, 0.11166089028120041, -0.002037663012742996, -0.05755091458559036, -0.1545543223619461, 0.08170101791620255, 0.1416349858045578, -0.05476130172610283, 0.012345079332590103, 0.016145426779985428, 0.11474654823541641, 0.02923784963786602, -0.08068165928125381, 0.06474000960588455, -0.05649976804852486, -0.18233579397201538, -0.056557729840278625, 0.1216224804520607, 0.08288650959730148, 0.04939556121826172, -0.0016659711254760623, 0.0547189936041832, 0.002028547925874591, -0.0952516496181488, 0.039267588406801224, 0.0026221300940960646, 0.04345860332250595, 0.017165979370474815, -0.08292902261018753, 0.09529374539852142, -0.037789974361658096, 0.009318591095507145, 0.1280336230993271, 0.21384942531585693, -0.10756698250770569, 0.1153179407119751, 0.08578582108020782, -0.07304339110851288, -0.1663302630186081, 0.0612851157784462, 0.129813551902771, 0.00864990521222353, 0.08500105142593384, -0.21198709309101105, 0.12319660931825638, 0.10352862626314163, -0.01303863525390625, 0.008185532875359058, -0.27745211124420166, -0.13194257020950317, 0.05882779136300087, 0.11172308027744293, 0.040072426199913025, -0.11511173099279404, -0.03307410702109337, -0.007631596177816391, -0.1015877053141594, 0.11546216160058975, -0.07230646908283234, 0.11411989480257034, -0.01958094723522663, 0.1170782744884491, 0.02635098434984684, -0.03442670404911041, 0.10950717329978943, 0.061155904084444046, 0.08777565509080887, -0.037529509514570236, 0.006400334648787975, 0.05890640988945961, -0.05939535051584244, 0.02671736478805542, -0.042466435581445694, 0.0672287791967392, -0.14716745913028717, 0.006496034096926451, -0.08774428069591522, 0.05381002649664879, -0.046395041048526764, -0.0722256749868393, -0.018398605287075043, 0.053668197244405746, 0.0702815055847168, -0.040981993079185486, 0.03236657753586769, -0.0029185267630964518, 0.10043848305940628, 0.10480953007936478, 0.0808466300368309, -0.02572076953947544, -0.08702743798494339, 0.014106747694313526, 0.003068821504712105, 0.05537698045372963, -0.09607990086078644, 0.01440021488815546, 0.14177130162715912, 0.06526903808116913, 0.09596512466669083, 0.04592062532901764, -0.043057847768068314, 0.004617628641426563, 0.014449037611484528, -0.13368289172649384, -0.10263244062662125, 0.02547510713338852, -0.04193542152643204, -0.15079239010810852, 0.02727973647415638, 0.12022838741540909, -0.039690710604190826, -0.021015590056777, -0.004762652795761824, 0.004128391854465008, -0.012478543445467949, 0.18303678929805756, 0.04515032097697258, 0.06264358013868332, -0.09056556969881058, 0.11188063025474548, 0.03457454591989517, -0.05069243162870407, 0.05401197448372841, 0.06680338829755783, -0.10404685884714127, 0.011071798391640186, 0.08073540031909943, 0.13157998025417328, -0.05560322105884552, -0.011836132034659386, -0.09578109532594681, -0.084470234811306, 0.04170965775847435, 0.13773144781589508, 0.05497238412499428, -0.0009514560806564987, -0.0650935173034668, 0.03615454584360123, -0.11957430839538574, 0.0689283013343811, 0.04899238049983978, 0.07542875409126282, -0.10003236681222916, 0.1344919055700302, -0.0019289812771603465, 0.025703687220811844, -0.026554664596915245, 0.013101940043270588, -0.10023251175880432, -0.023679208010435104, -0.10754699259996414, -0.02352883853018284, -0.011784292757511139, -0.001389893819577992, -0.022314704954624176, -0.06959071010351181, -0.028778165578842163, 0.03873276710510254, -0.07907669991254807, -0.047872330993413925, 0.01666501723229885, 0.03610331192612648, -0.15498395264148712, 0.003515630727633834, 0.026009220629930496, -0.08975712954998016, 0.08984586596488953, 0.06281289458274841, 0.01154936384409666, 0.024327579885721207, -0.12056417763233185, -0.0302329920232296, -0.010478274896740913, 0.004352976568043232, 0.06903770565986633, -0.09470479935407639, -0.028363512828946114, -0.03614937886595726, 0.04017737880349159, 0.0201340913772583, 0.1036229133605957, -0.12070731073617935, -0.002780322916805744, -0.03572182357311249, -0.03931373730301857, -0.06490818411111832, 0.03636818379163742, 0.10695309937000275, 0.052803218364715576, 0.15152528882026672, -0.07749210298061371, 0.055322691798210144, -0.19865505397319794, -0.03773228079080582, 0.012534555979073048, -0.04761897400021553, -0.0814046561717987, -0.04712722823023796, 0.08859068900346756, -0.047382958233356476, 0.11338584125041962, -0.012431549839675426, 0.10112922638654709, 0.044737059623003006, -0.012070054188370705, -0.06533826142549515, -0.006540624424815178, 0.18279007077217102, 0.05254780128598213, -0.01781366392970085, 0.12634456157684326, 0.003290775464847684, 0.029035534709692, 0.08614029735326767, 0.2214576154947281, 0.154158353805542, 0.001578219118528068, 0.062161583453416824, 0.05988994985818863, -0.06799402087926865, -0.14868299663066864, 0.11962292343378067, -0.01955171301960945, 0.10667166858911514, -0.06619603931903839, 0.18942949175834656, 0.038606949150562286, -0.18049179017543793, 0.06456339359283447, -0.024987423792481422, -0.10815376788377762, -0.11952147632837296, -0.027826538309454918, -0.07062599062919617, -0.12203259021043777, 0.024783866479992867, -0.11708768457174301, 0.06248056888580322, 0.10438939183950424, 0.008376115933060646, 0.03852256014943123, 0.18276788294315338, -0.04836170747876167, 0.012097309343516827, 0.08420031517744064, 0.01933716982603073, 0.002506035380065441, -0.04106539115309715, -0.0652151107788086, 0.03526536375284195, 0.03458655625581741, 0.06404303014278412, -0.047257788479328156, 0.005611875560134649, 0.004599236883223057, -0.008573560044169426, -0.07653981447219849, 0.01152476854622364, 0.009089285507798195, 0.05192098021507263, 0.04712105914950371, 0.04798876494169235, 0.006712110713124275, -0.05519988760352135, 0.29304370284080505, -0.06941442936658859, -0.07053632289171219, -0.12920427322387695, 0.21793220937252045, 0.024392105638980865, -0.025627240538597107, 0.05508260428905487, -0.08716466277837753, -0.015118775889277458, 0.16424164175987244, 0.13872388005256653, -0.08989057689905167, -0.01527425181120634, -0.02410201169550419, -0.010655703023076057, -0.014230337925255299, 0.11459051817655563, 0.07488038390874863, -0.01105409860610962, -0.06972384452819824, -0.01188662089407444, -0.028398914262652397, -0.055508289486169815, -0.06857871264219284, 0.06957364082336426, 0.027344858273863792, -0.00953882746398449, -0.06574201583862305, 0.06655094027519226, -0.0016604071715846658, -0.2345096915960312, 0.042695172131061554, -0.17482244968414307, -0.1693745255470276, -0.019114971160888672, 0.07142329216003418, 0.004156062845140696, 0.0560569129884243, 0.0022590558510273695, 0.023459656164050102, 0.11463809758424759, -0.013500163331627846, -0.0024006126914173365, -0.11519146710634232, 0.11473379284143448, -0.10100691020488739, 0.20080062747001648, -0.007044518366456032, 0.05698377266526222, 0.09652748703956604, 0.03865114971995354, -0.13655999302864075, 0.02276177518069744, 0.06378015875816345, -0.12778347730636597, -0.00513852946460247, 0.14803116023540497, -0.03046226128935814, 0.0644594132900238, 0.02740400657057762, -0.14619103074073792, 0.0029799730982631445, 0.016886573284864426, -0.03599300980567932, -0.06908047944307327, -0.008545693941414356, -0.04991793632507324, 0.16460497677326202, 0.21570399403572083, -0.029214460402727127, 0.007711565122008324, -0.09116244316101074, 0.012219537980854511, 0.04650931805372238, 0.05046838894486427, -0.04125909134745598, -0.20568452775478363, 0.01602616347372532, 0.07274090498685837, -0.005902348551899195, -0.19573253393173218, -0.09641789644956589, 0.047305088490247726, -0.03977055475115776, -0.04231587052345276, 0.09277508407831192, 0.02068987488746643, 0.040981028228998184, -0.013540824875235558, -0.11382856965065002, -0.021044814959168434, 0.14000773429870605, -0.17461369931697845, -0.032828282564878464 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-10 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-10
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-10 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09835928678512573, 0.10792353004217148, -0.0023162623401731253, 0.09484295547008514, 0.12065975368022919, 0.015437674708664417, 0.09889842569828033, 0.13006944954395294, -0.10475992411375046, 0.06792107969522476, 0.08730541169643402, 0.0356246717274189, 0.044633835554122925, 0.15093976259231567, -0.006647657137364149, -0.27378273010253906, 0.0001718653365969658, 0.00040029032970778644, -0.04077345132827759, 0.12067890912294388, 0.08856835216283798, -0.11075174808502197, 0.07697572559118271, 0.010379776358604431, -0.15302467346191406, 0.019030321389436722, -0.03199479728937149, -0.03696335852146149, 0.12222494184970856, -0.037727393209934235, 0.1066361740231514, 0.029724806547164917, 0.13755279779434204, -0.20757059752941132, 0.00669450219720602, 0.07662007957696915, 0.05241841822862625, 0.09998258203268051, 0.04618920758366585, 0.010274280793964863, 0.08887901902198792, -0.1495993435382843, 0.09376580268144608, 0.02930382825434208, -0.09148070216178894, -0.1514587700366974, -0.09230643510818481, 0.0319691076874733, 0.05060139670968056, 0.07186470180749893, 0.0021014511585235596, 0.14822454750537872, -0.06400066614151001, 0.08383265137672424, 0.26402196288108826, -0.3220028579235077, -0.06696359813213348, 0.030921516939997673, 0.058065030723810196, 0.06006632745265961, -0.12019049376249313, -0.003720856038853526, 0.020080769434571266, 0.027333175763487816, 0.12831580638885498, -0.016347160562872887, -0.10755365341901779, -0.00974874384701252, -0.12495765089988708, -0.0015704118413850665, 0.05948881059885025, 0.02657073549926281, -0.05271925404667854, -0.10853414982557297, -0.06754890084266663, -0.08601409941911697, -0.023144930601119995, -0.055848538875579834, 0.05112648010253906, -0.05564085394144058, -0.09747249633073807, -0.03947439044713974, -0.05688325688242912, -0.08017533272504807, -0.007454846519976854, 0.1655576080083847, 0.03602893650531769, 0.019242633134126663, -0.03059653379023075, 0.11800841242074966, 0.01966143772006035, -0.14008387923240662, -0.008879894390702248, -0.004705870524048805, -0.09408590197563171, -0.04171975329518318, -0.05283632129430771, -0.012514876201748848, 0.004432625137269497, 0.16868406534194946, -0.07901632785797119, 0.07452470809221268, 0.015022233128547668, -0.024547915905714035, -0.012570671737194061, 0.15268388390541077, -0.04096166417002678, -0.04034413397312164, -0.01688326895236969, 0.08091077953577042, 0.0035992891062051058, -0.0185812059789896, -0.06675712764263153, -0.02802339382469654, 0.09434111416339874, 0.055323276668787, -0.06291671842336655, 0.039714619517326355, -0.028859436511993408, -0.026127221062779427, 0.019527463242411613, -0.11966001242399216, 0.04179989919066429, -0.0038321572355926037, -0.08285336196422577, -0.008026489987969398, -0.0027432390488684177, -0.008193759247660637, -0.010780648328363895, 0.09891815483570099, -0.0874139815568924, -0.0011229265946894884, -0.07005704939365387, -0.08147893846035004, -0.00036285078385844827, -0.15811076760292053, -0.013827156275510788, -0.05878543108701706, -0.16758398711681366, -0.03413185104727745, 0.043105192482471466, -0.07440666854381561, -0.012122494168579578, -0.044695962220430374, -0.06236698105931282, 0.01598413474857807, -0.012483501806855202, 0.19184857606887817, -0.052022866904735565, 0.0806146189570427, -0.00829494558274746, 0.05108599737286568, 0.027297120541334152, 0.036142490804195404, -0.10369107872247696, 0.027861300855875015, -0.13937610387802124, 0.07709986716508865, -0.08527781069278717, -0.0030822318512946367, -0.13631509244441986, -0.10223608464002609, 0.012712633237242699, -0.020205089822411537, 0.0940595492720604, 0.13391831517219543, -0.19989080727100372, -0.01928146742284298, 0.12696850299835205, -0.07507973164319992, -0.051714442670345306, 0.05944732949137688, -0.06189921870827675, 0.04101424291729927, 0.05313759297132492, 0.21186763048171997, 0.0563330203294754, -0.15671749413013458, -0.011232016608119011, 0.005013377405703068, 0.044592343270778656, 0.025908848270773888, 0.03753824532032013, 0.0036809106823056936, 0.05937333405017853, 0.015891315415501595, -0.08878696709871292, -0.024731749668717384, -0.08950576186180115, -0.06654886156320572, -0.050332777202129364, -0.07585718482732773, 0.05469181016087532, 0.008505214937031269, 0.04127879813313484, -0.06538962572813034, -0.10398828983306885, 0.1141173467040062, 0.09561603516340256, -0.05162227153778076, 0.03772302344441414, -0.08058367669582367, 0.013020575046539307, -0.004405106883496046, -0.03566480800509453, -0.21110853552818298, -0.11436805129051208, 0.05122557282447815, -0.04608100652694702, 0.02537054941058159, 0.0030298817437142134, 0.0846172347664833, 0.055632106959819794, -0.050701744854450226, -0.015285846777260303, -0.09715546667575836, 0.0019557327032089233, -0.11481177061796188, -0.1894952356815338, -0.08530276268720627, -0.04276033118367195, 0.09358853846788406, -0.16824953258037567, -0.004320905543863773, 0.020419679582118988, 0.13807755708694458, 0.027644701302051544, -0.06802099198102951, 0.0017070281319320202, 0.04618200287222862, 0.013571321032941341, -0.09701111912727356, 0.05412441864609718, 0.01202410738915205, -0.10354349762201309, -0.048359084874391556, -0.13352124392986298, -0.01950678788125515, 0.054282933473587036, 0.06155601516366005, -0.10338230431079865, -0.059501972049474716, -0.07290558516979218, -0.03682783618569374, -0.07767820358276367, 0.02237740159034729, 0.21163438260555267, 0.038916222751140594, 0.11282292008399963, -0.06561209261417389, -0.08510365337133408, -0.007476752623915672, 0.02733643539249897, 0.02268986962735653, 0.08569289743900299, 0.023667801171541214, -0.037746235728263855, 0.06851476430892944, 0.10279234498739243, -0.025868745520710945, 0.13213704526424408, -0.055615395307540894, -0.08172766864299774, -0.030902137979865074, -0.02266627922654152, -0.026020299643278122, 0.12946142256259918, -0.02834388054907322, -0.0007285158499144018, 0.03466884419322014, 0.03774430602788925, 0.011077268049120903, -0.16907161474227905, 0.0027472227811813354, 0.02815936878323555, -0.054616544395685196, -0.041818827390670776, -0.006574534811079502, 0.020854612812399864, 0.08850209414958954, 0.029911788180470467, -0.0072404928505420685, 0.007498207502067089, -0.011250695213675499, -0.05809367448091507, 0.18805518746376038, -0.09599343687295914, -0.08034069091081619, -0.0708460658788681, 0.021857621148228645, -0.049389902502298355, -0.0384816899895668, 0.0076784840784966946, -0.09312071651220322, -0.029695499688386917, -0.08838995546102524, -0.027145475149154663, -0.018756020814180374, 0.019244488328695297, 0.025078732520341873, -0.016408847644925117, 0.08360111713409424, -0.1383485198020935, 0.0054184147156775, -0.04897082597017288, -0.09376931935548782, 0.00782842468470335, 0.07533443719148636, 0.09224133938550949, 0.08259353041648865, -0.019852206110954285, 0.028263667598366737, -0.039677008986473083, 0.23208938539028168, -0.0542224682867527, 0.01393378246575594, 0.11416422575712204, -0.01045264769345522, 0.054776329547166824, 0.09303206950426102, 0.03819854557514191, -0.09019184857606888, 0.02369372546672821, 0.07715616375207901, -0.03738543763756752, -0.22627811133861542, -0.01823812536895275, -0.0008101295097731054, -0.07711508125066757, 0.10770019143819809, 0.03192819654941559, -0.046215321868658066, 0.045173898339271545, 0.02227785624563694, -0.008423932828009129, -0.044637300074100494, 0.07450345158576965, 0.06932806968688965, 0.051314208656549454, 0.10604364424943924, -0.005878135096281767, -0.026915326714515686, 0.054817698895931244, 0.016545623540878296, 0.2534182667732239, -0.042839016765356064, 0.10234014689922333, 0.03143003210425377, 0.1531732678413391, -0.020507387816905975, 0.0681253969669342, 0.0015795822255313396, -0.010127073153853416, -0.010860384441912174, -0.06599710136651993, -0.02381734922528267, 0.01744323968887329, -0.04607263579964638, 0.024462061002850533, -0.07599085569381714, 0.023544762283563614, 0.0272949431091547, 0.2905285060405731, 0.02908414788544178, -0.26067307591438293, -0.07312965393066406, -0.01573067344725132, -0.04563923180103302, -0.06140543520450592, 0.007689709309488535, 0.13283738493919373, -0.13963666558265686, 0.05407834053039551, -0.07858749479055405, 0.08877962827682495, -0.045163922011852264, 0.012645904906094074, 0.04604052007198334, 0.1503371149301529, -0.01906413398683071, 0.052120696753263474, -0.19974324107170105, 0.25147244334220886, 0.020337771624326706, 0.10781422257423401, -0.0660984143614769, 0.01088585052639246, 0.02000446431338787, 0.010000060312449932, 0.11211007833480835, 0.0025661755353212357, -0.06492460519075394, -0.14727163314819336, -0.09069394320249557, 0.045322321355342865, 0.14108839631080627, -0.038561493158340454, 0.08996398001909256, -0.028369057923555374, 0.011126665398478508, 0.03023540787398815, -0.04230150952935219, -0.15310454368591309, -0.07790738344192505, 0.0008324240916408598, 0.01406865008175373, -0.006065763998776674, -0.06087801232933998, -0.10506485402584076, -0.02168760448694229, 0.11024099588394165, -0.0006482607568614185, -0.0576653778553009, -0.15436844527721405, 0.08343770354986191, 0.14204435050487518, -0.05432449281215668, 0.013048126362264156, 0.017621684819459915, 0.1155271902680397, 0.028776168823242188, -0.08030601590871811, 0.06391538679599762, -0.056489378213882446, -0.18101514875888824, -0.05555632710456848, 0.12284096330404282, 0.08337085694074631, 0.049639854580163956, -0.00020286401559133083, 0.05403552204370499, 0.002023647539317608, -0.0949726402759552, 0.03873712569475174, 0.0023794397711753845, 0.04302521049976349, 0.01739412546157837, -0.08390620350837708, 0.09373998641967773, -0.038344260305166245, 0.011443180963397026, 0.12814541161060333, 0.21059755980968475, -0.10738801211118698, 0.11449327319860458, 0.08555088937282562, -0.07347559928894043, -0.1659078747034073, 0.06201706454157829, 0.12983889877796173, 0.00936591625213623, 0.08547631651163101, -0.21159030497074127, 0.12345132976770401, 0.10299207270145416, -0.012395452708005905, 0.006829099729657173, -0.27735960483551025, -0.13143180310726166, 0.06006501615047455, 0.11187879741191864, 0.03772628679871559, -0.11435409635305405, -0.03292645141482353, -0.008216344751417637, -0.10157883912324905, 0.11504637449979782, -0.07342647761106491, 0.1132088378071785, -0.01893819123506546, 0.1160382479429245, 0.026307860389351845, -0.03451169654726982, 0.1078086644411087, 0.06295035034418106, 0.0879577249288559, -0.03725312277674675, 0.005353465210646391, 0.06147162243723869, -0.0590602345764637, 0.028636064380407333, -0.04140712320804596, 0.06685525923967361, -0.14704416692256927, 0.005828267894685268, -0.08725640922784805, 0.053531624376773834, -0.04604130983352661, -0.072453573346138, -0.017906401306390762, 0.05357223004102707, 0.0699448212981224, -0.04109610989689827, 0.030220752581954002, -0.001551128225401044, 0.09969723969697952, 0.10081100463867188, 0.08209896832704544, -0.024611061438918114, -0.08616134524345398, 0.013978350907564163, 0.003266592975705862, 0.05469679459929466, -0.09681305289268494, 0.013765030540525913, 0.14181111752986908, 0.06575501710176468, 0.09621801972389221, 0.045308563858270645, -0.043137580156326294, 0.003993981517851353, 0.013813748024404049, -0.13119928538799286, -0.10398764908313751, 0.025283316150307655, -0.04302097484469414, -0.15147876739501953, 0.028643693774938583, 0.11812474578619003, -0.04056414216756821, -0.02198377065360546, -0.005885944701731205, 0.0037860076408833265, -0.012091226875782013, 0.18447661399841309, 0.045950084924697876, 0.06277215480804443, -0.0910530611872673, 0.11148064583539963, 0.03488292172551155, -0.0509674958884716, 0.05370473116636276, 0.06649444997310638, -0.10470273345708847, 0.010676724836230278, 0.08200513571500778, 0.13207709789276123, -0.05255752056837082, -0.012182656675577164, -0.09559564292430878, -0.08440956473350525, 0.04211447387933731, 0.1372605264186859, 0.055186398327350616, -0.002324828412383795, -0.0647040531039238, 0.036596544086933136, -0.12012625485658646, 0.06894603371620178, 0.04916049912571907, 0.07530121505260468, -0.10037510097026825, 0.1347048133611679, -0.0018074268009513617, 0.026268823072314262, -0.026528649032115936, 0.014046603813767433, -0.09934541583061218, -0.02414056845009327, -0.10600534081459045, -0.0249645859003067, -0.013320988975465298, -0.0012558340094983578, -0.022986970841884613, -0.06910271942615509, -0.02855801209807396, 0.03830540552735329, -0.0788538008928299, -0.04802272096276283, 0.016198206692934036, 0.035261932760477066, -0.15405721962451935, 0.0035611060447990894, 0.025195159018039703, -0.08914694935083389, 0.08909621089696884, 0.06210758164525032, 0.01242805551737547, 0.025024928152561188, -0.11981412768363953, -0.029648292809724808, -0.009444473311305046, 0.004687913693487644, 0.06858396530151367, -0.09439489990472794, -0.027861518785357475, -0.035870715975761414, 0.0413234643638134, 0.019253697246313095, 0.1007230281829834, -0.1196984052658081, -0.003832286223769188, -0.03702269867062569, -0.03878618776798248, -0.06526179611682892, 0.0369357168674469, 0.10644923150539398, 0.05116226524114609, 0.152048721909523, -0.0756903737783432, 0.0552835538983345, -0.19953155517578125, -0.03828231245279312, 0.011742685921490192, -0.04762320965528488, -0.08111494034528732, -0.04782726615667343, 0.08870091289281845, -0.04690929874777794, 0.11444473266601562, -0.012343158014118671, 0.10213380306959152, 0.04383806884288788, -0.008824852295219898, -0.06492538005113602, -0.0058599538169801235, 0.18329955637454987, 0.0527443066239357, -0.018398785963654518, 0.12547944486141205, 0.003921925090253353, 0.029375316575169563, 0.08458785712718964, 0.21880002319812775, 0.15426740050315857, 0.0005891293985769153, 0.06214208900928497, 0.06074952706694603, -0.06828762590885162, -0.14758189022541046, 0.12094938009977341, -0.020258832722902298, 0.10478127747774124, -0.06592585891485214, 0.1917218565940857, 0.03821727633476257, -0.18045318126678467, 0.06519272923469543, -0.02417933940887451, -0.10904724150896072, -0.11825292557477951, -0.02958036959171295, -0.07092990726232529, -0.12087976932525635, 0.025076840072870255, -0.11715944111347198, 0.060873113572597504, 0.10458233207464218, 0.00832052156329155, 0.03774356469511986, 0.18409216403961182, -0.04901155084371567, 0.012386237271130085, 0.084316685795784, 0.018942946568131447, 0.0030728215351700783, -0.04145047068595886, -0.06419949233531952, 0.036488406360149384, 0.03384143486618996, 0.06480724364519119, -0.049645740538835526, 0.005014256574213505, 0.004560536239296198, -0.0077115073800086975, -0.07594896107912064, 0.011682065203785896, 0.00872486550360918, 0.05192459747195244, 0.045978154987096786, 0.04816622659564018, 0.006136672105640173, -0.05560772866010666, 0.2915363013744354, -0.06940098106861115, -0.07142622023820877, -0.12947501242160797, 0.2151784896850586, 0.025533998385071754, -0.025693193078041077, 0.05593612417578697, -0.08757321536540985, -0.012781357392668724, 0.1651466339826584, 0.13887439668178558, -0.08745827525854111, -0.015866437926888466, -0.02371249347925186, -0.011001436039805412, -0.014916124753654003, 0.1139206811785698, 0.07525120675563812, -0.013456689193844795, -0.06950852274894714, -0.011175221763551235, -0.02681797742843628, -0.056702591478824615, -0.06842300295829773, 0.0693538710474968, 0.028359079733490944, -0.009943090379238129, -0.06381437927484512, 0.06822256743907928, 0.0006771089974790812, -0.23440685868263245, 0.04136648774147034, -0.1737697571516037, -0.1695079505443573, -0.019719716161489487, 0.07122985273599625, 0.005960987415164709, 0.05587929114699364, 0.0025113699957728386, 0.02379113994538784, 0.11398378014564514, -0.012808069586753845, -0.0031397384591400623, -0.11534526199102402, 0.11490476876497269, -0.10228893160820007, 0.19970044493675232, -0.007249940186738968, 0.057978034019470215, 0.09636574238538742, 0.036985933780670166, -0.13641029596328735, 0.023218058049678802, 0.06385267525911331, -0.12569649517536163, -0.00350762065500021, 0.1485542207956314, -0.03025377355515957, 0.06206890568137169, 0.02645866572856903, -0.1465371698141098, 0.003304606769233942, 0.017153898254036903, -0.03546251356601715, -0.06988465040922165, -0.005950660910457373, -0.04915790259838104, 0.16533106565475464, 0.2154480665922165, -0.029622001573443413, 0.008231977932155132, -0.09165309369564056, 0.011622940190136433, 0.04677950218319893, 0.05063079297542572, -0.04106493294239044, -0.20546045899391174, 0.014864430762827396, 0.07013104856014252, -0.005303601734340191, -0.1948273926973343, -0.0953359454870224, 0.046250827610492706, -0.041219741106033325, -0.04249618202447891, 0.09191557765007019, 0.02240811102092266, 0.04093742370605469, -0.013271705247461796, -0.11429888755083084, -0.02132057584822178, 0.14005638659000397, -0.17564378678798676, -0.03195848688483238 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-4 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-4
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-4 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09763717651367188, 0.10790494084358215, -0.0023779708426445723, 0.09604478627443314, 0.12131348997354507, 0.016188861802220345, 0.09927448630332947, 0.12997958064079285, -0.10553684830665588, 0.06778178364038467, 0.08809467405080795, 0.03393664211034775, 0.04327230527997017, 0.14970123767852783, -0.006511456798762083, -0.2739230990409851, -0.0002747909165918827, -0.0005955110536888242, -0.04189561307430267, 0.1207970529794693, 0.08816377818584442, -0.11034512519836426, 0.07790806144475937, 0.010450340807437897, -0.15480780601501465, 0.019535016268491745, -0.031880468130111694, -0.0361199826002121, 0.12229326367378235, -0.03691815584897995, 0.10724063962697983, 0.030565330758690834, 0.1371053010225296, -0.20673196017742157, 0.006625291425734758, 0.07573986053466797, 0.05222564563155174, 0.09971281886100769, 0.04648245498538017, 0.010059528984129429, 0.08742095530033112, -0.14887355268001556, 0.09275275468826294, 0.029367197304964066, -0.09158580750226974, -0.1530686318874359, -0.09206553548574448, 0.031009074300527573, 0.049941133707761765, 0.07174745947122574, 0.00235681957565248, 0.14600084722042084, -0.06389373540878296, 0.0837772786617279, 0.26146507263183594, -0.32403573393821716, -0.06772024184465408, 0.029733918607234955, 0.057096216827631, 0.06115713715553284, -0.11933815479278564, -0.002266939962282777, 0.020200783386826515, 0.028653958812355995, 0.1276717633008957, -0.01654645800590515, -0.10713040828704834, -0.009310636669397354, -0.12492164969444275, -0.0017830947181209922, 0.06069004908204079, 0.026226166635751724, -0.053638044744729996, -0.10707541555166245, -0.06693268567323685, -0.08491824567317963, -0.022153014317154884, -0.05553059279918671, 0.05142055079340935, -0.055314235389232635, -0.09779898822307587, -0.03978167846798897, -0.058217212557792664, -0.07935354858636856, -0.008099483326077461, 0.16602960228919983, 0.03594779968261719, 0.020458290353417397, -0.02967127040028572, 0.11874213814735413, 0.021340401843190193, -0.13932164013385773, -0.008312885649502277, -0.004869423341006041, -0.0929238423705101, -0.04110373184084892, -0.053514156490564346, -0.009943974204361439, 0.005535724572837353, 0.16773585975170135, -0.0815577283501625, 0.07446593046188354, 0.014757243916392326, -0.024196898564696312, -0.012387764640152454, 0.15105822682380676, -0.04042445495724678, -0.038886506110429764, -0.01680409535765648, 0.08052439242601395, 0.003566084196791053, -0.01885906793177128, -0.06689910590648651, -0.02747778780758381, 0.0940154492855072, 0.05606374889612198, -0.0636836588382721, 0.03947082534432411, -0.029518645256757736, -0.025874421000480652, 0.018107222393155098, -0.1195109635591507, 0.04122558608651161, -0.0034894244745373726, -0.08142425119876862, -0.007668534759432077, -0.002657134085893631, -0.008945663459599018, -0.010158357210457325, 0.09796524047851562, -0.08702471107244492, -0.0008261502371169627, -0.06892213225364685, -0.0803958997130394, -0.0010431853588670492, -0.1545954942703247, -0.013658136129379272, -0.059240520000457764, -0.16540935635566711, -0.03367890417575836, 0.04380619525909424, -0.07592684775590897, -0.013541456311941147, -0.04360092803835869, -0.06220534071326256, 0.01671922206878662, -0.013273871503770351, 0.19214612245559692, -0.05261297523975372, 0.08053257316350937, -0.0066886222921311855, 0.050855278968811035, 0.026794089004397392, 0.035201169550418854, -0.1024455651640892, 0.028321189805865288, -0.14036515355110168, 0.07695713639259338, -0.08480574190616608, -0.004477689508348703, -0.13649798929691315, -0.10299066454172134, 0.015432384796440601, -0.019989222288131714, 0.09275288134813309, 0.13357838988304138, -0.19804778695106506, -0.019120419397950172, 0.12484200298786163, -0.07561077922582626, -0.05176384001970291, 0.0607144832611084, -0.06186923012137413, 0.041509512811899185, 0.051606714725494385, 0.212103933095932, 0.055728133767843246, -0.1563863456249237, -0.010201871395111084, 0.005808820482343435, 0.04458877444267273, 0.026946015655994415, 0.037832412868738174, 0.003622089745476842, 0.0568663589656353, 0.016324633732438087, -0.09027499705553055, -0.024980740621685982, -0.08991216123104095, -0.06682228296995163, -0.04982546344399452, -0.07531700283288956, 0.05547766014933586, 0.006858504377305508, 0.04160638526082039, -0.06584057211875916, -0.10345300287008286, 0.11263348162174225, 0.09568466991186142, -0.05182631313800812, 0.03790134936571121, -0.08127693831920624, 0.01372460462152958, -0.005404231138527393, -0.03581918776035309, -0.2103487104177475, -0.11671734601259232, 0.050839100033044815, -0.043689098209142685, 0.025338776409626007, 0.003676127642393112, 0.0843474343419075, 0.05629622936248779, -0.05126681551337242, -0.015844831243157387, -0.09631851315498352, 0.0019212214974686503, -0.113898865878582, -0.19078941643238068, -0.08542545139789581, -0.04246363788843155, 0.0945492833852768, -0.1685745120048523, -0.005059913266450167, 0.021964581683278084, 0.13713127374649048, 0.027351681143045425, -0.06692356616258621, 0.0013155670603737235, 0.04663757607340813, 0.013844730332493782, -0.09604813903570175, 0.05502491444349289, 0.013173874467611313, -0.10342420637607574, -0.04734772816300392, -0.1315225213766098, -0.016858359798789024, 0.05397162586450577, 0.05944535508751869, -0.1039380207657814, -0.05972687155008316, -0.07296355813741684, -0.037711773067712784, -0.07715702801942825, 0.022474078461527824, 0.2128104716539383, 0.03813282400369644, 0.11282940953969955, -0.06503081321716309, -0.08391958475112915, -0.007627173326909542, 0.026316402480006218, 0.02271091938018799, 0.08523088693618774, 0.022328021004796028, -0.03734035789966583, 0.06784476339817047, 0.10239060968160629, -0.026500673964619637, 0.13214437663555145, -0.055833302438259125, -0.08076594769954681, -0.03197760507464409, -0.021254640072584152, -0.025924885645508766, 0.12958161532878876, -0.02760547585785389, -0.00003847705011139624, 0.03441013768315315, 0.038180042058229446, 0.011247093789279461, -0.16901719570159912, 0.0025949706323444843, 0.027525799348950386, -0.055551011115312576, -0.04017294570803642, -0.006166486535221338, 0.0210732389241457, 0.08849908411502838, 0.030401743948459625, -0.00839909352362156, 0.009250999428331852, -0.011239611543715, -0.05853217467665672, 0.18771538138389587, -0.09617488086223602, -0.08065207302570343, -0.07237473130226135, 0.02004346251487732, -0.05106915906071663, -0.038618940860033035, 0.008241893723607063, -0.09338860213756561, -0.02948264218866825, -0.08852898329496384, -0.027001865208148956, -0.01990305632352829, 0.020148973912000656, 0.02479422837495804, -0.016915684565901756, 0.08576037734746933, -0.13718588650226593, 0.005269818007946014, -0.04881812259554863, -0.09527402371168137, 0.00931074470281601, 0.07659376412630081, 0.09200919419527054, 0.08139706403017044, -0.01863035000860691, 0.02804725058376789, -0.03897756710648537, 0.23386810719966888, -0.052966270595788956, 0.013086049817502499, 0.11470181494951248, -0.01135177817195654, 0.054451409727334976, 0.09262359142303467, 0.03884756565093994, -0.09066728502511978, 0.023905033245682716, 0.07705160975456238, -0.037434566766023636, -0.2257937490940094, -0.01828651688992977, -0.0005388599820435047, -0.07649021595716476, 0.10712479799985886, 0.03202611207962036, -0.04978964850306511, 0.04466003179550171, 0.024005690589547157, -0.008728861808776855, -0.045465461909770966, 0.07413434982299805, 0.07264105975627899, 0.0507894866168499, 0.10670710355043411, -0.0055518802255392075, -0.02718944288790226, 0.055709999054670334, 0.017431112006306648, 0.2535436153411865, -0.04324711859226227, 0.10140485316514969, 0.03278921917080879, 0.1542600691318512, -0.01974836364388466, 0.06676185876131058, 0.0013321847654879093, -0.010079942643642426, -0.01126671303063631, -0.065802201628685, -0.0233727116137743, 0.017296411097049713, -0.046374037861824036, 0.02398424968123436, -0.07731685787439346, 0.024539140984416008, 0.027221865952014923, 0.2917000949382782, 0.028803296387195587, -0.2610945999622345, -0.07365384697914124, -0.015794675797224045, -0.045030441135168076, -0.060353703796863556, 0.007947494275867939, 0.13422659039497375, -0.14004142582416534, 0.053189877420663834, -0.07826413959264755, 0.08744587749242783, -0.04593293368816376, 0.013010031543672085, 0.04739804193377495, 0.1503039002418518, -0.018729394301772118, 0.05200307071208954, -0.19815121591091156, 0.2508665919303894, 0.020235782489180565, 0.10667862743139267, -0.06447198241949081, 0.011067948304116726, 0.02014300972223282, 0.011641917750239372, 0.11203764379024506, 0.002950566355139017, -0.06604588776826859, -0.1468552201986313, -0.0910530537366867, 0.04631698504090309, 0.14079901576042175, -0.03907939791679382, 0.09029360860586166, -0.028255121782422066, 0.011627092957496643, 0.029311450198292732, -0.0413888543844223, -0.15260115265846252, -0.07784389704465866, 0.0004021448257844895, 0.014328702352941036, -0.006150809582322836, -0.06140207499265671, -0.1057034283876419, -0.019447512924671173, 0.11174094676971436, 0.0002224383206339553, -0.05821409821510315, -0.15431883931159973, 0.08224523812532425, 0.1416434943675995, -0.0542355440557003, 0.011964808218181133, 0.017814399674534798, 0.11486048996448517, 0.03018944151699543, -0.08011490851640701, 0.06397658586502075, -0.05709027126431465, -0.18151943385601044, -0.055705320090055466, 0.1226387470960617, 0.08243591338396072, 0.04909590259194374, -0.0005560568533837795, 0.05360199138522148, 0.002401570789515972, -0.09558223187923431, 0.04048921912908554, 0.0007904635858722031, 0.043642569333314896, 0.0170162133872509, -0.08452069014310837, 0.09676899015903473, -0.037374094128608704, 0.01039269007742405, 0.12817761301994324, 0.21196219325065613, -0.1072210744023323, 0.11432292312383652, 0.08558833599090576, -0.07356404513120651, -0.16541747748851776, 0.06083254516124725, 0.13030043244361877, 0.008979412727057934, 0.085703544318676, -0.21282318234443665, 0.1242307722568512, 0.1023247092962265, -0.012641343288123608, 0.007709125988185406, -0.27559101581573486, -0.13083121180534363, 0.058974720537662506, 0.11248573660850525, 0.04206180199980736, -0.11436404287815094, -0.033213045448064804, -0.0069739301688969135, -0.10117857158184052, 0.11356482654809952, -0.0741979107260704, 0.11372094601392746, -0.019447287544608116, 0.11751420795917511, 0.02563486434519291, -0.03370410203933716, 0.1094408929347992, 0.06235715374350548, 0.0873197615146637, -0.03714777156710625, 0.007000046316534281, 0.05920743569731712, -0.059079308062791824, 0.027454812079668045, -0.04207056015729904, 0.06687457114458084, -0.14818687736988068, 0.00582526158541441, -0.08774712681770325, 0.05293393135070801, -0.046666160225868225, -0.07188471406698227, -0.016931626945734024, 0.05337425693869591, 0.06907663494348526, -0.040859829634428024, 0.028369097039103508, -0.001816059579141438, 0.09841415286064148, 0.10443327575922012, 0.0816214382648468, -0.024387041106820107, -0.0877523124217987, 0.01365607138723135, 0.0024398965761065483, 0.05462116375565529, -0.09526757150888443, 0.013776185922324657, 0.14163216948509216, 0.06396138668060303, 0.0960395559668541, 0.04620938375592232, -0.04277074337005615, 0.004740310367196798, 0.014870012179017067, -0.13312719762325287, -0.10386333614587784, 0.024834025651216507, -0.04583507776260376, -0.15158262848854065, 0.02784297801554203, 0.12098939716815948, -0.03942922502756119, -0.021591056138277054, -0.005613245535641909, 0.003984966315329075, -0.01301288977265358, 0.1839263141155243, 0.04490102082490921, 0.06284241378307343, -0.09080429375171661, 0.11097417771816254, 0.03467169404029846, -0.049936357885599136, 0.05338259041309357, 0.06665754318237305, -0.10488678514957428, 0.010242537595331669, 0.08035171031951904, 0.13259801268577576, -0.054199039936065674, -0.012585636228322983, -0.09685581177473068, -0.0850323736667633, 0.041179168969392776, 0.13444164395332336, 0.05571736395359039, -0.002288044663146138, -0.06488993018865585, 0.03577541559934616, -0.11951475590467453, 0.06889919191598892, 0.0490344762802124, 0.07581519335508347, -0.10146211832761765, 0.13391388952732086, -0.002452521352097392, 0.027282165363430977, -0.026800528168678284, 0.013537462800741196, -0.09990714490413666, -0.02429237589240074, -0.10814620554447174, -0.023753514513373375, -0.011771305464208126, -0.0008669088128954172, -0.022217830643057823, -0.06873029470443726, -0.029213864356279373, 0.03936637565493584, -0.07917167991399765, -0.047482214868068695, 0.017472779378294945, 0.03672892227768898, -0.15327903628349304, 0.003096510423347354, 0.025256158784031868, -0.08991863578557968, 0.09048760682344437, 0.06282089650630951, 0.012325574643909931, 0.024889061227440834, -0.11642332375049591, -0.030560530722141266, -0.009850766509771347, 0.0037683513946831226, 0.06872616708278656, -0.09517852216959, -0.028526585549116135, -0.03568245843052864, 0.041077420115470886, 0.019820960238575935, 0.10325058549642563, -0.11967436969280243, -0.0030364159028977156, -0.03645918145775795, -0.03893328458070755, -0.06553873419761658, 0.03620945289731026, 0.10634410381317139, 0.052912767976522446, 0.15229478478431702, -0.07720963656902313, 0.05476178601384163, -0.19918352365493774, -0.03821737319231033, 0.011573070660233498, -0.04703817516565323, -0.0810423344373703, -0.047864533960819244, 0.08818250149488449, -0.0476619191467762, 0.11481709778308868, -0.013137692585587502, 0.10102536529302597, 0.04360120743513107, -0.011117707006633282, -0.06428532302379608, -0.005640119779855013, 0.1817956268787384, 0.052111007273197174, -0.018467728048563004, 0.125590980052948, 0.0034600580111145973, 0.029179319739341736, 0.08558418601751328, 0.21886678040027618, 0.15312990546226501, 0.0017848602728918195, 0.06247575953602791, 0.061217814683914185, -0.06786945462226868, -0.14832165837287903, 0.12053234130144119, -0.019214099273085594, 0.10591533035039902, -0.06572095304727554, 0.1884140521287918, 0.03812352195382118, -0.1801193356513977, 0.0638074055314064, -0.025117948651313782, -0.10915175080299377, -0.11856552213430405, -0.027207864448428154, -0.07113168388605118, -0.12221761792898178, 0.024950936436653137, -0.11754877120256424, 0.0605166032910347, 0.10524393618106842, 0.008188086561858654, 0.03808622062206268, 0.18291796743869781, -0.04701121896505356, 0.013134585693478584, 0.08378361165523529, 0.018267381936311722, 0.0034695493523031473, -0.039251457899808884, -0.06431989371776581, 0.03528735786676407, 0.03444085642695427, 0.06348621100187302, -0.04894040524959564, 0.00554128922522068, 0.0043001980520784855, -0.00811738334596157, -0.076044000685215, 0.011032108217477798, 0.009224525652825832, 0.05157638341188431, 0.045925602316856384, 0.048005830496549606, 0.005505900830030441, -0.055158957839012146, 0.2917860448360443, -0.06909123063087463, -0.06951802968978882, -0.12995676696300507, 0.21707062423229218, 0.02330974116921425, -0.025521576404571533, 0.05583387613296509, -0.0861828550696373, -0.013509304262697697, 0.16451551020145416, 0.14004279673099518, -0.09017328172922134, -0.015924451872706413, -0.023629888892173767, -0.010945823974907398, -0.014157485216856003, 0.11548317968845367, 0.07469368726015091, -0.012570187449455261, -0.07055781036615372, -0.01177707128226757, -0.027988340705633163, -0.05533304437994957, -0.06920906901359558, 0.06919442862272263, 0.028275825083255768, -0.00875248946249485, -0.06446287781000137, 0.06708896905183792, -0.000036393354093888775, -0.23352891206741333, 0.04234522953629494, -0.1726761758327484, -0.17026235163211823, -0.019642986357212067, 0.07141492515802383, 0.004764500539749861, 0.0567837692797184, 0.0009513521217741072, 0.02319357916712761, 0.11556002497673035, -0.013642232865095139, -0.0024187578819692135, -0.11446313560009003, 0.11592969298362732, -0.10184352844953537, 0.19952619075775146, -0.006810266524553299, 0.05870137736201286, 0.09626732766628265, 0.03735201060771942, -0.1371658593416214, 0.0226956307888031, 0.06300923228263855, -0.12646740674972534, -0.003655396867543459, 0.1484236866235733, -0.030287152156233788, 0.06281229108572006, 0.026912841945886612, -0.14524123072624207, 0.0023058108054101467, 0.018502216786146164, -0.03548143059015274, -0.0689658597111702, -0.00844538677483797, -0.05077024921774864, 0.16472196578979492, 0.21608036756515503, -0.029995253309607506, 0.008438521064817905, -0.09075109660625458, 0.012629843316972256, 0.04740457981824875, 0.05099824443459511, -0.0407547689974308, -0.20560882985591888, 0.01492819469422102, 0.07244383543729782, -0.005600171163678169, -0.19707714021205902, -0.09629134088754654, 0.046711333096027374, -0.039590202271938324, -0.04272126033902168, 0.09325674921274185, 0.022103015333414078, 0.04132242500782013, -0.013356651179492474, -0.11310400813817978, -0.02204570733010769, 0.13914203643798828, -0.17533327639102936, -0.03302976116538048 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-42 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results {'exact_match': 12.573320719016083, 'f1': 22.855895753681814} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-42", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-42
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-42 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results {'exact_match': 12.573320719016083, 'f1': 22.855895753681814} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results\n\n{'exact_match': 12.573320719016083, 'f1': 22.855895753681814}", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results\n\n{'exact_match': 12.573320719016083, 'f1': 22.855895753681814}", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ 46, 56, 6, 12, 8, 3, 104, 33, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results\n\n{'exact_match': 12.573320719016083, 'f1': 22.855895753681814}### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ -0.11064630001783371, 0.09763943403959274, -0.0019479378825053573, 0.10145445168018341, 0.13598573207855225, 0.036059461534023285, 0.09791992604732513, 0.12309683859348297, -0.084535613656044, 0.06979364901781082, 0.06504430621862411, 0.041208360344171524, 0.05194171145558357, 0.11598207801580429, -0.01988000050187111, -0.2757573425769806, -0.01649329625070095, -0.0008730520494282246, -0.12208962440490723, 0.1163511872291565, 0.11404604464769363, -0.09258270263671875, 0.07444823533296585, 0.012262255884706974, -0.16387253999710083, 0.02467178739607334, -0.017179716378450394, -0.027167044579982758, 0.11562648415565491, 0.003548957407474518, 0.11425082385540009, 0.019707683473825455, 0.1404082328081131, -0.20328855514526367, 0.007020028308033943, 0.08592621982097626, 0.04397903010249138, 0.10175924748182297, 0.06964089721441269, -0.010523083619773388, 0.08564318716526031, -0.14293959736824036, 0.07978805154561996, 0.04413049295544624, -0.09913592040538788, -0.16713403165340424, -0.1008225753903389, 0.062168851494789124, 0.06668088585138321, 0.07875550538301468, 0.0033080249559134245, 0.11576522141695023, -0.053031519055366516, 0.08162672072649002, 0.24656587839126587, -0.30216333270072937, -0.08311853557825089, 0.056073565036058426, 0.05742230266332626, 0.04616467282176018, -0.12561285495758057, 0.00005344640158000402, 0.023413967341184616, 0.031058261170983315, 0.09671231359243393, -0.020961787551641464, -0.13743463158607483, -0.00949440523982048, -0.1266951858997345, 0.014427674002945423, 0.10022161155939102, 0.04596598073840141, -0.04830940067768097, -0.0768083930015564, -0.05992928892374039, -0.08817923814058304, -0.015241830609738827, -0.05153863877058029, 0.04220797121524811, -0.054808370769023895, -0.0744110718369484, -0.06390266120433807, -0.06888092309236526, -0.08443617820739746, -0.012844400480389595, 0.1710885614156723, 0.0258098803460598, 0.022148026153445244, -0.025329792872071266, 0.11947059631347656, 0.010193097405135632, -0.13714547455310822, -0.0010248477337881923, -0.002462774980813265, -0.11430998891592026, -0.04256424307823181, -0.05247258394956589, 0.0008406716515310109, -0.008812707848846912, 0.15944603085517883, -0.08721785992383957, 0.07540726661682129, 0.03379572182893753, -0.015759192407131195, -0.03397310525178909, 0.13900607824325562, -0.07864191383123398, -0.04586544632911682, -0.018734928220510483, 0.08564189821481705, -0.007514681201428175, -0.013618632219731808, -0.062381576746702194, -0.03905925527215004, 0.0688512921333313, 0.05622544884681702, -0.033297497779130936, 0.04467662796378136, -0.023520635440945625, -0.04331140220165253, 0.014922612346708775, -0.1238035336136818, 0.03628692403435707, 0.003301346441730857, -0.10804396867752075, -0.03398279845714569, 0.015269043855369091, 0.0024175159633159637, -0.008286656811833382, 0.08681381493806839, -0.09268007427453995, 0.0035302084870636463, -0.07731226086616516, -0.0867733433842659, -0.002859254367649555, -0.1250196248292923, -0.016233833506703377, -0.04262392967939377, -0.1719173640012741, -0.0470641627907753, 0.042754486203193665, -0.07501725107431412, -0.03275468945503235, -0.026909762993454933, -0.07214537262916565, 0.018825342878699303, -0.0033819864038378, 0.20580823719501495, -0.040906842797994614, 0.07294826209545135, -0.002710116095840931, 0.04137516766786575, 0.011333109810948372, 0.03901257738471031, -0.08327333629131317, 0.03066110610961914, -0.1286170333623886, 0.08578338474035263, -0.1057562381029129, 0.0012587928213179111, -0.1371128261089325, -0.09647426009178162, 0.014636656269431114, -0.012645925395190716, 0.08259113878011703, 0.12723955512046814, -0.20765185356140137, -0.011101610027253628, 0.11580323427915573, -0.06627710163593292, -0.07657739520072937, 0.05785248428583145, -0.04817429184913635, 0.04722050577402115, 0.03791561350226402, 0.1709180623292923, 0.10660412907600403, -0.14478668570518494, -0.01465565524995327, 0.016705119982361794, 0.050577688962221146, 0.03844757378101349, 0.04556694254279137, -0.005898557137697935, 0.045311544090509415, 0.011346007697284222, -0.12171167880296707, -0.031167300418019295, -0.0947677493095398, -0.07043833285570145, -0.05247680842876434, -0.09026601165533066, 0.05273546651005745, 0.02876768447458744, 0.03388211503624916, -0.05686198174953461, -0.11523265391588211, 0.11681323498487473, 0.11230648308992386, -0.046158019453287125, 0.021351179108023643, -0.07470239698886871, -0.008869918063282967, 0.015818940475583076, -0.03944273293018341, -0.2163621038198471, -0.16651874780654907, 0.026633067056536674, -0.05738384649157524, 0.04181625321507454, 0.015458296053111553, 0.08864776045084, 0.05423763021826744, -0.05513474717736244, -0.007394094951450825, -0.08166965842247009, -0.0065443748608231544, -0.09920254349708557, -0.20459873974323273, -0.10397352278232574, -0.02305339090526104, 0.16299037635326385, -0.20468291640281677, 0.008572705090045929, 0.0011381512740626931, 0.14618618786334991, 0.011216040700674057, -0.057787757366895676, 0.0031753259245306253, 0.03161236643791199, 0.008814606815576553, -0.09545887261629105, 0.04749961569905281, 0.010178026743233204, -0.103001669049263, -0.04278237372636795, -0.13682164251804352, -0.003313570050522685, 0.05129639431834221, 0.0486275739967823, -0.10915294289588928, -0.04172883555293083, -0.07186105102300644, -0.04404468834400177, -0.07125580310821533, 0.006508066318929195, 0.1847175806760788, 0.033604301512241364, 0.10152548551559448, -0.05308322608470917, -0.08018098026514053, -0.01422901265323162, 0.017283516004681587, 0.012541438452899456, 0.09524795413017273, 0.03052496537566185, -0.0651831179857254, 0.07932829111814499, 0.06824961304664612, -0.048226404935121536, 0.12886644899845123, -0.04740440100431442, -0.07363642007112503, -0.03146335855126381, -0.004375674296170473, -0.01599850319325924, 0.13070397078990936, -0.027752043679356575, 0.012683541513979435, 0.03636379912495613, 0.019139772281050682, 0.025335820391774178, -0.17185279726982117, -0.005892484448850155, 0.01842915639281273, -0.05502387508749962, -0.03871787339448929, -0.015289342030882835, 0.0359056256711483, 0.09449296444654465, 0.02349313162267208, 0.0005776691250503063, 0.008544146083295345, -0.012501824647188187, -0.07097290456295013, 0.2073363959789276, -0.09951809793710709, -0.10038191080093384, -0.1091856136918068, 0.0444394052028656, -0.067458376288414, -0.03901367634534836, -0.00835083331912756, -0.08557671308517456, -0.03436228632926941, -0.06679030507802963, 0.007234431803226471, -0.013391632586717606, -0.004568134434521198, 0.01227013673633337, -0.0007896085735410452, 0.10074853152036667, -0.1449194699525833, 0.025158822536468506, -0.041348882019519806, -0.11511024832725525, -0.007740349508821964, 0.0783471092581749, 0.09806563705205917, 0.1094604954123497, -0.013663951307535172, 0.02028258703649044, -0.025797652080655098, 0.22602564096450806, -0.06701713055372238, 0.024088943377137184, 0.12206805497407913, -0.005623720120638609, 0.05294974520802498, 0.10019919276237488, 0.049255963414907455, -0.08864864706993103, 0.024134665727615356, 0.10769864916801453, -0.023838242515921593, -0.25441768765449524, -0.026988472789525986, -0.007096587680280209, -0.0733940452337265, 0.09888079017400742, 0.026464691385626793, -0.0194595605134964, 0.05878882482647896, -0.0028107056859880686, -0.002585010137408972, -0.030693432316184044, 0.058431364595890045, 0.07704553753137589, 0.04776271432638168, 0.11639820784330368, -0.013446141965687275, -0.014951507560908794, 0.05478600040078163, 0.021308360621333122, 0.24776674807071686, -0.05113491415977478, 0.11275581270456314, 0.03949800878763199, 0.15224115550518036, -0.03278699517250061, 0.061726972460746765, 0.0064925141632556915, -0.018017245456576347, 0.016394110396504402, -0.0627804696559906, -0.01017023529857397, 0.010949778370559216, -0.034643422812223434, 0.03931162878870964, -0.07454214245080948, 0.042011525481939316, 0.01979692652821541, 0.28166088461875916, 0.026726054027676582, -0.2640853226184845, -0.08658444136381149, -0.007759448140859604, -0.012646108865737915, -0.07366399466991425, -0.008169465698301792, 0.13079914450645447, -0.1411266326904297, 0.06492333859205246, -0.0770334005355835, 0.09089270234107971, -0.026913389563560486, -0.003535655327141285, 0.08117560297250748, 0.15461918711662292, -0.017006585374474525, 0.06499705463647842, -0.18610185384750366, 0.2491147220134735, 0.021517174318432808, 0.09880417585372925, -0.050802476704120636, 0.016103364527225494, 0.024540208280086517, 0.028401315212249756, 0.10523154586553574, 0.00399006949737668, -0.051098983734846115, -0.15948857367038727, -0.07307204604148865, 0.03824587166309357, 0.14711306989192963, -0.05857478827238083, 0.08943864703178406, -0.038548506796360016, 0.006146108265966177, 0.04160875827074051, -0.06417015939950943, -0.1565619856119156, -0.08730895072221756, 0.014542044140398502, -0.011030824854969978, -0.01667049154639244, -0.06637226045131683, -0.10165993869304657, -0.01388828456401825, 0.1295832246541977, -0.03268210217356682, -0.057167306542396545, -0.15598291158676147, 0.09974341094493866, 0.1679159551858902, -0.06702186912298203, 0.015307720750570297, 0.016419516876339912, 0.1252967268228531, 0.03641090914607048, -0.08773569017648697, 0.06501713395118713, -0.06921885907649994, -0.17456530034542084, -0.03884553164243698, 0.13792501389980316, 0.07797075062990189, 0.046269532293081284, -0.003427889896556735, 0.044636912643909454, 0.006609043572098017, -0.10387877374887466, 0.034895092248916626, -0.023933378979563713, 0.027492163702845573, 0.039038874208927155, -0.08593589812517166, 0.06575371325016022, -0.04313292354345322, 0.009518051519989967, 0.11526412516832352, 0.20150426030158997, -0.11317005753517151, 0.06272008270025253, 0.05865517631173134, -0.07784879207611084, -0.1754852533340454, 0.08453657478094101, 0.1519019603729248, 0.0034698627423495054, 0.07971315830945969, -0.2148018181324005, 0.14955000579357147, 0.12777116894721985, -0.019980058073997498, 0.0592714287340641, -0.27779749035835266, -0.13980700075626373, 0.0770663246512413, 0.09976744651794434, -0.007549794390797615, -0.1461760401725769, -0.04902268946170807, -0.007828357629477978, -0.16598498821258545, 0.148215189576149, -0.08795302361249924, 0.10574191063642502, -0.007734512444585562, 0.10576455295085907, 0.03155207633972168, -0.022696686908602715, 0.13001613318920135, 0.0691170021891594, 0.08722849190235138, -0.03937968611717224, -0.00515443691983819, 0.08158909529447556, -0.05419408529996872, 0.034179236739873886, -0.014109550043940544, 0.06839116662740707, -0.14964525401592255, 0.010339091531932354, -0.0998564288020134, 0.0738145187497139, -0.06704650819301605, -0.062471624463796616, -0.02008558064699173, 0.061861906200647354, 0.037474215030670166, -0.03896349295973778, 0.04666239395737648, 0.0005714298458769917, 0.1375628113746643, 0.10749313980340958, 0.08704029768705368, -0.0018086830386891961, -0.1074608638882637, 0.01523521076887846, 0.0036591754760593176, 0.04930354282259941, -0.10279235243797302, 0.022431036457419395, 0.1374976485967636, 0.08097969740629196, 0.10193558037281036, 0.043683845549821854, -0.04713615030050278, -0.006511836778372526, 0.030705278739333153, -0.11668144911527634, -0.12637604773044586, 0.003963861148804426, -0.06478524208068848, -0.155874565243721, 0.027241481468081474, 0.1119026467204094, -0.031077323481440544, -0.014965006150305271, -0.0066231475211679935, 0.010894686914980412, -0.018820015713572502, 0.19988729059696198, 0.06922455877065659, 0.07609652727842331, -0.08972419053316116, 0.11405029892921448, 0.04665127396583557, -0.0453946627676487, 0.025458676740527153, 0.08795285224914551, -0.08815868198871613, -0.0005672572297044098, 0.062341999262571335, 0.09642647206783295, -0.0911257266998291, -0.017004545778036118, -0.08542180061340332, -0.10612764954566956, 0.028421755880117416, 0.1471976637840271, 0.04721743240952492, -0.006064987275749445, -0.03629138320684433, 0.037941351532936096, -0.12877912819385529, 0.07455185800790787, 0.05643201246857643, 0.08319592475891113, -0.11758613586425781, 0.15746791660785675, 0.005101328250020742, 0.037392277270555496, -0.015357454307377338, 0.023581307381391525, -0.09840670228004456, -0.034863099455833435, -0.11399950087070465, -0.032966651022434235, -0.007948126643896103, 0.004751034080982208, -0.026680124923586845, -0.07544808834791183, -0.04220149666070938, 0.04622210934758186, -0.07592248916625977, -0.06252077966928482, 0.011409346014261246, 0.027168873697519302, -0.1654893159866333, -0.001977776875719428, 0.036817941814661026, -0.09139031916856766, 0.08007370680570602, 0.06813081353902817, 0.0400710366666317, 0.0322231762111187, -0.12426821142435074, -0.024287879467010498, -0.016607066616415977, 0.00969067495316267, 0.07499610632658005, -0.10802671313285828, -0.02039310708642006, -0.05612611025571823, 0.06003721058368683, 0.01323664840310812, 0.08670643717050552, -0.12272191047668457, 0.00259268912486732, -0.04731031134724617, -0.02442273311316967, -0.06790561228990555, 0.04458849877119064, 0.10985948890447617, 0.0607636421918869, 0.1462865024805069, -0.06697823107242584, 0.04815573990345001, -0.2205304503440857, -0.03272601217031479, -0.007734114304184914, -0.04558176174759865, -0.05428094416856766, -0.029737500473856926, 0.09131406992673874, -0.05833590030670166, 0.09044168889522552, -0.011476119980216026, 0.10398814082145691, 0.04501194506883621, 0.0003907583886757493, -0.05415671318769455, 0.010993110947310925, 0.16130323708057404, 0.04507318511605263, -0.00785102043300867, 0.1191633865237236, 0.011958830989897251, 0.02350819855928421, 0.04759740084409714, 0.23190106451511383, 0.13066457211971283, -0.04783806949853897, 0.05136590078473091, 0.09327326714992523, -0.10772613435983658, -0.1277863085269928, 0.11882497370243073, -0.02620667964220047, 0.0904526561498642, -0.0659305676817894, 0.16581296920776367, 0.06296145170927048, -0.19470414519309998, 0.06747851520776749, -0.04905551299452782, -0.12008675932884216, -0.11844466626644135, -0.007844164967536926, -0.06589775532484055, -0.11596190184354782, 0.020443705841898918, -0.13493698835372925, 0.06172539293766022, 0.13392023742198944, 0.007825786247849464, 0.03698677569627762, 0.18691067397594452, -0.05245308578014374, 0.002846569288522005, 0.06885949522256851, 0.026132110506296158, 0.009775704704225063, -0.04257358983159065, -0.05579932779073715, 0.04461189731955528, 0.03364413604140282, 0.05727502331137657, -0.06843595206737518, -0.009141038171947002, 0.012857124209403992, -0.011612766422331333, -0.07499091327190399, 0.008148755878210068, 0.0169165451079607, 0.049654584378004074, 0.03979909420013428, 0.04675600305199623, 0.015445143915712833, -0.05706257000565529, 0.32155629992485046, -0.06948967278003693, -0.08191250264644623, -0.1387905478477478, 0.20614077150821686, 0.015345138497650623, -0.02112814597785473, 0.06245720386505127, -0.10015349090099335, -0.005105011630803347, 0.1525050848722458, 0.14916177093982697, -0.09440474957227707, -0.02073255367577076, -0.012393332086503506, -0.01224230881780386, -0.0200791135430336, 0.12024671584367752, 0.08671484142541885, 0.022627772763371468, -0.07588944584131241, -0.010126742534339428, -0.0152195505797863, -0.048868920654058456, -0.06743227690458298, 0.0956454649567604, 0.024399923160672188, 0.00541346101090312, -0.03826330974698067, 0.07986106723546982, -0.000645206484477967, -0.2311360239982605, 0.043296944350004196, -0.173956960439682, -0.18389996886253357, -0.046044208109378815, 0.05759849026799202, -0.0027224274817854166, 0.06392352283000946, 0.004882234614342451, -0.0062549905851483345, 0.12573358416557312, -0.0072447387501597404, -0.027311548590660095, -0.13838011026382446, 0.10860319435596466, -0.10796906054019928, 0.2215200960636139, -0.01993430033326149, 0.056075986474752426, 0.09600316733121872, 0.01798715442419052, -0.14335474371910095, 0.007495259400457144, 0.07108486443758011, -0.11898573487997055, 0.01564957946538925, 0.15024298429489136, -0.03582887351512909, 0.07100319862365723, 0.02654379978775978, -0.16539674997329712, 0.0022249682806432247, 0.014766406267881393, -0.032631080597639084, -0.07524224370718002, -0.000991908018477261, -0.06294844299554825, 0.1597958654165268, 0.2411101758480072, -0.038683295249938965, 0.006502718199044466, -0.09748691320419312, 0.0007259503472596407, 0.055432695895433426, 0.10383066534996033, -0.03619963303208351, -0.2096835821866989, 0.028274375945329666, 0.043626997619867325, 0.007957851514220238, -0.20732659101486206, -0.08394096046686172, 0.06127751246094704, -0.054801035672426224, -0.01485280878841877, 0.10115214437246323, 0.056893300265073776, 0.0510004460811615, -0.018766019493341446, -0.10272336006164551, -0.03434167802333832, 0.15205876529216766, -0.17696581780910492, -0.04136255010962486 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-6 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-6
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-6 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09775431454181671, 0.1076914370059967, -0.0023343523498624563, 0.09570496529340744, 0.12145982682704926, 0.015692301094532013, 0.09881990402936935, 0.13050757348537445, -0.10478448867797852, 0.06833452731370926, 0.08723822236061096, 0.0348428376019001, 0.04383012279868126, 0.14951620995998383, -0.006560569163411856, -0.27339500188827515, -0.00003564513099263422, -0.0003071820829063654, -0.04183138534426689, 0.12079605460166931, 0.08815325796604156, -0.1105550229549408, 0.07704444229602814, 0.00992493238300085, -0.15493346750736237, 0.01972031034529209, -0.032125867903232574, -0.03575804829597473, 0.12209487706422806, -0.03740759193897247, 0.10681012272834778, 0.030652156099677086, 0.13701878488063812, -0.20743972063064575, 0.00664126081392169, 0.07641320675611496, 0.05236897990107536, 0.09991850703954697, 0.04735150560736656, 0.010297991335391998, 0.0893101766705513, -0.14869171380996704, 0.09259922802448273, 0.029977932572364807, -0.09142395108938217, -0.15116767585277557, -0.092636339366436, 0.030283749103546143, 0.050542399287223816, 0.07244835793972015, 0.0019364000763744116, 0.14710532128810883, -0.06436875462532043, 0.08402916043996811, 0.2633202075958252, -0.322406530380249, -0.06766432523727417, 0.03078266605734825, 0.05691235139966011, 0.06007272005081177, -0.12031479924917221, -0.003248621942475438, 0.02028135024011135, 0.02827092818915844, 0.12656141817569733, -0.016022944822907448, -0.10867726802825928, -0.009769868105649948, -0.1252661645412445, -0.0019069005502387881, 0.058872051537036896, 0.02629685029387474, -0.05302419885993004, -0.10682983696460724, -0.06758908927440643, -0.08442754298448563, -0.021975580602884293, -0.05541921779513359, 0.051639292389154434, -0.05539872124791145, -0.09711288660764694, -0.039623573422431946, -0.05789697915315628, -0.08059701323509216, -0.007899584248661995, 0.16580724716186523, 0.03592671453952789, 0.020235035568475723, -0.030529649928212166, 0.11851643025875092, 0.02138669230043888, -0.13959459960460663, -0.009460695087909698, -0.0040710377506911755, -0.09332054853439331, -0.04133347421884537, -0.052871353924274445, -0.011895190924406052, 0.005048038903623819, 0.16591525077819824, -0.08172724395990372, 0.07493412494659424, 0.013679150491952896, -0.02427145466208458, -0.01311041321605444, 0.1513615846633911, -0.039469171315431595, -0.0373363271355629, -0.01742708869278431, 0.0805177241563797, 0.0030781091190874577, -0.01850968599319458, -0.06618949770927429, -0.02774551697075367, 0.09454318135976791, 0.055923715233802795, -0.06308376044034958, 0.039060771465301514, -0.029727397486567497, -0.026000363752245903, 0.01843223348259926, -0.11938923597335815, 0.04140418767929077, -0.003939898684620857, -0.08188235014677048, -0.008747749030590057, -0.0024237867910414934, -0.009282057173550129, -0.010523248463869095, 0.09876377880573273, -0.08739449828863144, -0.0006020650616846979, -0.06992492079734802, -0.08024053275585175, -0.0005211018724367023, -0.15631625056266785, -0.014132223092019558, -0.05842534825205803, -0.16590504348278046, -0.03385196626186371, 0.04332658275961876, -0.07592187076807022, -0.012823933735489845, -0.04424494132399559, -0.0628243163228035, 0.017081687226891518, -0.012816151604056358, 0.1931278109550476, -0.05233263969421387, 0.0813058614730835, -0.007034297566860914, 0.050577182322740555, 0.02734176628291607, 0.035872362554073334, -0.1034352108836174, 0.02804054692387581, -0.13979604840278625, 0.07707106322050095, -0.08578012138605118, -0.004654903430491686, -0.13747616112232208, -0.10222131758928299, 0.014140564948320389, -0.020612308755517006, 0.09363175183534622, 0.1343565434217453, -0.19843602180480957, -0.018755774945020676, 0.1254129260778427, -0.07645862549543381, -0.051792342215776443, 0.059674929827451706, -0.0615348145365715, 0.04099756479263306, 0.05113156512379646, 0.21238645911216736, 0.055025216192007065, -0.15613725781440735, -0.011324000544846058, 0.005162524059414864, 0.04514511302113533, 0.02641613595187664, 0.03759239241480827, 0.0034773522056639194, 0.05802357569336891, 0.015959033742547035, -0.09008252620697021, -0.025234300643205643, -0.09010714292526245, -0.06616955995559692, -0.05042973533272743, -0.07541907578706741, 0.05480872094631195, 0.008177225477993488, 0.04121895506978035, -0.06534210592508316, -0.10290716588497162, 0.11260811984539032, 0.09569483995437622, -0.05117543414235115, 0.0381988063454628, -0.08070509880781174, 0.012574040330946445, -0.005856841336935759, -0.03572627902030945, -0.21180222928524017, -0.1169489175081253, 0.051328420639038086, -0.04440830647945404, 0.025475187227129936, 0.0030358743388205767, 0.0842336043715477, 0.05542340874671936, -0.051376473158597946, -0.015805324539542198, -0.09712255001068115, 0.0014187435153871775, -0.114490807056427, -0.19088692963123322, -0.08545857667922974, -0.043160442262887955, 0.0920758843421936, -0.16794928908348083, -0.005360277835279703, 0.021943887695670128, 0.13782159984111786, 0.027613194659352303, -0.06746894866228104, 0.0013498567277565598, 0.046385932713747025, 0.013507024385035038, -0.0963740274310112, 0.054764967411756516, 0.012257908470928669, -0.10292491316795349, -0.047467976808547974, -0.13184252381324768, -0.018727056682109833, 0.05363158881664276, 0.06105140224099159, -0.1041472777724266, -0.05981099605560303, -0.07288912683725357, -0.03790127485990524, -0.07843493670225143, 0.023509962484240532, 0.2122940570116043, 0.038528427481651306, 0.11237959563732147, -0.06526992470026016, -0.08418471366167068, -0.007050399202853441, 0.026651622727513313, 0.022292647510766983, 0.08635273575782776, 0.02426484227180481, -0.039304617792367935, 0.06871086359024048, 0.10285333544015884, -0.02589726448059082, 0.13249102234840393, -0.05600107088685036, -0.0812416672706604, -0.03054424375295639, -0.02082650735974312, -0.025757046416401863, 0.1293507069349289, -0.027316266670823097, 0.00040446469211019576, 0.034245628863573074, 0.03864172101020813, 0.011207695119082928, -0.16918863356113434, 0.0026100068353116512, 0.027373194694519043, -0.055408578366041183, -0.04091397300362587, -0.006171464454382658, 0.021112358197569847, 0.08891446143388748, 0.030065612867474556, -0.007989565841853619, 0.008502340875566006, -0.011302508413791656, -0.058549586683511734, 0.18860457837581635, -0.09576108306646347, -0.07948590070009232, -0.07096948474645615, 0.021029161289334297, -0.05062054470181465, -0.038934461772441864, 0.008388957940042019, -0.09441749006509781, -0.029503080993890762, -0.08844419568777084, -0.02673451602458954, -0.01964280568063259, 0.019331667572259903, 0.024060098454356194, -0.016607291996479034, 0.08498451858758926, -0.13802500069141388, 0.005503326654434204, -0.049308910965919495, -0.09551946073770523, 0.008881098590791225, 0.07624734193086624, 0.09189999103546143, 0.08168981969356537, -0.019116397947072983, 0.02809436246752739, -0.039068836718797684, 0.23255859315395355, -0.05351262539625168, 0.012547983787953854, 0.11452983319759369, -0.010169100016355515, 0.0549515075981617, 0.09287425130605698, 0.03810378909111023, -0.09068065881729126, 0.024193396791815758, 0.07777591794729233, -0.0377228781580925, -0.22693197429180145, -0.01850196346640587, -0.0007541078375652432, -0.0766751766204834, 0.1071443036198616, 0.032379209995269775, -0.04979957267642021, 0.04445018246769905, 0.023198552429676056, -0.010120587423443794, -0.04548987001180649, 0.07454954832792282, 0.0703563466668129, 0.05161972716450691, 0.1063164621591568, -0.005564903374761343, -0.026464713737368584, 0.05503617972135544, 0.017367931082844734, 0.25464338064193726, -0.04365045949816704, 0.1011485680937767, 0.0322340652346611, 0.1539672464132309, -0.020303290337324142, 0.06722170859575272, 0.0010774260153993964, -0.0101466104388237, -0.011054640635848045, -0.06563033163547516, -0.023680413141846657, 0.01729843020439148, -0.04713877663016319, 0.02422456629574299, -0.0771479606628418, 0.024845026433467865, 0.026651352643966675, 0.29247045516967773, 0.028861772269010544, -0.25994083285331726, -0.07286671549081802, -0.016097143292427063, -0.04540233314037323, -0.06102359667420387, 0.007771589793264866, 0.1338430941104889, -0.13963447511196136, 0.0529630184173584, -0.07869863510131836, 0.08846183121204376, -0.04458434507250786, 0.01227550208568573, 0.0467037707567215, 0.1505051553249359, -0.018720710650086403, 0.05241619423031807, -0.19925539195537567, 0.25300416350364685, 0.020355602726340294, 0.10675131529569626, -0.0648033395409584, 0.01085782889276743, 0.019556475803256035, 0.00994318351149559, 0.11252721399068832, 0.002874798374250531, -0.06662122160196304, -0.14662882685661316, -0.09038406610488892, 0.04603823646903038, 0.14171481132507324, -0.03918446972966194, 0.0896482914686203, -0.028244780376553535, 0.0116727901622653, 0.030167005956172943, -0.04167325422167778, -0.15288735926151276, -0.07765644043684006, 0.0007307216292247176, 0.013703441247344017, -0.006906373891979456, -0.06105382367968559, -0.10547274351119995, -0.018252328038215637, 0.1113412007689476, 0.00006283808761509135, -0.057527992874383926, -0.15429633855819702, 0.08308181166648865, 0.14175809919834137, -0.05468286573886871, 0.011983558535575867, 0.0174451544880867, 0.11442701518535614, 0.02922496572136879, -0.08063679933547974, 0.06494408845901489, -0.05707390606403351, -0.18198031187057495, -0.05563778802752495, 0.12217076867818832, 0.08308536559343338, 0.04953841120004654, -0.0007766443304717541, 0.05402345582842827, 0.002691591391339898, -0.09526845067739487, 0.04064371436834335, 0.0012294019106775522, 0.043598588556051254, 0.017559250816702843, -0.08401715010404587, 0.09534578770399094, -0.03801833093166351, 0.009829304181039333, 0.1278378665447235, 0.21303562819957733, -0.10714848339557648, 0.1146843358874321, 0.08603032678365707, -0.07394059747457504, -0.16609394550323486, 0.0618150420486927, 0.13065573573112488, 0.008444413542747498, 0.08641283214092255, -0.21261560916900635, 0.12407371401786804, 0.10221488028764725, -0.013021995313465595, 0.006926980800926685, -0.2764972746372223, -0.13088911771774292, 0.05886385962367058, 0.11234325915575027, 0.03987109661102295, -0.11433054506778717, -0.033078256994485855, -0.006621073465794325, -0.10067925602197647, 0.11433276534080505, -0.0727778822183609, 0.11393425613641739, -0.019824348390102386, 0.11758676916360855, 0.02586887963116169, -0.03429402410984039, 0.10797643661499023, 0.06243825703859329, 0.08761052787303925, -0.036921802908182144, 0.006778469309210777, 0.05918342247605324, -0.05921797454357147, 0.02755899354815483, -0.042145080864429474, 0.06734944134950638, -0.14694686233997345, 0.006234204396605492, -0.0883101373910904, 0.05349801480770111, -0.04657716304063797, -0.0718565508723259, -0.01712770201265812, 0.053831491619348526, 0.0695657879114151, -0.04133514687418938, 0.02986242063343525, -0.001773547031916678, 0.10025010257959366, 0.10453224182128906, 0.0821482315659523, -0.024079373106360435, -0.08665788173675537, 0.013120617717504501, 0.0032291014213114977, 0.05480360612273216, -0.09633953124284744, 0.013564685359597206, 0.14178301393985748, 0.06528331339359283, 0.09588593244552612, 0.04657083377242088, -0.043405383825302124, 0.00475613446906209, 0.013962852768599987, -0.13239267468452454, -0.1047205924987793, 0.025173287838697433, -0.041956376284360886, -0.15196478366851807, 0.028375068679451942, 0.11943445354700089, -0.040482327342033386, -0.021623220294713974, -0.0053749349899590015, 0.004563795402646065, -0.012303372845053673, 0.1845642626285553, 0.04499790444970131, 0.06347257643938065, -0.09062759578227997, 0.11139783263206482, 0.03418373689055443, -0.05115336924791336, 0.05361945554614067, 0.06696061789989471, -0.10414858162403107, 0.010273130610585213, 0.08203082531690598, 0.1315595656633377, -0.054287537932395935, -0.011175893247127533, -0.09570195525884628, -0.08463986963033676, 0.04147370904684067, 0.13650448620319366, 0.055550478398799896, -0.0023423251695930958, -0.06456848978996277, 0.03626854345202446, -0.12008275836706161, 0.06918267905712128, 0.04862750694155693, 0.07601187378168106, -0.10102816671133041, 0.13265137374401093, -0.0022647844161838293, 0.027429409325122833, -0.026714520528912544, 0.013987070880830288, -0.09962242841720581, -0.024237144738435745, -0.10596342384815216, -0.02389344573020935, -0.01182500272989273, -0.0013799945591017604, -0.02275564707815647, -0.06924746185541153, -0.02834361232817173, 0.03941652551293373, -0.0793771967291832, -0.04802684485912323, 0.016749538481235504, 0.036195892840623856, -0.1537725180387497, 0.0032419227063655853, 0.025411726906895638, -0.08931508660316467, 0.08939727395772934, 0.062051527202129364, 0.012408275157213211, 0.025203866884112358, -0.11915651708841324, -0.030160320922732353, -0.009577061980962753, 0.0038632042706012726, 0.06866683810949326, -0.09444645792245865, -0.028785066679120064, -0.03593182936310768, 0.04116680100560188, 0.019611921161413193, 0.10246321558952332, -0.12023338675498962, -0.0038241324946284294, -0.037825535982847214, -0.03964005783200264, -0.06492532044649124, 0.03671132028102875, 0.10676530003547668, 0.05306214466691017, 0.15178239345550537, -0.076932892203331, 0.055547405034303665, -0.19916950166225433, -0.038122352212667465, 0.011855600401759148, -0.046867307275533676, -0.08159323036670685, -0.047023531049489975, 0.08858757466077805, -0.047693055123090744, 0.11232573539018631, -0.012616017833352089, 0.10173599421977997, 0.04405728355050087, -0.010954853147268295, -0.06474611908197403, -0.005829334259033203, 0.18136700987815857, 0.05192524567246437, -0.01787327416241169, 0.1272917240858078, 0.0037292679771780968, 0.02880581095814705, 0.08701644092798233, 0.22108076512813568, 0.1543562114238739, 0.0007731053628958762, 0.06257005035877228, 0.060904957354068756, -0.06858396530151367, -0.14816617965698242, 0.12042725831270218, -0.018859636038541794, 0.10575900971889496, -0.06609249114990234, 0.18923458456993103, 0.038057852536439896, -0.1797941029071808, 0.06446538865566254, -0.0255359448492527, -0.10895445197820663, -0.11870136857032776, -0.027056032791733742, -0.07106699794530869, -0.12195707857608795, 0.025325942784547806, -0.11772984266281128, 0.06141532212495804, 0.1054912656545639, 0.008184041827917099, 0.03828497976064682, 0.1835719645023346, -0.04679412767291069, 0.013108811341226101, 0.08425630629062653, 0.01855018362402916, 0.00312166940420866, -0.03966115787625313, -0.06404328346252441, 0.03651207685470581, 0.03436167910695076, 0.06365141272544861, -0.04874838888645172, 0.004494741093367338, 0.004145178943872452, -0.008091290481388569, -0.07621175795793533, 0.01127624325454235, 0.009557772427797318, 0.05178767815232277, 0.04666953533887863, 0.04795358330011368, 0.006117988843470812, -0.055266812443733215, 0.2935585081577301, -0.06950393319129944, -0.06928805261850357, -0.12899768352508545, 0.21792219579219818, 0.02444140426814556, -0.025482622906565666, 0.05573158338665962, -0.08713133633136749, -0.013798542320728302, 0.1629212498664856, 0.1380762755870819, -0.08906785398721695, -0.015645727515220642, -0.02403336949646473, -0.010803325101733208, -0.013993542641401291, 0.11508694291114807, 0.07505455613136292, -0.011795572936534882, -0.07080341875553131, -0.01157066784799099, -0.028005894273519516, -0.056180957704782486, -0.06815239787101746, 0.06927003711462021, 0.028580917045474052, -0.009244512766599655, -0.06467609852552414, 0.06738858669996262, -0.0002421366807539016, -0.23320819437503815, 0.04159238561987877, -0.17384026944637299, -0.16980096697807312, -0.01955832727253437, 0.07129224389791489, 0.00490653607994318, 0.05640314891934395, 0.0011986519675701857, 0.0237982627004385, 0.11342720687389374, -0.013543475419282913, -0.0027085868641734123, -0.11584464460611343, 0.11516474932432175, -0.10242379456758499, 0.20009301602840424, -0.00691541051492095, 0.057743415236473083, 0.0962427482008934, 0.03755711019039154, -0.13771235942840576, 0.022429121658205986, 0.06336719542741776, -0.12722130119800568, -0.0038164921570569277, 0.14957647025585175, -0.030333824455738068, 0.06320864707231522, 0.026567237451672554, -0.1469048112630844, 0.002736880676820874, 0.01726686954498291, -0.03503181412816048, -0.06961428374052048, -0.006599768064916134, -0.05048026889562607, 0.16483399271965027, 0.21629598736763, -0.029650242999196053, 0.008214427158236504, -0.09129627794027328, 0.012287416495382786, 0.04627154394984245, 0.051841337233781815, -0.04054822772741318, -0.2056799829006195, 0.015381529927253723, 0.07216877490282059, -0.005753830075263977, -0.19655917584896088, -0.09590291976928711, 0.046959683299064636, -0.0406106635928154, -0.04275667294859886, 0.09260381013154984, 0.022102534770965576, 0.0406857468187809, -0.013435359112918377, -0.1154397502541542, -0.021631993353366852, 0.13972701132297516, -0.17545630037784576, -0.03263207525014877 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-8 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-8
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-8 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09824010729789734, 0.10852237045764923, -0.0023614116944372654, 0.0961272120475769, 0.12146648019552231, 0.016354992985725403, 0.09847044944763184, 0.1304052770137787, -0.10440272837877274, 0.06788332760334015, 0.08757714182138443, 0.03416566550731659, 0.04371022805571556, 0.1487341970205307, -0.006712010595947504, -0.2734770178794861, -0.0005137796397320926, 0.00031895647407509387, -0.03999117761850357, 0.1202917993068695, 0.08822812139987946, -0.11062804609537125, 0.07692890614271164, 0.009765959344804287, -0.1542588621377945, 0.019567538052797318, -0.03161955624818802, -0.0362950935959816, 0.12247056514024734, -0.036699507385492325, 0.10688630491495132, 0.029895098879933357, 0.1370626837015152, -0.20819012820720673, 0.006441728211939335, 0.07664965093135834, 0.05225919187068939, 0.09997865557670593, 0.046067818999290466, 0.011218865402042866, 0.08829407393932343, -0.14914953708648682, 0.09286099672317505, 0.029558397829532623, -0.09123373031616211, -0.15164680778980255, -0.09170422703027725, 0.03152851015329361, 0.0499463826417923, 0.07185624539852142, 0.002952634822577238, 0.14883917570114136, -0.06314825266599655, 0.08444759994745255, 0.2635583281517029, -0.3221454620361328, -0.06687910854816437, 0.02977803163230419, 0.0566386803984642, 0.061354123055934906, -0.11943139135837555, -0.003081127069890499, 0.01992526464164257, 0.028096148744225502, 0.12706758081912994, -0.01677887514233589, -0.11013122648000717, -0.009878215380012989, -0.12469736486673355, -0.00238270522095263, 0.05955313891172409, 0.02650885470211506, -0.053213778883218765, -0.10689175128936768, -0.068299300968647, -0.0852513313293457, -0.022465167567133904, -0.055796656757593155, 0.05103614181280136, -0.05497314780950546, -0.09625295549631119, -0.039651721715927124, -0.05737995356321335, -0.07972181588411331, -0.0076492768712341785, 0.16579416394233704, 0.036086536943912506, 0.02016415446996689, -0.02972560003399849, 0.11810922622680664, 0.019422447308897972, -0.13966472446918488, -0.009003405459225178, -0.0037779470440000296, -0.09335912764072418, -0.04151714965701103, -0.05318174511194229, -0.013015502132475376, 0.004646629095077515, 0.16750289499759674, -0.08137880265712738, 0.07468588650226593, 0.014202606864273548, -0.023664627224206924, -0.012685463763773441, 0.15216705203056335, -0.04011838510632515, -0.038160767406225204, -0.016501091420650482, 0.08012768626213074, 0.003974823746830225, -0.019461339339613914, -0.06728533655405045, -0.02843385376036167, 0.09521313011646271, 0.055296849459409714, -0.06303960829973221, 0.03853297233581543, -0.029919913038611412, -0.0262122955173254, 0.019240252673625946, -0.11921004205942154, 0.041588012129068375, -0.0039930278435349464, -0.08154959976673126, -0.007931300438940525, -0.0016312351217493415, -0.008584285154938698, -0.010862943716347218, 0.09779959172010422, -0.08655522763729095, -0.00013919624325353652, -0.06954233348369598, -0.08042227476835251, -0.0002143920719390735, -0.15624897181987762, -0.013287866488099098, -0.05968109145760536, -0.16604004800319672, -0.033371422439813614, 0.04360165446996689, -0.07530829310417175, -0.012571039609611034, -0.043172962963581085, -0.06143655627965927, 0.01693127676844597, -0.013437839224934578, 0.19097822904586792, -0.05251527205109596, 0.08088421821594238, -0.006980387959629297, 0.05023806914687157, 0.026018233969807625, 0.035954758524894714, -0.10299649089574814, 0.027897607535123825, -0.1398090422153473, 0.07699061930179596, -0.08508556336164474, -0.004544656258076429, -0.13611921668052673, -0.10212813317775726, 0.015178250148892403, -0.019922111183404922, 0.0943581834435463, 0.13359251618385315, -0.19834677875041962, -0.018585653975605965, 0.12454827129840851, -0.07606103271245956, -0.05198553577065468, 0.0612458698451519, -0.06174185127019882, 0.04096708446741104, 0.05168279632925987, 0.21233060956001282, 0.056678406894207, -0.15615534782409668, -0.010563304647803307, 0.006543274037539959, 0.04583970829844475, 0.025326481088995934, 0.03744100406765938, 0.0038887201808393, 0.058428049087524414, 0.01627550832927227, -0.08889822661876678, -0.02443018928170204, -0.090047188103199, -0.06661690026521683, -0.05065886303782463, -0.07515131682157516, 0.054470378905534744, 0.00890718400478363, 0.04129205644130707, -0.06513811647891998, -0.10348621010780334, 0.11418674886226654, 0.09534323215484619, -0.05156811699271202, 0.03824787586927414, -0.0803450271487236, 0.013133966363966465, -0.005095975939184427, -0.03563631698489189, -0.21130940318107605, -0.11575519293546677, 0.05149788409471512, -0.04422564059495926, 0.024964116513729095, 0.003465467132627964, 0.08354286849498749, 0.05588360130786896, -0.05082521587610245, -0.01502190250903368, -0.09656331688165665, 0.0017183359013870358, -0.11534050107002258, -0.18973691761493683, -0.08563106507062912, -0.042609915137290955, 0.09261206537485123, -0.16876618564128876, -0.0048045869916677475, 0.021470138803124428, 0.13712987303733826, 0.027160191908478737, -0.06741118431091309, 0.0012868152698501945, 0.04710148274898529, 0.013266452588140965, -0.09664461761713028, 0.05496962368488312, 0.012892769649624825, -0.10384267568588257, -0.048561710864305496, -0.1322752833366394, -0.017715901136398315, 0.053405847400426865, 0.0600610226392746, -0.10406305640935898, -0.060366515070199966, -0.07235373556613922, -0.03770189732313156, -0.07767811417579651, 0.02266267128288746, 0.2132357507944107, 0.038789164274930954, 0.11337602138519287, -0.06510482728481293, -0.08355726301670074, -0.006973559036850929, 0.02647239714860916, 0.02294851839542389, 0.08544372767210007, 0.02372632548213005, -0.03701313957571983, 0.06794285029172897, 0.10198944061994553, -0.026941437274217606, 0.13183671236038208, -0.055688269436359406, -0.08077758550643921, -0.030794139951467514, -0.021144118160009384, -0.02552795223891735, 0.12931475043296814, -0.029011111706495285, -0.00022694618382956833, 0.03451074659824371, 0.03820760175585747, 0.011363593861460686, -0.1691731959581375, 0.0024727655109018087, 0.02831152081489563, -0.05487552285194397, -0.039980992674827576, -0.006924461107701063, 0.020688779652118683, 0.0880577340722084, 0.02970636822283268, -0.008356808684766293, 0.009212225675582886, -0.010974249802529812, -0.05884597450494766, 0.1879332959651947, -0.09575094282627106, -0.080895334482193, -0.07231607288122177, 0.02143101766705513, -0.05074211210012436, -0.03896178677678108, 0.00877514760941267, -0.09268976747989655, -0.02931782230734825, -0.08883630484342575, -0.028582952916622162, -0.019007939845323563, 0.01927812397480011, 0.02451574243605137, -0.017123185098171234, 0.0855465903878212, -0.1378442645072937, 0.00523868203163147, -0.04866153001785278, -0.09460098296403885, 0.009407691657543182, 0.07601554691791534, 0.09277903288602829, 0.08220183104276657, -0.01990104280412197, 0.02780437283217907, -0.03875650838017464, 0.23239193856716156, -0.05299743637442589, 0.012914996594190598, 0.11489206552505493, -0.011213831603527069, 0.05514400452375412, 0.09227815270423889, 0.03845929726958275, -0.0906972736120224, 0.023702019825577736, 0.07669460773468018, -0.03837593272328377, -0.22603102028369904, -0.018405433744192123, -0.0009054155671037734, -0.0764288678765297, 0.10740789026021957, 0.03226090222597122, -0.049241505563259125, 0.04493759199976921, 0.02339206263422966, -0.008466150611639023, -0.04629351198673248, 0.07443497329950333, 0.07106408476829529, 0.05159209296107292, 0.10618256777524948, -0.005214238073676825, -0.026585964486002922, 0.05530901998281479, 0.016699524596333504, 0.252509206533432, -0.04384060949087143, 0.10207997262477875, 0.03114939108490944, 0.15465694665908813, -0.020263876765966415, 0.06740543246269226, 0.0007595119532197714, -0.010512019507586956, -0.011281191371381283, -0.0657908171415329, -0.02522103860974312, 0.017828319221735, -0.04771207645535469, 0.02458762191236019, -0.07739461213350296, 0.025637304410338402, 0.026363486424088478, 0.2919926345348358, 0.02867516502737999, -0.2602238357067108, -0.07317081838846207, -0.01642894372344017, -0.045219194144010544, -0.06157715991139412, 0.007720655761659145, 0.1346818059682846, -0.13923867046833038, 0.05247126892209053, -0.07796163111925125, 0.08859840035438538, -0.045710571110248566, 0.012683862820267677, 0.045837756246328354, 0.15041868388652802, -0.01840984635055065, 0.05272525176405907, -0.1999647468328476, 0.251355916261673, 0.020699286833405495, 0.10706555843353271, -0.06521369516849518, 0.011405936442315578, 0.01912611909210682, 0.011728663928806782, 0.1116592064499855, 0.0033119709696620703, -0.06535285711288452, -0.14812178909778595, -0.09069129824638367, 0.04606449604034424, 0.1404189020395279, -0.03760482743382454, 0.08927645534276962, -0.02834326960146427, 0.011807802133262157, 0.030474552884697914, -0.04082547128200531, -0.15281443297863007, -0.07843762636184692, 0.00025196492788381875, 0.015001139603555202, -0.00660703657194972, -0.06081756576895714, -0.1050911396741867, -0.019677693024277687, 0.11156310886144638, 0.0009344826685264707, -0.05777885764837265, -0.15429088473320007, 0.08364039659500122, 0.14088228344917297, -0.05487058684229851, 0.011781272478401661, 0.017415011301636696, 0.11455637961626053, 0.02895430289208889, -0.07975535839796066, 0.06498999148607254, -0.05684075132012367, -0.18101926147937775, -0.05600403621792793, 0.1212652325630188, 0.08261659741401672, 0.04970153793692589, -0.00032814181759022176, 0.05371944606304169, 0.0025543055962771177, -0.09530635923147202, 0.03937770798802376, 0.0018072595121338964, 0.042633362114429474, 0.01741929166018963, -0.08403463661670685, 0.09635206311941147, -0.037674833089113235, 0.010036366060376167, 0.12903524935245514, 0.21257877349853516, -0.10750790685415268, 0.11382166296243668, 0.08687609434127808, -0.07383059710264206, -0.16575828194618225, 0.06131347268819809, 0.1300634890794754, 0.00850024912506342, 0.08653620630502701, -0.21204183995723724, 0.12412106990814209, 0.10325278341770172, -0.01254283171147108, 0.006590924225747585, -0.27652743458747864, -0.13113215565681458, 0.059739600867033005, 0.11231810599565506, 0.04219629615545273, -0.11492308974266052, -0.03297875076532364, -0.007429268676787615, -0.1020054891705513, 0.11342855542898178, -0.07241076976060867, 0.11372975260019302, -0.019636815413832664, 0.1160908192396164, 0.026013216003775597, -0.03450511395931244, 0.10838295519351959, 0.06311783939599991, 0.08757010102272034, -0.03717995807528496, 0.00714905047789216, 0.058996133506298065, -0.05936184152960777, 0.02842225879430771, -0.0420050285756588, 0.06737764179706573, -0.14877693355083466, 0.005952158942818642, -0.08697351813316345, 0.05402502045035362, -0.04626080393791199, -0.07222477346658707, -0.016985241323709488, 0.05269724503159523, 0.06945329904556274, -0.041180551052093506, 0.030947452411055565, -0.0013992772437632084, 0.0994822084903717, 0.10614018142223358, 0.08061618357896805, -0.02744927443563938, -0.08684127032756805, 0.01312428992241621, 0.003014507470652461, 0.05517769232392311, -0.09593547880649567, 0.014105824753642082, 0.14195555448532104, 0.06527986377477646, 0.09617653489112854, 0.04556196182966232, -0.042803309857845306, 0.004837207030504942, 0.013430070132017136, -0.13220791518688202, -0.10387367755174637, 0.02458983100950718, -0.04231617599725723, -0.15142682194709778, 0.027362745255231857, 0.1200190857052803, -0.04125307500362396, -0.02095073089003563, -0.005657557863742113, 0.0032286434434354305, -0.012261949479579926, 0.18416300415992737, 0.045630957931280136, 0.0632660910487175, -0.0905323326587677, 0.11092531681060791, 0.03469163924455643, -0.05025535821914673, 0.054036322981119156, 0.06645556539297104, -0.10447248071432114, 0.010078540071845055, 0.08210084587335587, 0.13151121139526367, -0.05513964965939522, -0.012275880202651024, -0.0963023453950882, -0.08362074941396713, 0.04106469079852104, 0.13524964451789856, 0.055941566824913025, -0.002695081988349557, -0.0648917704820633, 0.03548770397901535, -0.12027870863676071, 0.06862948834896088, 0.04825175553560257, 0.0762975662946701, -0.10126758366823196, 0.1340554803609848, -0.0015350370667874813, 0.02737746387720108, -0.026659080758690834, 0.013514168560504913, -0.09966377168893814, -0.02394731529057026, -0.10742637515068054, -0.023688672110438347, -0.01172523945569992, -0.000929660105612129, -0.02279786579310894, -0.06893757730722427, -0.028337467461824417, 0.03930240124464035, -0.07865958660840988, -0.04783293604850769, 0.017138969153165817, 0.035812605172395706, -0.15327434241771698, 0.0029041022062301636, 0.025044593960046768, -0.08919725567102432, 0.08973462134599686, 0.061477553099393845, 0.011942467652261257, 0.024812811985611916, -0.11935862898826599, -0.03007989376783371, -0.009557941928505898, 0.0048003848642110825, 0.06869850307703018, -0.0927712619304657, -0.027941865846514702, -0.035475559532642365, 0.04106893017888069, 0.0194905586540699, 0.10293392837047577, -0.12043556571006775, -0.0036968619097024202, -0.037623897194862366, -0.03970753028988838, -0.06540181487798691, 0.036680854856967926, 0.10647016018629074, 0.05226289480924606, 0.15174667537212372, -0.07682304084300995, 0.055373694747686386, -0.1994360238313675, -0.03837583214044571, 0.012146315537393093, -0.046578045934438705, -0.08140677958726883, -0.047969236969947815, 0.0882977768778801, -0.047105953097343445, 0.11414601653814316, -0.01256234385073185, 0.10230106115341187, 0.043591685593128204, -0.011626205407083035, -0.06463932991027832, -0.006569638382643461, 0.18235360085964203, 0.05311482399702072, -0.01785755716264248, 0.12642551958560944, 0.00405671214684844, 0.029927588999271393, 0.08640284836292267, 0.21854513883590698, 0.15430505573749542, 0.000002906289182647015, 0.06261012703180313, 0.06066626310348511, -0.06802976131439209, -0.14829115569591522, 0.12009426951408386, -0.01900664158165455, 0.10616936534643173, -0.06602416187524796, 0.1891307830810547, 0.0380856953561306, -0.17965683341026306, 0.06417183578014374, -0.024851230904459953, -0.10918393731117249, -0.11885406821966171, -0.026542074978351593, -0.0711381807923317, -0.1220606118440628, 0.02487204037606716, -0.11716145277023315, 0.060955774039030075, 0.10585851967334747, 0.0077101788483560085, 0.03810068592429161, 0.18292950093746185, -0.04680835083127022, 0.013512082397937775, 0.08387923985719681, 0.018366500735282898, 0.003465288784354925, -0.040830351412296295, -0.06488717347383499, 0.036450471729040146, 0.03444765508174896, 0.06421016156673431, -0.048814740031957626, 0.006444588303565979, 0.004559635184705257, -0.00777240376919508, -0.07669566571712494, 0.011205854825675488, 0.008900020271539688, 0.05149940401315689, 0.04540235549211502, 0.04821287468075752, 0.00624112319201231, -0.05547311156988144, 0.291853666305542, -0.06880838423967361, -0.06998316198587418, -0.1289091855287552, 0.21688275039196014, 0.02487240545451641, -0.02518347091972828, 0.055704351514577866, -0.08706676959991455, -0.013114796951413155, 0.16317118704319, 0.13742859661579132, -0.08980634808540344, -0.01561492495238781, -0.023670362308621407, -0.010929194279015064, -0.015107672661542892, 0.1156994104385376, 0.07523074001073837, -0.012933430261909962, -0.07001171261072159, -0.011739818379282951, -0.028181470930576324, -0.05616436153650284, -0.06943150609731674, 0.06851431727409363, 0.028787653893232346, -0.008506163023412228, -0.06423886120319366, 0.0668281763792038, 0.000672591442707926, -0.2337201088666916, 0.04187135025858879, -0.1741233915090561, -0.1696421504020691, -0.019399819895625114, 0.07156472653150558, 0.005107779521495104, 0.0560234934091568, 0.0012853244552388787, 0.02419327013194561, 0.11419381946325302, -0.013803116977214813, -0.0031981454230844975, -0.1145891398191452, 0.11447469890117645, -0.10116930305957794, 0.19979128241539001, -0.0068757254630327225, 0.0584847554564476, 0.09622032195329666, 0.03795112669467926, -0.1368536651134491, 0.022777311503887177, 0.0630507692694664, -0.12616237998008728, -0.00411027017980814, 0.14796218276023865, -0.03033408895134926, 0.06309903413057327, 0.027046358212828636, -0.14667309820652008, 0.001997576327994466, 0.016145315021276474, -0.03503915295004845, -0.06921783834695816, -0.008163757622241974, -0.04985172674059868, 0.1648663729429245, 0.21542026102542877, -0.029401766136288643, 0.007565552368760109, -0.09138200432062149, 0.012111099436879158, 0.04683655500411987, 0.05168560519814491, -0.040783267468214035, -0.20542652904987335, 0.015892822295427322, 0.07202686369419098, -0.005544777028262615, -0.19626641273498535, -0.09646060317754745, 0.046842873096466064, -0.04108588770031929, -0.04246840253472328, 0.09262087941169739, 0.022225182503461838, 0.041027285158634186, -0.013576498255133629, -0.11561396718025208, -0.022155432030558586, 0.13973359763622284, -0.1754245162010193, -0.03289424255490303 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-0 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-0
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-0 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 55, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09829450398683548, 0.09709472954273224, -0.0023748641833662987, 0.09156016260385513, 0.12394271045923233, 0.01850278116762638, 0.09246095269918442, 0.13024857640266418, -0.0999494343996048, 0.06923040002584457, 0.08870573341846466, 0.03368956968188286, 0.04199942946434021, 0.14071868360042572, -0.006002838723361492, -0.2772011160850525, -0.0002596975537016988, -0.003706175833940506, -0.05366656929254532, 0.12008771300315857, 0.08902724832296371, -0.10974354296922684, 0.07481221109628677, 0.008359597064554691, -0.15194760262966156, 0.016069604083895683, -0.030972126871347427, -0.03493021801114082, 0.12324855476617813, -0.026495778933167458, 0.10713408142328262, 0.028874337673187256, 0.1353640854358673, -0.21116790175437927, 0.007429519668221474, 0.07898002862930298, 0.05510524660348892, 0.09838856756687164, 0.0480228066444397, 0.010965046472847462, 0.10092318058013916, -0.14706513285636902, 0.09601375460624695, 0.030661506578326225, -0.09041936695575714, -0.15567126870155334, -0.08863934129476547, 0.027039121836423874, 0.050301216542720795, 0.07618563622236252, 0.0030996643472462893, 0.13339214026927948, -0.07225249707698822, 0.08580467104911804, 0.2523339092731476, -0.3111744821071625, -0.06795576959848404, 0.024350520223379135, 0.05988123267889023, 0.061243072152137756, -0.1256113052368164, -0.00219927285797894, 0.016566995531320572, 0.027417384088039398, 0.12401600182056427, -0.01151309721171856, -0.10456912964582443, -0.010505497455596924, -0.12198521941900253, -0.0023653602693229914, 0.061065103858709335, 0.028136085718870163, -0.04884110763669014, -0.10835133492946625, -0.06751483678817749, -0.08129175752401352, -0.022792557254433632, -0.050824593752622604, 0.04658236354589462, -0.05142145976424217, -0.09785826504230499, -0.04327040910720825, -0.059402044862508774, -0.08057490736246109, -0.007277751341462135, 0.17022627592086792, 0.03330274298787117, 0.01982766017317772, -0.031339868903160095, 0.116045281291008, 0.030325734987854958, -0.1387307196855545, -0.012037744745612144, -0.003799339523538947, -0.09745847433805466, -0.0396789014339447, -0.05566885322332382, -0.006864475551992655, 0.003276390954852104, 0.1661568135023117, -0.0729995146393776, 0.07436038553714752, 0.013745120726525784, -0.026483068242669106, -0.015286273322999477, 0.15417714416980743, -0.0422273650765419, -0.04430839791893959, -0.0158817358314991, 0.08128239959478378, -0.0026425018440932035, -0.022143801674246788, -0.06397894024848938, -0.02794981189072132, 0.09480508416891098, 0.05536995083093643, -0.05749930068850517, 0.03821466118097305, -0.027234885841608047, -0.02521583065390587, 0.01716623827815056, -0.11871006339788437, 0.04023775830864906, 0.0019828379154205322, -0.07648853957653046, -0.003357397625222802, 0.0014703919878229499, -0.010906987823545933, -0.005273409187793732, 0.1015372946858406, -0.08632826805114746, -0.005722635425627232, -0.0672631561756134, -0.07850954681634903, -0.0005475805955938995, -0.14295704662799835, -0.009658903814852238, -0.058331217616796494, -0.16144798696041107, -0.03709466755390167, 0.0434134267270565, -0.07516968250274658, -0.01489628292620182, -0.04355931654572487, -0.06277554482221603, 0.022985920310020447, -0.012216244824230671, 0.19996675848960876, -0.050778333097696304, 0.08402664214372635, -0.010646404698491096, 0.04827409237623215, 0.03059162013232708, 0.0391179695725441, -0.09678445756435394, 0.026123549789190292, -0.1342313587665558, 0.0845433846116066, -0.0853850468993187, -0.005219138693064451, -0.13642162084579468, -0.09844427555799484, 0.007242946419864893, -0.01893770322203636, 0.08920315653085709, 0.13415637612342834, -0.19564557075500488, -0.022524941712617874, 0.12490208446979523, -0.07416684180498123, -0.04458237439393997, 0.06338287889957428, -0.06437040120363235, 0.03737964481115341, 0.05381889268755913, 0.20694419741630554, 0.06055759638547897, -0.15066947042942047, -0.005676434841006994, 0.013170144520699978, 0.050663817673921585, 0.03132036700844765, 0.042664382606744766, 0.00023601159045938402, 0.0550103634595871, 0.013542641885578632, -0.09305332601070404, -0.02130136266350746, -0.09120544791221619, -0.06465001404285431, -0.04996037110686302, -0.07480007410049438, 0.0543956384062767, 0.010649765841662884, 0.037880294024944305, -0.05972130224108696, -0.10653219372034073, 0.11502379924058914, 0.09978044778108597, -0.055863380432128906, 0.03906576335430145, -0.0769185945391655, 0.01116734929382801, -0.0038733009714633226, -0.03406559303402901, -0.21272559463977814, -0.12396269291639328, 0.04721327871084213, -0.03601572662591934, 0.020830772817134857, 0.013075326569378376, 0.0851435735821724, 0.05634886026382446, -0.05296391621232033, -0.0136136244982481, -0.09887660294771194, 0.0024126488715410233, -0.11338751763105392, -0.1922667771577835, -0.08635653555393219, -0.04491455480456352, 0.09727583825588226, -0.1772645264863968, -0.009081882424652576, 0.02425404265522957, 0.13262638449668884, 0.026919230818748474, -0.06831099092960358, -0.0016476957825943828, 0.04284998029470444, 0.011741232126951218, -0.09664749354124069, 0.05455455929040909, 0.012735635042190552, -0.10712400078773499, -0.0439138300716877, -0.12687638401985168, -0.017154661938548088, 0.051978304982185364, 0.05918188765645027, -0.09949769824743271, -0.05839407071471214, -0.07463622838258743, -0.03769697621464729, -0.07913235574960709, 0.0162209365516901, 0.2130429446697235, 0.04039758816361427, 0.11060227453708649, -0.06199667230248451, -0.08216460794210434, -0.008113238029181957, 0.030373727902770042, 0.02389976568520069, 0.08985218405723572, 0.02248367667198181, -0.041860297322273254, 0.06725049018859863, 0.10312562435865402, -0.021209899336099625, 0.13064205646514893, -0.055199116468429565, -0.0843358114361763, -0.029768045991659164, -0.018706323578953743, -0.02536638081073761, 0.12479478865861893, -0.03747769817709923, 0.0017643835162743926, 0.035305462777614594, 0.040971215814352036, 0.011376630514860153, -0.16791924834251404, 0.0016571221640333533, 0.03130748122930527, -0.05632440373301506, -0.04331963509321213, -0.004136048723012209, 0.019503355026245117, 0.08694709837436676, 0.03139505907893181, -0.0014077842934057117, 0.006327543407678604, -0.013668672181665897, -0.056768905371427536, 0.19086022675037384, -0.09435328841209412, -0.07727131992578506, -0.07203851640224457, 0.017621172592043877, -0.04449982941150665, -0.036529023200273514, 0.006742802448570728, -0.09314153343439102, -0.029806287959218025, -0.08150076866149902, -0.019861403852701187, -0.027789393439888954, 0.019784731790423393, 0.02311587706208229, -0.018420955166220665, 0.07948871701955795, -0.13686521351337433, 0.007279909215867519, -0.0483705960214138, -0.09824427962303162, 0.00371549092233181, 0.07512085884809494, 0.09065482765436172, 0.08492626994848251, -0.013562934473156929, 0.024452820420265198, -0.039744358509778976, 0.23294122517108917, -0.05668725445866585, 0.011268511414527893, 0.11689258366823196, -0.015008814632892609, 0.051934026181697845, 0.0941966250538826, 0.03795351833105087, -0.09202925115823746, 0.023349199444055557, 0.07979975640773773, -0.03764800354838371, -0.2287396937608719, -0.015486096031963825, -0.007026387378573418, -0.08261334896087646, 0.10243735462427139, 0.032253559678792953, -0.04969998449087143, 0.04002884402871132, 0.0176689513027668, -0.010077378712594509, -0.0399315282702446, 0.06896892189979553, 0.07828939706087112, 0.04766857996582985, 0.10841953754425049, -0.004754399880766869, -0.01846490614116192, 0.05555367097258568, 0.014663849957287312, 0.2613676190376282, -0.041596587747335434, 0.10526077449321747, 0.03339599445462227, 0.14913256466388702, -0.02110118232667446, 0.06296171993017197, 0.000005264575065666577, -0.009774130769073963, -0.011987765319645405, -0.06228538602590561, -0.030059903860092163, 0.012834048829972744, -0.04294207692146301, 0.023014049977064133, -0.08152934908866882, 0.025812720879912376, 0.02255932427942753, 0.2857562303543091, 0.02885838784277439, -0.25348055362701416, -0.07792355120182037, -0.014467259868979454, -0.05054715648293495, -0.06046149134635925, 0.008442101068794727, 0.1377985179424286, -0.14013265073299408, 0.0456932932138443, -0.078079454600811, 0.08712978661060333, -0.050483036786317825, 0.011673958040773869, 0.051252007484436035, 0.14913587272167206, -0.018083129078149796, 0.0539836585521698, -0.19543537497520447, 0.2549082934856415, 0.017506862059235573, 0.10370160639286041, -0.06546631455421448, 0.012878094799816608, 0.02287215180695057, 0.01900799572467804, 0.1151588037610054, 0.0024757892824709415, -0.07071568071842194, -0.14554360508918762, -0.09112237393856049, 0.04720153659582138, 0.14134733378887177, -0.04586198180913925, 0.08946072310209274, -0.0371873639523983, 0.012788699008524418, 0.03662547469139099, -0.03497938811779022, -0.14704135060310364, -0.08744435012340546, -0.0002517788379918784, 0.00768678542226553, -0.006600075867027044, -0.0617462582886219, -0.10525048524141312, -0.010622957721352577, 0.10517159104347229, 0.0022025874350219965, -0.054598696529865265, -0.15850727260112762, 0.08790872246026993, 0.14379872381687164, -0.05814240500330925, 0.01227859128266573, 0.015289084985852242, 0.11266247183084488, 0.03557859733700752, -0.07858686149120331, 0.06164899095892906, -0.06184162572026253, -0.18080227077007294, -0.055979035794734955, 0.12299884110689163, 0.08232495188713074, 0.04968076944351196, -0.0012358573731034994, 0.05160876363515854, 0.0001530001754872501, -0.09616357833147049, 0.03419682756066322, 0.008977126330137253, 0.03563252463936806, 0.016468103975057602, -0.08681429177522659, 0.09785570204257965, -0.036231521517038345, 0.009237932972609997, 0.12988293170928955, 0.20820008218288422, -0.10587359964847565, 0.11397287249565125, 0.08576204627752304, -0.07349364459514618, -0.16757242381572723, 0.060031257569789886, 0.13010361790657043, 0.011916718445718288, 0.08351290971040726, -0.2135182023048401, 0.12254373729228973, 0.10011760145425797, -0.011204574257135391, 0.010728719644248486, -0.2787013649940491, -0.1289641410112381, 0.058358658105134964, 0.10874481499195099, 0.04116152226924896, -0.11757323890924454, -0.03598697856068611, -0.004132296424359083, -0.09288942068815231, 0.11226142942905426, -0.07156509160995483, 0.11553532630205154, -0.016276372596621513, 0.1110759899020195, 0.025928610935807228, -0.03070804476737976, 0.10910791158676147, 0.059306807816028595, 0.08000384271144867, -0.03521817550063133, 0.0078065223060548306, 0.054410967975854874, -0.056064702570438385, 0.014879070222377777, -0.043573785573244095, 0.0670648142695427, -0.15026451647281647, -0.00017584467423148453, -0.09225495904684067, 0.05082296207547188, -0.04901030287146568, -0.07184378057718277, -0.015213582664728165, 0.05396602302789688, 0.07536239922046661, -0.039690084755420685, 0.027745697647333145, -0.007098501548171043, 0.09872179478406906, 0.09533385932445526, 0.08033160120248795, -0.016871435567736626, -0.09274943172931671, 0.011811889708042145, 0.004651019815355539, 0.054785970598459244, -0.10518359392881393, 0.014331430196762085, 0.13745944201946259, 0.06596256792545319, 0.09558582305908203, 0.04761115461587906, -0.04030551016330719, 0.0031661950051784515, 0.013401472009718418, -0.1216253861784935, -0.11296777427196503, 0.024021228775382042, -0.045097555965185165, -0.15430141985416412, 0.020701756700873375, 0.11979275941848755, -0.04021970555186272, -0.01736251451075077, -0.007338900119066238, 0.00549387326464057, -0.013216356746852398, 0.1844644993543625, 0.04561168700456619, 0.06294871866703033, -0.08802932500839233, 0.10747586935758591, 0.03625423461198807, -0.05358898639678955, 0.05076829344034195, 0.06321705877780914, -0.10338647663593292, 0.008664434775710106, 0.07594799995422363, 0.12500403821468353, -0.048326801508665085, -0.009704707190394402, -0.08851394802331924, -0.08485639840364456, 0.042230378836393356, 0.1326042264699936, 0.05337066203355789, 0.00009620092896511778, -0.07080680131912231, 0.041788939386606216, -0.11838442087173462, 0.07159547507762909, 0.044907476752996445, 0.06960581243038177, -0.09989722818136215, 0.13058273494243622, -0.00104982138145715, 0.025753304362297058, -0.026054617017507553, 0.014590050093829632, -0.09628821909427643, -0.024093881249427795, -0.10677645355463028, -0.024793002754449844, -0.00908924825489521, 0.0006698721554130316, -0.022183286026120186, -0.07486563920974731, -0.02737783081829548, 0.038325559347867966, -0.07603303343057632, -0.05022304132580757, 0.014235859736800194, 0.040472619235515594, -0.15180857479572296, 0.0018059647409245372, 0.02957422286272049, -0.09364920854568481, 0.09121572226285934, 0.06314271688461304, 0.014281290583312511, 0.026756778359413147, -0.11503738909959793, -0.02834232896566391, -0.011533851735293865, 0.005454335827380419, 0.06556101888418198, -0.09799706935882568, -0.02698635309934616, -0.0393732413649559, 0.04502980038523674, 0.017895784229040146, 0.09861602634191513, -0.11793851107358932, -0.004356529098004103, -0.03805458918213844, -0.04148922488093376, -0.06260739266872406, 0.035604141652584076, 0.10236096382141113, 0.05456843972206116, 0.14917774498462677, -0.07396338880062103, 0.059147708117961884, -0.2014572024345398, -0.03554864227771759, 0.010959709994494915, -0.043902330100536346, -0.08310866355895996, -0.051653724163770676, 0.0894385278224945, -0.04475979506969452, 0.1055169478058815, -0.01977592706680298, 0.11036589741706848, 0.043405961245298386, -0.010404085740447044, -0.06077183037996292, -0.006653591524809599, 0.18825259804725647, 0.05872873216867447, -0.01642971858382225, 0.13021700084209442, -0.0009114417480304837, 0.029481718316674232, 0.08620315790176392, 0.22541333734989166, 0.16145873069763184, 0.0018557613948360085, 0.06350503861904144, 0.06005939096212387, -0.07304099947214127, -0.15223416686058044, 0.11752483248710632, -0.020217349752783775, 0.10296063125133514, -0.06743332743644714, 0.19007304310798645, 0.040206748992204666, -0.1836308091878891, 0.06469570845365524, -0.02595364861190319, -0.11042958498001099, -0.12247905135154724, -0.024875793606042862, -0.06884387135505676, -0.12045957148075104, 0.023577073588967323, -0.11714135110378265, 0.06331629306077957, 0.10144171118736267, 0.009307043626904488, 0.03833242505788803, 0.18466633558273315, -0.045757874846458435, 0.010029518976807594, 0.0831124410033226, 0.020250804722309113, 0.0058133648708462715, -0.044967085123062134, -0.06668685376644135, 0.035016581416130066, 0.03314737230539322, 0.06302117556333542, -0.0508153960108757, -0.000256241241004318, 0.00927953515201807, -0.007686547003686428, -0.07739683240652084, 0.010796301066875458, 0.009850588627159595, 0.05398297682404518, 0.052293162792921066, 0.04580262303352356, 0.006443222053349018, -0.053517088294029236, 0.2983665466308594, -0.06966891139745712, -0.0696927160024643, -0.12986880540847778, 0.2064570188522339, 0.02238611876964569, -0.02239811420440674, 0.054006192833185196, -0.08429910987615585, -0.01551196537911892, 0.17259633541107178, 0.1326870620250702, -0.09337177127599716, -0.015707965940237045, -0.014484062790870667, -0.009782547131180763, -0.013836028054356575, 0.11654354631900787, 0.07643810659646988, -0.009699365124106407, -0.068518728017807, -0.018624652177095413, -0.02139252796769142, -0.056236062198877335, -0.06187541037797928, 0.07042807340621948, 0.025008324533700943, -0.007475970778614283, -0.0627015009522438, 0.0689878910779953, -0.002292902674525976, -0.24411946535110474, 0.04318203404545784, -0.17273321747779846, -0.16982179880142212, -0.026618897914886475, 0.07267650216817856, 0.005819874815642834, 0.05734208971261978, 0.0024809781461954117, 0.019324084743857384, 0.12289246916770935, -0.012346675619482994, -0.0030295527540147305, -0.1102660521864891, 0.11780577152967453, -0.08429649472236633, 0.198884055018425, -0.006909064017236233, 0.052365370094776154, 0.09687831997871399, 0.04159923270344734, -0.13862600922584534, 0.017034703865647316, 0.06583819538354874, -0.13056083023548126, -0.0025255181826651096, 0.14883096516132355, -0.03315158933401108, 0.0626278892159462, 0.026946749538183212, -0.15295055508613586, 0.007992030121386051, 0.015190577134490013, -0.038065824657678604, -0.06666766107082367, -0.008258827961981297, -0.051190972328186035, 0.16701337695121765, 0.21903640031814575, -0.029040953144431114, 0.004551206715404987, -0.08952679485082626, 0.01005101203918457, 0.04498061537742615, 0.06344200670719147, -0.042804013937711716, -0.20480483770370483, 0.011168856173753738, 0.06455040723085403, -0.004792249761521816, -0.19365116953849792, -0.09895007312297821, 0.053268298506736755, -0.040050212293863297, -0.0418836772441864, 0.09559036046266556, 0.019308244809508324, 0.036889854818582535, -0.011973610147833824, -0.11847561597824097, -0.020931990817189217, 0.139374241232872, -0.1775072067975998, -0.028783900663256645 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-10 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-10
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-10 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 55, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09905190020799637, 0.09672187268733978, -0.002308567287400365, 0.09113916009664536, 0.12371189892292023, 0.018570708110928535, 0.09283178299665451, 0.12922386825084686, -0.0988721027970314, 0.0679488331079483, 0.08751877397298813, 0.034546103328466415, 0.04232078790664673, 0.14203961193561554, -0.005110401660203934, -0.27809467911720276, -0.0005122079164721072, -0.0030658382456749678, -0.05198236182332039, 0.11984632909297943, 0.08941325545310974, -0.10977775603532791, 0.07391153275966644, 0.008298934437334538, -0.15137608349323273, 0.01652933843433857, -0.03124571032822132, -0.03457918018102646, 0.12322663515806198, -0.028072739019989967, 0.10667021572589874, 0.028655147179961205, 0.13725388050079346, -0.2101542353630066, 0.007412288337945938, 0.07800254970788956, 0.05490003526210785, 0.09796737134456635, 0.04760441929101944, 0.011842355132102966, 0.10034201294183731, -0.1480027735233307, 0.09666553139686584, 0.02983228862285614, -0.08995208144187927, -0.15367138385772705, -0.08860158920288086, 0.02787916734814644, 0.05260833725333214, 0.07553872466087341, 0.0026691285893321037, 0.1334342062473297, -0.07284170389175415, 0.08582080155611038, 0.2520219385623932, -0.3120526373386383, -0.06781028211116791, 0.026172081008553505, 0.061671823263168335, 0.06160947307944298, -0.12586238980293274, -0.003071038518100977, 0.017084436491131783, 0.02669009007513523, 0.12488999217748642, -0.012257309630513191, -0.10446517914533615, -0.010738803073763847, -0.12304435670375824, -0.0014001323143020272, 0.06139446049928665, 0.02889692783355713, -0.04893844202160835, -0.10944347828626633, -0.06743834912776947, -0.08191707730293274, -0.023815909400582314, -0.05194130167365074, 0.04646169766783714, -0.052019547671079636, -0.09720813482999802, -0.043628912419080734, -0.05878791958093643, -0.08109930902719498, -0.005524755921214819, 0.16873784363269806, 0.03373780846595764, 0.018869252875447273, -0.030773242935538292, 0.11568216979503632, 0.027933329343795776, -0.13828961551189423, -0.01107034832239151, -0.0038772127591073513, -0.0988752692937851, -0.04080329090356827, -0.055968087166547775, -0.006543343886733055, 0.0020261278841644526, 0.16685150563716888, -0.07023906707763672, 0.07432443648576736, 0.01565323956310749, -0.027283716946840286, -0.014998194761574268, 0.15413036942481995, -0.043001946061849594, -0.04642404243350029, -0.016083428636193275, 0.08212073147296906, -0.0029915824998170137, -0.02084578014910221, -0.06478533893823624, -0.028520843014121056, 0.09511737525463104, 0.05528028681874275, -0.05897048860788345, 0.03816872090101242, -0.026313381269574165, -0.025109387934207916, 0.018382374197244644, -0.11935427784919739, 0.04058467224240303, 0.0011103266151621938, -0.07754604518413544, -0.0044628954492509365, 0.0001635975349927321, -0.009920782409608364, -0.005378659814596176, 0.10033511370420456, -0.08604622632265091, -0.005968366749584675, -0.06765396893024445, -0.07907713949680328, -0.0002601974119897932, -0.14620114862918854, -0.00835571438074112, -0.0574115514755249, -0.16472482681274414, -0.03779354318976402, 0.0423995703458786, -0.07430437207221985, -0.015439524315297604, -0.04457539692521095, -0.06257332861423492, 0.02121044136583805, -0.011560874991118908, 0.20070543885231018, -0.049727268517017365, 0.08288751542568207, -0.010634818114340305, 0.04904282093048096, 0.030763698741793633, 0.03940589725971222, -0.0963360145688057, 0.025973303243517876, -0.1334296613931656, 0.08444372564554214, -0.08566176891326904, -0.0034011623356491327, -0.13613161444664001, -0.09855511784553528, 0.0057029202580451965, -0.018852483481168747, 0.08887152373790741, 0.13413459062576294, -0.19654090702533722, -0.021441657096147537, 0.12618131935596466, -0.07370045781135559, -0.04385778680443764, 0.062271229922771454, -0.06470878422260284, 0.03868439793586731, 0.05543334409594536, 0.20643772184848785, 0.06290427595376968, -0.14994601905345917, -0.006269671022891998, 0.013197156600654125, 0.05049832910299301, 0.02936328761279583, 0.04273976758122444, 0.001690227654762566, 0.05618786811828613, 0.013688723556697369, -0.09232575446367264, -0.021419325843453407, -0.09042590111494064, -0.06506277620792389, -0.04956863075494766, -0.07571369409561157, 0.05482928827404976, 0.011100457981228828, 0.03823015093803406, -0.05985606461763382, -0.1062893271446228, 0.1157502681016922, 0.10038284212350845, -0.055714741349220276, 0.03779250383377075, -0.07677533477544785, 0.010669605806469917, -0.004774056375026703, -0.0341065376996994, -0.21256454288959503, -0.12239545583724976, 0.04754810035228729, -0.03653966262936592, 0.02081344462931156, 0.014930110424757004, 0.08573820441961288, 0.05600736290216446, -0.05261945351958275, -0.01410958543419838, -0.09884103387594223, 0.0022882993798702955, -0.11442643404006958, -0.19070853292942047, -0.08732330054044724, -0.045429814606904984, 0.09796604514122009, -0.17837268114089966, -0.008159150369465351, 0.02232561819255352, 0.1321365237236023, 0.02611670084297657, -0.06840628385543823, -0.0006705896812491119, 0.04208756610751152, 0.012520440854132175, -0.09690681099891663, 0.054271336644887924, 0.011492564342916012, -0.10674450546503067, -0.04557975009083748, -0.12800739705562592, -0.018751226365566254, 0.05123131722211838, 0.061266325414180756, -0.09919378906488419, -0.0588282011449337, -0.07446194440126419, -0.03708307817578316, -0.07799698412418365, 0.01562667079269886, 0.2120368629693985, 0.039464764297008514, 0.10998643189668655, -0.062018830329179764, -0.08319641649723053, -0.00816697720438242, 0.0318160355091095, 0.024551674723625183, 0.089558444917202, 0.022509831935167313, -0.04192829504609108, 0.066655732691288, 0.10417022556066513, -0.020829761400818825, 0.12990233302116394, -0.055325306951999664, -0.08507811278104782, -0.029460135847330093, -0.019092092290520668, -0.026438774541020393, 0.12447045743465424, -0.03777140751481056, 0.00006754631613148376, 0.03485535457730293, 0.039643026888370514, 0.011381191201508045, -0.16822078824043274, 0.0019185889977961779, 0.03124500811100006, -0.05543772503733635, -0.04483092203736305, -0.0050491453148424625, 0.018339211121201515, 0.08629685640335083, 0.030697578564286232, -0.002034191507846117, 0.0057583944872021675, -0.01337359193712473, -0.05628112703561783, 0.190881609916687, -0.09331563860177994, -0.07598163932561874, -0.07138344645500183, 0.018126387149095535, -0.04267722740769386, -0.03660906106233597, 0.005838521756231785, -0.0930553525686264, -0.029315708205103874, -0.08096598088741302, -0.02071364037692547, -0.027730733156204224, 0.019152510911226273, 0.024467570707201958, -0.01787017472088337, 0.07775680720806122, -0.13691601157188416, 0.007932775653898716, -0.048832569271326065, -0.09787725657224655, 0.003136038314551115, 0.0742737203836441, 0.09099826961755753, 0.08525702357292175, -0.014191159047186375, 0.024502119049429893, -0.04028560593724251, 0.2321888953447342, -0.057094864547252655, 0.012766197323799133, 0.1167280524969101, -0.014516984112560749, 0.05171697959303856, 0.09481847286224365, 0.03724338114261627, -0.09170126914978027, 0.02294207736849785, 0.0791039913892746, -0.037151213735342026, -0.22941620647907257, -0.014876016415655613, -0.006293329875916243, -0.0839228704571724, 0.10306593030691147, 0.03196805715560913, -0.04778992757201195, 0.04175179451704025, 0.017496243119239807, -0.008604521863162518, -0.03879190608859062, 0.0686781033873558, 0.07615304738283157, 0.046899497509002686, 0.10851555317640305, -0.004981684032827616, -0.019551098346710205, 0.054116055369377136, 0.015448777005076408, 0.2620692849159241, -0.040438130497932434, 0.10504212230443954, 0.03244926035404205, 0.14849744737148285, -0.021872978657484055, 0.06531880795955658, 0.000862426939420402, -0.010072259232401848, -0.011919713579118252, -0.062019526958465576, -0.028643561527132988, 0.013359662145376205, -0.04257826507091522, 0.02263507805764675, -0.0808996632695198, 0.025328613817691803, 0.021968262270092964, 0.28446272015571594, 0.030253950506448746, -0.25434356927871704, -0.0772809237241745, -0.01416116114705801, -0.05158686637878418, -0.06013346090912819, 0.008076678030192852, 0.13658173382282257, -0.13978666067123413, 0.046515461057424545, -0.0781528502702713, 0.08730430901050568, -0.04958898574113846, 0.011871067807078362, 0.05005718767642975, 0.1489803045988083, -0.017802704125642776, 0.05514686927199364, -0.19550658762454987, 0.25360798835754395, 0.017554165795445442, 0.10487637668848038, -0.06642717868089676, 0.012915405444800854, 0.02286188304424286, 0.018426328897476196, 0.11632589995861053, 0.0021777169313281775, -0.07072801142930984, -0.14609883725643158, -0.09133245795965195, 0.047144677489995956, 0.14158709347248077, -0.045425258576869965, 0.09001480787992477, -0.03617994859814644, 0.011750038713216782, 0.03679827228188515, -0.03641660884022713, -0.14828583598136902, -0.08704125136137009, -0.0005847944994457066, 0.006654342170804739, -0.006677471566945314, -0.061197370290756226, -0.10518432408571243, -0.01281527616083622, 0.10365201532840729, 0.0033903378061950207, -0.05470350757241249, -0.1583169847726822, 0.0892893522977829, 0.14422070980072021, -0.05786735191941261, 0.012981127016246319, 0.016663027927279472, 0.11325114965438843, 0.035028401762247086, -0.07825271785259247, 0.06091758981347084, -0.06189608573913574, -0.17965103685855865, -0.055012304335832596, 0.12417779117822647, 0.08268878608942032, 0.04980418458580971, 0.000221052163396962, 0.05090276896953583, 0.000007093598469509743, -0.09591152518987656, 0.03373072296380997, 0.008624764159321785, 0.03514542058110237, 0.016664257273077965, -0.08786129206418991, 0.09648751467466354, -0.03683273121714592, 0.011294793337583542, 0.13005536794662476, 0.2052704244852066, -0.10565926879644394, 0.1132005825638771, 0.0856204554438591, -0.073916956782341, -0.16712647676467896, 0.06058277562260628, 0.13002005219459534, 0.012460633181035519, 0.08394139260053635, -0.21319080889225006, 0.12280736118555069, 0.09973977506160736, -0.01062037330120802, 0.009707430377602577, -0.27869805693626404, -0.1284739077091217, 0.059446629136800766, 0.10899554193019867, 0.039004381746053696, -0.1170150563120842, -0.03586496040225029, -0.004679826553910971, -0.092837855219841, 0.11180508136749268, -0.07267426699399948, 0.11470580101013184, -0.015711644664406776, 0.1102064847946167, 0.025844993069767952, -0.030806338414549828, 0.10744432359933853, 0.06114459037780762, 0.08012449741363525, -0.034865815192461014, 0.006751248147338629, 0.05667708441615105, -0.05572142079472542, 0.01668565534055233, -0.04248623922467232, 0.06667105853557587, -0.15010255575180054, -0.0007267981418408453, -0.09171424061059952, 0.05067215487360954, -0.04863933101296425, -0.07203927636146545, -0.014626316726207733, 0.05382027104496956, 0.07495024055242538, -0.03974276781082153, 0.025727884843945503, -0.005726304370909929, 0.09792207926511765, 0.09162913262844086, 0.08136750757694244, -0.015934964641928673, -0.09185373038053513, 0.011708681471645832, 0.004758972208946943, 0.05420459434390068, -0.10575717687606812, 0.013728884980082512, 0.13749098777770996, 0.06643309444189072, 0.09574884921312332, 0.04701332002878189, -0.04045119881629944, 0.002623134758323431, 0.012792456895112991, -0.11947020143270493, -0.11411251872777939, 0.023795103654265404, -0.0460355319082737, -0.15472574532032013, 0.022143667563796043, 0.11790020018815994, -0.040989458560943604, -0.01840546354651451, -0.008459481410682201, 0.005168788135051727, -0.012770931236445904, 0.18580836057662964, 0.0463857427239418, 0.06310942769050598, -0.08844897896051407, 0.10699297487735748, 0.03652242571115494, -0.05397559702396393, 0.050387684255838394, 0.06317564100027084, -0.10404932498931885, 0.008137676864862442, 0.0770280584692955, 0.12527704238891602, -0.04580064117908478, -0.00995266530662775, -0.08834725618362427, -0.08474064618349075, 0.042477644979953766, 0.13233840465545654, 0.05362354964017868, -0.0013492349535226822, -0.07026789337396622, 0.04220564663410187, -0.11885581910610199, 0.07158105820417404, 0.04500380903482437, 0.06963962316513062, -0.10017141699790955, 0.13080808520317078, -0.0009681586525402963, 0.026360251009464264, -0.026013990864157677, 0.015572191216051579, -0.09556484967470169, -0.02458721399307251, -0.10527082532644272, -0.026151832193136215, -0.010467088781297207, 0.000749311177060008, -0.022846393287181854, -0.07434248179197311, -0.027056977152824402, 0.03796011954545975, -0.07590967416763306, -0.050466567277908325, 0.013740815222263336, 0.039538055658340454, -0.15095621347427368, 0.001794531592167914, 0.02876191772520542, -0.09302374720573425, 0.09050130099058151, 0.06246037781238556, 0.015139018185436726, 0.0274569783359766, -0.11445498466491699, -0.027686424553394318, -0.010635764338076115, 0.00575343007221818, 0.06511826068162918, -0.09758742898702621, -0.026492241770029068, -0.0391431488096714, 0.046133581548929214, 0.017046380788087845, 0.09590905904769897, -0.11706913262605667, -0.005326858256012201, -0.03935597836971283, -0.04107404872775078, -0.06301794201135635, 0.03597906976938248, 0.10180219262838364, 0.05306757986545563, 0.14964501559734344, -0.07228148728609085, 0.05912122502923012, -0.20204107463359833, -0.03608199581503868, 0.010167472064495087, -0.043991126120090485, -0.0828094333410263, -0.05225260183215141, 0.08947991579771042, -0.04442485421895981, 0.10649401694536209, -0.019645914435386658, 0.11139438301324844, 0.04252558946609497, -0.007423103787004948, -0.06051633507013321, -0.006061384454369545, 0.18859274685382843, 0.05887666344642639, -0.016914915293455124, 0.12924323976039886, -0.00021257383923511952, 0.029780777171254158, 0.08464707434177399, 0.2228250652551651, 0.16155843436717987, 0.00103598868008703, 0.0634494423866272, 0.06084176525473595, -0.07326152175664902, -0.15119169652462006, 0.11851844191551208, -0.020690811797976494, 0.10117433220148087, -0.06725634634494781, 0.19233669340610504, 0.039768658578395844, -0.18351665139198303, 0.06525677442550659, -0.025101354345679283, -0.1112140491604805, -0.12126775085926056, -0.02637629024684429, -0.06911548972129822, -0.11924780905246735, 0.02382974699139595, -0.11715563386678696, 0.06183723360300064, 0.10163106769323349, 0.009146388620138168, 0.0376179963350296, 0.18593940138816833, -0.046456653624773026, 0.01032247394323349, 0.08317695558071136, 0.01987299509346485, 0.006356673780828714, -0.045012038201093674, -0.06578796356916428, 0.036107271909713745, 0.03237413242459297, 0.06364588439464569, -0.05302391201257706, -0.0007733333623036742, 0.009122326970100403, -0.0069920518435537815, -0.07681462913751602, 0.010949330404400826, 0.009610598906874657, 0.053987979888916016, 0.05126318335533142, 0.046026211231946945, 0.005815473385155201, -0.05394791066646576, 0.29701367020606995, -0.0696331337094307, -0.0704881101846695, -0.1299072802066803, 0.20403119921684265, 0.023532526567578316, -0.022497203201055527, 0.05470840632915497, -0.08471249788999557, -0.013161222450435162, 0.17337250709533691, 0.13278770446777344, -0.09102210402488708, -0.01622902974486351, -0.014157959260046482, -0.010064804926514626, -0.014417540282011032, 0.11602114140987396, 0.07695157080888748, -0.011874649673700333, -0.06829604506492615, -0.017875809222459793, -0.019988730549812317, -0.05725551396608353, -0.062072787433862686, 0.0701625719666481, 0.02595706656575203, -0.007879190146923065, -0.060827549546957016, 0.070585697889328, -0.000136919945362024, -0.2440619319677353, 0.04194194823503494, -0.17167872190475464, -0.16984888911247253, -0.02717496082186699, 0.07253733277320862, 0.007549970876425505, 0.057206351310014725, 0.0027079638093709946, 0.019592124968767166, 0.12222655117511749, -0.01163344644010067, -0.0037626565899699926, -0.11031034588813782, 0.11790911108255386, -0.08566615730524063, 0.19783663749694824, -0.007092002779245377, 0.05332167074084282, 0.09676486998796463, 0.03991116210818291, -0.13851645588874817, 0.017577780410647392, 0.06591065227985382, -0.12877033650875092, -0.0009135424043051898, 0.14941063523292542, -0.03291615843772888, 0.060360297560691833, 0.025975840166211128, -0.15319111943244934, 0.008262790739536285, 0.015546678565442562, -0.03750016912817955, -0.0674193799495697, -0.005841284990310669, -0.05052795261144638, 0.16774800419807434, 0.21883414685726166, -0.029470285400748253, 0.005071335472166538, -0.09007856994867325, 0.009423218667507172, 0.045294877141714096, 0.06348373740911484, -0.042685702443122864, -0.20429302752017975, 0.010050295852124691, 0.06224707141518593, -0.004155866336077452, -0.19273461401462555, -0.09783826023340225, 0.05211857706308365, -0.041315168142318726, -0.042065221816301346, 0.09472043067216873, 0.021038629114627838, 0.03681444004178047, -0.011712606996297836, -0.11901866644620895, -0.021224448457360268, 0.13941213488578796, -0.17845295369625092, -0.02798205055296421 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-2 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-2", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-2
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-2 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 55, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09767517447471619, 0.09746559709310532, -0.002414519200101495, 0.09147490561008453, 0.1232576072216034, 0.019031671807169914, 0.09287071973085403, 0.12994502484798431, -0.09946189075708389, 0.06850350648164749, 0.08814138919115067, 0.03304193913936615, 0.04187311604619026, 0.14106465876102448, -0.005284883081912994, -0.27831655740737915, -0.0006054692785255611, -0.004678011871874332, -0.05404416844248772, 0.11982809752225876, 0.0902014970779419, -0.10876557230949402, 0.07441965490579605, 0.008786770515143871, -0.15217870473861694, 0.016359390690922737, -0.030234873294830322, -0.033843379467725754, 0.1231190487742424, -0.027251090854406357, 0.1072205901145935, 0.02978697046637535, 0.13703957200050354, -0.2108667641878128, 0.007069655694067478, 0.07729741185903549, 0.055350176990032196, 0.09837166219949722, 0.04830604046583176, 0.011894596740603447, 0.09992241114377975, -0.14726592600345612, 0.09566176682710648, 0.030082330107688904, -0.09000758826732635, -0.15466170012950897, -0.0893256813287735, 0.027981124818325043, 0.05261367931962013, 0.07427547872066498, 0.003609908977523446, 0.13203908503055573, -0.07232417911291122, 0.08540047705173492, 0.25202423334121704, -0.3129979968070984, -0.06810466945171356, 0.024748871102929115, 0.06038178130984306, 0.06247555464506149, -0.12409325689077377, -0.002302836859598756, 0.017017319798469543, 0.026967978104948997, 0.12379835546016693, -0.011802795343101025, -0.1038798838853836, -0.010674149729311466, -0.12305869162082672, -0.0033283482771366835, 0.06158335134387016, 0.028281059116125107, -0.05004773661494255, -0.10739240050315857, -0.06809449195861816, -0.07956640422344208, -0.02224547602236271, -0.05261867493391037, 0.0467626117169857, -0.050578970462083817, -0.09693349897861481, -0.045871712267398834, -0.060202017426490784, -0.08138945698738098, -0.006545725744217634, 0.17045725882053375, 0.03370213508605957, 0.020507821813225746, -0.030452163890004158, 0.11705376207828522, 0.029727991670370102, -0.1380399763584137, -0.011523211374878883, -0.0033561289310455322, -0.09801459312438965, -0.04026927426457405, -0.05587223544716835, -0.005890472326427698, 0.002801676047965884, 0.1657188981771469, -0.07246245443820953, 0.07341940701007843, 0.0139244319871068, -0.026052208617329597, -0.01495354063808918, 0.15410858392715454, -0.04095812141895294, -0.043253421783447266, -0.015745051205158234, 0.08137736469507217, -0.0020122486166656017, -0.021154070273041725, -0.06486879289150238, -0.029238924384117126, 0.09577637165784836, 0.056631896644830704, -0.05856839567422867, 0.03602583706378937, -0.028014689683914185, -0.025205427780747414, 0.01666426472365856, -0.1194302961230278, 0.0403890386223793, 0.0016125717666000128, -0.07598321884870529, -0.004768162965774536, 0.001042460440658033, -0.009583603590726852, -0.004248383920639753, 0.09946845471858978, -0.08475526422262192, -0.004817180801182985, -0.06623230129480362, -0.07707583159208298, -0.0003756083606276661, -0.1430344581604004, -0.009403804317116737, -0.058138273656368256, -0.16216090321540833, -0.03566624969244003, 0.04344026744365692, -0.07601352035999298, -0.017853664234280586, -0.043468523770570755, -0.06161192059516907, 0.022498808801174164, -0.012272704392671585, 0.20031332969665527, -0.04994348809123039, 0.08408749848604202, -0.010440167970955372, 0.04906930774450302, 0.03057022951543331, 0.03835300728678703, -0.09525474160909653, 0.02718832530081272, -0.1344156712293625, 0.08492841571569443, -0.08441213518381119, -0.006750765256583691, -0.13745325803756714, -0.09803637117147446, 0.0075060417875647545, -0.019804906100034714, 0.08821175247430801, 0.13392284512519836, -0.19528646767139435, -0.021105164662003517, 0.12469983845949173, -0.07542919367551804, -0.04376882314682007, 0.06371378898620605, -0.06460591405630112, 0.04041450843214989, 0.05316004529595375, 0.2066390961408615, 0.061900969594717026, -0.1504402905702591, -0.0038519068621098995, 0.01479131169617176, 0.049930550158023834, 0.031415458768606186, 0.04456731677055359, 0.0001227383327204734, 0.05371101573109627, 0.013220744207501411, -0.0947403758764267, -0.021621044725179672, -0.09137845784425735, -0.06583380699157715, -0.049964871257543564, -0.07518991827964783, 0.056083209812641144, 0.008705985732376575, 0.038602571934461594, -0.05917385220527649, -0.1052604392170906, 0.11484326422214508, 0.10070924460887909, -0.05534353107213974, 0.03945938125252724, -0.07725948840379715, 0.01069133635610342, -0.0056258090771734715, -0.03486586734652519, -0.21217244863510132, -0.12351903319358826, 0.048366714268922806, -0.036855246871709824, 0.020763272419571877, 0.015229681506752968, 0.08479376882314682, 0.0563860647380352, -0.05283806100487709, -0.013970814645290375, -0.0991721823811531, 0.0018562624463811517, -0.11388025432825089, -0.1917458027601242, -0.08698432147502899, -0.04529913514852524, 0.09830459952354431, -0.1774325966835022, -0.009364615194499493, 0.023697692900896072, 0.1323537975549698, 0.02652127668261528, -0.06778556853532791, -0.0022329255007207394, 0.04102623462677002, 0.011763060465455055, -0.09614937752485275, 0.05434372276067734, 0.012769201770424843, -0.1077253669500351, -0.0434412881731987, -0.1257452517747879, -0.01790526509284973, 0.0499362088739872, 0.0601787343621254, -0.09920895099639893, -0.05916869640350342, -0.07480815798044205, -0.037964072078466415, -0.07922609895467758, 0.015712810680270195, 0.21199199557304382, 0.03921155259013176, 0.1104087084531784, -0.062411606311798096, -0.08249294012784958, -0.008454094640910625, 0.029348697513341904, 0.023384351283311844, 0.08911649882793427, 0.022396672517061234, -0.04364091157913208, 0.06567355245351791, 0.10475748777389526, -0.02104610577225685, 0.12904979288578033, -0.05533178150653839, -0.08475575596094131, -0.0312055591493845, -0.01664886809885502, -0.02564341574907303, 0.12390795350074768, -0.03646773844957352, 0.002265848917886615, 0.0349728949368, 0.04093068465590477, 0.011187366209924221, -0.1692870855331421, 0.0018208069959655404, 0.031462784856557846, -0.05748879164457321, -0.042143531143665314, -0.005058724898844957, 0.019352605566382408, 0.08686964958906174, 0.0315542072057724, -0.0018260431243106723, 0.007590583059936762, -0.01370408944785595, -0.057461224496364594, 0.18980170786380768, -0.09326229244470596, -0.07732626795768738, -0.07326111942529678, 0.017854776233434677, -0.04330899566411972, -0.03619774803519249, 0.006642848253250122, -0.09191552549600601, -0.02900133840739727, -0.0813523605465889, -0.01932356506586075, -0.02896801196038723, 0.020343439653515816, 0.025350375100970268, -0.01798841916024685, 0.08044349402189255, -0.13616858422756195, 0.007478958461433649, -0.048439230769872665, -0.09923508763313293, 0.0038379787001758814, 0.07512275129556656, 0.0903155580163002, 0.08445531129837036, -0.013256911188364029, 0.024363238364458084, -0.03933253139257431, 0.23324468731880188, -0.055834896862506866, 0.0116911381483078, 0.11738152801990509, -0.01655956730246544, 0.052573222666978836, 0.09450887143611908, 0.03689496964216232, -0.09174003452062607, 0.023319777101278305, 0.07855229824781418, -0.03770880028605461, -0.22917470335960388, -0.015610589645802975, -0.005672270432114601, -0.08346566557884216, 0.10254346579313278, 0.032031379640102386, -0.0517800934612751, 0.04027615487575531, 0.018242737278342247, -0.00980332400649786, -0.03914034366607666, 0.06881441175937653, 0.07771365344524384, 0.047014910727739334, 0.10807755589485168, -0.004525963682681322, -0.019538942724466324, 0.05589298903942108, 0.016141610220074654, 0.26148512959480286, -0.04058017209172249, 0.10424721240997314, 0.03311774134635925, 0.1500452607870102, -0.021644746884703636, 0.06317207962274551, 0.0010605431161820889, -0.009349608793854713, -0.012643855065107346, -0.062099043279886246, -0.02947157993912697, 0.014241301454603672, -0.041753821074962616, 0.02285785786807537, -0.08201282471418381, 0.02795291692018509, 0.02181049808859825, 0.28607386350631714, 0.030156666412949562, -0.2521117925643921, -0.07676403224468231, -0.013274069875478745, -0.05134258046746254, -0.0596257708966732, 0.008099845610558987, 0.13845352828502655, -0.1408270001411438, 0.045010168105363846, -0.07790496200323105, 0.08640354126691818, -0.050328101962804794, 0.011218471452593803, 0.049425818026065826, 0.1478804647922516, -0.01664663664996624, 0.05531163886189461, -0.19360150396823883, 0.2542085647583008, 0.017339108511805534, 0.10302307456731796, -0.06473252922296524, 0.013232012279331684, 0.022071395069360733, 0.0186212919652462, 0.11653679609298706, 0.0031092579010874033, -0.07201338559389114, -0.14569827914237976, -0.09270196408033371, 0.046775758266448975, 0.14234189689159393, -0.04693707823753357, 0.08956265449523926, -0.03712388500571251, 0.01271600741893053, 0.03632868453860283, -0.03435339406132698, -0.14732587337493896, -0.08640291541814804, -0.00021242169896140695, 0.005442412104457617, -0.0072487820871174335, -0.06245797500014305, -0.1053382158279419, -0.009170006029307842, 0.10596908628940582, 0.0027898848056793213, -0.05495688319206238, -0.1575707495212555, 0.08873937278985977, 0.14365500211715698, -0.05881080776453018, 0.01197521761059761, 0.016157234087586403, 0.11357785016298294, 0.03530099615454674, -0.07840648293495178, 0.061020515859127045, -0.06158503144979477, -0.18167665600776672, -0.05528264865279198, 0.1249701976776123, 0.08209406584501266, 0.05012805014848709, 0.00008133075607474893, 0.05069879814982414, 0.0013251908821985126, -0.0957605242729187, 0.035103537142276764, 0.009365266188979149, 0.03464630991220474, 0.01675669476389885, -0.08749911934137344, 0.09948499500751495, -0.03654244914650917, 0.009326622821390629, 0.13186600804328918, 0.20979924499988556, -0.10629290342330933, 0.11529436707496643, 0.08506366610527039, -0.07431749999523163, -0.16699320077896118, 0.05847395211458206, 0.1316998451948166, 0.011409093625843525, 0.0856715738773346, -0.2133738398551941, 0.12217055261135101, 0.0996171087026596, -0.012029821053147316, 0.008600123226642609, -0.2798539102077484, -0.1286894530057907, 0.05785120651125908, 0.10867099463939667, 0.042660053819417953, -0.11655481159687042, -0.03689087927341461, -0.003466773545369506, -0.09335026890039444, 0.11137363314628601, -0.07062895596027374, 0.11506800353527069, -0.015903789550065994, 0.11117231845855713, 0.02607172355055809, -0.030047809705138206, 0.1101183295249939, 0.059468239545822144, 0.07845607399940491, -0.03468313813209534, 0.007317188195884228, 0.054570358246564865, -0.056537926197052, 0.015427074395120144, -0.041977833956480026, 0.06721397489309311, -0.15066921710968018, -0.0008089604671113193, -0.09124428033828735, 0.050153348594903946, -0.049526944756507874, -0.07172189652919769, -0.014873581938445568, 0.05330809950828552, 0.07534712553024292, -0.03938833251595497, 0.025559071451425552, -0.004947112873196602, 0.09628228843212128, 0.09619705379009247, 0.08033112436532974, -0.014312883839011192, -0.0922495648264885, 0.010254347696900368, 0.004376656841486692, 0.054233744740486145, -0.10472693294286728, 0.015192892402410507, 0.1365729719400406, 0.06529174745082855, 0.09595822542905807, 0.04707418754696846, -0.04124007374048233, 0.003911754582077265, 0.012889103032648563, -0.12128154933452606, -0.11510009318590164, 0.023207878693938255, -0.0451493114233017, -0.15516875684261322, 0.020134156569838524, 0.12085485458374023, -0.03982219099998474, -0.01813233457505703, -0.008041119202971458, 0.006123912986367941, -0.013553675264120102, 0.1838310807943344, 0.04517478495836258, 0.06349656730890274, -0.08701585233211517, 0.10706585645675659, 0.03651930019259453, -0.05220508947968483, 0.05002432316541672, 0.06254434585571289, -0.10321350395679474, 0.00906454585492611, 0.07614775747060776, 0.12451379746198654, -0.04855605587363243, -0.00939863920211792, -0.08833841234445572, -0.08494626730680466, 0.04151534289121628, 0.13101133704185486, 0.05437002703547478, -0.00023591023636981845, -0.07022947072982788, 0.042075008153915405, -0.11751288175582886, 0.07188892364501953, 0.04572947695851326, 0.06981498003005981, -0.10118606686592102, 0.13080771267414093, -0.0016127537237480283, 0.028068413957953453, -0.026283282786607742, 0.014564690180122852, -0.09536822885274887, -0.024646325036883354, -0.10724428296089172, -0.023970995098352432, -0.008556724525988102, 0.0005988482153043151, -0.021744053810834885, -0.07545915246009827, -0.02704945020377636, 0.038878824561834335, -0.07583737373352051, -0.050453219562768936, 0.01309671625494957, 0.04019881412386894, -0.15094207227230072, 0.0009465691982768476, 0.030208786949515343, -0.09396444261074066, 0.09214918315410614, 0.06314525008201599, 0.015281811356544495, 0.026986217126250267, -0.11302629113197327, -0.028077587485313416, -0.010507244616746902, 0.005631625186651945, 0.06479823589324951, -0.09910949319601059, -0.027796415612101555, -0.0388321578502655, 0.045595962554216385, 0.017420941963791847, 0.09934215992689133, -0.11784880608320236, -0.004746938124299049, -0.03943708539009094, -0.04268168285489082, -0.062767393887043, 0.034888915717601776, 0.10102199018001556, 0.05548173561692238, 0.14941473305225372, -0.07376062870025635, 0.05950849875807762, -0.20145194232463837, -0.03555154800415039, 0.0101970499381423, -0.04194125533103943, -0.08353061228990555, -0.052260156720876694, 0.08819730579853058, -0.04457792267203331, 0.10534536838531494, -0.020105499774217606, 0.10955306142568588, 0.042912956327199936, -0.009828321635723114, -0.058828648179769516, -0.006429313216358423, 0.18743619322776794, 0.058711372315883636, -0.016251027584075928, 0.12943702936172485, -0.0021340183448046446, 0.030377401039004326, 0.084166020154953, 0.22502051293849945, 0.16137537360191345, 0.0013945306418463588, 0.06356174498796463, 0.06072181463241577, -0.07242655754089355, -0.15318815410137177, 0.1172000840306282, -0.019946111366152763, 0.10145141184329987, -0.06601681560277939, 0.19040578603744507, 0.040506839752197266, -0.1842053085565567, 0.06347029656171799, -0.025184230878949165, -0.1110842153429985, -0.1229851245880127, -0.024924684315919876, -0.07001162320375443, -0.11990845203399658, 0.02357054315507412, -0.1169709712266922, 0.06310713291168213, 0.10109860450029373, 0.008138549514114857, 0.038486234843730927, 0.18304234743118286, -0.04587595537304878, 0.01039949432015419, 0.0820607990026474, 0.01995987258851528, 0.007182114291936159, -0.04305307939648628, -0.06680411100387573, 0.03537696972489357, 0.03458967059850693, 0.0628502294421196, -0.05138158053159714, 0.000583076209295541, 0.008025672286748886, -0.008090375922620296, -0.077300526201725, 0.010651013813912868, 0.00964298564940691, 0.05392655357718468, 0.05017358809709549, 0.04634876921772957, 0.006260526832193136, -0.05334712937474251, 0.29842409491539, -0.06941768527030945, -0.06999623030424118, -0.12971076369285583, 0.20618799328804016, 0.021450847387313843, -0.02158779837191105, 0.05554642155766487, -0.0844004899263382, -0.015246614813804626, 0.17136558890342712, 0.1320212036371231, -0.09395060688257217, -0.015957409515976906, -0.014562267810106277, -0.009986472316086292, -0.013402231968939304, 0.11708424240350723, 0.07627732306718826, -0.010227222926914692, -0.06922844052314758, -0.018637871369719505, -0.021765179932117462, -0.05587154999375343, -0.06288269907236099, 0.07073207944631577, 0.02457572892308235, -0.006323776673525572, -0.06235681101679802, 0.06923556327819824, -0.00014837112394161522, -0.24337884783744812, 0.04199947789311409, -0.17139555513858795, -0.17019467055797577, -0.02579478733241558, 0.07352332770824432, 0.00539009366184473, 0.05724696069955826, 0.0011385729303583503, 0.019150136038661003, 0.12311558425426483, -0.012141366489231586, -0.003974608611315489, -0.10855229943990707, 0.1188347190618515, -0.08556955307722092, 0.19906598329544067, -0.005836084950715303, 0.05399252101778984, 0.09609593451023102, 0.0407891608774662, -0.13929703831672668, 0.01624813675880432, 0.06590525060892105, -0.12902694940567017, -0.001944621792063117, 0.15012994408607483, -0.033129170536994934, 0.06192530319094658, 0.027859404683113098, -0.15289784967899323, 0.006457508075982332, 0.01667219027876854, -0.0379934161901474, -0.06650234013795853, -0.008667290210723877, -0.052486028522253036, 0.16645514965057373, 0.21788832545280457, -0.029863998293876648, 0.005629756022244692, -0.08915390074253082, 0.010179087519645691, 0.04530775174498558, 0.06526117026805878, -0.04156235605478287, -0.20462563633918762, 0.009946283884346485, 0.06378138810396194, -0.003881397657096386, -0.1937512904405594, -0.10014920681715012, 0.05245188996195793, -0.039843954145908356, -0.042146019637584686, 0.0961293950676918, 0.019649790599942207, 0.03612140566110611, -0.0112460283562541, -0.12013301253318787, -0.021862942725419998, 0.13875122368335724, -0.17787672579288483, -0.028308726847171783 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-4 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-4
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-4 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 55, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09827876091003418, 0.09642748534679413, -0.0023708809167146683, 0.09231962263584137, 0.12443501502275467, 0.019458238035440445, 0.09363048523664474, 0.12916314601898193, -0.0996934175491333, 0.06778281182050705, 0.08820310235023499, 0.03274570032954216, 0.041096944361925125, 0.14080674946308136, -0.005020953249186277, -0.2783583998680115, -0.0007915299502201378, -0.004006769508123398, -0.05318006873130798, 0.12002873420715332, 0.08893363177776337, -0.10938476771116257, 0.07485168427228928, 0.008370551280677319, -0.15293504297733307, 0.01694858819246292, -0.03121659718453884, -0.033826425671577454, 0.12328343093395233, -0.027232136577367783, 0.10736020654439926, 0.029552219435572624, 0.1369258314371109, -0.20950092375278473, 0.007304368074983358, 0.07719111442565918, 0.05461917817592621, 0.0976158082485199, 0.0478798933327198, 0.011572235263884068, 0.09900350868701935, -0.14727121591567993, 0.09578876942396164, 0.029814541339874268, -0.09014252573251724, -0.15526655316352844, -0.08838751167058945, 0.026827583089470863, 0.05209667608141899, 0.07550887018442154, 0.0028352641966193914, 0.1313733607530594, -0.07304158806800842, 0.08570608496665955, 0.2494143843650818, -0.31428417563438416, -0.06852702796459198, 0.02504454180598259, 0.06075552478432655, 0.06254451721906662, -0.12504272162914276, -0.0016054121078923345, 0.017175480723381042, 0.028053011745214462, 0.1242043524980545, -0.01233324222266674, -0.10376333445310593, -0.010089787654578686, -0.12302205711603165, -0.0015952239045873284, 0.062369782477617264, 0.028521429747343063, -0.049863629043102264, -0.10824967175722122, -0.06665205955505371, -0.08098024874925613, -0.022752495482563972, -0.0517125278711319, 0.046736110001802444, -0.05188754200935364, -0.09761817753314972, -0.043622881174087524, -0.06006883829832077, -0.08030775189399719, -0.006096188444644213, 0.16894680261611938, 0.03361160308122635, 0.020164083689451218, -0.029919851571321487, 0.11647403985261917, 0.029375210404396057, -0.13749071955680847, -0.01041423063725233, -0.004228103440254927, -0.09805342555046082, -0.04025433212518692, -0.05651635676622391, -0.004100745543837547, 0.0029511095490306616, 0.16594862937927246, -0.07270155847072601, 0.07427316904067993, 0.015332055278122425, -0.02702937461435795, -0.0147023256868124, 0.15249228477478027, -0.042692117393016815, -0.04514016583561897, -0.016306115314364433, 0.08192010223865509, -0.003102220594882965, -0.0212552472949028, -0.06494755297899246, -0.027797695249319077, 0.09475881606340408, 0.05599551647901535, -0.05978957563638687, 0.03812876716256142, -0.026745231822133064, -0.024905964732170105, 0.017050359398126602, -0.11908738315105438, 0.04012942314147949, 0.0016283411532640457, -0.07634992897510529, -0.0040852683596313, 0.00019233096099924296, -0.010627350769937038, -0.0048813596367836, 0.09977196156978607, -0.08566906303167343, -0.0057214731350541115, -0.06660804897546768, -0.07834798842668533, -0.0009579550824128091, -0.1427476853132248, -0.008314200676977634, -0.05769288167357445, -0.16276927292346954, -0.03741912171244621, 0.04315849393606186, -0.07591799646615982, -0.01659221388399601, -0.043691325932741165, -0.06255098432302475, 0.021953066810965538, -0.012371782213449478, 0.20085996389389038, -0.050415489822626114, 0.0828307494521141, -0.00906430371105671, 0.048863984644412994, 0.030217614024877548, 0.03844809904694557, -0.0951063260436058, 0.026370877400040627, -0.1344110667705536, 0.08423583954572678, -0.08517108112573624, -0.004845356103032827, -0.13607850670814514, -0.09946999698877335, 0.008429031819105148, -0.018532855436205864, 0.0876002386212349, 0.13379040360450745, -0.19493639469146729, -0.021424444392323494, 0.1239054724574089, -0.074318528175354, -0.04390726238489151, 0.06351595371961594, -0.06471169739961624, 0.03894076868891716, 0.053854916244745255, 0.20666153728961945, 0.06220263987779617, -0.14967741072177887, -0.005505470559000969, 0.013611825183033943, 0.0504748560488224, 0.03052753582596779, 0.04301489517092705, 0.001811324036680162, 0.054192621260881424, 0.014029383659362793, -0.09360581636428833, -0.021759791299700737, -0.09086661785840988, -0.06536687165498734, -0.04889021813869476, -0.07511469721794128, 0.0556783527135849, 0.0096057103946805, 0.038521986454725266, -0.06045237556099892, -0.10608821362257004, 0.11437561362981796, 0.10036742687225342, -0.056005630642175674, 0.037812814116477966, -0.07767239958047867, 0.011384587734937668, -0.005740626249462366, -0.034226249903440475, -0.21166791021823883, -0.12488853186368942, 0.04710470885038376, -0.034006133675575256, 0.020767267793416977, 0.015768392011523247, 0.08565892279148102, 0.05682571977376938, -0.05335530638694763, -0.014748159795999527, -0.09801676124334335, 0.0023393852170556784, -0.1134447455406189, -0.19220072031021118, -0.08767148107290268, -0.045161210000514984, 0.09892618656158447, -0.17902390658855438, -0.00882444716989994, 0.024098610505461693, 0.13127760589122772, 0.025940924882888794, -0.06722567230463028, -0.0010255061788484454, 0.042655568569898605, 0.012760214507579803, -0.09589394181966782, 0.05517067760229111, 0.012463145889341831, -0.10649299621582031, -0.04480340704321861, -0.12624938786029816, -0.01620735228061676, 0.05108753964304924, 0.059294380247592926, -0.09966139495372772, -0.05893228203058243, -0.0746084451675415, -0.03798115253448486, -0.07739309221506119, 0.01566699892282486, 0.21304820477962494, 0.038828056305646896, 0.1099015548825264, -0.061247311532497406, -0.08204824477434158, -0.00830768421292305, 0.030950749292969704, 0.02449633926153183, 0.08901863545179367, 0.02114054746925831, -0.04139762371778488, 0.06607550382614136, 0.10351276397705078, -0.021492542698979378, 0.13013353943824768, -0.055486395955085754, -0.08417504280805588, -0.030440764501690865, -0.017780162394046783, -0.026231152936816216, 0.12486408650875092, -0.03701755404472351, 0.0006818310357630253, 0.034611184149980545, 0.04010067135095596, 0.011542602442204952, -0.1682329773902893, 0.0017588749760761857, 0.030585909262299538, -0.05631035193800926, -0.04349425435066223, -0.004697263240814209, 0.018606625497341156, 0.08633644878864288, 0.03124941885471344, -0.003372384700924158, 0.007452191784977913, -0.013481386005878448, -0.05676178261637688, 0.19045594334602356, -0.09330904483795166, -0.0762324258685112, -0.07285814732313156, 0.01627061888575554, -0.04442724958062172, -0.03677960857748985, 0.006353290751576424, -0.09357832372188568, -0.029146824032068253, -0.08113447576761246, -0.020606625825166702, -0.028608132153749466, 0.020118482410907745, 0.02420702949166298, -0.018260229378938675, 0.07973475754261017, -0.13572466373443604, 0.007796037010848522, -0.048783715814352036, -0.09927718341350555, 0.004696310497820377, 0.07544052600860596, 0.09078975021839142, 0.08434329926967621, -0.012991621159017086, 0.02448194846510887, -0.039744097739458084, 0.2338494509458542, -0.055948760360479355, 0.01187323871999979, 0.1170920878648758, -0.01548363734036684, 0.05123639479279518, 0.09459110349416733, 0.03791603818535805, -0.09215117990970612, 0.023070702329277992, 0.07911881059408188, -0.03715407848358154, -0.22888846695423126, -0.014973762445151806, -0.0060506174340844154, -0.08298701792955399, 0.1023608148097992, 0.03196730464696884, -0.05113714933395386, 0.041067466139793396, 0.01924535445868969, -0.008882613852620125, -0.03930028900504112, 0.06828058511018753, 0.07915499806404114, 0.04640021547675133, 0.10923562943935394, -0.004680476151406765, -0.019933633506298065, 0.05494404211640358, 0.016320956870913506, 0.26219454407691956, -0.04098714888095856, 0.10379429161548615, 0.033742837607860565, 0.1492242068052292, -0.021152306348085403, 0.06416713446378708, 0.0005335986497811973, -0.010166268795728683, -0.012289393693208694, -0.06191153824329376, -0.028044864535331726, 0.013365623541176319, -0.042702145874500275, 0.02213764563202858, -0.08230581879615784, 0.02628183923661709, 0.022111590951681137, 0.2856285572052002, 0.030314847826957703, -0.2550255358219147, -0.07784847170114517, -0.014154264703392982, -0.05088697373867035, -0.05907733365893364, 0.008272520266473293, 0.137958362698555, -0.1400662064552307, 0.045907262712717056, -0.07802904397249222, 0.0859159454703331, -0.05039634928107262, 0.012303341180086136, 0.05164458602666855, 0.1487903892993927, -0.017546553164720535, 0.05501502752304077, -0.1939641386270523, 0.25300487875938416, 0.017458517104387283, 0.103948213160038, -0.06503105908632278, 0.013059845194220543, 0.0229391660541296, 0.020054997876286507, 0.11627943813800812, 0.002380837919190526, -0.07188159972429276, -0.1457459181547165, -0.09157312661409378, 0.04817112535238266, 0.14134550094604492, -0.0457320474088192, 0.09060373902320862, -0.03598947077989578, 0.012216886505484581, 0.03587735444307327, -0.03538183867931366, -0.14769293367862701, -0.08698965609073639, -0.0008521609124727547, 0.006891167256981134, -0.006909375544637442, -0.0616980716586113, -0.10593877732753754, -0.010686296038329601, 0.10538313537836075, 0.0042944299057126045, -0.05516764149069786, -0.15828822553157806, 0.08820774406194687, 0.14380203187465668, -0.057537779211997986, 0.011793948709964752, 0.01707013137638569, 0.11258271336555481, 0.0363447405397892, -0.07803785800933838, 0.061049796640872955, -0.0624893493950367, -0.18012909591197968, -0.05526383966207504, 0.1239340603351593, 0.08174122124910355, 0.04935722425580025, -0.00025006511714309454, 0.05049259588122368, 0.0006114306743256748, -0.09645448625087738, 0.03555793687701225, 0.007031651213765144, 0.03561940789222717, 0.01636281982064247, -0.08833122998476028, 0.09923551231622696, -0.03583374619483948, 0.010425158776342869, 0.1297798603773117, 0.20673620700836182, -0.10549099743366241, 0.11300477385520935, 0.08561336994171143, -0.07378892600536346, -0.16668559610843658, 0.05957816168665886, 0.13034968078136444, 0.012163368985056877, 0.0840192437171936, -0.21421535313129425, 0.12337552011013031, 0.09885916113853455, -0.01078480388969183, 0.010657422244548798, -0.2768269181251526, -0.12778593599796295, 0.05841407924890518, 0.10948745161294937, 0.043320950120687485, -0.11700307577848434, -0.03613909333944321, -0.0035661226138472557, -0.09260818362236023, 0.11043307185173035, -0.07373224198818207, 0.11526785045862198, -0.016225820407271385, 0.11161153018474579, 0.025234343484044075, -0.03015800565481186, 0.10894794017076492, 0.06045922636985779, 0.07960021495819092, -0.03483232855796814, 0.008177489042282104, 0.05466720089316368, -0.055847253650426865, 0.015625957399606705, -0.043196290731430054, 0.06652373820543289, -0.15113778412342072, -0.000754424836486578, -0.09230608493089676, 0.049975860863924026, -0.04922277480363846, -0.07158349454402924, -0.013701660558581352, 0.05377641320228577, 0.07399095594882965, -0.03952663019299507, 0.023916160687804222, -0.00607318663969636, 0.09676393866539001, 0.09512533992528915, 0.08113756775856018, -0.01565157063305378, -0.09321665018796921, 0.011465421877801418, 0.003943110816180706, 0.054147105664014816, -0.10417565703392029, 0.013638590462505817, 0.13748499751091003, 0.06460938602685928, 0.09571946412324905, 0.04803653433918953, -0.04022843763232231, 0.003332277061417699, 0.014024247415363789, -0.12151969969272614, -0.1139446571469307, 0.02341918647289276, -0.04898080229759216, -0.15484464168548584, 0.02156483754515648, 0.12081553786993027, -0.039813484996557236, -0.017911924049258232, -0.008052987977862358, 0.005417780019342899, -0.013799551874399185, 0.18547673523426056, 0.045184604823589325, 0.06323171406984329, -0.08819389343261719, 0.10641894489526749, 0.03632884845137596, -0.053024858236312866, 0.050149109214544296, 0.06344915926456451, -0.104289710521698, 0.007788961753249168, 0.07523457705974579, 0.12589912116527557, -0.047196581959724426, -0.01049889624118805, -0.08984542638063431, -0.08542963117361069, 0.041585978120565414, 0.1296033412218094, 0.05403994023799896, -0.001217724522575736, -0.07046329230070114, 0.04149672016501427, -0.11833004653453827, 0.07152862846851349, 0.04486164078116417, 0.07009802013635635, -0.1013602763414383, 0.1301708221435547, -0.0016707982867956161, 0.027370546013116837, -0.026301879435777664, 0.015164089389145374, -0.09629282355308533, -0.024602238088846207, -0.10741610080003738, -0.02520676702260971, -0.00897442176938057, 0.0011172274826094508, -0.022058043628931046, -0.07390253245830536, -0.02783339098095894, 0.03891646862030029, -0.07621920853853226, -0.049804575741291046, 0.015052986331284046, 0.040925033390522, -0.15030662715435028, 0.0013295008102431893, 0.028757547959685326, -0.0938393697142601, 0.09194387495517731, 0.06308291852474213, 0.01493336446583271, 0.027370011433959007, -0.11117285490036011, -0.02873934805393219, -0.010989971458911896, 0.0047808485105633736, 0.06551429629325867, -0.09839054942131042, -0.027131086215376854, -0.038980551064014435, 0.045858047902584076, 0.017790919169783592, 0.09827572852373123, -0.11683650314807892, -0.004519691690802574, -0.03872036933898926, -0.041350677609443665, -0.06323053687810898, 0.035521674901247025, 0.10179146379232407, 0.054700370877981186, 0.14998841285705566, -0.0738021731376648, 0.05868390575051308, -0.20173180103302002, -0.03603731468319893, 0.010055329650640488, -0.043363817036151886, -0.08245581388473511, -0.05214862525463104, 0.08907755464315414, -0.04530417546629906, 0.10679788142442703, -0.020392246544361115, 0.11036289483308792, 0.04228626936674118, -0.009734852239489555, -0.05998658388853073, -0.005672157276421785, 0.1869731843471527, 0.05820072442293167, -0.017117684707045555, 0.12913775444030762, -0.0006917508435435593, 0.02944820187985897, 0.08587817847728729, 0.22309629619121552, 0.16019926965236664, 0.0022992321755737066, 0.06393295526504517, 0.061533015221357346, -0.07303024083375931, -0.15183503925800323, 0.11816881597042084, -0.019678939133882523, 0.10239306092262268, -0.06714993715286255, 0.18914784491062164, 0.03977075591683388, -0.1831825077533722, 0.06394906342029572, -0.026227887719869614, -0.11137016862630844, -0.1215139701962471, -0.024182887747883797, -0.06916795670986176, -0.12066538631916046, 0.023845359683036804, -0.1175089105963707, 0.06152186915278435, 0.10216102749109268, 0.00922676082700491, 0.03803358972072601, 0.18485164642333984, -0.04456633701920509, 0.011376209557056427, 0.08259360492229462, 0.019245650619268417, 0.006618539337068796, -0.0427977629005909, -0.06567554175853729, 0.03485899791121483, 0.03281065821647644, 0.06233832240104675, -0.0524294488132, -0.0003520048048812896, 0.008941731415688992, -0.0071167610585689545, -0.07689324021339417, 0.010378846898674965, 0.010013660416007042, 0.05374902859330177, 0.05133245140314102, 0.04587779939174652, 0.00516129657626152, -0.053510040044784546, 0.2971133589744568, -0.06950928270816803, -0.0687503069639206, -0.130589097738266, 0.20601187646389008, 0.021256281062960625, -0.02220275066792965, 0.05450988560914993, -0.08346974849700928, -0.013889813795685768, 0.17270876467227936, 0.13424788415431976, -0.09365533292293549, -0.016362445428967476, -0.014053240418434143, -0.00998383853584528, -0.013757252134382725, 0.11729688942432404, 0.07626354694366455, -0.010682172141969204, -0.06932131201028824, -0.018464379012584686, -0.021038739010691643, -0.0559709258377552, -0.062396638095378876, 0.07024165987968445, 0.026074647903442383, -0.006705723237246275, -0.061545561999082565, 0.06953474879264832, -0.000793942715972662, -0.2431575059890747, 0.0430632121860981, -0.170730859041214, -0.17062947154045105, -0.027022728696465492, 0.07283005118370056, 0.006261197850108147, 0.05827765911817551, 0.0011160257272422314, 0.01883736252784729, 0.12365557253360748, -0.012460751459002495, -0.003044714918360114, -0.1094968244433403, 0.11885575205087662, -0.08522844314575195, 0.1976613849401474, -0.006721440702676773, 0.05409299582242966, 0.09677435457706451, 0.04027194529771805, -0.1391255408525467, 0.017081864178180695, 0.06510402262210846, -0.1295672208070755, -0.0011891849571838975, 0.14944779872894287, -0.03306723013520241, 0.061182573437690735, 0.026392582803964615, -0.1520407646894455, 0.007428625598549843, 0.016888000071048737, -0.03767954930663109, -0.06647038459777832, -0.008253255859017372, -0.051973383873701096, 0.16712869703769684, 0.21955354511737823, -0.02972530573606491, 0.0054349941201508045, -0.08921439945697784, 0.010452395305037498, 0.04586643725633621, 0.0638914406299591, -0.0423421747982502, -0.20455315709114075, 0.010251834988594055, 0.06430257111787796, -0.00438170088455081, -0.19518454372882843, -0.0988045483827591, 0.05269736051559448, -0.039742931723594666, -0.04235117509961128, 0.09610281884670258, 0.020953666418790817, 0.037360209971666336, -0.01199491135776043, -0.11775678396224976, -0.021837761625647545, 0.1385280340909958, -0.17820870876312256, -0.029093977063894272 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-42 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results {'exact_match': 4.541154210028382, 'f1': 10.04181288563879} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-42", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-42
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-42 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results {'exact_match': 4.541154210028382, 'f1': 10.04181288563879} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results\n\n{'exact_match': 4.541154210028382, 'f1': 10.04181288563879}", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results\n\n{'exact_match': 4.541154210028382, 'f1': 10.04181288563879}", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ 46, 55, 6, 12, 8, 3, 104, 33, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-42\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results\n\n{'exact_match': 4.541154210028382, 'f1': 10.04181288563879}### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ -0.11189243942499161, 0.08955613523721695, -0.002014629542827606, 0.09633529931306839, 0.1398695707321167, 0.03289299085736275, 0.1007523238658905, 0.11851631850004196, -0.09231875091791153, 0.0703907459974289, 0.06741346418857574, 0.04188104346394539, 0.048698294907808304, 0.11773545295000076, -0.02498985454440117, -0.2732337713241577, -0.012148628011345863, 0.0031990332063287497, -0.12357587367296219, 0.11287162452936172, 0.11121991276741028, -0.09411292523145676, 0.07839492708444595, 0.014398854225873947, -0.16238845884799957, 0.024168387055397034, -0.0160051379352808, -0.02819034643471241, 0.11663706600666046, 0.006062178406864405, 0.11811500787734985, 0.02294127643108368, 0.13595980405807495, -0.20058631896972656, 0.007111791055649519, 0.08696731925010681, 0.04373161494731903, 0.10142233222723007, 0.06873521953821182, -0.01559353806078434, 0.09539084136486053, -0.14495989680290222, 0.07956483215093613, 0.04222025349736214, -0.10135786980390549, -0.1657862514257431, -0.10116621851921082, 0.05501694977283478, 0.06524166464805603, 0.07604654878377914, 0.006018676795065403, 0.11834511905908585, -0.051230233162641525, 0.08448273688554764, 0.25831687450408936, -0.3071476221084595, -0.08485609292984009, 0.04830831289291382, 0.06098465994000435, 0.042920514941215515, -0.1194380447268486, 0.001210939371958375, 0.030234839767217636, 0.03081960417330265, 0.09851808100938797, -0.023661311715841293, -0.13880930840969086, -0.01058198418468237, -0.1317468136548996, 0.01577880047261715, 0.08931951969861984, 0.041517630219459534, -0.05174470692873001, -0.06847342103719711, -0.06063171103596687, -0.09185304492712021, -0.015470834448933601, -0.052233755588531494, 0.04340340942144394, -0.05910949036478996, -0.07893680781126022, -0.06042978912591934, -0.06487223505973816, -0.08465978503227234, -0.017677882686257362, 0.1754710078239441, 0.02454879693686962, 0.022389281541109085, -0.028759906068444252, 0.1210237443447113, 0.009091099724173546, -0.13461658358573914, 0.0003745590802282095, -0.0011246675858274102, -0.11097276210784912, -0.04313958063721657, -0.05828377231955528, 0.007622301112860441, -0.004190813284367323, 0.16282667219638824, -0.0978202149271965, 0.07332970947027206, 0.029399123042821884, -0.013904213905334473, -0.03715484216809273, 0.14217022061347961, -0.07668887823820114, -0.042467210441827774, -0.0188875924795866, 0.08224230259656906, -0.0038406180683523417, -0.01242179237306118, -0.06051161140203476, -0.04475146532058716, 0.06749166548252106, 0.055470433086156845, -0.03758314996957779, 0.045554764568805695, -0.023180682212114334, -0.03914366662502289, 0.019746212288737297, -0.12159498035907745, 0.03266771510243416, 0.0024052439257502556, -0.10988439619541168, -0.03439659997820854, 0.016738606616854668, 0.00397613225504756, -0.00862080417573452, 0.09180880337953568, -0.0911451205611229, 0.0021456123795360327, -0.07772332429885864, -0.0931006446480751, -0.0016351310769096017, -0.13128513097763062, -0.015048461966216564, -0.04493080452084541, -0.167831689119339, -0.0486568883061409, 0.04144815355539322, -0.06958422809839249, -0.02698688954114914, -0.02808382920920849, -0.07099851220846176, 0.015820620581507683, -0.006365410052239895, 0.20867492258548737, -0.04512782394886017, 0.07128757238388062, -0.0012672868324443698, 0.04614095389842987, 0.003652583807706833, 0.0353739894926548, -0.08448576927185059, 0.03177052363753319, -0.12990611791610718, 0.07962863147258759, -0.09892264008522034, 0.002157814335078001, -0.13366657495498657, -0.09798163175582886, 0.015716800466179848, -0.009477164596319199, 0.09158729016780853, 0.1231277659535408, -0.20642782747745514, -0.013501422479748726, 0.11823183298110962, -0.07172717154026031, -0.0808347687125206, 0.05406758189201355, -0.046409785747528076, 0.04445924609899521, 0.039417918771505356, 0.17193178832530975, 0.10502877831459045, -0.14695337414741516, -0.014502485282719135, 0.013970605097711086, 0.048567451536655426, 0.03303360566496849, 0.04155271127820015, -0.0057388050481677055, 0.04379529505968094, 0.010601668618619442, -0.11724641919136047, -0.030727792531251907, -0.09933778643608093, -0.06959591805934906, -0.05159591883420944, -0.0940716341137886, 0.04997202381491661, 0.0225833747535944, 0.03537346422672272, -0.06266645342111588, -0.11082341521978378, 0.11684741824865341, 0.11293818801641464, -0.04633055999875069, 0.026561498641967773, -0.07580742239952087, -0.011892331764101982, 0.020546818152070045, -0.03866852447390556, -0.21655169129371643, -0.1574033498764038, 0.02312343195080757, -0.054808035492897034, 0.034619029611349106, 0.011139560490846634, 0.08664064854383469, 0.05351334810256958, -0.053788721561431885, -0.0037706862203776836, -0.07896039634943008, -0.00835033692419529, -0.10318750888109207, -0.2076280564069748, -0.10177638381719589, -0.02302447520196438, 0.15537749230861664, -0.20724977552890778, 0.009670942090451717, 0.002446914790198207, 0.1438840627670288, 0.014264252968132496, -0.05527032911777496, 0.0014402226079255342, 0.04223619028925896, 0.007754577323794365, -0.09465523809194565, 0.049283720552921295, 0.011144177056849003, -0.10381966084241867, -0.03827335685491562, -0.14569735527038574, 0.006224137730896473, 0.05469915643334389, 0.03890179470181465, -0.10807473212480545, -0.042548615485429764, -0.07286626845598221, -0.04448120668530464, -0.06710310280323029, 0.011628339998424053, 0.18574972450733185, 0.03046259470283985, 0.10613652318716049, -0.052454739809036255, -0.07693005353212357, -0.01305188238620758, 0.01577168144285679, 0.016556525602936745, 0.09708260744810104, 0.02737423963844776, -0.04651472717523575, 0.07199050486087799, 0.07177937030792236, -0.05355919897556305, 0.12485479563474655, -0.046436019241809845, -0.07312022149562836, -0.028978068381547928, -0.008064709603786469, -0.013326141983270645, 0.12669143080711365, -0.029321717098355293, 0.0103595657274127, 0.033692970871925354, 0.01977180317044258, 0.028260741382837296, -0.17650176584720612, -0.00449266517534852, 0.017562774941325188, -0.05320007726550102, -0.04143051430583, -0.014173905365169048, 0.035619232803583145, 0.09604691714048386, 0.022824730724096298, -0.00004846624506171793, 0.00515001779422164, -0.012721981853246689, -0.07283730804920197, 0.20749588310718536, -0.09931834042072296, -0.09552815556526184, -0.10173800587654114, 0.04248866066336632, -0.0643782764673233, -0.037664979696273804, -0.0030245925299823284, -0.08845458924770355, -0.03231251239776611, -0.07001450657844543, 0.0036637766752392054, -0.009568456560373306, 0.0016562857199460268, 0.017219360917806625, 0.00018727034330368042, 0.10047992318868637, -0.1450304538011551, 0.021093420684337616, -0.048743970692157745, -0.11625059694051743, -0.005208162125200033, 0.07930713146924973, 0.09886962175369263, 0.10900995880365372, -0.01642758771777153, 0.019920969381928444, -0.03079131431877613, 0.22801223397254944, -0.061090029776096344, 0.01629614643752575, 0.12944772839546204, -0.008726722560822964, 0.052113402634859085, 0.0929127112030983, 0.04753227159380913, -0.09224136173725128, 0.027344178408384323, 0.1027417853474617, -0.0263628251850605, -0.2539743483066559, -0.027737077325582504, -0.00413119699805975, -0.07418974488973618, 0.09880250692367554, 0.02152058109641075, -0.023889485746622086, 0.05954907834529877, -0.0015634705778211355, -0.0012647839030250907, -0.03520193696022034, 0.0585089810192585, 0.08058258891105652, 0.04830281063914299, 0.11974310874938965, -0.016979718580842018, -0.014490341767668724, 0.05318195000290871, 0.01587795838713646, 0.24906150996685028, -0.05400130897760391, 0.10077883303165436, 0.04270002618432045, 0.1456872522830963, -0.03111073188483715, 0.06245137378573418, 0.006260763853788376, -0.021503670141100883, 0.015940284356474876, -0.0672728568315506, -0.01555607095360756, 0.010471790097653866, -0.04707933962345123, 0.04050346091389656, -0.08354561775922775, 0.041546158492565155, 0.018711013719439507, 0.2843042314052582, 0.025495411828160286, -0.2666451930999756, -0.08746767789125443, -0.011713234707713127, -0.005537665449082851, -0.06918378174304962, -0.006764846853911877, 0.13058510422706604, -0.136027991771698, 0.06555719673633575, -0.07171732187271118, 0.09458897262811661, -0.027216177433729172, 0.0022300290875136852, 0.07795578241348267, 0.1571822464466095, -0.020062223076820374, 0.05728236213326454, -0.1947917342185974, 0.25223344564437866, 0.02139703370630741, 0.10280631482601166, -0.04916878417134285, 0.013643463142216206, 0.023337556049227715, 0.030622966587543488, 0.0957193523645401, 0.005107393022626638, -0.05890654772520065, -0.16029955446720123, -0.06518819183111191, 0.04263971000909805, 0.1497129201889038, -0.048094164580106735, 0.08852609246969223, -0.0346984900534153, 0.006173968780785799, 0.042559266090393066, -0.06492848694324493, -0.15581177175045013, -0.07941460609436035, 0.011593729257583618, -0.004606354050338268, -0.016706787049770355, -0.06919515132904053, -0.10310136526823044, -0.018649982288479805, 0.12683627009391785, -0.0316564179956913, -0.054922595620155334, -0.15101954340934753, 0.09417311102151871, 0.16375377774238586, -0.06451495736837387, 0.014136167243123055, 0.018510017544031143, 0.11788208782672882, 0.03594651445746422, -0.08854330331087112, 0.06570450216531754, -0.06992091983556747, -0.17512641847133636, -0.04058675840497017, 0.1350424438714981, 0.07575712352991104, 0.046163491904735565, -0.006572005804628134, 0.04258319362998009, 0.008406594395637512, -0.10142945498228073, 0.03325923532247543, -0.019104618579149246, 0.02732032723724842, 0.03847796842455864, -0.08774901181459427, 0.07001851499080658, -0.04195742681622505, 0.006685934029519558, 0.1124405637383461, 0.20891131460666656, -0.11164330691099167, 0.059441495686769485, 0.058030981570482254, -0.07920275628566742, -0.17464374005794525, 0.09446209669113159, 0.15292426943778992, 0.001680431654676795, 0.07490792125463486, -0.21470622718334198, 0.15133610367774963, 0.12945307791233063, -0.016173498705029488, 0.06500548869371414, -0.27295783162117004, -0.14068838953971863, 0.07788312435150146, 0.10249283164739609, 0.0085137989372015, -0.1449919193983078, -0.045263759791851044, -0.014007192105054855, -0.1623792201280594, 0.14637409150600433, -0.09097755700349808, 0.10239675641059875, -0.006963987834751606, 0.09666440635919571, 0.030556203797459602, -0.022880418226122856, 0.12927228212356567, 0.06563065201044083, 0.09183937311172485, -0.037158191204071045, -0.0016770141664892435, 0.07833893597126007, -0.055283818393945694, 0.027516508474946022, -0.01410824153572321, 0.06810146570205688, -0.14272992312908173, 0.013131649233400822, -0.09617253392934799, 0.07576680183410645, -0.06459899246692657, -0.0613037645816803, -0.017469149082899094, 0.05678410455584526, 0.03605000674724579, -0.036446746438741684, 0.04706037789583206, -0.0035580950789153576, 0.14033423364162445, 0.10499647259712219, 0.08473702520132065, -0.010243529453873634, -0.09060803055763245, 0.021527215838432312, 0.0030963828321546316, 0.05175239220261574, -0.10336166620254517, 0.020840059965848923, 0.14154288172721863, 0.08060933649539948, 0.09710237383842468, 0.04665987193584442, -0.04053255915641785, -0.005316286813467741, 0.030439093708992004, -0.11748936772346497, -0.10816434025764465, 0.004681974183768034, -0.06444156169891357, -0.15419888496398926, 0.03610726445913315, 0.11804339289665222, -0.03108491748571396, -0.011449414305388927, -0.009062433615326881, 0.006579871289432049, -0.021184099838137627, 0.20235402882099152, 0.06895424425601959, 0.07554053515195847, -0.09006989747285843, 0.10830628871917725, 0.04209135100245476, -0.05187378078699112, 0.03041878715157509, 0.08038444072008133, -0.08903194963932037, 0.0027514745015650988, 0.054560694843530655, 0.0983581468462944, -0.09437131881713867, -0.0235612653195858, -0.08996538072824478, -0.10418594628572464, 0.03149285912513733, 0.16324235498905182, 0.051373306661844254, -0.004546866752207279, -0.0324864462018013, 0.03897881135344505, -0.12905356287956238, 0.0667204037308693, 0.053534138947725296, 0.08823218196630478, -0.11363741010427475, 0.165944904088974, 0.0067969453521072865, 0.03869287669658661, -0.015742698684334755, 0.020233191549777985, -0.10628747195005417, -0.031875550746917725, -0.12395034730434418, -0.03212695196270943, -0.009069622494280338, 0.00356001197360456, -0.025014806538820267, -0.07378815114498138, -0.04813813418149948, 0.0464748740196228, -0.0752493292093277, -0.05802115425467491, 0.012203985825181007, 0.026195675134658813, -0.16537761688232422, -0.0013056554598733783, 0.03269211947917938, -0.09057150036096573, 0.0759897530078888, 0.06901048123836517, 0.03795057162642479, 0.031451404094696045, -0.13195878267288208, -0.026549849659204483, -0.01323745772242546, 0.008166378363966942, 0.07569508999586105, -0.10034686326980591, -0.021780023351311684, -0.052631545811891556, 0.06299803406000137, 0.014581222087144852, 0.09386834502220154, -0.12255235761404037, 0.004230365622788668, -0.04162759333848953, -0.024561533704400063, -0.06352030485868454, 0.04321981221437454, 0.10734683275222778, 0.0601450651884079, 0.1410265564918518, -0.06943883746862411, 0.04544806852936745, -0.21762694418430328, -0.03503071144223213, -0.01035361923277378, -0.045707494020462036, -0.05032776668667793, -0.02961338870227337, 0.09461862593889236, -0.05805119499564171, 0.09715740382671356, -0.012717502191662788, 0.1104733943939209, 0.04398103803396225, -0.006059996318072081, -0.057152364403009415, 0.012625486589968204, 0.16955339908599854, 0.04778427630662918, -0.0074532488361001015, 0.11716189235448837, 0.019520346075296402, 0.02841092459857464, 0.05118759348988533, 0.2335287630558014, 0.13316188752651215, -0.045998018234968185, 0.05463045835494995, 0.08845771849155426, -0.10452680289745331, -0.12189985811710358, 0.11370687931776047, -0.022897975519299507, 0.0939398780465126, -0.0644489973783493, 0.16761739552021027, 0.061378318816423416, -0.18858401477336884, 0.06310856342315674, -0.04651522636413574, -0.11441056430339813, -0.12040302902460098, 0.00022992015874478966, -0.06547275930643082, -0.11947004497051239, 0.01871461048722267, -0.13616642355918884, 0.0586433969438076, 0.13588696718215942, 0.006674023345112801, 0.04129154607653618, 0.18466182053089142, -0.05314880982041359, 0.005967769771814346, 0.06717915832996368, 0.02410026080906391, 0.012166605331003666, -0.03968905285000801, -0.06073115020990372, 0.05041318014264107, 0.0330229252576828, 0.05483728647232056, -0.067299984395504, -0.007640013936907053, 0.014126230962574482, -0.007769895251840353, -0.07296628504991531, 0.009620076045393944, 0.019799111410975456, 0.05129905045032501, 0.03709465637803078, 0.04909893497824669, 0.015840156003832817, -0.0558449886739254, 0.32270246744155884, -0.07273497432470322, -0.08448733389377594, -0.1360490620136261, 0.21891561150550842, 0.022352971136569977, -0.019820673391222954, 0.05880847945809364, -0.09585902839899063, -0.008214125409722328, 0.154434472322464, 0.15462954342365265, -0.09578827023506165, -0.019320890307426453, -0.013736597262322903, -0.010989515110850334, -0.022332729771733284, 0.1247938796877861, 0.09366538375616074, 0.02188521809875965, -0.07344579696655273, -0.017465218901634216, -0.0161441583186388, -0.04431740939617157, -0.06934059411287308, 0.08550263941287994, 0.02745995856821537, 0.0046033295802772045, -0.034245025366544724, 0.07711616903543472, 0.001149054616689682, -0.22780397534370422, 0.039212197065353394, -0.1814146190881729, -0.18217796087265015, -0.04331362247467041, 0.05645471066236496, -0.0008238903246819973, 0.0656762421131134, 0.002048302674666047, -0.007112317252904177, 0.12083832919597626, -0.009937980212271214, -0.02245904505252838, -0.14040477573871613, 0.10326877236366272, -0.11171731352806091, 0.2132495492696762, -0.021939394995570183, 0.0594530813395977, 0.09699691832065582, 0.02494780905544758, -0.1401182860136032, 0.00987246073782444, 0.06638650596141815, -0.12853305041790009, 0.013042271137237549, 0.14008617401123047, -0.03925309330224991, 0.07071176171302795, 0.02859680913388729, -0.1668129414319992, 0.0019026553491130471, 0.017849385738372803, -0.03225169703364372, -0.07174555957317352, -0.008433455601334572, -0.0630607157945633, 0.1583297848701477, 0.23994259536266327, -0.037156812846660614, 0.01050233468413353, -0.0945608839392662, -0.0007238178513944149, 0.05608179047703743, 0.10068777948617935, -0.03817865997552872, -0.21140669286251068, 0.032961275428533554, 0.052814092487096786, 0.003075031563639641, -0.20922712981700897, -0.08055390417575836, 0.05732153728604317, -0.055740367621183395, -0.014960139989852905, 0.09592175483703613, 0.04821265861392021, 0.05326459929347038, -0.018456188961863518, -0.10788347572088242, -0.030976640060544014, 0.15671761333942413, -0.1759825497865677, -0.04819740355014801 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-6 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-6
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-6 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 55, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09838918596506119, 0.09639986604452133, -0.0023313064593821764, 0.09198450297117233, 0.12460868060588837, 0.018893128260970116, 0.09315813332796097, 0.1297142058610916, -0.0989002212882042, 0.06844276189804077, 0.08736669272184372, 0.03379644826054573, 0.04162416607141495, 0.14076079428195953, -0.005011874251067638, -0.27772092819213867, -0.0006284979754127562, -0.0038221131544560194, -0.053111642599105835, 0.11995968222618103, 0.08894788473844528, -0.10963613539934158, 0.07391397655010223, 0.007762627676129341, -0.15308071672916412, 0.017145512625575066, -0.03147023171186447, -0.03348227217793465, 0.12312845885753632, -0.027762265875935555, 0.10680510848760605, 0.029642924666404724, 0.136808380484581, -0.21031421422958374, 0.00736346747726202, 0.07785288989543915, 0.05478013679385185, 0.09782353788614273, 0.048845574259757996, 0.011966858990490437, 0.10082019120454788, -0.14717929065227509, 0.09561404585838318, 0.030426882207393646, -0.08997838944196701, -0.15345044434070587, -0.0890350267291069, 0.026249386370182037, 0.05274204537272453, 0.07615738362073898, 0.0024533849209547043, 0.132381409406662, -0.07330472022294998, 0.086006298661232, 0.2514004111289978, -0.3125437796115875, -0.06845524162054062, 0.026057424023747444, 0.060702480375766754, 0.06157232075929642, -0.12605759501457214, -0.002596507081761956, 0.01729586347937584, 0.027593988925218582, 0.12312297523021698, -0.011861920356750488, -0.10527073591947556, -0.01066287886351347, -0.12333354353904724, -0.001811234513297677, 0.06052032485604286, 0.02866683341562748, -0.04921155050396919, -0.10806972533464432, -0.0673680379986763, -0.08050257712602615, -0.02267313376069069, -0.051577817648649216, 0.04696803539991379, -0.051937036216259, -0.096852608025074, -0.043551959097385406, -0.059720151126384735, -0.08146686106920242, -0.005758700892329216, 0.16869542002677917, 0.03362603113055229, 0.019843611866235733, -0.030755238607525826, 0.11616741865873337, 0.029665378853678703, -0.13781732320785522, -0.011611654423177242, -0.003334595588967204, -0.09843821823596954, -0.040556617081165314, -0.05584701523184776, -0.005855298135429621, 0.002708416199311614, 0.16435754299163818, -0.07279502600431442, 0.07482349127531052, 0.014210781082510948, -0.027074351906776428, -0.01544556487351656, 0.1526995599269867, -0.041590720415115356, -0.04381290078163147, -0.016767021268606186, 0.0818934217095375, -0.003545480314642191, -0.02086576074361801, -0.06419364362955093, -0.02802455797791481, 0.09538853913545609, 0.05601957440376282, -0.05899392068386078, 0.03759189695119858, -0.026995042338967323, -0.02501017414033413, 0.017340214923024178, -0.11906522512435913, 0.04030001536011696, 0.0011591975344344974, -0.07662011682987213, -0.005199115257710218, 0.00033110755612142384, -0.010951099917292595, -0.0052116974256932735, 0.10038462281227112, -0.08594580739736557, -0.005513898562639952, -0.06743499636650085, -0.07809324562549591, -0.00031171910814009607, -0.14450635015964508, -0.008716489188373089, -0.056966789066791534, -0.16317512094974518, -0.03768118843436241, 0.042569514364004135, -0.07583608478307724, -0.016042323783040047, -0.044178418815135956, -0.06316202133893967, 0.022307055070996284, -0.011919434182345867, 0.2018919140100479, -0.05012922361493111, 0.0835479125380516, -0.009450395591557026, 0.04855339601635933, 0.030941292643547058, 0.03911767527461052, -0.09601413458585739, 0.02610122039914131, -0.13384000957012177, 0.08435946702957153, -0.08618447184562683, -0.004814962390810251, -0.13721349835395813, -0.0985935777425766, 0.00717557268217206, -0.01919872686266899, 0.08846015483140945, 0.1345789134502411, -0.19535204768180847, -0.02102595381438732, 0.12450194358825684, -0.07515084743499756, -0.04397900030016899, 0.06246034428477287, -0.06439132988452911, 0.0384511724114418, 0.053425341844558716, 0.20689360797405243, 0.061455219984054565, -0.1493559181690216, -0.006473795510828495, 0.012973794713616371, 0.05104605853557587, 0.030075041577219963, 0.042786408215761185, 0.001588039449416101, 0.05532842129468918, 0.013660907745361328, -0.0934443473815918, -0.021983621641993523, -0.0909954383969307, -0.06472131609916687, -0.049535807222127914, -0.0751810222864151, 0.05483829602599144, 0.01086130179464817, 0.0381157211959362, -0.05997277796268463, -0.10533502697944641, 0.11435168236494064, 0.10034681111574173, -0.055391859263181686, 0.038230929523706436, -0.07690874487161636, 0.010239599272608757, -0.00606179516762495, -0.03408074378967285, -0.213186115026474, -0.12507681548595428, 0.04765264317393303, -0.03490273654460907, 0.0208127461373806, 0.01509709469974041, 0.08542338758707047, 0.05591990426182747, -0.05337673798203468, -0.01467309519648552, -0.09880834072828293, 0.0018827184103429317, -0.11411619931459427, -0.19234460592269897, -0.08766935765743256, -0.045941367745399475, 0.09645691514015198, -0.17843148112297058, -0.009106346406042576, 0.023995600640773773, 0.13192817568778992, 0.026132605969905853, -0.06787233054637909, -0.001007933751679957, 0.04234001040458679, 0.01237903255969286, -0.09633217751979828, 0.05491442605853081, 0.01157031673938036, -0.10598745942115784, -0.044887810945510864, -0.12658895552158356, -0.01806296594440937, 0.05074033886194229, 0.06084108725190163, -0.09995270520448685, -0.05900062248110771, -0.07455521821975708, -0.03819512575864792, -0.07880086451768875, 0.01662115380167961, 0.2124696522951126, 0.03920051455497742, 0.10949341207742691, -0.061493173241615295, -0.08238019049167633, -0.007690455298870802, 0.03128436952829361, 0.024147115647792816, 0.09017179906368256, 0.02308923937380314, -0.043340958654880524, 0.06697256118059158, 0.10413510352373123, -0.020676715299487114, 0.13030153512954712, -0.05572951212525368, -0.08461421728134155, -0.02903119847178459, -0.017249416559934616, -0.026064272969961166, 0.12449245154857635, -0.03678414225578308, 0.001080123009160161, 0.03446263074874878, 0.04052947834134102, 0.01142768282443285, -0.1683868169784546, 0.0018007426988333464, 0.030434325337409973, -0.056193865835666656, -0.04399622604250908, -0.004737582989037037, 0.018646234646439552, 0.08674117177724838, 0.030904322862625122, -0.0028874874114990234, 0.006719171069562435, -0.013535736128687859, -0.0568414069712162, 0.19135548174381256, -0.0929306149482727, -0.07516243308782578, -0.07132559269666672, 0.01724849082529545, -0.04388369992375374, -0.03708362951874733, 0.0066334884613752365, -0.09447098523378372, -0.029183639213442802, -0.08102991431951523, -0.020375126972794533, -0.028368329629302025, 0.01924549974501133, 0.02361694909632206, -0.01794939860701561, 0.0790197104215622, -0.13660889863967896, 0.008003775961697102, -0.04920471832156181, -0.09954071044921875, 0.004212986212223768, 0.07520979642868042, 0.09063379466533661, 0.08451594412326813, -0.013371768407523632, 0.024403750896453857, -0.03980037197470665, 0.23261968791484833, -0.056548379361629486, 0.011438420042395592, 0.11693695932626724, -0.01430984865874052, 0.051830828189849854, 0.09481924772262573, 0.037167083472013474, -0.09219378978013992, 0.02333798259496689, 0.07984504848718643, -0.03747778758406639, -0.23014222085475922, -0.015082921832799911, -0.006269741803407669, -0.08320446312427521, 0.10252389311790466, 0.03242575377225876, -0.05117712914943695, 0.0408603735268116, 0.01837816834449768, -0.0102074034512043, -0.039278168231248856, 0.06880326569080353, 0.07693703472614288, 0.04724378138780594, 0.1088317409157753, -0.004694676958024502, -0.0191084872931242, 0.05430811643600464, 0.016245748847723007, 0.2632567882537842, -0.04119715094566345, 0.10373038053512573, 0.0332619734108448, 0.1489609181880951, -0.021744851022958755, 0.06448238343000412, 0.00038683286402374506, -0.010163369588553905, -0.012084070593118668, -0.06169737130403519, -0.02829892188310623, 0.01334697287529707, -0.043561168015003204, 0.02232222817838192, -0.08211132138967514, 0.02652807906270027, 0.021548323333263397, 0.28635290265083313, 0.030307063832879066, -0.2536201477050781, -0.07694584876298904, -0.014423253946006298, -0.05144896358251572, -0.05963714420795441, 0.008130524307489395, 0.13753929734230042, -0.13987234234809875, 0.04564684256911278, -0.07838781177997589, 0.08704580366611481, -0.04905899241566658, 0.011592354625463486, 0.050864722579717636, 0.14887037873268127, -0.017520088702440262, 0.05536910519003868, -0.19515161216259003, 0.25506773591041565, 0.01751115173101425, 0.1038893461227417, -0.06533139944076538, 0.012948589399456978, 0.022459914907813072, 0.0182126984000206, 0.11674312502145767, 0.002384138060733676, -0.07271113991737366, -0.14554353058338165, -0.09100218862295151, 0.0478258915245533, 0.1421830654144287, -0.04596741870045662, 0.08989059180021286, -0.03594840690493584, 0.012230313383042812, 0.03672266751527786, -0.035610001534223557, -0.14809535443782806, -0.08684085309505463, -0.0005085903103463352, 0.006131309550255537, -0.007548199500888586, -0.061382681131362915, -0.10570470988750458, -0.009682177565991879, 0.104959636926651, 0.004111692775040865, -0.05453537032008171, -0.15832021832466125, 0.08911964297294617, 0.14395882189273834, -0.058085981756448746, 0.011969881132245064, 0.016677353531122208, 0.11215080320835114, 0.035370174795389175, -0.0785369798541069, 0.06202084943652153, -0.06253685057163239, -0.18080838024616241, -0.05517752841114998, 0.12353026866912842, 0.0823168009519577, 0.049776166677474976, -0.0003783093416132033, 0.05091095715761185, 0.0008890284807421267, -0.09620124101638794, 0.035683974623680115, 0.007538207806646824, 0.03561266139149666, 0.01676645688712597, -0.08779551088809967, 0.09785543382167816, -0.03655954822897911, 0.009754979982972145, 0.1296490877866745, 0.2078988254070282, -0.10544224083423615, 0.11348098516464233, 0.08603310585021973, -0.07435199618339539, -0.16732320189476013, 0.060454998165369034, 0.13076753914356232, 0.011490067467093468, 0.08487933874130249, -0.21407192945480347, 0.1233515813946724, 0.09888333082199097, -0.011185236275196075, 0.009832603856921196, -0.2778167426586151, -0.127937451004982, 0.0582427904009819, 0.1094115674495697, 0.04102541133761406, -0.11713376641273499, -0.03609967231750488, -0.0031393994577229023, -0.09210588037967682, 0.11114823073148727, -0.0721588209271431, 0.11540618538856506, -0.016566870734095573, 0.11142680794000626, 0.025442376732826233, -0.030724845826625824, 0.10752785950899124, 0.06069277599453926, 0.07978585362434387, -0.03460108861327171, 0.00800241343677044, 0.054627109318971634, -0.05594782531261444, 0.015521599911153316, -0.04319874569773674, 0.06697314977645874, -0.1499212682247162, -0.00032162622665055096, -0.09279219061136246, 0.05057232826948166, -0.04924871772527695, -0.07143409550189972, -0.013839603401720524, 0.054162535816431046, 0.07466664165258408, -0.03997396305203438, 0.02551034465432167, -0.005921399686485529, 0.09864988923072815, 0.09515352547168732, 0.08147773891687393, -0.015284217894077301, -0.09227820485830307, 0.0108242928981781, 0.004714335314929485, 0.05421517416834831, -0.1052526980638504, 0.01352702360600233, 0.13756966590881348, 0.06598994880914688, 0.09552686661481857, 0.04836248233914375, -0.04076889157295227, 0.0033822129480540752, 0.013033383525907993, -0.12063353508710861, -0.11476677656173706, 0.023792903870344162, -0.04513058066368103, -0.15517622232437134, 0.021951479837298393, 0.11926163733005524, -0.04082197695970535, -0.01802939549088478, -0.007867044769227505, 0.006024311296641827, -0.012968341819941998, 0.1861274540424347, 0.04536086693406105, 0.06391312181949615, -0.08803708106279373, 0.10681752115488052, 0.035869233310222626, -0.05423538014292717, 0.05040016770362854, 0.06382765620946884, -0.10350096970796585, 0.007785893511027098, 0.07701274007558823, 0.12479303032159805, -0.04724931716918945, -0.009001052938401699, -0.08864301443099976, -0.08502722531557083, 0.04188208654522896, 0.13161960244178772, 0.05387358367443085, -0.001286987797357142, -0.07009157538414001, 0.041984494775533676, -0.11886410415172577, 0.0718965083360672, 0.04458668455481529, 0.07035411894321442, -0.1008734405040741, 0.12889620661735535, -0.0014156077522784472, 0.027499353513121605, -0.02618018165230751, 0.015560859814286232, -0.0960320234298706, -0.024620912969112396, -0.105268694460392, -0.025219665840268135, -0.009171930141746998, 0.00057419907534495, -0.022651076316833496, -0.07438798993825912, -0.02686288394033909, 0.03899999335408211, -0.07640115171670914, -0.05049235746264458, 0.014275413937866688, 0.04048432782292366, -0.15071460604667664, 0.001440435997210443, 0.028902383521199226, -0.093331478536129, 0.09091182053089142, 0.06228776276111603, 0.015042795799672604, 0.0275831688195467, -0.11382352560758591, -0.0282987579703331, -0.01071737427264452, 0.004887616261839867, 0.06530285626649857, -0.09773819893598557, -0.027377672493457794, -0.039256662130355835, 0.045960456132888794, 0.017495477572083473, 0.09745827317237854, -0.11749525368213654, -0.0053282990120351315, -0.04016849398612976, -0.04207766801118851, -0.06262467056512833, 0.03584001213312149, 0.10213373601436615, 0.054794423282146454, 0.14940886199474335, -0.07351765781641006, 0.05953628942370415, -0.20172682404518127, -0.03597846254706383, 0.010258211754262447, -0.04324157536029816, -0.08313178271055222, -0.05131981521844864, 0.08947182446718216, -0.04525591433048248, 0.10450088977813721, -0.020061058923602104, 0.11110924184322357, 0.042752400040626526, -0.00951308198273182, -0.060401398688554764, -0.005868091247975826, 0.18668141961097717, 0.05805082246661186, -0.01650058850646019, 0.130834698677063, -0.00039829115848988295, 0.0291602686047554, 0.08711864799261093, 0.22522301971912384, 0.1616208404302597, 0.0013072679284960032, 0.06395559012889862, 0.061047762632369995, -0.07374239712953568, -0.15167006850242615, 0.11812741309404373, -0.01931259036064148, 0.10227879881858826, -0.06753704696893692, 0.18978743255138397, 0.039641764014959335, -0.1829543262720108, 0.06458018720149994, -0.026581058278679848, -0.11112559586763382, -0.1216837614774704, -0.0239051952958107, -0.0691627785563469, -0.12031764537096024, 0.024191254749894142, -0.11772765964269638, 0.06243725121021271, 0.10237441211938858, 0.009160619229078293, 0.03821227699518204, 0.1853107064962387, -0.044227562844753265, 0.011201243847608566, 0.08308226615190506, 0.019551202654838562, 0.0063659329898655415, -0.043247513473033905, -0.06549090892076492, 0.036005232483148575, 0.032787591218948364, 0.06249316781759262, -0.05216774344444275, -0.0013217562809586525, 0.008843068033456802, -0.007252118084579706, -0.07710210978984833, 0.010643625631928444, 0.010290345177054405, 0.053926289081573486, 0.05213295295834541, 0.04583664983510971, 0.005787109024822712, -0.05358852818608284, 0.29893648624420166, -0.06979342550039291, -0.06857907772064209, -0.12959207594394684, 0.2066716104745865, 0.02247431129217148, -0.022249598056077957, 0.05446821451187134, -0.0843958631157875, -0.014133348129689693, 0.17116519808769226, 0.132171630859375, -0.0924597680568695, -0.016009218990802765, -0.014347083866596222, -0.009869220666587353, -0.013517705723643303, 0.11701670289039612, 0.07663612812757492, -0.01007302850484848, -0.06950876861810684, -0.01829909160733223, -0.021034184843301773, -0.0568973645567894, -0.06164044141769409, 0.0703057199716568, 0.02631935477256775, -0.007185295689851046, -0.06166786700487137, 0.06989067792892456, -0.0009617937030270696, -0.24299004673957825, 0.042272765189409256, -0.17185404896736145, -0.17022055387496948, -0.026947928592562675, 0.07275231927633286, 0.0065215639770030975, 0.057709693908691406, 0.0015345755964517593, 0.019541539251804352, 0.12166135758161545, -0.012355785816907883, -0.0032916655763983727, -0.11084424704313278, 0.11811627447605133, -0.08595547080039978, 0.19823750853538513, -0.00684838742017746, 0.05305914953351021, 0.09674685448408127, 0.04051864147186279, -0.13981333374977112, 0.016743648797273636, 0.06552521139383316, -0.13031071424484253, -0.0012668659910559654, 0.15053154528141022, -0.033030860126018524, 0.0614938959479332, 0.026110678911209106, -0.15363486111164093, 0.007781572639942169, 0.015750521793961525, -0.03716609254479408, -0.06715506315231323, -0.006380816455930471, -0.051687318831682205, 0.1672428697347641, 0.21967481076717377, -0.029492760077118874, 0.005183402448892593, -0.08969541639089584, 0.010043359361588955, 0.04472146928310394, 0.06473338603973389, -0.04218319058418274, -0.20473617315292358, 0.010722261853516102, 0.06394492089748383, -0.004471865016967058, -0.1943143904209137, -0.09850770235061646, 0.0529039092361927, -0.04075957089662552, -0.04244934767484665, 0.09547333419322968, 0.02085127867758274, 0.03654183819890022, -0.011978868395090103, -0.12019786238670349, -0.021509112790226936, 0.1392178237438202, -0.17835578322410583, -0.028658106923103333 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-8 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-8
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-8 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 55, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09894105792045593, 0.09723123908042908, -0.002355189761146903, 0.09236311167478561, 0.12456710636615753, 0.01952957920730114, 0.09263291209936142, 0.12964272499084473, -0.09850653260946274, 0.06795328110456467, 0.08770941197872162, 0.033081259578466415, 0.041551291942596436, 0.13992412388324738, -0.005153443198651075, -0.27777063846588135, -0.0011231901589781046, -0.0032241009175777435, -0.051239583641290665, 0.11947889626026154, 0.08901669085025787, -0.10966302454471588, 0.0738266110420227, 0.0075375353917479515, -0.15241459012031555, 0.016998762264847755, -0.030950374901294708, -0.03407140448689461, 0.12341894209384918, -0.027046198025345802, 0.10684213042259216, 0.02888362668454647, 0.13690349459648132, -0.21107937395572662, 0.007112462539225817, 0.0781061127781868, 0.0547059066593647, 0.09790081530809402, 0.04754716530442238, 0.012760059908032417, 0.09982486069202423, -0.14769062399864197, 0.09592874348163605, 0.030055923387408257, -0.08973146229982376, -0.15394286811351776, -0.08810518682003021, 0.027474476024508476, 0.052231721580028534, 0.07558105885982513, 0.0034819231368601322, 0.1340741664171219, -0.07210100442171097, 0.0863889530301094, 0.25155743956565857, -0.31222712993621826, -0.06767212599515915, 0.02505720965564251, 0.06034889072179794, 0.06283747404813766, -0.1251887083053589, -0.0024083685129880905, 0.01696726679801941, 0.02739088609814644, 0.12363148480653763, -0.012635638937354088, -0.10676135122776031, -0.01073154341429472, -0.12279379367828369, -0.0022578355856239796, 0.061351459473371506, 0.02890097349882126, -0.04942229762673378, -0.10808248817920685, -0.0679529458284378, -0.08127347379922867, -0.02310258336365223, -0.05196402594447136, 0.04635642096400261, -0.05154343694448471, -0.09602829813957214, -0.04358264058828354, -0.059189628809690475, -0.08073347806930542, -0.005547996144741774, 0.16877302527427673, 0.033768150955438614, 0.01977100782096386, -0.029925094917416573, 0.11572293192148209, 0.027719179168343544, -0.13790546357631683, -0.011145598255097866, -0.0030736338812857866, -0.09857213497161865, -0.04069060459733009, -0.056163493543863297, -0.0070309992879629135, 0.0022060966584831476, 0.16579191386699677, -0.07246663421392441, 0.0745621994137764, 0.014766788110136986, -0.026465291157364845, -0.014999018050730228, 0.1535874903202057, -0.04230997711420059, -0.044526174664497375, -0.015908824279904366, 0.08145076781511307, -0.0026864793617278337, -0.021776361390948296, -0.06537161767482758, -0.028821803629398346, 0.09597936272621155, 0.05539810284972191, -0.05895240604877472, 0.03702739253640175, -0.027197428047657013, -0.02522173710167408, 0.01811951771378517, -0.11893834918737411, 0.04052244499325752, 0.0010810302337631583, -0.0763823464512825, -0.004458056762814522, 0.001180913532152772, -0.010344365611672401, -0.005580799654126167, 0.09930243343114853, -0.08510787039995193, -0.005019776057451963, -0.06710170954465866, -0.07824181020259857, -0.000039270100387511775, -0.14442656934261322, -0.007814223878085613, -0.05814239755272865, -0.16335663199424744, -0.03714781627058983, 0.042898744344711304, -0.07529591768980026, -0.01575065404176712, -0.04318384826183319, -0.061743397265672684, 0.02214048244059086, -0.012536287307739258, 0.1997756063938141, -0.05029371753334999, 0.08320640027523041, -0.009365183301270008, 0.04829147085547447, 0.029661357402801514, 0.039212483912706375, -0.09557610750198364, 0.02596166543662548, -0.13387364149093628, 0.084391288459301, -0.0855015441775322, -0.004769599996507168, -0.13585805892944336, -0.09852824360132217, 0.008120022714138031, -0.018582167103886604, 0.08923356980085373, 0.13378597795963287, -0.19516383111476898, -0.02080497518181801, 0.12367171049118042, -0.07471691817045212, -0.04418976604938507, 0.06395858526229858, -0.06456980854272842, 0.03847692906856537, 0.05396924167871475, 0.20689699053764343, 0.06323157250881195, -0.1494757980108261, -0.0057604131288826466, 0.01447305642068386, 0.05169776827096939, 0.02897939831018448, 0.04266281798481941, 0.0020291805267333984, 0.05558051913976669, 0.013977346941828728, -0.09229546785354614, -0.02115701325237751, -0.09094469994306564, -0.06519082933664322, -0.04978805407881737, -0.07497133314609528, 0.05456259474158287, 0.011632389388978481, 0.03813439980149269, -0.059704117476940155, -0.10597650706768036, 0.1159248873591423, 0.10004165768623352, -0.055734019726514816, 0.038229476660490036, -0.07655449956655502, 0.010785329155623913, -0.005455952603369951, -0.03399830684065819, -0.2127159833908081, -0.12388026714324951, 0.047817934304475784, -0.034629374742507935, 0.020323457196354866, 0.01535322330892086, 0.08475523442029953, 0.05636162310838699, -0.05282258614897728, -0.013904405757784843, -0.09831982105970383, 0.002134934300556779, -0.11491116881370544, -0.19114744663238525, -0.08781404048204422, -0.04536639153957367, 0.09699180722236633, -0.17917510867118835, -0.008609922602772713, 0.02352963574230671, 0.1312103420495987, 0.025622788816690445, -0.06782164424657822, -0.0010223388671875, 0.042964592576026917, 0.01217744592577219, -0.09662739932537079, 0.05508529394865036, 0.01220696046948433, -0.10697523504495621, -0.045907359570264816, -0.126937136054039, -0.01714731566607952, 0.05048341676592827, 0.05991325527429581, -0.09990686923265457, -0.0595746785402298, -0.07401398569345474, -0.038006704300642014, -0.07804427295923233, 0.01586787775158882, 0.21350160241127014, 0.039420973509550095, 0.11039938032627106, -0.0613679513335228, -0.08179808408021927, -0.007557053118944168, 0.031082669273018837, 0.024793418124318123, 0.08929247409105301, 0.02259274199604988, -0.041092321276664734, 0.06620338559150696, 0.10327430069446564, -0.02168574556708336, 0.12962453067302704, -0.05540072172880173, -0.08422135561704636, -0.029305854812264442, -0.017548291012644768, -0.025890333577990532, 0.12450657039880753, -0.0383291095495224, 0.0004449633997865021, 0.03470812737941742, 0.04008171334862709, 0.011594832874834538, -0.1683613657951355, 0.0016586276469752192, 0.03142679110169411, -0.05566299706697464, -0.0431552492082119, -0.005604229401797056, 0.018191296607255936, 0.08585688471794128, 0.030581718310713768, -0.003228292567655444, 0.007406657561659813, -0.013180343434214592, -0.057151827961206436, 0.1907035857439041, -0.0928945541381836, -0.0765952616930008, -0.0727655366063118, 0.017751941457390785, -0.043950773775577545, -0.0370996929705143, 0.006902385037392378, -0.09279367327690125, -0.028944429010152817, -0.08136904239654541, -0.022167984396219254, -0.027760570868849754, 0.019216176122426987, 0.024029606953263283, -0.01838167943060398, 0.07954984158277512, -0.1363925337791443, 0.00774107500910759, -0.04853895679116249, -0.0986320748925209, 0.0046554990112781525, 0.07484930753707886, 0.0915357768535614, 0.08503468334674835, -0.014254082925617695, 0.0242014080286026, -0.0395340770483017, 0.23231548070907593, -0.05606517195701599, 0.01175647135823965, 0.1172252893447876, -0.015338459052145481, 0.051970481872558594, 0.09419099986553192, 0.037459392100572586, -0.09220991283655167, 0.02287290059030056, 0.07873785495758057, -0.03816566988825798, -0.22926682233810425, -0.01502018328756094, -0.006353309378027916, -0.08293656259775162, 0.10274143517017365, 0.032252971082925797, -0.05060984566807747, 0.041392307728528976, 0.018645670264959335, -0.008591797202825546, -0.04007590562105179, 0.06864698231220245, 0.07748803496360779, 0.047234855592250824, 0.10865111649036407, -0.0043703289702534676, -0.019252164289355278, 0.05458423122763634, 0.015596846118569374, 0.26120278239250183, -0.0414741225540638, 0.1046038493514061, 0.032042406499385834, 0.1496841311454773, -0.021789662539958954, 0.0647052749991417, 0.00008215284469770268, -0.010499761439859867, -0.012248926796019077, -0.061894990503787994, -0.029920874163508415, 0.013921953737735748, -0.04404430836439133, 0.0227334164083004, -0.08239344507455826, 0.027324886992573738, 0.02122051827609539, 0.2858733534812927, 0.030126864090561867, -0.2540241479873657, -0.07724165916442871, -0.014810982160270214, -0.05122248828411102, -0.0602448545396328, 0.00806504487991333, 0.13846805691719055, -0.1393948495388031, 0.04515935108065605, -0.07751910388469696, 0.08714870363473892, -0.05014670640230179, 0.011888762935996056, 0.04991912096738815, 0.1487300544977188, -0.017168182879686356, 0.055793456733226776, -0.19573061168193817, 0.2534012794494629, 0.01791793294250965, 0.1042553186416626, -0.06569787114858627, 0.013471605256199837, 0.021967072039842606, 0.02008655108511448, 0.11603385210037231, 0.00281723914667964, -0.0712740421295166, -0.14706405997276306, -0.09136231988668442, 0.04785457253456116, 0.14093641936779022, -0.0444365069270134, 0.08953306823968887, -0.036054570227861404, 0.012338051572442055, 0.036991678178310394, -0.034930117428302765, -0.14795733988285065, -0.08755264431238174, -0.0010758813004940748, 0.00735871959477663, -0.007270497735589743, -0.06110035628080368, -0.10527059435844421, -0.010934695601463318, 0.10520800948143005, 0.004937910940498114, -0.05478907376527786, -0.1583040952682495, 0.08967800438404083, 0.14310340583324432, -0.058245476335287094, 0.011676570400595665, 0.016648804768919945, 0.11230231821537018, 0.035147927701473236, -0.07772473990917206, 0.0620453767478466, -0.06222246214747429, -0.1796710342168808, -0.05553295090794563, 0.12268160283565521, 0.081880584359169, 0.049995169043540955, 0.00009159970068139955, 0.05061594769358635, 0.000765131670050323, -0.09623443335294724, 0.03446795791387558, 0.008084708824753761, 0.03471766412258148, 0.01671689935028553, -0.0878298282623291, 0.09886081516742706, -0.03628149256110191, 0.010006539523601532, 0.13080333173274994, 0.20730091631412506, -0.10580452531576157, 0.11263766884803772, 0.08691943436861038, -0.07425311952829361, -0.16707764565944672, 0.06001760810613632, 0.13018624484539032, 0.011623536236584187, 0.08494177460670471, -0.21352463960647583, 0.12335830181837082, 0.09984926879405975, -0.010723834857344627, 0.009503412060439587, -0.27779272198677063, -0.12811748683452606, 0.05916128680109978, 0.10934282094240189, 0.0431600920855999, -0.11763250827789307, -0.03599619120359421, -0.003960160072892904, -0.09338343143463135, 0.11025669425725937, -0.07186206430196762, 0.11519985646009445, -0.016289539635181427, 0.10996514558792114, 0.025636348873376846, -0.030903423205018044, 0.1079735979437828, 0.06128600239753723, 0.07975910604000092, -0.0348571352660656, 0.008431079797446728, 0.05438391491770744, -0.05612995848059654, 0.01661355048418045, -0.042997125536203384, 0.06707921624183655, -0.15173189342021942, -0.000686849292833358, -0.09143270552158356, 0.05112887918949127, -0.04885254427790642, -0.07186444103717804, -0.013750048354268074, 0.0530376099050045, 0.07449464499950409, -0.039849575608968735, 0.026464667171239853, -0.005537963472306728, 0.09777985513210297, 0.09681672602891922, 0.08004585653543472, -0.018532341346144676, -0.09243535995483398, 0.010858905501663685, 0.0044853645376861095, 0.05463702231645584, -0.1049627810716629, 0.014021906070411205, 0.13776777684688568, 0.06597796827554703, 0.09577295929193497, 0.047319840639829636, -0.040180038660764694, 0.003402617061510682, 0.012537332251667976, -0.12044604867696762, -0.11391962319612503, 0.02315724454820156, -0.045495372265577316, -0.15463495254516602, 0.020913688465952873, 0.11978743225336075, -0.04167905077338219, -0.017336400225758553, -0.008158833719789982, 0.004730673041194677, -0.012986515648663044, 0.18576431274414062, 0.045997731387615204, 0.06368881464004517, -0.08790803700685501, 0.10643690079450607, 0.036407582461833954, -0.05342816561460495, 0.05090213567018509, 0.06325472146272659, -0.10385167598724365, 0.007611595559865236, 0.07708225399255753, 0.12472265958786011, -0.04805966839194298, -0.010154594667255878, -0.08920112997293472, -0.08397317677736282, 0.041466161608695984, 0.1303914338350296, 0.05429137498140335, -0.0016213607741519809, -0.07029691338539124, 0.04120754823088646, -0.11910545080900192, 0.07137279212474823, 0.04408548027276993, 0.07055649161338806, -0.10114304721355438, 0.13022784888744354, -0.0006387680186890066, 0.027579884976148605, -0.02619689330458641, 0.015058579854667187, -0.09603933990001678, -0.024273335933685303, -0.10667124390602112, -0.02499525062739849, -0.00902076531201601, 0.0010579974623396993, -0.022661643102765083, -0.074154332280159, -0.026854438707232475, 0.03890277445316315, -0.07568936049938202, -0.05028946325182915, 0.014626368880271912, 0.04008140042424202, -0.15027694404125214, 0.001060917042195797, 0.02857840247452259, -0.09315013140439987, 0.09119265526533127, 0.061766937375068665, 0.014668113552033901, 0.02724575623869896, -0.11395099759101868, -0.028123943135142326, -0.010673223994672298, 0.0058119408786296844, 0.0652933120727539, -0.0961846187710762, -0.026526428759098053, -0.038774263113737106, 0.04582354426383972, 0.01738300919532776, 0.09793222695589066, -0.11772798746824265, -0.00521849887445569, -0.04006574675440788, -0.04214448109269142, -0.06309386342763901, 0.035911381244659424, 0.101850725710392, 0.05405886098742485, 0.14928317070007324, -0.07335328310728073, 0.05935065075755119, -0.20203897356987, -0.03624437004327774, 0.01052274089306593, -0.04282228276133537, -0.08284713327884674, -0.0522582121193409, 0.08919264376163483, -0.04469704255461693, 0.10623835772275925, -0.019901584833860397, 0.1117250919342041, 0.04227413609623909, -0.010144231840968132, -0.06028490141034126, -0.006590850651264191, 0.1875971555709839, 0.05927534028887749, -0.01648654416203499, 0.130029559135437, -0.00008159768185578287, 0.030267123132944107, 0.08652106672525406, 0.2225494235754013, 0.1614730954170227, 0.0005243022460490465, 0.06400444358587265, 0.06088050827383995, -0.07319948822259903, -0.1518172025680542, 0.11778085678815842, -0.0194243174046278, 0.10256099700927734, -0.06738993525505066, 0.18978416919708252, 0.03975936770439148, -0.18283385038375854, 0.06434519588947296, -0.025823399424552917, -0.111399807035923, -0.12185985594987869, -0.023397047072649002, -0.06920591741800308, -0.12043291330337524, 0.02374386601150036, -0.11709970980882645, 0.06193520501255989, 0.10272630304098129, 0.008688570000231266, 0.03802153095602989, 0.18477894365787506, -0.04427243396639824, 0.011622540652751923, 0.08272451162338257, 0.019356323406100273, 0.006749111693352461, -0.044420599937438965, -0.06628817319869995, 0.036099810153245926, 0.03290153667330742, 0.06313260644674301, -0.05223676189780235, 0.0006007922347635031, 0.00926295481622219, -0.006889106705784798, -0.07754816859960556, 0.01053713634610176, 0.009666122496128082, 0.05357031524181366, 0.05073637142777443, 0.046135056763887405, 0.005897964350879192, -0.05382450297474861, 0.2972237169742584, -0.06918913871049881, -0.06922858208417892, -0.12950871884822845, 0.20573623478412628, 0.022913921624422073, -0.021888229995965958, 0.054444119334220886, -0.08439681679010391, -0.013490252196788788, 0.17139868438243866, 0.1314297318458557, -0.09310282766819, -0.016025107353925705, -0.01403393130749464, -0.009972193278372288, -0.014670057222247124, 0.11759091913700104, 0.07681915909051895, -0.01115326676517725, -0.06880100071430206, -0.018465349450707436, -0.02126765437424183, -0.05691201239824295, -0.06280943006277084, 0.06950905174016953, 0.026474950835108757, -0.006415003910660744, -0.061260245740413666, 0.06936372816562653, -0.00004320088555687107, -0.24356156587600708, 0.04258216544985771, -0.1720910370349884, -0.16999952495098114, -0.026798587292432785, 0.07298164069652557, 0.006618769373744726, 0.05737950652837753, 0.0015947073698043823, 0.019924696534872055, 0.12238777428865433, -0.01257668249309063, -0.0039123669266700745, -0.10955021530389786, 0.11739682406187057, -0.0846085473895073, 0.19794835150241852, -0.006836653687059879, 0.053886257112026215, 0.09666524827480316, 0.040849994868040085, -0.1389726847410202, 0.017152579501271248, 0.06522156298160553, -0.1291395127773285, -0.001505573745816946, 0.14902526140213013, -0.03310904651880264, 0.06141487881541252, 0.026594869792461395, -0.15333916246891022, 0.00700880354270339, 0.01449801865965128, -0.03713136538863182, -0.06675875931978226, -0.007962332107126713, -0.051055606454610825, 0.16729736328125, 0.21876654028892517, -0.02922227419912815, 0.004569387529045343, -0.08988143503665924, 0.009869735687971115, 0.045263078063726425, 0.06456246227025986, -0.04233761131763458, -0.20435670018196106, 0.01117687113583088, 0.06381885707378387, -0.004271874204277992, -0.19413837790489197, -0.09901805222034454, 0.05286240205168724, -0.04125669226050377, -0.04204986244440079, 0.09549898654222488, 0.020963257178664207, 0.036917366087436676, -0.012191231362521648, -0.12041520327329636, -0.021949883550405502, 0.13911408185958862, -0.17830224335193634, -0.028945138677954674 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-0 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-0
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-0 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09585482627153397, 0.11574802547693253, -0.0023232675157487392, 0.09164950996637344, 0.11940724402666092, 0.02194148115813732, 0.1003817692399025, 0.12840045988559723, -0.09804999083280563, 0.08735804259777069, 0.08824559301137924, 0.03891035169363022, 0.04693329334259033, 0.14471150934696198, -0.019851794466376305, -0.25978803634643555, 0.010819676332175732, -0.0035582613199949265, -0.03468380123376846, 0.11191434413194656, 0.08480123430490494, -0.11075669527053833, 0.08644692599773407, 0.014785396866500378, -0.1541179120540619, 0.0191914364695549, -0.037324097007513046, -0.035407230257987976, 0.11346729099750519, -0.03228607401251793, 0.10853424668312073, 0.02519115060567856, 0.13295391201972961, -0.21043100953102112, 0.004883426241576672, 0.07441530376672745, 0.04619016870856285, 0.10057712346315384, 0.05103877931833267, 0.015057035721838474, 0.09053568542003632, -0.15366116166114807, 0.09273097664117813, 0.029710445553064346, -0.09107404947280884, -0.1306881457567215, -0.0953712984919548, 0.024288004264235497, 0.051006488502025604, 0.06939321011304855, 0.0014297080924734473, 0.15234588086605072, -0.05985381826758385, 0.07882615178823471, 0.26684918999671936, -0.32615965604782104, -0.06411067396402359, 0.031629182398319244, 0.05918838456273079, 0.05231211334466934, -0.12299878150224686, -0.0061492593958973885, 0.02673209458589554, 0.030025823041796684, 0.11858604848384857, -0.01670728251338005, -0.11313708126544952, -0.013051186688244343, -0.12778112292289734, -0.0009471868979744613, 0.0706915631890297, 0.03543437272310257, -0.05196481943130493, -0.09425334632396698, -0.07526201754808426, -0.09277278929948807, -0.025321442633867264, -0.06377796083688736, 0.05664108321070671, -0.05521264672279358, -0.08221978694200516, -0.035773586481809616, -0.056746210902929306, -0.07576826214790344, -0.01926831714808941, 0.15887317061424255, 0.04002712294459343, 0.02039349265396595, -0.03257617726922035, 0.10835811495780945, 0.003420233493670821, -0.142034649848938, -0.01615915820002556, -0.0012464536121115088, -0.09645719081163406, -0.04637749493122101, -0.05116526782512665, -0.018215574324131012, 0.010867050848901272, 0.17665870487689972, -0.08145212382078171, 0.07586947083473206, 0.009633307345211506, -0.029361313208937645, -0.00688878633081913, 0.14861877262592316, -0.04383424296975136, -0.04590560868382454, -0.010499994270503521, 0.07339520007371902, 0.0031646178103983402, -0.015182620845735073, -0.06461455672979355, -0.026951860636472702, 0.10215016454458237, 0.04526449739933014, -0.05916410684585571, 0.040513891726732254, -0.023002296686172485, -0.02849333919584751, 0.017047669738531113, -0.11494369804859161, 0.04415552690625191, -0.0018468365306034684, -0.08463974297046661, -0.0006676645134575665, 0.000762382464017719, -0.00572221027687192, -0.008291170932352543, 0.11162086576223373, -0.0998891219496727, -0.0020102374255657196, -0.06390112638473511, -0.08323792368173599, 0.00890190526843071, -0.15563851594924927, -0.016376199200749397, -0.05795866996049881, -0.16890151798725128, -0.031339503824710846, 0.03725988045334816, -0.07394540309906006, -0.008134701289236546, -0.04833504930138588, -0.0652252733707428, 0.025109322741627693, -0.014649261720478535, 0.1729235202074051, -0.054293520748615265, 0.07282973825931549, -0.0007421004702337086, 0.045556940138339996, 0.014587026089429855, 0.035964030772447586, -0.10564084351062775, 0.024883002042770386, -0.13819310069084167, 0.06924803555011749, -0.08462658524513245, -0.002803192939609289, -0.13331709802150726, -0.09845825284719467, 0.010089945048093796, -0.02187279984354973, 0.09120915085077286, 0.13876031339168549, -0.19320239126682281, -0.01896631345152855, 0.12708009779453278, -0.07471200823783875, -0.06415227055549622, 0.06259337812662125, -0.060860175639390945, 0.029179930686950684, 0.051779668778181076, 0.2111426144838333, 0.03905785456299782, -0.16652986407279968, -0.03315328434109688, -0.006066650152206421, 0.04122345149517059, 0.027050649747252464, 0.03975030779838562, 0.004006355069577694, 0.06361688673496246, 0.014659716747701168, -0.07608246058225632, -0.03220272809267044, -0.09163583070039749, -0.06478875875473022, -0.054931141436100006, -0.07188321650028229, 0.04111519455909729, 0.0035578112583607435, 0.042180128395557404, -0.06490558385848999, -0.10199814289808273, 0.1198849305510521, 0.09637132287025452, -0.04842076823115349, 0.037448033690452576, -0.0791599377989769, 0.019636960700154305, -0.019837742671370506, -0.03885011374950409, -0.20660202205181122, -0.13042904436588287, 0.0522303432226181, -0.057205457240343094, 0.03435857966542244, 0.004900083411484957, 0.08088211715221405, 0.061586108058691025, -0.04347430169582367, -0.011435892432928085, -0.09351922571659088, 0.0030791054014116526, -0.11718863248825073, -0.18898944556713104, -0.07731851190328598, -0.03974906727671623, 0.0936296358704567, -0.17312650382518768, -0.007297433912754059, 0.015933359041810036, 0.1441730111837387, 0.027552761137485504, -0.06818035989999771, -0.00332432403229177, 0.038502346724271774, 0.002051887335255742, -0.09538659453392029, 0.04471360146999359, 0.008542035706341267, -0.09362947940826416, -0.06234649941325188, -0.13531142473220825, -0.010454432107508183, 0.060764238238334656, 0.0512109138071537, -0.09677666425704956, -0.04512317478656769, -0.07071776688098907, -0.040667574852705, -0.07611922919750214, 0.013495689257979393, 0.20184524357318878, 0.03566104918718338, 0.11316510289907455, -0.06735606491565704, -0.0771314948797226, -0.003113025799393654, 0.021992497146129608, 0.012231576256453991, 0.0770697295665741, 0.04098444804549217, -0.05296354368329048, 0.0743933692574501, 0.09899268299341202, -0.023422598838806152, 0.12454879283905029, -0.046861618757247925, -0.08376988768577576, -0.03350363299250603, -0.02470269799232483, -0.02832777425646782, 0.12379475682973862, -0.039979711174964905, 0.005754569545388222, 0.0365271121263504, 0.04537516087293625, 0.01730678789317608, -0.16208386421203613, 0.008220548741519451, 0.021990405395627022, -0.05367446318268776, -0.036784470081329346, -0.0005722372443415225, 0.027362411841750145, 0.09240055084228516, 0.03155839815735817, -0.01327238604426384, 0.0027766458224505186, -0.011700754053890705, -0.061605364084243774, 0.18548622727394104, -0.0989380031824112, -0.08540133386850357, -0.07529138773679733, 0.005323108285665512, -0.06064022704958916, -0.03635239228606224, 0.0164004098623991, -0.08791891485452652, -0.03941773623228073, -0.08770519495010376, -0.0169553030282259, -0.017857786267995834, 0.02094818837940693, 0.03054238110780716, -0.023025857284665108, 0.08106573671102524, -0.1390978842973709, 0.0013165463460609317, -0.051638174802064896, -0.09147122502326965, -0.0003421034198254347, 0.07510428130626678, 0.09851600229740143, 0.07954733073711395, -0.017133019864559174, 0.029570283368229866, -0.03446783125400543, 0.24221085011959076, -0.04564368724822998, 0.01010632049292326, 0.10386435687541962, -0.013174955733120441, 0.056505125015974045, 0.09469945728778839, 0.03795049339532852, -0.0937889963388443, 0.021135183051228523, 0.08351055532693863, -0.02918616682291031, -0.22856773436069489, -0.02610323205590248, -0.004967757500708103, -0.07888385653495789, 0.10605825483798981, 0.03187987580895424, -0.03771362453699112, 0.044901832938194275, 0.020819298923015594, 0.0017469384474679828, -0.05665234848856926, 0.08174960315227509, 0.07649021595716476, 0.05775488540530205, 0.10012821108102798, -0.009036052972078323, -0.028102613985538483, 0.06229547783732414, 0.0072301235049963, 0.24674925208091736, -0.0258337389677763, 0.10106561332941055, 0.033159978687763214, 0.15194815397262573, -0.026617668569087982, 0.0638866126537323, 0.00330393947660923, -0.009477194398641586, -0.01463441550731659, -0.06732112914323807, -0.02556636743247509, 0.022630715742707253, -0.04661936312913895, 0.02978852391242981, -0.08183468133211136, 0.025427838787436485, 0.028379788622260094, 0.2803414463996887, 0.03360859304666519, -0.27414050698280334, -0.06676716357469559, -0.013458723202347755, -0.041563574224710464, -0.06368754804134369, 0.006657265592366457, 0.12031333148479462, -0.13240040838718414, 0.0650133416056633, -0.07668276876211166, 0.08972678333520889, -0.03896161541342735, 0.011395144276320934, 0.04775863140821457, 0.15429410338401794, -0.018225887790322304, 0.050095926970243454, -0.18584662675857544, 0.24299828708171844, 0.024889836087822914, 0.10739313066005707, -0.06441192328929901, 0.01012064516544342, 0.01909683831036091, 0.0077144913375377655, 0.10813004523515701, 0.0008396422490477562, -0.0677558183670044, -0.13769115507602692, -0.09880927205085754, 0.04711146280169487, 0.14204753935337067, -0.03465932607650757, 0.09938998520374298, -0.028506344184279442, 0.012854971922934055, 0.034342117607593536, -0.029747476801276207, -0.15644192695617676, -0.07370047271251678, 0.010292078368365765, 0.02840116247534752, -0.0160392876714468, -0.05176925286650658, -0.10411761701107025, -0.03911152109503746, 0.11877036839723587, 0.002355532720685005, -0.045531265437603, -0.15113465487957, 0.08441533893346786, 0.14596383273601532, -0.05834994837641716, 0.015439353883266449, 0.013321048580110073, 0.11135545372962952, 0.03315645083785057, -0.0863414853811264, 0.06701590120792389, -0.05333093926310539, -0.173558309674263, -0.05815497040748596, 0.11808431148529053, 0.07915609329938889, 0.04514605924487114, -0.0007037419709376991, 0.05760998651385307, 0.0013315660180523992, -0.0971798226237297, 0.03585951030254364, 0.00404932489618659, 0.052369374781847, 0.028936617076396942, -0.08495042473077774, 0.07730241864919662, -0.03391889110207558, 0.01818329654633999, 0.12895256280899048, 0.23388099670410156, -0.09938021749258041, 0.10198486596345901, 0.08079949766397476, -0.07567271590232849, -0.15976712107658386, 0.06162923946976662, 0.12514972686767578, 0.004637544974684715, 0.08335801213979721, -0.20049430429935455, 0.13443876802921295, 0.10715766996145248, -0.01344896201044321, 0.021075060591101646, -0.27240434288978577, -0.1323363482952118, 0.06503722816705704, 0.10968221724033356, 0.049332812428474426, -0.12218505144119263, -0.03502803295850754, -0.010763213038444519, -0.11976095288991928, 0.12953414022922516, -0.0765363797545433, 0.11770856380462646, -0.021506547927856445, 0.12327458709478378, 0.024254973977804184, -0.03726937994360924, 0.11363200098276138, 0.07077904045581818, 0.086062490940094, -0.03940654918551445, -0.002171430503949523, 0.0639253631234169, -0.06249762326478958, 0.03584035858511925, -0.03876660019159317, 0.06328879296779633, -0.14738571643829346, 0.007055866066366434, -0.07830452919006348, 0.06027271971106529, -0.04653439670801163, -0.06528974324464798, -0.027989530935883522, 0.04732085019350052, 0.07310070842504501, -0.03591594472527504, 0.04697731137275696, 0.007893562316894531, 0.09083157777786255, 0.10059289634227753, 0.07223651558160782, -0.023492727428674698, -0.08305266499519348, 0.014440168626606464, 0.004848156590014696, 0.04728994518518448, -0.08599357306957245, 0.015871170908212662, 0.14663992822170258, 0.06014043837785721, 0.10192269086837769, 0.04579981043934822, -0.043358128517866135, 0.0056160567328333855, 0.016941817477345467, -0.1434137374162674, -0.09946787357330322, 0.028383223339915276, -0.05777815356850624, -0.1541193276643753, 0.03354678303003311, 0.1237916424870491, -0.0372144877910614, -0.01564883440732956, -0.0062837242148816586, 0.008654579520225525, -0.0118383364751935, 0.18452371656894684, 0.04238579049706459, 0.05412868410348892, -0.09128617495298386, 0.11494291573762894, 0.03585773706436157, -0.04207681491971016, 0.05440526828169823, 0.06788541376590729, -0.09930112957954407, 0.013388757593929768, 0.07180032879114151, 0.1494225114583969, -0.06774168461561203, -0.012920006178319454, -0.09195073693990707, -0.07697242498397827, 0.0450211800634861, 0.14570482075214386, 0.05291964113712311, -0.004328790586441755, -0.06129082292318344, 0.03556672856211662, -0.1184500977396965, 0.06841026991605759, 0.052245792001485825, 0.08247345685958862, -0.10767510533332825, 0.12441670894622803, -0.0070014833472669125, 0.023229217156767845, -0.027914728969335556, 0.01811448484659195, -0.10114046186208725, -0.034132473170757294, -0.10936085879802704, -0.014101107604801655, -0.0179811492562294, -0.003405241994187236, -0.019328942522406578, -0.07537710666656494, -0.04333088546991348, 0.032673247158527374, -0.07676634937524796, -0.04874055087566376, 0.01759370230138302, 0.04033644497394562, -0.161634162068367, 0.0033719621133059263, 0.02627057582139969, -0.08760760724544525, 0.08793280273675919, 0.06913357228040695, 0.015331964939832687, 0.027901049703359604, -0.12361886352300644, -0.03322723135352135, 0.00007784867193549871, 0.010509694926440716, 0.0778270959854126, -0.09312193840742111, -0.029520243406295776, -0.030970927327871323, 0.048861656337976456, 0.015173155814409256, 0.10296645015478134, -0.11952747404575348, -0.012811923399567604, -0.045651525259017944, -0.03799217566847801, -0.05677371472120285, 0.026664162054657936, 0.11446377635002136, 0.044773850589990616, 0.15755920112133026, -0.07077232003211975, 0.05436231568455696, -0.20409560203552246, -0.03263097256422043, 0.011464751325547695, -0.048082396388053894, -0.07468501478433609, -0.04489348456263542, 0.08429531008005142, -0.050549283623695374, 0.12120117247104645, -0.01539467554539442, 0.09334331005811691, 0.04449374973773956, -0.00538012245669961, -0.07073508948087692, -0.011659846641123295, 0.1838238388299942, 0.0575973317027092, -0.021103695034980774, 0.12073617428541183, 0.0036367152351886034, 0.04236302897334099, 0.06854391098022461, 0.23504148423671722, 0.1525648832321167, -0.011185149662196636, 0.07512494176626205, 0.06625320017337799, -0.07502296566963196, -0.1411105841398239, 0.12251528352499008, -0.02083871327340603, 0.1076052337884903, -0.05267217010259628, 0.18891490995883942, 0.03809245675802231, -0.17612870037555695, 0.05425943061709404, -0.025205284357070923, -0.10747132450342178, -0.1255379319190979, -0.01640038564801216, -0.08177769929170609, -0.11686872690916061, 0.0276299100369215, -0.1236639991402626, 0.06846257299184799, 0.09587464481592178, 0.0075209964998066425, 0.03549277409911156, 0.1844862401485443, -0.057530585676431656, 0.010699351318180561, 0.07291330397129059, 0.02101086638867855, -0.004338522907346487, -0.03956150263547897, -0.06730540096759796, 0.036793604493141174, 0.04371540993452072, 0.07124564796686172, -0.05038674920797348, 0.009724529460072517, 0.015893852338194847, -0.010737502947449684, -0.07826881110668182, 0.008397374302148819, 0.014427460730075836, 0.04934478551149368, 0.0361991822719574, 0.04686184599995613, 0.00844583660364151, -0.05337362363934517, 0.2754245102405548, -0.06788431107997894, -0.06215447559952736, -0.12349648028612137, 0.19493848085403442, 0.03347006440162659, -0.018770689144730568, 0.05531565099954605, -0.09274880588054657, -0.013693829998373985, 0.16264070570468903, 0.13463044166564941, -0.09186170250177383, -0.021341094747185707, -0.02413424290716648, -0.008668740279972553, -0.0128675801679492, 0.1047145426273346, 0.07141992449760437, 0.0017879381775856018, -0.06638190150260925, -0.014821968972682953, -0.029953718185424805, -0.04702772572636604, -0.06232953071594238, 0.05888298526406288, 0.027089012786746025, -0.00659289862960577, -0.05937400460243225, 0.06262335181236267, -0.005336763337254524, -0.2352760285139084, 0.03848723694682121, -0.1736777424812317, -0.17366141080856323, -0.013785767368972301, 0.07042320817708969, 0.0010535240871831775, 0.056278567761182785, -0.006347947288304567, 0.00967682059854269, 0.11573819816112518, -0.016982341185212135, -0.013354153372347355, -0.11744824796915054, 0.10892359167337418, -0.10738824307918549, 0.2125307023525238, -0.0017616382101550698, 0.06431277096271515, 0.0992649719119072, 0.038495346903800964, -0.13487063348293304, 0.018811194226145744, 0.06244443356990814, -0.12676866352558136, 0.001167607493698597, 0.14503057301044464, -0.03439433127641678, 0.0639030933380127, 0.03177572414278984, -0.1491631418466568, -0.0028964949306100607, 0.02707473374903202, -0.03769983723759651, -0.06891845911741257, -0.010748123750090599, -0.0563078299164772, 0.16580529510974884, 0.207442045211792, -0.028521908447146416, 0.011934369802474976, -0.08427678048610687, 0.021990850567817688, 0.04802582040429115, 0.05865678936243057, -0.0395643413066864, -0.21645620465278625, 0.022045012563467026, 0.0731668621301651, -0.0031599905341863632, -0.19589368999004364, -0.0964261144399643, 0.043764546513557434, -0.035937342792749405, -0.046071890741586685, 0.09201732277870178, 0.02408197522163391, 0.03737553954124451, -0.019556580111384392, -0.11547688394784927, -0.02758307382464409, 0.14589226245880127, -0.17547310888767242, -0.04307953268289566 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-10 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-10
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-10 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09669841080904007, 0.11533159762620926, -0.002251231577247381, 0.09116145223379135, 0.11923490464687347, 0.021985342726111412, 0.10081834346055984, 0.12725302577018738, -0.09720584005117416, 0.08598307520151138, 0.08718890696763992, 0.03950558975338936, 0.04744080826640129, 0.14611153304576874, -0.018893888220191002, -0.26069456338882446, 0.010685287415981293, -0.002758777467533946, -0.03318703547120094, 0.11177188158035278, 0.08526025712490082, -0.110845647752285, 0.08565830439329147, 0.014812915585935116, -0.15366150438785553, 0.019556967541575432, -0.03765407204627991, -0.0351509191095829, 0.11340422183275223, -0.033784475177526474, 0.10821575671434402, 0.024963608011603355, 0.1350688636302948, -0.20932237803936005, 0.004898321349173784, 0.07349273562431335, 0.04620455205440521, 0.10029500722885132, 0.05043642595410347, 0.015942750498652458, 0.08990100771188736, -0.15444232523441315, 0.09351519495248795, 0.028763938695192337, -0.0905960202217102, -0.1285071074962616, -0.09526321291923523, 0.025073951110243797, 0.05335277318954468, 0.06883440911769867, 0.0010304622119292617, 0.15233559906482697, -0.060603849589824677, 0.07880549877882004, 0.26622337102890015, -0.32689449191093445, -0.0640099048614502, 0.0335191935300827, 0.06095384806394577, 0.052787695080041885, -0.12323160469532013, -0.0070290472358465195, 0.027283066883683205, 0.029329929500818253, 0.11969459801912308, -0.01723712496459484, -0.11293613165616989, -0.01325624343007803, -0.12868906557559967, -0.00007450410339515656, 0.07123330235481262, 0.036250654608011246, -0.05201186612248421, -0.09567389637231827, -0.07498512417078018, -0.09336564689874649, -0.026310214772820473, -0.06499063968658447, 0.05649503692984581, -0.055774420499801636, -0.0817563608288765, -0.036094240844249725, -0.056105148047208786, -0.07636009156703949, -0.017521405592560768, 0.15697826445102692, 0.04034600406885147, 0.0195122379809618, -0.03209516778588295, 0.10821744054555893, 0.0011347410036250949, -0.14160767197608948, -0.015185751020908356, -0.0014440696686506271, -0.09803669899702072, -0.04759015515446663, -0.05144638195633888, -0.017577366903424263, 0.009430005215108395, 0.17732574045658112, -0.07840941846370697, 0.07584518194198608, 0.011571800336241722, -0.030110733583569527, -0.006484395358711481, 0.1486850082874298, -0.044650848954916, -0.0481235608458519, -0.010815140791237354, 0.07444056123495102, 0.0026937518268823624, -0.0139043303206563, -0.06550663709640503, -0.027577871456742287, 0.10243237018585205, 0.045070432126522064, -0.06075406074523926, 0.040675126016139984, -0.022093946114182472, -0.02837168239057064, 0.018236365169286728, -0.11556608974933624, 0.04437461122870445, -0.002653065836057067, -0.0858069360256195, -0.0018466071924194694, -0.0005725768860429525, -0.00466127460822463, -0.008247816935181618, 0.11021658778190613, -0.0996052622795105, -0.0023938724771142006, -0.06441977620124817, -0.08384156227111816, 0.008989667519927025, -0.15894770622253418, -0.015044253319501877, -0.05702901631593704, -0.17244116961956024, -0.032087743282318115, 0.03632042557001114, -0.07309482991695404, -0.008868960663676262, -0.04950414597988129, -0.0649966299533844, 0.0233762189745903, -0.014003552496433258, 0.17393726110458374, -0.053303495049476624, 0.07169300317764282, -0.000861886132042855, 0.046458564698696136, 0.014880036935210228, 0.0363144613802433, -0.10516271740198135, 0.024675309658050537, -0.1371757537126541, 0.06945127993822098, -0.08484966307878494, -0.0009840027196332812, -0.13295263051986694, -0.09861098974943161, 0.008359520696103573, -0.021699853241443634, 0.09095191955566406, 0.1388053596019745, -0.19425822794437408, -0.017947359010577202, 0.12831473350524902, -0.07416080683469772, -0.06338850408792496, 0.061513595283031464, -0.061333391815423965, 0.030628331005573273, 0.053458064794540405, 0.21062152087688446, 0.0415598526597023, -0.16575312614440918, -0.033473901450634, -0.005746172275394201, 0.04104793816804886, 0.02514670230448246, 0.03980964049696922, 0.005403999704867601, 0.06468737125396729, 0.014775482006371021, -0.07536295801401138, -0.032240983098745346, -0.09099031239748001, -0.06518195569515228, -0.05451972782611847, -0.07285435497760773, 0.041511841118335724, 0.003957902546972036, 0.04255083575844765, -0.06503818184137344, -0.1018630638718605, 0.12059646099805832, 0.09710872173309326, -0.0483643002808094, 0.03599204123020172, -0.07917007803916931, 0.01910819113254547, -0.020696232095360756, -0.03900158777832985, -0.20640967786312103, -0.12858159840106964, 0.05257817357778549, -0.057448018342256546, 0.034175824373960495, 0.007065560203045607, 0.08156612515449524, 0.061220794916152954, -0.04320898279547691, -0.011995362117886543, -0.09347556531429291, 0.0029869158752262592, -0.11820200830698013, -0.18748511373996735, -0.0783141553401947, -0.04028460010886192, 0.0945049524307251, -0.17454051971435547, -0.0064448523335158825, 0.014049708843231201, 0.14370514452457428, 0.026809267699718475, -0.06824631989002228, -0.0024407634045928717, 0.03758511692285538, 0.002844126196578145, -0.09582221508026123, 0.04442765936255455, 0.0075119659304618835, -0.09339527040719986, -0.06406999379396439, -0.13635759055614471, -0.012048294767737389, 0.060063302516937256, 0.05371683090925217, -0.09652519226074219, -0.04562682658433914, -0.07060371339321136, -0.040070075541734695, -0.07502157241106033, 0.012935187667608261, 0.20102162659168243, 0.034721262753009796, 0.11262022703886032, -0.06743519008159637, -0.07814823091030121, -0.003329294500872493, 0.023474346846342087, 0.012953517027199268, 0.07664026319980621, 0.04076702147722244, -0.052980903536081314, 0.07376685738563538, 0.09991972148418427, -0.022998543456196785, 0.12390901148319244, -0.04708727449178696, -0.08448439091444016, -0.03317173570394516, -0.025099167600274086, -0.029427355155348778, 0.12349331378936768, -0.04033350944519043, 0.004066324792802334, 0.036087244749069214, 0.04409429430961609, 0.017271365970373154, -0.16244423389434814, 0.008509484119713306, 0.022104214876890182, -0.05279253423213959, -0.03814184293150902, -0.0015477872220799327, 0.026194164529442787, 0.09175115823745728, 0.030890189111232758, -0.013936296105384827, 0.0021701885852962732, -0.011450686492025852, -0.06118715927004814, 0.18551994860172272, -0.09779444336891174, -0.08414151519536972, -0.07467015832662582, 0.006107484456151724, -0.058693770319223404, -0.03641046956181526, 0.015153273940086365, -0.08797957748174667, -0.0388469472527504, -0.08727256208658218, -0.017866414040327072, -0.017757564783096313, 0.020235855132341385, 0.032071445137262344, -0.02235274761915207, 0.07929891347885132, -0.13923333585262299, 0.0019805487245321274, -0.052151091396808624, -0.0912226065993309, -0.0009752886835485697, 0.07407025992870331, 0.0987405776977539, 0.08008086681365967, -0.01775953732430935, 0.029712125658988953, -0.035094160586595535, 0.2415686994791031, -0.046160850673913956, 0.011559193022549152, 0.10358238965272903, -0.01283157616853714, 0.0561036616563797, 0.09545158594846725, 0.03720618784427643, -0.09350951761007309, 0.020836489275097847, 0.08264507353305817, -0.028670022264122963, -0.22916099429130554, -0.025493241846561432, -0.004222550429403782, -0.08025122433900833, 0.10673942416906357, 0.03135042265057564, -0.035670824348926544, 0.046627793461084366, 0.020626308396458626, 0.003177931997925043, -0.055370405316352844, 0.08130203932523727, 0.0741724818944931, 0.05686376616358757, 0.10041219741106033, -0.009288454428315163, -0.02924988605082035, 0.06078679859638214, 0.007972716353833675, 0.24768458306789398, -0.024779673665761948, 0.10084395855665207, 0.032116521149873734, 0.1513456553220749, -0.027285084128379822, 0.0662362352013588, 0.004234724678099155, -0.0098722530528903, -0.014626022428274155, -0.06701873987913132, -0.02433282509446144, 0.023132851347327232, -0.04593406245112419, 0.02961409091949463, -0.08120688796043396, 0.025162845849990845, 0.027657076716423035, 0.2790899872779846, 0.035113994032144547, -0.27521026134490967, -0.06614083796739578, -0.013102948665618896, -0.04255267605185509, -0.06357361376285553, 0.006323805544525385, 0.11932189017534256, -0.13229745626449585, 0.06572185456752777, -0.07667162269353867, 0.08993156999349594, -0.038278959691524506, 0.011493830941617489, 0.0464840903878212, 0.15410186350345612, -0.01805845834314823, 0.05122317001223564, -0.18603704869747162, 0.24183964729309082, 0.02487366646528244, 0.10872343927621841, -0.06551632285118103, 0.010267789475619793, 0.019116055220365524, 0.007300373632460833, 0.10937614738941193, 0.0005092076025903225, -0.06790038198232651, -0.1382298767566681, -0.099036805331707, 0.0470968559384346, 0.1421215683221817, -0.03426075354218483, 0.09992675483226776, -0.027650298550724983, 0.011911531910300255, 0.034613292664289474, -0.031220218166708946, -0.1577664613723755, -0.07351381331682205, 0.009658711031079292, 0.02730068564414978, -0.016122879460453987, -0.05134379118680954, -0.10413993895053864, -0.041145775467157364, 0.11734296381473541, 0.003567255800589919, -0.045695960521698, -0.1509808599948883, 0.08603576570749283, 0.14629586040973663, -0.05787047743797302, 0.016039565205574036, 0.014717723242938519, 0.11218909174203873, 0.03264473006129265, -0.08588975667953491, 0.06618791818618774, -0.05338962376117706, -0.17227672040462494, -0.057263027876615524, 0.11930421739816666, 0.07962874323129654, 0.045438725501298904, 0.0007834644056856632, 0.0569068007171154, 0.0013434671564027667, -0.09685372561216354, 0.03530476987361908, 0.003839226672425866, 0.05181558430194855, 0.029174549505114555, -0.08595453947782516, 0.07588077336549759, -0.034465037286281586, 0.02016596868634224, 0.12916883826255798, 0.23059000074863434, -0.099204421043396, 0.10121997445821762, 0.08062923699617386, -0.0761396512389183, -0.15946952998638153, 0.062486033886671066, 0.12523119151592255, 0.005459244828671217, 0.08366450667381287, -0.20015206933021545, 0.13461454212665558, 0.1065705195069313, -0.012857695110142231, 0.019755277782678604, -0.2723557651042938, -0.13183072209358215, 0.06625775247812271, 0.10984892398118973, 0.0470799095928669, -0.12135954946279526, -0.03482525050640106, -0.011340848170220852, -0.11966534703969955, 0.12894675135612488, -0.07760906219482422, 0.11682897061109543, -0.020838988944888115, 0.12225039303302765, 0.024241622537374496, -0.03736225143074989, 0.11200416088104248, 0.07251911610364914, 0.08633673191070557, -0.039116792380809784, -0.0031105023808777332, 0.06639797985553741, -0.06219511106610298, 0.03761895373463631, -0.03778401017189026, 0.06299127638339996, -0.14722032845020294, 0.00639024144038558, -0.07774806767702103, 0.060050833970308304, -0.04620744287967682, -0.06552772969007492, -0.02747960388660431, 0.04733762890100479, 0.07270240038633347, -0.03599545359611511, 0.04474422708153725, 0.009179173037409782, 0.09005429595708847, 0.09671573340892792, 0.07349499315023422, -0.02242685854434967, -0.08216959983110428, 0.014361361041665077, 0.005061141215264797, 0.04673226177692413, -0.08666463941335678, 0.015258860774338245, 0.14664167165756226, 0.060566604137420654, 0.10218348354101181, 0.045233193784952164, -0.04346563667058945, 0.005090699531137943, 0.016277531161904335, -0.1409481316804886, -0.10082117468118668, 0.02821355126798153, -0.05878845602273941, -0.15473341941833496, 0.0347774364054203, 0.12180338054895401, -0.038046590983867645, -0.0165341105312109, -0.007402951363474131, 0.008197321556508541, -0.01144929975271225, 0.1858631819486618, 0.04318748787045479, 0.05426802858710289, -0.09174340218305588, 0.11448550969362259, 0.03613167628645897, -0.0423305369913578, 0.0541674867272377, 0.06735872477293015, -0.10004593431949615, 0.013041576370596886, 0.07301697880029678, 0.14986488223075867, -0.06465660035610199, -0.013273338787257671, -0.09173498302698135, -0.07698380947113037, 0.04533626139163971, 0.14514727890491486, 0.05314221978187561, -0.005628915503621101, -0.06092352047562599, 0.035963594913482666, -0.11899387836456299, 0.06840335577726364, 0.05234803259372711, 0.08235989511013031, -0.10797636210918427, 0.12469004094600677, -0.006900152191519737, 0.023768434301018715, -0.027895236387848854, 0.018939638510346413, -0.10029127448797226, -0.034514009952545166, -0.10794202238321304, -0.015510962344706059, -0.019326673820614815, -0.0032573656644672155, -0.019973162561655045, -0.07483911514282227, -0.04303205385804176, 0.03230993449687958, -0.0765102282166481, -0.048832960426807404, 0.017178760841488838, 0.03953937813639641, -0.1606234759092331, 0.003371753729879856, 0.025538714602589607, -0.08709053695201874, 0.0872424840927124, 0.06843337416648865, 0.016109587624669075, 0.02854737639427185, -0.12292619794607162, -0.032679855823516846, 0.0010007634991779923, 0.010911449790000916, 0.07741885632276535, -0.0928124263882637, -0.029011065140366554, -0.03074297308921814, 0.04995814710855484, 0.014328701421618462, 0.10017815232276917, -0.11853066831827164, -0.01376751996576786, -0.04684478044509888, -0.037385404109954834, -0.05724087357521057, 0.0273281242698431, 0.1139398068189621, 0.043309807777404785, 0.15811853110790253, -0.06902655959129333, 0.05425375699996948, -0.20486171543598175, -0.033180274069309235, 0.010727074928581715, -0.04805714264512062, -0.07446654886007309, -0.04566967487335205, 0.0844576358795166, -0.05008873715996742, 0.12220728397369385, -0.015358914621174335, 0.09431729465723038, 0.04357049986720085, -0.0022676275111734867, -0.07027384638786316, -0.010970305651426315, 0.18431591987609863, 0.05784246698021889, -0.021647362038493156, 0.11991315335035324, 0.0042063575237989426, 0.04274272918701172, 0.06710010766983032, 0.2324073761701584, 0.15269477665424347, -0.012185296975076199, 0.0751408264040947, 0.06707395613193512, -0.07521437853574753, -0.13991600275039673, 0.12376751005649567, -0.021532200276851654, 0.10577941685914993, -0.0524335615336895, 0.19119805097579956, 0.037713441997766495, -0.17612314224243164, 0.05482516810297966, -0.02443276159465313, -0.10836391896009445, -0.12430764734745026, -0.018183764070272446, -0.08206796646118164, -0.1157182827591896, 0.027912234887480736, -0.12370570003986359, 0.06675469130277634, 0.09612109512090683, 0.0074836784042418, 0.03477257862687111, 0.18574143946170807, -0.05810898542404175, 0.01104014553129673, 0.07317093014717102, 0.02057008072733879, -0.0037798485718667507, -0.03998516872525215, -0.06643078476190567, 0.03803344443440437, 0.04290447011590004, 0.07193554192781448, -0.052706778049468994, 0.009117337875068188, 0.015787430107593536, -0.009874856099486351, -0.07766187191009521, 0.008527756668627262, 0.014029478654265404, 0.04926643148064613, 0.03504656255245209, 0.04711848497390747, 0.007885968312621117, -0.05378691107034683, 0.2740241289138794, -0.06785692274570465, -0.06309036165475845, -0.12383801490068436, 0.19225606322288513, 0.03447681665420532, -0.018811989575624466, 0.05621263384819031, -0.09307760000228882, -0.011435788124799728, 0.16354751586914062, 0.13482172787189484, -0.08968620747327805, -0.021915890276432037, -0.02376505918800831, -0.009058723226189613, -0.013660945929586887, 0.10425885021686554, 0.07182127237319946, -0.0006494717672467232, -0.06618615984916687, -0.014142804779112339, -0.028398891910910606, -0.0482826791703701, -0.06219029426574707, 0.05868420749902725, 0.028072088956832886, -0.006939103826880455, -0.05749651417136192, 0.0642128735780716, -0.003131608944386244, -0.23523718118667603, 0.03715863451361656, -0.17258229851722717, -0.17379605770111084, -0.014433289878070354, 0.0701570138335228, 0.002806309377774596, 0.05616644024848938, -0.006189517676830292, 0.010016726329922676, 0.11513440310955048, -0.01636403799057007, -0.01395172905176878, -0.1175309345126152, 0.10915186256170273, -0.10864359140396118, 0.21140478551387787, -0.0019921879284083843, 0.06532099843025208, 0.09912211447954178, 0.036860983818769455, -0.134706512093544, 0.019263140857219696, 0.06253762543201447, -0.12464479357004166, 0.0027455994859337807, 0.1454722285270691, -0.03416606783866882, 0.06162627041339874, 0.030934354290366173, -0.14944273233413696, -0.0025610688608139753, 0.027187857776880264, -0.037135832011699677, -0.06981893628835678, -0.00823221169412136, -0.055556315928697586, 0.16651703417301178, 0.20722974836826324, -0.028953861445188522, 0.012472574599087238, -0.08478192239999771, 0.021370897069573402, 0.04840268939733505, 0.05879675969481468, -0.03935183957219124, -0.2161433845758438, 0.02084628865122795, 0.0705503597855568, -0.0026333718560636044, -0.1951294243335724, -0.09543347358703613, 0.04260709509253502, -0.03734026476740837, -0.04614235833287239, 0.09121913462877274, 0.025757521390914917, 0.03739919140934944, -0.01926448382437229, -0.11577306687831879, -0.02789262868463993, 0.14588309824466705, -0.17643220722675323, -0.04222514480352402 ]